
1 

Лекція №20 

Тема: «Диференціальне числення функції багатьох змінних» 
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7. Похідна складеної функції 

8. Диференціювання неявних функцій 

9. Дотична площина та нормаль до поверхні 

10. Скалярне поле. Похідна за напрямом та градієнт 

11. Локальні екстремуми функції двох змінних 

 

1. Поняття функції кількох змінних 

 

У математиці та її застосуваннях часто зустрічаються функції, 

значеннями яких є кілька дійсних аргументів. Прикладами таких функцій є 

об’єм кругового циліндра   2
,V r h r h , що залежить від радіуса його основи 

r  та висоти h ; сила F , з якою притягуються дві матеріальні точки, залежить 

від їх мас M  та m , а також відстані r  між ними:   2
, ,

M m
V M m r

r



  

( const  ). Найпростішими з таких функцій є функції двох змінних. 

Нехай задано множину D  впорядкованих пар дійсних чисел  ,x y . 

Якщо кожній парі  ,x y D  ставиться у відповідність за деяким 

правилом  ,f x y  єдине дійсне число z , то на множині D  визначена функція 

двох змінних x  та y :  ,z f x y . Множину D  називають областю визначення 

цієї функції. 

Оскільки кожній впорядкованій парі чисел  ,x y  на декартовій площині 

відповідає точка з координатами  ,x y , і, навпаки, кожній точці декартової 

площини відповідає впорядкована пара  ,x y , то можна стверджувати, що 

функція двох змінних  ,z f x y  визначається на деякій множині точок 

декартової площини. Функцію двох змінних  ,z f x y  зображують у 

тривимірному просторі з заданою декартовою системою координат Oxyz  у 

вигляді поверхні  ,z f x y , проекцією якої на площину Oxy  є область D . 

Наприклад, зображенням функції 
2 2

z x y  , де x , y , є параболоїд 
2 2

z x y  . 

Областю визначення функції двох змінних може бути вся координатна 

площина або її частина, обмежена деякими лініями. Лінію, що обмежує 

область, називають її межею. Точки області, що не лежать на її межі, 
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називають внутрішніми точками цієї області. Область, що складається лише з 

внутрішніх точок, називають відкритою. Область з приєднаною до неї межею 

називають замкненою. Прикладом замкнутої області є круг 
2 2

1x y  , до якого 

входить коло 
2 2

1x y  , що його обмежує. Круг 
2 2

1x y   є прикладом 

відкритої області. 

Можна надати інше, більш строге означення поняття області та її межі. 

Для цього спочатку визначимо поняття околу точки на площині.  

Множину  ,M x y  всіх точок площини, координати яких задовольняють 

нерівності    
2 2

0 0x x y y     , називають  -околом точки  0 0 0,M x y .  

Таким чином,  -окіл точки 
0M  – це відкритий круг з центром у цій точці 

та радіусом  . 

Множину D  точок площини називають зв’язною, якщо будь-які дві її 

точки можна сполучити неперервною лінією, що цілком належить цій множині. 

Наприклад, круг є зв’язною множиною, а множина, що складається з двох 

кругів, що не мають спільних точок, не є зв’язною. 

Точку M  називають внутрішньою точкою множини D , якщо існує  -

окіл цієї точки, який цілком міститься у множині D .  

Множину D  називають відкритою, якщо кожна її точка є внутрішньою. 

Областю (відкритою областю) називають зв’язну відкриту множину 

точок. 

Точку M називають межовою точкою множини D , якщо будь-який її 

окіл містить як точки, що належать D , так і точки, що не належать цій 

множині.  

Множину всіх межових точок області називають її межею. Область разом 

з її межею називають замкненою. 

Область називають обмеженою, якщо існує круг скінченного радіуса, 

який цілком містить цю область. 

Побудова поверхні, що є геометричним образом функції двох змінних 

 ,z f x y , часто пов’язана із значними труднощами, тому для зображення 

функцій двох змінних використовують метод перерізів. Він полягає у тому, що 

поверхню  ,z f x y  перетинають площинами z C const  , паралельними 

координатній площині Oxy . При цьому отримують криві  ,f x y C , що 

називаються лініями рівня функції двох змінних  ,z f x y . Отже, лінія рівня 

на площині Oxy  – це проекція кривої, що утворюється при перетині поверхні 

 ,z f x y  площиною z C . Будуючи лінії рівня для різних значень C , можна 

дістати певне уявлення про поведінку функції  ,z f x y . 

Приклад 4.1 Знайти лінії рівня функції 
2 2

1
z

x y



. 
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Розв’язання. Лінії рівня z C  знайдемо з рівняння 
2 2

1
C

x y



. Звідси 

знаходимо: 2 2 1
x y

C
  , 0C  . Отже, рівняння ліній рівня заданої функції має 

вигляд: 2 2

2

1
x y

C
  . Це рівняння визначає кола з центром у початку координат 

і радіусом 
1

C
. 

Для функції трьох змінних  , ,u f x y z  визначають поняття поверхні 

рівня. Поверхнею рівня називають множину всіх точок простору з області 

визначення функції  , ,u f x y z , для яких ця функція набуває одне й те ж саме 

значення. Рівняння поверхонь рівня має вигляд  , , constf x y z c  . 

Наприклад, поверхні рівня функції 
2

2 2

z
u

x y



 визначаються рівнянням 

2

2 2

z
c

x y



, або 

2
2 2 0

z
x y

c
   . При 0c   це рівняння визначає множину 

конусів з вершиною у початку координат. 

Означення функції двох змінних можна узагальнити на випадок довільної 

скінченної кількості аргументів.  

Якщо кожній точці (впорядкованому набору n  чисел)  1 2, ,..., nx x x  з 

множини D  n -вимірного простору за певним законом ставиться у 

відповідність єдине число z , то кажуть, що на множині D  визначено функцію 

n  змінних: 
1x , 

2x , …, 
nx   1 2, ,... nz f x x x . 

 

2. Границя та неперервність функції двох змінних 

 

Для функції двох та більшого числа змінних вводяться поняття границі 

функції та її неперервності аналогічно випадку функції однієї змінної. Нехай 

функція  ,z f x y  визначена у деякому околі точки  0 0 0,M x y , можливо, 

окрім самої цієї точки. 

Число A  називають границею функції  ,z f x y  при 

   0 0 0, ,M x y M x y  (цей запис означає, що 
0 0,x x y y  ), якщо 0   

0  :    
2 2

0 00 x x y y       ,f x y A    . 

Для границі використовують позначення:    
0 0

0

lim , lim
x x M M
y y

A f x y f M
 


  . 

З означення границі функції двох змінних випливає, що коли вона існує, 

то вона не залежить від шляху, по якому точка M  наближається до точки 
0M . 

