СОДЕРЖАНИЕ

C.

Введение	
Раздел І. ГРУЗОПОДЪЕМНЫЕ МАШИНЫ	
Глава 1. ОБЩИЕ СВЕДЕНИЯ И КЛАССИФИКАЦИЯ	7
1.1. Подъёмные механизмы и домкраты	7
1.2. Подъёмники	9
1.3. Грузоподъёмные краны	9
1.4. Роботы манипуляторы	12
Глава 2. ОСНОВЫ РАСЧЁТА ГРУЗОПОДЪЁМНЫХ МАШИН	12
2.1 Основные параметры	12
2.2 Технико-экономические показатели	14
2.3. Режимы работы	14
2.4. Расчетные нагрузки	
Глава 3. ПРИВОДЫ МАШИН	
3.1. Общие сведения	
3.2. Ручной привод	17
3.3. Электрический привод	
3.4. Привод от двигателей внутреннего сгорания	
3.5. Гидравлический и пневматический привод	
Глава 4. МОСТОВЫЕ КРАНЫ ОБЩЕГО НАЗНАЧЕНИЯ	
4.1. Общее устройство мостового крана	
4.2. Характеристики мостовых кранов	
Глава 5. ЭЛЕМЕНТЫ ГРУЗОПОДЪЕМНЫХ МАШИН	
5.1. Подъемные блоки и полиспасты	
5.2. Гибкие грузовые органы	
5.3. Блоки и звёздочки	
5.4. Канатные барабаны	39
Глава 6. ГРУЗОЗАХВАТНЫЕ УСТРОЙСТВА	45
6.1. Грузовые крюки и петли. Крюковые подвески	46
6.2. Захваты для штучных грузов	
6.3 Грейферы	
6.4 Электромагнитные и вакуумные захваты	
Глава 7. ОСТАНОВЫ И ТОРМОЗА	
7.1. Общие сведения	
7.2 Колодочные тормоза	
7.3 Дисково-колодочные тормоза	
7.4 Ленточные тормоза	
7.5. Тормоза с осевым давлением	
7.6 Грузоупорные тормоза	
7.7 Управляемые тормоза	
7.8 Тормоза для регулирования скорости	
7 9 Безопасище руковтки	74

Глава 8. МЕХАНИЗМЫ ПОДЪЕМА	76
8.1. Кинематические схемы механизмов	76
8.2. Расчёт механизма подъема груза	76
Глава 9. МЕХАНИЗМЫ ПЕРЕДВИЖЕНИЯ	81
9.1. Основные кинематические схемы механизмов	81
9.2. Конструкция ходовой части кранов	84
9.3. Сопротивление передвижению рельсовых механизмов	
9.4. Расчет привода механизма	
9.5. Торможение механизмов передвижения	
9.6. Расчет механизма с канатной (цепной) тягой	
Глава 10. МЕХАНИЗМЫ ПОВОРОТА КРАНОВ	
10.1 Схемы механизмов поворота	
10.2 Сопротивления в опорах при повороте крана	
10.3 Мощность привода	
10.4 Устойчивость крана	
Глава 11. БЕЗОПАСНАЯ ЭКСПЛУАТАЦИЯ ГРУЗОПОДЪЁМНЫХ МАШИН	
11.1. Организация надзора	
11.2. Устройство концевой защиты	
11.3. Ограничители грузоподъемности	104
11.4. Противоугонные устройства	
Раздел II. ТРАНСПОРТИРУЮЩИЕ МАШИНЫ	
Глава 12. ОБЩИЕ СВЕДЕНИЯ О ТРАНСПОРТИРУЮЩИХ МАШИНАХ	108
12.1. Назначение и классификация	108
12.2. Характеристика транспортируемых грузов	109
12.3. Производительность машин непрерывного действия	110
Глава 13. ЛЕНТОЧНЫЕ КОНВЕЙЕРЫ	110
13.1. Общие сведения. Конструкция конвейеров	110
13.2. Конвейерные ленты	115
13.3. Роликовые опоры	117
13.4. Приводы конвейеров	119
13.5. Натяжные устройства	
13.6. Загрузочные устройства	
13.7. Разгрузочные устройства	
13.8. Очистные устройства	
13.9. Расчет ленточных конвейеров	
Глава 14. ЦЕПНЫЕ КОНВЕЙЕРЫ	126
14.1. Пластинчатые конвейеры	
14.2. Скребковые конвейеры	
14.3. Подвесные конвейеры	
Глава 15. ЭЛЕВАТОРЫ	132
Глава 16. ТРАНСПОРТИРУЮЩИЕ МАШИНЫ БЕЗ ГИБКОГО	
ТЯГОВОГО ОРГАНА	
16.1. Винтовые конвейеры и транспортирующие трубы	
16.2. Роликовые конвейеры.	
16.3. Шагающие конвейеры	140

