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ВСТУП 

 
 
Інтуїтивно поняття коректності математичної задачі й потреба у введенні 

цього поняття в математику були зрозумілі вже досить давно. Однак, лише на 
межі ХІХ – ХХ століть французькому математику Жаку Адамару (франц. 
Jacques Salomon Hadamard) вдалося дати означення коректності математичної 
задачі, яке стало загальновживаним. 

Ще до 50-х років минулого століття некоректні задачі вважалися не 
вартими уваги й розглядалися як приклади математичної «аномалії». Панувала 
думка, що такі задачі не можуть виникати в ході математичного моделювання 
явищ та процесів. Але серед математичних задач виділяється клас задач, 
розв’язки яких нестійкі до малих змін вихідних даних. Вони характеризуються 
тим, що як завгодно малі зміни вихідних даних можуть призвести до довільно 
великих змін розв’язків. Задачі такого типу, по суті, є погано поставленими. 
Вони належать до класу некоректно поставлених задач. 

Якщо вихідні дані відомі наближено, то згадана нестійкість приводе до 
практичної неєдиності розв’язків в рамках заданої точності та великих 
труднощів в з’ясуванні сенсу отриманого наближеного розв’язку. Саме в силу 
цих особливостей довгий час вважалось, що некоректно поставлені задачі не 
можуть мати практичного значення. Однак, як з’ясувалось, можна вказати 
некоректно поставлені задачі, які відносяться як до класичних розділів 
математики, так і до різноманітних практично важливих прикладних задач. 
Тому в останні десятиліття минулого століття думки істотно змінилися. 

Мета цього навчального посібника – ознайомити студентів спеціальності 
«Математика», а також усіх зацікавлених фахівців з основними методами 
розв’язання типових задач з курсу теорії некоректних задач, допомогти їм 
набути навичок застосування теоретичного матеріалу в багатьох випадках. 

Навчальний посібник створений авторами на основі багаторічного 
досвіду викладання теорії некоректних задач студентам математичних 
спеціальностей. Основними завданнями вивчення даної дисципліни є надання 
студентам знань з теорії некоректних задач, підвищення рівня їх 
фундаментальної математичної підготовки з посиленням її прикладної 
спрямованості, а також отримання необхідної математичної бази для 
проведення сучасних математичних досліджень. 

Завдяки вивченню даної дисципліни студент повинен отримати базові 
знання з теорії некоректних задач; знати: основні типи некоректних задач та 
методи їх розв’язання, зокрема методи псевдорозв’язків, квазірозв’язків, 
регуляризації; вміти: застосовувати теоретичні знання для розв’язання 
конкретних некоректних задач. 

У сучасному навчальному процесі для активізації пізнавальної діяльності 
студентів, формування у них здатності самостійно розв’язувати достатньо 
складні проблеми, з метою якісного засвоєння курсу теорії некоректних задач, 
ефективного його застосування в практичній діяльності, кожен студент виконує 
індивідуальні завдання з обов’язковим контролем їх виконання і виставленням 
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відповідних балів. Індивідуальні завдання охоплюють задачі курсу. Кожне 
завдання містить 30 варіантів. Для зручності виконання цих завдань у третьому 
розділі навчального посібника наведено достатню кількість різноманітних 
задач з їх детальними розв’язаннями та теоретичними обґрунтуваннями. 

Автори сподіваються, що даний навчальний посібник стане корисним 
студентам, які прагнуть отримати знання з некоректних задач, а також 
викладачам для проведення занять та організації самостійної роботи студентів. 
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1. КОРЕКТНО І НЕКОРЕКТНО ПОСТАВЛЕНІ ЗАДАЧІ. МЕТОДИ 
РОЗВ’ЯЗАННЯ НЕКОРЕКТНИХ ЗАДАЧ 

 
 
1.1. Проблема коректності математичних задач 

 
Розв’язання будь-якої кількісної задачі зазвичай полягає в знаходженні 

розв’язку z  по заданим вихідним даним u : 
 )(uRz   (1.1) 

Будемо вважати їх елементами метричних просторів F  і U  з відстанями 
між елементами 

 ),( 21 zzF , ),( 21 uuU , Fzz 21, , Uuu 21, .  

Метрики зазвичай визначають постановкою задачі. 
Нехай визначено поняття розв’язку і кожному елементу Uu  відповідає 

єдиний розв’язок )(uRz   із простору F . 

Означення 1.1. Задачу знаходження розв’язку )(uRz   із простору F  за 

вихідними даними Uu  називають стійкою на просторах F  і U , якщо для 
будь-якого числа 0  можна вказати таке число   0 , що із нерівності 

   ),( 21 uuU   

випливає нерівність  ),( 21 zzF , де )( 11 uRz  , )( 22 uRz  , Fzz 21, , 

Uuu 21, . 

Означення 1.2. Задачу знаходження розв’язку z  із простору F  за 
вихідними даними u  із простору U  будемо називати коректно поставленою 
(за Адамаром) на парі метричних просторів F  і U , якщо виконуються умови 
[13, 16]: 

1) для будь-якого елемента Uu  існує розв’язок Fz ; 
2) розв’язок z  визначено однозначно; 
3) задача є стійкою на просторах F  і U . 
Зауважимо, що в математичній літературі довгий час існувала точка зору, 

згідно якої будь-яка математична задача повинна задовольняти цим вимогам. 
Означення 1.3. Задачі, які не задовольняють переліченим умовам (хоча б 

одній), будемо називати некоректно поставленими [13, 16]. 
Слід відмітити, що означення некоректно поставлених задач відноситься 

лише до даної пари метричних просторів F  і U , оскільки в інших метриках та 
сама задача може бути коректно поставленою. 

Якщо клас U  вихідних даних вибрано природно для задачі то умови 1) і 
2) характеризують математичну визначеність. Умова 3) має зв’язок з фізичною 
детермінованістю задачі, а також із можливістю застосування числових методів 
її розв’язання по наближеним вихідним даним. 

Розв’язування систем лінійних алгебраїчних рівнянь (СЛАР) завжди є 
одншєю із актуальних задач обчислювальної математики. Важливими є 
дослідження методів, пов’язаних із виникненням, аналізом та розв’язуванням 
погано обумовлених СЛАР.  
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При розв’язуванні СЛАР дуже часто трапляється, що малі похибки 
правих частин чи заданих коефіцієнтів призводять до великих похибок у 
розв’язках. Похибки можуть виникати під час вимірювання, обчислення чи 
заокруглення елементів матриць систем або правих частин. Такі СЛАР 
називаються некоректно поставленими, або погано обумовленими. 

Отже, погано обумовленою може бути не сама задача, а лише алгоритм, 
вибраний для її розв’язування. Якщо обчислений розв’язок суттєво 
відрізняється від точного внаслідок виконання числового алгоритму, то такий 
алгоритм називають нестійким. 

Розглянемо приклади некоректних задач. 
Приклад 1.1. Розглянемо систему лінійних алгебраїчних рівнянь 

 uAz  , (1.2) 
де z  – шуканий вектор, u  – відомий вектор,  

nnijaA


  – квадратна матриця. 

Якщо система (1.2) невироджена, то вона має єдиний розв’язок, який 
можна знайти за відомими формулами Крамера або іншими способами. Звідси 
випливає неперервна залежність розв’язку від правої частини.  

Якщо система (1.2) вироджена, то вона має розв’язок (причому не 
єдиний) лише при виконанні умови сумісності, яка складається із рівності нулю 
відповідних визначників. 

Таким чином, перш ніж розв’язати систему (1.2), треба перевірити, 
вироджена вона чи ні. Для цього потрібно обчислити визначник системи. 

З якою б ми точністю не проводили обчислення Adet , при достатньо 
великому значенні n  (порядку системи), внаслідок накопичення помилок 
обчислення, ми можемо отримати значення Adet , яке буде як завгодно 
відрізнятися від точного. Тому бажано мати такі алгоритми знаходження 
розв’язку системи (1.2), які не потребують попереднього з’ясування 
виродженості або невиродженості системи (1.2). 

У практичних задачах часто права частина u  та елементи матриці A , 
тобто коефіцієнти системи рівнянь (1.2), відомі нам наближено. В таких 
випадках замість системи (1.2) маємо справу з деякою іншою системою uzA ~~   

такою, що hAA ~
,  uu~ , де зміст норм зазвичай визначається 

характером задачі. Маючи замість матриці A  матрицю A
~ , ми тим більше не 

можемо висловити певного судження про виродженість або невиродженість 
системи (1.2). 

У таких випадках про точну систему uAz   відомо лише те, що для 
матриці A  та правої частини u  виконуються нерівності hAA ~

 та 

 uu~ . Але систем з такими вихідними даними нескінченно багато, і при 
відомій похибці вони не чіткі. 

Оскільки замість точної системи (1.2) маємо наближену систему uzA ~~  , 
то мова може йти лише про знаходження наближеного розв’язку. Але 
наближена система може бути і нерозв’язною. Виникає питання: що треба 
розуміти під наближеним розв’язком системи? Він повинен бути також стійким 
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до малих змін вихідних даних. Чи буде одержаний наближений розв’язок 
розв’язком некоректної задачі [13]. 

Розглянемо систему (1.2) наступного вигляду: 

 







.2

;2001,1

21

21

xx

xx
 (1.3) 

Очевидно, що система (1.3) має розв’язок 21 x  і 02 x . Нехай тепер 
права частина першого рівняння системи (1.3) обчислена з відносною 
похибкою %05,0  і дорівнює 001,2 , тобто замість системи (1.3) одержимо 
систему 

 







,2

;001,2001,1

21

21

xx

xx
  

яка має розв’язок 11 x  і 12 x . 

Нарешті, нехай права частина першого рівняння дорівнює 999,1  (відносна 
похибка – %05,0 ). Тоді відповідна система 

 







2

;999,1001,1

21

21

xx

xx
  

має розв’язок 31 x  і 12 x . 

Отже, в розглянутих системах лінійних алгебраїчних рівнянь лише праві 
частини мають відмінність в межах відносної похибки %05,0 , однак розв’язки 
систем відрізняються досить істотно. Це означає, що задача розв’язання 
системи (1.3) є некоректною з погляду третьої умови Адамара. 

З’ясуємо джерело такої некоректності. Знайдемо визначник матриці 
системи: 

 001,0
11

001,11
 .  

Як бачимо, визначник системи близький до нуля, тобто матриця системи 
є майже виродженою. Звичайно, цей приклад системи другого порядку є 
штучний. Однак, із зростанням порядку системи кількість ситуацій, за яких 
визначник наближається до нуля, стає набагато більшою, причому джерело 
таких некоректних систем становлять цілком реальні та практично важливі 
проблеми. 

Проаналізуємо одну з задач (приклад Адамара: задача Коші для рівняння 
Лапласа) для рівняння з частинними похідними, запропоновану Ж.Адамаром 
для ілюстрації некоректності за третьою умовою. 

Приклад 1.2. Розглянемо задачу знаходження функції  yxu , , 

гармонічної на всій площині, тобто 
  0,  yxu ,  

якщо задані значення    xfyxu ,  цієї функції та її похідної 
   x
y

yxu

y






0

,
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на осі абсцис. 
Для спрощення аналізу вважатимемо, що   0xf .  

Нехай функція  x  має вигляд 

   


 
x

xx sin . 

Переконаємося, що функція 

 



yx

yxu shsin, 2  

буде розв’язком сформульованої задачі Коші за будь-яких значень  . Справді, 
маємо 

;shsin
2

2





  yx

x

u
 ;shsin

2

2





  yx

y

u
 

0
2

2

2

2









 


y

u

x

u
u . 

Також очевидно, що 

  ,00,  xu  











 xyx

y

u

yy

sinchsin
00

. 

Розглянемо тепер поведінку цих функцій при :0  

  0sinlimlim
00










x
x . 

Це означає, що при малих   функція  x  мало відрізняється від нуля. 
Водночас при  x  розв’язок сформульованої задачі такий: 

  .0, yxu  

Слід було б чекати, що тоді й  yxu ,  за малих   також буде набувати 
значень, близьких до нуля. Однак для  kx  одержано 

,shsinlim 2

0







yx
 

тобто малим змінам у значеннях функції  x  відповідають великі зміни в 
розв’язку задачі. Отже, ця задача Коші є некоректною в сенсі третьої умови 
Адамара. 

 
 
1.2. Операторні рівняння 

 
Більшість математичних моделей розв’язання природознавчих задач 

будують за допомогою термінів, означень теорії функціонального аналізу. 
Розглянемо рівняння вигляду: 
 uAz  , (1.4) 
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де A  – оператор, який діє з метричного простору F  в метричний простір U , до 
того ж Uu , Fz . Припустимо, що існує обернений оператор 1

A , але він не 
є цілком неперервним. 

Означення 1.4. Рівняння (1.4) з оператором A , який має вище вказані 
властивості, будемо називати операторним рівнянням першого роду [13]. Задачі 
розв’язання таких рівнянь, як правило, некоректні. 

Означення 1.5. Операторне рівняння вигляду  
 uAzz  ,  

де припущення стосовно просторів і елементів аналогічні, будемо називати 
операторним рівнянням другого роду. Задачі розв’язання таких рівнянь, як 
правило, коректні. . 

У загальному випадку: 
 uAzz   (1.5) 

є загальним операторним рівнянням і задача його розв’язання буде коректною, 
якщо   не є власним значенням оператора A . 

