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In 2007, Thomas H. Davenport and Jeanne G. Harris wrote a groundbreaking book, 
 Competing on Analytics: The New Science of Winning (Boston: Harvard Business School 
Press). They described how many organizations are using analytics strategically to make 
better decisions and improve customer and shareholder value. Over the past several years, 
we have seen remarkable growth in analytics among all types of organizations. The In-
stitute for Operations Research and the Management Sciences (INFORMS) noted that 
analytics software as a service is predicted to grow three times the rate of other business 
segments in upcoming years.1 In addition, the MIT Sloan Management Review in collabo-
ration with the IBM Institute for Business Value surveyed a global sample of nearly 3,000 
executives, managers, and analysts.2 This study concluded that top-performing organiza-
tions use analytics five times more than lower performers, that improvement of informa-
tion and analytics was a top priority in these organizations, and that many organizations 
felt they were under significant pressure to adopt advanced information and analytics 
 approaches. Since these reports were published, the interest in and the use of analytics has 
grown dramatically.

In reality, business analytics has been around for more than a half-century. Business 
schools have long taught many of the core topics in business analytics—statistics, data 
analysis, information and decision support systems, and management science. However, 
these topics have traditionally been presented in separate and independent courses and 
supported by textbooks with little topical integration. This book is uniquely designed to 
present the emerging discipline of business analytics in a unified fashion consistent with 
the contemporary definition of the field. 

About the Book

This book provides undergraduate business students and introductory graduate students 
with the fundamental concepts and tools needed to understand the emerging role of 
business analytics in organizations, to apply basic business analytics tools in a spread-
sheet environment, and to communicate with analytics professionals to effectively use 
and interpret analytic models and results for making better business decisions. We take 
a balanced, holistic approach in viewing business analytics from descriptive, predictive, 
and prescriptive perspectives that today define the discipline.

Preface

1Anne Robinson, Jack Levis, and Gary Bennett, INFORMS News: INFORMS to Officially Join Analyt-
ics Movement. http://www.informs.org/ORMS-Today/Public-Articles/October-Volume-37-Number-5/
INFORMS-News-INFORMS-to-Officially-Join-Analytics-Movement.
2“Analytics: The New Path to Value,” MIT Sloan Management Review Research Report, Fall 2010.
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This book is organized in five parts. 

 1. Foundations of Business Analytics

  The first two chapters provide the basic foundations needed to understand busi-
ness analytics, and to manipulate data using Microsoft Excel.

 2. Descriptive Analytics

  Chapters 3 through 7 focus on the fundamental tools and methods of data 
 analysis and statistics, focusing on data visualization, descriptive statistical mea-
sures, probability distributions and data modeling, sampling and estimation, 
and statistical  inference. We subscribe to the American Statistical Association’s 
 recommendations for teaching introductory statistics, which include emphasiz-
ing statistical literacy and developing statistical thinking, stressing conceptual 
 understanding rather than mere knowledge of procedures, and using technology 
for developing conceptual understanding and analyzing data. We believe these 
goals can be accomplished without introducing every conceivable technique into 
an 800–1,000 page book as many mainstream books currently do. In fact, we 
cover all essential content that the state of Ohio has mandated for undergraduate 
business statistics across all public colleges and universities.

 3. Predictive Analytics

  In this section, Chapters 8 through 12 develop approaches for applying regression, 
forecasting, and data mining techniques, building and analyzing predictive mod-
els on spreadsheets, and simulation and risk analysis.

 4. Prescriptive Analytics

  Chapters 13 through 15, along with two online supplementary chapters, explore 
linear, integer, and nonlinear optimization models and applications, including 
 optimization with uncertainty.

 5. Making Decisions

  Chapter 16 focuses on philosophies, tools, and techniques of decision analysis.

  The second edition has been carefully revised to improve both the content and 
pedagogical organization of the material.  Specifically, this edition has a much 
stronger emphasis on data visualization, incorporates the use of additional Excel 
tools, new features of Analytic Solver Platform for Education, and many new data 
sets and problems. Chapters 8 through 12 have been re-ordered from the first edi-
tion to improve the logical flow of the topics and provide a better transition to 
spreadsheet modeling and applications. 

Features of the Book

•	Numbered Examples—numerous, short examples throughout all chapters illus-
trate concepts and techniques and help students learn to apply the techniques and 
understand the results.

•	“Analytics in Practice”—at least one per chapter, this feature describes real  
applications in business. 

•	Learning Objectives—lists the goals the students should be able to achieve after 
studying the chapter.
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•	Key Terms—bolded within the text and listed at the end of each chapter, these 
words will assist students as they review the chapter and study for exams. Key 
terms and their definitions are contained in the glossary at the end of the book.

•	End-of-Chapter Problems and Exercises—help to reinforce the material cov-
ered through the chapter.

•	Integrated Cases—allows students to think independently and apply the relevant 
tools at a higher level of learning. 

•	Data Sets and Excel Models—used in examples and problems and are available 
to students at www.pearsonglobaleditions.com/evans

Software Support

While many different types of software packages are used in business analytics applica-
tions in the industry, this book uses Microsoft Excel and Frontline Systems’ powerful 
Excel add-in, Analytic Solver Platform for Education, which together provide exten-
sive capabilities for business analytics. Many statistical software packages are available 
and provide very powerful capabilities; however, they often require special (and costly) 
 licenses and additional learning requirements. These packages are certainly appropriate 
for analytics professionals and students in master’s programs dedicated to preparing such 
professionals. However, for the general business student, we believe that Microsoft Ex-
cel with proper add-ins is more appropriate. Although Microsoft Excel may have some 
deficiencies in its statistical capabilities, the fact remains that every business student will 
use Excel throughout their careers. Excel has good support for data visualization, basic 
statistical analysis, what-if analysis, and many other key aspects of business analytics. In 
fact, in using this book, students will gain a high level of proficiency with many features 
of Excel that will serve them well in their future careers. Furthermore Frontline Systems’ 
 Analytic Solver Platform for Education Excel add-ins are integrated throughout the book. 
This add-in, which is used among the top business organizations in the world, provides a 
comprehensive coverage of many other business analytics topics in a common platform. 
This add-in provides support for data modeling, forecasting, Monte Carlo simulation and 
risk analysis, data mining, optimization, and decision analysis. Together with Excel, it 
provides a comprehensive basis to learn business analytics effectively.

To the Students

To get the most out of this book, you need to do much more than simply read it! Many ex-
amples describe in detail how to use and apply various Excel tools or add-ins. We highly 
recommend that you work through these examples on your computer to replicate the out-
puts and results shown in the text. You should also compare mathematical formulas with 
spreadsheet formulas and work through basic numerical calculations by hand. Only in this 
fashion will you learn how to use the tools and techniques effectively, gain a better under-
standing of the underlying concepts of business analytics, and increase your proficiency in 
using Microsoft Excel, which will serve you well in your future career.

Visit the Companion Web site (www.pearsonglobaleditions.com/evans) for access to 
the following: 

•	Online Files: Data Sets and Excel Models—files for use with the numbered 
examples and the end-of-chapter problems (For easy reference, the relevant file 
names are italicized and clearly stated when used in examples.) 
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•	Software Download Instructions: Access to Analytic Solver Platform for 
 Education—a free, semester-long license of this special version of Frontline 
 Systems’ Analytic Solver Platform software for Microsoft Excel.

Integrated throughout the book, Frontline Systems’ Analytic Solver Platform for Educa-
tion Excel add-in software provides a comprehensive basis to learn business analytics 
 effectively that includes: 

•	Risk Solver Pro—This program is a tool for risk analysis, simulation, and optimi-
zation in Excel. There is a link where you will learn more about this software at 
www.solver.com.

•	XLMiner—This program is a data mining add-in for Excel. There is a link where 
you will learn more about this software at www.solver.com/xlminer. 

•	Premium Solver Platform, a large superset of Premium Solver and by far the most 
powerful spreadsheet optimizer, with its PSI interpreter for model analysis and 
five built-in Solver Engines for linear, quadratic, SOCP, mixed-integer, nonlinear, 
non-smooth and global optimization.

•	Ability to solve optimization models with uncertainty and recourse decisions, 
 using simulation optimization, stochastic programming, robust optimization, and 
stochastic decomposition.

•	New integrated sensitivity analysis and decision tree capabilities, developed in 
 cooperation with Prof. Chris Albright (SolverTable), Profs. Stephen Powell and 
Ken Baker (Sensitivity Toolkit), and Prof. Mike Middleton (TreePlan).

•	A special version of the Gurobi Solver—the ultra-high-performance linear mixed-
integer optimizer created by the respected computational scientists at Gurobi 
Optimization.

To register and download the software successfully, you will need a Texbook Code 
and a Course Code. The Textbook Code is EBA2 and your instructor will provide 
the Course Code. This download includes a 140-day license to use the software. Visit  
www. pearsonglobaleditions.com/Evans for complete download instructions.

To the Instructors

Instructor’s Resource Center—Reached through a link at  
www.pearsonglobaleditions.com/Evans, the Instructor’s Resource Center contains the 
electronic files for the complete Instructor’s Solutions Manual, PowerPoint lecture pre-
sentations, and the Test Item File.

•	Register, redeem, log in at www.pearsonglobaleditions.com/Evans, instructors 
can access a variety of print, media, and presentation resources that are available 
with this book in downloadable digital format. Resources are also available for 
course management platforms such as Blackboard, WebCT, and CourseCompass.

•	Need help? Pearson Education’s dedicated technical support team is ready to as-
sist instructors with questions about the media supplements that accompany this 
text. Visit http://247pearsoned.com for answers to frequently asked questions and 
toll-free user support phone numbers. The supplements are available to adopting 
instructors. Detailed descriptions are provided at the Instructor’s Resource Center.

•	Instructor’s Solutions Manual—The Instructor’s Solutions Manual, updated and 
revised for the second edition by the author, includes Excel-based solutions for all 
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end-of-chapter problems, exercises, and cases. The Instructor’s  Solutions Manual  
is available for download by visiting www.pearsonglobaleditions.com/Evans  
and clicking on the Instructor Resources link.

•	PowerPoint presentations—The PowerPoint slides, revised and updated by the au-
thor, are available for download by visiting www.pearsonglobaleditions.com/Evans 
and clicking on the Instructor Resources link. The PowerPoint slides provide 
an instructor with individual lecture outlines to accompany the text. The slides 
include nearly all of the figures, tables, and examples from the text. Instructors 
can use these lecture notes as they are or can easily modify the notes to reflect 
specific presentation needs.

•	Test Bank—The TestBank, prepared by Paolo Catasti from Virginia  
Commonwealth University, is available for download by visiting  
www. pearsonglobaleditions.com/Evans and clicking on the Instructor 
 Resources link.

•	Analytic Solver Platform for Education (ASPE)—This is a special version of 
Frontline Systems’ Analytic Solver Platform software for Microsoft Excel.   
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Learning Objectives

After studying this chapter, you will be able to:

•	Define business analytics.

•	Explain why analytics is important in today’s business 
environment.

•	State some typical examples of business applications 
in which analytics would be beneficial.

•	Summarize the evolution of business analytics 
and explain the concepts of business intelligence, 
operations research and management science, and 
decision support systems.

•	Explain and provide examples of descriptive, 
predictive, and prescriptive analytics.

•	State examples of how data are used in business.

•	Explain the difference between a data set and a 
database.

•	Define a metric and explain the concepts of 
measurement and measures.

•	Explain the difference between a discrete metric and 
continuous metric, and provide examples of each.

•	Describe the four groups of data classification, 
categorical, ordinal, interval, and ratio, and provide 
examples of each.

•	Explain the concept of a model and various ways a 
model can be characterized.

•	Define and list the elements of a decision model.

•	Define and provide an example of an influence 
diagram.

•	Use influence diagrams to build simple mathematical 
models.

•	Use predictive models to compute model outputs.

•	Explain the difference between uncertainty and risk.

•	Define the terms optimization, objective function, and 
optimal solution.

•	Explain the difference between a deterministic and 
stochastic decision model.

•	List and explain the steps in the problem-solving 
process.

Introduction to 
Business Analytics1Ch

ap
te

r
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Most of you have likely been to a zoo, seen the animals, had something to 

eat, and bought some souvenirs. You probably wouldn’t think that managing 

a zoo is very difficult; after all, it’s just feeding and taking care of the ani-

mals, right? A zoo might be the last place that you would expect to find busi-

ness analytics being used, but not anymore. The Cincinnati Zoo & Botanical 

 Garden has been an “early adopter” and one of the first organizations of its 

kind to exploit business analytics.1

Despite generating more than two-thirds of its budget through its own 

 fund-raising efforts, the zoo wanted to reduce its reliance on local tax subsidies 

even further by increasing visitor attendance and revenues from secondary 

sources such as membership, food and retail outlets. The zoo’s senior man-

agement surmised that the best way to realize more value from each visit was 

to offer visitors a truly transformed customer experience. By using business 

analytics to gain greater insight into visitors’ behavior and tailoring  operations 

to their preferences, the zoo expected to increase attendance, boost member-

ship, and maximize sales.

The project team—which consisted of consultants from IBM and  BrightStar 

Partners, as well as senior executives from the zoo—began  translating the 

 organization’s goals into technical solutions. The zoo worked to create a 

 business analytics platform that was capable of delivering the desired goals 

by combining data from ticketing and point-of-sale systems throughout the 

zoo with membership information and geographical data gathered from the 

ZIP codes of all visitors. This enabled the creation of reports and dashboards 

that give everyone from senior managers to zoo staff access to real-time 

 information that helps them optimize operational management and transform 

the customer experience.

By integrating weather forecast data, the zoo is able to compare current 

forecasts with historic attendance and sales data, supporting better decision-

making for labor scheduling and inventory planning. Another area where the 

solution delivers new insight is food service. By opening food outlets at spe-

cific times of day when demand is highest (for example, keeping ice cream 

kiosks open in the final hour before the zoo closes), the zoo has been able 

to increase sales significantly. The zoo has been able to increase attendance 

and revenues dramatically, resulting in annual ROI of 411%. The business 

1Source: IBM Software Business Analtyics, “Cincinnati Zoo transforms customer experience and boosts 
profits,” © IBM Corporation 2012.
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analytics initiative paid for itself within three months, and delivers, on aver-

age, benefits of $738,212 per year. Specifically,

•	The zoo has seen a 4.2% rise in ticket sales by targeting potential  

visitors who live in specific ZIP codes.

•	Food revenues increased by 25% by optimizing the mix of products on 

sale and adapting selling practices to match peak purchase times.

•	Eliminating slow-selling products and targeting visitors with  specific  

promotions enabled an 18% increase in merchandise sales.

•	Cut marketing expenditure, saving $40,000 in the first year, and reduced 

advertising expenditure by 43% by eliminating  ineffective campaigns and 

segmenting customers for more targeted marketing.

Because of the zoo’s success, other organizations such as Point Defiance 

Zoo & Aquarium, in Washington state, and History Colorado, a museum in 

Denver, have embarked on similar initiatives.

In recent years, analytics has become increasingly important in the world 

of business, particularly as organizations have access to more and more data. 

Managers today no longer make decisions based on pure judgment and experi-

ence; they rely on factual data and the ability to manipulate and analyze data to 

support their decisions. As a result, many companies have recently established 

analytics departments; for instance, IBM reorganized its consulting business 

and established a new 4,000-person organization focusing on analytics.2 Com-

panies are increasingly seeking business graduates with the ability to under-

stand and use analytics. In fact, in 2011, the U.S. Bureau of Labor Statistics 

predicted a 24% increase in demand for professionals with analytics expertise.

No matter what your academic business concentration is, you will most 

likely be a future user of analytics to some extent and work with analytics pro-

fessionals. The purpose of this book is to provide you with a basic introduc-

tion to the concepts, methods, and models used in business analytics so that 

you will develop not only an appreciation for its capabilities to support and 

enhance business decisions, but also the ability to use business analytics at 

an elementary level in your work. In this chapter, we introduce you to the field 

of business analytics, and set the foundation for many of the concepts and 

techniques that you will learn.

2Matthew J. Liberatore and Wenhong Luo, “The Analytics Movement: Implications for Operations 
 Research,” Interfaces, 40, 4 (July–August 2010): 313–324.
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What Is Business Analytics?

Everyone makes decisions. Individuals face personal decisions such as choosing a college 
or graduate program, making product purchases, selecting a mortgage instrument, and 
 investing for retirement. Managers in business organizations make numerous decisions 
every day. Some of these decisions include what products to make and how to price them, 
where to locate facilities, how many people to hire, where to allocate advertising budgets, 
whether or not to outsource a business function or make a capital investment, and how to 
schedule production. Many of these decisions have significant economic consequences; 
moreover, they are difficult to make because of uncertain data and imperfect information 
about the future. Thus, managers need good information and assistance to make such criti-
cal decisions that will impact not only their companies but also their careers. What makes 
business decisions complicated today is the overwhelming amount of available data and 
information. Data to support business decisions—including those specifically collected 
by firms as well as through the Internet and social media such as Facebook—are growing 
 exponentially and becoming increasingly difficult to understand and use. This is one of 
the reasons why analytics is important in today’s business environment.

Business analytics, or simply analytics, is the use of data, information technology, 
statistical analysis, quantitative methods, and mathematical or computer-based models to 
help managers gain improved insight about their business operations and make better, fact-
based decisions. Business analytics is “a process of transforming data into actions through 
analysis and insights in the context of organizational decision making and problem solv-
ing.”3  Business analytics is supported by various tools such as Microsoft Excel and various 
Excel add-ins, commercial statistical software packages such as SAS or Minitab, and more- 
complex business intelligence suites that integrate data with analytical software.

Tools and techniques of business analytics are used across many areas in a wide va-
riety of organizations to improve the management of customer relationships, financial and 
marketing activities, human capital, supply chains, and many other areas. Leading banks 
use analytics to predict and prevent credit fraud. Manufacturers use analytics for produc-
tion planning, purchasing, and inventory management. Retailers use analytics to recom-
mend products to customers and optimize marketing promotions. Pharmaceutical firms 
use it to get life-saving drugs to market more quickly. The leisure and vacation indus-
tries use analytics to analyze historical sales data, understand customer behavior, improve  
Web site design, and optimize schedules and bookings. Airlines and hotels use analytics to 
dynamically set prices over time to maximize revenue. Even sports teams are using busi-
ness analytics to determine both game strategy and optimal ticket prices.4 Among the many 
organizations that use analytics to make strategic decisions and manage day-to-day opera-
tions are Harrah’s Entertainment, the Oakland Athletics baseball and New England Patriots 
football teams, Amazon.com, Procter & Gamble, United Parcel Service (UPS), and Capital 
One bank. It was reported that nearly all firms with revenues of more than $100 million are 
using some form of business analytics.

Some common types of decisions that can be enhanced by using analytics include

•	pricing (for example, setting prices for consumer and industrial goods, govern-
ment contracts, and maintenance contracts),

•	customer segmentation (for example, identifying and targeting key customer 
groups in retail, insurance, and credit card industries),

3Liberatore and Luo, “The Analytics Movement.”
4Jim Davis, “8 Essentials of Business Analytics,” in “Brain Trust—Enabling the Confident Enterprise 
with Business Analytics” (Cary, NC: SAS Institute, Inc., 2010): 27–29. www.sas.com/bareport
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•	merchandising (for example, determining brands to buy, quantities, and 
allocations),

•	location (for example, finding the best location for bank branches and ATMs, or 
where to service industrial equipment), 

and many others in operations and supply chains, finance, marketing, and human  
resources—in fact, in every discipline of business.5

Various research studies have discovered strong relationships between a company’s 
performance in terms of profitability, revenue, and shareholder return and its use of analyt-
ics. Top-performing organizations (those that outperform their competitors) are three times 
more likely to be sophisticated in their use of analytics than lower performers and are more 
likely to state that their use of analytics differentiates them from competitors.6 However, re-
search has also suggested that organizations are overwhelmed by data and struggle to under-
stand how to use data to achieve business results and that most organizations simply don’t 
understand how to use analytics to improve their businesses. Thus, understanding the ca-
pabilities and techniques of analytics is vital to managing in today’s business environment.

One of the emerging applications of analytics is helping businesses learn from social 
media and exploit social media data for strategic advantage.7 Using analytics, firms can 
integrate social media data with traditional data sources such as customer surveys, focus 
groups, and sales data; understand trends and customer perceptions of their products; and 
create informative reports to assist marketing managers and product designers.

Evolution of Business Analytics

Analytical methods, in one form or another, have been used in business for more than a 
century. However, the modern evolution of analytics began with the introduction of com-
puters in the late 1940s and their development through the 1960s and beyond. Early com-
puters provided the ability to store and analyze data in ways that were either very difficult 
or impossible to do so manually. This facilitated the collection, management, analysis, and 
reporting of data, which is often called business intelligence (BI), a term that was coined 
in 1958 by an IBM researcher, Hans Peter Luhn.8 Business intelligence software can an-
swer basic questions such as “How many units did we sell last month?” “What products 
did customers buy and how much did they spend?” “How many credit card transactions 
were completed yesterday?” Using BI, we can create simple rules to flag exceptions au-
tomatically, for example, a bank can easily identify transactions greater than $10,000 to 
report to the Internal Revenue Service.9 BI has evolved into the modern discipline we now 
call information systems (IS).

5Thomas H. Davenport, “How Organizations Make Better Decisions,” edited excerpt of an article dis-
tributed by the International Institute for Analytics published in “Brain Trust—Enabling the Confident 
Enterprise with Business Analytics” (Cary, NC: SAS Institute, Inc., 2010): 8–11. www.sas.com/bareport
6Thomas H. Davenport and Jeanne G. Harris, Competing on Analytics (Boston: Harvard Business School 
Press, 2007): 46; Michael S. Hopkins, Steve LaValle, Fred Balboni, Nina Kruschwitz, and Rebecca 
Shockley, “10 Data Points: Information and Analytics at Work,” MIT Sloan Management Review, 52, 1 
(Fall 2010): 27–31.
7Jim Davis, “Convergence—Taking Social Media from Talk to Action,” SASCOM (First Quarter 2011): 17.

9Jim Davis, “Business Analytics: Helping You Put an Informed Foot Forward,” in “Brain Trust— Enabling 
the Confident Enterprise with Business Analytics,” (Cary, NC: SAS Institute, Inc., 2010): 4–7. www.sas 
.com/bareport

8H. P. Luhn, “A Business Intelligence System.” IBM Journal (October 1958).
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Statistics has a long and rich history, yet only rather recently has it been recognized 
as an important element of business, driven to a large extent by the massive growth of 
data in today’s world. Google’s chief economist stated that statisticians surely have the 
“really sexy job” for the next decade.10 Statistical methods allow us to gain a richer 
understanding of data that goes beyond business intelligence reporting by not only sum-
marizing data succinctly but also finding unknown and interesting relationships among 
the data. Statistical methods include the basic tools of description, exploration, estima-
tion, and inference, as well as more advanced techniques like regression, forecasting, 
and data mining.

Much of modern business analytics stems from the analysis and solution of com-
plex  decision problems using mathematical or computer-based models—a discipline 
known as operations research, or management science. Operations research (OR) was 
born from  efforts to improve military operations prior to and during World War II. After 
the war, scientists recognized that the mathematical tools and techniques developed for 
military  applications could be applied successfully to problems in business and industry. A 
 significant amount of research was carried on in public and private think tanks during the 
late 1940s and through the 1950s. As the focus on business applications expanded, the term 
 management science (MS) became more prevalent. Many people use the terms operations 
research and management science interchangeably, and the field became known as Opera-
tions Research/Management Science (OR/MS). Many OR/MS applications use modeling 
and optimization—techniques for translating real problems into mathematics, spreadsheets, 
or other computer languages, and using them to find the best (“optimal”) solutions and deci-
sions. INFORMS, the Institute for Operations  Research and the Management Sciences, is 
the leading professional society devoted to OR/MS and analytics, and publishes a bimonthly 
magazine called Analytics (http://analytics-magazine.com/). Digital subscriptions may be 
obtained free of charge at the Web site.

Decision support systems (DSS) began to evolve in the 1960s by combining busi-
ness intelligence concepts with OR/MS models to create analytical-based computer sys-
tems to support decision making. DSSs include three components:

 1. Data management. The data management component includes databases for 
storing data and allows the user to input, retrieve, update, and manipulate data.

 2. Model management. The model management component consists of various 
statistical tools and management science models and allows the user to easily 
build, manipulate, analyze, and solve models.

 3. Communication system. The communication system component provides the 
interface necessary for the user to interact with the data and model manage-
ment components.11

DSSs have been used for many applications, including pension fund management, 
portfolio management, work-shift scheduling, global manufacturing and facility location, 
advertising-budget allocation, media planning, distribution planning, airline operations 
planning, inventory control, library management, classroom assignment, nurse schedul-
ing, blood distribution, water pollution control, ski-area design, police-beat design, and 
energy planning.12

10James J. Swain, “Statistical Software in the Age of the Geek,” Analytics-magazine.org, March/April 
2013, pp. 48–55. www.informs.org
11William E. Leigh and Michael E. Doherty, Decision Support and Expert Systems (Cincinnati, OH: 
South-Western Publishing Co., 1986).
12H. B. Eom and S. M. Lee, “A Survey of Decision Support System Applications (1971–April 1988),” 
Interfaces, 20, 3 (May–June 1990): 65–79.
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Modern business analytics can be viewed as an integration of BI/IS, statistics, 
and modeling and optimization as illustrated in Figure 1.1. While the core topics are 
 traditional and have been used for decades, the uniqueness lies in their intersections. For 
example, data mining is focused on better understanding characteristics and patterns 
among variables in large databases using a variety of statistical and analytical tools. Many 
standard statistical tools as well as more advanced ones are used extensively in data min-
ing.  Simulation and risk analysis relies on spreadsheet models and statistical analysis 
to  examine the impacts of uncertainty in the estimates and their potential interaction with 
one another on the output variable of interest. Spreadsheets and formal models allow one 
to manipulate data to perform what-if analysis—how specific combinations of inputs that 
reflect key assumptions will affect model outputs. What-if analysis is also used to assess 
the sensitivity of optimization models to changes in data inputs and provide better insight 
for making good decisions.

Perhaps the most useful component of business analytics, which makes it truly unique, 
is the center of Figure 1.1—visualization. Visualizing data and results of analyses provide 
a way of easily communicating data at all levels of a business and can reveal surprising 
patterns and relationships. Software such as IBM’s Cognos system exploits data visualiza-
tion for query and reporting, data analysis, dashboard presentations, and scorecards linking 
strategy to operations. The Cincinnati Zoo, for example, has used this on an iPad to display 
hourly, daily, and monthly reports of attendance, food and retail location revenues and sales, 
and other metrics for prediction and marketing strategies. UPS uses telematics to capture ve-
hicle data and display them to help make decisions to improve efficiency and performance. 
You may have seen a tag cloud (see the graphic at the beginning of this chapter), which is a 
visualization of text that shows words that appear more frequently using larger fonts.

The most influential developments that propelled the use of business analytics have been 
the personal computer and spreadsheet technology. Personal computers and spreadsheets 
provide a convenient way to manage data, calculations, and visual graphics simultaneously, 
using intuitive representations instead of abstract mathematical notation. Although the early 

Figure 1.1
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applications of spreadsheets were primarily in accounting and finance, spreadsheets have 
developed into powerful general-purpose managerial tools for applying techniques of busi-
ness analytics. The power of analytics in a personal computing  environment was noted some  
20 years ago by business consultants Michael Hammer and James Champy, who said, “When 
accessible data is combined with easy-to-use analysis and modeling tools, frontline workers 
—when properly trained—suddenly have sophisticated decision-making capabilities.”14 
Although many good analytics software packages are available to professionals, we use 
 Microsoft Excel and a powerful add-in called  Analytic Solver Platform throughout this book.

Impacts and Challenges

The impact of applying business analytics can be significant. Companies report  reduced 
costs, better risk management, faster decisions, better productivity, and enhanced 
 bottom-line performance such as profitability and customer satisfaction. For example, 
1-800-flowers.com uses analytic software to target print and online promotions with 
greater accuracy; change prices and offerings on its Web site (sometimes hourly); and 
optimize its marketing, shipping, distribution, and manufacturing operations, resulting in a 
$50 million cost savings in one year.15

Business analytics is changing how managers make decisions.16 To thrive in today’s 
business world, organizations must continually innovate to differentiate themselves from 
competitors, seek ways to grow revenue and market share, reduce costs, retain exist-
ing customers and acquire new ones, and become faster and leaner. IBM  suggests that 

One of the most cited examples of the use of  
analytics in business is Harrah’s Entertainment. 
Harrah’s owns numerous hotels and casinos and uses 
analytics to support revenue management activities, 
which involve selling the right resources to the right 
customer at the right price to maximize revenue and 
profit. The gaming industry views hotel rooms as 
 incentives or rewards to support casino gaming activ-
ities and revenues, not as revenue-maximizing assets. 
Therefore, Harrah’s objective is to set room rates 
and accept reservations to maximize the expected 
gaming profits from customers. They begin with col-
lecting and tracking of customers’ gaming activi-
ties (playing slot machines and casino games) using 
Harrah’s “Total Rewards” card program, a customer 
loyalty program that provides rewards such as meals, 

discounted rooms, and other perks to customers 
based on the amount of money and time they spend 
at Harrah’s. The data collected are used to segment 
customers into more than 20 groups based on their 
expected gaming activities. For each customer seg-
ment, analytics forecasts demand for hotel rooms by 
arrival date and length of stay. Then Harrah’s uses a 
prescriptive model to set prices and allocate rooms 
to these customer segments. For example, the sys-
tem might offer complimentary rooms to customers 
who are expected to generate a gaming profit of at 
least $400 but charge $325 for a room if the profit 
is expected to be only $100. Marketing can use the  
information to send promotional offers to targeted 
customer segments if it identifies low-occupancy 
rates for specific dates.

Analytics in Practice: Harrah’s Entertainment13

14Michael Hammer and James Champy, Reengineering the Corporation (New York: HarperBusiness, 
1993): 96.
15Jim Goodnight, “The Impact of Business Analytics on Performance and Profitability,” in “Brain Trust—
Enabling the Confident Enterprise with Business Analytics” (Cary, NC: SAS Institute, Inc., 2010): 4–7. 
www.sas.com/bareport

13Based on Liberatore and Luo, “The Analytics Movement”; and Richard Metters et al., “The ‘Killer 
 Application’ of Revenue Management: Harrah’s Cherokee Casino & Hotel,” Interfaces, 38, 3 (May–June 
2008): 161–175.

16Analytics: The New Path to Value, a joint MIT Sloan Management Review and IBM Institute for 
 Business Value study.
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 traditional management approaches are evolving in today’s analytics-driven environment 
to include more fact-based decisions as opposed to judgment and intuition, more pre-
diction rather than reactive decisions, and the use of analytics by everyone at the point 
where decisions are made rather than relying on skilled experts in a consulting group.17 
Nevertheless, organizations face many challenges in developing analytics capabilities, 
including lack of understanding of how to use analytics, competing business priorities, 
insufficient analytical skills, difficulty in getting good data and sharing information, and 
not understanding the benefits versus perceived costs of analytics studies. Successful 
 application of analytics requires more than just knowing the tools; it requires a high-
level understanding of how analytics supports an organization’s competitive strategy and 
 effective execution that crosses multiple disciplines and managerial levels.

A 2011 survey by Bloomberg Businessweek Research Services and SAS concluded that 
business analytics is still in the “emerging stage” and is used only narrowly within business 
units, not across entire organizations. The study also noted that many organizations lack 
analytical talent, and those that do have analytical talent often don’t know how to apply the 
results properly. While analytics is used as part of the decision-making process in many 
organizations, most business decisions are still based on intuition.18 Therefore, while many 
challenges are apparent, many more opportunities exist. These opportunities are  reflected 
in the job market for analytics professionals, or “data scientists,” as some call them. The 
 Harvard Business Review called data scientist “the sexiest job of the 21st century,” and 
McKinsey & Company predicted a 50 to 60% shortfall in data scientists in the United States 
by 2018.19

Scope of Business Analytics

Business analytics begins with the collection, organization, and manipulation of data and 
is supported by three major components:20

 1. Descriptive analytics. Most businesses start with descriptive analytics—the 
use of data to understand past and current business performance and make in-
formed decisions. Descriptive analytics is the most commonly used and most 
well-understood type of analytics. These techniques categorize, character-
ize, consolidate, and classify data to convert it into useful information for the 
 purposes of understanding and analyzing business performance. Descriptive 
analytics summarizes data into meaningful charts and reports, for example, 
about budgets, sales, revenues, or cost. This process allows managers to obtain 
standard and customized reports and then drill down into the data and make 
queries to understand the impact of an advertising campaign, for example, 
 review business performance to find problems or areas of opportunity, and 
identify patterns and trends in data. Typical questions that descriptive analytics 
helps answer are “How much did we sell in each region?” “What was our rev-
enue and profit last quarter?” “How many and what types of complaints did we 

18Bloomberg Businessweek Research Services and SAS, “The Current State of Business Analytics: 
Where Do We Go From Here?” (2011).

17“Business Analytics and Optimization for the Intelligent Enterprise” (April 2009). www.ibm.com 
/qbs/intelligent-enterprise

19Andrew Jennings, “What Makes a Good Data Scientist?” Analytics Magazine (July–August 2013): 
8–13. www.analytics-magazine.org
20Parts of this section are adapted from Irv Lustig, Brenda Dietric, Christer Johnson, and Christopher 
Dziekan, “The Analytics Journey,” Analytics (November/December 2010). www.analytics-magazine.org
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resolve?” “Which factory has the lowest productivity?” Descriptive analytics 
also helps companies to classify customers into different segments, which en-
ables them to develop specific marketing campaigns and advertising strategies.

 2. Predictive analytics. Predictive analytics seeks to predict the future by ex-
amining historical data, detecting patterns or relationships in these data, and 
then extrapolating these relationships forward in time. For example, a mar-
keter might wish to predict the response of different customer segments to an 
advertising campaign, a commodities trader might wish to predict short-term 
movements in commodities prices, or a skiwear manufacturer might want to 
predict next season’s demand for skiwear of a specific color and size. Predic-
tive analytics can predict risk and find relationships in data not readily appar-
ent with traditional analyses. Using advanced techniques, predictive analytics 
can help to detect hidden patterns in large quantities of data to segment and 
group data into coherent sets to predict behavior and detect trends. For in-
stance, a bank manager might want to identify the most profitable customers 
or predict the chances that a loan applicant will default, or alert a credit-card 
customer to a potential fraudulent charge. Predictive analytics helps to answer 
questions such as “What will happen if demand falls by 10% or if supplier 
prices go up 5%?” “What do we expect to pay for fuel over the next several 
months?” “What is the risk of losing money in a new business venture?”

 3. Prescriptive analytics. Many problems, such as aircraft or employee sched-
uling and supply chain design, for example, simply involve too many choices 
or alternatives for a human decision maker to effectively consider. Prescrip-
tive  analytics uses optimization to identify the best alternatives to minimize or 
 maximize some objective. Prescriptive analytics is used in many areas of busi-
ness, including  operations, marketing, and finance. For example, we may deter-
mine the best pricing and advertising strategy to maximize revenue, the optimal 
amount of cash to store in ATMs, or the best mix of investments in a retirement 
portfolio to manage risk. The mathematical and statistical techniques of predic-
tive analytics can also be combined with optimization to make decisions that take 
into  account the uncertainty in the data. Prescriptive analytics addresses questions 
such as “How much should we produce to maximize profit?” “What is the best 
way of shipping goods from our factories to minimize costs?” “Should we change 
our plans if a natural disaster closes a supplier’s factory: if so, by how much?”

21Contributed by Craig Zielazny, BlueNote Analytics, LLC.

(continued )

Sometime during their lives, most Americans will  receive 
a mortgage loan for a house or condominium. The pro-
cess starts with an application. The application con-
tains all pertinent information about the borrower that 
the lender will need. The bank or mortgage company 
then initiates a process that leads to a loan decision. It 
is here that key information about the borrower is pro-
vided by third-party providers. This information includes 
a credit report, verification of income,  verification of 

 assets,  verification of employment, and an appraisal of 
the property among others. The result of the process-
ing function is a complete loan file that contains all the 
information and documents needed to underwrite the 
loan, which is the next step in the process. Underwrit-
ing is where the loan application is evaluated for its risk. 
Underwriters evaluate whether the borrower can make 
payments on time, can afford to pay back the loan, and 
has sufficient collateral in the property to back up the 

Analytics in Practice:  Analytics in the Home Lending and Mortgage 
Industry21
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A wide variety of tools are used to support business analytics. These include:

•	Database queries and analysis

•	“Dashboards” to report key performance measures

•	Data visualization

•	Statistical methods

•	Spreadsheets and predictive models

•	Scenario and “what-if” analyses

•	Simulation

loan. In the event the borrower defaults on their loan, 
the lender can sell the property to recover the amount 
of the loan. But, if the amount of the loan is greater than 
the value of the property, then the lender cannot recoup 
their money. If the underwriting process indicates that 
the borrower is creditworthy, has the capacity to repay 
the loan, and the value of the property in question is 
greater than the loan amount, then the loan is approved 
and will move to closing. Closing is the step where the 
borrower signs all the appropriate papers agreeing to 
the terms of the loan.

In reality, lenders have a lot of other work to 
do. First, they must perform a quality control review 
on a sample of the loan files that involves a manual 
examination of all the documents and information 
gathered. This process is designed to identify any 
mistakes that may have been made or information 
that is missing from the loan file. Because lenders 
do not have  unlimited money to lend to borrowers, 
they frequently sell the loan to a third party so that 
they have fresh capital to lend to others. This occurs 
in what is called the secondary market. Freddie Mac 
and Fannie Mae are the two largest purchasers of 
mortgages in the secondary market. The final step 
in the process is servicing. Servicing includes all the 
activities associated with providing the customer 
service on the loan like processing payments, man-
aging property taxes held in escrow, and answering 
questions about the loan.

In addition, the institution collects various oper-
ational data on the process to track its performance 
and efficiency, including the number of applications, 
loan types and amounts, cycle times (time to close 
the loan), bottlenecks in the process, and so on. Many 
 different types of analytics are used:

Descriptive Analytics—This focuses on historical 
 reporting, addressing such questions as:

•	How many loan apps were taken each of the past 
12 months?

• What was the total cycle time from app to close?

• What was the distribution of loan profitability by 
credit score and loan-to-value (LTV), which is the 
mortgage amount divided by the appraised value 
of the property.

Predictive Analytics—Predictive modeling use 
 mathematical, spreadsheet, and statistical models, 
and address questions such as:

• What impact on loan volume will a given market-
ing program have?

• How many processors or underwriters are needed 
for a given loan volume?

• Will a given process change reduce cycle time?

Prescriptive Analytics—This involves the use of simu-
lation or optimization to drive decisions. Typical ques-
tions include:

• What is the optimal staffing to achieve a given 
profitability constrained by a fixed cycle time?

• What is the optimal product mix to maximize profit 
constrained by fixed staffing?

The mortgage market has become much more 
dynamic in recent years due to rising home values, 
falling interest rates, new loan products, and an in-
creased desire by home owners to utilize the equity in 
their homes as a financial resource. This has increased 
the complexity and variability of the mortgage process 
and created an opportunity for lenders to proactively 
use the data that are available to them as a tool for 
managing their business. To ensure that the process 
is efficient, effective and performed with quality, data 
and analytics are used every day to track what is 
done, who is doing it, and how long it takes.
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Software Support

Many companies, such as IBM, SAS, and Tableau have developed a variety of soft-
ware and hardware solutions to support business analytics. For example, IBM’s Cognos 
 Express, an integrated business intelligence and planning solution designed to meet the 
needs of midsize companies, provides reporting, analysis, dashboard, scorecard, plan-
ning, budgeting, and forecasting capabilities. It’s made up of several modules, including 
Cognos  Express Reporter, for self-service reporting and ad hoc query; Cognos Express 
Advisor, for analysis and visualization; and Cognos Express Xcelerator, for Excel-based 
planning and business analysis. Information is presented to the business user in a business 
context that makes it easy to understand, with an easy to use interface they can quickly 
gain the insight they need from their data to make the right decisions and then take  action 
for  effective and efficient business optimization and outcome. SAS provides a variety 
of software that integrate data management, business intelligence, and analytics tools. 
SAS  Analytics covers a wide range of capabilities, including predictive modeling and 
data  mining, visualization, forecasting, optimization and model management, statistical 
analysis, text analytics, and more. Tableau Software provides simple drag and drop tools 
for  visualizing data from spreadsheets and other databases. We encourage you to explore 
many of these products as you learn the basic principles of business analytics in this book.

22Inspired by a presentation by Radhika Kulkarni, SAS Institute, “Data-Driven Decisions: Role of 
 Operations Research in Business Analytics,” INFORMS Conference on Business Analytics and 
 Operations Research, April 10–12, 2011.

ExAMPLE 1.1 Retail Markdown Decisions22

As you probably know from your shopping experiences, 
most department stores and fashion retailers clear their 
seasonal inventory by reducing prices. The key ques-
tion they face is what prices should they set—and when 
should they set them—to meet inventory goals and max-
imize revenue? For example, suppose that a store has 
100 bathing suits of a certain style that go on sale from 
April 1 and wants to sell all of them by the end of June. 
Over each week of the 12-week selling season, they can 
make a decision to discount the price. They face two 
decisions: When to reduce the price and by how much? 
This results in 24 decisions to make. For a major national 

chain that may carry thousands of products, this can 
easily result in millions of decisions that store manag-
ers have to make. Descriptive analytics can be used to 
examine historical data for similar products, such as the 
number of units sold, price at each point of sale, starting 
and ending inventories, and special promotions, newspa-
per ads, direct marketing ads, and so on, to understand 
what the results of past decisions achieved. Predictive 
analytics can be used to predict sales based on pricing 
decisions. Finally, prescriptive analytics can be applied 
to find the best set of pricing decisions to maximize the 
total revenue.

•	Forecasting

•	Data and text mining

•	Optimization

•	Social media, Web, and text analytics

Although the tools used in descriptive, predictive, and prescriptive analytics are dif-
ferent, many applications involve all three. Here is a typical example in retail operations.
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Data for Business Analytics

Since the dawn of the electronic age and the Internet, both individuals and organizations 
have had access to an enormous wealth of data and information. Data are numerical facts 
and figures that are collected through some type of measurement process. Information 
comes from analyzing data—that is, extracting meaning from data to support evaluation 
and decision making.

Data are used in virtually every major function in a business. Modern organizations—
which include not only for-profit businesses but also nonprofit organizations—need good 
data to support a variety of company purposes, such as planning, reviewing company 
 performance, improving operations, and comparing company performance with com-
petitors’ or best-practice benchmarks. Some examples of how data are used in business 
 include the following:

•	Annual reports summarize data about companies’ profitability and market 
share both in numerical form and in charts and graphs to communicate with 
shareholders.

•	Accountants conduct audits to determine whether figures reported on a firm’s 
balance sheet fairly represent the actual data by examining samples (that is, 
 subsets) of accounting data, such as accounts receivable.

•	Financial analysts collect and analyze a variety of data to understand the con-
tribution that a business provides to its shareholders. These typically include 
profitability, revenue growth, return on investment, asset utilization, operating 
margins, earnings per share, economic value added (EVA), shareholder value, 
and other relevant measures.

•	Economists use data to help companies understand and predict population trends, 
interest rates, industry performance, consumer spending, and international trade. 
Such data are often obtained from external sources such as Standard & Poor’s 
Compustat data sets, industry trade associations, or government databases.

•	Marketing researchers collect and analyze extensive customer data. These data 
often consist of demographics, preferences and opinions, transaction and pay-
ment history, shopping behavior, and a lot more. Such data may be collected by 
surveys, personal interviews, focus groups, or from shopper loyalty cards.

•	Operations managers use data on production performance, manufacturing qual-
ity, delivery times, order accuracy, supplier performance, productivity, costs, and 
environmental compliance to manage their operations.

•	Human resource managers measure employee satisfaction, training costs, turn-
over, market innovation, training effectiveness, and skills development.

Such data may be gathered from primary sources such as internal company records and 
business transactions, automated data-capturing equipment, or customer market  surveys 
and from secondary sources such as government and commercial data sources, custom 
research providers, and online research.

Perhaps the most important source of data today is data obtained from the Web. With 
today’s technology, marketers collect extensive information about Web behaviors, such as 
the number of page views, visitor’s country, time of view, length of time, origin and des-
tination paths, products they searched for and viewed, products purchased, what reviews 
they read, and many others. Using analytics, marketers can learn what content is being 
viewed most often, what ads were clicked on, who the most frequent visitors are, and what 
types of visitors browse but don’t buy. Not only can marketers understand what customers 
have done, but they can better predict what they intend to do in the future. For example, 
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if a bank knows that a customer has browsed for mortgage rates and homeowner’s insur-
ance, they can target the customer with homeowner loans rather than credit cards or auto-
mobile loans. Traditional Web data are now being enhanced with social media data from 
Facebook, cell phones, and even Internet-connected gaming devices.

As one example, a home furnishings retailer wanted to increase the rate of sales for 
customers who browsed their Web site. They developed a large data set that covered more 
than 7,000 demographic, Web, catalog, and retail behavioral attributes for each customer. 
They used predictive analytics to determine how well a customer would respond to differ-
ent e-mail marketing offers and customized promotions to individual customers. This not 
only helped them to determine where to most effectively spend marketing resources but 
doubled the response rate compared to previous marketing campaigns, with a projected 
multimillion dollar increase in sales.23

Data Sets and Databases

A data set is simply a collection of data. Marketing survey responses, a table of histori-
cal stock prices, and a collection of measurements of dimensions of a manufactured item 
are examples of data sets. A database is a collection of related files containing records on 
people, places, or things. The people, places, or things for which we store and maintain 
information are called entities.24 A database for an online retailer that sells instructional 
fitness books and DVDs, for instance, might consist of a file for three entities:  publishers 
from which goods are purchased, customer sales transactions, and product inventory. 
A  database file is usually organized in a two-dimensional table, where the columns 
 correspond to each individual element of data (called fields, or attributes), and the rows 
represent records of related data elements. A key feature of computerized databases is the 
ability to quickly relate one set of files to another.

Databases are important in business analytics for accessing data, making queries, and 
other data and information management activities. Software such as Microsoft Access 
provides powerful analytical database capabilities. However, in this book, we won’t be 
delving deeply into databases or database management systems but will work with indi-
vidual database files or simple data sets. Because spreadsheets are convenient tools for 
storing and manipulating data sets and database files, we will use them for all examples 
and problems.

23Based on a presentation by Bill Franks of Teradata, “Optimizing Customer Analytics: How Customer 
Level Web Data Can Help,” INFORMS Conference on Business Analytics and Operations Research, 
April 10–12, 2011.
24Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems, 9th ed. (Upper 
Saddle River, NJ: Prentice Hall, 2011): 159.
25Adapted and modified from Kenneth C. Laudon and Jane P. Laudon, Essentials of Management 
 Information Systems. 

customer ID, region, payment type, transaction code, 
source of the sale, amount, product purchased, and time 
of day. Each record (starting in row 4) has a value for 
each of these fields.

ExAMPLE 1.2 A Sales Transaction Database File25

Figure 1.2 shows a portion of sales transactions on an 
Excel worksheet for a particular day for an online seller 
of instructional fitness books and DVDs. The fields are 
shown in row 3 of the spreadsheet and consist of the 
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Big Data

Today, nearly all data are captured digitally. As a result, data have been growing at an 
overwhelming rate, being measured by terabytes (1012 bytes), petabytes (1015 bytes), exa-
bytes (1018 bytes), and even by higher-dimensional terms. Just think of the amount of data 
stored on Facebook, Twitter, or Amazon servers, or the amount of data acquired daily 
from scanning items at a national grocery chain such as Kroger and its affiliates.  Walmart, 
for instance, has over one million transactions each hour, yielding more than 2.5 petabytes 
of data. Analytics professionals have coined the term big data to refer to massive amounts 
of business data from a wide variety of sources, much of which is available in real time, 
and much of which is uncertain or unpredictable. IBM calls these characteristics volume, 
variety, velocity, and veracity. Most often, big data revolves around customer behavior 
and customer experiences. Big data provides an opportunity for organizations to gain a 
competitive advantage—if the data can be understood and analyzed effectively to make 
better business decisions.

The volume of data continue to increase; what is considered “big” today will be 
even bigger tomorrow. In one study of information technology (IT) professionals in 
2010, nearly half of survey respondents ranked data growth among their top three chal-
lenges. Big data come from many sources, and can be numerical, textual, and even 
audio and video data. Big data are captured using sensors (for example, supermarket 
scanners), click streams from the Web, customer transactions, e-mails, tweets and social 
media, and other ways. Big data sets are unstructured and messy, requiring sophisticated 
analytics to integrate and process the data, and understand the information contained in 
them. Not only are big data being captured in real time, but they must be incorporated 
into business decisions at a faster rate. Processes such as fraud detection must be ana-
lyzed quickly to have value. IBM has added a fourth dimension: veracity—the level of 
reliability associated with data. Having high-quality data and understanding the uncer-
tainty in data are essential for good decision making. Data veracity is an important role 
for statistical methods.

Big data can help organizations better understand and predict customer behavior and 
improve customer service. A study by the McKinsey Global Institute noted that “The 
 effective use of big data has the potential to transform economies, delivering a new wave 
of productivity growth and consumer surplus. Using big data will become a key basis of 
competition for existing companies, and will create new competitors who are able to  attract 
employees that have the critical skills for a big data world.”26 However,  understanding big 

Figure 1.2

A Portion of Excel File Sales 
Transactions Database

26James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and  Angela 
Hung Byers, “Big Data: The Next Frontier for Innovation, Competition, and Productivity,” McKinsey &  
Company May 2011.
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data requires advanced analytics tools such as data mining and text analytics, and new 
technologies such as cloud computing, faster multi-core processors, large memory spaces, 
and solid-state drives.

Metrics and Data Classification

A metric is a unit of measurement that provides a way to objectively quantify perfor-
mance. For example, senior managers might assess overall business performance using 
such metrics as net profit, return on investment, market share, and customer satisfaction. 
A plant manager might monitor such metrics as the proportion of defective parts produced 
or the number of inventory turns each month. For a Web-based retailer, some useful met-
rics are the percentage of orders filled accurately and the time taken to fill a customer’s 
order. Measurement is the act of obtaining data associated with a metric. Measures are 
numerical values associated with a metric.

Metrics can be either discrete or continuous. A discrete metric is one that is de-
rived from counting something. For example, a delivery is either on time or not; an 
order is complete or incomplete; or an invoice can have one, two, three, or any number 
of errors. Some discrete metrics associated with these examples would be the propor-
tion of on-time deliveries; the number of incomplete orders each day, and the number 
of errors per invoice. Continuous metrics are based on a continuous scale of measure-
ment. Any metrics involving dollars, length, time, volume, or weight, for example, are 
continuous.

Another classification of data is by the type of measurement scale. Data may be clas-
sified into four groups:

 1. Categorical (nominal) data, which are sorted into categories according to 
specified characteristics. For example, a firm’s customers might be classi-
fied by their geographical region (North America, South America, Europe, 
and  Pacific); employees might be classified as managers, supervisors, and 
 associates. The categories bear no quantitative relationship to one another, but 
we usually assign an arbitrary number to each category to ease the process 
of managing the data and computing statistics. Categorical data are usually 
counted or expressed as proportions or percentages.

 2. Ordinal data, which can be ordered or ranked according to some relationship 
to one another. College football or basketball rankings are ordinal; a higher 
ranking signifies a stronger team but does not specify any numerical measure 
of strength. Ordinal data are more meaningful than categorical data because 
data can be compared to one another. A common example in business is data 
from survey scales—for example, rating a service as poor, average, good, 
very good, or excellent. Such data are categorical but also have a natural order 
 (excellent is better than very good) and, consequently, are ordinal. However, 
ordinal data have no fixed units of measurement, so we cannot make mean-
ingful numerical statements about differences between categories. Thus, we 
cannot say that the difference between excellent and very good is the same 
as between good and average, for example. Similarly, a team ranked number  
1 may be far superior to the number 2 team, whereas there may be little differ-
ence between teams ranked 9th and 10th.

 3. Interval data, which are ordinal but have constant differences between obser-
vations and have arbitrary zero points. Common examples are time and temper-
ature. Time is relative to global location, and calendars have arbitrary starting 
dates (compare, for example, the standard Gregorian calendar with the Chinese 
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calendar). Both the Fahrenheit and Celsius scales represent a specified mea-
sure of distance—degrees—but have arbitrary zero points. Thus we cannot take 
meaningful ratios; for example, we cannot say that 50 degrees is twice as hot 
as 25 degrees. However, we can compare differences. Another example is SAT 
or GMAT scores. The scores can be used to rank students, but only differences 
between scores provide information on how much better one student performed 
over another; ratios make little sense. In contrast to ordinal data, interval data 
allow meaningful comparison of ranges, averages, and other statistics.

In business, data from survey scales, while technically ordinal, are often 
treated as interval data when numerical scales are associated with the cat-
egories (for instance, 1 =  poor, 2 =  average, 3 =  good, 4 =  very good, 
5 =   excellent). Strictly speaking, this is not correct because the “distance” 
between categories may not be perceived as the same (respondents might 
perceive a larger gap between poor and average than between good and very 
good, for example). Nevertheless, many users of survey data treat them as 
interval when analyzing the data, particularly when only a numerical scale is 
used without descriptive labels.

 4. Ratio data, which are continuous and have a natural zero. Most business and 
economic data, such as dollars and time, fall into this category. For example, 
the measure dollars has an absolute zero. Ratios of dollar figures are meaning-
ful. For example, knowing that the Seattle region sold $12 million in March 
whereas the Tampa region sold $6 million means that Seattle sold twice as 
much as Tampa.

This classification is hierarchical in that each level includes all the information con-
tent of the one preceding it. For example, ordinal data are also categorical, and ratio in-
formation can be converted to any of the other types of data. Interval information can 
be converted to ordinal or categorical data but cannot be converted to ratio data with-
out the knowledge of the absolute zero point. Thus, a ratio scale is the strongest form of 
measurement.

27Based on Laudon and Laudon, Essentials of Management Information Systems.

ExAMPLE 1.3 Classifying Data Elements in a Purchasing Database27

Figure 1.3 shows a portion of a data set containing all 
items that an aircraft component manufacturing com-
pany has purchased over the past 3 months. The data 
provide the supplier; order number; item number, de-
scription, and cost; quantity ordered; cost per order, the 
suppliers’ accounts payable (A/P) terms; and the order 
and arrival dates. We may classify each of these types of 
data as follows:

•	Supplier—categorical

• Order Number—ordinal

• Item Number—categorical

• Item Description—categorical

• Item Cost—ratio

• Quantity—ratio

• Cost per Order—ratio

• A/P Terms—ratio

• Order Date—interval

• Arrival Date—interval

We might use these data to evaluate the average 
speed of delivery and rank the suppliers (thus creating 
 ordinal data) by this metric. (We see how to do this in the 
next chapter).
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Data Reliability and Validity

Poor data can result in poor decisions. In one situation, a distribution system design model 
relied on data obtained from the corporate finance department. Transportation costs were 
determined using a formula based on the latitude and longitude of the locations of plants 
and customers. But when the solution was represented on a geographic information sys-
tem (GIS) mapping program, one of the customers was in the Atlantic Ocean.

Thus, data used in business decisions need to be reliable and valid. Reliability means 
that data are accurate and consistent. Validity means that data correctly measure what 
they are supposed to measure. For example, a tire pressure gauge that consistently reads 
several pounds of pressure below the true value is not reliable, although it is valid because 
it does measure tire pressure. The number of calls to a customer service desk might be 
counted correctly each day (and thus is a reliable measure), but not valid if it is used to 
assess customer dissatisfaction, as many calls may be simple queries. Finally, a survey 
question that asks a customer to rate the quality of the food in a restaurant may be nei-
ther reliable (because different customers may have conflicting perceptions) nor valid (if 
the intent is to measure customer satisfaction, as satisfaction generally includes other ele-
ments of service besides food).

Models in Business Analytics

To make a decision, we must be able to specify the decision alternatives that represent 
the choices that can be made and criteria for evaluating the alternatives. Specifying deci-
sion alternatives might be very simple; for example, you might need to choose one of 
three corporate health plan options. Other situations can be more complex; for example, 
in locating a new distribution center, it might not be possible to list just a small number of 
alternatives. The set of potential locations might be anywhere in the United States or even 
within a large geographical region such as Asia. Decision criteria might be to maximize 
discounted net profits, customer satisfaction, or social benefits or to minimize costs, envi-
ronmental impact, or some measure of loss.

Many decision problems can be formalized using a model. A model is an abstrac-
tion or representation of a real system, idea, or object. Models capture the most important 
features of a problem and present them in a form that is easy to interpret. A model can 
be as simple as a written or verbal description of some phenomenon, a visual representa-
tion such as a graph or a flowchart, or a mathematical or spreadsheet representation (see 
 Example 1.4).

Models can be descriptive, predictive, or prescriptive, and therefore are used in a 
wide variety of business analytics applications. In Example 1.4, note that the first two 

Figure 1.3

Portion of Excel File 
Purchase Orders Data
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ExAMPLE 1.4 Three Forms of a Model

The sales of a new product, such as a first-generation 
iPad, Android phone, or 3-D television, often follow a 
common pattern. We might represent this in one of three 
following ways:

 1. A simple verbal description of sales might be: The 
rate of sales starts small as early adopters begin to 
evaluate a new product and then begins to grow at 
an increasing rate over time as positive customer 
feedback spreads. Eventually, the market begins to 
become saturated and the rate of sales begins to 
decrease.

 2. A sketch of sales as an S-shaped curve over time, 
as shown in Figure 1.4, is a visual model that con-
veys this phenomenon.

 3. Finally, analysts might identify a mathematical 
model that characterizes this curve. Several differ-
ent mathematical functions do this; one is called a 
Gompertz curve and has the formula: S = aebect, 
where S = sales, t = time, e is the base of natural 
logarithms, and a, b, and c are constants. Of course, 
you would not be expected to know this; that’s what 
analytics professionals do. Such a mathematical 
model provides the ability to predict sales quantita-
tively, and to analyze potential decisions by asking 
“what if?” questions.

Figure 1.4

New Product Sales  
Over Time

forms of the model are purely descriptive; they simply explain the phenomenon. While the 
mathematical model also describes the phenomenon, it can be used to predict sales at a fu-
ture time. Models are usually developed from theory or observation and establish relation-
ships between actions that decision makers might take and results that they might expect, 
thereby allowing the decision makers to predict what might happen based on the model.

Models complement decision makers’ intuition and often provide insights that intu-
ition cannot. For example, one early application of analytics in marketing involved a study 
of sales operations. Sales representatives had to divide their time between large and small 
customers and between acquiring new customers and keeping old ones. The problem was 
to determine how the representatives should best allocate their time. Intuition suggested 
that they should concentrate on large customers and that it was much harder to acquire 
a new customer than to keep an old one. However, intuition could not tell whether they 
should concentrate on the 100 largest or the 1,000 largest customers, or how much effort 
to spend on acquiring new customers. Models of sales force effectiveness and customer 
response patterns provided the insight to make these decisions. However, it is important 
to understand that all models are only representations of the real world and, as such, can-
not capture every nuance that decision makers face in reality. Decision makers must often 
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modify the policies that models suggest to account for intangible factors that they might 
not have been able to incorporate into the model.

A simple descriptive model is a visual representation called an influence diagram 
because it describes how various elements of the model influence, or relate to, others. An 
influence diagram is a useful approach for conceptualizing the structure of a model and 
can assist in building a mathematical or spreadsheet model. The elements of the model are 
represented by circular symbols called nodes. Arrows called branches connect the nodes 
and show which elements influence others. Influence diagrams are quite useful in the early 
stages of model building when we need to understand and characterize key relationships. 
Example 1.5 shows how to construct simple influence diagrams, and Example 1.6 shows 
how to build a mathematical model, drawing upon the influence diagram.

ExAMPLE 1.5 An Influence Diagram for Total Cost

From basic business principles, we know that the total 
cost of producing a fixed volume of a product is com-
prised of fixed costs and variable costs. Thus, a simple 
influence diagram that shows these relationships is given 
in Figure 1.5.

We can develop a more detailed model by noting 
that the variable cost depends on the unit variable cost 
as well as the quantity produced. The expanded model is 
shown in Figure 1.6. In this figure, all the nodes that have 

no branches pointing into them are inputs to the model. 
We can see that the unit variable cost and fixed costs are 
data inputs in the model. The quantity produced, how-
ever, is a decision variable because it can be controlled by 
the manager of the operation. The total cost is the output 
(note that it has no branches pointing out of it) that we 
would be interested in calculating. The variable cost node 
links some of the inputs with the output and can be con-
sidered as a “building block” of the model for total cost.

