

Android App Development in Android Studio

Java + Android Edition for Beginners

J. Paul Cardle

2

3

Android App Development in Android Studio – First Edition

This book is provided for personal use. Reproduction/distribution in any form is

prohibited.

This book is provided for informational purposes only. Author and the publisher do not

offer any expressed or implied warranty about the accuracy of information contained in

this book. Author and the publisher do not accept any liability for any loss or damage

caused from the usage of the information given in this book. This book is a copyrighted

material of S. Yamacli. All rights reserved.

The names of the trademarked/copyrighted software and hardware in this book are for

editorial purposes only and to the benefit of the respective trademark/copyright owners.

The terms used in this book are not intended as infringement of the trademarks and

copyrights.

All product and company names mentioned in this book are trademarks (™) or registered

trademarks (®) of their respective holders. Use of them does not imply any affiliation

with or endorsement by them. All company, product and service names used in this book

are for identification purposes only.

This book is an independent publication and has not been authorized, sponsored, or

otherwise approved by Google Inc. Android is a trademark of Google Inc. Google and the

Google Logo are registered trademarks of Google Inc. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. Other names may be trademarks of their

respective owners.

This book is dedicated to all good people.

4

5

Table of Contents
CHAPTER 1. INTRODUCTION... 9

1.1. The Android Operating System ... 9

1.2. How do Android Apps Work? .. 11

1.3. Programming Languages Used For Developing Android Apps 14

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT 15

2.1. Installation of Android Studio .. 15

2.2. Installation of Emulators ... 18

CHAPTER 3. TEST DRIVE: THE HELLO WORLD APP 23

3.1. General Procedure for Developing an App 23

3.2. Creating a New Android Studio Project 24

3.3. Main Sections of the IDE ... 28

3.4. Folder and File Structure of an Android Studio Project 29

3.5. Building the User Interface .. 31

3.6. Building the Project and Running on an Emulator 35

3.7. Running on a Real Device .. 41

CHAPTER 4. JAVA BASICS .. 45

4.1. What is Java? ... 45

4.2. Using Android Studio for Java Coding ... 47

4.3. Variables in Java .. 53

4.4. Logical Decision Making Statements in Java 65

4.5. Loops in Java .. 69

4.6. Methods in Java ... 74

4.7. Classes, Objects and Inheritance in Java 79

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD 87

5.1. Creating a New Android Project .. 87

6

5.2. Developing the User Interface... 90

5.3. Writing the Main Code of the App .. 98

5.4. Building and Running the App ... 107

CHAPTER 6. ANDRIOD APP#2: BODY MASS INDEX (BMI) CALCULATOR

 .. 111

6.1. General Information .. 111

6.2. Adding and Positioning TextViews .. 112

6.3. Adding the EditText Widgets ... 115

6.4. Adding and Positioning the Button ... 118

6.5. Developing the Main Code of the App 119

6.6. Building and Running the App ... 125

6.7. Final Notes ... 127

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER 131

7.1. Creating the Project and Adding an Imageview Widget 131

7.2. Adding the Other Widgets and Setting up the IDs 136

7.3. Developing the Main Code of the App 136

7.4. Building and Running the App ... 140

CHAPTER 8. ANDROID APP #4: THE COMPASS 143

8.1. Setting up the Required Permissions .. 143

8.2. Designing the GUI of the App .. 146

8.3. Writing the Main Code of the App .. 148

8.4. Building and Running the App ... 158

CHAPTER 9. ANDRIOD APP # 5: SHOW MY LOCATION: USING GPS AND

MAPS .. 159

9.1. Creating a Map Project .. 159

9.2. Creating and Adding an Api Key .. 161

9.3. The Default MapsActivity.java File .. 164

7

9.4. Running the Maps App for the First Time 165

9.5. Implementing the Required Callbacks 166

9.6. Populating the Implemented Methods 171

9.7. Adding the Required Permissions to the Manifest File 180

9.8. Running Our App and Sending Custom Coordinates to the

Emulator ... 182

CHAPTER 10. ANDRIOD APP # 6: S.O.S. MESSAGE SENDER 185

10.1. Introduction ... 185

10.1. Adding the Required Permissions.. 185

10.2. Designing the User Interface ... 186

10.3. Developing the Main Code .. 190

10.4. Building and Running the App ... 198

EPILOGUE AND FUTURE WORK .. 201

REFERENCES.. 202

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

8

CHAPTER 1. INTRODUCTION

9

INTRODUCTION

Welcome to your guide to Android™ app development!

This book aims to teach the basics of Android app development in

Android Studio using Java programming language. I assume that you

don‟t have any Java
®
 or Android programming experience at the start of

this book. I am going to explain every bit of app development in simple

terms. You‟ll start from scratch and will be able to convert your ideas to

your own apps after completing this book. A single book obviously

cannot make you the best expert on a platform or programming language

however you‟ll have a solid background and hands-on experience on

Android app development with this book.

Android apps had been developed using Eclipse integrated development

environment (IDE) with Android Development Tools (ADT) plugin in

the past. However, Google introduced Android Studio as the official IDE

for Android app development in 2014 and this IDE became the standard.

The latest stable release is Android Studio 2.2, which will be used in this

book.

Let‟s overview the fundamentals of Android operating system and the

related concepts before starting our programming journey.

1.1. The Android Operating System
Android is an open-source mobile operating system. It is a variant of

Linux hence providing extensive security, modularity and productivity at

the mobile device level. Android is developed and maintained by the

organization called “Open Headset Alliance” (OHA). OHA was

established in 2007 with Google being its foremost member. OHA

includes a lot of prominent hardware and software companies.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

10

Originally, Android was created by a company called Android Inc.

Google acquired this company in 2005. After then, Google made it open-

source and Android gained a big momentum. Android has the market

share of around 85% in 2016 as shown in Figure 1.1 (data source:

http://www.idc.com/). Considering this market share, it is obviously

rewarding to invest in Android app development.

Figure 1.1. Market shares of mobile operating systems between 2015-Q4

and 2016-Q3

Android has seven major releases each having several minor revisions. In

order to follow these versions easier, developers name them with cookie

names. The popular versions of Android are Kitkat (Android 4.4),

Lollipop (Android 5.1) and Marshmallow (Android 6.0)

(https://www.statista.com/statistics/271774/share-of-android-platforms-

on-mobile-devices-with-android-os/). Nougat (Android 7.0) is also

gaining popularity. Android becomes more capable as the version goes

up. However, we have to be careful about selecting the version during

app development because not every device uses the latest version. If we

develop an app for the Lollipop, it may not run on a device which has

Froyo installed. Fortunately, Android Studio enables us to select set the

compatibility.

74,00%

76,00%

78,00%

80,00%

82,00%

84,00%

86,00%

88,00%

2015-Q4 2016-Q1 2016-Q2 2016-Q3

M
ar

ke
t

sh
ar

e

Period

http://www.idc.com/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

CHAPTER 1. INTRODUCTION

11

Android is utilized not only in smartphones but also in tablets, netbooks,

digital television boxes, handheld game devices and even in single board

computers such as UDOO. Therefore we first need to select the target

device(s) and version(s) before developing an app.

1.2. How do Android Apps Work?
There are different ways the programs run on various platforms. The

lowest level software can be written in machine code that runs directly

on the microprocessor. This is shown in Figure 1.2. Since it is difficult to

develop complex applications in machine code, operating systems are

used. Operating systems provide a communication and control layer

between the application software and the hardware as shown in Figure

1.3. If we want to develop a native application for running on a specific

hardware/operating system, we have to do this using a compiler and

linker. Compiler and linker takes the source code and creates the

executable file that actually runs on the operating system as shown in

Figure 1.4. For example, if we want to develop an application in C++

programming language, we have to utilize the compilation/linking

process.

Figure 1.2. Machine code – hardware relation

The main advantage of native applications is their speed. However, the

disadvantage is the incompatibility across different platforms. For

example, we cannot run a native Windows application on Ubuntu and

vice versa. Virtual machine concept is developed to overcome this

limitation. Virtual machine is software that runs on the operating system

and provides an abstraction to the developer as shown in Figure 1.5. The

application software runs on top of the virtual machine.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

12

Figure 1.3. Operating system layer between the hardware and the app

Figure 1.4. Creating a native executable from the source code

Therefore, as long as a computer has the virtual machine running, the

application software can run on that computer independent of the

hardware and the operating system. A good example is the Java Virtual

Machine (JVM). JVM runs on almost all operating systems and

platforms. Therefore, when we develop Java software, it will be run on

the JVM independent of the operating system/platform.

The obvious advantage of developing apps that run on virtual machines

can then be stated as: “develop once and run on all platforms”. However,

applications running on virtual machines are slower than native

applications.

General development process of virtual machine applications is

summarized in Figure 1.6.

CHAPTER 1. INTRODUCTION

13

Figure 1.5. Virtual machine between the app and the operating system

Figure 1.6. Creating an intermediate code from the source code –

intermediate code is interpreted by the virtual machine

Similar to Java applications, Android applications also run on a JVM.

There are two special virtual machines used in Android: Dalvik Virtual

Machine (DVM) and Android RunTime (ART). These are specialized

JVMs which can run on low system resources. The .apk files

(executables of Android apps) actually run on these virtual machines.

DVM has been the default runtime environment (~ virtual machine) until

the Lollipop release (Android 5.0). ART is introduced by Android 4.0

and has been the default VM as of Android 5.0. DVM and ART basically

do the same job: running Android apps independent of the platform. The

main advantage of ART over DVM is the utilization of a concept called

Ahead of Time (AOT) compilation instead of Just in Time (JIT)

approach. In AOT, apps are compiled during installation hence they load

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

14

faster with lower CPU usage. On the other hand, JIT compilation

provides lower storage space consumption with relatively longer loading

times.

1.3. Programming Languages Used For Developing

Android Apps
The recommended and convenient way of developing Android apps is

using Java programming language. Although Java is a general purpose

tool, it is used in conjunction with Android Software Development Kit

(SDK) in Android Studio environment to develop apps. Another official

way is using C++ with the Native Development Kit (NDK). This option

is used for developing apps with low level instructions such as timing

sensitive drivers. With C++ and NDK, we can directly run the app on the

Android kernel hence increasing efficiency in exchange of code length

and development cost. There also exist third-party tools like Xamarin,

Crodova and React Native for developing apps. These platforms provide

convenience however a native-like performance isn‟t normally expected

from the apps developed by third party tools.

We‟ll use the standard and official way of developing Android apps:

Java with Android SDK and we‟ll use Android Studio Integrated

Development Environment (IDE) for this job. You don‟t need to know

Java to start following this book because the basics of Java are also

explained in Chapter 4.

I‟ll not introduce complicated subjects until I‟m sure that you understand

the basics because it is very easy to get lost while learning a new

programming language. You‟ll not be in such a situation with this book.

I‟ll try to teach new concepts in the simplest way possible. Please don‟t

forget that learning a programming language is a non-stop process, it

never ends and this book will help you get started easily.

Now, you know the aims and the method of this book. Let‟s continue

with installation of the Android Studio in the next chapter after having a

coffee break.

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

15

SETTING UP YOUR DEVELOPMENT ENVIRONMENT

We‟ll use Android Studio, which is the official IDE for Android app

development; therefore we need to install it with the required plugins.

2.1. Installation of Android Studio
Android Studio runs on Java Runtime Environment (JRE). JRE can be

installed on Windows, Mac and Linux computers. We need to follow the

steps given below for the installation of Android Studio independent of

our operating system:

1. Installation of Java: Java is developed by Oracle Inc. There are

basically two Java packages: Java Runtime Environment (JRE) and Java

Software Development Kit (JDK). JRE is used for running software

written in Java programming language whereas JDK is utilized for

developing Java software. Therefore, installing JRE is adequate for

running Android Studio because we will not develop Java software here.

Please navigate to the following website to download the JRE:

http://www.oracle.com/technetwork/java/javase/downloads/jre8-

downloads-2133155.html. You‟ll be presented with the download

options shown in Figure 2.1. Just select the version compatible with your

operating system, download it and install it with the usual installation

procedure (Next, next, …).

2. Installation of Android Studio and Android SDK

Android Studio is bundled with Android Software Development Kit

(SDK). Please navigate to the official download site located at:

https://developer.android.com/studio/index.html . The download link for

the Windows version is shown at the top of this site but if you scroll

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://developer.android.com/studio/index.html

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

16

down, you can find the setup files available for download for other

operating systems as shown in Figure 2.2.

Figure 2.1. Download options for Java Runtime Environment

Figure 2.2. Download options for Android Studio

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

17

When you download and install Android Studio, Android SDK will also

be automatically installed.

3. Installation of SDK updates: After the installation of Android

Studio, it is better to check SDK updates. For this, run Android Studio

and open the SDK manager from Tools  Android  SDK Manager as

shown below:

Figure 2.3. Opening the SDK Manager

The SDK Manager window will appear as shown in Figure 2.4.

Figure 2.4. Android SDK Manager

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

18

Please open the standalone SDK Manager by clicking the link indicated

in Figure 2.4. In the standalone SDK Manager, click on the “Install …

packages” as shown below:

Figure 2.5. Standalone SDK Manager

After you install the packages, you‟ll have the latest SDK and be ready to

develop apps. However, before our test drive app one more step is

needed: setting up the emulators.

2.2. Installation of Emulators
Emulators are software that mimics the behaviour of real devices. When

we develop an app, we obviously won‟t have all the possible devices

(Android phones, tablets, etc.) available at hand. Because of this, we run

the apps on emulators for testing on various devices. Emulators are also

called as “Android Virtual Devices (AVDs)” in Android Studio. When

Android Studio is first installed, there is no default AVD. We need to

create one before testing our apps. For this, select Tools  Android 

AVD Manager as shown in Figure 2.6.

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

19

Figure 2.6 Launching the AVD Manager

When AVD Manager appears, there won‟t be any AVDs created or

installed. Please click on the + Create a Virtual Device button as shown

below:

Figure 2.7. Creating a new AVD

AVD Manager will show a detailed window as in Figure 2.8. You can

select various devices with different screen sizes and other hardware

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

20

properties. You can select device groups from the left pane as TV,

Phone, etc. Phone group is the default selection. In this group, Nexus 5 is

also selected by default. When you click “Next”, you‟ll be presented by

choices for the Android version of the AVD as shown in Figure 2.9.

Figure 2.8. Creating a new AVD – selecting the device

The recommended targets start from Android 5.1. We can Android 7.0

with Goole APIs (Nougat) as shown in the figure. Then, please click

“Next” and give a name you like to the AVD. I didn‟t change the

defaults in the next screen as shown in Figure 2.10. After clicking

“Finish”, the AVD is created and shown in the AVD Manager as in

Figure 2.11. You can now try your Android apps on this AVD, which

will accurately mimic the behaviour of a real Nexus 5 phone.

We can run the AVD by clicking the “Play” button shown inside the

square in Figure 2.11. The virtual device will appear as in Figure 2.12

which you can use like a real Nexus 5 phone.

CHAPTER 2. SETTING UP YOUR DEVELOPMENT ENVIRONMENT

21

After installing both the development environment and the emulator,

we‟re now ready to develop our test drive app, Hello World, in the next

chapter.

Figure 2.9. Selecting the Android version of the AVD

Figure 2.10. Final settings of the AVD

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

22

Figure 2.11. Newly created AVD shown in the AVD Manager

Figure 2.12. Nexus 5 emulator window

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

23

TEST DRIVE: THE HELLO WORLD APP

3.1. General Procedure for Developing an App
A good method for testing the installation of a compiler or a

development environment is to try a “Hello World” example. It just

displays a text such as “Hello World” on the screen. OK, I know it is not

an app that you‟d be proud of showing to your family or friends but its

usefulness stems from testing whether your programming environment is

working properly and to see if you‟re ready to go for real projects. In our

very first Android project, we will develop an app in which the “Hello,

World!” text will be shown in the middle of the device screen. We will

test it on the emulator we created before but if you have access to an

Android device, you can test your “Hello World” app on it too.

I‟d like to point out general steps of app development before setting off

for developing our first app:

1. Creating an Android Studio project,

2. Setting up the User Interface (UI) of the app,

3. Connecting the UI components such as buttons, textboxes, etc. to the

Java code,

4. Coding in Java – the actual programming part

5. Building the project: this means creating the executable (file that

actually runs on device or the emulator). This is not difficult as it sounds;

Android Studio does the entire job with a single click,

6. Trying the app on an emulator,

7. Running the app on a real Android device (optional),

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

24

8. Publishing the app on Google Play (optional).

3.2. Creating a New Android Studio Project
When we run Android Studio for the first time, we are presented by the

dialog shown in Figure 3.1 where several options are available: i) Start a

new Android Project, ii) Open an existing project, iii) Check out a

project from a version control website (like GitHub), iv) Import a project

created in a different development environment (like Eclipse) or

v) Import an Android code sample (where code samples are downloaded

from version control websites). We‟ll develop our first Android project

therefore please select the first option shown by the arrow in Figure 3.1.

Figure 3.1. Creating a new Android Studio project for our first app

After selecting to create a new project, a dialog box for entering the

project settings will appear as in Figure 3.2. In the first textbox (shown

by “1” in the figure), we are required to enter the project name, which

will also be the name of the app. I entered “Hello World” but you can

enter another name as you wish. The company domain is given in the

next textbox shown by “2”. This is a string similar to a web address that

is used to distinguish among developers in the Google Play market. You

can use any unique domain here. If you won‟t upload your app to Google

Play (as in this example where we‟re just developing for learning the

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

25

basics), you can use any domain you like. I used the one shown in the

figure. And then, we need to select the location on the computer to save

the project files (shown by “3”). You can select any place you like to

save your project files.

Figure 3.2. New project settings

After clicking “Next”, the Target Android Devices window shown in

Figure 3.3 will appear. I selected the Phone and Tablet checkbox and

then set the Minimum SDK as API 15 – Android 4.0.3. This means that

the app we‟ll develop will be able to run on devices having Android

version 4.0.3 or higher. After selecting the target, please click “Next”.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

26

Figure 3.3. Selecting target devices

The template of the user interface is selected in the following dialog. As

you can see from Figure 3.4, there are several templates including a login

activity, maps activity, etc. However, since our aim is just writing a text

on the screen, it is OK to select the Empty Activity as shown in Figure

3.4. So, what does an activity mean? Activities can be defined as

screens shown to the user with user interfaces. Therefore, we have to

include an activity to have an app because as you know Android apps are

visual programs that have one or more user interfaces.

After selecting the default activity, Android Studio asks us to give names

to the activity and the related layout file as shown in Figure 3.5. Since we

will have a single activity in this app, it is perfectly OK to leave their

names as defaults. When we click “Finish”, Android Studio will create

the project files and folders automatically (this make take a while) and

then the IDE will appear as in Figure 3.6.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

27

Figure 3.4. Adding an activity template to the app

Figure 3.5. Customizing the newly added activity

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

28

3.3. Main Sections of the IDE
Android Studio is a sophisticated tool therefore it has dozens of

properties to make app development easier. Instead of giving every detail

of this IDE at once, I prefer to explain and teach in a slower way so that

the reader can grasp the app development concepts in a solid way. Let‟s

start with explaining the main sections of Android Studio by referring to

Figure 3.6.

Figure 3.6. Basics sections of Android Studio

The sections of Android Studio in the figure above can be summarized as

follows:

Section 1. The project files and folders can be viewed from here. In

addition, new files can be added from this pane. We need to double-click

on the filenames here to open them in the middle pane. The project

structure will be explained in detail in the next subsection.

Section 2. The opened files can be activated from the tabs located here

for viewing in the middle pane.

Section 3. This is the middle pane. Contents of the active files can be

viewed and changed from here. For the project shown in Figure 3.6, the

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

29

file called “MainActivity.java” is the active tab in Section 2 therefore the

middle pane in Section 3 shows the contents of this “MainActivity.java”

file.

Section 4. This section is also controlled via tabs. The developer can

switch project files, structures, captures and favourites for viewing in the

left pane.