Для функції двох змінних кількість таких шляхів нескінченна, на відміну від 
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функції однієї змінної, де x  може наближатися до 
0x  двома шляхами: справа та 

зліва. 

Геометричний зміст границі функції двох змінних полягає у наступному. 

Яким би малим не було вибране число 0  , знайдеться такий  -окіл точки 

 0 0 0,M x y , що у всіх його точках  ,M x y , відмінних від 
0M , аплікати z  

відповідних точок поверхні  ,z f x y  відрізняються від числа A  за 

абсолютною величиною менше, ніж на  . 

Користуючись означенням границі функції двох змінних, можна 

перенести основні теореми про границі для функції однієї змінної на випадок 

функції двох змінних. Зокрема, має місце наступна теорема. 

Теорема 4.1. Нехай функції  ,f x y  та  ,g x y  визначені у деякому околі 

точки 
0M  та мають у цій точці границі B  та C . Тоді функції    , ,f x y g x y , 

   , ,f x y g x y , 
 
 

,

,

f x y

g x y
 (для частки  , 0g x y  ), мають у точці 

0M  границі, 

які відповідно дорівнюють B C , B C , 
B

C
 (для частки 0C  ). 

Аналогічно випадку функції однієї змінної, можна сформулювати 

означення нескінченно малої функції двох змінних 

Функцію  ,z f x y  називають нескінченно малою у точці 
0M , якщо 

 
0

lim 0
M M

f M


 .  

Введемо за допомогою поняття границі поняття неперервності функції 

двох змінних. Нехай функція  z f M  визначена у області D  координатної 

площини Oxy , точка 
0M D  і є внутрішньою точкою цієї області. 

Функцію  z f M  називають неперервною у точці 
0M , якщо 

   
0

0lim
M M

f M f M


 . 

Точки, у яких функція неперервна, називають точками неперервності, а 

точки, у яких неперервність порушується – точками розриву цієї функції. 

Функцію  ,f x y  називають неперервною на множині D , якщо вона є 

неперервною у кожній точці цієї множини. 

Сформулюємо основні властивості неперервних функцій двох змінних у 

замкненій обмеженій області. 

1. Якщо функція  z f M  є неперервною у замкненій обмеженій області, 

то вона є обмеженою у цій області, тобто  0:c    f M c  для всіх точок цієї 

області. 

2. Якщо функція  z f M  є неперервною у замкненій обмеженій області, 

то у цій області існують точки, у яких функція набуває найбільшого та 

найменшого значень. 

3. Якщо функція  z f M  є неперервною у замкненій обмеженій області 

D  і    1 2f M c f M  , де 
1M D , 

2M D , то існує точка  0 0 0,M x y D , 
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така, що  0f M c . Зокрема, якщо  1 0f M  ,  2 0f M  , то у області D  існує 

точка 
0M , у якій  0 0f M  . 

 

3. Частинні похідні 

 

Нехай функція  ,z f x y  визначена у деякому околі точки  ,M x y . 

Надамо змінній x  приросту x , залишаючи значення y  незмінним, так, щоб 

точка  1 ,M x x y   належала цьому околу. 

Величину    , ,xz f x x y f x y     називають частинним приростом 

функції  ,f x y  за змінною x . Аналогічно вводиться частинний приріст 
yz  

цієї функції за змінною y :    , ,yz f x y y f x y     . 

Якщо існує границя 

   
0 0

, ,
lim limx

x x

f x x y f x yz

x x   

  


 
,    (4.1) 

то вона називається частинною похідною функції  ,f x y  у точці  ,M x y  

за змінною x і позначається одним з наступних символів: 
xz , xf  , 

z

x




, 

f

x




.  

Аналогічно частинна похідна функції  ,f x y  за змінною y  визначається 

як границя 

   
0 0

, ,
lim lim

y

y x

z f x y y f x y

y y   

   


 
 .   (4.2) 

Вона позначається одним з символів: yz , 
yf  , 

z

y




, 

f

y




. 

Згідно з означенням, при знаходженні частинної похідної 
xz  обчислюють 

звичайну похідну функції однієї змінної x , вважаючи змінну y  сталою, а при 

знаходженні похідної yz  сталою вважається змінна x . Тому частинні похідні 

знаходять за формулами та правилами диференціювання функцій однієї 

змінної.  

Частинна похідна 
xz  характеризує швидкість зміни функції у напрямі осі 

Ox , yz  – у напрямі осі Oy . 

З’ясуємо геометричний зміст частинних похідних функції двох змінних. 

Геометричним образом (графіком) функції  ,z f x y  є деяка поверхня. 

Графіком функції  0,z f x y  є лінія перетину цієї поверхні з площиною 

0y y . Виходячи з геометричного змісту похідної для функції однієї змінної, 

отримуємо, що  0 0, tgxf x y   , де   – кут між віссю Ox  і дотичною, 

проведеною до просторової кривої  0,z f x y  у точці   0 0 0 0 0, , ,M x y f x y . 

Аналогічно,  0 0, tgyf x y   , де   – кут між віссю Oy та дотичною, проведеною 
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до просторової кривої  0,z f x y  (лінії перетину поверхні  ,z f x y  з 

площиною 
0x x ) у точці   0 0 0 0 0, , ,M x y f x y . 

Для функції n  змінних  1 2, ,..., nu f x x x  можна знайти n  частинних 

похідних: 
1

,
u

x




 

2

,
u

x




…, 

n

u

x




.  

Тут 
0

lim i

i

x

x
i i

uu

x x 




 
,    1 1,..., ,... ,..., ,...

ix i i n i nu f x x x x f x x x    . 

Щоб знайти частинну похідну 
i

u

x




, треба взяти звичайну похідну функції 

 1 2, ,..., nu f x x x  по змінній 
ix , вважаючи решту змінних сталими. 

Приклад 4.2. Знайти частинні похідні за змінними x  та y  наступних 

функцій: 1) 
2

3
3 2 3 1

x
z x y x y

y
     ; 2) arcsin

y
z

x
 . 

Розв’язання. 1) Знайдемо частинну похідну 
xz . Для цього 

диференціюємо функцію по x , вважаючи y  сталою величиною: 

3

1
6 2xz xy

y
    . Знаходимо 

yz  (диференціюємо  ,f x y  по y , сталою 

вважається змінна x ): 
2

4

3
3 3y

x
z x

y
    . 

2)  
22 4 2 2

2

1
;

1

x

y y
z

xy x x y

x

 
      

  


 
2 2 2

2

1 1 1

1

yz
xy x y

x

   




. 

Якщо функція  ,z f x y  задана у області D  і має частинні похідні 
xz  та 

yz  у всіх точках  ,x y D , то ці похідні можна розглядати як нові функції, 

задані у області D . Тому можна розглядати задачу про знаходження частинних 

похідних від цих функцій по якій-небудь змінній у точці  ,x y D . 