Figure 1.5

An Influence Diagram 
Relating Total Cost to Its 
Key Components

Total Cost

Fixed Cost Variable Cost

Total Cost

Fixed Cost Variable Cost

Unit Variable
Cost 

Quantity
Produced

Figure 1.6

An Expanded Influence 
Diagram for Total Cost
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Decision Models

A decision model is a logical or mathematical representation of a problem or business 
situation that can be used to understand, analyze, or facilitate making a decision. Most 
decision models have three types of input:

 1. Data, which are assumed to be constant for purposes of the model. Some 
 examples would be costs, machine capacities, and intercity distances.

 2. Uncontrollable variables, which are quantities that can change but cannot be 
directly controlled by the decision maker. Some examples would be customer 
demand, inflation rates, and investment returns. Often, these variables are 
uncertain.

 3. Decision variables, which are controllable and can be selected at the discre-
tion of the decision maker. Some examples would be production quantities 
(see Example 1.5), staffing levels, and investment allocations.

Decision models characterize the relationships among the data, uncontrollable variables, 
and decision variables, and the outputs of interest to the decision maker (see Figure 1.7). 
Decision models can be represented in various ways, most typically with mathematical 
functions and spreadsheets. Spreadsheets are ideal vehicles for implementing decision 
models because of their versatility in managing data, evaluating different scenarios, and 
presenting results in a meaningful fashion. 

Using these relationships, we may develop a math-
ematical representation by defining symbols for each of 
these quantities:

TC = total cost
V = unit variable cost
F = fixed cost
Q = quantity produced

This results in the model

 TC = F + VQ (1.4)

ExAMPLE 1.6 Building a Mathematical Model from an Influence Diagram

We can develop a mathematical model from the influ-
ence diagram in Figure 1.6. First, we need to specify the 
precise nature of the relationships among the various 
quantities. For example, we can easily state that

 Total Cost = Fixed Cost + Variable Cost (1.1)

Logic also suggests that the variable cost is the unit vari-
able cost times the quantity produced. Thus,

 Variable Cost = Unit Variable Cost × Quantity Produced
 (1.2)

By substituting this into equation (1.1), we have

Total Cost = Fixed Cost + Variable Cost 
= Fixed Cost + Unit Variable Cost × Quantity Produced
 (1.3)

Figure 1.7

Nature of Decision Models
Data, Uncontrollable

Variables, and
Decision Variables

Decision
Model

Measures of
Performance or

Behavior

Inputs Outputs
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ExAMPLE 1.7 A Break-Even Decision Model

Suppose that a manufacturer can produce a part for 
$125/unit with a fixed cost of $50,000. The alternative 
is to outsource production to a supplier at a unit cost of 
$175. The total manufacturing cost is expressed by using 
equation (1.5):

TC (manufacturing) = $50,000 + $125 × Q

and the total outsourcing cost can be written as

TC (outsourcing) = $175 × Q

Mathematical models are easy to manipulate; for ex-
ample, it is easy to find the break-even volume by setting 
TC (manufacturing) = TC (outsourcing) and solving for Q:

 $50,000 + $125 × Q = $175 × Q

 $50,000 = 50 × Q

 Q = 1,000

Thus, if the anticipated production volume is greater 
than 1,000, it is more economical to manufacture the 
part; if it is less than 1,000, then it should be outsourced. 
This is shown graphically in Figure 1.8.

We may also develop a general formula for the break-
even point by letting C be the unit cost of outsourcing the 
part and setting TC (manufacturing) = TC (outsourcing) 
using the formulas:

F + VQ = CQ

 Q =
F

C - V
 (1.5)

Figure 1.8

Graphical Illustration of 
Break-Even Analysis

Many models are developed by analyzing historical data. Example 1.8 shows how 
historical data might be used to develop a decision model that can be used to predict the 
impact of pricing and promotional strategies in the grocery industry.

How might we use the model in Example 1.6 to help make a decision? Suppose 
that a manufacturer has the option of producing a part in-house or outsourcing it from a 
 supplier (the decision variables). Should the firm produce the part or outsource it? The 
decision  depends on the anticipated volume of demand (an uncontrollable variable); for 
high  volumes, the cost to manufacture in-house will be lower than outsourcing, because 
the fixed costs can be spread over a large number of units. For small volumes, it would be 
more economical to outsource. Knowing the total cost of both alternatives (based on data 
for fixed and variable manufacturing costs and purchasing costs) and the break-even point 
would facilitate the decision. A numerical example is provided in Example 1.7.
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ExAMPLE 1.8 A Sales-Promotion Decision Model

In the grocery industry, managers typically need to know 
how best to use pricing, coupons, and advertising strate-
gies to influence sales. Grocers often study the relation-
ship of sales volume to these strategies by conducting 
controlled experiments to identify the relationship be-
tween them and sales volumes.28 That is, they implement 
different combinations of pricing, coupons, and adver-
tising, observe the sales that result, and use analytics 

to develop a predictive model of sales as a function of 
these decision strategies.

For example, suppose that a grocer who operates 
three stores in a small city varied the price, coupons 
(yes = 1, no = 0), and advertising expenditures in a lo-
cal newspaper over a 16-week period and observed the 
following sales:

28Roger J. Calantone, Cornelia Droge, David S. Litvack, and C. Anthony di Benedetto. “Flanking in a 
Price War,” Interfaces, 19, 2 (1989): 1–12.

Week Price ($) Coupon (0,1) Advertising ($)
Store 1  

Sales (Units)
Store 2  

Sales (Units)
Store 3  

Sales (Units)

1 6.99 0 0 501 510 481

2 6.99 0 150 772 748 775

3 6.99 1 0 554 528 506

4 6.99 1 150 838 785 834

5 6.49 0 0 521 519 500

6 6.49 0 150 723 790 723

7 6.49 1 0 510 556 520

8 6.49 1 150 818 773 800

9 7.59 0 0 479 491 486

10 7.59 0 150 825 822 757

11 7.59 1 0 533 513 540

12 7.59 1 150 839 791 832

13 5.49 0 0 484 480 508

14 5.49 0 150 686 683 708

15 5.49 1 0 543 531 530

16 5.49 1 150 767 743 779

To better understand the relationships among price, 
coupons, and advertising, the grocer might have devel-
oped the following model using business analytics tools:

sales = 500 − 0.05 × price + 30 × coupons + 0.08 
 × advertising + 0.25 × price × advertising

In this model, the decision variables are price, coupons, 
and advertising. The values 500, − 0.05, 30, 0.08, and 
0.25 are effects of the input data to the model that are 
estimated from the data obtained from the experiment. 
They reflect the impact on sales of changing the decision 
variables. For example, an increase in price of $1 results 
in a 0.05-unit decrease in weekly sales; using coupons 
results in a 30-unit increase in weekly sales. In this ex-
ample, there are no uncontrollable input variables. The 

output of the model is the sales units of the product. For 
example, if the price is $6.99, no coupons are offered 
and no advertising is done (the experiment correspond-
ing to week 1), the model estimates sales as

sales = 500 − 0.05 × $6.99 + 30 × 0 + 0.08 × 0
 + 0.25 × $6.99 × 0 = 500 units

We see that the actual sales in week 1 varied be-
tween 481 and 510 in the three stores. Thus, this model 
predicts a good estimate for sales; however, it does not 
tell us anything about the potential variability or predic-
tion error. Nevertheless, the manager can use this model 
to evaluate different pricing, promotion, and advertising 
strategies, and help choose the best strategy to maxi-
mize sales or profitability.
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Model Assumptions

All models are based on assumptions that reflect the modeler’s view of the “real world.” 
Some assumptions are made to simplify the model and make it more tractable; that is, 
able to be easily analyzed or solved. Other assumptions might be made to better char-
acterize historical data or past observations. The task of the modeler is to select or build 
an appropriate model that best represents the behavior of the real situation. For example, 
economic theory tells us that demand for a product is negatively related to its price. Thus, 
as prices increase, demand falls, and vice versa (a phenomenon that you may recognize as 
price elasticity—the ratio of the percentage change in demand to the percentage change 
in price). Different mathematical models can describe this phenomenon. In the following 
examples, we illustrate two of them. (Both of these examples can be found in the Excel 
file Demand Prediction Models. We introduce the use of spreadsheets in analytics in the 
next chapter.)

ExAMPLE 1.9 A Linear Demand Prediction Model

A simple model to predict demand as a function of price is 
the linear model

 D = a − bP (1.6)

where D is the demand rate, P is the unit price, a is a con-
stant that estimates the demand when the price is zero, 
and b is the slope of the demand function. This model 
is most applicable when we want to predict the effect 
of small changes around the current price. For example, 
suppose we know that when the price is $100, demand is 
19,000 units and that demand falls by 10 for each dollar 
of price increase. Using simple algebra, we can determine 
that a = 20,000 and b = 10. Thus, if the price is $80, the 
predicted demand is

D = 20,000 − 10 180 2 = 19,200 units

If the price increases to $90, the model predicts demand as

D = 20,000 − 10 190 2 = 19,100 units

If the price is $100, demand would be

D = 20,000 − 10 1100 2 = 19,000 units

and so on. A chart of demand as a function of price is shown 
in Figure 1.9 as price varies between $80 and $120. We see 
that there is a constant decrease in demand for each $10 
 increase in price, a characteristic of a linear model.

Figure 1.9

Graph of Linear Demand 
Model D = a − bP
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ExAMPLE 1.10 A Nonlinear Demand Prediction Model

An alternative model assumes that price elasticity is con-
stant. In this case, the appropriate model is

 D = cP−d (1.7)

where, c is the demand when the price is 0 and d + 0  
is the price elasticity. To be consistent with Example 1.9, 
we assume that when the price is zero, demand is 
20,000. Therefore, c = 20,000. We will also, as in Exam-
ple 1.9, assume that when the price is $100, D = 19,000. 
Using these values in equation (1.7), we can determine 
the value for d (we can do this mathematically using log-
arithms, but we’ll see how to do this very easily using 
 Excel in Chapter 11); this is d = − 0.0111382. Thus, if 
the price is $80, then the predicted demand is

D = 20,000 180 2−0.0111382 = 19,047.

If the price is 90, the demand would be

D = 20,000 190 2−0.0111382 = 19022.

If the price is 100, demand is

D = 20,000 1100 2−0.0111382 = 19,000.

A graph of demand as a function of price is shown in Fig-
ure 1.10. The predicted demand falls in a slight nonlinear 
fashion as price increases. For example, demand de-
creases by 25 units when the price increases from $80 to 
$90, but only by 22 units when the price increases from 
$90 to $100. If the price increases to $100, you would 
see a smaller decrease in demand. Therefore, we see a 
nonlinear relationship in contrast to Example 1.9.

Figure 1.10

Graph of Nonlinear Demand 
Model D = cP−d

Both models in Examples 1.9 and 1.10 make different predictions of demand for dif-
ferent prices (other than $90). Which model is best? The answer may be neither. First 
of all, the development of realistic models requires many price point changes within a 
carefully designed experiment. Secondly, it should also include data on competition and 
customer disposable income, both of which are hard to determine. Nevertheless, it is pos-
sible to develop price elasticity models with limited price ranges and narrow customer 
segments. A good starting point would be to create a historical database with detailed  
information on all past pricing actions. Unfortunately, practitioners have observed that 
such models are not widely used in retail marketing, suggesting a lot of opportunity to 
 apply business analytics.29

29Ming Zhang, Clay Duan, and Arun Muthupalaniappan, “Analytics Applications in Consumer Credit and 
Retail Marketing,” analytics-magazine.org, November/December 2011, pp. 27–33.
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Uncertainty and Risk

As we all know, the future is always uncertain. Thus, many predictive models incorporate uncer-
tainty and help decision makers analyze the risks associated with their decisions.  Uncertainty is 
imperfect knowledge of what will happen; risk is associated with the consequences and likeli-
hood of what might happen. For example, the change in the stock price of Apple on the next day 
of trading is uncertain. However, if you own Apple stock, then you face the risk of losing money 
if the stock price falls. If you don’t own any stock, the price is still uncertain although you would 
not have any risk. Risk is evaluated by the magnitude of the consequences and the likelihood 
that they would occur. For example, a 10% drop in the stock price would incur a higher risk 
if you own $1 million than if you only owned $1,000. Similarly, if the chances of a 10% drop 
were 1 in 5, the risk would be higher than if the chances were only 1 in 100.

The importance of risk in business has long been recognized. The renowned manage-
ment writer, Peter Drucker, observed in 1974:

To try to eliminate risk in business enterprise is futile. Risk is inherent in the com-
mitment of present resources to future expectations. Indeed, economic progress can 
be defined as the ability to take greater risks. The attempt to eliminate risks, even the 
attempt to minimize them, can only make them irrational and unbearable. It can only 
result in the greatest risk of all: rigidity.30

Consideration of risk is a vital element of decision making. For instance, you would 
probably not choose an investment simply on the basis of the return you might expect 
because, typically, higher returns are associated with higher risk. Therefore, you have to 
make a trade-off between the benefits of greater rewards and the risks of potential losses. 
Analytic models can help assess this. We will address this in later chapters.

Prescriptive Decision Models

A prescriptive decision model helps decision makers to identify the best solution to a deci-
sion problem. Optimization is the process of finding a set of values for decision variables 
that minimize or maximize some quantity of interest—profit, revenue, cost, time, and so 
on—called the objective function. Any set of decision variables that optimizes the objec-
tive function is called an optimal solution. In a highly competitive world where one per-
centage point can mean a difference of hundreds of thousands of dollars or more, knowing 
the best solution can mean the difference between success and failure.

30P. F. Drucker, The Manager and the Management Sciences in Management: Tasks, Responsibilities, 
Practices (London: Harper and Row, 1974).

ExAMPLE 1.11 A Prescriptive Model for Pricing

To illustrate an example of a prescriptive model, suppose 
that a firm wishes to determine the best pricing for one 
of its products to maximize revenue over the next year. 
A market research study has collected data that estimate 
the expected annual sales for different levels of pricing. 
Analysts determined that sales can be expressed by the 
following model:

sales = −2.9485 × price + 3,240.9

Because revenue equals price × sales, a model for total 
revenue is

 total revenue = price × sales

 = price × 1 −2.9485 × price + 3240.9 2
 = 22.9485 × price2 + 3240.9 × price

The firm would like to identify the price that maximizes 
the total revenue. One way to do this would be to try dif-
ferent prices and search for the one that yields the high-
est total revenue. This would be quite tedious to do by 
hand or even with a calculator. We will see how to do this 
easily on a spreadsheet in Chapter 11.
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Although the pricing model did not, most optimization models have constraints—
limitations, requirements, or other restrictions that are imposed on any solution, such as 
“do not exceed the allowable budget” or “ensure that all demand is met.” For instance, 
a consumer products company manager would probably want to ensure that a specified 
level of customer service is achieved with the redesign of the distribution system. The 
presence of constraints makes modeling and solving optimization problems more chal-
lenging; we address constrained optimization problems later in this book, starting in 
Chapter 13.

For some prescriptive models, analytical solutions—closed-form mathematical ex-
pressions or simple formulas—can be obtained using such techniques as calculus or other 
types of mathematical analyses. In most cases, however, some type of computer-based 
procedure is needed to find an optimal solution. An algorithm is a systematic procedure 
that finds a solution to a problem. Researchers have developed effective algorithms to 
solve many types of optimization problems. For example, Microsoft Excel has a built-in 
add-in called Solver that allows you to find optimal solutions to optimization problems 
formulated as spreadsheet models. We use Solver in later chapters. However, we will not 
be concerned with the detailed mechanics of these algorithms; our focus will be on the use 
of the algorithms to solve and analyze the models we develop.

If possible, we would like to ensure that an algorithm such as the one Solver uses 
finds the best solution. However, some models are so complex that it is impossible to 
solve them optimally in a reasonable amount of computer time because of the extremely 
large number of computations that may be required or because they are so complex 
that finding the best solution cannot be guaranteed. In these cases, analysts use search 
algorithms—solution procedures that generally find good solutions without guarantees 
of finding the best one. Powerful search algorithms exist to obtain good solutions to 
extremely difficult optimization problems. These are discussed in the supplementary 
online Chapter A.

Prescriptive decision models can be either deterministic or stochastic. A determin-
istic model is one in which all model input information is either known or assumed to be 
known with certainty. A stochastic model is one in which some of the model input infor-
mation is uncertain. For instance, suppose that customer demand is an important element 
of some model. We can make the assumption that the demand is known with certainty; 
say, 5,000 units per month. In this case we would be dealing with a deterministic model. 
On the other hand, suppose we have evidence to indicate that demand is uncertain, with 
an average value of 5,000 units per month, but which typically varies between 3,200 and 
6,800 units. If we make this assumption, we would be dealing with a stochastic model. 
These situations are discussed in the supplementary online Chapter B.

Problem Solving with Analytics

The fundamental purpose of analytics is to help managers solve problems and make deci-
sions. The techniques of analytics represent only a portion of the overall problem-solving 
and decision-making process. Problem solving is the activity associated with defining, 
analyzing, and solving a problem and selecting an appropriate solution that solves a prob-
lem. Problem solving consists of several phases:

 1. recognizing a problem
 2. defining the problem
 3. structuring the problem
 4. analyzing the problem
 5. interpreting results and making a decision
 6. implementing the solution
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Recognizing a Problem

Managers at different organizational levels face different types of problems. In a manu-
facturing firm, for instance, top managers face decisions of allocating financial resources, 
building or expanding facilities, determining product mix, and strategically sourcing pro-
duction. Middle managers in operations develop distribution plans, production and inven-
tory schedules, and staffing plans. Finance managers analyze risks, determine investment 
strategies, and make pricing decisions. Marketing managers develop advertising plans 
and make sales force allocation decisions. In manufacturing operations, problems involve 
the size of daily production runs, individual machine schedules, and worker assignments. 
Whatever the problem, the first step is to realize that it exists.

How are problems recognized? Problems exist when there is a gap between what is 
happening and what we think should be happening. For example, a consumer products 
manager might feel that distribution costs are too high. This recognition might result from 
comparing performance with a competitor, observing an increasing trend compared to pre-
vious years.

Defining the Problem

The second step in the problem-solving process is to clearly define the problem. Finding 
the real problem and distinguishing it from symptoms that are observed is a critical step. 
For example, high distribution costs might stem from inefficiencies in routing trucks, poor 
location of distribution centers, or external factors such as increasing fuel costs. The prob-
lem might be defined as improving the routing process, redesigning the entire distribution 
system, or optimally hedging fuel purchases.

Defining problems is not a trivial task. The complexity of a problem increases when 
the following occur:

•	The number of potential courses of action is large.

•	The problem belongs to a group rather than to an individual.

•	The problem solver has several competing objectives.

•	External groups or individuals are affected by the problem.

•	The problem solver and the true owner of the problem—the person who experi-
ences the problem and is responsible for getting it solved—are not the same.

•	Time limitations are important.

These factors make it difficult to develop meaningful objectives and characterize the 
range of potential decisions. In defining problems, it is important to involve all people 
who make the decisions or who may be affected by them.

Structuring the Problem

This usually involves stating goals and objectives, characterizing the possible decisions, 
and identifying any constraints or restrictions. For example, if the problem is to  redesign 
a distribution system, decisions might involve new locations for manufacturing plants 
and warehouses (where?), new assignments of products to plants (which ones?), and the 
amount of each product to ship from different warehouses to customers (how much?).  
The goal of cost reduction might be measured by the total delivered cost of the product. 
The manager would probably want to ensure that a specified level of customer service—
for instance, being able to deliver orders within 48 hours—is achieved with the redesign. 
This is an example of a constraint. Structuring a problem often involves developing a 
formal model.
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Analyzing the Problem

Here is where analytics plays a major role. Analysis involves some sort of experimentation 
or solution process, such as evaluating different scenarios, analyzing risks associated with 
various decision alternatives, finding a solution that meets certain goals, or determining 
an optimal solution. Analytics professionals have spent decades developing and refining a 
variety of approaches to address different types of problems. Much of this book is devoted 
to helping you understand these techniques and gain a basic facility in using them.

Interpreting Results and Making a Decision

Interpreting the results from the analysis phase is crucial in making good decisions. Models 
cannot capture every detail of the real problem, and managers must understand the limita-
tions of models and their underlying assumptions and often incorporate judgment into mak-
ing a decision. For example, in locating a facility, we might use an analytical procedure to 
find a “central” location; however, many other considerations must be included in the deci-
sion, such as highway access, labor supply, and facility cost. Thus, the location specified by 
an analytical solution might not be the exact location the company actually chooses.

Implementing the Solution

This simply means making it work in the organization, or translating the results of a model 
back to the real world. This generally requires providing adequate resources, motivat-
ing employees, eliminating resistance to change, modifying organizational policies, and 
developing trust. Problems and their solutions affect people: customers, suppliers, and 
employees. All must be an important part of the problem-solving process. Sensitivity to 
political and organizational issues is an important skill that managers and analytical pro-
fessionals alike must possess when solving problems.

In each of these steps, good communication is vital. Analytics professionals need to 
be able to communicate with managers and clients to understand the business context of 
the problem and be able to explain results clearly and effectively. Such skills as construct-
ing good visual charts and spreadsheets that are easy to understand are vital to users of 
analytics. We emphasize these skills throughout this book.

Hewlett-Packard (HP) uses analytics extensively. 
Many applications are used by managers with little 
knowledge of analytics. These require that analyti-
cal tools be easily understood. Based on years of 
 experience, HP analysts compiled some key lessons.  
Before creating an analytical decision tool, HP asks 
three questions:

1. Will analytics solve the problem? Will the tool en-
able a better solution? Should other non analytical 
solutions be used? Are there organizational or 
other issues that must be resolved? Often, what 

may appear to be an analytical problem may actu-
ally be rooted in problems of incentive misalign-
ment, unclear ownership and accountability, or 
business strategy.

2. Can we leverage an existing solution? Before 
“reinventing the wheel,” can existing solutions 
address the problem? What are the costs and 
benefits?

3. Is a decision model really needed? Can simple 
decision guidelines be used instead of a formal 
decision tool?

Analytics in Practice:  Developing Effective Analytical Tools  
at Hewlett-Packard31

31Based on Thomas Olavson and Chris Fry, “Spreadsheet Decision-Support Tools: Lessons Learned at 
Hewlett-Packard,” Interfaces, 38, 4, July–August 2008: 300–310. 

(continued )
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Once a decision is made to develop an analyti-
cal tool, they use several guidelines to increase the 
chances of successful implementation:

• Use prototyping–a quick working version of the 
tool designed to test its features and gather 
feedback;

• Build insight, not black boxes. A “black box” tool 
is one that generates an answer, but may not 
provide confidence to the user. Interactive tools 
that creates insights to support a decision provide 
 better information.

• Remove unneeded complexity. Simpler is better. 
A good tool can be used without expert support.

• Partner with end users in discovery and design. 
Decision makers who will actually use the tool 
should be involved in its development.

• Develop an analytic champion. Someone (ideally, 
the actual decision maker) who is knowledgeable 
about the solution and close to it must champion 
the process.

Algorithm
Big data
Business analytics (analytics)
Business intelligence (BI)
Categorical (nominal) data
Constraint
Continuous metric
Data mining
Data set
Database
Decision model
Decision support systems (DSS)
Descriptive analytics
Deterministic model
Discrete metric
Influence diagram
Information systems (IS)
Interval data
Measure
Measurement
Metric
Model
Modeling and optimization

Objective function
Operations Research/Management  
 Science (OR/MS)
Optimal solution
Optimization
Ordinal data
Predictive analytics
Prescriptive analytics
Price elasticity
Problem solving
Ratio data
Reliability
Risk
Search algorithm
Simulation and risk analysis
Statistics
Stochastic model
Tag cloud
Uncertainty
Validity
Visualization
What-if analysis

Key Terms
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Fun with Analytics

Mr. John Toczek, an analytics manager at ARAMARK Corporation, maintains a  
Web site called the PuzzlOR (OR being “Operations Research”) at www.puzzlor.com. 
Each month he posts a new puzzle. Many of these can be solved using techniques in this 
book; however, even if you cannot develop a formal model, the puzzles can be fun and 
competitive challenges for students. We encourage you to explore these, in addition to the 
formal problems, exercises, and cases in this book. A good one to start with is  “SurvivOR” 
from June 2010. Have fun!

Problems and Exercises

 1. Discuss how business analytics can be used in sports, 
such as tennis, cricket, football, and so on. Identify 
as many opportunities as you can for each.

 2. A multinational hotel chain has been implementing 
analytics digital marketing to its customers. How-
ever, the responses to the digital campaigns have not 
been favorable, and the revenue generation has not 
been as expected. Currently, they are trying to solve 
this problem by focusing on similar campaigns that 
use the same promotional content, and changing 
these campaigns to suit the specific tastes of the con-
sumers in each nation. Discuss how business analyt-
ics can be utilized by the hotel management in this 
scenario. What is the data required to facilitate good 
decisions?

 3. Suggest some metrics that a hotel might want to col-
lect about their guests. How might these metrics be 
used with business analytics to support decisions at 
the hotel?

 4. Suggest some metrics that a railway or bus ticket-
ing agency might want to collect. Describe how a 
manager might utilize this data to facilitate better 
decisions.

 5. Classify each of the data elements in the Sales 
 Transactions database (Figure 1.1) as categorical, 
 ordinal, interval, or ratio data and explain why.

 6. Identify each of the variables in the Excel file Credit 
Approval Decisions as categorical, ordinal, interval, 
or ratio and explain why.

 7. Classify each of the variables in the Excel file 
 Weddings as categorical, ordinal, interval, or ratio 
and explain why.

 8. A survey handed out to individuals at a major shop-
ping mall in a small Florida city in July asked the 
following:

•	gender

•	age

•	ethnicity

•	length of residency

•	overall satisfaction with city services (using a 
scale of 1–5, going from poor to excellent)

•	quality of schools (using a scale of 1–5, going 
from poor to excellent)

What types of data (categorical, ordinal, interval, or 
 ratio) would each of the survey items represent and 
why?

 9. A bank developed a model for predicting the aver-
age checking and savings account balance as bal-
ance = - 17,732 + 367 * age + 1,300 * years 
 education + 0.116 * household wealth.

a. Explain how to interpret the numbers in this 
model.

b. Suppose that a customer is 32 years old, is a col-
lege graduate (so that years education = 16), and 
has a household wealth of $150,000. What is the 
predicted bank balance?

 10. Four key marketing decision variables are price (P), 
advertising (A), transportation (T), and product qual-
ity (Q). Consumer demand (D) is influenced by these 
variables. The simplest model for describing demand 
in terms of these variables is

D = k - pP + aA + tT + qQ
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where k, p, a, t, and q are positive constants.

a. How does a change in each variable affect demand?

b. How do the variables influence each other?

c. What limitations might this model have? Can 
you think of how this model might be made more 
realistic?

 11. A firm installs 1500 air conditioners which need to be 
serviced every six months. The firm can hire a team 
from its logistics department at a fixed cost of $6,000. 
Each unit will be serviced by the team at $15.00. The 
firm can also outsource this at a cost of $17.00 inclu-
sive of all charges.

a. For the given number of units, compute the total 
cost of servicing for both options. Which is a bet-
ter decision?

b. Find the break-even volume and characterize the 
range of volumes for which it is more economical 
to outsource.

 12. Return on investment (ROI) is computed in the fol-
lowing manner: ROI is equal to turnover multiplied 
by earnings as a percent of sales. Turnover is sales 
divided by total investment. Total investment is cur-
rent assets (inventories, accounts receivable, and 
cash) plus fixed assets. Earnings equal sales minus 
the cost of sales. The cost of sales consists of vari-
able production costs, selling expenses, freight and 
delivery, and administrative costs.

a. Construct an influence diagram that relates these 
variables.

b. Define symbols and develop a mathematical model.

 13. Total marketing effort is a term used to describe the 
critical decision factors that affect demand: price, 
advertising, distribution, and product quality. Let the 
variable x represent total marketing effort. A typical 
model that is used to predict demand as a function of 
total marketing effort is

D = axb

Suppose that a is a positive number. Different model 
forms result from varying the constant b. Sketch the 
graphs of this model for b = 0, b = 1, 0 6 b 6 1, 
b 6 0, and b 7 1. What does each model tell you 
about the relationship between demand and market-
ing effort? What assumptions are implied? Are they 
reasonable? How would you go about selecting the 
appropriate model?

 14. Automobiles have different fuel economies (mpg), and 
commuters drive different distances to work or school. 
Suppose that a state Department of  Transportation 
(DOT) is interested in measuring the average monthly 
fuel consumption of commuters in a certain city. 
The DOT might sample a group of commuters and 
 collect information on the number of miles driven per 
day, number of driving days per month, and the fuel 
 economy of their cars. Develop a predictive model for 
calculating the amount of gasoline consumed, using 
the following symbols for the data.

G = gallons of fuel consumed per month
m = miles driven per day to and from work or school
d = number of driving days per month
f = fuel economy in miles per gallon

Suppose that a commuter drives 30 miles round trip 
to work 20 days each month and achieves a fuel 
economy of 34 mpg. How many gallons of gasoline 
are used?

 15. A manufacturer of mp3 players is preparing to set the 
price on a new model. Demand is thought to depend 
on the price and is represented by the model

D = 2,500 - 3P

The accounting department estimates that the total 
costs can be represented by

C = 5,000 + 5D

Develop a model for the total profit in terms of the 
price, P.

 16. The demand for airline travel is quite sensitive to price. 
Typically, there is an inverse relationship  between 
demand and price; when price decreases,  demand in-
creases and vice versa. One major airline has found 
that when the price (P) for a round trip between 
Chicago and Los Angeles is $600, the demand (D)  
is 500 passengers per day. When the price is reduced 
to $400, demand is 1,200 passengers per day.

a. Plot these points on a coordinate system and de-
velop a linear model that relates demand to price.

b. Develop a prescriptive model that will determine 
what price to charge to maximize the total revenue.

c. By trial and error, can you find the optimal solu-
tion that maximizes total revenue?
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Case: Drout Advertising Research Project32

Jamie Drout is interested in perceptions of gender stereo-
types within beauty product advertising, which includes 
soap, deodorant, shampoo, conditioner, lotion, perfume, 
cologne, makeup, chemical hair color, razors, skin care, 
feminine care, and salon services; as well as the perceived 
benefits of empowerment advertising. Gender stereotypes 
specifically use cultural perceptions of what constitutes an 
attractive, acceptable, and desirable man or woman, fre-
quently exploiting specific gender roles, and are commonly 
employed in advertisements for beauty products. Women 
are represented as delicately feminine, strikingly beautiful, 
and physically flawless, occupying small amounts of physi-
cal space that generally exploit their sexuality; men as strong 
and masculine with chiseled physical bodies, occupying 
large amounts of physical space to maintain their masculin-
ity and power. In contrast, empowerment advertising strat-
egies negate gender stereotypes and visually communicate 
the unique differences in each individual. In empowerment 
advertising, men and women are to represent the diversity 
in beauty, body type, and levels of perceived femininity and 
masculinity. Her project is focused on understanding con-
sumer perceptions of these advertising strategies.

Jamie conducted a survey using the following 
questionnaire:

 1. What is your gender?
Male
Female

 2. What is your age?

 3. What is the highest level of education you have 
completed?
Some High School Classes
High School Diploma
Some Undergraduate Courses
Associate Degree
Bachelor Degree
Master Degree
J.D.
M.D.
Doctorate Degree

 4. What is your annual income?
$0 to 6$10,000
$10,000 to 6$20,000
$20,000 to 6$30,000
$30,000 to 6$40,000
$40,000 to 6$50,000

$50,000 to 6$60,000
$60,000 to 6$70,000
$70,000 to 6$80,000
$80,000 to 6$90,000
$90,000 to 6$110,000
$110,000 to 6$130,000
$130,000 to 6$150,000
$150,000 or More

 5. On average, how much do you pay for beauty and 
hygiene products or services per year? Include ref-
erences to the following products: soap, deodorant, 
shampoo, conditioner, lotion, perfume, cologne, 
makeup, chemical hair color, razors, skin care, femi-
nine care, and salon services.

 6. On average, how many beauty and hygiene adver-
tisements, if at all, do you think you view or hear per 
day? Include references to the following advertise-
ments: television, billboard, Internet, radio, newspa-
per, magazine, and direct mail.

 7. On average, how many of those advertisements, 
if at all, specifically subscribe to gender roles and 
stereotypes?

 8. On the following scale, what role, if any, do these 
advertisements have in reinforcing specific gender 
stereotypes?
Drastic
Influential
Limited
Trivial
None

 9. To what extent do you agree that empowerment ad-
vertising, which explicitly communicates the unique 
differences in each individual, would help transform 
cultural gender stereotypes?
Strongly agree
Agree
Somewhat agree
Neutral
Somewhat disagree
Disagree
Strongly disagree

 10. On average, what percentage of advertisements that 
you view or hear per day currently utilize empower-
ment advertising?

32I express my appreciation to Jamie Drout for providing this original material from her class project as the basis for this case.
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Case: Performance Lawn Equipment

In each chapter of this book, we use a database for a fic-
titious company, Performance Lawn Equipment (PLE), 
within a case exercise for applying the tools and tech-
niques introduced in the chapter.33 To put the database in 
perspective, we first provide some background about the 
company, so that the applications of business analytic tools 
will be more meaningful.

PLE, headquartered in St. Louis, Missouri, is a pri-
vately owned designer and producer of traditional lawn 
mowers used by homeowners. In the past 10 years, PLE 
has added another key product, a medium-size diesel 
power lawn tractor with front and rear power takeoffs, 
Class I three-point hitches, four-wheel drive, power steer-
ing, and full hydraulics. This equipment is built primar-
ily for a niche market consisting of large estates, including 
golf and country clubs, resorts, private estates, city parks, 
large commercial complexes, lawn care service providers, 
private homeowners with five or more acres, and govern-
ment (federal, state, and local) parks, building complexes, 
and military bases. PLE provides most of the products to 
dealerships, which, in turn, sell directly to end users. PLE 
employs 1,660 people worldwide. About half the work-
force is based in St. Louis; the remainder is split among 
their manufacturing plants.

In the United States, the focus of sales is on the east-
ern seaboard, California, the Southeast, and the south 
central states, which have the greatest concentration of 
customers. Outside the United States, PLE’s sales include 
a European market, a growing South American market, 
and developing markets in the Pacific Rim and China. The 
market is cyclical, but the different products and regions 
balance some of this, with just less than 30% of total sales 
in the spring and summer (in the United States), about 
25% in the fall, and about 20% in the winter. Annual sales 
are approximately $180 million.

Both end users and dealers have been established as 
important customers for PLE. Collection and analysis of 
end-user data showed that satisfaction with the products 
depends on high quality, easy attachment/dismount of im-
plements, low maintenance, price value, and service. For 
dealers, key requirements are high quality, parts and fea-
ture availability, rapid restock, discounts, and timeliness of 
support.

PLE has several key suppliers: Mitsitsiu, Inc., the sole 
source of all diesel engines; LANTO Axles, Inc., which 
provides tractor axles; Schorst Fabrication, which provides 
subassemblies; Cuberillo, Inc, supplier of transmissions; 
and Specialty Machining, Inc., a supplier of precision ma-
chine parts.

To help manage the company, PLE managers have 
developed a “balanced scorecard” of measures. These 
data, which are summarized shortly, are stored in the 
form of a Microsoft Excel workbook (Performance Lawn 
 Equipment) accompanying this book. The database con-
tains various measures captured on a monthly or quarterly 
basis and used by various managers to evaluate business 
performance. Data for each of the key measures are stored 
in a separate worksheet. A summary of these worksheets is 
given next:

● Dealer Satisfaction, measured on a scale of 1–5 
(1 = poor, 2 = less than average, 3 = average, 
4 = above average, and 5 = excellent). Each 
year, dealers in each region are surveyed about 
their overall satisfaction with PLE. The work-
sheet contains summary data from surveys for the 
past 5 years.

● End-User Satisfaction, measured on the same 
scale as dealers. Each year, 100 users from each 
region are surveyed. The worksheet contains 
summary data for the past 5 years.

33The case scenario was based on Gateway Estate Lawn Equipment Co. Case Study, used for the 1997 Malcolm Baldrige National Quality 
Award Examiner Training course. This material is in the public domain. The database, however, was developed by the author.

Assignment: Jamie received 105 responses, which 
are given in the Excel file Drout Advertising Survey. Re-
view the questionnaire and classify the data collected from 
each question as categorical, ordinal, interval, or ratio. 
Next, explain how the data and subsequent analysis using 
business analytics might lead to a better understanding of 
stereotype versus empowerment advertising. Specifically, 
state some of the key insights that you would hope to an-
swer by analyzing the data.

An important aspect of business analytics is good com-
munication. Write up your answers to this case  formally in 
a well-written report as if you were a  consultant to Ms. 
Drout. This case will continue in Chapters 3, 4, 6, and 7, 
and you will be asked to use a variety of descriptive ana-
lytics tools to analyze the data and interpret the results. As 
you do this, add your insights to the report, culminating in 
a complete project report that fully analyzes the data and 
draws appropriate conclusions.
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● 2014 Customer Survey, results from a survey for 
customer ratings of specific attributes of PLE 
tractors: quality, ease of use, price, and service 
on the same 1–5 scale. This sheet contains 200 
 observations of customer ratings.

● Complaints, which shows the number of com-
plaints registered by all customers each month in 
each of PLE’s five regions (North America, South 
America, Europe, the Pacific, and China).

● Mower Unit Sales and Tractor Unit Sales, which 
provide sales by product by region on a monthly 
basis. Unit sales for each region are aggregated to 
obtain world sales figures.

● Industry Mower Total Sales and Industry Tractor 
Total Sales, which list the number of units sold 
by all producers by region.

● Unit Production Costs, which provides monthly 
accounting estimates of the variable cost per unit 
for manufacturing tractors and mowers over the 
past 5 years.

● Operating and Interest Expenses, which provides 
monthly administrative, depreciation, and interest 
expenses at the corporate level.

● On-Time Delivery, which provides the number of 
deliveries made each month from each of PLE’s 
major suppliers, number on time, and the percent 
on time.

● Defects After Delivery, which shows the number 
of defects in supplier-provided material found in 
all shipments received from suppliers.

● Time to Pay Suppliers, which provides measure-
ments in days from the time the invoice is re-
ceived until payment is sent.

● Response Time, which gives samples of the times 
taken by PLE customer-service personnel to re-
spond to service calls by quarter over the past  
2 years.

● Employee Satisfaction, which provides data for 
the past 4 years of internal surveys of employees to 
determine their overall satisfaction with their jobs, 
using the same scale used for customers. Employ-
ees are surveyed quarterly, and results are strati-
fied by employee category: design and production, 
managerial, and sales/administrative support.

In addition to these business measures, the PLE data-
base contains worksheets with data from special studies:

● Engines, which lists 50 samples of the time re-
quired to produce a lawn-mower blade using a 
new technology.

● Transmission Costs, which provides the results of 
30 samples each for the current process used to 
produce tractor transmissions and two proposed 
new processes.

● Blade Weight, which provides samples of mower-
blade weights to evaluate the consistency of the 
production process.

● Mower Test, which lists test results of mower 
functional performance after assembly for  
30 samples of 100 units each.

● Employee Retention, data from a study of em-
ployee duration (length of hire) with PLE. The  
40 subjects were identified by reviewing hires 
from 10 years prior and identifying those who 
were involved in managerial positions (either 
hired into management or promoted into manage-
ment) at some time in this 10-year period.

● Shipping Cost, which gives the unit shipping cost 
for mowers and tractors from existing and pro-
posed plants for a supply-chain-design study.

● Fixed Cost, which lists the fixed cost to expand 
existing plants or build new facilities, also as part 
of the supply-chain-design study.

● Purchasing Survey, which provides data obtained 
from a third-party survey of purchasing managers 
of customers of Performance Lawn Care.

Elizabeth Burke has recently joined the PLE manage-
ment team to oversee production operations. She has re-
viewed the types of data that the company collects and has 
assigned you the responsibility to be her chief analyst in 
the coming weeks. To prepare for this task, you have de-
cided to review each worksheet and determine whether the 
data were gathered from internal sources, external sources, 
or have been generated from special studies. Also, you 
need to know whether the measures are categorical, or-
dinal, interval, or ratio. Prepare a report summarizing the 
characteristics of the metrics used in each worksheet.
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Learning Objectives

After studying this chapter, you will be able to:

•	Find buttons and menus in the Excel 2013 ribbon.

•	Write correct formulas in an Excel worksheet.

•	Apply relative and absolute addressing in Excel 
formulas.

•	Copy formulas from one cell to another or to  
a range of cells.

•	Use Excel features such as split screen, paste special, 
show formulas, and displaying grid lines and headers in 
your applications.

•	Use basic and advanced Excel functions.

•	Use Excel functions for business intelligence queries  
in databases.

Analytics on 
Spreadsheets2Ch

ap
te

r
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Many commercial software packages are available to facilitate the 

 application of business analytics. Although they often have unique features 

and capabilities, they can be expensive, generally require advanced training 

to understand and apply, and may work only on specific computer platforms. 

Spreadsheet software, on the other hand, is widely used across all areas of 

business and is standard on nearly  every  employee’s computer. Spreadsheets 

are an effective platform for manipulating data and developing and solving 

models; they support powerful commercial add-ins and facilitate communica-

tion of results. Spreadsheets provide a flexible modeling environment and are 

particularly useful when the end user is not the designer of the model. Teams 

can easily use spreadsheets and understand the logic upon which they are 

built. Information in spreadsheets can easily be copied from Excel into other 

documents and presentations. A recent survey identified more than 180 com-

mercial spreadsheet products that support analytics efforts, including data 

management and reporting, data- and model-driven analytical techniques, and 

implementation.1 Many organizations have used spreadsheets extremely effec-

tively to support  decision making in marketing, finance, and operations. Some 

illustrative applications include the following:2

•	Analyzing supply chains (Hewlett-Packard)

•	Determining optimal inventory levels to meet customer service  objectives 

(Procter & Gamble)

•	Selecting internal projects (Lockheed Martin Space Systems Company)

•	Planning for emergency clinics in response to a sudden epidemic or  

bioterrorism attack (Centers for Disease Control)

•	Analyzing the default risk of a portfolio of real estate loans  

(Hypo International)

•	Assigning medical residents to on-call and emergency rotations  

(University of Vermont College of Medicine)

•	Performance measurement and evaluation (American Red Cross)

The purpose of this chapter is to provide a review of the basic features of 

 Microsoft Excel that you need to know to use spreadsheets for analyzing and 

1Thomas A. Grossman, “Resources for Spreadsheet Analysts,” Analytics (May/June 2010): 8. analytics 
magazine.com
2Larry J. LeBlanc and Thomas A. Grossman, “Introduction: The Use of Spreadsheet Software in the 
Application of Management Science and Operations Research,” Interfaces, 38, 4 (July–August 2008): 
225–227.
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solving problems with techniques of business analytics. In this text, we use 

 Microsoft Excel 2013 for Windows to perform spreadsheet calculations and anal-

yses. Excel files for all text examples and data used in problems and exercises 

are provided with this book (see the Preface). This review is not intended to be 

a complete tutorial; many good Excel tutorials can be found online, and we also 

encourage you to use the Excel help capability (by clicking the question mark 

button at the top right of the screen). Also, for any reader who may be a Mac 

user, we caution you that Mac versions of Excel do not have the full functional-

ity that Windows versions have, particularly statistical features, although most of 

the basic capabilities are the same. In particular, the Excel add-in that we use in 

later chapters, Analytic Solver Platform, only runs on Windows. Thus, if you use 

a Mac, you should either run Bootcamp with Windows or use a third-party soft-

ware product such as Parallels or VMWare.

Basic Excel Skills

To be able to apply the procedures and techniques that you will learn in this book, it is 
necessary for you to be relatively proficient in using Excel. We assume that you are famil-
iar with the most elementary spreadsheet concepts and procedures, such as

•	opening, saving, and printing files;

•	using workbooks and worksheets;

•	moving around a spreadsheet;

•	selecting cells and ranges;

•	inserting/deleting rows and columns;

•	entering and editing text, numerical data, and formulas in cells;

•	formatting data (number, currency, decimal places, etc.);

•	working with text strings;

•	formatting data and text; and

•	modifying the appearance of the spreadsheet using borders, shading, and so on.

Menus and commands in Excel 2013 reside in the “ribbon” shown in Figure 2.1. 
Menus and commands are arranged in logical groups under different tabs (File, Home, 
 Insert, and so on); small triangles pointing downward indicate menus of additional 
choices. We often refer to certain commands or options and where they may be found in 
the ribbon.

Figure 2.1

Excel 2013 Ribbon
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Excel Formulas

Formulas in Excel use common mathematical operators:

•	addition (+ )

•	subtraction (- )

•	multiplication (*)

•	division (/)

Exponentiation uses the ^ symbol; for example, 25 is written as 2^5 in an Excel formula.
Cell references in formulas can be written either with relative addresses or absolute 

addresses. A relative address uses just the row and column label in the cell reference (for 
example, A4 or C21); an absolute address uses a dollar sign ($ sign) before either the row 
or column label or both (for example, $A2, C$21, or $B$15). Which one we choose makes 
a critical difference if you copy the cell formulas. If only relative addressing is used, then 
copying a formula to another cell changes the cell references by the number of rows or 
columns in the direction that the formula is copied. So, for instance, if we would use a 
formula in cell B8, =B4-B5*A8, and copy it to cell C9 (one column to the right and one 
row down), all the cell references are increased by one and the formula would be changed 
to =C5-C6*B9.

Using a $ sign before a row label (for example, B$4) keeps the reference fixed to 
row 4 but allows the column reference to change if the formula is copied to another cell. 
Similarly, using a $ sign before a column label (for example, $B4) keeps the reference to 
column B fixed but allows the row reference to change. Finally, using a $ sign before both 
the row and column labels (for example, $B$4) keeps the reference to cell B4 fixed no 
matter where the formula is copied. You should be very careful to use relative and abso-
lute  addressing appropriately in your models, especially when copying formulas.

ExaMpLE 2.1 Implementing price-Demand Models in Excel

In Chapter 1, we described two models for predicting 
 demand as a function of price:

D = a − bP

and

D = cP−d

Figure 2.2 shows a spreadsheet (Excel file Demand 
Prediction Models) for calculating demand for differ-
ent prices using each of these models. For example, to 

 calculate the demand in cell B8 for the linear model, we 
use the formula

= $B$4−$B$5*A8

To calculate the demand in cell E8 for the nonlinear 
model, we use the formula

= $E$4*D8^−$E$5

Note how the absolute addresses are used so that as 
these formulas are copied down, the demand is computed 
correctly.

Copying Formulas

Excel provides several ways of copying formulas to different cells. This is extremely useful in 
building decision models, because many models require replication of formulas for different 
periods of time, similar products, and so on. One way is to select the cell with the formula to be 
copied, click the Copy button from the Clipboard group under the Home tab (or simply press 
Ctrl-C on your keyboard), click on the cell you wish to copy to, and then click the Paste button 
(or press Ctrl-V). You may also enter a formula directly in a range of cells without copying and 
pasting by selecting the range, typing in the formula, and pressing Ctrl-Enter.
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Figure 2.2

Excel Models for Demand 
Prediction

To copy a formula from a single cell or range of cells down a column or across a row, 
first select the cell or range, click and hold the mouse on the small square in the lower 
right-hand corner of the cell (the “fill handle”), and drag the formula to the “target” cells 
to which you wish to copy.

Other Useful Excel Tips

•	Split Screen. You may split the worksheet horizontally and/or vertically  
to view different parts of the worksheet at the same time. The vertical splitter 
bar is just to the right of the bottom scroll bar, and the horizontal splitter  
bar is just above the right-hand scroll bar. Position your cursor over one 
of these until it changes shape, click, and drag the splitter bar to the left or 
down.

•	Paste Special. When you normally copy (one or more) cells and paste them 
in a worksheet, Excel places an exact copy of the formulas or data in the cells 
(except for relative addressing). Often you simply want the result of formulas, 
so the data will remain constant even if other parameters used in the formulas 
change. To do this, use the Paste Special option found within the Paste menu in 
the Clipboard group under the Home tab instead of the Paste command. Choos-
ing Paste Values will paste the result of the formulas from which the data were 
calculated.

•	Column and Row Widths. Many times a cell contains a number that is too large 
to display properly because the column width is too small. You may change the 
column width to fit the largest value or text string anywhere in the column by 
positioning the cursor to the right of the column label so that it changes to a cross 
with horizontal arrows and then double-clicking. You may also move the arrow to 
the left or right to manually change the column width. You may change the row 
heights in a similar fashion by moving the cursor below the row number  label. 
This can be especially useful if you have a very long formula to display. To break 
a formula within a cell, position the cursor at the break point in the formula bar 
and press Alt-Enter.

•	Displaying Formulas in Worksheets. Choose Show Formulas in the Formula 
Auditing group under the Formulas tab. You often need to change the column 
width to display the formulas properly.

•	Displaying Grid Lines and Row and Column Headers for Printing. Check the 
Print boxes for gridlines and headings in the Sheet Options group under the Page 
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Layout tab. Note that the Print command can be found by clicking on the Office 
button.

•	Filling a Range with a Series of Numbers. Suppose you want to build a work-
sheet for entering 100 data values. It would be tedious to have to enter the num-
bers from 1 to 100 one at a time. Simply fill in the first few values in the series 
and highlight them. Then click and drag the small square (fill handle) in the 
lower right-hand corner down (Excel will show a small pop-up window that tells 
you the last value in the range) until you have filled in the column to 100; then 
release the mouse.

Excel Functions

Functions are used to perform special calculations in cells and are used extensively 
in business analytics applications. All Excel functions require an equal sign and 
a function name followed by parentheses, in which you specify arguments for the 
function.

Basic Excel Functions

Some of the more common functions that we will use in applications include the following:

MIN(range)—finds the smallest value in a range of cells
MAX(range)—finds the largest value in a range of cells
SUM(range)—finds the sum of values in a range of cells
AVERAGE(range)—finds the average of the values in a range of cells
COUNT(range)—finds the number of cells in a range that contain numbers
COUNTIF(range, criteria)—finds the number of cells within a range that meet a 

specified criterion.

The COUNTIF function counts the number of cells within a range that meet a cri-
terion that you specify. For example, you can count all the cells that start with a certain 
letter, or you can count all the cells that contain a number that is larger or smaller than a 
number you specify. Examples of criteria are 100, “>100”, a cell reference such as A4, a 
text string such as “Facebook.” Note that text and logical formulas must be enclosed in 
quotes. See Excel Help for other examples.

Excel has other useful COUNT-type functions: COUNTA counts the number of 
nonblank cells in a range, and COUNTBLANK counts the number of blank cells in 
a range. In addition, COUNTIFS(range1, criterion1, range2, criterion2,… range_n, 
criterion_n) finds the number of cells within multiple ranges that meet specific criteria 
for each range.

We illustrate these functions using the Purchase Orders data set in Example 2.2.

ExaMpLE 2.2 Using Basic Excel Functions

In the Purchase Orders data set, we will find the following:

•	smallest and largest quantity of any item ordered

•	total order costs

•	average number of months per order for  
accounts payable

•	number of purchase orders placed

•	number of orders placed for O-rings

•	number of orders with A/P terms shorter than 
30 months

•	number of O-ring orders from Spacetime 
Technologies
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The results are shown in Figure 2.3. In this figure, we used 
the split-screen feature in Excel to reduce the number of 
rows shown in the spreadsheet. To find the smallest and 
largest quantity of any item ordered, we use the MIN and 
MAX functions for the data in column F. Thus, the formula 
in cell B99 is = MIN(F4:F97) and the formula in cell B100  
is =MAX(F4:F97). To find the total order costs, we sum the 
data in column G using the SUM function: =SUM(G4:G97); 
this is the formula in cell B101. To find the average number 
of A/P months, we use the AVERAGE function for the data in 
column H. The formula in cell B102 is =AVERAGE(H4:H97). 
To find the number of purchase orders placed, use the 
COUNT function. Note that the COUNT function counts 
only the number of cells in a range that contain numbers, 

so we could not use it in columns A, B, or D; however, any 
other column would be acceptable. Using the item numbers 
in column C, the formula in cell B103 is =COUNT(C4:C97). 
To find the number of orders placed for O-rings, we use the 
 COUNTIF function. For this example, the formula used in 
cell B104 is =COUNTIF(D4:D97, “O-Ring”). We could have 
also used the cell reference for any cell containing the text  
O-Ring, such as = COUNTIF(D4:D97,D12). To find the 
number of orders with A/P terms less than 30 months, 
use the formula = COUNTIF(H4:H97,“<30”) in cell B105. 
Finally, to count the number of O-Ring orders for Space-
time Technologies, we use =COUNTIFS(D4:D97,“O-Ring”, 
A4:A97,“Spacetime Technologies”).

IF-type functions are also available for other calculations. For example, the func-
tions SUMIF, AVERAGEIF, SUMIFS, and AVERAGEIFS can be used to embed IF 
logic within mathematical functions. For instance, the syntax of SUMIF is SUMIF(range, 
 criterion, [sum range]). “Sum range” is an optional argument that allows you to add cells 
in a different range. Thus, in the Purchase Orders database, to find the total cost of all 
airframe fasteners, we would use

SUMIF(D4:D97, “Airframe fasteners”, G4:G97)

This function looks for Airframe fasteners in the range D4:D97, but then sums the associ-
ated values in column G (cost per order).

Functions for Specific applications

Excel has a wide variety of other functions for statistical, financial, and other applications, 
many of which we introduce and use throughout the text. For instance, some financial mod-
els that we develop require the calculation of net present value (NPV). Net present value 
(also called discounted cash flow) measures the worth of a stream of cash flows, taking into Figure 2.3

Application of Excel Functions 
to Purchase Orders Data
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ExaMpLE 2.3 Using the NpV Function

A company is introducing a new product. The fixed cost 
for marketing and distribution is $25,000 and is incurred 
just prior to launch. The forecasted net sales revenues for 
the first six months are shown in Figure 2.4. The  formula 

in cell B8 computes the net present value of these cash 
flows as =NPV(B6,C4:H4)−B5. Note that the fixed cost 
is not a future cash flow and is not included in the NPV 
function arguments.

Figure 2.4

Net Present Value Calculation

Insert Function

The easiest way to locate a particular function is to select a cell and click on the Insert 
function button 3 fx4 , which can be found under the ribbon next to the formula bar and also 
in the Function Library group in the Formulas tab. You may either type in a description 
in the search field, such as “net present value,” or select a category, such as “Financial,” 
from the drop-down box.

This feature is particularly useful if you know what function to use but are not sure of 
what arguments to enter because it will guide you in entering the appropriate data for the func-
tion arguments. Figure 2.5 shows the dialog from which you may select the function you wish 

account the time value of money. That is, a cash flow of F dollars t time periods in the future 
is worth F>11 +  i2t dollars today, where i is the discount rate. The  discount rate reflects the 
opportunity costs of spending funds now versus achieving a return through another invest-
ment, as well as the risks associated with not receiving returns until a later time. The sum of 
the present values of all cash flows over a stated time horizon is the net present value:

 NPV = a
n

t = 0

Ft

11 + i2t (2.1)

where Ft = cash flow in period t. A positive NPV means that the investment will provide 
added value because the projected return exceeds the discount rate.

The Excel function NPV(rate, value1, value2, …) calculates the net present value of an 
investment by using a discount rate and a series of future payments (negative values) and 
 income (positive values). Rate is the value of the discount rate i over the length of one period, 
and value1, value2, … are 1 to 29 arguments representing the payments and income for each 
 period. The values must be equally spaced in time and are assumed to occur at the end of each 
period. The NPV investment begins one period before the date of the value1 cash flow and 
ends with the last cash flow in the list. The NPV calculation is based on future cash flows. If 
the first cash flow (such as an initial investment or fixed cost) occurs at the beginning of the 
first period, then it must be added to the NPV result and not included in the function arguments.
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Figure 2.5

Insert Function Dialog

Figure 2.6

Function Arguments Dialog 
for COUNTIF

to use. For example, if we would choose the COUNTIF function, the dialog in Figure 2.6 
 appears. When you click in an input cell, a description of the argument is shown. Thus, if you 
are not sure what to enter for the range, the explanation in Figure 2.6 will help you. For further 
information, you could click on the Help button in the lower left-hand corner.

Logical Functions

Logical functions return only one of two values: TRUE or FALSE. Three useful logical 
functions in business analytics applications are

IF(condition, value if true, value if false)—a logical function that returns one value if 
the condition is true and another if the condition is false,

AND(condition 1, condition 2…)—a logical function that returns TRUE if all 
 conditions are true and FALSE if not,

OR(condition 1, condition 2…)—a logical function that returns TRUE if any 
 condition is true and FALSE if not.

The IF function, IF(condition, value if true, value if false), allows you to choose one of 
two values to enter into a cell. If the specified condition is true, value if true will be put in 
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the cell. If the condition is false, value if false will be entered. Value if true and value if false 
can be a number or a text string enclosed in quotes. Note that if a blank is used between 
quotes, “ ”, then the result will simply be a blank cell. This is often useful to create a clean 
spreadsheet. For example, if cell C2 contains the function =IF(A8=2,7,12), it states that 
if the value in cell A8 is 2, the number 7 will be assigned to cell C2; if the value in cell A8 
is not 2, the number 12 will be assigned to cell C2. Conditions may include the following:

 =    equal to
 7   greater than
 6   less than
7=  greater than or equal to
6=  less than or equal to
6 7  not equal to

You may “nest” up to seven IF functions by replacing value-if-true or value-if-false in 
an IF function with another IF function:

=IF(A8=2,(IF(B3=5,;YES<,;<)),15)

This says that if cell A8 equals 2, then check the contents of cell B3. If cell B3 is 5, then 
the value of the function is the text string YES; if not, it is a blank space (represented by 
quotation marks with nothing in between). However, if cell A8 is not 2, then the value of 
the function is 15 no matter what cell B3 is. 

AND and OR functions simply return the values of true or false if all or at least one 
of multiple conditions are met, respectively. You may use AND and OR functions as the 

ExaMpLE 2.4 Using the IF Function

Suppose that the aircraft-component manufacturer  
considers any order of 10,000 units or more to be large, 
whereas any other order size is considered to be small. 
We may use the IF function to classify the orders. First, 
create a new column in the spreadsheet for the order 
size, say, column K. In cell K4, use the formula

= IF(F4+=10000,;Large<,;Small<)

This function will return the value Large in cell K4 if  
the order size in cell F4 is 10,000 or more; otherwise, it 

returns the value Small. Further, suppose that large orders 
with a total cost of at least $25,000 are considered critical. 
We may flag these orders as critical by using the function 
in cell L4:

= IF(AND(K4=“Large”, G4+=25000),“Critical”,“ ”)

After copying these formulas down the columns,  
Figure 2.7 shows a portion of the results.

Figure 2.7

Classifying Order Sizes Using the IF Function
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condition within an IF function; for example, = IF(AND(B1 = 3,C1 = 5),12,22). Here,  
if cell B1=3 and cell C1=5, then the value of the function is 12; otherwise it is 22.

Using Excel Lookup Functions for Database Queries

In Chapter 1 we noted that business intelligence was instrumental in the evolution of busi-
ness analytics. Organizations often need to extract key information from a database to sup-
port customer service representatives, technical support, manufacturing, and other needs. 
Excel provides some useful functions for finding specific data in a spreadsheet. These are:

VLOOKUP(lookup_value, table_array, col_index_num, [range lookup]) looks up a 
value in the leftmost column of a table (specified by the table_array) and returns 
a value in the same row from a column you specify (col_index_num). 

HLOOKUP(lookup_value, table_array, row_index_num, [range lookup]) looks up a 
value in the top row of a table and returns a value in the same column from a row 
you specify.

INDEX(array, row_num, col_num) returns a value or reference of the cell at the in-
tersection of a particular row and column in a given range.

MATCH(lookup_value, lookup_array, match_type) returns the relative position of 
an item in an array that matches a specified value in a specified order.

In the VLOOKUP and HLOOKUP functions, range lookup is optional. If this is omit-
ted or set as True, then the first column of the table must be sorted in ascending numerical 
order. If an exact match for the lookup_value is found in the first column, then Excel will 
return the value the col_index_num of that row. If an exact match is not found, Excel will 
choose the row with the largest value in the first column that is less than the lookup_value. 
If range lookup is false, then Excel seeks an exact match in the first column of the table 
range. If no exact match is found, Excel will return #N/A (not available). We recommend 
that you specify the range lookup to avoid errors.