Section 5. The current or previous compilation, building or debugging

processes are shown here. For the snapshot of Figure 3.6, it is indicated

that the “Gradle build finished in 14 seconds”. Gradle is the build system

of Android Studio. Therefore, the message says that the building engine

completed its previous task in 14 seconds.

Section 6. This is the Run button of Android Studio. When we set up the

user interface and write the Java code of a project, we click this button to

make the Android Studio build the project (which means creating the

executable file from project files) and then we can run it on an emulator

or on a real device.

3.4. Folder and File Structure of an Android Studio

Project
The file structure of an Android project can be viewed in various forms

in Android Studio. The button just at above the left pane (shown by the

arrow) is used to open the selection box for choosing the preferred

method of viewing the file hierarchy as shown in Figure 3.7. The default

file viewer is the “Android” mode which is the easiest way of grouping

files and folders in my opinion. When the selection is the “Android”

mode, the default files and folders shown in Figure 3.8 is shown in the

left pane. You can use the arrows (shown inside the circle in the figure)

for viewing the contents of folders.

The default folders (shown inside the rectangles in Figure 3.8) and their

contents are explained as follows:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

30

Figure 3.7. Switching among different ways of viewing files and folders

1. manifests folder: This folder has the AndroidManifest.xml file inside.

This file contains the configuration parameters of the project such as

permissions, services and additional libraries.

2. java folder: The source code files written in Java programming

language reside in this folder. You can see that the java file of the

activity named “MainActivity.java” is automatically created in this

folder.

3. res folder: The resource files are contained in this folder. Resources

basically mean all the needed files except the source code. For example,

if we want to include an mp3 file in our project, we place this file inside

the “res” folder.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

31

Figure 3.8. Default folder and file structure of an Android project

The media, image and layout files residing in the resources folder are

accessed via Java code written in MainActivity.java as we‟ll see in a

while.

3.5. Building the User Interface
Android Studio provides an easy way of designing user interfaces. The

file named “activity_main.xml” located under the “res/layout” folder

contains all the layout information of the current activity.

If we try to open an .xml file outside of Android Studio, it is opened by a

text editor or a browser. However, when we open an .xml file in Android

Studio, it reads the .xml file and shows the corresponding activity layout

with its components. In order to open the activity_main.xml in Android

Studio, please double-click on it in the project explorer and the activity

layout will be displayed in the middle pane as shown below:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

32

Figure 3.9. Layout of the activity

As you can see, the layout of the activity is shown in the middle pane.

The name of the app appears at the top of the activity. The default empty

activity contains a default text which is shown inside the circle in the

above figure. At the left top of the middle pane, there exists a tab called

“Palette” indicated inside the rectangle in the figure. When we click on

this tab, the palette shown in Figure 3.10 appears from which we can add

all possible user interface objects and layout templates to the activity.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

33

Figure 3.10. The component palette

When the palette tab is clicked, two panes are opened: the Palette shown

by the upper rectangle and the Component Tree pane inside the lower

rectangle in Figure 3.10.

The Palette contains several groups like Widgets, Text Fields and

Layouts. We can easily drag and drop these components to the user

interface. On the other hand, the Component Tree lists the activity‟s

components in a hierarchical manner. We‟ll see the utilization of these

components as we develop complex apps in the following chapters.

However, our aim for now is to write a text on the screen. As you can see

from Figure 3.10, Android Studio already placed a “Hello World” text at

the top left of the view.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

34

Let‟s position this text, comprised of a TextView widget, to the middle

of the view. For this, select this TextView and then drag and drop to the

middle by the help of the guiding lines as shown below:

Figure 3.11. Drag and drop operation on the TextView

After the drag and drop operation, the TextView will be kept selected.

We can now change the properties of the TextView using the Properties

pane which is at the right of the Layout view as shown inside the

rectangle in Figure 3.12. Please click the arrow shown inside the circle in

this figure to open the basic editable properties of the TextView.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

35

Figure 3.12. The Properties pane

The editable properties of the TextView component are shown inside the

rectangle in Figure 3.13. In order to display the “Hello World” text in a

better way, I changed its text size to 24sp (sp = scale–independent pixels)

and its style to bold by clicking the B button in the textStyle section.

We have now completed setting up the user interface. Since we don‟t

want our first app to do something interactive, we don‟t need to write

single line of code for now. Of course we‟ll do a lot of coding in the

upcoming projects but we don‟t need any coding here.

3.6. Building the Project and Running on an Emulator
Our first Android app is now ready to be run on an emulator. This is easy

in Android Studio. We have set up a Nexus 5 emulator in the previous

chapter therefore the only things we need to do are i) building the

project, ii) selecting the emulator and then, iii) run our app on the

emulator.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

36

Figure 3.13. The editable properties of the TextView

In order to build and run the project, please click the “Run” button as

indicated by the arrow in Figure 3.13. The emulator and device selection

dialog shown in Figure 3.14 will appear. Since we have created a Nexus

5 emulator before, it is automatically selected as shown inside the

rectangle. If we had connected a real Android device via USB cable to

the computer, it would also show up in this dialog. However, since there

is no real device connected for now, the dialog gives a warning at the top

shown inside the ellipse in the figure. Please click “Next” and then the

emulator will boot like a real device. It takes some time depending on

your computer speed to completely start the emulator (something like 20

secs).

When the emulator starts running, you‟ll see a Nexus 5 screen as shown

in Figure 3.15. You can use it like a real device (apart from calling and

SMS features of course), and you can also use the controls on the right

bar for changing general properties of the emulator if you want to.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

37

Figure 3.14. Selecting the target for running our first app

Figure 3.15. The Nexus 5 emulator

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

38

The emulator started but we cannot see our app running on it. Don‟t

panic! If we check the main Android Studio window, we can see that it

has given a warning as shown below:

Figure 3.16. Instant Run warning

Android Studio asks us if we want to utilize a component called Instant

Run. Instant Run is a system introduced in Android Studio 2.0 and it

shortens the Code  Build  Run cycle. When we use Instant Run,

Android Studio pushes code updates to the emulator without the need of

building a new executable. Therefore, viewing the effects of the changes

of the code can be seen on the emulator in a shorter time. In summary,

Instant Run is a good thing so let‟s install it by clicking the “Install and

Continue” button shown in Figure 3.16. Android Studio will download

the required files in a short time, and then we need to install these

updates by the usual next-next procedure. After the tiny installation,

Android Studio will build our project as indicated inside the rectangle in

Figure 3.17.

After the building process, the emulator will run our first app as in Figure

3.18. If you see the emulator screen shown in this figure,

congratulations. You’ve successfully created your first Android app.

We can make any change in our app, and then press the “Re-Run” button

indicated by the arrow in Figure 3.19. The emulator will install the

updated app for emulating.

As you can see from your very first project, Android Studio offers vast

number of possibilities and a user–friendly interface for transforming

your ideas into Android apps.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

39

Figure 3.17. Android Studio in the process of building our project

Figure 3.18. Emulator running our “Hello World” app

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

40

Figure 3.19. The “Re-Run” button in Android Studio

I changed the text to “Hello Android!” from the TextView properties

pane (shown in Figure 3.12) and pressed the Re-Run button. Android

Studio built the project again and the updated app is displayed on the

emulator screen as below:

Figure 3.20. The emulator running the updated app

You can stop the emulator running the app using the square red “Stop”

button which is just at the right of the “Re-Run” button. When you stop

the app, the emulator will not shut down completely and wait for the next

run.

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

41

3.7. Running on a Real Device
It is also easy to try our app on a real Android device.

1. Things to be done on the device: Before running/debugging apps on

the real device, we have to enable the Developer Mode on the device.

For this, on your real device please navigate to Settings  About 

Build number or Settings  About Software information  Build

number. Depending on your device and Android version, the place of

the “Build number” may be different however I‟m sure you can find it

easily in the Settings  About section. Once you find the Build

number, tap on it seven times and then your device will show a dialog

box saying “You‟re now a developer.”

After you‟ve enabled the Developer Mode, you‟ll find a new section

called “Developer options” under the Settings of your device. Please tap

on it and then check “USB debugging” to enable debugging via the USB

connection. You can now install apps from Android Studio to your

device over the usual USB connection.

2. Things to be done in Android Studio: First of all, please enable

“ADB Integration” from Tools  Android  ADB Integration as shown

below:

Figure 3.21. Enabling ADB Integration in Android Studio

Now, we need to make our app “debuggable”. For this, open the

AndroidManifest.xml file by double-clicking on it and add the text

android:debuggable="true"

Code 3.1

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

42

inside the <application> element as shown in Figure 3.22.

Figure 3.22. Adding the “debuggable” property to our app

We are now ready to test our “Hello World” app on the real device.

When we hit the “Run” button in Android Studio, the following device

selection window will appear:

Figure 3.23. Selecting the real device

CHAPTER 3. TEST DRIVE: HELLO WORLD APP

43

I have connected my Asus Zenfone 6 hence its name is written in the

device selection window; it will obviously be different if the device you

connected is different. After the device selection, click on the “OK”

button and then the app screen of Figure 3.18 should appear on your

actual device. If you see the “Hello World!” text on the real device, it‟s

excellent. You now know how to install your apps on real Android

devices. Running an app on a real hardware is sometimes essential

because some operations like SMS sending and calling can only be done

on real devices.

We have developed out test drive app, “Hello World”, and learned

i) Creating an Android Studio project,

ii) Using user interfaces and widgets,

iii) Creating emulators,

iv) Building the app,

v) Running our app on the emulator,

vi) Running our app on a real device.

But as you may have noticed, we didn‟t have any interaction with our

app. It just writes a text on the screen and that‟s it. In order to make an

app to do something, we need to program it. Java is the main

programming language used for developing Android apps. We‟ll learn

the basics of Java in the next chapter which will enable us to transform

our ideas to working Android apps. Let‟s have a coffee break (a 3in1

coffee is recommended since we‟ll need glucose) before starting our Java

lecture.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

44

CHAPTER 4. JAVA BASICS

45

JAVA BASICS

4.1. What is Java?
We have developed our first app. That‟s great. However, it just writes a

text on the screen and that‟s it. The user doesn‟t have any interaction

with our app. In order to make an app to be interactive and do something

real, we need to tell it what to do. And we need to tell it exactly. We do

this by using programming languages.

As an old saying states: “Computers are actually rather stupid”. This is

because: if we’re telling a computer to do a task, then we have to do

this in exact terms. Let‟s try to explain this by an example: imagine that

you had a tiring workday and going home with your stomach rumbling.

While you‟re on the way on M4 motorway, the traffic got crowded near

Oxford and you had some time to think what you‟ll have for the dinner.

You suddenly remembered that there is frozen chicken korma in the

fridge. You ring your wife (with hands–free of course!) and will ask her

to cook that meal.

You – Hi darling, hope you‟re OK.

Your wife – Thanks, a bit tired. You?

You – Me too. And also very hungry. Could you please cook a frozen

chicken korma for me? There should be some in the fridge. I‟m sure

you‟ll also have one, I know you love it.

Your partner – Yummy yummy. I‟ll darling, it will be sizzling when you

arrive. See you in a while, bye. (A caring wife!)

You – Thanks darling, bye.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

46

Then, she‟ll find the frozen korma wherever it is in the fridge, unpack it,

remove the sleeve and pierce film lid in several places. Set the timer,

power on the microwave (or oven) and cook it. She‟ll cook the included

pilau rice too without a need to ask you. That‟s it. However, if you had a

robot wife with a computer brain, the dialog would be more like this:

You – Hi darling, hope you‟re OK.

Robot wife – Thanks. You OK? (not in a romantic tone!)

You – Very tired. And also very hungry. Could you please cook a frozen

chicken korma for me? There should be some in the fridge.

Robot wife – Where is the frozen korma in fridge, do you want me to

cook pilau rice too? Do you want them normal or overcooked? Do you

want a garlic bread too? When do you want it to be ready?....

You – Stop, stop please. I‟ll drive to a restaurant.

Robot wife – I don‟t understand, you are nonsense....

Well, any programmable digital device is more or less the same. We

have to tell exact things to them. We do this by using programming

languages. There are a lot of different programming languages used to

develop software for different platforms. You can check the widely used

programming languages and their rankings at the TIOBE index website:

http://www.tiobe.com/tiobe-index/. It is sometimes difficult to choose

which programming language to use. There is not a universally

excellent/complete programming language; they have strong and weak

sides.

When we check the TIOBE index, we see that Java is consistently the

most widely used programming language for years. There are several

reasons for this. The main reasons are: i) being platform independence,

ii) having a lot of libraries and iii) having object oriented nature, iv)

having a strong security and robustness. Because of these reasons,

Android apps are also mainly developed in Java. Therefore, in order to

learn Android app development, we have to grasp the basics of Java

http://www.tiobe.com/tiobe-index/

CHAPTER 4. JAVA BASICS

47

programming language. After learning Java, we‟ll use Android SDK

libraries with Java and develop Android apps.

We can use standalone Java compilers or Java-specific IDEs for learning

Java. However it is also possible to try Java code in Android Studio with

a simple trick. Since we already set up Android Studio, we will use it for

Java coding here.

4.2. Using Android Studio for Java Coding
First of all, we need to launch Android Studio and create an Android

project as we did in the previous chapter. We can name the project as we

want and select any Android version and any screen layout for now.

When the project loads, the project files and folders will be like the

following in the left pane of Android Studio:

Figure 4.1. Default file structure of a new Android Studio project

We‟ll create a new Java file in order to try Java codes. For this, right

click on one of the java folders such as

com.example.atomic.javabasics1 in the above figure (or another Java

folder in the project you created, your folder names will be different

because your project name is different) and then select New  Java

Class as shown in Figure 4.2.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

48

Figure 4.2. Creating a new Java Class

In Java, all programs are classes therefore we create a new Java Class.

(We‟ll learn classes later in this chapter.) Please name the new class

without any spaces and special characters (I named it as JavaBasics) and

then click “OK” as shown below:

Figure 4.3. Creating a new Java file (Java class)

CHAPTER 4. JAVA BASICS

49

It is worth noting that the file kind is class as shown inside the ellipse in

Figure 4.3. After clicking “OK”, Android Studio will create the new Java

file called JavaBasics.java and show it in the middle pane as shown in

Figure 4.4.

Figure 4.4. The contents of the new Java file

The new Java file has the following default lines of code:

package com.example.atomic.javabasics1;

public class JavaBasics {

}

Code 4.1

The first line defines a package that contains our new Java class. Java

classes are organized in packages. Packages are like folders on your

computer that hold several files inside.

The second line is the main class definition. All programs are classes in

Java hence all Java files (programs) should have a class definition for

compilation. Please always remember that the class definition should

match the name of the Java file (in our case the filename is

JavaBasics.java and the class name is JavaBasics).

The contents of the programs are written inside the curly brackets opened

just after the class name definition in the second line and closed in the

third line in Code 4.1.

Our Java file only has basic package and class definitions by default. The

body of the Java class is empty thus this Java program does not do

anything at all when it is compiled and run.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

50

 The source files of Java programs have .java extension. The Java

compiler generates a .class file from .java file. This .class file is then

executed on a Java Virtual Machine. This flow is shown below:

Figure 4.5. Compilation and execution of a Java program

Anyway, let‟s see how we can make a “Hello World” program from our

JavaBasics.java file. In a Java source file, the following code line prints a

text in the terminal window:

System.out.println("the text to be printed");

Code 4.2

In this code line, System.out means that Java will output something and

println() method outputs the text written inside it. It is worth noting

that texts are written inside double quotation marks (“…”) so that the

Java system knows that the programmer refers to a text. Therefore, by

placing “Hello World” inside the function shown in Code 4.2, we can

print “Hello World” text on the screen in Java using the code below:

System.out.println("Hello World");

Code 4.3

So, where will we place this line in our java file? We learned that the

Java code should be between the curly brackets of the class definition.

Hence, we may try to obtain our Java “Hello World” program by placing

Code 4.3 into Code 4.1 as follows:

package com.example.atomic.javabasics1;

public class JavaBasics {

 System.out.println("Hello World");

}

Code 4.4

CHAPTER 4. JAVA BASICS

51

If we try to compile and run this code, the compiler gives an error and

doesn‟t run our program. It is because all Java programs should have a

main method. The main method indicates the starting point of a Java

program which will be executed firstly when the program is run. Adding

the main function, we obtain a correct “Hello World” program in Java as

follows:

package com.example.atomic.javabasics1;

public class JavaBasics {

 public static void main(String args[]) {

 System.out.println("Hello World");

 }

}

Code 4.5

The main function is defined in line 3 above: public static void

main(String args[]). In general, the main method is not explained

at this stage and the tutors say “just accept the main method as it is for

now, we‟ll learn more about it later”. However, I‟d like to point out the

general structure of the main method:

This method has three keywords in the front: public, static and

void. Their meanings can be summarized as follows:

1. public: the main method will be accessible from anywhere,

2. static: the main method doesn‟t belong to a specific object and

3. void: the main method will not return a value.

These will be clearer when we learn classes in the last subsection of this

chapter.

The main method also has arguments which are the inputs to this method

in the form of String args[].These mean that the main method can

have several inputs (arguments) in text form. These will be understood

better when we dive deep on functions and their arguments later.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

52

Please don’t panic and don’t be put off at this point. I know these

may be confusing and you might say “Writing just a Hello World

program takes ages with Java and it is confusing.” Java codes are

generally longer compared to other programming languages. However,

this is also a strong side of Java. This is because Java is a very organized

and structured language that provides the developer with increased

number of possibilities with lower error-prone coding.

After inserting Code 4.5 to our JavaBasics.java file, we are now ready to

run our Java “Hello World” program. For this, find the JavaBasics.java

from your file explorer in Android Studio, right-click on it and then

select Run „JavaBasics.main()‟ as shown below:

Figure 4.6. Running our Java program in Android Studio

Android Studio will compile our JavaBasics.java file and then run it.

This takes a while. After then, the output of the program will be

displayed in the Terminal window at the bottom pane of Android Studio

as shown in Figure 4.7.

We have now written, compiled and run our first Java application in

Android Studio without the need of using any other development

CHAPTER 4. JAVA BASICS

53

environment. Let‟s continue with learning about variables used in Java in

the next subsection.

Figure 4.7. Terminal output of our Java program in Android Studio

4.3. Variables in Java
Variables are entities that contain information. Variables can be thought

as boxes that hold data. The creation of variables is called “the

declaration of the variable” and placing its value during its declaration is

referenced as “initializing the variable”. We can insert the value of the

variable during the declaration or later, depending on conditions.

Just as real world boxes that can be used to hold different things like a

sugar box, a match box or a component box, variables in programming

languages also have different types.

Java is defined as a statically and strongly typed programming language

which means that the type of a variable should be defined during its

creation and this type cannot be changed later. There are two variable

type groups in Java:

1. Primitive variable types: These variable types hold single data at a

time. In other words, primitive variables hold primitive values. Primitive

variables always have values. Primitive variables exist from their

creation to the end of a Java program.

2. Reference variable types: These “non-primitive” types are dynamic

variables; they can be created and erased before the program ends. These

variables store the addresses of objects they refer to. Unlike primitive

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

54

types, reference types may have the value null, which means non-

existence. The null value means the absence of its value.

These may seem confusing at first but please just try to remember that

primitive types are used to store actual values but reference types store a

handle to an object.

The widely used variable types used in Java are shown in the following

figure:

Figure 4.8. Variable types in Java

Let‟s explain the primitive data types first.

1. Boolean variables: Boolean variables have the property of having

only two distinct values: true or false. We can think booleans as a

yes–no question like “Is the screen background blue?” The answer can

only be “yes” or “no”. Instead of the words “yes” or “no”, Java uses

true or false. The following code defines a Boolean variable called

myBoolean and assigns true as its value during the declaration:

boolean myBoolean = true;

Code 4.6

CHAPTER 4. JAVA BASICS

55

In this code, the word boolean is the keyword used for defining a

boolean variable. The name of the variable to be created is written next

to the keyword. In this example, the variable name is myBoolean. The

equal sign (=) is used to assign a value therefore true is assigned to the

newly created variable in this code. This assignment can be visualised as

in Figure 4.9.

