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Лекція 

Тема: «Властивості визначеного інтеграла. Основна теорема інтегрального 

числення» 

План 

1. Властивості визначеного інтеграла. 
2. Визначений інтеграл як функція верхньої межі. 
3. Основна теорема інтегрального числення. 
 

1. Властивості визначеного інтеграла. 

Розглянемо основні властивості визначеного інтеграла, що випливають з 

його означення. 

1. Величина визначеного інтеграла не залежить від позначення змінної 

інтегрування:  

   
b b

a a

f x dx f t dt  . 

Дійсно, інтегральна сума (2.1) і її границя (2.2) не залежать від того, якою 

літерою позначено аргумент функції f . Це означає, що визначений інтеграл не 

залежить від позначення змінної інтегрування. 

Визначений інтеграл  
b

a

f x dx  ми вводили для випадку, коли a b . 

Узагальнимо поняття визначеного інтеграла на випадки, коли a b  та a b .  

2. Визначений інтеграл з однаковими межами інтегрування дорівнює 

нулю: 

  0

a

a

f x dx  . 

3. Від перестановки меж інтегрування інтеграл змінює знак на 

протилежний: 

   
b a

a b

f x dx f x dx   . 

4. Якщо функція  f x  є інтегровною на максимальному з відрізків  ;a b , 
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 ;a c  і  ;c b , то справедлива рівність: 

     
b c b

a a c

f x dx f x dx f x dx    .     

Цю властивість називають властивістю адитивності визначеного 

інтеграла. Для її доведення припустимо спочатку, що a c b  . Оскільки 

границя інтегральної суми не залежить від способу розбиття відрізка  ;a b  на 

елементарні відрізки, то розіб’ємо його так, щоб точка c  була точкою розбиття. 

Якщо, наприклад, mc x , то інтегральну суму можна розбити на дві суми: 

     
1 1 1

n m n

i i i i i i

i i i m

f x f x f x  
   

       . 

Переходячи у цій рівності до границі при 0  , n , отримуємо 

формулу (2.3). Інше розміщення точок a , b  та c  зводиться до вже 

розглянутого. Зокрема, при a b c  , використовуючи попередні властивості 

визначеного інтеграла, отримуємо: 

     
c b c

a a b

f x dx f x dx f x dx    ; 

         
b c c c b

a a b a c

f x dx f x dx f x dx f x dx f x dx        . 

5. Сталий множник можна виносити за знак визначеного інтеграла: 

   
b b

a a

C f x dx C f x dx    .      

Дійсно, згідно з означенням визначеного інтеграла, маємо: 

       
1 10 0

lim lim

b bn n

i i i i
n n

i ia a

C f x dx C f x C f x C f x dx

 

 
 

  

             . 

6. Визначений інтеграл від суми інтегровних функцій дорівнює сумі 

визначених інтегралів від цих функцій: 
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        
b b b

a a a

f x g x dx f x dx g x dx     .     

Для доведення цієї властивості запишемо інтегральну суму на відрізку 

 ;a b  для суми функцій    f x g x :  

        
1 1 1

n n n

i i i i i i i

i i i

f g x f x g x   
  

        . 

Звідси, переходячи до границі при 
1
max 0i

i n
x

 
   , отримаємо формулу. 

Дана властивість виконується для суми довільного скінченного числа функцій. 

7. Якщо всюди на відрізку  ;a b  маємо   0f x   і a b , то  

  0

b

a

f x dx  . 

Дійсно, у цьому випадку у інтегральній сумі  
1

n

n i i

i

S f x


   кожний 

доданок є невід’ємним, оскільки   0if    і 1 0i i ix x x     , тому 0nS   і 

границя цієї величини теж є невід’ємною. 

8. Якщо всюди на відрізку  ;a b     f x g x  і a b , то має місце 

нерівність  

   
b b

a a

f x dx g x dx  . 

Оскільки     0g x f x  , то за властивістю 7      0

b

a

g x f x dx  , тобто 

    0

b b

a a

g x dx f x dx   , звідки випливає, що    
b b

a a

f x dx g x dx  . 