ExaMpLE 2.5 Using the VLOOKUp Function

In Chapter 1, we introduced a database of sales trans-
actions for a firm that sells instructional fitness books 
and DVDs (Excel file Sales Transactions). The database 
is sorted by customer ID, and a portion of it is shown 
in Figure 2.8. Suppose that a customer calls a repre-
sentative about a payment issue. The representative 
finds the customer ID—for example, 10007—and needs 
to look up the type of payment and transaction code. 
We may use the VLOOKUP function to do this. In the 
function VLOOKUP(lookup_value, table_array, col_ 
index_num), lookup_value represents the customer ID. 
The table_array is the range of the data in the spread-
sheet; in this case, it is the range A4:H475. The value  
for col_index_num represents the column in the table 
range we wish to retrieve. For the type of payment, this 
is column 3; for the transaction code, this is column 4. 
Note that the first column is already sorted in ascending 

numerical order, so we can either omit the range lookup 
argument or set it as true. Thus, if we enter the formula 
below in any blank cell of the spreadsheet:

=VLOOKUP(10007,$A$4:$H$475,3)

returns the payment type, Credit. If we use the following 
formula:

=VLOOKUP(10007,$A$4:$H$475,4) 

the function returns the transaction code, 80103311.
Now suppose the database was sorted by transaction 

code so that the customer ID column is no longer in ascend-
ing numerical order as shown in Figure 2.9. If we use the 
function =VLOOKUP(10007,$A$4:$H$475,4, True), Excel 
returns #N/A. However, if we change the range lookup argu-
ment to False, then the function  returns the correct value of 
the transaction code.
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The HLOOKUP function works in a similar fashion. For most spreadsheet databases, 
we would normally need to use the VLOOKUP function. In some modeling situations, 
however, the HLOOKUP function can be useful if the data are arranged column by col-
umn rather than row by row.

The INDEX function works as a lookup procedure by returning the value in a par-
ticular row and column of an array. For example, in the Sales Transactions database, 
INDEX(+A+4:+H+475, 7, 4) would retrieve the transaction code, 80103311 that is in the 
7th row and 4th column of the data array (see Figure 2.8), as the VLOOKUP function did 
in Example 2.5. The difference is that it relies on the row number rather than the actual 
value of the customer ID.

In the MATCH function, lookup_value is the value that you want to match in lookup_ 
array, which is the range of cells being searched. The match_type is either -1, 0, or 1. The 
default is 1. If match_type = 1, then the function finds the largest value that is less than or 
equal to lookup_value. The values in the lookup_array must be placed in ascending order. 
If match_type = 0, MATCH finds the first value that is exactly equal to lookup_value. 
The values in the lookup_array can be in any order. If match_type = -1, then the func-
tion finds the smallest value that is greater than or equal to lookup_value. The values 
in the lookup_array must be placed in descending order. Example 2.6 shows how the  
INDEX and MATCH functions can be used.

The VLOOKUP function will not work if you want to look up something to the left of 
a specified range (because it uses the first column of the range to find the lookup value).  
However, we can use the INDEX and MATCH function easily to do this, as Example 2.7  
shows.

Figure 2.8

Portion of Sales Transactions 
Data Sorted by Çustomer ID

Figure 2.9

portion of Sales 
Transactions Data Sorted 
by Transaction Code
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Figure 2.10

Monthly Product Sales 
Queries Workbook

Figure 2.11

Query1 Worksheet in 
Monthly Product Sales 
Queries Workbook

ExaMpLE 2.6 Using INDEx and MaTCH Functions for Database Queries

Figure 2.10 shows the data in the Excel file Monthly 
Product Sales Queries. Suppose we wish to design a 
simple query application to input the month and product 
name, and retrieve the corresponding sales. The three 
additional worksheets in the workbook show how to do 
this in three different ways. The Query1 worksheet (see 
Figure 2.11) uses the VLOOKUP function with embedded 
IF statements. The formulas in cell I8 is:

=VLOOKUP(I5,A4:F15,IF(I6=“A”,2,IF(I6=“B”,3, 
 IF(I6=“C”,4,IF(I6=“D”,5,IF(I6=“E”,6))))),FALSE)

The IF functions are used to determine the column in the 
lookup table to use, and, as you can see, is somewhat 
complex, especially if the table were much larger.

The Query2 worksheet (not shown here; see the Excel 
workbook) uses the VLOOKUP and MATCH functions in 
cell I8. The formula in cell I8 is:

=VLOOKUP(I5,A4:F15,MATCH(I6,B3:F3,0)+1,FALSE)

In this case, the MATCH function is used to identify the 
column in the table corresponding to the product name 
in cell I6. Note the use of the “ +1” to shift the relative 
column number of the product to the correct column 
number in the lookup table. 

Finally, the Query3 worksheet (also not shown here) 
uses only INDEX and MATCH functions in cell I8. The for-
mula in cell I8 is:

= INDEX(A4:F15,MATCH(I5,A4:A15,0), MATCH(I6,A3:F3,0))

The MATCH functions are used as arguments in the INDEX 
function to identify the row and column numbers in the table 
based on the month and product name. The INDEX func-
tion then retrieves the value in the corresponding row and 
column. This is perhaps the cleanest formula of the three. 
By studying these examples carefully, you will better under-
stand how to use these functions in other applications.
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Spreadsheet add-Ins for Business analytics

Microsoft Excel will provide most of the computational support required for the mate-
rial in this book. Excel (Windows only) provides an add-in called the Analysis Toolpak, 
which contains a variety of tools for statistical computation, and Solver, which is used for 
optimization. These add-ins are not included in a standard Excel installation. To install 
them, click the File tab and then Options in the left column. Choose Add-Ins from the left 
column. At the bottom of the dialog, make sure Excel Add-ins is selected in the Manage: 
box and click Go. In the Add-Ins dialog, if Analysis Toolpak, Analysis Toolpak VBA, and 
Solver Add-in are not checked, simply check the boxes and click OK. You will not have to 
repeat this procedure every time you run Excel in the future.

In addition, many third-party add-ins are available to support analytic procedures in 
Excel. One add-in, Frontline Systems’ Analytic Solver Platform, offers many other capa-
bilities for both predictive and prescriptive analytics. See the Preface for instructions on 
how to download and install this software. We will use both the included Excel add-ins 
and Analytic Solver Platform throughout this book, so we encourage you to download and 
set up these add-ins on your computer at this time. 

ExaMpLE 2.7 Using INDEx and MaTCH for a Left Table Lookup

Suppose that, in the Sales Transactions database, we 
wish to find the customer ID associated with a specific 
transaction code. Refer back to Figure 2.8 or the Excel 
workbook. Suppose that we enter the transaction code 
in cell K2, and want to display the customer ID in cell K4. 
Use the formula in cell K4:

= INDEX(A4:A475,MATCH(K2,D4:D475,0),1)

Here, the MATCH function is used to identify the row 
 number in the table range that matches the transaction 
code exactly, and the INDEX function uses this row num-
ber and column 1 to identify the associated customer ID.

Absolute address
Discount rate

Net present value (discounted cash flow)
Relative address

Key Terms

3Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems,  
9th ed. (Upper Saddle River, NJ: Prentice Hall, 2011).

problems and Exercises

 1. The Excel file Firm Data shows the prices charged 
and different product sizes. Prepare a worksheet 
using VLOOKUP function that will compute the 
invoice to be sent to a customer when any product 
type, size, and order quantity are entered.

 2. The Excel file Store and Regional Sales Database 
provides sales data for computers and peripher-
als showing the store identification number, sales 
region, item number, item description, unit price, 
units sold, and month when the sales were made 
during the fourth quarter of last year.3 Modify the 
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4Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems.
5Based on Efraim Turban, Ranesh Sharda, Dursun Delen, and David King, Business Intelligence:  
A Managerial Approach, 2nd ed. (Upper Saddle River NJ: Prentice Hall, 2011).

 spreadsheet to calculate the total sales revenue for 
each of the eight stores as well as each of the three 
sales regions.

 3. The Excel file President’s Inn Guest Database pro-
vides a list of customers, rooms they occupied, ar-
rival and departure dates, number of occupants, and 
daily rate for a small bed-and-breakfast inn during 
one month.4 Room rates are the same for one or two 
guests; however, additional guests must pay an addi-
tional $20 per person per day for meals. Guests stay-
ing for seven days or more receive a 10% discount. 
Modify the spreadsheet to calculate the number of 
days that each party stayed at the inn and the total 
revenue for the length of stay.

 4. The worksheet Base Data in the Excel file Credit 
Risk Data provides information about 425 bank cus-
tomers who had applied for loans. The data include 
the purpose of the loan, checking and savings ac-
count balances, number of months as a customer of 
the bank, months employed, gender, marital status, 
age, housing status and number of years at current 
residence, job type, and credit-risk classification by 
the bank.5

 a. Use the COUNTIF function to determine (1) how 
many customers applied for new-car, used-car, 
business, education, small-appliance, and furni-
ture loans and (2) the number of customers with 
checking account balances less than $500.

 b. Modify the spreadsheet using IF functions to in-
clude new columns, classifying the checking and 
savings account balances as low if the balance is 
less than $250, medium if between $250 but less 
than $2000, and high otherwise.

 5. A manager needs to identify some information from 
the Purchase Orders Excel file but has only the order 
number. Modify the Excel file to use the VLOOKUP 
function to find the item description and cost per 
order for the following order numbers: Aug11008, 
Sep11023, and Oct11020.

 6. A pharmaceutical manufacturer has projected net 
profits for a new drug that is being released to the 
market over the next five years:

Year Net profit

1 $(300,000,000)

2 $(145,000,000)

3  $50,000,000

4 $125,000,000

5 $530,000,000

  Use a spreadsheet to find the net present value of 
these cash flows for a discount rate of 3%.

 7. Example 1.4 in Chapter 1 described a scenario for 
new product sales that can be characterized by a 
formula called a Gompertz curve: S = aebect

. De-
velop a spreadsheet for calculating sales using this 
formula for t = 0 to 160 in increments of 10 when 
a = 15000, b = -8, and c = -0.05.

 8. Example 1.8 in Chapter 1 provided data from an ex-
periment to identify the relationship between sales 
and pricing, coupon, and advertising strategies. Enter 
the data into a spreadsheet and implement the model 
in the example within your spreadsheet to estimate 
the sales for each of the weekly experiments. Com-
pute the average sales for the three stores, and find 
the differences between the averages and the model 
estimates for each week.

 9. The following exercises use the Purchase Orders 
database. Use MATCH and/or INDEX functions to 
find the following:

 a. The row numbers corresponding to the first and 
last instance of item number 1369 in column C 
(be sure column C is sorted by order number).

 b. The order cost associated with the first instance 
of item 1369 that you identified in part (a).

 c. The total cost of all orders for item 1369.  Use the 
answers to parts (a) and (b) along with the SUM 
function to do this. In other words, you should 
use the appropriate INDEX and MATCH func-
tions within the SUM function to find the answer.  
Validate your results by applying the SUM func-
tion directly to the data in column G.
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 10. Use INDEX and MATCH functions to fill in a  table 
that extracts the amounts shipped between each 
pair  of cities in the Excel file General Appliance 
Corporation. Your table should display as follows, 
and the formula for the amount should reference the 
names in the From and To columns:

From To amount

Marietta Cleveland 0

Marietta Baltimore 350

Marietta Chicago 0

Marietta Phoenix 850

Minneapolis Cleveland 150

Minneapolis Baltimore 0

Minneapolis Chicago 500

Minneapolis Phoenix 150

 11. A firm is considering the purchase of a new technol-
ogy that is expected to produce an annual net sav-
ing in labor costs of $8000 in each of the six years. 
The initial cost is $30000, and annual maintenance 
cost is $1000. The company can access the required 
fund at the current market interest rate of 14% per 
annum compounded annually. By calculating NPV 
of the proposed expenditure, decide whether the 
technology should be purchased. 

Case: performance Lawn Equipment

Elizabeth Burke has asked you to do some preliminary 
analysis of the data in the Performance Lawn Equipment 
database. First, she would like you to edit the worksheets 
Dealer Satisfaction and End-User Satisfaction to display 
the total number of responses to each level of the survey 
scale across all regions for each year. Second, she wants 
a count of the number of failures in the worksheet Mower 
Test. Next, Elizabeth has provided you with prices for 
PLE products for the past 5 years:

Year Mower price ($) Tractor price ($)

2010 150 3,250

2011 175 3,400

2012 180 3,600

2013 185 3,700

2014 190 3,800

Create a new worksheet in the database to compute 
gross revenues by month and region, as well as world-
wide totals, for each product using the data in Mower Unit 
Sales and Tractor Unit Sales. Finally, she wants to know 
the market share for each product and region based on the 
PLE and industry sales data in the database. Create and 
save these calculations in a new worksheet. Summarize all 
your findings in a report to Ms. Burke.
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Learning Objectives

After studying this chapter, you will be able to:

•	Create Microsoft Excel charts.

•	Determine the appropriate chart to visualize different 
types of data.

•	Sort a data set in an Excel spreadsheet.

•	Apply the Pareto Principle to analyze data.

•	Use the Excel Autofilter to identify records in a 
database meeting certain characteristics.

•	Explain the science of statistics and define  
the term statistic.

•	Construct a frequency distribution for both discrete 
and continuous data.

•	Construct a relative frequency distribution  
and histogram.

•	Compute cumulative relative frequencies.

•	Find percentiles and quartiles for a data set.

•	Construct a cross-tabulation (contingency table).

•	Use PivotTables to explore and summarize data.

•	Use PivotTables to construct a cross-tabulation.

•	Display the results of PivotTables using PivotCharts.

Visualizing and 
Exploring Data3Ch

ap
te

r

Laborant/Shutterstock.com
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Converting data into information to understand past and current 

 performance is the core of descriptive analytics and is vital to making good 

business decisions. Techniques for doing this range from plotting data on 

charts, extracting data from databases, and manipulating and summarizing 

data. In this chapter, we introduce a variety of useful techniques for descrip-

tive analytics.

Data Visualization

The old adage “A picture is worth 1000 words” is probably truer in today’s information-
rich environment than ever before. In Chapter 1 we stated that data visualization is at the 
core of modern business analytics. Data visualization is the process of displaying data 
(often in large quantities) in a meaningful fashion to provide insights that will support bet-
ter decisions. Making sense of large quantities of disparate data is necessary not only for 
gaining competitive advantage in today’s business environment but also for surviving in 
it. Researchers have observed that data visualization improves decision-making, provides 
managers with better analysis capabilities that reduce reliance on IT professionals, and 
improves collaboration and information sharing.

Raw data are important, particularly when one needs to identify accurate values or 
compare individual numbers. However, it is quite difficult to identify trends and pat-
terns, find exceptions, or compare groups of data in tabular form. The human brain does 
a  surprisingly good job processing visual information—if presented in an effective way. 
Visualizing data provides a way of communicating data at all levels of a business and can 
reveal surprising patterns and relationships. For many unique and intriguing examples of 
data visualization, visit the Data Visualization Gallery at the U.S. Census Bureau Web 
site, www.census.gov/dataviz/.

ExampLE 3.1 Tabular versus Visual Data analysis

Figure 3.1 shows the data in the Excel file Monthly 
 Product Sales. We can use the data to determine  exactly 
how many units of a certain product were sold in a 
 particular month, or to compare one month to another. 
For example, we see that sales of product A dropped 
in February, specifically by 6.7% (computed by the 
 Excel formula =  1 − B3/B2). Beyond such calculations,  
however, it is difficult to draw big picture conclusions. 

Figure 3.2 displays a chart of monthly sales for each 
product. We can easily compare overall sales of differ-
ent products (Product C sells the least, for example), 
and identify trends (sales of Product D are increasing), 
other patterns (sales of Product C is relatively stable 
while sales of Product B fluctuates more over time), 
and exceptions (Product E’s sales fell considerably in 
September).

Data visualization is also important both for building decision models and for in-
terpreting their results. For example, recall the demand-prediction models in Chapter 1 
( Examples 1.9 and 1.10). To identify the appropriate model to use, we would normally 
have to collect and analyze data on sales demand and prices to determine the type of re-
lationship (linear or nonlinear, for example) and estimate the values of the parameters in 
the model. Visualizing the data will help to identify the proper relationship and use the 
appropriate data analysis tool. Furthermore, complex analytical models often yield com-
plex results. Visualizing the results often helps in understanding and gaining insight about 
model output and solutions.
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Dashboards

Making data visible and accessible to employees at all levels is a hallmark of effective 
modern organizations. A dashboard is a visual representation of a set of key business 
measures. It is derived from the analogy of an automobile’s control panel, which displays 
speed, gasoline level, temperature, and so on. Dashboards provide important summaries of 
key business information to help manage a business process or function. Dashboards might 
include tabular as well as visual data to allow managers to quickly locate key data. Figure 3.3 
shows a simple dashboard for the product sales data in Figure 3.1 showing monthly sales 
for each product individually, sales of all products combined, total annual sales by product, 
a comparison of the last two months, and monthly percent changes by product.

Tools and Software for Data Visualization

Data visualization ranges from simple Excel charts to more advanced interactive tools and 
software that allow users to easily view and manipulate data with a few clicks, not only 
on computers, but on iPads and other devices as well. In this chapter we discuss basic 
tools available in Excel. In Chapter 10, we will see several other tools used in data mining 
 applications that are available with the Excel add-in, XLMiner, that is used in this book.

Figure 3.1

Monthly Product Sales Data

Figure 3.2

Visualization of Monthly 
Product Sales Data
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While we will only focus on Excel-based tools in this book, you should be aware 
of other options and commercial packages that are available. In particular, we suggest 
that you look at the capabilities of Tableau (www.tableausoftware.com) and IBM’s 
Cognos software (www.cognos10.com). Tableau is easy to use and offers a free trial.

Creating Charts in microsoft Excel

Microsoft Excel provides a comprehensive charting capability with many features. With 
a little experimentation, you can create very professional charts for business analyses and 
presentations. These include vertical and horizontal bar charts, line charts, pie charts, 
area charts, scatter plots, and many other special types of charts. We generally do not 
guide you through every application but do provide some guidance for new procedures as 
appropriate.

Certain charts work better for certain types of data, and using the wrong chart can 
make it difficult for the user to interpret and understand. While Excel offers many ways to 
make charts unique and fancy, naive users often focus more on the attention-grabbing as-
pects of charts rather than their effectiveness of displaying information. So we recommend 
that you keep charts simple, and avoid such bells and whistles as 3-D bars, cylinders, 
cones, and so on. We highly recommend books written by Stephen Few, such as Show Me 
the Numbers (Oakland, CA: Analytics Press, 2004) for additional guidance in developing 
effective data visualizations.

To create a chart in Excel, it is best to first highlight the range of the data you wish 
to chart. The Excel Help files provide guidance on formatting your data for a particular 
type of chart. Click the Insert tab in the Excel ribbon (Figure 3.4). From the Charts group, 
click the chart type, and then click a chart subtype that you want to use. Once a basic chart 
is created, you may use the options in the Design and Format tabs within the Chart Tools 
tabs to customize your chart (Figure 3.5). In the Design tab, you can change the type of 
chart, data included in the chart, chart layout, and styles. The Format tab provides various 
formatting options. You may also customize charts easily by right-clicking on elements of 
the chart or by using the Quick Layout options in the Chart Layout group within the Chart 
Tools Design tab.

You should realize that up to 10% of the male population are affected by color blind-
ness, making it difficult to distinguish between different color variations. Although we 
generally display charts using Excel’s default colors, which often, unfortunately, use red, 
experts suggest using blue-orange palettes. We suggest that you be aware of this for pro-
fessional and commercial applications.

Figure 3.3

Dashboard for Product  
Sales

M03_EVAN5448_02_SE_C03.indd   82 12/09/15   7:29 AM

www.tableausoftware.com
www.cognos10.com


 Chapter 3  Visualizing and Exploring Data 83

Column and Bar Charts

Excel distinguishes between vertical and horizontal bar charts, calling the former column 
charts and the latter bar charts. A clustered column chart compares values across cat-
egories using vertical rectangles; a stacked column chart displays the contribution of each 
value to the total by stacking the rectangles; and a 100% stacked column chart compares 
the percentage that each value contributes to a total. Column and bar charts are useful for 
comparing categorical or ordinal data, for illustrating differences between sets of values, 
and for showing proportions or percentages of a whole.

Figure 3.4

Excel Insert Tab

Figure 3.5

Excel Chart Tools

ExampLE 3.2 Creating Column Charts

The Excel file EEO Employment Report provides data on 
the number of employees in different categories broken 
down by racial/ethnic group and gender (Figure 3.6). We 
will construct a simple column chart for the various em-
ployment categories for all employees. First, highlight 
the range C3:K6, which includes the headings and data 
for each category. Click on the Column Chart button and 
then on the first chart type in the list (a clustered column 
chart). To add a title, click on the Add Chart Elements 
button in the Design tab ribbon. Click on “Chart Title” in 
the chart and change it to “EEO Employment Report—

Alabama.” The names of the data series can be changed 
by clicking on the Select Data button in the Data group 
of the Design tab. In the Select Data Source dialog (see 
 Figure 3.7), click on “Series1” and then the Edit  button. 
Enter the name of the data series, in this case “All 
 Employees.” Change the names of the other data series 
to “Men” and “Women” in a similar fashion. You can also 
change the order in which the data series are displayed 
on the chart using the up and down buttons. The final 
chart is shown in Figure 3.8.

Be cautious when changing the scale of the numerical axis. The heights or lengths of 
the bars only accurately reflect the data values if the axis starts at zero. If not, the relative 
sizes can paint a misleading picture of the relative values of the data.
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Figure 3.6

Portion of EEO Employment Report Data

Figure 3.7

Select Data Source Dialog

Figure 3.8

Column Chart for Alabama 
Employment Data
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Data Labels and Data Tables Chart Options

Excel provides options for including the numerical data on which charts are based within 
the charts. Data labels can be added to chart elements to show the actual value of bars, for 
example. Data tables can also be added; these are usually better than data labels, which 
can get quite messy. Both can be added from the Add Chart Element Button in the Chart 
Tools Design tab, or also from the Quick Layout button, which provides standard design 
options. Figure 3.9 shows a data table added to the Alabama  Employment chart. You can 
see that the data table provides useful additional information to improve the visualization.

Line Charts

Line charts provide a useful means for displaying data over time, as Example 3.3 
 illustrates. You may plot multiple data series in line charts; however, they can be difficult 
to interpret if the magnitude of the data values differs greatly. In that case, it would be 
advisable to create separate charts for each data series.

Figure 3.9

Alternate Column Chart Format

pie Charts

For many types of data, we are interested in understanding the relative proportion of each 
data source to the total. A pie chart displays this by partitioning a circle into pie-shaped 
areas showing the relative proportion. Example 3.4  provides one application.

ExampLE 3.3 a Line Chart for China Export Data

Figure 3.10 shows a line chart giving the amount of U.S. 
exports to China in billions of dollars from the Excel file 
China Trade Data. The chart clearly shows a significant 

rise in exports starting in the year 2000, which began to 
level off around 2008.
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ExampLE 3.4 a pie Chart for Census Data

Consider the marital status of individuals in the U.S. popu-
lation in the Excel file Census Education Data, a portion of 
which is shown in Figure 3.11. To show the relative pro-
portion in each category, we can use a pie chart, as shown 

in Figure 3.12. This chart uses a layout option that shows 
the labels associated with the data as well as the actual 
proportions as percentages. A different layout that shows 
both the values and/or proportions can also be chosen.

ExampLE 3.5 an area Chart for Energy Consumption

Figure 3.14 displays total energy consumption (billion 
Btu) and consumption of fossil fuels from the Excel file 
Energy Production & Consumption. This chart shows 
that although total energy consumption has grown since 

1949, the relative proportion of fossil fuel consumption 
has remained generally consistent at about half of the to-
tal, indicating that alternative energy sources have not 
replaced a significant portion of fossil-fuel consumption.

Data visualization professionals don’t recommend using pie charts. For example, con-
trast the pie chart in Figure 3.12 with the column chart in Figure 3.13 for the same data. In 
the pie chart, it is difficult to compare the relative sizes of areas; however, the bars in the 
column chart can easily be compared to determine relative ratios of the data. If you do use 
pie charts, restrict them to small numbers of categories, always ensure that the numbers add 
to 100%, and use labels to display the group names and actual percentages. Avoid three-
dimensional (3-D) pie charts—especially those that are rotated—and keep them simple.

area Charts

An area chart combines the features of a pie chart with those of line charts. Area charts 
present more information than pie or line charts alone but may clutter the observer’s mind 
with too many details if too many data series are used; thus, they should be used with care.

Scatter Chart

Scatter charts show the relationship between two variables. To construct a scatter chart, 
we need observations that consist of pairs of variables. For example, students in a class 
might have grades for both a midterm and a final exam. A scatter chart would show 
whether high or low grades on the midterm correspond strongly to high or low grades on 
the final exam or whether the relationship is weak or nonexistent.

Figure 3.10

Chart with Data Labels  
and Data Table
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Figure 3.11

Portion of Census  
Education Data

Figure 3.12

Pie Chart for Marital Status

Figure 3.13

Alternative Column Chart  
for Marital Status: Not a High 
School Grad
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Bubble Charts

A bubble chart is a type of scatter chart in which the size of the data marker corresponds 
to the value of a third variable; consequently, it is a way to plot three variables in two 
dimensions.

ExampLE 3.6 a Scatter Chart for Real Estate Data

Figure 3.15 shows a scatter chart of house size (in square 
feet) versus the home market value from the Excel file 

Home Market Value. The data clearly suggest that higher 
market values are associated with larger homes.

ExampLE 3.7 a Bubble Chart for Comparing Stock Characteristics

Figure 3.16 shows a bubble chart for displaying price, 
P/E (price/earnings) ratio, and market capitalization for 
five different stocks on one particular day in the Excel 

file Stock Comparisons. The position on the chart shows 
the price and P/E; the size of the bubble represents the 
market cap in billions of dollars.

Figure 3.14

Area Chart for Energy 
Consumption

Figure 3.15

Scatter Chart of House Size 
versus Market Value
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miscellaneous Excel Charts

Excel provides several additional charts for special applications. These additional types of 
charts (including bubble charts) can be selected and created from the Other Charts button 
in the Excel ribbon. These include the following:

•	A stock chart allows you to plot stock prices, such as the daily high, low, and 
close. It may also be used for scientific data such as temperature changes.

•	A surface chart shows 3-D data.

•	A doughnut chart is similar to a pie chart but can contain more than one data 
series.

•	A radar chart allows you to plot multiple dimensions of several data series.

Geographic Data

Many applications of business analytics involve geographic data. For example, problems 
such as finding the best location for production and distribution facilities, analyzing re-
gional sales performance, transporting raw materials and finished goods, and routing ve-
hicles such as delivery trucks involve geographic data. In such problems, data mapping 
can help in a variety of ways. Visualizing geographic data can highlight key data relation-
ships, identify trends, and uncover business opportunities. In addition, it can often help to 
spot data errors and help end users understand solutions, thus increasing the likelihood of 
acceptance of decision models. Companies like Nike use geographic data and informa-
tion systems for visualizing where products are being distributed and how that relates to 
demographic and sales information. This information is vital to marketing strategies. The 
use of prescriptive analytic models in combination with data mapping was instrumental in 
the success of Procter & Gamble Company’s North American Supply Chain study, which 
saved the company in excess of $200 million dollars per year.1 We discuss this application 
in Chapter 15.

Figure 3.16

Bubble Chart for Stock 
Comparisons

1J. Camm et al., “Blending OR/MS, Judgment and GIS: Restructuring P&G’s Supply Chain,” Interfaces, 
27, 1 (1997): 128–142.
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Geographic mapping capabilities were introduced in Excel 2000 but were not avail-
able in Excel 2002 and later versions. These capabilities are now available through  
Microsoft MapPoint 2010, which must be purchased separately. MapPoint is a geographic 
data-mapping tool that allows you to visualize data imported from Excel and other data-
base sources and integrate them into other Microsoft Office applications. For further infor-
mation, see http://www.microsoft.com/mappoint/en-us/home.aspx.

Other Excel Data Visualization Tools

Microsoft Excel offers numerous other tools to help visualize data. These include data 
bars, color scales, and icon sets; sparklines, and the camera tool. We will describe each of 
these in the following sections.

Data Bars, Color Scales, and Icon Sets

These options are part of Excel’s Conditional Formatting rules, which allow you to visu-
alize different numerical values through the use of colors and symbols. Excel has a variety 
of standard templates to use, but you may also customize the rules to meet your own con-
ditions and styles. We encourage you to experiment with these tools.

ExampLE 3.8 Data Visualization through Conditional Formatting

Data bars display colored bars that are scaled to 
the magnitude of the data values (similar to a bar chart) 
but placed directly within the cells of a range. Figure 3.17 
shows data bars applied to the data in the Monthly  
Product Sales worksheet. Highlight the data in each 
 column, click the Conditional Formatting button in the 
Styles group within the Home tab, select Data Bars, and 
choose the fill option and color.

Color scales shade cells based on their numerical 
value using a color palette. This is another option in the 
Conditional Formatting menu. For example, in Figure 3.18 
we use a green-yellow-red color scale, which highlights 

cells containing large values in green, small values in red, 
and middle values in yellow. The darker the green, the 
larger the value; the darker the red, the smaller the value. 
For intermediate values, you can see that the colors blend 
together. This provides a quick way of identifying the larg-
est and smallest product-month sales values. Color- coding 
of quantitative data is commonly called a heatmap. We will 
see another application of a heatmap in Chapter 14.

Finally, Icon Sets provide similar information using 
various symbols such as arrows or stoplight colors. Figure 
3.19 shows an example.

Figure 3.17

Example of Data Bars
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Sparklines

Sparklines are graphics that summarize a row or column of data in a single cell. Spar-
klines were introduced by Edward Tufte, a famous expert on visual presentation of data. 
He described sparklines as “data-intense, design-simple, word-sized graphics.” Excel has 
three types of sparklines: line, column, and win/loss. Line sparklines are clearly useful 
for time-series data, while column sparklines are more appropriate for categorical data. 
 Win-loss sparklines are useful for data that move up or down over time. They are found in 
the Sparklines group within the Insert menu on the ribbon.

ExampLE 3.9 Examples of Sparklines

We will again use the Monthly Product Sales data. Figure 
3.20 shows line sparklines in row 14 for each product. In col-
umn G, we display column sparklines, which are essentially 
small column charts. Generally you need to expand the row 
or column widths to display them effectively. Notice, how-
ever, that the lengths of the bars are not scaled properly to 
the data; for example, in the first one, products D and E are 
roughly one-third the value of Product E yet the bars are not 
scaled correctly. So be careful when using them.

Figure 3.21 shows a modified worksheet in which we 
computed the percentage change from 1 month to the 
next for products A and B. The win-loss sparklines in row 
14 show the patterns of sales increases and decreases, 
suggesting that product A has a cyclical pattern while 
product B changed in a more random fashion. If you click 
on any cell containing a sparkline, the Sparkline Tools  
Design tab appears, allowing you to customize colors and 
other options.

Figure 3.18

Example of Color Scales

Figure 3.19

Example of Icon Sets
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Excel Camera Tool

A little-known feature of Excel is the camera tool. This allows you to create live pictures 
of various ranges from different worksheets that you can place on a single page, size them, 
and arrange them easily. They are simply linked pictures of the original ranges, and the 
advantage is that as any data are changed or updated, the camera shots are also. This is 
particularly valuable for printing summaries when you need to extract data from multiple 
worksheets, consolidating PivotTables (introduced later in this chapter) onto one page, 
or for creating dashboards when the tables and charts are scattered across multiple work-
sheets. To use the camera too, first add it to the Quick Access Toolbar (the set of buttons 
above the ribbon). From the File menu, choose Options and then Quick Access Toolbar. 
Choose Commands, and then Commands Not in the Ribbon. Select Camera and add it. 
It will then appear as shown in Figure 3.22. To use it, simply highlight a range of cells  

Figure 3.20

Line and Column Sparklines

Figure 3.21

Win-Loss Sparklines
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(if you want to capture a chart, highlight a range of cells surrounding it), click the camera 
tool button and then click the location where you want to place the picture. You may size 
the picture just like any other Microsoft Excel object. We will illustrate this tool later in 
the chapter when we discuss PivotTables.

Data Queries: Tables, Sorting, and Filtering

Managers make numerous queries about data. For example, in the Purchase Orders data-
base (Figure 1.3), they might be interested in finding all orders from a certain supplier, all 
orders for a particular item, or tracing orders by order data. To address these queries, we 
need to sort the data in some way. In other cases, managers might be interested in extract-
ing a set of records having certain characteristics. This is termed filtering the data. For 
example, in the Purchase Orders database, a manager might be interested in extracting all 
records corresponding to a certain item.

Excel provides a convenient way of formatting databases to facilitate analysis, called Tables.

ExampLE 3.10 Creating an Excel Table

We will use the Credit Risk Data file to illustrate an  Excel 
table. First, select the range of the data, including headers 
(a useful shortcut is to select the first cell in the upper 
left corner, then click Ctrl+Shift+down arrow, and then 
Ctrl+Shift+right arrow). Next, click Table from the Tables 
group on the Insert tab and make sure that the box for 
My Table Has Headers is checked. (You may also just 
select a cell within the table and then click on Table 
from the Insert menu. Excel will choose the table range 

for you to verify.) The table range will now be format-
ted and will continue automatically when new data are 
entered. Figure 3.23 shows a portion of the result. Note 
that the rows are shaded and that each column header 
has a drop-down arrow to filter the data (we’ll discuss 
this shortly). If you click within a table, the Table Tools 
Design tab will appear in the ribbon, allowing you to do 
a variety of things, such as change the color scheme, re-
move duplicates, change the formatting, and so on.

Figure 3.22

Excel Camera Tool Button

Figure 3.23

Portion of Credit Risk Data Formatted as an Excel Table
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An Excel table allows you to use table references to perform basic calculations, as the 
next example illustrates.

ExampLE 3.11 Table-Based Calculations

Suppose that in the Credit Risk Data table, we wish to 
calculate the total amount of savings in column C. We 
could, of course, simply use the function SUM(C4:C428). 
However, with a table, we could use the formula  
= SUM(Table1[Savings]). The table name, Table1, can 
be found (and changed) in the Properties group of the 
Table Tools Design tab. Note that Savings is the name 

of the header in column C. One of the advantages of do-
ing this is that if we add new records to the table, the 
calculation will be updated automatically, and we don’t 
have to change the range in the formula or get a wrong 
result if we forget to. As another example, we could 
find the number of home owners using the function  
=COUNTIF(Table1[Housing], “Own”).

If you add additional records at the end of the table, they will automatically be in-
cluded and formatted, and if you create a chart based on the data, the chart will automati-
cally be updated if you add new records.

Sorting Data in Excel

Excel provides many ways to sort lists by rows or column or in ascending or descending 
order and using custom sorting schemes. The sort buttons in Excel can be found under the 
Data tab in the Sort & Filter group (see Figure 3.24). Select a single cell in the column 
you want to sort on and click the “AZ down arrow” button to sort from smallest to largest 
or the “AZ up arrow” button to sort from largest to smallest. You may also click the Sort 
button to specify criteria for more advanced sorting capabilities.

ExampLE 3.12 Sorting Data in the Purchase Orders Database

In Chapter 1 (Figure 1.3), we introduced a data set for 
purchase orders for an aircraft-component manufac-
turer. Suppose we wish to sort the data by supplier. 
Click on any cell in column A of the data (but not the 
header cell A3) and then the “AZ down” button in the 

Data tab. Excel will select the entire range of the data 
and sort by name of supplier in column A, a portion of 
which is shown in Figure 3.25. This allows you to easily 
identify the records that correspond to all orders from a 
particular supplier.

pareto analysis

Pareto analysis is a term named after an Italian economist, Vilfredo Pareto, who, in 1906, 
observed that a large proportion of the wealth in Italy was owned by a relatively small 
proportion of the people. The Pareto principle is often seen in many business situations. 
For example, a large percentage of sales usually comes from a small percentage of cus-
tomers, a large percentage of quality defects stems from just a couple of sources, or a large 
percentage of inventory value corresponds to a small percentage of items. As a result, 
the Pareto principle is also often called the “80–20 rule,” referring to the generic situ-

Figure 3.24

Excel Ribbon Data Tab
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ation in which 80% of some output comes from 20% of some input. A Pareto analysis  
relies on sorting data and calculating the cumulative percentage of the characteristic of 
interest.

ExampLE 3.13 applying the pareto principle

The Excel file Bicycle Inventory lists the inventory of bi-
cycle models in a sporting goods store (see columns A 
through F in Figure 3.26).2 To conduct a Pareto analysis, 
we first compute the inventory value of each product by 
multiplying the quantity on hand by the purchase cost; 
this is the amount invested in the items that are currently 
in stock. Then we sort the data in decreasing order of in-

ventory value and compute the percentage of the total 
inventory value for each product and the cumulative per-
centage. See columns G through I in Figure 3.26. We see 
that about 75% of the inventory value is accounted for by 
less than 40% (9 of 24) of the items. If these high-value 
inventories aren’t selling well, the store manager may wish 
to keep fewer in stock.

Figure 3.25

Portion of Purchase Orders 
Database Sorted by Supplier 
Name

2Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems,  
9th ed. (Upper Saddle River, NJ: Prentice Hall, 2011).

Figure 3.26

Pareto Analysis of Bicycle 
Inventory
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Filtering Data

For large data files, finding a particular subset of records that meet certain characteristics 
by sorting can be tedious. Excel provides two filtering tools: AutoFilter for simple criteria 
and Advanced Filter for more complex criteria. These tools are best understood by work-
ing through some examples.

ExampLE 3.14 Filtering Records by Item Description

In the Purchase Orders database, suppose we are inter-
ested in extracting all records corresponding to the item 
Bolt-nut package. First, select any cell within the data-
base. Then, from the Excel Data tab, click on Filter in the 
Sort & Filter group. A dropdown arrow will then be dis-
played on the right side of each header column. Click-
ing on one of these will display a drop-down box. These 
are the options for filtering on that column of data. Click 
the one next to the Item Description header. Uncheck the 
box for Select All and then check the box correspond-

ing to the Bolt-nut package, as shown in Figure 3.27. 
Click the OK button, and the Filter tool will display only 
those orders for this item (Figure 3.28). Actually, the fil-
ter tool does not extract the records; it simply hides the 
records that don’t match the criteria. However, you can 
copy and paste the data to another Excel worksheet,  
Microsoft Word document, or a PowerPoint presenta-
tion, for instance. To restore the original data file, click 
on the drop-down arrow again and then click Clear filter 
from “Item Description.”

Figure 3.27

Selecting Records for  
Bolt-Nut Package

Figure 3.28

Filter Results for Bolt-Nut Package
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ExampLE 3.15 Filtering Records by Item Cost

In this example, suppose we wish to identify all records 
in the Purchase Orders database whose item cost is at 
least $200. First, click on the drop-down arrow in the Item 
Cost column and position the cursor over  Numbers Filter. 
This displays a list of options, as shown in Figure 3.29. 
Select Greater Than Or Equal To . . . from the list. This 

brings up a Custom AutoFilter dialog (Figure 3.30) that 
allows you to specify up to two specific criteria using 
“and” and “or” logic. Enter 200 in the box as shown and 
then click OK. The tool will display all records having an 
item cost of $200 or more.

Figure 3.29

Selecting Records for  
Item Cost Filtering

Figure 3.30

Custom AutoFilter Dialog

AutoFilter creates filtering criteria based on the type of data being filtered. For in-
stance, in Figure 3.29 we see that the Number Filters menu list includes numerical criteria 
such as “equals,” “does not equal,” and so on. If you choose to filter on Order Date or  
Arrival Date, the AutoFilter tools will display a different Date Filters menu list for filter-
ing that includes “tomorrow,” “next week,” “year to date,” and so on.

The AutoFilter can be used sequentially to “drill down” into the data. For example, 
after filtering the results by Bolt-nut package in Figure 3.28, we could then filter by order 
date and select all orders processed in September.
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Allders International specializes in duty-free op-
erations with 82 tax-free retail outlets throughout  
Europe, including shops in airports and seaports  
and on cross-channel ferries. Like most retail outlets,  
Allders International must track masses of point-
of-sale data to assist in inventory and product-
mix decisions. Which items to stock at each of its 
outlets can have a significant impact on the firm’s 
profitability. To assist them, they implemented 
a computer-based data warehouse to maintain 
the data. Prior to doing this, they had to ana-
lyze large  quantities of paper-based data. Such a 
manual process was so overwhelming and time- 
consuming that the analyses were often too late 
to provide useful  information for their decisions. 
The data warehouse allowed the company to make 
simple queries, such as finding the performance 
of a particular item across all retail  outlets or the 
 financial performance of a particular outlet, quickly 
and easily. This allowed them to identify which in-
ventory items or outlets were underperforming. 
For  instance, a Pareto analysis of its product lines 

analytics in practice:  Discovering the Value of Data analysis  
at allders International3

3Based on Stephen Pass, “Discovering Value in a Mountain of Data,” OR/MS Today, 24, 5, (December 
1997): 24–28. (OR/MS Today was the predecessor of Analytics magazine.)

(groups of similar items) found that about 20% of 
the product lines were generating 80% of the prof-
its. This allowed them to  selectively eliminate some 
of the items from the other 80% of the product lines, 
which freed up shelf space for more profitable items 
and reduced inventory and supplier costs.

Statistical methods for Summarizing Data

Statistics, as defined by David Hand, past president of the Royal Statistical Society in 
the UK, is both the science of uncertainty and the technology of extracting information 
from data.4 Statistics involves collecting, organizing, analyzing, interpreting, and present-
ing data. A statistic is a summary measure of data. You are undoubtedly familiar with 
the concept of statistics in daily life as reported in newspapers and the media: baseball 
batting averages, airline on-time arrival performance, and economic statistics such as the 
 Consumer Price Index are just a few examples.

Statistical methods are essential to business analytics and are used throughout this 
book. Microsoft Excel supports statistical analysis in two ways:

 1. With statistical functions that are entered in worksheet cells directly or em-
bedded in formulas

 2. With the Excel Analysis Toolpak add-in to perform more complex statisti-
cal computations. We wish to point out that Excel for the Mac does not sup-
port the Analysis Toolpak. Some of these procedures are available in the free 

4David Hand, “Statistics: An Overview,” in Miodrag Lovric, Ed., International Encyclopedia of  Statistical 
Science, Springer Major Reference; http://www.springer.com/statistics/book/978-3-642-04897-5,  
p. 1504.
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 edition of StatPlus:mac LE (www.analystsoft.com). A more complete version, 
StatPlus:mac Pro, can also be purchased. Some significant differences, how-
ever, exist in the tools between the Excel and Mac versions.

We use both statistical functions and the Analysis Toolpak in many examples.
Descriptive statistics refers to methods of describing and summarizing data using 

tabular, visual, and quantitative techniques. In the remainder of this chapter, we focus on 
some tabular and visual methods for analyzing categorical and numerical data; in the next 
chapter, we discuss quantitative measures.

Frequency Distributions for Categorical Data

A frequency distribution is a table that shows the number of observations in each of 
several nonoverlapping groups. Categorical variables naturally define the groups in a fre-
quency distribution. For example, in the Purchase Orders database (see Figure 3.31), or-
ders were placed for the following items:

Figure 3.31

Portion of Purchase Orders 
Database

Airframe fasteners
Bolt-nut package
Control Panel
Door Decal
Electrical Connector
Gasket
Hatch Decal

Machined Valve
O-Ring
Panel Decal
Pressure Gauge
Shielded Cable/ft.
Side Panel

To construct a frequency distribution, we need only count the number of observations that 
appear in each category. This can be done using the Excel COUNTIF function.

ExampLE 3.16  Constructing a Frequency Distribution for Items  
in the Purchase Orders Database

First, list the item names in a column on the spread-
sheet. We used column A, starting in cell A100, be-
low the existing data array. It is important to use the 
 exact names as used in the data file. To count the 
 number of orders placed for each item, use the  function  
= COUNTIF($D$4:$D$97, cell_reference), where cell_ 
reference is the cell containing the item name, our  
cell A101. This is shown in Figure 3.32. The resulting fre-

quency distribution for the items is shown in Figure 3.33. 
Thus, the company placed 14 orders for Airframe fasten-
ers and 11 orders for the Bolt-nut package. We may also 
construct a column chart to visualize these frequencies, 
as shown in Figure 3.34. We might wish to sort these us-
ing Pareto analysis to gain more insight into the order 
frequency.
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Figure 3.32

Using the COUNTIF Function 
to Construct a Frequency 
Distribution

Figure 3.33

Frequency Distribution for 
Items Purchased

Figure 3.34

Column Chart for Frequency 
Distribution of Items 
Purchased

Relative Frequency Distributions

We may express the frequencies as a fraction, or proportion, of the total; this is called the 
relative frequency. If a data set has n observations, the relative frequency of category i is 
computed as

 relative frequency of category i =
frequency of category i

n
 (3.1)

We often multiply the relative frequencies by 100 to express them as percentages. A relative 
frequency distribution is a tabular summary of the relative frequencies of all categories.
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ExampLE 3.17  Constructing a Relative Frequency Distribution  
for Items in the Purchase Orders Database

The calculations for relative frequencies are simple. First, 
sum the frequencies to find the total number (note that 
the sum of the frequencies must be the same as the total 
number of observations, n). Then divide the frequency of 
each category by this value. Figure 3.35 shows the rela-
tive frequency distribution for the purchase order items. 
The formula in cell C101, for example, is =B101/$B$114 .  

You then copy this formula down the column to compute 
the other relative frequencies. Note that the sum of the 
relative frequencies must equal 1.0. A pie chart of the 
frequencies is sometimes used to show these propor-
tions visually, although it is more appealing for a smaller 
number of categories. For a large number of categories, 
a column or bar chart would work better.

Frequency Distributions for Numerical Data

For numerical data that consist of a small number of discrete values, we may construct a 
frequency distribution similar to the way we did for categorical data; that is, we simply 
use COUNTIF to count the frequencies of each discrete value.

ExampLE 3.18 Frequency and Relative Frequency Distribution for a/p Terms

In the Purchase Orders data, the A/P terms are all whole 
numbers 15, 25, 30, and 45. A frequency and relative fre-
quency distribution for these data is shown in Figure 3.36.

A bar chart showing the proportions, or relative fre-
quencies, in Figure 3.37, clearly shows that the majority of 
orders had accounts payable terms of 30 months.

Excel Histogram Tool

A graphical depiction of a frequency distribution for numerical data in the form of a col-
umn chart is called a histogram. Frequency distributions and histograms can be created 
using the Analysis Toolpak in Excel. To do this, click the Data Analysis tools button in the 

Figure 3.35

Relative Frequency 
Distribution for Items 
Purchased

Figure 3.36

Frequency and Relative 
Frequency Distribution for 
A/P Terms
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Analysis group under the Data tab in the Excel menu bar and select Histogram from the 
list. In the dialog box (see Figure 3.38), specify the Input Range corresponding to the data. 
If you include the column header, then also check the Labels box so Excel knows that the 
range contains a label. The Bin Range defines the groups (Excel calls these “bins”) used 
for the frequency distribution. If you do not specify a Bin Range, Excel will automatically 
determine bin values for the frequency distribution and histogram, which often results in 
a rather poor choice. If you have discrete values, set up a column of these values in your 
spreadsheet for the bin range and specify this range in the Bin Range field. We describe 
how to handle continuous data shortly. Check the Chart Output box to display a histogram 
in addition to the frequency distribution. You may also sort the values as a Pareto chart 
and display the cumulative frequencies by checking the additional boxes.

ExampLE 3.19 Using the Histogram Tool

We will create a frequency distribution and histogram for 
the A/P Terms variable in the Purchase Orders database. 
Figure 3.39 shows the completed histogram dialog. The 
input range includes the column header as well as the 
data in column H. We defined the bin range below the 
data in cells H99:H103 as follows:

months

15

25

30

45

If you check the Labels box, it is important that both 
the Input Range and the Bin Range have labels included in 
the first row. Figure 3.40 shows the results from this tool.

For numerical data that have many different discrete values with little repetition or are 
continuous, a frequency distribution requires that we define by specifying

 1. the number of groups,
 2. the width of each group, and
 3. the upper and lower limits of each group.

Figure 3.37

Bar Chart of Relative 
Frequencies of A/P Terms
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It is important to remember that the groups may not overlap, so that each value is counted 
in exactly one group.

You should define the groups after examining the range of the data. Generally, you 
should choose between 5 to 15 groups, and the range of each should be equal. The more 
data you have, the more groups you should generally use. Note that with fewer groups, the 
group widths will be wider. Wider group widths provide a “coarse” histogram. Sometimes 
you need to experiment to find the best number of groups to provide a useful visualiza-
tion of the data. Choose the lower limit of the first group (LL) as a whole number smaller 
than the minimum data value and the upper limit of the last group (UL) as a whole  number 

Figure 3.38

Histogram Tool Dialog

Figure 3.39

Histogram Dialog for A/P 
Terms Data

Figure 3.40

Excel Frequency Distribution 
and Histogram for A/P 
Terms
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larger than the maximum data value. Generally, it makes sense to choose nice, round 
whole numbers. Then you may calculate the group width as

 group width =
UL - LL

number of groups
 (3.2)

ExampLE 3.20  Constructing a Frequency Distribution and Histogram  
for Cost per Order

In this example, we apply the Excel Histogram tool to 
the Cost per order data in column G of the Purchase  
Orders database. The data range from a minimum of 
$68.75 to a maximum of $127,500. You can find this 
either by using the MIN and MAX functions or sim-
ply by sorting the data. To ensure that all the data 
will be included in some group, it makes sense to set 
the lower limit of the first group to $0 and the upper 
limit of the last group to $130,000. Thus, if we select 5 
groups, using equation (3.2) the width of each group is 
1$130,000 − 0 2 ,5 = $26,000; if we choose 10 groups, 
the width is 1$130,000 − 0 2 ,10 = $13,000. We select 5 
groups. Doing so, the bin range is specified as

Upper Group Limit

$      0.00

$ 26,000.00

$ 52,000.00

$ 78,000.00

$104,000.00

$130,000.00

This means that the first group includes all values less 
than or equal to $0; the second group includes all values 
greater than $0 but less than or equal to $26,000, and so 
on. Note that the groups do not overlap because the lower 
limit of one group is strictly greater than the upper limit of 
the previous group. We suggest using the header “Upper 
Group Limit” for the bin range to make this clear. In the 
spreadsheet, this bin range is entered in cells G99:G105. 
The Input Range in the Histogram dialog is G4:G97. Fig-
ure 3.41 shows the results. These results show that the 
vast majority of orders were for $26,000 or less and fall 
rapidly beyond this value. Selecting a larger number of 
groups might help to better understand the nature of the 
data. Figure 3.42 shows results using 10 groups. This 
shows that a higher percentage of orders were for $13,000 
or less than were between $13,000 and $26,000.

Figure 3.41

Frequency Distribution and 
Histogram for Cost per 
Order (5 Groups)
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One limitation of the Excel Histogram tool is that the frequency distribution and his-
togram are not linked to the data; thus, if you change any of the data, you must repeat the 
entire procedure to construct a new frequency distribution and histogram.

Cumulative Relative Frequency Distributions

For numerical data, we may also compute the relative frequency of observations in each 
group. By summing all the relative frequencies at or below each upper limit, we obtain the 
cumulative relative frequency. The cumulative relative frequency represents the propor-
tion of the total number of observations that fall at or below the upper limit of each group. 
A tabular summary of cumulative relative frequencies is called a cumulative relative 
 frequency distribution.

Figure 3.42

Frequency Distribution and 
Histogram for Cost per Order 
(10 Groups)

ExampLE 3.21 Computing Cumulative Relative Frequencies

Figure 3.43 shows the relative frequency and cumula-
tive relative frequency distributions for the Cost per 
order data using 10 groups. The relative frequencies 
are computed using the same approach as in Example 
3.17—namely, by dividing the frequency by the total 
number of observations (94). In column D, we set the cu-
mulative relative frequency of the first group equal to its 
relative frequency. Then we add the relative frequency 
of the next group to the cumulative relative frequency. 

For, example, the cumulative relative frequency in cell D3  
is computed as =D2+C3 = 0.000+0.447 = 0.447; the 
cumulative relative frequency in cell D4 is computed as 
=D3+C4 = 0.447+0.277 = 0.723, and so on. (Values 
shown are rounded to three decimal places.) Because 
relative frequencies must be between 0 and 1 and must 
add up to 1, the cumulative frequency for the last group 
must equal 1.

Figure 3.44 shows a chart for the cumulative relative frequency, which is called an 
ogive. From this chart, you can easily estimate the proportion of observations that fall be-
low a certain value. For example, you can see that slightly more than 70% of the data fall 
at or below $26,000, about 90% of the data fall at or below $78,000, and so on.
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percentiles and Quartiles

Data are often expressed as percentiles and quartiles. You are no doubt familiar with per-
centiles from standardized tests used for college or graduate school entrance examina-
tions (SAT, ACT, GMAT, GRE, etc.). Percentiles specify the percent of other test takers 
who scored at or below the score of a particular individual. Generally speaking, the kth 
 percentile is a value at or below which at least k percent of the observations lie. However, 
the way by which percentiles are calculated is not standardized. The most common way to 
compute the kth percentile is to order the data values from smallest to largest and calculate 
the rank of the kth percentile using the formula

 
nk

100
+ 0.5 (3.3)

where n is the number of observations. Round this to the nearest integer, and take the 
value corresponding to this rank as the kth percentile.

Figure 3.43

Cumulative Relative 
Frequency Distribution for 
Cost per Order Data

Figure 3.44

Ogive for Cost per Order

ExampLE 3.22 Computing percentiles

In the Purchase Orders data, we have n = 94 observa-
tions. The rank of the 90th percentile (k = 90) for the Cost 
per order data is computed as 94(90) ,100 + 0.5 = 85.1, 

or, rounded, 85. The 85th ordered value is $74,375 and is 
the 90th percentile. This means that 90% of the costs per 
order are less than or equal to $74,375, and 10% are higher.

M03_EVAN5448_02_SE_C03.indd   106 12/09/15   7:30 AM



 Chapter 3  Visualizing and Exploring Data 107

Statistical software use different methods that often involve interpolating  between  
ranks instead of rounding, thus producing different results. The Excel function  
 PERCENTILE.INC(array, k) computes the kth percentile of data in the range specified in  
the array field, where k is in the range 0 to 1, inclusive.

ExampLE 3.23 Computing percentiles in Excel

To find the 90th percentile for the Cost per order data 
in the Purchase Orders data, use the Excel function 
PERCENTILE. INC(G4:G97,0.9). This calculates the 90th 

percentile as $73,737.50, which is different from using 
 formula (3.3).

ExampLE 3.24 Excel Rank and Percentile Tool

A portion of the results from the Rank and Percentile tool 
for the Cost per order data are shown in Figure 3.45. You 
can see that the Excel value of the 90th percentile that 

we computed in Example 3.22 as $74,375 is the 90.3rd 
percentile value.

Excel also has a tool for sorting data from high to low and computing percentiles  
 associated with each value. Select Rank and Percentile from the Data Analysis menu and  
specify the range of the data in the dialog. Be sure to check the Labels in First Row box if  
your range includes a header in the spreadsheet.

Figure 3.45

Portion of Rank and 
Percentile Tool Results

Quartiles break the data into four parts. The 25th percentile is called the first  
 quartile, Q1; the 50th percentile is called the second quartile, Q2; the 75th percentile is  
called the third quartile, Q3; and the 100th percentile is the fourth quartile, Q4. One-fourth  
of the data fall below the first quartile, one-half are below the second quartile, and three-
fourths are below the third quartile. We may compute quartiles using the Excel function 
 QUARTILE.INC(array, quart), where array specifies the range of the data and quart is a 
whole number between 1 and 4, designating the desired quartile.
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ExampLE 3.25 Computing Quartiles in Excel

For the Cost per order data in the Purchase Orders da-
tabase, we may use the Excel function =QUARTILE.INC
(G4:G97,k), where k ranges from 1 to 4, to compute the 
quartiles. The results are as follows:

k = 1 First quartile $6,757.81

k = 2 Second quartile $15,656.25

k = 3 Third quartile $27,593.75

k = 4 Fourth quartile $127,500.00

We may conclude that 25% of the order costs fall at 
or below $6,757.81; 50% fall at or below $15,656.25; 75% 
fall at or below $27,593.75, and 100% fall at or below the 
maximum value of $127,500.

We can extend these ideas to other divisions of the data. For example, deciles divide 
the data into 10 sets: the 10th percentile, 20th percentile, and so on. All these types of 
measures are called data profiles, or fractiles.

Cross-Tabulations

One of the most basic statistical tools used to summarize categorical data and examine the 
relationship between two categorical variables is cross-tabulation. A cross-tabulation is a 
tabular method that displays the number of observations in a data set for different subcat-
egories of two categorical variables. A cross-tabulation table is often called a contingency 
table. The subcategories of the variables must be mutually exclusive and exhaustive, 
meaning that each observation can be classified into only one subcategory, and, taken to-
gether over all subcategories, they must constitute the complete data set. Cross-tabulations 
are commonly used in marketing research to provide insight into characteristics of differ-
ent market segments using categorical variables such as gender, educational level, marital 
status, and so on.

ExampLE 3.26 Constructing a Cross-Tabulation

Let us examine the Sales Transactions database, a por-
tion of which is shown in Figure 3.46. Suppose we wish 
to identify the number of books and DVDs ordered by 
region. A cross-tabulation will have rows correspond-
ing to the different regions and columns corresponding 
to the products. Within the table we list the count of the 
number in each pair of categories. A cross-tabulation 
of these data is shown in Table 3.1. Visualizing the data 
as a chart is a good way of communicating the results. 
Figure 3.47 shows the differences between product and 
regional sales. It is somewhat difficult to directly count 
the numbers of observations easily in an Excel data file; 
however, an Excel tool called a PivotTable makes this 
easy. PivotTables are introduced in the next section.

Expressing the results as percentages of a row or 
column makes it easier to interpret differences between 
regions or products, particularly as the totals for each 
category differ. Table 3.2 shows the percentage of book 
and DVD sales within each region; this is computed by 
dividing the counts by the row totals and multiplying by 
100 (in Excel, simply divide the count by the total and for-
mat the result as a percentage by clicking the % button 
in the Number group within the Home tab in the ribbon). 
For example, we see that although more books and DVDs 
are sold in the West region than in the North, the relative 
percentages of each product are similar, particularly when 
compared to the East and South regions.
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Figure 3.46

Portion of Sales 
Transactions Database

Figure 3.47

Chart of Regional Sales  
by Product

Table 3.1

Cross-Tabulation of Sales 
Transaction Data

Region Book DVD Total

East 56 42 98

North 43 42 85

South 62 37 99

West 100 90 190

Total 261 211 472

Table 3.2

Percentage Sales of 
Products within Each Region

Region Book DVD Total

East 57.1% 42.9% 100.0%

North 50.6% 49.4% 100.0%

South 62.6% 37.4% 100.0%

West 52.6% 47.4% 100.0%
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Exploring Data Using pivotTables

Excel provides a powerful tool for distilling a complex data set into meaningful informa-
tion: PivotTables (yes, it is one word!). PivotTables allows you to create custom summa-
ries and charts of key information in the data. PivotTables can be used to quickly create 
cross-tabulations and to drill down into a large set of data in numerous ways.

To apply PivotTables, you need a data set with column labels in the first row, similar 
to the data files we have been using. Select any cell in the data set and choose PivotTable 
from the Tables group under the Insert tab and follow the steps of the wizard. Excel first 
asks you to select a table or range of data; if you click on any cell within the data matrix 
before inserting a PivotTable, Excel will default to the complete range of your data. You 
may either put the PivotTable into a new worksheet or in a blank range of the existing 
worksheet. Excel then creates a blank PivotTable, as shown in Figure 3.48.

In the PivotTable Field List on the right side of Figure 3.48 is a list of the fields that cor-
respond to the headers in the data file. You select which ones you want to include, either as row 
labels, column labels, values, or what is called a Report Filter. You should first decide what types 
of tables you wish to create—that is, what fields you want for the rows, columns, and data values.

ExampLE 3.27 Creating a pivotTable

Let us create a cross-tabulation of regional sales by 
product, as we did in the previous section. If you drag the 
field Region from the PivotTable Field List in Figure 3.48 
to the Row Labels area, the field Product into the Column 
Labels area, and any of the other fields, such as Cust 
ID, into the Values area, you will create the  PivotTable 
shown in Figure 3.49. However, the sum of customer 
ID values (the default) is meaningless; we simply want 
a count of the number of records in each category. 
Click the  Analyze tab, and then in the Active Field group 
and choose Field Settings. You will be able to change 

the summarization method in the PivotTable in the 
Value Field Settings dialog shown in Figure 3.50. Select-
ing Count results in the PivotTable shown in Figure 3.51, 
which is the cross-tabulation we showed in Table 3.1. 
The Value Field Settings options in Figure 3.50 include 
other options, such as Average, Max, Min, and other  
statistical measures that we introduce in the next chap-
ter. It also allows you to format the data properly (for 
example, currency or to display a fixed number of deci-
mals) by clicking on the Number Format button.