Figure 4.9. Assigning true to the variable myBoolean

On the other hand, Java statements are ended using a semicolon (;) as in

Code 4.5 otherwise the compiler gives an error and doesn‟t compile our

program. The template is similar for other variable types too. Boolean

variables are generally utilized for decision making in applications which

uses complex logic.

2. Integer variables: Integer variables are widely used in Java. An

integer variable basically stores an integer value (a whole number that

doesn‟t have fractional part). As it can be seen from Figure 4.8, integer

variables have several forms: int, long, short, char and byte. Let‟s

see what these types are used for:

 int type variables are used to store integer numbers. For example,

the following code defines an integer and assigns the value of 5 to it

during declaration. In other words, a new int type variable is

created and initialized to 5:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

56

int myInteger = 5;

Code 4.7

As you can see from this code, variables that hold integer numbers are

defined using the keyword int. After defining and initializing an int,

we can perform mathematical operations on it. The following code

shows the whole Java source code where an int type variable is created,

initialized and then another integer value is added to it before printing the

result on the terminal screen:

package com.helloworld.quantum.helloworld;

public class JavaBasics {

 public static void main(String args[]){

 int myInteger = 5;

 myInteger = myInteger + 7;

 System.out.print("Sum = " + myInteger);

 }

}

Code 4.8

Let‟s analyse what happens in the above code:

 An int variable called myInteger is created and initialized to 5 on

the fourth line.

 In the fifth line, this variable is added to the number 7 and then the

result is assigned back to myInteger by the line myInteger =

myInteger + 7; as shown below:

Figure 4.10. Addition principle

CHAPTER 4. JAVA BASICS

57

 Finally, the sixth line System.out.print("Sum = " +

myInteger); prints out the value of myInteger.

Please note that, its value will be written next to the expression “Sum =

” in this code. This Java program and its output are shown in Figure

4.11.

More arithmetic and logic operations can be applied on integer variables

as we‟ll learn in our Android projects in the upcoming chapters.

Figure 4.11. int type definition and addition operation in Java

 int type variables can store numbers from –2 147 483 648 to +2

147 483 647 (these are not phone numbers!). If the numbers we will

use are not that big, we can use short type variables which have

the limits of –32768 to +32767. If you say that you‟ll store numbers

for rocket science, you can use long type variables instead, which

have the range of -2
63

 to 2
63

–1 (really big numbers). The definition

and assignment of int, short and long types are the same, only

the size of the numbers they can hold are different (and of course the

memory size they will take proportional to the number length they

store).

 Another integer variable type is byte. A byte can store numbers

between –128 to 127. In computers, a byte represents 8 bits (binary

digits). 8 bits can have the values between 8 zeros (00000000) to 8

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

58

ones (11111111). There are 256 numbers in between these numbers

therefore they are mapped to -128 to 127 range which contain 256

numbers. In the following code we define a byte variable a and

print it on the terminal:

package com.example.atomic.javabasics1;

public class JavaBasics3 {

 public static void main(String args[]) {

 byte a = 100;

 System.out.println(a);

 }

}

Code 4.9

If we try to assign a number which is not in the range of –128 and 127 to

a byte, the compiler gives an error as shown in Figure 4.12.

Figure 4.12. Java compiler error

In this figure, the type of the variable a is byte therefore it cannot

accommodate the value of 300. When we write an incorrect statement,

Java compiler gives an error by underlining the errorneous code with red

line and shows a red bulb at the incorrect line(s). If we click on these red

bulbs, the compiler gives recommendations for correcting our

expression.

 The last but not the least important integer variable type is char. It

stores value between 0 and 65535 which constitutes 16 bits (= 2

CHAPTER 4. JAVA BASICS

59

bytes). char type is generally used to hold characters. We can think

the characters to be a single letter, a single number or a single

symbol like those on our keyboard. In computers, characters are

usually mapped to integers via the American Standard Code for

Information Interchange (ASCII) table which can be viewed at

http://www.asciitable.com. The char types in Java use Unicode

system which is a superset of ASCII. As an example, the character d

is assigned to the variable myChar which is of the char type

variable in the following code:

package com.example.atomic.javabasics1;

public class JavaBasics3 {

 public static void main(String args[]) {

 char myChar = 'd';

 System.out.println(a);

 }

}

Code 4.10

Please note that the characters assigned to char variables are written

inside single quotes to tell the Java compiler that this value is of

character type. The terminal output of this code is shown below:

Figure 4.13. char definition in Java

http://www.asciitable.com/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

60

3. Decimal variables: Integer variables can only be used to store whole

numbers that don‟t have a fractional part. Decimals (numbers with

fractional parts) are represented by two types in Java: float and

double. Their difference is the number of the fractional digits they can

hold. float types can store 7 fractional digits while this number is 16

for double types. Two variables are defined in the following code

snippet with double and float types and then they are printed to see

what Java can get from their initializations:

package com.helloworld.quantum.helloworld;

public class JavaBasics2 {

 public static void main(String args[]){

 float myFloat = 1.12345678901234567890f;

 double myDouble = 1.12345678901234567890;

 System.out.println("myFloat is: " + myFloat

+ ", myDouble is: " + myDouble);

 }

}

Code 4.11

Please note that, the decimal number trying to be assigned to myFloat

variable is written by an f letter at the end in the above code

(1.12345678901234567890f). This is because Java tries to take any

compiler that we want to create a float type variable. The output of this

code in Android Studio is shown below:

Figure 4.14. float and double types in Java

CHAPTER 4. JAVA BASICS

61

In Code 4.10, we tried to assign the number 1.12345678901234567890

to both myFloat and myDouble variables. However, as it can be seen

from the terminal output of Figure 4.12, Java assigned only 7 fractional

digits of this number to myFloat while it assigned 16 fractional digits to

myDouble. Therefore we can see that float and double types can hold

7 and 16 fractional digits, respectively. It can be argued that double

type variables are better than float type variables because they can hold

more digits. However, on the other hand double variables take more

space in the memory. Hence, if memory is not a concern in our Java or

Android applications, we can use double for better precision whereas it

is better to use float where memory is a problem.

We have learned primitive types until here which are built into Java

language and store actual values. The second main class of variables are

reference types. Reference types do not store values; instead they store

addresses of the objects they refer. So what is an object? An object is a

conceptual bundle that consists of values and related methods (operations

that can be applied on values).

There are several forms of reference types. The two widely used types

are arrays and classes. Arrays are variable types that store multiple

values of the same type in an ordered fashion. A typical array can be

illustrated as in Table 4.1.

Index Value

0 „J‟

1 „a‟

2 „v‟

3 „a‟

Table 4.1. Structure of an array

Arrays have indices and values. The values of the array shown above are

of char type however the value can be of any primitive or reference type

as long as all values are of the same type.

Array elements have indices for accessing, deleting them or changing

their entries. Indices of arrays always start with 0 and increase one by

one. We can use the following code for defining the array shown above:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

62

char[] myArray = {'J','a','v','a'};

Code 4.12

We can access each element of this array using the following form:

myArray[index]. We can print the first and the second elements of this

array in the terminal as shown in Figure 4.15.

Figure 4.15. Printing elements of a char array

The elements of arrays can be changed separately as follows:

myArray[1] = 'v';

Code 4.13

The second element of myArray is changed from „a‟ to „v‟ by this

code. After this line, the contents of the array are: [„J‟, „v‟, „v‟,

„a‟].

In Java, elements of arrays cannot be deleted because the size of an array

is fixed when it is created. We cannot also append new element to arrays

for the same reason.

CHAPTER 4. JAVA BASICS

63

Arrays are useful while dealing with series of data of the same type. For

example, if we want to save the data gathered from the acceleration

sensor, we can use an array having float or double type elements.

Another widely used reference type in Java is the String. Strings store

multiple characters. The first letter of String is capitalized because

Strings are in fact objects in Java. The following code creates a

String and initializes it to “Let‟s have a pizza”. Please note that values

of Strings are written in double quotes:

String name = "Let's have a pizza";

Code 4.14

Since Strings are objects, they have related methods for operation on

their values. For example, the method .length() returns the number of

characters in a string as shown below:

int stringLength = name.length();

Code 4.15

In this code, the length of the String named “name” is obtained by

name.length() and then assigned to a newly created integer variable

stringLength. The result of this operation in Android Studio is shown

in the following figure:

Figure 4.16. Basic String operations in Java

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

64

Java output shows that the String “Let‟s have a pizza” has 18

characters. It is because the spaces in a String are also counted as

separate characters.

There are dozens of other methods those can be applied on Strings. We‟ll

utilize them when we develop complete Android apps in the next

chapters.

Developers sometimes need variables that do not vary . I mean

variables whose values cannot be changed after it is initialized. These are

called constants in programming languages. Java does not a specific

keyword for defining a constant but using the keyword final in front of

a variable declaration makes it a constant as follows:

final double pi = 3.1415926535897932384626;

Code 4.16

In this code, the final keyword makes the variable pi immutable

(unchangeable) making it effectively a constant. If we try to change a

constant, the compiler issues an error as shown in the following figure:

Figure 4.17. Compiler error when a constant is tried to be changed

CHAPTER 4. JAVA BASICS

65

Our next subsection is about the logical decision making structures in

Java, let‟s have a coffee break and then continue with if-else and switch-

case statements.

4.4. Logical Decision Making Statements in Java
Decision making is a widely in programming as in daily life problems.

We frequently make logical decisions in daily life such as:

- “If their coffee is tasty I‟ll get another one, else I‟ll grab a tea”.

- “If it‟s rainy I‟ll take my umbrella, else I‟ll not”.

In a programming language, decision making statements controls if a

condition is met or not as in real life. There are two decision making

statements in Java: if–else and switch–case blocks.

If–else structure: In this conditional, if the condition is satisfied, the

code inside the if block is executed. If the condition isn‟t satisfied, then

the code in the else block is executed. Hence, if we need tell the rainy –

not rainy example using an if–else block, we do it as follows:

if it‟s rainy {

 I‟ll take my umbrella.

}

else {

 I‟ll not take my umbrella.

}

Let‟s see how we can check if two numbers are equal in Java using an

if-else statement:

package com.helloworld.quantum.helloworld;

public class JavaIfElse {

 public static void main(String args[]){

 int a = 4;

 int b = 4;

 if (a == b){

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

66

 System.out.println("a and b are equal");

 }

 else {

 System.out.println("a and b are not equal");

 }

 }

}

Code 4.17 (cont‟d from the previous page)

Let‟s analyse this code:

 In this code, two integer type variables, a and b, are created and

initialized to 4.

 In the next line, the if statement checks if a and b are equal.

 The comparison operator == is used to check the equality.

 If the result of this comparison is true, the statement inside the if

block System.out.println("a and b are equal"); is

executed which prints “a and b are equal” on the terminal screen.

 If the result of this comparison is false, the statement inside the if

block System.out.println("a and b are not equal");

is executed which prints “a and b are not equal” on the terminal

screen.

Since we initialized both a and b to 4, they are equal and the Java

compiler executes the code inside the if block as follows:

Figure 4.18. if –else example in Java

CHAPTER 4. JAVA BASICS

67

When we change one of the numbers to something other than 4, the code

inside the else block is executed as shown in Figure 4.19.

Figure 4.19. if–else statement in Java when the condition not satisfied

If–else statements can also be used in nested forms as in Code 4.17. In

nested statements, the conditions are checked from top to down. When a

condition is satisfied, then the code inside its block is executed and the

program ends. If none of the conditions are true, then the final else

block is executed. In other words, the statements in the last else block

is executed if none of the conditions above it are satisfied. The

screenshot of this nested code in the playground is given in Figure 4.20.

package com.helloworld.quantum.helloworld;

public class JavaNestedIfElse {

 public static void main(String args[]){

 int a = 3;

 int b = 4;

 if (a == b){

 System.out.println("a and b are equal");

 }

 else if(a > b) {

 System.out.println("a is greater than b");

 }

 else {

 System.out.println("a is lower than b");

 }

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

68

 }

}

Code 4.18 (cont‟d from the previous page)

Figure 4.20. Nested if–else statements in Java

Nested if–else decision making statements become error-prone as more

and more conditions are added. In order to check a lot of conditions

easier, switch–case statements are used. Switch–case statements work

similar to nested if–else statements but they are easier for checking

multiple conditions. A switch–case statement for assessing the grade of a

student is shown in Code 4.18.

package com.helloworld.quantum.helloworld;

public class JavaSwitchCase {

 public static void main(String args[]){

 char grade = 'B';

 switch (grade) {

 case 'A':

 System.out.println("Your grade is excellent.");

 break;

 case 'B':

 System.out.println("Your grade is very good.");

 break;

 case 'C':

CHAPTER 4. JAVA BASICS

69

 System.out.println("Your grade is good.");

 break;

 case 'D':

 System.out.println("Your grade is low. You have

to take the course again.");

 break;

 case 'E':

 System.out.println("Your grade is very low. You

have to take the course again.");

 break;

 default:

 System.out.println("Not a valid grade");

 }

 }

}

Code 4.19 (cont‟d from the previous page)

In this example, the grade variable has the type char. This variable is

switched and checked against the characters „A‟, „B‟, „C‟, „D‟, „E‟. The

switched variable is initialized to „B‟ therefore the code block inside the

case „B‟: will be executed. It is worth noting the break; statements

in each case block; break makes the whole switch block to end as it is

needed in this example. Please note the default: block at the end of

the program. The code block inside default is executed when none of

the above cases are satisfied. If we enter a character other than „A‟, „B‟,

„C‟, „D‟ and „E‟, the program will print “Not a valid grade” on the

terminal. A default block is not mandatory in Java but useful as we‟ll

see in Android app development chapters.

Selecting if–else or switch–case: If the checked variable has a lot of

discrete values, switch–case blocks are easier to use.

We‟ll use decision making statements a lot in Android app development.

Let‟s now study another widely used concept: loops.

4.5. Loops in Java
Performing an operation in a repeated form is frequently needed in

programming. These repetitions are performed using loops.

Programming would be very difficult and long without loops. For

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

70

example, let‟s try to find the sum of numbers from 1 to 50. Without

loops, what we would do is as follows:

int sum = 0

sum = sum + 1

sum = sum + 2

sum = sum + 3

.... (44 more lines of code here)

sum = sum + 48

sum = sum + 49

sum = sum + 50

Code 4.20

There has to be 44 more lines of code in the line shown by dots

(shortened above). As you can see, this simple task would require 51

lines of code without loops. Moreover, it‟s error prone. Please remember

that we want to perform things in programming with shortest code

possible to prevent errors.

There are three types of loops in Java: for loop, while loop and

do-while loop.

1. for loop: We use for loops when we know how many times an

operation will be performed. The general structure of a for loop is as

follows:

for (type counter = initial value; counter check;

counter increment/decrement statement) {

 Code to be performed repeatedly

 }

Code 4.21

 The counter is an integer variable.

 The counter variable is incremented or decremented according to

the expression in (counter increment/decrement

statement) after each cycle.

 After each increment/decrement, the counter is checked if the

(counter check) is still satisfied. If it is satisfied, the loop

continues; if not satisfied, the loop ends.

CHAPTER 4. JAVA BASICS

71

Let‟s calculate the sum of numbers from 1 to 50 using a for loop to

understand these better:

package com.helloworld.quantum.helloworld;

public class JavaFor {

 public static void main(String args[]){

 int sum = 0;

 for (int counter = 0; counter <=50; counter++){

 sum = sum + counter;

 }

 System.out.println("Sum is " + sum);

 }

}

Code 4.22

In this code, a variable called sum is created to hold the sum. Then, a

for loop is defined in which an integer variable named counter is

created and looped from 0 to 50. In the for loop, the loop variable

counter is incremeneted by 1 in each iteration by the expression

counter++. Therefore, the counter variable takes the values of 0, 1, 2,

3, …, 50 as the loop continues to cycle. When it takes the value 51, the

loop condition counter=<50, which means equal or lower than 50, is

not satisfied therefore the loop ends without performing the loop

operation for counter = 51.

The variable sum is initialized to 0 and then the counter is added to it

in the loop block by the expression: sum=sum+counter. This method

adds the numbers from 0 to 50 to the sum variable. In the end, the sum

variable is printed on the terminal screen as in Figure 4.21. The sum of

the numbers from 0 to 50 is calculated as 1275.

2. while loop: while loops can be used even when we don‟t know at

which iteration the cycle will end. The main difference of for and

while loops is that the incrementing method of the loop variable is

specified inside the loop therefore it provides a bit more flexibility. The

calculation of the sum of numbers from 0 to 50 using a while loop is

shown in Code 4.23.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

72

Figure 4.21. for loop example in Java

package com.helloworld.quantum.helloworld;

public class JavaWhile {

 public static void main(String args[]){

 int sum = 0;

 int counter = 0;

 while (counter <=50){

 sum = sum + counter;

 counter++;

 }

 System.out.println("Sum is " + sum);

 }

}

Code 4.23

As you can see from above, the loop variable counter is defined before

the while loop. The while loop checks if the condition counter=<50

is satisfied. When it is satisfied, the expressions inside the while loop

are executed, otherwise the loop ends. The counter variable is

incremented inside the while loop by the expression counter++. The

output is again 1275 as shown in Figure 4.22.

CHAPTER 4. JAVA BASICS

73

Figure 4.22. while loop example in Java

3. do–while loop: do–while performs similar to the while loop

except the loop variable is checked at the end of the loop block as

follows:

package com.example.atomic.javabasics1;

public class JavaDoWhile {

 public static void main(String args[]) {

 int sum = 0;

 int counter = 0;

 do {

 sum = sum + counter;

 counter++;

 }while (counter<=50);

 // do-while loop ends here

 System.out.println("The sum is " + sum);

 }

}

Code 4.24

The sum is again calculated as 1275 in this code. As we can see from

above code, while and do–while are very similar. On the other hand,

please note the code //do-while loop ends here. This is a

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

74

comment line in Java. The compiler ignores anything written next to //.

Comments are used for increasing the readability of the code.

The output of the do–while program is shown below:

Figure 4.23. do–while loop example in Java

Note: There are two important keywords that are used to further control

loops: break and continue statements.

These commands are usually used together with an if statement. The

break command breaks the loop; it means the program quits the current

loop before the loop condition expires. On the other hand, continue

command makes the loop continue with the next iteration

4.6. Methods in Java
Methods are subroutines that are used for performing an operation.

Methods are similar to functions in other programming languages but the

difference is that methods are always associated with classes and objects.

CHAPTER 4. JAVA BASICS

75

Because of this, methods are always defined inside classes. The general

form of a function is as in Code 4.24.

(public) (void) (return type) methodName

(arguments){

 (code inside the method)

 (return output_values;)

}

Code 4.25

A method declaration has the following parts:

 The name of the method (methodName).

 Method identifiers like public and static (optional).

 Arguments (input values) of the method (optional).

 The type of return values (optional).

 The void keyword–used if the method won‟t output any value

(optional).

 return keyword for outputting return values (optional).

 The statements that will perform the operation.

Let‟s write a method that adds two integers and prints the sum on the

terminal:

static void addNumbers(int a, int b){

 int sum;

 sum = a + b;

 System.out.println("The sum is " + sum);

}

Code 4.26

In this method:

 The static keyword is used that means this method can be called

without creating an object of its class.

 void keyword is used because the method won‟t output any values;

it will just print on the terminal screen.

 Inputs (arguments) of the method has two input variables a and b

which both are of the int type.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

76

 The sum is calculated inside the function and assigned to the sum

variable. Please note that the variables which are defined inside the

function cannot be accessed outside the function.

 Finally, the sum is printed on the terminal screen with the usual

System.out.println() method.

