Android App
Development
in Android Studio

Android App Development in Android Studio

Java + Android Edition for Beginners

J. Paul Cardle

Ii;;;;' N
My .0.’;
AIPASO
X X)

%%

27

2%

e

Manchester Academic
Publishers

Android App Development in Android Studio — First Edition

This book is provided for personal use. Reproduction/distribution in any form is
prohibited.

This book is provided for informational purposes only. Author and the publisher do not
offer any expressed or implied warranty about the accuracy of information contained in
this book. Author and the publisher do not accept any liability for any loss or damage
caused from the usage of the information given in this book. This book is a copyrighted
material of S. Yamacli. All rights reserved.

The names of the trademarked/copyrighted software and hardware in this book are for
editorial purposes only and to the benefit of the respective trademark/copyright owners.
The terms used in this book are not intended as infringement of the trademarks and
copyrights.

All product and company names mentioned in this book are trademarks (™) or registered
trademarks (*) of their respective holders. Use of them does not imply any affiliation
with or endorsement by them. All company, product and service names used in this book
are for identification purposes only.

This book is an independent publication and has not been authorized, sponsored, or
otherwise approved by Google Inc. Android is a trademark of Google Inc. Google and the
Google Logo are registered trademarks of Google Inc. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

This book is dedicated to all good people.

Table of Contents

CHAPTER 1. INTRODUCTION... ottt e e e evav s 9
1.1. The Android Operating SyStemcccccevevieeiiviiee e 9
1.2. How do Android Apps WOrK?eeeeeiiieeeeiiiee e 11

1.3. Programming Languages Used For Developing Android Apps.... 14

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT 15
2.1. Installation of Android Studio.........cceecieeeiiienieiiiiieieeeeeeiees 15
2.2. Installation of EMUIAtorscooceeeriieniiieiiieenecceeerec e 18

CHAPTER 3. TEST DRIVE: THE HELLO WORLD APPcccoviiiiiiienieeenne 23
3.1. General Procedure for Developing an App......cccceeccveeeeecveeeeennnen. 23
3.2. Creating a New Android Studio Project........ccccceeeecvieeeecreeeeennee. 24
3.3. Main Sections of the IDEc.ccceviiiniiiiiiiienecicerec et 28
3.4. Folder and File Structure of an Android Studio Project 29
3.5. Building the User Interface.......ccccocueeeeciieeeccciiee e 31
3.6. Building the Project and Running on an Emulator 35
3.7. RUNNing on @ Real DeVICEuuveeeciieeeeieeeeeee et 41

CHAPTER 4. JAVA BASICS ...ttt ce e e e 45
4.1, What iS JaVa? .coeeeieeieeeeeeeeeesee s 45
4.2. Using Android Studio for Java Codingcccceeveveeiiiereeciiee e, 47
4.3.Variables iN Java ... 53
4.4. Logical Decision Making Statements in Javaccccceeeecvveeenneen. 65
4.5, LOOPS iN JAVA i s 69
4.6. Methods iNJava......coceiiiiie i 74
4.7. Classes, Objects and Inheritance in Javaccccceeeiieeecciiee e, 79

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEADccccceoveueruennens 87

5.1. Creating a New Android Project.......cccceccveeeevcieeecccieeeeeciiee e 87

5.2. Developing the User Interface......cccccoeeccviieeeeei e 90

5.3. Writing the Main Code of the App ...cccvvevveciieiiiiee e, 98
5.4. Building and RUNNINg the APcc.ueveeeiieieecieeeeceee e 107
CHAPTER 6. ANDRIOD APP#2: BODY MASS INDEX (BMI) CALCULATOR
.. 111
6.1. General Information........ccoceeeiiieniiiiiieee e 111
6.2. Adding and Positioning TeXtVIEWScccccevevveeeiniieeeercieee e 112
6.3. Adding the EditText WidgetsS.......cccceevvieieeiiieeeceieee e 115
6.4. Adding and Positioning the Buttonccccccceeeeeciieeiccieee e, 118
6.5. Developing the Main Code of the Appccccveeeeecieee e, 119
6.6. Building and RUnning the App....ccccceeeciveieicieeeeceee e 125
6.7. FINAI NOTESeeiiiiieeiee ettt e 127
CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER.............ccceeeennnnn. 131
7.1. Creating the Project and Adding an Imageview Widget 131
7.2. Adding the Other Widgets and Setting up the IDs.................... 136
7.3. Developing the Main Code of the App....ccoccveeeeecieie e, 136
7.4. Building and RUNNINg the APpP....cveeveeeiieieeieee e 140
CHAPTER 8. ANDROID APP #4: THE COMPASS......cccooviiiiiiiiiiiiiiiieene, 143
8.1. Setting up the Required Permissionscccccceeeecvveeeeeveeeeennee, 143
8.2. Designing the GUI of the APpP ...ccoccveeeeeceee et 146
8.3. Writing the Main Code of the APpccccvveeeeciieieeciee e, 148
8.4. Building and RUNNINg the ApPpPccceeeeeeeeiecciiieeee e 158
CHAPTER 9. ANDRIOD APP # 5: SHOW MY LOCATION: USING GPS AND
VLA S et e et e e e e e e e e e e e e ere s 159
9.1. Creating @ Map ProjecCt......uuuueveriieiieiiieeeeeeeeeeeeeeeeeeeseeeseseseeesennenn 159
9.2. Creating and Adding an Api KeYeevveeeeeecciiieeeeee e, 161

9.3. The Default MapsActivity.java Fileccccceevieeiiciiii e, 164

9.4. Running the Maps App for the First Timecccccceeeeeeeeccnnineenn. 165

9.5. Implementing the Required Callbacks........ccccccceeeircieeeincveennnnns 166
9.6. Populating the Implemented Methodsccccceeciiiiincinenens 171
9.7. Adding the Required Permissions to the Manifest File.............. 180
9.8. Running Our App and Sending Custom Coordinates to the
EMUIGEOT ottt e 182
CHAPTER 10. ANDRIOD APP # 6: S.0.S. MESSAGE SENDER................. 185
10.1. INtrodUCTION ..ceeiiiiccee s 185
10.1. Adding the Required Permissions.........ccccecvueeeeecreeeeecveeeeennen 185
10.2. Designing the User Interfacecccceecveeeeccieee e 186
10.3. Developing the Main Codeccueviririeieeiiiiieccieee e 190
10.4. Building and Running the Appcccevvcvveeeiviieiecceee e 198
EPILOGUE AND FUTURE WORKcceiiiiiiiiiiiiiiiieeeeeeeee, 201

REFERENCES...... ottt 202

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

CHAPTER 1. INTRODUCTION

Chapter 1 A

INTRODUCTION

Welcome to your guide to Android™ app development!

This book aims to teach the basics of Android app development in
Android Studio using Java programming language. | assume that you
don’t have any Java® or Android programming experience at the start of
this book. | am going to explain every bit of app development in simple
terms. You’ll start from scratch and will be able to convert your ideas to
your own apps after completing this book. A single book obviously
cannot make you the best expert on a platform or programming language
however you’ll have a solid background and hands-on experience on
Android app development with this book.

Android apps had been developed using Eclipse integrated development
environment (IDE) with Android Development Tools (ADT) plugin in
the past. However, Google introduced Android Studio as the official IDE
for Android app development in 2014 and this IDE became the standard.
The latest stable release is Android Studio 2.2, which will be used in this
book.

Let’s overview the fundamentals of Android operating system and the
related concepts before starting our programming journey.

1.1. The Android Operating System

Android is an open-source mobile operating system. It is a variant of
Linux hence providing extensive security, modularity and productivity at
the mobile device level. Android is developed and maintained by the
organization called “Open Headset Alliance” (OHA). OHA was
established in 2007 with Google being its foremost member. OHA
includes a lot of prominent hardware and software companies.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Originally, Android was created by a company called Android Inc.
Google acquired this company in 2005. After then, Google made it open-
source and Android gained a big momentum. Android has the market
share of around 85% in 2016 as shown in Figure 1.1 (data source:
http://www.idc.com/). Considering this market share, it is obviously
rewarding to invest in Android app development.

88,00% -
86,00% -
84,00% -
82,00% -
80,00% -
78,00% -
76,00% -
74,00%

Market share

2015-Q4 2016-Q1 2016-Q2 2016-Q3
Period

Figure 1.1. Market shares of mobile operating systems between 2015-Q4
and 2016-Q3

Android has seven major releases each having several minor revisions. In
order to follow these versions easier, developers name them with cookie
names. The popular versions of Android are Kitkat (Android 4.4),
Lollipop (Android 5.1) and Marshmallow (Android 6.0)
(https://www.statista.com/statistics/271774/share-of-android-platforms-
on-mobile-devices-with-android-os/). Nougat (Android 7.0) is also
gaining popularity. Android becomes more capable as the version goes
up. However, we have to be careful about selecting the version during
app development because not every device uses the latest version. If we
develop an app for the Lollipop, it may not run on a device which has
Froyo installed. Fortunately, Android Studio enables us to select set the
compatibility.

10

http://www.idc.com/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

CHAPTER 1. INTRODUCTION

Android is utilized not only in smartphones but also in tablets, netbooks,
digital television boxes, handheld game devices and even in single board
computers such as UDOO. Therefore we first need to select the target
device(s) and version(s) before developing an app.

1.2. How do Android Apps Work?

There are different ways the programs run on various platforms. The
lowest level software can be written in machine code that runs directly
on the microprocessor. This is shown in Figure 1.2. Since it is difficult to
develop complex applications in machine code, operating systems are
used. Operating systems provide a communication and control layer
between the application software and the hardware as shown in Figure
1.3. If we want to develop a native application for running on a specific
hardware/operating system, we have to do this using a compiler and
linker. Compiler and linker takes the source code and creates the
executable file that actually runs on the operating system as shown in
Figure 1.4. For example, if we want to develop an application in C++
programming language, we have to utilize the compilation/linking

process.
code

Hardware

Figure 1.2. Machine code — hardware relation

The main advantage of native applications is their speed. However, the
disadvantage is the incompatibility across different platforms. For
example, we cannot run a native Windows application on Ubuntu and
vice versa. Virtual machine concept is developed to overcome this
limitation. Virtual machine is software that runs on the operating system
and provides an abstraction to the developer as shown in Figure 1.5. The
application software runs on top of the virtual machine.

11

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Application

s 2y

Operating
s System

Hardware

S

Figure 1.3. Operating system layer between the hardware and the app

Executable
Source » Compiler Linker file - runs on the
code operating system

Figure 1.4. Creating a native executable from the source code

Therefore, as long as a computer has the virtual machine running, the
application software can run on that computer independent of the
hardware and the operating system. A good example is the Java Virtual
Machine (JVM). JVM runs on almost all operating systems and
platforms. Therefore, when we develop Java software, it will be run on
the JVM independent of the operating system/platform.

The obvious advantage of developing apps that run on virtual machines
can then be stated as: “develop once and run on all platforms”. However,
applications running on virtual machines are slower than native
applications.

General development process of virtual machine applications is
summarized in Figure 1.6.

12

CHAPTER 1. INTRODUCTION

<>

Application
software
Virtual

[echine.

Operating

system_~
e e

Figure 1.5. Virtual machine between the app and the operating system

Source Compiler Intermediate Vlrtu.al
code output machine

Interpreted as
native code

Figure 1.6. Creating an intermediate code from the source code —
intermediate code is interpreted by the virtual machine

Similar to Java applications, Android applications also run on a JVM.
There are two special virtual machines used in Android: Dalvik Virtual
Machine (DVM) and Android RunTime (ART). These are specialized
JVMs which can run on low system resources. The .apk files
(executables of Android apps) actually run on these virtual machines.
DVM has been the default runtime environment (~ virtual machine) until
the Lollipop release (Android 5.0). ART is introduced by Android 4.0
and has been the default VM as of Android 5.0. DVM and ART basically
do the same job: running Android apps independent of the platform. The
main advantage of ART over DVM is the utilization of a concept called
Ahead of Time (AOT) compilation instead of Just in Time (JIT)
approach. In AOT, apps are compiled during installation hence they load

13

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

faster with lower CPU usage. On the other hand, JIT compilation
provides lower storage space consumption with relatively longer loading
times.

1.3. Programming Languages Used For Developing

Android Apps

The recommended and convenient way of developing Android apps is
using Java programming language. Although Java is a general purpose
tool, it is used in conjunction with Android Software Development Kit
(SDK) in Android Studio environment to develop apps. Another official
way is using C++ with the Native Development Kit (NDK). This option
is used for developing apps with low level instructions such as timing
sensitive drivers. With C++ and NDK, we can directly run the app on the
Android kernel hence increasing efficiency in exchange of code length
and development cost. There also exist third-party tools like Xamarin,
Crodova and React Native for developing apps. These platforms provide
convenience however a native-like performance isn’t normally expected
from the apps developed by third party tools.

We’ll use the standard and official way of developing Android apps:
Java with Android SDK and we’ll use Android Studio Integrated
Development Environment (IDE) for this job. You don’t need to know
Java to start following this book because the basics of Java are also
explained in Chapter 4.

I’ll not introduce complicated subjects until I’m sure that you understand
the basics because it is very easy to get lost while learning a new
programming language. You’ll not be in such a situation with this book.
I’ll try to teach new concepts in the simplest way possible. Please don’t
forget that learning a programming language is a non-stop process, it
never ends and this book will help you get started easily.

Now, you know the aims and the method of this book. Let’s continue
with installation of the Android Studio in the next chapter after having a
coffee break.

14

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Chapter 2 D/

SETTING UP YOUR DEVELOPMENT ENVIRONMENT

We’ll use Android Studio, which is the official IDE for Android app
development; therefore we need to install it with the required plugins.

2.1. Installation of Android Studio

Android Studio runs on Java Runtime Environment (JRE). JRE can be
installed on Windows, Mac and Linux computers. We need to follow the
steps given below for the installation of Android Studio independent of
our operating system:

1. Installation of Java: Java is developed by Oracle Inc. There are
basically two Java packages: Java Runtime Environment (JRE) and Java
Software Development Kit (JDK). JRE is used for running software
written in Java programming language whereas JDK is utilized for
developing Java software. Therefore, installing JRE is adequate for
running Android Studio because we will not develop Java software here.

Please navigate to the following website to download the JRE:
http://www.oracle.com/technetwork/java/javase/downloads/jre8-
downloads-2133155.html. You’ll be presented with the download
options shown in Figure 2.1. Just select the version compatible with your
operating system, download it and install it with the usual installation
procedure (Next, next, ...).

2. Installation of Android Studio and Android SDK

Android Studio is bundled with Android Software Development Kit
(SDK). Please navigate to the official download site located at:
https://developer.android.com/studio/index.html . The download link for
the Windows version is shown at the top of this site but if you scroll

15

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://developer.android.com/studio/index.html

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

down, you can find the setup files available for download for other
operating systems as shown in Figure 2.2.

Iv Overview ‘ Downloads { Documentation H Community H Technologies H Training |

Java SE Runtime Environment 8 Downloads
Do you want to run Java™ programs, or do you want to develop Java programs? If you wantto run
Java programs, but not develop them, download the Java Runtime Environment, or JRE™.

If you want to develop applications for Java, download the Java Development Kit, or JDK™. The
JDK includes the JRE, so you do not have to download both separately.

JRE 8u111 Checksum
JRE 8u112 Checksum

Java SE Runtime Environment 8u111
You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.
. Accept License Agreement '® Decline License Agreement

Product/ File Description File Size Download
Linux x86 54.86 MB #jre-8u111-linux-i586.rpm
Linux x86 70.65 MB #jre-8u111-linux-i586.tar.gz
Linux x64 52.75 MB #jre-8u111-linux-x64.rpm
Linux x64 68.57 MB #jre-8u111-linux-x64.tar.gz
Mac OS X 64.33 MB #jre-8u111-macosx-x64.dmg
Mac OS X 56 MB #jre-8u111-macosx-x64.tar.gz
Solaris SPARC 64-hit 46.04 MB #®jre-8u111-solaris-sparcv9.targz
Solaris x64 49.88 MB #jre-8ui111-solaris-x64.tar.gz
Windows x86 Online 0.7 MB #jre-8u111-windows-i586-iftw.exe
Windows x86 Ofline 53.53 MB #jre-8u111-windows-i586.exe
Windows x86 59.43 MB #jre-8u111-windows-i586.tar.gz
Windows x64 Ofline 60.31 MB #jre-8u111-windows-x64.exe
Windows x64 62.78 MB #®jre-8u111-windows-x64.tar.gz

Figure 2.1. Download options for Java Runtime Environment

Select a different platform

Android Studio package E

Windows android-studio-bundle-145.3537739-windows.exe 1.674 MB 272105b119adbcababal 14abeeedc78f3001bef7
(64-bit) Includes Android SDK (recommended) (1,756,130,200 bytes)
android-studio-ide-145.3537739-windows.exe 417 MB b52c0b25¢85¢252fe55056d40d5b1a40a1ccd03c
No Android SDK (437,514,160 bytes)
android-studio-ide-145.3537739-windows.zip 438 MB f Ahe3ead5e500f27ac53543edc055¢1
No Android SDK, no installer (460,290,402 bytes)
Windows android-studio-ide-145.3537739-windows32.zip 438 MB 59fba5a17a508533b0decde584849b213fa39c65
(32-bit) No Android SDK, no installer (459,499,381 bytes)
Mac android-studio-ide-145.3537739-mac.dmg 434 MB 51f282234c3a78b4afc084d8ef43660129332¢37
(455,263,302 bytes)
Linux android-studio-ide-145.3537739-linux.zip 438 MB 172c9b01669f2fedbedcc16e466917fac04c9a7f
(459,957,542 bytes)

Figure 2.2. Download options for Android Studio

16

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

When you download and install Android Studio, Android SDK will also
be automatically installed.

3. Installation of SDK updates: After the installation of Android
Studio, it is better to check SDK updates. For this, run Android Studio
and open the SDK manager from Tools > Android - SDK Manager as
shown below:

File Edit View Navigate Code Analyze Refactor Build Run [EEH| VCS Window Help

BEHD ¢ X0 QR]A|« DS @ Tasks & Contexts Ml 2
[MyApplication) [z app » [1 src) [21 main ‘ Eljava) © com savelle as Template.. 1 MainActivity‘.
& Android = ‘ © & | - |- Generate JavaDoc...

L'} . — NewScratchFile.. Ctrl+AltsShift+Insert

g *3pp) Gra S 3, debugging) will not work properly.

#1| v (2 Gradle Scripts IDE Scripting Console .

R 3 on;

i (& build.gradle (Project: pplication) /' Firebase
(2 build.gradle (Module: app) @ Sync Project with Gradle Files
[air gradle-wrapper.properties (Gradle Version) import android.os.Bundle; 1§ Android Device Monitor

[l proguard-rules.pro (ProGuard Rules for app)
Eﬁ gradle.properties (Project Properties) public class MainActivity extends Apj
(& settings.gradle (Project Settings)

4 @Override Jtegration
l;n local.properties (SDK Location)

protected void onCreate (Bundle sa) 2] Layout Inspector
super.onCreate (savedInstanceS: () Theme Editor
setContentView (R.layout.activ: @ Firebase App Indexing Test

@ Captures «§ 7:Studure

}

Figure 2.3. Opening the SDK Manager

The SDK Manager window will appear as shown in Figure 2.4.

® Default Settings X
Q Behavior > System Settings > Android SDK
v Appearance & Behavior Manager for the Android SOK and Tools used by Android Studio
Appearance Android SOK Location: | C: i Edit
MEHE sl ok SOK Platforms | SDK Tools | SDK Updte Sites |
¥ System Settings Each Android SDK Platf kage i \droid platform and sources pertaining to an AP level by
Pisswords default. Once installed, Android Studio will automatically check for updates. Check “show package details” to
display individual SDK components.
HTTP Proxy .
L Name. | AP Level Revision | Status
Updates (O Android 7.1.1 (Nougat) 25 2 Update available
Usage Statistics) Android 7.0 (Nougat) 2 2 Update available
() Android 6.0 (Marshmallow) 23 3 Not installed
0 Android 5.1 (Lolipop) 2 2 Notinstlled
Notifications 3 Android 5.0 (Lollipop) 2t 2 Notinstalled
(O Android 44W (KitKat Wear) 20 2 Not installed
Quick Lists (O Android 4.4 (KitKat) 19 4 Not installed
Path Variables (O Android 43 (jelly Bean) 18 3 Not installed
(O Android 4.2 (Jelly Bean) 7 3 Notinstalled
Keymap (O Android 4.1 Jelly Bean) 16 5 Not installed
» Editor (O Android 4.0.3 (iceCreamSandwich) 15 5 Not installed
(O Android 40 (IceCreamSandwich) 1 4 Not installed
Plugins (D Android 3.2 (Honeycomb) 13 1 Not installed
» Build, Execution, Deployment O Android 3.1 (Honeycomb) 12 3 Notinstalled
() Android 3.0 (Honeycomb) n 2 Not installed
> Tools (3 Android 233 (Gingerbread) 1 2 Not installed
() Android 2.3 (Gingerbread) 9 2 Not installed
(3 Android 2.2 (Froyo) 8 3 Not installed
O Android 2.1 (Eclair) 7 3 Not installed
Looking for updates... & (O Show Package Details
“ | cance | | ppiy | [Hep |

Figure 2.4. Android SDK Manager

17

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Please open the standalone SDK Manager by clicking the link indicated
in Figure 2.4. In the standalone SDK Manager, click on the “Install ...
packages” as shown below:

Android SDK Manager - O X
Packages Tools
SDK Path: C:\Users\quantum\AppData\Lccal\Android\sdk
Packages
i Name APl Rev. Status A
v [JL] Tools

4 Android SDK Tools 2523 [Update available: rev. 25.2.4

¢ Android SDK Platform-tools 25.0.1 [E Update available: rev. 25.0.3

04 Android SDK Build-tools 25.02 [_] Not installed

[0+ Android SDK Build-tools 250.1 7 Installed

O /’ Android SDK Build-tools 25 [T Not installed

[+ Android SDK Build-tools 2403 [Not installed

[0 Android SDK Build-tools 24.02 [Not installed

.4 Android SDK Build-tools 24,0.1 [Not installed

[i=] ,)//"“ Android SDK Build-tools 24 [| Not installed

04 Android SDK Build-tools 23.03 [Not installed

1.4 Android SDK Build-tools 23.02 [_] Not installed

[4 Android SDK Build-tools 23.0.1 [] Not installed

1.4 Android SDK Build-tools 22.0.1 ["| Not installed b
Show: V] Updates/New Installed Select New or Updates I Install 11 packages... I

[Obsolete Deselect All Delete 5 packages...
M o=

Done loading packages.

Figure 2.5. Standalone SDK Manager

After you install the packages, you’ll have the latest SDK and be ready to
develop apps. However, before our test drive app one more step is
needed: setting up the emulators.

2.2. Installation of Emulators

Emulators are software that mimics the behaviour of real devices. When
we develop an app, we obviously won’t have all the possible devices
(Android phones, tablets, etc.) available at hand. Because of this, we run
the apps on emulators for testing on various devices. Emulators are also
called as “Android Virtual Devices (AVDs)” in Android Studio. When
Android Studio is first installed, there is no default AVD. We need to
create one before testing our apps. For this, select Tools - Android -
AVD Manager as shown in Figure 2.6.

18

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

Eile Edit View Navigate Code Analyze Refactor Build Run [EEJSH| VCS Window Help

DHO ¢A X000 QAR |¢ > SE
[MyApplication) T app) [src) Elmain) Eljava) * com)
© & | % 1= |
£|> Caapp Gra
v (2 Gradle Scripts

(2 build.gradle (Project: MyApplication)

(& build.gradle (Module: app)

r.'h gradle-wrapper.properties (Gradle Version)

> -
i Android -

'3 1:Projed:

[2l proguard-rules.pro (ProGuard Rules for app)
M gradle.properties (Project Properties)

(& settings.gradle (Project Settings)

[3it local.properties (SDK Location)

«J 7:Strudure

@ Captures

Tasks & Contexts » ’A 2

Save File as Template...
Generate JavaDoc...

| MainActivity /

New Scratch File... Ctrl+Alt+Shift+Insert

3, debugging) will not work properly.

IDE Scripting Console
ion;
¥ Firebase
Android g

import android.os.Bundle;

public class MainActivity extends Apj -

= SR aneg

@Override v Enable ADB Integration

protected void onCreate (Bundle sa' 2] Layout Inspector
super.onCreate (savedInstanceS () Theme Editor

setContentView(R.layout.activ: Q Firebase App Indexing Test
}

Figure 2.6 Launching the AVD Manager

When AVD Manager appears,

there won’t be any AVDs created or

installed. Please click on the + Create a Virtual Device button as shown

below:

| @ Android Virtual Device Manager

our Virtual Devices

4

“N\ Android Studio

H
O
i

Virtual devices allow you to test your application without having to
own the physical devices.

=+ Create Virtual Device...

To prioritize which devices to test your application on, visit the
Android Dashboards, where you can get up-to-date information on
which devices are active in the Android and Google Play ecosystem.

Figure 2.7. Creating a new AVD

AVD Manager will show a detailed window as in Figure 2.8. You can
select various devices with different screen sizes and other hardware

19

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

properties. You can select device groups from the left pane as TV,
Phone, etc. Phone group is the default selection. In this group, Nexus 5 is
also selected by default. When you click “Next”, you’ll be presented by
choices for the Android version of the AVD as shown in Figure 2.9.

‘ @ Virtual Device Configuration X

‘,/" =

) Select Hardware

M Android Studio

Choose a device definition
o
Category | : Name ~ Size Resolution | Density \) () Nexuss
v Nexws S 40 4804800 hdpi
Wear Nexus One 37 4804800 hdpi Sosop: T
Nexus 6P 57 1440x2560 560dpi S::’; m:‘:;g J
Tablet Nexus 6 596" 1440,2560 560dpi
Nexus 5X 52" 1080x1920 420dpi 1920px
T T T
Nexus 4 47 7681280 shdpi
Galaxy Nexus 465" 72041280 shdpi
54" FWVGA 54 48054 mdpi
51" WVGA 51 4304800 mdpi
47" WXGA 47 7201280 sndpi
1658 70 Galawns Nase) A RS 7201280 hni
New Hardware Profile | | Import Hardware Profiles | @ I@J
) I () (=))

Figure 2.8. Creating a new AVD - selecting the device

The recommended targets start from Android 5.1. We can Android 7.0
with Goole APIs (Nougat) as shown in the figure. Then, please click
“Next” and give a name you like to the AVD. I didn’t change the
defaults in the next screen as shown in Figure 2.10. After clicking
“Finish”, the AVD is created and shown in the AVD Manager as in
Figure 2.11. You can now try your Android apps on this AVD, which
will accurately mimic the behaviour of a real Nexus 5 phone.

We can run the AVD by clicking the “Play” button shown inside the
square in Figure 2.11. The virtual device will appear as in Figure 2.12
which you can use like a real Nexus 5 phone.

20

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

After installing both the development environment and the emulator,
we’re now ready to develop our test drive app, Hello World, in the next
chapter.

® virtual Device Configuration X

£, o) System Image

5
Android Studio

Select a system image

Recommended | 185 Images | Other Images |

Relesse Name L APllevel~ | ABL L et
Nougat Downlosd 5 664 ndt Google APIs)
Nougat Downlosd 25 255 i) -
L e %
Nougat Downlosd 2 266,64 e Pig Ansics
Marshmaliow Download 3 v 70
Marshmatiow Download 2 56,64 Google Inc.
Loltipop Download 2 86
s Syrem image
Loltipop Download 2 06,64 X86

These images are recommended because they run the
fastest and include support for Google APls

Questions on AP level?
= Seethe APllevel distribution chart
2]

| Brevious : Cancel Fosh | [L_Hep.)

Figure 2.9. Selecting the Android version of the AVD

Vietual Device Configuration X

[Android Virtual Device (AVD)

Verify Configuration
AVD Nome | Nexus 5 491 24] AVD Name
[Meass 495 10801920 420dpi [change-. |
The name of this AVD.
B Nougat Android 7025 | change-. |
Startup orientation

0 O

Portaait Landscape

Emulated -
Performance gt [aomaic [

Device Frame. Ensble Device frame

Show Advanced Settings |

)) =0 =0

Figure 2.10. Final settings of the AVD

21

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® Android Virtual Device Manager — o X

K‘/*‘ Your Virtual Devices

™\ Android Studio

Type | Name | i | APl | Target | CPU/ABI| SizeonDisk | Actions
[0] NexusSAPL. 1080x 1920.. 24 Android 7.0... x86 650 MB E/ v

=+ Create Virtual Device... @

Figure 2.11. Newly created AVD shown in the AVD Manager

Android Emulator - Nexus_5_API_24:5554

Google UM |

Figure 2.12. Nexus 5 emulator window

22

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

Chapter 3

TEST DRIVE: THE HELLO WORLD APP

3.1. General Procedure for Developing an App

A good method for testing the installation of a compiler or a
development environment is to try a “Hello World” example. It just
displays a text such as “Hello World” on the screen. OK, I know it is not
an app that you’d be proud of showing to your family or friends but its
usefulness stems from testing whether your programming environment is
working properly and to see if you’re ready to go for real projects. In our
very first Android project, we will develop an app in which the “Hello,
World!” text will be shown in the middle of the device screen. We will
test it on the emulator we created before but if you have access to an
Android device, you can test your “Hello World” app on it too.

I’d like to point out general steps of app development before setting off
for developing our first app:

1. Creating an Android Studio project,
2. Setting up the User Interface (Ul) of the app,

3. Connecting the Ul components such as buttons, textboxes, etc. to the
Java code,

4. Coding in Java — the actual programming part

5. Building the project: this means creating the executable (file that
actually runs on device or the emulator). This is not difficult as it sounds;
Android Studio does the entire job with a single click,

6. Trying the app on an emulator,

7. Running the app on a real Android device (optional),

23

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO
8. Publishing the app on Google Play (optional).

3.2. Creating a New Android Studio Project

When we run Android Studio for the first time, we are presented by the
dialog shown in Figure 3.1 where several options are available: i) Start a
new Android Project, ii) Open an existing project, iii) Check out a
project from a version control website (like GitHub), iv) Import a project
created in a different development environment (like Eclipse) or
v) Import an Android code sample (where code samples are downloaded
from version control websites). We’ll develop our first Android project
therefore please select the first option shown by the arrow in Figure 3.1.

® Welcome to Android Studio = X
Android Studio

Version 2.2.3

‘ 3 Start a new Android Studio project

71 Open an existing Android Studio project
¥ Check out project from Version Control ~
e Import project (Eclipse ADT, Gradle, etc.)

¥ Import an Android code sample

% Configure v Get Help ~

Figure 3.1. Creating a new Android Studio project for our first app

After selecting to create a new project, a dialog box for entering the
project settings will appear as in Figure 3.2. In the first textbox (shown
by “1” in the figure), we are required to enter the project name, which
will also be the name of the app. I entered “Hello World” but you can
enter another name as you wish. The company domain is given in the
next textbox shown by “2”. This is a string similar to a web address that
is used to distinguish among developers in the Google Play market. You
can use any unique domain here. If you won’t upload your app to Google
Play (as in this example where we’re just developing for learning the

24

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

basics), you can use any domain you like. | used the one shown in the
figure. And then, we need to select the location on the computer to save
the project files (shown by “3”). You can select any place you like to
save your project files.

@ Create New Project X

4 \

) New Project
H Android Studio

Configure your new project

4

Application name: [Hello World 1]

Company Domain: I quantum.helloworld.com 2 J

Package name: com.helloworld.quantum.helloworld Edit
() Include C++ Support

Project location: C:\Users\quantum\AndroidStudioProjects\HelloWorld2 5 | B

Figure 3.2. New project settings

After clicking “Next”, the Target Android Devices window shown in
Figure 3.3 will appear. | selected the Phone and Tablet checkbox and
then set the Minimum SDK as APl 15 — Android 4.0.3. This means that
the app we’ll develop will be able to run on devices having Android
version 4.0.3 or higher. After selecting the target, please click “Next”.

