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Лекція №15 

Тема: «Монотонність функції у точці. Локальний екстремум» 

План 

1. Монотонність функції в точці. 
2. Теореми Ролля, Лагранжа, Коші. 
3. Наслідки з теореми Лагранжа. 
4. Приклад до теореми Лагранжа. 
 

1. Монотонність функції в точці. 

Позначення: ( ) ( , ) ( )B c c c D f    . Припустимо, що точка c  - 

внутрішня точка ( )D f  

Означення 1. ( )f x  зростає в т. ( )c D f  ( ( )f x ) 
def

  

0 ( ) [ ( ) ( )] [ ( ) ( )]x B c x c f x f c x c f x f c            

Аналогічно дається означення спадної функції в точці. 

Означення 2. ( )f x  монотонна в точці ( )c D f  
def

   

( )f x  зростає або спадає в точці ( )c D f  

Означення 3. Точка ( )c D f  - точка локального максимуму функції 

( )f x   

def

 1) точка c  - внутрішня точка ( )D f ;  

           2) 0 ( ) ( ) ( )x B c f x f c     . 

Аналогічно дається означення локального мінімуму функції. 

Означення 4. Точка ( )c D f  - точка локального екстремуму функції 

( )f x  
def

  в точці c  функція ( )f x  має локальний максимум або локальний 

мінімум. 

Теорема 1 (достатня умова монотонності функції в точці). Нехай 

функція  xf  диференційована в точці 0x , тоді якщо   00  xf , то  xf  зростає 

в точці 0x , якщо   00  xf , то  xf  спадає у точці 0x . 

Зауваження. Умова додатності похідної функції в точці c  є лише 

достатньою умовою зростання функції в точці c . Наприклад, функція 
3( )f x x  

зростає в точці 0, однак 
2

0
(0) 3 0

x
f x


   . 

Теорема 3.1 (теорема Ферма). Нехай функція  y f x  є неперервною на 

інтервалі  ;a b  і набуває свого найбільшого або найменшого значення у деякій 

точці  ;x c a b  . Тоді якщо у цій точці існує похідна  f c , то   0f c  . 

Геометричний зміст теореми Ферма: дотична проведена до графіка 

функції  xf  в точці 0x  паралельна осі абсцис (див. Рис. 1.2). 
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Рис. 1.2 

 

2. Теореми Ролля, Лагранжа, Коші. 

Теорема 3.2 (теорема Ролля). Якщо функція  y f x  є неперервною на 

відрізку  ;a b , диференційовною на проміжку  ;a b  і на кінцях відрізка 

набуває однакових значень    f a f b , то знайдеться хоча б одна точка 

 ;c a b , у якій   0f c  . 

Доведення. Оскільки функція  f x  є неперервною на  ;a b , то вона 

досягає на цьому відрізку свого найменшого значення m  та найбільшого 

значення M . Якщо m M , то на  ;a b   f x const  і   0f x   у довільній 

точці цього проміжку. 

Нехай m M . Тоді хоча б одне із значень m  чи M досягається функцією 

у внутрішній точці відкритого інтервалу  ;a b , тому що    f a f b . За 

теоремою Ферма похідна у цій точці дорівнюватиме нулю. Теорему доведено. 

Отже, теорема Ролля стверджує, що на графіку функції, яка задовольняє 

умовам цієї теореми, знайдеться хоча б одна точка, дотична у якій паралельна 

осі Ox . 

Якщо     0f a f b  , то теорему Ролля можна сформулювати 

наступним чином: між двома коренями функції знаходиться хоча б один корінь 

її похідної. 

Приклад 3.1. Довести, що рівняння 33 15 8 0x x    має лише один 

дійсний корінь. 

Розв’язання. Оскільки задане рівняння  – це рівняння третього степеня 

(непарного), то воно має хоча б один дійсний корінь. Доведемо, що дійсний 

корінь цього рівняння лише один. Допустимо, що існують два таких корені – 
1x  

та 
2x , де 

1 2x x . Тоді на відрізку  1 2;x x функція   33 15 8f x x x    

задовольняє всім умовам теореми Ролля: вона неперервна на цьому відрізку, 

диференційовна у кожній його внутрішній точці та приймає на кінцях цього 

відрізка однакові значення (дорівнює нулю). Отже, у деякій точці 
1 2x c x   

  0f c  . Проте   29 15 0f c x x      . Отримане протиріччя доводить, що 

задане рівняння має єдиний дійсний корінь. 

x  

y  

0  0x  

 xfy   
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Теорема 3.3 (теорема Коші). Якщо функції  f x  та  x  неперервні на 

 ;a b , диференційовні у інтервалі  ;a b , причому    0 ;x x a b    , то існує 

така точка  ;c a b , що  

   
   

 
 

f b f a f c

b a c  





.     (3.1) 

Теорема 3.4 (теорема Лагранжа). Якщо функція  f x є неперервною на 

 ;a b , диференційовною у  ;a b , то всередині цього інтервалу знайдеться хоча 

б одна точка  ;c a b , у якій виконується рівність: 

      f b f a f c b a   .    (3.2) 

Формулу (3.2) називають формулою Лагранжа, або формулою скінченних 

приростів, оскільки вона виражає точне значення приросту функції 

   y f b f a    через похідну у деякій проміжній точці  ;c a b  та скінченне 

значення приросту аргументу x b a   . Відповідно, формулу (3.2) можна 

записати у вигляді:  y f c x   . 