When we define a method, it doesn‟t run automatically. We need to call

it with its input arguments. We do this by writing its name and arguments

as follows:

addNumbers(2, 5);

Code 4.27

When we call this method, the input arguments are 2 and 5. The method

will add these numbers and print the result on the screen. The complete

code of the method definition and its call is as follows:

package com.example.atomic.javabasics1;

public class JavaMethodAdd1 {

 public static void main(String args[]){

 addNumbers(2, 5);

 }

 static void addNumbers(int a, int b){

 int sum;

 sum = a + b;

 System.out.println("The sum is " + sum);

 }

}

Code 4.28

When we run this program in Android Studio, we get the terminal output

shown in Figure 4.24.

This function didn‟t have return values. Let‟s modify it so that the sum of

the input values will be given as a return value. We can do this

modification by just adding the following line instead of the

System.out.println():

return sum;

Code 4.29

CHAPTER 4. JAVA BASICS

77

We also have to replace the void keyword to int keyword as shown in

Code 4.29 because the function will output an int type variable (sum).

Figure 4.24. Method definition and calling in Java

package com.example.atomic.javabasics1;

public class JavaMethodAdd2 {

 public static void main(String args[]){

 addNumbers(2, 5);

 }

 static int addNumbers(int a, int b){

 int sum;

 sum = a + b;

 return sum;

 }

}

Code 4.30

When we run the code above, nothing happens because we removed the

printing code from the method and it only outputs the sum. We can print

the output of the method as follows:

package com.example.atomic.javabasics1;

public class JavaMethodAdd2 {

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

78

 public static void main(String args[]){

 System.out.println(addNumbers(2, 5));

 }

 static int addNumbers(int a, int b){

 int sum;

 sum = a + b;

 return sum;

 }

}

Code 4.31 (cont‟d from the previous page)

We have written the method call inside the System.out.println()

method therefore the return value of the method will be printed as shown

below:

Figure 4.25. Using a method that returns a value

Methods provide us a good way of shortening our code and making it

compact as we can see from these simple examples. Of course their

usage range is not only simple mathematical operations, a Java or an

Android application contains a lot of user defined and ready methods

available from the Android SDK or Java SDK. Android SDK includes

thousands of methods which makes the developers‟ lives easier.

CHAPTER 4. JAVA BASICS

79

Methods are also important to share code among developers. If we can

find a ready-coded method on the Internet, we can utilize it in our apps

easily.

Methods are always parts of classes. So, let‟s now focus on classes,

objects and inheritance that are the backbones of the so-called “object-

oriented programming”.

4.7. Classes, Objects and Inheritance in Java
Java programming language uses traditional (procedural) and object-

oriented concepts together for a stronger experience. Procedural

programming means that a program uses procedures and functions

executed by order. This is the traditional method. On the other side,

object-oriented programming uses classes and objects derived from these

classes to execute the required computational steps. So, what are classes

and objects?

We can think classes as blueprints and objects as different products made

using this blueprint. Similarly, we can consider a car factory as an

example for classes and objects. Imagine a car production band. Each

time we change the colour, baggage size, steering wheel type, etc., we

obtain a different car without changing the basic properties of the car. If

the car make and model are Virtuma and Liberty (hypothetical names!),

the production band produces Virtuma Liberty 1.6, Virtuma Liberty 2.0,

Virtuma Liberty 3.0, Virtuma Liberty 1.6 premium, Virtuma Liberty 2.0

diesel, etc. In this case the class is Virtuma Liberty and all these

hypothetical models are objects belonging to this class. We can imagine

this as in Figure 4.26.

Let‟s declare a Car class in Java first and then define different car

objects derived from this class as in Code 4.31. In this code, a class

named Car is defined by public static class Car which has

variables named colour, fuel_type and engine_capacity. These

are the variables which will be different for each object derived from this

class.

Inside the class definition, there is a method declaration public

Car(String carColour, String carFuelType, float

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

80

CarEngineCapacity). This is a constructor method having the same

name with the class name and the class variables are assigned inside this

method by the code lines shown in Code 4.33.

Figure 4.26. Class–object relationship by example

package com.helloworld.quantum.helloworld;

public class JavaClassMain1 {

 public static class Car {

 static String colour;

 static String fuel_type;

 static float engine_capacity;

 public Car(String carColour, String

carFuelType, float CarEngineCapacity){

 colour=carColour;

 fuel_type=carFuelType;

 engine_capacity = CarEngineCapacity;

 }

 }

 public static void main(String args[]){

 Car myCar = new Car("Red", "Diesel", 1.2f);

 System.out.println(myCar.colour);

 }

}

Code 4.32

CHAPTER 4. JAVA BASICS

81

colour=carColour;

fuel_type=carFuelType;

engine_capacity = CarEngineCapacity;

Code 4.33

Finally, inside the main function of the program, a Car object called

myCar is created with the line:

Car myCar = new Car("Red", "Diesel", 1.2f);

Code 4.34

Please note that the new keyword is used for creating an object using a

class. We can read this object declaration line as “An object named

myCar is created using the Car class with the parameters of “Red”,

“Diesel” and “1.2f” ”.

Once the object is created, we access its variables and methods using a

dot operator (.). In the last code line of Code 4.31, the colour variable of

myCar object is extracted by the expression myCar.colour and then

printed on the terminal. The output is the colour variable of the myCar

object as shown in Figure 4.27.

We can define any number of different objects using our class like:

Car yourCar = new Car("White", "Gasoline", 1.6f);
Car newCar = new Car("Grey", "Diesel", 2.0f);

Code 4.5

The power of class–object concept stems from the availability of both

variables and methods from a single object and the possibility of using

the same class structure for various object definitions easily.

We can add a method to the class with the usual method definition. For

example, let‟s add a method to display the fuel type as shown in Code

4.35.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

82

Figure 4.27. Class and object example in Java

package com.helloworld.quantum.helloworld;

public class JavaClassMain1 {

 public static class Car {

 static String colour;

 static String fuel_type;

 static float engine_capacity;

 public Car(String carColour, String

carFuelType, float CarEngineCapacity){

 colour=carColour;

 fuel_type=carFuelType;

 engine_capacity = CarEngineCapacity;

 }

 public void askFuelType(){

 System.out.println(fuel_type);

 }

 }

 public static void main(String args[]){

 Car myCar = new Car("Red", "Diesel", 1.2f);

 myCar.askFuelType();

 }

CHAPTER 4. JAVA BASICS

83

}

Code 4.36 (cont‟d from the previous page)

In this modified code, a method called askFuelType is added to the

Car class definition that prints the fuel_type variable on the terminal.

In the main method, the newly added method is called again by the dot

operator (.):

myCar.askFuelType();

Code 4.37

Please note that methods without arguments are called by empty

parentheses (). The askFuelType method is called and it does its duty

as shown below:

Figure 4.28. Calling a method of a class in Java

The basic class and object relation can be summarized as in the above

code samples. However, there‟s another important property of classes

which is another advantage of object-oriented programming: inheritance.

Inheritance is basically the ability of creating an extended new class

(let‟s call this as class2) from an existing class (class1). The child class

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

84

(class2) will have the fields and methods of its parent class (class1). The

child class may also have new variables and methods too.

We have defined a Car class in Code 4.36. Let‟s define a child class

called sedanCar that will extend the parent class Car:

public static class sedanCar extends Car{

 int b_Vol;

 public sedanCar(String carColour, String

carFuelType, float CarEngineCapacity, int

baggageVol) {

 super(carColour, carFuelType,

CarEngineCapacity);

 b_Vol = baggageVol;

 }

}

Code 4.38

In the first line of this code, the new (child) class sedanCar extends the

Car class. Then, a new integer type variable b_Vol is declared in the

new class. Next, a constructor method for the sedanCar is defined by
public sedanCar(String carColour, String carFuelType,

float CarEngineCapacity, int baggageVol). Inside this

constructor, there is an important code line:

super(carColour, carFuelType, CarEngineCapacity);

Code 4.39

In Java, the super keyword is used to invoke the constructors of the

parent class in a child class. Therefore, the child class sedanCar inherits

the fields (variables for this case) of the parent class using the super

keyword.

The complete code of parent and child classes is given in Code 4.40.

package com.helloworld.quantum.helloworld;

public class JavaClassMain1 {

 public static class Car {

 static String colour;

 static String fuel_type;

 static float engine_capacity;

 public Car(String carColour, String

carFuelType, float CarEngineCapacity){

CHAPTER 4. JAVA BASICS

85

 colour=carColour;

 fuel_type=carFuelType;

 engine_capacity = CarEngineCapacity;

 }

 public void askFuelType(){

 System.out.println(fuel_type);

 }

 }

 public static class sedanCar extends Car{

 int b_Vol;

 public sedanCar(String carColour, String

carFuelType, float CarEngineCapacity, int

baggageVol) {

 super(carColour, carFuelType,

CarEngineCapacity);

 b_Vol = baggageVol;

 }

 }

 public static void main(String args[]){

 sedanCar newCar = new sedanCar("Red",

"Diesel", 1.2f, 40);

 newCar.askFuelType();

 System.out.println(newCar.b_Vol);

 }

}

Code 4.40 (cont‟d from the previous page)

We can apply the method askFuelType on the object newCar derived

from the child class despite the child class doesn‟t have askFuelType

method explicitly. This is because the child class inherits all methods of

its parent class therefore sedanCar class actually has the askFuelType

method.

In the last line, the b_Vol variable that is unique to the child class is

accessed as usual. The output of this code in Android Studio is shown in

Figure 4.29.

If the classes and objects make you confused, don‟t worry. You‟ll

understand them better when we use them for developing Android apps.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

86

Java is, of course, a very extensive programming language and Java SDK

has thousands of methods for developing sophisticated Java programs.

However, I think this much of Java basics lecture is enough for starting

to develop Android apps. I‟m sure you‟ll get used to writing Java code in

the upcoming chapters.

Figure 4.29. Class extension example in Java

The good news is that the boring stuff ends here and the fun is beginning:

actual Android app development–developing apps that actually do

something. We‟ll design apps that interact with the user and use the

wonders of Android platform such as SMS sending and GPS reading.

Let‟s have a coffee and relax for some time before beginning the next

chapter where we‟ll start our Android app development journey.

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

87

ANDRIOD APP #1: RED/BLUE LIGHTHEAD
We‟ll develop a simple strobe light app in this project. We‟ll go through

accessing the button in Java code, getting the screen background colour,

setting this colour and sensing button taps to change the background

colour.

Our aim is to develop an Android app where the background colour of

the app is varied as in a red/blue strobe light. The background colour of

the app will change from red to blue or vice versa each time we click a

button located in the middle of the screen. This is a very simple app but

will teach the basics steps of visual programming.

5.1. Creating a New Android Project
Firstly, please select “Create a new project”. If Android Studio is already

running select File  New  New Project from the top menu as shown

below:

Figure 5.1. Creating a new project in Android Studio

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

88

I named the app as “Lighthead app” as shown in Figure 5.2, but you can

give any name you‟d like to.

Figure 5.2. Naming the app

Then, I selected the app to be compatible with phones and tablets having

Android 4.0.3 (Ice Cream Sandwich) or later:

Figure 5.3. Selecting app compatibility

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

89

We‟ll have a simple screen therefore “Empty Activity” does the job in

the next dialog:

Figure 5.4. Selecting the screen layout

Finally, leave the name of the activity as “MainActivity” and then click

“Finish” to create the project files:

Figure 5.5. Final settings

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

90

After the project is successfully created, the default view of the Android

Studio will appear in which the middle pane will show the

“MainActivity.java” file as shown below:

Figure 5.6. Default view in Android Studio

5.2. Developing the User Interface
Let‟s open the user interface layout file activity_main.xml where we

will place the button on the screen. As we can see from the figure above,

the left pane shows the folders and files of our project. Make sure that

the view type is Android and select the folders res  layout and then

double-click on the file activity_main.xml there as shown in Figure 5.7.

When the activity_main.xml file is opened, the layout it contains will be

shown in the middle pane as shown in Figure 5.8. This file and other xml

files contain the layout information of an Android app in Android Studio.

In fact, xml files are not only used in Android app development but also

in other areas of computing. xml files are good to express the relations

among different entities in a hierarchical way therefore is a good choice

to use in layout design. xml files are text files but Android Studio

interprets them as layouts as long as they are in the correct format. We

can also view the text file representation of activity_main.xml in

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

91

Android Studio by selecting the Text tab as indicated by the arrow in

Figure 5.8.

Figure 5.7. Finding activity_main.xml file in project explorer

Figure 5.8. Viewing activity_main in Android Studio

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

92

When the Text tab is selected, the text format of the activity_main.xml

file is displayed in the middle pane as follows:

Figure 5.9. activity_main.xml file in text representation

You don‟t need to be confused about the contents of this file. We‟ll do

most of the layout operations visually. We‟ll only use this text

representation in special cases. However, it is a good practice to follow

the contents of the xml file as we design app layouts. In the above figure,

we can see that our layout consists of a RelativeLayout structure, which

begins by the line <RelativeLayout… and ends with

</RelativeLayout>. Inside this layout, we have a TextView component.

In other words, a TextView component exists inside the RelativeLayout

component. Let‟s now see how an Android app GUI is built in general

using these components.

In Android, all user graphical user interface (GUI) objects (widgets,

layouts, image objects, etc.) are derived from the View class of the

GUI library. The basic hierarchy of GUI classes are shown in Figure

5.10.

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

93

Figure 5.10. Basic hierarchy of the GUI components

The components of the GUI of an Android app have the following basic

properties:

 Because all GUI objects are derived from the View class, these GUI

objects are also called as views in Android programming.

 ViewGroup‟s child classes RelativeLayout, LinearLayout,

AbsoluteLayout and GridLayout are special views that can

contain other views and components. These are used for shaping the

layout as you wish.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

94

 An Android GUI should consist of at least one layout class. For

example, our activity_main.xml file has the RelativeLayout as

shown in Figure 5.9.

 We can build any GUI by using the subclasses of the View class

shown in Figure 5.10.

We‟ll see several GUI designs during our app development journey.

Different developers prefer different strategies for shaping their app‟s

GUI. In my personal opinion, RelativeLayout provides more flexibility

therefore easier to use. The basic property of the RelativeLayout is that

each GUI object is positioned relative to each other.

Anyway, let‟s continue developing our red/blue strobe light app. Please

switch to the Design view of the activity_main.xml file as in Figure 5.8

so that we can design the GUI visually.

First of all, please delete the default “Hello World” TextView by right-

clicking on it and selecting “Delete” as shown below:

Figure 5.11. Deleting the default “Hello World” TextView

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

95

After deleting the default TextView, please find the Button widget from

the objects palette and then drag and drop it in the middle of the GUI by

the help of the guiding lines as shown in Figure 5.12.

Figure 5.12. Adding a button widget in the middle of the user interface

When we add a widget to the GUI, it keeps being selected and then its

properties can be viewed from the right pane as shown in Figure 5.13.

The basic properties of the button are shown in this pane. However, we

can see the full list of properties by clicking on the View all properties

(can be seen after scrolling down) as shown in Figure 5.14.

Anyway, let‟s go on with the basic properties pane shown inside the

rectangle in Figure 5.13. In this pane, one of the most important

properties for accessing the button is the ID. All objects of the GUI of an

Android app are accessed through their IDs in the coding part.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

96

Figure 5.13. Basic properties of the button widget

Figure 5.14. Switching to all properties of the button widget

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

97

In our app, the default ID of the button widget is set as button by

Android Studio. We can change it just by clicking the ID box and

replacing the button text.

The next two boxes refer to the layout width and layout height

properties of the button widget. Their settings determine the width and

the height of the button object in the GUI. They are set as wrap_content

by default. This means that the width and the height of the button will be

adjusted to wrap (cover) the text written inside the button (i.e. button‟s

label). The other available choice for these parameters is the

match_parent as shown in Figure 5.15. If this is selected, the respective

property (width or height) will be equal to the width or height of its

parent container (which is the RelativeLayout covering the whole screen

in this example).

Figure 5.15. The alternatives for the layout_width and layout_height

parameters

Since we don‟t want the button to have a width or height filling the

whole GUI, we need to leave these parameters having the value of

wrap_content.

In our app, the button is supposed to change the background colour of the

screen therefore it is good to change the label of the button accordingly.

The button‟s label (the text on the button) is Button by default. Let‟s

change it to “Change!” as shown in Figure 5.16.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

98

Figure 5.16. Changing the label of the button

5.3. Writing the Main Code of the App
Since we don‟t need any other widget in the GUI, we can now continue

to programming the app. We will do the programming in the

MainActivity.java file. In order to open this file, navigate to the project

explorer in Android Studio and then double-click on the MainActivity

located under java  com…..lightheadapp as shown below:

Figure 5.17. Opening the MainActivity.java file in Android Studio

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

99

Figure 5.18. The default MainActivity.java file

The MainActivity.java file shown above is the default file generated by

Android Studio. Some code lines are hidden by default as shown by … in

the import line. You can open these codes by clicking on the … there as

shown below:

Figure 5.19. The default MainActivity.java file after opening the hidden

lines

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

100

Let‟s analyse the default MainActivity.java code line by line:

 The first line is the package definition as in usual Java code. It

shows to which package this file belongs to.

 The next two lines are import lines which import the required

libraries. In our file, the AppCompatActivity and Bundle

libraries are imported. They contain the base methods for user

interaction and passing data among different activities.

 The next line declares the MainActivity class which extends the

AppCompatActivity class. This is like the class definition in

Java. As in Java, the class name in Android should match the name

of the .java file. In this case, the file is MainActivity.java

therefore the name of the class is MainActivity.

 Then an @override command is placed by default. It is used to tell

the compiler that the current class will override any existing

superclasses.

 The sixth code line defines a method called onCreate(). All

activities are started by a sequence of method calls. onCreate()

method is the first of these calls.

 The next line, super.onCreate(savedInstanceState);, tells

that our code will be executed in addition to the existing code (if

any) of the parent class.

 In the last line, setContentView() method sets the activity

content from a layout source. We have set up our app‟s layout in the

file activity_main.xml. Android accesses all resources via an

auxiliary class called “R”. The R class is a special class which

enables Android to utilize the resources in a simpler way compared

to accessing via file paths. The argument of the

setContentView() method is R.layout.activity_main

which means “set the content of the activity to be the layout residing

in activity_main.xml”.

We hear the word activity a lot in Android programming. Activity is a

class that manages the user interface and the interaction of the app with

the user.

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

101

When an activity is launched, it can exist in various states as shown in

Figure 5.20.

Figure 5.20. Several phases of an activity

As you can see from the figure above, an activity may have several

phases. These phases depend on the activity itself as well as the Android

operating system. For example, if another activity needs a lot of memory,

the current activity may be paused (onPause()) because Android gives

precedence to the other activity.

In the MainActivity.java file of our app, the onCreate() method is

called when the activity is first created. All static set up are done inside

this method.

If we run our app at this stage, we should see the layout we designed. We

can run it in the simulator by hitting the “Run” button and selecting an

emulator as we did in Chapter 3. The Nexus 4 emulator running our app

is shown in Figure 5.21.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

102

Figure 5.21. The app in the emulator

When we click on the Change! button, nothing happens at this stage

because we didn‟t write the code to handle the button clicks yet. Let‟s

code the necessary operations to change background colour by the button

clicks as we aim to do for this app.

In order to check the button continuously, the app needs to “listen” the

button. Therefore, we need to create a button listener method and call it

when the activity first starts. We can give any name to out button listener

method such as myButtonListenerMethod(). In this method, we

need to find the button widget using the mentioned R class and create a

button object to access the button. I know this may seem a bit confusing

for now but I‟m sure you‟ll get used to it soon. These are shown in Code

5.1.

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

103

public void myButtonListenerMethod() {

Button button = (Button)

findViewById(R.id.button);

}

Code 5.1

We can now access the button using the button object that is created by

line Button button=(Button) findViewById(R.id.button).

findViewById() method finds the views (widgets, layouts, etc.) using

their IDs. Remember that we have given the ID “button” to our button

widget during the layout design. Hence, we accessed it using the R class

as R.id.button.

There is another special method called setOnClickListener() in

Android SDK. This method continuously listens to the clicks on a button.