25

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® Create New Project X

&) Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SOKs

Phone and Tablet

Lower API g devices, but have fewer ilabl

By targeting API 15 and later, your app will run on approximately 97,4% of the devices
that are active on the Google Play Store.

Help me choose

[Wear

Minimurm SDK. | API21: Android 5.0 (Lolipop) |~ |
Ow

Minimum SOK \ API 21: Android 5.0 (Lollipop) n
(O Android Auto
O Glass

; T =
Minimum SDK | Glass Development Kit Preview (API 19) n

Figure 3.3. Selecting target devices

The template of the user interface is selected in the following dialog. As
you can see from Figure 3.4, there are several templates including a login
activity, maps activity, etc. However, since our aim is just writing a text
on the screen, it is OK to select the Empty Activity as shown in Figure
3.4. So, what does an activity mean? Activities can be defined as
screens shown to the user with user interfaces. Therefore, we have to
include an activity to have an app because as you know Android apps are
visual programs that have one or more user interfaces.

After selecting the default activity, Android Studio asks us to give names
to the activity and the related layout file as shown in Figure 3.5. Since we
will have a single activity in this app, it is perfectly OK to leave their
names as defaults. When we click “Finish”, Android Studio will create
the project files and folders automatically (this make take a while) and
then the IDE will appear as in Figure 3.6.

26

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

@ Create New Project

A Add an Activity to Mobile

Add No Activity

Basic Activity Empty Activity Fullscreen Activity Google AdMob Ads Activity

1 [
’

Google Maps Activity Login Activity Master/Detail Flow Novigation Drawer Activity Scrolling Activity

4

Figure 3.4. Adding an activity template to the app

® Create New Project X

'/"(Customize the Activity

Creates a new empty activity

Activity Nome: | MainActivity |
Generate Layout File

LayoutName: | activity_mein |
Backwards Compatibility (AppCompat)

Empty Activity

Iffalse, this activity base closs wil be Activity instead of AppCompatActivity

4

Brevious | | text | | Cancel m

Figure 3.5. Customizing the newly added activity

27

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

3.3. Main Sections of the IDE

Android Studio is a sophisticated tool therefore it has dozens of
properties to make app development easier. Instead of giving every detail
of this IDE at once, | prefer to explain and teach in a slower way so that
the reader can grasp the app development concepts in a solid way. Let’s
start with explaining the main sections of Android Studio by referring to
Figure 3.6.

® 2 - [C:\Users\ idStudioProjects\t 2] - [app] - ..\app\src\main\j \h h.. — u] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ch>«»xn1ﬁﬂQQ¢¢«@E|-&mD@mk? Q
HelloWorld2) [app / [sre) 21 main) [java) 5 com) [€_MaipActivity
1! Android ~ | @ = | %~ I~ © activity mainxml X | © MainActivityjava X ‘ @
= app package com.helloworld.quantum.helloworld; 4 S
> [manifests 3
v Bjava import ...
7 [E3 com.helloworld.quantum.helloworld = abli 5 Mainhced: e a .
Tivicy) TACTivit
é &' MainActivity © P C class Ma C y extends AppCompa vicy {
H + 1 com.helloworld.quantum.helloworld (androidTest) @override
;‘ » 1 com.helloworld.quantum.helloworld (test) of protected void onCreate (Bundle savedInstanceState) {
> Chres L] super.onCreate (savedInstanceState);
> (2 Gradle Scripts setContentView (R.layout.activity main);
2 }
& }
®
1 l :
g >
2
S 4 :
%]
3 :
2
e
| B Terminal i 6 Android Mo | geMessages 0 TODO Eventlog [E Gradle Console
Gradle build finished in 14s 933 go) 10:38 CRLF: UTF-8¢ Context: <no context> ° 8

Figure 3.6. Basics sections of Android Studio

The sections of Android Studio in the figure above can be summarized as
follows:

Section 1. The project files and folders can be viewed from here. In
addition, new files can be added from this pane. We need to double-click
on the filenames here to open them in the middle pane. The project
structure will be explained in detail in the next subsection.

Section 2. The opened files can be activated from the tabs located here
for viewing in the middle pane.

Section 3. This is the middle pane. Contents of the active files can be
viewed and changed from here. For the project shown in Figure 3.6, the

28

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

file called “MainActivity.java” is the active tab in Section 2 therefore the
middle pane in Section 3 shows the contents of this “MainActivity.java”
file.

Section 4. This section is also controlled via tabs. The developer can
switch project files, structures, captures and favourites for viewing in the
left pane.

Section 5. The current or previous compilation, building or debugging
processes are shown here. For the snapshot of Figure 3.6, it is indicated
that the “Gradle build finished in 14 seconds”. Gradle is the build system
of Android Studio. Therefore, the message says that the building engine
completed its previous task in 14 seconds.

Section 6. This is the Run button of Android Studio. When we set up the
user interface and write the Java code of a project, we click this button to
make the Android Studio build the project (which means creating the
executable file from project files) and then we can run it on an emulator
or on a real device.

3.4. Folder and File Structure of an Android Studio

Project

The file structure of an Android project can be viewed in various forms
in Android Studio. The button just at above the left pane (shown by the
arrow) is used to open the selection box for choosing the preferred
method of viewing the file hierarchy as shown in Figure 3.7. The default
file viewer is the “Android” mode which is the easiest way of grouping
files and folders in my opinion. When the selection is the “Android”
mode, the default files and folders shown in Figure 3.8 is shown in the
left pane. You can use the arrows (shown inside the circle in the figure)
for viewing the contents of folders.

The default folders (shown inside the rectangles in Figure 3.8) and their
contents are explained as follows:

29

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® HelloWorld?2 - [CAU idsStudioProj 142] - [app) - . \app\sre\main\java\comhell h - O X
FEile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢ XEH QAR ¢ > \[Eapp)> #5305 GE KNS L ? Q
main) (3 res) [£1 mipmap-xhdpi ic_launcher,png
i Android g © = | %1+ | Ba mainxml X ‘ (© MainActivity,java X @
& Project package com.helloworld.quantum.helloworld; VS
7 Packages H
“ll Scratches Himport ...
7 o © public class MainActivity extends AppCompatActivity {
Project Files In.helloworld
Problems @Override
fl Production i.helloworld (androidTest) of _ protected void onCreate (Bundle savedInstanceState) {
Tests Ih.helloworld (test) g super.onCreate (savedInstanceState) ; 2
Tests setContentView (R.layout.activity main);:
Android Instrumentation Tests }
oy !
® I3 activity_mainxml
v [mipmap
v [EJic_launcher.png (5)
[ic_launcher.png (hdpi)
[ii] ic_tauncher.png (mdpi)
il ic_launcher.png (<hdpi)
EI ic_launcher.png (:od
i [i] ic_launcher.png Goohdpi)
R
B @ colorsxml
+*
Lot » 1 dimensxml (2)
© stringsxml "
E B stylesxml S
8> @ Gradie Scripts g
E 3
& 3
[E Terminal W 6: Android Monitor [l 0: Messages ¥ TODO Event Log [E] Gradle Console
[Z Gradle build finished in 145 933ms (today 11:42) 10:38 CRLF: UTF-8% Context <nocontet> b @

Figure 3.7. Switching among different ways of viewing files and folders

1. manifests folder: This folder has the AndroidManifest.xml file inside.
This file contains the configuration parameters of the project such as
permissions, services and additional libraries.

2. java folder: The source code files written in Java programming
language reside in this folder. You can see that the java file of the
activity named “MainActivity.java” is automatically created in this
folder.

3. res folder: The resource files are contained in this folder. Resources
basically mean all the needed files except the source code. For example,
if we want to include an mp3 file in our project, we place this file inside
the “res” folder.

30

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

i Android v ‘ D = | B~ 1=

@ & MainActivity
> [E1 com.helloworld.quantum.helloworld (androidTest)

) Ii com.helloworld.quantum.helloworld (test)

= | drawable
7 [layout
'2_;1 activity_main.xml
* 1 mipmap
v [ic_launcher.png (5)
El ic_launcher.png (hdpi)
E] ic_launcher.png (mdpi)
EI ic_launcher.png (xhdpi)
EI ic_launcher.png (echdpi)
0] ic_launcher.png (cochdpi)
7 [values
i colors.xml
> [E1 dimensxml (2)
i stringsxml
Ei styles.xml
» (2 Gradle Scripts

Figure 3.8. Default folder and file structure of an Android project

The media, image and layout files residing in the resources folder are
accessed via Java code written in MainActivity.java as we’ll see in a
while.

3.5. Building the User Interface

Android Studio provides an easy way of designing user interfaces. The
file named “activity main.xml” located under the “res/layout” folder
contains all the layout information of the current activity.

If we try to open an .xml file outside of Android Studio, it is opened by a
text editor or a browser. However, when we open an .xml file in Android
Studio, it reads the .xml file and shows the corresponding activity layout
with its components. In order to open the activity_main.xml in Android
Studio, please double-click on it in the project explorer and the activity
layout will be displayed in the middle pane as shown below:

31

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

@® HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\res\la... ~ — m} X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHG ¢ XDd QR ¢> AN@Eaw > 65> 6GE LT ER
E‘E'HeIIoWorIdZ EEapp Elisrc) B main) E‘res [£1 layout) ' activity.. mam.xml
4 i Android [0 = | %1 & actmty_mamxml X | € MainActivity.java X I @
2 Caapp P E v Nexu54~ 2425+ (PAppTheme = | K- -l g
=i » [manifests B Palette H
- ISy é m Om@E ¥ 0
v Eires e
% [E1 drawable
:
>l mipmap
> [values a
% > (2 Gradle Scripts
S
®
®
Default text
2 g Layout of the
8 . .
2 activity
3
Y
5
- >
g 2
o
* —‘ Designl Text ‘ o
TODO ' 6 Android Monitor [&] 0: Messages [E] Terminal ! EventLog [Z] Gradle Console
|;| Gradle build finished in 6s 963ms (today 10:06) n/a n/a Context: <no context> B W

Figure 3.9. Layout of the activity

As you can see, the layout of the activity is shown in the middle pane.
The name of the app appears at the top of the activity. The default empty
activity contains a default text which is shown inside the circle in the
above figure. At the left top of the middle pane, there exists a tab called
“Palette” indicated inside the rectangle in the figure. When we click on
this tab, the palette shown in Figure 3.10 appears from which we can add
all possible user interface objects and layout templates to the activity.

32

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

® HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\res\la... ~ — (m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

ODHO A XD QRA¢EDA[Ep /P S 3 EaE L SR
EHdloWorle Ciapp) Clsrc) 51 main fErEs Ellaxout“ T_V)'iaﬂctivitz_lnail.xim[

i | %~ 1 | B activity_mainxml x ‘ € MainActivity,java X

@
El © Caaph] pajette @ %1~ I8 E G - ONewssr mbos- (PappTheme | .. o= | %~) §
= > = - 3
- 1 Widgets E @ On®E ¥ Q 2
(Ab) TextView
E& 100 (an}
Ok Button

~ ToggleButton VR 6:00
[+7] CheckBox Hello World

Vi O RadioButton

> Av CheckedTextView
é > (© Gral = Spinner

== ProgressBar (Large)

® | == ProgressBar
== ProgressBar (Small)
== ProgressBar (Horizontal) lf =
101 SeekBar i
101 SeekBar (Discrete)
4= QuickContactBadge
RatingBar
o Switch

Component Tree

% Build Variants

v E activity_main (Relativel:

[Bb) TextView - "Hello W R
. >
a 2
- o
1)
; N
*| Design [Text l e
 TOoDO Wfi* 6: Android Monitor =] 0: Messages [E Terminal Event Log [E] Gradle Console
[Gradle build finished in 6s 963ms (today 10:06) n/a n/a Context: <no context> B

Figure 3.10. The component palette

When the palette tab is clicked, two panes are opened: the Palette shown
by the upper rectangle and the Component Tree pane inside the lower
rectangle in Figure 3.10.

The Palette contains several groups like Widgets, Text Fields and
Layouts. We can easily drag and drop these components to the user
interface. On the other hand, the Component Tree lists the activity’s
components in a hierarchical manner. We’ll see the utilization of these
components as we develop complex apps in the following chapters.
However, our aim for now is to write a text on the screen. As you can see
from Figure 3.10, Android Studio already placed a “Hello World” text at
the top left of the view.

33

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Let’s position this text, comprised of a TextView widget, to the middle
of the view. For this, select this TextView and then drag and drop to the
middle by the help of the guiding lines as shown below:

® HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\res\la... ~ — o X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHO €A XM QRA| D AEZpp)P G GE L S R
[% HelloWorld2 3 app » [src) [-1 main | 2 res) [£1 layout) [activity_mainxml

- 1 | © activity_mainxml x ‘ € MainActivity.java % ‘

0]

g C2app | pyjette @ % 0- B ECE O ONewssr m825- (PappTheme - | B) g
=1 » BIn . x H
® o % Ratingdar = O3%@E % A o &
’ J 5
_ o Switch & (e]
v Car v © o 100 200 layout_... ‘wrap_
L. Space o —
é ‘ _ | [Text Fields (EditText) Hello World layout.... |wrap_
2| '] Plain Text : TextView
|) | Password e ! i text [Hello
‘ > I Passvs./ord (Numeric) = 1 Fredt =
[» @ 6rad [[]E-mail Drag &
[T Phone content... ‘
®| | Postal Address drop textA... | Mater
|| Multiline Text fontEary ‘mw,
|| Time
|| Date === ypetace ‘”CM
|| Number i textSize ‘ 14sp
|| Number (Signed)
|

1 IineSpac..A] none
Number (Decimal) = 3 bheddosd
= i textColor | 7attr/

g [2! AutoCompleteTextView
g <
| textStyl
gi Component Tree tyle B
& | v [activity_main (Relativel: ' tedthlig.. |E £
[Ab) textView - ‘Hello W &
9 >
=3
g I :
2 S
| /. View all propertiy &
| =
3 - 2
*| ‘ Design ‘ Text ‘ o
 T0DO ' 6: Android Monitor & 0: Messages [E Terminal 1 Event Log [Z] Gradle Console
[IllegalArgumentException: null (today 14:28) 111 nfa n/a Context: <no context>) @

Figure 3.11. Drag and drop operation on the TextView

After the drag and drop operation, the TextView will be kept selected.
We can now change the properties of the TextView using the Properties
pane which is at the right of the Layout view as shown inside the
rectangle in Figure 3.12. Please click the arrow shown inside the circle in
this figure to open the basic editable properties of the TextView.

34

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

® 2 - [C\Users\q idStudioProj 2] - [app] - ..\app\src\main\res\layoutiactivity_mainxml - Android Stu.. — O b4
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DEHG ¢ X006l QARKA ¢> ANEZp)P b B aE K &L ? Q
[HelloWorld2 ' (G app [l src ' 1 main) [Z res) 51 layout) © activity_mainxml
L %~ 1 | B activity mainaml x | (€ MainActivityjava X >
g‘ C3app | pyrette o2~ EE E Oy ONexwss- m2s- (PappTheme Properties | % ‘Blg
i - g
- =T # RatingBar E‘| m 633% @ @] . ﬂ. D B
o Switch r
r Gaq . - : o —. layout_width [wrap_content
i.i Space o
é 1 1 Text Fields (EditText) Hello World layout_height | wrap_content
44 ('] Plain Text TextView
v » i [Clpassword tet fetio world] |
1 1| Password (Numeric) Fret [
8, @6nd [[le-mail
5 T1Phone contentDescription |
® I_| Postal Address ppearance | Material. Small
|| Muttiline Text
L Time
|| Date BaS=g
I Number
| Number (Signed)
I Number (Decimal) P l’t.
§ = AutoCompleteTextView roperties pane
§ Component Tree
& v [activity_main (Relativeld
[3b) textView E3
] >
3
[s o _a | :
=
g A | View all properties = 2
& 3
L = a
x Design | Text 3
@ T0DO i & Android Monitor [0: Messages [Terminal i1 Eventlog [Gradle Console
(2] NlegalArgumentException: null (today 14:28) 12chars 113 n/a te te O (")

Figure 3.12. The Properties pane

The editable properties of the TextView component are shown inside the
rectangle in Figure 3.13. In order to display the “Hello World” text in a
better way, | changed its text size to 24sp (sp = scale—independent pixels)
and its style to bold by clicking the B button in the textStyle section.

We have now completed setting up the user interface. Since we don’t
want our first app to do something interactive, we don’t need to write
single line of code for now. Of course we’ll do a lot of coding in the
upcoming projects but we don’t need any coding here.

3.6. Building the Project and Running on an Emulator
Our first Android app is how ready to be run on an emulator. This is easy
in Android Studio. We have set up a Nexus 5 emulator in the previous
chapter therefore the only things we need to do are i) building the
project, ii) selecting the emulator and then, iii) run our app on the
emulator.

35

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

L] 2 - [C:\UX

qf

j 2] - [app] - ..\app\src\main\res\layout\activity_main.xml - Android Stu... - u} X

Flle Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHD ¢ XD QAA|& D > b GG E R
[HelloWorld2 » [app | [src) [main) [= res) 51 layout | © acti§mainaml

e |z & | ? Q

== ProgressBar

L | #6- 1 | B activity_mainxml x | (© MainActivityjava X N
[[- M o
% E_%‘”‘mem o % - EEE O ONewssv m25- (appTheme Properties &% 1|3
=i (2 Grad - e e L
- £ Widgets = Oxx®E @ 4 o
ETetve layout_width [wrap_content |
1 200 layot
= o a yout_wi wrap_content
é —/ToggleButton layout_height |wup»(en!en!
& [7] CheckBox TextView
v ~ 4 A4 [,7
®) RadioButton text Hello World! =
X Hello World L
A CheckedTextView P]
§ = Spinner —
== ProgressBar (Large) . contentDescription |
® = textAppearance l!.!atsns.!.irval!

R A fontFamily [sans-serif
== ProgressBar (Horizontal) =
101 SeekBar Bl typeface | none
" |- B
101 SeekBar (Discrete) - textSize |'\«lsp
Somponentiree JlineSpacingExtra o
[H] activity_main (Relativel:
Ea_ e textColor | 2attr/textColorTertiary | -
§ [Ab] TextView - "Hello We]
z textStyle
i textAlignment
&
J (o] o £
74 2
2 S
5 View all properties =
® Design | Text &
©TODO i 6 Android Monitor] 0: Messages Terminal Eventlog [E] Gradle Console
[Z] Gradle build finished in 55 802ms (a minute ago) va n/a Context: <no context> Y

Figure 3.13. The editable properties of the TextView

In order to build and run the project, please click the “Run” button as
indicated by the arrow in Figure 3.13. The emulator and device selection
dialog shown in Figure 3.14 will appear. Since we have created a Nexus
5 emulator before, it is automatically selected as shown inside the
rectangle. If we had connected a real Android device via USB cable to
the computer, it would also show up in this dialog. However, since there
is no real device connected for now, the dialog gives a warning at the top
shown inside the ellipse in the figure. Please click “Next” and then the
emulator will boot like a real device. It takes some time depending on
your computer speed to completely start the emulator (something like 20
Secs).

When the emulator starts running, you’ll see a Nexus 5 screen as shown
in Figure 3.15. You can use it like a real device (apart from calling and
SMS features of course®), and you can also use the controls on the right
bar for changing general properties of the emulator if you want to.

36

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

@ Select Deplovmy

Troubleshoot

No USB devices or running emulators detected
Connectel D
<none>

Available Virtual Devices I

- Nexus 5 AP| 24

Create New Virtual Device ‘
(O Use same selection for future launches m Cancel

Figure 3.14. Selecting the target for running our first app

Android Emulator - Nexus_5_API_24:5554

Figure 3.15. The Nexus 5 emulator

37

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

The emulator started but we cannot see our app running on it. Don’t
panic! If we check the main Android Studio window, we can see that it
has given a warning as shown below:

@ Instant Run X

IE‘ Instant Run requires that the platform corresponding to your target device (Android 7.0 (Nougat)) is installed.

Install and Continue ‘ Proceed without Instant Run |

Figure 3.16. Instant Run warning

Android Studio asks us if we want to utilize a component called Instant
Run. Instant Run is a system introduced in Android Studio 2.0 and it
shortens the Code - Build &> Run cycle. When we use Instant Run,
Android Studio pushes code updates to the emulator without the need of
building a new executable. Therefore, viewing the effects of the changes
of the code can be seen on the emulator in a shorter time. In summary,
Instant Run is a good thing so let’s install it by clicking the “Install and
Continue” button shown in Figure 3.16. Android Studio will download
the required files in a short time, and then we need to install these
updates by the usual next-next procedure. After the tiny installation,
Android Studio will build our project as indicated inside the rectangle in
Figure 3.17.

After the building process, the emulator will run our first app as in Figure
3.18. If you see the emulator screen shown in this figure,
congratulations. You’ve successfully created your first Android app.

We can make any change in our app, and then press the “Re-Run” button
indicated by the arrow in Figure 3.19. The emulator will install the
updated app for emulating.

As you can see from your very first project, Android Studio offers vast
number of possibilities and a user—friendly interface for transforming
your ideas into Android apps.

38

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

L.

@ Captures «J 7:Strudure.

3 2Favortes

'3 1:Project

% Buid Variants
T
If |

- [CA\U: St - lapp) - i ity_mainaml - Android Stu.. — O X
File Edit View Navigste Code Anahze Refactor Build Run Tools VCS Window Help
ODHO ¢4 X000 QK[¢ > A[Eeppr) > 6 13 B GE R & 24 |? Q
I3 HelloWorld2 | [3app [src) [main | 3 res | 51 layout | '© activity_mainaml
% 1= | B activity_mainami x | (€ MainActivityjava X | ®
> C3app [pyiette o % - B E O Nexus4+ 2625+ (PAppTheme Properties adk e A
> Grad : s
£ Widgets HE CREXC =R g
(5] TextView
 Button "
— ToggleButton
[w7) CheckBox
(@) RadioButton SIS
A CheckedTextView
* Spinner
Component Tree
v [F activity_main (Relativel
[Ab) TextView 0 La o e}
VZ
Design | Text |
API24 Pl
86.exe: warning: opening audic input failed
Astening for console connections on port: 5554
emulator: Serial number of this emulator (for ADB): emulator-5554
Your emulator is out of date, please update by launching Android Studio: o
- Start Android Studio s
- Select menu “Tools > Android > SDK Manager" Z
- Click "SDK Tools™ tab %
- Check “"Android SDK Tools"™ checkbox z
- Click "OK" ' 2
(3
: = & Eventlog [E] Gradle Console

Android Emulator - Nexus_5_API_24:5554 = s

&N
Hello World

Hello World!

Figure 3.18. Emulator running our “Hello World” app

39

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® 2- [CAU idStudioProj 2] - (app) - - \app\src\mi\res\layoutiactivity_mainxml - Android Stu.. — O X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window b

DHO ¢4 %00 QAR ¢ AGm)» s o fa) ke @iz Q
[HelloWorld2) Ea app) 1 sre) B main § 2 res) B layout) 8% activity mainaml))

j s u»[18 activity_mainxml X | € MainActivityjava X

Figure 3.19. The “Re-Run” button in Android Studio

I changed the text to “Hello Android!” from the TextView properties
pane (shown in Figure 3.12) and pressed the Re-Run button. Android

Studio built the project again and the updated app is displayed on the
emulator screen as below:

Android Emulator - Nexus_5_API_24:5554

an
Hello World

Hello Android!

Figure 3.20. The emulator running the updated app

You can stop the emulator running the app using the square red “Stop”
button which is just at the right of the “Re-Run” button. When you stop

the app, the emulator will not shut down completely and wait for the next
run.

40

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

3.7. Running on a Real Device
It is also easy to try our app on a real Android device.

1. Things to be done on the device: Before running/debugging apps on
the real device, we have to enable the Developer Mode on the device.
For this, on your real device please navigate to Settings > About >
Build number or Settings > About > Software information - Build
number. Depending on your device and Android version, the place of
the “Build number” may be different however I’m sure you can find it
easily in the Settings - About section. Once you find the Build
number, tap on it seven times and then your device will show a dialog
box saying “You’re now a developer.”

After you’ve enabled the Developer Mode, you’ll find a new section
called “Developer options” under the Settings of your device. Please tap
on it and then check “USB debugging” to enable debugging via the USB
connection. You can now install apps from Android Studio to your
device over the usual USB connection.

2. Things to be done in Android Studio: First of all, please enable
“ADB Integration” from Tools = Android - ADB Integration as shown
below:

File Edit View Navigaste Code Analyze Refactor Build Run [VCS Window Help

ODHO ¢4 X000 QR & > A [Iesks&Contets SIEWE;

[HelloWorld2 | [3.app | (1 stc) [main) & AndroidManifesty >V File as Template...
o Generate JavaDoc...

- @ & - 1| B activity mainy fityjava %
: = New Scratch File... Ctrl+ AlteShiftInsert

L& 3pp manifest DE Scripting Consol
3 P cripting Console
2 B manifests oy :

@, AndroidManifestxml cmanifest XML Actions D u/apt/res/anarosd®
L java packs ¥ Firebase

2 Gradle Scripts <application 1" Android Device Monitor
“ android:debuggable="true" =
e android:allowBackup="true" [AVD Manager

LS

Enable ADB Integration

android:icon="gmipmap/ic_launcher"
android:label="Hello
§ android:supportsRtle’ - g
android: theme="gsty1 ze">
Y Theme Editor
<activity android:name="MainActivity"> Q
et) Firebase App Indexing Test

Figure 3.21. Enabling ADB Integration in Android Studio

Now, we need to make our app “debuggable”. For this, open the
AndroidManifest.xml file by double-clicking on it and add the text

| android:debuggable="true" |
Code 3.1

41

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

inside the <application> element as shown in Figure 3.22.

® - [CA\U: q \ i ioProj - [2pp] - ..\app\src\mail i i ml - Android Studio 2.2.3 - o X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢ XO0QAR ¢ > AEee > 3G aE L E[GL? Q
[% HelloWorld2) [app) [src) 51 main) [, AndroidManifestxml
! Android @ % | % 1= | B activity mainaml xJ B AndroidManifestaml | (€ MainActivityjava X | ®
; r O Tf"'f““_ . <2xm] version="1.0" encoding="utf-8"?2> o
2 AndroidManifestxml ‘ <manifest xmlns:android="http://schemas.android.com/apk/res/android”
> Dljova package="com.helloworld. quantun. helloworld">
> Cares =
» (2 Gradle Scripts i

mipmap/ic_launcher”
android:label="Hello World"
android:supportsRtl="true"
android: theme="gstyle/AppThemne”>
= <activity android:name=".MainActivity">
¥ <intent-filter>
<action android:name="android.intent.action.MAIN" />

@ Captures «J 7:Studure

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

—[Text [MergedManifml

Figure 3.22. Adding the “debuggable” property to our app

We are now ready to test our “Hello World” app on the real device.
When we hit the “Run” button in Android Studio, the following device
selection window will appear:

@ Select Deployment Target X
e
il ASUS ASUS. 7002 (Android 4.4.2, AP 19)
e v

[Nexus 5 API 24

Create New Virtual Device Don't see your device?
(O Use same selection for future launches - m

Figure 3.23. Selecting the real device

42

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

I have connected my Asus Zenfone 6 hence its name is written in the
device selection window; it will obviously be different if the device you
connected is different. After the device selection, click on the “OK”
button and then the app screen of Figure 3.18 should appear on your
actual device. If you see the “Hello World!” text on the real device, it’s
excellent. You now know how to install your apps on real Android
devices. Running an app on a real hardware is sometimes essential
because some operations like SMS sending and calling can only be done
on real devices.

We have developed out test drive app, “Hello World”, and learned
i) Creating an Android Studio project,

ii) Using user interfaces and widgets,

iii) Creating emulators,

iv) Building the app,

V) Running our app on the emulator,

vi) Running our app on a real device.

But as you may have noticed, we didn’t have any interaction with our
app. It just writes a text on the screen and that’s it. In order to make an
app to do something, we need to program it. Java is the main
programming language used for developing Android apps. We’ll learn
the basics of Java in the next chapter which will enable us to transform
our ideas to working Android apps. Let’s have a coffee break (a 3inl
coffee is recommended since we’ll need glucose) before starting our Java
lecture.

43

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

44

CHAPTER 4. JAVA BASICS

Chapter 4 g

JAVA BASICS

4.1. What s Java?

We have developed our first app. That’s great. However, it just writes a
text on the screen and that’s it. The user doesn’t have any interaction
with our app. In order to make an app to be interactive and do something
real, we need to tell it what to do. And we need to tell it exactly. We do
this by using programming languages.

As an old saying states: “Computers are actually rather stupid”. This is
because: if we’re telling a computer to do a task, then we have to do
this in exact terms. Let’s try to explain this by an example: imagine that
you had a tiring workday and going home with your stomach rumbling.
While you’re on the way on M4 motorway, the traffic got crowded near
Oxford and you had some time to think what you’ll have for the dinner.
You suddenly remembered that there is frozen chicken korma in the
fridge. You ring your wife (with hands—free of course!) and will ask her
to cook that meal.

You — Hi darling, hope you’re OK.
Your wife — Thanks, a bit tired. You?

You — Me too. And also very hungry. Could you please cook a frozen
chicken korma for me? There should be some in the fridge. I’'m sure
you’ll also have one, I know you love it.

Your partner — Yummy yummy. I’ll darling, it will be sizzling when you
arrive. See you in a while, bye. (A caring wife!)

You — Thanks darling, bye.

45

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Then, she’ll find the frozen korma wherever it is in the fridge, unpack it,
remove the sleeve and pierce film lid in several places. Set the timer,
power on the microwave (or oven) and cook it. She’ll cook the included
pilau rice too without a need to ask you. That’s it. However, if you had a
robot wife with a computer brain, the dialog would be more like this:

You — Hi darling, hope you’re OK.
Robot wife — Thanks. You OK? (not in a romantic tone!)

You — Very tired. And also very hungry. Could you please cook a frozen
chicken korma for me? There should be some in the fridge.

Robot wife — Where is the frozen korma in fridge, do you want me to
cook pilau rice too? Do you want them normal or overcooked? Do you
want a garlic bread too? When do you want it to be ready?....

You — Stop, stop please. I’ll drive to a restaurant.
Robot wife — I don’t understand, you are nonsense....

Well, any programmable digital device is more or less the same. We
have to tell exact things to them. We do this by using programming
languages. There are a lot of different programming languages used to
develop software for different platforms. You can check the widely used
programming languages and their rankings at the TIOBE index website:
http://www.tiobe.com/tiobe-index/. It is sometimes difficult to choose
which programming language to use. There is not a universally
excellent/complete programming language; they have strong and weak
sides.

When we check the TIOBE index, we see that Java is consistently the
most widely used programming language for years. There are several
reasons for this. The main reasons are: i) being platform independence,
i) having a lot of libraries and iii) having object oriented nature, iv)
having a strong security and robustness. Because of these reasons,
Android apps are also mainly developed in Java. Therefore, in order to
learn Android app development, we have to grasp the basics of Java

46

http://www.tiobe.com/tiobe-index/

CHAPTER 4. JAVA BASICS

programming language. After learning Java, we’ll use Android SDK
libraries with Java and develop Android apps.

We can use standalone Java compilers or Java-specific IDEs for learning
Java. However it is also possible to try Java code in Android Studio with
a simple trick. Since we already set up Android Studio, we will use it for
Java coding here.