Операторні рівняння можуть мати різноманітний вигляд, тому доцільно їх 
класифікувати по виду оператора A . Розрізняють наступні рівняння: 

1) Якщо оператор A  представлений у вигляді матриці, а простори F  та 
U  – лінійні векторні простори, то рівняння називають матричними рівняннями. 
Коректність задачі залежить в більшості випадків від вибору матриці A  та 
правої частини рівняння (дивись приклад 1.1). 

2) Якщо F  та U  – простори неперервних на відрізку функцій, а оператор 
A  має вигляд інтегрального оператора, тоді рівняння називають інтегральним 
рівнянням. Зокрема, найчастіше розглядають інтегральні рівняння наступного 
вигляду: 

     xudsszsxk

b

a

 ,  – інтегральне рівняння Фредгольма першого роду;  

       xudsszsxkxz

b

a

  ,  – інтегральне рівняння Фредгольма другого 

роду;  

     xudsszsxk

x

a

 ,  – інтегральне рівняння Вольтера першого роду; 

       xudsszsxkxz

x

a

  ,  – інтегральне рівняння Вольтера другого роду. 

Більш простими є рівняння другого роду. Для їх розв’язання 
використовують ітераційні методи, розвинення в ряди тощо. Інтегральні 
рівняння другого роду приводять до коректних задач, а рівняння першого роду 
є більш складними і приводять до некоректних задач. Зауважимо, що в 
залежності від просторів, в яких розглядають задачу, і від умов гладкості ядра 
 sxk ,  і правої частини  xu  одне і те саме рівняння може приводити як до 

коректної, так і до некоректної задачі. 
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Ще наприкінці XIX століття шведський математик Івар Фредгольм 
звернув увагу на деякий клас лінійних інтегральних рівнянь і одержав перші 
глибокі результати з їх аналізу. У подальшому інтегральні рівняння привернули 
увагу найвизначніших математиків світу, і за короткий час була створена теорія 
лінійних інтегральних рівнянь, які одержали назву Фредгольма. Незабаром ця 
теорія набула значного поширення в різних галузях науки та техніки. 

Приклад 1.3. Розглянемо інтегральне рівняння Фредгольма першого 
роду: 

       
b

a

xudsszsxk , . (1.6) 

Нехай Fz  Uu  ,  і нехай  sxk ,  – неперервне за змінним x  та s , а також має 
неперервні частинні похідні за цими змінним. Нехай простори  baCU ;  і 

 baCF ;  – простори неперервних на відрізку  ba;  функцій. Задача 
знаходження елемента u  за елементом z  при таких положеннях буде 
коректною. 

Доведення. Дійсно  baCz ;  по формулі (1.6) інтеграл існує і є 
неперервною функцією по змінній x , ця функція визначена однозначно. Таким 
чином умови коректності 1) і 2) в означенні 1.2 виконано. Доведемо умову 3). 

Нехай 
 
 

),(max

,

,
1 sxkk

bas

dcx




 ,  xu1  і  xu2  – деякі функції із простору  dcC ; , 

що відповідають елементам  xz1  і  xz2  із простору  baC ; . Тоді 
    baCdcC

zzabkuu
,211,21  .  

Із означення норми маємо доведення умови 3). 
Розглянемо обернену задачу, тобто задачу знаходження елемента z  за 

елементом u . Така задача буде некоректною. 
Доведення. Розглянемо першу умову коректності. Розв’язок оберненої 

задачі існує не для усіх правих частин. Нехай  xu  – неперервна функція, тоді 
існує  dcCxu ,)(  , яка не є диференційованою функцією. Оскільки розв’язок z  

шукаємо в класі неперервних функцій, то в результаті підстановки z  в ліву 
частину рівняння (1.6) ліворуч одержуємо диференційовану функцію. 
Отримали протиріччя – ліворуч і неперервна і диференційована функція, а 
праворуч неперервна. При перевірці умови 3) в просторі F  виберемо 
послідовність  snnzzn

2
0 sin , підставляємо nz  в ліву частину рівності (1.6), 

одержимо  xun  

            
b

a

n

b

a

n dssnnzsxkdsszsxkxu
2

0 sin,, .  

Оцінимо модуль різниці 

                
b

a

b

a

b

a

n dssnnsxkdssxkzdssnnzsxkxuxu
2

0
2

00 sin,,sin, . 
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Розглянемо величину      snnszszn
2

0 sin . Використовуючи умову 
диференційованості ядра, проінтегруємо частинами та одержимо наступне: 

         
b

a

b

a

snd
n

n
sxkdssnnsxk

2
2

2 cos,sin,  

       
n

k
dssnsxk

n
sn

n

sxk
b

a

b

a

122 cos,
1

cos
,

  , 

тоді при n  одержимо       00 1
,00 

n

k
uuxuxu

dcCnn . Для 

елементів z  одержимо інше:       0sin 2
0  snnszszn , 

Таким чином, третю умову коректності не виконано. Зауважимо, що 
друга умова коректності теж не завжди виконується, все залежить від вибору 
ядра рівняння. 

 
 
1.3. Узагальнене поняття розв’язку 

 
Перш ніж перейти до розгляду методів наближеного розв’язання погано 

обумовлених систем, необхідно з’ясувати питання про те, що слід розуміти під 
розв’язком системи рівнянь (СЛАР) 
 bAx  , (1.7) 
котра в загальному випадку може бути перевизначеною, недовизначеною, тобто 
такою, коли апріорі невідомо існування і єдиність розв’язку. 

Позначимо через x  вектор, який реалізує мінімум нев’язки, тобто норми 

  n

x
RхbxAbхА  :min

22
. (1.8) 

Величину х  називають розв’язком системи (1.7) в сенсі методу 
найменших квадратів. Необхідною умовою мінімуму функціонала 
  2

bxAxI   в (1.8) є умова   0 xI , де I  – варіація функціонала. Оскільки 
для приросту функціонала має місце представлення 
          AhAhbAhAhAxxIhxI ,,2,2  ,  

то     02  
bAxAAxI . Таким чином, х  задовольняє системі рівнянь 

 bAxAA
  , (1.9) 

де 
A – транспонована до A матриця. Неважко показати, що справедливе й 

обернене твердження: кожний розв’язок (1.9) мінімізує нев’язку в (1.8). Із 
елементарних геометричних міркувань можна встановити, що задача (1.8) 
завжди має розв’язок, можливо не один. З цієї причини через встановлений 
факт еквівалентності система (1.9) також має розв’язок для будь-якої матриці 
A та вектору b . 



 

13 

Позначимо X  – множину розв’язків системи (1.9) (а значить, і задачі 
(1.8)). Задавши деякий фіксований елемент 0

x , який відіграє роль пробного 
розв’язку (наприклад, можна покласти 00 x ), розглянемо задачу на мінімум: 

 






  Xxxx :min

20 . (1.10) 

Розв’язок x~  задачі (1.10) існує і єдиний, що випливає з того факту, що 
строго опуклий функціонал досягає найменшого значення на опуклій замкнутій 
множині в єдиній точці. Вектор x~  будемо називати псевдорозв’язком задачі 
(1.7).  

Із співвідношень 

 0
AuA ,  

   0,
2 

AuuAuA , 

 0Au ,  
 0Ax ,  

 0
AxA   

випливає, що множина розв’язків однорідних систем 0
AuA , 0Ax  

збігається. Звідси негайно випливає наступний важливий факт. Якщо система 
(1.7) сумісна, то псевдорозв’язок x~  збігається з нормальним розв’язком цієї 
системи, тобто є розв’язком, який найменше відхиляється за нормою від 
вектору 0

x . І в частинному випадку, якщо (1.7) однозначно розв’язується, то 
псевдорозв’язок співпадає зі звичайним розв’язком.  

 
 
1.4. Псевдорозв’язок матричного рівняння 

 

Означення 1.6. Матрицю 
Q  розмірності nm  називають 

псевдооберненою до матриці Q  розмірності nm , якщо виконуються рівності: 
 QQQQQQQQQQQQQQQQ

  ** )(,)(,, . (1.11) 

Означення 1.7. Нехай ранг матриці Q  доівнює 1n : 1rang nQ  . Скелетним 
розкладом матриці Q  називають добуток: 
 RSQ  , (1.12) 

де 1nm -вимірна матриця R  і nn 1 -вимірна матриця S  повного рангу: 
 1rangrangrang nSRQ  .  

Для знаходження псевдооберненої матриці застосовують формулу 

       RRRSSSRSQ
11

. (1.13) 

Псевдообернена матриця існує для будь-якої матриці, крім цього вона єдина. 
Для того, щоб отримати розклад (1.13), достатньо в якості стовпців 

матриці R  взяти будь-які 1n  лінійно незалежних стовпців матриці Q , або будь-

які 1n  лінійно незалежних стовпців, через які лінійно виражаються стовпці 
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матриці Q . Тоді будь-який j -ий стовпець матриці Q  буде лінійною 
комбінацією стовпців матриці R . 

Припустимо далі, що матриця Q  повного рангу. В цьому випадку 
скелетний розклад матриці Q  має вигляд nQIQ  , де nI  – одинична матриця, 
що звичайно приводить до більш простої, ніж (1.13) формули 

     QQQQ
1

. (1.14) 

Для знаходження псевдооберненої матриці можна застосувати також 
формулу 

   1

0
lim





  nIQQQQ . (1.15) 

Приклад 1.4. Знайдемо псевдообернену матрицю 
Q  до матриці 











00

10
Q . 

Для розв’язання задачі, використаємо формулу (1.15). Запишемо матриці: 

 












0

01
2IQQ ,   


















10

0

)1(

11

2IQ ,  

   














01

00

1

11

nIQQQ .  

Таким чином, 

 

























01

00

01

00

1

1
lim

0
Q .  

Відмітимо наступні властивості псевдооберненої матриці: 

      QQ ,   QQ 
 ,    QQQQ

2
, QQQQ

 2 .  

Для наближеного знаходження псевдообернених матриць можна 
використовувати розклад псевдообернених матриць в ряди чи нескінченні 
добутки. 

Означення 1.8. Ортопроектором QP  для nm -вимірної матриці Q  

називають nn -вимірну матрицю, що задовольняє наступним умовам: 
 0QQP ,   QQ PP  ,   QQ PP 2 .  

Аналогічно вводять поняття для mm -вимірної матриці-ортопроектора 


Q
P : 

 0


Q
PQ ,    

QQ
PP ,    

QQ
PP

2 .  

Ортопроектори QP  та 
Q

P  можна знайти, якщо відома псевдообернена до 

Q  матриця 
Q , за формулами: 

  QQIP mQ
, (1.16) 

 QQIP nQ
 . (1.17) 
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Означення 1.9. Нуль-простором )(QN  nm -вимірної матриці Q  

називають множину векторів n
n Rc   з характерною властивістю 0nQc . 

Аналогічно можна ввести нуль-простір )( 
QN  матриці 

Q : 

    0:  
m

m
m cQRcQN .  

Для знаходження векторів із нуль-просторів матриць Q  та 
Q  можна 

використовувати ортопроектори. Дійсно, для будь-якого вектору n
n Rc   вектор 

)(QNcP nQ  ; таким чином, ортопроектор QP  проектує евклідовий простір n
R  в 

нуль-простір матриці Q : 

  QNRP
n

Q : .  

Аналогічно будь-який вектор m
m Rc   ортопроектор 

Q
P  проектує в нуль-

простір матриці    QNcPQ mQ
: , отже 

   QNRP
m

Q
: .  

Дослідимо задачу про знаходження умов існування і побудови розв’язку 
системи 
 bQc    

з постійною nm -вимірною матрицею Q , невідомим вектором n
Rc  та даним 

вектором m
Rb . Умови існування розв’язку цієї системи визначає наступна 

теорема [13]. 
Теорема 1.1. (Кронекера-Капеллі) Система лінійних рівнянь 

 bQc   (1.18) 

сумісна тоді і тільки тоді, коли ранг nn -вимірної матриці Q  співпадає з 
рангом розширеної )1(  nn -вимірної матриці  bQ, . 

Якщо лінійна алгебраїчна система задовольняє умовам теореми 
Кронекера-Капеллі, для побудови її розв’язку можна використовувати різні 
модифікації методу Гауса та матричний метод (існує обернена матриця). 

Лінійні алгебраїчні системи з квадратною матрицею Q  будемо називати 
фредгольмовими. 

Теорема 1.2. (Альтернатива Фредгольма). Або неоднорідна система 
(1.18) має єдиний розв’язок при будь-яких правих частинах  0b , або 
однорідна система  0b , яка відповідає системі (1.18), має нетривіальний 
розв’язок. 

Теорема 1.3. Алгебраїчна система (1.18) з nm -вимірною матрицею Q  

має розв’язок тоді і тільки тоді, коли 
 0 bP

Q
. (1.19) 

Якщо умова (1.19) виконується, то розв’язок системи (1.18) має вигляд 

 cPbQc Q  , n
Rc . (1.20) 
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Нехай умова (1.19) не виконана: 0bPQ . При цьому система (1.18) 

немає розв’язку, однак вона завжди має псевдорозв’язок n
Rc  , який 

мінімізує нев’язку 

 
 


m

i

n

k

ikik bcqbQc
1

2

1

  

для системи (1.18). Вектор n
Rc   має найменшу довжину 

 


 
n

i

icccc
1

2 .  

Система (1.18) завжди має один і тільки один псевдорозв’язок n
Rс  , 

який визначають формулою bQс   . При цьому норма нев’язки дорівнює 
нормі виразу, що входить в ліву частину рівняння (1.19): 

 bPbQc
Q
 

 .  