9. Якщо функція  f x  є інтегровною на відрізку  ;a b , то виконується 

нерівність: 
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   
b b

a a

f x dx f x dx  .      

Для доведення нерівності застосуємо властивість 8 до нерівності 

     f x f x f x   , внаслідок чого отримаємо: 

     
b b b

a a a

f x dx f x dx f x dx     . 

З цієї нерівності випливає нерівність. 

10. Якщо  ;x a b    f x C , то виконується нерівність: 

   
b

a

f x dx C b a   .      

Для доведення цієї нерівності скористаємося властивостями 9 та 5. Тоді 

отримаємо:  

     
b b b b

a a a a

f x dx f x dx Cdx C dx C b a        , 

оскільки 
0

1

lim 1

b n

i

ia n

dx x b a




    . 

11. Якщо m  та M  є відповідно найменшим та найбільшим значеннямb 

функції  f x  на відрізку  ;a b , де a b , то виконується нерівність: 

     
b

a

m b a f x dx M b a    .      

Ця властивість надає оцінку визначеного інтеграла  
b

a

f x dx . Доведемо 

нерівність (2.8). За умовою,  ;x a b    m f x M  , тому з властивості 7 

випливає, що  
b b b

a a a

mdx f x dx Mdx    . Звідси, враховуючи, що  



5 

 
b

a

mdx m b a  ,  
b

a

Mdx M b a  , 

отримуємо нерівність. 

Приклад. Оцінити інтеграл 

1 6

0 1

x
I dx

x



 . 

Розв’язання. Підінтегральна функція  
6

1

x
f x

x



 є неперервною, а 

тому інтегровною на  0;1 . Знайдемо мінімальне m  та максимальне M  

значення цієї функції на відрізку інтегрування. Знайдемо похідну 

підінтегральної функції: 

 
 

 
 

6
5

5

3

2

6 1
11 122 1 0, 0;1

1
2 1

x
x x

x xxf x x
x

x

 
    




. 

Оскільки підінтегральна функція зростає на відрізку  0;1 , то 

 min 0 0f f  ,  max

1
1 , 1

2
f f b a    . Звідси знаходимо оцінку заданого 

інтеграла: 

1 6

0

1
0

21

x
dx

x
 


 . 

Відповідь. 

1 6

0

1
0

21

x
dx

x
 


 . 

12. Якщо функція  f x  є неперервною на відрізку  ;a b , то на цьому 

відрізку знайдеться така точка c , що  

     
b

a

f x dx f c b a   .      

Цю властивість називають теоремою про середнє значення функції.  
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Дійсно, якщо функція  f x  є неперервною на  ;a b , то вона досягає на 

цьому відрізку свого найменшого значення m  та найбільшого значення M . 

Тоді з властивості 11 при a b  отримаємо: 

 
1

b

a

m f x dx M
b a

 
  . 

Нехай  
1

b

a

f x dx
b a

 
  . Оскільки  f x  неперервна на  ;a b , то вона 

набуває на цьому відрізку всі проміжні значення з відрізка  ;m M . Отже, існує 

точка c , така, що  f c   або  

   
1

b

a

f c f x dx
b a


  .       

Означення 2.4 Рівність    
1

b

a

f c f x dx
b a


   називають формулою 

середнього значення, а величину  
1

b

a

f x dx
b a   називають середнім значенням 

функції на відрізку  ;a b . 

При   0f x   теорема про середнє значення має наступний геометричний 

зміст: значення визначеного інтеграла  
b

a

f x dx  дорівнює площі прямокутника 

з висотою  f c  і основою b a . 

Термін «середнє значення функції» добре узгоджується з таким 

фізичними поняттям як середня швидкість. Якщо у формулі 

   
1

b

a

f c f x dx
b a


   інтеграл означає шлях, пройдений за проміжок часу 

 ;a b , то середнє значення  f c  означає середню швидкість, тобто сталу 

швидкість, при якій точка, рухаючись рівномірно, за той же проміжок часу 



7 

пройшла б той же шлях, що й при нерівномірному русі з швидкістю  f t . 