4.2. Using Android Studio for Java Coding

First of all, we need to launch Android Studio and create an Android
project as we did in the previous chapter. We can name the project as we
want and select any Android version and any screen layout for now.
When the project loads, the project files and folders will be like the
following in the left pane of Android Studio:

| & Android v| © | % 1|
Ciapp
1 manifests
[java
[=]] com.example.atomic.javabasics1

[com.example.atomic.javabasics1 (androidTest),

[E1 com.example.atomic.javabasics1 (test)
[res
(&> Gradle Scripts

Figure 4.1. Default file structure of a new Android Studio project

We’ll create a new Java file in order to try Java codes. For this, right
click on one of the java folders such as
com.example.atomic.javabasicsl in the above figure (or another Java
folder in the project you created, your folder names will be different
because your project name is different) and then select New —> Java
Class as shown in Figure 4.2.

47

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

" Android @D = | #- |- | © activity mainxml X X
2 app
| ifest J
e Link Ge+ Project with Gradle © Android resource file
[java 1 Android resource directory
[£] com.exam a6 Cut Ctrl+X B File
© % MaiLJ! Sopy Ctrl+C
: [£1 Package
[F1com.exam Copy Path Ctrl+Shift+C
1 comexam Copy as Plain Text : C++ Class
Ciires Copy Reference Ctrl+Alt+Shift+C | =F C/C++ SourceFile
(Gradle Scripts [l Paste Ctrley B C/C++ HeaderFile
Find Usages Alt+F7 ':' Image Asset
Find in Path... Ctrl+Shift+F "™ Vector Asset
Replace in Path... Ctrl+Shift=R 3] Singleton
Analyze » EditFile Templates...

Figure 4.2. Creating a new Java Class

In Java, all programs are classes therefore we create a new Java Class.
(We’ll learn classes later in this chapter.) Please name the new class
without any spaces and special characters (I named it as JavaBasics) and
then click “OK” as shown below:

® Create New Class X
Name: JavaBasicsl]
Kind: C less ; n
Superclass: [) ‘
Interface(s): | J
Package: | com.example.atomic.javabasics1 ‘
Visibility: © Public O Package Private

Modifierss: @ None O Abstract O FEinal

[CJ Show Select Overrides Dialog

o) [((one | e |

Figure 4.3. Creating a new Java file (Java class)

48

CHAPTER 4. JAVA BASICS

It is worth noting that the file kind is class as shown inside the ellipse in
Figure 4.3. After clicking “OK”, Android Studio will create the new Java
file called JavaBasics.java and show it in the middle pane as shown in
Figure 4.4.

© activity_ mainxml X | (€ MainActivityjava X | (© JavaBasicsjava x

package com.example.atomic.javabasicsl;
public class va s {

}

Figure 4.4. The contents of the new Java file

The new Java file has the following default lines of code:

package com.example.atomic.javabasicsl;

public class JavaBasics {

}
Code 4.1

The first line defines a package that contains our new Java class. Java
classes are organized in packages. Packages are like folders on your
computer that hold several files inside.

The second line is the main class definition. All programs are classes in
Java hence all Java files (programs) should have a class definition for
compilation. Please always remember that the class definition should
match the name of the Java file (in our case the filename is
JavaBasics.java and the class name is JavaBasics).

The contents of the programs are written inside the curly brackets opened
just after the class name definition in the second line and closed in the
third line in Code 4.1.

Our Java file only has basic package and class definitions by default. The
body of the Java class is empty thus this Java program does not do
anything at all when it is compiled and run.

49

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

d The source files of Java programs have .java extension. The Java
compiler generates a .class file from .java file. This .class file is then
executed on a Java Virtual Machine. This flow is shown below:

java fil lass fil bonini v Executed
.Jjava file . .class file < N
)| Java compiler machine 3

(source code) P (bytecode) (runtime) program

Figure 4.5. Compilation and execution of a Java program

Anyway, let’s see how we can make a “Hello World” program from our
JavaBasics.java file. In a Java source file, the following code line prints a
text in the terminal window:

| System.out.println("the text to be printed");
Code 4.2

In this code line, System.out means that Java will output something and
println() method outputs the text written inside it. It is worth noting
that texts are written inside double quotation marks (“...”) so that the
Java system knows that the programmer refers to a text. Therefore, by
placing “Hello World” inside the function shown in Code 4.2, we can
print “Hello World” text on the screen in Java using the code below:

System.out.println("Hello World") ;
Code 4.3

So, where will we place this line in our java file? We learned that the
Java code should be between the curly brackets of the class definition.
Hence, we may try to obtain our Java “Hello World” program by placing
Code 4.3 into Code 4.1 as follows:

package com.example.atomic.javabasicsl;
public class JavaBasics {

System.out.println("Hello World") ;

}
Code 4.4

50

CHAPTER 4. JAVA BASICS

If we try to compile and run this code, the compiler gives an error and
doesn’t run our program. It is because all Java programs should have a
main method. The main method indicates the starting point of a Java
program which will be executed firstly when the program is run. Adding
the main function, we obtain a correct “Hello World” program in Java as
follows:

package com.example.atomic.javabasicsl;
public class JavaBasics ({
public static void main(String args[]) {

System.out.println("Hello World") ;
}

}
Code 4.5

The main function is defined in line 3 above: public static void
main (String args[]). Ingeneral, the main method is not explained
at this stage and the tutors say “just accept the main method as it is for
now, we’ll learn more about it later”. However, I’d like to point out the
general structure of the main method:

This method has three keywords in the front: public, static and
void. Their meanings can be summarized as follows:

1. public: the main method will be accessible from anywhere,
2. static: the main method doesn’t belong to a specific object and
3. void: the main method will not return a value.

These will be clearer when we learn classes in the last subsection of this
chapter.

The main method also has arguments which are the inputs to this method
in the form of string args[].These mean that the main method can
have several inputs (arguments) in text form. These will be understood
better when we dive deep on functions and their arguments later.

51

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

EdPlease don’t panic and don’t be put off at this point. | know these
may be confusing and you might say “Writing just a Hello World
program takes ages with Java and it is confusing.” Java codes are
generally longer compared to other programming languages. However,
this is also a strong side of Java. This is because Java is a very organized
and structured language that provides the developer with increased
number of possibilities with lower error-prone coding.

After inserting Code 4.5 to our JavaBasics.java file, we are now ready to
run our Java “Hello World” program. For this, find the JavaBasics.java
from your file explorer in Android Studio, right-click on it and then
select Run ‘JavaBasics.main()’ as shown below:

%' Android v D & | #- 1~ | © activity_
3 app pack
1 manifests New »
L java Link C++ Project with Gradle
=3 co:n.exar ¥ cut CtrieX
SACE)
0 Ctrl+C
©n M Py 4
— Copy Path Ctrl+Shift+C
1= com.exar X
— Copy as Plain Text
[com.exar
L5 res Copy Reference Ctrl+Alt+Shift+C
> Gradle Scripts DOV Paste CtrieV
B> Jump to Source F4
Find Usages Alt+F7
Analyze »
Refactor »
Add to Favorites »
Browse Type Hierarchy Ctrl+H
Reformat Code Ctrl+Alt+L
Run JavaBasics

Optimize Imports Ctrl+Alt+0

> 'Ci\Progy
mls LD | Run JavaBasics.main()'

procouy

Il | =5 Process: U
= [I» Run ‘JavaBasics.main()’ with Coverage

Figure 4.6. Running our Java program in Android Studio

Android Studio will compile our JavaBasics.java file and then run it.
This takes a while. After then, the output of the program will be
displayed in the Terminal window at the bottom pane of Android Studio
as shown in Figure 4.7.

We have now written, compiled and run our first Java application in
Android Studio without the need of using any other development

52

CHAPTER 4. JAVA BASICS

environment. Let’s continue with learning about variables used in Java in
the next subsection.

Run JavaBasics
> T "C:\Program Files\Android\Android Studio\jre\bin\java" ...
Hello World

| = Process finished with exit cocde 0

P 4Run 2 TODO + 6: Android Monitor = 0: Messages [# Terminal
Figure 4.7. Terminal output of our Java program in Android Studio

4.3. Variables in Java

Variables are entities that contain information. Variables can be thought
as boxes that hold data. The creation of variables is called “the
declaration of the variable” and placing its value during its declaration is
referenced as “initializing the variable”. We can insert the value of the
variable during the declaration or later, depending on conditions.

Just as real world boxes that can be used to hold different things like a
sugar box, a match box or a component box, variables in programming
languages also have different types.

Java is defined as a statically and strongly typed programming language
which means that the type of a variable should be defined during its
creation and this type cannot be changed later. There are two variable
type groups in Java:

1. Primitive variable types: These variable types hold single data at a
time. In other words, primitive variables hold primitive values. Primitive
variables always have values. Primitive variables exist from their
creation to the end of a Java program.

2. Reference variable types: These “non-primitive” types are dynamic
variables; they can be created and erased before the program ends. These
variables store the addresses of objects they refer to. Unlike primitive

53

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

types, reference types may have the value null, which means non-
existence. The null value means the absence of its value.

These may seem confusing at first but please just try to remember that
primitive types are used to store actual values but reference types store a
handle to an object.

The widely used variable types used in Java are shown in the following
figure:

Variables
I
W W
Primitive Reference
types types
¥ v Q class
Boolean Integer Decimal Q interface
5 5 2 Q array
variable variables variables
Q lon
Q boolean . 4 float
Q) char O double
Q short
O byte

Figure 4.8. Variable types in Java
Let’s explain the primitive data types first.

1. Boolean variables: Boolean variables have the property of having
only two distinct values: true or false. We can think booleans as a
yes—no question like “Is the screen background blue?” The answer can
only be “yes” or “no”. Instead of the words “yes” or “no”, Java uses
true Or false. The following code defines a Boolean variable called
myBoolean and assigns true as its value during the declaration:

boolean myBoolean = true;

Code 4.6

54

CHAPTER 4. JAVA BASICS

In this code, the word boolean is the keyword used for defining a
boolean variable. The name of the variable to be created is written next
to the keyword. In this example, the variable name is myBoolean. The
equal sign (=) is used to assign a value therefore true is assigned to the
newly created variable in this code. This assignment can be visualised as
in Figure 4.9.

true

Figure 4.9. Assigning true to the variable myBoolean

On the other hand, Java statements are ended using a semicolon (;) as in
Code 4.5 otherwise the compiler gives an error and doesn’t compile our
program. The template is similar for other variable types too. Boolean
variables are generally utilized for decision making in applications which
uses complex logic.

2. Integer variables: Integer variables are widely used in Java. An
integer variable basically stores an integer value (a whole number that
doesn’t have fractional part). As it can be seen from Figure 4.8, integer
variables have several forms: int, long, short, char and byte. Let’s
see what these types are used for:

“* int type variables are used to store integer numbers. For example,
the following code defines an integer and assigns the value of 5 to it
during declaration. In other words, a new int type variable is
created and initialized to 5:

55

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

int myInteger = 5;
Code 4.7

As you can see from this code, variables that hold integer numbers are
defined using the keyword int. After defining and initializing an int,
we can perform mathematical operations on it. The following code
shows the whole Java source code where an int type variable is created,
initialized and then another integer value is added to it before printing the
result on the terminal screen:

package com.helloworld.quantum.helloworld;
public class JavaBasics {
public static void main(String args[]) {
int myInteger = 5;
myInteger = myInteger + 7;
System.out.print("Sum = " + myInteger);
}
}
Code 4.8

Let’s analyse what happens in the above code:

» An int variable called myInteger is created and initialized to 5 on
the fourth line.

» In the fifth line, this variable is added to the number 7 and then the
result is assigned back t0 myInteger by the line myInteger =
myInteger + 7; asshown below:

(

Result of the additionis
assigned back to

«mylnteger»
i —

\mylnteger‘ = (mylnteger + 7))

Figure 4.10. Addition principle

56

CHAPTER 4. JAVA BASICS

» Finally, the sixth line System.out.print("Sum = " +
myInteger) ; printsoutthe value of myInteger.

Please note that, its value will be written next to the expression “Sum =
~in this code. This Java program and its output are shown in Figure
4.11.

More arithmetic and logic operations can be applied on integer variables
as we’ll learn in our Android projects in the upcoming chapters.

@ HelloWorld2 - [C:\Users\q i ioProjects\HelloWorld2] - [app] - ..\app\src\main\java\com\helloworld\qu... =~ — m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHS ¢ XD0l QR ¢ > A ([Eovbsis) > 5 GEELEEL? Q
EHdeorHZ R app) 1 sre) EImain) [java) 1 com) E1h Eiq Eih c” JavaBasics

.7'%" Android % ‘@ ‘%‘j il £~ 22 IS 73 activity_mainxml X ‘ € JavaBasicsjava X ‘ Z;i;AndrnidManifest.xml x ~

i
®

K
2PRIO (.

] app package com.helloworld.quantum.helloworld;
» 1 manifests P public class JavaBasics {

- I:Ijava » public static void main(String args(]){
int myInteger = 5; &=
myInteger = mylnteger + 7;

System.out.print("Sum = " + mylInteger):

1% 1:Proje

[E1 com.helloworld.quantum.hellow¢
4 JavaBasics
© & MainActivity)
» [com.helloworld.quantum.hellow }

b B com hellownrld anantum hellowr
Run JavaBasics

dj e

is!

@ Captures < 7:Stucure

[PPOW PIOIPUY ik

n

} 4: Run ®_-_‘ TODO # 6 Android Monitor =] 0: Messages & Terminal Event Log [E] Gradle Console
[E] Compilation completed successfully in 3s 493ms (12 minutes ago) 3:34 CRLF: UTF-8¢ Context: <no context> a8

Figure 4.11. int type definition and addition operation in Java

7
0.0

int type variables can store numbers from —2 147 483 648 to +2
147 483 647 (these are not phone numbers!). If the numbers we will
use are not that big, we can use short type variables which have
the limits of —32768 to +32767. If you say that you’ll store numbers
for rocket science, you can use long type variables instead, which
have the range of -2% to 2%°-1 (really big numbers). The definition
and assignment of int, short and long types are the same, only
the size of the numbers they can hold are different (and of course the
memory size they will take proportional to the number length they
store).

Another integer variable type is byte. A byte can store numbers
between —128 to 127. In computers, a byte represents 8 bits (binary
digits). 8 bits can have the values between 8 zeros (00000000) to 8

7
0.0

57

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

ones (11111111). There are 256 numbers in between these humbers
therefore they are mapped to -128 to 127 range which contain 256
numbers. In the following code we define a byte variable a and
print it on the terminal:

package com.example.atomic.javabasicsl;
public class JavaBasics3 {
public static void main(String args[]) {
byte a = 100;
System.out.println(a) ;
}

}
Code 4.9

If we try to assign a number which is not in the range of —128 and 127 to
a byte, the compiler gives an error as shown in Figure 4.12.

package com.example.atomic.javabasicsl;
3 public class JavaBasics3 {
| 4 public static void main(String args([]) {

= byte a = 300:

@ Change variable ‘a' type to 'int'
@ Migrate ‘a’ type to 'int’

 Convert to binary »
= Convert to hex -
= Convert to octal >

-

7 Split into declaration and assignment

Figure 4.12. Java compiler error

In this figure, the type of the variable a is byte therefore it cannot
accommodate the value of 300. When we write an incorrect statement,
Java compiler gives an error by underlining the errorneous code with red
line and shows a red bulb at the incorrect line(s). If we click on these red

bulbs, the compiler gives recommendations for correcting our
expression.

/

<+ The last but not the least important integer variable type is char. It
stores value between 0 and 65535 which constitutes 16 bits (= 2

58

CHAPTER 4. JAVA BASICS

bytes). char type is generally used to hold characters. We can think
the characters to be a single letter, a single number or a single
symbol like those on our keyboard. In computers, characters are
usually mapped to integers via the American Standard Code for
Information Interchange (ASCII) table which can be viewed at
http://www.asciitable.com. The char types in Java use Unicode
system which is a superset of ASCII. As an example, the character d
is assigned to the variable mychar which is of the char type

variable in the following code:

package com.example.atomic.javabasicsl;
public class JavaBasics3 {

public static void main(String args[]) {

char myChar = 'd’';
System.out.println(a) ;
}

}

Code 4.10

Please note that the characters assigned to char variables are written
inside single quotes to tell the Java compiler that this value is of
character type. The terminal output of this code is shown below:

® Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - ...\app\src\ma... a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHD 2 XMl QR ¢ > A (Chavachar~) > 6 0 G GEH B
["3 Javabasics1 + [dapp 21 src » [main » [java * [£1 com | 51 example © 21 atomic © [£1 javabasics1 » € JavaC
W © | - 1 ftyjava X C'JavaBasics.java x| @ JavaBasics3.java X e JavaCharjava X |~=2 |
g Caapp package com.example.atomic.javabasicsl; b S
= [manifests H
p @ AndroidMa public class JavaChar {
[java
& > public static void main(String args(]) {
Ry
€ b Javal T —
G b Javal }
v »
<4 Javal }
€)% Main »
§ Run JavaChar R E
G Prog lio\jre\bin\java" ... S
e > |+ m 70! udio\jre\bin\java g
“lm |+ g
Process fMMished with exit code 0 R
P &Run | ATODO i & Android Monitor 6 0 Messages [Terminal % Eventlog (5] Gradie Co
[C] Compilation completed successfully in 5... (2 minute ago) 6:27 CRLF: UTF-8: v 8

Lt

Figure 4.13. char definition in Java

59

http://www.asciitable.com/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

3. Decimal variables: Integer variables can only be used to store whole
numbers that don’t have a fractional part. Decimals (numbers with
fractional parts) are represented by two types in Java: float and
double. Their difference is the number of the fractional digits they can
hold. £1oat types can store 7 fractional digits while this number is 16
for double types. Two variables are defined in the following code
snippet with double and float types and then they are printed to see
what Java can get from their initializations:

package com.helloworld.quantum.helloworld;
public class JavaBasics2 ({
public static void main(String args[]) {
float myFloat = 1.12345678901234567890f;
double myDouble = 1.12345678901234567890;
System.out.println("myFloat is: " + myFloat
+ ", myDouble is: " + myDouble) ;
}

}
Code 4.11

Please note that, the decimal number trying to be assigned to myFloat
variable is written by an £ letter at the end in the above code
(1.12345678901234567890£). This is because Java tries to take any
compiler that we want to create a £1oat type variable. The output of this
code in Android Studio is shown below:

@ HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\java\ hell = [m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHD ¢A» XH0 QAR ¢ > S (Chavbsic2~) > 0 3 GH L & 2 &|? Q
[HelloWorld2 » [app) [src) 21 main) [java » 51 com) 51 helloworld) [quant: [7 helloworld) " JavaBasics2
1§t Android v |@ = | %~ |- | © activity mainxml x | (¥ JavaBasicsjava % | (€ JavaBasics2java x l ~E2 |5
Caapp package com.helloworld.quantum.helloworld; > 4 S
=i 1 manifests > public class JavaBasics2 { s
) Bljove > public static void main(String args(]){
BT com.helloworld. quantum.hellow float myFloat = 1.12345678901234567890%;
o “h e ’ double myDouble = 1.12345678901234567890;
© % JavaBasics o . . t51 ®
€ X System.out.println("myFloat is: " + myFloat + ", myDouble is: " +
<" b JavaBasic
b JavaBasics2 }
; © & MainActivity |
&1 com.helloworld.quantum.hellow(o
Run] JavaBasics2 #- LT
I » -- o
8 myFloat is: 1.1234568, myDouble is: 1.1234567890123457 %
o/H | ¥ g
Process finished with exit code 0 g
} 4: Run b_‘ TODO ' 6: Android Monitor | 0: Messages [@ Terminal Event Log [E] Gradle Console
[Compilation completed successfully in 2s 783ms (2 minute ago) 82 CRLF: UTF-8: Context: <nc text v B

Figure 4.14. float and double types in Java

60

CHAPTER 4. JAVA BASICS

In Code 4.10, we tried to assign the number 1.12345678901234567890
to both myFloat and myDouble variables. However, as it can be seen
from the terminal output of Figure 4.12, Java assigned only 7 fractional
digits of this number to myFloat while it assigned 16 fractional digits to
myDouble. Therefore we can see that £1loat and double types can hold
7 and 16 fractional digits, respectively. It can be argued that double
type variables are better than £1oat type variables because they can hold
more digits. However, on the other hand double variables take more
space in the memory. Hence, if memory is not a concern in our Java or
Android applications, we can use double for better precision whereas it
is better to use £loat Where memory is a problem.

We have learned primitive types until here which are built into Java
language and store actual values. The second main class of variables are
reference types. Reference types do not store values; instead they store
addresses of the objects they refer. So what is an object? An object is a
conceptual bundle that consists of values and related methods (operations
that can be applied on values).

There are several forms of reference types. The two widely used types
are arrays and classes. Arrays are variable types that store multiple
values of the same type in an ordered fashion. A typical array can be
illustrated as in Table 4.1.

Index Value
0 I
1 ‘a’
2 v’
3 ‘a’

Table 4.1. Structure of an array

Arrays have indices and values. The values of the array shown above are
of char type however the value can be of any primitive or reference type
as long as all values are of the same type.

Array elements have indices for accessing, deleting them or changing
their entries. Indices of arrays always start with 0 and increase one by
one. We can use the following code for defining the array shown above:

61

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

char[] myArray = {'J','a','v','a'};

Code 4.12

We can access each element of this array using the following form:
myArray [index]. We can print the first and the second elements of this
array in the terminal as shown in Figure 4.15.

® Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - .\app\src\ma... ~ — a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ODHO ¢ XO0 QR & D> | S (Clavehmay~ | D 3 13 G G H B
[3 Javabasics1 ' Ciapp [src ' [main [Dljava [£1 com | 51 example © 5] atomic - 5] javabasics = c” Javad
v§ € = | %~ I+ pBasicsjava X C'JavaBasicsS.java x C')avaChar.java x C'JavaArray.java X |+Z3 |\
2‘1 5 app [package com.example.atomic.javabasicsl; v S
=1 21 manifests 2
M ';;‘Androin | 2 public class JavalArray {
[java 5 . - " .
v o public static void main(String args[]) {
S co:n.ex char(] myArray = {'d','a','v','a'};
2 ARG System.out.println(myArray(0]);
{?f &u 4 System.out.println(myArray[1]);
A }
Al }
§ S| =
Run JavaArray - L :I
@ } 4 \Program Files\Android\Android Studio\jre\bin\java" ... E
- =
J a
o
_§ 3
| ” | ” Process finished with exit code 0
P 4Run 2 TODO i+ & Android Monitor | 0: Messages Terminal Eventlog [E] Gradle Con
] Compilation completed successfully in ... (moments ago) 8:40 CRLF: UTF-8: e € v &

Figure 4.15. Printing elements of a char array

The elements of arrays can be changed separately as follows:

myArray[l] = 'v';
Code 4.13

The second element of myArray is changed from ‘a’ to ‘v’ by this
code. After this line, the contents of the array are: [*'J’, ‘v, ‘v',

\ar].

In Java, elements of arrays cannot be deleted because the size of an array
is fixed when it is created. We cannot also append new element to arrays
for the same reason.

62

CHAPTER 4. JAVA BASICS

Arrays are useful while dealing with series of data of the same type. For
example, if we want to save the data gathered from the acceleration
Sensor, we can use an array having £loat or double type elements.

Another widely used reference type in Java is the string. Strings store
multiple characters. The first letter of string is capitalized because
Strings are in fact objects in Java. The following code creates a
String and initializes it to “Let’s have a pizza”. Please note that values
of strings are written in double quotes:

String name = "Let's have a pizza";

Code 4.14

Since strings are objects, they have related methods for operation on
their values. For example, the method .length () returns the number of
characters in a string as shown below:

int stringLength = name.length() ;
Code 4.15

In this code, the length of the string named “name” is obtained by
name.length () and then assigned to a newly created integer variable
stringLength. The result of this operation in Android Studio is shown
in the following figure:

® Javabasics1 - [C:\Users\atomic\A St jects\Javabasics1] - [app] - ..\app\src\ma... — o x
File Edit View Navigate Code Analyze Refactor Build Run Jools VCS Window Help

OO ¢4 XO0 QA& > SN ([(avasting~| > & 1> G Ga ®m W
Javabasics1 tapp [l src 1 main 1java « [51 com example © [£] atomic ~ [£] javabasics1 © " Javas
W@ v | €3 3= | - B+ jes3java % | € JavaCharjava x | € JavaArray.java % | € JavaStringjava x |~=z | .o

z“ 3 app package com.example.atomic.javabasicsl; vig

= [manifests 2

p4 [jova > public class JavaString {

1 com.examp 4 N . s
» public static void main(String args(]) (

String name = "Let's have a pizza";
int stringlength = name.length():
€% & JavaE System.out.println(stringlength) ;|
€ & Javad

<" & Javas }

& Main }

Yo Javad
¥ & JavaB

U Gpturss <] 7:Studure
A A @

Y

Run #- Lz

[am Files\Android\Android Studio\jre\bin\java g

=

| =z

> 2

§ Process finished with exit code 0 *
P a: Run “» TODO “# 6: Android Monitor @ 0: Messages & Terminal Event Log [£] Gradle Con

[J Compilation completed successfully in ... (moments ago) 8:42 CRLF: UTF-8: - B

Figure 4.16. Basic string operations in Java

63

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Java output shows that the String “Let’s have a pizza” has 18
characters. It is because the spaces in a String are also counted as
separate characters.

There are dozens of other methods those can be applied on Strings. We’ll
utilize them when we develop complete Android apps in the next
chapters.

Developers sometimes need variables that do not vary ©. | mean
variables whose values cannot be changed after it is initialized. These are
called constants in programming languages. Java does not a specific
keyword for defining a constant but using the keyword £ina1l in front of
a variable declaration makes it a constant as follows:

| final double pi = 3.1415926535897932384626;
Code 4.16

In this code, the f£inal keyword makes the variable pi immutable
(unchangeable) making it effectively a constant. If we try to change a
constant, the compiler issues an error as shown in the following figure:

¥ Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - ..\app\src\ma... — a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHO ¢«» XHoll QKA &> A Javasting ~ | > & > B G W @

L3 Javabasics1) Caapp) [Msrc » [main | [java) 51 com) 1 example | 51 atomic | 1 javabasics] | € JavaC
W W' Andro.x |3 = | B~ I+ (o4 JavaArray.java % G JavaString,java X < JavaConstantjava x |~=3 | &
2" Caapp package com.example.atomic.javabasicsl; o S
=i [manifests 5

A

[java > public class JavaConstant {
[com.example.aton

~ 2 public static void main(String args(]) {

S =i
4 Havalirzy final double pi = 3.1415%:
€’ b JavaBasics— pi = 3.14;
=) € 5 JavaBasi i)
v ¥ o JavaCharl Cannot assign a value to final variable 'pi*]
<% JavaConstar | :
§ " % JavaString || =
-
& | Run Javaét.nng Fepid i
4+ 3
P |+ Hello o
m 3 z
£ Process finished with exit code 0 s
L
P 4Run = TODO “# 6: Android Monitor & 0: Messages [@ Terminal Event Log [E] Gradle Con
] Compilation completed successfully i... (46 minutes ago) 11:2 CRLF: UTF-8: w8

Figure 4.17. Compiler error when a constant is tried to be changed

64

CHAPTER 4. JAVA BASICS

Our next subsection is about the logical decision making structures in
Java, let’s have a coffee break and then continue with if-else and switch-
case statements.

4.4. Logical Decision Making Statements in Java
Decision making is a widely in programming as in daily life problems.
We frequently make logical decisions in daily life such as:

- “If their coffee is tasty I’ll get another one, else I’1l grab a tea”.
- “If it’s rainy I’ll take my umbrella, else I’1l not™.

In a programming language, decision making statements controls if a
condition is met or not as in real life. There are two decision making
statements in Java: if—else and switch—case blocks.

If—else structure: In this conditional, if the condition is satisfied, the
code inside the if block is executed. If the condition isn’t satisfied, then
the code in the else block is executed. Hence, if we need tell the rainy —
not rainy example using an if—else block, we do it as follows:

if it’s rainy {
I'll take my umbrella.
}
else {
I’1l not take my umbrella.

}

Let’s see how we can check if two numbers are equal in Java using an
if-else statement:

package com.helloworld.quantum.helloworld;
public class JavaIfElse {
public static void main(String args[]) {
int a = 4;
int b = 4;
if (a == b){

65

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

}

else {

System.out.println("a and b are equal');
}

System.out.println("a and b are not equal");
}
}

Code 4.17 (cont’d from the previous page)

Let’s analyse this code:

>

A\

In this code, two integer type variables, a and b, are created and
initialized to 4.

In the next line, the if statement checks if a and b are equal.

The comparison operator == is used to check the equality.

If the result of this comparison is true, the statement inside the if
block system.out.println("a and b are equal"); IS
executed which prints “a and b are equal” on the terminal screen.

If the result of this comparison is false, the statement inside the if
block system.out.println("a and b are not equal");
is executed which prints “a and b are not equal” on the terminal
screen.

Since we initialized both a and b to 4, they are equal and the Java
compiler executes the code inside the i£ block as follows:

66

® - [C\Users\q \ i 2] - [app] - .\app\src\main\java\com\helloworld\quantu.. — O X

File Edit View Novigate Code Analyze Refactor Build Run Tools VCS Window Help
DHG ¢« XO0 QR ¢ > A vatitser) 6 b 3 GE L 802 L ? Q
HelloWorld2 ' [app ' [Jsrc ' [main ' [ljava 51 com | [helloworld - 51 quantum 1 helloworld < JavalfElse

@ Andry (€ s | %+ I activity mainxm x | (€ JavaBasicsjava x | € JavaBasics2java % | (€ JavalfElsejova x -2
package com.helloworld.quantum.helloworld; 2
& 1 manifests b public class JavalfElse { 2
4 [java > public static void main(String args(])({
[com.helloworld.q :“t : g
» ! =4;
€% In
o Jovabasics | ir (GTEY |
5 @b JaviBasicd System.out.printin(a and b are equal®);|
;;; "4 JavalfElse }
= © & MainActivi| else |
B3 comhelloworidg System.out.println("a and b are not equal”);
§ [comhelloworld.q ! }
Cares :
®|» (@ Gradle Scripts #
Run Ise - L E
nd iroid = H
> % 1 adi jre\bir &
z
H g
| § Process finished with exit code 0
P 4Run A TODO i & Android Monitor % 0: Messages [Terminal Eventlog [¥] Gradle Console
[ZJ Compilation completed successfully in 125 767ms (6 minutes ago) 7:53 CRLF: UTF-8: v 8

Figure 4.18. if —else example in Java

CHAPTER 4. JAVA BASICS

When we change one of the numbers to something other than 4, the code

inside the else block is executed as shown in Figure 4.19.