Не дивлячись на те, що псевдорозв’язок єдиний, розв’язок несумісної 
системи 

 cPbQс Q  , n
Rc   

не єдиний. Це пояснюється тим, що нев’язка будь-якого з цих розв’язків 

   bPbcPbQQ
QQ  

   

така ж, як і для псевдорозв’язку. 
 
 

1.5. Метод розв’язків на компактах 

 
Розглянемо некоректну задачу для операторного рівняння. Виникає 

питання: як використовуючи апріорну інформацію звузити множину розв’язків, 
а ще краще, одержати коректну задачу. Тихонову А.Н. належить наступна 
думка: якщо відомо, що множина розв’язків є компактом, то задача розв’язку 
операторного рівняння коректна при умові, що наближена права частина 
операторного рівняння теж належить образу компакта. Для доведення цього 
твердження Тихонов А.Н. застосував наступну теорему [16]. 

Теорема 1.4. Нехай ін’єктивний неперервний оператор A  діє із 
UAMFM  , де F  і U  – нормовані простори, M  – компакт. Тоді 

обернений оператор 1
A  неперервний на AM . 

Теорема є справедливою і для нелінійних операторів. Таким чином 
розв’язок операторного рівняння на компакті є коректною задачею при умові, 
що наближена права частина належить AM . Ця ідея дозволила 
М.М. Лаврент’єву ввести поняття задачі, коректної за Тихоновим 
(припускається існування множини коректності, на якій задача є коректною), а 
В.К. Іванову дати означення квазірозв’язку некоректної задачі. 
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Розглянемо операторне рівняння першого роду uAz  , де оператор 
UFA : , де F  і U  – метричні простори, A  – лінійний і неперервний. Нехай 

для точного u  існує єдиний розв’язок z , тобто uzA  , причому Mz , де M  – 
компакт із простору F . Точна права частина u  невідома, а відомо 

  ),(: uuu . Будемо вважати, що задача розв’язання рівняння uAz   є 
некоректною. Потрібно знайти zz   при ,0),(   zz  якщо 0 . Для 
звуження множини M  введемо множину    ),(: uAzzZ . Тоді 

 ZMz  . 

Теорема 1.5. При виконанні перелічених вище умов при 0  
виконується умова: 0),(sup 


zz

Zz

. 

Зауважимо, що умова компактності є обов’язковою, інакше не завжди 
zz   при 0 . Наведемо приклад. 

Приклад 1.5. Розглянемо оператор 11: RRA  . Нехай 
12 


z

z
Az . Тоді 

при 0u  маємо 0z . Нехай права частина визначена з точністю   і нехай 

2


u . 

Множину Z  визначимо за допомогою співвідношення: 
   ),(: uAzzZ . У просторі 1

R  маємо: 2121 ),( uuuu  , тоді 







 







21
:

2
z

z
zZ . 

Розглянемо 



2

z . Покажемо, що Zz . Маємо: 


























)4(2)4(2

44

24

2

21
4

2

2

3

2

3

2

2

. 

Перейдемо до границі при 0 . Маємо, що 0
2



z  при 0 . 

Покажемо як працює теорема при введенні компакта  1,1M . Знайдемо 
перетин ZM  . Розв’яжемо спочатку нерівність: 





 212

z

z
, 






















,
21

,
21

2

2

z

z

z

z
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









.02

,0332

2

2

zz

zz
 

Введемо компакт. Тоді на  1,1  маємо розв’язок: 








3

91111 22

z . 

При 0  ліва границя  

  0
1111

1111
22

22















. 

Аналогічно права границя 0
3

911 2




 , із цього випливає, що 0 zz . 

У теорії некоректних задач відомі множини коректності, які достатньо 
часто зустрічаються в прикладних задачах. Перш за все, відомо, що якщо 
точний розв’язок належить скінченно-параметричному сімейству функцій, то 
ставиться задача відшукання параметрів, яка може бути коректною і в тому 
випадку, якщо задача без цієї апріорної інформації є некоректною. Наприклад, 
якщо в операторному рівнянні невідомою є функція  sz ,  bas ; , про яку 
відомо, що вона є монотонною і обмеженою, то цієї інформації достатньо для 
виділення компакта в просторі  baL ,2 . 

Далі наведемо метод розширюючихся компактів, ідея якого належить 
В.К. Іванову та І.Н. Домбровській. 

Нехай лінійний оператор A  ін’єктивний, неперервний, UFA : , де F  і 
U  – нормовані простори. Нехай також відома апріорна інформація, яка 
зустрічається при розв’язанні багатьох фізичних задач. Відомо, що точний 
розв’язок z  для рівняння uzA   можна представити у вигляді zvB  , де Vv , 
оператор FVB : , B  – ін’єктивний, цілком неперервний оператор, V  – 
гільбертовий простір. Вважаються відомими  uuu :  і похибка 0 . 

Спочатку номер ітерації вважають 1n  і визначають замкнуту кулю в 
просторі V :    nvvSn  :0 . Її образ при дії оператора B  є компактом 

 0nn SBZ  , оскільки B  – цілком неперервний оператор, а V  – гільбертовий 
простір. Далі знаходять 

  


 uAz
nSBz 0

min . Існування мінімуму обумовлюється 

постановкою задачі, компактністю  0nn SBZ  , неперервністю оператора A . 

Якщо 
 

 


uAz
nSBz 0

min , то процес припиняється і вважають   nn  , в якості 

наближеного розв’язку вибирають будь-який елемент  nz :     0  nn SBz  і 

    uAzn . Якщо ж 
 

 


uAz
nSBz 0

min , то потрібно розширювати 

компакт, для чого n  збільшують на одиницю, процес повторюється. 



 

19 

Теорема 1.6. Наведений вище процес збігається:   n . Існує 00   

(яке взагалі залежить від z ) таке, що    0 nn   0,0  . Наближений 
розв’язок  nz  збігається до точного розв’язку z  при 0 . 

 Наведений метод дозволяє побудову так званої апостеріорної оцінки 
похибки, тобто існує функція    ,u  така, що   0,  u  при 0  і 
    zzu n   ,  при достатньо малих 0 . В якості апостеріорної оцінки 

можна вибрати         uAzZzzzu nn ,:max, . 

 Апостеріорна оцінка похибки не є оцінкою похибки в повному розумінні 
цього слова, побудова оцінки похибки розв’язків некоректно поставлених задач 
неможлива. Однак при достатньо малих 0 , а саме  0,0  , апостеріорна 
оцінка похибки є оцінкою похибки розв’язку некоректної задачі при наявності 
апріорної інформації у даній постановці задачі. 

Наведений підхід можна узагальнити на випадок, коли оператори A  та B  
задано з похибками, а також на нелінійні некоректні задачі. Розроблено 
чисельні методи розв’язання таких задач. Використання послідовності 
натуральних чисел в якості радіусів куль в просторі V  не є обов’язковим. 
Можна вибрати будь-яку монотонно зростаючу необмежену послідовність 
додатних чисел. 

 
 
1.6. Метод квазірозв’язків 

 
Нехай оператор A  в рівнянні uAz   – цілком неперервний. Побудова 

стійкого до малих змін правої частини u  наближеного розв’язку рівняння 
uAz   за формулою 

 uAz
1  (1.21) 

можлива в тих випадках, коли розв’язок шукають на компакті FM   та права 
частина рівняння належить множині AMN  . 

Зазвичай не існує ефективних критеріїв, які дозволяють встановити 
належність елемента u  множині N . В практичних задачах часто замість 
точного значення правої часини u  нам відомо її наближене значення u~ , яке 
може не належати множині AMN  . В таких випадках не можна будувати 
наближений розв’язок рівняння uAz   за формулою (1.21), оскільки символ 

uA ~1  може не мати змісту. 
Прагнення усунути труднощі, пов’язані з відсутністю розв’язку рівняння 
uAz   при неточній правій частині, привело В.К. Іванова до поняття 

квазірозв’язку рівняння – узагальненого поняття розв’язку цього рівняння.  
Означення 1.10. Елемент Mz ~ , мінімізуючий при даному u  

функціонал  uAzU ,  на множині M , називають квазірозв’язком рівняння 
uAz   на M , якщо [16] 

    uAzuzA U
Mz

U ,inf,~ 


. (1.22) 
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 Якщо M  – компакт, то квазірозв’язок існує Uu  і якщо, крім того, 
AMu , квазірозв’язок співпадає зі звичайним (точним) розв’язком рівняння 

uAz  . Квазірозв’язок може бути і не один. У цьому випадку під 
квазірозв’язком будемо розуміти будь-який елемент із множини квазірозв’язків. 

Можна вказати достатні умови, при яких квазірозв’язок єдиний і 
неперервно залежить від правої частини. Наведемо ці умови. 

Означення 1.11. Нехай елемент y  та множина Q  належать простору U . 

Елемент Qq  називають проекцією елемента y  на множину Q , Pyq  , якщо 

   Qyqy UU ,,  , 

де    hyQy U
Qh

U ,inf, 


. 

Теорема 1.7. Якщо рівняння uAz   може мати на компакті M  не більше 
одного розв’язку і проекція кожного елементу Uu  на множину AMN   
єдина, то квазірозв’язок рівняння uAz   єдиний і неперервно залежить від 
правої частини u . 

Теорема 1.8. Нехай рівняння uAz   лінійне, однорідне рівняння 0Az  
має лише нульовий розв’язок, множина M  випукла, а будь-яка сфера у 
просторі U  строго випукла. Тоді квазірозв’язок рівняння uAz   на компакті 
M  єдиний і неперервно залежить від правої частини u . 

 
 
1.6.1. Квазірозв’язки матричного рівняння 

 
 Розглянемо операторне рівняння uAz  , де оператор A  діє з лінійного 
векторного простору в лінійний векторний простір і, який задано в матричній 
формі наступним чином: 





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
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

nnnn

n

n

aaa

aaa
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21

22221
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. 

Права частина 
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
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








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u
...

2

1

, 





















nz

z

z

z
...

2

1

. 

 Нехай компакт M  задано умовами на границі:   0,...,, 21 ni zzzf , 

ki ,...,2,1 . 

Задача знаходження розв’язку такого операторного рівняння буде 
некоректною, коли матриця A  буде виродженою. Алгоритм побудови 
квазірозв’язків такої некоректної задачі наступний. 
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Згідно з означенням квазірозв’язку потрібно знаходити  uAzU
Mz

,inf 


, 

тобто мінімізувати функціонал. Для цього знайдемо 2
min

UMz
uAz 


 і отримаємо 

задачу на умовний екстремум. 
Якщо потрібно знайти 2

min
UMz

uAz 


, де компакт M  обмежений одним 

контуром, тобто заданий, наприклад, у вигляді qz  , Rq , то будуємо 
функцію Лагранжа: 

    222
21 ,,...,, qzuAzzzzF

FUn  

     ......... 2
22222121

2
11212111 uzazazauzazaza nnnn  

   222
2

2
1

2
2211 ...... qzzzuzazaza nnnnnnn   

та знаходимо розв’язок задачі на умовний мінімум. Використаємо необхідну 
умову екстремуму. Одержимо при цьому систему: 
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
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Із отриманої системи алгебраїчних рівнянь знаходимо значення nzzz ,...,, 21   та 
відповідні . Підставляємо отримані значення в функцію:  

     2
1121211121 ...,...,, uzazazazzzf nnn  

   22211
2

22222121 ......... nnnnnnnn uzazazauzazaza   

і знаходимо значення функції  nzzzf ,...,, 21 . Вибираємо найменше значення і у 
відповідь записуємо ті nzzz ,...,, 21 , які дають це значення. 

Отже, знайдений розв’язок буде квазірозв’язком задачі. 
Якщо компакт  обмежений декількома контурами, то задачу на умовний 

екстремум розв’язуємо для кожного контуру окремо, а потім із усіх знайдених 
значень змінної функції  nzzzf ,...,, 21  обираємо найменше і записуємо у 
відповідь ті nzzz ,...,, 21  , які дають це значення. 

 
1.6.2. Квазірозв’язки некоректних задач для інтегрального рівняння 

Фредгольма першого роду 

 
Розглянемо задачу розв’язання рівняння Фредгольма першого роду 
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      xudsszsxKAz

b

a

  , ,  bax , , (1.23) 

де  sxK ,  – ядро інтегрального оператора A ,  sz  – невідома функція,  xu  – 

права частина. Для розв’язку рівняння (1.23) (з наближеними даними) слід 
застосовувати методи розв’язку некоректно поставлених задач [7].  

Так під квазірозв’язком некоректної задачі для рівняння (1.23) будемо 
розуміти функцію Mz , для якої  
 

UMzUM uAzuAz 

inf , (1.24) 

де U  – це  baL ,2  або  baC ; , M  – компакт. Квазірозв’язок при деяких 
припущеннях стійкий по відношенню до збудження вхідних даних  sxK ,  і 
 xu  й тому може бути ефективним наближенням до точного розв’язку, якщо 

останній належить M . Множину M  обирають найчастіше так, щоб її елементи 
мали всі відомі властивості точного розв’язку. Часто M  задають умовою: 
 cz  , (1.25) 

де c  – константа. Досить загальним та зручним способом задання компактної 
множини M  є наступна умова: Mz , якщо 

      dsssxlxz

b

a

  , , 1 , (1.26) 

де  sxl ,  – ядро, для якого інтегральний оператор цілком неперервний, тобто 
перетворює будь-яку обмежену множину в компактну. 