16.4. Инерционные конвейеры	141
Глава 17. ПНЕВМАТИЧЕСКИЙ Й ГИДРАВЛИЧЕСКИЙ ТРАНСПОРТ.	145
17.1. Пневматические транспортирующие установки	145
17.2. Пневматические установки	146
17.3. Транспортирование аэрированных материалов	148
17.4. Контейнерный трубопроводный пневмотранспорт	149
17.5. Гидравлические транспортирующие установки	151
СПИСОК ЛИТЕРАТУРЫ	154

Введение.

Наиболее эффективным и доступным средством механизации являются подъемно-транспортные машины. Даже самые простые подъемные и транспортирующие механизмы могут значительно облегчить погрузочно-разгрузочные и транспортные процессы, требующие применения тяжелого физического труда.

Особенно эффективно применение подъемно-транспортных машин для комплексной механизации производства, когда механизируются и связываются воедино все смежные технологические процессы, когда исключаются какие-либо разрывы в звеньях, обеспечивающих механизацию данного производства.

Как и в других областях машиностроения, в области постройки подъемнотранспортных машин наша отечественная техника добилась выдающихся успехов. Мы строим уникальные мощные краны, экскаваторы, создаем совершенно новые типы грузоподъемных и транспортирующих машин.

Особенно большое значение механический транспорт имеет для металлургических предприятий, нуждающихся в своевременной доставке и вывозе огромного количества различных грузов: сырья, топлива, вспомогательных материалов, полуфабрикатов, готовой продукции, отходов.

Так, современный металлургический завод, производящий 5–6 млн. г стали, только потребляет около 30–35 млн. г сырья и различных материалов.

Одна лишь доменная печь объемом в 2000 м³ требует доставки к ней в сутки около 8800 г сырья и транспортировки от нее около 5800 т различных грузов (из них 3500 т чугуна). Следовательно, общий вес грузов, отнесенных к одной печи, достигает 14600 т в сутки.

Если учесть весь поток транспортируемых в доменном цехе грузов и прибавить к нему сырье и материалы, получаемые сталеплавильными и другими цехами, и дальнейшее транспортирование выплавленной стали в прокатные цехи, а оттуда — потребителям, то суточный межцеховой грузооборот завода составит 150000–200000 т, а внутрицеховой—в 2–3 раза больше.

На рис. 1 приведена схема основных грузопотоков металлургического завода. Из схемы видно, что большая часть поступивших на завод грузов перерабатывается в основных цехах—доменном, сталеплавильном и прокатном и меньшая— во вспомогательных.

Распределение грузов между цехами, доставка их к рабочим агрегатам, перемещение готовой продукции и отходов на склады, пункты погрузки для отправки с. завода и на отвалы осуществляется межцеховыми и внутрицеховыми подъемно-транспортными средствами.

Транспортировка грузов между цехами осуществляется, главным образом, железнодорожным, автомобильным и конвейерным видами транспорта, а внутрицеховая — кранами общего и специального назначения, различного рода конвейерами, подъемниками и другими подъемно-транспортными машинами и устройствами.

Современные высокопроизводительные грузоподъемные машины, имеющие высокие скорости и большую грузоподъемность, появились в

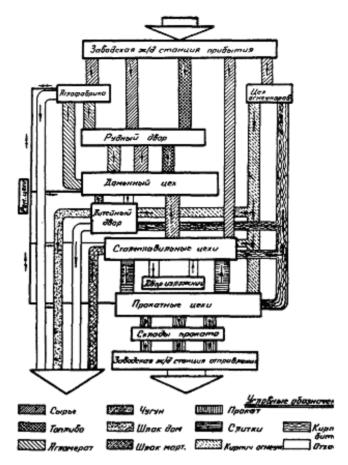


Рисунок 1.1- Схема грузопотоков металлургического завода.

результате постепенного совершенствования машин в течение долгого времени. Еще в глубокой древности производились строительные работы, связанные с поднятием и перемещением больших тяжестей, например, сооружение египетских пирамид (пирамида Хеопса высотой 146,6 м сооружена в XXVIII в. до н. э. и сложена из известняковых блоков массой до 30 т).