Pt 2 - [C:\U q AndroidStudioProject: 2] - [2pp] - ...\app\src\ \Jj om\hell Id\quant:
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHS 4 X000 QR ¢ > S [avafisex] > & 3 3 GE L & 2 L
I3 HelloWorld2 ' [iapp [src [imain [ljava 1 com [helloworld * [£1 g [helloworld |+ €” JavalfElse
i@ Andr.y |€3 s | %~ I activity_mainxm| % | " JavaBasicsjava X | (" JavaBasics2java % | (€ JavalfEisejava X

com.helloworld.quantum. helloworld;

3 1Pt

[manifests » public class JavalfElse {
ifjijava > public static void main(String args(]){
[1 com.helloworld.q _ it a =3
&b JavaBasics 1 D e
if (a == b){

» . B
€5 JavaBasicsz System.out.println("a and b are equal”);

= <" % JavalfElse }

7
€ ‘& MainActivi else {
|| com.helloworld.q System.out.println("a and b are not equal");
g [com.helloworld.q) }

Chres)
@ » (& Gradle Scripts
Run JavaltEise

NP T

Process finished with exit cocde 0

Build Variants

P 4Run “2TODO ' & Android Monitor # 0: Messages [Terminal Event Log
[C] Compilation completed successfully in 3s 901ms (2 minutes ago) 5:1 CRLF: UTF-8:

= m}

[£] Gradle Console
)

3IpeId (3,

PO PIOIPUY

Figure 4.19. if—else statement in Java when the condition not satisfied

If-else statements can also be used in nested forms as in Code 4.17. In
nested statements, the conditions are checked from top to down. When a
condition is satisfied, then the code inside its block is executed and the
program ends. If none of the conditions are true, then the final else
block is executed. In other words, the statements in the last else block
is executed if none of the conditions above it are satisfied. The
screenshot of this nested code in the playground is given in Figure 4.20.

package com.helloworld.quantum.helloworld;
public class JavaNestedIfElse ({
public static void main(String args[]) {
int a = 3;
int b = 4;
if (a == b){

}
else if(a > b) {

}
else {
System.out.println("a is lower than

}

System.out.println("a and b are equal');

System.out.println("a is greater than b");

b");

67

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

}

}
Code 4.18 (cont’d from the previous page)

® Hel 2 - [C:\U: A Projects’ 2] - [2pp] - ..\app\src’ java\c d' t - a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DEHO ¢4 XHH QR ¢ D A [(ClovNetedfbser] b 1> B G H L &L ?2 Q
I3 HelloWorld2 [3app [src - [C1 main * [java * 51 com [helloworld » [q [helloworld | " J
W@ % | B 1 2java x | (€ JavalfElsejava % | @) java x | '@ AndroidManifestxml X | (© MainActivityjava X |~=3 | &
§ i app package com.helloworld.quantum.helloworld; 2
Gl 1 manifests > public class JavaNestedIfElse { %
4 ?'fjjava » public static void main(String args(]){
£ com.hellow! TR =19y
v S Javal int b = 4
g S if (a =D)f
€ b Javak System.out.println("a and b are equal");
L] & o Javall }
v
&b Javal else if(a > b) {
© & Main System.out.println("a is greater than b");
3 com.hellow }
— else |
@ E3 com.hellow System.out.println("a is lower than b");
Chres)
< Gradle Scripts }
}
: s
o | Run T JavaNestedifEise #- Lz
3 TN B riles\Android\Android Studio\jre\bin\java" ... §
) 3
=
2
Process finished with exit code 0 [
) 4Run “»TODO # 6: Android Monitor & 0: Messages & Terminal Event Log [E] Gradle Console
[l Compilation completed successfully in 3s 632ms (a minute ago) 810 CRLF: UTF-8: v 8

Figure 4.20. Nested if—else statements in Java

Nested if-else decision making statements become error-prone as more
and more conditions are added. In order to check a lot of conditions
easier, switch—case statements are used. Switch—case statements work
similar to nested if—else statements but they are easier for checking
multiple conditions. A switch—case statement for assessing the grade of a
student is shown in Code 4.18.

package com.helloworld.quantum.helloworld;
public class JavaSwitchCase {
public static void main(String args[]) {
char grade = 'B';
switch (grade) {
case 'A':
System.out.println("Your grade is excellent.");
break;
case 'B':
System.out.println("Your grade is very good.");
break;
case 'C':

68

CHAPTER 4. JAVA BASICS

System.out.println("Your grade is good.");
break;
case 'D':
System.out.println("Your grade is low. You have
to take the course again.");
break;
case 'E':
System.out.println("Your grade is very low. You
have to take the course again.");
break;
default:
System.out.println("Not a wvalid grade");

}
}
}
Code 4.19 (cont’d from the previous page)

In this example, the grade variable has the type char. This variable is
switched and checked against the characters ‘A’, ‘B’, ‘C’, ‘D’, ‘E’. The
switched variable is initialized to ‘B’ therefore the code block inside the
case ‘B’ : Will be executed. It is worth noting the break; statements
in each case block; break makes the whole switch block to end as it is
needed in this example. Please note the default: block at the end of
the program. The code block inside default is executed when none of
the above cases are satisfied. If we enter a character other than ‘A’, ‘B’,
‘C’, ‘D’ and ‘E’, the program will print “Not a valid grade” on the
terminal. A default block is not mandatory in Java but useful as we’ll
see in Android app development chapters.

Selecting if-else or switch—case: If the checked variable has a lot of
discrete values, switch—case blocks are easier to use.

We’ll use decision making statements a lot in Android app development.
Let’s now study another widely used concept: loops.

4.5. Loops in Java

Performing an operation in a repeated form is frequently needed in
programming. These repetitions are performed using loops.
Programming would be very difficult and long without loops. For

69

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

example, let’s try to find the sum of numbers from 1 to 50. Without
loops, what we would do is as follows:

int sum = 0

sum = sum + 1
sum = sum + 2
sum = sum + 3
(44 more lines of code here)
sum = sum + 48

sum = sum + 49
sum = sum + 50
Code 4.20

There has to be 44 more lines of code in the line shown by dots
(shortened above). As you can see, this simple task would require 51
lines of code without loops. Moreover, it’s error prone. Please remember
that we want to perform things in programming with shortest code
possible to prevent errors.

There are three types of loops in Java: for loop, while loop and
do-while loop.

1. for loop: We use for loops when we know how many times an
operation will be performed. The general structure of a for loop is as
follows:

for (type counter = initial value; counter check;
counter increment/decrement statement) ({
Code to be performed repeatedly

}
Code 4.21

» The counter is an integer variable.

» The counter variable is incremented or decremented according to
the expression in (counter increment/decrement
statement) after each cycle.

» After each increment/decrement, the counter is checked if the
(counter check) is still satisfied. If it is satisfied, the loop
continues; if not satisfied, the loop ends.

70

CHAPTER 4. JAVA BASICS

Let’s calculate the sum of numbers from 1 to 50 using a for loop to
understand these better:

package com.helloworld.quantum.helloworld;
public class JavaFor ({
public static void main(String args[]) {
int sum = 0;
for (int counter = 0; counter <=50; counter++) {
sum = sum + counter;
}
System.out.println("Sum is " + sum);
}
}
Code 4.22

In this code, a variable called sum is created to hold the sum. Then, a
for loop is defined in which an integer variable named counter is
created and looped from 0 to 50. In the for loop, the loop variable
counter is incremeneted by 1 in each iteration by the expression
counter++. Therefore, the counter variable takes the values of 0, 1, 2,
3, ..., 50 as the loop continues to cycle. When it takes the value 51, the
loop condition counter=<50, which means equal or lower than 50, is
not satisfied therefore the loop ends without performing the loop
operation for counter = 51.

The variable sum is initialized to 0 and then the counter is added to it
in the loop block by the expression: sum=sum+counter. This method
adds the numbers from 0 to 50 to the sum variable. In the end, the sum
variable is printed on the terminal screen as in Figure 4.21. The sum of
the numbers from 0 to 50 is calculated as 1275.

2. while loop: while loops can be used even when we don’t know at
which iteration the cycle will end. The main difference of for and
while loops is that the incrementing method of the loop variable is
specified inside the loop therefore it provides a bit more flexibility. The
calculation of the sum of numbers from 0 to 50 using a while loop is
shown in Code 4.23.

71

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2) - [app] - ...\app\src\main\java\com\hel.. — m} X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHG ¢ XO0 QR ¢ > S([Chefarv) b 6 - 3 GE L & &R
"3 HelloWorld2 - [“iapp ~ [lsrc [imain [ljava 51 com [£1 hell 1d) El q 1 hell 1d + c” JavaFor
i Android v |€3 = | ##- I tedlifflsejava % | (€ JavaSwitchCasejava % | (€ JavaForjava x 7 [
E Caapp package com.helloworld.quantum.helloworld; ¥ S
= 1 manifests > public class JavaFor { %
4 [java | 2 public static void main(String args(]){
[com.helloworld.quantu e s\.a.m =0
» < for (int counter = 0; counter <=50; counter++){
€ & JavaBasics i
4 ; sum = sum + counter;
€’ & JavaBasics2 }
‘;' c” % JavaFor System.out.println("Sum is " + sum);
& b JavalfElse
. & % JavaNestedifElse }
§ € & JavaSwitchCase
> | Run JavaFor #- LW
- » T - e ¥iles\Android\Android Studio\jre\bin\java" ... §
Sum is 1275 S
L 2 ;
Process finished with exit code 0 2
Iy
gl »
» 4: Run ©» ToDO “# 6 Android Monitor | 0: Messages [E Terminal Event Log [E] Gradle Console
] Compilation completed successfully in 3s 451ms (8 minutes ago) 9:1 CRLF: UTF-8: v 8

Figure 4.21. £or loop example in Java

package com.helloworld.quantum.helloworld;
public class JavaWhile ({
public static void main(String args[]) {
int sum = 0;
int counter = 0;
while (counter <=50) {
sum = sum + counter;
counter++;

}

System.out.println("Sum is " + sum);

}
Code 4.23

As you can see from above, the loop variable counter is defined before
the while loop. The while loop checks if the condition counter=<50
is satisfied. When it is satisfied, the expressions inside the while loop
are executed, otherwise the loop ends. The counter variable is
incremented inside the while loop by the expression counter++. The
output is again 1275 as shown in Figure 4.22.

72

CHAPTER 4. JAVA BASICS

#® HelloWorld2 - [C:\Users\quantum\AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\java\com\hel.. — a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢« XH0 QA ¢ > S(javawhiler D & > 3 GE L & 2 Q7
["3 HelloWorld2 ' "3 app ~ [C1src » [main [java [51 com 51 hell 1d ' [q [helloworld <" JavaWhil
W Andry (@ sk | R~ 10 C’JavaFonjava x C’JavaWhiIe.java x Z;,AndroidManifest.xml X =7 [
2 app package com.helloworld.quantum.helloworld; il S
=t 1 manifests > public class JavaWhile { 2
p B1jave > public static void main(String args(]){
3 com.helloworld.q %nt sum =07
& 5 JavaBasi int counter = 0;
4 § ot vhile (counter <=50){
€5 JavaBasics! s sum = sum + counter;
‘;' e JavaFor counter++;
& & JavalfElse }
& 5 JavaNested System.out.println("Sum is " + sum);
g & b JavaSwitch }
& JavaWhile W
® | Run [JavaWhile ¥ L3
[> 4+ o mc—— Lles\}qldroxtl\)ul(lroid Studio\jre\bin\java" ... S
Sum is 1275 =
E m|¢ g
3> Process finished with exit code 0 =
L P 4:Run ‘aTODO " & Android Monitor & 0: Messages Terminal Eventlog [E] Gradle Console
] Compilation completed successfully in 3s 779ms (7 minutes ago) 7:33 CRLF: UTF-8: v 8

Figure 4.22. while loop example in Java

3. do-while loop: do-while performs similar to the while loop
except the loop variable is checked at the end of the loop block as
follows:

package com.example.atomic.javabasicsl;
public class JavaDoWhile ({
public static void main(String args[]) {
int sum = 0;
int counter = 0;
do {
sum = sum + counter;
counter++;
}while (counter<=50) ;
// do-while loop ends here
System.out.println("The sum is " + sum);

}
Code 4.24

The sum is again calculated as 1275 in this code. As we can see from
above code, while and do-while are very similar. On the other hand,
please note the code //do-while loop ends here. This is a

73

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

comment line in Java. The compiler ignores anything written next to //.
Comments are used for increasing the readability of the code.

The output of the do-while program is shown below:

® Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - ..\app\src\ma... — O X

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHO ¢« X0 QKA & > A (Javabowhile~| P & b G o HCE
[73 Javabasics1 - [Zapp [lsrc [TImain [java 1 com = [example E}atomicr ﬁ_’]javabasicﬂr c” JavaC

i Android v |€) = | %~ |- faStringjava X | (€ JavaConstantjava X | € JavaDoWhilejava x |~=7 |2
[app package com.example.atomic.javabasicsl; v ;,C-‘
=i 1 manifests | 4 public class JavaDoWhile { %
p r—_g,.AndroidManifest.xml 2 public static void main(String args[]) {
=] int sum = O;I
java .
& s = int counter = 0;
[com.example.atomic.javi &t
e b JavaArray sum = sum + counter;
&b JavaBasics counter++;

& b JavaBasics3 }while (counter<=5
e % JavaChar do-while loop e
e % JavaConstant
<" % JavaDoWhile

C' & JavaString

System.out.println("The sum is " + sum);

@& Captures «{ 7:Strudure

Run JavaDoWhile - 2 ';:'
g > & — et \ANdroid\Android Studio\jre\bin\java" ... =
] The sum is 1275 %
>
" z
@ Process finished with exit code 0 o
Wl o» | » o

) 4: Run » TODO % 6: Android Monitor = 0: Messages Terminal Event Log [£] Gradle Con
[C] Compilation completed successfully in ... (7 minutes ago) 4:21 CRLF: UTF-8+ t onte v &
= Y 9

Figure 4.23. do-while loop example in Java

Note: There are two important keywords that are used to further control
loops: break and continue Statements.

These commands are usually used together with an if statement. The
break command breaks the loop; it means the program quits the current
loop before the loop condition expires. On the other hand, continue
command makes the loop continue with the next iteration

4.6. Methods in Java

Methods are subroutines that are used for performing an operation.
Methods are similar to functions in other programming languages but the
difference is that methods are always associated with classes and objects.

74

CHAPTER 4. JAVA BASICS

Because of this, methods are always defined inside classes. The general
form of a function is as in Code 4.24.

(public) (void) (return type) methodName
(arguments) {
......... (code inside the method)
(return output values;)
}
Code 4.25

A method declaration has the following parts:

» The name of the method (methodName).

Method identifiers like public and static (optional).

Arguments (input values) of the method (optional).

The type of return values (optional).

The void keyword-used if the method won’t output any value
(optional).

» return keyword for outputting return values (optional).

» The statements that will perform the operation.

>
>
>
>

Let’s write a method that adds two integers and prints the sum on the
terminal:

static void addNumbers (int a, int b) {
int sum;
sum = a + b;
System.out.println("The sum is " + sum);

}
Code 4.26

In this method:

» The static keyword is used that means this method can be called
without creating an object of its class.

» wvoid keyword is used because the method won’t output any values;
it will just print on the terminal screen.

» Inputs (arguments) of the method has two input variables a and b
which both are of the int type.

75

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

» The sum is calculated inside the function and assigned to the sum
variable. Please note that the variables which are defined inside the
function cannot be accessed outside the function.

» Finally, the sum is printed on the terminal screen with the usual
System.out.println () method.

When we define a method, it doesn’t run automatically. We need to call
it with its input arguments. We do this by writing its name and arguments
as follows:

[addNumbers (2, 5) ; |
Code 4.27

When we call this method, the input arguments are 2 and 5. The method
will add these numbers and print the result on the screen. The complete
code of the method definition and its call is as follows:

package com.example.atomic.javabasicsl;
public class JavaMethodAddl ({

public static void main(String args[]) {
addNumbers (2, 5);
}
static void addNumbers (int a, int b) {
int sum;
sum = a + b;
System.out.println("The sum is " + sum);
}
}
Code 4.28

When we run this program in Android Studio, we get the terminal output
shown in Figure 4.24.

This function didn’t have return values. Let’s modify it so that the sum of
the input values will be given as a return value. We can do this
modification by just adding the following line instead of the
System.out.println():

| return sum; |
Code 4.29

76

CHAPTER 4. JAVA BASICS

We also have to replace the void keyword to int keyword as shown in
Code 4.29 because the function will output an int type variable (sum).

® Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - ..\app\src\main\java\com... ~—
® Javabasics1 - [C:\Users\ ic\AndroidStudioProjects\Javabasics1] - [app] - ...\app\src\main\java\ (m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHOD ¢« X000 QR ¢ > S [javaMethodaddi ~| P § > G G B [k OB
[Javabasics1 * [iapp [Isrc [Imain [java [51com [5] example ' [atomic 5] javabasics1 © c” JavaMethodAdd1
% Andry (€ s | %~ - | x | & JavaDoWhilejava % | (€ JavaAddFuncjava % | € JavaMethodAddljava X [+=7 |
E 3 app package com.example.atomic.javabasicsl; ?
bl 1 manifests > public class JavaMethodAddl { %
* g
i [java
B com.eample.atof | 2 public static void main(String args(]){
' i addNumbers(2, 5);:
é © b JavaAddFu)
»
€ b JavaArray static void addNumbers(int a, int b){
\’; e b JavaBasics int sum;
€ b JavaBasics: & sum = a + b;
& JavaChar System.out.println("The sum is " + sum);
g € b JavaConstz) }
" % lavaDoWhi w
® | Run 7] JavaMethodAdd1 #- L |3
=3
} @ = e es\Android\Android Studio\jre\bin\java" ... §_
:
E LR g
o o
2 Process finished with exit code 0 e
!$Run 2 TODO ' 6: Android Monitor % 0:Messages [E Terminal Eventlog [E] Gradle Console
[Compilation completed successfully in 165 15ms (today 06:41) 9:21 CRLF: UTF-8: t v 8

Figure 4.24. Method definition and calling in Java

package com.example.atomic.javabasicsl;
public class JavaMethodAdd2 {

public static void main(String args[]) {
addNumbers (2, 5);

}

static int addNumbers (int a, int b) {
int sum;
sum = a + b;
return sum;

}

}
Code 4.30

When we run the code above, nothing happens because we removed the
printing code from the method and it only outputs the sum. We can print
the output of the method as follows:

package com.example.atomic.javabasicsl;
public class JavaMethodAdd2 {

77

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

public static void main(String args[]) {
System.out.println (addNumbers(2, 5));

}

static int addNumbers (int a, int b) {
int sum;
sum = a + b;
return sum;

}

}
Code 4.31 (cont’d from the previous page)

We have written the method call inside the System.out.println()
method therefore the return value of the method will be printed as shown
below:

® Javabasics1 - [C:\Users\atomic\AndroidStudioProjects\Javabasics1] - [app] - ...\app\src\main\java\com... — [m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢« X000 QRQA & D A [JavaMethodadiz~ | P 3 b G G B [k B
[% Javabasics1 ' [Zapp ' [1src 71 main [Tljava » [51 com [] example © [atomic [£] javabasics1 " JavaMethodAdd2
i An.> |€) == | #- I~ || (© JaveAddFuncjava % | (" JavaMethodAddljava X | (€ JavaMethodAdd2java % |~=7 | &
g Caapp package com.example.atomic.javabasicsl; S
=t 1 manifests 12 public class JavaMethodAdd2 { %
» o
& [java . .
[£1 com.exampleat = . B
lSys:em.out.prmtln(addm:mbezs(z, 5));
g © & JavaAddR
»
] €' JaveAmray @ static int addNumbers(int a, int b){
{?l e’ & JavaBasic int sum;
& & JavaBasid sum = a + b;
c* & JavaChar return sum;
g & % JavaCons) }
e % lavaDoW W
® | Run) JavaMethodAdd2 #- L (>
2
4 = Program Files\Android\Android Studio\jre\bin\java" ... 3
<l :
HLAE! g
% Process finished with exit code 0 e
|)4 Run 2 TODO + & Android Monitor % 0: Messages [E Terminal Eventlog (=] Gradle Console
[C] Compilation completed successfully in 55 678ms (2 minutes ago) 5:9 CRLF: UTF-8: v B8

Figure 4.25. Using a method that returns a value

Methods provide us a good way of shortening our code and making it
compact as we can see from these simple examples. Of course their
usage range is not only simple mathematical operations, a Java or an
Android application contains a lot of user defined and ready methods
available from the Android SDK or Java SDK. Android SDK includes
thousands of methods which makes the developers’ lives easier.

78

CHAPTER 4. JAVA BASICS

Methods are also important to share code among developers. If we can
find a ready-coded method on the Internet, we can utilize it in our apps
easily.

Methods are always parts of classes. So, let’s now focus on classes,
objects and inheritance that are the backbones of the so-called “object-
oriented programming”.

4.7. Classes, Objects and Inheritance in Java

Java programming language uses traditional (procedural) and object-
oriented concepts together for a stronger experience. Procedural
programming means that a program uses procedures and functions
executed by order. This is the traditional method. On the other side,
object-oriented programming uses classes and objects derived from these
classes to execute the required computational steps. So, what are classes
and objects?

We can think classes as blueprints and objects as different products made
using this blueprint. Similarly, we can consider a car factory as an
example for classes and objects. Imagine a car production band. Each
time we change the colour, baggage size, steering wheel type, etc., we
obtain a different car without changing the basic properties of the car. If
the car make and model are Virtuma and Liberty (hypothetical names!),
the production band produces Virtuma Liberty 1.6, Virtuma Liberty 2.0,
Virtuma Liberty 3.0, Virtuma Liberty 1.6 premium, Virtuma Liberty 2.0
diesel, etc. In this case the class is Virtuma Liberty and all these
hypothetical models are objects belonging to this class. We can imagine
this as in Figure 4.26.

Let’s declare a car class in Java first and then define different car
objects derived from this class as in Code 4.31. In this code, a class
named car is defined by public static class Car which has
variables named colour, fuel type and engine capacity. These
are the variables which will be different for each object derived from this
class.

Inside the class definition, there is a method declaration public
Car (String carColour, String carFuelType, float

79

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

CarEngineCapacity). This is a constructor method having the same
name with the class name and the class variables are assigned inside this
method by the code lines shown in Code 4.33.

Class Objects

=N

.=

_——

Figure 4.26. Class—object relationship by example

package com.helloworld.quantum.helloworld;
public class JavaClassMainl ({
public static class Car ({
static String colour;
static String fuel type;
static float engine capacity;
public Car (String carColour, String
carFuelType, float CarEngineCapacity) {
colour=carColour;
fuel type=carFuelType;
engine capacity = CarEngineCapacity;
}
}

public static void main(String args[]) {
Car myCar = new Car("Red", "Diesel", 1.2f);
System.out.println (myCar. colour) ;

}

}
Code 4.32

80

CHAPTER 4. JAVA BASICS

colour=carColour;

fuel type=carFuelType;

engine capacity = CarEngineCapacity;
Code 4.33

Finally, inside the main function of the program, a car object called
myCar is created with the line:

| Car myCar = new Car("Red", "Diesel", 1.2f); |
Code 4.34

Please note that the new keyword is used for creating an object using a
class. We can read this object declaration line as “An object named
myCar iS created using the car class with the parameters of “Red”,
“Diesel” and “1.2£" ”.

Once the object is created, we access its variables and methods using a
dot operator (.). In the last code line of Code 4.31, the colour variable of
myCar object is extracted by the expression myCar.colour and then
printed on the terminal. The output is the colour variable of the myCar
object as shown in Figure 4.27.

We can define any number of different objects using our class like:

Car yourCar = new Car("White", "Gasoline", 1.6f);
Car newCar = new Car("Grey", "Diesel", 2.0f);
Code 4.5

The power of class—object concept stems from the availability of both
variables and methods from a single object and the possibility of using
the same class structure for various object definitions easily.

We can add a method to the class with the usual method definition. For
example, let’s add a method to display the fuel type as shown in Code
4.35.

81

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® HelloWorld2 - [C:\Users\ “AndroidStudioProjects\HelloWorld2] - [app] - ..\app\src\main\java\com\hel.. — o X

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ODHO #2 XH0ol QR & > A JavaClassMaini~ | P 3 1 G G E L 8 AL

"3 HelloWorld2 "3app * [isrc ' Cimain [java [£1 com 1 helloworld [g [1 helloworld < JavaClassMain1
W' Androidv |€) = | ¥~ I* MForjava X < JavaWhilejava X G JavaClassMain1.java x bl Y
E‘uapp package com.helloworld.quantum.helloworld; S
= 1 manifests > public class JavaClassMainl { %
24 Djava public static class Car { 1

static String colour;

[E1 com.helloworld.qua 3
static String fuel type:

» 5
c' = JavaBasTCS static float engine capacity; =
{ €6 JavaBasics2 | public Car(String carColour, String carFuellype, float CarEngii
:&' < & JavaClassMail colour=carColour;
e % JavaFor ype=carFuelType;
e JavalfElse engine capacity = CarEngineCapacity;
§ & JavaNestedIfe ;l N
» 8
€% JavaSwitchCa > public static void main(String args(]){
® &% JavaWhile = e ", 1.28)
€ & MainActivity
1 com.helloworld.qua }
E [com.helloworld.qua }
§ ~ P
& | Run ' JavaClassMain1 F- L
w ogram Files\Android\Android Studio\jre\bin\java" ...
)
>
3
#=¢ Process finished with exit cecde 0 g
|| B 3
= o
& o (I 5
Ny a
i, » o
7) Q: RE & TOoDO ' 6: Android Monitor | 0: Messages [Terminal Event Log [E] Gradle Console
[E] Compilation completed successfully in 3s 850ms (11 minutes ago) 12:6 CRLF: UTF-8: cont a B

Figure 4.27. Class and object example in Java

package com.helloworld.quantum.helloworld;
public class JavaClassMainl ({
public static class Car ({
static String colour;
static String fuel type;
static float engine capacity;
public Car (String carColour, String
carFuelType, float CarEngineCapacity) {
colour=carColour;
fuel type=carFuelType;
engine capacity = CarEngineCapacity;

public void askFuelType () {
System.out.println(fuel type);

}

public static void main(String args[]) {
Car myCar = new Car("Red", "Diesel", 1.2f);
myCar.askFuelType () ;

82

CHAPTER 4. JAVA BASICS

[} |
Code 4.36 (cont’d from the previous page)

In this modified code, a method called askFuelType is added to the
car class definition that prints the fuel_type variable on the terminal.
In the main method, the newly added method is called again by the dot
operator (.):

| myCar.askFuelType () ; |
Code 4.37

Please note that methods without arguments are called by empty
parentheses (). The askFuelType method is called and it does its duty
as shown below:

¥ HelloWorld2 - [C:\Users\atomic\Desktop\Android book - revi5\HelloWorld2] - [app] - ..\app\src\main... — (m} X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ODHO 2 XH0 QK[¢ > S [(ClavaCassMaint > P 35 1> G G B L K

[HelloWorld2 ~ [Zapp » [src (1 main * [1java | 51 com | [1 helloworld © [£1 quantum © 51 helloworld © €” JavaClassMa

'#' Android > | = | %~ 1= | @ JavaClassMainljava X >
E‘ 3 app colour=carColour; S
=i [manifests £ ype=carFuelType; %
»

capacity = CarEngineCapacity;

[java

[£1 com.helloworld.quantum.helloworld
public void askFuelType() {

» i
c
& JavaBasics System.out.println(fuel type):

"% JavaBasics2)
c* % JavaClassMain1 }
& b JavaFor > public static void main(String args(]){

e % JavalfElse

&% JavaNestedifElse e Liptlp(myCar.colour) ;
» . myCar.askFuelType()
€’ & JavaSwitchCase

}

Car myCar = new Car("Red", "Diesel", 1.2f);

& Captures «] 7:Studure

& % JavaWhile }
) % MainArtiit, w
g Run JavaClassMain1 = §
g ’ 4 — gram Files\Android\Android Studio\jre\bin\java" ... g
N IR H
2 » Process finished with exit code 0
| 0: Messages [# Terminal % 6: Android Monitor P 4Run 2 TODO Event Log [E) Gradle Console |
[C] Compilation completed successfully in 6s 62ms (7 minutes ago) 19:29 CRLF: UTF-8: v B |

Figure 4.28. Calling a method of a class in Java

The basic class and object relation can be summarized as in the above
code samples. However, there’s another important property of classes
which is another advantage of object-oriented programming: inheritance.
Inheritance is basically the ability of creating an extended new class
(let’s call this as class;) from an existing class (class;). The child class

83

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

(class,) will have the fields and methods of its parent class (class;). The
child class may also have new variables and methods too.

We have defined a car class in Code 4.36. Let’s define a child class
called sedancar that will extend the parent class car:

public static class sedanCar extends Car{
int b _Vol;
public sedanCar (String carColour, String
carFuelType, float CarEngineCapacity, int
baggageVol) {
super (carColour, carFuelType,
CarEngineCapacity) ;
b Vol = baggageVol;
}

}
Code 4.38

In the first line of this code, the new (child) class sedancCar extends the
car class. Then, a new integer type variable b_vol is declared in the
new class. Next, a constructor method for the sedancar is defined by
public sedanCar (String carColour, String carFuelType,
float CarEngineCapacity, int baggageVol). Inside this
constructor, there is an important code line:

|super(carColour, carFuelType, CarEngineCapacity) ;
Code 4.39

In Java, the super keyword is used to invoke the constructors of the
parent class in a child class. Therefore, the child class sedancar inherits
the fields (variables for this case) of the parent class using the super
keyword.

The complete code of parent and child classes is given in Code 4.40.

package com.helloworld.quantum.helloworld;
public class JavaClassMainl {
public static class Car {
static String colour;
static String fuel type;
static float engine capacity;
public Car (String carColour, String
carFuelType, float CarEngineCapacity) {

84

CHAPTER 4. JAVA BASICS

colour=carColour;
fuel type=carFuelType;
engine capacity = CarEngineCapacity;

public void askFuelType () {
System.out.println(fuel type);
}
}

public static class sedanCar extends Car{
int b _Vol;
public sedanCar (String carColour, String
carFuelType, float CarEngineCapacity, int
baggageVol) {
super (carColour, carFuelType,
CarEngineCapacity) ;
b Vol = baggageVol;
}

}

public static void main(String args[]) {
sedanCar newCar = new sedanCar ("Red",
"Diesel™, 1.2f, 40);
newCar.askFuelType () ;
System.out.println(newCar.b Vol);
}

}

Code 4.40 (cont’d from the previous page)

We can apply the method askFuelType On the object newCar derived
from the child class despite the child class doesn’t have askFuelType
method explicitly. This is because the child class inherits all methods of
its parent class therefore sedancar class actually has the askFuelType

method.

In the last line, the b_vol variable that is unique to the child class is
accessed as usual. The output of this code in Android Studio is shown in

Figure 4.29.

If the classes and objects make you confused, don’t worry. You’ll
understand them better when we use them for developing Android apps.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Java is, of course, a very extensive programming language and Java SDK
has thousands of methods for developing sophisticated Java programs.
However, | think this much of Java basics lecture is enough for starting
to develop Android apps. I’'m sure you’ll get used to writing Java code in
the upcoming chapters.

| ® HelloWorld2 - [C:\Users\atomic\Desktop\Android book - rev15\HelloWorld2] - [app] - ..\app\src\main... ~— m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DEHO ¢« X0l QA ¢ DS JavaClassMainl ~ | > 35 13 G Ga @ [R
"3 HelloWorld2 ' ["Zapp ~ "1 src * [Z1main [Tl java 51 com 51 helloworld * £ q [helloworld " JavaClassMa
i x| == | ¥ I+ | @ JavaClassMainljava x >
E 3 app A— : ()
& . public static class sedanCar extends Car{ g
= £ manifests int b Vol; =
= [java public sedanCar(String carCoclour, String carFuelIype, float Cal
[com.hellowt super (carColour, carFuelType, CarEngineCapacity):
s & o Javall b Vol = baggageVol;
; &b Java) }
4 >
%{v‘ C) o JavaC), public static void main(String args[]){
= € b JavaF ir . o 2v (MDed” MMiece] M
& Javalf
2 »
€ b Javal g
% JavaS S BiedadantaniuRed”, "Diesel”, 1.2£, 40);
“ » newCar.askFuelType():
€ b JavaV| "
System.out.println(newCar.b Vol)
€ & Main, } - -
b1 com.hellow) 1
Run '~ JavaClassMain1 - L |3
E. > . "C:\Program Files\Android\Android Studio\jre\bin\java" ... ;
® Diesel §
40 i
@ 0: Messages [3] Terminal /& 6: Android Monitor ~ * 4&Run <2 TODO Event Log. [Z] Gradle Console
[Z] Compilation completed successfully in 55 725ms (a minute ago) 29:42 CRLF: UTF-8: t a &

Figure 4.29. Class extension example in Java

The good news is that the boring stuff ends here and the fun is beginning:
actual Android app development-developing apps that actually do
something. We’ll design apps that interact with the user and use the
wonders of Android platform such as SMS sending and GPS reading.
Let’s have a coffee and relax for some time before beginning the next
chapter where we’ll start our Android app development journey.