У випадку лінійного рівняння (1.23) задача знаходження квазірозв’язку, 
де M  задано однією із умов (1.25), (1.26), є задачею випуклого програмування, 
для наближеного розв’язку якої може бути застосовано багато чисельних 
методів. Покладемо, зокрема,  

   



n

j

jj ses
1

,   1
1

2

2

1

 


n

j

j

n

j

jj se , 

тобто представимо   у вигляді частини ряду Фур’є по ортогональній системі 
функцій  se j . В якості  se j  можемо прийняти, наприклад, многочлени 
Лежандра, функції Хаара, систему js2sin  та js2cos  і т.д. Тоді  

   



n

j

jjM szsz
1

, де      dssesxlxz

b

a

jj  , , 1
1

2 


n

j

j , 

і задачу (1.24) знаходження квазірозв’язку приводимо до знаходження 
коефіцієнтів M

j  із умови: 

 

U

n

j

jj

U

n

j

j
M
j uAzuAz

n

j
j


 




111

1

2

inf , (1.27) 
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де    dsszsxKAz

b

a

jj  , . 

У випадку, якщо безумовний мінімум 



n

j

jj uAz
1

 по j , nj ,...2,1 , 

задовольняє умові 1
1

2 


n

j

j  він і є шуканим розв’язком задачі (1.40). В іншому 

випадку обмеження задачі (1.27) зводиться до рівності 1
1

2 


n

j

j . 

У випадку простору  baL ;2  остання задача зводиться до мінімізації  
функції Лагранжа  

 
 











 


1,,...,,

1

2

2

,1
21

2

n

j

j

baL

n

j

jjn uAzF , 

що рівносильно розв’язку алгебраїчної системи  

   ij

n

j

ijj AzuAzAz ,,
1




, ni ,...,2,1 , 

де скалярні добутки мають вигляд: 

   
b

a

ijij dxAzAzAzAz , ,    
b

a

ii dxAzxuAzu, ,  

та до відшукання множника Лагранжа   із умови: 

 1
1

2 


n

j

j .  

У випадку простору  baC ,  зручно приводити задачу знаходження 
квазірозв’язку до задачі лінійного програмування, для якого існують ефективні 
методи та програми на ЕОМ. Представимо інтеграл (1.26) у вигляді відповідної 
квадратурної формули, отримаємо  

   



n

j

iiiM xxlBsz
1

, , 1i , 

де iB  – коефіцієнти квадратурної формули, і  

     j

b

a

ijii
x

M xudsxslsxKBuAz
ji

 
,,maxinf

1
. 

Остання задача легко зводиться до наступної задачі лінійного 
програмування: потрібно знайти zmin  при умові: 

      zxudsxslsxKBz j

n

i

b

a

ijii   
1

,, , 1i . 
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1.7. Метод регуляризації А.М. Тихонова 

 
 
1.7.1. Метод регуляризаії для матричного рівняння 

 
В основі побудови стійких методів розв’язку некоректних задач лежить 

поняття регуляризуючого алгоритму (РА) і пов’язаного з ним поняття 
регуляризованого сімейства розв’язків, введеного А.М. Тихоновим. Погано 
обумовлені СЛАР слід розглядати як некоректно поставлені задачі і при їх 
наближеному розв’язанні необхідно застосовувати ідеї регуляризації. 

Домовимося розрізняти точні дані – пару  bA, , котрі формують задачу 
(1.7) і нам не відомі, і наближені дані  bAh , , hAAh  ,  bb  з рівнем 
похибок ,h , якими ми володіємо. Суть методу регуляризації наближеного 
розв’язання стосується побудови послідовності векторів ,hx , яка збігається до 
розв’язку або псевдорозв’язку рівняння (1.7) при 0 h . За наближений 
розв’язок ,hx  не можна брати точний розв’язок або квазірозв’язок рівняння з 
даними 
  bxAh  (1.28) 

Нехай ми маємо спосіб (правило), який по парі  bAh ,  і додатньому 
параметру   однозначно будує вектор  

bAx h ; . Якщо існує залежність 
параметра  h,  від похибок h,  вихідних даних така, що 

    0~;lim ,

0
0







xbAx h
h

h

, (1.29) 

тоді множину    


bAx h
h ;,  називають регуляризованим сімейством 

наближених розв’язків, а сам спосіб побудови  
bAx h ;  – регуляризуючим 

алгоритмом для задачі (1.7). Тут вектор x~  – розв’язок, нормальний розв’язок 
або псевдорозв’язок системи (1.7) залежно від того, чи розв’язується ця система 
однозначно, чи має множину розв’язків чи немає. 

Співвідношення (1.29) засвідчує, що наближений розв’язок  
bAx h ;  

тим краще апроксимує точний розв’язок x~ , чим менша похибка вихідних даних 
h, . Таким чином, регуляризуючий алгоритм дає теоретичну базу для 

конструювання стійкого до збурень вихідних даних наближеного розв’язку 
системи (1.7) загального виду, включаючи погано обумовлені системи. 

Важливо розуміти наступну обставину. Якщо 1
A  існує, тобто A  – 

невироджена матриця, то для достатньо малих h  1
hA  теж існує і розв’язок ,hx  

рівняння (1.28) теоретично буде збігатися до розв’язку рівняння (1.7) при 
0,  h . Однак якщо A  – погано обумовлена матриця (  A  – велике,  A  – 

число обумовленості [13, с.37]), то величина похибки hxx ,
~

 , навіть при 
малих h, , може бути недопустимо великою і задачу слід вважати практично 
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нестійкою (некоректною). Метод регуляризації саме і направлений на те, щоб 
зменшити вплив похибок (вхідних даних, обчислень) і одержати практично 
стійкий наближений розв’язок в цих несприятливих обставинах. 

Тепер перейдемо до опису конкретних процедур побудови 
регуляризованих наближених розв’язків  

bAx h ; . Далі для скорочення запису 
будемо опускати залежність  

bAx h ;  від  bAh ;  і записувати просто  h
x

, . 

Розглянемо спочатку частинний випадок – схему М.М. Лаврент’єва, коли 
A  – симетрична додатня напіввизначена матриця, для якої система (1.7) при 
заданому векторі b  може бути розв’язаною. 

Перейдемо від (1.6) до регуляризованої системи 

   0
xbxEA   , (1.30) 

де   – додатній параметр, E  – одинична матриця, 0
x  – пробний розв’язок, 

тобто деяке наближення до шуканого розв’язку (якщо інформація про розв’язок 
відсутня, то можна позначити 00 x ). 

При зроблених припущеннях, СЛАР (1.30) має єдиний розв’язок 
x , який 

збігається при 0  до нормального розв’язку x~ . 
Твердження 1.1. Нехай  bAh , , hAAh  ,  bb  – наближені дані 

задачі і hA  – симетрична додатна напіввизначена матриця. Тоді СЛАР 

   0
xbxEAh  

  (1.31) 

однозначно розв’язана і при зв’язку параметра   з похибками h,  такими, що 

  0,  h ,   0
,




h

h , коли 0 , 0h , тобто  h
x

,  збігається до 

нормального розв’язку x~  рівняння (1.7). Це і є розв’язок, який найменше 
ухиляється від вектору 0

x . 
Таким чином, згідно з означенням, наведеним вище, розв’язки СЛАР 

(1.31)   h
x

,  утворюють регуляризоване сімейство наближених розв’язків для 

системи (1.7); причому, вибір параметра за формулою p
h   1p  

задовольняє необхідним вимогам, оскільки 0 p
h ,   p

p
h

h

h 1
1




, 

коли 0,  h . 

Зауваження 1.1. Нехай A  – додатня напіввизначена вироджена матриця і 

1A . Якщо    A , то  




1

EA . З цієї причини при розумному 

виборі параметра   можна досягти гарної обумовленості систем (1.30), (1.31) і 
задовільної апроксимації xx ~ , не зважаючи на те, що ці вимоги мають 
протиріччя. 

Роль параметра регуляризації   добре видно, якщо записати розв’язок 
системи (  A ) (при 00 x ) у вигляді 
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 


 



n

i

i
i

i u
b

x
1

,  

де i  власні значення  0i , а iu  ортонормовані власні вектори матриці A . 

Це зображення показує, що при малих i  додавання додатнього параметра 
суттєво збільшує знаменник і тим самим послаблює вплив можливих похибок у 
відповідних компонентах ib   iii bbb 

~ . Одночасно для 0i  вплив малого 
параметра   незначний (і навіть такий, що ним можна знехтувати). 

Тепер відмовимося від вимоги симетричності і додатньості матриці A . 
Нехай матриця B  така, що для деякого 0   BА 0  є невиродженою 
матрицею і, значить, існує й обернена матриця. Тоді можлива регуляризація в 
наступній формі: 
   bxBA   , (1.32) 

де параметр   довільного знака і 0 . 

Зауваження 1.2. Нехай    
cABA

1  (при 0 ), hAAh  , 

 BB , bbb  . Тоді при достатньо малих h ,  ,   СЛАР 

   


  bxBAh  (1.33) 

має єдиний розв’язок 
x  і справедлива оцінка похибки 

 



 h

cxx B
~ , (1.34) 

де Bx~  – розв’язок системи (1.7), що задовольняє умові ( X – множина розв’язків 
системи (1.7)) 
  XxBxB x  :min~ .  

Із оцінки (1.34) одразу випливає, що якщо   0,,  h , 0
),,(




h

h
 

при 0,,  h , має місце збіжність  ,,h  

 0~lim
0,,




B

h
xx .  

Найбільш важливим моментом в описаній регуляризації є підбір матриці 
B , для якої  BA 0  невироджена і    

ABA
1 . 

Дослідимо, врешті, загальну ситуацію, коли система (1.7), взагалі кажучи, 
нерозв’язна. В цьому випадку шуканим є псевдорозв’язок. Розв’язується задача 
стійкої апроксимації цього псевдорозв’язку в умовах задання вхідних даних з 
похибкою. В якості регуляризованого наближення розв’язку приймемо вектор 


x , що задовольняє СЛАР  
   0

xbAxEAA hhh  
 . (1.35) 

Твердження 1.2. Нехай hAAh  ,  bb , 0 . Тоді СЛАР (1.35) 

однозначно розв’язана і справедлива оцінка 
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    


 
hc

a
cbxA

h
cxx 3

2

1
22

21
1

2~~ , (1.36) 

де ic  ( 3,2,1i ) константи, які залежать від норми x~  псевдорозв’язку. 
Наслідок 1.1. Нехай ,h  величини порядку  , причому,   достатньо мале 

число. Якщо точне рівняння (1.7) має розв’язок, (тобто 0~ bxA ), тоді права 
частина оцінки (1.36) за характером залежності від   та  , є функція вигляду 

 



 )( . (1.37) 

При 3

2

  вона набуває значення порядку 3

2

 . Якщо СЛАР (1.6) 
нерозв’язна  0~  bxA , то права частина нерівності (1.36) є функція вигляду 

 







 )( . (1.38) 

При   вона набуває значення порядку 2

1

 . Ці порядки одержуються 
за допомогою мінімізації функцій )( , )(  (тобто є розв’язками рівнянь 
  0'  ,   0'  ). 

Таким чином, якщо вхідні дані рівняння (1.7) задані з точністю порядку 

 , то псевдорозв’язок може бути визначений з точністю порядку 3

2

 , у випадку 

розв’язності точного рівняння, і з точністю порядку 2

1

  – в оберненому 
випадку. Помітимо, однак, що більш складний спосіб вибору параметра   
дозволяє апроксимувати псевдорозв’язок з точністю порядку апроксимації 

h . 
Задача (1.35) еквівалентна задачі на мінімум 

 






  

n
h RxxxbxA :min

202
, (1.39) 

При 0  (1.39) переходить в метод найменших квадратів (МНК), який 
нестійкий відносно збурень матриці. Перехід від МНК до його 
регуляризованого аналога (1.39) відтворює стійкість наближеного розв’язку. 

 
 
1.7.2. Метод регуляризаії для операторного рівняння 

 
Нехай U , F  – гільбертові простори, D  – замкнута випукла множина 

апріорних обмежень задачі, FD , оператори A , hA  – лінійні обмежені 
оператори, UFA : , hA  – апроксимуючий оператор, 0h  – похибка 
апроксимації, тобто hAA h  |||| . Побудуємо наближений розв’язок рівняння 

 uAz  , (1.40) 
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який належить множині D , по заданому набору даних },,{ uAh , де ),( h , 

0  – похибка задання правої частини рівняння (1.40), тобто   |||| uu . 

Введемо сгладжуючий функціонал [21] 

 22 ||||||||][ zuzAzM h  
 , (1.41) 

де 0  – параметр регуляризации. Розглянемо екстремальну задачу, знайдемо 

 ][min zM
Dz




. (1.42) 

Має місце наступний результат [21]. 
Для будь-яких Fz  ,0  і лінійного обмеженого оператора hA  задача 

(1.42) має єдиний розв’язок Dz 
 , причому 


 


||||

||||
z

z . 

Вибір параметра регуляризації виконують у відповідності до принципу 
узагальненої нев’язки [21], тобто   знаходять із рівняння: 

 0),(||)||(||||)( 222  




 hh AuzhuzA , (1.43) 

де ||||inf),( 


  uzAAu h
Dz

h  – міра невідповідності рівняння (1.40) наближеним 

даним. 
При цьому, якщо виконується умова ),(|||| 222

hAuu   , то рівняння 
(2.3) має один додатній корінь, який вибирають в якості параметра 
регуляризації в методі А.М. Тихонова. 