Figure 3.48

Blank PivotTable
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Figure 3.49

Default PivotTable for 
Regional Sales by Product

Figure 3.50

Value Field Settings Dialog

Figure 3.51

PivotTable for Count of 
Regional Sales by Product

The beauty of PivotTables is that if you wish to change the analysis, you can simply 
uncheck the boxes in the PivotTable Field List or drag the field names to different areas. 
You may easily add multiple variables in the fields to create different views of the data. 
For example, if you drag the Source field into the Row Labels area, you will create the 
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PivotTable shown in Figure 3.52. This shows a count of the number of sales by region and 
product that is also broken down by how the orders were placed—either by e-mail or on 
the Web.

Dragging a field into the Report Filter area in the PivotTable Field list allows you to 
add a third dimension to your analysis. Example 3.28 illustrates this. You may create other 
PivotTables without repeating all the steps in the Wizard. Simply copy and paste the first 
table. The best way to learn about PivotTables is simply to experiment with them.

ExampLE 3.28 Using the pivotTable Report Filter

Going back to the cross-tabulation PivotTable of re-
gional sales by product, drag the Payment field into the 
Report Filter area. This places payment in row 1 of the 
PivotTable and allows you to break down the cross- 
tabulation by type of payment, as shown in Figure 3.53. 

Click on the drop-down arrow in row 1, and you can 
choose to  display a cross-tabulation for one of the differ-
ent  payment types, Credit or Paypal. Figure 3.54 shows 
the results for credit-card payments, which accounted 
for 299 of the total number of transactions.

Figure 3.52

PivotTable for Sales by 
Region, Product, and Order 
Source

pivotCharts

Microsoft Excel provides a simple one-click way of creating PivotCharts to visualize 
data in PivotTables. To display a PivotChart for a PivotTable, first select the PivotTable. 
From the Analyze tab, click on PivotChart. Excel will display an Insert Chart dialog that 
allows you to choose the type of chart you wish to display.
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Figure 3.53

PivotTable Filtered by 
Payment Type

Figure 3.54

Cross-Tabulation PivotTable 
for Credit-Card Transactions

ExampLE 3.29 a pivotChart for Sales Data

For the PivotTable shown in Figure 3.52, we choose 
to display a column chart from the Insert Chart dialog. 
 Figure 3.55 shows the chart generated by Excel. By click-
ing on the drop-down buttons, you can easily change 
the data that are displayed by filtering the data. Also, by 

clicking on the chart and selecting the PivotChart Tools 
Design tab, you can switch the rows and columns to dis-
play an alternate view of the chart or change the chart 
type entirely.

Slicers and pivotTable Dashboards

Excel 2010 introduced slicers—a tool for drilling down to “slice” a PivotTable and dis-
play a subset of data. To create a slicer for any of the columns in the database, click on the 
PivotTable and choose Insert Slicer from the Analyze tab in the PivotTable Tools ribbon.
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Figure 3.55

PivotChart for Sales by 
Region, Product, and Order 
Source

ExampLE 3.30 Using Slicers

For the PivotTable, we created in Figure 3.51 for the 
count of regional sales by product, let us insert a slicer 
for the source of the transaction as shown in Figure 3.56. 
In this case, we choose Source as the slicer. This results 
in the slicer window shown in Figure 3.57. If you click on 

one of the source buttons, Email or Web, the PivotTable 
reflects only those records corresponding to that source. 
In Figure 3.57, we now have a cross-tabulation only for 
e-mail orders.

Figure 3.56

Insert Slicers Window

Figure 3.57

Cross-Tabulation Sliced  
by E-mail
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Finally, we introduced the Excel camera tool earlier in this chapter. This is a useful 
tool for creating PivotTable-based dashboards. If you create several different PivotTables 
and charts, you can easily use the camera tool to take pictures of them and consolidate 
them onto one worksheet. In this fashion, you can still make changes to the PivotTables 
and they will automatically be reflected in the camera shots. Figure 3.58 shows a simple 
dashboard created using the camera tool for the Sales Transactions database.

Founded in the 1930s and headquartered in Ballinger, 
Texas, Mueller is a leading retailer and manufacturer 
of pre-engineered metal buildings and metal roofing 
products. Today, the company sells its products di-
rectly to consumers all over the southwestern United 
States from 35 locations across Texas, New Mexico, 
Louisiana, and Oklahoma.

Historically, Mueller saw itself first and foremost 
as a manufacturer; the retail aspects of the business 
were a secondary focus. However, in the early 2000s, 
the company decided to shift the focus of its strat-
egy and become much more retail-centric—getting 
closer to its end-use customers and driving new busi-
ness through a better understanding of their needs. 
To achieve its transformation objective, the company 

needed to communicate its retail strategy to employ-
ees across the organization.

As Mark Lack, Manager of Strategy Analytics and 
Business Intelligence at Mueller, explains: “The trans-
formation from pure manufacturing to retail-led man-
ufacturing required a more end-customer-focused 
approach to sales. We wanted a way to track how 
successfully our sales teams across the country were 
adapting to this new strategy, and identify where im-
provements could be made.”

To keep track of sales performance, Mueller 
worked with IBM to deploy IBM® Cognos® Business 
Intelligence. The IBM team helped Mueller apply tech-
nology to its balanced scorecard process for strategy 
management in Cognos Metric Studio.

analytics in practice:  Driving Business Transformation with IBm Business 
analytics5

5“Mueller builds a customer-focused business,” IBM Software, Business Analytics, © IBM Corporation, 2013.

Figure 3.58

Camera-Based Dashboard

(continued )
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Area chart
Bar chart
Bubble chart
Column chart
Contingency table
Cross-tabulation
Cumulative relative frequency
Cumulative relative frequency  
  distribution
Dashboard
Data profile (fractile)
Data visualization
Descriptive statistics
Doughnut chart
Frequency distribution
Histogram
kth percentile

Line chart
Ogive
Pareto analysis
Pie chart
PivotChart
PivotTables
Quartile
Radar chart
Relative frequency
Relative frequency distribution
Scatter chart
Slicers
Sparklines
Statistic
Statistics
Stock chart
Surface chart

Key Terms

By using a common set of KPIs, Mueller can easily 
identify the strengths and weaknesses of all of its sales 
teams through sales performance analytics. “Using 
Metric Studio in Cognos Business Intelligence, we get 
a clear picture of each team’s strategy performance,” 
says Mark Lack. “Using sales performance insights 
from Cognos scorecards, we can identify teams that 
are hitting their targets, and determine the reasons for 
their success. We can then share this knowledge with 
underperforming teams, and demonstrate how they 
can change their way of working to meet their targets.

“Instead of just trying to impose or enforce new 
ways of working, we are able to show sales teams ex-
actly how they are contributing to the business, and 
explain what they need to do to improve their metrics. 
It’s a much more effective way of driving the changes 
in behavior that are vital for business transformation.”

Recently, IBM Business Analytics Software 
 Services helped Mueller upgrade to IBM Cognos 10. 
With the new version in place, Mueller has started 
 using a new feature called Business Insight to em-
power regional sales managers to track and improve 
the  performance of their sales teams by creating their 
own personalized dashboards.

“Static reports are a good starting point, but 
people don’t enjoy reading through pages of data to 
find the information they need,” comments Mark Lack. 
“The new version of Cognos gives us the ability to cre-
ate customized interactive dashboards that give each 
user immediate insight into their own specific area of 

the business, and enable them to drill down into the 
raw data if they need to. It’s a much more intuitive and 
compelling way of using information.”

Mueller now uses Cognos to investigate the 
reasons why some products sell better in certain  
areas, which of its products have the highest adop-
tion rates, and which have the biggest margins. Using 
these insights, the company can adapt its strategy to 
ensure that it markets the right products to the right 
 customers—increasing sales.

By using IBM SPSS® Modeler to mine enormous 
volumes of transactional data, the company aims to 
reveal patterns and trends that will help to predict 
future risks and opportunities, as well as uncover 
unseen problems and anomalies in its current opera-
tions. One initial project with IBM SPSS Modeler aims 
to help Mueller find ways to reduce its fuel costs.  
Using SPSS Modeler, the company is building a so-
phisticated statistical model that will automate the 
process of analyzing fuel transactions for hundreds of 
vehicles, drivers and routes.

“With SPSS Modeler, we will be able to deter-
mine the average fuel consumption for each vehicle 
on each route over the course of a week,” says Mark 
Lack. “SPSS will automatically flag up any deviations 
from the average consumption, and we then drill down 
to find the root cause. The IBM solution helps us to 
determine if higher-than-usual fuel transactions are  
legitimate—for example, a driver covering extra miles—
or the result of some other factor, such as fraud.”
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problems and Exercises

 1. Create a line chart for the closing prices for all years, 
and a stock chart for the high/low/close prices for 
August 2013 in the Excel file S&P 500.

 2. The Excel file Traveler contains the months of a year 
and the number of travelers that arrive by flight in the 
morning (AM) and the evening (PM). Prepare a line 
chart showing the number of AM and PM travelers 
for each month.

 3. The Excel file Facebook Survey provides data gath-
ered from a sample of college students. Create a scat-
ter diagram showing the relationship between Hours 
online/week and Friends.

 4. The Excel file Sales contain list of the products in 
different regions. Sort the list of products in ascend-
ing order of the sales volume in Asia. Arrange the re-
gions (from left to right) in ascending order for the 
sales volume of Product 5 and determine which re-
gion has the highest sales.

 5. Create a bubble chart for the first five colleges in the 
Excel file Colleges and Universities for which the  
x-axis is the Top 10% HS, y-axis is Acceptance Rate, 
and bubbles represent the Expenditures per Student.

 6. The Excel file Expenditure shows the spending of a 
country on various sports during a particular year. 
Create a pie chart and determine the percentage of 
total spending on tennis.

 7. The Excel file Internet Usage provides data about us-
ers of the Internet. Construct stacked bar charts that 
will allow you to compare any differences due to age 
or educational attainment and draw any conclusions 
that you can. Would another type of charts be more 
appropriate?

 8. The Excel file McDonald’s contains the monthly 
sales data of their burgers in a year. Construct the 
histogram and predict which type of burger has the 
highest sale.

 9. In the Excel file Banking Data, apply the following 
data visualization tools:

a. Use data bars to visualize the relative values of 
Median Home Value.

b. Use color scales to visualize the relative values of 
Median Household Wealth.

c. Use an icon set to show high, medium, and low 
bank balances, where high is above $30,000, low 

is below $10,000, and medium is anywhere in 
between.

 10. Apply three different colors of data bars to lunch, din-
ner, and delivery sales in the Excel file Restaurant 
Sales to visualize the relative amounts of sales. Then 
sort the data (hint: use a custom sort) by the day of the 
week beginning on Sunday. Compare the nonsorted 
data with the sorted data as to the information content 
of the visualizations.

 11. For the Store and Regional Sales database, apply a 
four-traffic light icon set to visualize the distribu-
tion of the number of units sold for each store, where 
green corresponds to at least 30 units sold, yellow to 
at least 20 but less than 30, red to at least 10 but less 
than 20, and black to below 10.

 12. For the Excel file Closing Stock Prices,

a. Apply both column and line sparklines to visual-
ize the trends in the prices for each of the four 
stocks in the file.

b. Compute the daily change in the Dow Jones 
 index and apply a win/loss sparkline to visualize 
the daily up or down movement in the index.

 13. Convert the Store and Regional Sales database to 
an Excel table. Use the techniques described in  
Example 3.11 to find:

a. the total number of units sold

b. the total number of units sold in the South region

c. the total number of units sold in December

 14. Convert the Purchase Orders database to an Excel 
table. Use the techniques described in Example 3.11 
to find:

a. the total cost of all orders 

b. the total quantity of airframe fasteners purchased

c. the total cost of all orders placed with Manley 
Valve.

 15. The Excel file Economic Poll provides some demo-
graphic and opinion data on whether the economy is 
moving in the right direction. Convert this data into 
an Excel table, and filter the respondents who are 
homeowners and perceive that the economy is not 
moving in the right direction. What is the distribution 
of their political party affiliations?
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 16. The total runs scored by 30 players in a test cricket 
match in the year 2011 were recorded to determine 
which score was the highest and which the lowest. 
The runs are:  

  423, 369, 387, 411, 393, 394, 371, 377, 389, 409, 392, 
408, 431, 401, 363, 391, 405, 382, 400, 381, 399, 415, 
428, 422, 396, 372, 410, 419, 386, 390

  Construct the frequency distribution table and calcu-
late relative frequency.

 17. Sort the data in the Excel file Automobile Quality 
from highest to lowest number of problems per 100 
vehicles using the sort capability in Excel.

 18. In the Purchase Orders database, conduct a Pareto 
analysis of the Cost per order data. What conclusions 
can you reach?

 19. Use Excel’s filtering capability to (1) extract all or-
ders for control panels, (2) all orders for quantities 
of less than 500 units, and (3) all orders for control 
panels with quantities of less than 500 units in the 
Purchase Orders database.

 20. In the Sales Transactions database, use Excel’s filter-
ing capability to extract all orders that used PayPal, 
all orders under $100, and all orders that were over 
$100 and used a credit card.

 21. The Excel file Credit Risk Data provides information 
about bank customers who had applied for loans.6 
The data include the purpose of the loan, checking 
and savings account balances, number of months as 
a customer of the bank, months employed, gender, 
marital status, age, housing status and number of 
years at current residence, job type, and credit-risk 
classification by the bank.

a. Compute the combined checking and savings 
account balance for each record in the database. 
Then sort the records by the number of months 
as a customer of the bank. From examining the 
data, does it appear that customers with a longer 
association with the bank have more assets? Con-
struct a scatter chart to validate your conclusions.

b. Apply Pareto analysis to draw conclusions about 
the combined amount of money in checking and 
savings accounts.

c. Use Excel’s filtering capability to extract all records 
for new-car loans. Construct a pie chart showing the 
marital status associated with these loans.

d. Use Excel’s filtering capability to extract all records 
for individuals employed less than 12 months. Can 
you draw any conclusions about the credit risk as-
sociated with these individuals?

 22. The Excel sheet Engagement contains the number of 
rings sold each day of the week in a jewelry store 
chain in different cities across India. Use sparklines 
to summarize the data.

 23. Use the Histogram tool to construct a frequency dis-
tribution of lunch sales amounts in the Restaurant 
Sales database.

 24. A community health-status survey obtained the 
following demographic information from the 
respondents:

age Frequency

18 to 29 297

30 to 45 743

46 to 64 602

65 + 369

Compute the relative frequency and cumulative rela-
tive frequency of the age groups.

 25. Construct frequency distributions and histograms 
for the numerical data in the Excel file Cell Phone 
 Survey. Also, compute the relative frequencies and 
cumulative relative frequencies.

 26. Use the Histogram tool to develop a frequency dis-
tribution and histogram with six bins for the age of 
individuals in the Excel file Credit Risk Data. Com-
pute the relative and cumulative relative frequencies 
and use a line chart to construct an ogive.

 27. Use the Histogram tool to develop a frequency dis-
tribution and histogram for the number of months as 
a customer of the bank in the Excel file Credit Risk 
Data. Use your judgment for determining the number 
of bins to use. Compute the relative and cumulative 
relative frequencies and use a line chart to construct 
an ogive.

 28. Construct frequency distributions and histograms us-
ing the Excel Histogram tool for the Gross Sales and 
Gross Profit data in the Excel file Sales Data. First 
let Excel automatically determine the number of bins 

6Based on Efraim Turban, Ramesh Sharda, Dursun Delen, and David King, Business Intelligence: A Managerial Approach, 2nd ed.  
(Upper Saddle River, NJ: Prentice Hall, 2011).
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  and bin ranges. Then determine a more appropriate 
set of bins and rerun the Histogram tool.

 29. The Excel sheet Sampling contains the responses on 
a scale of 1 to 5 from consumers regarding a product.  
Construct a cluttered pivot table, and show the sam-
pling data in the histogram.

 30. Find the 20th and 80th percentiles of home prices in 
the Excel file Home Market Value.

 31. Find the 10th and 90th percentiles and 1st, 2nd, and 3rd 
quartiles for the combined amounts of checking and 
savings accounts in the Excel file Credit Risk Data.

 32. Construct cross-tabulations of Gender versus Car-
rier and Type versus Usage in the Excel file Cell 
Phone Survey. What might you conclude from this 
analysis?

 33. Using the data in the Excel sheet Hardware Store, 
construct a pivot table and calculate the percentage 
of sales , the total revenue generated in the month of 
March  and the percentage of sales for the month of 
August.

 34. Use PivotTables to construct a cross-tabulation 
for marital status and housing type in the  Excel 
file Credit Risk Data. Illustrate the results on a 
PivotChart.

 35. Create a PivotTable to find the average amount of 
travel expenses for each sales representative in the 
Excel file Travel Expenses. Illustrate your results 
with a PivotChart.

 36. Use PivotTables to find the number of loans by dif-
ferent purposes, marital status, and credit risk in the 
Excel file Credit Risk Data. Illustrate the results on a 
PivotChart.

 37. Use PivotTables to find the number of sales transac-
tions by product and region, total amount of revenue 

by region, and total revenue by region and product in 
the Sales Transactions database.

 38. Create a PivotTable for the data in the Excel file 
 Weddings to analyze the wedding cost by type of payor 
and value rating. What conclusions do you reach?

 39. The Excel File Rin’s Gym provides sample data on 
member body characteristics and gym activity. Cre-
ate PivotTables to find:

a. a cross-tabulation of gender and body type versus 
BMI classification

b. average running times, run distance, weight lift-
ing days, lifting session times, and time spent in 
the gym by gender. 

Summarize your conclusions.

 40. Create useful dashboards for each of the following 
databases. Use appropriate charts and layouts (for 
example, Explain why you chose the elements of the 
dashboards and how a manager might use them.

a. President’s Inn

b. Restaurant Sales

c. Store and Regional Sales

d. Peoples Choice Bank

 41. A marketing researcher surveyed 92 individuals, ask-
ing them if they liked a new product concept or not. 
The results are shown below:

Yes No

Male 30 50

Female 6 6

Convert the data into percentages. Then construct a 
chart of the counts and a chart of the percentages. Dis-
cuss what each conveys visually and how the different 
charts may lead to different interpretations of the data.

Case: Drout advertising Research project

The background for this case was introduced in  
Chapter 1. For this part of the case, use appropriate charts 
to visualize the data. Summarize the data using frequency 
distributions and histograms for numerical variables, 

cross-tabulations, and other appropriate applications of 
PivotTables to break down the data and develop useful in-
sights. Add your findings to the report you started for the 
case in Chapter 1.
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Case: performance Lawn Equipment

Part 1: PLE originally produced lawn mowers, but a 
s ignificant portion of sales volume over recent years has 
come from the growing small-tractor market. As we noted 
in the case in Chapter 1, PLE sells their products worldwide, 
with sales regions including North America, South America, 
Europe, and the Pacific Rim. Three years ago a new region 
was opened to serve China, where a booming market for 
small tractors has been established. PLE has always empha-
sized quality and considers the quality it builds into its prod-
ucts as its primary selling point. In the past 2 years, PLE has 
also emphasized the ease of use of their products.

Before digging into the details of operations,  Elizabeth 
Burke wants to gain an overview of PLE’s overall business 
performance and market position by examining the infor-
mation provided in the database. Specifically, she is asking 
you to construct appropriate charts for the data in the fol-
lowing worksheets and summarize your conclusions from 
analysis of these charts.

a. Dealer Satisfaction

b. End-User Satisfaction

c. Complaints

d. Mower Unit Sales

e. Tractor Unit Sales

f. On-Time Delivery

g. Defects after Delivery

h. Response Time

Part 2: As noted in the case in Chapter 1, the supply 
chain worksheets provide cost data associated with lo-
gistics between existing plants and customers as well as 
proposed new plants. Ms. Burke wants you to extract the 
records associated with the unit shipping costs of pro-
posed plant locations and compare the costs of existing 
locations against those of the proposed locations using 
quartiles.

Part 3: Ms. Burke would also like a quantitative sum-
mary of the average responses for each of the customer at-
tributes in the worksheet 2014 Customer Survey for each 
market region as a cross-tabulation (use PivotTables as ap-
propriate), along with frequency distributions, histograms, 
and quartiles of these data.

Part 4: Propose a monthly dashboard of the most 
 important business information that Ms. Burke can use 
on a routine basis as data are updated. Create one using 
the most recent data. Your dashboard should not consist 
of more than 6–8 charts, which should fit comfortably on 
one screen.

Write a formal report summarizing your results for all four 
parts of this case.
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Learning Objectives

After studying this chapter, you will be able to:

•	Explain the difference between a population  
and a sample.

•	Understand statistical notation.

•	List different measures of location.

•	Compute the mean, median, mode, and midrange  
of a set of data.

•	Use measures of location to make practical business 
decisions.

•	List different measures of dispersion.

•	Compute the range, interquartile range, variance,  
and standard deviation of a set of data.

•	Explain Chebyshev’s theorem.

•	State the Empirical Rules and apply them to  
practical data.

•	Compute a standardized value (z-score) for 
observations in a data set.

•	Define and compute the coefficient of variation.

•	Explain the nature of skewness and kurtosis  
in a distribution.

•	Interpret the coefficients of skewness and kurtosis.

•	Use the Excel Descriptive Statistics tool to  
summarize data.

•	Calculate the mean, variance, and standard deviation 
for grouped data.

•	Calculate a proportion.

•	Use PivotTables to compute the mean, variance,  
and standard deviation of summarized data.

•	Explain the importance of understanding relationships 
between two variables. Explain the difference between 
covariance and correlation.

•	Calculate measures of covariance and correlation.

•	Use the Excel Correlation tool.

•	Identify outliers in data.

•	State the principles of statistical thinking.

•	Interpret variation in data from a logical and practical 
perspective.

•	Explain the nature of variation in sample data.

Descriptive Statistical 
Measures4
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As we noted in Chapter 3, frequency distributions, histograms, and cross-

tabulations are tabular and visual tools of descriptive statistics. In this chapter, 

we introduce numerical measures that provide an effective and efficient way 

of obtaining meaningful information from data. Before discussing these mea-

sures, however, we need to understand the differences between populations and 

samples.

Populations and Samples

A population consists of all items of interest for a particular decision or investigation—for 
example, all individuals in the United States who do not own cell phones, all  subscribers 
to Netflix, or all stockholders of Google. A company like Netflix keeps extensive records 
on its customers, making it easy to retrieve data about the entire population of customers. 
However, it would probably be impossible to identify all individuals who do not own cell 
phones.

A sample is a subset of a population. For example, a list of individuals who rented 
a comedy from Netflix in the past year would be a sample from the population of all 
customers. Whether this sample is representative of the population of customers—which 
depends on how the sample data are intended to be used—may be debatable; neverthe-
less, it is a sample. Most populations, even if they are finite, are generally too large to 
deal with effectively or practically. For instance, it would be impractical as well as too 
expensive to survey the entire population of TV viewers in the United States. Sampling 
is also clearly necessary when data must be obtained from destructive testing or from a 
continuous production process. Thus, the purpose of sampling is to obtain sufficient in-
formation to draw a valid inference about a population. Market researchers, for example, 
use sampling to gauge consumer perceptions on new or existing goods and services; au-
ditors use sampling to verify the accuracy of financial statements; and quality control 
analysts sample production output to verify quality levels and identify opportunities for 
improvement.

Most data with which businesses deal are samples. For instance, the Purchase Orders 
and Sales Transactions databases that we used in previous chapters represent samples be-
cause the purchase order data include only orders placed within a three-month time period, 
and the sales transactions represent orders placed on only one day, July 14. Therefore, un-
less noted otherwise, we will assume that any data set is a sample.

Understanding Statistical Notation

We typically label the elements of a data set using subscripted variables, x1, x2, … ,  
and so on. In general, xi represents the ith observation. It is a common practice in 
 statistics to use Greek letters, such as m (mu), s (sigma), and p (pi), to represent 
population measures and italic letters such as by x (x-bar), s, and p to represent sam-
ple statistics. We will use N to represent the number of items in a population and n to 
represent the number of observations in a sample. Statistical formulas often contain 
a summation operator, Σ  (Greek capital sigma), which means that the terms that 

follow it are added together. Thus, a
n

i = 1
xi = x1 + x2 + g + xn. Understanding 

these conventions and mathematical  notation will help you to interpret and apply 
statistical formulas.
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Measures of Location

Measures of location provide estimates of a single value that in some fashion represents 
the “centering” of a set of data. The most common is the average. We all use averages 
routinely in our lives, for example, to measure student accomplishment in college (e.g., 
grade point average), to measure the performance of sports teams (e.g., batting average), 
and to measure performance in business (e.g., average delivery time).

Arithmetic Mean

The average is formally called the arithmetic mean (or simply the mean), which is the sum 
of the observations divided by the number of observations. Mathematically, the mean of a 
population is denoted by the Greek letter m, and the mean of a sample is denoted by x. If a 
population consists of N observations x1, x2, c, xN, the population mean, m, is calculated as

 m =
a
N

i = 1
xi

N
 (4.1)

The mean of a sample of n observations, x1, x2, c, xn, denoted by x, is calculated as

 x =
a

n

i = 1
xi

n
 (4.2)

Note that the calculations for the mean are the same whether we are dealing with a popula-
tion or a sample; only the notation differs. We may also calculate the mean in Excel using 
the function AVERAGE(data range).

One property of the mean is that the sum of the deviations of each observation from 
the mean is zero:

 a
i
1xi - x2 = 0 (4.3)

This simply means that the sum of the deviations above the mean are the same as the sum 
of the deviations below the mean; essentially, the mean “balances” the values on either 
side of it. However, it does not suggest that half the data lie above or below the mean—a 
 common misconception among those who don’t understand statistics.

In addition, the mean is unique for every set of data and is meaningful for both inter-
val and ratio data. However, it can be affected by outliers—observations that are radically 
different from the rest—which pull the value of the mean toward these values. We discuss 
more about outliers later in this chapter.

ExAMPLE 4.1 Computing the Mean Cost per Order

In the Purchase Orders database, suppose that we are inter-
ested in finding the mean cost per order. Figure 4.1 shows 
a portion of the data file. We calculate the mean cost per 
order by summing the values in column G and then divid-
ing by the number of observations. Using formula (4.2), note 
that x1 = $2,700, x2 = $19,250, and so on, and n = 94. 
The sum of these order costs is $2,471,760. Therefore, the 

mean cost per order is $2,471,760>94 = $26,295.32. We 
show these calculations in a separate worksheet, Mean 
in the Purchase Orders Excel workbook. A portion of this 
worksheet in split-screen mode is shown in Figure 4.2.  
Alternatively, we used the Excel function =AVERAGE
(B2:B95) in this worksheet to arrive at the same value. We 
encourage you to study the calculations and formulas used.
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Median

The measure of location that specifies the middle value when the data are arranged from 
least to greatest is the median. Half the data are below the median, and half the data 
are above it. For an odd number of observations, the median is the middle of the sorted 
numbers. For an even number of observations, the median is the mean of the two middle 
numbers. We could use the Sort option in Excel to rank-order the data and then determine 
the median. The Excel function MEDIAN(data range) could also be used. The median is 
meaningful for ratio, interval, and ordinal data. As opposed to the mean, the median is not 
affected by outliers.

Figure 4.1

Portion of Purchase Orders Database

Figure 4.2

Excel Calculations of Mean 
Cost per Order

ExAMPLE 4.2 Finding the Median Cost per Order

In the Purchase Orders database, sort the data in Column G  
from smallest to largest. Since we have 94 observations, 
the median is the average of the 47th and 48th observa-
tions. You should verify that the 47th sorted observation 
is $15,562.50 and the 48th observation is $15,750. Tak-
ing the average of these two values results in the median 
value of ($15,562.5 + $15,750) ,2 = $15,656.25. Thus, we 

may conclude that the total cost of half the orders were 
less than $15,656.25 and half were above this amount. 
In this case, the median is not very close in value to the 
mean. These calculations are shown in the worksheet 
 Median in the Purchase Orders Excel workbook, as 
shown in Figure 4.3.
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Mode

A third measure of location is the mode. The mode is the observation that occurs most 
frequently. The mode is most useful for data sets that contain a relatively small number 
of unique values. For data sets that have few repeating values, the mode does not  provide 
much practical value. You can easily identify the mode from a frequency distribution 
by identifying the value having the largest frequency or from a histogram by  identifying 
the highest bar. You may also use the Excel function MODE.SNGL(data range). For 
 frequency distributions and histograms of grouped data, the mode is the group with the 
greatest frequency.

Figure 4.3

Excel Calculations for 
Median Cost per Order

Some data sets have multiple modes; to identify these, you can use the Excel function 
MODE.MULT(data range), which returns an array of modal values.

Midrange

A fourth measure of location that is used occasionally is the midrange. This is simply the 
average of the greatest and least values in the data set.

ExAMPLE 4.3 Finding the Mode

In the Purchase Orders database, the frequency distri bution 
and histogram for A/P Terms in Figure 3.40 in Chapter 3, 
we see that the greatest frequency corresponds to a value 
of 30 months; this is also the highest bar in the histogram.  

Therefore, the mode is 30 months. For the grouped fre-
quency distribution and histogram of the Cost per order 
variable in Figure 3.42, we see that the mode corresponds 
to the group between $0 and $13,000.

ExAMPLE 4.4 Computing the Midrange

We may identify the minimum and maximum values using 
the Excel functions MIN and MAX or sort the data and find 
them easily. For the Cost per order data, the minimum 

value is $68.78 and the maximum value is $127,500. Thus, 
the midrange is ($127,500 + $ 68.78) ,2 = $ 63,784.39.
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Caution must be exercised when using the midrange because extreme values easily 
distort the result, as this example illustrated. This is because the midrange uses only two 
pieces of data, whereas the mean uses all the data; thus, it is usually a much rougher esti-
mate than the mean and is often used for only small sample sizes.

Using Measures of Location in Business Decisions

Because everyone is so familiar with the concept of the average in daily life, managers 
often use the mean inappropriately in business when other statistical information should 
be considered. The following hypothetical example, which was based on a real situation, 
illustrates this.

Figure 4.4

Measures of Location for 
Computer Repair Times

From this example, we see that using frequency distributions, histograms, and percen-
tiles can provide more useful information than simple measures of location. This leads us 
to introduce ways of quantifying variability in data, which we call measures of dispersion.

ExAMPLE 4.5 Quoting Computer Repair Times

The Excel file Computer Repair Times provides a sample 
of the times it took to repair and return 250 computers to 
customers who used the repair services of a national elec-
tronics retailer. Computers are shipped to a central facil-
ity, where they are repaired and then shipped back to the 
stores for customer pickup. The mean, median, and mode 
are all very close and show that the typical repair time is 
about 2 weeks (see Figure 4.4). So you might think that if a 
customer brought in a computer for repair, it would be rea-
sonable to quote a repair time of 2 weeks. What would hap-
pen if the stores quoted all customers a time of 2 weeks? 
Clearly about half the customers would be upset because 
their computers would not be completed by this time.

Figure 4.5 shows a portion of the frequency distri-
bution and histogram for these repair times (see the 

Histogram tab in the Excel file). We see that the longest 
repair time took almost 6 weeks. So, should the company 
give customers a guaranteed repair time of 6 weeks? 
They probably wouldn’t have many customers because 
few would want to wait that long. Instead, the frequency 
distribution and histogram provide insight into making a 
more rational decision. You may verify that 90% of the 
time, repairs are completed within 21 days; on the rare 
occasions that it takes longer, it generally means that 
technicians had to order and wait for a part. So it would 
make sense to tell customers that they could probably 
expect their computers back within 2 to 3 weeks and 
inform them that it might take longer if a special part was 
needed.
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Figure 4.5

Frequency Distribution and Histogram for Computer Repair Times

Measures of Dispersion

Dispersion refers to the degree of variation in the data, that is, the numerical spread (or 
compactness) of the data. Several statistical measures characterize dispersion: the range, 
variance, and standard deviation.

Range

The range is the simplest and is the difference between the maximum value and the 
minimum value in the data set. Although Excel does not provide a function for the range, 
it can be computed easily by the formula =  MAX(data range) -  MIN(data range). Like 
the midrange, the range is affected by outliers and, thus, is often only used for very small 
data sets.

Interquartile Range

The difference between the first and third quartiles, Q3 - Q1, is often called the inter-
quartile range (IQR), or the midspread. This includes only the middle 50% of the data 
and, therefore, is not influenced by extreme values. Thus, it is sometimes used as an 
 alternative measure of dispersion.

ExAMPLE 4.6 Computing the Range

For the Cost per order data in the Purchase Or-
ders  database, the minimum value is $68.78 and 

the maximum value is $127,500. Thus, the range is 
$127,500 − $68.78 = $127,431.22.
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Variance

A more commonly used measure of dispersion is the variance, whose computation de-
pends on all the data. The larger the variance, the more the data are spread out from the 
mean and the more variability one can expect in the observations. The formula used for 
calculating the variance is different for populations and samples.

The formula for the variance of a population is

 s2 =
a
N

i = 1
1xi - m22

N
 (4.4)

where xi is the value of the ith item, N is the number of items in the population, and m is 
the population mean. Essentially, the variance is the average of the squared deviations of 
the observations from the mean.

A significant difference exists between the formulas for computing the variance of a 
population and that of a sample. The variance of a sample is calculated using the formula

 s2 =
a

n

i = 1
1xi - x22

n - 1
 (4.5)

where n is the number of items in the sample and x is the sample mean. It may seem pe-
culiar to use a different denominator to “average” the squared deviations from the mean 
for populations and samples, but statisticians have shown that the formula for the sample  
variance provides a more accurate representation of the true population variance. We dis-
cuss this more formally in Chapter 6. For now, simply understand that the proper calcu-
lations of the population and sample variance use different denominators based on the 
number of observations in the data.

The Excel function VAR.S(data range) may be used to compute the sample variance, 
s2, whereas the Excel function VAR.P(data range) is used to compute the variance of a 
population, s2.

ExAMPLE 4.8 Computing the Variance

Figure 4.6 shows a portion of the Excel worksheet Vari-
ance in the Purchase Orders workbook. To find the  
variance of the cost per order using formula (4.5), we first 
need to calculate the mean, as done in Example 4.1. Then 
for each observation, calculate the difference between the 
observation and the mean, as shown in column C. Next, 

square these differences, as shown in column D. Finally, 
add these square deviations (cell D96) and divide by 
n − 1 = 93. This results in the variance 890,594,573.82. 
Alternatively, the Excel function =VAR.S(B2:B95) yields 
the same result.

ExAMPLE 4.7 Computing the Interquartile Range

For the Cost per order data, we identified the first and 
third quartiles as Q1 = $  6,757.81 and Q3 = $ 27,593.75 
in Example 3.25. Thus, IQR = $27,593.75 − $6,757.81 =   
$20,835.94. Therefore, the middle 50% of the data are 

concentrated over a relatively small range of $20,835.94. 
Note that the upper 25% of the data span the range from 
$27,593.75 to $127,500, indicating that high costs per  
order are spread out over a large range of $99,906.25.
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Note that the dimension of the variance is the square of the dimension of the observa-
tions. So for example, the variance of the cost per order is not expressed in dollars, but 
rather in dollars squared. This makes it difficult to use the variance in practical applica-
tions. However, a measure closely related to the variance that can be used in practical 
 applications is the standard deviation.

Standard Deviation

The standard deviation is the square root of the variance. For a population, the standard 
deviation is computed as

 s = R aN
i = 1

1xi - m22

N
 (4.6)

and for samples, it is

 s = H an

i = 1
1xi - x22

n - 1
 (4.7)

The Excel function STDEV.P(data range) calculates the standard deviation for a pop-
ulation 1s2; the function STDEV.S(data range) calculates it for a sample (s).

Figure 4.6

Excel Calculations for 
Variance of Cost per 
Order

ExAMPLE 4.9 Computing the Standard Deviation

We may use the same worksheet calculations as in Ex-
ample 4.8. All we need to do is to take the square root 
of the computed variance to find the standard devia-
tion. Thus, the standard deviation of the cost per order 

is 2890,594,573.82 = $29,842.8312. Alternatively, we 
could use the Excel function =STDEV.S(B2:B95) to find 
the same value.

The standard deviation is generally easier to interpret than the variance because its 
units of measure are the same as the units of the data. Thus, it can be more easily related to 
the mean or other statistics measured in the same units.

The standard deviation is a popular measure of risk, particularly in financial analysis, 
because many people associate risk with volatility in stock prices. The standard deviation 
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measures the tendency of a fund’s monthly returns to vary from their long-term average 
(as Fortune stated in one of its issues, “. . . standard deviation tells you what to expect 
in the way of dips and rolls. It tells you how scared you’ll be.”).1 For example, a mutual 
fund’s return might have averaged 11% with a standard deviation of 10%. Thus, about 
two-thirds of the time the annualized monthly return was between 1% and 21%. By con-
trast, another fund’s average return might be 14% but have a standard deviation of 20%. 
Its returns would have fallen in a range of -6% to 34% and, therefore, is more risky. 
Many financial Web sites, such as IFA.com and Morningstar.com, provide standard de-
viations for market indexes and mutual funds.

For example, the Excel file Closing Stock Prices (see Figure 4.7) lists daily clos-
ing prices for four stocks and the Dow Jones Industrial Average index over a 1-month 
period. The average closing prices for Intel (INTC) and General Electric (GE) are quite 
similar, $18.81 and $16.19, respectively. However, the standard deviation of Intel’s price 
over this time frame was $0.50, whereas GE’s was $0.35. GE had less variability and, 
therefore, less risk. A larger standard deviation implies that while a greater potential of a 
higher return exists, there is also greater risk of realizing a lower return. Many investment 
publications and Web sites provide standard deviations of stocks and mutual funds to help 
investors assess risk in this fashion. We learn more about risk in other chapters.

Chebyshev’s Theorem and the Empirical Rules

One of the more important results in statistics is Chebyshev’s theorem, which states that for 
any set of data, the proportion of values that lie within k standard deviations 1k 7 12 of the 
mean is at least 1 - 1>k2. Thus, for k = 2, at least 3/4, or 75%, of the data lie within two 
standard deviations of the mean; for k = 3, at least 8/9, or 89% of the data lie within three 
standard deviations of the mean. We can use these values to provide a basic understanding of 
the variation in a set of data using only the computed mean and standard deviation.

1Fortune magazine 1999 Investor’s Guide (December 21, 1998 issue).

Figure 4.7

Excel File Closing 
Stock Prices
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For many data sets encountered in practice, such as the Cost per order data, the 
 percentages are generally much higher than what Chebyshev’s theorem specifies. These 
are  reflected in what are called the empirical rules:

 1. Approximately 68% of the observations will fall within one standard deviation 
of the mean, or between x - s and x + s.

 2. Approximately 95% of the observations will fall within two standard deviations 
of the mean, or within x { 2s.

 3. Approximately 99.7% of the observations will fall within three standard  
deviations of the mean, or within x { 3s.

We see that the Cost per order data reflect these empirical rules rather closely. Depend-
ing on the data and the shape of the frequency distribution, the actual percentages may be 
higher or lower.

Two or three standard deviations around the mean are commonly used to describe 
the variability of most practical sets of data. As an example, suppose that a retailer 
knows that on average, an order is delivered by standard ground transportation in 8 days 
with a standard deviation of 1 day. Using the second empirical rule, the retailer can, 
therefore, tell a customer with confidence that their package should arrive within 6 to 
10 days.

As another example, it is important to ensure that the output from a manufacturing 
process meets the specifications that engineers and designers require. The dimensions 
for a typical manufactured part are usually specified by a target, or ideal, value as well 
as a tolerance, or “fudge factor,” that recognizes that variation will exist in most manu-
facturing processes due to factors such as materials, machines, work methods,  human 
performance, environmental conditions, and so on. For example, a part dimension 
might be specified as 5.00 { 0.2 cm. This simply means that a part having a dimension 
 between 4.80 and 5.20 cm will be acceptable; anything outside of this range would be 
classified as defective. To measure how well a manufacturing process can achieve the 
specifications, we usually take a sample of output, measure the dimension, compute 
the total variation using the third  empirical rule (i.e., estimate the total variation by six 
standard deviations), and then compare the result to the specifications by dividing the 
specification range by the total variation. The result is called the process capability 
index, denoted as Cp:

 Cp =
upper specification - lower specification

total variation
 (4.8)

Manufacturers use this index to evaluate the quality of their products and determine when 
they need to make improvements in their processes.

ExAMPLE 4.10 Applying Chebyshev’s Theorem

For Cost per order data in the Purchase Orders data-
base, a two standard deviation interval around the mean 
is [ − $33,390.34, $85,980.98]. If we count the number of 
observations within this interval, we find that 89 of 94, or 
94.68%, fall within two standard deviations of the mean. 

A three-standard deviation interval is [ − $63,233.17, 
$115,823.81], and we see that 92 of 94, or 97.9%, fall in 
this interval. Both are above at least 75% and at least 
89% of Chebyshev’s Theorem.
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Figure 4.8

Calculation of Cp Index

Figure 4.9

Frequency Distribution and 
Histogram of Manufacturing 
Measurements

ExAMPLE 4.11  Using Empirical Rules to Measure the Capability  
of a Manufacturing Process

Figure 4.8 shows a portion of the data collected from a 
manufacturing process for a part whose dimensions are 
specified as 5.00 ± 0.2 centimeters. These are provided 
in the Excel workbook Manufacturing Measurements. 
The mean and standard deviation are first computed in 
cells J3 and J4 using the Excel AVERAGE and STDEV.S 
 functions (these functions work correctly whether the 
data are arranged in a single column or in a matrix form). 
The total variation is then calculated as the mean plus or 
minus three standard deviations. In cell J14, Cp is calcu-
lated using formula (4.8). A Cp value less than 1.0 is not 
good; it means that the variation in the process is wider 
than the specification limits, signifying that some of the 
parts will not meet the specifications. In practice, many 
manufacturers want to have Cp values of at least 1.5.

Figure 4.9 shows a frequency distribution and histo-
gram of these data (worksheet Histogram in the Manufac-
turing Measurements workbook). Note that the bin values 
represent the upper limits of the groupings in the histo-
gram; thus, 3 observations fell at or below 4.8, the lower 
specification limit. In addition, 5 observations exceeded 
the upper specification limit of 5.2. Therefore, 8 of the 200 
observations, or 4%, were actually defective, and 96% 
were acceptable. Although this doesn’t meet the empirical 
rule exactly, you must remember that we are dealing with 
sample data. Other samples from the same process would 
have different characteristics, but overall, the empirical 
rule provides a good estimate of the total variation in the 
data that we can expect from any sample.
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Standardized Values

A standardized value, commonly called a z-score, provides a relative measure of 
the distance an observation is from the mean, which is independent of the units 
of measurement. The z-score for the ith observation in a data set is calculated as 
follows:

 zi =
xi - x

s
 (4.9)

We subtract the sample mean from the ith observation, xi, and divide the result by the 
sample standard deviation. In formula (4.9), the numerator represents the distance that xi 
is from the sample mean; a negative value indicates that xi lies to the left of the mean, and 
a positive value indicates that it lies to the right of the mean. By dividing by the standard 
deviation, s, we scale the distance from the mean to express it in units of standard devia-
tions. Thus, a z-score of 1.0 means that the observation is one standard deviation to the 
right of the mean; a z-score of -1.5 means that the observation is 1.5 standard deviations 
to the left of the mean. Thus, even though two data sets may have different means and 
standard deviations, the same z-score means that the observations have the same relative 
distance from their respective means.

Z-scores can be computed easily on a spreadsheet; however, Excel has a function that 
calculates it directly, STANDARDIZE(x, mean, standard_dev).

Figure 4.10

Computing z-Scores for Cost 
per Order Data

ExAMPLE 4.12 Computing z-Scores

Figure 4.10 shows the calculations of z-scores for a por-
tion of the Cost per order data. This worksheet may be 
found in the Purchase Orders workbook as z-scores. In 
cells B97 and B98, we compute the mean and standard 
deviation using the Excel AVERAGE and STDEV.S func-
tions. In column C, we could either use formula (4.9) or 
the Excel STANDARDIZE function. For example, the for-
mula in cell C2 is =(B2−$B$97) ,$B$98,  but it could also 

be  ca lcu la ted  as  =STANDARDIZE(B2,$B$97,$B$98). 
Thus, the first observation $2,700 is 0.79 standard devi-
ations below the mean, whereas observation 92 is 1.61 
standard deviations above the mean. Only two observa-
tions (x19 and x8) are more than 3 standard deviations 
above the mean. We saw this in Example 4.10 when we 
applied Chebyshev’s theorem to the data.
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Coefficient of Variation

The coefficient of variation (CV) provides a relative measure of the dispersion in data 
relative to the mean and is defined as

 CV =
standard deviation

mean
 (4.10)

Sometimes the coefficient of variation is multiplied by 100 to express it as a percent. 
This statistic is useful when comparing the variability of two or more data sets when their 
scales differ.

The coefficient of variation provides a relative measure of risk to return. The smaller 
the coefficient of variation, the smaller the relative risk is for the return provided. The 
reciprocal of the coefficient of variation, called return to risk, is often used because it is 
easier to interpret. That is, if the objective is to maximize return, a higher return-to-risk 
ratio is often considered better. A related measure in finance is the Sharpe ratio, which is 
the ratio of a fund’s excess returns (annualized total returns minus Treasury bill returns) to 
its standard deviation. If several investment opportunities have the same mean but differ-
ent variances, a rational (risk-averse) investor will select the one that has the smallest vari-
ance.2 This approach to formalizing risk is the basis for modern portfolio theory, which 
seeks to construct minimum-variance portfolios. As Fortune magazine once observed, 
“It’s not that risk is always bad. . . . It’s just that when you take chances with your money, 
you want to be paid for it.” 3 One practical application of the coefficient of variation is in 
comparing stock prices.

2David G. Luenberger, Investment Science (New York: Oxford University Press, 1998).
3Fortune magazine 1999 Investor’s Guide (December 21, 1998 issue).

ExAMPLE 4.13 Applying the Coefficient of Variation

For example, by examining only the standard deviations 
in the Closing Stock Prices worksheet, we might con-
clude that IBM is more risky than the other stocks. How-
ever, the mean stock price of IBM is much greater than 
the other stocks. Thus, comparing standard deviations 
directly provides little information. The coefficient of vari-
ation provides a more comparable measure. Figure 4.11 
shows the calculations of the coefficients of variation for 

these variables. For IBM, the CV is 0.025; for Intel, 0.027; 
for Cisco, 0.024; for GE, 0.022; and for the DJIA, 0.016. 
We see that the coefficients of variation of the stocks are 
not very different; in fact, Intel is just slightly more risky 
than IBM relative to its average price. However, an index 
fund based on the Dow Industrials would be less risky 
than any of the individual stocks.

Figure 4.11

Calculating 
Coefficients of 
Variation for Closing 
Stock Prices
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Measures of Shape

Histograms of sample data can take on a variety of different shapes. Figure 4.12 shows the 
histograms for Cost per order and A/P Terms that we created in Chapter 3 for the Purchase 
Orders data. The histogram for A/P Terms is relatively symmetric, having its modal value 
in the middle and falling away from the center in roughly the same fashion on either side. 
However, the Cost per order histogram is asymmetrical, or skewed; that is, more of the mass 
is concentrated on one side, and the distribution of values “tails off” to the other. Those that 
tail off to the right, like this example, are called positively skewed; those that tail off to the 
left are said to be negatively skewed. Skewness describes the lack of symmetry of data.

The coefficient of skewness (CS) measures the degree of asymmetry of observations 
around the mean. The coefficient of skewness is computed as

 CS =

1

N a
N

i = 1
1xi - m23

s3  (4.11)

For sample data, replace the population mean and standard deviation with the correspond-
ing sample statistics. Although CS can be computed on a spreadsheet, it can easily be found 
using the Excel function SKEW(data range). If CS is positive, the distribution of values is 
positively skewed; if negative, it is negatively skewed. The closer CS is to zero, the less the 
degree of skewness. A coefficient of skewness greater than 1 or less than -1 suggests a high 
degree of skewness. A value between 0.5 and 1 or between -0.5 and -1 represents moder-
ate skewness. Coefficients between 0.5 and -0.5 indicate relative symmetry.

Figure 4.12

Histograms of Cost per Order and A/P Terms

ExAMPLE 4.14 Measuring Skewness

Using the Excel function in the Purchase Orders database 
SKEW, the coefficients of skewness for the Cost per order 
and A/P Terms data are calculated as

 CS (cost per order) = 1.66
 CS (A ,P terms) = 0.60

This tells us that the Cost per order data are highly 
positively skewed, whereas the A/P Terms data have a 
small positive skewness. These are evident from the histo-
grams in Figure 4.12.
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Histograms that have only one “peak” are called unimodal. (If a histogram has ex-
actly two peaks, we call it bimodal. This often signifies a mixture of samples from dif-
ferent populations.) For unimodal histograms that are relatively symmetric, the mode is a 
fairly good estimate of the mean. For example, the mode for the A/P Terms data is clearly 
30 months; the mean is 30.638 months. On the other hand, for the Cost per order data, 
the mode occurs in the group (0, 13,000). The midpoint of the group, $6,500, which can 
be used as a numerical estimate of the mode, is not very close at all to the true mean of 
$26,295.32. The high level of skewness pulls the mean away from the mode.

Comparing measures of location can sometimes reveal information about the shape of 
the distribution of observations. For example, if the distribution was perfectly symmetrical 
and unimodal, the mean, median, and mode would all be the same. If it was negatively 
skewed, we would generally find that mean < median < mode, whereas a positive skew-
ness would suggest that mode < median < mean (see Figure 4.13).

Kurtosis refers to the peakedness (i.e., high, narrow) or flatness (i.e., short, flat-
topped) of a histogram. The coefficient of kurtosis (CK) measures the degree of kurtosis 
of a population and can be computed using the Excel function KURT(data range). The 
coefficient of kurtosis is computed as

 CK =

1

N a
N

i = 1
1xi - m24

s4  (4.12)

(Again, for sample data, use the sample statistics instead of the population measures.) 
Distributions with values of CK less than 3 are more flat with a wide degree of dispersion; 
those with values of CK greater than 3 are more peaked with less dispersion.

Skewness and kurtosis can help provide more information to evaluate risk than just 
using the standard deviation. For example, both a negatively and positively skewed distribu-
tion may have the same standard deviation, but clearly if the objective is to achieve high re-
turn, the negatively skewed distribution will have higher probabilities of larger returns. The 
higher the kurtosis, the more area the histogram has in the tails rather than in the middle. 
This can indicate a greater potential for extreme and possibly catastrophic outcomes.

Excel Descriptive Statistics Tool

Excel provides a useful tool for basic data analysis, Descriptive Statistics, which provides 
a summary of numerical statistical measures that describe location, dispersion, and shape 
for sample data (not a population). Click on Data Analysis in the Analysis group under 
the Data tab in the Excel menu bar. Select Descriptive Statistics from the list of tools. 
The Descriptive Statistics dialog shown in Figure 4.14 will appear. You need to  enter 
only the range of the data, which must be in a single row or column. If the data are in 
multiple columns, the tool treats each row or column as a separate data set, depending 
on which you specify. This means that if you have a single data set arranged in a matrix 

Figure 4.13

Characteristics of Skewed 
Distributions

Median
Mean Mode

Median
MeanMode
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 format, you would have to stack the data in a single column before applying the Descriptive  
Statistics tool. Check the box Labels in First Row if labels are included in the input range. 
You may choose to save the results in the current worksheet or in a new one. For basic 
summary statistics, check the box Summary statistics; you need not check any others.

Figure 4.14

Descriptive Statistics Dialog

ExAMPLE 4.15 Using the Descriptive Statistics Tool

We will apply the Descriptive Statistics tool to the Cost 
per order and A/P Terms data in columns G and H of 
the Purchase Orders database. The results are provided 
in the Descriptive Statistics worksheet in the Purchase  

Orders workbook and are shown in Figure 4.15. The tool 
provides all the measures we have discussed as well as 
the standard error, which we discuss in Chapter 6, along 
with the minimum, maximum, sum, and count.

Figure 4.15

Purchase Orders Data 
Descriptive Statistics 
Summary

One important point to note about the use of the tools in the Analysis Toolpak ver-
sus Excel functions is that while Excel functions dynamically change as the data in the 
spreadsheet are changed, the results of the Analysis Toolpak tools do not. For example, 
if you compute the average value of a range of numbers directly using the function 
AVERAGE(range), then changing the data in the range will automatically update the 
result. However, you would have to rerun the Descriptive Statistics tool after changing 
the data.
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Descriptive Statistics for Grouped Data

In some situations, data may already be grouped in a frequency distribution, and we 
may not have access to the raw data. This is often the case when extracting informa-
tion from government databases such as the Census Bureau or Bureau of Labor Statis-
tics. In these situations, we cannot compute the mean or variance using the standard 
formulas.

When sample data are summarized in a frequency distribution, the mean of a popula-
tion may be computed using the formula

 m =
a
N

i = 1
fixi

N
 (4.13)

For samples, the formula is similar:

 x =
a

n

i = 1
fixi

n
 (4.14)

where fi is the frequency of observation i. Essentially, we multiply the frequency by the 
value of observation i, add them up, and divide by the number of observations.

We may use similar formulas to compute the population variance for grouped 
data,

 s2 =
a
N

i = 1
fi1xi - m22

N
 (4.15)

and sample variance,

 s2 =
a

n

i = 1
fi1xi - x22

n - 1
 (4.16)

To find the standard deviation, take the square root of the variance, as we did earlier.
Note the similarities between these formulas and formulas (4.13) and (4.14). In multi-

plying the values by the frequency, we are essentially adding the same values fi times. So 
they really are the same formulas, just expressed differently.

ExAMPLE 4.16 Computing Statistical Measures from Frequency Distributions

The worksheet Statistical Calculations in the Computer 
Repair Times workbook shows the calculations of the 
mean and variance using formulas (4.14) and (4.16) for the 
frequency distribution of repair times. A portion of this is 
shown in Figure 4.16. In column C, we multiply the fre-
quency by the value of the observations [the numerator  

in formula (4.14)] and then divide by n, the sum of the  
frequencies in column B, to find the mean in cell C49. 
Columns D, E, and F provide the calculations needed to 
find the variance. We divide the sum of the data in column 
F by n − 1 = 249 to find the variance in cell F49.
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Figure 4.16

Calculations of Mean and Variance Using a Frequency Distribution

If the data are grouped into k cells in a frequency distribution, we can use modified 
versions of these formulas to estimate the mean and variance by replacing xi with a repre-
sentative value (such as the midpoint) for all the observations in each cell.

ExAMPLE 4.17  Computing Descriptive Statistics for  
a Grouped Frequency Distribution

Figure 4.17 shows data obtained from the U.S. Census 
Bureau showing the number of households that spent 
different percentages of their income on rent. Suppose 
we wanted to calculate the average percentage and the 
standard deviation. Because we don’t have the raw data, 
we can only estimate these statistics by assuming some 
representative value for each group. For the groups that 
are defined by an upper and lower value, this is easy to 
do; we can use the midpoints—for instance, 5% for the 
first group and 12% for the second group. However, it’s 
not clear what to do for the 50 percent or more group. For 

this group, we have no information to determine what the 
best value might be. It might be unreasonable to assume 
the midpoint between 50% and 100%, or 75%; a more 
rational value might be 58% or 60%. When dealing with 
uncertain or ambiguous information in business analytics 
applications, we often have to make the best assumption 
we can. In this case, we choose 60%. The calculations, 
shown in Figure 4.18 (worksheet Calculations in the Cen-
sus Rent Data workbook), find a mean of close to 30% 
and a standard deviation of 17.61%.

Figure 4.17

Census Bureau Rent Data
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It is important to understand that because we have not used all the original data in 
computing these statistics, they are only estimates of the true values.

Descriptive Statistics for Categorical Data: The Proportion

Statistics such as means and variances are not appropriate for categorical data. Instead, 
we are generally interested in the fraction of data that have a certain characteristic. The 
formal statistical measure is called the proportion, usually denoted by p. Proportions are 
key descriptive statistics for categorical data, such as defects or errors in quality control 
applications or consumer preferences in market research.

It is important to realize that proportions are numbers between 0 and 1. Although 
we often convert these to percentages—for example, 12.8% of orders were placed with 
 Spacetime Technologies in the last example—we must be careful to use the decimal ex-
pression of a proportion when statistical formulas require it.

Statistics in PivotTables

We introduced PivotTables in Chapter 3 and applied them to finding simple counts and 
creating cross-tabulations. PivotTables also have the functionality to calculate many basic 
statistical measures from the data summaries. If you look at the Value Field Settings dialog 
shown in Figure 4.19, you can see that you can calculate the average, standard deviation, 
and variance of a value field.

Figure 4.18

Census Rent Data 
Calculations

ExAMPLE 4.18 Computing a Proportion

In the Purchase Orders database, column A lists the 
name of the supplier for each order. We may use the  
Excel function =COUNTIF(data range, criteria) to count 
the number of observations meeting specified character-
istics. For instance, to find the number of orders placed 

with Spacetime Technologies, we used the function 
=COUNTIF(A4:A97, “Spacetime Technologies”). This re-
turns a value of 12. Because 94 orders were placed, the 
proportion of orders placed with Spacetime Technologies 
is p = 12 ,94 = 0.128.
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ExAMPLE 4.19 Statistical Measures in PivotTables

In the Credit Risk Data Excel file, suppose that we want to 
find the average amount of money in checking and sav-
ings accounts by job classification. Create a PivotTable, 
and in the PivotTable Field List, move Job to the Row La-
bels field and Checking and Savings to the Values field. 
Then change the field settings from “Sum of Checking” 

and “Sum of Savings” to the averages. The result is 
shown in Figure 4.20; we have also formatted the val-
ues as  currency using the Number Format button in the 
dialog. In a similar fashion, you could find the standard 
deviation or variance of each group by selecting the 
appropriate field settings.

Measures of Association

Two variables have a strong statistical relationship with one another if they  appear to move 
together. We see many examples on a daily basis; for instance, attendance at baseball 
games is often closely related to the win percentage of the team, and ice cream sales likely 
have a strong relationship with daily temperature. We can  examine relationships between 
two variables visually using scatter charts, which we introduced in Chapter 3.

When two variables appear to be related, you might suspect a cause-and-effect 
 relationship. Sometimes, however, statistical relationships exist even though a change in one 
variable is not caused by a change in the other. For example, the New York Times reported a 
strong statistical relationship between the golf handicaps of corporate CEOs and their com-
panies’ stock market performance over 3 years. CEOs who were  better-than-average  golfers 

Figure 4.19

Value Field Settings Dialog

Figure 4.20

PivotTable for Average 
Checking and Savings 
Account Balances by Job
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4Adam Bryant, “CEOs’ Golf Games Linked to Companies’ Performance,” Cincinnati Enquirer, June 7, 
1998, El.

were likely to deliver above-average returns to shareholders.4 Clearly, the ability to golf 
would not cause better business performance. Therefore, you must be cautious in drawing 
inferences about causal relationships based solely on statistical relationships. (On the other 
hand, you might want to spend more time out on the practice range!)

Understanding the relationships between variables is extremely important in making good 
business decisions, particularly when cause-and-effect relationships can be justified. When a 
company understands how internal factors such as product quality, employee training, and pric-
ing factors affect such external measures as profitability and customer satisfaction, it can make 
better decisions. Thus, it is helpful to have statistical tools for measuring these relationships.

The Excel file Colleges and Universities, a portion of which is shown in Figure 4.21, con-
tains data from 49 top liberal arts and research universities across the United States. Several 
questions might be raised about statistical relationships among these variables. For instance, 
does a higher percentage of students in the top 10% of their high school class suggest a higher 
graduation rate? Is acceptance rate related to the amount spent per student? Do schools with 
lower acceptance rates tend to accept students with higher SAT scores? Questions such as these 
can be addressed by computing statistical measures of association between the variables.