Якщо існує частинна похідна за x  від функції 
f

x




, то її називають 

частинною похідною другого порядку від функції  ,f x y  за змінною x і 

позначають 
2

2

f

x




 або 

xxf  . Отже, за означенням 
2

2

f f

x x x

   
  

   
. 

Якщо існує частинна похідна від функції 
f

x




 за змінною y , то цю похідну 

називають мішаною частинною похідною другого порядку від функції  ,f x y  і 

позначають 
2 f

x y



 
 або xyf  . Отже, 

2 f f

x y y x

   
  

    
. 
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Для функції  ,f x y  двох змінних розглядають чотири частинні похідні 

другого порядку: 
2

2

f

x




, 

2 f

x y



 
, 

2 f

y x



 
, 

2

2

f

y




. 

Якщо існують частинні похідні від частинних похідних другого порядку, 

то їх називають частинними похідними третього порядку. Таких похідних уже 

вісім: 
3

3

f

x




, 

3

2

f

x y



 
, 

3

2

f

y x



 
, 

3 f

x y x



  
, 

3 f

y x y



  
, 

3

2

f

y x



 
, 

3

2

f

x y



 
. 

3

3

f

y




. 

Відповідь на запитання, чи залежить величина мішаної похідної від 

порядку диференціювання, тобто чи рівні між собою , наприклад, 
2 f

x y



 
 та 

2 f

y x



 
, надає наступна теорема. 

Теорема 4.2. Якщо функція  ,f x y  визначена разом із своїми похідними 

xf  , yf  , xyf  , yxf   у деякому околі точки  0 0 0,M x y , причому похідні
xyf   та 

yxf   

неперервні в точці 
0M , то у цій точці 

xy yxf f  . 

Аналогічна теорема справедлива для будь-яких неперервних мішаних 

похідних, які відрізняються між собою лише порядком диференціювання. 

Приклад 4.3. Знайти всі частинні похідні другого порядку від функції 
3 2 2 33 2 3 2z x x y xy x y     . 

Розв’язання. Спочатку знайдемо частинні похідні 
xz  та yz .  

2 2 33 6 2 3xz x xy y     , 
2 26 6 2yz x y xy     . 

Знайдемо 
xxz , xy yxz z  , yyz :

  26 6x

xx

z
z x y

x


   


, 

  212 6x

xy

z
z xy y

y


    


, 

  26 12
y

yy

z
z x xy

y


    


. 

Таким чином, знайдено всі частинні похідні другого порядку функції z . 

 

4. Диференційовність функцій двох змінних 

 

Нехай функція  ,z f x y  визначена у деякому околі точки  ,M x y . 

Виберемо прирости x  і y  так, щоб точка  1 ,M x x y y     також належала 

цьому околу і знайдемо повний приріст функції у точці  ,M x y : 

   , ,z f x x y y f x y     . 

Функцію двох змінних  ,f x y  називають диференційовною у точці 

 ,M x y , якщо її повний приріст у цій точці можна подати у вигляді:  

z A x B y x y          ,    (4.3) 
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де A  та B  – числа, що не залежать від  x  та y ,  ,x y     та 

 ,x y     – нескінченно малі при 0x  , 0y   функції. 

Відомо, що коли функція однієї змінної диференційовна у деякій точці, то 

вона є неперервною у цій точці і має у ній похідну. Ця властивість виконується 

і для функції двох змінних.  

Теорема 4.3. Якщо функція  z f M  диференційовна у точці M , то 

вона неперервна у цій точці. 

Теорема 4.4. Якщо функція  z f M  диференційовна у точці  ,M x y , 

то вона має у цій точці частинні похідні  ,xf x y  та  ,yf x y  і при цьому 

x yz f x f y x y           . 

Твердження, обернені до теорем 4.3 та 4.4, у загальному випадку невірні, 

оскільки з неперервності функції у точці або існування її частинних похідних 

ще не випливає її диференційовність у цій точці. Достатня умова 

диференційованості функції двох змінних у певній точці визначається 

наступною теоремою. 

Теорема 4.5 (достатня умова диференційовності). Якщо функція 

 ,f x y  має частинні похідні у деякому околі точки M , неперервні у цій точці, 

то  ,f x y  диференційовна у точці M . 

З теорем 4.4 та 4.5 випливає такий наслідок: щоб функція  ,f x y  була 

диференційовною у точці M , необхідно і достатньо, щоб вона мала у цій точці 

неперервні частинні похідні.  

 

5. Повний диференціал  

 

Повний приріст z  функції  ,z f x y , диференційовної у точці  ,M x y , 

можна записати за формулою (4.3). 

Повним диференціалом dz  диференційовної у точці  ,M x y  функції 

 ,z f x y  називають лінійну відносно x  та y  частину повного приросту 

цієї функції у точці M : 

dz A x B y    .     (4.4) 

Диференціалами незалежних змінних x  та y  назвемо прирости цих 

змінних dx x  , dy y  . Тоді з урахуванням теореми 4.4 рівність (4.4) можна 

записати у наступному вигляді: 

z z
dz dx dy

x y

 
 
 

.     (4.5) 

Аналогічна формула має місце і для диференційовної функції трьох 

змінних  , ,u f x y z : 

u u u
du dx dy dz

x y z

  
  
  

.    (4.6) 

Приклад 4.4. Знайти повний диференціал функції 3 2z x y . 
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Розв’язання. Обчислимо частинні похідні 
xz  та 

yz . Для заданої функції 

отримуємо 2 23xz x y  , 32yz x y  . Тоді повний диференціал dz  має вигляд:  

2 2 33 2dz x y dx x ydy  . 

Приклад 4.5. Обчислити повний диференціал функції 
2x

z
y

  у точці 

 1,2M . 

Розв’язання. Частинні похідні заданої функції 
2

x

x
z

y
  , 

2

2y

x
z

y
   . У точці 

M  
2 1

1,2 1
2

xz


   ,  
2

2

1 1
1,2

2 4
yz     . 

4
x y

dy
dz z dx z dy dx     . 

Різниця z dz   є нескінченно малою вищого порядку, ніж  . Тому 

повний диференціал називають також головною частиною повного приросту 

диференційовної функції. При цьому виконується наближена рівність z dz  . 

Її можна записати у вигляді:   

   
   , ,

, ,
f x y f x y

f x x y y f x y x y
x y

 
        

 
.  (4.7) 

Ця рівність тим точніша, чим менша величина  . Рівність (4.7) широко 

використовується у наближених обчисленнях, оскільки у багатьох випадках 

диференціал функції обчислюється простіше, ніж її повний приріст. 