Everything those will be performed when a click on the button should

reside inside this method. This method is applied on the button we want

to listen to as follows:

public void myButtonListenerMethod() {

button = (Button) findViewById(R.id.button);

button.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View v) {}

}

Code 5.2

In the above code:

 A new onClickListener is created by new

View.OnClickListener() and then this object is made an

argument to the setOnClickListener() method , which is

applied on the button object.

 It then it overrides the superclass listeners with the @Override

directive (there‟s no superclass listeners in our example, this directive

is automatically generated by Android Studio).

 Finally, a method called onClick() is called when the button is

clicked.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

104

All code lines that will be run when the button is clicked will go inside

the onClick(View v) method.

Note: You‟ll notice that Android Studio auto-completes your code in an

intelligent way. In my opinion, Android Studio is excellent in this

feature.

Our aim is to change the background colour from red to blue and vice

versa as the button is clicked. In the activity_main.xml file, we saw that

our GUI has a RelativeLayout element as the main layout that fills the

screen. Because of this, we can access the background using the

following code:

RelativeLayout bgElement = (RelativeLayout)

findViewById(R.id.activity_main);

Code 5.3

In this code, we have generated a RelativeLayout object called

bgElement from which we can access all of the properties of the

background of the app.

We now need to check the colour of the bgElement. This is because we

will change its colour according to its current colour. If it is red now, the

button will change it to blue. If it is blue now, the button click will turn it

to red.

int color = ((ColorDrawable)

bgElement.getBackground()).getColor();

Code 5.4

In this code, the colour of the background of the layout of the app is

taken by bgElement.getBackground()).getColor(); and then

converted to the type ColorDrawable, which expresses the colour as an

integer. Then, this integer value is assigned to the color variable. In short,

the colour of the background will be expressed in the variable named

colour as an integer.

We will now utilize a decision making statement to change the colour

such as:

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

105

If the colour is red, change to blue; else (= if the colour is blue) change to

red.

We can do this by the following code:

if (color == Color.RED) {

 bgElement.setBackgroundColor(Color.BLUE);

}

 else {

 bgElement.setBackgroundColor(Color.RED);

}

Code 5.5

There‟s a special class called Color in Android SDK for doing colour

related operations. The expressions Color.RED and Color.BLUE

represent the integer values corresponding to the red and blue colours,

respectively. Therefore, the color variable, which contains the integers

corresponding to the background colour, will be compared to the integer

value of red by the expression color == Color.RED. If they are equal,

this means that the background is currently red and will be changed to

blue when the button is clicked. Else, the background is currently blue

and will be changed to red when the user clicks the button.

Combining all these code lines, we reach the button listener method

shown in Code 5.6.

public void myButtonListenerMethod() {

button = (Button) findViewById(R.id.button);

button.setOnClickListener(new

 View.OnClickListener() {

 @Override

 public void onClick(View v) {

 RelativeLayout bgElement = (RelativeLayout)

 findViewById(R.id.activity_main);

 int color = ((ColorDrawable)

 bgElement.getBackground()).getColor();

 if (color == Color.RED) {

 bgElement.setBackgroundColor(Color.BLUE);

 }

 else {

 bgElement.setBackgroundColor(Color.RED);

 }

 }

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

106

 });

}

Code 5.6 (cont‟d from the previous page)

Please note that we could use the if–else statement without curly

brackets since there are only one line codes inside their blocks. However,

I have written them with brackets for the sake of completeness.

We now have to call this button listener method when the activity is first

created. Therefore, we have to call it inside the onCreate() method as

follows:

protected void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

}

Code 5.7

However, we are not done yet because the background is transparent by

default when an activity is first created. Therefore, we have to set it to

red or blue on creation. Let‟s set it as red by improving Code 5.7 as

follows:

protected void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 RelativeLayout bgElement = (RelativeLayout)

 findViewById(R.id.activity_main);

 bgElement.setBackgroundColor(Color.RED);

 myButtonListenerMethod();

}

Code 5.8

In this code, the background is accessed and then set as red at the start of

the app. Please note that we need to define a separate bgElement object

inside the onCreate() method; we can‟t use the bgElement defined

inside the button listener method. This is because all variables and

objects declared in a method are valid only inside that method (also

called as scope of variables).

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

107

Now, let‟s combine these code lines to form our complete

MainActivity.java file as follows:

public class MainActivity extends

AppCompatActivity {

 Button button;

 @Override

 protected void onCreate(Bundle

 savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 RelativeLayout bgElement = (RelativeLayout)

 findViewById(R.id.activity_main);

 bgElement.setBackgroundColor(Color.WHITE);

 myButtonListenerMethod();

 }

public void myButtonListenerMethod() {

 button = (Button)findViewById(R.id.button);

 button.setOnClickListener(new

 View.OnClickListener() {

 @Override

 public void onClick(View v) {

 RelativeLayout bgElement =

 (RelativeLayout)findViewById(R.id.activity_main);

 int color = ((ColorDrawable)

 bgElement.getBackground()).getColor();

 if (color == Color.RED) {

 bgElement.setBackgroundColor(Color.BLUE);

 }

 else {

 bgElement.setBackgroundColor(Color.RED);

 }

 }

 });

 }

}

Code 5.9

5.4. Building and Running the App
We have completed both the layout and code development of our first

Android app. Let‟s run it by clicking the Run button in Android Studio. I

selected a Nexus 4 emulator for running our app on it. The emulator

screen when the app is launched is shown in Figure 5.22.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

108

Figure 5.22. The app when it is launched (colour and full resolution

figure at the book‟s companion website: www.android-java.website)

As we click on the Change! Button, the background colour changes from

red to blue and vice versa as shown in Figure 5.23. We can run this app

on a real device as explained in Chapter 3 in detail. I tried this app on an

Asus Zenfone 6 and it runs as expected on a real device too.

I hope you enjoyed developing our first programmatic Android app

development. If there are question marks about the codes, don‟t worry,

I‟m sure you‟ll get used to Android coding in the upcoming chapters.

 Small exercise: Could you modify the code to change the label of

the button according to the background colour dynamically? If the

background colour will be changed to blue, the button text will read

Convert to blue! otherwise Convert to red!

http://www.android-java.website/

CHAPTER 5. ANDRIOD APP #1: RED/BLUE LIGHTHEAD

109

Figure 5.23. Our app‟s screen after subsequent button clicks (colour and

full resolution figure at the book‟s companion website:

www.android-java.website)

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

110

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

111

ANDRIOD APP#2: BODY MASS INDEX (BMI)

CALCULATOR

6.1. General Information
Body mass index (BMI) is a figure of merit that is used for assessing the

thickness-thinness of a person. BMI is defined as the ratio of the mass

and height-squared with the formula below:

 

  2
mheight

kgmass
BMI 

After the calculation of the BMI, the following table is the used for

assessing the weight category:

Weight category from BMI to BMI

Very severely

underweight
0 15

Severely underweight 15 16

Underweight 16 18.5

Normal (healthy weight) 18.5 25

Overweight 25 30

Obese Class I

(Moderately obese)
30 35

Obese Class II (Severely

obese)
35 40

Obese Class III (Very

severely obese)
40 ∞

Table 6.1. BMI categories

(source: https://en.wikipedia.org/wiki/Body_mass_index)

https://en.wikipedia.org/wiki/Body_mass_index

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

112

In this chapter, we‟ll develop a BMI calculator app and learn to read user

inputs, make calculations inside our code and display results to the user.

6.2. Adding and Positioning TextViews
In order to calculate the BMI in our app, we obviously need the weight

and height inputs. Our Java code will calculate the BMI using the given

BMI formula and then it will decide the category according to Table 6.1.

First of all, let‟s create the user interface of our app. In Android Studio,

create a new project called “BMI Calculator” and save it anywhere you

want on your computer (I‟ll not repeat myself about these things, we

explained in detail in previous chapters). Please select the “Phone and

Tablet” platforms with minimum SDK of API 15 as we did for the

previous app. The default layout can be chosen as “Empty activity” with

the main class being “MainActivity.java” and the layout file as

“activity_main.xml”. Please don‟t delete the default TextView of “Hello

World” so that we can modify it to show our app title. Click on it and

then it will be selected. Now, change its text as BMI Calculator, set its

font size as 24sp and make the text bold as indicated by the numbers 1, 2

and 3 in Figure 6.1.

Let‟s position this title text so that it is positioned in the middle

horizontally and has a distance of something like 50~60 dp from the top.

(dp stands for Density Independent Pixel which is automatically adjusted

when the display resolution is changed). For this, click on the View all

properties as shown by 4 in Figure 6.1 and adjust the position of this

TextView as shown in Figure 6.2. Please note that the horizontal middle

guiding line is displayed automatically so that we can slide this widget

on this line which will help us keep it in the middle horizontally. As you

move the widget, observe the parameter named layout_marginT which

indicates its distance from the top. I set it as 60 dp.

We‟ll take height and weight inputs from the user and show the BMI

result as a number and its category. We‟ll need to place four TextViews

which will show Enter your weight (kg): , Enter your height (m): ,

Your BMI: and BMI category. Please find the widget TextView from

the Palette and drag and drop four TextViews as shown in Figure 6.3.

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

113

Figure 6.1. Setting the basic properties of the TextView (You can

download full resolution colour images from the book‟s website)

Figure 6.2. Positioning the title label

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

114

Figure 6.3. Placing four TextViews

Once the first TextView is placed, the next one is positioned relative to

the previous one. For out BMI Calculator app, the exact positions are not

strict and I am not giving the exact positions here in order to confuse

you. You can download the project files from the book‟s companion

website if you‟d like to see which positions I exactly used but it is not

mandatory of course. However, we need to leave a space between the

second and the third TextViews for placing the button that will initiate

the calculation.

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

115

I have changed the text font sizes to 18 sp and made the text type bold.

The layout seems like in Figure 6.4 after changing the texts of these

TextViews per our aim.

Figure 6.4. The app‟s GUI layout after setting up the TextViews

6.3. Adding the EditText Widgets
We now need to place two editable text boxes to let the user input his/her

weight and height, another textbox to display the BMI as a number and a

button to initiate the calculation of the BMI.

The positioning of the Text Fields (text boxes) are shown in Figure 6.5.

I‟ve placed Text Fields which can be used to input decimal numbers

(numbers with fractional part) rather than general input types because the

user is supposed to enter only numeric values in this app. It is worth

noting that the calculation result will be displayed next to the Your

BMI: label and a Text Field is placed there to display the BMI result.

We could use a static text (TextView) for this aim however I wanted to

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

116

show you how we can set the contents of the TextField

programmatically.

Figure 6.5. Placing the TextFields

Please note that Text Fields do not have borders by default therefore after

they are placed, we can only see them by selecting them.

Let‟s set their IDs so that we can access them programmatically and also

set their default texts. For this, select the respective TextField and then

set the ID and text properties as shown in Figure 6.6 for the weight input

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

117

Text Field. I also positioned its default text in the middle as we did

before.

Figure 6.6. Settings of the weight input TextField

Figure 6.7. The GUI of the app after setting up all TextFields

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

118

Please set the IDs and default texts of the height input and BMI result

Text Fields as heightInput and 1.80; BMIResult and …….,

respectively. Bu setting the default text of the BMI result Text Field as

……., we make the user to see ……. in that box before calculating

his/her BMI. After these settings, the GUI seems as in Figure 6.7.

6.4. Adding and Positioning the Button
There are two steps remaining to complete our GUI design. The first one

is the button that will initiate the calculation. Please drag and drop a

button widget from the Palette between the height input TextView and

the YourBMI TextView and then position it horizontally in the middle as

shown below:

Figure 6.8. Placing the button on the screen

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

119

Now, please set the text of the button as Calculate my BMI! Note that

the default ID of the button is button which is OK.

Our GUI is almost complete however there‟s one step remaining. The ID

of the BMI category TextView (the one with the text Your BMI

category appears here.). Please set its ID as BMICategory and then we

are finished. After these steps, the GUI of our app is ready as shown

below:

Figure 6.9. The GUI of our BMI Calculator app

6.5. Developing the Main Code of the App
We are now ready to continue with programming. We will implement the

following steps in MainActivity.java for the BMI calculation:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

120

 Firstly, the values entered in the weight input and height input text

fields will be taken. These will be String type variables.

 Convert these Strings to double type variables so that the BMI

calculation can be performed using the BMI equation given at the

beginning of the chapter.

 Perform the body mass index calculation.

 Display the BMI value in the text field next to the “Your BMI:” label

after converting to String type.

 Use if–else statements to determine the BMI category from the BMI

value using Table 6.1.

 Display the BMI category in the text view which shows “BMI

category appears here.” by default.

Please open the MainActivity.java file from the file explorer of Android

Studio. The default contents of this file are as follows:

package com.helloworld.quantum.bmicalculator;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity

{

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

 Code 6.1

The calculation will be done when the user taps the button therefore we

need to write a listener method for the button and then call this method

inside the onCreate() function (as we explained in the previous

chapter). Code 6.2 shows the general template of the button listener

method.

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

121

public void myButtonListenerMethod() {

 Button button = (Button) findViewById(R.id.button);

 button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

// code those will be run when the button‟s clicked

 }

 });

}

 Code 6.2

We have analysed the structure of this listener method in Chapter 5. In

short, the button is accessed by the button object created in the second

line and all the operations those will be done when the button is clicked

will go inside the method onClick(View v).

First of all we need to take the height and weight inputs from their

respective EditTexts (TextFields). This is simply done with the following

code snippet:

final EditText heightText = (EditText)

 findViewById(R.id.heightInput);

String heightStr = heightText.getText().toString();

double height = Double.parseDouble(heightStr);

 Code 6.3

The explanation of this code is as follows:

 In the first line, we access the height input textbox using its ID

(R.id.heightInput) and then create an EditText object called

heightText.

 In the second line, the string inside this EditText is extracted and

assigned to a new String object called heightStr.

 And in the last line, the String value of the height is converted to

double type and assigned to a newly created variable height.

 In the end, we have the height value stored in the height variable

which is of double type.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

122

We need to implement these steps because there‟s no other way to

directly take the EditText value as a String or double.

The following code does a similar job and in the end the weight value is

stored in the weight variable.

final EditText weightText = (EditText)

 findViewById(R.id.weightInput);

String weightStr = weightText.getText().toString();

double weight = Double.parseDouble(heightStr);

 Code 6.4

We now have weight and height data in double type variables so we can

do the BMI calculation using the equation given in the beginning of the

chapter as follows:

double BMI = (weight)/(height*height);

 Code 6.5

In this code, the * operator does the multiplication while the / operator

divides the weight to the height squared.

We will display this BMI value in the EditText box next to the You BMI

label in the GUI. We did set its ID as BMIResult when we laid out the

user interface before. Therefore, the following code does this job:

final EditText BMIResult = (EditText)

 findViewById(R.id.BMIResult);

BMIResult.setText(Double.toString(BMI));

 Code 6.6

In this code, the widget with the ID BMIResult is found in the first line

and then the double type BMI variable is converted to String by the code

Double.toString(BMI)for displaying inside the EditText. Note that

the texts written inside the EditText widgets can only be read and written

as Strings.

We now have the BMI stored as a double type variable. We now have to

use if–else statements to check this numeric value according to Table 6.1

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

123

and determine the BMI category. For this, let‟s define a String that will

hold the BMI category:

String BMI_Cat;

 Code 6.7

We‟ll set this String according to the BMI value using if–else statements

as follows:

if (BMI < 15)

 BMI_Cat = "Very severely underweight";

else if (BMI < 16)

 BMI_Cat = "Severely underweight";

else if (BMI < 18.5)

 BMI_Cat = "Underweight";

else if (BMI < 25)

 BMI_Cat = "Normal";

else if (BMI < 30)

 BMI_Cat = "Overweight";

else if (BMI < 35)

 BMI_Cat = "Obese Class 1 - Moderately Obese";

else if (BMI < 40)

 BMI_Cat = "Obese Class 2 - Severely Obese";

else

 BMI_Cat = "Obese Class 3 - Very Severely Obese";

 Code 6.8

The only thing remaining is setting the TextView to the BMI_Cat String

so that the BMI category is displayed in the user interface:

final TextView BMICategory = (TextView)

 findViewById(R.id.BMICategory);

BMICategory.setText(BMI_Cat);

 Code 6.9

Sticking all these code lines together, we reach the complete

MainActivity.java given in Code 6.10. (You can download these codes

from the book’s website: www.android-java.website)

Please note that the library import directives at the beginning of this file

are automatically placed by Android Studio according to the methods

and classes we used in our code.

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

124

package com.helloworld.quantum.bmicalculator;

import android.graphics.Color;

import android.graphics.drawable.ColorDrawable;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.RelativeLayout;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity

{

 @Override

 protected void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

 }

public void myButtonListenerMethod() {

 Button button = (Button)findViewById(R.id.button);

 button.setOnClickListener(new

 View.OnClickListener() {

 @Override

 public void onClick(View v) {

 final EditText heightText = (EditText)

 findViewById(R.id.heightInput);

String heightStr = heightText.getText().toString();

double height = Double.parseDouble(heightStr);

final EditText weightText = (EditText)

 findViewById(R.id.weightInput);

String weightStr = weightText.getText().toString();

double weight = Double.parseDouble(weightStr);

double BMI = (weight)/(height*height);

final EditText BMIResult = (EditText)

 findViewById(R.id.BMIResult);

BMIResult.setText(Double.toString(BMI));

String BMI_Cat;

 if (BMI < 15)

 BMI_Cat = "Very severely underweight";

 else if (BMI < 16)

 BMI_Cat = "Severely underweight";

 else if (BMI < 18.5)

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

125

 BMI_Cat = "Underweight";

 else if (BMI < 25)

 BMI_Cat = "Normal";

 else if (BMI < 30)

 BMI_Cat = "Overweight";

 else if (BMI < 35)

 BMI_Cat = "Obese Class 1 – Moderately Obese";

 else if (BMI < 40)

 BMI_Cat = "Obese Class 2 - Severely Obese";

 else

 BMI_Cat = "Obese Class 3 - Very Severely Obese";

 final TextView BMICategory = (TextView)

 findViewById(R.id.BMICategory);

 BMICategory.setText(BMI_Cat);

 }

 });

 }

}

 Code 6.10 (cont‟d from the previous page)

6.6. Building and Running the App
Let‟s now try our app in the Nexus 4 emulator. Just press the “Run”

button in Android Studio and select the Nexus 4 emulator. You should

see the app screen shown in Figure 6.10.

Enter weight and height values (in kg and metres) and then tap the

CALCULATE MY BMI! button. If you followed all steps correctly,

you should see the BMI value and the BMI category on your app screen

as in Figure 6.11.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

126

Figure 6.10. The app screen

Figure 6.11. A sample BMI calculation

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

127

6.7. Final Notes
 As you can see from Figure 6.11, the BMI value is displayed with a

lot of unnecessary floating point digits. Probably only a single

decimal digit is enough. We can use the following code to trim the

decimal digits of the BMI variable and assign the trimmed value to a

new double type variable BMI_trimmed:

DecimalFormat df = new DecimalFormat("#.#");

double BMI_trimmed =

 Double.parseDouble(df.format(BMI));

 Code 6.11

The DecimalFormat class is used for these types of operations.