Covariance

Covariance is a measure of the linear association between two variables, X and Y. Like 
the variance, different formulas are used for populations and samples. Computationally, 
covariance of a population is the average of the products of deviations of each observation 
from its respective mean:

 cov (X, Y) =
a
N

i = 1
1xi - mx21yi - my2

N
 (4.17)

To better understand the covariance, let us examine formula (4.17). The covariance 
between X and Y is the average of the product of the deviations of each pair of observations 
from their respective means. Suppose that large (small) values of X are  generally associated 
with large (small) values of Y. Then, in most cases, both xi and yi are either above or below 
their respective means. If so, the product of the deviations from the means will be a positive 
number and when added together and averaged will give a positive value for the covariance. 
On the other hand, if small (large) values of X are associated with large (small) values of 

Figure 4.21

Portion of Excel File Colleges and Universities

M04_EVAN5448_02_SE_C04.indd   142 12/09/15   7:31 AM



 Chapter 4  Descriptive Statistical Measures 143

Y, then one of the deviations from the mean will generally be negative while the other is 
positive. When multiplied together, a negative value results, and the value of the covari-
ance will be negative. Thus, the larger the absolute value of the covariance, the higher is 
the degree of linear association between the two variables. The sign of the covariance tells 
us whether there is a direct relationship (i.e., one variable increases as the other increases) 
or an inverse relationship (i.e., one variable increases while the other decreases, or vice 
versa). We can generally identify the strength of any linear association between two vari-
ables and the sign of the covariance by constructing a scatter diagram. The Excel function 
COVARIANCE.P(array1, array2) computes the covariance of a population.

The sample covariance is computed as

 cov (X, Y) =
a

n

i = 1
1xi - x21yi - y2

n - 1
 (4.18)

Similar to the sample variance, note the use of n - 1 in the denominator. The Excel 
 function COVARIANCE.S(array1, array2) computes the covariance of a sample.

ExAMPLE 4.20 Computing the Covariance

Figure 4.22 shows a scatter chart of graduation rate  
(Y-variable) versus median SAT scores (X-variable) for 
the Colleges and Universities data. It appears that as 
the median SAT scores increase, the graduate rate 
also increases; thus, we would expect to see a positive 

 covariance. Figure 4.23 shows the calculations using for-
mula (4.18); these are provided in the worksheet Cova-
riance in the Colleges and Universities Excel workbook. 
The Excel function =COVARIANCE.S(B2:B50,C2:C50) in 
cell F55 verifies the calculations.

Figure 4.22

Scatter Chart of Graduation 
Rate versus Median SAT

Correlation

The numerical value of the covariance is generally difficult to interpret because it depends 
on the units of measurement of the variables. For example, if we expressed the graduation 
rate as a true proportion rather than as a percentage in the previous example, the numeri-
cal value of the covariance would be smaller, although the linear association between the 
variables would be the same.

Correlation is a measure of the linear relationship between two variables, X and 
Y, which does not depend on the units of measurement. Correlation is measured by the  
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Figure 4.23

Covariance Calculations  
for Graduation Rate and 
Median SAT

Figure 4.24

Examples of Correlation

(a) Positive Correlation

50210215 25 10 15

(b) Negative Correlation

(c) No Correlation (d) A Nonlinear Relationship with No Linear Correlation

Y
Y

Y

X
X

X X

Y

correlation coefficient, also known as the Pearson product moment correlation  
coefficient. The correlation coefficient for a population is computed as

 rxy =
cov(X, Y)
sx sy

 (4.19)

By dividing the covariance by the product of the standard deviations, we are essentially 
scaling the numerical value of the covariance to a number between -1 and 1.

In a similar fashion, the sample correlation coefficient is computed as

 rxy =
cov(X,Y)

sxsy
 (4.20)

Excel’s CORREL function computes the correlation coefficient of two data arrays.
A correlation of 0 indicates that the two variables have no linear relationship to each 

other. Thus, if one changes, we cannot reasonably predict what the other variable might 
do. A positive correlation coefficient indicates a linear relationship for which one variable 
increases as the other also increases. A negative correlation coefficient indicates a linear 
relationship for one variable that increases while the other decreases. In economics, for in-
stance, a price-elastic product has a negative correlation between price and sales; as price 
increases, sales decrease, and vice versa. These relationships are illustrated in Figure 4.24. 
Note that although Figure 4.24(d) has a clear relationship between the variables, the rela-
tionship is not linear and the correlation is zero.
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Figure 4.25

Correlation Calculations for Graduation Rate and Median SAT

ExAMPLE 4.21 Computing the Correlation Coefficient

Figure 4.25 shows the calculations for computing the 
sample correlation coefficient for the graduation rate and 
median SAT variables in the Colleges and Universities 
data file. We first compute the standard deviation of each 

variable in cells B52 and C52 and then divide the covari-
ance by the product of these standard deviations in cell 
F54. Cell F56 shows the same result using the Excel func-
tion =CORREL(B2:B50,C2:C50).

When using the CORREL function, it does not matter if the data represent samples or 
populations. In other words, 

CORREL(array1, array2) =
COVARIANCE.P1array1, array22

STDEV.P1array12 * STDEV.P1array22
and

CORREL(array1, array2) =
COVARIANCE.S1array1, array22

STDEV.S1array12 * STDEV.S1array22
For instance, in Example 4.21, if we assume that the data are populations, we find that the 
population standard deviation for X is 7.372 and the population standard deviation for Y 
is 62.034 (using the function STDEV.P). By dividing the population covariance, 257.995 
(using the function COVARIANCE.P), by the product of these standard deviations, we find 
that the correlation coefficient is still 0.564 as computed by the CORREL function.

Excel Correlation Tool

The Data Analysis Correlation tool computes correlation coefficients for more than two ar-
rays. Select Correlation from the Data Analysis tool list. The dialog is shown in Figure 4.26. 
You need to input only the range of the data (which must be in contiguous columns; if not, 
you must move them in your worksheet), specify whether the data are grouped by rows 
or columns (most applications will be grouped by columns), and indicate whether the first 
row contains data labels. The output of this tool is a matrix giving the correlation between 
each pair of variables. This tool provides the same output as the CORREL function for 
each pair of variables.
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Figure 4.26

Excel Correlation Tool 
Dialog

Figure 4.27

Correlation Results for 
Colleges and Universities 
Data

ExAMPLE 4.22 Using the Correlation Tool

The correlation matrix among all the variables in the Col-
leges and Universities data file is shown in Figure 4.27. 
None of the correlations are very strong. The moderate 
positive correlation between the graduation rate and 
SAT scores indicates that schools with higher median 
SATs have higher graduation rates. We see a moder-
ate negative correlation between acceptance rate and 
graduation rate, indicating that schools with lower  

acceptance rates have higher graduation rates. We also 
see that the acceptance rate is also negatively correlated 
with the median SAT and Top 10% HS, suggesting that 
schools with lower acceptance rates have higher student 
profiles. The correlations with Expenditures/Student also 
suggest that schools with higher student profiles spend 
more money per student.

Outliers

Earlier we had noted that the mean and range are sensitive to outliers—unusually large 
or small values in the data. Outliers can make a significant difference in the results 
we obtain from statistical analyses. An important statistical question is how to iden-
tify them. The first thing to do from a practical perspective is to check the data for 
possible errors, such as a misplaced decimal point or an incorrect transcription to a 
computer file. Histograms can help to identify possible outliers visually. We might use 
the empirical rule and z-scores to identify an outlier as one that is more than three stan-
dard deviations from the mean. We can also identify outliers based on the interquartile 
range. “Mild” outliers are often defined as being between 1.5*IQR and 3*IQR to the 
left of Q1 or to the right of Q3, and “extreme” outliers, as more than 3*IQR away from 
these quartiles. Basically, there is no standard definition of what constitutes an outlier 
other than an unusual observation as compared with the rest. However, it is important 
to try to identify outliers and determine their significance when conducting business 
analytic studies.
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Figure 4.28

Portion of Home Market 
Value

ExAMPLE 4.23 Investigating Outliers

The Excel data file Home Market Value provides a sample of 
data for homes in a neighborhood (Figure 4.28). Figure 4.29  
shows z-score calculations for the square feet and market 
value variables. None of the z-scores for either of these 
variables exceed 3 (these calculations can be found in 
the worksheet Outliers in the Excel Home Market Value 
workbook). However, while individual variables might not 
exhibit outliers, combinations of them might. We see this 
in the scatter diagram in Figure 4.30. The last observation 
has a high market value ($120,700) but a relatively small 

house size (1,581 square feet). The point on the scatter di-
agram does not seem to coincide with the rest of the data.

The question is what to do with possible outliers. They 
should not be blindly eliminated unless there is a legiti-
mate reason for doing so—for instance, if the last home in 
the Home Market Value example has an outdoor pool that 
makes it significantly different from the rest of the neigh-
borhood. Statisticians often suggest that analyses should 
be run with and without the outliers so that the results can 
be compared and examined critically.

Figure 4.29

Computing z-Scores for 
Examining Outliers

Figure 4.30

Scatter Diagram of House 
Size versus Market Value
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Statistical Thinking in Business Decisions

The importance of applying statistical concepts to make good business decisions and im-
prove performance cannot be overemphasized. Statistical thinking is a philosophy of 
learning and action for improvement that is based on the principles that

•	all work occurs in a system of interconnected processes,

•	variation exists in all processes, and

•	better performance results from understanding and reducing variation.5

Work gets done in any organization through processes—systematic ways of doing 
things that achieve desired results. Understanding business processes provides the context 
for determining the effects of variation and the proper type of action to be taken. Any pro-
cess contains many sources of variation. In manufacturing, for example, different batches 
of material vary in strength, thickness, or moisture content. During manufacturing, tools 
experience wear, vibrations cause changes in machine settings, and electrical fluctuations 
cause variations in power. Workers may not position parts on fixtures consistently, and 
physical and emotional stress may affect workers’ consistency. In addition, measurement 
gauges and human inspection capabilities are not uniform, resulting in measurement error. 
Similar phenomena occur in service processes because of variation in employee and cus-
tomer behavior, application of technology, and so on. Reducing variation results in more 
consistency in manufacturing and service processes, fewer errors, happier customers, and 
better accuracy of such things as delivery time quotes.

Although variation exists everywhere, many managers often do not recognize it or con-
sider it in their decisions. How often do managers make decisions based on one or two data 
points without looking at the pattern of variation, see trends in data that aren’t justified, or try to 
manipulate measures they cannot truly control? Unfortunately, the answer is quite often. For ex-
ample, if sales in some region fell from the previous quarter, a regional manager might quickly 
blame her sales staff for not working hard enough, even though the drop in sales may simply be 
the result of uncontrollable variation. Usually, it is simply a matter of ignorance of how to deal 
with variation in data. This is where business analytics can play a significant role. Statistical 
analysis can provide better insight into the facts and nature of relationships among the many 
factors that may have contributed to an event and enable managers to make better decisions.

5Galen Britz, Don Emerling, Lynne Hare, Roger Hoerl, and Janice Shade, “How to Teach Others to Apply 
Statistical Thinking,” Quality Progress (June 1997): 67–79.

ExAMPLE 4.24 Applying Statistical Thinking

Figure 4.31 shows a portion of data in the Excel file 
 Surgery Infections that document the number of infec-
tions that occurred after surgeries over 36 months at 
one hospital, along with a line chart of the number of in-
fections. (We will assume that the number of surger-
ies performed each month was the same.) The number 
of infections tripled in months 2 and 3 as compared 
to the first month. Is this indicative of trend caused by  
failure of some health care protocol or simply random varia-
tion? Should action be taken to determine a cause? From 
a statistical perspective, three points are insufficient to 

 conclude that a trend exists. It is more appropriate to look 
at a larger sample of data and study the pattern of variation.

Over the 36 months, the data clearly indicate that vari-
ation exists in the monthly infection rates. The number of 
infections seems to fluctuate between 0 and 3 with the ex-
ception of month 12. However, a visual analysis of the chart 
cannot necessarily lead to a valid conclusion. So let’s apply 
some statistical thinking. The average number of  infections 
is 1.583 and the standard deviation is 1.180. If we apply 
the empirical rule that most observations should fall within 
three standard deviations of the mean, we  arrive at the range  

(continued)
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Figure 4.31

Surgery Infections

 hospital  administrator should seek to investigate what 
may have happened that month and try to prevent similar 
occurrences.

Similar analyses are used routinely in quality control and 
other business applications to monitor performance statisti-
cally. The proper analytical calculations depend on the type 
of measure and other factors and are explained fully in books 
dedicated to quality control and quality management.

of − 1.957 (clearly the number of infections cannot be 
negative, so let’s set this value to zero), and 5.12. This 
means that, from a statistical  perspective, we can expect 
almost all the observations to fall within these limits. Figure 
4.32 shows the chart displaying these ranges. The num-
ber of infections for month 12 clearly exceeds the upper 
range value and suggests that the  number of  infections 
for this month is statistically different from the rest. The 

Figure 4.32

Infections with Empirical 
Rule Ranges

Variability in Samples

Because we usually deal with sample data in business analytics applications, it is extremely 
important to understand that different samples from any population will vary; that is, they 
will have different means, standard deviations, and other statistical measures and will have 
differences in the shapes of histograms. In particular, samples are extremely sensitive to the 
sample size—the number of observations included in the samples.
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ExAMPLE 4.25 Variation in Sample Data

In Example 4.5, we illustrated a frequency distribution 
for 250 computer repair times. The average repair time is 
14.9 days, and the variance of the repair times is 35.50. 
Suppose we selected some smaller samples from these 
data. Figure 4.33 shows two samples of size 50 randomly 
 selected from the 250 repair times. Observe that the means 
and variances differ from each other as well as from the 

mean and variance of the entire sample shown in Fig ure 4.5. 
In addition, the histograms show a slightly different profile. 
In Figure 4.34 we show the results for two smaller samples 
of size 25. Here we actually see more variability in both the 
statistical measures and the histograms as compared with 
the entire data set.

Figure 4.33

Two Samples of Size 50 of Computer Repair Times

Figure 4.34

Two Samples of Size 25 of Computer Repair Times
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6Based on Deniz Senturk, Christina LaComb, Radu Neagu, and Murat Doganaksoy, “Detect Financial 
Problems With Six Sigma,” Quality Progress (April 2006): 41–47.

Over the past decade, there have been numerous 
discoveries of management fraud that have led to 
the downfall of several prominent companies. These 
companies had been effective in hiding their finan-
cial difficulties, and investors and creditors are now 
seeking ways to identify financial problems before 
scandals occur. Even with the passage of the Sar-
banes-Oxley Act in July 2002, which helped to im-
prove the quality of the data being disclosed to the 
public, it is still possible to misjudge an organiza-
tion’s financial strength without analytical evaluation. 
Several warning signs exist, but there is no system-
atic and objective way to determine whether a given 
financial metric, such as a write-off or insider-trading 
pattern, is high or unusual.

Researchers have proposed using statistical  
thinking to detect anomalies. They propose an “anom-
aly detection score,” which is the difference between a 
target financial measure and the company’s own past 
performance or its competitors’ current performance 
using standard deviations. This technique is a variation 
of a standardized z-score. Specifically, their approach 
involves comparing performance to past performance 
(within analysis) and comparing performance to the 
performance of the company’s peers over the same 
period (between analyses). They created two types of 
exceptional anomaly scores: z-between (Zb) to address 
the variation between companies and z-within (Zw) 
to address the variation within the company. These 
measures quantify the number of standard deviations  
a company’s financial measure deviates from the 

average. Using these measures, the researchers 
 applied the technique to 25 case studies. These in-
cluded several high-profile companies that had been 
charged with financial statement fraud by the SEC or 
had admitted accounting errors, causing a restate-
ment of their financials. The method was able to iden-
tify anomalies for critical metrics known by experts to 
be warning signs for financial-statement fraud. These 
warning signs were consistent when compared with 
expert postmortem commentary on the high-profile 
fraud cases. More importantly, they signaled anoma-
lous behavior at least six quarters before an SEC in-
vestigation announcement with fewer than 5% false 
negatives and 40% false positives.

Analytics in Practice:  Applying Statistical Thinking to Detecting  
Financial Problems6
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Key Terms

Arithmetic mean (mean)
Bimodal
Chebyshev’s theorem

Coefficient of kurtosis (CK)
Coefficient of skewness (CS)
Coefficient of variation (CV)

This example demonstrates that it is important to understand the variability in sample 
data and that statistical information drawn from a sample may not accurately represent the 
population from which it comes. This is one of the most important concepts in applying 
business analytics. We explore this topic more in Chapter 6.
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Problems and Exercises

 1. Data obtained from a county auditor in the Excel 
file Home Market Value provide information about 
the age, square footage, and current market value of 
houses along one street in a particular subdivision. 
Considering these data as a population of homeown-
ers on this street, compute the mean, variance, and 
standard deviation for each of these variables using 
a spreadsheet and formulas (4.1), (4.4), and (4.6). 
Verify your calculations using the appropriate Excel 
function.

 2. In the Excel file Facebook Survey, find the average 
and median hours online/week and number of friends 
in the sample using the appropriate Excel functions. 
Compute the midrange and compare all measures of 
location.

 3. For the Excel file Tablet Computer Sales, find the 
average number, standard deviation, and inter-
quartile range of units sold per week. Show that 
Chebyshev’s theorem holds for the data and deter-
mine how accurate the empirical rules are.

 4. The Excel file Atlanta Airline Data provides arrival 
and taxi-in time statistics for one day at Atlanta 
Hartsfield International airport. Find the average 
and standard deviation of the difference between 
the scheduled and actual arrival times and the taxi-
in time to the gate. Compute the z-scores for each of 
these variables.

 5. Data obtained from a county auditor in the Excel 
file Home Market Value provides information about 
the age, square footage, and current market value of 
houses along one street in a particular subdivision.

a. Considering these data as a sample of homeown-
ers on this street, compute the mean, variance, 
and standard deviation for each of these variables 
using formulas (4.2), (4.5), and (4.7). Verify your 
calculations using the appropriate Excel function.

b. Compute the coefficient of variation for each 
variable. Which has the least and greatest relative 
dispersion?

 6. Find 30 days of stock prices for three companies in 
different industries. The average stock prices should 
have a wide range of values. Using the data, compute 
and interpret the coefficient of variation.

 7. Compute descriptive statistics for liberal arts col-
leges and research universities in the Excel file Col-
leges and Universities. Compare the two types of 
colleges. What can you conclude?

 8. Use the Descriptive Statistics tool to summarize the 
mean, median, variance, and standard deviation of the 
prices of shares in the Excel file Coffee Shares Data.

 9. The worksheet Data in the Excel file Airport Service 
Times lists a large sample of the times in seconds to 
process customers at a ticket counter. The second 
worksheet shows a frequency distribution and histo-
gram of the data.

a. Summarize the data using the Descriptive Statis-
tics tool. What can you say about the shape of the 
distribution of times?

b. Find the 90th percentile.

c. How might the airline use these results to manage 
its ticketing counter operations?

Correlation
 Correlation coefficient (Pearson  
  product moment correlation 

coefficient)
Covariance
Dispersion
Empirical rules
Interquartile range (IRQ, or midspread)
Kurtosis
Median
Midrange
Mode
Outlier

Population
Process capability index
Proportion
Range
Return to risk
Sample
Sample correlation coefficient
Skewness
Standard deviation
Standardized value (z-score)
Statistical thinking
Unimodal
Variance
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 10. The data in the Excel file Church Contributions were 
reported on annual giving for a church. Estimate the 
mean and standard deviation of the annual contribu-
tions of all parishioners by implementing formulas 
(4.13) and (4.15) on a spreadsheet, assuming these 
data represent the entire population of parishioners. 
Second, estimate the mean contribution of families 
with children in the parish school. How does this 
compare with all parishioners?

 11. The average monthly wages and standard deviations 
for the two garments manufacturing factories X and 
Yare given below:

•	Factory X: the average monthly wage is $4600, 
the standard deviation of the wage is $500, and 
the number of wage-earners is100

•	Factory Y: the average monthly wage is $4900, 
standard deviation is $400, and the number of 
wage-earners is 80

a. Which factory pays the larger amount as 
monthly wages?

b. Which factory shows greater variability in the 
distribution of wages?

 12. Consider the Excel file Mobiles Usage, which shows 
the number of people using different kinds of mobile 
phones in the northern region. Find the proportion of 
BlackBerry and Android usage in that region.

 13. In the Excel file Bicycle Inventory, find the propor-
tion of bicycle models that sell for less than $200.

 14. In the Sales Transactions database, find the proportion 
of customers who used PayPal and the proportion of 
customers who used credit cards. Also, find the propor-
tion that purchased a book and the proportion that pur-
chased a DVD.

 15. In the Excel file Economic Poll, find the proportions 
of each categorical variable.

 16. In the Excel file Facebook Survey, use a PivotTable 
to find the average and standard deviation of hours 
online/week and number of friends for females and 
males in the sample.

 17. In the Excel file Cell Phone Survey, use PivotTables to 
find the average for each of the numerical variables for 
different cell phone carriers and gender of respondents.

 18. Using PivotTables, find the average and standard 
 deviation of sales in the Sales Transactions  database. 

Also, find the average sales by source (Web or 
 e-mail). Do you think this information could be use-
ful in advertising? Explain how and why or why not.

 19. For the Excel file Travel Expenses, use a PivotTable 
to find the average and standard deviation of ex-
penses for each sales rep.

 20. Using PivotTables, compute the mean and standard 
deviation for each metric by year in the Excel file 
Freshman College Data. Are any differences appar-
ent from year to year?

 21. The Excel file Freshman College Data shows data for 
4 years at a large urban university. Use PivotTables 
to  examine differences in student high school perfor-
mance and first-year retention among different colleges 
at this university. What conclusions do you reach?

 22. The Excel file Cell Phone Survey reports opinions of 
a sample of consumers regarding the signal strength, 
value for the dollar, and customer service for their cell 
phone carriers. Use PivotTables to find the following:

a. the average signal strength by type of carrier

b. average value for the dollar by type of carrier and 
usage level

c. variance of perception of customer service by 
carrier and gender

  What conclusions might you reach from this 
information?

 23. Call centers have high turnover rates because of the 
stressful environment. The national average is approxi-
mately 50%. The director of human resources for a large 
bank has compiled data about 70 former employees at 
one of the bank’s call centers (see the Excel file Call 
Center Data). Use PivotTables to find these statistics:

a. the average length of service for males and fe-
males in the sample

b. the average length of service for individuals with 
and without a college degree

c. the average length of service for males and 
females with and without prior call center 
experience

 24. In the Excel file Weddings, determine the correlation 
between the wedding costs and attendance.

 25. For the data in the Excel file Rin’s Gym, find the co-
variances and correlations among height, weight, and 
BMI calculation.
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 26. For the Excel file Test Scores and Sales made by 
nine salesmen during the past year, compute the co-
efficient of correlation between the test scores and 
sales using Excel’s CORREL function.

 27. The Excel file Beverage Sales lists a sample of 
weekday sales at a convenience store, along with the 
daily high temperature. Compute the covariance and 
correlation between temperature and sales.

 28. For the Excel file Credit Risk Data, compute the cor-
relation between age and months employed, age and 
combined checking and savings account balance, 
and the number of months as a customer and amount 
of money in the bank. Interpret your results.

 29. In the Excel file Call Center Data, how strongly is 
length of service correlated with starting age?

 30. A national homebuilder builds single-family homes 
and condominium-style townhouses. The Excel file 
House Sales provides information on the selling 
price, lot cost, type of home, and region of the coun-
try 1M = Midwest, S = South2 for closings during 
1 month. Use PivotTables to find the average sell-
ing price and lot cost for each type of home in each 
region of the market. What conclusions might you 
reach from this information?

 31. The Excel file Auto Survey contains a sample of 
data  about vehicles owned, whether they were pur-
chased new or used, and other types of data. Use the 
 Descriptive Statistics tool to summarize the numeri-
cal data, find the correlations among each of the nu-
merical variables, and construct PivotTables to find 
the  average miles/gallon for each type of vehicle, and 
also the average miles/gallon and average age for 
each type of new and used vehicle. Summarize the 
observations that you can make from these results.

 32. Compute the z-scores for the data in the Excel file Air-
port Service Times. How many observations fall farther 
than three standard deviations from the mean? Would 
you consider these as outliers? Why or why not?

 33. Use the Manufacturing Measurements data to com-
pute sample averages, assuming that each row in the 
data file represents a sample from the manufacturing 
process. Plot the sample averages on a line chart, add 
the control limits, and interpret your results.

 34. Find the mean and variance of a deck of 52 cards, 
where an ace is counted as 11 and a picture card as 
10. Construct a frequency distribution and histogram 
of the card values. Shuffle the deck and deal two 

samples of 20 cards (starting with a full deck each 
time); compute the mean and variance and construct 
a histogram. How does the sample data differ from 
the population data? Repeat this experiment for sam-
ples of 5 cards and summarize your conclusions.

 35. Examine the z-scores you computed in Problem 4 for 
the Atlanta Airline Data. Do they suggest any outli-
ers in the data?

 36. In the Excel file Weddings, find the averages and 
median wedding cost and the sample standard devia-
tion. What would you tell a newly engaged couple 
about what cost to expect? Consider the effect of 
possible outliers in the data.

 37. A producer of computer-aided design software for 
the aerospace industry receives numerous calls for 
technical support. Tracking software is used to moni-
tor  response and resolution times. In addition, the 
company surveys customers who request support us-
ing the following scale:

0—did not exceed expectations
1—marginally met expectations
2—met expectations
3—exceeded expectations
4—greatly exceeded expectations

  The questions are as follows:

Q1:  Did the support representative explain the 
process for resolving your problem?

Q2:  Did the support representative keep you in-
formed about the status of progress in resolv-
ing your problem?

Q3:  Was the support representative courteous 
and professional?

Q4:  Was your problem resolved?
Q5:  Was your problem resolved in an acceptable 

amount of time?
Q6:  Overall, how did you find the service pro-

vided by our technical support department?

  A final question asks the customer to rate the overall 
quality of the product using this scale:

0—very poor
1—poor
2—good
3—very good
4—excellent

  A sample of survey responses and associated reso-
lution and response data are provided in the Excel 
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file Customer Support Survey. Use whatever Excel 
charts and descriptive statistics you deem appropri-
ate to convey the information in these sample data 
and write a report to the manager explaining your 
findings and conclusions.

 38. A Midwest pharmaceutical company manufactures 
individual syringes with a self-contained, single 
dose of an injectable drug.7 In the manufactur-
ing process, sterile liquid drug is poured into glass 
syringes and sealed with a rubber stopper. The re-
maining stage involves insertion of the cartridge 
into plastic syringes and the electrical “tacking” 
of the containment cap at a precisely determined 
length of the syringe. A cap that is tacked at a 
shorter-than-desired length (less than 4.920 inches) 
leads to pressure on the cartridge stopper and, 

hence, partial or complete activation of the syringe. 
Such syringes must then be scrapped. If the cap is 
tacked at a longer-than-desired length (4.980 inches 
or longer), the tacking is incomplete or inadequate, 
which can lead to cap loss and a potential cartridge 
loss in shipment and handling. Such syringes can 
be reworked manually to attach the cap at a lower 
position. However, this process requires a 100% 
inspection of the tacked syringes and results in in-
creased cost for the items. This final production 
step seemed to be producing more and more scrap 
and reworked syringes over successive weeks.

The Excel file Syringe Samples provides sam-
ples taken every 15 minutes from the manufacturing 
process. Develop control limits using the data and 
use statistical thinking ideas to draw conclusions.

7Based on LeRoy A. Franklin and Samar N. Mukherjee, “An SPC Case Study on Stabilizing Syringe 
Lengths,” Quality Engineering 12, 1 (1999–2000): 65–71.

Case: Drout Advertising Research Project

The background for this case was introduced in  
 Chapter 1. This is a continuation of the case in Chapter 3.  
For this part of the case, summarize the numerical data 
using  descriptive statistics measures, find proportions 
for categorical  variables, examine correlations, and use 

 PivotTables as  appropriate to compare average values. 
Write up your findings in a formal document, or add your 
findings to the report you completed for the case in Chapter 3  
at the discretion of your instructor.

Case: Performance Lawn Equipment

Elizabeth Burke wants some detailed statistical 
 information about much of the data in the PLE database. 
In particular, she wants to know the following:

a. the mean satisfaction ratings and standard devia-
tions by year and region in the worksheets Dealer 
Satisfaction and End-User Satisfaction

b. a descriptive statistical summary for the 2012 
customer survey data

c. how the response times differ in each quarter of 
the worksheet Response Time

d. how defects after delivery (worksheet  Defects  after 
Delivery) have changed over these 5 years

e. how sales of mowers and tractors compare with 
industry totals and how strongly monthly product 
sales are correlated with industry sales

Perform these analyses and summarize your results in a 
written report to Ms. Burke.
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Learning Objectives

After studying this chapter, you will be able to:

•	Explain the concept of probability and provide 
examples of the three definitional perspectives of 
probability.

•	Use probability rules and formulas to perform 
probability calculations.

•	Explain conditional probability and how it can be 
applied in a business context.

•	Compute conditional probabilities from cross-
tabulation data.

•	Determine if two events are independent using 
probability arguments.

•	Apply the multiplication law of probability.

•	Explain the difference between a discrete and a 
continuous random variable.

•	Define a probability distribution.

•	Verify the properties of a probability mass function.

•	Use the cumulative distribution function to compute 
probabilities over intervals.

•	Compute the expected value and variance of a discrete 
random variable.

•	Use expected values to support simple business 
decisions.

•	Calculate probabilities for the Bernoulli, binomial, 
and Poisson distributions, using the probability mass 
function and Excel functions.

•	Explain how a probability density function differs from 
a probability mass function.

•	List the key properties of probability density functions.

•	Use the probability density and cumulative distribution 
functions to calculate probabilities for a uniform 
distribution.

•	Describe the normal and standard normal distributions 
and use Excel functions to calculate probabilities.

•	Use the standard normal distribution table and z-values 
to compute normal probabilities.

Probability  
Distributions and  
Data Modeling5Ch
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Most business decisions involve some elements of uncertainty and 

 randomness. For example, the times to repair computers in the Computer  Repair 

Times Excel file that we discussed in Chapter 4 showed quite a bit of uncertainty 

that we needed to understand to provide information to customers about their 

computer repairs. We also saw that different samples of  repair times result in dif-

ferent means, variances, and frequency  distributions. Therefore, it would be ben-

eficial to be able to identify some general characteristics of repair times that would 

apply to the entire population—even those repairs that have not yet taken place. In 

other  situations, we may not have any data for analysis and simply need to make 

some judgmental assumptions about future uncertainties. For example, to develop 

a model to predict the profitability of a new and innovative product, we would 

need to make reliable assumptions about sales and consumer behavior without 

any prior data on which to base them. Characterizing the nature of distributions of 

data and specifying uncertain assumptions in  decision models relies on fundamen-

tal knowledge of probability concepts and probability distributions—the subject of 

this chapter.

•	Describe properties of the exponential distribution and 
compute probabilities.

•	Give examples of other types of distributions used in 
business applications.

•	Sample from discrete distributions in a spreadsheet 
using VLOOKUP.

•	Use Excel’s Random Number Generation tool.

•	Generate random variates using Analytic Solver 
Platform functions.

•	Fit distributions using Analytic Solver Platform.

Basic Concepts of Probability

The notion of probability is used everywhere, both in business and in our daily lives; 
from market research and stock market predictions to the World Series of Poker and 
weather forecasts. In business, managers need to know such things as the likelihood that 
a new product will be profitable or the chances that a project will be completed on time. 
Probability quantifies the uncertainty that we encounter all around us and is an important 
building block for business analytics applications. Probability is the likelihood that an 
outcome—such as whether a new product will be profitable or not or whether a project 
will be completed within 15 weeks—occurs. Probabilities are expressed as values between 
0 and 1, although many people convert them to percentages. The statement that there is 
a 10% chance that oil prices will rise next quarter is another way of stating that the prob-
ability of a rise in oil prices is 0.1. The closer the probability is to 1, the more likely it is 
that the outcome will occur.

To formally discuss probability, we need some new terminology. An experiment 
is a process that results in an outcome. An experiment might be as simple as rolling 
two dice, observing and recording weather conditions, conducting a market research 
study, or watching the stock market. The outcome of an experiment is a result that 
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we observe; it might be the sum of two dice, a description of the weather, the propor-
tion of consumers who favor a new product, or the change in the Dow Jones Industrial 
Average (DJIA) at the end of a week. The collection of all possible outcomes of an 
experiment is called the sample space. For instance, if we roll two fair dice, the pos-
sible outcomes are the numbers 2 through 12; if we observe the weather, the outcome 
might be clear, partly cloudy, or cloudy; the outcomes for customer reaction to a new 
product in a market research study would be favorable or unfavorable, and the weekly 
change in the DJIA can theoretically be any positive or negative real number. Note 
that a sample space may consist of a small number of discrete outcomes or an infinite 
number of outcomes.

Probability may be defined from one of three perspectives. First, if the process that 
generates the outcomes is known, probabilities can be deduced from theoretical argu-
ments; this is the classical definition of probability.

ExaMPLE 5.1 Classical Definition of Probability

Suppose we roll two dice. If we examine all possible 
outcomes that may occur, we can easily determine that 
there are 36: rolling one of six numbers on the first die 
and rolling one of six numbers on the second die, for ex-
ample, (1,1), (1,2), (1,3), . . . , (6,4), (6,5), (6,6). Out of these 
36 possible outcomes, 1 outcome will be the number 
2, 2 outcomes will be the number 3 (you can roll a 1 on 
the first die and 2 on the second, and vice versa), 6 out-
comes will be the number 7, and so on. Thus, the prob-
ability of rolling any number is the ratio of the number of 
ways of rolling that number to the total number of pos-
sible outcomes. For instance, the probability of rolling a  

2 is 1 ,36, the probability of rolling a 3 is 2 ,36 = 1 ,18, 
and the probability of rolling a 7 is 6 ,36 = 1 ,6. Similarly, 
if two consumers are asked whether or not they like a 
new product, there could be 4 possible outcomes:

 1. (like, like)
 2. (like, dislike)
 3. (dislike, like)
 4. (dislike, dislike)

I f  these are assumed to be equal ly  l ikely,  the  
probability that at least one consumer would respond  
unfavorably is 3 ,4.

ExaMPLE 5.2 Relative Frequency Definition of Probability

Using the sample of computer repair times in the  Excel 
file Computer Repair Times, we developed the  relative 
frequency distribution in Chapter 4, shown again in 
 Figure 5.1. We could state that the probability that a 
computer would be repaired in as little as 4 days is 0, the 

probability that it would be repaired in exactly 10 days 
is 0.076, and so on. In using the relative frequency defi-
nition, it is important to understand that as more data 
become  available, the distribution of outcomes and, 
hence, the probabilities may change.

The second approach to probability, called the relative frequency definition, is based 
on empirical data. The probability that an outcome will occur is simply the relative 
 frequency associated with that outcome.

Finally, the subjective definition of probability is based on judgment and experi-
ence, as financial analysts might use in predicting a 75% chance that the DJIA will 
increase 10% over the next year, or as sports experts might predict, at the start of the 
football season, a 1-in-5 chance (0.20 probability) of a certain team making it to the 
Super Bowl.

Which definition to use depends on the specific application and the information we 
have available. We will see various examples that draw upon each of these perspectives.
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Probability Rules and Formulas

Suppose we label the n outcomes in a sample space as O1, O2, c, On, where Oi repre-
sents the ith outcome in the sample space. Let P1Oi2 be the probability associated with the 
outcome Oi. Two basic facts govern probability:

•	The probability associated with any outcome must be between 0 and 1, or

 0 … P1Oi2 … 1 for each outcome Oi (5.1)

•	The sum of the probabilities over all possible outcomes must be 1.0, or

 P1O12 + P1O22 + g + P1On2 = 1 (5.2)

An event is a collection of one or more outcomes from a sample space. An example 
of an event would be rolling a 7 or an 11 with two dice, completing a computer repair in 
between 7 and 14 days, or obtaining a positive weekly change in the DJIA. This leads to the 
following rule:

Rule 1. The probability of any event is the sum of the probabilities of the outcomes 
that comprise that event.

Figure 5.1

Distribution of Computer 
Repair Times

O1 = 0, O2 = 1, O3 = 2, O4 = 3, O5 = 4, O6 = 5, O7 = 6, 
and O8 = 7 days, or P (O6) + P (O7) + P (O8 ) = 0.004 + 
0.008 + 0.020 = 0.032 (note that the probabil it ies 
P (O1) = P(O2) = P(O3) = P(O4) = P(O5) = 0; see Figure 5.1).

ExaMPLE 5.3 Computing the Probability of an Event

Consider the event of rolling a 7 or 11 on two dice. The pro-
bability of rolling a 7 is 6

36 and the probability of rolling an 11 
is 2

36; thus, the probability of rolling a 7 or 11 is  6
36 + 2

36 = 8
36. 

Similarly, the probability of repairing a computer in 7 days 
or less is the sum of the probabilities of the outcomes 

If A is any event, the complement of A, denoted Ac, consists of all outcomes in the 
sample space not in A.

Rule 2. The probability of the complement of any event A is P1Ac2 = 1 - P1A2.
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ExaMPLE 5.6 Computing the Probability of Non–Mutually Exclusive Events

In  the d ice example,  le t  us  def ine the events  
A = 52, 3, 126  and B = 5even number6 . Then A and B  
are not mutually exclusive because both events have 

the numbers 2 and 12 in common. Thus, the intersection 
1A and B 2 = 52, 126 . Therefore, P(A or B) = P{2, 3, 12} + 
P(even number) − P(A and B) = 4

36 + 18
36 − 2

36 = 20
36.

ExaMPLE 5.4 Computing the Probability of the Complement of an Event

I f  A = 57,116  i n  t he  d ice  examp le ,  t hen  Ac = 
52, 3, 4, 5, 6, 8, 9, 10, 126 . Thus, the probability of rolling 
anything other than a 7 or 11 is P (Ac ) = 1 − 8

36 = 28
36. If 

A = 50, 1, 2, 3, 4, 5, 6, 76  in the computer repair  example, 

Ac = 58, 9, N , 426  and P( Ac) = 1 − 0.032 = 0.968. 
This is the probability of completing the repair in more 
than a week.

The union of two events contains all outcomes that belong to either of the two events. To 
illustrate this with rolling two dice, let A be the event {7, 11} and B be the event {2, 3, 12}. 
The union of A and B is the event {2, 3, 7, 11, 12}. If A and B are two events, the probability 
that some outcome in either A or B (i.e., the union of A and B) occurs is denoted as P(A or B). 
Finding this probability  depends on whether the events are mutually exclusive or not.

Two events are mutually exclusive if they have no outcomes in common. The events 
A and B in the dice example are mutually exclusive. When events are mutually exclusive, 
the following rule applies:

Rule 3. If events A and B are mutually exclusive, then P1A or B2 = P 1A2 + P1B2.

If two events are not mutually exclusive, then adding their probabilities would result 
in double-counting some outcomes, so an adjustment is necessary. This leads to the fol-
lowing rule:

Rule 4. If two events A and B are not mutually exclusive, then P1 A or B2=  
P1A2 + P1B2 - P1A and B2.

Here, (A and B) represents the intersection of events A and B—that is, all outcomes be-
longing to both A and B.

Joint and Marginal Probability

In many applications, more than one event occurs simultaneously, or in statistical termi-
nology, jointly. We will only discuss the simple case of two events. For instance, suppose 
that a sample of 100 individuals were asked to evaluate their preference for three new 

ExaMPLE 5.5 Computing the Probability of Mutually Exclusive Events

For the dice example,  the probabi l i ty  of  event 
A = 57, 116  is P 1A 2 = 8

36, and the probability of event 
B = 52, 3, 126  is P 1B 2 = 4

36. Therefore, the probability 

that either event A or B occurs, that is, the roll of the dice 
is either 2, 3, 7, 11, or 12, is  8

36 + 4
36 = 12

36.
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proposed energy drinks in a blind taste test. The sample space consists of two types of 
outcomes corresponding to each individual: gender (F = female or M = male) and brand 
preference (B1, B2, or B3). We may define a new sample space consisting of the outcomes 
that reflect the different combinations of outcomes from these two sample spaces. Thus, 
for any respondent in the blind taste test, we have six possible (mutually exclusive) com-
binations of outcomes: 

 1. O1 = the respondent is female and prefers brand 1
 2. O2 = the respondent is female and prefers brand 2
 3. O3 = the respondent is female and prefers brand 3
 4. O4 = the respondent is male and prefers brand 1
 5. O5 = the respondent is male and prefers brand 2
 6. O6 = the respondent is male and prefers brand 3

Here, the probability of each of these events is the intersection of the gender and brand 
preference event. For example, P1O12 = P1F and B12, P1O22 = P1F and B22, and so 
on. The probability of the intersection of two events is called a joint probability. The 
probability of an event, irrespective of the outcome of the other joint event, is called a 
marginal probability. Thus, P1F2, P1M2, P1B12, P1B22, and P1B32 would be marginal 
probabilities.

This discussion of joint probabilities leads to the following probability rule:

Rule 5. If event A is comprised of the outcomes {A1, A2, g, An} and event B is com-
prised of the outcomes {B1, B2, g, Bn}, then 

P1Ai2 = P1Ai and B12 + P1Ai and B22 + g+ P1Ai and Bn2 

ExaMPLE 5.7 applying Probability Rules to Joint Events

Figure 5.2 shows a portion of the data file Energy 
Drink Survey , along with a cross-tabulation con-
structed from a PivotTable. The joint probabilities of 
gender and brand preference are easily calculated 
by dividing the number of respondents correspond-
ing to each of the six outcomes listed above by the to-
tal number of respondents, 100. Thus, P 1F and B1 2 =  
P 1O1 2 = 9 ,100 = 0.09, P 1F and B2 2 =  P 1O2 2  = 6 ,100 =   
0.06, and so on. Note that the sum of the probabilities of 
all these outcomes is 1.0.

We see that the event F, (respondent is female) is 
comprised of the outcomes O1, O2, and O3, and therefore 
P 1F 2 = P 1O1 2 + P 1O2 2 + P 1O3 2 = 0.37 using Rule 1.  
The complement of this event is M; that is, the respondent 
is male. Note that P 1M 2 = 0.63 = 1 − P 1F 2 , as reflected 
by Rule 2. The event B1 is comprised of the outcomes O1 
and O4, and thus, P 1B1 2 = P 1O1 2 + P 1O4 2 = 0.34. Simi-
larly, we find that P 1B2 2 = 0.23 and P 1B3 2 = 0.43.

Events F and M are mutually exclusive, as are events 
B1, B2, and B3 since a respondent may be only male 

or female and prefer exactly one of the three brands. 
We can use Rule 3 to find, for example, P 1B1 or B2 2 =   
0.34 + 0.23 = 0.57. Events F and B1, however, are not 
mutually exclusive because a respondent can be both 
female and prefer brand 1. Therefore, using Rule 4, we 
have P 1F  or B1 2 = P 1F 2 + P 1B1 2 − P 1F  and B1 2 =  
0.37 + 0.34 − 0.09 = 0.62.

The joint probabilities can easily be computed, as we 
have seen, by dividing the values in the cross-tabulation 
by the total, 100. Below the PivotTable in Figure 5.2 is 
a joint probability table, which summarizes these joint 
probabilities.

The marginal probabilities are given in the margins of 
the joint probability table by summing the rows and col-
umns. Note, for example, that P 1F 2 = P 1F and B1 2 + P 1F 
and B2 2 + P 1F  and B3 2 = 0.09 + 0.06 + 0.22 = 0.37.  
Similarly, P 1B1 2 = P 1F  and B1 2 + P 1M and B1 2 = 0.09 +
0.25 = 0.34.
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Conditional Probability

Conditional probability is the probability of occurrence of one event A, given that  
another event B is known to be true or has already occurred. 

Figure 5.2

Portion of Excel File Energy 
Drink Survey

ExaMPLE 5.8 Computing a Conditional Probability in a Cross-Tabulation

We will use the information shown in the energy drink 
survey example in Figure 5.2 to illustrate how to compute 
conditional probabilities from a cross-tabulation or joint 
probability table.

Suppose that we know that a respondent is male. 
What is the probability that he prefers brand 1? From the 
PivotTable, note that there are only 63 males in the group 

and of these, 25 prefer brand 1. Therefore, the probability 
that a male respondent prefers brand 1 is 25

63. We could have 
obtained the same result from the joint probability table by 
dividing the joint probability 0.25 (the probability that the 
respondent is male and prefers brand 1) by the marginal 
probability 0.63 (the probability that the respondent is 
male).

Conditional probabilities are useful in analyzing data in cross-tabulations, as well 
as in other types of applications. Many companies save purchase histories of customers 
to predict future sales. Conditional probabilities can help to predict future purchases based 
on past purchases.

ExaMPLE 5.9 Conditional Probability in Marketing

The Excel file Apple Purchase History presents a hy-
pothetical history of consumer purchases of Apple 
products, showing the first and second purchase for a 
sample of 200 customers that have made repeat pur-
chases (see  Figure 5.3). The PivotTable in Figure 5.4 
shows the count of the type of second purchase given 
that each product was purchased first. For example, 
13 customers purchased iMacs as their first Apple 
product. Then the conditional probability of purchasing 

an iPad given that the customer first purchased an 
iMac is 2

13 = 0.15. Similarly, 74 customers purchased 
a  MacBook as their first purchase; the conditional 
probability of purchasing an iPhone if a customer first 
purchased a MacBook is 26

74 = 0.35. By understanding 
which products are more likely to be purchased by cus-
tomers who already own other products, companies 
can better target advertising strategies.
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Using the data from the energy drink survey example, 
substitute B1 for A and M for B in formula (5.3). This re-
sults in the conditional probability of B1 given M:

P 1B1 ∣ M 2 =
P 1B1 and M 2

P 1M 2 =
0.25
0.63

= 0.397.

Similarly, the probability of preferring brand 1 if the 
 respondent is female is

P 1B1 ∣F 2 =
P 1B1 and F 2

P 1F 2 =
0.09
0.37

= 0.243.

The following table summarizes the conditional prob-
abilities of brand preference given gender:

Figure 5.3

Portion of Excel File Apple 
Purchase History

Figure 5.4

PivotTable of Purchase 
Behavior

In general, the conditional probability of an event A given that event B is known to 
have occurred is

 P1A∙B2 =
P1A and B2

P1B2  (5.3)

We read the notation P1A ∙B2 as “the probability of A given B.”

ExaMPLE 5.10 Using the Conditional Probability Formula

P(Brand | Gender) Brand 1 Brand 2 Brand 3

Male 0.397 0.270 0.333

Female 0.243 0.162 0.595

Such information can be important in marketing ef-
forts. Knowing that there is a difference in preference by 
gender can help focus advertising. For example, we see 
that about 40% of males prefer brand 1, whereas only 
about 24% of females do, and a higher proportion of fe-
males prefer brand 3. This suggests that it would make 
more sense to focus on advertising brand 1 more in male-
oriented media and brand 3 in female-oriented media.

The conditional probability formula may be used in other ways. For example, mul-
tiplying both sides of formula (5.3) by P1B2, we obtain P1A and B2 = P1A ∙B2 P1B2. 
Note that we may switch the roles of A and B and write P1B and A2 = P1B ∙A2 P1A2. But  
P(B and A) is the same as P(A and B); thus we can express P(A and B) in two ways:

 P1A and B2 = P1A ∙B2 P1B2 = P1B ∙A2 P1A2 (5.4)

This is often called the multiplication law of probability.
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We may use this concept to express the probability of an event in a joint probability 
table in a different way. Using the energy drink survey again in Figure 5.2, note that

P1F2 = P1F and Brand 12 + P1F and Brand 22 + P1F and Brand 32
Using formula (5.4), we can express the joint probabilities P(A and B) by P(A ∙ B) P(B).  
Therefore, 

P1F2 = P1F ∙ Brand 12 P1Brand 12 + P1F ∙ Brand 22 P1Brand 22 + P1F ∙ Brand 32 
 P1Brand 32 = 10.265210.342 + 10.261210.232 + 10.512210.432 = 0.37 1within 
rounding precision2.

We can express this calculation using the following extension of the multiplication law of 
probability. Suppose B1, B2, . . . , Bn are mutually exclusive events whose union comprises 
the entire sample space. Then

P1A2 = P1A ∙ B12P1B12 + P1A ∙ B22P1B22 + g + P1A ∙ Bn2P1Bn2 (5.5)

In Example 5.10, we see that the probability of preferring a brand depends on gender. 
We may say that brand preference and gender are not independent. We may formalize this 
concept by defining the notion of independent events: Two events A and B are independ-
ent if P1A ∙B2 = P1A2.

ExaMPLE 5.11 Using the Multiplication Law of Probability

Texas Hold ’Em has become a popular game  because 
of the publicity surrounding the World Series of 
Poker. At the beginning of a game, players each re-
ceive two cards face down (we won’t worry about 
how the rest of the game is played). Suppose that a 
player receives an ace on her first card. The probabil-
ity that she will end up with “pocket aces” (two aces in  
the hand) is P 1ace on first card and ace on second card 2 =  
P1ace on second card ∣ ace on first card 2 × P 1ace on first  

 card 2 . Since the probability of an ace on the first card 
is 4/52 and the probability of an ace on the second 
card if she has already drawn an ace is 3/51, we have

P 1ace on first card and ace on second card 2
= P 1ace on second card ∣ ace on first card 2

× P 1ace on first card 2

= a 3
51

b × a 4
52

b = 0.004525

ExaMPLE 5.12 Determining if Two Events are Independent

We use this definition in the energy drink survey  example. 
Recall that the conditional probabilities of brand prefer-
ence given gender are

P(Brand | Gender) Brand 1 Brand 2 Brand 3

Male 0.397 0.270 0.333

Female 0.243 0.162 0.595

We see that whereas P 1B1 ∣M 2 = 0.397, P 1B1 2  was shown 
to be 0.34 in Example 5.7; thus, these two events are not 
independent.

Finally, we see that if two events are independent, then we can simplify the multipli-
cation law of probability in equation (5.4) by substituting P(A) for P1A ∙B2:

 P1A and B2 = P1B2 P1A2 = P1A2P1B2 (5.6)
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ExaMPLE 5.13 Using the Multiplication Law for Independent Events

Suppose A is the event that a 6 is first rolled on a pair of 
dice and B is the event of rolling a 2, 3, or 12 on the next roll. 
These events are independent because the roll of a pair of 

dice does not depend on the previous roll. Then we may 
compute P 1A and B 2 = P 1A 2P 1B 2 = 1 5

362 1 4
362 = 20

1296.

Random Variables and Probability Distributions

Some experiments naturally have numerical outcomes, such as a roll of the dice, the time 
it takes to repair computers, or the weekly change in a stock market index. For other ex-
periments, such as obtaining consumer response to a new product, the sample space is cat-
egorical. To have a consistent mathematical basis for dealing with probability, we would 
like the outcomes of all experiments to be numerical. A random variable is a numerical 
description of the outcome of an experiment. Formally, a random variable is a function 
that assigns a real number to each element of a sample space. If we have categorical out-
comes, we can associate an arbitrary numerical value to them. For example, if a consumer 
likes a product in a market research study, we might assign this outcome a value of 1; if 
the consumer dislikes the product, we might assign this outcome a value of 0. Random 
variables are usually denoted by capital italic letters, such as X or Y.

Random variables may be discrete or continuous. A discrete random variable is one 
for which the number of possible outcomes can be counted. A continuous random vari-
able has outcomes over one or more continuous intervals of real numbers.

ExaMPLE 5.14 Discrete and Continuous Random Variables

The outcomes of rolling two dice (the numbers 2 
through 12) and customer reactions to a product (like 
or dislike) are discrete random variables. The number of  
outcomes may be finite or theoretically infinite, such as 
the number of hits on a Web site link during some period 
of time—we cannot place a guaranteed upper limit on this  

number; nevertheless, the number of hits can be counted. 
Example of continuous random variables are the weekly 
change in the DJIA, which may assume any positive or 
negative value, the daily temperature, the time to com-
plete a task, the time between failures of a machine, and 
the return on an investment.

A probability distribution is the characterization of the possible values that a random vari-
able may assume along with the probability of assuming these values. A probability distribution 
can be either discrete or continuous, depending on the nature of the random variable it models. 
Discrete distributions are easier to understand and work with, and we deal with them first.

We may develop a probability distribution using any one of the three perspectives of 
probability. First, if we can quantify the probabilities associated with the values of a random 
variable from theoretical arguments; then we can easily define the probability distribution.

ExaMPLE 5.15 Probability Distribution of Dice Rolls

The probabilities of the outcomes for rolling two dice are 
calculated by counting the number of ways to roll each 
number divided by the total number of possible  outcomes. 

These, along with an Excel column chart  depicting the 
probability distribution, are shown from the Excel file Dice 
Rolls in Figure 5.5.
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Second, we can calculate the relative frequencies from a sample of empirical data to 
develop a probability distribution. Thus, the relative frequency distribution of computer 
repair times (Figure 5.1) is an example. Because this is based on sample data, we usually 
call this an empirical probability distribution. An empirical probability distribution is an 
approximation of the probability distribution of the associated random variable, whereas 
the probability distribution of a random variable, such as the one derived from counting 
arguments, is a theoretical model of the random variable.

Finally, we could simply specify a probability distribution using subjective values 
and expert judgment. This is often done in creating decision models for the phenomena for 
which we have no historical data.

Figure 5.5

Probability Distribution of 
Rolls of Two Dice

ExaMPLE 5.16 a Subjective Probability Distribution

Figure 5.6 shows a hypothetical example of the 
 distribution of one expert’s assessment of how the 
DJIA might change in the next year. This might have 
been created purely by intuition and expert judgment, 

but we hope it would be supported by some extensive 
analysis of past and current data using business ana-
lytics tools.

Researchers have identified many common types of probability distributions that 
are useful in a variety of applications of business analytics. A working knowledge of 
common families of probability distributions is important for several reasons. First, 
it can help you to understand the underlying process that generates sample data. We 
investigate the relationship between distributions and samples later. Second, many 
phenomena in business and nature follow some theoretical distribution and, there-
fore, are useful in building decision models. Finally, working with distributions is 
essential in computing probabilities of occurrence of outcomes to assess risk and 
make decisions.
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Figure 5.6

Subjective Probability 
Distribution of DJIA Change

Discrete Probability Distributions

For a discrete random variable X, the probability distribution of the discrete outcomes is 
called a probability mass function and is denoted by a mathematical function, f1x2. The 
symbol xi represents the ith value of the random variable X and f1xi2 is the probability.

A probability mass function has the properties that (1) the probability of each out-
come must be between 0 and 1 and (2) the sum of all probabilities must add to 1; that is,

 0 … f1xi2 … 1 for all i (5.7)

 a
i

f1xi2 = 1 (5.8)

You can easily verify that this holds in each of the examples we have described.

ExaMPLE 5.17 Probability Mass Function for Rolling Two Dice

For instance, in Figure 5.5 for the dice example, the 
values of the random variable X, which represents 
the sum of the rolls of two dice, are x1 = 2,  x2 = 3
x3 = 4,  x4 = 5,  x5 = 6,  x6 = 7,  x7 = 8,  x8 = 9,  x3 = 10 
x10 = 11,  x11 = 12. The probability mass function for  
X is

 f 1x1 2 =
1
36

= 0.0278

 f 1x2 2 =
2
36

= 0.0556

 f 1x3 2 =
3
36

= 0.0833

 f 1x4 2 =
4
36

= 0.1111

 f 1x5 2 =
5
36

= 0.1389 

 f 1x6 2 =
6
36

 = 0.1667

 f 1x7 2 =
5
36

= 0.1389

 f 1x8 2 =
4
36

= 0.1111

 f 1x9 2 =
3
36

= 0.0833

 f 1x10 2 =
2
36

= 0.0556

 f 1x11 2 =
1
36

= 0.0278
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A cumulative distribution function, F1x2, specifies the probability that the ran-
dom variable X assumes a value less than or equal to a specified value, x. This is also 
denoted as P1X … x2 and read as “the probability that the random variable X is less 
than or equal to x.”

ExaMPLE 5.18 Using the Cumulative Distribution Function

The cumulative distribution function for rolling two dice 
is shown in Figure 5.7, along with an Excel line chart 
that describes it visually from the worksheet CumDist in 
the Dice Rolls Excel file. To use this, suppose we want 
to know the probability of rolling a 6 or less. We simply 
look up the cumulative probability for 6, which is 0.5833. 
Alternatively, we could locate the point for x = 6 in the 
chart and estimate the probability from the graph. Also 
note that since the probability of rolling a 6 or less is 
0.5833, then the probability of the complementary event 
(rolling a 7 or more) is 1−0.5833 = 0.4167. We can also 

use the  cumulative distribution function to find probabili-
ties over intervals. For example, to find the probability 
of rolling a number between 4 and 8, P 14 " X " 8 2 , we 
can find P 1X " 8 2  and subtract P 1X " 3 2 ; that is,

P 14 " X " 8 2 = P 1X " 8 2 − P 1X " 3 2  
 = 0.7222 − 0.0833 = 0.6389.

A word of caution. Be careful with the endpoints 
when computing probabilities over intervals for discrete 
distributions; because 4 is included in the interval we wish 
to compute, we need to subtract P 1X " 3 2 , not P 1X " 4 2 .

Figure 5.7

Cumulative Distribution 
Function for Rolling  
Two Dice

Expected Value of a Discrete Random Variable

The expected value of a random variable corresponds to the notion of the mean, or 
average, for a sample. For a discrete random variable X, the expected value, denoted 
E[X], is the weighted average of all possible outcomes, where the weights are the 
probabilities:

 E3X4 = a
∞

i = 1
xi f 1xi2 (5.9)
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Note the similarity to computing the population mean using formula (4.13) in Chapter 4:

m =
a
N

i = 1
 fi xi

N

If we write this as the sum of xi multiplied by 1fi>N2, then we can think of fi>N  as 
the probability of xi. Then this expression for the mean has the same basic form as the 
 expected value formula.

ExaMPLE 5.19 Computing the Expected Value

We may apply formula (5.9) to the probability distribu-
tion of rolling two dice. We multiply the outcome 2 by its 
probability 1/36, add this to the product of the outcome 3 
and its probability, and so on. Continuing in this fashion, 
the expected value is

E[X ] = 2 10.0278 2 + 3 10.0556 2 + 4 10.0833 2 + 5 10.01111 2
+ 6 10.1389 2 + 7 10.1667 2 + 8 10.1389 2 + 9 10.1111 2
+ 10 10.0833 2 + 11 10.0556 2 + 12 10.0278 2 = 7

Figure 5.8 shows these calculations in an Excel 
spreadsheet (worksheet Expected Value in the Dice Rolls 
Excel file). As expected (no pun intended), the average 
value of the roll of two dice is 7.

Using Expected Value in Making Decisions

Expected value can be helpful in making a variety of decisions, even those we see in  
daily life.

ExaMPLE 5.20 Expected Value on Television

One of the author’s favorite examples stemmed from 
a task in season 1 of Donald Trump’s TV show, The 
 Apprentice. Teams were required to select an artist and 
sell his or her art for the highest total amount of money. 
One team selected a mainstream artist who specialized in 
abstract art that sold for between $1,000 and $2,000; the 
second team chose an avant-garde artist whose surreal-
ist and rather controversial art was priced much higher. 
Guess who won? The first team did, because the proba-
bility of selling a piece of mainstream art was much higher 
than the avant-garde artist whose bizarre art (the team 
members themselves didn’t even like it!) had a very low 
probability of a sale. A back-of-the-envelope  expected 
value calculation would have easily predicted the winner.

A popular game show that took TV audiences by 
storm several years ago was called Deal or No Deal. The 
game involved a set of numbered briefcases that contain 
amounts of money from 1 cent to $1,000,000. Contes-
tants begin choosing cases to be opened and removed, 
and their amounts are shown. After each set of cases is 

opened, the banker offers the contestant an amount of 
money to quit the game, which the contestant may either 
choose or reject. Early in the game, the banker’s offer 
is usually less than the expected value of the remaining 
cases, providing an incentive to continue. However, as the 
number of remaining cases becomes small, the banker’s 
offers approach or may even exceed the average of the 
remaining cases. Most people press on until the bitter end 
and often walk away with a smaller amount than they could 
have had they been able to estimate the expected value of 
the remaining cases and make a more rational decision. 
In one case, a contestant had five briefcases left with 
$100, $400, $1,000, $50,000, and $300,000. Because the 
choice of each case is equally likely, the expected value  
was 0.2 1$100 + $400 + $1000 + $50,000 + $300,000 2  =
$70,300 and the banker offered $80,000 to quit. Instead, 
she said “No Deal” and proceeded to open the $300,000 
suitcase, eliminating it from the game, and took the next 
banker’s offer of $21,000, which was more than 60% 
larger than the expected value of the remaining cases.1

1“Deal or No Deal: A Statistical Deal.” www.pearsonified.com/2006/03/deal_or_no_deal_the_real_deal.php
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Figure 5.8

Expected Value Calculations 
for Rolling Two Dice

It is important to understand that the expected value is a “long-run average” and is 
appropriate for decisions that occur on a repeated basis. For one-time decisions, however, 
you need to consider the downside risk and the upside potential of the decision. The fol-
lowing example illustrates this.