Сложной технической задачей являлись перемещение и установка колонн храма в Гелиополе (Ливан) массой до 360 т, мраморных балок храма Артемиды длиной до 90 м, купола диаметром 9 м на гробнице короля Остготов (VI в. н. э.) в Равенне, высеченного из одного куска камня и доставленного к месту постройки за 100 км.

Дальнейшее развитие подъемная техника получила в Греции и Риме. Знаменитый Архимед применил рычажные подъемные устройства для защиты г. Сиракуз на о. Сицилия (212 г. до н. э.). В трудах Герона Александрийского имеются описания лебедок и подъемных кранов с ручным приводом (120 г. до н. э.). Римляне широко использовали вороты с конным приводом.

В эпоху средневековья развитие подъемно-транспортной техники приостановилось. В XI–XII вв. в связи с развитием торговли, мореплавания и горно-металлургической промышленности началось быстрое развитие грузоподъемных машин. Появились первые прототипы современных кранов с ручным приводом и приводом с помощью топчаковых колес. Сначала эти краны изготовляли из дерева и только оси и крюки из стали.

В 20-х годах XIX в. был создан паровой двигатель, а в 1860 г. первый кран с

паровым двигателем. В 80-х годах того же века начали применять краны с электрическим двигателем. Широкое промышленное применение электропривод получил благодаря работам русского ученого М. О. Доливо-Добровольского (1862–1919), который создал систему трехфазного тока и изобрел простой и надежный асинхронный двигатель, а также разработал ряд электротехнических аппаратов, нашедших широкое применение в промышленности.

Большая заслуга в развитии подъемно-транспортной техники принадлежит русским механикам. Еще в XI в. для подъема тяжестей при возведении Софийского собора в Новгороде строители использовали сложные системы полиспастов. В XIV–XV вв. широко применяли различные системы воротов и блоков. В 1677 г. на колокольню Московского. Кремля подняли Большой Успенский колокол массой 130 т. Для подъема колокола были использованы деревянные рычаги, полиспасты и вороты. Для облегчения подъема колокол был соединен цепями с противовесом.

В XVIII в. на металлургических заводах Урала, Алтая и Забайкалья применялось разнообразное подъемно-транспортное оборудование для загрузки доменных печей, откатки вагонеток и др. В 1764 г. механик рудника близ Нижнего Тагила Е. Г. Кузнецов соорудил многоковшовый цепной водоподъемник, переоборудованный им в подъемник для руды.

В 1768 г. механик и гидротехник К. Д. Фролов создал комплексную установку для подъема руды и удаления воды из шахт Змеиногорского рудника на Алтае, приводимую в действие давлением воды.

В 1769 г. был перемещен на большое расстояние каменный монолит размерами 15х9х7 м и массой более 1000 т для памятника Петру І. Каменный монолит был доставлен к берегу Невы и по ней – в Петербург. По суше его перемещали на медных шарах, уложенных в обшитые медными листами желоба (первый прототип шарикоподшипника), с помощью воротов и полиспастов.

В 1832 г. перед Зимним дворцом в Петербурге была установлена Александровская колонна массой около 600 т. При ее установке было использовано 60 воротов.

В 1834 г. при помощи канатов, полиспастов и воротов была осуществлена доставка и установка 48 колонн Исаакиевского собора в Петербурге, каждая массой примерно 100 т.

Большой вклад в развитие науки и подъемно-транспортной техники внесли русские ученые, создавшие первые книги, в которых была описана подъемная техника. В книгах «Устав ратных пушечных и других дел» (1607 г.) и в «Книге переписной по тульским металлургическим заводам» (1647 г.) даны первые описания подъемных машин. Г. Г. Скоряков-Писарев написал книгу «Краткий учебник механики» (1722 г.), в которой были изложены расчеты подъемных машин. М. В. Ломоносов в книге «Первые основания металлургии и рудных дел» (1763 г.) дал описание подъемных и транспортных устройств, применяемых на заводах и рудниках. И. А. Вышнеградский написал «Курс подъемных машин» (1872 г.), в котором довольно точно определил большое значение курса такими словами: «кто умеет строить краны, тот сумеет любую машину построить».

Дальнейшее развитие наука о подъемно-транспортных машинах получила в

трудах видных русских ученых-механиков профессоров Н. П. Петрова, А. М. Самуся, А. И. Сидорова, Л. 3. Ратновского, М. Н. Берлова и других, которые внесли важный вклад в расчеты и основы конструирования машин.