Для знаходження  кореня рівняння (2.3) можна використовувати 
модифікацію метода хорд. Наведемо ітераційну процедуру знаходження 
параметра регуляризації. 

Нехай 0 . Задамо початкове значення параметра регуляризації 0  і 

виберемо наступне значення 1  (  ||, 0101 ), вважаємо що 
2
0

1


  і 

обчислюємо )(),( 10  . Далі виконуємо процедуру доки виконується умова 
  12 nn , будуємо ітераційну послідовність по наступній рекурентній 

формулі: 

 

)()(

)(
1

12

2

1

21

2






















nn

n

n

nn

n
n ,  

причому, якщо 0)()( 12   nn , то nnnn   112 ,  

якщо 0)()( 12   nn , то 











.то,  якщо
   ,то,  якщо

nnnn

nnnn

21

12

0)()(

0)()(
 

В якості значення  параметра регуляризації вибирають 1 n . 
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1.7.3. Особливості застосування методу Тихонова до розв’язання 
операторних рівнянь 

 
Нехай u  – точна права частина операторного рівняння, а z  – відповідний 

точний розв’язок операторного рівняння. Припустимо, що права частина задана 
з деякою похибкою   у метриці F , тобто 

    uuU , . 

Через u  позначимо наближену праву частину операторного рівняння. 
Оскільки права частина операторного рівняння відома тільки наближено, то 
зрозуміло, що під час розв’язання операторного рівняння може йти мова лише 
про наближений розв’язок, який ми позначимо через z . Введемо множину Z  

наближених розв’язків: 
    uAzFzZ U ,: . 

Оскільки задача вважається некоректною, то в множині Z  існує елемент, 
досить «далекий» від точного розв’язку в метриці простору F . 

Задача полягає в доборі серед елементів множини Z  саме елементів, 
близьких до точного розв’язку в метриці F , які і вважаються “справжніми” 
наближеними розв’язками. 

Проаналізуємо спочатку спосіб добору наближеного розв’язку, який 
ґрунтується на ідеї методу відхилів. Нагадаємо, що в задачах мінімізації 
стабілізатора на множині елементів, для яких значення функціонала мало 
відрізняються від значення точної нижньої грані. Розглянемо застосування 
цього методу для випадку некоректних задач розв’язання операторних рівнянь. 

Нехай  z  – стабілізатор, визначений на множині VU  . Введемо 
множину   ZFF , . Інакше кажучи, у множині ,F  включимо всі 
елементи множини F , для яких виконується умова  

   uAzU , , 

тобто відхил лівої та правої частин операторного рівня не перевищує  . 
Розуміючи під функціоналом  zJ  функціонал   uAzU , , визначений на Z , і 
згадуючи ідею методу відхилів, знаходимо елемент 

z , для якого досягається 
значення нижньої грані стабілізатора  z  на множині ,F . 

Звернемо увагу на таку обставину. У процесі розв’язання некоректних 
екстремальних задач за допомогою методу відхилів (або інших методів) 
вважалося, що задачу пошуку точної нижньої грані можна розв’язати з будь-
якою якнайменшою похибкою за значенням функціонала 

    fAJ F ,  

визначається похибкою в значенні правої частини u . Величина такої похибки 
лежить за межами математичного дослідження. Тому тут немає можливості 
будувати послідовності чисел, що прямують до нуля, та відповідні мінімізуючі 
послідовності. Однак можна стверджувати, що наближений розв’язок *

z , 

одержаний у ході мінімізації стабілізатора на множині ,F , досить близький 
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по нормі простору F  до точного розв’язку *
z , що відповідає точній правій 

частині u . Недолік методу відхилів полягає в тому, що непросто побудувати 
множину ,F  або врахувати умову    uAzU ,  під час розв’язання задачі 
мінімізації  z  на F . 

Розглянемо тепер особливості застосування методу Тихонова; одночасно 
з’ясуємо зв’язок між цими 2 методами розв’язання некоректних задач для 
операторних рівнянь. 

Нехай *  – точна нижня грань стабілізатора на F : 

 z
Fz



inf* . 

Позначимо через *M  множину елементів Fz* , для яких стабілізатор 
 z  досягає значення точної нижньої грані. Розглянемо перетин множин *M  

,F . Можливі 2 варіанти: 
а) множини *M  і ,F  мають спільні елементи, тобто 

,* FМ  ; 

б) множини *M  і ,F  не мають спільних елементів, тобто 

,* FМ  . 

У першому випадку кожен елемент множини *M  буде регулярним 

розв’язком операторного рівняння. Такий варіант зустрічається не часто й не 
викликає особливого інтересу. 

Розглянемо другий варіант: ,* FМ  Ø. Уведемо поняття 
квазімонотонного стабілізатора  z . 

Означення 1.12. Функціонал  z  називають квазімонотонним на 
множині F , якщо на множині F \ *M  він не має локальних мінімумів. 

Для квазімонотонного оператора  z  доведено таку лему. 

Лема 1.1. Точна нижня грань квазімонотонного стабілізатора  z  на 
множині ,F  за умови, що ,* FМ  , досягається на елементі  ,fz , 

для якого 
    uAzU , . 

Інакше кажучи, точна нижня грань квазімонотонного стабілізатора 
досягається на «межі» множини ,F . 

Ґрунтуючись на цій лемі, можна зробити висновок, що точну нижню 
грань квазімонотонного стабілізатора слід шукати не на всій множині ,F , а 
лише на «межі» цієї множини, тобто на елементах, які задовольняють строгу 
рівність 

    uAzU , . 

Одержуємо задачу мінімізації функціонала  z  за додаткової умови 
    uAzU , . Замінимо цю умову еквівалентною умовою 

  22 ,   uAzU . 
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Застосуємо метод множників Лагранжа. Уведемо множник Лагранжа   і 
побудуємо функцію Лагранжа: 

           2222 ,,,   uAzzuAzzzL UU . 

Відкинемо 2 , оскільки цей додаток не містить   і тому не впливає на 
розв’язок задачі мінімізації. Запишемо  ,zL  таким чином: 

         



 






 


  zuAzuAzzzL UU

1
,,

1
, 22 . 

Позначимо 



1

 і введемо функціонал  

     zuAzzT U  ,, 2 . 

Тоді     ,, zTzL . 

Оскільки сталий множник не впливає на розв’язок задачі мінімізації то 
замість функції Лагранжа можна взяти функцію  ,zT . Нехай 
    uAzzJ U ,2 , тоді функціонал  ,zT  є фактично функціонал Тихонова для 

задачі мінімізації відхилу     uAzzJ U ,2 . Отже, виникає задача мінімізації 
функціонала Тихонова F . Множник  , який відіграє роль параметра 
регуляції, повинен вибиратися таким чином, щоб для розв’язку z  задачі 
мінімізації функціонала Тихонова на F  виконувалась умова 

    uAzU , . 

Те, що   не прямує до нуля, а набуває певного конкретного значення, не 
повинно дивувати, оскільки похибка в правій частині u  операторного рівняння 
також фіксована й не прямує до нуля. 

Розглянемо один з можливих алгоритмів визначення  . Задаємо деяку 
скінчену послідовність k ...,, ,21  значень   і для кожного з цих значень 
знайдемо елементи kuuu ,....,, 21 , для яких функціонал Тихонова  ,zT  досягає 
значення точної нижньої грані. Для кожного kzzz ,,, 21   знайдемо відповідні 
відхили 

  uAzU ,2 , ki ,...,2,1  

і побудуємо відповідні точки в системі координат   uAzU ,~ 2 . 

За цими точками побудуємо графік (Рисунок 1) і знайдемо * , таке що 

    uAzU , , 

як абсцису перетину побудованої кривої з прямою 

  22 ,   uAzU . 



 

32 

 
Рисунок 1. 

Саме такий підхід застосовується найчастіше, оскільки він до кінця 
алгоритмізується. Описаний прийом отримав назву «визначення параметра 
регуляризації за відхилом». 

Доведено, що функція 

    uAzU ,2  

є монотонна і не спадна. 
У разі більш сильних припущень функція    є строго монотонно 

зростаюча, причому завжди існує таке * , що     uAzU , . 

Зауважимо також, що ми почали виклад із застосування методу відхилів 
до розв’язання операторних рівнянь і фактично перейшли до методу Тихонова 
шляхом конкретної реалізації методу відхилів за додаткового припущення, що 
стабілізатор є квазімонотонний. 

 
 
1.7.4. Метод регуляризації для інтегрального рівняння Фредголма 

першого роду 

 
За допомогою регуляризуючого алгоритму для рівняння Фредгольма І 

роду з гладким ядром на основі методу А. М. Тихонова, знайдемо наближений 
розв’язок, який задовольняє інтегральному рівнянню 

        dcxxudsszsxKAz

b

a

,,,   , (1.44) 

     dcLxubadcCsxK ,]),,[],([, 2 . 

Нехай замість u  нам відоме таке її наближення u , що   2
|||| Luu . 

Нехай із апріорних даних відомо, що  sz  – кусочно-гладка, тоді виберемо 

 baWF ,1
2 . Нехай замість ),( sxK  відома функція ),( sxKh , що hKK h  |||| , 

  uAzU ,2
 

1k  k  3  2  1  

2  

  0  
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тоді hAA
LWh 

 2
1
2

|||| , де hA  – інтегральний оператор, який відповідає ядру 

),( sxKh . 

Використаємо схему побудови регуляризуючого алгоритму 

А.М. Тихонова, перейдемо від (1.44) до мінімізації функціонала  zМ  , який 
має вигляд: 

         









   


d

c

b

a

hh dxxudsszsxKzuzAzM
W

L

2

22
,1

2
2

  

       
b

a

dsszsz
22 , (1.45) 

Будуємо скінченновимірну апроксимацію функціонала  zM
 , 

використовуємо квадратурні формули, для чого вводимо рівномірні сітки по x  і 
по s  з кроками відповідно nabhs /)(  , mcdhx /)(  ,   sj hjas 1 , 

  .1 xi hicx   Позначимо   ,jj zsz   ii uxu )( , ijji asxK ),( , використаємо 
квадратурну формулу прямокутників для обчислення інтегралів і апроксимуємо 

похідну скінченною різницею  
x

jj

h

zz
sz


 1

. Таким чином скінченновимірна 

апроксимацію функціонала має вигляд: 

   .][)(
1 1 1

222
s

m

i

n

j

n

j

jjsijijsxi hzzhuzahhzM   
  

   (1.46) 

Використаємо необхідну умову мінімуму функціонала: 














 
 

 m

j

jksj

n

i

ijisx
k

j
ahuzahh

z

zM

1 1

2
][

 

0)(22
1

1
12

1 














 







n

j

jkkj

s

jj
ks

h

zz
zh  

приходимо до лінійної алгебраїчної системи з симетричною матрицею: 
 UzB  , (1.47) 

де 

CBB  , 



n

j

jkjisxikik aahhbbB
1

},{ , }{ kuU  , 



m

j

jkjxk auhu
1

,(1.48) 
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 1CEC  ,











































22

2

222

22

1

11
.........

1
............

...............

0...
121

0...0
11

ss

s

sss

ss

hh

h

hhh

hh

С . (1.49) 

Для розв’язання системи (1.47) можна використати різні чисельні методи. 
При цьому слід враховувати, що матриця системи є симетричною і додатньо 
визначеною. Одним із найбільш ефективних методів розв’язання таких систем є 
метод квадратного кореня [16]. 

В цьому методі симметричну додатньо визначену матрицю B  записують 

у вигляді добутку верхньо і нижньо трикутних матриць     TTB
*

, де 
T : 































nn

n

n

t

tt

ttt

T

...00

............

...0

...

222

11211

 

причому елементи матриці  
T  знаходять за формулою: 

 

 

),(,0);(,

),,..2(,),1(,,

1

1

2
1

1

1

2

11

1
11111

jitji
t

ttb

t

nitbtj
t

b
tbt

ij

ii

i

k

kjkiij

ij

i

k

kiiiii
j

j
















































. (1.50) 

Таким чином, від системи (1.47) приходимо до розв’язання системи 

  ,
*

UzTT 
  

або, до розв’язання двох систем з трикутними матрицями: 

 
 















.

,

yuT

UyT
T

 (1.51) 

Слід зауважити, що  при виборі параметра регуляризації по принципу 
узагальненої невязки при розв’язанні (1.44), слід неодноразово при різних   
розв’язувати системи (1.51), при цьому права частина системи U  і матриця B  
не залежать від  . Це дозволяє будувати спеціальні економічні методи 
розв’язання систем (1.51). 

Нехай для різних 0  необхідно розв’язати систему (1.51) або 
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 uAzCAА hhh
** )(   , (1.52) 

де mn
RuRz  , . Матрицю C  визначаємо відповідно до формули (1.49). 

Представимо матрицю C  у вигляді SSС * , де S  – двухдіагональна 
матриця. Виконаємо заміну в (1.52) ,  Szy )( 1   ySz , одержимо 

 uAySCAА hhh
*1* )(   . (1.53) 

Домножимо це рівняння зліва на *1)( 
S , одержимо 

 uDyEDD h
** )(   , 1 SAD h . (1.54) 

Представимо матрицю D  у вигляді: QPRD  , де Q ( mm ), R ( nn ) – 

ортогональні матриці, P  – права двухдіагональна матриця [16]. 