Decisions based on expected values are common in real estate development, day 
trading, and pharmaceutical research projects. Drug development is a good example. 
The cost of research and development projects in the pharmaceutical industry is gener-
ally in the hundreds of millions of dollars and often approaches $1 billion. Many projects 
never make it to clinical trials or might not get approved by the Food and Drug Admin-
istration. Statistics indicate that 7 of 10 products fail to return the cost of the company’s 
capital. However, large firms can absorb such losses because the return from one or two  
blockbuster drugs can easily offset these losses. On an average basis, drug companies 
make a net profit from these decisions.

repeatedly over the long run, you would lose an aver-
age of $25.00 each time you play. Of course, for any one 
game, you would either lose $50 or win $24,950. So the 
question becomes, Is the risk of losing $50 worth the 
 potential of winning $24,950? Although the expected 
value is negative, you might take the chance because the 
upside  potential is large relative to what you might lose, 
and, after all, it is for charity. However, if your potential 
loss is large, you might not take the chance, even if the 
expected value were positive.

ExaMPLE 5.21 Expected Value of a Charitable Raffle

Suppose that you are offered the chance to buy one 
of 1,000 tickets sold in a charity raffle for $50, with the 
prize being $25,000. Clearly, the probability of winning 
is 1

1,000, or 0.001, whereas the probability of losing is 
1 − 0.001 − 0.999. The random variable X is your net 
winnings, and its probability distribution is

   x     f ( x )

  −$50  0.999

   $24,950  0.001 

The expected value, E [ X ], is  −$50(0.999) + $24,950(0.001) 
= −$25.00.  This means that if you played this game  
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Variance of a Discrete Random Variable

We may compute the variance, Var[X], of a discrete random variable X as a weighted av-
erage of the squared deviations from the expected value:

 Var [X] = a
∞

j = 1
1xj - E[X]22f1xj2 (5.10)

Figure 5.9

Variance Calculations for 
Rolling Two Dice

ExaMPLE 5.22 airline Revenue Management

Let us consider a simplified version of the typical revenue 
management process that airlines use. At any date prior to a 
scheduled flight, airlines must make a decision as to whether 
to reduce ticket prices to stimulate demand for unfilled seats. 
If the airline does not discount the fare, empty seats might 
not be sold and the airline will lose revenue. If the airline dis-
counts the remaining seats too early (and could have sold 
them at the higher fare), they would lose profit. The decision 
depends on the probability p of selling a full-fare ticket if they 
choose not to discount the price. Because an airline makes  
hundreds or thousands of such decisions each day, the ex-
pected value approach is appropriate.

Assume that only two fares are available: full and dis-
count. Suppose that a full-fare ticket is $560, the discount 
fare is $400, and p = 0.75. For simplification, assume that 

if the price is reduced, then any remaining seats would be 
sold at that price. The expected value of not discounting 
the price is 0.25 (0) + 0.75($560) = $420. Because this is 
higher than the discounted price, the airline should not dis-
count at this time. In reality, airlines constantly update the 
probability p based on the information they collect and an-
alyze in a database. When the value of p drops below the 
break-even point: $400 = p ($560), or  p = 0.714, then it is 
beneficial to discount. It can also work in reverse; if demand 
is such that the probability that a higher-fare ticket would be 
sold, then the price may be adjusted upward. This is why 
published fares constantly change and why you may receive 
last-minute discount offers or may pay higher prices if you 
wait too long to book a reservation. Other industries such as 
hotels and cruise lines use similar decision strategies.

Similar to our discussion in Chapter 4, the variance measures the uncertainty of the ran-
dom variable; the higher the variance, the higher the uncertainty of the outcome. Although 
variances are easier to work with mathematically, we usually measure the variability of a 
random variable by its standard deviation, which is simply the square root of the variance.

shows these calculations in an Excel spreadsheet (work-
sheet Variance in Random Variable Calculations Excel file).

ExaMPLE 5.23 Computing the Variance of a Random Variable

We may apply formula (5.10) to calculate the variance of 
the probability distribution of rolling two dice. Figure 5.9 
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ExaMPLE 5.24 Using the Bernoulli Distribution

A Bernoulli distribution might be used to model whether an 
individual responds positively ( x = 1) or negatively ( x = 0) 
to a telemarketing promotion. For example, if you estimate 
that 20% of customers contacted will make a purchase, 
the probability distribution that describes whether or not 
a particular individual makes a purchase is Bernoulli with 

p = 0.2. Think of the following experiment. Suppose that 
you have a box with 100 marbles, 20 red and 80 white. For 
each customer, select one marble at random (and then re-
place it). The outcome will have a Bernoulli distribution. If 
a red marble is chosen, then that customer makes a pur-
chase; if it is white, the customer does not make a purchase.

Bernoulli Distribution

The Bernoulli distribution characterizes a random variable having two possible out-
comes, each with a constant probability of occurrence. Typically, these outcomes repre-
sent “success” 1x = 12 having probability p and “failure” 1x = 02, having probability 
1 - p. A success can be any outcome you define. For example, in attempting to boot a 
new computer just off the assembly line, we might define a success as “does not boot up” 
in defining a Bernoulli random variable to characterize the probability distribution of a 
defective product. Thus, success need not be a favorable result in the traditional sense.

The probability mass function of the Bernoulli distribution is

 f1x2 = e          p if x = 1 

1 - p if x = 0
 (5.11)

where p represents the probability of success. The expected value is p, and the variance is 
p11 - p2.

Binomial Distribution

The binomial distribution models n independent replications of a Bernoulli experiment, 
each with a probability p of success. The random variable X represents the number of suc-
cesses in these n experiments. In the telemarketing example, suppose that we call n = 10 
customers, each of which has a probability p = 0.2 of making a purchase. Then the prob-
ability distribution of the number of positive responses obtained from 10 customers is 
binomial. Using the binomial distribution, we can calculate the probability that exactly 
x customers out of the 10 will make a purchase for any value of x between 0 and 10. A 
binomial distribution might also be used to model the results of sampling inspection in a 
production operation or the effects of drug research on a sample of patients.

The probability mass function for the binomial distribution is

 f1x2 = d an
xbp x11 - p2n - x, for x = 0, 1, 2, c, n

0, otherwise

 (5.12)

The notation an

x
b  represents the number of ways of choosing x distinct items from a group 

of n items and is computed as

 an

x
b =

n! 

x! 1n - x2! 
 (5.13)

where n! (n factorial) = n1n -  121n -  22g122112, and 0! is defined to be 1.
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The formula for the probability mass function for the binomial distribution is rather 
complex, and binomial probabilities are tedious to compute by hand; however, they can 
easily be computed in Excel using the function

BINOM.DIST1number_s, trials, probability_s, cumulative2
In this function, number_s plays the role of x, and probability_s is the same as p. If 
cumulative is set to TRUE, then this function will provide cumulative probabilities; 
otherwise the default is FALSE, and it provides values of the probability mass func-
tion, f1x2.

Figure 5.10

Computing Binomial 
Probabilities in Excel

ExaMPLE 5.26 Using Excel’s Binomial Distribution Function

Figure 5.10 shows the results of using this function to 
compute the distribution for the previous example (Excel  
file Binomial Probabilities). For instance, the probabil-
ity that exactly 3 individuals will make a purchase is  
BINOM.DIST(A10,$B$3,$B$4,FALSE) = 0.20133 = f 13 2 . 

The probability that 3 or fewer individuals will make 
a purchase is BINOM.DIST(A10,$B$3,$B$4,TRUE) =  
0.87913 = F 13 2 . Correspondingly, the probability that 
more than 3 out of 10 individuals will make a purchase is 
1 − F 13 2 = 1 − 0.87913 = 0.12087.

ExaMPLE 5.25 Computing Binomial Probabilities

We may use formula (5.12) to compute binomial proba-
bilities. For example, if the probability that any individual 
will make a purchase from a telemarketing solicitation is 
0.2, then the probability distribution that x individuals out 
of 10 calls will make a purchase is

f 1x 2 = c a10
x b 10.2 2x 10.8 210−x, for x = 0, 1, 2, c, n

0, otherwise

Thus, to find the probability that 3 people will make a  
purchase among the 10 calls, we compute

f(3) = a10
3
b (0.2)3(0.8)10−3

 = (10!/3!7!)(0.008)(0.2097152)  
     = 120(0.008)(0.2097152) = 0.20133
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The expected value of the binomial distribution is np, and the variance is np11 - p2. 
The binomial distribution can assume different shapes and amounts of skewness, de-
pending on the parameters. Figure 5.11 shows an example when p = 0.8. For larger 
values of p, the binomial distribution is negatively skewed; for smaller values, it is posi-
tively skewed. When p = 0.5, the distribution is symmetric.

Poisson Distribution

The Poisson distribution is a discrete distribution used to model the number of occurrences 
in some unit of measure—for example, the number of customers arriving at a Subway store 
during a weekday lunch hour, the number of failures of a machine during a month, number 
of visits to a Web page during 1 minute, or the number of errors per line of software code.

The Poisson distribution assumes no limit on the number of occurrences (meaning that 
the random variable X may assume any nonnegative integer value), that occurrences are inde-
pendent, and that the average number of occurrences per unit is a constant, l (Greek lowercase 
lambda). The expected value of the Poisson distribution is l, and the variance also is equal to l.

The probability mass function for the Poisson distribution is:

 f 1x2 = d e-llx

x! 
, for x = 0, 1, 2, c

0, otherwise

 (5.14)

Figure 5.11

Example of the Binomial 
Distribution with p = 0.8

ExaMPLE 5.27 Computing Poisson Probabilities

Suppose that, on average, the number of customers ar-
riving at Subway during lunch hour is 12 customers per 
hour. The probability that exactly x customers will arrive 
during the hour is given by a Poisson distribution with 
a mean of 12. The probability that exactly x customers  
will arrive during the hour would be calculated using  
formula (5.14):

f ( x) = d  e−1212x

x! 
, for x = 0, 1, 2, N

0, otherwise

Substituting x = 5 in this formula, the probability that 
 exactly 5 customers will arrive is f (5) = 0.1274.

Like the binomial, Poisson probabilities are cumbersome to compute by hand. Probabili-
ties can easily be computed in Excel using the function POISSON.DIST(x, mean, cumulative).
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ExaMPLE 5.28 Using Excel’s Poisson Distribution Function

Figure 5.12 shows the results of using this func-
t i o n  t o  c o m p u t e  t h e  d i s t r i b u t i o n  f o r  E x a m -
ple 5.26 with L = 12 (see the Excel fi le Poisson 
Probabilities). Thus, the probability of exactly one arrival 
during the lunch hour is calculated by the Excel function 
=  POISSON.DIST(A7, $B$3,FALSE) = 0.00007 = f (1); 
the probability of 4 arrivals or fewer is calculated by 

=  POISSON.DIST(A10,$B$3,TRUE) = 0.00760 = F(4), 
and so on. Because the possible values of a Poisson ran-
dom variable are infinite, we have not shown the complete 
distribution. As x gets large, the probabilities become quite 
small. Like the binomial, the specific shape of the dis-
tribution depends on the value of the parameter L; the 
distribution is more skewed for smaller values.

Figure 5.12

Computing Poisson 
Probabilities in Excel

Continuous Probability Distributions

As we noted earlier, a continuous random variable is defined over one or more intervals of 
real numbers and, therefore, has an infinite number of possible outcomes. Suppose that the 
expert who predicted the probabilities associated with next year’s change in the DJIA in 
Figure 5.6 kept refining the estimates over larger and larger ranges of values. Figure 5.13 

Figure 5.13

Refined Probability 
Distribution of DJIA Change
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shows what such a probability distribution might look like using 2.5% increments rather 
than 5%. Notice that the distribution is similar in shape to the one in Figure 5.6 but sim-
ply has more outcomes. If this refinement process continues, then the distribution will 
 approach the shape of a smooth curve, as shown in the figure. Such a curve that character-
izes outcomes of a continuous random variable is called a probability density function 
and is described by a mathematical function f1x2.

Properties of Probability Density Functions

A probability density function has the following properties:

 1. f1x2 Ú 0 for all values of x. This means that a graph of the density function 
must lie at or above the x-axis.

 2. The total area under the density function above the x-axis is 1.0. This is anal-
ogous to the property that the sum of all probabilities of a discrete random 
variable must add to 1.0.

 3. P1X = x2 = 0. For continuous random variables, it does not make mathe-
matical sense to attempt to define a probability for a specific value of x be-
cause there are an infinite number of values.

Priceline is well known for allowing customers to 
name their own prices (but not the service providers) 
in bidding for services such as airline flights or hotel 
stays. Some hotels take advantage of Priceline’s ap-
proach to fill empty rooms for leisure travelers while 
not diluting the business market by offering discount 
rates through traditional channels. In one study us-
ing business analytics to develop a model to opti-
mize pricing strategies for Kimpton Hotels, which 
develops, owns, or manages more than 40 indepen-
dent boutique lifestyle hotels in the United States and 
Canada, the distribution of the number of bids for a 
given number of days before arrival was modeled as 
a Poisson distribution because it corresponded well 
with data that were observed. For example, the av-
erage number of bids placed per day 3 days before 
arrival on a weekend (the random variable X) was 
6.3. Therefore, the distribution used in the model was 
f (x) = e−6.36.3x ,x!, where x is the number of bids 
placed. The analytic model helped to determine the 
prices to post on  Priceline and the inventory alloca-
tion for each price. After using the model, rooms sold 
via Priceline increased 11% in 1 year, and the average 
rate for these rooms  increased 3.7%.

analytics in Practice:  Using the Poisson Distribution for Modeling  
Bids on Priceline2
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2Based on Chris K. Anderson, “Setting Prices on Priceline,” Interfaces, 39, 4 (July–August 2009): 307–315.
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 4. Probabilities of continuous random variables are only defined over inter-
vals. Thus, we may calculate probabilities between two numbers a and b, 
P1a … X … b2, or to the left or right of a number c—for example, P1X 6 c2 
and P1X 7 c2.

 5. P1a … X … b2 is the area under the density function between a and b. 

The cumulative distribution function for a continuous random variable is denoted the 
same way as for discrete random variables, F1x2, and represents the probability that the ran-
dom variable X is less than or equal to x, P1X … x2. Intuitively, F1x2 represents the area under 
the density function to the left of x. F1x2 can often be derived mathematically from f 1x2.

Knowing F(x) makes it easy to compute probabilities over intervals for continuous 
distributions. The probability that X is between a and b is equal to the difference of the 
cumulative distribution function evaluated at these two points; that is,

 P1a … X … b2 = P1X … b2 - P1X … a2 = F1b2 - F1a2 (5.15)

For continuous distributions we need not be concerned about the endpoints, as we were 
with discrete distributions, because P1a … X … b2 is the same as P1a 6 X 6 b2.

The formal definitions of expected value and variance for a continuous random vari-
able are similar to those for a discrete random variable; however, to understand them, we 
must rely on notions of calculus, so we do not discuss them in this book. We simply state 
them when appropriate.

Uniform Distribution

The uniform distribution characterizes a continuous random variable for which all outcomes 
between some minimum and maximum value are equally likely. The uniform distribution is 
often assumed in business analytics applications when little is known about a random variable 
other than reasonable estimates for minimum and maximum values. The parameters a and b are 
chosen judgmentally to reflect a modeler’s best guess about the range of the random variable.

For a uniform distribution with a minimum value a and a maximum value b, the den-
sity function is

 f 1x2 = d 1

b - a
, for a … x … b

0, otherwise

 (5.16)

and the cumulative distribution function is

 F1x2 = d 0,     if  x < a
x - a

b - a
, if  a … x … b

1,    if  b < x

 (5.17)

Although Excel does not provide a function to compute uniform probabilities, the for-
mulas are simple enough to incorporate into a spreadsheet. Probabilities are also easy to 
compute for the uniform distribution because of the simple geometric shape of the density 
function, as Example 5.29 illustrates.
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The expected value and variance of a uniform random variable X are computed as 
follows:

 E[X] =
a + b

2
 (5.18)

 Var[X] =
1b - a22

12
 (5.19)

A variation of the uniform distribution is one for which the random variable is re-
stricted to integer values between a and b (also integers); this is called a discrete uniform 

ExaMPLE 5.29 Computing Uniform Probabilities

Suppose that sales revenue, X, for a product varies uni-
formly each week between a = $1000 and b = $2000. 
The density function is f 1x 2  = 1 , 12000 − 1000 2  = 1 ,1000 
and is shown in Figure 5.14. Note that the area under the 
density is function is 1.0, which you can easily verify by mul-
tiplying the height by the width of the rectangle.

Suppose we wish to find the probability that sales 
revenue will be less than x = $1,300. We could do this in 
two ways. First, compute the area under the density func-
tion using geometry, as shown in Figure 5.15. The area is 
11 , 1,000 2 1300 2  = 0.30. Alternatively, we could use for-

mula (5.17) to compute F 11,300 2 :

F 11,300 2 = 11,300 − 1,000 2 , 12,000 − 1,000 2 = 0.30

In either case, the probability is 0.30.

Now suppose we wish to find the probability that 
revenue will be between $1,500 and $1,700. Again, using 
geometrical arguments (see Figure 5.16), the area of the 
rectangle between $1,500 and $1,700 is 11 , 1,000 2 1200 2  =  
0.2. We may also use formula (5.15) and compute it as 
follows:

P (1,500 " X " 1,700) = P ( X " 1,700) − P( X " 1,500)
= F(1,700) − F (1,500)

 =
11,700 − 1,000 2
12,000 − 1,000 2 −

(1,500 − 1,000)

(2,000 − 1,000)

 = 0.7 − 0.5 = 0.2

1/1,000

$1,000 $2,000

Figure 5.14

Uniform Probability Density 
Function

1/1,000

$1
,0

00
 

$1
,3

00
 

$2
,0

00
 Figure 5.15

Probability that X * $1,300

$1
,0

00
 

$1
,5

00
 

$2
,0

00
 

$1
,7

00
 

1/1,000

Figure 5.16

P ($1,500 * X * $1,700)
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 distribution. An example of a discrete uniform distribution is the roll of a single die. Each 
of the numbers 1 through 6 has a 16 probability of occurrence.

Normal Distribution

The normal distribution is a continuous distribution that is described by the familiar bell-
shaped curve and is perhaps the most important distribution used in statistics. The normal 
distribution is observed in many natural phenomena. Test scores such as the SAT, devia-
tions from specifications of machined items, human height and weight, and many other 
measurements are often normally distributed.

The normal distribution is characterized by two parameters: the mean, m, and the 
standard deviation, s. Thus, as m changes, the location of the distribution on the x-axis 
also changes, and as s is decreased or increased, the distribution becomes narrower or 
wider, respectively. Figure 5.17 shows some examples.

The normal distribution has the following properties:

 1. The distribution is symmetric, so its measure of skewness is zero.
 2. The mean, median, and mode are all equal. Thus, half the area falls above the 

mean and half falls below it.
 3. The range of X is unbounded, meaning that the tails of the distribution extend 

to negative and positive infinity.
 4. The empirical rules apply exactly for the normal distribution; the area under the 

density function within {1 standard deviation is 68.3%, the area under the density 
function within {2 standard deviation is 95.4%, and the area under the density 
function within {3 standard deviation is 99.7%.

Figure 5.17

Examples of Normal 
Distributions
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Normal probabilities cannot be computed using a mathematical formula. Instead, 
we may use the Excel function NORM.DIST(x, mean, standard_deviation, cumulative). 
NORM.DIST(x, mean, standard_deviation, TRUE) calculates the cumulative probability 
F1x2 = P1X … x2 for a specified mean and standard deviation. (If cumulative is set to 
FALSE, the function simply calculates the value of the density function f 1x2, which has 
little practical application other than tabulating values of the density function. This was 
used to draw the distributions in Figure 5.17.)

ExaMPLE 5.30 Using the NORM.DIST Function to Compute Normal Probabilities

Suppose that a company has determined that the distri-
bution of customer demand (X) is normal with a mean of 
750 units/month and a standard deviation of 100 units/
month. Figure 5.18 shows some cumulative probabilities 
calculated with the NORM.DIST function (see the Excel 
file Normal Probabilities). The company would like to 
know the following:

 1. What is the probability that demand will be at most 
900 units?

 2. What is the probability that demand will exceed 700 
units?

 3. What is the probability that demand will be between 
700 and 900 units?

To answer the questions, first draw a picture. This helps to 
ensure that you know what area you are trying to calculate 
and how to use the formulas for working with a cumulative 
distribution correctly.

Question 1. Figure 5.19(a) shows the probability that 
demand will be at most 900 units, or P(X * 900). 

This is simply the cumulative probability for x = 900, 
which can be calculated using the Excel function 
=NORM.DIST(900,750,100,TRUE) = 0.9332.

Question 2. Figure 5.19(b) shows the probability that 
 demand will exceed 700 units, P(X + 700). Using the 
principles we have previously discussed, this can be 
found by subtracting P(X * 700) from 1:

P(X + 700) = 1 − P(X * 700) = 1 − F(700)
= 1 − 0.3085 = 0.6915

This can be computed in Excel using the formula 
=1−NORM.DIST (700,750,100,TRUE).

Question 3. The probability that demand will be between 
700 and 900, P (700 * X * 900), is illustrated in Fig-
ure 5.19(c). This is calculated by

P(700 * X * 900) = P (X * 900) − P (X * 700)
= F (900) − F (700) = 0.9332 − 0.3085 = 0.6247

In Excel, we would use the formula =NORM.DIST  
(900,750,100,TRUE) − NORM.DIST(700,750,100,TRUE).

Figure 5.18

Normal Probability 
Calculations in Excel
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Standard Normal Distribution

Figure 5.20 provides a sketch of a special case of the normal distribution called the 
standard normal distribution—the normal distribution with m = 0 and s = 1. This 
distribution is important in performing many probability calculations. A standard nor-
mal random variable is usually denoted by Z, and its density function by f 1z2. The 
scale along the z-axis represents the number of standard deviations from the mean of 
zero. The Excel function NORM.S.DIST(z) finds probabilities for the standard normal 
distribution.

750
(a) (b)

(c) (d)

900

P(Demand < 900)

� � 100

x
700 750

700 750

P(X > 700)

� � 100

x

750 ?

Area � 1 � 0.10

Area � 0.10

x
900

P(700 � X � 900)

� � 100

� � 100

x

Figure 5.19

Computing Normal 
Probabilities

The NORM.INV Function

With the NORM.DIST function, we are given a value of the random variable X and 
can find the cumulative probability to the left of x. Now let’s reverse the problem. Sup-
pose that we know the cumulative probability but don’t know the value of x. How can 
we find it? We are often faced with such a question in many applications. The Excel 
function NORM.INV(probability, mean, standard_dev) can be used to do this. In this 
function, probability is the cumulative probability value corresponding to the value of x 
we seek “INV” stands for inverse.

ExaMPLE 5.31 Using the NORM.INV Function

In the previous example, what level of demand would 
be exceeded at most 10% of the time? Here, we need 
to find the value of x so that P (X + x) = 0.10.  This is 
 illustrated in Figure 5.19(d). Because the area in the  upper 
tail of the normal distribution is 0.10, the  cumulative 
probability must be 1 − 0.10 = 0.90. From  Figure 5.18, 

we can see that the correct value must be somewhere 
between 850 and 900 because F(850) = 0.8413 and 
F(900) = 0.9332. We can find the exact value using  
the Excel function = NORM.INV (0.90,750,100) =878.155, 
Therefore, a demand of approximately 878 will satisfy  
the criterion.
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Figure 5.20

Standard Normal Distribution

ExaMPLE 5.32 Computing Probabilities with the Standard Normal Distribution

We have previously noted that the empirical rules apply 
to any normal distribution. Let us find the areas under 
the standard normal distribution within 1, 2, and 3 stan-
dard deviations of the mean. These can be found by us-
ing the function NORM.S.DIST(z). Figure 5.21 shows a 
tabulation of the cumulative probabilities for z ranging 
from −3 to +3 and calculations of the areas within 1, 
2, and 3 standard deviations of the mean. We apply for-
mula (5.15) to find the difference between the cumulative 

probabilities, F (b) − F (a ). For example, the area within 
1 standard deviation of the mean is found by calculat-
ing P(−1 * Z * 1) = F(1) − F(−1) = NORM.S.DIST( 1)
−  NORM.S.DIST(−1) = 0.84134 − 0.15866 = 0.6827 (the  
difference due to decimal rounding). As the empiri-
cal rules stated, about 68% of the area falls within  
1 standard deviation; 95%, within 2 standard deviations; 
and more than 99%, within 3 standard deviations of  
the mean.

Figure 5.21

Computing Standard 
Normal Probabilities
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Using Standard Normal Distribution Tables

Although it is quite easy to use Excel to compute normal probabilities, tables of the stan-
dard normal distribution are commonly found in textbooks and professional references 
when a computer is not available. Such a table is provided in Table A.1 of Appendix A at 
the end of this book. The table allows you to look up the cumulative probability for any 
value of z between -3.00 and +3.00.

One of the advantages of the standard normal distribution is that we may compute 
probabilities for any normal random variable X having a mean m and standard deviation 
s by converting it to a standard normal random variable Z. We introduced the concept of 
standardized values (z-scores) for sample data in Chapter 4. Here, we use a similar for-
mula to convert a value x from an arbitrary normal distribution into an equivalent standard 
normal value, z:

 z =
1x - m2

s
 (5.20)

ExaMPLE 5.33 Computing Probabilities with Standard Normal Tables

We will answer the first question posed in Example 5.30: 
What is the probability that demand will be at most 
x = 900 units if the distribution of customer demand (X) 
is normal with a mean of 750 units/month and a standard 
deviation of 100 units/month? Using formula (5.19), con-
vert x to a standard normal value:

z =
900 − 750

100
= 1.5

Note that 900 is 150 units higher than the mean of 750; 
since the standard deviation is 100, this simply means that 
900 is 1.5 standard deviations above the mean, which is 
the value of z. Using Table A.1 in Appendix A, we see that 
the cumulative probability for z = 1.5 is 0.9332, which 
is the same answer we found for Example 5.30.

Exponential Distribution

The exponential distribution is a continuous distribution that models the time between 
randomly occurring events. Thus, it is often used in such applications as modeling the 
time between customer arrivals to a service system or the time to or between failures of 
machines, lightbulbs, hard drives, and other mechanical or electrical components.

Similar to the Poisson distribution, the exponential distribution has one parameter, 
l. In fact, the exponential distribution is closely related to the Poisson; if the number of 
events occurring during an interval of time has a Poisson distribution, then the time be-
tween events is exponentially distributed. For instance, if the number of arrivals at a bank 
is Poisson-distributed, say with mean l = 12>hour then the time between arrivals is ex-
ponential, with mean m = 1>12 hour, or 5 minutes.

The exponential distribution has the density function

 f 1x2 = le-lx,  for x Ú 0 (5.21)

and its cumulative distribution function is

  F1x2 = 1 - e-lx,  for x Ú 0 (5.22)
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Sometimes, the exponential distribution is expressed in terms of the mean m rather than 
the rate l. To do this, simply substitute 1>m for l in the preceding formulas.

The expected value of the exponential distribution is 1>l and the variance is 11>l22. 
Figure 5.22 provides a sketch of the exponential distribution. The exponential distribution 
has the properties that it is bounded below by 0, it has its greatest density at 0, and the den-
sity declines as x increases. The Excel function EXPON.DIST (x, lambda, cumulative) can 
be used to compute exponential probabilities. As with other Excel probability distribution 
functions, cumulative is either TRUE or FALSE, with TRUE providing the cumulative 
distribution function.

Figure 5.22

Example of an Exponential Distribution 1l = 1 2

ExaMPLE 5.34 Using the Exponential Distribution

Suppose that the mean time to failure of a critical com-
ponent of an engine is m = 8,000 hours. Therefore, 
l = 1 ,m = 1 ,8,000 failures/hour. The probability that 
the component will fail before x hours is given by the cu-
mulative distribution function F 1 x 2 . Figure 5.23 shows 

a portion of the cumulative distribution function, which 
may be found in the Excel file Exponential Probabilities. 
For example, the probability of failing before 5,000 hours 
is F (5000) = 0.4647.
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Other Useful Distributions

Many other probability distributions, especially those distributions that assume a wide va-
riety of shapes, find application in decision models for characterizing a wide variety of 
phenomena. Such distributions provide a great amount of flexibility in representing both 
empirical data or when judgment is needed to define an appropriate distribution. We pro-
vide a brief description of these distributions; however, you need not know the mathemati-
cal details about them to use them in applications.

Continuous Distributions

Triangular Distribution. The triangular distribution is defined by three parameters: 
the minimum, a; maximum, b; and most likely, c. Outcomes near the most likely 
value have a higher chance of occurring than those at the extremes. By varying 
the most likely value, the triangular distribution can be symmetric or skewed in 
either direction, as shown in Figure 5.24. The triangular distribution is often used 
when no data are available to characterize an uncertain variable and the distribu-
tion must be estimated judgmentally.

Lognormal Distribution. If the natural logarithm of a random variable X is normal, 
then X has a lognormal distribution. Because the lognormal distribution is posi-
tively skewed and bounded below by zero, it finds applications in modeling 
phenomena that have low probabilities of large values and cannot have negative 
values, such as the time to complete a task. Other common examples include 
stock prices and real estate prices. The lognormal distribution is also often used 
for “spiked” service times, that is, when the probability of zero is very low, but 
the most likely value is just greater than zero.

Beta Distribution. One of the most flexible distributions for modeling variation 
over a fixed interval from 0 to a positive value is the beta. The beta distribu-
tion is a function of two parameters, a and b, both of which must be positive. 
If a and b are equal, the distribution is symmetric. If either parameter is 1.0 
and the other is greater than 1.0, the distribution is in the shape of a J. If a is 

Figure 5.23

Computing Exponential Probabilities in Excel

M05_EVAN5448_02_SE_C05.indd   186 12/09/15   7:32 AM



 Chapter 5  Probability Distributions and Data Modeling   187

less than b, the distribution is positively skewed; otherwise, it is negatively 
skewed. These properties can help you to select appropriate values for the 
shape parameters.

Random Sampling from Probability Distributions

Many applications in business analytics require random samples from specific probability 
distributions. For example, in a financial model, we might be interested in the distribution 
of the cumulative discounted cash flow over several years when sales, sales growth rate, 
operating expenses, and inflation factors are all uncertain and are described by probability 
distributions. The outcome variables of such decision models are complicated functions of 
the random input variables. Understanding the probability distribution of such variables 
can be accomplished only by sampling procedures called Monte Carlo simulation, which 
we address in Chapter 12.

The basis for generating random samples from probability distributions is the concept 
of a random number. A random number is one that is uniformly distributed between 
0 and 1. Technically speaking, computers cannot generate truly random numbers since 
they must use a predictable algorithm. However, the algorithms are designed to generate 
a sequence of numbers that appear to be random. In Excel, we may generate a random 
number within any cell using the function RAND( ). This function has no arguments; 
therefore, nothing should be placed within the parentheses (but the parentheses are re-
quired). Figure 5.25 shows a table of 10 random numbers generated in Excel. You should 
be aware that unless the automatic recalculation feature is suppressed, whenever any cell 
in the spreadsheet is modified, the values in any cell containing the RAND( ) function 
will change. Automatic recalculation can be changed to manual by choosing Calculation 
 Options in the Calculation group under the Formulas tab. Under manual recalculation 
mode, the worksheet is recalculated only when the F9 key is pressed.

f(x)

a c b
x

(symmetric)

f(x)

a c b
x

(positively skewed)

f(x)

a c b
x

(negatively skewed)

Figure 5.24

Examples of Triangular 
Distributions
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ExaMPLE 5.35 Sampling from the Distribution of Dice Outcomes

The probability mass function and cumulative distribu-
tion in decimal form are as follows:

x f 1x 2 F 1x 2
2 0.0278 0.0278

3 0.0556 0.0833

4 0.0833 0.1667

5 0.1111 0.2778

6 0.1389 0.4167

7 0.1667 0.5833

8 0.1389 0.7222

9 0.1111 0.8333

10 0.0833 0.9167

11 0.0556 0.9722

12 0.0278 1.0000

Notice that the values of F(x) divide the interval from 0 to 
1 into smaller intervals that correspond to the probabilities 
of the outcomes. For example, the interval from (but not 
 including) 0 and up to and including 0.0278 has a prob-
ability of 0.028 and corresponds to the outcome x = 2; 
the interval from (but not including) 0.0278 and up to and 

including 0.0833 has a probability of 0.0556 and corre-
sponds to the outcome x = 3; and so on. This is sum-
marized as follows:

Interval Outcome

0 to 0.0278 2

0.0278 to 0.0833 3

0.0833 to 0.1667 4

0.1667 to 0.2778 5

0.2778 to 0.4167 6

0.4167 to 0.5833 7

0.5833 to 0.7222 8

0.7222 to 0.8323 9

0.8323 to 0.9167 10

0.9167 to 0.9722 11

0.9722 to 1.0000 12

Any random number, then, must fall within one of 
these intervals. Thus, to generate an outcome from this 
distribution, all we need to do is to select a random num-
ber and determine the interval into which it falls. Sup-
pose we use the data in Figure 5.25. The first random 

Sampling from Discrete Probability Distributions

Sampling from discrete probability distributions using random numbers is quite easy. We 
will illustrate this process using the probability distribution for rolling two dice.

Figure 5.25

A Sample of Random 
Numbers
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We can easily use this approach to generate outcomes from any discrete distribution; 
the VLOOKUP function in Excel can be used to implement this on a spreadsheet.

number is 0.326510048. This falls in the interval corre-
sponding to the sample outcome of 6. The second ran-
dom number is 0.743390121. This number falls in the 
interval corresponding to an outcome of 9. Essentially, 
we have developed a technique to roll dice on a com-

puter. If this is done repeatedly, the frequency of occur-
rence of each outcome should be proportional to the size 
of the random number range (i.e., the probability asso-
ciated with the outcome) because random numbers are 
uniformly distributed.

ExaMPLE 5.36 Using the VLOOKUP Function for Random Sampling

Suppose that we want to sample from the prob-
ability  distribution of the predicted change in the 
Dow Jones Industrial Average index shown in Fig-
ure 5.6. We first construct the cumulative distribution  
F 1 x 2 . Then assign intervals to the outcomes based on 
the values of the cumulative distribution, as shown in Fig-
ure 5.26. This specifies the table range for the VLOOKUP 
function, namely, $E$2:$G$10. List the random numbers 
in a column using the RAND( ) function. The formula in  

cell J2 is =VLOOKUP(I2,$E$2:$G$10,3), which is copied 
down that column. This function takes the value of the 
random number in cell I2, finds the last number in the first 
column of the table range that is less than the random num-
ber, and returns the value in the third column of the  table 
range. In this case, 0.49 is the last number in column E  
that is less than 0.530612386, so the function returns 5% 
as the outcome.

Sampling from Common Probability Distributions

This approach of generating random numbers and transforming them into outcomes from 
a probability distribution may be used to sample from most any distribution. A value ran-
domly generated from a specified probability distribution is called a random variate. For 
example, it is quite easy to transform a random number into a random variate from a uni-
form distribution between a and b. Consider the formula:

 U = a + 1b - a2*RAND( ) (5.23)

Note that when RAND( ) = 0, U = a, and when RAND( ) approaches 1, U approaches b.  
For any other value of RAND( ) between 0 and 1, 1b - a2*RAND( ) represents the 
same proportion of the interval 1a, b2 as RAND( ) does of the interval 10, 12. Thus, all 

Figure 5.26

Using the VLOOKUP  
Function to Sample from a 
Discrete Distribution
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real numbers between a and b can occur. Since RAND( ) is uniformly distributed, so 
also is U.

Although this is quite easy, it is certainly not obvious how to generate random 
variates from other distributions such as normal or exponential. We do not describe 
the technical details of how this is done but rather just describe the capabilities avail-
able in Excel. Excel allows you to generate random variates from discrete distributions 
and certain others using the Random Number Generation option in the Analysis Tool-
pak. From the Data tab in the ribbon, select Data Analysis in the Analysis group and 
then Random Number Generation. The Random Number Generation dialog, shown in 
 Figure 5.27, will appear. From the Random Number Generation dialog, you may select 
from seven distributions: uniform, normal, Bernoulli, binomial, Poisson, and patterned, 
as well as discrete. (The patterned distribution is characterized by a lower and upper 
bound, a step, a repetition rate for values, and a repetition rate for the sequence.) If you 
select the Output Range option, you are asked to specify the upper-left cell reference of 
the output table that will store the outcomes, the number of variables (columns of val-
ues you want generated), number of random numbers (the number of data points you 
want generated for each variable), and the type of distribution. The default distribution 
is the discrete distribution.

ExaMPLE 5.37 Using Excel’s Random Number Generation Tool

We will generate 100 outcomes from a Poisson distribu-
tion with a mean of 12. In the Random Number Gen-
eration dialog, set the Number of Variables to 1 and the 
Number of Random Numbers to 100 and select Poisson 
from the drop-down Distribution box. The dialog will 

change and prompt you for the value of Lambda, the 
mean of the Poisson distribution; enter 12 in the box 
and click OK. The tool will display the random num-
bers in a column. Figure 5.28 shows a histogram of the 
results.

Figure 5.27

Excel Random Number 
Generation Dialog

The dialog in Figure 5.27 also allows you the option of specifying a random num-
ber seed. A random number seed is a value from which a stream of random numbers 
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Figure 5.28

Histogram of Samples from a 
Poisson Distribution

is generated. By specifying the same seed, you can produce the same random numbers 
at a later time. This is desirable when we wish to reproduce an identical sequence of 
“random” events in a simulation to test the effects of different policies or decision vari-
ables under the same circumstances. However, one disadvantage with using the Random 
Number Generation tool is that you must repeat the process to generate a new set of 
sample values; pressing the recalculation (F9) key will not change the values. This can 
make it difficult to use this tool to analyze decision models.

Excel also has several inverse functions of probability distributions that may be used 
to generate random variates. For the normal distribution, use

•	NORM.INV(probability, mean, standard_deviation)—normal distribution with a 
specified mean and standard deviation,

•	NORM.S.INV(probability)—standard normal distribution.

For some advanced distributions, you might see

•	LOGNORM.INV(probability, mean, standard_deviation)—lognormal distribu-
tion, where ln(X) has the specified mean and standard deviation,

•	BETA.INV(probability, alpha, beta, A, B)—beta distribution.

To use these functions, simply enter RAND( ) in place of probability in the function. For 
example, NORM.INV(RAND( ), 5, 2) will generate random variates from a normal dis-
tribution with mean 5 and standard deviation 2. Each time the worksheet is recalculated, 
a new random number and, hence, a new random variate, are generated. These functions 
may be embedded in cell formulas and will generate new values whenever the worksheet 
is recalculated.
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Figure 5.29

Sampling Experiment for 
Profitability Index

The following example shows how sampling from probability distributions can pro-
vide insights about business decisions that would be difficult to analyze mathematically.

ExaMPLE 5.38 a Sampling Experiment for Evaluating Capital Budgeting Projects

In finance, one way of evaluating capital budgeting proj-
ects is to compute a profitability index (PI), which is 
defined as the ratio of the present value of future cash 
flows (PV) to the initial investment (I):

 PI = PV , I (5.24)

Because the cash flow and initial investment that may 
be required for a particular project are often uncertain, the 
profitability index is also uncertain. If we can characterize 
PV and I by some probability distributions, then we would 
like to know the probability distribution for PI. For exam-
ple, suppose that PV is estimated to be normally distrib-
uted with a mean of $12 million and a standard deviation 
of $2.5 million, and the initial investment is also estimated 
to be normal with a mean of $3.0 million and standard  
deviation of $0.8 million. Intuitively, we might believe that 
the profitability index is also normally distributed with a 
mean of $12 million ,$3 million = $4 million;  however, as 

we shall see, this is not the case. We can use a sampling 
experiment to identify the probability distribution of PI for 
these assumptions.

Figure 5.29 shows a simple model from the Excel 
file Profitability Index Experiment. For each experiment, 
the values of PV and I are sampled from their assumed 
normal distributions using the NORM.INV function. PI is 
calculated in column D, and the average value for 1,000 
experiments is shown in cell E8. We clearly see that 
this is not equal to 4 as previously suspected. The his-
togram in Figure 5.30 also demonstrates that the dis-
tribution of PI is not normal but is skewed to the right. 
This experiment confirms that the ratio of two normal 
distributions is not normally distributed. We encour-
age you to create this spreadsheet and replicate this 
experiment (note that your results will not be exactly 
the same as these because you are generating random 
values!)

Probability Distribution Functions in Analytic Solver Platform

Analytic Solver Platform (see the section on Spreadsheet Add-ins in Chapter 2) provides 
custom Excel functions that generate random samples from specified probability distribu-
tions. Table 5.1 shows a list of these for distributions we have discussed. These functions 
return random values from the specified distributions in worksheet cells. These functions 
will be very useful in business analytics applications in later chapters, especially Chapter 12 
on simulation and risk analysis.
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Figure 5.30

Frequency Distribution and 
Histogram of Profitability Index

Distribution Analytic Solver Platform Function

Bernoulli PsiBernoulli(probability)

Binomial PsiBinomial(trials, probability)

Poisson PsiPoisson(mean)

Uniform PsiUniform(lower, upper)

Normal PsiNormal(mean, standard deviation)

Exponential PsiExponential(mean)

Discrete Uniform PsiDisUniform(values)

Geometric PsiGeometric(probability)

Negative Binomial PsiNegBinomial(successes, probability)

Hypergeometric PsiHyperGeo(trials, success, population size)

Triangular PsiTriangular(minimum, most likely, maximum)

Lognormal PsiLognormal(mean, standard deviation)

Beta PsiBeta(alpha, beta)

Table 5.1

Analytic Solver Platform 
Probability Distribution 
Functions

ExaMPLE 5.39 Using Analytic Solver Platform Distribution Functions

An energy company was considering offering a new 
product and needed to estimate the growth in PC owner-
ship. Using the best data and information available, they 
determined that the minimum growth rate was 5.0%, 
the most likely value was 7.7%, and the maximum value 
was 10.0%. These parameters characterize a triangular  

distribution. Figure 5.31 (Excel file PC Ownership Growth 
Rates) shows a portion of 500 samples that were gen-
erated using the function PsiTriangular(5%, 7.7%, 10%). 
Notice that the histogram exhibits a clear triangular 
shape.
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Data Modeling and Distribution Fitting

In many applications of business analytics, we need to collect sample data of important 
variables such as customer demand, purchase behavior, machine failure times, and service 
activity times, to name just a few, to gain an understanding of the distributions of these 
variables. Using the tools we have studied, we may construct frequency distributions and 
histograms and compute basic descriptive statistical measures to better understand the na-
ture of the data. However, sample data are just that—samples.

Using sample data may limit our ability to predict uncertain events that may occur 
because potential values outside the range of the sample data are not included. A better 
approach is to identify the underlying probability distribution from which sample data come 
by “fitting” a theoretical distribution to the data and verifying the goodness of fit statistically.

To select an appropriate theoretical distribution that fits sample data, we might be-
gin by examining a histogram of the data to look for the distinctive shapes of particular 
distributions. For example, normal data are symmetric, with a peak in the middle. Expo-
nential data are very positively skewed, with no negative values. Lognormal data are also 
very positively skewed, but the density drops to zero at 0. Various forms of the gamma, 
Weibull, or beta distributions could be used for distributions that do not seem to fit one 
of the other common forms. This approach is not, of course, always accurate or valid, and 
sometimes it can be difficult to apply, especially if sample sizes are small. However, it 
may narrow the search down to a few potential distributions.

Summary statistics can also provide clues about the nature of a distribution. The 
mean, median, standard deviation, and coefficient of variation often provide information 
about the nature of the distribution. For instance, normally distributed data tend to have 
a fairly low coefficient of variation (however, this may not be true if the mean is small). 
For normally distributed data, we would also expect the median and mean to be approxi-
mately the same. For exponentially distributed data, however, the median will be less 
than the mean. Also, we would expect the mean to be about equal to the standard devia-
tion, or, equivalently, the coefficient of variation would be close to 1. We could also look 
at the skewness index. Normal data are not skewed, whereas lognormal and exponential 
data are positively skewed. The following examples illustrate some of these ideas.

Figure 5.31

Samples from a Triangular 
Distribution
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ExaMPLE 5.40 analyzing airline Passenger Data

An airline operates a daily route between two medium-
sized cities using a 70-seat regional jet. The flight is 
rarely booked to capacity but often accommodates 
business travelers who book at the last minute at a high 
price. Figure 5.32 shows the number of passengers for a 
sample of 25 flights (Excel file Airline Passengers). The 
histogram shows a relatively symmetric distribution. 
The mean, median, and mode are all similar, although 

there is some degree of positive skewness. From our 
discussion in Chapter 4 about the variability of samples, 
it is important to recognize that this is a relatively small 
sample that can exhibit a lot of variability compared with 
the population from which it is drawn. Thus, based on 
these characteristics, it would not be unreasonable to 
assume a normal distribution for the purpose of develop-
ing a predictive or prescriptive analytics model.

ExaMPLE 5.41 analyzing airport Service Times

Figure 5.33 shows a portion of the data and statistical 
analysis of 812 samples of service times at an airport’s 
ticketing counter (Excel file Airport Service Times). It is 
not clear what the distribution might be. It does not ap-
pear to be exponential, but it might be lognormal or even 
another distribution with which you might not be familiar. 

From the descriptive statistics, we can see that the mean 
is not close to the standard deviation, suggesting that 
the data are probably not exponential. The data are posi-
tively skewed, suggesting that a lognormal distribution 
might be appropriate. However, it is difficult to make a 
definitive conclusion.

Figure 5.32

Data and Statistics for Passenger Demand

The examination of histograms and summary statistics might provide some idea of 
the appropriate distribution; however, a better approach is to analytically fit the data to the 
best type of probability distribution.
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Figure 5.33

Airport Service Times Statistics

Goodness of Fit

The basis for fitting data to a probability distribution is a statistical procedure called good-
ness of fit. Goodness of fit attempts to draw a conclusion about the nature of the distribu-
tion. For instance, in Example 5.40 we suggested that it might be reasonable to assume 
that the distribution of passenger demand is normal. Goodness of fit would provide objec-
tive, analytical support for this assumption. Understanding the details of this procedure 
requires concepts that we will learn in Chapter 7. However, software exists (which we 
illustrate shortly) that run statistical procedures to determine how well a theoretical distri-
bution fits a set of data, and also find the best-fitting distribution.

Determining how well sample data fits a distribution is typically measured using 
one of three types of statistics, called chi-square, Kolmogorov-Smirnov, and Anderson- 
Darling statistics. Essentially, these statistics provide a measure of how well the histogram 
of the sample data compares with a specified theoretical probability distribution. The chi-
square approach breaks down the theoretical distribution into areas of equal probability 
and compares the data points within each area to the number that would be expected for 
that distribution. The Kolmogorov-Smirnov procedure compares the cumulative distribu-
tion of the data with the theoretical distribution and bases its conclusion on the largest 
vertical distance between them. The Anderson-Darling method is similar but puts more 
weight on the differences between the tails of the distributions. This approach is useful 
when you need a better fit at the extreme tails of the distribution. If you use chi-square, 
you should have at least 50 data points; for small samples, the Kolmogorov-Smirnov test 
generally works better.

Distribution Fitting with Analytic Solver Platform

Analytic Solver Platform has the capability of “fitting” a probability distribution to data 
using one of the three goodness-of-fit procedures. This is often done to analyze and define 
inputs to simulation models that we discuss in Chapter 12. However, you need not under-
stand simulation at this time to use this capability. We illustrate this procedure using the 
airport service time data.
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ExaMPLE 5.42 Fitting a Distribution to airport Service Times

 Step 1: Highlight the range of the data in the Airport  Service 
Times worksheet. Click on the Tools button in the 
 Analytic Solver Platform ribbon and then click Fit. This 
displays the Fit Options dialog shown in Figure 5.34.

 Step 2: In the Fit Options dialog, choose whether to fit 
the data to a continuous or discrete distribution. In 
this example, we select Continuous. You may also 
choose the statistical procedure used to evaluate 
the results, either chi-square, Kolmogorov-Smirnov, 
or Anderson-Darling. We choose the default option, 
Kolmogorov-Smirnov. Click the Fit button.

 Analytic Solver Platform displays a window with the 
results as shown in Figure 5.35. In this case, the best-fitting  
distribution is called an Erlang distribution. If you want 

to compare the results to a different distribution, simply 
check the box on the left side. You don’t have to know the 
mathematical details to use the distribution in a spread-
sheet application because the formula for the Psi function 
corresponding to this distribution is shown in the panel on 
the right side of the output. When you exit the dialog, you 
have the option to accept the result; if so, it asks you to 
select a cell to place the Psi function for the distribution, 
in this case, the function:

= PsiErlang(1.46504838280818,80.0576462180289, 
PsiShift 8.99)

We could use this function to generate samples from this 
distribution, similar to the way we used the NORM.INV 
function in Example 5.38.

Figure 5.34

Fit Options Dialog

Figure 5.35

Analytic Solver Platform 
Distribution Fitting Results
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3Based on G. C. O’Connor, T. R. Willemain, and J. MacLachlan, “The Value of Competition Among Agencies 
in Developing Ad Campaigns: Revisiting Gross’s Model,” Journal of Advertising, 25, 1 (1996): 51–62.

To illustrate the importance of identifying the correct 
distribution in decision modeling, we discuss an ex-
ample in advertising.3 The amount that companies 
spend on the creative component of advertising (i.e., 
making better ads) is traditionally quite small relative 
to the overall media budget. One expert noted that the 
expenditure on creative development was about 5% 
of that spent on the media delivery campaign.

Whatever money is spent on creative develop-
ment is usually directed through a single advertising 
agency. However, one theory that has been proposed 
is that more should be spent on creative ad develop-
ment, and the expenditures should be spread across 
a number of competitive advertising agencies. In re-
search studies of this theory, the distribution of ad-
vertising effectiveness was assumed to be normal. In 
reality, data collected on the response to consumer 
product ads show that this distribution is actually 
quite skewed and, therefore, not normally distributed. 
Using the wrong assumption in any model or applica-
tion can produce erroneous results. In this situation, 
the skewness actually provides an advantage for ad-
vertisers, making it more effective to obtain ideas from 
a variety of advertising agencies.

A mathematical model (called Gross’s model) re-
lates the relative contributions of creative and media 
dollars to total advertising effectiveness and is often 
used to identify the best number of draft ads to pur-
chase. This model includes factors of ad development 
cost, total media spending budget, the distribution 
of effectiveness across ads (assumed to be normal), 
and the unreliability of identifying the most effective  
ad from a set of independently generated alterna-
tives. Gross’s model concluded that large gains were 
 possible if multiple ads were obtained from indepen-
dent sources, and the best ad is selected.

Since the data observed on ad effectiveness was 
clearly skewed, other researchers examined ad effec-
tiveness by studying standard industry data on ad recall 
without requiring the assumption of normally distributed 
effects. This analysis found that the best of a number of 
ads was more effective than any single ad. Further anal-
ysis revealed that the optimal number of ads to commis-
sion can vary significantly, depending on the shape of 
the distribution of effectiveness for a single ad.

The researchers developed an alternative to 
Gross’s model. From their analyses, they found that 
as the number of draft ads was increased, the effec-
tiveness of the best ad also increased. Both the opti-
mal number of draft ads and the payoff from creating 
multiple independent drafts were higher when the cor-
rect distribution was used than the results reported in 
Gross’s original study.

analytics in Practice: The Value of Good Data Modeling in advertising

Key Terms

Bernoulli distribution
Binomial distribution
Complement
Conditional probability

Continuous random variable
Cumulative distribution function
Discrete random variable
Discrete uniform distribution
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Problems and Exercises

Empirical probability distribution
Event
Expected value
Experiment
Exponential distribution
Goodness of fit
Independent events
Intersection
Joint probability
Joint probability table
Marginal probability
Multiplication law of probability
Mutually exclusive
Normal distribution

Outcome
Poisson distribution
Probability
Probability density function
Probability distribution
Probability mass function
Random number
Random number seed
Random variable
Random variate
Sample space
Standard normal distribution
Uniform distribution
Union

 1. a.  A die is rolled. Find the probability that the num-
ber obtained is greater than 4.

 b. Two coins are tossed. Find the probability that 
only one head is obtained.

 c. Two dice are rolled. Find the probability that the 
sum is equal to 5.

 d. A card is drawn at random from a deck of cards. 
Find the probability of getting the King of Hearts.

 2. Consider the experiment of drawing two cards with-
out replacement from a deck consisting of only the 
ace through 10 of a single suit (e.g., only hearts).

 a. Describe the outcomes of this experiment. List the 
elements of the sample space.

 b. Define the event Ai to be the set of outcomes for 
which the sum of the values of the cards is i (with 
an ace = 1). List the outcomes associated with 
Ai for i = 3 to 19.

 c. What is the probability of obtaining a sum of the 
two cards equaling from 3 to 19?

 3. Find the probability of getting the each of the total 
values when two dice is rolled: 1, 2, 5, 6, 7, 10, and 11.

 4. The students of a class have elected five candi-
dates to represent them on the college management 
council:

S.No. Gender age

1 Male 18

2 Male 19

3 Female 22

4 Female 20

5 Male 23

This group decides to elect a spokesperson by ran-
domly drawing a name from a hat. Calculate the 
probability of the spokesperson being either female 
or over 21.

 5. Refer to the card scenario described in Problem 2. 

 a. Let A be the event “total card value is odd.” Find 
P(A) and P(Ac).

 b. What is the probability that the sum of the two 
cards will be more than 14?

 6. The latest nationwide political poll in a particular 
country indicates that the probability for the can-
didate to be a republican is 0.55, a communist is 
0.30, and a supporter of the patriots of that coun-
try is 0.15. Assuming that these probabilities are 
accurate, within a randomly chosen group of 10 
citizens:

 a. What is the probability that four are communists?

 b. What is the probability that none are republican?

 7. Roulette is played at a table similar to the one in Fig-
ure 5.36. A wheel with the numbers 1 through 36 
(evenly distributed with the colors red and black) and 
two green numbers 0 and 00 rotates in a shallow bowl 
with a curved wall. A small ball is spun on the inside 
of the wall and drops into a pocket corresponding to 
one of the numbers. Players may make 11 different 
types of bets by placing chips on different areas of 
the table. These include bets on a single number, two 
adjacent numbers, a row of three numbers, a block 
of four numbers, two adjacent rows of six numbers, 
and the five number combinations of 0, 00, 1, 2, 
and 3; bets on the numbers 1–18 or 19–36; the first, 
 second, or third group of 12 numbers; a column of  
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Figure 5.36

Layout of a Typical  
Roulette Table

12  numbers; even or odd; and red or black. Payoffs 
differ by bet. For instance, a single-number bet pays 
35 to 1 if it wins; a three-number bet pays 11 to 1; a col-
umn bet pays 2 to 1; and a color bet pays even money. 
Define the following events: C1 = column 1 number, 
C2 = column 2 number, C3 = column 3 number, O =  
odd number, E = even number, G = green number, 
F12 = first 12 numbers, S12 = second 12 numbers, 
and T12 = third 12 numbers.

 a. Find the probability of each of these events.

 b. Find P(G or O), P(O or F12), P(C1 or C3), 
P(E and F12), P(E or F12), P(S12 and T12),  
P(O or C2).

 8. From a bag full of colored balls (red, blue, green and 
orange), some are picked out and replaced. This is 
done a thousand times and the number of times each 
colored ball is picked out is—Blue: 300, Red: 200, 
Green: 450, and Orange: 50.

 a. What is the probability of picking a green ball?

 b. What is the probability of picking a blue ball?

 c. If there are 100 balls in the bag, how many of 
them are likely to be green?

 d. If there are 10000 balls in the bag, how many of 
them are likely to be orange?

 9. A box contains marbles of three different colors:  
8 black, 6 white, and 4 red.  Three marbles are se-
lected at random without replacement.  Find the 
probability that the selection contains each of the 
outcomes listed.

 a. Three black marbles

 b. A red, a black and a white marble, in that order

 c. A red marble and two white marbles, in any order

 10. A survey of 200 college graduates who have been work-
ing for at least 3 years found that 90 owned only mutual 
funds, 20 owned only stocks, and 70 owned both.

 a. What is the probability that an individual owns a 
stock? A mutual fund?

 b. What is the probability that an individual owns 
neither stocks nor mutual funds?

 c. What is the probability that an individual owns  
either a stock or a mutual fund?

 11. Row 26 of the Excel file Census Education Data 
gives the number of employed persons having a spe-
cific educational level.

 a. Find the probability that an employed person has 
attained each of the educational levels listed in 
the data.

 b. Suppose that A is the event “has at least an As-
sociate’s Degree” and B is the event “is at least 
a high school graduate.” Find the probabilities of 
these events. Are they mutually exclusive? Why 
or why not? Find the probability P(A or B).

 12. A survey of shopping habits found the percentage 
of respondents that use technology for shopping as 
shown in Figure 5.37. For example, 17.39% only 
use online coupons; 21.74% use online coupons and 
check prices online before shopping, and so on.

 a. What is the probability that a shopper will check 
prices online before shopping?

 b. What is the probability that a shopper will use a 
smart phone to save money?

 c. What is the probability that a shopper will use 
online coupons?

 d. What is the probability that a shopper will not use 
any of these technologies?
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 e. What is the probability that a shopper will check 
prices online and use online coupons but not use 
a smart phone?

 f. If a shopper checks prices online, what is the 
probability that he or she will use a smart phone?

 g. What is the probability that a shopper will check 
prices online but not use online coupons or a smart 
phone?

 13. A Canadian business school summarized the gender 
and residency of its incoming class as follows:

Residency

Gender Canada United States Europe asia Other

Male 123 24 17 52 8

Female  86  8 10 73 4

 a. Construct the joint probability table.

 b. Calculate the marginal probabilities.

 c. What is the probability that a female student is 
from outside Canada or the United States?

 14. In an example in Chapter 3, we developed the fol-
lowing cross-tabulation of sales transaction data:

Region Book DVD Total

East 56 42 98

North 43 42 85

South 62 37 99

West 100 90 190

Total 261 211 472

 a. Find the marginal probabilities that a sale origi-
nated in each of the four regions and the marginal 
probability of each type of sale (book or DVD).

 b. Find the conditional probabilities of selling a book 
given that the customer resides in each region.

 15. Use the Civilian Labor Force data in the Excel file 
Census Education Data to find the following:

 a. P(unemployed and advanced degree)

 b. P(unemployed ∙ advanced degree)

 c. P(not a high school grad ∙ unemployed)

 d. Are the events “unemployed” and “at least a high 
school graduate” independent?

 16. Using the data in the Excel file Consumer Transpor-
tation Survey, develop a contingency table for Gen-
der and Vehicle Driven; then convert this table into 
probabilities.

 a. What is the probability that respondent is female?

 b. What is the probability that a respondent drives 
an SUV?

 c. What is the probability that a respondent is male 
and drives a minivan?

 d. What is the probability that a female respondent 
drives either a truck or an SUV?

 e. If it is known that an individual drives a car, what 
is the probability that the individual is female?

 f. If it is known that an individual is male, what is 
the probability that he drives an SUV?

 g. Determine whether the random variables “gender” 
and the event “vehicle driven” are statistically in-
dependent. What would this mean for advertisers?

Use Online
Coupons

Check Prices Online
Before Shopping

Use a Smart Phone
to Save Money

4.35%

4.35%4.35%

4.35%

21.74%

17.39%
17.39%

Figure 5.37
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 17. A home pregnancy test is not always accurate. Sup-
pose the probability is 0.015 that the test indicates that 
a woman is pregnant when she actually is not, and the 
probability is 0.025 that the test indicates that a woman 
is not pregnant when she really is. Assume that the 
probability that a woman who takes the test is actually 
pregnant is 0.7. What is the probability that a woman is 
pregnant if the test yields a not- pregnant result?

 18. A political candidate running for local office is con-
sidering the votes she can get in an upcoming election. 
Assume that the votes can take on only four possible 
values. If the candidate assessment is per the given 
Excel sheet Votes, construct the probability distribu-
tion graph. 

Number of 
Votes

Probability this 
Will Happen 

1000 0.2

2000 0.4

3000 0.3

4000 0.1

 19. In the roulette example described in Problem 7, what 
is the probability that the outcome will be green 
twice in a row? What is the probability that the out-
come will be black twice in a row?