Розглянемо, як за допомогою диференціала можна оцінити похибку у 

обчисленнях. Нехай задана диференційована функція n  змінних 

 1 2, ,..., nu f x x x , аргументи якої виміряні з точністю 
1x , 

2x ,…,
nx . 

Потрібно знайти похибку обчислення u . 

Природно вважати, що ця похибка дорівнює величині  

   1 1 2 2 1 2, ,..., , ,...,n n nu f x x x x x x f x x x      . 

Для малих значень 
ix  маємо 

1 2

1 2

... n

n

f f f
u du x x x

x x x

  
        

  
. 

Звідси отримуємо: 

1 2

11 2

...
n

n i

in i

f f f f
u x x x x

x x x x

   
             

   
 . 

Якщо через 
ix  позначити максимальну абсолютну похибку змінної 

ix , 

то вираз для максимальної абсолютної похибки u  функції u  можна записати 

у вигляді: 

1

n

i

i i

f
u x

x

 




   


 .    (4.8) 

Щоб оцінити максимальну відносну похибку функції u , поділимо обидві 

частини рівності (4.8) на величину  1 2, ,..., nu f x x x : 
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1

i

n
x

i

i

fu
u x

u f



 




    .     (4.9) 

Оскільки 
 ln

ix

i

ff

f x

 



, то рівність (4.9) можна записати у вигляді:  

 
1

lnn

i

i i

f
u x

x
  




  


 .     (4.10) 

Цю рівність можна записати як lnu f    , тобто максимальна 

відносна похибка обчислення функції дорівнює максимальній абсолютній 

похибці обчислення її логарифма. 

Приклад 4.6. Період коливання маятника дорівнює 2
l

T
g

 , де l  – 

довжина маятника, g  – прискорення вільного падіння. Виразивши звідси g , 

знаходимо: 
2

2

4 l
g

T


 . Цією формулою користуються для обчислення 

прискорення вільного падіння у різних точках земної поверхні, для чого 

вимірюють величини l  і T .Нехай у результаті вимірювань отримали значення 

50 0,01l   см, 1,4196 0,0001T   с. Потрібно знайти прискорення вільного 

падіння g  та максимальні абсолютну та відносну похибки знайденого значення 

g , вважаючи 3,1416 0,0001   . 

Розв’язання. Використаємо формули (4.9) та (4.10). Логарифмуючи вираз 

для прискорення вільного падіння g , маємо: 

ln ln4 2ln ln 2lng l T    . 

Максимальні абсолютні похибки аргументів функції  , ,g T l   відповідно 

дорівнюють 0,0001T  , 0,01l  , 0,0001  .  

Знайдемо наближене значення g : 

 

 

2

2

4 3,1416 50
979,5

1,4196
g

 
  (см/с 2 ). 

За формулами (4.9) та (4.10) знаходимо значення максимальних відносної 

та абсолютної похибки: 

2 2
ln

2 0,0001 0,01 2 0,0001
0,0004 0,04%.

3,1416 50 1,4196

l T
g g

l T






  

 
  

     

 
    

 

0,0004 979,5 0,4g g g        (см/с). 

Отже, 979,5 0,4g   (см/с
2
). 
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6. Диференціали вищих порядків функцій кількох змінних 

 

Нехай  ,z f x y  – функція незалежних змінних x  та y . Повний 

диференціал цієї функції, знайдений за формулою (4.5), називають ще 

диференціалом першого порядку. Диференціал другого порядку 2d z  визначають 

як диференціал від диференціала dz  першого порядку, тобто  2d z d dz . Якщо 

функція  ,z f x y  має другі частинні похідні, то отримуємо: 

2

x y

z z z z z z
d z d dx dy dx dy dx dx dy dy

x y x y x y

           
          

          
. 

Тут при знаходженні частинних похідних по x  та y диференціали dx та 

dy – сталі величини. Після диференціювання отримуємо вираз для другого 

диференціалу (диференціалу другого порядку): 
2 2 2

2 2 2

2 2
2

z z z
d z dx dxdy dy

x x y y

  
  
   

.    (4.11) 

Символічно формулу (4.11) можна записати у вигляді: 
2

2d z dx dy z
x y

  
  

  
. 

Аналогічно можна отримати формулу для диференціала третього 

порядку: 

 
3

3 2d z d d z dx dy z
x y

  
   

  
. 

Застосувавши метод математичної індукції, можна довести, що вираз для 

диференціала n -го порядку має вигляд: 

 1

n

n nd z d d z dx dy z
x y

   
   

  
.   (4.12) 

Ця формула є вірною лише у випадку, коли змінні x  та y  функції 

 ,z f x y  є незалежними. 

Приклад 4.7. Знайти 2d z , якщо 
2 2x yz e  . 

Розв’язання. Для знаходження диференціалу другого порядку заданої 

функції застосуємо формулу (4.11), для чого знайдемо всі її другі частинні 

похідні. Маємо: 
2 2

2 x y

xz xe   , 
2 2

2 x y

yz ye   ,    
2 2 2 222 2 1 2x y x y

xx
x

z xe x e 
    , 

 
2 2 2 2

2 4x y x y

xy
y

z xe xye 
   ,    

2 2 2 222 2 1 2x y x y

yy
y

z ye y e 
    . 

Підставивши отримані другі частинні похідні у формулу (4.11), 

знаходимо другий диференціал заданої функції: 

   
2 22 2 2 2 22 1 2 4 1 2x yd z e x dx xydxdy y dy      

 
. 
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7. Похідна складеної функції 

 

Нехай  ,z f x y  є функцією змінних x  та y , кожна з яких, у свою чергу, 

є функцією незалежної змінної t , тобто  x x t ,  y y t . Функція 

    ,f x t y t  є складеною функцією змінної t . Для таких функцій справедлива 

наступна теорема. 

Теорема 4.6. Якщо функції  x x t ,  y y t  диференційовні у точці t , а 

функція  ,z f x y  диференційовна у точці  ,M x y , то складена функція 

    ,z f x t y t  також диференційована у точці t . Похідну цієї функції 

знаходять за формулою: 

dz z dx z dy

dt x dt y dt

 
   
 

.    (4.13) 

Аналогічно знаходять похідну складеної функції, якщо кількість 

проміжних змінних більша двох. Для функції       1 2, ,..., nz f x t x t x t  має 

місце рівність: 
1

n
i

i i

dz z dx

dt x dt


 


 .  

Зокрема, для функції трьох змінних       , ,u f x t y t z t  маємо 

du u dx u dy u dz

dt x dt y dt z dt

  
     
  

. Якщо у цьому випадку  y y x ,  z z x , а x  – 

незалежна змінна, тобто     , ,u u x y x z x , то виконується рівність 

du u u dy u dz

dx x y dx z dx

  
    
  

.     (4.14) 

Цю формулу називають формулою для обчислення повної похідної. 

