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Лекція 

Тема: «Степеневі ряди» 

План 

1. Поняття степеневого ряду. 

2. Радіус збіжності степеневого ряду. 

3. Властивості степеневого ряду. 

4. Розвинення функцій в степеневі ряди. 

 

1. Поняття степеневого ряду. 
Означення 2.7 Функціональний ряд вигляду 
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називають степеневим рядом, а числа 0 1 2, , , ..., ,...na a a a  – коефіцієнтами  

степеневого ряду. 

Очевидно, що кожен степеневий ряд збігається в точці х=0. Тому область 

збіжності D  степеневого ряду містить точку нуль, тобто  0D  . 

Приклад 2.11 Довести, що ряд 

2 3

0

! 1 2! 3! ... ! ...n n

n

n x x x x n x




        

має область збіжності {0}D  .  

Розв’язання. Включення  0D   виконується для всіх степеневих рядів. 
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то необхідна умова не виконується 0x  . Висновок: {0}D  . ■ 

Приклад 2.12 Знайти область збіжності ряду 
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Розв’язання. Цей ряд було розглянуто в параграфі «Поняття числового 

ряду», де було доведено той факт, що x   
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Приклад 2.13 Знайти область збіжності ряду 
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Розв’язання. Дослідимо його на абсолютну збіжність. Застосуємо ознаку 

порівняння для ряду 
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Висновок:  

1x    ряд абсолютно збігається, 

1x    необхідна умова не виконується (за доведенням ознаки 

Даламбера у випадку 1q  ), 
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Відповідь:  1, 1D    – область збіжності ряду 
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Теорема 2.18 (теорема Абеля). Якщо степеневий ряд 
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   – збігається абсолютно в точці x . 

 

2. Радіус збіжності степеневого ряду. 

Означення 2.8 Радіусом збіжності степеневого ряду 
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де D  - область збіжності степеневого ряду. 

Твердження 2.1 Якщо x r , тоді ряд 
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Означення 2.9 Інтервал  ;r r  називають інтервалом збіжності 

степеневого ряду, де r – радіус збіжності степеневого ряду. 

На кінцях інтервалу збіжності, тобто в точках  r  і r , ряд може як 

збігатися, так і розбігатись. Збіжність у цих точках потрібно перевіряти окремо. 
Отже, можливі варіанти для області збіжності степеневого ряду: 

       0 , , ; , ; , ; .D D D r r D r r D r r         

Наслідок 2.3 Формула для обчислення радіуса збіжності степеневого 

ряду 
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Можна отримати іншу формулу за умови, що 0na n   : 
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3. Властивості степеневого ряду. 

Лема 2.1 Нехай r  – радіус збіжності степеневого ряду 
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Теорема 2.20 (теорема про неперервність суми степеневого ряду). Сума 

степеневого ряду  
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збіжності  ;r r , де r  - радіус збіжності степеневого ряду. 

Теорема 2.21 (теорема про інтегрування степеневих рядів). Степеневий 

ряд 
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збіжності), крім того, радіус збіжності отриманого почленним інтегруванням 

степеневого ряду буде той самий, що і у вихідного ряду, тобто r . 



4 

Теорема 2.22 (теорема про диференціювання степеневих рядів). 

Степеневий ряд можна почленно диференціювати всередині інтервалу 

збіжності, при цьому, отриманий почленним диференціюванням ряд має той 

самий радіус збіжності, що й вихідний ряд.  

Наслідок 2.4 Степеневий ряд можна почленно диференціювати скільки 

завгодно разів. Всі ряди, отримані n -кратними диференціюваннями, будуть 

мати той самий  радіус збіжності, що й вихідний ряд. 

 

4. Розвинення функцій в степеневі ряди. 

Означення 2.10 Кажуть, що функція  f x  на  ;r r  (на множині  x ) 

може бути розвиненою в степеневий ряд, якщо існує степеневий ряд 
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Твердження 2.2 (необхідна умова розвинення функції в степеневий ряд). 

Для того, щоб функцію  f x  можна було розвинути в степеневий ряд на 

 ;r r  (на множині  x ) необхідно, щоб функція  f x  мала на цьому інтервалі 

неперервні похідні будь-якого порядку. 

Зауваження 2.7 Ця теорема дає лише необхідні умови можливості 

розвинення функції в степеневий ряд. Ці умови не є достатніми. 

Твердження 1. Функція  xf  може бути розвинена у степеневий ряд 

єдиним чином. 

Доведення. Якщо функція  xf  може бути розвинена у степеневий ряд на 

інтервалі  rr; , то 
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 на  rr; . 

Тоді     n
nxaxaxaxaaxf 3

3
2

210  Продиференціюємо останню 

рівність декілька разів та знайдемо значення похідних у точці нуль: 

    12
321 32 n

nxnaxaxaaxf       1!10 af  ; 

      22
432 134232 n

nxannxaxaaxf     2!20 af  ; 

       3
43 2123423 n

nxannnxaaxf     3!30 af  ; 

… 
        n
n annnxf 1221         n

n anf !0  . 
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Отримано формулу для обчислення коефіцієнтів степеневого ряду, за якою 

вони можуть бути обчисленими однозначно, отже, і степеневий ряд 

визначається однозначно. 

Означення 2.11 Степеневий ряд 
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обчислюються за формулою (2.17), називають рядом Тейлора. 

Теорема 2.23 (необхідна і достатня умови можливості розвинення 

функції в степеневий ряд). Для того, щоб функцію  xf  можна було розвинути в 

степеневий ряд на  ;r r , необхідно і достатньо, щоб залишковий член у 

формулі Тейлора, що відповідає цій функції, збігався до функції   0x   на 

 ;r r  поточково. 

Розглянемо основні розклади елементарних функцій: 
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