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Лекція №16 

Тема: «Розкриття невизначеностей (правило Лопіталя). Формула Тейлора. 

Формула Маклорена» 

План 

1. Правило Лопіталя. 

2. Формула Тейлора. 

3. Формула Маклорена. 

 

1. Правило Лопіталя. 

Розглянемо спосіб обчислення границь, які потребують розкриття 

невизначеностей виду 
0

0

 
 
 

 або 
 

 
 

, пов’язаний з застосуванням похідних. 

Теорема 3.5 (правило Лопіталя розкриття невизначеностей виду 

0

0

 
 
 

). Нехай функції  f x  та  g x  є неперервними та диференційованими у 

околі точки 
0x x  і при цьому    0 0 0f x g x  , а   0g x   у околі цієї точки. 

Якщо існує границя 
 
 0

lim
x x

f x
l

g x





, то існує 

 
 0

lim
x x

f x

g x
, причому  

 
 

 
 0 0

lim lim
x x x x

f x f x
l

g x g x 


 


.     (3.3) 

Правило Лопіталя стверджує, що границя відношення двох нескінченно 

малих дорівнює границі відношення їх похідних, якщо ця границя існує. 

Зауважимо, що теорема 3.5 виконується і у тому випадку, коли функції 

 f x  та  g x  невизначені при 
0x x , але    

0 0

lim lim 0
x x x x

f x g x
 

  . Ця теорема 

виконується також при x . 

Приклад 3.4. Обчислити 
1

1
lim

lnx

x

x x


. 

Розв’язання. При підстановці у чисельник та знаменник дробу під 

знаком границі значення 1x   отримуємо невизначеність виду 
0

0

 
 
 

. Застосуємо 

до розкриття даної невизначеності правило Лопіталя: 
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 

 
1 1 1

11 0 1 1
lim lim lim 1

ln 0 ln 1 1ln
x x x

xx

x x xx x
  

  
     

 
. 

Приклад 3.5. Обчислити 
20

1 cos6
lim

2x

x

x


. 

Розв’язання.  

 

 

 

 

20 0 2

0 0 0

1 cos61 cos6 0
lim lim

2 0
2

6sin66sin6 0 36cos6 36
lim lim lim 9.

4 0 4 44

x x

x x x

xx

x
x

xx x

x x

 

  

  
   

 


 

      
 

 

Наведемо без доведення формулювання правила Лопіталя знаходження 

границь, що зводяться до розкриття невизначеності виду 
 

 
 

. 

Теорема 3.6 (правило Лопіталя розкриття невизначеностей виду 

 
 
 

). Нехай функції  f x  та  g x  є неперервними та диференційовними у 

околі точки 
0x  (можливо, окрім самої цієї точки), і у цьому околі 

   
0 0

lim lim
x x x x

f x g x
 

  , причому   0g x  . Тоді, якщо існує границя 

 
 0

lim
x x

f x
l

g x





, то існує і границя 

 
 0

lim
x x

f x

g x
, причому 

 
 

 
 0 0

lim lim
x x x x

f x f x
l

g x g x 


 


.  

Приклад 3.5. Обчислити 

2

tg 3
lim

tg 5x

x

x


. 

Розв’язання. Оскільки 
0 0

2 2

lim tg 3 lim tg 5
x x

x x
 

   

   , то дана границя 

зводиться до невизначеності виду 
 

 
 

, тому застосуємо правило Лопіталя: 
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 

 

 

 

22

2

22 2 2 2

2 2 2

3
tg 3tg 3 3 cos 5 0cos 3lim lim lim lim

5tg 5 5 cos 3 0tg 5 cos 5

1 cos103 1 cos10 3 3 10sin10 0
lim lim lim

5 1 cos6 5 5 6sin 6 01 cos6

3 5
lim

5 3

x x x x

x x x

x

xx xx

x xx x

xx x

x xx

   

  

   

  



   
        

    

   
     

   

  

2

10cos10 5
.