Приклад 4.8. Знайти 
dz

dt
, якщо 3 2z x xy  , 5x t , 3 1y t  . 

Розв’язання. Знайдемо похідні 
z

x




, 

z

y




, 

dx

dt
, 

dy

dt
. 23 2

z
x y

x


 


, 2

z
x

y


 


, 

5
dx

dt
 , 23

dy
t

dt
 . Підставивши ці вирази у формулу (4.13), отримаємо: 

   

 
2

2 2 2

3 3 2

3 2 5 2 3 15 25

10 1 6 5 40 375 10.

dz
x y x t t

dt

t t t t t

        

        

 

Ми отримаємо такий же результат, якщо у вираз для функції z  

попередньо підставити замість x  та y  їх вирази через t , а потім знайти 

звичайну похідну по t  отриманої функції однієї змінної. 

Нехай  ,z f x y ,  ,x x u v ,  ,y y u v . Тоді     , , ,z f x u v y u v  є 

складеною функцією незалежних змінних u і v , змінні x та y  є проміжними. 

Аналогічно попередній теоремі можна довести наступне твердження. 
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Теорема 4.7. Якщо функції  ,x u v  та  ,y u v  диференційовні у точці 

 1 ,M u v , а функція  ,z f x y  диференційовна у точці     2 , , ,M x u v y u v , то 

складена функція     , , ,z f x u v y u v  диференційовна у точці  1 ,M u v  і її 

частинні похідні знаходяться за формулами:  

z z x z y

u x u y u

    
 

    
, 

z z x z y

v x v y v

    
 

    
.  (4.15) 

Формули (4.15) можна узагальнити на випадок більшого числа змінних. 

Приклад 4.9. Знайти 
uz  та 

vz , якщо 2 lnz x y , 
u

x
v

 , y uv . 

Розв’язання. За формулами (4.15) маємо: 

  
2

2

1
2 ln 1 2lnu

x u
z x y v uv

v y v
       , 

  
2 2

2 2
2 ln 1 2lnv

u x u
z x y u uv

v y v

 
      

 
. 

Знайдемо диференціал складеної функції. Скориставшись формулами 

(4.15), отримаємо: 

.

z z z x z y z x z y
dz du dv du dv

u v x u y u x v y v

z x x z y y z z
du dv du dv dx dy

x u v y u v x y

            
         
            

          
        
          

 

Отже, диференціал функції  ,z f x y , де  ,x x u v ,  ,y y u v , 

визначається формулою 
z z

dz dx dy
x y

 
 
 

. Таким чином, повний диференціал 

функції  ,z f x y  має незмінну (інваріантну) форму незалежно від того, чи є 

x  та y незалежними змінними, чи диференційовними функціями змінних u  та 

v .  

Як і у випадку функцій однієї змінної, для функцій багатьох змінних 

диференціали вищих порядків властивості інваріантності не мають. Наприклад, 

якщо  ,z f x y , де  ,x x u v ,  ,y y u v , то другий диференціал 2d z  має 

вигляд: 

 

 
2

2 2

2

2 2
2 2 2

2
2 .

z z z
d z d dz d dx dy dx

x y x

z z z z
dxdy dx d x d y

x y x x y

   
     

   

   
   

    

 

 

8. Диференціювання неявних функцій 
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При вивченні диференціального числення функцій однієї змінної ми 

розглянули питання про диференціювання функцій, заданих неявно. 

Розглянемо цю задачу з використанням поняття частинної похідної. 

Нехай задано рівняння  , 0F x y  . Раніше було сформульовано 

означення неявної функції, згідно з яким це рівняння визначає неявну функцію 

 y x  на множині D , коли кожному значенню x  з цієї множини відповідає 

єдине значення y , що разом з x  задовольняє рівняння  , 0F x y  .  

Умови, яким повинна задовольняти функція двох змінних  ,F x y , щоб 

рівняння  , 0F x y   визначало неявному функцію, сформульовані у наступній 

теоремі існування неявної функції. 

Теорема 4.8. Нехай функція  ,F x y  та її частинні похідні 
xF   та 

yF   

визначені та неперервні у деякому околі точки  0 0,M x y  і  0 0, 0F x y  , 

причому  0 0, 0yF x y  . Тоді існує окіл точки M , у якому рівняння  , 0F x y   

визначає єдину неявну функцію  y x , неперервну та диференційовну у 

околі точки 
0x  і таку, що  0 0x y  .  

Знайдемо похідну неявної функції. Нехай ліва частина 

рівняння  , 0F x y   задовольняє умови теореми 4.8. Тоді це рівняння визначає 

неявну функцію  y y x , для якої на деякій множині точок x  виконується 

тотожність   , 0F x y x  . Оскільки похідна функції, тотожно рівної нулю, 

також тотожно дорівнює нулю, то повна похідна 0
dF

dx
 , тобто, за формулою 

(4.14), 0
F F dy

x y dx

 
 

 
.  

З останньої тотожності отримуємо: 

x

y

dy F

dx F


 


.      (4.16) 

Формула (4.16) дозволяє знаходити похідну неявної функції однієї 

змінної. 

Розглянемо задачу диференціювання неявної функції двох змінних. Нехай 

задано рівняння 

 , , 0F x y z  .     (4.17) 

Якщо кожній парі чисел  ,x y  з деякої множини відповідає єдине 

значення z , яке разом з x  та y  задовольняє рівняння (4.17), то це рівняння 

визначає неявну функцію  ,z x y .  

Справедливою є наступна теорема існування неявної функції двох 

змінних. 

Теорема 4.9. Нехай функція  , ,F x y z  та її похідні  , ,xF x y z ,  , ,yF x y z  і 

 , ,zF x y z  визначені і неперервні у деякому околі точки  0 0 0 0, ,M x y z , причому 
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 0 0 0, , 0F x y z  , а  0 0 0, , 0zF x y z  . Тоді існує окіл точки M , у якому рівняння 

(4.17) визначає єдину функцію  ,z x y , неперервну і диференційовну у 

околі точки  0 0,x y , таку, що  0 0 0,x y z  . 

Знайдемо частинні похідні 
xz  та 

yz  неявної функції  ,z x y , заданої 

рівнянням (4.17). Коли визначаємо частинні похідні 
xz  та 

yz , то вважаємо 

сталими відповідно змінні y  та x . Тому, використавши формулу (4.16), 

отримуємо:  

x
x

z

F
z

F


  


, 

y

y

z

F
z

F


  


.    (4.18) 

Аналогічно знаходять похідні неявної функції  1 2, ,..., ny y x x x , яка 

задається рівнянням  1 2, ,..., , 0nF x x x y  : 

, 1,2,..., ; 0ix

y

i y

Fy
i n F

x F


   


. 