86

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

Chapter S

TYVPDY

ANDRIOD APP #1: RED/BLUE LIGHTHEAD

We’ll develop a simple strobe light app in this project. We’ll go through
accessing the button in Java code, getting the screen background colour,
setting this colour and sensing button taps to change the background
colour.

Our aim is to develop an Android app where the background colour of
the app is varied as in a red/blue strobe light. The background colour of
the app will change from red to blue or vice versa each time we click a
button located in the middle of the screen. This is a very simple app but
will teach the basics steps of visual programming.

5.1. Creating a New Android Project

Firstly, please select “Create a new project”. If Android Studio is already
running select File > New - New Project from the top menu as shown
below:

mgdit View Navigate Code Analyze Refactor Build Run Tools VC

31 Open...
Open Recent

Close Project
Link C++ Project with Gradle

Import Project...

» Project from Version Control P

New Moedule...
Import Module...

9 Settings... Ctrl+ AltsS Import Sample...

[.% Project Structure... Ctrl+Alt+Shift+S (€ Java Class
Other Settings » © Android resource file
Import Settings... =1 Android resource directory
Export Settings... = File
Settings Repository... [£1 Package

Kl save Al Ctrls | & C++ Class

— 0 ~ -

Figure 5.1. Creating a new project in Android Studio

87

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

| named the app as “Lighthead app” as shown in Figure 5.2, but you can
give any name you’d like to.

‘ ® Create New Project

5 o New Project

Configure your new project

Application name: | Lighthead app|

Company Domain: | ator ymple.com

Package name:

) Include C++ Support

| I (o |

Figure 5.2. Naming the app

Then, | selected the app to be compatible with phones and tablets having
Android 4.0.3 (Ice Cream Sandwich) or later:

® Create New Project

ﬂ Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet
Minimum SDK | APl 15: Android 4.0.3 (iceCreamSandwich) n

Lower API levels target more devices, but have fewer features available.

By targeting AP 15 and later, your app will run on approximately 97,4% of the devices
that are active on the Google Play Store.

Help me choose

O Wear

Minimum SDK | API 21: Android 5.0 (Lollipop) B
QOw

Minimum SDK | API 21: Android 5.0 (Lollipop) '
[Android Auto
[Glass

Minimum SDK | Glass Development Kit Preview (API 19) B

=l - I

Figure 5.3. Selecting app compatibility

88

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

We’ll have a simple screen therefore “Empty Activity” does the job in
the next dialog:

| ® Create New Project

A Add an Activity to Mobile

Add No Activity

Basic Actvity

Fullscreen Activity Google AdMob Ads Activity Google Maps Activity

4

=l - i

Figure 5.4. Selecting the screen layout

Finally, leave the name of the activity as “MainActivity” and then click
“Finish” to create the project files:

T
| ® Create New Project X

H Customize the Activity

Creates 3 new empty activity

Activity N.ml e |]
Generate Layout File
Layout Name: | activity_main
Backwards Compatibility (AppCompat)
Empty Activity

The name of the activity class to create

4

[previous | [et | [conce | [HEZEEND

Figure 5.5. Final settings

89

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

After the project is successfully created, the default view of the Android
Studio will appear in which the middle pane will show the
“MainActivity.java” file as shown below:

® Lightheadapp - [C:\Users\atomic\Desktop\Button\Lightheadapp] - [app] - ...\app\src\main\java\com\example\atomic\li.. ~ — [m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHO ¢« X000 QA > AEeppr)P B b GGE K & 0 L 7 Q

[3 Lightheadapp ' [app + [src + [Z) main © [java [£1 com [£] example © £ atomic © [lightheadapp © '€ MainActivity

&' Android - @ % | #- I~ | B activity mainxml X | © MainActivityjava x >

z‘ 5 app package com.example.atomic.lightheadapp; 4 S
= [manifests 8
| s [java import ...

[£1 com.example.atomic.lightheadapp
g @ & MainActivity
&

[E1 com.example.atomic.lightheadapp (androidTe

© public class MainActivity extends AppCompatActivity {

£ com.example.atomic.lightheadapp (test o protected void onCreate (Bundle savedInstanceState) |
Cares super.onCreate (savedInstanceState);
setContentView (R.layout.activity main);

& Gradle Scripts

§ 0

*
>
3
=3
S
a
g z
5
a
£ &
JoiN
= 0: Messages [# Terminal % 6: Android Monitor % TODO Event Log [£] Gradle Console
] Gradle build finished in 275 967ms (14 minutes ago) 1:1 CRLF: UTF-8: a 8

Figure 5.6. Default view in Android Studio

5.2. Developing the User Interface

Let’s open the user interface layout file activity_main.xml where we
will place the button on the screen. As we can see from the figure above,
the left pane shows the folders and files of our project. Make sure that
the view type is Android and select the folders res - layout and then
double-click on the file activity_main.xml there as shown in Figure 5.7.

When the activity_main.xml file is opened, the layout it contains will be
shown in the middle pane as shown in Figure 5.8. This file and other xml
files contain the layout information of an Android app in Android Studio.
In fact, xml files are not only used in Android app development but also
in other areas of computing. xml files are good to express the relations
among different entities in a hierarchical way therefore is a good choice
to use in layout design. xml files are text files but Android Studio
interprets them as layouts as long as they are in the correct format. We
can also view the text file representation of activity_main.xml in

90

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

Android Studio by selecting the Text tab as indicated by the arrow in
Figure 5.8.

1 /&' Android v; D = | -1 [
=T '
[manifests
© java

[£1 com.example.atomic.lightheadapp

€ & MainActivity
[E1 com.example.atomic.lightheadapp (androidTeq
[£1 com.example.atomic.lightheadapp (test)

[res
[E1 drawable
—m—
2 T
STTD
[values

(2> Gradle Scripts

Figure 5.7. Finding activity_main.xml file in project explorer

B activity_mainxml % | (€ MainActivityjava *

Palette e %-1- EEE S ONewssr m25- @appteme @language- O~

| E2 Widgets E@E O:x@E ¥ A
A5} TextView
* Button : " !
= ToggleButton

= W B 6:00
[+ CheckBox
AVl CheckedTextView .
* Spinner
== ProgressBar (Large)
== ProgressBar
== ProgressBar (Small)
== ProgressBar (Horizontal)
101 SeekBar

01 SeekBar (Discrete)
Component Tree
[F] activity_main (Relativel:
(b} TextView

l : q o o

Design | Text

Figure 5.8. Viewing activity_main in Android Studio

91

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

When the Text tab is selected, the text format of the activity main.xml
file is displayed in the middle pane as follows:

‘ # Lightheadapp - [C:\Users\atomic\Desktop\Button\Lightheadapp) - [app] - ..\app\src\main\res\layout\ac... — m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢« X001 QA &> AEpp)P b G GE K &2 Q7
[3 Lightheadapp ' Ciapp [src i main Cres [layout @ activity_mainxml
WO k| B © activity_mainxml x | € MainActivity.java X &
= ifest 2
» D .mam o <?2xml version="1.0" encoding="utf-8"2> . A g
[java c <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"|
— >
Chres xmlns:tools="http://schemas.android.com/tools" &
g [51 drawable android:id="g+id/activity main" S
g on layout android:layout_width="match parent" %
ﬁ, B3 activi android:layout_height="match parent"
hvg . android:paddingBottom="16dp"
[mipmap B . " S
android:paddinglLeft="16dp
0 7 values android:paddingRight="16dp"
é Gradle Scripts android:paddingTop="16dp"
tools:context="com.example.atomic.lightheadapp.MainActivity">
<TextView
android:layout width="wrap_content" w
g android:layout_height="wrap content" g
E android:text="Hello World!" /> S
= </RelativelLayout> ;
| @ °
| & = -3
‘ w Design | Text [
% TODO +# 6: Android Monitor [E Terminal = 0: Messages Eventlog [E] Gradle Console
| [Gradle build finished in 4s 679ms (today 06:54) 1:1 CRLF: v B

Figure 5.9. activity_main.xml file in text representation

You don’t need to be confused about the contents of this file. We’ll do
most of the layout operations visually. We’ll only use this text
representation in special cases. However, it is a good practice to follow
the contents of the xml file as we design app layouts. In the above figure,
we can see that our layout consists of a RelativeLayout structure, which
begins by the line <RelativeLayout... and ends with
</RelativeLayout>. Inside this layout, we have a TextView component.
In other words, a TextView component exists inside the RelativeLayout
component. Let’s now see how an Android app GUI is built in general
using these components.

In Android, all user graphical user interface (GUI) objects (widgets,
layouts, image objects, etc.) are derived from the view class of the
GUI library. The basic hierarchy of GUI classes are shown in Figure
5.10.

92

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

© activity_main.xml x I € MainActivity.java X ’

Component Tree

v activity_main (Relativelc

Palette % 0- B E IE O ONexussr m25+ (PAppTheme Elanguage~
1 Widgets
(Bb) TextView
) 100 200 w0
OK Button

= ToggleButton

CheckBox o
(@) Radi W1 6:00
K?/I erkati
Av| CheckedTextView e acane
= Spinner m S
Select »

== ProgressBar (Large) "
== ProgressBar = % Cut Ctrl+X
== ProgressBar (Small) E_j Copy Ctrl+C
== ProgressBar (Horizontal) [l Paste Ctrl+V
0" SeekBar
101 SeekBar (Discrete) a Go to XML Ctrl+B

. Refactor »

Save Screenshot...

TextView - "Hello We Convert RelativeLayout to ConstraintLayout

VzZ

—‘ Design’ Text]

Figure 5.10. Basic hierarchy of the GUI components

The components of the GUI of an Android app have the following basic
properties:

>

>

Because all GUI objects are derived from the view class, these GUI
objects are also called as views in Android programming.
ViewGroup’s child classes RelativeLayout, LinearlLayout,
AbsoluteLayout and GridLayout are special views that can
contain other views and components. These are used for shaping the
layout as you wish.

93

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

» An Android GUI should consist of at least one layout class. For
example, our activity main.xml file has the RelativelLayout as
shown in Figure 5.9.

» We can build any GUI by using the subclasses of the view class
shown in Figure 5.10.

We’ll see several GUI designs during our app development journey.
Different developers prefer different strategies for shaping their app’s
GULI. In my personal opinion, RelativeLayout provides more flexibility
therefore easier to use. The basic property of the RelativeLayout is that
each GUI object is positioned relative to each other.

Anyway, let’s continue developing our red/blue strobe light app. Please
switch to the Design view of the activity_main.xml file as in Figure 5.8
so that we can design the GUI visually.

First of all, please delete the default “Hello World” TextView by right-
clicking on it and selecting “Delete” as shown below:

& activity_mainxml % | € MainActivity.java %

Palette 2% 1- B E E O OnNexusar mizs- (Papptheme Elanguage~
1 Widgets =]
Ab| TextView

* Button
= ToggleButton
| CheckBox

8 ¥R 500
s e o
ight
AV CheckedTextView Ligfthesd w09

* Spinner . =
Select »
== ProgressBar (Large)
== ProgressBar % Cut Ctrl+X
== ProgressBar (Small) Ll Copy Ctrl+C
== ProgressBar (Horizontal) [Paste Crl+V
101 SeekBar (Discrete) Go to XML Ctrl+B
' Refactor »

Component Tree

2 2 - {91 Save Screenshot...
Hi activity_main (Relativel:

[Ab) TextView Convert Relativelayout to ConstraintLayout

Design | Text

Figure 5.11. Deleting the default “Hello World” TextView

94

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

After deleting the default TextView, please find the Button widget from
the objects palette and then drag and drop it in the middle of the GUI by
the help of the guiding lines as shown in Figure 5.12.

© activity_mainxml X | (€ MainActivity.java X

Palette S - T 1 @E! § O~ [ONexusa~ m25- (PAppTheme @la
1 Widgets =]
Abl TextView

= ToggleButtdQ
+’| CheckBox

@) RadioButton
Av CheckedTextView

V00
Lighthead app

* Spinner
== ProgressBar (Large)
== ProgressBar
== ProgressBar (Small)
== ProgressBar (Horizontal)
01 SeekBar

101 SeekBar (Discrete) o]

Component Tree
og activity_main (Relativel:

" button

Design | Text

Figure 5.12. Adding a button widget in the middle of the user interface

When we add a widget to the GUI, it keeps being selected and then its
properties can be viewed from the right pane as shown in Figure 5.13.
The basic properties of the button are shown in this pane. However, we
can see the full list of properties by clicking on the View all properties
(can be seen after scrolling down) as shown in Figure 5.14.

Anyway, let’s go on with the basic properties pane shown inside the
rectangle in Figure 5.13. In this pane, one of the most important
properties for accessing the button is the ID. All objects of the GUI of an
Android app are accessed through their IDs in the coding part.

95

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

@ Lightheadapp - [C:\Users\atomic\Desktop\Button\Lightheadapp] - [app] - ..\app\src\main\res\layout\activity_ma... —— [m] X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢« X001 QRA ¢ A[EZepr /P B b B GE K &L ?2Q
I3 Lightheadapp ' "2app [Isrc [Imain [dres [layout © activity_mainxml
f 1 5 activity_mainxml x | (€ MainActivityjava X | [
2 " Palette e #-1- BE E O OnNexuss- mas- Properties e #-ﬁ
=1 > -
| D widgets =NE| Oxx@E= W H| o | button i
K Tadviey layout_width i tent
=) Button - 100 - 200 layout_wit ,\,maé-f,on en
é = ToggleButton Lighthead app layout_height |wrap_content
k) @Checksox Button
v ‘-é,‘ RadioButton style
= .
(‘ CheckedTextView P moi
= Spinner [
backgroundTint
| | Component Tree —_
1] - - - | : e
® v [activity_main (RelativeL4 {:7 g stateListAnim... } @anim/button_s ‘ |
o button - Cuiion it E & elevation | N
g ; visibility [none 5
kL \ onciick [none
™ Design[Text [NS =
S TODO § & Android Monitor Terminal /& O: Messages ! Eventlog [E] Gradle Console
[Gradle build finished in 5s 841ms (30 minutes ago) n/a n/a Conted: <no context> * 8
Figure 5.13. Basic properties of the button widget
® Lightheadapp - [C:\Users\atomic\Desktop\Button\Lightheadapp] - [app] - ...\app\src\main\res\layout\activity_ma... — a X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢« X000 QR ¢ AEp- /PG acEE &L ?2Q
I3 Lightheadapp ~ "iapp = [l src ' I main [res | [layout @ activity_mainxml
& activity_mainaml x ‘ € MainActivity,java X | @
Palette (S - S Lo E § O~ [Nexus4~ ms25+ Properties PodIR - A | g
"
i Widgets =R O2%®E W B contentdescii..
|Ab] TextView —_—
oK Button = 0 100 — 20 ¥ textAppear... | pCompat.Widge
g — i R |7”"5'- :
=1 [ZI CheckBox typeface | none
v (®) RadioButton)
A CheckedTextView ' i e
g = Spinner IineSpacingExt...I none
= | | Component Tree textColor Zattr/textColorPri |
® Eesbieeniieadle)
v aftmty_mam(RelatweLi m textStyle &
O button - Fution o >
§‘ - textAlignment = 2
S,
View all properties g
| 12
%) || Design [Tet | 3
S TODO f & Android Monitor [# Terminal 1= 0: Messages % Event Log [E] Gradle Console
[E] Gradle build finished in 5s 841ms (34 minutes ago) n/a n/a Context: <no context> O

Figure 5.14. Switching to all properties of the button widget

96

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

In our app, the default ID of the button widget is set as button by
Android Studio. We can change it just by clicking the ID box and
replacing the button text.

The next two boxes refer to the layout width and layout height
properties of the button widget. Their settings determine the width and
the height of the button object in the GUI. They are set as wrap_content
by default. This means that the width and the height of the button will be
adjusted to wrap (cover) the text written inside the button (i.e. button’s
label). The other available choice for these parameters is the
match_parent as shown in Figure 5.15. If this is selected, the respective
property (width or height) will be equal to the width or height of its
parent container (which is the RelativeLayout covering the whole screen
in this example).

Properties | Xt~
ID button

layout width | ETRERTEN 'l

none

layout_height

match_parent

Button
wrap_content

style DUTOTISyTE

Figure 5.15. The alternatives for the layout_width and layout_height
parameters

Since we don’t want the button to have a width or height filling the
whole GUI, we need to leave these parameters having the value of
wrap_content.

In our app, the button is supposed to change the background colour of the
screen therefore it is good to change the label of the button accordingly.
The button’s label (the text on the button) is Button by default. Let’s
change it to “Change!” as shown in Figure 5.16.

97

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Properties | B
ID button \
layout_width : wrap_content
layout_height | wrap_content

Button
style
background ‘

_material }

backgroundTint} ‘

stateListAnim... :»:-ttamm_mstem:l ‘
elevation [\
visibility [none

onClick [none

TextView 7

text ichno- I B

text ‘ [

Figure 5.16. Changing the label of the button

5.3. Writing the Main Code of the App
Since we don’t need any other widget in the GUI, we can now continue
to programming the app. We will do the programming in the
MainActivity.java file. In order to open this file, navigate to the project
explorer in Android Studio and then double-click on the MainActivity
located under java = com.....lightheadapp as shown below:
/&' Android v [@ 5| £ 1
& app
1 manifests
[java

© & MainActivity

=1 com.example.atomic.lightheadapp (an)|

[£] com.example.atomic.lightheadapp (te:

£ res
(#> Gradle Scripts

Figure 5.17. Opening the MainActivity.java file in Android Studio

98

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

© activity_mainxml X | (€ MainActivity.java X

package com.example.atomic.lightheadapp:
+import ...
3 public class MainActivity extends AppCompatActivity {
L @Override
4 of protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

Figure 5.18. The default MainActivity.java file

The MainActivity.java file shown above is the default file generated by
Android Studio. Some code lines are hidden by default as shown by ... in
the import line. You can open these codes by clicking on the ... there as
shown below:

© activity_mainxml % ‘ € MainActivity.java %

package com.example.atomic.lightheadapp:;

=
import Iandroid. support.v7.app.AppCompatActivity;
import android.os.Bundle;

§ public class MainActivity extends AppCompatActivity {

g @Override
el protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

Figure 5.19. The default MainActivity.java file after opening the hidden
lines

99

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Let’s analyse the default MainActivity.java code line by line:

>

>

The first line is the package definition as in usual Java code. It
shows to which package this file belongs to.

The next two lines are import lines which import the required
libraries. In our file, the AppCompatActivity and Bundle
libraries are imported. They contain the base methods for user
interaction and passing data among different activities.

The next line declares the MainActivity class which extends the
AppCompatActivity class. This is like the class definition in
Java. As in Java, the class name in Android should match the name
of the .java file. In this case, the file is MainActivity.java
therefore the name of the class is MainActivity.

Then an Qoverride command is placed by default. It is used to tell
the compiler that the current class will override any existing
superclasses.

The sixth code line defines a method called onCreate(). All
activities are started by a sequence of method calls. onCreate ()
method is the first of these calls.

The next line, super.onCreate (savedInstanceState) ;, tells
that our code will be executed in addition to the existing code (if
any) of the parent class.

In the last line, setContentView() method sets the activity
content from a layout source. We have set up our app’s layout in the
file activity main.xml. Android accesses all resources via an
auxiliary class called “R”. The R class is a special class which
enables Android to utilize the resources in a simpler way compared
to accessing via file paths. The argument of the
setContentView() method is R.layout.activity main
which means “set the content of the activity to be the layout residing
in activity _main.xml”.

We hear the word activity a lot in Android programming. Activity is a
class that manages the user interface and the interaction of the app with
the user.

100

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

When an activity is launched, it can exist in various states as shown in
Figure 5.20.

™Y

¥4
[Activity launched /‘ I
N
|
Y onPause()
onCreate()
. A
] onStop()
onStart() —
oy
|
v
onDestroy()
onResume()
/—j | Activity is killed \
;‘/Activity is running \\ Nl A
T

Figure 5.20. Several phases of an activity

As you can see from the figure above, an activity may have several
phases. These phases depend on the activity itself as well as the Android
operating system. For example, if another activity needs a lot of memory,
the current activity may be paused (onPause ()) because Android gives
precedence to the other activity.

In the MainActivity.java file of our app, the onCreate () method is
called when the activity is first created. All static set up are done inside
this method.

If we run our app at this stage, we should see the layout we designed. We
can run it in the simulator by hitting the “Run” button and selecting an
emulator as we did in Chapter 3. The Nexus 4 emulator running our app
is shown in Figure 5.21.

101

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Android Emulator - Nexus_4_API|_24:5554

Lighthead app

CHANGE!

Figure 5.21. The app in the emulator

When we click on the Change! button, nothing happens at this stage
because we didn’t write the code to handle the button clicks yet. Let’s
code the necessary operations to change background colour by the button
clicks as we aim to do for this app.

In order to check the button continuously, the app needs to “listen” the
button. Therefore, we need to create a button listener method and call it
when the activity first starts. We can give any name to out button listener
method such as myButtonListenerMethod (). In this method, we
need to find the button widget using the mentioned R class and create a
button object to access the button. | know this may seem a bit confusing
for now but I’'m sure you’ll get used to it soon. These are shown in Code
5.1.

102

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

public void myButtonListenerMethod () {
Button button = (Button)

findViewById (R.id.button) ;

}
Code 5.1

We can now access the button using the button object that is created by
line Button button=(Button) findViewById(R.id.button).
findviewById () method finds the views (widgets, layouts, etc.) using
their 1IDs. Remember that we have given the ID “button” to our button
widget during the layout design. Hence, we accessed it using the R class
aSR.id.button.

There is another special method called setonClickListener () in
Android SDK. This method continuously listens to the clicks on a button.
Everything those will be performed when a click on the button should
reside inside this method. This method is applied on the button we want
to listen to as follows:

public void myButtonlListenerMethod () {
button = (Button) findViewById(R.id.button) ;
button.setOnClickListener (new
View.OnClickListener () {

@Override

public void onClick (View v) {}

}
Code 5.2

In the above code:

> A new onClickListener is created by new
View.OnClickListener () and then this object is made an
argument to the setOnClickListener() method , which is
applied on the button object.

» It then it overrides the superclass listeners with the @override
directive (there’s no superclass listeners in our example, this directive
is automatically generated by Android Studio).

» Finally, a method called oncilick () is called when the button is
clicked.

103

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

All code lines that will be run when the button is clicked will go inside
the onClick (View v) method.

Note: You’ll notice that Android Studio auto-completes your code in an
intelligent way. In my opinion, Android Studio is excellent in this
feature.

Our aim is to change the background colour from red to blue and vice
versa as the button is clicked. In the activity_main.xml file, we saw that
our GUI has a RelativeLayout element as the main layout that fills the
screen. Because of this, we can access the background using the
following code:

Relativelayout bgElement = (RelativeLayout)
findViewById(R.id.activity main) ;
Code 5.3

In this code, we have generated a RelativeLayout 0bject called
bgElement from which we can access all of the properties of the
background of the app.

We now need to check the colour of the bgElement. This is because we
will change its colour according to its current colour. If it is red now, the
button will change it to blue. If it is blue now, the button click will turn it
to red.

int color = ((ColorDrawable)
bgElement.getBackground()) .getColor () ;
Code 5.4

In this code, the colour of the background of the layout of the app is
taken by bgElement.getBackground()) .getColor(); and then
converted to the type ColorDrawable, Which expresses the colour as an
integer. Then, this integer value is assigned to the color variable. In short,
the colour of the background will be expressed in the variable named
colour as an integer.

We will now utilize a decision making statement to change the colour
such as:

104

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

If the colour is red, change to blue; else (= if the colour is blue) change to
red.

We can do this by the following code:

if (color == Color.RED) {

bgElement. setBackgroundColor (Color.BLUE) ;
}
else {

bgElement. setBackgroundColor (Color.RED) ;

}
Code 5.5

There’s a special class called Color in Android SDK for doing colour
related operations. The expressions Color.RED and Color.BLUE
represent the integer values corresponding to the red and blue colours,
respectively. Therefore, the color variable, which contains the integers
corresponding to the background colour, will be compared to the integer
value of red by the expression color == Color.RED. If they are equal,
this means that the background is currently red and will be changed to
blue when the button is clicked. Else, the background is currently blue
and will be changed to red when the user clicks the button.

Combining all these code lines, we reach the button listener method
shown in Code 5.6.

public void myButtonListenerMethod() ({
button = (Button) findViewById(R.id.button) ;
button.setOnClickListener (new
View.OnClickListener () {

@Override

public void onClick (View v) {

Relativelayout bgElement = (Relativelayout)
findViewById(R.id.activity main);

int color = ((ColorDrawable)
bgElement.getBackground()) .getColor() ;
if (color == Color.RED) {

bgElement. setBackgroundColor (Color.BLUE) ;
}

else {
bgElement. setBackgroundColor (Color.RED) ;
}

}

105

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

H
}
Code 5.6 (cont’d from the previous page)

i-dPlease note that we could use the if—-else statement without curly
brackets since there are only one line codes inside their blocks. However,
I have written them with brackets for the sake of completeness.

We now have to call this button listener method when the activity is first
created. Therefore, we have to call it inside the onCreate () method as
follows:

protected void onCreate (Bundle savedInstanceState)
{
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod() ;
}
Code 5.7

However, we are not done yet because the background is transparent by
default when an activity is first created. Therefore, we have to set it to
red or blue on creation. Let’s set it as red by improving Code 5.7 as
follows:

protected void onCreate (Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;
RelativeLayout bgElement = (Relativelayout)
findViewById(R.id.activity main);
bgElement. setBackgroundColor (Color.RED) ;
myButtonListenerMethod() ;

}
Code 5.8

In this code, the background is accessed and then set as red at the start of
the app. Please note that we need to define a separate bgElement o0bject
inside the onCreate () method; we can’t use the bgElement defined
inside the button listener method. This is because all variables and
objects declared in a method are valid only inside that method (also
called as scope of variables).

106

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

Now, let’s combine these code lines to form our complete
MainActivity.java file as follows:

public class MainActivity extends
AppCompatActivity {

Button button;
@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
Relativelayout bgElement = (RelativeLayout)
findViewById(R.id.activity main);
bgElement. setBackgroundColor (Color. WHITE) ;
myButtonListenerMethod() ;

}

public void myButtonListenerMethod () ({
button = (Button)findViewById(R.id.button) ;
button.setOnClickListener (new
View.OnClickListener () {
@QOverride
public void onClick (View v) {
RelativeLayout bgElement =
(RelativeLayout) findViewById(R.id.activity main);
int color = ((ColorDrawable)
bgElement.getBackground()) .getColor () ;
if (color == Color.RED) {
bgElement. setBackgroundColor (Color.BLUE) ;
}
else {
bgElement. setBackgroundColor (Color. RED) ;
}
}
}) s
}

}
Code 5.9

5.4. Building and Running the App

We have completed both the layout and code development of our first
Android app. Let’s run it by clicking the Run button in Android Studio. |
selected a Nexus 4 emulator for running our app on it. The emulator
screen when the app is launched is shown in Figure 5.22.

107

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Android Emulator - Nexus_4_API|_24:5554

Figure 5.22. The app when it is launched (colour and full resolution
figure at the book’s companion website: www.android-java.website)

As we click on the Change! Button, the background colour changes from
red to blue and vice versa as shown in Figure 5.23. We can run this app
on a real device as explained in Chapter 3 in detail. I tried this app on an
Asus Zenfone 6 and it runs as expected on a real device too.

I hope you enjoyed developing our first programmatic Android app
development. If there are question marks about the codes, don’t worry,
I’m sure you’ll get used to Android coding in the upcoming chapters.

i4 Small exercise: Could you modify the code to change the label of
the button according to the background colour dynamically? If the
background colour will be changed to blue, the button text will read
Convert to blue! otherwise Convert to red!

108

http://www.android-java.website/

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

Android Emulator - Nexus_4_API_24:5554 ‘ Android Emulator - Nexus_4_API_24:5554 ‘ Android Emulator - Nexus_4_API_24:5554

Figure 5.23. Our app’s screen after subsequent button clicks (colour and
full resolution figure at the book’s companion website:
www.android-java.website)

109

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

110

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

Chapter 6

ANDRIOD APP#2: BODY MASS INDEX (BMI)
CALCULATOR

6.1. General Information

Body mass index (BMI) is a figure of merit that is used for assessing the
thickness-thinness of a person. BMI is defined as the ratio of the mass
and height-squared with the formula below:

mass(kg)

M= height(m))

After the calculation of the BMI, the following table is the used for
assessing the weight category:

Weight category from BMI to BMI
Very severely
underweight 0 15
Severely underweight 15 16
Underweight 16 18.5
Normal (healthy weight) 18.5 25
Overweight 25 30
Obese Class |
(Moderately obese) 30 3
Obese Class |1 (Severely 35 40
obese)
Obese Class Il (Very 40 "
severely obese)

Table 6.1. BMI categories
(source: https://en.wikipedia.org/wiki/Body mass_index)

111

https://en.wikipedia.org/wiki/Body_mass_index

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

In this chapter, we’ll develop a BMI calculator app and learn to read user
inputs, make calculations inside our code and display results to the user.

6.2. Adding and Positioning TextViews

In order to calculate the BMI in our app, we obviously need the weight
and height inputs. Our Java code will calculate the BMI using the given
BMI formula and then it will decide the category according to Table 6.1.
First of all, let’s create the user interface of our app. In Android Studio,
create a new project called “BMI Calculator” and save it anywhere you
want on your computer (I’ll not repeat myself about these things, we
explained in detail in previous chapters). Please select the “Phone and
Tablet” platforms with minimum SDK of API 15 as we did for the
previous app. The default layout can be chosen as “Empty activity” with
the main class being “MainActivity.java” and the layout file as
“activity_main.xml”. Please don’t delete the default TextView of “Hello
World” so that we can modify it to show our app title. Click on it and
then it will be selected. Now, change its text as BMI Calculator, set its
font size as 24sp and make the text bold as indicated by the numbers 1, 2
and 3 in Figure 6.1.

Let’s position this title text so that it is positioned in the middle
horizontally and has a distance of something like 50~60 dp from the top.
(dp stands for Density Independent Pixel which is automatically adjusted
when the display resolution is changed). For this, click on the View all
properties as shown by 4 in Figure 6.1 and adjust the position of this
TextView as shown in Figure 6.2. Please note that the horizontal middle
guiding line is displayed automatically so that we can slide this widget
on this line which will help us keep it in the middle horizontally. As you
move the widget, observe the parameter named layout_marginT which
indicates its distance from the top. | set it as 60 dp.

We’ll take height and weight inputs from the user and show the BMI
result as a number and its category. We’ll need to place four TextViews
which will show Enter your weight (kg): , Enter your height (m): ,
Your BMI: and BMI category. Please find the widget TextView from
the Palette and drag and drop four TextViews as shown in Figure 6.3.