Android Studio automatically adds the required library by the code line:

import android.icu.text.DecimalFormat;

 Code 6.12

The modified complete MainActivity.java is also given as follows:

package com.helloworld.quantum.bmicalculator;

import android.graphics.Color;

import android.graphics.drawable.ColorDrawable;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.RelativeLayout;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity

{

 @Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

 }

public void myButtonListenerMethod() {
Button button = (Button)findViewById(R.id.button);

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

128

button.setOnClickListener(new

 View.OnClickListener() {

 @Override

public void onClick(View v) {

 final EditText heightText = (EditText)

 findViewById(R.id.heightInput);

 String heightStr =

 heightText.getText().toString();

 double height = Double.parseDouble(heightStr);

 final EditText weightText = (EditText)

 findViewById(R.id.weightInput);

 String weightStr =

 weightText.getText().toString();

 double weight = Double.parseDouble(weightStr);

 double BMI = (weight)/(height*height);

 DecimalFormat df = new DecimalFormat("#.#");

 double BMI_trimmed =

 Double.parseDouble(df.format(BMI));

 final EditText BMIResult = (EditText)

 findViewById(R.id.BMIResult);

 BMIResult.setText(Double.toString(BMI_trimmed));

 String BMI_Cat;

 if (BMI < 15)

 BMI_Cat = "Very severely underweight";

 else if (BMI < 16)

 BMI_Cat = "Severely underweight";

 else if (BMI < 18.5)

 BMI_Cat = "Underweight";

 else if (BMI < 25)

 BMI_Cat = "Normal";

 else if (BMI < 30)

 BMI_Cat = "Overweight";

 else if (BMI < 35)

 BMI_Cat = "Obese Class 1 - Moderately

 Obese";

 else if (BMI < 40)

 BMI_Cat = "Obese Class 2 - Severely Obese";

 else

 BMI_Cat = "Obese Class 3 - Very Severely

 Obese";

final TextView BMICategory = (TextView)

 findViewById(R.id.BMICategory);

CHAPTER 6. ANDRIOD APP #2: BMI CALCULATOR

129

 BMICategory.setText(BMI_Cat);

 }

 });

 }

}

Code 6.13 (cont‟d from the previous page)

When the modified code is used, the calculation result is displayed in the

emulator as follows:

Figure 6.12. The sample BMI calculation with trimmed BMI digits

Note 2. I have verified that our BMI Calculator app works as expected

on a real device (Asus Zenfone 6).

Note 3. Don‟t worry if the app categorizes you obese, it does me too (the

values shown in Figure 6.12 are not mine). Please consult your doctor

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

130

and dietician for the ways of decreasing your BMI like regularly

exercising and eating less processed food.

We‟ll develop a dice rolling app in the next chapter where you will learn

adding dynamic images to your app and utilizing randomness functions

in Android. See you after a strong coffee!

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

131

ANDRIOD APP #3: SIMPLE DICE ROLLER

7.1. Creating the Project and Adding an Imageview

Widget
We‟ll develop a simple dice rolling app in this chapter. We‟ll learn how

to use images in the GUI and also code for basic random number

generation in Java for rolling a virtual dice. When we hit a Roll button,

the app will choose a number between 1 and 6 randomly, show the result

as a number in a TextView and also display a dice image that shows the

outcome.

Please create a new project and save it on your computer. Select an

empty activity as usual. I named my project as Dice Roller but you can

of course give any name you‟d like.

First of all, let‟s design the user interface. While the activity_main.xml

file is opened in Android Studio, please change the default Textview‟s

text from Hello World to Dice Roller and position it on the top of the

GUI aligned horizontally in the middle as shown in Figure 7.1.

We now need to place an ImageView component which will be used to

display the dice face images. However, we first need to import the image

files to the project. When the app first starts, it is good to show a generic

dice image and then change the image to the respective dice face image

when the user rolls the dice. For this, we need to insert a general dice

image and 6 dice face images to Android Studio. These images are

shown in Figure 7.2 which can be downloaded from the book‟s

companion website www.android-java.website.

http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

132

Figure 7.1. TextView showing the title of the app

Figure 7.2. Dice face images and their filenames used in the app

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

133

Please select and right-click  copy all of these images in the file

explorer of your computer (just as you do when you select files for copy-

paste) and then right-click  paste in the drawable folder in Android

Studio as shown below:

Figure 7.3. Adding image files to the Android Studio project

When we click the arrow symbol just at the left of drawable folder, we

can see the newly added image files as in Figure 7.4.

Figure 7.4. The image files imported in the project

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

134

Let‟s place the ImageView object to the GUI now. Please find the

ImageView object in the Palette and drag and drop to the app‟s layout as

follows:

Figure 7.5. Adding an ImageView object

When we drop the ImageView on the GUI, Android Studio wants us to

set its image as in Figure 7.6. The selected image will be the image

shown inside the ImageView when the app first starts (i.e. default

image). Therefore, please select the dicegeneral.png as in Figure 7.6.

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

135

Figure 7.6. Selecting the default image for the ImageView

After this selection, press OK and then the layout of our app will be

shown as follows:

Figure 7.7. The layout after placing the ImageView

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

136

7.2. Adding the Other Widgets and Setting up the IDs
Please place a TextView and a Button just below the ImageView object

which will display the result of the rolling and initiate the rolling,

respectively. I have set the TextView to show Please tap the button….

Similarly, the button‟s text is changed to ROLL! as shown below:

Figure 7.8. The GUI after placing all of the required objects

We‟ll need the IDs of the dice image, the result TextView and the button

because we‟ll access them in the code. I‟ve assigned their IDs as

diceImage, rollResult and rollButton, respectively.

7.3. Developing the Main Code of the App
Let‟s start coding a button listener method which will be called when the

user taps the Roll! button. The template of the button listener is as shown

in Code 7.1 (as we developed in previous chapters). In this method, a

Button object called button is declared and the button on the GUI is

accessed via this object. Then, the clicks on this button is listened by the

setOnClickListener() method. The procedures those will be run

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

137

when the button‟s clicked will go inside the onClick() method as

usual.

public void myButtonListenerMethod() {
Button button = (Button) findViewById(R.id.rollButton);

 button.setOnClickListener(new

 View.OnClickListener() {

 @Override

 public void onClick(View v) {

 });

}

Code 7.1

We need to utilize a method to generate random numbers between 1 and

6. There are various randomness methods in Java. The following

Random object does the job for our simple dice roller:

Random rand = new Random();

int rollResult = rand.nextInt(6) + 1;

Code 7.2

In this code, a Random object called rand is created in the first line. In

the second line, the method nextInt() is applied on this object by

rand.nextInt(6). The nextInt(int n) method generates random

numbers between 0 and n–1 therefore rand.nextInt(6) generates

random numbers between 0 and 5. Therefore the expression

rand.nextInt(6) + 1 gives random numbers between 1 and 6 for

simulating a dice. This random number is assigned to the integer variable

rollResult.

We‟ll display the rollResult integer in the diceResult TextView on

the user interface. In the following code, a TextView object is created to

access the diceResult TextView and then its text is set as

Integer.toString(rollResult) which is the String expression of

rollResult:

TextView diceResult = (TextView)

 findViewById(R.id.diceResult);

diceResult.setText(Integer.toString(rollResult));

Code 7.3

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

138

The last thing we need to add is the code to change the ImageView‟s

image according to the rolling result. Firstly, we will access the

ImageView object using the following code line:

ImageView img = (ImageView)

 findViewById(R.id.diceImage);

Code 7.4

Since the rolling result is an integer number, we can easily utilize the

switch–case statements to change the image as follows:

switch (rollResult) {

 case 1:

 img.setImageResource(R.drawable.dice1);

 break;

 case 2:

 img.setImageResource(R.drawable.dice2);

 break;

 case 3:

 img.setImageResource(R.drawable.dice3);

 break;

 case 4:

 img.setImageResource(R.drawable.dice4);

 break;

 case 5:

 img.setImageResource(R.drawable.dice5);

 break;

 case 6:

 img.setImageResource(R.drawable.dice6);

 break;

}

Code 7.5

Please note that we change the image of the ImageView object img with

the method setImageResource() which takes the image resource with

the template R.drawable.”imagename”.

Combining all these code lines and calling the button listener method

inside the onCreate() method of the activity, we reach the complete

MainActivity.java given below:

package com.helloworld.quantum.myapplication;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

139

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

import java.util.Random;

public class MainActivity extends AppCompatActivity

{

 @Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

 }

public void myButtonListenerMethod() {

 Button button = (Button)

 findViewById(R.id.rollButton);

button.setOnClickListener(new View.OnClickListener()

{

 @Override

 public void onClick(View v) {

 Random rand = new Random();

 int rollResult = rand.nextInt(6) + 1;

 TextView diceResult = (TextView)

 findViewById(R.id.diceResult);

diceResult.setText(Integer.toString(rollResult));

 ImageView img = (ImageView)

 findViewById(R.id.diceImage);

 switch (rollResult) {

 case 1:

 img.setImageResource(R.drawable.dice1);

 break;

 case 2:

 img.setImageResource(R.drawable.dice2);

 break;

 case 3:

 img.setImageResource(R.drawable.dice3);

 break;

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

140

 case 4:

 img.setImageResource(R.drawable.dice4);

 break;

 case 5:

 img.setImageResource(R.drawable.dice5);

 break;

 case 6:

 img.setImageResource(R.drawable.dice6);

 break;

 }

 }

 });

 }

}

Code 7.6 (cont‟d from the previous page)

7.4. Building and Running the App
Let‟s run our dice roller app by hitting the “Run” button in Android

Studio and selecting an emulator such as Nexus 4 as we did before. The

app shown in Figure 7.9 appears. Each time you click the ROLL! button,

the app should show a different number with the corresponding die face

image as in Figure 7.10. The app also works properly on a real device as

it should.

It is worth noting that random numbers are not only used for fun apps but

also in everyday cryptographic processes like online credit card

transactions, etc. Hence there are much more sophisticated random

number generation functions in Java and Android, also with the aid of

external libraries. However for simple randomness like in our die rolling

game, the Random class seems adequate. You can check its randomness

by consecutively clicking on the Roll! button and observing if you obtain

the same number a lot or if the numbers show a pattern that you can

guess the next number. However please keep in mind that accurate

testing of randomness requires complex tools.

Let‟s take a short break before continuing to the next chapter where we‟ll

develop a compass app which will utilize the internal accelerometer and

magnetometer sensor of the device.

CHAPTER 7. ANDRIOD APP #3: SIMPLE DICE ROLLER

141

Figure 7.9. The app when it is first run

Figure 7.10. The app showing 6 after one of its rolling

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

142

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

143

ANDROID APP #4: THE COMPASS
We‟ll develop a simple compass app that will utilize the internal

accelerometer and magnetometer sensors of the Android device.

Accelerometer is a sensor which converts the mechanical acceleration

information to electrical signals and similarly a magnetometer is used to

translate the magnetic field intensity to electronic signals.

Most Android devices have an accelerometer and a magnetometer sensor

inside therefore using a compass app only requires software rather than

additional hardware.

As we develop our compass app, we‟ll learn setting permissions to use

sensors, reading acceleration and magnetic field data in Java code,

extracting the orientation data from the sensor data and animating

images. In the end, we‟ll have a complete compass app that we can use in

daily life.

8.1. Setting up the Required Permissions
Let‟s start by creating an Android project first. I named the project as

Compass App and selected Empty Activity as the default activity type.

The minimum API is also set to 15.

We‟ll need a compass image whose needle shows the absolute north. I

found the royalty free image shown in Figure 8.1 for this aim (I chose

this one because it looks sort of ancient like an ancient compass ). You

can download this image from the book‟s companion website as usual.

You can of course use any other image you like in your project. Please

copy and paste this image to your drawable folder as we did before. The

name of the image is compass.png, we‟ll use its name to access it in our

code.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

144

Figure 8.1. The compass image

If we use sensors in an Android project, we have to get the required

permissions to use these sensors in the AndroidManifest.xml file which

is located in the manifests folder as shown below:

Figure 8.2. The AndroidManifest file in the project explorer

Open this file by double clicking on it in Android Studio and you‟ll see

its default contents as shown in Figure 8.3. Please add the lines shown in

Code 8.1 to this file before the <application> tag and you‟ll obtain

the finalized contents as shown in Code 8.2. These lines make the

accelerometer and magnetometer outputs available to be used in our app.

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

145

Figure 8.3. Default contents of the AndroidManifest.xml file

<uses-feature

android:name="android.hardware.sensor.accelerometer"

android:required="true" />

<uses-feature

android:name="android.hardware.sensor.magnetometer"

android:required="true" />

Code 8.1

<?xml version="1.0" encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/and

roid"

 package="com.example.atomic.compassapp">

<uses-feature

android:name="android.hardware.sensor.accelerometer"

android:required="true" />

<uses-feature

android:name="android.hardware.sensor.magnetometer"

android:required="true" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

146

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action

android:name="android.intent.action.MAIN" />

 <category

android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Code 8.2 (cont‟d from the pervious page)

8.2. Designing the GUI of the App
Now, let‟s design the layout of the app. Please open the layout_main.xml

file for this and change the text of the default Hello World TextView to

Compass App which will serve as the app title. Please set its font size as

30sp and bold style. Then, please position it as follows:

Figure 8.4. The TextView used to display the title of the app

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

147

Let‟s now place an ImageView in the middle of the GUI and select the

compass image that we pasted to the drawable folder:

Figure 8.5. Selecting the compass image for the ImageView component

After we place the ImageView, it‟ll be selected. Then, please set up its

ID as iv_compass (short for ImageView_compass) from the right pane

of Android Studio as follows:

Figure 8.6. Setting the ID of the compass ImageView

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

148

Finally, let‟s place a TextView below the ImageView in which we‟ll

display the orientation angle in real time. I set its ID as tv_degrees (short

for TextView_degrees), and made it 24sp with a bold text as shown

below:

Figure 8.7. Adding the TextView to display the orientation angle

8.3. Writing the Main Code of the App
We completed the design of the user interface and now ready to continue

with the coding. Please open the MainActivity.java file in Android

Studio. This file will have the default contents as follows:

package com.example.atomic.compassapp;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity

{

 @Override

 protected void onCreate(Bundle

savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

Code 8.3

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

149

The horizontal direction of a compass bearing is called as azimuth. We‟ll

calculate this angle from the magnetometer and accelerometer outputs. Let‟s

define a float type variable to hold this data:

Float azimuth_angle;

Code 8.4

We also need to define objects related to the sensors as follows:

private SensorManager compassSensorManager;

Sensor accelerometer;

Sensor magnetometer;

Code 8.5

In this code, the first object is a SensorManager object that is used to

access the sensors. The other two declarations define Sensor objects for

reading the outputs of the accelerometer and the magnetometer.

Finally, let‟s declare ImageView and TextView objects which will be

used to access the corresponding components in the GUI:

TextView tv_degrees;

ImageView iv_compass;

Code 8.6

We can place these declarations inside the MainActivity class just before

the onCreate() method. Then, we can assign the default accelerometer and

magnetometer sensors to their objects inside the onCreate() method as

follows:

compassSensorManager =

(SensorManager)getSystemService(SENSOR_SERVICE);

accelerometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_ACC

ELEROMETER);

magnetometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_MAG

NETIC_FIELD);

Code 8.7

After these declarations and assignments, the MainActivity.java file currently

looks like Code 8.8.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

150

package com.example.atomic.compassapp;

import android.hardware.Sensor;

import android.hardware.SensorManager;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 Float azimuth_angle;

 private SensorManager compassSensorManager;

 Sensor accelerometer;

 Sensor magnetometer;

 TextView tv_degrees;

 ImageView iv_compass;

 @Override

 protected void onCreate(Bundle

savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 compassSensorManager =

(SensorManager)getSystemService(SENSOR_SERVICE);

 accelerometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_ACC

ELEROMETER);

 magnetometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_MAG

NETIC_FIELD);

 }

}

Code 8.8

In order to continue with reading sensors, we have to implement

SensorEventListener class. We do this by using the implements

keyword in the main class definition as follows:

public class MainActivity extends AppCompatActivity

 implements SensorEventListener

Code 8.9

Note that this is a single line code.

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

151

When we implement SensorEventListener class, Android Studio warns

us by a red bulb saying that we need to implement the required methods in our

code:

Figure 8.8. Warning for implementing the required methods

Please click the Implement methods and then Android Studio will

automatically place the onSensorChanged() and

onSensorActivityChanged() methods when we click the OK button in

the dialog box:

Figure 8.9. Dialog showing the methods which will be implemented

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

152

Android Studio automatically places the following code to

MainActivity.java:

@Override

public void onSensorChanged(SensorEvent event) {

}

@Override

public void onAccuracyChanged(Sensor sensor, int

accuracy) {

}

Code 8.10

We‟ll write our main code inside the onSensorChanged() method.

However, before moving on to the main code, let‟s write the

onResume() and onPause() methods for the main activity because

sensors are power hungry components therefore it is important to pause

and resume the sensor listeners when the activity pauses and resumes.

For this, we simply add the following code just below the end of the

onCreate() method:

protected void onResume() {

 super.onResume();

 mSensorManager.registerListener(this,

accelerometer, SensorManager.SENSOR_DELAY_UI);

 mSensorManager.registerListener(this,

magnetometer, SensorManager.SENSOR_DELAY_UI);

}

protected void onPause() {

 super.onPause();

 mSensorManager.unregisterListener(this);

}

Code 8.11

In the onResume() method, the sensor listeners are registered meaning

that the sensors are powered on again when the activity resumes.

Similarly, the sensors are unregistered (disconnected) in the onPause()

method when the activity pauses.

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

153

We‟re now ready to write the main code. Firstly, let‟s define two float

type arrays to hold the accelerometer and magnetometer output data.

These will be array variables because the outputs of these sensors are

vectoral quantities i.e. they have different values for different directions.

We can define the arrays named accel_read and magnetic_read for

these sensors as follows:

float[] accel_read;

float[] magnetic_read;

Code 8.12

Please write these declarations just before the onSensorChanged()

method so that we can access these variables from anywhere in the

onSensorChanged() method.

Inside the onSensorChanged() method: This method is called

automatically when there‟s a new sensor event therefore we‟ll write our

main code inside this method. The following code creates objects to

access the ImageView and TextView of the GUI which will be updated

when a sensor event happens:

tv_degrees =(TextView) findViewById(R.id.tv_degrees);
iv_compass = (ImageView) findViewById(R.id.iv_compass);

Code 8.13

Then, the following code reads accelerometer and magnetometer sensors

and stores the output data to accel_read and magnetic_read arrays:

if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

 accel_read = event.values;

if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)

 magnetic_read = event.values;

Code 8.14

If the sensor outputs are available (i.e. they are not null), we‟ll use the

accel_read and magnetic_read variables in the method called

getRotationMatrix() to get the rotation matrix R of the device as

follows:

if (accel_read != null && magnetic_read != null) {

 float R[] = new float[9];

 float I[] = new float[9];

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

154

 boolean successful_read =

SensorManager.getRotationMatrix(R, I, accel_read,

magnetic_read);

Code 8.15 (cont‟d from the previous page)

If this operation is successful, the successful_read variable will be

true and the rotation matrix will be stored in the variable R. In this case,

we‟re ready to get the azimuth angle (the angle between the device

direction and the absolute north) as follows:

if (successsful_read) {

 float orientation[] = new float[3];

 SensorManager.getOrientation(R, orientation);

 azimuth_angle = orientation[0];

 float degrees = ((azimuth_angle * 180f) / 3.14f);

 int degreesInt = Math.round(degrees);

 tv_degrees.setText(Integer.toString(degreesInt) +

(char) 0x00B0 + " to absolute north.");

}

Code 8.16

In this code:

 A new array called orientation is declared.

 The orientation of the device is extracted using the

getOrientation() method and 3-dimensional orientation data is

stored in the orientation array.

 The first component of this array is the azimuth angle in radians,

which is assigned to the azimuth_angle variable in the fourth

line.

 In the fifth line, the azimuth angle in radians is converted to degrees

and assigned to the newly created variable degrees.

 The degrees variable is of float type therefore it is better to round

it to an integer. The sixth code line does this job using the method

Math.round().

 Finally, the azimuth angle in integer degrees is shown in the

TextView in the user interface. The char 0x00B0 is used to display

the degree symbol (°).

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

155

It is also good to rotate the compass image according to the azimuth

angle. For this animation, we need to declare a float type variable

which will hold the current value of the ImageView‟s rotation degree:

private float current_degree = 0f;

Code 8.17

Then, we can use the following animation code which will rotate the

ImageView according to the azimuth angle:

RotateAnimation rotate = new

RotateAnimation(current_degree, -degreesInt,

Animation.RELATIVE_TO_SELF, 0.5f,

Animation.RELATIVE_TO_SELF, 0.5f);

rotate.setDuration(100);

rotate.setFillAfter(true);

iv_compass.startAnimation(rotate);

current_degree = -degreesInt;

Code 8.18

In this code, we declared a RotateAnimate object and then set the

animation duration. The startAnimation starts the rotation of the

ImageView. This code rotates the compass image in real time according

to the degreesInt variable which holds the azimuth angle data.