6cos6 3

x

x


 

До невизначеностей виду 
0

0

 
 
 

 або 
 

 
 

, для розкриття яких можна 

застосувати правило Лопіталя, зводяться невизначеності видів  0  ,   , 

 1 ,  0 ,  00 . Для цього застосовують тотожні перетворення та 

логарифмування. 

Приклад 3.6. Обчислити  
2

lim 2 tg
4x

x
x




  . 

Розв’язання. Маємо невизначеність виду  0  . Зведемо її до 

невизначеності 
0

0

 
 
 

, після чого застосуємо правило Лопіталя: 

 
2 2 2

2

2 0 1 4
lim 2 tg lim lim

14 0
ctg

4 4
sin

4

x x x

x x
x

x

x



  


  

  
      

   

. 

Приклад 3.7. Обчислити  
2

lim tg sec
x

x x




 . 

Розв’язання. Оскільки 
1

sec
cos

x
x

 , то при підстановці у вираз під 

знаком границі замість x  значення 
2


, маємо невизначеність виду   .  

Зведемо її до невизначеності 
0

0

 
 
 

, після чого застосуємо правило Лопіталя. 

Отримуємо: 
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 
2 2 2

2

1 sin 1 0 cos 0
lim tg sec lim tg lim lim 0

cos cos 0 sin 1x x x

x

x x
x x x

x x x  


  



   
          

    
. 

Приклад 3.8. Обчислити границю 
0

lim lnn

x
x x


, 0n  . 

Розв’язання. Маємо невизначеність виду  0  . Для застосування 

правила Лопіталя перетворимо її до виду 
 

 
 

. Маємо: 

0 0 0 0
1

1
ln 1

lim ln lim lim lim 0n n

nx x x x
n

x xx x x
nx n

x

   


 
      

  
. 

Приклад 3.9. Обчислити 

sin

0 0

1
lim

x

x x 

 
 
 

. 

Розв’язання. Обчислення границі приводить до необхідності розкриття 

невизначеності виду  0 . Позначимо 

sin
1

x

y
x

 
 

 
. Тоді 

1
ln sin lny x

x
  . 

Знаходимо границю цього виразу при 0 0x  : 

 
0 0 0 0 0 0

2

0 0 0 0 0 0 0
2

1 ln
lim ln lim sin ln 0 lim

1
sin

1
sin sin 1

lim lim lim limsin lim 1 0 1 0.
cos cos cos

sin

x x x

x x x x x

x
y x

x
x

x xx x
x x x x x

x

     

      

               
     
 

 
         
 
 

 

Оскільки логарифмічна функція є неперервною, то  
0 0 0 0

lim ln ln lim
x x

y y
   

 , 

тому 
0

0 0
lim 1

x
y e

 
  . 

Приклад 3.10. Обчислити   2

1

0
lim cos2 x

x
x


. 
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Розв’язання. Маємо невизначеність  1 . Нехай   2

1

cos2 xy x , тоді  

 
2

ln cos2
ln

x
y

x
 . Знаходимо границю 

 
20 0 0

0 0

ln cos2 0 2sin 2
limln lim lim

0 2 cos2

sin 2 1
2lim lim 2 1 1 2.

2 cos2

x x x

x x

x x
y

x x x

x

x x

  

 

 
    

 

        

 

Тоді 2

0
lim
x

y e


 . 

Приклад 3.11. Знайти границю  
tg3

0
lim sin 2

x

x
x


. 

Розв’язання. Тут маємо невизначеність виду  00 . Запишемо вираз під 

знаком границі у вигляді:      
tg3tg3 ln sin 2 tg3 ln sin 2

sin2
xx x x x

x e e


  . Шукана границя 

набуває вигляду: 

     
0

lim tg3 ln sin 2tg3 tg3 ln sin 2

0 0
lim sin 2 lim x

x xx x x

x x
x e e 



 
  . 

Знайдемо границю у показнику експоненти. 

   
 

0 0 0

2

2 2

0 0

0

2cos2
ln sin 2 0 sin 2lim tg 3 ln sin 2 0 lim lim

3ctg3 0

sin 3

2 cos2 sin 3 2 sin 3 2
lim limcos2 lim 1 0 0.