112

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

® BMICalculator - [C:A\U alculator] - [app] - i - o X
Eile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHO ¢» %00 QR ¢ AGwer /P G GE K S :L ?2Q
I3 BMiCalculator) (3 app) [1 src) [main) [res) [layout) & activity_mainaaml
- | ® activity_mainami x ‘ € MainActivityjava X ®
— 2 e - =
§; Tl mi %1 BEDE O OnNexussr m625- (PappTheme Properties oAk A | E
= 2
B o B@ omoma | v —
]) TextView i | -
BB 3 200 layout_wi wrap_content
é — ToggleBu layout_height | wrap_content
& [CheckBox = TextView
i s pil .
BMI Calculator
v Checked] e)
§ Spinner L
= Progress8 %T'c §o conumomnpn..,{ ‘
® == Progress§ L T ¥ texthppearance | Material Sl
== Prograiif fontFamily :
> == Progressg
01 SeekBar typeface [none
101 SeekBar ({ totsize 9 | (2
cOmponem{,,, lineSpacingExtra | nonc
v [iactivity_r textColor
rg (5] textV totse. 3
£
& LLJ textAli t
2 lignment
| Z ?
S
, - - B
3 4 [Vl =) E
o B - g
#| || oesign | Tet | S
[E Terminal ' & Android Monitor [0: Messages 2 TODO ™ Eventlog [E] Gradie Console
[2] Gradie build finished in 195 184ms (8 minutes ago) 115 n/a n/s Contedt @

Figure 6.1. Setting the basic properties of the TextView (You can
download full resolution colour images from the book’s website)

® BMiCalculator - [C:

alculator] - [app] - i - o b3

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

DHOD ¢» XD QR | &> A x> B G GaE R 8 A ?Q
[3 BMICalculator * C3app + [src) [main [res ' 1 layout + © activity_mainaml
5 activity_mainxmi x | (€ MainActivityjava X |
e %1 BE O Onewsar m2s- QPappTheme Properties &Rl \§
% | Dwides @@ OomeBEeHE ¢ &
Ab) TextView. layout_width wirap_content
o/ Button : 2 iad layout_height wrap_content
é ~ ToggleBu ¥ Layout Margin [2,2,60dp,2,2)
& (] CheckBox =
i i
BMI Calculator
4 Checked] layout_marginB
g‘ = Spinner layout_marginE
| = Progress§ = =
| 2 : & layout_marginL
® e progreil i cajpuiatof] ey,
layout marginR
= Progress§ ;
layout_margin$
» == Progress§ o
n
101 SeekBar r' i
»
1or SeekBar (Ll
A 5 elevation
Component Tree layout_alignParentT
v [activity_r layout_centerHorizc 2
'E [35)textv tet BMI Calculator
£ . textSize 2usp
* > textStyle [normal, bold]
accessibiltyLiveReg i
7 accessibility Travers: ;
/4 == 2
" accessibilityTravers: 5
] § allowlndo = z
&k - -2
®| 1] esign | Text 2
@ Terminal & Android Monitor [0: Messages %2 T0DO [= Gradle Console

9 vent Log

[] Gradle build finished in 195 184ms (15 minutes ago)

11

15

Figure 6.2. Positioning the title label

113

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

z activity_mainxml X | (€ MainActivity.java X |
G| - I- E Eﬂ E @‘v :Nexus4v 25~ OAppTheme @Languagev Dv

Palette

[Ab) TextView

VK Button

= ToggleButton
@ CheckBox

0 RadioButton
Av CheckedTextView
= Spinner BMI Calculator

== ProgressBar (Large)

== ProgressBar :
== ProgressBar (Small))
== ProgressBar (Horizontal) !
101 SeekBar
101 SeekBar (Discrete)

7 QuickContactBadge

RatingBar

o Switch

BMI Ca'culator

TextView

|

1 Text Fields (EditText)
Plain Text

.| Password

?i’ext)/iew

|| Password (Numeric)
L_| E-mail
Component Tree
y [}{] activity_main (Relativelayout)

(At textView - "BV C t
[Ab) textView3 - 'Te
[8b) textViewd - "TextVie 8 TeXtyieW
3] textViews !
[Ab) textView6

Figure 6.3. Placing four TextViews

Once the first TextView is placed, the next one is positioned relative to
the previous one. For out BMI Calculator app, the exact positions are not
strict and | am not giving the exact positions here in order to confuse
you. You can download the project files from the book’s companion
website if you’d like to see which positions | exactly used but it is not
mandatory of course. However, we need to leave a space between the
second and the third TextViews for placing the button that will initiate
the calculation.

114

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

I have changed the text font sizes to 18 sp and made the text type bold.
The layout seems like in Figure 6.4 after changing the texts of these
TextViews per our aim.

V1 6:00
BMI Calculator

BMI Calculator

Enter your weight (kg):

Enter your height (m):

Your BMI:

BMI category appears here.

Figure 6.4. The app’s GUI layout after setting up the TextViews

6.3. Adding the EditText Widgets
We now need to place two editable text boxes to let the user input his/her
weight and height, another textbox to display the BMI as a number and a
button to initiate the calculation of the BMI.

The positioning of the Text Fields (text boxes) are shown in Figure 6.5.
I’ve placed Text Fields which can be used to input decimal numbers
(numbers with fractional part) rather than general input types because the
user is supposed to enter only numeric values in this app. It is worth
noting that the calculation result will be displayed next to the Your
BMI: label and a Text Field is placed there to display the BMI result.
We could use a static text (TextView) for this aim however | wanted to

115

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

show you how we can set the contents of the TextField
programmatically.

Palette @ K~ I+ E Eﬂ i O~ [nNexusa~ 225+ (PappTheme &
e T
@ Switch (
Space] 100 200
[Text Fields (EditText) ’
[T] Plain Text
f"'
o e BMI Calculator
| | Password (Numeric)
1| E-mail
[T Phone 2
| Postal Address
[T Multiline Text
‘} Time ! @nter your Weight (kg . i1
\L | Date = = o Eg 1
il i i P]

m

=g =]

2! MultiAutoCompleteText!
1 Layouts

=]
=

30

o
1 & ConstraintLayout @Ml category appears here@
GridLayout
Framelayout

/ activity_main (Relativel:
—l Design‘ Text l

Figure 6.5. Placing the TextFields

Please note that Text Fields do not have borders by default therefore after
they are placed, we can only see them by selecting them.

Let’s set their IDs so that we can access them programmatically and also
set their default texts. For this, select the respective TextField and then
set the ID and text properties as shown in Figure 6.6 for the weight input

116

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

Text Field. | also positioned its default text in the middle as we did
before.

B E F O Onewsa- m2s- (Papptheme Eianguager [J+ perti i
Ou:@E W D 2 || [weightinput |
] 100 200 Exnd 4 | layout_width | wrap_content

layout_height ‘ wrap_content

V600 -
EditText

hint
style [editTentstyle

BMI Calculator
singleLine E]

B ! =

Enter your weight (|).'ﬂ 80 a1 SIS 8]
- & £ TextView
g Enter your height (m)* text 3 20
text
Your BMI: —_—
& textAppearance ‘ Material. Medium.Inverse
= —_—
fontFamil sans-serif
BMI category appears here. oty ‘b
typeface ‘none
textSize ‘ZOsp

- IR Iobpedgiun [on

Figure 6.6. Settings of the weight input TextField

V1 6:00
BMI Calculator

BMI Calculator

Enter your weight (kg): 80
Enter your height (m): 1.80
YourBMI: ...

BMI category appears here.

Figure 6.7. The GUI of the app after setting up all TextFields

117

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Please set the IDs and default texts of the height input and BMI result

Text Fields as heightlnput and 1.80; BMIResult and ,
respectively. Bu setting the default text of the BMI result Text Field as
....... , We make the user to see in that box before calculating

his/her BMI. After these settings, the GUI seems as in Figure 6.7.

6.4. Adding and Positioning the Button

There are two steps remaining to complete our GUI design. The first one
is the button that will initiate the calculation. Please drag and drop a
button widget from the Palette between the height input TextView and
the YourBMI TextView and then position it horizontally in the middle as
shown below:

Palette | %1 B E IE O O Nexusar m25- (PappTheme @
1 Widgets ¢

= loggleB
CheckBox
(@' RadioButton
v, CheckedTextView

= Spinner

BMI Calculator

== ProgressBar (Large)

BMI Calculator

== ProgressBar
== ProgressBar (Small)
== ProgressBar (Horizontal)
101 SeekBar of 2
101 SeekBar (Discrete) 4!@?9
= QuickContactBadge BUTTON [l
% RatingBar

o Switch (S Your f;rvu, IS 2>

a0

| Tf’d Fields (EditText) BMI categorylappears here.
|| Plain Text |

wv
o
[
n
n
30

= |
I | Password |
|
|

Figure 6.8. Placing the button on the screen

i Password (Numeric)

40

Component Tree

w A <snitne cnnin DAlatial

118

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

Now, please set the text of the button as Calculate my BMI! Note that
the default ID of the button is button which is OK.

Our GUI is almost complete however there’s one step remaining. The ID
of the BMI category TextView (the one with the text Your BMI
category appears here.). Please set its ID as BMICategory and then we
are finished. After these steps, the GUI of our app is ready as shown
below:

BMICalculator

BMI Calculator

Enter your weight (kg): 80
Enter your height (m): 1.80
CALCULATE MY BMI!
YourBMI: ...

BMI category appears here.

Figure 6.9. The GUI of our BMI Calculator app

6.5. Developing the Main Code of the App
We are now ready to continue with programming. We will implement the
following steps in MainActivity.java for the BMI calculation:

119

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

> Firstly, the values entered in the weight input and height input text
fields will be taken. These will be String type variables.

» Convert these Strings to double type variables so that the BMI
calculation can be performed using the BMI equation given at the
beginning of the chapter.

» Perform the body mass index calculation.

» Display the BMI value in the text field next to the “Your BMI:” label
after converting to String type.

» Use if-else statements to determine the BMI category from the BMI
value using Table 6.1.

» Display the BMI category in the text view which shows “BMI
category appears here.” by default.

Please open the MainActivity.java file from the file explorer of Android
Studio. The default contents of this file are as follows:

package com.helloworld.quantum.bmicalculator;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity
{

@Override

protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

}

}

Code 6.1

The calculation will be done when the user taps the button therefore we
need to write a listener method for the button and then call this method
inside the oncCreate() function (as we explained in the previous
chapter). Code 6.2 shows the general template of the button listener
method.

120

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

public void myButtonListenerMethod () {
Button button = (Button) findViewById(R.id.button) ;

button.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
// code those will be run when the button’s clicked
}
b
}

Code 6.2

We have analysed the structure of this listener method in Chapter 5. In
short, the button is accessed by the button object created in the second
line and all the operations those will be done when the button is clicked
will go inside the method onClick (View v).

First of all we need to take the height and weight inputs from their
respective EditTexts (TextFields). This is simply done with the following
code snippet:

final EditText heightText = (EditText)
findViewById (R.id. heightInput) ;

String heightStr = heightText.getText () .toString() ;
double height = Double.parseDouble (heightStr) ;

Code 6.3
The explanation of this code is as follows:

» In the first line, we access the height input textbox using its ID
(R.id.heightInput) and then create an EditText object called
heightText.

» In the second line, the string inside this EditText is extracted and
assigned to a new String object called heightStr.

» And in the last line, the String value of the height is converted to
double type and assigned to a newly created variable height.

» In the end, we have the height value stored in the height variable
which is of double type.

121

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

We need to implement these steps because there’s no other way to
directly take the EditText value as a String Or double.

The following code does a similar job and in the end the weight value is
stored in the weight variable.

final EditText weightText = (EditText)
findViewById (R.id.weightInput) ;

String weightStr = weightText.getText () .toString();
double weight = Double.parseDouble (heightStr) ;

Code 6.4

We now have weight and height data in double type variables so we can
do the BMI calculation using the equation given in the beginning of the
chapter as follows:

|double BMI = (weight)/ (height*height) ;

Code 6.5

In this code, the * operator does the multiplication while the / operator
divides the weight to the height squared.

We will display this BMI value in the EditText box next to the You BMI
label in the GUI. We did set its ID as BMIResult when we laid out the
user interface before. Therefore, the following code does this job:

final EditText BMIResult = (EditText)
findViewById(R.id.BMIResult) ;

BMIResult.setText (Double. toString(BMI)) ;

Code 6.6

In this code, the widget with the ID BMIResult is found in the first line
and then the double type BMI variable is converted to String by the code
Double. toString (BMI) for displaying inside the EditText. Note that
the texts written inside the EditText widgets can only be read and written
as Strings.

We now have the BMI stored as a double type variable. We now have to
use if—else statements to check this numeric value according to Table 6.1

122

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

and determine the BMI category. For this, let’s define a String that will
hold the BMI category:

|String BMI Cat;

Code 6.7

We’ll set this String according to the BMI value using if—else statements
as follows:

if (BMI < 15)
BMI Cat = "Very severely underweight";
else if (BMI < 16)

BMI Cat = "Severely underweight";
else if (BMI < 18.5)

BMI Cat = "Underweight";
else if (BMI < 25)

BMI Cat = "Normal";
else if (BMI < 30)

BMI Cat = "Overweight";
else if (BMI < 35)

BMI Cat = "Obese Class 1 - Moderately Obese";
else if (BMI < 40)

BMI Cat = "Obese Class 2 - Severely Obese";
else

BMI Cat = "Obese Class 3 - Very Severely Obese";
Code 6.8

The only thing remaining is setting the TextView to the BMI_cat String
so that the BMI category is displayed in the user interface:

final TextView BMICategory = (TextView)
findViewById (R.id.BMICategory) ;
BMICategory.setText (BMI Cat) ;

Code 6.9

Sticking all these code lines together, we reach the complete
MainActivity.java given in Code 6.10. (You can download these codes
from the book’s website: www.android-java.website)

Please note that the library import directives at the beginning of this file
are automatically placed by Android Studio according to the methods
and classes we used in our code.

123

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

package com.helloworld.quantum.bmicalculator;

import android.graphics.Color;

import android.graphics.drawable.ColorDrawable;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.RelativeLayout;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle savedInstanceState)
{
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod() ;

}

public void myButtonlListenerMethod () {
Button button = (Button) findViewById(R.id.button) ;
button.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
final EditText heightText = (EditText)
findViewById(R.id.heightInput) ;
String heightStr = heightText.getText () .toString();
double height = Double.parseDouble (heightStr) ;
final EditText weightText = (EditText)
findViewById(R.id.weightInput) ;
String weightStr = weightText.getText() .toString() ;
double weight = Double.parseDouble(weightStr) ;
double BMI = (weight)/(height*height) ;
final EditText BMIResult = (EditText)
findViewById (R.id.BMIResult) ;
BMIResult.setText (Double. toString(BMI)) ;
String BMI_Cat;
if (BMI < 15)

BMI Cat = "Very severely underweight";
else if (BMI < 16)

BMI Cat = "Severely underweight";
else if (BMI < 18.5)

124

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

BMI_ Cat = "Underweight";
else if (BMI < 25)

BMI Cat = "Normal";
else if (BMI < 30)

BMI Cat = "Overweight";
else if (BMI < 35)
BMI Cat = "Obese Class 1 - Moderately Obese";

else if (BMI < 40)

BMI Cat = "Obese Class 2 - Severely Obese";
else

BMI Cat = "Obese Class 3 - Very Severely Obese";

final TextView BMICategory = (TextView)
findViewById(R.id.BMICategory) ;
BMICategory.setText (BMI_Cat) ;
}
H:
}

}

Code 6.10 (cont’d from the previous page)

6.6. Building and Running the App

Let’s now try our app in the Nexus 4 emulator. Just press the “Run”
button in Android Studio and select the Nexus 4 emulator. You should
see the app screen shown in Figure 6.10.

Enter weight and height values (in kg and metres) and then tap the
CALCULATE MY BMI! button. If you followed all steps correctly,
you should see the BMI value and the BMI category on your app screen
as in Figure 6.11.

125

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Android Emulator - Nexus_4_AP|_24:5554 \

N
BMI Calculator

BMI Calculator

Enter your weight (kg): 80

Enter your height (m): 1.80

CALCULATE MY BMI!

Your BMI:

BMI category appears here.

Figure 6.10. The app screen

Android Emulator - Nexus_4_AP|_24:5554

BMI Calculator

BMI Calculator

Enter your weight (kg): 85

Enter your height (m): 1.80

CALCULATE MY BMI!

Your BMI: 26.234567901234566

Overweight

Figure 6.11. A sample BMI calculation

126

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

6.7. Final Notes

i As you can see from Figure 6.11, the BMI value is displayed with a
lot of unnecessary floating point digits. Probably only a single
decimal digit is enough. We can use the following code to trim the
decimal digits of the BMI variable and assign the trimmed value to a
new double type variable BMI_trimmed:

DecimalFormat df = new DecimalFormat ("#.#");
double BMI_ trimmed =
Double.parseDouble (df. format (BMI)) ;

Code 6.11

The DecimalFormat class is used for these types of operations.
Android Studio automatically adds the required library by the code line:

|import android.icu. text.DecimalFormat;

Code 6.12

The modified complete MainActivity.java is also given as follows:

package com.helloworld.quantum.bmicalculator;

import android.graphics.Color;

import android.graphics.drawable.ColorDrawable;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.RelativeLayout;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod() ;
}

public void myButtonListenerMethod () ({
Button button = (Button)findViewById(R.id.button) ;

127

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

button.setOnClickListener (new
View.OnClickListener () {
@Override

public void onClick (View v) {

final EditText heightText = (EditText)
findViewById (R.id. heightInput) ;

String heightStr =
heightText.getText () .toString() ;

double height = Double.parseDouble (heightStr) ;

final EditText weightText = (EditText)
findViewById (R.id.weightInput) ;
String weightStr =
weightText.getText () . toString() ;
double weight = Double.parseDouble (weightStr) ;

double BMI = (weight)/(height*height) ;
DecimalFormat df = new DecimalFormat ("#.#");
double BMI trimmed =
Double.parseDouble (df. format (BMI)) ;

final EditText BMIResult = (EditText)
findViewById(R.id.BMIResult) ;
BMIResult.setText (Double. toString(BMI_trimmed)) ;

String BMI_Cat;

if (BMI < 15)

BMI Cat = "Very severely underweight";
else if (BMI < 16)
BMI Cat = "Severely underweight";
else if (BMI < 18.5)
BMI_ Cat = "Underweight";
else if (BMI < 25)
BMI Cat = "Normal";
else if (BMI < 30)
BMI Cat = "Overweight";
else if (BMI < 35)
BMI Cat = "Obese Class 1 - Moderately
Obese" ;
else if (BMI < 40)
BMI Cat = "Obese Class 2 - Severely Obese";
else
BMI Cat = "Obese Class 3 - Very Severely
Obese" ;
final TextView BMICategory = (TextView)

findViewById (R.id.BMICategory) ;

128

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

BMICategory.setText (BMI_Cat) ;
}
b
}
}

Code 6.13 (cont’d from the previous page)

When the modified code is used, the calculation result is displayed in the
emulator as follows:

Android Emulator - Nexus_4_API_24:5554

N

BMI Calculator

BMI Calculator

Enter your weight (kg): 85

Enter your height (m): 1.80

CALCULATE MY BMI!

Your BMI: 26.2

Overweight

Figure 6.12. The sample BMI calculation with trimmed BMI digits

Note 2. | have verified that our BMI Calculator app works as expected
on a real device (Asus Zenfone 6).

Note 3. Don’t worry if the app categorizes you obese, it does me too (the
values shown in Figure 6.12 are not mine®). Please consult your doctor

129

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

and dietician for the ways of decreasing your BMI like regularly
exercising and eating less processed food.

We’ll develop a dice rolling app in the next chapter where you will learn
adding dynamic images to your app and utilizing randomness functions
in Android. See you after a strong coffee!

130

a T (N ’
p

ANDRIOD APP #3: SIMPLE DICE ROLLER

7.1. Creating the Project and Adding an Imageview
Widget

We’ll develop a simple dice rolling app in this chapter. We’ll learn how
to use images in the GUI and also code for basic random number
generation in Java for rolling a virtual dice. When we hit a Roll button,
the app will choose a number between 1 and 6 randomly, show the result
as a number in a TextView and also display a dice image that shows the
outcome.

Please create a new project and save it on your computer. Select an
empty activity as usual. | named my project as Dice Roller but you can
of course give any name you’d like.

First of all, let’s design the user interface. While the activity_main.xml
file is opened in Android Studio, please change the default Textview’s
text from Hello World to Dice Roller and position it on the top of the
GUI aligned horizontally in the middle as shown in Figure 7.1.

We now need to place an ImageView component which will be used to
display the dice face images. However, we first need to import the image
files to the project. When the app first starts, it is good to show a generic
dice image and then change the image to the respective dice face image
when the user rolls the dice. For this, we need to insert a general dice
image and 6 dice face images to Android Studio. These images are
shown in Figure 7.2 which can be downloaded from the book’s
companion website www.android-java.website.

131

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

V1 6:00
Dice Roller

Dice Roller

Figure 7.1. TextView showing the title of the app

’

« M
’
dicegeneral png
dicel.png dice2.png dice3.png
dice4.png dice5.png dice6.png

Figure 7.2. Dice face images and their filenames used in the app

132

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

Please select and right-click > copy all of

these images in the file

explorer of your computer (just as you do when you select files for copy-
paste) and then right-click - paste in the drawable folder in Android

Studio as shown below:

& Android - @ L | 2 I [
v Czapp [
v [manifests
'—_@ AndroidManifestxml
v [java
v [E1 com.helloworld.quantum.diceroller
© & MainActivity
» 3 com.helloworld.quantum.diceroller (androidTest)
[E1 com.helloworld.quantum.diceroller (test)
v Pig
=] Tayou
i3 activity_mai Link C++ Project with Gradle
» I mipmap 36 Cut Ctrl+X
> [Edvalues [Copy Ctrl+C
» (2 Gradle Scripts Copy Path Ctrl+Shift+C
Copy as Plain Text
Coi Reference Ctrl+Alt+Shift+C
Find Usages Alt=F7
Find in Path... Ctrl+Shift+F
DaSIasRianak Fu.cLise. D

Figure 7.3. Adding image files to the Android Studio project

When we click the arrow symbol just at the left of drawable folder, we
can see the newly added image files as in Figure 7.4.

i1 Android -

v Caapp
v [manifests
§ AndroidManifest.xml
v Edjave
v [com.helloworld.quantum.diceroller
(© & MainActivity

>[I com.helloworld.quantum.diceroller (test)
v Chres
¢ [E1 drawable
[d] dicel.png
E\ dice2.png
[l dice3.png
ri} diced.png
[dices.png
@ diceb.png
[il dicegeneral.png
v [layout
© activity_main.xml

» 1 mipmap
> [values
> (& Gradle Scripts

Figure 7.4. The image files importe

> [£1 com.helloworld.quantum.diceroller (androidTest)

d in the project

133

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Let’s place the ImageView object to the GUI now. Please find the
ImageView object in the Palette and drag and drop to the app’s layout as
follows:

23 activity_mainxml X l € MainActivity.java % ‘

Gradle project sync completed with some errors. Open the 'Messages' view to see the errors

Palette % B E JE O ONexus4- m625- (PAppTheme
©| WebView
Q, SearchView

¢ [1Images & Media

0 100 200

[ImageView i PR 600
AL o a—— Dice Roller

1 Date & Time
8 TimePicker

20 DatePicker

100

_’ CalendarView

@ Chronometer

@ TextClock i i i
Component Treg

v activity_main (Relativelé

[Bb) textView - "Dice Rol

an

20
1
1
1
1
1
1
1
1
1
1
1
1

—‘ Design ’ Text ’
Figure 7.5. Adding an ImageView object

When we drop the ImageView on the GUI, Android Studio wants us to
set its image as in Figure 7.6. The selected image will be the image
shown inside the ImageView when the app first starts (i.e. default
image). Therefore, please select the dicegeneral.png as in Figure 7.6.

134

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

¥ Project

o o) .
° .‘dtce4

s
I!l ic_launcher

Figure 7.6. Selecting the default image for the ImageView

After this selection, press OK and then the layout of our app will be

shown as follows:
b 4 K30
Dice Roller

|

Dice Roller

|
|
I
|
|
I
|
|
I
I

Figure 7.7. The layout after placing the ImageView

135

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

7.2. Adding the Other Widgets and Setting up the IDs
Please place a TextView and a Button just below the ImageView object
which will display the result of the rolling and initiate the rolling,
respectively. | have set the TextView to show Please tap the button....
Similarly, the button’s text is changed to ROLL! as shown below:

W 600
Dice Roller

Dice Roller

Please tap the button...

ROLL:

Figure 7.8. The GUI after placing all of the required objects

We’ll need the IDs of the dice image, the result TextView and the button
because we’ll access them in the code. I’ve assigned their IDs as
dicelmage, rollResult and rollButton, respectively.

7.3. Developing the Main Code of the App

Let’s start coding a button listener method which will be called when the
user taps the Roll! button. The template of the button listener is as shown
in Code 7.1 (as we developed in previous chapters). In this method, a
Button object called button is declared and the button on the GUI is
accessed via this object. Then, the clicks on this button is listened by the
setOnClickListener () method. The procedures those will be run

136

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

when the button’s clicked will go inside the onclick () method as
usual.

public void myButtonListenerMethod () ({
Button button = (Button) findViewById(R.id.rollButton) ;
button.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
})
}

Code 7.1

We need to utilize a method to generate random numbers between 1 and
6. There are various randomness methods in Java. The following
Random object does the job for our simple dice roller:

Random rand = new Random() ;
int rollResult = rand.nextInt(6) + 1;

Code 7.2

In this code, a Random object called rand is created in the first line. In
the second line, the method nextInt () is applied on this object by
rand.nextInt (6). The nextInt(int n) method generates random
numbers between 0 and n-1 therefore rand.nextInt(6) generates
random numbers between 0 and 5. Therefore the expression
rand.nextInt(6) + 1 gives random numbers between 1 and 6 for
simulating a dice. This random number is assigned to the integer variable
rollResult.

We’ll display the rol1Result integer in the diceResult TextView on
the user interface. In the following code, a TextView object is created to
access the diceResult TextView and then its text is set as
Integer. toString(rollResult) which is the String expression of
rollResult!:

TextView diceResult = (TextView)
findViewById(R.id.diceResult) ;
diceResult.setText (Integer. toString(rollResult)) ;

Code 7.3

137

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

The last thing we need to add is the code to change the ImageView’s
image according to the rolling result. Firstly, we will access the
ImageView object using the following code line:

ImageView img = (ImageView)
findViewById(R.id.diceImage) ;

Code 7.4

Since the rolling result is an integer number, we can easily utilize the
switch—case statements to change the image as follows:

switch (rollResult) {

case 1:
img.setImageResource (R.drawable.dicel) ;
break;

case 2:
img.setImageResource (R.drawable.dice?2) ;
break;

case 3:
img.setImageResource (R.drawable.dice3) ;
break;

case 4:
img.setImageResource (R.drawable.diced) ;
break;

case 5:
img.setImageResource (R.drawable.dice)) ;
break;

case 6:
img.setImageResource (R.drawable.dice6) ;
break;

}

Code 7.5

Please note that we change the image of the Imageview object img with
the method setImageResource () Which takes the image resource with
the template R. drawable. “imagename”.

Combining all these code lines and calling the button listener method
inside the oncreate () method of the activity, we reach the complete
MainActivity.java given below:

package com.helloworld.quantum.myapplication;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

138

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.TextView;
import java.util.Random;

public class MainActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle savedInstanceState) {

super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod() ;

}

public void myButtonlListenerMethod () {
Button button = (Button)
findViewById(R.id.rollButton) ;

button.setOnClickListener (new View.OnClickListener ()
{
@Override
public void onClick (View v) {
Random rand = new Random() ;
int rollResult = rand.nextInt(6) + 1;

TextView diceResult = (TextView)
findViewById(R.id.diceResult) ;

diceResult.setText (Integer. toString(rollResult)) ;

ImageView img = (ImageView)
findViewById(R.id.diceImage) ;

switch (rollResult) {

case 1:
img.setImageResource (R.drawable.dicel) ;
break;

case 2:
img.setImageResource (R.drawable.dice?2) ;
break;

case 3:
img.setImageResource (R.drawable.dice3) ;
break;

139

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

case 4:
img.setImageResource (R.drawable.diced) ;
break;
case 5:
img.setImageResource (R.drawable.dice5) ;
break;
case 6:
img.setImageResource (R.drawable.dice6) ;
break;
}
}
H
}
}

Code 7.6 (cont’d from the previous page)

7.4. Building and Running the App

Let’s run our dice roller app by hitting the “Run” button in Android
Studio and selecting an emulator such as Nexus 4 as we did before. The
app shown in Figure 7.9 appears. Each time you click the ROLL! button,
the app should show a different number with the corresponding die face
image as in Figure 7.10. The app also works properly on a real device as
it should.

It is worth noting that random numbers are not only used for fun apps but
also in everyday cryptographic processes like online credit card
transactions, etc. Hence there are much more sophisticated random
number generation functions in Java and Android, also with the aid of
external libraries. However for simple randomness like in our die rolling
game, the Random class seems adequate. You can check its randomness
by consecutively clicking on the Roll! button and observing if you obtain
the same number a lot or if the numbers show a pattern that you can
guess the next number. However please keep in mind that accurate
testing of randomness requires complex tools.

Let’s take a short break before continuing to the next chapter where we’ll
develop a compass app which will utilize the internal accelerometer and
magnetometer sensor of the device.

140

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

Android Emulator - Nexus_4_AP|_24:5554

&N

Dice Roller

Dice Roller

Figure 7.9. The app when it is first run

Android Emulator - Nexus_4_API_24:5554

&~

Dice Roller

Dice Roller

6

Figure 7.10. The app showing 6 after one of its rolling

141

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

142

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

Chapter 8

ANDROID APP #4: THE COMPASS

We’ll develop a simple compass app that will utilize the internal
accelerometer and magnetometer sensors of the Android device.
Accelerometer is a sensor which converts the mechanical acceleration
information to electrical signals and similarly a magnetometer is used to
translate the magnetic field intensity to electronic signals.

Most Android devices have an accelerometer and a magnetometer sensor
inside therefore using a compass app only requires software rather than
additional hardware.

As we develop our compass app, we’ll learn setting permissions to use
sensors, reading acceleration and magnetic field data in Java code,
extracting the orientation data from the sensor data and animating
images. In the end, we’ll have a complete compass app that we can use in
daily life.

8.1. Setting up the Required Permissions

Let’s start by creating an Android project first. I named the project as
Compass App and selected Empty Activity as the default activity type.
The minimum API is also set to 15.

We’ll need a compass image whose needle shows the absolute north. |
found the royalty free image shown in Figure 8.1 for this aim (I chose
this one because it looks sort of ancient like an ancient compass ©). You
can download this image from the book’s companion website as usual.
You can of course use any other image you like in your project. Please
copy and paste this image to your drawable folder as we did before. The
name of the image is compass.png, we’ll use its name to access it in our
code.

143

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Figure 8.1. The compass image

If we use sensors in an Android project, we have to get the required
permissions to use these sensors in the AndroidManifest.xml file which
is located in the manifests folder as shown below:

/& Android " @ = | B -
v Caapp

i ?;;AndroidManifest.xml I

v [java
v [E1 com.example.atomic.compass5
(© & MainActivity

[E71 com.example.atomic.compass5 (androidTest)

b

[E1 com.example.atomic.compass5 (test)
v CEres

Figure 8.2. The AndroidManifest file in the project explorer

Open this file by double clicking on it in Android Studio and you’ll see
its default contents as shown in Figure 8.3. Please add the lines shown in
Code 8.1 to this file before the <application> tag and you’ll obtain
the finalized contents as shown in Code 8.2. These lines make the
accelerometer and magnetometer outputs available to be used in our app.