Combining all these code lines, we reach the following

MainActivity.java shown below:

package com.example.atomic.compassapp;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;

import android.hardware.SensorManager;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.animation.Animation;

import android.view.animation.RotateAnimation;

import android.widget.ImageView;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity

implements SensorEventListener {

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

156

 Float azimuth_angle;

 private SensorManager compassSensorManager;

 Sensor accelerometer;

 Sensor magnetometer;

 TextView tv_degrees;

 ImageView iv_compass;

 private float current_degree = 0f;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 compassSensorManager =

(SensorManager)getSystemService(SENSOR_SERVICE);

 accelerometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_ACC

ELEROMETER);

 magnetometer =

compassSensorManager.getDefaultSensor(Sensor.TYPE_MAG

NETIC_FIELD);

 }

 protected void onResume() {

 super.onResume();

 compassSensorManager.registerListener(this,

accelerometer, SensorManager.SENSOR_DELAY_UI);

 compassSensorManager.registerListener(this,

magnetometer, SensorManager.SENSOR_DELAY_UI);

 }

 protected void onPause() {

 super.onPause();

 compassSensorManager.unregisterListener(this);

 }

 float[] accel_read;

 float[] magnetic_read;

 @Override

 public void onSensorChanged(SensorEvent event) {

 tv_degrees =(TextView)

findViewById(R.id.tv_degrees);

CHAPTER 8. ANDRIOD APP #4: THE COMPASS

157

 iv_compass = (ImageView)

findViewById(R.id.iv_compass);

 if (event.sensor.getType() ==

Sensor.TYPE_ACCELEROMETER)

 accel_read = event.values;

 if (event.sensor.getType() ==

Sensor.TYPE_MAGNETIC_FIELD)

 magnetic_read = event.values;

 if (accel_read != null && magnetic_read !=

null) {

 float R[] = new float[9];

 float I[] = new float[9];

 boolean successsful_read =

SensorManager.getRotationMatrix(R, I, accel_read,

magnetic_read);

 if (successsful_read) {

 float orientation[] = new float[3];

 SensorManager.getOrientation(R, orientation);

 azimuth_angle = orientation[0];

 float degrees = ((azimuth_angle * 180f) /

3.14f);

 int degreesInt = Math.round(degrees);

 tv_degrees.setText(Integer.toString(degreesInt)

+ (char) 0x00B0 + " to absolute north.");

 RotateAnimation rotate = new

RotateAnimation(current_degree, -degreesInt,

Animation.RELATIVE_TO_SELF, 0.5f,

Animation.RELATIVE_TO_SELF, 0.5f);

 rotate.setDuration(100);

 rotate.setFillAfter(true);

 iv_compass.startAnimation(rotate);

 current_degree = -degreesInt;

 }

 }

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int

accuracy) {

 }

}

Code 8.19 (cont‟d from the previous page)

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

158

8.4. Building and Running the App
If we try to run the app in an emulator, the compass will constantly show

the north and the azimuth angle as 0 degrees. We need to try this app on

a real device with a magnetometer and accelerometer inside (most

Android devices have). Please build the app in Android Studio and install

it on a real device. I tried this app on Asus Zenfone and it works as

expected:

Figure 8.10. Compass app running on a real device

Now, let‟s take a break and get a strong coffee. In the next chapter, we‟ll

learn using GPS and maps in our app.

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

159

ANDRIOD APP # 5: SHOW MY LOCATION: USING

GPS AND MAPS

9.1. Creating a Map Project
Geolocation and navigation apps are popular in all mobile platforms.

Considering this, most mobile devices especially smartphones include

components called GPS receivers. These receivers take microwave band

radio signals from global positioning satellites that move in specified

orbits around the earth. These GPS signals are extremely weak but

thanks to the electronics tech, amplifier and processing circuits in

smartphones can utilize these signals for location services.

Anyway, let‟s start developing our 5
th
 app: Show My Location. In this

chapter, you‟ll learn to use maps and geolocation data from GPS in your

apps. It sounds easy but there are some confusing tricks to use the GPS

receiver; don‟t worry I‟ll show all of them in a while.

In this app, we aim to show our real time location on the map.

Let‟s start with creating a new Android project and select Google Maps

Activity as the activity type a shown in Figure 9.1. When we select the

Google Maps Activity, the main Java file and the xml layout file of the

project are named as MapsActivity.java and activity_maps.xml

automatically as in Figure 9.2.

When a Google Maps App project is created, a file named

google_maps_api.xml is generated and placed under the res  values

folder as shown in Figure 9.3.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

160

Figure 9.1. Selecting Google Maps Activity during the project creation

Figure 9.2. Filenames automatically assigned by Android Studio

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

161

Figure 9.3. google_maps_api.xml file

9.2. Creating and Adding an Api Key
In order to use Google Maps, we need to enter an api (application

programming interface) key to the google_maps_api.xml file. The

default google_maps_api.xml is as follows:

<resources>

<!--

TODO: Before you run your application, you need a

Google Maps API key.

To get one, follow this link, follow the directions

and press "Create" at the end:

https://console.developers.google.com/flows/enableapi

?apiid=maps_android_backend&keyType=CLIENT_SIDE_ANDRO

ID&r=F7:42:43:B5:F0:19:50:79:4E:0E:69:D2:1A:27:3D:7D:

E4:47:EC:6D%3Bcom.example.atomic.myapplication

 <string name="google_maps_key"

templateMergeStrategy="preserve"

translatable="false">YOUR_KEY_HERE</string>

</resources>

Code 9.1

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

162

We have to enter the api key to the place indicated by

YOUR_KEY_HERE in the file above. So, where should we obtain this

key? We just need to go to the website indicated in our

google_maps_api.xml file which starts with https://console.developers .

When we navigate to this site, we need to select Create a new project

and hit Continue as follows:

Figure 9.4. Creating a new project to obtain a new api key for the maps

app

In the next dialog, please hit the Create API Key:

Figure 9.5. Creating the api key

Google console will then display the generated api key as shown below:

https://console.developers/

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

163

Figure 9.6. The generated api key

Please copy the generated api key and paste it to the place indicated in

the google_maps_api.xml file:

<resources>

<!--

TODO: Before you run your application, you need a

Google Maps API key.

To get one, follow this link, follow the directions

and press "Create" at the end:

https://console.developers.google.com/flows/enableapi

?apiid=maps_android_backend&keyType=CLIENT_SIDE_ANDRO

ID&r=F7:42:43:B5:F0:19:50:79:4E:0E:69:D2:1A:27:3D:7D:

E4:47:EC:6D%3Bcom.example.atomic.myapplication

 <string name="google_maps_key"

templateMergeStrategy="preserve"

translatable="false">AIzaSyBiCCm62mCYYhXVFedpcDpxxxxx

xxxx</string>

</resources>

Code 9.2

Please note that you need to generate and paste your own key otherwise your

app won‟t work.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

164

9.3. The Default MapsActivity.java File
Let‟s now view the automatically generated MapsActivity.java file where we‟ll

write the main code:

package com.example.atomic.myapplication;

import android.support.v4.app.FragmentActivity;

import android.os.Bundle;

import

com.google.android.gms.maps.CameraUpdateFactory;

import com.google.android.gms.maps.GoogleMap;

import

com.google.android.gms.maps.OnMapReadyCallback;

import

com.google.android.gms.maps.SupportMapFragment;

import com.google.android.gms.maps.model.LatLng;

import

com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback {

 private GoogleMap mMap;

 @Override

 protected void onCreate(Bundle

savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_maps);

 // Obtain the SupportMapFragment and get

notified when the map is ready to be used.

 SupportMapFragment mapFragment =

(SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 /**

 * Manipulates the map once available.

 * This callback is triggered when the map is

ready to be used.

 * This is where we can add markers or lines, add

listeners or move the camera. In this case,

 * we just add a marker near Sydney, Australia.

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

165

 * If Google Play services is not installed on

the device, the user will be prompted to install

 * it inside the SupportMapFragment. This method

will only be triggered once the user has

 * installed Google Play services and returned to

the app.

 */

 @Override

 public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 // Add a marker in Sydney and move the camera

 LatLng sydney = new LatLng(-34, 151);

 mMap.addMarker(new

MarkerOptions().position(sydney).title("Marker in

Sydney"));

mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney)

);

 }

}

Code 9.3 (cont‟d from the previous page)

In this code, mapFragment.getMapAsync(this) line adds the Map

component to the app. Then a LatLng object, which holds the latitude

and longitude data is created inside the onMapReady() method. The

code line LatLng sydney = new LatLng(-34, 151) declares a

LatLng object at the latitude and longitude of -34 and 151, which is the

coordinates of Sydney, Australia (please note that this point is

automatically chosen by Android Studio). Then, a marker on Sydney is

placed by the addMarker() method which is applied on the map object.

And in the last line, the camera is moved to this point by the

moveCamera() method.

9.4. Running the Maps App for the First Time
We‟re now ready to try the current state of the app in the emulator.

Please hit Run in Android Studio and then you should see our app in the

emulator as shown in Figure 9.7.

If you see the map with the marker, congratulations. If you cannot see

the map, please check the api key section above. Most errors are caused

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

166

from a wrong api key unless there‟s another error indicated by the gradle

building system.

Figure 9.7. Current state of our app

9.5. Implementing the Required Callbacks
We now need to take data from the GPS receiver and then show our

current location on the map rather than the default marker. For this, we

first implement the required callbacks in the main class definition as

follows:

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

167

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback, LocationListener,

 GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener

 {

Code 9.4

In this code snippet, we implemented these additional callbacks:

LocationListener, GoogleApiClient.ConnectionCallback

and GoogleApiClient.OnConnectionFailedListener. The

functions of these callbacks are as follows:

 LocationListener: Activated when the location changes.

 GoogleApiClient.ConnectionCallback: Activated when the

device‟s connection status changes.

 GoogleApiClient.OnConnectionFailedListener: Activated

when the connection to the map data server fails.

When we add these callbacks in the class definition in

MapsActivity.java, Android Studio gives errors in the callback definition

lines. When we click on the red bulb, the option Implement methods

should be selected as follows:

Figure 9.8. Selecting Implement methods for correcting the callbacks

The dialog shown in Figure 9.9 appears after choosing to implement

methods. Please leave the selected methods and click OK in this

window. Then, the required methods will be added to MapsActivity.java

and the error marks will disappear.

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

168

Figure 9.9. Selecting the methods to implement for the callbacks

After implementing these methods, MapsActivity.java looks like

follows:

package com.example.atomic.myapplication;

import android.location.Location;

import android.location.LocationListener;

import android.support.annotation.NonNull;

import android.support.annotation.Nullable;

import android.support.v4.app.FragmentActivity;

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

169

import android.os.Bundle;

import

com.google.android.gms.common.ConnectionResult;

import

com.google.android.gms.common.api.GoogleApiClient;

import

com.google.android.gms.maps.CameraUpdateFactory;

import com.google.android.gms.maps.GoogleMap;

import

com.google.android.gms.maps.OnMapReadyCallback;

import

com.google.android.gms.maps.SupportMapFragment;

import com.google.android.gms.maps.model.LatLng;

import

com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback,

 GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener,

 LocationListener{

 private GoogleMap mMap;

 @Override

 protected void onCreate(Bundle

savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_maps);

 // Obtain the SupportMapFragment and get

notified when the map is ready to be used.

 SupportMapFragment mapFragment =

(SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 /**

 * Manipulates the map once available.

 * This callback is triggered when the map is

ready to be used.

 * This is where we can add markers or lines,

add listeners or move the camera. In this case,

 * we just add a marker near Sydney, Australia.

 * If Google Play services is not installed on

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

170

the device, the user will be prompted to install

 * it inside the SupportMapFragment. This

method will only be triggered once the user has

 * installed Google Play services and returned

to the app.

 */

 @Override

 public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 // Add a marker in Sydney and move the

camera

 LatLng sydney = new LatLng(-34, 151);

 mMap.addMarker(new

MarkerOptions().position(sydney).title("Marker in

Sydney"));

mMap.moveCamera(CameraUpdateFactory.newLatLng(sydne

y));

 }

 @Override

 public void onLocationChanged(Location

location) {

 }

 @Override

 public void onStatusChanged(String provider,

int status, Bundle extras) {

 }

 @Override

 public void onProviderEnabled(String provider)

{

 }

 @Override

 public void onProviderDisabled(String provider)

{

 }

 @Override

 public void onConnected(@Nullable Bundle

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

171

bundle) {

 }

 @Override

 public void onConnectionSuspended(int i) {

 }

 @Override

 public void onConnectionFailed(@NonNull

ConnectionResult connectionResult) {

 }

}

Code 9.5 (cont‟d from the pervious page)

9.6. Populating the Implemented Methods
Let‟s start populating the implemented methods. First of all, we‟ll

declare the objects those will be used in our code as follows:

Location myLastLocation;

LocationRequest myLocationRequest;

GoogleApiClient myGoogleApiClient;

Marker myCurrLocationMarker;

Code 9.6

In these declarations, myLastLocation holds the location info itself.

The remaining objects will be responsible to manage the location

request, api related processes and the marker showing the current

location, respectively.

The onCreate() method contains the jobs to be done when the activity

first starts as we learned before. We need to modify it as follows to check

the location tracking permission and create a SupportMapFragment

object that will be used to do things related to the MapFragment object

of the user interface:

protected void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_maps);

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

172

 if (android.os.Build.VERSION.SDK_INT >=

Build.VERSION_CODES.M) {

 checkLocationPermission();

 }

 SupportMapFragment mapFragment =

(SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

}

Code 9.7 (cont‟d from the previous page)

The next method to modify is the onMapReady() method. This method

deals with the manipulation of the map once it is available. In this

method, the app will check whether the device has Google Play Services

installed and if not, the app will prompt to install it. Please remember

that map related functions can not run if Google Play Services is not

installed. We do these as follows:

public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

 //Checking Google Play Services version

 if (android.os.Build.VERSION.SDK_INT >=

Build.VERSION_CODES.M) {

 if (ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION)

 ==

PackageManager.PERMISSION_GRANTED) {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 }

 else {

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

}

Code 9.8

The Google api client used in this method is built using the

following method:

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

173

protected synchronized void buildGoogleApiClient()

{

 myGoogleApiClient = new

GoogleApiClient.Builder(this)

 .addConnectionCallbacks(this)

 .addOnConnectionFailedListener(this)

 .addApi(LocationServices.API)

 .build();

 myGoogleApiClient.connect();

}

Code 9.9

When the required permissions are taken and Google api is ready, the

app will start tracking the current location inside the onConnected()

method as follows:

public void onConnected(Bundle bundle) {

 myLocationRequest = new LocationRequest();

 myLocationRequest.setInterval(1000);

 myLocationRequest.setFastestInterval(1000);

myLocationRequest.setPriority(LocationRequest.PRIORIT

Y_BALANCED_POWER_ACCURACY);

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

LocationServices.FusedLocationApi.requestLocationUpda

tes(myGoogleApiClient, myLocationRequest, this);

 }

}

Code 9.10

In this code, the time intervals are shown in milliseconds. Therefore, the

location data is gathered in 1 second intervals. If the intervals get more

frequent, the location data will be gathered in shorter intervals but this

will drain the battery faster. The setPriority() method is also used to

manage the power consumption. In this code, a balanced power usage is

selected.

When the location changes, the app will move the marker to the new

location. This is done inside the onLocationChanged() method:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

174

public void onLocationChanged(Location location) {

 myLastLocation = location;

 if (myCurrLocationMarker != null) {

 myCurrLocationMarker.remove();

 }

 //Move the marker

 LatLng latLng = new

LatLng(location.getLatitude(),

location.getLongitude());

 MarkerOptions markerOptions = new

MarkerOptions();

 markerOptions.position(latLng);

 markerOptions.title("My Position");

markerOptions.icon(BitmapDescriptorFactory.defaultMar

ker(BitmapDescriptorFactory.HUE_MAGENTA));

 myCurrLocationMarker =

mMap.addMarker(markerOptions);

 //Move the map view

mMap.moveCamera(CameraUpdateFactory.newLatLng(latLng)

);

mMap.animateCamera(CameraUpdateFactory.zoomTo(11));

 //Stop moving the marker

 if (myGoogleApiClient != null) {

LocationServices.FusedLocationApi.removeLocationUpdat

es(myGoogleApiClient, this);

 }

}

Code 9.11

In this code, getLatitude() and getLongitude() gets the current

latitude and longitude and then places them inside the LatLng object.

When the location changes, the marker is moved to the new location and

the title of the marker is set as My Position. Then, the camera is moved

to show the current location.

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

175

Finally, the permission related checkLocationPermission() and

onPermissionRequestResult() methods are populated as in Code

9.12.

public static final int

MY_PERMISSIONS_REQUEST_LOCATION = 99;

public boolean checkLocationPermission(){

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 != PackageManager.PERMISSION_GRANTED) {

 if (ActivityCompat.shouldShowRequestPermission

Rationale(this,Manifest.permission.ACCESS_FINE_LOCATI

ON)) {

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.

 ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 } else {

 ActivityCompat.requestPermissions(this,

 new String[]{Manifest.permission.

 ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 }

 return false;

 } else {

 return true;

 }

}

@Override

public void onRequestPermissionsResult(int

requestCode,

 String

permissions[], int[] grantResults) {

 switch (requestCode) {

 case MY_PERMISSIONS_REQUEST_LOCATION: {

 if (grantResults.length > 0

 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

176

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 ==PackageManager.PERMISSION_GRANTED) {

 if (myGoogleApiClient == null) {

 buildGoogleApiClient();

 }

 mMap.setMyLocationEnabled(true);

 }

 } else {

 // Toast shows a popup warning on the screen

 Toast.makeText(this, "Permission not given.",

Toast.LENGTH_LONG).show();

 }

 return;

 }

 }

Code 9.12 (cont‟d from the previous page)

These methods ask for user permission to track fine location. If the user

rejects giving the permission, the message “Permission not given.” is

shown on the screen as a popup dialog.