3 sin 2 3 sin 2 3

x x x

x x

x

x
x xx x

x

x

x x x
x

x x

  

 



 
         


        

 

Тоді шукана границя  
tg3 0

0
lim sin 2 1

x

x
x e


  . 

 

2. Формула Тейлора. 

Нехай функція  y f x  у деякому околі точки x a  має всі похідні до 

 1n  -го порядку включно. Знайдемо многочлен  nP x , степінь якого не 

перевищує n , значення якого у точці x a  дорівнює значенню функції  f x  у 
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цій точці, а значення його похідних до n -го порядку у точці x a  дорівнюють 

відповідним значенням похідних у цій точці: 

   nP a f a ,    nP a f a  ,    nP a f a  ,…, 
       
n n

nP a f a .       

(3.7) 

Будемо шукати цей многочлен у вигляді многочлена за степенями  x a  

з невизначеними коефіцієнтами: 

         
2

0 1 2

0

...
n

n k

n n k

k

P x c c x a c x a c x a c x a


          . (3.8) 

Невизначені коефіцієнти 
0c , 

1c , 
2c , …, 

nc  знайдемо так, щоб 

виконувались умови (3.7). Для цього, диференціюючи (3.8), знайдемо похідні 

від  nP x . Отримуємо: 

       
2 1

1 2 32 3 ...
n

n nP x c c x a c x a n c x a
              ; 

       
2

2 32 3 2 ... 1
n

n nP x c c x a n n c x a
              ; 

……………………………………………………………….; 

       1 2 .... 2 1
n

n nP x n n n c         . 

Підставивши у ліві та праві частини останніх рівностей та рівності (3.8) 

замість x  значення a  та прирівнявши їх згідно з (3.7) до значень  f a ,  f a , 

…, 
   
n

f a , отримаємо рівності:   0f a c ,   1f a c  ,   22 1f a c    , 

  33 2 1f a c     , …., 
    !
n

nf a n c  . Звідси знаходимо коефіцієнти шуканого 

многочлена: 

   
, 0,1, 2,..., .

!

k

k

f a
c k n

k
      (3.9) 

Тут похідною нульового порядку вважають саму функцію. 

Таким чином, шуканий многочлен (3.8) має вигляд: 
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 
   

 
0 !

k
n

k

n

k

f a
P x x a

k

  .    (3.10) 

Нехай      n nR x f x P x  . Звідси маємо  

     
   

   
0 !

k
n

k

n n n

k

f a
f x P x R x x a R x

k

     .  (3.11) 

Формулу (3.11) називають формулою Тейлора для функції  f x  у околі 

точки x a , а многочлен  nP x , коефіцієнти якого визначаються за формулою 

(3.9) – многочленом Тейлора. Вираз      n nR x f x P x   називають 

залишковим членом формули Тейлора. Для значень x , при яких залишковий 

член є достатньо малим, многочлен  nP x  є наближенням функції  f x . Таким 

чином, формула (3.11) дає можливість замінити функцію  f x  многочленом 

Тейлора  nP x з точністю, що дорівнює значенню залишкового члена  nR x . 

Доведемо, що залишковий член формули Тейлора  nR x  можна 

представити у вигляді: 

 
    

 

11

1 !

nn

n

f x a
R x

n








,      (3.12) 

де точка   знаходиться між точками x  та a . Зафіксуємо довільне 

значення x a  з околу точки a , де функція  f x  диференційовна 1n   разів. 

Позначимо через t  величину, що змінюється на відрізку  0;x x , тобто 
0x t x  . 

Розглянемо функцію  

   
   

 
   

 

1

1
0 !

nkn
k n

n
k

f t x t R x
F t f x x t

k x a







   


 .   (3.13) 

Ця функція задовольняє всі умови теореми Ролля, тому знайдеться точка 

 ;a x  , для якої   0F   .  