144

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

6 activity_mainxml % ’ (€ MainActivity.java % | % AndroidManifestxml X I

| manifest || application || activity || intent-£ilter || category |
<2xml version="1.0" encoding="utf-8"2>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.atomic.compassapp">

<application

android:allowBackup="true"
i & android:icon="¢mipmap/ic_launcher"
android:label="Compass App"
android:supportsRtl="true"
android:theme="gstyle/AppTheme">
<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

s <category android:name="android. inteht .category . LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Figure 8.3. Default contents of the AndroidManifest.xml file

<uses-feature
android:name="android.hardware.sensor.accelerometer"
android:required="true" />

<uses-feature
android:name="android.hardware.sensor .magnetometer"
android:required="true" />

Code 8.1

<?xml version="1.0" encoding="utf-8"7?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/and
roid"
package="com.example.atomic.compassapp">
<uses-feature
android:name="android.hardware.sensor.accelerometer"”
android:required="true" />
<uses-feature
android:name="android.hardware.sensor.magnetometer"
android:required="true" />
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="Q@string/app name"

145

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

android:supportsRtl="true"
android:theme="(@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Code 8.2 (cont’d from the pervious page)

8.2. Designing the GUI of the App

Now, let’s design the layout of the app. Please open the layout_main.xml
file for this and change the text of the default Hello World TextView to
Compass App which will serve as the app title. Please set its font size as
30sp and bold style. Then, please position it as follows:

V600
Compass App

Compass App

Figure 8.4. The TextView used to display the title of the app

146

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

Let’s now place an ImageView in the middle of the GUI and select the
compass image that we pasted to the drawable folder:

| ® Resources X
|
——
@)] Add new resource
Drawablg Name: compass oefoutt [

[4 ic_launcher

PNG

¥ android

Bl . e cork frame
{ Sl ght frame
N4 arrow_down float

2% arrow_up_float

== bottom_bar

47 btn_default
@drawable/compass

11" btn_default_small 0 compass.png

Figure 8.5. Selecting the compass image for the ImageView component

After we place the ImageView, it’ll be selected. Then, please set up its

ID as iv_compass (short for ImageView_compass) from the right pane
of Android Studio as follows:

B activty_mainaml % | € ityjava % | @ AndroidMani x

Palette e -1~ B E E O Onewssr m2s- (Pappineme @ianguage~ [~ Bonegiss B
[7] ScrollView =@ Ox@®@E ¥ #H |0 | iv_compass
[] HorizontalScrollView T

™= TabHost yOut_wi | Wrap.content

@ WebView ° layout_height | wrap_content

PR 600
Q SearchView ImageView
[Images & Media Compass App srcCompat [@drawable/compass

B ImageButton

contentDescription |
& ImageView " L
I VideoView background [
[Date & Time Compass App ScaTvpe frone

10 TimePicker
| DatePicker
= CalendarView
'® Chronometer

adjustViewBounds =
cropToPadding =

Component Tree

v [activity_main (RelativeLs
A5 textView - ‘Comps!
& imageView

View all properties =

| Design | Text

Figure 8.6. Setting the ID of the compass ImageView

147

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Finally, let’s place a TextView below the ImageView in which we’ll
display the orientation angle in real time. | set its ID as tv_degrees (short
for TextView_degrees), and made it 24sp with a bold text as shown

below:

| B activity_mainaml x | (€ MainActivityjava % | G AndroidManifestxml x

Palette e % BEEE O Unoussr mas- Qappieme language- O~ Properties &) B -
£ Widgets = CERCE=RN -} ([tv_degrees)
() TextVies P o
s ¢ tent
Butiod 1 ayout_wi wrap_contes
=l Toaak layout_height wrap_content
oggleButto T yo ig!
[/ CheckBox TextView
(@ RadioButton Compass App et he angle is displayed here.
A g -
/| CheckedTenview # et
=2 Spinner
== ProgressBar (Large) contentDescription
== ProgressBar Compass App tetAppearance
= ProgressBar (Smalf) tonkiamdy
== ProgressBar (Horizontal)
101 SeekBar typeface
101 SeekBar (Discrete) (Leeasize J
Component Tree lineSpacingExtra]
[activity_main (RelativeLs e Ciror
[RD) textView - “Compat - : -
tea
&l iv_compass (imageV. [e]
[Rb] tv_degrees (TextViel tetAlignment

View all properties o=+

Figure 8.7. Adding the TextView to display the orientation angle

8.3. Writing the Main Code of the App

We completed the design of the user interface and now ready to continue
with the coding. Please open the MainActivity.java file in Android
Studio. This file will have the default contents as follows:

package com.example.atomic.compassapp;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity
{

@Override
protected void onCreate (Bundle
savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

Code 8.3

148

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

The horizontal direction of a compass bearing is called as azimuth. We’ll
calculate this angle from the magnetometer and accelerometer outputs. Let’s
define a £1loat type variable to hold this data:

| Float azimuth angle;

Code 8.4

We also need to define objects related to the sensors as follows:

private SensorManager compassSensorManager;
Sensor accelerometer;
Sensor magnetometer;

Code 8.5

In this code, the first object is a SensorManager object that is used to
access the sensors. The other two declarations define sensor objects for
reading the outputs of the accelerometer and the magnetometer.

Finally, let’s declare ImageView and TextView objects which will be
used to access the corresponding components in the GUI:

TextView tv_degrees;
ImageView iv compass;

Code 8.6

We can place these declarations inside the MainActivity class just before
the onCreate () method. Then, we can assign the default accelerometer and
magnetometer sensors to their objects inside the onCreate () method as
follows:

compassSensorManager =
(SensorManager) getSystemService (SENSOR_SERVICE) ;

accelerometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE ACC
ELEROMETER) ;

magnetometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE MAG
NETIC FIELD) ;

Code 8.7

After these declarations and assignments, the MainActivity.java file currently
looks like Code 8.8.

149

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

package com.example.atomic.compassapp;

import android.hardware.Sensor;

import android.hardware.SensorManager;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

Float azimuth_angle;

private SensorManager compassSensorManager;
Sensor accelerometer;

Sensor magnetometer;

TextView tv_degrees;

ImageView iv_compass;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
compassSensorManager =
(SensorManager) getSystemService (SENSOR_SERVICE) ;
accelerometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE ACC
ELEROMETER) ;
magnetometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE MAG
NETIC FIELD);
}

}

Code 8.8

In order to continue with reading sensors, we have to implement
SensorEventListener class. We do this by using the implements
keyword in the main class definition as follows:

public class MainActivity extends AppCompatActivity
implements SensorEventListener

Code 8.9

Note that this is a single line code.

150

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

When we implement SensorEventListener class, Android Studio warns

us by a red bulb saying that we need to implement the required methods in our
code:

import android.widget.ImageView;
import android.widget.TextView;

18]

® Implement methods

@ Make 'MainActivity' abstract

5 Adjust code style settings

S Create Test >

5 Create subclass >

= Insert App Indexing APl Code » g

5 Make package-local i
@Override

Figure 8.8. Warning for implementing the required methods

Please click the Implement methods and then Android Studio will
automatically place the onSensorChanged () and
onSensorActivityChanged () methods when we click the OK button in
the dialog box:

® Select Methods to Implement X

c@ ==

L android.hardware SensorEventListener
W) & onSensorChanged(event:SensorEvent):void

w) B onAccuracyChanged(sensorSensor, accuracy:int):void

D Copy JavaDoc

Insert @Override m Cancel

Figure 8.9. Dialog showing the methods which will be implemented

151

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Android Studio automatically places the following code to
MainActivity.java:

@Override
public void onSensorChanged (SensorEvent event) {

}

@Override
public void onAccuracyChanged (Sensor sensor, int
accuracy) {

}

Code 8.10

We’ll write our main code inside the onSensorChanged() method.
However, before moving on to the main code, let’s write the
onResume () and onPause () methods for the main activity because
sensors are power hungry components therefore it is important to pause
and resume the sensor listeners when the activity pauses and resumes.
For this, we simply add the following code just below the end of the
onCreate () method:

protected void onResume () {
super.onResume () ;
mSensorManager.registerListener (this,
accelerometer, SensorManager.SENSOR_DELAX_UI);
mSensorManager.registerListener (this,
magnetometer, SensorManager.SENSOR_DELAX_UI);

}

protected void onPause() {
super .onPause() ;
mSensorManager .unregisterListener (this) ;

}

Code 8.11

In the onResume () Method, the sensor listeners are registered meaning
that the sensors are powered on again when the activity resumes.
Similarly, the sensors are unregistered (disconnected) in the onPause ()
method when the activity pauses.

152

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

We’re now ready to write the main code. Firstly, let’s define two £loat
type arrays to hold the accelerometer and magnetometer output data.
These will be array variables because the outputs of these sensors are
vectoral quantities i.e. they have different values for different directions.
We can define the arrays named accel _read and magnetic_read for
these sensors as follows:

float[] accel_read;
float[] magnetic read;

Code 8.12

Please write these declarations just before the onSensorChanged ()
method so that we can access these variables from anywhere in the
onSensorChanged () method.

Inside the onSensorChanged() method: This method is called
automatically when there’s a new sensor event therefore we’ll write our
main code inside this method. The following code creates objects to
access the ImageView and TextView of the GUI which will be updated
when a sensor event happens:

tv_degrees =(TextView) findViewById(R.id.tv_degrees) ;
iv_compass = (ImageView) findViewById(R.id.iv compass) ;

Code 8.13

Then, the following code reads accelerometer and magnetometer sensors
and stores the output data to accel_read and magnetic_read arrays:

if (event.sensor.getType() == Sensor.TYPE ACCELEROMETER)
accel read = event.values;

if (event.sensor.getType() == Sensor.TYPE MAGNETIC FIELD)
magnetic read = event.values;

Code 8.14

If the sensor outputs are available (i.e. they are not null), we’ll use the
accel_read and magnetic_read variables in the method called
getRotationMatrix () to get the rotation matrix R of the device as
follows:

if (accel read !'= null && magnetic_read '= null) ({
float R[] = new float[9];
float I[] = new float[9];

153

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

boolean successful read =
SensorManager.getRotationMatrix(R, I, accel_read,
magnetic read);

Code 8.15 (cont’d from the previous page)

If this operation is successful, the successful_read variable will be
true and the rotation matrix will be stored in the variable R. In this case,
we’re ready to get the azimuth angle (the angle between the device
direction and the absolute north) as follows:

if (successsful read) {
float orientation[] = new float[3];
SensorManager.getOrientation(R, orientation);
azimuth angle orientation[0];
float degrees ((azimuth_angle * 180f) / 3.14f);
int degreesInt = Math.round(degrees) ;
tv_degrees.setText (Integer. toString(degreesInt) +
(char) 0x00BO + " to absolute north.");

}

Code 8.16
In this code:

» Anew array called orientation is declared.

» The orientation of the device is extracted using the
getOrientation () method and 3-dimensional orientation data is
stored in the orientation array.

» The first component of this array is the azimuth angle in radians,
which is assigned to the azimuth_angle variable in the fourth
line.

» In the fifth line, the azimuth angle in radians is converted to degrees
and assigned to the newly created variable degrees.

» The degrees variable is of £1oat type therefore it is better to round
it to an integer. The sixth code line does this job using the method
Math.round().

» Finally, the azimuth angle in integer degrees is shown in the
TextView in the user interface. The char 0x00BO is used to display
the degree symbol (°).

154

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

It is also good to rotate the compass image according to the azimuth
angle. For this animation, we need to declare a £loat type variable
which will hold the current value of the ImageView’s rotation degree:

|private float current degree = 0f;

Code 8.17

Then, we can use the following animation code which will rotate the
ImageView according to the azimuth angle:

RotateAnimation rotate = new
RotateAnimation(current degree, -degreesint,
Animation.RELATIVE TO SELF, 0.5f,
Animation.RELATIVE TO SELF, 0.5f);
rotate.setDuration(100) ;
rotate.setFillAfter (true) ;

iv_compass.startAnimation(rotate) ;
current degree = -degreeslInt;

Code 8.18

In this code, we declared a RotateAnimate object and then set the
animation duration. The startAnimation starts the rotation of the
ImageView. This code rotates the compass image in real time according
to the degreesInt variable which holds the azimuth angle data.

Combining all these code lines, we reach the following
MainActivity.java shown below:

package com.example.atomic.compassapp;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.animation.Animation;
import android.view.animation.RotateAnimation;
import android.widget.ImageView;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity
implements SensorEventListener ({

155

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Float azimuth_angle;

private SensorManager compassSensorManager;
Sensor accelerometer;

Sensor magnetometer;

TextView tv_degrees;

ImageView iv_compass;

private float current_degree = 0f;

@Override

protected void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

compassSensorManager =
(SensorManager) getSystemService (SENSOR_SERVICE) ;

accelerometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE ACC

ELEROMETER) ;

magnetometer =
compassSensorManager.getDefaultSensor (Sensor.TYPE MAG
NETIC _FIELD) ;
}

protected void onResume () {
super .onResume () ;
compassSensorManager.registerListener (this,
accelerometer, SensorManager.SENSOR_DELAX_UI);

compassSensorManager.registerListener (this,
magnetometer, SensorManager.SENSOR_DELA{_UI);

}

protected void onPause() {
super.onPause () ;

compassSensorManager .unregisterListener (this) ;

}

float[] accel_read;
float[] magnetic_read;
@Override
public void onSensorChanged (SensorEvent event) ({
tv_degrees =(TextView)
findViewById(R.id. tv_degrees) ;

156

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

iv_compass = (ImageView)
findvViewById(R.id.iv_compass) ;

if (event.sensor.getType() ==
Sensor.TYPE ACCELEROMETER)
accel read = event.values;
if (event.sensor.getType() ==
Sensor. TYPE_MAGNETIC_FIELD)
magnetic_read = event.values;
if (accel_read !'= null && magnetic_read !=
null) {
float R[] = new float[9];
float I[] = new float[9];
boolean successsful read =
SensorManager.getRotationMatrix(R, I, accel_read,
magnetic_read);
if (successsful read) {
float orientation[] = new float[3];
SensorManager.getOrientation(R, orientation);

azimuth_angle orientation[0];

float degrees = ((azimuth_angle * 180f) /
3.14f);

int degreesInt = Math.round(degrees) ;

tv_degrees.setText (Integer. toString(degreesInt)
+ (char) 0x00BO + " to absolute north.");

RotateAnimation rotate = new
RotateAnimation(current degree, -degreesint,
Animation.RELATIVE TO SELF, 0.5f,
Animation.RELATIVE TO SELF, 0.5f);

rotate.setDuration (100) ;

rotate.setFillAfter (true) ;

iv_compass.startAnimation(rotate) ;
current_degree = -degreeslInt;

}

}
}
@Override
public void onAccuracyChanged (Sensor sensor, int
accuracy) {

}

}

Code 8.19 (cont’d from the previous page)

157

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

8.4. Building and Running the App

If we try to run the app in an emulator, the compass will constantly show
the north and the azimuth angle as 0 degrees. We need to try this app on
a real device with a magnetometer and accelerometer inside (most
Android devices have). Please build the app in Android Studio and install
it on a real device. | tried this app on Asus Zenfone and it works as
expected:

Compass App

Figure 8.10. Compass app running on a real device

Now, let’s take a break and get a strong coffee. In the next chapter, we’ll
learn using GPS and maps in our app.

158

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

Chapter 9

ANDRIOD APP # 5: SHOW MY LOCATION: USING
GPS AND MAPS

9.1. Creating a Map Project

Geolocation and navigation apps are popular in all mobile platforms.
Considering this, most mobile devices especially smartphones include
components called GPS receivers. These receivers take microwave band
radio signals from global positioning satellites that move in specified
orbits around the earth. These GPS signals are extremely weak but
thanks to the electronics tech, amplifier and processing circuits in
smartphones can utilize these signals for location services.

Anyway, let’s start developing our 5™ app: Show My Location. In this
chapter, you’ll learn to use maps and geolocation data from GPS in your
apps. It sounds easy but there are some confusing tricks to use the GPS
receiver; don’t worry I’ll show all of them in a while.

In this app, we aim to show our real time location on the map.

Let’s start with creating a new Android project and select Google Maps
Activity as the activity type a shown in Figure 9.1. When we select the
Google Maps Activity, the main Java file and the xml layout file of the
project are named as MapsActivity.java and activity_maps.xml
automatically as in Figure 9.2.

When a Google Maps App project is created, a file named
google_maps_api.xml is generated and placed under the res - values
folder as shown in Figure 9.3.

159

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

® Create New Project

‘A Add an Activity to Mobile

Basic Activity Empty Activity Fullscreen Activity Google AdMob Ads Activity
1 -
Google Maps Activity Login Activity Master/Detail Flow Navigation Drawer Activity Scrolling Activity

Figure 9.1. Selecting Google Maps Activity during the project creation

® Create New Project X

A Customize the Activity

Crestes a new activity wiith a Google Map

' Activity Name: | MapsActivity| |

LayoutNeme: | activity_maps |

Title: [map |

Google Maps Activity

The name of the activity class to create

(prous] [wext | [Lomee] (EERND

Figure 9.2. Filenames automatically assigned by Android Studio

160

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

i1 Android v| © & [% B |
v Caapp
» [manifests
» Eljava
v Egres
[Z1 drawable
> [layout
> [E1 mipmap
v [values
S colorn)
L & google_maps_apixml (debug)
——Thmgsat
1 stylesxml
p (2 Gradle Scripts

Figure 9.3. google_maps_api.xml file

9.2. Creating and Adding an Api Key

In order to use Google Maps, we need to enter an api (application
programming interface) key to the google_maps_api.xml file. The
default google_maps_api.xml is as follows:

<resources>

<!--

TODO: Before you run your application, you need a
Google Maps API key.

To get one, follow this link, follow the directions
and press '"Create" at the end:

https://console.developers.google.com/flows/enableapi
?Papiid=maps android backend&keyType=CLIENT SIDE ANDRO
ID&r=F7:42:43:B5:F0:19:50:79:4E:0E:69:D2:1A:27:3D: 7D:

E4:47:EC: 6D%3Bcom.example.atomic.myapplication

<string name="google maps_ key"
templateMergeStrategy="preserve"
translatable="false">YOUR _KEY HERE</string>
</resources>

Code 9.1

161

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

We have to enter the api key to the place indicated by
YOUR_KEY_HERE in the file above. So, where should we obtain this
key? We just need to go to the website indicated in our
google_maps_api.xml file which starts with https://console.developers .
When we navigate to this site, we need to select Create a new project
and hit Continue as follows:

Register your application for Google Maps Android APl in Google API
Console

Google API Console allows you to manage your application and monitor API

usage.

Select a project where your application will be registered
You can use one project 1o manage all of your applications, or you c¢an create a different
project for each application.

Create a project v

Figure 9.4. Creating a new project to obtain a new api key for the maps
app

In the next dialog, please hit the Create APl Key:

The API is enabled
The project has been created and Google Maps Android AP| has been enabled.

Next, you'll need to create an APl key in order to call the APL.

Create APl key

Figure 9.5. Creating the api key
Google console will then display the generated api key as shown below:

162

https://console.developers/

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

Credentials

4 Regenerate key | Delete

APl key
This APl key can be used in this project and with any API that supports it. To use this key in your application,
pass it with the key=API_KEY parameter.

Creation date 21 Jan 2017, 21:02:13
Created by G com (you)
API key
s1zasyaiccms2ecvynxvr<_ ||| |)

Figure 9.6. The generated api key

Please copy the generated api key and paste it to the place indicated in
the google_maps_api.xml file:

<resources>

<!r--
TODO: Before you run your application, you need a
Google Maps API key.

To get one, follow this link, follow the directions
and press '"Create" at the end:

https://console.developers.google.com/flows/enableapi
?Papiid=maps android backendé&keyType=CLIENT SIDE ANDRO
ID&r=F7:42:43:B5:F0:19:50:79:4E:0E:69:D2:1A:27:3D:7D:
E4:47:EC: 6D%3Bcom.example.atomic.myapplication

<string name="google maps_key"
templateMergeStrategy="preserve"
translatable="false">AIzaSyBiCCm62mCYYhXVFedpcDpxxxxx
xxxx</string>
</resources>

Code 9.2

Please note that you need to generate and paste your own key otherwise your
app won’t work.

163

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

9.3. The Default MapsActivity.java File
Let’s now view the automatically generated MapsActivity.java file where we’ll
write the main code:

package com.example.atomic.myapplication;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

import

com.google.android.gms .maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import
com.google.android.gms.maps.OnMapReadyCallback;
import

com.google.android.gms .maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatlLng;
import
com.google.android.gms .maps.model .MarkerOptions;

public class MapsActivity extends FragmentActivity
implements OnMapReadyCallback ({

private GoogleMap mMap;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity maps) ;
// Obtain the SupportMapFragment and get
notified when the map is ready to be used.
SupportMapFragment mapFragment =
(SupportMapFragment) getSupportFragmentManager ()
.findFragmentById(R.id.map) ;
mapFragment.getMapAsync (this) ;

/**
* Manipulates the map once available.
* This callback is triggered when the map is
ready to be used.
* This is where we can add markers or lines, add
listeners or move the camera. In this case,
* we just add a marker near Sydney, Australia.

164

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

* If Google Play services is not installed on
the device, the user will be prompted to install
* it inside the SupportMapFragment. This method
will only be triggered once the user has
* installed Google Play services and returned to
the app.
*/
@Override
public void onMapReady (GoogleMap googleMap) {
mMap = googleMap;

// Add a marker in Sydney and move the camera

LatLng sydney = new LatLng(-34, 151);

mMap .addMarker (new
MarkerOptions () .position(sydney) .title ("Marker in
Sydney")) ;

mMap .moveCamera (CameraUpdateFactory. newLatLng (sydney)
);
}

}

Code 9.3 (cont’d from the previous page)

In this code, mapFragment.getMapAsync (this) line adds the Map
component to the app. Then a LatLng object, which holds the latitude
and longitude data is created inside the onMapReady () method. The
code line LatLng sydney = new LatLng(-34, 151) declares a
LatLng Object at the latitude and longitude of -34 and 151, which is the
coordinates of Sydney, Australia (please note that this point is
automatically chosen by Android Studio). Then, a marker on Sydney is
placed by the addMarker () method which is applied on the map object.
And in the last line, the camera is moved to this point by the
moveCamera() method.

9.4. Running the Maps App for the First Time

We’re now ready to try the current state of the app in the emulator.
Please hit Run in Android Studio and then you should see our app in the
emulator as shown in Figure 9.7.

If you see the map with the marker, congratulations. If you cannot see
the map, please check the api key section above. Most errors are caused

165

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

from a wrong api key unless there’s another error indicated by the gradle
building system.

Android Emulator - Nexus_4_API|_24:5554

i Swutham
i O

Figure 9.7. Current state of our app

9.5. Implementing the Required Callbacks

We now need to take data from the GPS receiver and then show our
current location on the map rather than the default marker. For this, we
first implement the required callbacks in the main class definition as
follows:

166

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback, LocationListener,
GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener

{

Code 9.4

In this code snippet, we implemented these additional callbacks:
LocationListener, GoogleApiClient.ConnectionCallback

and GoogleApiClient.OnConnectionFailedListener. The
functions of these callbacks are as follows:

» LocationListener: Activated when the location changes.

» GoogleApiClient.ConnectionCallback: Activated when the
device’s connection status changes.

» GoogleApiClient.OnConnectionFailedListener: Activated
when the connection to the map data server fails.

When we add these callbacks in the class definition in
MapsActivity.java, Android Studio gives errors in the callback definition
lines. When we click on the red bulb, the option Implement methods
should be selected as follows:

g;%agw class MapsActivity extends FragmentActivity implements OnMapReadyCallback,
g cogleApiClient.ConnectionCallbacks, GocgleApiClient.OnConnectionFailedListener,
g [GoogleApiCli C ionCallback: G 1eApiCli OnCi ionFailedLi

® Implement methods

@ Make 'MapsActivity' abstract

£ Add on demand static import for 'com.google.android.gms.common.api.GoogleApiClient' »
5 Create Test »
5 Create subclass b
= Insert App Indexing API Code >
5 Unimplement Interface »

»

pady Co be usead.

£ Make package-local ymentManager ()_

Figure 9.8. Selecting Implement methods for correcting the callbacks

The dialog shown in Figure 9.9 appears after choosing to implement
methods. Please leave the selected methods and click OK in this
window. Then, the required methods will be added to MapsActivity.java
and the error marks will disappear.

167

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

@ Select Methods to Implement X

LE =z =

’V (I) android.location.LocationListener

W B onlLocationChanged(location:Location):void
1 onStatusChanged(provider:String, status:int, extras:Bundle):void
a2 onProviderEnabled(provider:String):void

‘& onProviderDisabled(provider:String):void

‘t2 onConnectionFailed(connectionResult:ConnectionResult):void

() Copy JavaDoc

Figure 9.9. Selecting the methods to implement for the callbacks

After implementing these methods, MapsActivity.java looks like
follows:

package com.example.atomic.myapplication;

import android.location.Location;

import android.location.LocationListener;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.FragmentActivity;

168

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATI

ON

import android.os.Bundle;

import
com.google.android.gms.common.ConnectionResult;
import
com.google.android.gms.common.api.GoogleApiClient;
import

com.google.android.gms .maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import

com.google.android.gms .maps.OnMapReadyCallback;
import
com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatlLng;
import
com.google.android.gms .maps.model .MarkerOptions;

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback,
GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener,
LocationListener{

private GoogleMap mMap;

@Override
protected void onCreate (Bundle
savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity maps) ;
// Obtain the SupportMapFragment and get
notified when the map is ready to be used.
SupportMapFragment mapFragment =
(SupportMapFragment) getSupportFragmentManager ()
.findFragmentById(R.id.map) ;
mapFragment.getMapAsync (this) ;

/**

* Manipulates the map once available.

* This callback is triggered when the map is
ready to be used.

* This is where we can add markers or lines,
add listeners or move the camera. In this case,

* we just add a marker near Sydney, Australia.

* If Google Play services is not installed on

169

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

the device, the user will be prompted to install
* it inside the SupportMapFragment. This
method will only be triggered once the user has
* installed Google Play services and returned
to the app.
*/
@Override
public void onMapReady (GoogleMap googleMap) {
mMap = googleMap;

// Add a marker in Sydney and move the
camera

LatLng sydney = new LatLng(-34, 151);

mMap .addMarker (new
MarkerOptions () .position (sydney) .title ("Marker in
Sydney")) ;

mMap .moveCamera (CameraUpdateFactory. newLatLng(sydne

y));
}

@Override

public void onLocationChanged (Location
location) {

}
@Override

public void onStatusChanged(String provider,
int status, Bundle extras) {

}

@Override
public void onProviderEnabled(String provider)

}

@Override
public void onProviderDisabled (String provider)

}

@Override
public void onConnected(@Nullable Bundle

170

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

bundle) {

}

@QOverride
public void onConnectionSuspended(int i) {

}

@Override
public void onConnectionFailed (@NonNull
ConnectionResult connectionResult) {

}
}
Code 9.5 (cont’d from the pervious page)

9.6. Populating the Implemented Methods
Let’s start populating the implemented methods. First of all, we’ll
declare the objects those will be used in our code as follows:

Location myLastLocation;
LocationRequest myLocationRequest;
GoogleApiClient myGoogleApiClient;
Marker myCurrLocationMarker;

Code 9.6

In these declarations, myLastLocation holds the location info itself.
The remaining objects will be responsible to manage the location
request, api related processes and the marker showing the current
location, respectively.

The onCreate () method contains the jobs to be done when the activity
first starts as we learned before. We need to modify it as follows to check
the location tracking permission and create a SupportMapFragment
object that will be used to do things related to the MapFragment object
of the user interface:

protected void onCreate (Bundle savedInstanceState)

{
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity maps) ;

171

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

if (android.os.Build.VERSION.SDK INT >=

Build.VERSION_CODES.M) {
checkLocationPermission() ;

}

SupportMapFragment mapFragment =
(SupportMapFragment) getSupportFragmentManager ()

.findFragmentById (R.id.map) ;
mapFragment.getMapAsync (this) ;

}
Code 9.7 (cont’d from the previous page)

The next method to modify is the onMapReady () method. This method
deals with the manipulation of the map once it is available. In this
method, the app will check whether the device has Google Play Services
installed and if not, the app will prompt to install it. Please remember
that map related functions can not run if Google Play Services is not
installed. We do these as follows:

public void onMapReady (GoogleMap googleMap) {
mMap = googleMap;
mMap . setMapType (GoogleMap . MAP TYPE NORMAL) ;

//Checking Google Play Services version
if (android.os.Build.VERSION.SDK INT >=
Build.VERSION CODES.M) {
if (ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS FINE LOCATION)
PackageManager . PERMISSION GRANTED) ({
buildGoogleApiClient() ;
mMap . setMyLocationEnabled (true) ;
}
}

else {

buildGoogleApiClient() ;

mMap . setMyLocationEnabled (true) ;
}

}
Code 9.8

The Google api client used in this method is built using the
following method:

172

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

protected synchronized void buildGoogleApiClient ()
{
myGoogleApiClient = new
GoogleApiClient.Builder (this)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
.addApi (LocationServices.API)
.build() ;
myGoogleApiClient.connect() ;

}
Code 9.9

When the required permissions are taken and Google api is ready, the
app will start tracking the current location inside the onConnected ()
method as follows:

public void onConnected(Bundle bundle) {

myLocationRequest = new LocationRequest() ;
myLocationRequest.setInterval (1000) ;
myLocationRequest.setFastestInterval (1000) ;

myLocationRequest.setPriority (LocationRequest.PRIORIT
Y BALANCED POWER ACCURACY) ;
if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS FINE LOCATION)
== PackageManager .PERMISSION GRANTED) {

LocationServices. FusedLocationApi.requestLocationUpda
tes (myGoogleApiClient, myLocationRequest, this);
}

}

Code 9.10

In this code, the time intervals are shown in milliseconds. Therefore, the
location data is gathered in 1 second intervals. If the intervals get more
frequent, the location data will be gathered in shorter intervals but this
will drain the battery faster. The setPriority () method is also used to
manage the power consumption. In this code, a balanced power usage is
selected.

When the location changes, the app will move the marker to the new
location. This is done inside the onLocationChanged () method:

173

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

public void onLocationChanged (Location location) {

myLastLocation = location;
if (myCurrLocationMarker != null) {
myCurrLocationMarker.remove () ;

}

//Move the marker

LatLng latLng = new
LatLng(location.getLatitude(),
location.getLongitude()) ;

MarkerOptions markerOptions = new
MarkerOptions () ;

markerOptions.position (latLng) ;

markerOptions.title("My Position");

markerOptions.icon (BitmapDescriptorFactory.defaultMar

ker (BitmapDescriptorFactory.HUE MAGENTA)) ;
myCurrLocationMarker =

mMap . addMarker (markerOptions) ;

//Move the map view
mMap .moveCamera (CameraUpdateFactory. newLatLng(latLng)

)
mMap .animateCamera (CameraUpdateFactory. zoomTo(11)) ;

//Stop moving the marker
if (myGoogleApiClient !'= null) ({

LocationServices. FusedLocationApi.removeLocationUpdat
es (myGoogleApiClient, this);
}

}

Code 9.11

In this code, getLatitude () and getLongitude () gets the current
latitude and longitude and then places them inside the LatLng object.
When the location changes, the marker is moved to the new location and
the title of the marker is set as My Position. Then, the camera is moved
to show the current location.

174

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

Finally, the permission related checkLocationPermission () and
onPermissionRequestResult () methods are populated as in Code
9.12.

public static final int
MY PERMISSIONS REQUEST LOCATION = 99;
public boolean checklLocationPermission () {
if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS FINE LOCATION)
!'= PackageManager.PERMISSION GRANTED) {

if (ActivityCompat.shouldShowRequestPermission
Rationale(this, Manifest.permission.ACCESS FINE LOCATI

ON)) {

ActivityCompat. requestPermissions(this,
new String[] {Manifest.permission.
ACCESS_FINE LOCATION},
MX_PERMISSIONS_REQUESI_LOCATION);

} else {

ActivityCompat.requestPermissions(this,
new String[] {Manifest.permission.
ACCESS_FINE LOCATION},

MY PERMISSIONS REQUEST LOCATION) ;
}
return false;
} else {
return true;
}
}

@Override
public void onRequestPermissionsResult(int
requestCode,
String
permissions[], int[] grantResults) {
switch (requestCode) {
case MY PERMISSIONS REQUEST LOCATION: {

if (grantResults.length > 0
&& grantResults[0] ==
PackageManager . PERMISSION GRANTED) {

175

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS FINE LOCATION)
==PackageManager . PERMISSION GRANTED) {

if (myGoogleApiClient == null) ({
buildGoogleApiClient() ;
}
mMap . setMyLocationEnabled (true) ;

}
} else {

// Toast shows a popup warning on the screen
Toast.makeText(this, "Permission not given.",
Toast.LENGTH_LONG) .show() ;
}

return;

}

}

Code 9.12 (cont’d from the previous page)

These methods ask for user permission to track fine location. If the user
rejects giving the permission, the message “Permission not given.” is
shown on the screen as a popup dialog.