Приклад 4.10. Знайти повний диференціал функції  ,z z x y , якщо 
2 1 0ze x y z    . 

Розв’язання. За формулами (4.18) знайдемо частинні похідні 
xz  та yz . 

Маємо 2xF xy   , 
2

yF x   , 1z

zF e   . Тоді 
2

1
x z

xy
z

e
 


, 

2

1
y z

x
z

e
 


. Повний 

диференціал функції  ,z z x y  має вигляд: 

 
22

1z

xydx x dy
dz

e





 . 

9. Дотична площина та нормаль до поверхні 

 

Нехай задано поверхню  , , 0F x y z   і точка  0 0 0 0, ,M x y z  належить цій 

поверхні. При цьому функція  , ,F x y z  диференційовна у точці 
0M , причому 

не всі частинні похідні у цій точці дорівнюють нулю. 

Розглянемо довільну криву L , що проходить через точку 
0M  та лежить на 

поверхні  , , 0F x y z  . Нехай рівняння цієї кривої мають вигляд  x x t , 

 y y t ,  z z t , а точці 
0M  відповідає значення параметра 

0t . Оскільки дана 

крива лежить на поверхні, то координати її точок задовольняють рівнянню 

поверхні, тобто       , , 0F x t y t z t  . Диференціюючи цю рівність по 

параметру t , отримуємо: 

0
dF F dx F dy F dz

dt x dt y dt z dt

  
   
  

.     (4.19) 
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З рівності (4.19) випливає, що вектори        0 0 0, ,x y zn F M F M F M    та 

      0 0 0, ,s x t y t z t    є ортогональними (рівність (4.19) означає, що їх 

скалярний добуток дорівнює нулю). При цьому вектор s  є напрямним 

вектором дотичної до кривої L  у точці 
0M . З рівності (4.19) випливає також, 

що дотичні до всіх кривих, що проходять через точку 
0M  і лежать на поверхні  

 , , 0F x y z  , є ортогональними до одного й того самого вектора n . Тоді всі ці 

дотичні лежать у одній і тій самій площині, яка називається дотичною 

площиною до поверхні у точці 
0M  .  

Знайдемо рівняння дотичної площини. Оскільки вона проходить через 

точку 
0M  перпендикулярно до вектора n , то її рівняння має вигляд: 

        0 0 0 0 0 0 0x y zF M x x F M y y F M z z        . (4.20) 

Нормаллю до поверхні у точці 
0M  називають пряму, що проходить через 

0M  перпендикулярно до дотичної площини, проведеної у цій точці. Оскільки 

нормаль проходить через точку 
0M  і має напрямний вектор n , то канонічні 

рівняння цієї прямої мають вигляд: 

     
0 0 0

0 0 0x y z

x x y y z z

F M F M F M

  
 

  
.    (4.21) 

Якщо рівняння поверхні задано у явній формі, тобто має вигляд 

 ,z f x y , то, поклавши    , , , 0F x y z f x y z   , отримаємо 

   0 0 0,x xF M f x y  ,    0 0 0,y yF M f x y  ,  0 1zF M   . Тоді рівняння (3.20) та 

(3.21) набудуть вигляду відповідно (3.22) та (3.23): 

       0 0 0 0 0 0 0, , 0x yf x y x x f x y y y z z       ,  (4.22) 

   
0 0 0

0 0 0 0, , 1x y

x x y y z z

f x y f x y

  
 

  
.     (4.23) 

Ми розглянули випадок, коли функція  , ,F x y z , що визначає рівняння 

поверхні  , , 0F x y z  , є диференційовною у точці 
0M  і хоча б одна з 

частинних похідних 
xF  , yF  , zF   не дорівнює нулю. Якщо ці умови не 

виконуються у деякій точці (таку точку називають особливою точкою 

поверхні), то дотична площина та нормаль у цій точці можуть не існувати. 

Приклад 4.11. Написати рівняння нормалі та дотичної площини до 

еліпсоїда 2 2 22 15x y z    у точці  0 1,2,3M . 

Розв’язання. Рівняння дотичної площини та нормалі запишемо, 

використавши рівняння (4.20) та (4.21). Маємо   2 2 2, , 2 15F x y z x y z    . 

Частинні похідні цієї функції мають вигляд: 4xF x  , 2yF y  , 2zF z  . 

Знаходимо їх значення у точці   0 1,2,3M :  0 4 1 4xF M    ,  0 2 2 4yF M    , 

 0 2 3 6zF M    .  
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Підставивши ці значення у (4.20) разом з координатами точки 
0M , 

отримаємо рівняння дотичної площини:      4 1 4 2 6 3 0x y z       або 

2 2 3 15 0x y z    . 

Рівняння (4.21) нормалі до заданої поверхні набуває вигляду: 

1 2 3

4 4 6

x y z  
  . 

 

10. Скалярне поле. Похідна за напрямом та градієнт 

 

Область простору, кожній точці M якої поставлено у відповідність 

значення деякої скалярної величини  u M  (тобто число  u M ), називають 

скалярним полем. 

Прикладами скалярних полів є поле температури даного тіла, поле 

густини даного неоднорідного середовища, поле атмосферного тиску тощо. 

Для того, щоб задати скалярне поле, достатньо задати скалярну функцію 

 u M  та її область визначення. Якщо у просторі ввести прямокутну систему 

координат Oxyz , то точка M  у цій системі матиме певні координати  , ,x y z  і 

скалярне поле u  стане функцією цих координат:    , ,u u M u x y z  . 

Якщо скалярна функція  u M  залежить тільки від двох змінних, 

наприклад x і y , то відповідне скалярне поле  ,u x y  називають плоским, якщо 

ж    , ,u M u x y z , то таке скалярне поле називають просторовим. 

Геометрично плоскі скалярні поля зображають за допомогою ліній рівня 

 ,u x y c , просторові – за допомогою поверхонь рівня  , ,u x y z c . 

Для характеристики швидкості зміни поля у заданому напрямі введемо 

поняття похідної за напрямом. 

Нехай задано скалярне поле  , ,u x y z . Візьмемо у ньому точку  , ,M x y z  

і проведемо з цієї точки вектор l  з напрямними косинусами cos , cos , cos . 

На векторі l  на відстані l від його початку візьмемо точку 

 1 , ,M x x y y z z    . Тоді      
2 2 2

1l MM x y z        . 

Обчислимо тепер приріст 
lu  функції  , ,u x y z  при переході від точки 

M до точки 
1M  в напрямі вектора l :    1lu u M u M   . 

Якщо існує границя відношення lu

l




 при 0l  , то цю границю 

називають похідною функції  , ,u x y z  у точці  , ,M x y z  за напрямом вектора 

l  і позначають 
u

l




. 