Тепер у рівнянні (1.54) зробимо заміну змінних )(, 1   xRyRyx , в 
результаті одержимо 

 uDxREQPRQPR h
*1*** )(    або  

 UuRDxEPP h   ** )( , (1.55) 

де матриця PP
*  – трьохдіагональна і рівняння (1.55) без проблем розв’язують, 

наприклад, методом прогонки [16]. Початковий невідомий вектор: 
  xRSz

11 , однак, часто немає необхідності повертатись до вектора 
z , 

оскільки, наприклад, якщо 0h , то необхідно лише перевірити умову 
 |||| uzAh , яка еквівалентна умові  |||| *

uQPx . 

 
 
1.8. Некоректні екстремальні задачі 

 
Переважну більшість математичних задач, виникнення яких обмовлене 

потребами практики, можна подати у вигляді таких основних форм: 
а) розв’язання операторних рівнянь; 
б)пошук мінімуму функціонала на деякій множині. 
Поставимо у відповідність кожному елементу Uu  деяке число  J . У 

таких випадках говорять, що на множині V  задано функціонал  J . 

Екстремальна задача для функціонала  J  полягає в знаходженні такого 
елемента Uu , для якого 

   


JuJ
U

inf  

Для багатьох екстремальних задач можливі формулювання як у вигляді 
операторного рівняння, так і у вигляді екстремальної задачі. Для прикладу 
розглянемо задачу Діріхле, тобто задачу знаходження розв’язку  yxu ,  

рівняння Лапласа 

0
2

2

2

2










y

u

x

u
u  
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в області G  двомірного простору. 
На межі G  області G  функція  yxu ,  повинна задовольняти умову 

Діріхле 
 ., yxgu

G
  

Так форма запису є операторним рівнянням; роль оператора A  відіграє 
оператор Лапласа  ; за множину U  можна взяти підмножину метричного 
простору  GC

2 , усі елементи якої задовольняють умову 

.gu
G
  

Водночас цю саму задачу можна записати як задачу мінімізації 
функціонала. Відомо, що формулювання цієї задачі має вигляд: знайти функцію 

Vu , для якої функціонал 

  dG
yx

J

G

 
































22

 

набуває значення точної нижньої грані V . Множина V  є підмножиною 
метричного простору, для всіх елементів якого значення функціонала 
визначене; на межі G  області G  функції з V  набувають заданих значень. 

У загальному випадку перехід від задачі розв’язування операторного 
рівняння до задачі пошуку мінімуму функціонала можна здійснити за 
допомогою методу найменших квадратів. Нехай U  – метрика простору, якому 
належать елементи множини U . Тоді задачі розв’язання операторного рівняння 

uAz   

на множині U  відповідає задача пошуку на множині F  такого елемента *
z , для 

якого 

       zJuAzuAzzJ U
F

U 


,inf, ***  

Розглянемо тепер сутність проблеми некоректності екстремальних задач. 
Наведемо спочатку приклад. Розглянемо задачу пошуку функції  xy , для якої 
функціонал 

    
2

0 










 



dxxyxyJ  

досягає найменшого значення. Функцію  xy  шукаємо на множині П 
неперервних функцій, визначених на відрізку  ,0  і так, що     .,00  yy  

Очевидно, що   ,0yJ  причому   0yJ  при   ,xxy   тобто функція 
  xxy   – один із розв’язків варіаційної задачі. 

Розглянемо послідовність   xyn  функцій вигляду   nxxxyn sin . 

Очевидно, що при всіх натуральних n функції  xyn  належать до множини П. 
Тоді 

   











 

 2

0

sin nxdxxyJ n  
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   .11
1

cos
1 2

2

2

0

n

n
xn

n




 

 

Очевидно, що 
    .0lim xJxyJ n

n



 

Можна було б сподіватися, що одночасно і    xyxyn  . Проте, як не 
важко переконатися, послідовність функцій   nxxxyn sin  при n  є 
взагалі розбіжна (у метриці простору  ,0C . Це свідчить про те, що малим 
змінам у значенні функціонала можуть відповідати істотні зміни функції  xy . 

Звернемо увагу на те, що під задачею пошуку мінімуму ми фактично 
розуміємо задачу пошуку точної нижньої грані. Нагадаємо, у чому полягає 
відмінність між цими поняттями. З одного боку, мінімум функціонала  zJ  на 
множині V  – це найменше з усіх значень  zJ  для всіх Fz . З іншого боку, 
число *J  називається точною нижньою гранню функціонала  zJ  на множині 
F , якщо виконуються такі умови: 

а)   ;,* FzJzJ   

б) для кожного 0  можна вказати такий елемент Fz  , що 

  .*  JzJ  

Пояснимо різницю між мінімумом та точною нижньою гранню. 
Відмінність полягає в тому, що значення точної нижньої грані не обов’язково є 
деяке значення функціонала. Для прикладу розглянемо функцію  xf , графік 
якої показаний на Рисунку 2. 

 
Рисунок 2. 

Очевидно, що задача знаходження мінімуму цієї функції не має розв’язку. 
Проте точна нижня грань існує: 

  1inf 


xf
Rx

, 

 xf  

2  

1  

y  

x  0  
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але не існує значення *
x , при якому   1* xf . Звичайно, такий ефект цілком 

зрозумілий, оскільки, при 0x  функція має розрив. Неперервна функція, 
задана на замкненому відрізку, згідно з теоремою Вейєрштрасса досягає 
значення точної нижньої грані. Однак теорема Вейєрштрасса безпосередньо не 
переноситься на випадок загальних неперервних функціоналів. 

Розглянемо тепер проблеми, що виникають у разі наближеної мінімізації 
функціоналів. Процедура більшості існуючих методів полягає фактично в 
побудові так званої мінімізуючої послідовності. Це поняття близько 100 років 
тому ввів Д. Гільберт в процесі аналізу принципових проблем існування 
розв’язку екстремальних задач. Послідовність      ,...,,...,, 10 n

zzz    
Fz

n   

називають мінімізуючою для функціонала  J , якщо: 
а)             ...;... 110  nn

zJzJzJzJ  

б)     zJJzJ
Fz

n

n 
 inflim * . 

Якщо точна нижня грань  zJ  на множині F  є скінченна, то мінімізуючи 
послідовність завжди існує. Наприклад, задана послідовність чисел 

,...,...,, 21 n  таких що 

а) ...;... 121  nn  

б) .0lim 


n
n

 

Згідно з означенням точної нижньої грані для кожного n  побудуємо 
відповідне  

Fz
n   з умови 

    *JzJ
n . 

Очевидно , що побудована послідовність   n
z  буде мінімізуюча. Ця 

мінімізуюча послідовність не єдина; згідно з наведеною побудовою існує безліч 
мінімізуючих послідовностей для даної екстремальної задачі. 

Як бачимо, знаходження значення точної нижньої грані функціонала не 
супроводжується принциповими проблемами. Інша справа – знаходження 
елемента Vu * , на якому функціонал  J  досягає значення точної нижньої 
грані, тобто такого елемента *

u , для якого 

    zJJzJ
Fz

 inf*
* . (1.56) 

Фактично проблема містить 2 питання: 
а) чи буде мінімізуюча послідовність збіжною в метриці відповідного 

метричного простору; 
б) якщо мінімізуюча послідовність збіжна, то чи буде її границя 

задовольняти умову (1.56). 
Розглянемо приклади, на яких проаналізуємо можливі варіанти поведінки 

мінімізуючої послідовності. 
Дослідимо екстремальну задачу для функції 

 
4

2

1 x

x
xf


 . 
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Під множиною F  будемо розуміти множину R  дійсних чисел із 
відповідною метрикою. 

Неважко переконатися, що точна нижня грань  xf  дорівнює 0* J  і 
досягає при 0* x . Побудуємо приклади мінімізуючи послідовностей. 

Очевидно, що послідовність 

  ,...2,1,
1

,  n
n

xx nn  

буде мінімізуюча: 
  .0lim *Jxf

n



 

Розглянемо тепер послідовність 
 nx , nxn  , ,...2,1n  

Ця послідовність також є мінімізуюча: 

*4

2

0
1

lim J
n

n

n



, 

однак її границі  не існує (мінімізуюча послідовність є розбіжна). 
Отже, серед мінімізуючи послідовностей можуть бути і збіжні, і розбіжні. 

Цікаво, що одна й та ж мінімізуюча послідовність може бути як збіжною, так 
розбіжною залежно від вибору метрики. 

Як приклад, розглянемо задачу мінімізації функціонала 

   dxxJ 
1

0

2 . 

Під множиною V  будемо розуміти множину всіх функцій  x , 

визначених на неперервних на відрізку  1;0 . Зрозуміло, що екстремальна задача 
має єдиний розв’язок 0* u , причому   0* uJ . Надамо множині V  

властивостей метричного простору, вводячи спосіб вимірювання віддалей. 
Відомо, що такий спосіб буде не єдиний. Розглянемо такі метрики: 

а) метрику гільбертового простору  1;02L ; 

б) метрику простору  1;0C . 

У гільбертовому просторі  1;02L  віддаль між елементами  n
u  

мінімізуючої послідовності та розв’язком *u  екстремальної задачі дорівнює 

               nnnn
uJdxxudxxuxuuu  

1

0

2
1

0

2

**
2 , . 

Згідно з означенням мінімізуючої послідовності 
      0lim,lim *0

2 


JuJuu
n

n

n

n
, 

тобто будь-яка мінімізуюча послідовність буде збіжною в метриці простору 
 1;02L . 

У просторі  1;0C  метрика визначається співвідношенням 

   
 x

xC


 1,01,0
max . 
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Розглянемо послідовність    xu
n , де 

   














.
1

,0

,
1

0,121

n
x

n
xnx

xu
n  (1.57) 

Обчислимо значення функціонала на елементах мінімізуючої 
послідовності: 

         .121

1

0

2
1

0

2
dxnxdxxuuJ

n
nn    

Згідно з теоремою про середнє значення 

    
n

nuJ
n 1

121
2 , 








n

1
,0 . 

Оскільки функція 121  nx  обмежена на 





n

1
,0 , то 

     


JuJ
V

n

n
inf0lim . 

Отже, послідовність (1.57) є мінімізуюча. Дослідимо збіжність цієї 
послідовності в метриці простору  1;0C : 

  
 

   01max,
1,0

* 


xuuu
n

x

n . 

Доходимо висновку, що послідовність (1.57) є розбіжною в  1;0C . 

Нагадаємо, що в простору  1;02L  будь-яка мінімізуюча послідовність є збіжна, 
зокрема послідовність (1.57). Як бачимо, проблема розв’язання екстремальних 
задач тісно пов’язана з вибором метрики та простору. 

Ми з’ясували проблеми, які виникають під час мінімізації функціоналів. 
Сформулюємо тепер поняття коректності екстремальної задачі. Нехай задача 
    


JuJ

V
inf . (1.58) 

має розв’язок, можливо, не єдиний. Позначимо через *U  множину розв’язків 
цієї екстремальної задачі: 

   






 

 V

JJuJVuU inf** . 

Позначимо через   метрику в метричному просторі, якому належить 
множина V . 

Означення 1.13. Задача (1.58) називається  -коректною або коректно 
сформульованою в метриці  , якщо виконуються умови: 

а) точна нижня грань функціонала  J  є скінченною; 

б) множина *U  розв’язків не порожня; 
в) будь-яка мінімізуюча послідовність  nu  збігається в метриці   до 

одного з елементів множини *U : 
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  0,lim * 


uu
n

n
. 

Підкреслимо, що за такого визначення ми передбачаємо можливість 
існування не єдиного розв’язку. Зрозуміло, що ключовою в цьому визначенні є 
умова в). Надалі некоректність екстремальної задачі будемо розуміти саме як 
порушення умови в). 

Означення 1.14. Задачу (1.58) будемо називати  -некоректною, якщо: 
а) точна нижня грань  J  скінченна; 
б) множина *U  не порожня; 
в) існує принаймні одна мінімізуюча послідовність  nu , яка не збігається 

до жодного з елементів множини *U . 

З’ясуємо, яким чином зроблені визначення узгоджуються з класичним 
поняттям коректності за Адамаром. 

Якщо врахувати зроблене раніше зауваження відносно єдності розв’язку, 
то мова фактично йде про зв’язок між третьою умовою Адамара та умовою в) в 
визначенні коректності екстремальної задачі. 