Наука в области ПТМ достигла большого развития в трудах известных советских ученых – П. С. Козьмина, О. А. Спиваковского, Н. Ф. Руденко, Л. Г. Кифера, И. И. Абрамовича, А. И. Дукельского, М. П. Александрова и др. Ведущим институтом в области исследования, создания и совершенствования подъемно-транспортной техники являлся Всесоюзный научно-исследовательский институт подъемно-транспортного машиностроения (ВНИИПТМаш). Большую работу по созданию и усовершенствованию ПТМ проводят специальные конструкторские бюро И проектные организации заводов транспортного оборудования: Ленинградского завода подъемно-транспортного оборудования им. Кирова; Одесского завода им. Январского Узловского машиностроительного завода и др.

В современные машины закладываются следующие основные принципы: стандартизация, унификация и блочность конструкции. Технико-экономическим анализом устанавливают наиболее оптимальные типы машин и их параметры, определяют число типоразмеров деталей и узлов, что позволяет повысить качество машин и экономичность их эксплуатации и ремонта.

Нормы проектирования, изготовления и эксплуатации грузоподъемных машин регламентированы Государственным комитетом по надзору за безопасным ведением работ в промышленности и горному надзору (Госгортехнадзором).

Блочной называют конструкцию, состоящую из самостоятельных узловблоков, соединенных между собой посредством легкоразъемных соединений. К таким блокам в кранах можно отнести крюковые подвески, муфты, тормоза, редукторы, ходовые колеса с буксами и т. д.

В настоящее время принцип блочности используют не только для механизмов, но и в металлических конструкциях, что позволяет организовать поточные линии для серийного изготовления унифицированных узлов металлоконструкций с соблюдением взаимозаменяемости узлов.

Применение блочных конструкций позволяет выпускать узлы механизмов в законченном виде, что приводит к специализации отдельных цехов и заводов. Специализация производства, в свою очередь, обеспечивает повышение качества изготовляемых узлов.

Применение блочных конструкций позволяет легко отделить от машины узел, требующий ремонта, без разборки смежных узлов. При наличии запасных узлов замену узлов-блоков можно производить в короткое время, что уменьшает простои оборудования и позволяет осуществить высококачественный ремонт в специализированных ремонтных цехах.

Унификация **УЗЛОВ** уменьшает количество необходимого инструмента, литейных оборудования, моделей, позволяет применять приспособления, повышающие специальные производительность труда качество изделия, и уменьшить парк запасных частей. Принцип унификации и блочности создает основу для серийного производства подъемно-транспортных машин и, следовательно, для увеличения выпуска продукции на тех же производственных площадях и том же оборудовании, а также для расширения кооперации между различными специализированными заводами.

Принцип унификации узлов и механизмов весьма широко используют в отечественном краностроении. Однако следует иметь в виду, что в ряде случаев унификация приводит к увеличению массы машины, поэтому до введения унификации необходимо произвести технико-экономическое обоснование принятых решений.

Все многообразие подъемно-транспортных машин можно классифицировать на три основные группы:

- 1. Грузоподъемные машины машины циклического действия, у которых рабочие периоды чередуются с паузами и которые предназначены для подъема и перемещения груза в различных направлениях.
- 2. Транспортирующие машины машины непрерывного действия, служащие для перемещения насыпных грузов непрерывным потоком, а штучных с определенным интервалом.
- 3. Погрузочно-разгрузочные машины, предназначенные для механизации работ по погрузке материалов в вагоны и автомобили, транспортирования и складирования их, а также для разгрузочных работ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Александров М.П. Подъемно-транспортные машины. –М .: Высшая школа, 1979. –558 с.
- 2. Вайнсон А.А. Подъемно-транспортные машины. –М .: Машиностроение, 1989. –536 с.
- 3. Грузоподъемные машины / Под ред. Александрова М.П. –М.: Высшая школа, 1973. –473 с.
- 4. Заводчиков Д.А. Грузоподъемные машины. М.: Машгиз, 1962. –312 с.
- 5. Правила устройства и безопасной эксплуатации грузоподъемных кранов. M.: Металлургия, 1979. –191 с.
- 6. Справочник по кранам / Под ред. Дукельского А.И. –М.: Машиностроение, 1971. Т.1, 400с.,1973. Т.2,473 с.
- 7. Трушин А.В., Пузырьков П.И., Коломийченко Г.П. Подъемно-транспорные машины. Днепропетровск: ДметИ. –1971 ,239 с.
- 8. Машины непрерывного транспорта / Под ред. Плавинского В.И. М.: Машиностроение, 1969. –719 с.
- 9. Иванченко Ф.К. Конструкция и расчет подъемно-транспортных машин. Киев: Вища школа, 1983. –351 с.