Розглянемо геометричний зміст теореми Лагранжа. Запишемо формулу 

(3.2) у вигляді: 

   
 

f b f a
f c

b a





. 

Ця рівність свідчить, що на графіку функції, яка задовольняє умовам 

теореми Лагранжа, знайдеться хоча б одна точка з абсцисою c , у якій дотична 

до графіка паралельна хорді, що сполучає точки   ;a f a  та   ;b f b . 

Теорема Лагранжа має також механічну інтерпретацію. Якщо  s s t , 

 1 2;t t t  – закон руху матеріальної точки, то відношення 
   2 1

2 1

s t s t

t t




 – це 

середня швидкість руху за проміжок часу  1 2;t t . Теорема Лагранжа стверджує, 

що в деякий момент часу  1 2;c t t миттєва швидкість матеріальної точки 

неодмінно співпаде з її середньою швидкістю: 
   

 2 1

2 1

s t s t
s c

t t





. 

З теореми Лагранжа випливають наступні наслідки. 

Наслідок 1. Якщо похідна функції дорівнює нулю на деякому проміжку, 

то ця функція є сталою на даному проміжку. 

Наслідок 2. Якщо похідні двох функцій співпадають на деякому 

проміжку, то ці функції відрізняються між собою на сталу величину. 

Теорему Лагранжа та її наслідки можна застосовувати при доведенні 

тотожностей та нерівностей. 

Приклад 3.2. Довести, що 
2

2

1
arccos 2arctg 

1

x
x

x





, 0x  . 
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Розв’язання. Розглянемо функцію  
2

2

1
arccos 2arctg 

1

x
f x x

x


 


. Ця 

функція визначена на всій числовій прямій, оскільки 
2

2

1
1

1

x

x





. Вона є також 

диференційовною у кожній точці своєї області визначення. Знайдемо похідну 

 f x : 

 
   2 2 222 22

2

1 4 2 4 2
0.

1 12 111
1

1

x x
f x

x xx xxx

x


       

  
  

 

 

Отже,   0f x   0x  . Тому, за наслідком 1 з теореми Лагранжа, 

функція  f x  є сталою при 0x  .  

Знайдемо  1f .  1 arccos0 2arctg 1 2 0
2

f


      .  

Таким чином,   0f x  , тому 
2

2

1
arccos 2arctg 

1

x
x

x





. 

 

Теорема Лагранжа має просту геометричну інтерпретацію (Рис. 1.4). 

 
Рис. 1.4 

Для довільного відрізка  xxx 00;  теорему Лагранжа можна записати у 

вигляді: 

    xxxfxxf 0 , 

де 10  . Дану формулу називають формулою скінченних приростів 

Лагранжа.  

 

3. Наслідки з теореми Лагранжа. 

Теорема 6 (про постійність функції, що має на інтервалі рівну нулю 

похідну). Нехай функція  xf  диференційовна на інтервалі  ba;  і  bax ;  

  0 xf . Тоді  bax ;    constxf . 

a  0  

y  

b  

 bf  
 xf  

A  

B  

x  

  

c  

 af  

M  

N  
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Геометричний зміст теореми. Якщо функція диференційовна на 

інтервалі, і в будь-якій його точці дотична паралельна осі абсцис, тоді ця 

функція сама паралельна осі абсцис, тобто є постійною. 

Теорема 7. Нехай функції  xf  і  xg  диференційовні на інтервалі  ba; , 

і    xgxf    bax ; . Тоді     const xgxf   bax ; . 

Теорема 8 (критерій нестрогої монотонності функції на інтервалі). 

Якщо  xf  – диференційовна на інтервалі  ba; , то для того, щоб функція була 

неспадною (незростаючою) на цьому інтервалі необхідно і достатньо, щоб 

похідна у всіх точках інтервалу була невід’ємною (недодатною), тобто   0 xf  

  0 xf   bax ; . 

 

4. Приклад до теореми Лагранжа. 

Приклад. Довести нерівність arctg arctg       ,   . 

Розв’язання. Функція   arctg f x x  є визначеною та диференційовною 

на всій числовій прямій, у тому числі на довільному проміжку  ;  , 

  2

1

1
f x

x
 


. Застосуємо до неї теорему Лагранжа. Згідно з цією теоремою, 

існує така точка  ;c   , що  

 2

1
arctg arctg 

1 c
     


. 

Оскільки 
2

1
0 1

1 c
 


 і 0   , то  2

1

1 c
     


, тому 

виконується нерівність: 

arctg  arctg       . 

 