Отже, 
0

lim l

l

u u

l l 

 


 
. 
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Отримаємо формулу для обчислення похідної за напрямом. Припустимо, 

що функція  , ,u x y z  є диференційовною у точці M . Тоді її приріст у цій точці 

можна записати наступним чином: 

1 2 3l

u u u
u x y z x y z

x y z
  

  
            

  
, 

де 
1 , 

2 , 
3  – нескінченно малі функції при 0l  .  

Оскільки cosx l    , cosy l     , cosz l     , то відношення  lu

l




 

можна записати у вигляді: 

1 2 3cos cos cos cos cos coslu u u u

l x y z
        

   
     

   
. 

Перейшовши до границі при 0l  , отримаємо формулу для обчислення 

похідної за напрямом: 

cos cos cos
u u u u

l x y z
  

   
  

   
.   (4.24) 

З цієї формули випливає, що частинні похідні є окремими випадками 

похідної за напрямом. Дійсно, коли l збігається з одним з ортів i , j , k , то 

похідна за напрямом збігається  відповідно з частинною похідною 
xu , yu , 

zu . 

Наприклад, якщо l i , то 0  , 
2


   , тому 

cos0 cos cos
2 2

u u u u u

l x y z x

     
   

    
. 

Подібно до того, як частинні похідні 
xu , yu , 

zu  показують швидкість 

зміни функції u  у напрямку відповідних осей координат, так і похідна 
u

l




 

показує швидкість зміни скалярного поля   , ,u x y z  в точці  , ,M x y z  за 

напрямом вектора l . Абсолютна величина похідної 
u

l




 відповідає значенню 

цієї швидкості, а знак похідної визначає характер зміни функції  , ,u x y z  у 

напрямі l . Якщо похідна за напрямком додатна, то функція у цьому напрямку 

зростає, якщо похідна від’ємна, то спадає. 

Якщо поле плоске, тобто задається функцією  ,u x y , то напрям вектора l  

цілком визначається кутом   між цим вектором та віссю Ox , 
2


   . 

Оскільки cos cos sin
2


  

 
   

 
, то для плоского поля  ,u x y  формула 

(4.24) набуває вигляду  

cos sin
u u u

l x y
 

  
 

  
.     (4.25) 
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Приклад 4.12. Знайти похідну функції 2 22u x xz y    у точці  1,2, 1A   

за напрямом від точки A  до точки  2,4, 3B  . З’ясувати характер зміни поля у 

цьому напрямі. 

Розв’язання. Знайдемо вектор l AB  та його напрямні косинуси.  

    2 1,4 2, 3 1 1,2, 2AB         , 

 
22 21 2 2 3AB      , 

1
cos

3
  , 

2
cos

3
  , 

2
cos

3
   . 

Обчислимо значення частинних похідних у точці A .  2 2xu x z   , 2yu y  , 

2zu x   ,    2 1 2 1 4xu A       ,   2 2 4yu A    ,   2 1 2zu A      .  

За формулою (4.24) знаходимо 
u

l




: 

1 2 2 16
4 4 2

3 3 3 3

u

l

  
        

  
 . 

Оскільки 0
u

l





, то функція u  зростає у заданому напрямі. 

Нехай задано поле  , ,u u x y z  і точку  , ,M x y z . Встановимо напрям l , 

у якому похідна 
u

l




 має найбільше значення. 

Вектор, координатами якого є значення частинних похідних функції 

 , ,u u x y z  у точці  , ,M x y z , називають градієнтом функції у цій точці і 

позначають grad u . Отже, 

grad 
u u u

u i j k
x y z

  
  
  

.    (4.26) 

Зв’язок між градієнтом і похідною у даній точці за напрямом l  

встановлює наступна теорема. 

Теорема 4.10. Похідна функції  , ,u x y z  у точці  , ,M x y z  за напрямом 

вектора l  дорівнює проекції градієнта функції у цій точці на вектор l . 

З теореми 4.10 випливає, що похідна за напрямом l  досягає свого 

найбільшого значення 
max

grad 
u

u
l

 
 

 
, коли напрям вектора l збігається з 

напрямом градієнта. Отже, швидкість зростання скалярного поля у довільній 

точці є найбільшою у напрямку градієнта. У напрямі, протилежному до 

напряму градієнта, поле найшвидше зменшуватиметься. 

З теореми 4.10 випливає також, що похідна за напрямом вектора, 

перпендикулярного до градієнта, дорівнює нулю, тобто швидкість зміни 

скалярного поля у напрямі, перпендикулярному до градієнта, дорівнює нулю; у 

цьому напрямку поле залишається сталим. Дійсно, 0
u

l





 при 

2


  . 
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Градієнт у кожній точці поля  , ,u x y z  перпендикулярний до поверхні 

рівня, що проходить через цю точку. Це випливає з того, що напрямний вектор 

нормалі до поверхні рівня   0( )u M u M , яка проходить через точку 
0M , має 

координати 

0M

u

x




, 

0M

u

y




, 

0M

u

z




, тобто його координати співпадають з 

координатами градієнта. 

Приклад 4.13. Знайти градієнт функції 2 2 2 2u x y z xyz     у точці 

 0 0,1,2M . 

Розв’язання. Знайдемо частинні похідні 
u

x




, 

u

y




, 

u

z




 у точці 

0M . Маємо: 

2 2
u

x yz
x


 


, 2 2

u
y xz

y


 


, 2 2

u
z xy

z


 


.  

Обчислимо значення знайдених частинних похідних у точці  0 0,1,2M  : 

 
0

2 0 1 2 4
M

u

x


    


,  

0

2 1 0 2 2
M

u

y


   


,  

0

2 2 0 1 4
M

u

z


   


. 

За формулою (4.26) визначаємо вектор – градієнт функції u : 

grad 4 2 4u i j k    . 

Приклад 4.14. Знайти найбільшу швидкість зростання поля yu x z   у 

точці  0 1,2,3M . 

Розв’язання. Найбільша швидкість зростання поля у заданій точці 

досягається у напрямі градієнта поля у цій точці, а її величина дорівнює 

модулю градієнта. Знайдемо координати градієнта поля. Для цього знайдемо 

частинні похідні функції u . 
1y

xu y x    , lny

yu x x   , 1zu   ,   1

0 2 1 2xu M    ,   2

0 1 ln1 0yu M    , 

 0 1zu M   . Тоді отримуємо: 

 grad 2 0 2,0, 1u i j k       , 

 
22 2

max

grad 2 0 1 5
u

u
l

 
      

 
. 

 

11. Локальні екстремуми функції двох змінних 

 

Нехай функція  ,z f x y  визначена у області D , а точка  0 0 0,M x y D . 