 20. A consumer products company found that 48% of suc-
cessful products also received favorable results from 
test market research, whereas 12% had unfavorable 
results but nevertheless were successful. They also 
found that 28% of unsuccessful products had unfavor-
able research results, whereas 12% of them had favor-
able research results. That is, P(successful product and 
favorable test market) = 0.48, P(successful product 
and unfavorable test market) = 0.12, P(unsuccessful 
product and favorable test market) = 0.12, and 
P(unsuccessful product and unfavorable test market) = 
0.28. Find the probabilities of successful and unsuc-
cessful products given known test market results.

 21. A particular training program has been designed to 
upgrade the administrative skills of managers. The 
program is self-administered; the manager requires 
putting in different number of hours to complete the 
program. The previous participant’s input indicates 
that the mean length of time spent on the program is 
500 hours, and that this normally distributed random 
variables has standard deviation of 100 hours. Cal-
culate the probability of a randomly selected partici-
pant who will require more than 500 hours.

 22. The weekly demand of a slow-moving product has 
the following probability mass function:

Demand, x Probability, f(x)

0 0.2

1 0.4

2 0.3

3 0.1

4 or more 0

  Find the expected value, variance, and standard de-
viation of weekly demand.

 23. The Excel sheet Baseball contains information about 
a team which is using an automatic pitching ma-
chine. If the machine is correctly setup and properly 
adjusted, it will strike 85 percent of the time. If it is 
incorrectly set up, it will strike only 35 percent of the 
time. Past data indicates that 75 percent of the setup 
of the machine is correctly done. After the machine 
has been set up, at batting practice one day, it throws 
three strikes on the first three pitches. What is the re-
vised probability that has setup done correctly?

Event P(Event) P(1Strike/Event)

Correct 0.75 0.85

Incorrect x 0.35

 24. Based on the data in the Excel file Consumer 
Transportation Survey, develop a probability mass 
function and cumulative distribution function (both 
tabular and as charts) for the random variable Num-
ber of Children. What is the probability that an indi-
vidual in this survey has fewer than three children? 
At least one child? Five or more children?

 25. A major application of analytics in marketing is determin-
ing the attrition of customers. Suppose that the probability 
of a long-distance carrier’s customer leaving for another 
carrier from one month to the next is 0.12. What distri-
bution models the retention of an individual customer? 
What is the expected value and standard deviation?

 26. The Excel file Call Center Data shows that in a 
sample of 70 individuals, 27 had prior call center ex-
perience. If we assume that the probability that any 
potential hire will also have experience with a prob-
ability of 27/70, what is the probability that among 
10 potential hires, more than half of them will have 
experience? Define the parameter(s) for this distribu-
tion based on the data.
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 27. If a cell phone company conducted a telemarket-
ing campaign to generate new clients and the prob-
ability of successfully gaining a new customer was 
0.07, what is the probability that contacting 50 
potential customers would result in at least 5 new 
customers?

 28. During 1 year, a particular mutual fund has outper-
formed the S&P 500 index 33 out of 52 weeks. Find 
the probability that this performance or better would 
happen again.

 29. A popular resort hotel has 300 rooms and is usually fully 
booked. About 6% of the time a reservation is canceled 
before the 6:00 p.m. deadline with no penalty. What is 
the probability that at least 280 rooms will be occupied? 
Use the binomial distribution to find the exact value.

 30. A telephone call center where people place market-
ing calls to customers has a probability of success of 
0.08. The manager is very harsh on those who do not 
get a sufficient number of successful calls. Find the 
number of calls needed to ensure that there is a prob-
ability of 0.90 of obtaining 5 or more successful calls.

 31. Ravi sells three life insurance policies on an average 
per week. Use Poisson’s distribution to calculate the 
probability that in a given week he will sell

 a. some policies.

 b. two or more policies but less than 5 policies.

 c. one policy, assuming that there are 5 working 
days per week.

 32. The number and frequency of Atlantic hurricanes an-
nually from 1940 through 2012 is shown here.

Number Frequency

0 5

1 16

2 19

3 14

4 3

5 5

6 4

7 3

8 2

10 1

12 1

 a. Find the probabilities of 0–12 hurricanes each 
season using these data.

 b. Assuming a Poisson distribution and using the 
mean number of hurricanes per season from the 
empirical data, compute the probabilities of ex-
periencing 0–12 hurricanes in a season. Compare 
these to your answer to part (a). How good does 
a Poisson distribution model this phenomenon? 
Construct a chart to visualize these results.

 33. Verify that the function corresponding to the fol-
lowing figure is a valid probability density function. 
Then find the following probabilities:

 a. P1x 6 82
 b. P1x 7 72
 c. P16 6 x 6 102
 d. P18 6 x 6 112

 34. The time required to play a game of Battleship™ is 
uniformly distributed between 15 and 60 minutes.

 a. Find the expected value and variance of the time 
to complete the game.

 b. What is the probability of finishing within  
30 minutes?

 c. What is the probability that the game would take 
longer than 40 minutes?

 35. A contractor has estimated that the minimum num-
ber of days to remodel a bathroom for a client is  
10 days. He also estimates that 80% of similar jobs 
are completed within 18 days. If the remodeling time 
is uniformly distributed, what should be the param-
eters of the uniform distribution?

 36. In determining automobile-mileage ratings, it was 
found that the mpg (X) for a certain model is nor-
mally distributed, with a mean of 33 mpg and a stan-
dard deviation of 1.7 mpg. Find the following:

 a. P1X 6 302
 b. P128 6 X 6 322
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 c. P1X 7 352
 d. P1X 7 312
 e. The mileage rating that the upper 5% of cars achieve.

 37. The distribution of the SAT scores in math for an in-
coming class of business students has a mean of 590 
and standard deviation of 22. Assume that the scores 
are normally distributed.

 a. Find the probability that an individual’s SAT 
score is less than 550.

 b. Find the probability that an individual’s SAT 
score is between 550 and 600.

 c. Find the probability that an individual’s SAT 
score is greater than 620.

 d. What percentage of students will have scored bet-
ter than 700?

 e. Find the standardized values for students scoring 
550, 600, 650, and 700 on the test.

 38. A popular soft drink is sold in 2-liter (2,000- milliliter) 
bottles. Because of variation in the filling process, 
bottles have a mean of 2,000 milliliters and a stan-
dard deviation of 20, normally distributed.

 a. If the process fills the bottle by more than 50 
milliliters, the overflow will cause a machine 
malfunction. What is the probability of this 
occurring?

 b. What is the probability of underfilling the bottles 
by at least 30 milliliters?

 39. A supplier contract calls for a key dimension of a part 
to be between 1.96 and 2.04 centimeters. The supplier 
has determined that the standard deviation of its pro-
cess, which is normally distributed, is 0.04 centimeter.

 a. If the actual mean of the process is 1.98, what 
fraction of parts will meet specifications?

 b. If the mean is adjusted to 2.00, what fraction of 
parts will meet specifications?

 c. How small must the standard deviation be to en-
sure that no more than 2% of parts are noncon-
forming, assuming the mean is 2.00?

 40. Dev scored 940 on a national mathematics test. The 
mean test score was 850 with a standard deviation of 
100. What proportion of students had a higher score 
than Dev? (Assume that the test scores are normally 
distributed.)

 41. A lightbulb is warranted to last for 5,000 hours. If the 
time to failure is exponentially distributed with a true 
mean of 4,750 hours, what is the probability that it 
will last at least 5,000 hours?

 42. The actual delivery time from Giodanni’s Pizza is 
exponentially distributed with a mean of 20 minutes.

 a. What is the probability that the delivery time will 
exceed 30 minutes?

 b. What proportion of deliveries will be completed 
within 20 minutes?

 43. Develop a procedure to sample from the probability dis-
tribution of soft-drink choices in Problem 1. Implement 
your procedure on a spreadsheet and use the VLOOKUP 
function to sample 10 outcomes from the distribution.

 44. Develop a procedure to sample from the probability 
distribution of two-card hands in Problem 2. Implement 
your procedure on a spreadsheet and use the VLOOKUP 
function to sample 20 outcomes from the distribution.

 45. Use formula (5.23) to obtain a sample of 25 outcomes 
for a game of Battleship™ as described in Problem 34.  
Find the average and standard deviation for these  
25 outcomes.

 46. Use the Excel Random Number Generation tool to gen-
erate 100 samples of the number of customers that the 
financial consultant in Problem 31 will have on a daily 
basis. What percentage will meet his target of at least 5?

 47. A formula in financial analysis is: Return on equity 
= net profit margin * total asset turnover * equity 
multiplier. Suppose that the equity multiplier is 
fixed at 4.0, but that the net profit margin is nor-
mally distributed with a mean of 3.8% and a standard  
deviation of 0.4%, and that the total asset turnover is 
normally distributed with a mean of 1.5 and a stan-
dard deviation of 0.2. Set up and conduct a sampling 
experiment to find the distribution of the return on 
equity. Show your results as a histogram to help ex-
plain your analysis and conclusions. Use the empiri-
cal rules to predict the return on equity.

 48. A government agency is putting a large project out 
for low bid. Bids are expected from 10 different 
contractors and will have a normal distribution with 
a mean of $3.5 million and a standard deviation of 
$0.25 million. Devise and implement a sampling 
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Case: Performance Lawn Equipment

PLE collects a variety of data from special studies, many 
of which are related to the quality of its products. The com-
pany collects data about functional test performance of its 
mowers after assembly; results from the past 30 days are 
given in the worksheet Mower Test. In addition, many in-
process measurements are taken to ensure that manufactur-
ing processes remain in control and can produce according 
to design specifications. The worksheet Blade Weight shows 
350 measurements of blade weights taken from the manu-
facturing process that produces mower blades during the 
most recent shift. Elizabeth Burke has asked you to study 
these data from an analytics perspective. Drawing upon your 
experience, you have developed a number of questions.

 1. For the mower test data, what distribution might be ap-
propriate to model the failure of an individual mower?

 2. What fraction of mowers fails the functional perfor-
mance test using all the mower test data?

 3. What is the probability of having x failures in the 
next 100 mowers tested, for x from 0 to 20?

 4. What is the average blade weight and how much 
variability is occurring in the measurements of blade 
weights?

 5. Assuming that the data are normal, what is the prob-
ability that blade weights from this process will ex-
ceed 5.20?

 6. What is the probability that weights will be less 
than 4.80?

 7. What is the actual percent of weights that exceed 5.20 
or are less than 4.80 from the data in the worksheet?

 8. Is the process that makes the blades stable over time? 
That is, are there any apparent changes in the pattern 
of the blade weights?

 9. Could any of the blade weights be considered outli-
ers, which might indicate a problem with the manu-
facturing process or materials?

 10. Was the assumption that blade weights are normally 
distributed justified? What is the best-fitting prob-
ability distribution for the data?

Summarize all your findings to these questions in a well-
written report.

 experiment for estimating the distribution of the mini-
mum bid and the expected value of the minimum bid.

 49. Use Analytic Solver Platform to fit the hurricane data 
in Problem 32 to a discrete distribution? Does the 
Poisson distribution give the best fit?

 50. Use Analytic Solver Platform to fit a distribution to 
the data in the Excel file Computer Repair Times. 

Try the three different statistical measures for evalu-
ating goodness of fit and see if they result in different 
best-fitting distributions.

 51. The Excel file Investment Returns provides sample 
data for the annual return of the S&P 500, and monthly 
returns of a stock portfolio and bond portfolio.  Con-
struct histograms for each data set and use Analytic 
Solver Platform to find the best fitting distribution.
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Learning Objectives

After studying this chapter, you will be able to:

Sampling and 
Estimation6

•	Describe the elements of a sampling plan.

•	Explain the difference between subjective  
and probabilistic sampling.

•	State two types of subjective sampling.

•	Explain how to conduct simple random sampling  
and use Excel to find a simple random sample from  
an Excel database.

•	Explain systematic, stratified, and cluster sampling, 
and sampling from a continuous process.

•	Explain the importance of unbiased estimators.

•	Describe the difference between sampling error  
and nonsampling error.

•	Explain how the average, standard deviation, and 
distribution of means of samples changes as the 
sample size increases.

•	Define the sampling distribution of the mean.

•	Calculate the standard error of the mean.

•	Explain the practical importance of the central limit 
theorem.

•	Use the standard error in probability calculations.

•	Explain how an interval estimate differs from a point 
estimate.

•	Define and give examples of confidence intervals.

•	Calculate confidence intervals for population means 
and proportions using the formulas in the chapter and 
the appropriate Excel functions.

•	Explain how confidence intervals change as the level  
of confidence increases or decreases.

•	Describe the difference between the t-distribution  
and the normal distribution.

•	Use confidence intervals to draw conclusions about 
population parameters.

•	Compute a prediction interval and explain how it differs 
from a confidence interval.

•	Compute sample sizes needed to ensure a confidence 
interval for means and proportions with a specified 
margin of error.
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We discussed the difference between population and samples in  

Chapter 4. Sampling is the foundation of statistical analysis. We use sample  

data in business analytics applications for many purposes. For example, we 

might wish to estimate the mean, variance, or proportion of a very large or 

 unknown population; provide values for inputs in decision models; understand 

customer satisfaction; reach a conclusion as to which of several sales strat-

egies is more effective; or understand if a change in a process resulted in an 

 improvement. In this chapter, we discuss sampling methods, how they are used 

to estimate population parameters, and how we can assess the error inherent in 

sampling.

Statistical Sampling

The first step in sampling is to design an effective sampling plan that will yield repre
sentative samples of the populations under study. A sampling plan is a description of 
the approach that is used to obtain samples from a population prior to any data collection 
activity. A sampling plan states

•	the objectives of the sampling activity,

•	the target population,

•	the population frame (the list from which the sample is selected), 

•	the method of sampling,

•	the operational procedures for collecting the data, and

•	the statistical tools that will be used to analyze the data.

Sampling Methods

Many types of sampling methods exist. Sampling methods can be subjective or probabil-
istic. Subjective methods include judgment sampling, in which expert judgment is used 
to select the sample (survey the “best” customers), and convenience sampling, in which 
samples are selected based on the ease with which the data can be collected (survey all 
customers who happen to visit this month). Probabilistic sampling involves selecting the 

ExaMpLE 6.1 a Sampling plan for a Market Research Study

Suppose that a company wants to understand how golf-
ers might respond to a membership program that pro-
vides discounts at golf courses in the golfers’ locality as 
well as across the country. The objective of a sampling 
study might be to estimate the proportion of golfers who 
would likely subscribe to this program. The target pop-
ulation might be all golfers over 25 years old. However, 
identifying all golfers in America might be impossible.  
A practical population frame might be a list of golfers who 

have purchased equipment from national golf or sport-
ing goods companies through which the discount card 
will be sold. The operational procedures for collecting the 
data might be an e-mail link to a survey site or direct-mail 
questionnaire. The data might be stored in an Excel da-
tabase; statistical tools such as PivotTables and simple 
descriptive statistics would be used to segment the re-
spondents into different demographic groups and esti-
mate their likelihood of responding positively.
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items in the sample using some random procedure. Probabilistic sampling is necessary to 
draw valid statistical conclusions.

The most common probabilistic sampling approach is simple random sampling. Simple  
random sampling involves selecting items from a population so that every subset of a 
given size has an equal chance of being selected. If the population data are stored in a data
base, simple random samples can generally be easily obtained.

Figure 6.1

Excel Sampling Tool Dialog

ExaMpLE 6.2 Simple Random Sampling with Excel

Suppose that we wish to sample from the Excel database 
Sales Transactions. Excel provides a tool to generate a 
random set of values from a given population size. Click 
on Data Analysis in the Analysis group of the Data tab 
and select Sampling. This brings up the dialog shown in  
Figure 6.1. In the Input Range box, we specify the data 
range from which the sample will be taken. This tool  
requires that the data sampled be numeric, so in this ex-
ample we sample from the first column of the data set, 
which corresponds to the customer ID number. There are 
two options for sampling:

 1. Sampling can be periodic, and we will be prompted 
for the Period, which is the interval between sample 

observations from the beginning of the data set.  
For instance, if a period of 5 is used, observations 5, 
10, 15, and so on, will be selected as samples.

 2. Sampling can also be random, and we will be prompted 
for the Number of Samples. Excel will then randomly 
select this number of samples from the specified data 
set. However, this tool generates random samples with 
replacement, so we must be careful to check for dupli-
cate observations in the sample created.

Figure 6.2 shows 20 samples generated by the tool. 
We sorted them in ascending order to make it easier to 
identify duplicates. As you can see, two of the customers 
were duplicated by the tool.

Other methods of sampling include the following:

•	Systematic (Periodic) Sampling. Systematic, or periodic, sampling is a sam
pling plan (one of the options in the Excel Sampling tool) that selects every 
nth item from the population. For example, to sample 250 names from a list of 
400,000, the first name could be selected at random from the first 1,600, and then 
every 1,600th name could be selected. This approach can be used for telephone 
sampling when supported by an automatic dialer that is programmed to dial 
numbers in a systematic manner. However, systematic sampling is not the same 
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as simple random sampling because for any sample, every possible sample of a 
given size in the population does not have an equal chance of being selected. In 
some  situations, this approach can induce significant bias if the population has 
some underlying pattern. For instance, sampling orders received every 7 days 
may not yield a representative sample if customers tend to send orders on certain 
days  every week.

•	Stratified Sampling. Stratified sampling applies to populations that are di
vided into natural subsets (called strata) and allocates the appropriate propor
tion of samples to each stratum. For example, a large city may be divided into 
political districts called wards. Each ward has a different number of citizens. 
A stratified sample would choose a sample of individuals in each ward pro
portionate to its size. This approach ensures that each stratum is weighted by 
its size relative to the population and can provide better results than simple 
random sampling if the items in each stratum are not homogeneous. However, 
issues of cost or significance of certain strata might make a disproportionate 
sample more useful. For example, the ethnic or racial mix of each ward might 
be significantly different, making it difficult for a stratified sample to obtain 
the desired information.

•	Cluster Sampling. Cluster sampling is based on dividing a population into sub
groups (clusters), sampling a set of clusters, and (usually) conducting a complete 
census within the clusters sampled. For instance, a company might segment its 
customers into small geographical regions. A cluster sample would consist of a 
random sample of the geographical regions, and all customers within these  
regions would be surveyed (which might be easier because regional lists might 
be easier to produce and mail).

• Sampling from a Continuous Process. Selecting a sample from a continuous man
ufacturing process can be accomplished in two main ways. First, select a time at 
random; then select the next n items produced after that time. Second, select  
n times at random; then select the next item produced after each of these times. 
The first approach generally ensures that the observations will come from a homo
geneous population; however, the second approach might include items from  
different populations if the characteristics of the process should change over  
time, so caution should be used.

Figure 6.2

Samples Generated Using 
the Excel Sampling Tool
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1Based on Tony Gojanovic and Ernie Jimenez, “Brewed Awakening: Beer Maker Uses Statistical  Methods 
to Improve How Its Products Are Distributed,” Quality Progress (April 2010).

U.S. breweries rely on a three-tier distribution system 
to deliver product to retail outlets, such as supermar-
kets and convenience stores, and on-premise ac-
counts, such as bars and restaurants. The three tiers 
are the manufacturer, wholesaler (distributor), and re-
tailer. A distribution network must be as efficient and 
cost effective as possible to deliver to the market a 
fresh product that is damage free and is delivered at 
the right place at the right time.

To understand distributor performance related to 
overall effectiveness, MillerCoors brewery defined seven 
attributes of proper distribution and collected data from 
500 of its distributors. A field quality specialist (FQS)  
audits distributors within an assigned region of the 
country and collects data on these attributes. The FQS 
uses a handheld device to scan the universal prod-
uct code on each package to identify the product type 
and amount. When audits are complete, data are sum-
marized and uploaded from the handheld device into a 
master database.

This distributor auditing uses stratified random 
sampling with proportional allocation of samples 
based on the distributor’s market share. In addition 
to providing a more representative sample and bet-
ter logistical control of sampling, stratified random 
sampling enhances statistical precision when data are 
aggregated by market area served by the distributor. 
This enhanced precision is a consequence of smaller 
and typically homogeneous market regions, which are 
able to provide realistic estimates of variability, espe-
cially when compared to another market region that is 
markedly different.

Randomization of retail accounts is achieved 
through a specially designed program based on the 
GPS location of the distributor and serviced retail  
accounts. The sampling strategy ultimately addresses 
a specific distributor’s performance related to out-of-
code product, damaged product, and out-of-rotation 
product at the retail level. All in all, more than 6,000 of 
the brewery’s national retail accounts are audited dur-
ing a sampling year. Data collected by the FQSs during 
the year are used to develop a performance ranking of 
distributors and identify opportunities for improvement.

analytics in practice:  Using Sampling Techniques  
to Improve Distribution1
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Estimating population parameters

Sample data provide the basis for many useful analyses to support decision making. Estima-
tion involves assessing the value of an unknown population parameter—such as a population 
mean, population proportion, or population variance—using sample data. Estimators are the 
measures used to estimate population parameters; for example, we use the sample mean x to 
estimate a population mean m. The sample variance s2 estimates a population variance s2, 
and the sample proportion p estimates a population proportion p. A point estimate is a single 
number derived from sample data that is used to estimate the value of a population parameter.
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Unbiased Estimators

It seems quite intuitive that the sample mean should provide a good point estimate for the 
population mean. However, it may not be clear why the formula for the sample variance 
that we introduced in Chapter 4 has a denominator of n - 1, particularly because it is dif
ferent from the formula for the population variance (see formulas (4.4) and (4.5) in Chap
ter 4). In these formulas, the population variance is  computed by

s2 =
a

n

i = 1
1xi - m22

N

whereas the sample variance is computed by the formula

s2 =
a

n

i = 1
1xi - x22

n - 1

Why is this so? Statisticians develop many types of estimators, and from a theo
retical as well as a practical perspective, it is important that they “truly estimate” the 
population parameters they are supposed to estimate. Suppose that we perform an experi
ment in which we repeatedly sampled from a population and computed a point estimate 
for a population parameter. Each individual point estimate will vary from the population 
parameter; however, we would hope that the longterm average (expected value) of all  
possible point estimates would equal the population parameter. If the expected value of 
an estimator equals the population parameter it is intended to estimate, the estimator is 
said to be unbiased. If this is not true, the estimator is called biased and will not provide 
correct results.

Fortunately, all the estimators we have introduced are unbiased and, therefore, are 
meaningful for making decisions involving the population parameter. In particular, statisti
cians have shown that the denominator n - 1 used in computing s2 is necessary to provide 
an unbiased estimator of s2. If we simply divided by the number of observations, the esti
mator would tend to underestimate the true variance.

Errors in point Estimation

One of the drawbacks of using point estimates is that they do not provide any indication 
of the magnitude of the potential error in the estimate. A major metropolitan newspaper  
reported that, based on a Bureau of Labor Statistics survey, college professors were the 
highestpaid workers in the region, with an average salary of $150,004. Actual aver
ages for two local universities were less than $70,000. What happened? As reported in a  
followup story, the sample size was very small and included a large number of highly 
paid medical school faculty; as a result, there was a significant error in the point estimate 
that was used.

When we sample, the estimators we use—such as a sample mean, sample proportion, 
or sample variance—are actually random variables that are characterized by some distri
bution. By knowing what this distribution is, we can use probability theory to quantify 
the uncertainty associated with the estimator. To understand this, we first need to discuss 
sampling error and sampling distributions.
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Sampling Error

In Chapter 4, we observed that different samples from the same population have dif
ferent characteristics—for example, variations in the mean, standard deviation, fre
quency distribution, and so on. Sampling (statistical) error occurs because samples 
are only a subset of the total population. Sampling error is inherent in any sampling 
process, and although it can be minimized, it cannot be totally avoided. Another type 
of  error, called nonsampling error, occurs when the sample does not represent the 
target population adequately. This is generally a result of poor sample design, such 
as using a convenience sample when a simple random sample would have been more  
appropriate or choosing the wrong population frame. It may also result from inad
equate data reliability, which we discussed in Chapter 1. To draw good conclusions 
from samples, analysts need to eliminate nonsampling error and understand the nature 
of sampling error.

Sampling error depends on the size of the sample relative to the population. Thus, 
 determining the number of samples to take is essentially a statistical issue that is based 
on the accuracy of the estimates needed to draw a useful conclusion. We discuss this 
later in this chapter. However, from a practical standpoint, one must also consider the 
cost of  sampling and sometimes make a tradeoff between cost and the information that is 
obtained.

Understanding Sampling Error

Suppose that we estimate the mean of a population using the sample mean. How can we 
determine how accurate we are? In other words, can we make an informed statement about 
how far the sample mean might be from the true population mean? We could gain some 
insight into this question by performing a sampling experiment.

ExaMpLE 6.3 a Sampling Experiment

Let us choose a population that is uniformly distributed 
between a = 0 and b = 10. Formulas (5.17) and (5.18) 
state that the expected value is 10 + 10 2 ,2 = 5, and 
the variance is (10 − 0)2 ,12 = 8.333. We use the Excel  
Random Number Generation tool described in Chapter 5 
to generate 25 samples, each of size 10 from this popula-
tion. Figure 6.3 shows a portion of a spreadsheet for this 
experiment, along with a histogram of the data (on the left 
side) that shows that the 250 observations are approxi-
mately uniformly distributed. (This is available in the Excel 
file Sampling Experiment.)

In row 12 we compute the mean of each sample. These 
statistics vary a lot from the population values because of 
sampling error. The histogram on the right shows the distri-
bution of the 25 sample means, which vary from less than 
4 to more than 6. Now let’s compute the average and stan-
dard deviation of the sample means in row 12 (cells AB12 

and AB13). Note that the average of all the sample means 
is quite close to the true population mean of 5.0.

Now let us repeat this experiment for larger sample 
sizes. Table 6.1 shows some results. Notice that as the 
sample size gets larger, the averages of the 25 sample 
means are all still close to the expected value of 5; how-
ever, the standard deviation of the 25 sample means be-
comes smaller for increasing sample sizes, meaning that 
the means of samples are clustered closer together around 
the true expected value. Figure 6.4 shows comparative 
histograms of the sample means for each of these cases. 
These illustrate the conclusions we just made and, also, 
perhaps even more surprisingly, the distribution of the sam-
ple means appears to assume the shape of a normal distri-
bution for larger sample sizes. In our experiment, we used 
only 25 sample means. If we had used a much-larger num-
ber, the distributions would have been more well defined.
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Figure 6.3

Portion of Spreadsheet for Sampling Experiment

Figure 6.4

Histograms of 
Sample Means for 
Increasing Sample 
Sizes

Table 6.1

Results from Sampling 
Experiment

Sample Size
average of 25 Sample  

Means
Standard Deviation of  

25 Sample Means

 10 5.0108 0.816673

 25 5.0779 0.451351

100 4.9173 0.301941

500 4.9754 0.078993
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Sampling Distributions

We can quantify the sampling error in estimating the mean for any unknown population. 
To do this, we need to characterize the sampling distribution of the mean.

Sampling Distribution of the Mean

The means of all possible samples of a fixed size n from some population will form a 
distribution that we call the sampling distribution of the mean. The histograms in Fig
ure 6.4 are approximations to the sampling distributions of the mean based on 25 samples. 
Statisticians have shown two key results about the sampling distribution of the mean. 
First, the standard deviation of the sampling distribution of the mean, called the standard 
error of the mean, is computed as

 Standard Error of the Mean = s>1n (6.1)

where s is the standard deviation of the population from which the individual observations 
are drawn and n is the sample size. From this formula, we see that as n increases, the standard 
error decreases, just as our experiment demonstrated. This suggests that the estimates of the 
mean that we obtain from larger sample sizes provide greater accuracy in estimating the true 
population mean. In other words, larger sample sizes have less sampling error.

ExaMpLE 6.4 Estimating Sampling Error Using the Empirical Rules

Using the results in Table 6.1 and the empirical rule for 
three standard deviations around the mean, we could 
state, for example, that using a sample size of 10, the dis-
tribution of sample means should fall approximately from 
5.0 − 3(0.816673) = 2.55  t o  5.0 + 3(0.816673) = 7.45. 
Thus, there is considerable error in estimating the mean  

using a sample of only 10. For a sample of size 25, 
we would expect the sample means to fall between 
5.0 − 3(0.451351) = 3.65  to  5.0 + 3(0.451351) = 6.35. 
Note that as the sample size increased, the error  
decreased. For sample sizes of 100 and 500, the intervals 
are [4.09, 5.91] and [4.76, 5.24].

ExaMpLE 6.5 Computing the Standard Error of the Mean

For our experiment, we know that the variance of the pop-
ulation is 8.33 (because the values were uniformly distrib-
uted). Therefore, the standard deviation of the population 
is S = 2.89. We may compute the standard error of the 
mean for each of the sample sizes in our  experiment using 
formula (6.1). For example, with n = 10, we have

Standard Error of the Mean = S ,!n = 2.89 ,!10 = 0.914

For the remaining data in Table 6.1 we have the following:

Sample Size, n Standard Error of the Mean

 10 0.914

 25 0.577

100 0.289

500 0.129

The standard deviations shown in Table 6.1 are simply estimates of the standard error of 
the mean based on the limited number of 25 samples. If we compare these estimates with the 
theoretical values in the previous example, we see that they are close but not exactly the same. 
This is because the true standard error is based on all possible sample means in the sampling 

If we apply the empirical rules to these results, we can estimate the sampling error 
 associated with one of the sample sizes we have chosen.
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distribution, whereas we used only 25. If you repeat the experiment with a larger number of 
samples, the observed values of the standard error would be closer to these theoretical values.

In practice, we will never know the true population standard deviation and generally 
take only a limited sample of n observations. However, we may estimate the standard error 
of the mean using the sample data by simply dividing the sample standard deviation by the 
square root of n.

The second result that statisticians have shown is called the central limit theorem, 
one of the most important practical results in statistics that makes systematic inference 
possible. The central limit theorem states that if the sample size is large enough, the 
sampling distribution of the mean is approximately normally distributed, regardless of 
the distribution of the population and that the mean of the sampling distribution will be 
the same as that of the population. This is exactly what we observed in our experiment. 
The distribution of the population was uniform, yet the sampling distribution of the mean 
converges to the shape of a normal distribution as the sample size increases. The central 
limit theorem also states that if the population is normally distributed, then the sampling 
distribution of the mean will also be normal for any sample size. The central limit theo
rem allows us to use the theory we learned about calculating probabilities for normal 
distributions to draw conclusions about sample means.

applying the Sampling Distribution of the Mean

The key to applying sampling distribution of the mean correctly is to understand whether 
the probability that you wish to compute relates to an individual observation or to the 
mean of a sample. If it relates to the mean of a sample, then you must use the sampling 
distribution of the mean, whose standard deviation is the standard error, s>1n.

Interval Estimates

An interval estimate provides a range for a population characteristic based on a sample. 
Intervals are quite useful in statistics because they provide more information than a point 
estimate. Intervals specify a range of plausible values for the characteristic of interest 
and a way of assessing “how plausible” they are. In general, a 10011 - a2% probability  
interval is any interval [A, B] such that the probability of falling between A and B is 
1 - a. Probability intervals are often centered on the mean or median. For instance, 

ExaMpLE 6.6 Using the Standard Error in probability Calculations

Suppose that the size of individual customer orders (in 
dollars), X, from a major discount book publisher Web site 
is normally distributed with a mean of $36 and standard 
deviation of $8. The probability that the next individual 
who places an order at the Web site will make a purchase 
of more than $40 can be found by calculating

1 − NORM.DIST(40,36,8,TRUE) = 1 − 0.6915 = 0.3085

Now suppose that a sample of 16 customers is chosen. 
What is the probability that the mean purchase for these 16 
customers will exceed $40? To find this, we must realize that 
we must use the sampling distribution of the mean to carry 
out the appropriate calculations. The sampling distribution 

of the mean will have a mean of $36 but a standard error of 
$8 ,  !16 = $2. Then the probability that the mean purchase 
exceeds $40 for a sample size of n = 16 is

1 − NORM.DIST(40,36,2,TRUE) = 1 − 0.9772 = 0.0228

Although about 30% of individuals will make pur-
chases exceeding $40, the chance that 16 customers will 
collectively average more than $40 is much smaller. It 
would be very unlikely for all 16 customers to make high-
volume purchases, because some individual purchases 
would as likely be less than $36 as more, making the vari-
ability of the mean purchase amount for the sample of 16 
much smaller than for individuals.
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ExaMpLE 6.7 Interval Estimates in the News

We see interval estimates in the news all the time when 
trying to estimate the mean or proportion of a population. 
Interval estimates are often constructed by taking a point 
estimate and adding and subtracting a margin of error 
that is based on the sample size. For example, a  Gallup 
poll might report that 56% of voters support a certain 
candidate with a margin of error of ±3%. We would 
conclude that the true percentage of voters that support  

the candidate is most likely between 53% and 59%. 
Therefore, we would have a lot of confidence in predict-
ing that the candidate would win a forthcoming election. 
If, however, the poll showed a 52% level of support with 
a margin of error of ±4%, we might not be as confident 
in predicting a win because the true percentage of sup-
portive voters is likely to be somewhere between 48% 
and 56%.

The question you might be asking at this point is how to calculate the error associ
ated with a point estimate. In national surveys and political polls, such margins of error 
are usually stated, but they are never properly explained. To understand them, we need to 
introduce the concept of confidence intervals.

Confidence Intervals

Confidence interval estimates provide a way of assessing the accuracy of a point estimate. 
A confidence interval is a range of values between which the value of the population pa
rameter is believed to be, along with a probability that the interval correctly estimates the 
true (unknown) population parameter. This probability is called the level of confidence, de
noted by 1 - a, where a is a number between 0 and 1. The level of confidence is usually 
expressed as a percent; common values are 90%, 95%, or 99%. (Note that if the level of 
confidence is 90%, then a = 0.1.) The margin of error depends on the level of confidence 
and the sample size. For example, suppose that the margin of error for some sample size and 
a level of confidence of 95% is calculated to be 2.0. One sample might yield a point estimate 
of 10. Then, a 95% confidence interval would be [8, 12]. However, this interval may or may 
not include the true population mean. If we take a different sample, we will most likely have 
a different point estimate, say, 10.4, which, given the same margin of error, would yield the 
interval estimate [8.4, 12.4]. Again, this may or may not include the true population mean. 
If we chose 100 different samples, leading to 100 different interval estimates, we would ex
pect that 95% of them—the level of confidence—would contain the true population mean.  
We would say we are “95% confident” that the interval we obtain from sample data contains 
the true population mean. The higher the confidence level, the more assurance we have that 
the interval contains the true population parameter. As the confidence level increases, the 
confidence interval becomes wider to provide higher levels of assurance. You can view a as 
the risk of incorrectly concluding that the confidence interval contains the true mean.

When national surveys or political polls report an interval estimate, they are actu
ally confidence intervals. However, the level of confidence is generally not stated because 
the average person would probably not understand the concept or terminology. While not 
stated, you can probably assume that the level of confidence is 95%, as this is the most 
common value used in practice (however, the Bureau of Labor Statistics tends to use 90% 
quite often).

in a normal distribution, the mean plus or minus 1 standard deviation describes an 
 approximate 68% probability interval around the mean. As another example, the 5th and 
95th percentiles in a data set constitute a 90% probability interval.
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Many different types of confidence intervals may be developed. The formulas used 
depend on the population parameter we are trying to estimate and possibly other character
istics or assumptions about the population. We illustrate a few types of confidence intervals.

Confidence Interval for the Mean with Known  
population Standard Deviation

The simplest type of confidence interval is for the mean of a population where the standard 
deviation is assumed to be known. You should realize, however, that in nearly all practical 
sampling applications, the population standard deviation will not be known. However, in 
some applications, such as measurements of parts from an automated machine, a process 
might have a very stable variance that has been established over a long history, and it can 
reasonably be assumed that the standard deviation is known.

A 10011 - a2% confidence interval for the population mean m based on a sample 
of size n with a sample mean x and a known population standard deviation s is given by

 x { za/21s>1n2 (6.2)

Note that this formula is simply the sample mean (point estimate) plus or minus a margin 
of error.

The margin of error is a number za>2 multiplied by the standard error of the sampling 
distribution of the mean, s>1n. The value za>2 represents the value of a standard normal 
random variable that has an upper tail probability of a>2 or, equivalently, a cumulative 
probability of 1 - a>2. It may be found from the standard normal table (see Table A.1 in 
Appendix A at the end of the book) or may be computed in Excel using the value of the  
function NORM.S.INV11 - a>22. For example, if a = 0.05 (for a 95% confidence  
interval), then NORM.S.INV10.9752 = 1.96; if a = 0.10 (for a 90% confidence interval), 
then NORM.S.INV10.952 = 1.645, and so on.

Although formula (6.2) can easily be implemented in a spreadsheet, the Excel func
tion CONFIDENCE.NORM(alpha, standard_deviation, size) can be used to compute the 
margin of error term, za>2 s>1n; thus, the confidence interval is the sample mean {
CONFIDENCE.NORM(alpha, standard_deviation, size).

ExaMpLE 6.8  Computing a Confidence Interval  
with a Known Standard Deviation

In a production process for filling bottles of liquid deter-
gent, historical data have shown that the variance in the 
volume is constant; however, clogs in the filling machine 
often affect the average volume. The historical standard 
deviation is 15 milliliters. In filling 800-milliliter bottles, a 
sample of 25 found an average volume of 796 milliliters. 
Using formula (6.2), a 95% confidence interval for the 
population mean is

x ± zA/2 (S ,!n)

= 796 ± 1.96(15 ,!25) = 796 ± 5.88, or [790.12, 801.88]

The worksheet Population Mean Sigma Known in the 
Excel workbook Confidence Intervals computes this inter-
val using the CONFIDENCE.NORM function to compute 
the margin of error in cell B9, as shown in Figure 6.5.

As the level of confidence, 1 - a, decreases, za>2 decreases, and the confidence in
terval becomes narrower. For example, a 90% confidence interval will be narrower than a 
95% confidence interval. Similarly, a 99% confidence interval will be wider than a 95% 
confidence interval. Essentially, you must trade off a higher level of accuracy with the risk 
that the confidence interval does not contain the true mean. Smaller risk will result in a 
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wider confidence interval. However, you can also see that as the sample size increases, the 
standard error decreases, making the confidence interval narrower and providing a more 
accurate interval estimate for the same level of risk. So if you wish to reduce the risk, you 
should consider increasing the sample size.

The t-Distribution

In most practical applications, the standard deviation of the population is unknown, and we 
need to calculate the confidence interval differently. Before we can discuss how to com
pute this type of confidence interval, we need to introduce a new probability distribution  
called the t-distribution. The tdistribution is actually a family of probability distribu
tions with a shape similar to the standard normal distribution. Different tdistributions 
are distinguished by an additional parameter, degrees of freedom (df). The tdistribution  
has a larger variance than the standard normal, thus making confidence intervals wider 
than those obtained from the standard normal distribution, in essence correcting for 
the uncertainty about the true standard deviation, which is not known. As the number 
of degrees of freedom increases, the tdistribution converges to the standard normal 
distribution (Figure 6.6). When sample sizes get to be as large as 120, the distributions  
are virtually identical; even for sample sizes as low as 30 to 35, it becomes difficult to 
distinguish between the two. Thus, for large sample sizes, many people use zvalues to 
 establish confidence intervals even when the standard deviation is unknown. We must 
point out, however, that for any sample size, the true sampling distribution of the mean is 
the tdistribution, so when in doubt, use the t.

The concept of degrees of freedom can be puzzling. It can best be explained by exam
ining the formula for the sample variance:

s2 =
a

n

i = 1
1xi - x22

n - 1

Note that to compute s2, we first need to compute the sample mean, x. If we know the 
value of the mean, then we need know only n - 1 distinct observations; the nth is com
pletely determined. (For instance, if the mean of three values is 4 and you know that two 
of the values are 2 and 4, you can easily determine that the third number must be 6.) The 
number of sample values that are free to vary defines the number of degrees of freedom; in 
general, df equals the number of sample values minus the number of estimated parameters. 
Because the sample variance uses one estimated parameter, the mean, the  tdistribution 
used in confidence interval calculations has n - 1 degrees of freedom. Because the  
t distribution explicitly accounts for the effect of the sample size in estimating the popula
tion variance, it is the proper one to use for any sample size. However, for large samples, 
the difference between t and zvalues is very small, as we noted earlier.

Figure 6.5

Confidence Interval for  
Mean Liquid Detergent 
Filling Volume
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Confidence Interval for the Mean with Unknown  
population Standard Deviation

The formula for a 10011 - a2% confidence interval for the mean m when the population 
standard deviation is unknown is

 x { ta>2,n - 11s>1n2 (6.3)

where ta>2,n - 1 is the value from the tdistribution with n - 1 degrees of freedom, giving 
an uppertail probability of a>2. We may find tvalues in Table A.2 in Appendix A at the 
end of the book or by using the Excel function T.INV11 - a>2, n - 12 or the function 
T.INV.2T1a, n - 12. The Excel function CONFIDENCE.T(alpha,  standard_deviation, 
size) can be used to compute the margin of error term, ta>2,n - 1(s>1n); thus, the confi
dence interval is the sample mean {CONFIDENCE.T.

Figure 6.6

Comparison of the  
t-Distribution to the 
Standard Normal Distribution

Confidence Interval for a proportion

For categorical variables such as gender (male or female), education (high school, col
lege, postgraduate), and so on, we are usually interested in the proportion of observa
tions in a sample that has a certain characteristic. An unbiased estimator of a population 
proportion p (this is not the number pi = 3.14159 . . . ) is the statistic p̂ = x>n (the sam-
ple  proportion), where x is the number in the sample having the desired characteristic 
and n is the sample size.

ExaMpLE 6.9  Computing a Confidence Interval  
with Unknown Standard Deviation

In the Excel file Credit Approval Decisions, a large bank 
has sample data used in making credit approval deci-
sions (see Figure 6.7). Suppose that we want to find a 
95% confidence interval for the mean revolving balance 
for the population of applicants that own a home. First, 
sort the data by homeowner and compute the mean and 
standard deviation of the revolving balance for the sam-
ple of homeowners. This results in x = $12,630.37 and 
s = $5393.38. The sample size is n = 27, so the standard 

error s ,!n = $ 1037.96. The t-distribution has 26 degrees 
of freedom; therefore, t.025,26 = 2.056. Using formula (6.3), 
the confidence interval is $12,630.37 ± 2.056($1037.96)  
or [$10,496, $14,764]. The worksheet Population Mean 
Sigma Unknown in the Excel workbook Confidence 
 Intervals computes this interval using the CONFIDENCE.T 
function to compute the margin of error in cell B10, as 
shown in Figure 6.8.
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Figure 6.7

Portion of Excel File Credit Approval Decisions

Figure 6.8

Confidence Interval for 
Mean Revolving Balance 
of Homeowners

A 10011 - a2% confidence interval for the proportion is

 np { za/2A np11 - np2
n

 (6.4)

Notice that as with the mean, the confidence interval is the point estimate plus or 

minus some margin of error. In this case, 2pn  11 - pn 2>n is the standard error for the sam
pling distribution of the proportion. Excel does not have a function for computing the 
margin of  error, but it can easily be implemented on a spreadsheet.

ExaMpLE 6.10 Computing a Confidence Interval for a proportion

The last column in the Excel file Insurance Survey (see 
Figure 6.9) describes whether a sample of employees 
would be willing to pay a lower premium for a higher de-
ductible for their health insurance. Suppose we are inter-
ested in the proportion of individuals who answered yes. 
We may easily confirm that 6 out of the 24 employees, or 
25%, answered yes. Thus, a point estimate for the pro-
portion answering yes is pn = 0.25. Using formula (6.4), 
we find that a 95% confidence interval for the proportion 
of employees answering yes is

0.25 ± 1.96A0.25(0.75)

24
= 0.25 ± 0.173, or [0.077, 0.423]

The worksheet Population Mean Sigma Unknown in 
the Excel workbook Confidence Intervals computes this 
interval, as shown in Figure 6.10. Notice that this is a 
fairly wide confidence interval, suggesting that we have 
quite a bit of uncertainty as to the true value of the popu-
lation proportion. This is because of the relatively small 
sample size.
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Figure 6.9

Portion of Excel File Insurance Survey

Figure 6.10

Confidence Interval for the 
Proportion

ExaMpLE 6.11  Drawing a Conclusion about a population  
Mean Using a Confidence Interval

In packaging a commodity product such as laundry de-
tergent, the manufacturer must ensure that the packages 
contain the stated amount to meet government regulations. 
In Example 6.8, we saw an example where the required 
volume is 800 milliliters, yet the sample average was only  

796  milliliters. Does this indicate a serious problem? Not 
necessarily. The 95% confidence interval for the mean we 
computed in Figure 6.5 was [790.12, 801.88]. Although the 
sample mean is less than 800, the sample does not pro-
vide sufficient evidence to draw that conclusion that the 

additional Types of Confidence Intervals

Confidence intervals may be calculated for other population parameters such as a  variance 
or standard deviation and also for differences in the means or proportions of two popula
tions. The concepts are similar to the types of confidence intervals we have discussed, but 
many of the formulas are rather complex and more difficult to implement on a spreadsheet. 
Some advanced software packages and spreadsheet addins provide additional  support. 
Therefore, we do not discuss them in this book, but we do suggest that you consult other 
books and statistical references should you need to use them, now that you understand the 
basic concepts underlying them.

Using Confidence Intervals for Decision Making

Confidence intervals can be used in many ways to support business decisions.
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 population mean is less than 800 because 800 is contained 
within the confidence interval. In fact, it is just as plausible 
that the population mean is 801. We cannot tell definitively 
because of the sampling error. However, suppose that the 
sample average is 792. Using the Excel worksheet Population 
Mean Sigma Known in the workbook Confidence Intervals,  

we find that the confidence interval for the mean would be 
[786.12, 797.88]. In this case, we would conclude that it is 
highly unlikely that the population mean is 800 milliliters be-
cause the confidence interval falls completely below 800; 
the manufacturer should check and adjust the equipment to 
meet the standard.

prediction Intervals

Another type of interval used in estimation is a prediction interval. A prediction interval 
is one that provides a range for predicting the value of a new observation from the same 
population. This is different from a confidence interval, which provides an interval esti
mate of a population parameter, such as the mean or proportion. A confidence interval is 
associated with the sampling distribution of a statistic, but a prediction interval is associ
ated with the distribution of the random variable itself.

When the population standard deviation is unknown, a 10011 - a2% prediction in
terval for a new observation is

 x { ta>2,n - 1asA1 +
1
n
b  (6.5)

Note that this interval is wider than the confidence interval in formula (6.3) by virtue of 
the additional value of 1 under the square root. This is because, in addition to estimat
ing the population mean, we must also account for the variability of the new observation 
around the mean.

One important thing to realize also is that in formula (6.3) for a confidence interval, as 
n gets large, the error term tends to zero so the confidence interval converges on the mean. 
However, in the prediction interval formula (6.5), as n gets large, the error term converges 
to ta>2, n - 11s2, which is simply a 10011 - a2% probability interval. Because we are trying 
to predict a new observation from the population, there will always be uncertainty.

The next example shows how to interpret a confidence interval for a proportion.

ExaMpLE 6.12 Using a Confidence Interval to predict Election Returns

Suppose that an exit poll of 1,300 voters found that 692 
voted for a particular candidate in a two-person race. This 
represents a proportion of 53.23% of the sample. Could we 
conclude that the candidate will likely win the election? A 
95% confidence interval for the proportion is [0.505, 0.559].  
This suggests that the population proportion of voters 
who favor this candidate is highly likely to exceed 50%, 
so it is safe to predict the winner. On the other hand, 

 suppose that only 670 of the 1,300 voters voted for the 
candidate, a sample proportion of 0.515. The confidence 
interval for the population proportion is [0.488, 0.543].  
Even though the sample proportion is larger than 50%, the 
sampling error is large, and the confidence interval sug-
gests that it is reasonably likely that the true population 
proportion could be less than 50%, so it would not be wise 
to predict the winner based on this information.
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Confidence Intervals and Sample Size

An important question in sampling is the size of the sample to take. Note that in all the 
formulas for confidence intervals, the sample size plays a critical role in determining the 
width of the confidence interval. As the sample size increases, the width of the confidence 
interval decreases, providing a more accurate estimate of the true population parameter. In 
many applications, we would like to control the margin of error in a confidence interval. 
For example, in reporting voter preferences, we might wish to ensure that the margin of 
error is{2%. Fortunately, it is relatively easy to determine the appropriate sample size 
needed to estimate the population parameter within a specified level of precision.

The formulas for determining sample sizes to achieve a given margin of error are based 
on the confidence interval halfwidths. For example, consider the confidence interval for 
the mean with a known population standard deviation we introduced in formula (6.2):

x { za>2a s2n
b

Suppose we want the width of the confidence interval on either side of the mean (i.e., 
the margin of error) to be at most E. In other words,

E Ú za>2a s2n
b

Solving for n, we find:

 n Ú 1za>222s
2

E2 (6.6)

In a similar fashion, we can compute the sample size required to achieve a desired 
confidence interval halfwidth for a proportion by solving the following equation (based 
on formula (6.4) using the population proportion p in the margin of error term) for n:

E Ú za>22p11 - p2>n

This yields

 n Ú 1za>222
p11 - p2

E2  (6.7)

In practice, the value of p will not be known. You could use the sample proportion 
from a preliminary sample as an estimate of p to plan the sample size, but this might 
require several iterations and additional samples to find the sample size that yields the 
required precision. When no information is available, the most conservative estimate is to 
set p = 0.5. This maximizes the quantity p11 - p2 in the formula, resulting in the sam
ple size that will guarantee the required precision no matter what the true proportion is.

ExaMpLE 6.13 Computing a prediction Interval

In estimating the revolving balance in the Excel file Credit 
Approval Decisions in Example 6.9, we may use for-
mula (6.5) to compute a 95% prediction interval for the 
revolving balance of a new homeowner as

$12,630.37 ± 2.056($5,393.38)A1 +
1

27 , or  

[$338.10, $23,922.64]

Note that compared with Example 6.9, the size of the 
prediction interval is considerably wider than that of the 
confidence interval.
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ExaMpLE 6.14 Sample Size Determination for the Mean

In the liquid detergent example (Example 6.8), the con-
fidence interval we computed in Figure 6.5 was [790.12, 
801.88]. The width of the confidence interval is ± 5.88 
milliliters, which represents the sampling error. Suppose 
the manufacturer would like the sampling error to be at 
most 3 milliliters. Using formula (6.6), we may compute 
the required sample size as follows:

 n # 1 zA>2 22 
(S2 )

E2

 = 11.96 2  2 (152)

32
= 96.04

Rounding up we find that that 97 samples would be 
needed. To verify this, Figure 6.11 shows that if a sample 
of 97 is used along with the same sample mean and stan-
dard deviation, the confidence interval does indeed have a 
sampling error of error less than 3 milliliters.

Figure 6.11

Confidence Interval for  
the Mean Using a  
Sample Size = 97

Of course, we generally do not know the population standard deviation prior to finding 
the sample size. A commonsense approach would be to take an initial sample to estimate 
the population standard deviation using the sample standard deviation s and determine the 
required sample size, collecting additional data if needed. If the halfwidth of the resulting 
confidence interval is within the required margin of error, then we clearly have achieved 
our goal. If not, we can use the new sample standard deviation s to determine a new  
sample size and collect additional data as needed. Note that if s changes significantly, we 
still might not have achieved the desired precision and might have to repeat the process. 
Usually, however, this will be unnecessary.

ExaMpLE 6.15 Sample Size Determination for a proportion

For the voting example we discussed, suppose that we 
wish to determine the number of voters to poll to ensure 
a sampling error of at most ±  2%. As we stated, when no 
information is available, the most conservative approach 
is to use 0.5 for the estimate of the true proportion. Using 
formula (6.7) with P = 0.5, the number of voters to poll 
to obtain a 95% confidence interval on the proportion of 

voters that choose a particular candidate with a precision 
of ±  0.02 or less is

 n # 1 zA/2 22  
P(1 − P)

E2

 = 11.96 2 2 
(0.5) (1 − 0.5)

0.022
= 2,401
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Key Terms

Central limit theorem
Cluster sampling
Confidence interval
Convenience sampling
Degrees of freedom (df)
Estimation
Estimators
Interval estimate
Judgment sampling
Level of confidence
Nonsampling error
Point estimate

Population frame
Prediction interval
Probability interval
Sample proportion
Sampling (statistical) error
Sampling distribution of the mean
Sampling plan
Simple random sampling
Standard error of the mean
Stratified sampling
Systematic (or periodic) sampling
tDistribution

problems and Exercises

 1. Your college or university wishes to obtain reliable 
information about student perceptions of administra
tive communication. Describe how to design a sam
pling plan for this situation based on your knowledge 
of the structure and organization of your college or 
university. How would you implement simple ran
dom sampling, stratified sampling, and cluster sam
pling for this study? What would be the pros and 
cons of using each of these methods?

 2. Number the rows in the Excel file Credit Risk Data 
to identify each record. The bank wants to sample 
from this database to conduct a moredetailed audit. 
Use the Excel Sampling tool to find a simple random 
sample of 20 unique records.

 3. Describe how to apply stratified sampling to sample 
from the Credit Risk Data file based on the differ
ent types of loans. Implement your process in Excel 
to choose a random sample consisting of 10% of the 
records for each type of loan.

 4. Find the current 30 stocks that comprise the Dow 
Jones Industrial Average. Set up an Excel spreadsheet 
for their names, market capitalization, and one or two 
other key financial statistics (search Yahoo! Finance 
or a similar Web source). Using the Excel Sampling 
tool, obtain a random sample of 5 stocks, compute 
point estimates for the mean and standard deviation, 
and compare them to the population parameters.

 5. Repeat the sampling experiment in Example 6.3 for 
sample sizes 50, 100, 250, and 500. Compare your 
results to the example and use the empirical rules to 

 analyze the sampling error. For each sample, also find 
the standard error of the mean using formula (6.1).

 6. Uncle’s Pizza is doing good business in Delhi due to 
its prompt home delivery system. It guarantees that 
the pizza will be delivered within 30 minutes from 
the time order was placed or the order is free. The 
time that it takes to deliver each order on time is 
maintained in the Pizza Time System. Fourteen ran
dom entries from the Pizza Time System are listed.

10.1 19.6 12.2 32.6 18.2 29.5 13.2

30 10.8 14.8 22.1 15.6 45.6 15.6

 a. Find the mean for the sample.

 b. Explain if this sample can be used to estimate the 
average time that it takes for Uncle’s Pizza to de
liver the pizza.

 7. A soft drink bottle filling machine is known to have 
a mean of 200 ml and a standard variation of 10 ml. 
The quality control manager took a random sample 
of the filled bottles and found the sample mean to be 
215 ml. She assumed the sample must not be repre
sentative. Do you agree with the conclusion made by 
the quality control manager? Justify your answer.

 8. A sample of 33 airline passengers found that the 
 average checkin time is 2.167.  Based on longterm 
data, the population standard deviation is known to 
be 0.48. Find a 95% confidence interval for the mean 
checkin time. Use the appropriate formula and verify 
your result using the Confidence Intervals workbook.
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 9. A sample of 20 international students attending an 
urban U.S. university found that the average amount 
budgeted for expenses per month was  $1612.50 with 
a standard deviation of $1179.64. Find a 95% confi
dence interval for the mean monthly expense budget 
of the population of international students. Use the 
appropriate formula and verify your result using the 
Confidence Intervals workbook.

 10. A sample of 25 individuals at a shopping mall found 
that the mean number of visits to a restaurant per 
week was 2.88 with a standard deviation of 1.59.  
Find a 99% confidence interval for the mean num
ber of restaurant visits. Use the appropriate formula 
and verify your result using the Confidence Intervals 
workbook.

 11. A bank sampled its customers to determine the 
proportion of customers who use their debit card 
at least once each month. A sample of 50 cus
tomers found that only 12 use their debit card 
monthly. Find 95% and 99% confidence intervals 
for the proportion of customers who use their debit 
card monthly. Use the appropriate formula and 
verify your result using the Confidence Intervals 
workbook.

 12. If, based on a sample size of 850, a political candidate 
finds that 458 people would vote for him in a two
person race, what is the 95% confidence interval for  
his expected proportion of the vote? Would he be 
confident of winning based on this poll? Use the ap
propriate formula and verify your result using the 
Confidence Intervals workbook.

 13. If, based on a sample size of 200, a political candi
date found that 125 people would vote for her in a 
twoperson race, what is the 99% confidence interval 
for her expected proportion of the vote? Would she 
be confident of winning based on this poll?

 14. Using the data in the Excel file Accounting Profes-
sionals, find and interpret 95% confidence intervals 
for the following:

 a. mean years of service

 b. proportion of employees who have a graduate 
degree

 15. Find the standard deviation of the total assets held by 
the bank in the Excel file Credit Risk Data.

 a. Treating the records in the database as a popula
tion, use your sample in Problem 2 and compute 

90%, 95%, and 99% confidence intervals for the 
total assets held in the bank by loan applicants 
using formula (6.2) and any appropriate Excel 
functions. Explain the differences as the level of 
confidence increases.

 b. How do your confidence intervals differ if you 
assume that the population standard deviation 
is not known but estimated using your sample 
data?

 16. The Excel file Restaurant Sales provides sample 
information on lunch, dinner, and delivery sales for 
a local Italian restaurant. Develop 95% confidence 
intervals for the mean of each of these variables, as 
well as total sales for weekdays and weekends. What 
conclusions can you reach?

 17. Using the data in the worksheet Consumer Transpor-
tation Survey, develop 95% confidence intervals for 
the following:

 a. the proportion of individuals who are satisfied 
with their vehicle

 b. the proportion of individuals who have at least 
one child

 18. The monthly sales of a mobile phone shop have been 
distributed with a standard deviation of $900. A 
statistical study of sales in the last nine months has 
found a confidence interval for the mean of monthly 
sales with extremes of $5663 and $6839.

 a. What were the average sales over the nine month 
period?

 b. What is the confidence level for this interval?

 19. Using data in the Excel file Colleges and Universi-
ties, find 95% confidence intervals for the median 
SAT for each of the two groups, liberal arts colleges 
and research universities. Based on these confidence 
intervals, does there appear to be a difference in the 
median SAT scores between the two groups?

 20. The Excel file Baseball Attendance shows the at
tendance in thousands at San Francisco Giants’ 
baseball games for the 10 years before the Oakland 
A’s moved to the Bay Area in 1968, as well as the 
combined attendance for both teams for the next 
11 years. Develop 95% confidence intervals for the 
mean attendance of each of the two groups. Based on 
these confidence intervals, would you conclude that 
attendance has changed after the move?
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 21. A random sample of 100 teenagers was surveyed, and 
the mean number of songs that they had downloaded 
from the iTunes store in the past month was 9.4 with 
the results considered accurate is within 1.4 (18 times 
out of 20).

 a. What percent of confidence level is the result?

 b. What is the margin of error?

 c. What is the confidence interval? Explain.

 22. A study of nonfatal occupational injuries in the 
United States found that about 31% of all injuries 
in the service sector involved the back. The Na
tional Institute for Occupational Safety and Health 
(NIOSH) recommended conducting a comprehensive 
ergonomics assessment of jobs and workstations. In 
response to this information, Mark Glassmeyer de
veloped a unique ergonomic handcart to help field 
service engineers be more productive and also to re
duce back injuries from lifting parts and equipment 
during service calls. Using a sample of 382 field ser
vice engineers who were provided with these carts, 
Mark collected the following data:

Year 1  
(without Cart)

Year 2  
(with Cart)

Average call time 8.27 hours 7.98 hours

Standard deviation 
call time

1.36 hours 1.21 hours

Proportion of back 
injuries

0.018 0.010

  Find 95% confidence intervals for the average call 
times and proportion of back injuries in each year. 
What conclusions would you reach based on your 
results?

 23. Using the data in the worksheet Consumer Trans-
portation Survey, develop 95% and 99% prediction 
intervals for the following:

 a. the hours per week that an individual will spend 
in his or her vehicle

 b. the number of miles driven per week

 24. The Excel file Restaurant Sales provides sample in
formation on lunch, dinner, and delivery sales for a 
local Italian restaurant. Develop 95% prediction inter
vals for the daily dollar sales of each of these variables 
and also for the total sales dollars on a weekend day.

 25. For the Excel file Credit Approval Decisions, find 
95% confidence and prediction intervals for the 
credit scores and revolving balance of homeowners 
and nonhomeowners. How do they compare?

 26. Trade associations, such as the United Dairy Farmers 
Association, frequently conduct surveys to identify 
characteristics of their membership. If this organiza
tion conducted a survey to estimate the annual per
capita consumption of milk and wanted to be 95% 
confident that the estimate was no more than {0.5 
gallon away from the actual average, what sample size 
is needed? Past data have indicated that the standard 
deviation of consumption is approximately 6 gallons.

 27. If a manufacturer conducted a survey among ran
domly selected target market households and wanted 
to be 95% confident that the difference between the  
sample estimate and the actual market share for its 
new product was no more than {2%, what sample 
size would be needed?