Нехай значення *J  відоме з деякою похибкою 0 . Тоді екстремальна 
задача (1.58) – це фактично задача знаходження такого *u , для якого  

   ** JuJ . 

Зрозуміло, що тоді формально кожен елемент  n
u  будь-якої мінімізуючої 

послідовності, починається з деякого   Nn , може вважатися наближеним 
розв’язком екстремальної задачі (1.58). Але насправді наближеним розв’язком 
можуть бути лише елементи мінімізуючої послідовності, яка збігається до 
точного розв’язку задачі (1.58). Отже, вимога в) фактично означає, що малим  
відхиленням від значення точної нижньої грані функціонала, тобто малим 
похибкам в умові задачі, повинні відповідати малі відхилення наближеного 
розв’язку від точного. 
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Питання до самоперевірки 

 
 
1. Які задачі відносяться до некоректно поставлених задач? Навести 

приклади. 
2. Сформулюйте проблема коректності математичних задач. 
3. Сформулюйте особливості постановок некоректних задач. 
4. Наведіть приклади коректних та некоректних задач (інтегральне 

рівняння Фредгольма, системи лінійних алгебраїчних рівнянь). 
5. У чому полягає некоректність операторних рівнянь? 
6. Охарактеризуйте поняття узагальненого розв’язку. 
7. Що називають мінімум нев’язки? 
8. Вкажіть як знаходиться норма нев’язки. 
9. Що називають псевдорозв’язком матричного рівняння? 
10. Сформулюйте поняття нормального псевдорозв’язку системи. 
11. Наведіть означення псевдооберненої матриці. 
12. Що розуміють під скелетним розкладом матриці. 
13. Охарактеризуйте поняття ортопроектора. 
14. Сформулюйте теорему Кронекера-Капеллі та теорему про 

альтернативу Фредгольма. 
15. У чому полягає метод розв’язків на компактах. 
16. Сформулюйте означення квазірозв’язку. 
17. Охарактеризуйте процедуру знаходження квазірозв’язків матричного 

рівняння. 
18. Наведіть алгоритм побудови квазірозв’язків некоректних задач для 

інтегрального рівняння Фредгольма першого роду. 
19. У чому полягає метод регуляризації А.М. Тихонова для матричного 

рівняння? 
20. У чому полягає метод регуляризації А.М. Тихонова для операторного 

рівняння? 
21. Вкажіть особливості застосування методу А.М. Тихонова до 

розв’язання операторних рівнянь. 
22. Охарактеризуйте метод регуляризації для інтегрального рівняння 

Фредголма першого роду. 
23. Охарактеризуйте некоректні екстремальні задачі. 
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2. ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 

 
 

1. Для матриць вигляду 
















34333231

24232221

14131211

aaaa

aaaa

aaaa

, 



















434241

333231

232221

131211

bbb

bbb

bbb

bbb

, 



















44434241

34333231

24232221

14131211

cccc

cccc

cccc

cccc

 знайти псевдообернену матрицю двома способами. 

Зробити перевірку отриманих результатів. 

1) 

















0

2

1

1

1

0

3

1

2

2

0

1

;    























012

130

213

010

;    

























2110

1212

1301

2110

. 

2) 
















0333

3012

2421

;    



















142

231

041

130

;    



















1017

0049

7081

4052

. 

3) 
















6474

3334

1646

;    



















634

364

170

436

;    



















3402

6150

3333

1111

. 

4) 
















2

1

3

1

1

3

0

1

3

1

1

3

;    



















330

220

100

110

;    



















5500

0055

5050

0505

. 

5) 
















1130

0122

0531

;    



















011

250

204

305

;    



















0111

4202

0013

2101

. 
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6) 




















1127

2305

1761

;    
























123

602

641

750

;    



















8642

7531

5432

4321

. 

7) 
















2004

0120

1002

;    



















100

140

120

011

;    



















2020

0200

1010

0100

. 

8) 
















1223

0102

0311

;    



















021

100

140

011

;    























0001

0100

0113

0011

. 

9) 
















0252

1311

0403

;    



















540

308

027

601

;    



















0300

1720

6122

0500

. 

10) 




















0212

2310

1121

;    



















221

332

101

122

;    
























2242

0201

1010

1121

. 

11) 
















0012

2011

0101

;    



















012

050

011

321

;    

















 

2422

2103

1211

0211

. 

12) 
















0162

5004

4031

;    



















402

610

305

231

;    



















2001

8511

3463

2001

. 

13) 
















2012

0351

1001

;    



















121

201

123

101

;    



















1031

1121

0330

0110

. 
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14). 
















1164

91232

10501

;    



















532

114

025

310

;    



















1720

10402

9634

5201

. 

15) 

















3001

0120

1012

;    
























201

300

012

101

;    






















0210

3000

1010

2010

. 

16) 
















6

1

1

054

100

203

;    



















046

524

140

218

;    



















3131

0000

2540

3832

. 

17) 
















7

2

1

423

115

432

;    



















118

520

341

202

;    



















6284

0000

41062

3951

. 

18) 
















0050

1012

2100

;    



















316

500

243

201

;    



















5100

6393

1030

2131

. 

19) 
















2131

2312

0231

;    



















010

311

013

120

;    

























0112

1210

0112

3111

. 

20) 
















1

2

1

5

0

1

1

4

3

4

1

2

;    



















010

311

013

120

;    

























0111

1210

3022

1012

. 

21) 




















1021

0130

0110

;    























021

300

162

010

;    























0010

2010

0402

1020

. 
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22) 

















41442

2923

1512

;    





















564

397

413

158

;    



























1362

0000

1373

1351

. 

23) 



















2132

0151

1032

;    



















 211

111

012

100

;    























0010

5432

2100

5432

. 

24) 



















0100

0413

0413

;    






















100

027

111

025

;    























0330

3300

2202

1010

. 

25) 


















0122

3100

5123

;    






















415

121

021

018

;    
























2001

3103

2101

2101

. 

26) 




















4321

0012

1401

;    























001

123

010

014

;    
























0770

1110

2020

4050

. 

27) 
















 2

2

0

1

0

4

1

0

1

6

5

3

;    
























011

110

204

503

;    























7632

5432

0201

0201

. 

28) 




















4444

2222

5555

;    
























010

116

213

215

;    






















0020

0132

6001

6001

. 

29) 




















4321

1111

0022

;    



















222

000

191

818

;    






















0120

1000

0345

0345

. 
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30) 
















 0061

6616

5155

;    























199

012

000

158

;    






















0000

1000

1021

1120

. 

 

2. Знайти псевдорозв’язок  Txxx 21
~,~~   рівняння bAx  , де A  – матричний 

оператор. Знайти регуляризований розв’язок  Txxx
 21 ,~ , який апроксимує 

псевдорозв’язок  Txxx 21
~,~~   з точністю до 3-х правильних знаків методом 

регуляризації академіка А.М. Тихонова. 

1. 







.643

;9999,543

21

21

xx

xx
 16. 








.492

;9999,392

21

21

xx

xx
 

2. 







.94

;9999,84

21

21

xx

xx
 17. 








.3210

;9999,2210

21

21

xx

xx
 

3. 







.195

;9999,095

21

21

xx

xx
 18. 








.1157

;9999,1057

21

21

xx

xx
 

4. 







.932

;9999,832

21

21

xx

xx
 19. 








.536

;9999,436

21

21

xx

xx
 

5. 







.257

;9999,157

21

21

xx

xx
 20. 








.8710

;9999,7710

21

21

xx

xx
 

6. 







.465

;9999,365

21

21

xx

xx
 21. 








.143

;9999,043

21

21

xx

xx
 

7. 







.1062

;9999,962

21

21

xx

xx
 22. 








.347

;9999,247

21

21

xx

xx
 

8. 







.211

;9999,111

21

21

xx

xx
 23. 








.595

;9999,495

21

21

xx

xx
 

9. 







.6712

;9999,5712

21

21

xx

xx
 24. 








.212

;9999,112

21

21

xx

xx
 

10. 







.883

;9999,783

21

21

xx

xx
 25. 








.467

;9999,367

21

21

xx

xx
 

11. 







.10310

;9999,9310

21

21

xx

xx
 26. 








.745

;9999,645

21

21

xx

xx
 

12. 







.16

;9999,06

21

21

xx

xx
 27. 








.365

;9999,265

21

21

xx

xx
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13. 







.623

;9999,523

21

21

xx

xx
 28. 








.9113

;9999,8113

21

21

xx

xx
 

14. 







.7311

;9999,6311

21

21

xx

xx
 29. 








.67

;9999,57

21

21

xx

xx
 

15. 







.849

;9999,749

21

21

xx

xx
 30. 








.15

;9999,05

21

21

xx

xx
 

 

3. Знайти квазірозв’язок рівняння bAx  , де ,

001

325

001






















п

А  






















3

5

2

п
п
п

b , n  – номер варіанту. У якості норми розглянути 



n

i

ixx
1

2
3

; у 

якості компакта використовувати 1:
3
xM : 












































3

5

2

,

001

325

001

п
п
п

b

п
А , n  – номер варіанту. 

Знайти псевдорозв’язок рівняння bAx  . Знайти псевдорозв’язок 
рівняння bAx  , використовуючи теорію псевдообертання. Порівняти отримані 
результати. Зробити висновки. 
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3. ЗРАЗОК ВИКОНАННЯ ІНДИВІДУАЛЬНОГО ЗАВДАННЯ 

 
 
Приклад 3.1. Знайти двома способами псевдообернену матрицю для 

матриці: 
























012

131

212

110

Q . 

Розв’язання. Для розв’язання задачі використаємо теорію з 
підпункту 1.4. Знайдемо псевдообернену матрицю за означенням, тобто за 

формулою       RRRSSSRSQ
11

, де RSQ   – скелетний розклад 
матриці Q , а   означає операцію транспонування. 

Ранг матриці Q  дорівнює 3, тому виберемо в якості матриці R  матрицю: 
























012

131

212

110

R . 

Тоді, очевидно, що в якості матриці S  треба взяти матрицю: 


















100

010

001

S . 

Запишемо транспоновані матриці: 




















0121

1311

2120

R , 

















100

010

001

S . 

Перемноживши матриці S  і 
S  та R  і 

R , знайдемо матриці, обернені до 
добутків: 

 



















100

010

001
1

SS ,  































246

59

82

7

41

6
82

7

41

15

41

7
41

6

41

7

41

12

1
RR . 

Далі обчислимо 
Q : 

     
RRRSSSQ

11
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

















































































0121

1311

2120

246

59

82

7

41

6
82

7

41

15

41

7
41

6

41

7

41

12

100

010

001

100

010

001

 































82

17

123

16

246

67

123

40
82

13

41

12

82

1

41

11
41

17

41

3

41

5

41

13

. 

Знайдемо псевдообернену матрицю 
Q  іншим способом, а саме за 

формулою   1

0
lim





  nIQQQQ ,  4n : 

























 

5551

51132

5393

1232

nIQQW . 

Знайдемо обернену матрицю 1
W , до матриці W . Елементи матриці 1

W  
дорівнюють: 

 24617627

10014025
23

23

11



w ,  24617627

70373
23

2

12 


w , 

 
 24617627

2072
23

2

13 


w ,  24617627

905
23

2

14



w , 

 24617627

70373
23

2

21 


w ,  24617627

495718
23

23

22



w , 

 24617627

28103
23

2

23



w ,  24617627

63475
23

2

24 


w , 

 
 24617627

2072
23

2

31



w ,  24617627

28103
23

2

32



w , 

 24617627

163816
23

23

33



w ,  24617627

36385
23

2

34



w , 

 24617627

905
23

2

41 


w ,  24617627

63475
23

2

42



w , 

 24617627

36385
23

2

43



w ,  24617627

8111722
23

23

44



w . 
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Знайдемо матрицю   1  nIQQQV . Елементи матриці V  

дорівнюють: 
 

24617627

3952
2311 


v , 
24617627

30232
23

2

12



v , 

24617627

18
23

2

13



v , 

24617627

102292
23

2

14 


v , 

24617627

66156
23

2

21



v , 

24617627

3
23

2

22 


v , 

24617627

72383
23

2

23



v , 

24617627

39
23

2

24



v , 

24617627

8021
23

2

31 


v , 
24617627

67362
23

2

32



v , 

24617627

3224
23

2

33



v , 

 
24617627

1723
2334 


v . 

Знайдемо 
Q , обчисливши границю: 



















































82

17

123

16

246

67

123

40
82

13

41

12

82

1

41

11
41

17

41

3

41

5

41

13

limlim

34333231

24232221

14131211

00
vvvv

vvvv

vvvv

VQ . 

Приклад 3.2. Знайти псевдорозв’язок   21
~,~~ xxx  рівняння bAx  . 

Знайти регуляризований розв’язок   21 ,~ xxx , який апроксимує 
псевдорозв’язок   21

~,~~ xxx  з точністю до 3-х правильних знаків методом 
регуляризації академіка А.М. Тихонова. 

Розв’язання. Нехай bAx   має вигляд: 








.173

;9999,073

21

21

xx

xx
 

Знайдемо ранг матриці A  і ранг розширеної матриці: 

1
73

73
rangrang 











A ;     2
173

9999,073
rang|rang 











BA , 

отже, система bAx   несумісна, тобто розв’язку в звичайному сенсі не існує. 
Знайдемо псевдорозв’язок цього рівняння. 

Для цього знайдемо розв’язок системи: 

 bAAxA
  ,  

де 











77

33
A . Обчислимо елементи відповідних матриць: 
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

































9842

4218

73

73

77

33
AA , 












9993,13

9997,5
bA . 

Система bAAxA
   приймає вигляд: 








,9993,139842

;9997,54218

21

21

xx

xx
 або 








.9993,139842

;9993,139842

21

21

xx

xx
 

Нехай 1x  – довільна змінна, тоді маємо що: 

42

9997,518 1
2




x
x . 

Псевдорозв’язок задачі знаходимо на основі розв’язку задачі мінімізації 
квадрата норми 2

2
2
1

2
xxx  , тобто знайдемо: 



















 


2

12
1

42

9997,518
min

x
x . 

Позначимо 
2

12
11

42

9997,518
)( 






 


x

xx  і використовуючи необхідну 

умову екстремуму   01  x , зайдемо 1x . Спростимо )( 1x : 

  





 


2

12
11

42

9997,518x
xx  

500204061222,01224428571,0183673469,1 1
2
1  xx . 

