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Лекція 

Тема: «Інтегрування деяких ірраціональних функцій» 

План 

1. Інтегрування ірраціональних функцій. 

2. Підстановки Ейлера. 

3. Підстановки Чебишева. 

 

1. Інтегрування ірраціональних функцій. 

Розглянемо інтеграли від деяких типів ірраціональних функцій і 

покажемо, що у ряді випадків їх можна звести до інтегралів від раціональних 

функцій. 

Нехай інтеграл має вигляд: 
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де R  – раціональна функція своїх аргументів x , 
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Приклад. Знайти інтеграл 
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Розв’язання. Підінтегральна функція є раціональною функцією від 

величин 
1

2x , 
1

3x , 
5

4x , 
7

6x . Найменшим спільним знаменником дробів, що є 

степенями x  у підінтегральному виразі, є 12, тому виконаємо заміну 

12 11, 12x t dx t dt  . Тоді 
6 4312 , ,t x x t x t   , 5 15 7 1464 ,x t x t  . Інтеграл I  

набуває вигляду: 
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Відповідь. 64 12 124 6 24 24ln 1x x x x C     . 

 

2. Підстановки Ейлера. 

Означення. Квадратичною ірраціональністю називають функцію 

вигляду 
2ax bx c  . 

Розглянемо інтеграл наступного вигляду 

 2,R x ax bx c dx  , 0a  , 2 4 0b ac  . 

Теорема (Ейлера). Інтеграл  2,R x ax bx c dx   виражається через 

інтеграл від раціональної функції підстановками Ейлера: 

1) 2ax bx c t x a    , якщо 0a   (перша підстановка Ейлера); 

2) 2ax bx c xt c    , якщо 0c   (друга підстановка Ейлера); 

3)  2

1ax bx c t x x    , якщо 2 4 0b ac   (третя підстановка Ейлера), 

де 1x  – один із коренів квадратного тричлена 2ax bx c  . 

Зауваження. Знак «+» або «–» обирається, виходячи зі зручності 

обчислень. Якщо 0a   і 0c   одночасно, то можна робити як першу так і другу 

підстановку Ейлера. 
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де  1P x  – многочлен степеня n , зручно користуватися формулою: 
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де  1nQ x  – многочлен степеня 1n  , коефіцієнти якого треба визначити;   – 

невизначений коефіцієнт. Інтеграл вказаного вигляду знаходять 

диференціюючи ліву і праву частини отриманої рівності, а потім застосовують 

метод невизначених коефіцієнтів для знаходження всіх невизначених 

коефіцієнтів. 

 

3. Підстановки Чебишева. 

Означення. Вираз виду  
p

m nx a bx , де m , n  і p  – задані раціональні 
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числа, a  та b  – задані дійсні числа, називають диференціальним біномом.  

Для інтегрування диференціальних біномів використовують наступну 

теорему. 

Теорема (Теорема Чебишева). Інтеграл від диференціального бінома 

 
p

m nx a bx dx  виражається через інтеграл від раціональної функції відносно 

нової змінної, якщо: 

1) p  – ціле число і виконано підстановку sx t , де s  – найменший 

спільний знаменник дробів m  і n ; 

2) 
1m

n


 – ціле число і виконано підстановку n ra bx t  , де r  – знаменник 

дробу p ; 

3) 
1m

p
n


  – ціле число і виконано підстановку n rax b t   , де r  – 

знаменник дробу p . 

Приклад. Знайти інтеграл 
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Розв’язання. Підінтегральний вираз даного інтеграла є диференціальним 

біномом, при цьому 2p    – ціле число. Найменшим спільним знаменником 

дробів 
1

2
m   та 

1

3
n   є 6, тому виконуємо підстановку 6x t . Тоді 56dx t dt , 

3x t , 23 x t . Отримуємо інтеграл від раціональної функції: 
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Обчислимо інтеграл у правій частині даної рівності. 
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Враховуючи, що 6t x , остаточно отримуємо: 
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Відповідь. 
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Приклад. Знайти інтеграл 
41 xdx
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Розв’язання. Маємо диференціальний біном, у якому 
1

2
m   , 

1

4
n  , 

1

2
p  , 

1
2

m
Z

n


  . Отже, маємо другий випадок диференціального бінома, що 

потребує використання підстановки 241 x t  . Звідси отримуємо:  

 
4
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Підставивши ці вирази у інтеграл I , отримуємо інтеграл від раціональної 

функції: 
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Відповідь.    
5 3

4 48 8
1 1

5 3
x x C    . 

Приклад. Знайти інтеграл 
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Розв’язання. Для диференціального бінома, що знаходиться під знаком 
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даного інтеграла 
3

2
m   , інші параметри бінома 

3
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виконуємо підстановку 
3
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Перейдемо у підінтегральному виразі до змінної t . Отримаємо: 
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Таким чином, отримуємо інтеграл від раціональної функції:  
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2
3

432 1x C
 

    
 

. 

 

 


