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Лекція 

Тема: «Знакозмінні числові ряди» 

План 

1. Абсолютно та умовно збіжні числові ряди. 

2. Властивості абсолютно та умовно збіжних знакозмінних рядів. 

3. Ознаки збіжності знакозмінних рядів. 

 

1. Абсолютно та умовно збіжні числові ряди. 

До довільних рядів відносять ряди, які містять як додатні так і від’ємні 

члени. Якщо ряд містить скінчену кількість від’ємних елементів, то вони не 

впливають на збіжність ряду, і досліджувати цей ряд на збіжність можна як 

знакододатний. Якщо, навпаки, додатних членів скінченна кількість, то 

досліджувати ряд 


 0nn
na  на збіжність можна як знаковід’ємний, та робити 

висновок про збіжність ряду, досліджуючи ряд із його модулів 
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. Такі ряди не відносять до довільних, а без обмеження 

загальності міркувань вважають знакосталими. До довільних рядів відносять 

ряди, що містять нескінчену кількість як додатних, так і від’ємних членів. 

Означення. Ряд 
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ряд, утворений із його модулів, тобто 
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Теорема 1. .збігаєтьсязбігаєтьсяабсолютно
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Доведення. І спосіб. Застосовуємо критерій Коші збіжності ряду: 
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За нерівністю трикутника ,
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Це означає, що за критерієм Коші ряд 
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Аналогічно ряд 
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Це означає, що ряд 


1n
na  збігається, а його сума дорівнює   AA . ■ 

Отже. під довільним рядом розуміємо ряд, що містить нескінченну 

кількість додатних і від’ємних членів. Довільні ряді ще називають 

знакозмінними. Окремим випадком знакозмінного ряду є ряд знакопочережний 

ряд, тобто ряд, знаки елементів якого строго чергуються: 
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Для дослідження на абсолютну збіжність довільних рядів до ряду 
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застосовуються ознаки збіжності знакододатних рядів: порівняння, радикальна 

ознака Коші, інтегральна ознака Маклорена-Коші, ознаки Д’Аламбера, Раабе, 

Гаусса, Бертрана. 

 

2. Властивості абсолютно та умовно збіжних знакозмінних рядів. 

Теорема 2. Якщо ряд 


1n
na  збігається, тоді ряд, що утворюється із даного 

за допомогою групування його членів, 

...)...(...)....()...()...(
13221 1111 
 pp nnnnnnn aaaaaaaa    ( * ) 

(тут { pn } – зростаюча послідовність номерів) збігається завжди і має таку саму 

суму, що і даний ряд. 

Теорема 3. Якщо всі доданки в кожній із дужок ряду (*) мають один і той 

самий знак і ряд (*) збігається, тоді ряд 


1n
na збігається. 

Теорема 4. Знакопостійний збіжний ряд при переставленні своїх членів 

залишається збіжним та не змінює свою суму. 

Теорема 5 (теорема Рімана). Якщо ряд 


1n
na  збігається умовно, то 

можна так переставити його члени, що сума отриманого ряду буде дорівнювати 

довільному наперед заданому числу. Можна при перестановці отримати і 

розбіжний ряд. 

Теорема 6. Абсолютно збіжний ряд при довільному переставленні своїх 

членів залишається абсолютно збіжним та не змінює свою суму. 
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Теорема 7 (про добуток абсолютно збіжних рядів). Якщо ряди 


1n
na  і 




1n
nb  збігаються абсолютно і мають суми aS  і bS , то ряд 














111 n

n
n

n
n

n cba , де 




 
n

k
knknnnn babababac

1
11121  , також абсолютно збігається і його 

сума ba SSS   (абсолютно збіжні ряди можна перемножати почленно). 

 

3. Ознаки збіжності знакозмінних рядів. 

Теорема 8. (ознака Абеля). 
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умову 1) і критерій Коші збіжності ряду: 
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 Щоб застосувати лему 1.1, введемо позначення iniini ba   , . 

Всі вимоги леми виконуються, причому pmL  , , тому 

p

p

i
ii 



21
1

. 

Застосуємо умову 3) і зробимо зворотні позначення: 
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Теорема 9. (ознака Діріхле). 
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Доведення. Розглянемо відрізок ряду 
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 Зауважимо, що із умов 1) і 2) випливає, що nan  0 . Застосуємо 
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 Зробимо зворотні позначення та отримаємо 
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Теорема 10. (ознака Лейбніца). Нехай 1
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Доведення. В ознаці Діріхле покладемо 1)1(,  n
nnn bCa . Тоді 

0lim2)  ,(нестрого)спадає}{)1 n
n

n aa ,  

   ,...0,1,0,1,0,1

...

1111

011

1

3213

212

11





















nB
bbbB

bbB

bB

 – обмежена. 
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 Висновок: модуль залишку ряду лейбніцевого типа не перевищує 

модуля першого відкинутого члена. 

Приклад. Дослідити ряд на збіжність 
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тому даний ряд збігається. ■ 

 

 