Обчислимо похідну: 
  1224428571,0367346938,2 11  xx , 

01224428571,0367346938,2 1 x , 

тоді маємо: 
20517215517,01 x  

Позначимо 05172,0~
1 x , тоді 12068,0

42

9997,505172,018~
2 


x . 

Далі будемо вважати систему 







,173

;9999,073

21

21

xx

xx
 – точною, а систему 








,173

;10001,73

21

21

xx

xx
 наближеною. Запишемо матриці (згідно з теорією 

підрозділу 1.5): 








 


73

0001,73
hA , 










1

1
b . 
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Тоді маємо: 
0001,0,0001,0,0001,0  hbb . 

Застосуємо метод регуляризації. Виберемо 01,0 h . Запишемо 
систему: 

  
  bAxEAA hhh  








.0001,140114,980003,42

;60003,4201,18

21

21

xx

xx
 

Розв’яжемо її: 














.1206786668,0

;50517190333,0

2

1

x

x
 

Тоді розв’язок  
21 ; xx  – апроксимує псевдорозв’язок  21

~,~ xx  з точністю до 
чотирьох знаків після коми. 

Приклад 3.3. Знайти квазірозв’язок рівняння bAx  , де 

















651

007

002

A , 


















2

2

2

b . У якості норми розглянути 



n

i

ixx
1

2
3

; у якості компакта 

використовувати 1:
3
xM . Знайти псевдорозв’язок рівняння bAx  . Знайти 

псевдорозв’язок рівняння bAx  , використовуючи теорію псевдообертання. 

Розв’язання. Очевидно, що   0

651

007

002

det A . Задача є некоректно 

поставленою, знайдемо її квазірозв’язок. Складемо функціонал: 
    2

3321 ,, bAxxxxfxf  , 

     2321
2

1
2

1
2

3
2652722  xxxxxbAx , 

де потрібно знайти  xfmin  при 1
3
x , тобто маємо задачу на умовний 

екстремум. Складемо допоміжну функцію Лагранжа (   1,,
2

3321  xxxx  – 

рівняння зв’язку): 
   1,,,

2

3

2

3321  xbAxxxxF , 

         12652722,,, 2
3

2
2

2
1

2
321

2
1

2
1321  xxxxxxxxxxxF . 

Знайдемо екстремум функції  ,,, 321 xxxF . Використаємо необхідну 
умову екстремуму: 
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

































.01

;0224726012

;0220605010

;02401210108

2
3

2
2

2
1

3321
3

2321
2

1321
1

xxx
F

xxxx
x

F

xxxx
x

F

xxxx
x

F

 (3.1) 

Розглянемо перші три рівняння системи (3.1), та розв’яжемо отриману 
систему відносно параметра  . 

 

 
 

 











.1236306

;1030255

;206554

321

321

321

xxx

xxx

xxx

 (3.2) 

Розв’яжемо цю систему методом Крамера, тобто: 3,2,1, 



 ix i
i , де 

 





 3233115

36306

30255

6554
23 ,  

 


 109820

363012

302510

6520
2

1 ,  

 



 44010

36126

30105

62054
2

2 ,  

 


 52812

12306

10255

20554
2

3 .  

Одержимо розв’язки у вигляді: 

 
3233115

109820

3233115

109820
223

2

1








x , (3.3) 

 
3233115

44010

3233115

44010
223

2

2 






x , (3.4) 

 
3233115

52812

3233115

52812
223

2

3








x . (3.5) 

Підставимо (3.3)-(3.5) в четверте рівняння системи (3.1), отримаємо 
рівняння відносно параметра  : 
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01
3233115

52812

3233115

44010

3233115

109820
2

2

2

2

2

2


































,  

         032331155281244010109820
22222  ,  

 0877430167819819047230 234  . (3.6) 
Застосуємо програмний пакет СКА Maple для знаходження коренів 

рівняння (3.6), а саме функцію fsolve: 

   ,0877430167819819047230 234
fsolve .  

Маємо два корні: 53351324,901   та 53306653,352  . Знайдені 
корені 1  та 2  підставляємо у формули (3.3)-(3.5). 

Для 1 : 

 700094468,01 x ; (3.7) 

 4571238173,02 x ; (3.8) 

 5485485809,03 x . (3.9) 

Для 2 : 

 946353036,01 x ; (3.10) 

 32068665692,02 x ; (3.11) 

 248238830,03 x . (3.12) 

Підставимо знайдені значення (3.7)-(3.12) у функцію 2

3
bAx : 

        2321
2

1
2

1
2

3
2652722  xxxxxbAxxf ,  

     6892233,127,, 32111  xxxfxf , (3.13) 

     55848293,23,, 32112  xxxfxf . (3.14) 

Серед знайдених значень (3.13)-(3.14) вибираємо найменше. В даному 
випадку ― це   55848293,232 xf , тобто значення (3.10)-(3.12) утворюють 
квазірозв’язок операторного рівняння bAx  : 

 

















248238830,0

32068665692,0

946353036,0

x . 

Знайдемо псевдорозв’язок рівняння bAx  . Для цього необхідно знайти 
розв’язок системи bAAxA

   з найменшою нормою. Запишемо необхідні 
матриці: 

 

















600

500

172

A ,  

 


















































36306

30255

6554

651

007

002

600

500

172

AA ,  
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

















































12

10

20

2

2

2

600

500

172

bA .  

В результаті одержимо систему bAAxA
   у вигляді: 

 












.1236306

;1030255

;206554

321

321

321

xxx

xxx

xxx

 (3.15) 

Знайдемо ранг матриці системи, а потім ранг розширеної матриці 
системи. Для цього виконаємо такі перетворення: 

 ~

36306

30255

159013250

~

36306

30255

6554















 
















  

 































 

000

159013250

36306

~

36306

000

159013250

~ ,  

 тобто   2

000

159013250

36306



















rangAArang .  

У системи (3.15) визначник дорівнює нулю, тому приведемо розширену 
матрицю системи (3.15) до трикутного вигляду і одну з змінних, наприклад 3x , 

позначимо через  : 

 
































0000

883182650

2651

~

1236306

1030252

206554

.  

Враховуючи позначення 3x , маємо таку систему: 

 







.88318265

;265

2

21

x

xx
 (3.16) 

Остаточно маємо: 

 
5

6

265

88
,

53

18
21 xx ,   3x . (3.17) 

Оскільки норма розв’язку повинна бути мінімальною, то псевдорозв’язок 
знаходимо на основі розв’язку задачі  2

3
2
2

2
1min xxx  : 

  


















 






 2

22
2
3

2
2

2
1

5

6

265

88

53

18
minmin xxx .  

Позначивши мінімізуючу функцію через    і використовуючи 
необхідну умову екстремуму   0 , знаходимо 
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  
70225

15844

1325

1056

25

61 2  ,  

  
3233

528
0

1325

1056

25

122
 .  

Враховуючи (3.17), псевдорозв’язок системи дорівнює: 

 

















1633158058,0

1360965048,0

3396226415,0

x .  

Знайдемо псевдорозв’язок рівняння bAx  , використовуючи теорію 
псевдообертання. 

Система завжди має єдиний псевдорозв’язок, який визначається 
формулою bAx

  , де 
A  можна знайти за наступною формулою: 

   1**

0
lim





  nIAAAA ,  

де nI  – одинична матриця. Запишемо необхідні матриці: 

 

















651

007

002

A ,   

















600

500

172

A ,  

 




























































6272

74914

2144

00

00

00

6272

74914

2144
*

nIAA .  

Знайдемо обернену матрицю   1* 
 nIAA . Для цього обчислимо 

визначник і відповідні алгебраїчні доповнення до елементів матриці. Маємо 
наступне: 

    3233115

6272

74914

2144

det 2* 





 nIAA ,  

 

 
 

 
 

   






















































 

3233115

53

3233115

7

3233115

2
3233115

7

3233115

24466

3233115

6114

3233115

2

3233115

6114

3233115

2989111

)(

222

22

2

2

222

2

1*
nIAA .  

Далі обчислимо маттрицю 
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   

 

 

















































 

3233115

536

3233115

42

3233115

12
3233115

535

3233115

35

3233115

10
32331153233115

617

3233115

612

)(

222

222

222

1**
nIAAA   

і перейдемо до границі: 

   




 1**

0
lim nIAAAA   

 

   

 

 






















































3233115

536

3233115

42

3233115

12
3233115

535

3233115

35

3233115

10
32331153233115

617

3233115

612

lim

222

222

222

0
  

 



























61

6

3233

42

3233

12
61

5

3233

35

3233

10

0
53

7

53

2

.  

Тоді псевдорозв’язок задачі має вигляд: 

 



















































































1633158058,0

1360965048,0

3396226415,0

3233

528
3233

440
53

18

2

2

2

61

6

3233

42

3233

12
61

5

3233

35

3233

10

0
53

7

53

2

x .  
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ПРЕДМЕТНИЙ ПОКАЖЧИК 

 

 

А 
Альтернатива Фредгольма, 15 
І 
Інтегральне рівняння, 10 
Інтегральне рівняння Фредгольма 

другого роду, 10 
першого роду, 10 

К 
Квазімонотонний, 30 

стабілізатор, 30 
функціонал, 30 

Квазірозв’язки 
матричного рівняння, 20 
некоректних задач для 

інтегрального рівняння 
Фредгольма першого роду, 22 

Квазірозв’язок рівняння, 19 
Коректно поставлена задача (за 

Адамаром), 6 
Коректно сформульована задача в 

метриці, 40 
М 
Матричне рівняння, 10 
Метод квазірозв’язків, 19 
Метод регуляризації 

А.М. Тихонова, 24 
для матричного рівняння, 24 
для операторного рівняння, 27 

Метод розв’язків на компактах, 16 
Метод Тихонова, 29 
Мінімум нев’язки, 12 

Н 
Некоректні екстремальні задачі, 35 
Некоректно поставлені задачі, 6 
Нормальний розв’язок, 13 
Нуль-простір, 15 
О 
Операторні рівняння, 9 

другого роду, 10 
першого роду, 10 

Ортопроектор, 14 
П 
Параметр регуляризації, 25 
Погано обумовлені СЛАР, 7 
Похибка, 24 
Приклади некоректних задач, 7 
Проекція елемента, 20 
Псевдообернена матриця, 13 
Псевдорозв’язок, 13 

матричного рівняння, 13 
СЛАУ, 13 

Р 
Регуляризована система, 25 
Регуляризоване сімейство 

наближених розв’язків, 24 
Регуляризуючий алгоритм, 24 
С 
Системи рівнянь (СЛАР), 12 
Скелетний розклад матриці, 13 
Стійка на просторах задача, 6 
Т 
Теорема Кронекера-Капеллі, 15 
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ДОДАТОК А. ВІДОМОСТІ З ФУНКЦІОНАЛЬНОГО АНАЛІЗУ 

 
ОСНОВНІ МЕТРИЧНІ ПРОСТОРИ 

 
Простір Елементи простору Метрика 

dX  
Простір з дискретною метрикою – 
довільна множина X  з метрикою 
 yxd , . 

Для Xyx ,  

 








.,1

,,0
,

yx

yx
yxd  

s  
Простір всіх числових послідовностей 

  Rxxx kkk  
 ,1  (або Cxk  ). 

Для   1kkxx , 

  syy
kk  
1  

  


 



1 12

1
,

k kk

kk

k yx

yx
yx  

0B  
Простір числових послідовностей 

  Nxxx kkk  
 ,1 . 

Для   1kkxx , 

  01 Byy
kk  
  

 











.,
1

,,0

,
yx

k

yx

yx , де k  – 

номер першої координати, 
для якої kk yx  . 

N  Простір натуральних чисел 

Для Nyx ,  

 














.,
1

1

,,0

,
yx

yx

yx

yx  
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ОСНОВНІ НОРМОВАНІ ПРОСТОРИ 
 

Простір Елементи простору Метрика 

 nn
CR  

n -вимірний простір векторів 
 nxxxx ,,, 21  , Rxi   (або Cxi  ), 

ni ,,2,1   

2

1

1

2









 



n

i

ixx  

pl  

Простір послідовностей   1kkxx , 

таких що 


n

k

p

kx
1

, де  p1 . 

p

k

p

kxx

1

1








 




 

 Ml  
Простір обмежених послідовностей 

  1iixx , таких що i
i

xsup . i
i

xx sup  

c  
Простір збіжних послідовностей 

  1iixx . 
i

i

xx sup  

0c  
Простір послідовностей   1iixx , 

збіжних до нуля, тобто 0lim 


i
n

x . 
i

i
xx max  

n
c  

Простір векторів  nxxxx ,,, 21  , 

Rxi   (або Cxi  ), ni ,,2,1  . 
i

i
xx max  

 baC ;  
Простір неперервних на відрізку  ba;  

функцій  txx  .  
 txx

bat ;
max


  

 baCp ;  

Простір неперервних на відрізку  ba;  

функцій  txx   з нормою 
p

 , де 

 p1  
 

pb

a

p
dttxx

1











   

 baC
n ;  

Простір n  раз неперервно 
диференційовних на відрізку  ba;  

функцій  txx  . 
 

  
 


n

k

k

bat
txx

0 ;
max  

 baLp ;  

Простір класів еквівалентних функцій 
 txx  , сумовних за Лебегом з 

степенем p  на відрізку  ba; , де 
 p1 , тобто таких що 

  
b

a

p
dttx . 

 
pb

a

p
dttxx

1











   
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