13. Якщо значення інтегровної функції змінити у скінченному числі 

точок, то її інтегрованість не порушиться, а значення інтеграла при цьому не 

зміниться. 

З цієї властивості випливає, що коли підінтегральній функції надати 

цілком довільних скінченних значень у скінченному числі точок на відрізку 

інтегрування, то значення інтеграла при цьому не зміниться. 

 

2. Визначений інтеграл як функція верхньої межі. 

Нехай функція  f x  є неперервною на відрізку  ;a b , тоді вона 

інтегровна на будь-якому відрізку    ; ;a x a b , тобто  ;x a b   існує інтеграл 

 
x

a

f t dt . Оскільки визначений інтеграл не залежить від змінної інтегрування, 

то ми позначили її через t , щоб не плутати з верхньою межею інтегрування x . 

Інтеграл  
x

a

f t dt  є функцією змінної x . Позначимо її через  x : 

   
x

a

x f t dt   .     (2.11) 

Означення 2.5 Функцію (2.11) називають визначеним інтегралом зі 

змінною верхньою межею. 

Теорема 2.4 Похідна визначеного інтеграла зі змінною верхньою межею 

по верхній межі дорівнює значенню підінтегральної функції для цієї межі: 

     
x

a

d
x f t dt f x

dx

 
   

 
 .    (2.12) 

Доведення. Надамо аргументу x  функції (2.11) приросту x , тоді, 

враховуючи адитивність інтеграла (формула (2.3)), отримуємо: 

           
x x x x x x x

a a x x

x x f t dt f t dt f t dt x f t dt

  

           . 

Звідси знаходимо: 
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     
x x

x

x x x f t dt



       . 

Застосовуючи до цього інтеграла теорему про середнє значення, 

знаходимо, що  f c x   , де точка c  знаходиться між x  та x x  . Отже, 

отримуємо: 

 
 

 
0 0 0

lim lim lim
x x x

f c x
x f c

x x     

 
   

 
. 

Якщо 0x  , то x x x    і c x , тому з неперервності функції f  

отримуємо, що    x f x  . Теорему доведено. 

З цієї теореми випливає, що для всякої неперервної на відрізку  ;a b  

функції існує первісна функція. При цьому однією з цих первісних функцій є 

інтеграл (2.11), оскільки    x f x  . 

 

3. Основна теорема інтегрального числення. 

   x f x  . 

Теорема 2.5 Якщо функція  y f x  є неперервною на відрізку  ;a b , а 

 F x  – будь-яка її первісна на  ;a b , тобто    F x f x  , то має місце 

формула: 

     
b

a

f x dx F b F a  .    (2.13) 

Означення 2.6 Формулу (2.13) називають формулою Ньютона-

Лейбніца. Ця формула встановлює зв’язок між визначеним та невизначеним 

інтегралом. 

Доведення. Нехай  F x  – деяка первісна функції  f x . Оскільки 

інтеграл (2.11) також є первісною, то  F x  і  x  відрізняються між собою 

лише на сталу величину, тобто    
x

a

f t dt F x C  . Поклавши у цій рівності 
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x a , отримаємо: 

     0

a

a

f t dt F a C C F a      . 

Тому      
x

a

f t dt F x F a  . Підставивши у цю рівність x b , 

отримаємо формулу Ньютона-Лейбніца (2.13). Теорему доведено. 

Різницю    F b F a  умовно позначають символом   
b

a
F x , тому 

формулу Ньютона-Лейбніца записують також у вигляді:  

    
b

b

a
a

f x dx F x . 

Приклад. Обчислити інтеграл  
2

2

1

3 6 1I x x dx   . 

Розв’язання. Застосуємо формулу Ньютона-Лейбніца. Однією з 

первісних підінтегральної функції є   3 23F x x x x   . Тому за формулою 

(2.13) маємо: 

   

     

2
2

2 3 2

1
1

3 2 3 2

3 6 1 3

2 3 2 2 1 3 1 1 2 1 1.

I x x dx x x x      

             


 

Відповідь. – 1. 

 

 

 