The complete MapsActivity.java file is shown in Code 9.13.

package com.example.atomic.myapplication;

import android.Manifest;

import android.content.pm.PackageManager;
import android.location.Location;

import android.os.Build;

import android.support.vé4.app.ActivityCompat;
import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

import android.support.v4.content.ContextCompat;
import android.widget.Toast;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.location.LocationListener;
import com.google.android.gms.location.LocationRequest;
import com.google.android.gms.location.LocationServices;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.OnMapReadyCallback;
import com.google.android.gms.maps.SupportMapFragment;

176

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

import
com.google.android.gms.maps.model.BitmapDescriptorFactory;
import com.google.android.gms.maps.model.LatlLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback,
GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener,
LocationListener {

private GoogleMap mMap;
GoogleApiClient myGoogleApiClient;
Location myLastLocation;

Marker myCurrLocationMarker;
LocationRequest myLocationRequest;

@QOverride

protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity maps) ;

if (android.os.Build.VERSION.SDK INT >=

Build.VERSION_CODES.M) {
checklLocationPermission() ;

}

SupportMapFragment mapFragment =
(SupportMapFragment) getSupportFragmentManager ()

.findFragmentById (R.id.map) ;
mapFragment.getMapAsync (this) ;
}

@Override

public void onMapReady (GoogleMap googleMap) ({
mMap = googleMap;
mMap . setMapType (GoogleMap.MAP TYPE NORMAL) ;

//Initialize Google Play Services
if (android.os.Build.VERSION.SDK INT >=
Build.VERSION_CODES.M) {
if (ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS FINE LOCATION)
== PackageManager.PERMISSION GRANTED)
{
buildGoogleApiClient() ;
mMap . setMyLocationEnabled (true) ;

else {

177

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

buildGoogleApiClient() ;
mMap . setMyLocationEnabled (true) ;

}

protected synchronized void buildGoogleApiClient() ({
myGoogleApiClient = new
GoogleApiClient.Builder (this)
.addConnectionCallbacks (this)
.addOnConnectionFailedListener (this)
.addApi (LocationServices.API)
.build() ;
myGoogleApiClient.connect() ;
}

@Override
public void onConnected (Bundle bundle) ({

myLocationRequest = new LocationRequest() ;
myLocationRequest.setInterval (1000) ;
myLocationRequest.setFastestInterval (1000) ;

myLocationRequest.setPriority (LocationRequest.PRIORITY BAL
ANCED POWER_ACCURACY) ;
if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS FINE LOCATION)
== PackageManager.PERMISSION GRANTED) {

LocationServices. FusedLocationApi.requestLocationUpdates (m
yGoogleApiClient, myLocationRequest, this);
}

}

@Override
public void onConnectionSuspended(int i) {

}

@Override
public void onLocationChanged (Location location) {

myLastLocation = location;
if (myCurrLocationMarker != null) {
myCurrLocationMarker.remove () ;

}

LatLng latLng = new LatLng(location.getLatitude(),
location.getLongitude()) ;

MarkerOptions markerOptions = new MarkerOptions() ;

markerOptions.position (latLng) ;

markerOptions.title("My Position") ;

178

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

markerOptions.icon (BitmapDescriptorFactory.defaultMarker (B
itmapDescriptorFactory.HUE MAGENTA)) ;

myCurrLocationMarker =
mMap . addMarker (markerOptions) ;

mMap .moveCamera (CameraUpdateFactory. newLatLng(latLng)) ;
mMap . animateCamera (CameraUpdateFactory. zoomTo (11)) ;
if (myGoogleApiClient != null) {

LocationServices. FusedLocationApi.removeLocationUpdates (my
GoogleApiClient, this);
}

}

@Override
public void onConnectionFailed (ConnectionResult
connectionResult) {

}

public static final int
MY PERMISSIONS REQUEST LOCATION = 99;
public boolean checkLocationPermission () {
if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS FINE LOCATION)
!'= PackageManager.PERMISSION GRANTED) {

if
(ActivityCompat. shouldShowRequestPermissionRationale (this,

Manifest.permission.ACCESS FINE LOCATION)) {
ActivityCompat. requestPermissions (this,
new
String[] {Manifest.permission.ACCESS FINE LOCATION},
MY PERMISSIONS REQUEST LOCATION) ;

} else {
ActivityCompat. requestPermissions (this,
new
String[] {Manifest.permission.ACCESS FINE LOCATION},

MY PERMISSIONS REQUEST LOCATION) ;

}

return false;

} else {
return true;

}

179

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

}

@Override
public void onRequestPermissionsResult(int
requestCode,
String
permissions[], int[] grantResults) {
switch (requestCode) {
case MY PERMISSIONS REQUEST LOCATION: {

if (grantResults.length > 0
&& grantResults[0] ==
PackageManager . PERMISSION GRANTED) {

if
(ContextCompat. checkSelfPermission(this,

Manifest.permission.ACCESS FINE LOCATION)

PackageManager . PERMISSION GRANTED) {

if (myGoogleApiClient == null) {
buildGoogleApiClient() ;

}
mMap . setMyLocationEnabled (true) ;

}
} else {

Toast.makeText (this, "Permission not
given.", Toast.LENGTH _LONG) .show() ;
}

return;

}
}

Code 9.13 (cont’d from the previous page)

Please remember that you can download these files from the book’s
companion website: www.android-java.website.

9.7. Adding the Required Permissions to the Manifest
File

The AndroidManifest.xml file with the required permissions is also given
in Code 9.14.

| <?xml version="1.0" encoding="utf-8"?>

180

http://www.android-java.website/

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.atomic.myapplication">

<uses-permission
android:name="android.permission.ACCESS_NETWORK_ STATE" />
<uses-permission
android:name="android.permission.INTERNET" />
<uses-permission
android:name="com.google.android.providers.gsf.permission.
READ GSERVICES" />
<!--
The ACCESS_COARSE/FINE LOCATION permissions are
not required to use
Google Maps Android API v2, but you must specify
either coarse or fine
location permissions for the 'MyLocation'
functionality.
-=>
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission
android:name="android.permission.ACCESS_FINE LOCATION" />

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="Q@style/AppTheme">

<!--
The API key for Google Maps-based APIs is
defined as a string resource.
(See the file
"res/values/google maps api.xml") .
Note that the API key is linked to the
encryption key used to sign the APK.
You need a different API key for each
encryption key, including the release key that is used to
sign the APK for publishing.
You can define the keys for the debug and
release targets in src/debug/ and src/release/.
-=>
<meta-data
android:name="com.google.android.geo.API_KEY"
android:value="@string/google maps_key"/>

<activity
android:name=".MapsActivity"
android:label="@string/title activity maps">
<intent-filter>

181

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

<action
android:name="android.intent.action.MAIN"/>

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Code 9.14 (cont’d from the previous page)

The Internet and GPS permissions are added because the map uses both
coarse and fine location tracking.

9.8. Running Our App and Sending Custom

Coordinates to the Emulator

Please hit the Run button in Android Studio to run our Show My
Location app. You can run the app in an emulator or on an actual device.
The app running in the Nexus 4 emulator is shown in Figure 9.10. If you
cannot see the map on your app, most probably it’s an error regarding the
api key. Please review that section again.

Please note that | have sent custom coordinates to the emulator using its
options button as shown in Figure 9.11. The latitude and longitude of the
coordinates I’ve entered are 41.3809 N and 2.11287 E. Can you guess
what this famous location is? Hint: You can zoom in and out on the
emulator’s map by double-clicking at a point and then moving the mouse
up or down.

It is worth noting that I’ve tried the app on a real device and it works as
expected.

182

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

Android Emulator - Nexus_4_API_24:5554

North Sea

United
Kingdom

Netherlands
57

London
(-}

France

7

Madrid
Portugal S

Spain

Tunisia

Figure 9.10. Our Show My Location app in the emulator

183

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

Extended controls g
i Q@ Locatior GPS data point
x Coordinate system Decimal Longitude
| | 4l celvia 2ams Enter the
< v coordinates here
B Battery Currently reported location Latitude &
=) Longitude: 21228 sas0e7 and then click
- Latitude: 41,3809
X, Phone Altitude: 0.0 "send"
0 Altitude (meters)
@ Directional pad 0.0
o
oFir SEND
7 GPS data playback
0| .
e/ Virtual sensors
(0] Delay (sec) Latitude Longitude Elevation Name Description
B setings
Q
Q -
<
o
O
Optlons button > Speed 1X LOAD GPX/KML

Figure 9.11. Sending custom coordinates to the emulator

184

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

Chapter 10

ANDRIOD APP # 6: S.0.S. MESSAGE SENDER

10.1. Introduction

Most of the Android devices have the capability of GSM connection
therefore it is useful to learn using SMS messaging in Android. A class
called smsManager enables us to design apps that can easily send and
receive SMS programmatically. You’ll see how this class is used in this
chapter.

We’ll develop an app which sends the current location to
pre-defined recipients using SMS. This app can be useful in case of an
emergency in deserts or if you’re boozed in a disco when you cannot
type text in the message field and need to send your location to a mate to
take you home.

10.1. Adding the Required Permissions

Firstly, please create a standard Android Project having an empty activity
and a target SDK version of 22 or lower. | named my project as S.O.S.
Sender. We’ll use the location taken from the GPS sensor and send it
with SMS. Therefore, we need to add both GPS usage and SMS sending
permissions to the AndroidManifest.xml file as follows:

<uses-permission
android:name="android.permission.ACCESS_FINE_ LOCATION
n />

<uses-permission
android:name="android.permission.SEND SMS" />

Code 10.1

After inserting these permissions, AndroidManifest.xml file looks as shown
below:

|<?xm1 version="1.0" encoding="utf-8"?>

185

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

<manifest
xmlns:android="http://schemas.android.com/apk/res/and
roid"

package="sendsms.example.com. sendsms">

<uses-permission
android:name="android.permission.ACCESS_FINE LOCATION
n />

<uses-permission
android:name="android.permission.SEND_SMS" />

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app name"
android:supportsRtl="true"
android: theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Code 10.2 (cont’d from the previous page)

10.2. Designing the User Interface

Let’s design the user interface now. The user will basically click on an
S.0.S. button and nothing else is needed. Therefore, | placed a button
widget in the middle the screen in the activity main.xml file as in
Figure 10.1 and set its label as S.O.S.

The layout_width and layout_height properties of the button are set as
wrap_content by default. It means the button’s dimensions will just cover
the label written on it. However, our button will be used in S.O.S. cases
therefore let’s enlarge the button to cover the whole user interface. For
this, select the button and set its layout width and layout_height
properties as match_parent in Android Studio as shown in Figure 10.2.
I’ve set the button’s ID as sendSOS as also shown in this figure.

186

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

Let’s change the button’s background colour to red. For this, firstly click
the View all properties button as indicated by the arrow in Figure 10.3.
In the properties list appearing as in Figure 10.4, find the background
property as indicated in Figure 10.5.

¥ 8600
S.0.S. Sender

Figure 10.1. The button placed in the middle of the Ul

) MainActivityjava % | & activity_mainxml x l '8, AndroidManifestxml %
. o % - B EE O ONeusasr m2s- @ 2] - perti & %l
51 Widgets Ox®@E ¥ B D

A5 TextView

‘ match_parent

ox Button 0 100 200 S layout_width
— ToggleBu layout_height | match_parent|

@ CheckBox o Button

(® RadioButt AAICED style [buttonstyle
RJ‘ Checked] S.0.S. Sender background ddrawable/btn_default_ma |
= Spinner o = o

== ProgressB - _ 1 batkorotinciint :
== ProgressB = stateListAnimator Eﬁcn_stete_hst_amm_ma [
== ProgressB elevation ﬁ
== ProgressB S ——
iR visibility [none

0 SeekBar ({ - onClick [none

£= QuickCor TextView

% RatingBar L B0 u text 5.0.5.

Component Tree Ftet |—
v activity_n -
b 42 8 contentDescription
ox|sends

textAppearance ‘ AppCompat.Widget.Button

fontFamily ‘san rif-medium
o = | typeface ‘ncne
lineSpacingExtra none
T pacing ‘
textColor

2attr/textColorPrimary

Figure 10.2. Setting the button’s dimensions

187

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

java x | B activity_mainxml % | % AndroidManifestxml x | |
%-1- (B E E O+ Dnexussr m25- (Papptheme Blanguage- [~ Properties Q i
[Widgets] Os3@E & B | sends0S I
(BB TextView . _
ok Button o 100 200 0 a | layout_width ‘match_pargnt
= ToggleBu layout_height [match_parent
[/] CheckBox = Button
@ RadioButt A style [buttonsyte oA -
4 Checkedl S.0.S. Sender background ddrawable/btn_default_mate |
= Spinner ~ = o
== Progress§| _ I % backgroundTint z
== ProgressB stateListAnimator -
= Progress§ elevation 0dp
== ProgressB
%0 SeakBar visibility [none
101 SeekBar ([onClick [none
QuickCor| TextView
RatingBar o 208, f S 5.0,
1 Switch —_—————
Space 2 I—l
[Text Fields (E¢ & contentDescription -
Component Tree 7 tetAppearance | AppCompat\Widget.Button |
v [activity_n iy
01 sendS ’
| . = o typeface ‘hcne
g > o o textSize [14sp
7 lineSpacingExtra [none

Figure 10.3. Viewing all the properties of the button widget

@ E i @. GNexus4v 25~ OAppTheme @Languagv D- Properties & B
= O3x®@HE ¥ B id sendSOS
layout_width match_parent
] 100 200 30 4
layout_height match_parent
» Layout_Margin R535.7
o » Padding 22227
» Theme
elevation Odp

layout_centerHorizontal

layout_centerVertical
text S.0.S.
accessibilityLiveRegion
accessibilityTraversalAfte
accessibilityTraversalBefc
allowUndo (3]
i 5.0 q alpha
» autolink 1}

autoText [3

a background @drawable/btn_default_mat

3 backgroundTint
backgroundTintMode
breakStrategy
bufferType

g capitalize
clickable
contentDescription
contextClickable =

a cursorVisible B

Figure 10.4. All the properties of the button widget shown in the right
pane

188

2 BE
H|

(Bl

S

DNexus 4~ W25+ OAppTh:me @Language-

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

o-
Oxx®@H ¥ B

100

2

100

Figure 10.5. Opening the manual editing property of the button

Properties

id
layout_width
layout_height

> Layout_Margin

> Padding

Theme

elevation
layout_centerHorizontal
layout_centerVertical
text
accessibilityLiveRegion
accessibilityTraversalAfte
accessibilityTraversalBefc
allowUndo

alpha

autolink

autoText

background
backgroundTint
backgroundTintMode
breakStrategy
bufferType

capitalize

clickable

ke

sendSOS
match_parent
match_parent

2227

2%%%7
0Odp

S.0.5.

=]
]

2]
@drawable/btn_def;

A box in which we can enter the hex colour code of the background will appear
as follows:

< MainActivityjava X | 8 activity_mainxml x | & AndroidManifestaml x |

1 Widgets

[Bb) TextView
0k Button
- ToggleBu
[+) CheckBox
(@) RadioButt
Av CheckedT

= Spinner

== ProgressB
== ProgressB
== Progress8
== ProgressB
01 SeekBar
101 SeekBar ([
4=/ QuickCor|
¥ RatingBar
o Switch
pace
[Text Fields (E¢
Component Tree
v [activity_r
e

10

a0

e %1~ B EE O Onewssr mi2s- (Papptheme Eianguage~

Q-

0

&

Ox:x@DHE A

Properties
id
layout_width
layout_height

Layout_Margin
Padding

Theme

elevation

layout_centerHorizontal

layout_centerVertical
text

sendSOS
match_parent
match_parent
72237
2237
0dp

S.0.5.

accessibilityLiveRegion
accessibilityTraversalAfte

accessibilityTraversalBefc

allowUndo =]
alpha

> autolink 1]
autoText

background [| -

- 1

ackgrouna1int
backgroundTintMode
breakStrategy
bufferType

capitalize

Figure 10.6. Custom colour code entry box

189

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

In my opinion, making the S.O.S. button red is a good choice therefore |
entered the hex code of red #FF0000 into this box. However, this is only
a personal choice and you can enter any colour code you’d like. You can
find the colour codes in several sites such as http://www.color-hex.com/.
After entering the colour code, remember to hit enter on the keyboard
and then the button’s colour will be changed to red as follows:

© MainActivityjava X | [activity_mainxml X | AndroidManifestxml X | & app X | @ stringsaml x |

. 2 %1~ BHEE O ONewssr m2s- (Papptheme ianguage- [J- Properties I
Ciwidges | o] [{] OB Y B id sendSOS

(5] TextView g layout_width match_parent

% Button = ‘ " | layout_height match_parent

= ToggleBu Layout Margin r2227

(] CheckBox o Padding 2227

) RadioButt W lcoo Theme

B4 Checked] S.0.S. Sender elevation 0dp

~ Spinner backaround ZFFO000

iy - g

== Progress

background f2FE0000 J - X

== ProgressB
P g layout_centerriornzontal &4
== Progress|

9 layout_centerVertical
== ProgressB

05 SaekBar text 5.0S.
101 SeekBar ([textSize 20sp
1= QuickCorl texstyle {normal, bold]
% RatingBar accessibilityLiveRegion
o Switch accessibilityTraversalAfte
""" Space accessibilityTraversalBefc
| [0 Text Fields (E¢ 2 alpha
: Component Tree autoLink n
[l activity_r autoText
o] sendS backgroundTint
backgroundTintMode
3 bufferType
capitalize
clickable

contentDescription

[, - .
m S
diaits

Figure 10.7. Setting the button’s background colour

We’ve set the background colour, great. However the S.O.S. label of the
button seems tiny now. Let’s edit its properties. As the first step, let’s
switch back to the popular properties of the button by clicking the View
all properties button again as indicated in Figure 10.8.

I’ve set the text size as 72sp and its type as bold as shown in Figure 10.9.

10.3. Developing the Main Code
We’ve now completed the simple Ul of our app. Let’s move on to the
coding part now, which is more fun.

190

http://www.color-hex.com/

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

Properties
id
} layout_width

| layout_height

‘l> Layout_Margin

| > Padding

‘I‘» Theme
elevation
layout_centerHorizontal
layout_centerVertical
text

| accessibilityLiveRegion
|

accessibilityTraversalAfte

accessibilityTraversalBefc
allowUndo
alpha

> autolink
autoText

background @drawable/btn_default_ma

/# background
backgroundTint
backgroundTintMode

breakStrategy
bufferType

capitalize

sendSOS ;

match_parent
match_parent
B.22279

.29

Odp

S.0..

=

0
=

[l #FF0000

Figure 10.8. Switching back to the common properties

ityjova % | G activity_mainax! x | G AndroidManifestmi X

e %1~ BE E O Onewssr m2s- @appmheme @tanguage- [~ Properties oA]
[Widgets =N Q@@= E BB o sendSOS
B} TextView .]
o 10 200 £ 4 | layout_width match_parent
o1 Button
= ToggleBl layout_height [match_parent
() CheckBox = Button
(@ RadioButt A B style [buttonstyle
A :
2 Checked} Sender background ‘Idrauveblc‘bthd:fdultvmatt [-
= Spinner | 5 ekl
== Progressg backgroundTint
—Progresss‘ stateListAnimator button_state_list_anim_mate |
== Progressg elevation i
== Progressg
o Skt | visibility
101 SeekBar (-, onClick
| 8
£2 QuickCor TextView
¥ RatingBar| text
1 Switch
F et

Component Tree
v [Hlactivity_n
o sendS

contentDescription

fontFamily

typeface

Jreasize

lineSpacingExtra
textColor

textAlignment

Figure 10.9. Setting the text size and type

191

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

The app will take longitude and latitude data from the GPS receiver. This
data is a floating point number therefore let’s declare two double type
variables to hold the location data as follows:

double latitude = 0;
double longitude = 0;

Code 10.3

Let’s define a GPSReceiver class to manage the GPS part with the
LocationListener implementation as we did in the previous chapter:

public class GPSReceiver implements LocationListener

{

Code 10.4

Android Studio will warn us for implementing the required methods at
this point:

@ Select Methods to Implement X

7 (1) android.location.LocationListener
B onlLocationChanged(location:Location):void
i B onStatusChanged(s:String, iint, bundle:Bundle):void

W B onProviderEnabled(s:String):void
1) onProviderDisabled(s:String):void

O Copy JavaDoc

Insert @QOverride m Cancel

Figure 10.10. The required methods for the LocationListener

192

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

Hit OK in this dialog and the methods onLocationChanged(),
onStatus (), onProviderEnabled () and onProviderDisabled ()
will be added to the MainActivity.java. onStatusChanged () is called
when a change in the location occurs. Similarly,
onProviderEnabled() and onProviderDisabled() methods are
called when the GPS receiver is enabled and disabled, respectively.
onStatusChanged () is called if the GPS status is changed.

We can populate the onProviderEnabled () and
onProviderDisabled () methods as follows:

@Override

public void onProviderEnabled(String s) {
Toast.makeText (getApplicationContext (), "GPS

Enabled!", Toast.LENGTH LONG) .show() ;

}

@Override
public void onProviderDisabled(String s) {

Toast.makeText (getApplicationContext (), "Please
enable GPS!", Toast.LENGTH LONG) .show() ;

}
}

Code 10.5

The Toast class is used to show a temporary message on the screen.
Therefore, if the GPS is disabled, it will display “Please enable GPS!”
whereas when the GPS is enabled by the user, it will inform saying that
“GPS is enabled!”.

The actual location receiving happens inside the
onLocationChanged () method. Firstly, let’s define a location
object which will hold the location data just after the longitude and
latitude Vvariable declarations as follows:

|private LocationManager manager;

Code 10.6

Now, we can populate the onLocationChanged () method as follows:

193

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

public void onLocationChanged (Location location) {
if (location '= null) {
latitude = location.getLatitude() ;
longitude = location.getLongitude() ;
Toast.makeText (getApplicationContext (),
"READY TO SEND!!!", Toast.LENGTH LONG) .show () ;
}
else {
Toast.makeText (getApplicationContext (), "NOT
READY YET...", Toast.LENGTH_ LONG) .show() ;
}
}

Code 10.7

If the location data isn’t null, i.e. if the location data is received
successfully, the longitude and latitude data will be assigned to
longitude and latitude variables, respectively. getLongitude ()
and getLatitude () methods extract the longitude and latitude data
from the 1location object. If the location data is received without any
problem, a dialog will display “READY TO SEND!” text on the screen
otherwise it’ll write “NOT READY YET...”.

We’ve declared our custom method for handling the GPS data
operations. Now it’s time to define a GPSReceiver oObject as follows:

| private GPSReceiver receiver;

Code 10.8

We can define it just below the LocationManager object definition
shown in Code 10.6 so that it can be accessed from any method in the
activity.

Next, let’s create the button listener method which will do the SMS
sending when the sendSOS button’s clicked:

public void myButtonListenerMethod() {
Button button = (Button) findViewById(R.id.sendSOS) ;

button.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
SmsManager sms = SmsManager.getDefault() ;
String phoneNumber = "XXXXXXXXXXXX'";
String messageBody = "Please take me from

194

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

longitude: " + Double. toString(longitude) + " and
latitude: " + Double. toString(latitude) ;
try {

sms . sendTextMessage (phoneNumber, null,
messageBody ,null, null);

Toast.makeText (getApplicationContext (),
"S.0.S. message sent!", Toast.LENGTH_LONG) .show() ;

} catch (Exception e) {
Toast.makeText (getApplicationContext (),
"Message sending failed!!!", Toast.LENGTH_LONG) .show() ;
}
}
}) s
}

Code 10.9 (con’t from the previous page)
In this button listener method:

» The button object is created at first,

» Then an smsManager object called sms is declared inside the
onClick () method,

» Next, the phone number which will receive our SMS is defined in
the variable named phoneNumber (please enter a valid receiving
phone number in the place of xx}xxxxxxxx!!1),

» The messageBody iS also declared as a string using the
longitude and latitude data.

» Finally, the SMS is sent programmatically by the
sendTextMessage () method.

» The try — catch statement is used to check if there’s an error sending
the SMS message. If there’s no error, a message saying “S.O.S.

message sent!” will be displayed. Otherwise, it’ll display “Message
sending failed!!!”.

As you can see, the sendTextMessage () method has five arguments.
We’ve set the unused arguments to null. We could use these unused
arguments for extended functionality such as checking if the SMS is
actually received by the receiving part.

Finally, we need to call the button listener and GPS related methods
inside the onCreate () method as usual:

195

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

protected void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod() ;
receiver = new GPSReceiver();
manager = (LocationManager)
this.getSystemService (Context.LOCATION SERVICE) ;

manager.requestLocationUpdates (LocationManager.GPS_PROVIDE
R, 1000L, 1.0F, receiver);

}

Code 10.10

The complete MainActivity.java is also given as follows:

package sendsms.example.com.sendsms;

import android.Manifest;

import android.content.Context;

import android.content.pm.PackageManager;

import android.icu.text.DecimalFormat;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Build;

import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.telephony.SmsManager;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import java.util.function.DoubleUnaryOperator;
public class MainActivity extends AppCompatActivity {
private LocationManager manager;
private GPSReceiver receiver;
double latitude = 0;
double longitude = 0;

@Override
protected void onCreate (Bundle

196

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButtonListenerMethod () ;
receiver = new GPSReceiver():;
manager = (LocationManager)
this.getSystemService (Context.LOCATION SERVICE) ;

manager.requestLocationUpdates (LocationManager.GPS PR
OVIDER, 1000L, 1.0F, receiver);

}

public void myButtonlListenerMethod () {
Button button = (Button)
findViewById (R.id. sendSOS) ;

button.setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View v) {
SmsManager sms =
SmsManager.getDefault() ;
String phoneNumber = "05363624223";

String messageBody = "Please take me
from longitude: " + Double.toString(longitude) + "
and latitude: " + Double. toString(latitude) ;

try {

sms . sendTextMessage (phoneNumber,
null, messageBody ,null, null);

Toast.makeText (getApplicationContext(), "S.O.S.
message sent!", Toast.LENGTH_ LONG) .show() ;

} catch (Exception e) {

Toast.makeText (getApplicationContext (), "Message
sending failed!!!", Toast.LENGTH_LONG) .show() ;
}
}
b
}

public class GPSReceiver implements
LocationListener ({

@Override

public void onLocationChanged (Location location)

197

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

if (location '= null) {
latitude = location.getLatitude() ;
longitude = location.getLongitude() ;
Toast.makeText (getApplicationContext(),

"READY TO SEND!!!", Toast.LENGTH LONG) .show() ;
}
else {
Toast.makeText (getApplicationContext(),
"NOT READY YET...", Toast.LENGTH LONG) .show () ;
}
}
@Override

public void onStatusChanged(String s, int i,
Bundle bundle) {

}

@Override
public void onProviderEnabled(String s) {
Toast.makeText (getApplicationContext (), "GPS
Enabled!", Toast.LENGTH LONG) .show() ;

}

@Override
public void onProviderDisabled(String s) {

Toast.makeText (getApplicationContext(),
"Please enable GPS!", Toast.LENGTH LONG) .show() ;

}
}
}

Code 10.11 (cont’d from the previous pages)

10.4. Building and Running the App

Since this app uses SMS functionality, it needs a GSM connection
therefore it cannot be simulated in an emulator. Please connect a real
Android device to your computer and select it for running this app after
hitting the Run button in Android Studio as follows:

198

CHAPTER 10. ANDRIOD APP #6: S.0.S. MESSAGE SENDER

@ Select Deployment Target X

Connected Devices

[l ASUS ASUS_Z002 (Android 4.4.2, API 19)

Available Virtual Devices
E] Nexus 4 API 24

[Create New Virtual Device Don't see your device?
() Use same selection for future launches m Gancel

Figure 10.11. Selecting a real Android device with GSM functionality

When the app starts, please wait a moment to see the READY TO
SEND! message on the screen and then if you click on the giant S.O.S.
button, the phone will send your current location to the hardcoded phone
number. In the receiving phone, you’ll see a text such as Please take me
from longitude: -1.985401 and latitude 52.397618. The coordinates
will obviously be different depending on your location.

It is again worth noting that you can download the complete project files,
images, etc. from the book’s companion website: www.android-
java.website.

199

http://www.android-java.website/
http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

200

EPILOGUE AND FUTURE WORK

EPILOGUE AND FUTURE WORK

| really hope that you enjoyed this book and got some confidence for
developing Android apps. If you would like to share your complaints and
suggestions, please feel free to share them publicly on the comments
section of the book’s website www.android-java.website.

This book was intended to be a starter’s guide. If you have followed this
book thoroughly, you should be ready to learn more on Android app
development and the first source for this is, of course, the Internet. |
recommend the following websites for advanced subjects:

e https://www.tutorialspoint.com/android/
e https://www.raywenderlich.com/category/android
e https://www.youtube.com/playlist?list=PLB03EA9545DD188C3

I"d like to finish this book with the following quotes which | think have
deep meanings:

“@xperience is the teacher of all things.”
Julius Caesar

“@o usg is given the honor of striking a blow for freedom which will
[ibe in history and in the better daps that [ie abead men will speak
with pride of our doings.”

Bernard Law Montgomery

1Be qood to pourself 'cause nobody else has the power to make pou
happy.

George Michael

Keep calm because it’s the end ©

201

http://www.android-java.website/
https://www.tutorialspoint.com/android/
https://www.raywenderlich.com/category/android
https://www.youtube.com/playlist?list=PLB03EA9545DD188C3
http://www.azquotes.com/quote/990357
http://www.azquotes.com/quote/990357

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

REFERENCES

1. https://developer.android.com/index.html

2. https://www.udacity.com/course/android-development-for-beginners--
ud837

3. http://www.instructables.com/id/How-To-Create-An-Android-App-
With-Android-Studio/

4. http://www.androidauthority.com/android-studio-tutorial-beginners-
637572/

5. https://www.codecademy.com/learn/learn-java

6. https://www.tutorialspoint.com/java/

7. Joseph Annuzzi Jr., Lauren Darcey and Shane Conder, Introduction to
Android Application Development: Android Essentials, Addison-Wesley
Professional, 2013.

8. Neil Smyth, Android Studio Development Essentials, CreateSpace
Independent Publishing Platform, 2016.

9. Sam Key, Android Programming in a Day, CreateSpace Independent
Publishing Platform, 2015.

10. Barry A. Burd, Android Application Development All-in-One For
Dummies, For Dummies, 2015.

Password for the files on the book’s companion website
www.android-java.website: android-java

202

https://developer.android.com/index.html
https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837
http://www.instructables.com/id/How-To-Create-An-Android-App-With-Android-Studio/
http://www.instructables.com/id/How-To-Create-An-Android-App-With-Android-Studio/
http://www.androidauthority.com/android-studio-tutorial-beginners-637572/
http://www.androidauthority.com/android-studio-tutorial-beginners-637572/
https://www.codecademy.com/learn/learn-java
https://www.tutorialspoint.com/java/
http://www.android-java.website/

		2017-02-04T09:47:23+0000
	Preflight Ticket Signature