Якщо існує окіл точки 
0M , що належить області D , і для всіх відмінних 

від 
0M  точок M цього околу виконується нерівність    0f M f M  

(    0f M f M , то точку 
0M  називають точкою локального максимуму 

(мінімуму) функції  ,f x y , а число  0f M  – локальним максимумом 

(мінімумом) цієї функції. Точки локального максимуму та мінімуму функції 

називають точками її локального екстремуму. 
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Це означення можна сформулювати іншим чином. Нехай 
0x x x   , 

0y y y   . Тоді  

         0 0 0 0 0 0 0 0, , , , ,f x y f x y f x x y y f x y f x y       . 

Якщо приріст функції  0 0, 0f x y   (  0 0, 0f x y  ) при всіх достатньо 

малих за абсолютною величиною приростах x  і y , то функція  ,f x y  у 

точці  0 0 0,M x y  досягає локального максимуму (локального мінімуму).  

Таким чином, у околі точки екстремуму прирости функції мають один і 

той же знак. 

Теорема 4.11 (необхідна умова екстремуму). Якщо функція  ,z f x y  

має у точці  0 0 0,M x y  локальний екстремум, то у цій точці частинні похідні 

першого порядку цієї функції дорівнюють нулю або не існують. 

Аналогічна теорема справедлива для функцій n  змінних. 

Точки, у яких частинні похідні першого порядку функції  ,f x y  

дорівнюють нулю, тобто 0x yf f   , називають стаціонарними точками цієї 

функції. Стаціонарні точки функції  ,f x y  та точки, у яких її частинні похідні 

не існують, називають критичними точками цієї функції.  

Таким чином, аналогічно функціям однієї змінної, якщо функція кількох 

змінних у якій-небудь точці досягає екстремуму, то це може статися лише у 

критичній точці, проте не всяка критична точка є точкою екстремуму. 

Наприклад, частинні похідні функції 2 2z x y   дорівнюють нулю у точці 

 0,0 ,  0,0 0z  , проте у цій точці вказана функція екстремуму не має, тому 

що у досить малому околі точки  0,0 вона набуває як додатних (при x y ), 

так і від’ємних (при x y ) значень, тобто приріст функції у цій точці змінює 

знак. 

Приклад 4.15. Відкритий прямокутний басейн повинен мати об’єм V . 

Знайти розміри басейну, за яких на його облицювання піде найменша кількість 

матеріалу. 

Розв’язання. Нехай x  – довжина, y  – ширина, z  – глибина басейну. 

Оскільки V xyz , то 
V

z
xy

 . 

Кількість матеріалу, необхідного для облицювання басейну, визначається 

формулою 2 2S xy yz xz    або  
1 1

, 2S S x y xy V
x y

 
    

 
. Треба знайти 

мінімум функції  ,S x y  при 0x  , 0y  . Знайдемо стаціонарні точки функції 

 ,S x y . Її частинні похідні 
2

2
x

V
S y

x
   , 

2

2
y

V
S x

y
   . Прирівнюючи їх до нуля, 

отримуємо систему: 
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2

2

2
0,

2
0.

V
y

x

V
x

y


 


  


 

Звідси знаходимо 3 2x y V  . Отже, функція  ,S x y  має стаціонарну 

точку  3 32 , 2V V . З умови задачі випливає наявність точки мінімуму, тому у 

стаціонарній точці ця функція досягає мінімуму. Глибина басейну 
3 2

2

V V
z

xy
  . Таким чином, мінімальна кількість матеріалу буде витрачена 

при розмірах басейну  3 2x y V  , 
3 2

2

V
z  . 

Теорема 4.12 (достатня умова екстремуму функції двох змінних). 

Нехай у стаціонарній точці   0 0 0,M x y  і у деякому її околі функція  ,f x y  має 

неперервні частинні похідні другого порядку. Нехай  0 0,xxA f x y , 

 0 0,xyB f x y ,  0 0,yyC f x y . Тоді, якщо значення 2 0AC B    , то у точці 

0M  функція  ,f x y  має екстремум, причому він є максимумом, якщо 0A  і 

мінімумом – при 0A . При 0   функція  ,f x y  у точці 
0M  екстремуму не 

має. 

З теорем 4.11 та 4.12 випливає наступне правило дослідження 

диференційовних функцій двох змінних на екстремум. 

1. Знайти стаціонарні точки функції з системи рівнянь 
 

 

, 0,

, 0.

x

y

f x y

f x y

 


 

 

2. У кожній стаціонарній точці обчислити значення A , B , C ,  . Згідно з 

теоремою 4.12 зробити висновок про наявність та тип екстремуму у кожній 

стаціонарній точці. 

Приклад 4.16. Знайти екстремуми функції 

  4 4 2 2, 2 4 2f x y x y x xy y     . 

Розв’язання. Знайдемо стаціонарні точки функції  ,f x y , для чого 

складемо систему рівнянь 
 

 

, 0,

, 0.

x

y

f x y

f x y

 


 

 

Знайдемо частинні похідні.  34xf x x y    ,  34yf y x y    . 

Прирівнявши ці частинні похідні до нуля, отримаємо:  
3

3

0;

0.

x x y

y x y

   


  
 

Додаючи рівняння цієї системи, знаходимо, що 3 3 0x y  , звідки y x  . 

Підставляючи y x   у перше рівняння системи, знаходимо, що 3 2 0x x  , 



23 

тобто  2 2 0x x   . Звідси знаходимо стаціонарні точки: 
1 1 0x y  , 

2 2x  , 

2 2 2y x    , 
3 2x   , 

3 3 2y x   . 

Отже, функція має три стаціонарні точки:  O 0,0 ,  1 2, 2A  , 

 2 2, 2A  . Для кожної з цих точок визначимо величину 212 4xxA f x   , 

4xyB f   , 212 4yyC f y   , 2AC B   . 

Для стаціонарної точки  O 0,0  маємо 4A C   , 4B  , 0  . Оскільки 

0  , то у точці O  теорему 4.12 застосувати не можна. Переконаємось, що у 

цій точці екстремум відсутній. Нехай 0y  . Тоді    4 2 2 2, 2 2f x y x x x x    . 

У околі точки  O 0,0   , 0f x y  . Тепер візьмемо y x ,   4, 2 0f x y x  . 

Отримали, що  O 0f  , а у околі цієї точки функція має різні знаки, тому 

екстремум у точці O  відсутній. 

У точках  1 2, 2A   та  2 2, 2A   знаходимо значення коефіцієнтів 

12 2 4 20A    , 4B  , 12 2 4 20C     , 220 20 4 384 0      . У цих 

точках наявний екстремум. Оскільки для кожної з точок 
1A  та 

2A  коефіцієнт A  

додатний, то ці точки є точками мінімуму. При цьому    1 2 8minf f A f A    . 


