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Лекція №8 

Тема: «Класифікація точок розриву. Локальні властивості неперервних 

функцій» 

План 

1. Класифікація точок розриву функції. 

2. Методика дослідження функції на неперервність. 

3. Приклади. 

 

1. Класифікація точок розриву функції. 

Нехай функція  xf  визначена в деякому околі точки 0x . Якщо функція 

неперервна в точці 0x , для неї виконується означення неперервності. Якщо 

хоча б одна з рівностей (2.15) порушується, говорять, що функція в точці 0x  

терпить розрив, а сама точка називається точкою розриву. 

Якщо односторонні границі функції в точці 0x  рівні, але не дорівнюють 

значенню функції в точці, тобто      000 00 xfxfxf  , говорять, що в 

точці 0x  усувний розрив. Прикладом такого розриву є розрив функції 
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  в точці 00 x . Дійсно, функція визначена, а значить і неперервна 

для всіх x , крім 0x . У самій точці 0x  функція не визначена, але 
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, отже, маємо усувний розрив. Досить довизначити функцію в 

точці 0x , поклавши   10 f . Нова функція  

 












0при1

,0при
sin

x

x
x

x

xf  

неперервна в точці 0x  і на всій числовій прямій. 

Якщо односторонні границі функції в точці 0x  різні, але обидві скінченні, 

то говорять, що в цій точці розрив першого роду. Наприклад, функція 
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xf  не визначена в точці 1x . 

Обчислимо односторонні границі функції в зазначеній точці, 

використовуючи символічні записи: 
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Отже, в точці 0x  функція терпить розрив першого роду. Графік такої 

функції зображений на рис. 2.32. 

Розрив першого роду називають розривом зі скінченним стрибком. 

Якщо ж хоча б одна з однобічних границь функції в точці 0x  дорівнює 

нескінченності, говорять, що в точці розрив другого роду або розрив з 

нескінченним стрибком. 

Такий розрив має функція xy

1

2  в точці 0x .Дійсно: 
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Графік функції зображений на рис. 2.33. 
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Рис. 2.32. Рис. 2.33. 

 

 

2. Методика дослідження функції на неперервність. 

1. Знайти область визначення функції  fD . Елементарна функція може 

мати розрив тільки в окремих точках, але не може бути розривною на певному 

інтервалі. 

2. Дослідити функцію на неперервність у відкритих проміжках  fD . 

Елементарна функція може мати розрив у точці де вона не визначена за умови, 

що вона буде визначена хоча б з однієї сторони від цієї точки. 

3. Неелементарна функція може мати розриви як в точках, де вона 

невизначена, так і в тих, де вона визначена. 
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4. Обчислити односторонні границі функції у цих точках. Зробити 

висновок про характер точок розриву (якщо вони є). Введемо наступні 

позначення: 
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3. Приклади. 

Приклад. Дослідити на неперервність функцію: 
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Ро з в ’ я з а н н я . Оскільки всі елементарні 

функції неперервні в кожній точці своєї області 

визначення, функції   2
1 1 xxf   і   122  xxf  

неперервні на всій числовій прямій. Досліджуємо 

точку 1x . Обчислимо односторонні границі 

функції в точці: 
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Отже, задана в умові функція неперервна в кожній точці числової прямої, 

крім точки 1x . У точці 1x  функція терпить розрив першого роду. Графік 

функції зображений на рис. 2.34. 

Приклад. 
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1. 0 0x    за Каші довести:  

0 0      0 0( ) ( )x x f x f x      . 

Нехай 0x x    для достатньо малих  , наприклад, 0| |x  , значення x  і 

0x  мають однаковий знак 0 0( ) ( ) ( ) ( ) 0f x f x f x f x        

Висновок. В усіх точках, окрім т. 0, ( ) ( )f x sign x -неперер. 

2. Якщо 0 0x    
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Або те саме розглянемо за Гейне:  
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Рис. 2.34. 
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