The complete MapsActivity.java file is shown in Code 9.13.

package com.example.atomic.myapplication;

import android.Manifest;

import android.content.pm.PackageManager;

import android.location.Location;

import android.os.Build;

import android.support.v4.app.ActivityCompat;

import android.support.v4.app.FragmentActivity;

import android.os.Bundle;

import android.support.v4.content.ContextCompat;

import android.widget.Toast;

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.api.GoogleApiClient;

import com.google.android.gms.location.LocationListener;

import com.google.android.gms.location.LocationRequest;

import com.google.android.gms.location.LocationServices;

import com.google.android.gms.maps.CameraUpdateFactory;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.OnMapReadyCallback;

import com.google.android.gms.maps.SupportMapFragment;

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

177

import

com.google.android.gms.maps.model.BitmapDescriptorFactory;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends FragmentActivity

implements OnMapReadyCallback,

 GoogleApiClient.ConnectionCallbacks,

 GoogleApiClient.OnConnectionFailedListener,

 LocationListener {

 private GoogleMap mMap;

 GoogleApiClient myGoogleApiClient;

 Location myLastLocation;

 Marker myCurrLocationMarker;

 LocationRequest myLocationRequest;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_maps);

 if (android.os.Build.VERSION.SDK_INT >=

Build.VERSION_CODES.M) {

 checkLocationPermission();

 }

 SupportMapFragment mapFragment =

(SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 @Override

 public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

 //Initialize Google Play Services

 if (android.os.Build.VERSION.SDK_INT >=

Build.VERSION_CODES.M) {

 if (ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED)

{

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 }

 else {

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

178

 buildGoogleApiClient();

 mMap.setMyLocationEnabled(true);

 }

 }

 protected synchronized void buildGoogleApiClient() {

 myGoogleApiClient = new

GoogleApiClient.Builder(this)

 .addConnectionCallbacks(this)

 .addOnConnectionFailedListener(this)

 .addApi(LocationServices.API)

 .build();

 myGoogleApiClient.connect();

 }

 @Override

 public void onConnected(Bundle bundle) {

 myLocationRequest = new LocationRequest();

 myLocationRequest.setInterval(1000);

 myLocationRequest.setFastestInterval(1000);

myLocationRequest.setPriority(LocationRequest.PRIORITY_BAL

ANCED_POWER_ACCURACY);

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

LocationServices.FusedLocationApi.requestLocationUpdates(m

yGoogleApiClient, myLocationRequest, this);

 }

 }

 @Override

 public void onConnectionSuspended(int i) {

 }

 @Override

 public void onLocationChanged(Location location) {

 myLastLocation = location;

 if (myCurrLocationMarker != null) {

 myCurrLocationMarker.remove();

 }

 LatLng latLng = new LatLng(location.getLatitude(),

location.getLongitude());

 MarkerOptions markerOptions = new MarkerOptions();

 markerOptions.position(latLng);

 markerOptions.title("My Position");

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

179

markerOptions.icon(BitmapDescriptorFactory.defaultMarker(B

itmapDescriptorFactory.HUE_MAGENTA));

 myCurrLocationMarker =

mMap.addMarker(markerOptions);

mMap.moveCamera(CameraUpdateFactory.newLatLng(latLng));

mMap.animateCamera(CameraUpdateFactory.zoomTo(11));

 if (myGoogleApiClient != null) {

LocationServices.FusedLocationApi.removeLocationUpdates(my

GoogleApiClient, this);

 }

 }

 @Override

 public void onConnectionFailed(ConnectionResult

connectionResult) {

 }

 public static final int

MY_PERMISSIONS_REQUEST_LOCATION = 99;

 public boolean checkLocationPermission(){

 if (ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 != PackageManager.PERMISSION_GRANTED) {

 if

(ActivityCompat.shouldShowRequestPermissionRationale(this,

Manifest.permission.ACCESS_FINE_LOCATION)) {

 ActivityCompat.requestPermissions(this,

 new

String[]{Manifest.permission.ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 } else {

 ActivityCompat.requestPermissions(this,

 new

String[]{Manifest.permission.ACCESS_FINE_LOCATION},

 MY_PERMISSIONS_REQUEST_LOCATION);

 }

 return false;

 } else {

 return true;

 }

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

180

 }

 @Override

 public void onRequestPermissionsResult(int

requestCode,

 String

permissions[], int[] grantResults) {

 switch (requestCode) {

 case MY_PERMISSIONS_REQUEST_LOCATION: {

 if (grantResults.length > 0

 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

 if

(ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION)

 ==

PackageManager.PERMISSION_GRANTED) {

 if (myGoogleApiClient == null) {

 buildGoogleApiClient();

 }

 mMap.setMyLocationEnabled(true);

 }

 } else {

 Toast.makeText(this, "Permission not

given.", Toast.LENGTH_LONG).show();

 }

 return;

 }

 }

 }

}

Code 9.13 (cont‟d from the previous page)

Please remember that you can download these files from the book‟s

companion website: www.android-java.website.

9.7. Adding the Required Permissions to the Manifest

File
The AndroidManifest.xml file with the required permissions is also given

in Code 9.14.

<?xml version="1.0" encoding="utf-8"?>

http://www.android-java.website/

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

181

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.atomic.myapplication">

 <uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission

android:name="android.permission.INTERNET" />

 <uses-permission

android:name="com.google.android.providers.gsf.permission.

READ_GSERVICES" />

 <!--

 The ACCESS_COARSE/FINE_LOCATION permissions are

not required to use

 Google Maps Android API v2, but you must specify

either coarse or fine

 location permissions for the 'MyLocation'

functionality.

 -->

 <uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION"/>

 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <!--

 The API key for Google Maps-based APIs is

defined as a string resource.

 (See the file

"res/values/google_maps_api.xml").

 Note that the API key is linked to the

encryption key used to sign the APK.

 You need a different API key for each

encryption key, including the release key that is used to

 sign the APK for publishing.

 You can define the keys for the debug and

release targets in src/debug/ and src/release/.

 -->

 <meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="@string/google_maps_key"/>

 <activity

 android:name=".MapsActivity"

 android:label="@string/title_activity_maps">

 <intent-filter>

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

182

 <action

android:name="android.intent.action.MAIN"/>

 <category

android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

Code 9.14 (cont‟d from the previous page)

The Internet and GPS permissions are added because the map uses both

coarse and fine location tracking.

9.8. Running Our App and Sending Custom

Coordinates to the Emulator
Please hit the Run button in Android Studio to run our Show My

Location app. You can run the app in an emulator or on an actual device.

The app running in the Nexus 4 emulator is shown in Figure 9.10. If you

cannot see the map on your app, most probably it‟s an error regarding the

api key. Please review that section again.

Please note that I have sent custom coordinates to the emulator using its

options button as shown in Figure 9.11. The latitude and longitude of the

coordinates I‟ve entered are 41.3809 N and 2.11287 E. Can you guess

what this famous location is? Hint: You can zoom in and out on the

emulator‟s map by double-clicking at a point and then moving the mouse

up or down.

It is worth noting that I‟ve tried the app on a real device and it works as

expected.

CHAPTER 9. ANDRIOD APP #5: SHOW MY LOCATION

183

Figure 9.10. Our Show My Location app in the emulator

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

184

Figure 9.11. Sending custom coordinates to the emulator

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

185

ANDRIOD APP # 6: S.O.S. MESSAGE SENDER

10.1. Introduction
Most of the Android devices have the capability of GSM connection

therefore it is useful to learn using SMS messaging in Android. A class

called SmsManager enables us to design apps that can easily send and

receive SMS programmatically. You‟ll see how this class is used in this

chapter.

We‟ll develop an app which sends the current location to

pre-defined recipients using SMS. This app can be useful in case of an

emergency in deserts or if you‟re boozed in a disco when you cannot

type text in the message field and need to send your location to a mate to

take you home.

10.1. Adding the Required Permissions
Firstly, please create a standard Android Project having an empty activity

and a target SDK version of 22 or lower. I named my project as S.O.S.

Sender. We‟ll use the location taken from the GPS sensor and send it

with SMS. Therefore, we need to add both GPS usage and SMS sending

permissions to the AndroidManifest.xml file as follows:

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION

" />

<uses-permission

android:name="android.permission.SEND_SMS" />

Code 10.1

After inserting these permissions, AndroidManifest.xml file looks as shown

below:

<?xml version="1.0" encoding="utf-8"?>

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

186

<manifest

xmlns:android="http://schemas.android.com/apk/res/and

roid"

 package="sendsms.example.com.sendsms">

 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION

" />

 <uses-permission

android:name="android.permission.SEND_SMS" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action

android:name="android.intent.action.MAIN" />

 <category

android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Code 10.2 (cont‟d from the previous page)

10.2. Designing the User Interface
Let‟s design the user interface now. The user will basically click on an

S.O.S. button and nothing else is needed. Therefore, I placed a button

widget in the middle the screen in the activity_main.xml file as in

Figure 10.1 and set its label as S.O.S.

The layout_width and layout_height properties of the button are set as

wrap_content by default. It means the button‟s dimensions will just cover

the label written on it. However, our button will be used in S.O.S. cases

therefore let‟s enlarge the button to cover the whole user interface. For

this, select the button and set its layout_width and layout_height

properties as match_parent in Android Studio as shown in Figure 10.2.

I‟ve set the button‟s ID as sendSOS as also shown in this figure.

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

187

Let‟s change the button‟s background colour to red. For this, firstly click

the View all properties button as indicated by the arrow in Figure 10.3.

In the properties list appearing as in Figure 10.4, find the background

property as indicated in Figure 10.5.

Figure 10.1. The button placed in the middle of the UI

Figure 10.2. Setting the button‟s dimensions

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

188

Figure 10.3. Viewing all the properties of the button widget

Figure 10.4. All the properties of the button widget shown in the right

pane

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

189

Figure 10.5. Opening the manual editing property of the button

A box in which we can enter the hex colour code of the background will appear

as follows:

Figure 10.6. Custom colour code entry box

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

190

In my opinion, making the S.O.S. button red is a good choice therefore I

entered the hex code of red #FF0000 into this box. However, this is only

a personal choice and you can enter any colour code you‟d like. You can

find the colour codes in several sites such as http://www.color-hex.com/.

After entering the colour code, remember to hit enter on the keyboard

and then the button‟s colour will be changed to red as follows:

Figure 10.7. Setting the button‟s background colour

We‟ve set the background colour, great. However the S.O.S. label of the

button seems tiny now. Let‟s edit its properties. As the first step, let‟s

switch back to the popular properties of the button by clicking the View

all properties button again as indicated in Figure 10.8.

I‟ve set the text size as 72sp and its type as bold as shown in Figure 10.9.

10.3. Developing the Main Code
We‟ve now completed the simple UI of our app. Let‟s move on to the

coding part now, which is more fun.

http://www.color-hex.com/

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

191

Figure 10.8. Switching back to the common properties

Figure 10.9. Setting the text size and type

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

192

The app will take longitude and latitude data from the GPS receiver. This

data is a floating point number therefore let‟s declare two double type

variables to hold the location data as follows:

double latitude = 0;

double longitude = 0;

Code 10.3

Let‟s define a GPSReceiver class to manage the GPS part with the

LocationListener implementation as we did in the previous chapter:

public class GPSReceiver implements LocationListener

{

Code 10.4

Android Studio will warn us for implementing the required methods at

this point:

Figure 10.10. The required methods for the LocationListener

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

193

Hit OK in this dialog and the methods onLocationChanged(),

onStatus(), onProviderEnabled() and onProviderDisabled()

will be added to the MainActivity.java. onStatusChanged() is called

when a change in the location occurs. Similarly,

onProviderEnabled() and onProviderDisabled() methods are

called when the GPS receiver is enabled and disabled, respectively.

onStatusChanged() is called if the GPS status is changed.

We can populate the onProviderEnabled() and

onProviderDisabled() methods as follows:

@Override

public void onProviderEnabled(String s) {

 Toast.makeText(getApplicationContext(), "GPS

Enabled!", Toast.LENGTH_LONG).show();

}

@Override

public void onProviderDisabled(String s) {

 Toast.makeText(getApplicationContext(), "Please

enable GPS!", Toast.LENGTH_LONG).show();

}

}

Code 10.5

The Toast class is used to show a temporary message on the screen.

Therefore, if the GPS is disabled, it will display “Please enable GPS!”

whereas when the GPS is enabled by the user, it will inform saying that

“GPS is enabled!”.

The actual location receiving happens inside the

onLocationChanged() method. Firstly, let‟s define a location

object which will hold the location data just after the longitude and

latitude variable declarations as follows:

private LocationManager manager;

Code 10.6

Now, we can populate the onLocationChanged() method as follows:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

194

public void onLocationChanged(Location location) {

 if (location != null) {

 latitude = location.getLatitude();

 longitude = location.getLongitude();

 Toast.makeText(getApplicationContext(),

"READY TO SEND!!!", Toast.LENGTH_LONG).show();

 }

 else {

 Toast.makeText(getApplicationContext(), "NOT

READY YET...", Toast.LENGTH_LONG).show();

 }

}

Code 10.7

If the location data isn‟t null, i.e. if the location data is received

successfully, the longitude and latitude data will be assigned to

longitude and latitude variables, respectively. getLongitude()

and getLatitude() methods extract the longitude and latitude data

from the location object. If the location data is received without any

problem, a dialog will display “READY TO SEND!” text on the screen

otherwise it‟ll write “NOT READY YET...”.

We‟ve declared our custom method for handling the GPS data

operations. Now it‟s time to define a GPSReceiver object as follows:

private GPSReceiver receiver;

Code 10.8

We can define it just below the LocationManager object definition

shown in Code 10.6 so that it can be accessed from any method in the

activity.

Next, let‟s create the button listener method which will do the SMS

sending when the sendSOS button‟s clicked:

public void myButtonListenerMethod() {

 Button button = (Button) findViewById(R.id.sendSOS);

 button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 SmsManager sms = SmsManager.getDefault();

 String phoneNumber = "xxxxxxxxxxxx";

 String messageBody = "Please take me from

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

195

longitude: " + Double.toString(longitude) + " and

latitude: " + Double.toString(latitude);

 try {

 sms.sendTextMessage(phoneNumber, null,

messageBody ,null, null);

 Toast.makeText(getApplicationContext(),

"S.O.S. message sent!", Toast.LENGTH_LONG).show();

 } catch (Exception e) {

 Toast.makeText(getApplicationContext(),

"Message sending failed!!!", Toast.LENGTH_LONG).show();

 }

 }

 });

}

Code 10.9 (con‟t from the previous page)

In this button listener method:

 The button object is created at first,

 Then an SmsManager object called sms is declared inside the

onClick() method,

 Next, the phone number which will receive our SMS is defined in

the variable named phoneNumber (please enter a valid receiving

phone number in the place of xxxxxxxxxx!!!),

 The messageBody is also declared as a String using the

longitude and latitude data.

 Finally, the SMS is sent programmatically by the

sendTextMessage() method.

 The try – catch statement is used to check if there‟s an error sending

the SMS message. If there‟s no error, a message saying “S.O.S.

message sent!” will be displayed. Otherwise, it‟ll display “Message

sending failed!!!”.

As you can see, the sendTextMessage() method has five arguments.

We‟ve set the unused arguments to null. We could use these unused

arguments for extended functionality such as checking if the SMS is

actually received by the receiving part.

Finally, we need to call the button listener and GPS related methods

inside the onCreate() method as usual:

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

196

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

 receiver = new GPSReceiver();

 manager = (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);

manager.requestLocationUpdates(LocationManager.GPS_PROVIDE

R, 1000L, 1.0F, receiver);

}

Code 10.10

The complete MainActivity.java is also given as follows:

package sendsms.example.com.sendsms;

import android.Manifest;

import android.content.Context;

import android.content.pm.PackageManager;

import android.icu.text.DecimalFormat;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Build;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.telephony.SmsManager;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import java.util.function.DoubleUnaryOperator;

public class MainActivity extends AppCompatActivity {

 private LocationManager manager;

 private GPSReceiver receiver;

 double latitude = 0;

 double longitude = 0;

 @Override

 protected void onCreate(Bundle

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

197

savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myButtonListenerMethod();

 receiver = new GPSReceiver();

 manager = (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);

manager.requestLocationUpdates(LocationManager.GPS_PR

OVIDER, 1000L, 1.0F, receiver);

 }

 public void myButtonListenerMethod() {

 Button button = (Button)

findViewById(R.id.sendSOS);

 button.setOnClickListener(new

View.OnClickListener() {

 @Override

 public void onClick(View v) {

 SmsManager sms =

SmsManager.getDefault();

 String phoneNumber = "05363624223";

 String messageBody = "Please take me

from longitude: " + Double.toString(longitude) + "

and latitude: " + Double.toString(latitude);

 try {

 sms.sendTextMessage(phoneNumber,

null, messageBody ,null, null);

Toast.makeText(getApplicationContext(), "S.O.S.

message sent!", Toast.LENGTH_LONG).show();

 } catch (Exception e) {

Toast.makeText(getApplicationContext(), "Message

sending failed!!!", Toast.LENGTH_LONG).show();

 }

 }

 });

 }

 public class GPSReceiver implements

LocationListener {

 @Override

 public void onLocationChanged(Location location)

{

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

198

 if (location != null) {

 latitude = location.getLatitude();

 longitude = location.getLongitude();

 Toast.makeText(getApplicationContext(),

"READY TO SEND!!!", Toast.LENGTH_LONG).show();

 }

 else {

 Toast.makeText(getApplicationContext(),

"NOT READY YET...", Toast.LENGTH_LONG).show();

 }

 }

 @Override

 public void onStatusChanged(String s, int i,

Bundle bundle) {

 }

 @Override

 public void onProviderEnabled(String s) {

 Toast.makeText(getApplicationContext(), "GPS

Enabled!", Toast.LENGTH_LONG).show();

 }

 @Override

 public void onProviderDisabled(String s) {

 Toast.makeText(getApplicationContext(),

"Please enable GPS!", Toast.LENGTH_LONG).show();

 }

 }

}

Code 10.11 (cont‟d from the previous pages)

10.4. Building and Running the App
Since this app uses SMS functionality, it needs a GSM connection

therefore it cannot be simulated in an emulator. Please connect a real

Android device to your computer and select it for running this app after

hitting the Run button in Android Studio as follows:

CHAPTER 10. ANDRIOD APP #6: S.O.S. MESSAGE SENDER

199

Figure 10.11. Selecting a real Android device with GSM functionality

When the app starts, please wait a moment to see the READY TO

SEND! message on the screen and then if you click on the giant S.O.S.

button, the phone will send your current location to the hardcoded phone

number. In the receiving phone, you‟ll see a text such as Please take me

from longitude: -1.985401 and latitude 52.397618. The coordinates

will obviously be different depending on your location.

It is again worth noting that you can download the complete project files,

images, etc. from the book‟s companion website: www.android-

java.website.

http://www.android-java.website/
http://www.android-java.website/

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

200

EPILOGUE AND FUTURE WORK

201

EPILOGUE AND FUTURE WORK

I really hope that you enjoyed this book and got some confidence for

developing Android apps. If you would like to share your complaints and

suggestions, please feel free to share them publicly on the comments

section of the book‟s website www.android-java.website.

This book was intended to be a starter‟s guide. If you have followed this

book thoroughly, you should be ready to learn more on Android app

development and the first source for this is, of course, the Internet. I

recommend the following websites for advanced subjects:

 https://www.tutorialspoint.com/android/

 https://www.raywenderlich.com/category/android

 https://www.youtube.com/playlist?list=PLB03EA9545DD188C3

I‟d like to finish this book with the following quotes which I think have

deep meanings:

“Experience is the teacher of all things.”

Julius Caesar

“To us is given the honor of striking a blow for freedom which will

live in history and in the better days that lie ahead men will speak

with pride of our doings.”

Bernard Law Montgomery

Be good to yourself 'cause nobody else has the power to make you

happy.

George Michael

Keep calm because it‟s the end 

http://www.android-java.website/
https://www.tutorialspoint.com/android/
https://www.raywenderlich.com/category/android
https://www.youtube.com/playlist?list=PLB03EA9545DD188C3
http://www.azquotes.com/quote/990357
http://www.azquotes.com/quote/990357

BEGINNER’S GUIDE TO MOBILE APP DEVELOPMENT IN ANDRIOD STUDIO

202

REFERENCES

1. https://developer.android.com/index.html

2. https://www.udacity.com/course/android-development-for-beginners--

ud837

3. http://www.instructables.com/id/How-To-Create-An-Android-App-

With-Android-Studio/

4. http://www.androidauthority.com/android-studio-tutorial-beginners-

637572/

5. https://www.codecademy.com/learn/learn-java

6. https://www.tutorialspoint.com/java/

7. Joseph Annuzzi Jr., Lauren Darcey and Shane Conder, Introduction to

Android Application Development: Android Essentials, Addison-Wesley

Professional, 2013.

8. Neil Smyth, Android Studio Development Essentials, CreateSpace

Independent Publishing Platform, 2016.

9. Sam Key, Android Programming in a Day, CreateSpace Independent

Publishing Platform, 2015.

10. Barry A. Burd, Android Application Development All-in-One For

Dummies, For Dummies, 2015.

Password for the files on the book’s companion website

www.android-java.website: android-java

https://developer.android.com/index.html
https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837
http://www.instructables.com/id/How-To-Create-An-Android-App-With-Android-Studio/
http://www.instructables.com/id/How-To-Create-An-Android-App-With-Android-Studio/
http://www.androidauthority.com/android-studio-tutorial-beginners-637572/
http://www.androidauthority.com/android-studio-tutorial-beginners-637572/
https://www.codecademy.com/learn/learn-java
https://www.tutorialspoint.com/java/
http://www.android-java.website/

		2017-02-04T09:47:23+0000
	Preflight Ticket Signature