Диференціюючи (3.13) за t , отримаємо: 
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 
   

 
    

 

1

1

1

!

nn
n n

n

f t n x t R x
F t x t

n x a





 
    


.   (3.14) 

Прийнявши у рівності (3.14) t  , з рівності   0F    отримуємо: 

   
 

    

 

1

1

1
0

!

nn
n n

n

f n x R x
x

n x a

 






 
   


. 

Розв’язавши це рівняння відносно  nR x , отримаємо формулу (3.12). Цю 

формулу для залишкового члена формули Тейлора називають залишковим 

членом у формі Лагранжа.  

При x a   nR x  є нескінченно малою вищого порядку, ніж  
n

x a , 

тому, використовуючи символи Ландау, ми можемо записати, що 

    n

nR x o x a  . Такий запис залишкового члена формули Тейлора 

називають залишковим членом у формі Пеано.  

Величина  nR x  дорівнює величині похибки при заміні функції  f x  її 

многочленом Тейлора. Формулу (3.12) можна використати для того, щоб 

оцінити величину такої похибки при фіксованих значеннях x , а також при 

n . Многочлени Тейлора дають найкраще наближення функції  f x  по 

відношенню до всіх многочленів заданого степеня у околі точки a , тобто 

використання для наближення функції многочлена Тейлора дає найменшу 

абсолютну похибку  nR x . 

 

3. Формула Маклорена. 

Формулу Тейлора (3.11) при 0a   називають формулою Маклорена. 

Таким чином, формула Маклорена для функції  f x  має вигляд: 

 
   

 
0

0

!

kn
k

n

k

f
f x x R x

k

  ,    (3.15) 

де  nR x  визначається за формулою: 
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 
   
 

1

1

1 !

n

n

n

f
R x x

n








 .     (3.16) 

У формулі (3.16) точка   знаходиться між точками 0  та x , тобто x  , 

де 0 1  . 

Формула (3.16) визначає залишковий член формули Маклорена у формі 

Лагранжа, цей залишковий член можна записати у формі Пеано:  

   n

nR x o x .      (3.17) 

Розглянемо основні розклади елементарних функцій за формулою 

Маклорена: 

1)    n
n

k

k
n

n
x xo

k

x
xo

n

xxxx
e  

0

32

!!!3!2!1
1  ,  x . 

2) xsin  

 
 

   
 

 22

0

122212
753

!12

1

!12

1

!7!5!3!1





 








 

n
n

k

k
k

nn
n

xox
k

xox
n

xxxx
 , 

 x . 

3) 
 
 

   
 

 12

0

2122
642

!2

1

!2

1

!6!4!2
1cos 



 





 
n

n

k

k
k

nn
n

xox
k

xox
n

xxx
x  , 

 x . 

4)  
       







 




 n

k

nk
k

nn
n

xox
k

xox
n

xxxx
x

0

11
1432

1

11

4321
1ln   

   








n

k

nk
k

xox
k1

1
1

, 11  x . 

5)  
    











 32

!3

21

!2

1

!1
11 xxxx  

             









n

k

nknn xox
k

k
xox

n

n

0 !

121

!

121 
, 

1 x . 

6) 
15

2

3
tg

53 xx
xx , 

2


 x . 

7) 
 

   
 


  2212

2

53

12!4

!2

40

3

6
arcsin nn

n
xox

nn

nxx
xx   

 

   
 



 



n

k

nk

k
xox

kk

k

0

2212

2
12!4

!2
,   1 x . 
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8) 
   




  2212

53

12

1

53
arctg nn

n

xox
n

xx
xx   

   22

0

12

12

1 



 



 

n
n

k

k
k

xox
k

,   1 x . 

9) 
 

 
 

 22

0

12212
753

!12

1

!12

1

!7!5!3!1
sh 



 





 
n

n

k

knn xox
k

xox
n

xxxx
x  , 

 x . 

10) 
 

 
 

 12

0

2122
642

!2

1

!2

1

!6!4!2
1ch 



  
n

n

k

knn xox
k

xox
n

xxx
x  , 

 x . 

 