 28. After regular complaints of tire blowouts on the Ya
muna Expressway, in an automotive test conducted 
by the authorities, the average tire pressure in a sam
ple of 62 tires was found to be 24 pounds per square 
inch and the standard deviation was 2.1 pound per 
square inch.

 a. What is the estimated population standard devia
tion for this population?

 b. Calculate the estimated standard deviation error 
of the mean.

 29. A music company wants to know how the illegal 
downloading of music online affects CD sales. 600 
families are randomly chosen from various parts of 
a particular country and the number of songs that are 
downloaded in an hour are noted. The sample mean 
is 3947 with a sample standard deviation of 104.  
Determine a 90% confidence interval for this data. 
(Assume that the population variance is not known.)

Case: Drout advertising Research project

The background for this case was introduced in Chapter 1.  
This is a continuation of the case in Chapter 4. For this 
part of the case, compute confidence intervals for means 
and proportions, and analyze the sampling errors,  possibly 

suggesting larger sample sizes to obtain more precise es
timates. Write up your findings in a formal report or add 
your findings to the report you completed for the case in 
Chapter 4, depending on your instructor’s requirements.

M06_EVAN5448_02_SE_C06.indd   228 12/09/15   7:33 AM



 Chapter 6  Sampling and Estimation 229

Case: performance Lawn Equipment

In reviewing your previous reports, several questions 
came to Elizabeth Burke’s mind. Use point and interval 
estimates to help answer these questions.

 1. What proportion of customers rate the company with 
“top box” survey responses (which is defined as scale 
levels 4 and 5) on quality, ease of use, price, and ser
vice in the 2012 Customer Survey worksheet? How 
do these proportions differ by geographic region?

 2. What estimates, with reasonable assurance, can PLE 
give customers for response times to customer ser
vice calls?

 3. Engineering has collected data on alternative process 
costs for building transmissions in the worksheet 
Transmission Costs. Can you determine whether one 
of the proposed processes is better than the current 
process?

 4. What would be a confidence interval for an addi
tional sample of mower test performance as in the 
worksheet Mower Test?

 5. For the data in the worksheet Blade Weight, what 
is the sampling distribution of the mean, the overall 
mean, and the standard error of the mean? Is a nor
mal distribution an appropriate  assumption for the 
sampling distribution of the mean?

 6. How many blade weights must be measured to find 
a 95% confidence interval for the mean blade weight 
with a sampling error of at most 0.2? What if the 
sampling error is specified as 0.1?

Answer these questions and summarize your results in a 
formal report to Ms. Burke.
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Learning Objectives

After studying this chapter, you will be able to:

•	Explain the purpose of hypothesis testing.

•	Explain the difference between the null and alternative 
hypotheses.

•	List the steps in the hypothesis-testing procedure.

•	State the proper forms of hypotheses for one-sample 
hypothesis tests.

•	Correctly formulate hypotheses.

•	List the four possible outcome results from a 
hypothesis test.

•	Explain the difference between Type I and Type II 
errors.

•	State how to increase the power of a test.

•	Choose the proper test statistic for hypothesis tests 
involving means and proportions.

•	Explain how to draw a conclusion for one- and two-
tailed hypothesis tests.

•	Use p-values to draw conclusions about hypothesis 
tests.

•	State the proper forms of hypotheses for two-sample 
hypothesis tests.

•	Select and use Excel Analysis Toolpak procedures for 
two-sample hypothesis tests.

•	Explain the purpose of analysis of variance.

•	Use the Excel ANOVA tool to conduct an analysis of 
variance test.

•	List the assumptions of ANOVA.

•	Conduct and interpret the results of a chi-square test 
for independence.

Statistical Inference7Ch
ap

te
r
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Managers need to know if the decisions they have made or are plan-

ning to make are effective. For example, they might want to answer questions 

like the following: Did an advertising campaign increase sales? Will product 

placement in a grocery store make a difference? Did a new assembly method 

improve productivity or quality in a factory? Many applications of business 

 analytics involve seeking statistical evidence that decisions or process 

changes have met their objectives. Statistical inference focuses on drawing 

conclusions about populations from samples. Statistical inference includes 

estimation of population parameters and hypothesis testing, which involves 

drawing conclusions about the value of the parameters of one or more popu-

lations based on sample data. The fundamental statistical approach for doing 

this is called hypothesis testing. Hypothesis testing is a technique that allows 

you to draw valid statistical conclusions about the value of population param-

eters or differences among them.

Hypothesis Testing

Hypothesis testing involves drawing inferences about two contrasting propositions 
(each called a hypothesis) relating to the value of one or more population param-
eters, such as the mean, proportion, standard deviation, or variance. One of these 
propositions (called the null hypothesis) describes the existing theory or a belief that 
is accepted as valid unless strong statistical evidence exists to the contrary. The sec-
ond proposition (called the alternative hypothesis) is the complement of the null hy-
pothesis; it must be true if the null hypothesis is false. The null hypothesis is denoted 
by H0, and the alternative hypothesis is denoted by H1. Using sample data, we either

 1. reject the null hypothesis and conclude that the sample data provide sufficient 
statistical evidence to support the alternative hypothesis, or

 2. fail to reject the null hypothesis and conclude that the sample data does not 
support the alternative hypothesis.

If we fail to reject the null hypothesis, then we can only accept as valid the existing theory 
or belief, but we can never prove it.

ExaMpLE 7.1 a Legal analogy for Hypothesis Testing

A good analogy for hypothesis testing is the U.S. legal 
system. In our system of justice, a defendant is inno-
cent until proven guilty. The null hypothesis—our belief 
in the absence of any contradictory evidence—is not 
guilty, whereas the alternative hypothesis is guilty. If the 
evidence (sample data) strongly indicates that the de-

fendant is guilty, then we reject the assumption of inno-
cence. If the evidence is not sufficient to indicate guilt, 
then we cannot reject the not guilty hypothesis; however, 
we haven’t proven that the defendant is innocent. In real-
ity, you can only conclude that a defendant is guilty from 
the evidence; you still have not proven it!

M07_EVAN5448_02_SE_C07.indd   232 12/09/15   7:55 PM



 Chapter 7  Statistical Inference 233

Hypothesis-Testing procedure

Conducting a hypothesis test involves several steps:

 1. Identifying the population parameter of interest and formulating the hypoth-
eses to test

 2. Selecting a level of significance, which defines the risk of drawing an incor-
rect conclusion when the assumed hypothesis is actually true

 3. Determining a decision rule on which to base a conclusion
 4. Collecting data and calculating a test statistic
 5. Applying the decision rule to the test statistic and drawing a conclusion

We apply this procedure to two different types of hypothesis tests; the first involving a 
single population (called one-sample tests) and, later, tests involving more than one popu-
lation (multiple-sample tests).

One-Sample Hypothesis Tests

A one-sample hypothesis test is one that involves a single population parameter, such as the 
mean, proportion, standard deviation, and so on. To conduct the test, we use a single sample of 
data from the population. We may conduct three types of one-sample hypothesis tests:

H0: population parameter Ú constant vs. H1: population parameter 6 constant

H0: population parameter … constant vs.  H1: population parameter 7  constant

H0: population parameter = constant vs.  H1: population parameter ≠ constant

Notice that one-sample tests always compare a population parameter to some constant. 
For one-sample tests, the statements of the null hypotheses are expressed as either Ú, …,  
or =. It is not correct to formulate a null hypothesis using 7 , 6 , or ≠ .

How do we determine the proper form of the null and alternative hypotheses? 
 Hypothesis testing always assumes that  H0 is true and uses sample data to determine 
whether  H1 is more likely to be true. Statistically, we cannot “prove” that H0 is true; we 
can only fail to reject it. Thus, if we cannot reject the null hypothesis, we have shown 
only that there is insufficient evidence to conclude that the alternative hypothesis is true. 
However, rejecting the null hypothesis provides strong evidence (in a statistical sense) that 
the null hypothesis is not true and that the alternative hypothesis is true. Therefore, what  
we wish to provide evidence for statistically should be identified as the alternative 
hypothesis.

ExaMpLE 7.2 Formulating a One-Sample Test of Hypothesis

CadSoft, a producer of computer-aided design software 
for the aerospace industry receives numerous calls for 
technical support. In the past, the average response 
time has been at least 25 minutes. The company has 
upgraded its information systems and believes that this 

will help reduce response time. As a result, it believes 
that the average response time can be reduced to less 
than 25 minutes. The company collected a sample of  
44 response times in the Excel file CadSoft Technical 
Support Response Times (see Figure 7.1).
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Figure 7.1

Portion of Technical Support 
Response-Time Data

If the new information system makes a difference, then 
data should be able to confirm that the mean response 
time is less than 25 minutes; this defines the alternative  
hypothesis, H1. 

Therefore, the proper statements of the null and alter-
native hypotheses are:

H0: population mean response time # 25 minutes

 H1: population mean response time * 25 minutes

We would typically write this using the proper symbol 
for the population parameter. In this case, letting M be the 
mean response time, we would write:

 H0: M # 25

 H1: M * 25

Understanding potential Errors in Hypothesis Testing

We already know that sample data can show considerable variation; therefore, conclusions 
based on sample data may be wrong. Hypothesis testing can result in one of four different 
outcomes:

 1. The null hypothesis is actually true, and the test correctly fails to reject it.
 2. The null hypothesis is actually false, and the hypothesis test correctly reaches 

this conclusion.
 3. The null hypothesis is actually true, but the hypothesis test incorrectly rejects 

it (called Type I error).
 4. The null hypothesis is actually false, but the hypothesis test incorrectly fails to 

reject it (called Type II error).

The probability of making a Type I error, that is, P(rejecting H0 ∙H0 is true), is de-
noted by a and is called the level of significance. This defines the likelihood that you are 
willing to take in making the incorrect conclusion that the alternative hypothesis is true 
when, in fact, the null hypothesis is true. The value of a can be controlled by the decision 
maker and is selected before the test is conducted. Commonly used levels for a are 0.10, 
0.05, and 0.01.

The probability of correctly failing to reject the null hypothesis, or P(not rejecting 
H0 ∙H0 is true), is called the confidence coefficient and is calculated as 1 - a. For a con-
fidence coefficient of 0.95, we mean that we expect 95 out of 100 samples to support the 
null hypothesis rather than the alternate hypothesis when H0 is actually true.

Unfortunately, we cannot control the probability of a Type II error, P(not rejecting 
H0 ∙H0 is false), which is denoted by b. Unlike a, b cannot be specified in advance but 
depends on the true value of the (unknown) population parameter.
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ExaMpLE 7.3 How B Depends on the True population Mean

Consider the hypotheses in the CadSoft example:

 H0: mean response time # 25 minutes

 H1: mean response time * 25 minutes

If the true mean response from which the sample is drawn 
is, say, 15 minutes, we would expect to have a much smaller 
probability of incorrectly concluding that the null hypothesis 
is true than when the true mean response is 24 minutes, 
for example. If the true mean were 15 minutes, the sam-
ple mean would very likely be much less than 25, leading  

us to reject H0. If the true mean were 24 minutes, even 
though it is less than 25, we would have a much higher prob-
ability of failing to reject H0 because a higher likelihood ex-
ists that the sample mean would be greater than 25 due 
to sampling error. Thus, the farther away the true mean  
response time is from the hypothesized value, the smaller is B.  
Generally, as A decreases, B increases, so the decision 
maker must consider the trade-offs of these risks. So, if you 
choose a level of significance of 0.01 instead of 0.05 and keep 
the sample size constant, you would reduce the probability of 
a Type I error but increase the probability of a Type II error.

The value  1 - b is called the power of the test and represents the probability of 
correctly rejecting the null hypothesis when it is indeed false, or P(rejecting H0 ∙H0 is 
false). We would like the power of the test to be high (equivalently, we would like the 
probability of a Type II error to be low) to allow us to make a valid conclusion. The 
power of the test is sensitive to the sample size; small sample sizes generally result in 
a low value of 1 - b. The power of the test can be increased by taking larger samples, 
which enable us to detect small differences between the sample statistics and population 
parameters with more accuracy. However, a larger sample size incurs higher costs, giv-
ing new meaning to the adage, there is no such thing as a free lunch. This suggests that 
if you choose a small level of significance, you should try to compensate by having a 
large sample size when you conduct the test.

Selecting the Test Statistic

The next step is to collect sample data and use the data to draw a conclusion. The 
decision to reject or fail to reject a null hypothesis is based on computing a test sta-
tistic from the sample data. The test statistic used depends on the type of hypothesis 
test. Different types of hypothesis tests use different test statistics, and it is important 
to use the correct one. The proper test statistic often depends on certain assumptions 
about the population—for example, whether or not the standard deviation is known. 
The following formulas show two types of one-sample hypothesis tests for means and 
their associated test statistics. The value of m0 is the hypothesized value of the popula-
tion mean; that is, the “constant” in the hypothesis formulation.

Type of Test Test Statistic

One-sample test for mean, S known z =
x − M0

S ,1n
(7.1)

One-sample test for mean, S unknown t =
x − M0

s ,1n
(7.2)
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ExaMpLE 7.4 Computing the Test Statistic

For the CadSoft example, the average response time for 
the sample of 44 customers is x = 21.91 minutes and 
the sample standard deviation is s = 19.49. The hypoth-
esized mean is M0 = 25. You might wonder why we even 
have to test the hypothesis statistically when the sample 
average of 21.91 is clearly less than 25. The reason is be-
cause of sampling error. It is quite possible that the popu-
lation mean truly is 25 or more and that we were just lucky 
to draw a sample whose mean was smaller. Because of 
potential sampling error, it would be dangerous to con-
clude that the company was meeting its goal just by look-
ing at the sample mean without better statistical evidence.

Because we don’t know the value of the population 
standard deviation, the proper test statistic to use is for-
mula (7.2):

t =
x − M0

s ,1n

Therefore, the value of the test statistic is

t =
x − M0

s ,1n
=

21.91 − 25

19.49>144
=

− 3.09
2.938

= −1.05

Observe that the numerator is the distance between the 
sample mean (21.91) and the hypothesized value (25). By 
dividing by the standard error, the value of t represents 
the number of standard errors the sample mean is from 
the hypothesized value. In this case, the sample mean is 
1.05 standard errors below the hypothesized value of 25. 
This notion provides the fundamental basis for the hy-
pothesis test—if the sample mean is “too far” away from 
the hypothesized value, then the null hypothesis should 
be rejected.

Drawing a Conclusion

The conclusion to reject or fail to reject H0 is based on comparing the value of the test sta-
tistic to a “critical value” from the sampling distribution of the test statistic when the null 
hypothesis is true and the chosen level of significance, a. The sampling distribution of the 
test statistic is usually the normal distribution, t-distribution, or some other well-known 
distribution. For example, the sampling distribution of the z-test statistic in formula (7.1) 
is a standard normal distribution; the t-test statistic in formula (7.2) has a t-distribution 
with n - 1 degrees of freedom. For a one-tailed test, the critical value is the number of 
standard errors away from the hypothesized value for which the probability of exceeding 
the critical value is a. If a = 0.05, for example, then we are saying that there is only a 
5% chance that a sample mean will be that far away from the hypothesized value purely 
because of sampling error and should this occur, it suggests that the true population mean 
is different from what was hypothesized.

The critical value divides the sampling distribution into two parts, a rejection region 
and a nonrejection region. If the null hypothesis is false, it is more likely that the test sta-
tistic will fall into the rejection region. If it does, we reject the null hypothesis; otherwise, 
we fail to reject it. The rejection region is chosen so that the probability of the test statistic 
falling into it if H0 is true is the probability of a Type I error, a.

The rejection region occurs in the tails of the sampling distribution of the test statistic  
and depends on the structure of the hypothesis test, as shown in Figure 7.2. If the null 
hypothesis is structured as = and the alternative hypothesis as ≠ , then we would reject  
H0 if the test statistic is either significantly high or low. In this case, the rejection region 
will occur in both the upper and lower tail of the distribution [see Figure 7.2(a)]. This is 
called a two-tailed test of hypothesis. Because the probability that the test statistic falls 
into the rejection region, given that H0 is true, the combined area of both tails must be a; 
each tail has an area of a>2.
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The other types of hypothesis tests, which specify a direction of relationship (where 
H0 is either Ú or … ), are called one-tailed tests of hypothesis. In this case, the rejection 
region occurs only in one tail of the distribution [see Figure 7.2(b)]. Determining the cor-
rect tail of the distribution to use as the rejection region for a one-tailed test is easy. If H1  
is stated as 6 , the rejection region is in the lower tail; if H1 is stated as 7 , the rejection 
region is in the upper tail (just think of the inequality as an arrow pointing to the proper tail 
direction).

Two-tailed tests have both upper and lower critical values, whereas one-tailed tests 
have either a lower or upper critical value. For standard normal and t-distributions, which 
have a mean of zero, lower-tail critical values are negative; upper-tail critical values are 
positive.

Critical values make it easy to determine whether or not the test statistic falls in the 
rejection region of the proper sampling distribution. For example, for an upper one-tailed 
test, if the test statistic is greater than the critical value, the decision would be to reject the 
null hypothesis. Similarly, for a lower one-tailed test, if the test statistic is less than the 
critical value, we would reject the null hypothesis. For a two-tailed test, if the test statistic 
is either greater than the upper critical value or less than the lower critical value, the deci-
sion would be to reject the null hypothesis.

Lower critical value

(a) Two-tailed test

�/2

�

�/2

Upper critical value

�

Critical valueCritical value

Lower one-tailed test Upper one-tailed test

(b) One-tailed tests

Rejection Region

Rejection
Region

Rejection
Region

Figure 7.2

Illustration of Rejection 
Regions in Hypothesis 
Testing

ExaMpLE 7.5 Finding the Critical Value and Drawing a Conclusion

For the CadSoft example, if the level of significance is  
0.05, then the critical value for a one-tail test is the 
value of the t-distribution with n − 1 degrees of free-
dom that provides a tail area of 0.05, that is, tA,n−1.  
We may find t-values in Table A.2 in Appendix A at 

the end of the book or by using the Excel function  
T.INV(1 − A, n - 1). Thus, the critical value is t0.05,43 =
T.INV 10.95,43 2 = 1.68. Because the t-distribution is sym-
metric with a mean of 0 and this is a lower-tail test, we use 
the negative of this number (−  1.68) as the critical value.
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0�1.05�1.68
t

Rejection
Region

Figure 7.3

t-Test for Mean Response 
Time

ExaMpLE 7.6 Conducting a Two-Tailed Hypothesis Test for the Mean

Figure 7.4 shows a portion of data collected in a sur-
vey of 34 respondents by a travel agency (provided in 
the  Excel file Vacation Survey). Suppose that the travel 
agency wanted to target individuals who were approxi-
mately 35 years old. Thus, we wish to test whether the 
average age of respondents is equal to 35. The hypoth-
esis to test is

 H0: mean age = 35

 H1: mean age 3  35

The sample mean is computed to be 38.677, and the sam-
ple standard deviation is 7.858.

We use the t-test statistic:

t =
x − M0

s ,1n
=

38.677 − 35

7.858 ,234
= 2.73

In this case, the sample mean is 2.73 standard errors 
above the hypothesized mean of 35. However, because 
this is a two-tailed test, the rejection region and decision 
rule are different. For a level of significance A, we reject 
H0 if the t-test statistic falls either below the negative criti-
cal value, − tA>2,n−1, or above the positive critical value, 
tA>2,n−1. Using either Table A.2 in Appendix A at the back 
of this book or the Excel function T.INV.2T(.05,33) to cal-
culate t0.025,33, we obtain 2.0345. Thus, the critical values 
are ±2.0345. Because the t-test statistic does not fall be-
tween these values, we must reject the null  hypothesis 
that the average age is 35 (see Figure 7.5). 

By comparing the value of the t-test statistic with 
this critical value, we see that the test statistic does not 
fall below the critical value (i.e., − 1.05 + −1.68) and is 
not in the rejection region. Therefore, we cannot reject H0 
and cannot conclude that the mean response time has  

improved to less than 25 minutes. Figure 7.3 illustrates  
the conclusion we reached. Even though the sample mean 
is less than 25, we cannot conclude that the population 
mean response time is less than 25 because of the large 
amount of sampling error.

p-Values

An alternative approach to comparing a test statistic to a critical value in hypothesis test-
ing is to find the probability of obtaining a test statistic value equal to or more extreme 
than that obtained from the sample data when the null hypothesis is true. This probability  

Two-Tailed Test of Hypothesis for the Mean

Basically, all hypothesis tests are similar; you just have to ensure that you select the cor-
rect test statistic, critical value, and rejection region, depending on the type of hypothesis. 
The following example illustrates a two-tailed test of hypothesis for the mean.

M07_EVAN5448_02_SE_C07.indd   238 12/09/15   7:55 PM



 Chapter 7  Statistical Inference 239

One-Sample Tests for proportions

Many important business measures, such as market share or the fraction of deliveries re-
ceived on time, are expressed as proportions. We may conduct a test of hypothesis about 
a population proportion in a similar fashion as we did for means. The test statistic for a 
one-sample test for proportions is

 z =
pn - p02p011 - p02>n

 (7.3)

ExaMpLE 7.7 Using p-Values

For the CadSoft example, the t-test statistic for the hy-
pothesis test in the response-time example is − 1.05. 
If the true mean is really 25, then the p-value is the 
probability of obtaining a test statistic of − 1.05 or 
less (the area to the left of − 1.05 in Figure 7.3). We 
can calculate the p-value using the Excel function 
T.DIST 1−1.05,43,TRUE 2 = 0.1498. Because p = 0.1498 
is not less than A = 0.05, we do not reject H0. In other 
words, there is about a 15% chance that the test statis-
tic would be − 1.05 or smaller if the null hypothesis were 

true. This is a fairly high probability, so it would be dif-
ficult to conclude that the true mean is less than 25 and 
we could attribute the fact that the test statistic is less 
than the hypothesized value to sampling error alone and 
not reject the null hypothesis.

For the Vacation Survey two-tailed hypothesis 
test in Example 7.6, the p-value for this test is 0.010, 
which can also be computed by the Excel function 
T.DIST.2T(2.73,33); therefore, since 0.010 *  0.05, we 
reject H0.

Rejection Region

– 2.0345 0 2.0345 2.73

Figure 7.5

Illustration of a Two-Tailed 
Test for Example 7.6

Figure 7.4

Portion of Vacation Survey 
Data

is commonly called a p-value, or observed significance level. To draw a conclusion, 
compare the p-value to the chosen level of significance a; whenever p 6 a, reject the null 
hypothesis and otherwise fail to reject it. p-Values make it easy to draw conclusions about 
hypothesis tests. For a lower one-tailed test, the p-value is the probability to the left of the 
test statistic t in the t-distribution, and is found by T.DIST(t, n - 1, TRUE).  For an upper 
one-tailed test, the  p-value is the probability to the right of the test statistic t, and is found 
by 1 -  T.DIST(t, n - 1, TRUE). For a two-tailed test, the p-value is found by T.DIST.2T 
(t, n - 1), if t 7 0; if t 6 0, use T.DIST.2T(- t, n - 1).
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where p0 is the hypothesized value and np is the sample proportion. Similar to the test 
statistic for means, the z-test statistic shows the number of standard errors that the sample 
proportion is from the hypothesized value. The sampling distribution of this test statistic 
has a standard normal distribution. 

ExaMpLE 7.8 a One-Sample Test for the proportion

CadSoft also sampled 44 customers and asked them to 
rate the overall quality of the company’s software prod-
uct using a scale of

0—very poor
1—poor
2—good
3—very good
4—excellent

These data can be found in the Excel File CadSoft Prod-
uct Satisfaction Survey. The firm tracks customer satisfac-
tion of quality by measuring the proportion of responses 
in the top two categories. Over the past, this proportion 
has averaged about 75%. For these data, 35 of the 44 re-
sponses, or 79.5%, are in the top two categories. Is there 
sufficient evidence to conclude that this satisfaction mea-
sure has significantly exceeded 75% using a significance 
level of 0.05? Answering this question involves testing the 
hypotheses about the population proportion P:

H0: P " 0.75

H1: P + 0.75

This is an upper-tailed, one-tailed test. The test statistic is 
computed using formula (7.3):

z =
0.795 − 0.7520.75(1 − 0.75) ,44

= 0.69

In this case, the sample proportion of 0.795 is 0.69 
standard error above the hypothesized value of 0.75. 
Because this is an upper-tailed test, we reject H0 if the 
value of the test statistic is larger than the critical value. 
Because the sampling distribution of z is a standard  
normal, the critical value of z for a level of signifi-
cance of 0.05 is found by the Excel function NORM.S. 
INV 10.95 2 = 1.645. Because the test statistic does 
not exceed the critical value, we cannot reject the null 
 hypothesis that the proportion is no greater than 0.75. 
Thus, even though the sample proportion exceeds 0.75, 
we cannot conclude statistically that the customer sat-
isfaction ratings have significantly improved. We could 
attribute this to sampling error and the relatively small 
sample size. The p-value can be found by computing the 
area to the right of the test statistic in the standard nor-
mal distribution: 1 – NORM.S.DIST(0.69,TRUE) = 0.24. 
Note that the p-value is greater than the significance level 
of 0.05, leading to the same conclusion of not rejecting 
the null hypothesis.

For a lower-tailed test, the p-value would be computed by the area to the left of the 
test statistic; that is, NORM.S.DIST(z, TRUE). If we had a two-tailed test, the p-value 
is 2*NORM.S.DIST(z, TRUE) if z 6 0; otherwise, the p-value is 2*(1-NORM.S.DIST 
(-z, TRUE)) if z 7 0.  

Confidence Intervals and Hypothesis Tests

A close relationship exists between confidence intervals and hypothesis tests. For exam-
ple, suppose we construct a 95% confidence interval for the mean.  If we wish to test the 
hypotheses

H0: m = m0

H1: m ≠ m0 

at a 5% level of significance, we simply check whether the hypothesized value m0 falls 
within the confidence interval. If it does not, then we reject H0; if it does, then we cannot 
reject H0.
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For one-tailed tests, we need to examine on which side of the hypothesized value the 
confidence interval falls. For a lower-tailed test, if the confidence interval falls entirely 
below the hypothesized value, we reject the null hypothesis.  For an upper-tailed test, if 
the confidence interval falls entirely above the hypothesized value, we also reject the null 
hypothesis.

Two-Sample Hypothesis Tests

Many practical applications of hypothesis testing involve comparing two populations for 
differences in means, proportions, or other population parameters. Such tests can confirm 
differences between suppliers, performance at two different factory locations, new and old 
work methods or reward and recognition programs, and many other situations. Similar to 
one-sample tests, two-sample hypothesis tests for differences in population parameters 
have one of the following forms:

 1. Lower-tailed test H0: population parameter (1) -  population parameter (2)  
Ú  D0 vs. H1: population parameter (1) -  population parameter (2) 6 D0. This 
test seeks evidence that the difference between population parameter (1) and popu-
lation parameter (2) is less than some value, D0. When D0 = 0, the test simply 
seeks to conclude whether population parameter (1) is smaller than population 
parameter (2).

 2. Upper-tailed test H0: population parameter (1) -  population parameter (2)  
… D0 vs. H1: population parameter (1) -  population parameter (2) 7 D0.  
This test seeks evidence that the difference between population parameter (1) 
and population parameter (2) is greater than some value, D0.  When D0 = 0,  
the test simply seeks to conclude whether population parameter (1) is larger 
than population parameter (2).

 3. Two-tailed test H0: population parameter (1) -  population parameter (2) = D0 
vs. H1: population parameter (1) -  population parameter (2) ≠ D0. This test 
seeks evidence that the difference between the population parameters is equal 
to D0. When D0 = 0, we are seeking evidence that population parameter (1) 
differs from parameter (2).

In most applications D0 = 0, and we are simply seeking to compare the population 
parameters.  However, there are situations when we might want to determine if the para-
meters differ by some non-zero amount; for example, “job classification A makes at least 
$5,000 more than job classification B.”

The hypothesis-testing procedures are similar to those previously discussed in the 
sense of computing a test statistic and comparing it to a critical value. However, the test 
statistics for two-sample tests are more complicated than for one-sample tests and we will 
not delve into the mathematical details. Fortunately, Excel provides several tools for con-
ducting two-sample tests, and we will use these in our examples. Table 7.1 summarizes 
the Excel Analysis Toolpak procedures that we will use.

Two-Sample Tests for Differences in Means

In a two-sample test for differences in means, we always test hypotheses of the form

 H0: m1 - m2  {Ú, … , or =} 0

 H1: m1 - m2  {6, 7 , or ≠ } 0 (7.4)
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Figure 7.6

Portion of Purchase Orders 
Database with Lead Time 
Calculations

Selection of the proper test statistic and Excel procedure for a two-sample test for 
means depends on whether the population standard deviations are known, and if not, 
whether they are assumed to be equal.

 1. Population variance is known. In Excel, choose z-Test: Two-Sample for 
Means from the Data Analysis menu. This test uses a test statistic that is based 
on the standard normal distribution.

 2. Population variance is unknown and assumed unequal. From the Data Analy-
sis menu, choose t-test: Two-Sample Assuming Unequal Variances. The test 
statistic for this case has a t-distribution.

Table 7.1

Excel Analysis 
Toolpak Procedures 
for Two-Sample 
Hypothesis Tests

Type of Test Excel procedure

Two-sample test for means, S2 known Excel z-test: Two-sample for means

Two-sample test for means, S2 unknown, 
assumed unequal

Excel t-test: Two-sample assuming  
unequal variances

Two-sample test for means, S2 unknown, 
assumed equal

Excel t-test: Two-sample assuming 
equal variances

Paired two-sample test for means Excel t-test: Paired two-sample for 
means

Two-sample test for equality of variances Excel F-test Two-sample for variances

ExaMpLE 7.9 Comparing Supplier performance

The last two columns in the Purchase Orders data file 
provide the order date and arrival date of all orders 
placed with each supplier. The time between placement 
of an order and its arrival is commonly called the lead 
time. We may compute the lead time by subtracting 
the Excel date function values from each other (Arrival  
Date − Order Date), as shown in Figure 7.6.

Figure 7.7 shows a pivot table for the average lead 
time for each supplier. Purchasing managers have 
noted that they order many of the same types of items 
from Alum Sheeting and Durrable Products and are 
considering dropping Alum Sheeting from its supplier 
base if its lead time is significantly longer than that of 

 Durrable Products. Therefore, they would like to test the 
hypothesis

H0 : M1 − M2 " 0

H1 : M1 − M2 + 0

where M1 = mean lead time for Alum Sheeting and 
M2 = mean lead time for Durrable Products. 

Rejecting the null hypothesis suggests that the aver-
age lead time for Alum Sheeting is statistically longer than 
Durrable Products. However, if we cannot reject the null 
hypothesis, then even though the mean lead time for Alum 
Sheeting is longer, the difference would most likely be due 
to sampling error, and we could not conclude that there is 
a statistically significant difference.
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 3. Population variance unknown but assumed equal.  In Excel, choose t-test: Two-
Sample Assuming Equal Variances. The test statistic also has a t-distribution, 
but it is different from the unequal variance case.

These tools calculate the test statistic, the p-value for both a one-tail and two-tail test, and 
the critical values for one-tail and two-tail tests. For the z-test with known population vari-
ances, these are called z, P1Z … z2 one-tail or P1Z … z2 two-tail, and z Critical one-tail 
or z Critical two-tail, respectively. For the t-tests, these are called t Stat, P1T … t2 one-tail 
or P1T … t2 two-tail, and t Critical one-tail or t Critical two-tail, respectively.

Caution: You must be very careful in interpreting the output information from these 
Excel tools and apply the following rules:

 1.  If the test statistic is negative, the one-tailed p-value is the correct p-value for 
a lower-tail test; however, for an upper-tail test, you must subtract this number 
from 1.0 to get the correct p-value.

 2.  If the test statistic is nonnegative (positive or zero), then the p-value in the 
output is the correct p-value for an upper-tail test; but for a lower-tail test, you 
must subtract this number from 1.0 to get the correct p-value.

 3. For a lower-tail test, you must change the sign of the one-tailed critical value.

Only rarely are the population variances known; also, it is often difficult to jus-
tify the assumption that the variances of each population are equal. Therefore, in most 
practical situations, we use the t-test: Two-Sample Assuming Unequal Variances. This 
procedure also works well with small sample sizes if the populations are approximately 
normal. It is recommended that the size of each sample be approximately the same and 
total 20 or more. If the populations are highly skewed, then larger sample sizes are 
recommended.

Figure 7.7

Pivot Table for Average 
Supplier Lead Time

ExaMpLE 7.10 Testing the Hypotheses for Supplier Lead-Time performance

To conduct the hypothesis test for comparing the lead 
times for Alum Sheeting and Durrable Products, first sort 
the data by supplier and then select t-test: Two-Sample  
Assuming Unequal Variances from the Data  Analysis 
menu. The dialog is shown in Figure 7.8. The dialog 
prompts you for the range of the data for each variable, 
hypothesized mean difference, whether the ranges have  
labels, and the level of significance A. If you leave the box 
 Hypothesized Mean Difference blank or enter zero, the test 

is for equality of means. However, the tool allows you to  
specify a value D0 to test the hypothesis H0: M1 − M2 = D0 
if you want to test whether the population means have 
a  certain distance between them. In this example, the 
 Variable 1 range defines the lead times for Alum Sheeting, 
and the Variable 2 range for Durrable Products.

Figure 7.9 shows the results from the tool. The 
tool provides information for both one-tailed and two-
tailed tests. Because this is a one-tailed test, we use the  

M07_EVAN5448_02_SE_C07.indd   243 12/09/15   7:55 PM



244 Chapter 7  Statistical Inference

Two-Sample Test for Means with paired Samples

In the previous example for testing differences in the mean supplier lead times, we used 
independent samples; that is, the orders in each supplier’s sample were not related to each 
other. In many situations, data from two samples are naturally paired or matched. For ex-
ample, suppose that a sample of assembly line workers perform a task using two different 
types of work methods, and the plant manager wants to determine if any differences exist 
between the two methods. In collecting the data, each worker will have performed the task 
using each method. Had we used independent samples, we would have randomly selected 
two different groups of employees and assigned one work method to one group and the alter-
native method to the second group. Each worker would have performed the task using only 
one of the methods. As another example, suppose that we wish to compare retail prices of 
grocery items between two competing grocery stores. It makes little sense to compare differ-
ent samples of items from each store. Instead, we would select a sample of grocery items and 

Figure 7.9

Results for Two-Sample Test 
for Lead-Time Performance

highlighted information in Figure 7.9 to draw our conclu-
sions. For this example, t Stat is positive and we have an 
upper-tailed test; therefore using the rules stated earlier, 
the p-value is 0.00166. Based on this alone, we reject the 
null hypothesis and must conclude that Alum Sheeting 
has a statistically longer average lead time than Durrable 

 Products. We may draw the same conclusion by compar-
ing the value of t Stat with the critical value t Critical one-
tail. Being an upper-tail test, the value of t Critical one-tail 
is 1.812. Comparing this with the value of t Stat, we would 
 reject H0 only if t Stat + t Critical one @ tail. Since t Stat is 
greater than t Critical one-tail, we reject the null hypothesis.

Figure 7.8

Dialog for Two-Sample  
t-Test, Sigma Unknown
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Figure 7.10

Portion of Excel File Pile 
Foundation

ExaMpLE 7.11 Using the paired Two-Sample Test for Means

The Excel file Pile Foundation contains the estimates 
used in a bid and actual auger-cast pile lengths that 
engineers  ultimately had to use for a foundation- 
engineering project. The contractor’s past experience 
suggested that the bid information was generally accu-
rate, so the average of the paired  differences  between 
the actual pile lengths and estimated lengths should 
be close to zero. After this project was completed, the 
contractor found that the average difference between 
the actual lengths and the estimated lengths was 6.38. 
Could the contractor conclude that the bid information 
was poor?

Figure 7.10 shows a portion of the data and the Excel 
dialog for the paired two-sample test. Figure 7.11 shows the 
output from the Excel tool using a significance level of 0.05, 
where Variable 1 is the estimated lengths, and Variable 2 is 
the actual lengths. This is a two-tailed test, so in Figure 7.11 
we interpret the results using only the two-tail  information 
that is highlighted. The critical values are ±1.968, and 
 because t Stat is much smaller than the lower critical value, 
we must reject the null hypothesis and conclude that the 
mean of the differences between the estimates and the 
 actual pile lengths is statistically significant. Note that  
the p-value is essentially zero, verifying this conclusion.

find the price charged for the same items by each store. In this case, the samples are paired 
because each item would have a price from each of the two stores.

When paired samples are used, a paired t-test is more accurate than assuming that the 
data come from independent populations. The null hypothesis we test revolves around the 
mean difference (mD) between the paired samples; that is

H0: mD 5Ú , … , or =6  0

H1: mD 56 , 7 , or ≠ } 0.

The test uses the average difference between the paired data and the standard deviation of 
the differences similar to a one-sample test.

Excel has a Data Analysis tool, t-Test: Paired Two-Sample for Means for conducting 
this type of test. In the dialog, you need to enter only the variable ranges and hypothesized 
mean difference.

Test for Equality of Variances

Understanding variation in business processes is very important, as we have stated before. 
For instance, does one location or group of employees show higher variability than oth-
ers? We can test for equality of variances between two samples using a new type of test, 
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the F-test. To use this test, we must assume that both samples are drawn from normal 
populations. The hypotheses we test are

 H0: s1
2 - s2

2 = 0

 H1: s1
2 - s2

2 ≠ 0 (7.5)

To test these hypotheses, we collect samples of n1 observations from population 1 and 
n2 observations from population 2. The test uses an F-test statistic, which is the ratio of the 
variances of the two samples:

 F =
s2

 1

s2
2
 (7.6)

The sampling distribution of this statistic is called the F-distribution. Similar to the t-
distribution, it is characterized by degrees of freedom; however, the F-distribution has two 
degrees of freedom, one associated with the numerator of the F-statistic, n1 - 1, and one 
associated with the denominator of the F-statistic, n2 - 1. Table A.4 in Appendix A at the 
end of the book provides only upper-tail critical values, and the distribution is not sym-
metric, as is the standard normal or the t-distribution. Therefore, although the hypothesis 
test is really a two-tailed test, we will simplify it as a one-tailed test to make it easy to use 
tables of the F-distribution and interpret the results of the Excel tool that we will use. We 
do this by ensuring that when we compute F, we take the ratio of the larger sample vari-
ance to the smaller sample variance.

If the variances differ significantly from each other, we would expect F to be much 
larger than 1; the closer F is to 1, the more likely it is that the variances are the same. 
Therefore, we need only to compare F to the upper-tail critical value. Hence, for a level 
of significance a, we find the critical value Fa>2,df1,df2 of the F-distribution, and then we 
reject the null hypothesis if the F-test statistic exceeds the critical value. Note that we are 
using a>2 to find the critical value, not a. This is because we are using only the upper tail 
information on which to base our conclusion.

ExaMpLE 7.12 applying the F-Test for Equality of Variances

To illustrate the F-test, suppose that we wish to deter-
mine whether the variance of lead times is the same for 
Alum Sheeting and Durrable Products in the Purchase 
 Orders data. The F-test can be applied using the Excel 

Data Analysis tool F-test for Equality of Variances. The dia-
log prompts you to enter the range of the sample data for 
each variable. As we noted, you should ensure that the first 
variable has the larger variance; this might require you to  

Figure 7.11

Excel Output for Paired  
Two-Sample Test for Means
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The F-test for equality of variances is often used before testing for the difference in 
means so that the proper test (population variance is unknown and assumed unequal or 
population variance is unknown and assumed equal, which we discussed earlier in this 
chapter) is selected.

analysis of Variance (aNOVa)

To this point, we have discussed hypothesis tests that compare a population parameter to 
a constant value or that compare the means of two different populations. Often, we would 
like to compare the means of several different groups to determine if all are equal or if any 
are significantly different from the rest.

 calculate the variances before you use the tool. In this case, 
the variance of the lead times for Alum Sheeting is larger 
than the variance for Durrable Products (see Figure 7.9), so 
this is assigned to Variable 1. Note also that if we choose 
A = 0.05, we must enter 0.025 for the level of significance 
in the Excel dialog. The results are shown in Figure 7.12.

The value of the F-statistic, F, is 3.467. We compare 
this with the upper-tail critical value, F Critical one-tail, 

which is 3.607. Because F * F Critical one-tail, we cannot 
reject the null hypothesis and conclude that the variances  
are not significantly different from each other. Note that the 
p-value is P 1F*= f 2  one tail = 0.0286. Although the level 
of significance is 0.05, remember that we must compare 
this to A>2 = 0.025 because we are using only upper-tail 
information.

ExaMpLE 7.13 Differences in Insurance Survey Data

In the Excel data file Insurance Survey, we might be in-
terested in whether any significant differences exist in 
satisfaction among individuals with different levels of 

education. We could sort the data by educational level 
and then create a table similar to the following.

College Graduate Graduate Degree Some College

5 3 4

3 4 1

5 5 4

3 5 2

3 5 3

3 4 4

3 5 4

4 5

2

Average 3.444 4.500 3.143

Count 9 8 7

Figure 7.12

Results for Two-Sample  
F-Test for Equality of  
Variances
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In statistical terminology, the variable of interest is called a factor. In this example, 
the factor is the educational level, and we have three categorical levels of this factor, col-
lege graduate, graduate degree, and some college. Thus, it would appear that we will have 
to perform three different pairwise tests to establish whether any significant differences 
exist among them. As the number of factor levels increases, you can easily see that the 
number of pairwise tests grows large very quickly.

Fortunately, other statistical tools exist that eliminate the need for such a tedious ap-
proach. Analysis of variance (ANOVA) is one of them. The null hypothesis for ANOVA 
is that the population means of all groups are equal; the alternative hypothesis is that at 
least one mean differs from the rest:

H0 : m1 = m2 = g = mm

H1 : at least one mean is different from the others

ANOVA derives its name from the fact that we are analyzing variances in the data; 
essentially, ANOVA computes a measure of the variance between the means of each 
group and a measure of the variance within the groups and examines a test statistic that 
is the ratio of these measures. This test statistic can be shown to have an F-distribution 
(similar to the test for equality of variances). If the F-statistic is large enough based on 
the level of significance chosen and exceeds a critical value, we would reject the null hy-
pothesis. Excel provides a Data Analysis tool, ANOVA: Single Factor to conduct analysis 
of variance.

ExaMpLE 7.14 applying the Excel aNOVa Tool

To test the null hypothesis that the mean satisfaction 
for all educational levels in the Excel file Insurance Sur-
vey are equal against the alternative hypothesis that at 
least one mean is different, select ANOVA: Single Factor 
from the Data Analysis options. First, you must set up 
the worksheet so that the data you wish to use are dis-
played in contiguous columns as shown in Example 7.13. 
In the dialog shown in Figure 7.13, specify the input range 
of the data (which must be in contiguous columns) and 
whether it is stored in rows or columns (i.e., whether each 
factor level or group is a row or column in the range). 
The sample size for each factor level need not be the 
same, but the input range must be a rectangular region 
that  contains all data. You must also specify the level of 
 significance (A).

The results for this example are given in Figure 7.14. 
The output report begins with a summary report of basic 
statistics for each group. The ANOVA section reports the de-
tails of the hypothesis test. You needn’t worry about all the 
mathematical details. The important information to interpret 
the test is given in the columns labeled F (the F-test statis-
tic), P-value (the p-value for the test), and F crit (the critical 
value from the F-distribution). In this  example, F = 3.92, 
and the critical value from the F-distribution is 3.4668. Here 
F + F crit; therefore, we must reject the null hypothesis 
and conclude that there are significant differences in the 
means of the groups; that is, the mean satisfaction is not 
the same among the three educational levels. Alternatively, 
we see that the p-value is smaller than the chosen level of 
significance, 0.05, leading to the same conclusion.

Although the average satisfaction for each group is some-
what different and it appears that the mean satisfaction 
of individuals with a graduate degree is higher, we cannot 

tell conclusively whether or not these differences are sig-
nificant because of sampling error.
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Figure 7.14

ANOVA Results for  
Insurance Survey Data

Figure 7.13

ANOVA Single Factor Dialog

Although ANOVA can identify a difference among the means of multiple popula-
tions, it cannot determine which means are different from the rest. To do this, we may use 
the Tukey-Kramer multiple comparison procedure. Unfortunately, Excel does not provide 
this tool, but it may be found in other statistical software.

assumptions of aNOVa

ANOVA requires assumptions that the m groups or factor levels being studied represent 
populations whose outcome measures

 1. are randomly and independently obtained,
 2. are normally distributed, and
 3. have equal variances.

If these assumptions are violated, then the level of significance and the power of the test 
can be affected. Usually, the first assumption is easily validated when random samples 
are chosen for the data. ANOVA is fairly robust to departures from normality, so in most 
cases this isn’t a serious issue. If sample sizes are equal, violation of the third assumption 
does not have serious effects on the statistical conclusions; however, with unequal sample 
sizes, it can.

When the assumptions underlying ANOVA are violated, you may use a nonparamet-
ric test that does not require these assumptions; we refer you to more comprehensive texts 
on statistics for further information and examples.
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Finally, we wish to point out that students often use ANOVA to compare the equality 
of means of exactly two populations. It is important to realize that by doing this, you are 
making the assumption that the populations have equal variances (assumption 3). Thus, 
you will find that the p-values for both ANOVA and the t-Test: Two-Sample Assuming 
Equal Variances will be the same and lead to the same conclusion. However, if the vari-
ances are unequal as is generally the case with sample data, ANOVA may lead to an erro-
neous conclusion. We recommend that you do not use ANOVA for comparing the means 
of two populations, but instead use the appropriate t-test that assumes unequal variances.

Chi-Square Test for Independence

A common problem in business is to determine whether two categorical variables are 
independent. We introduced the concept of independent events in Chapter 5. In the en-
ergy drink survey example (Example 5.9), we used conditional probabilities to determine 
whether brand preference was independent of gender. However, with sample data, sam-
pling error can make it difficult to properly assess the independence of categorical vari-
ables. We would never expect the joint probabilities to be exactly the same as the product 
of the marginal probabilities because of sampling error even if the two variables are sta-
tistically independent. Testing for independence is important in marketing applications.

ExaMpLE 7.15 Independence and Marketing Strategy

Figure 7.15 shows a portion of the sample data used in 
Chapter 5 for brand preferences of energy drinks (Excel 
file Energy Drink Survey) and the cross-tabulation of the 
results. A key marketing question is whether the propor-
tion of males who prefer a particular brand is no differ-
ent from the proportion of females. For instance, of the 
63 male students, 25 (40%) prefer brand 1. If gender and 
brand preference are indeed independent, we would ex-
pect that about the same proportion of the sample of 

female students would also prefer brand 1. In actuality, 
only 9 of 37 (24%) prefer brand 1. However, we do not 
know whether this is simply due to sampling error or rep-
resents a significant difference. Knowing whether gender 
and brand preference are independent can help mar-
keting personnel better target advertising campaigns. If 
they are not independent, then advertising should be tar-
geted differently to males and females, whereas if they 
are independent, it would not matter.

We can test for independence by using a hypothesis test called the chi-square test for 
independence. The chi-square test for independence tests the following hypotheses:

H0: the two categorical variables are independent

H1: the two categorical variables are dependent

The chi-square test is an example of a nonparametric test; that is, one that does not 
depend on restrictive statistical assumptions, as ANOVA does. This makes it a widely 
applicable and popular tool for understanding relationships among categorical data. The 
first step in the procedure is to compute the expected frequency in each cell of the cross-
tabulation if the two variables are independent. This is easily done using the following:

expected frequency in row i and column j =
(grand total row i)(grand total column j)

total number of observations

 (7.7)
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Next, we compute a test statistic, called a chi-square statistic, which is the sum of  
the squares of the differences between observed frequency, fo, and expected frequency, fe, di-
vided by the expected frequency in each cell:

 x2 = a
 

 

1 fo - fe22

fe
 (7.8)

The closer the observed frequencies are to the expected frequencies, the smaller will be 
the value of the chi-square statistic. The sampling distribution of x2 is a special distribu-
tion called the chi-square 1x22 distribution. The chi-square distribution is characterized 
by degrees of freedom, similar to the t-distribution. Table A.3 in Appendix A in the back 
of this book provides critical values of the chi-square distribution for selected values of a.  
We compare the chi-square statistic for a specified level of significance a to the criti-
cal value from a chi-square distribution with 1r - 121c - 12 degrees of freedom, where 
r and c are the number of rows and columns in the cross-tabulation table, respectively. 
The Excel function CHISQ.INV.RT(probability, deg_ freedom) returns the value of x2 
that has a right-tail area equal to probability for a specified degree of freedom. By set-
ting probability equal to the level of significance, we can obtain the critical value for the 
hypothesis test. If the test statistic exceeds the critical value for a specified level of sig-
nificance, we reject H0. The Excel function CHISQ.TEST(actual_range, expected_range) 
computes the p-value for the chi-square test.

Figure 7.16

Expected Frequencies for 
the Chi-Square Test

ExaMpLE 7.16 Computing Expected Frequencies

For the Energy Drink Survey data, we may compute the ex-
pected frequencies using the data from the cross-tabulation 
and formula (7.7). For example, the expected frequency of 
females who prefer brand 1 is (37) (34) ,100 = 12.58. This 

can easily be  implemented in Excel. Figure 7.16 shows the 
results (see the Excel file Chi-Square Test). The formula in 
cell F11, for example, is =$I5*F$7/$I$7, which can be cop-
ied to the other cells to complete the calculations.

Figure 7.15

Portion of Energy 
Drink Survey and 
Cross-Tabulation
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Figure 7.17

Excel Implementation of  
Chi-Square Test

ExaMpLE 7.17 Conducting the Chi-Square Test

For the Energy Drink Survey data, Figure 7.17 shows 
the calculations of the chi-square statistic using 
formula (7.8). For example, the formula in cell F17  
is = (F5 − F11)2 ,F11, which can be copied to the other 
cells. The grand total in the lower right cell is the value 
of x2. In this case, the chi-square test statistic is 6.4924. 
Since the cross-tabulation has r = 2 rows and c = 3 
columns, we have (2 − 1) (3 − 1) = 2 degrees of free-
dom for the chi-square distribution.  Using A = 0.05, 
the Excel function CHISQ.INV.RT(0.05,2) returns the 

critical value 5.99146. Because the test statistic ex-
ceeds the critical value, we reject the null hypothesis 
that the two categorical variables are independent.

Alternatively, we could simply use the CHISQ.TEST 
function to find the p-value for the test and base our con-
clusion on that without computing the chi-square statistic. 
For this example, the function CHISQ.TEST(F6:H7,F12:H13) 
returns the p-value of 0.0389, which is less than A = 0.05; 
therefore, we reject the null hypothesis.

Cautions in Using the Chi-Square Test

First, when using PivotTables to construct a cross-tabulation and implement the chi-square 
test in Excel similar to Figure 7.17, be extremely cautious of blank cells in the PivotTable. 
Blank cells will not be counted in the chi-square calculations and will lead to errors. If 
you have blank cells in the PivotTable, simply replace them by zeros, or right-click in 
the  PivotTable, choose PivotTable Options, and enter 0 in the field for the checkbox For 
empty cells show. 

Second, the chi-square test assumes adequate expected cell frequencies. A rule of 
thumb is that there be no more than 20% of cells with expected frequencies smaller 
than 5, and no expected frequencies of zero. More advanced statistical procedures ex-
ist to handle this, but you might consider aggregating some of the rows or columns in 
a logical fashion to enforce this assumption. This, of course, results in fewer rows or 
columns.
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1Based on Francisco, Endara M. “Help Desk Improves Service and Saves Money with Six Sigma,” American Society for Quality, http://asq.org 
/economic-case/markets/pdf/help-desk-24490.pdf, accessed 8/19/11.

Key Terms

Alternative hypothesis
Analysis of variance (ANOVA)
Chi-square distribution
Chi-square statistic
Confidence coefficient
Factor
Hypothesis
Hypothesis testing
Level of significance

Null hypothesis
One-sample hypothesis test
One-tailed test of hypothesis
p-Value (observed significance level)
Power of the test
Statistical inference
Two-tailed test of hypothesis
Type I error
Type II error

Schlumberger is an international oilfield-services pro-
vider headquartered in Houston, Texas. Through an out-
sourcing contract, they supply help-desk services for a 
global telecom company that offers wireline communi-
cations and integrated telecom services to more than 
2 million cellular subscribers. The help desk, located 
in Ecuador, faced increasing customer complaints and 
losses in dollars and cycle times. The company drew 
upon the analytics capability of one of the help-desk 
managers to investigate and solve the problem. The 
data showed that the average solution time for issues 
reported to the help desk was 9.75 hours. The company 
set a goal to reduce the average solution time by 50%. 
In addition, the number of issues reported to the help 
desk had reached an average of 30,000 per month. Re-
ducing the total number of issues reported to the help 
desk would allow the company to address those issues 
that hadn’t been resolved because of a lack of time, 
and to reduce the number of abandoned calls. They set 
a goal to identify preventable issues so that custom-
ers would not have to contact the help desk in the first 
place, and set a target of 15,000 issues.

As part of their analysis, they observed that the av-
erage solution time for help-desk technicians working 
at the call center seemed to be lower than the average 
for technicians working on site with clients. They con-
ducted a hypothesis test structured around the ques-
tion: Is there a difference between having help desk 
employees working at an off-site facility rather than on 
site within the client’s main office? The null hypothesis 
was that there was no significant difference; the alterna-
tive hypothesis was that there was a significant differ-
ence. Using a two-sample t-test to assess whether the 

call center and the help desk are statistically different 
from each other, they found no statistically significant 
advantage in keeping help-desk employees working 
at the call center. As a result, they moved help-desk 
agents to the client’s main office area. Using a variety 
of other analytical techniques, they were able to make 
changes to their process, resulting in the following:

•	a decrease in the number of help-desk issues 
of 32%

•	improved capability to meet the target of 
15,000 total issues

•	a reduction in the average desktop solution 
time from 9.75 hours to 1 hour, an  
improvement of 89.5%

•	a reduction in the call-abandonment rate from 
44% to 26%

•	a reduction of 69% in help-desk operating costs 

analytics in practice:  Using Hypothesis Tests and Business analytics  
in a Help Desk Service Improvement project1
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problems and Exercises

For all hypothesis tests, assume that the level of signifi-
cance is 0.05 unless otherwise stated.

 1. Create an Excel workbook with worksheet templates 
(similar to the Excel workbook Confidence Intervals) 
for one-sample hypothesis tests for means and propor-
tions. Apply your templates to the example problems in 
this chapter.  (For subsequent problems, you should use 
the formulas in this chapter to perform the calculations, 
and use this template only to verify your results!)

 2. A company is considering two different campaigns, 
A and B, for the promotion of their product. Two 
tests are conducted in two market areas with identi-
cal consumer characteristics, and in a random sample 
of 60 customers who saw campaign A, 18 tried the 
product. In a random sample of 100 customers who 
saw campaign B, 22 tried the product. What conclu-
sion can management reach? (Assume that the popu-
lation variance is not known.)

 3. A management institute checked the past records of ap-
plicants and the mean score calculated was 350. The 
administration is interested to know whether the quality 
of new applicants has changed or not. From the recent 
scores of 100 applicants, the mean is 365 with a standard 
deviation of 38. Does this data provide statistical evi-
dence that the quality of recent applicants has improved?

 4. A retailer believes that its new advertising strategy 
will increase sales. Previously, the mean spending in 
15 categories of consumer items in both the 18–34 
and 35+ age groups was $70.00.

 a. Formulate a hypothesis test to determine if the 
mean spending in these categories has statistically 
increased.

 b. After the new advertising campaign was 
launched, a marketing study found that the mean 
spending for 300 respondents in the 18–34 age 
group was $75.86, with a standard deviation of 
$50.90. Is there sufficient evidence to conclude 
that the advertising strategy significantly in-
creased sales in this age group?

 c. For 700 respondents in the 35 + age group, the 
mean and standard deviation were $68.53 and 
$45.29, respectively. Is there sufficient evidence 
to conclude that the advertising strategy signifi-
cantly increased sales in this age group?

 5. A financial advisor believes that the proportion of in-
vestors who are risk–averse (i.e., try to avoid risk in 
their investment decisions) is at least 0.7.  A survey of 
32 investors found that 20 of them were risk-averse. 

Formulate and test the appropriate hypotheses to de-
termine whether his belief is valid.

 6. Metropolitan Press hypothesizes that the average life of 
its largest Web press is 14,500 hours. They know that the 
standard deviation of press life is 2,100 hours. From a 
sample of 25 presses, the company find sample mean 
of 13,000 hours. At a 0.01 significance level, should the 
company conclude that the average life of the presses is 
less than the hypothesized 14,500 hours? 

 7. Ice Cream Manufacture is to produce a new ice 
cream flavor. The company‘s marketing research de-
partment surveyed 6,000 families and 335 of them 
showed interest in purchasing the new flavor. A simi-
lar study made two year ago showed that 5% of the 
families would purchase the flavor. What should the 
company conclude regarding the new flavor?

 8. Call centers typically have high turnover. The director 
of human resources for a large bank has compiled data 
on about 70 former employees at one of the bank’s call 
centers in the Excel file Call Center Data. In writing an 
article about call center working conditions, a reporter 
has claimed that the average tenure is no more than 2 
years. Formulate and test a hypothesis using these data 
to determine if this claim can be disputed.

 9. The manager of a store claims that 60% of the shoppers 
entering the store leave without making a purchase. Out 
of a sample of 50, it is found that 35 shoppers left with-
out buying. Is the result consistent with the claim?

 10. A sample of 400 athletes is found to have mean height 
of 171.38 cm. Can we call it a sample from a large popu-
lation of mean height 171.17 and standard deviation of 
3.30 cm?

 11. The State of Ohio Department of Education has a 
mandated ninth-grade proficiency test that covers 
writing, reading, mathematics, citizenship (social 
studies), and science. The Excel file Ohio Education 
Performance provides data on success rates (defined 
as the percent of students passing) in school districts 
in the greater Cincinnati metropolitan area along with 
state averages. Test null hypotheses that the average 
scores in the Cincinnati area are equal to the state av-
erages in each test and also for the composite score.

 12. Formulate and test hypotheses to determine if statis-
tical evidence suggests that the graduation rate for 
(1) top liberal arts colleges or (2) research universi-
ties in the sample Colleges and Universities exceeds 
90%. Do the data support a conclusion that the grad-
uation rates exceed 85%? Would your conclusions 
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change if the level of significance was 0.01 instead 
of 0.05?

 13. The Excel file Sales Data provides data on a sample 
of customers. An industry trade publication stated 
that the average profit per customer for this industry 
was at least $4,500. Using a test of hypothesis, do the 
data support this claim or not? 

 14. The Excel file Room Inspection provides data for 
100 room inspections at each of 25 hotels in a ma-
jor chain. Management would like the proportion of 
nonconforming rooms to be less than 2%. Test an ap-
propriate hypothesis to determine if management can 
make this claim.

 15. An employer is considering negotiating its pric-
ing structure for health insurance with its provider 
if there is sufficient evidence that customers will be 
willing to pay a lower premium for a higher deduct-
ible. Specifically, they want at least 30% of their 
employees to be willing to do this. Using the sample 
data in the Excel file Insurance Survey, determine 
what decision they should make.

 16. Using the data in the Excel file Consumer Transporta-
tion Survey, test the following null hypotheses:

 a. Individuals spend at least 8 hours per week in 
their vehicles.

 b. Individuals drive an average of 600 miles per week.

 c. The average age of SUV drivers is no greater 
than 35.

 d. At least 80% of individuals are satisfied with 
their vehicles.

 17. Using the Excel file Facebook Survey, determine if 
the mean number of hours spent online per week is 
the same for males as it is for females.

 18. Determine if there is evidence to conclude that the 
mean number of vacations taken by married individuals 
is less than the number taken by single/divorced indi-
viduals using the data in the Excel file Vacation Survey. 
Use a level of significance of 0.05. Would your conclu-
sion change if the level of significance is 0.01?

 19. The Excel file Accounting Professionals provides the 
results of a survey of 27 employees in a tax division 
of a Fortune 100 company.

 a. Test the null hypothesis that the average number of 
years of service is the same for males and females.

 b. Test the null hypothesis that the average years of 
undergraduate study is the same for males and 
females.

 20. In the Excel file Cell Phone Survey, test the hypoth-
esis that the mean responses for Value for the Dollar 
and Customer Service do not differ by gender.

 21. A sample size of 22 with a mean of 8 and a standard 
deviation of 12.5 test the hypothesis that the value of 
the population mean is 70 against the assumption that 
it is more than 70. Use the 0.025 significant levels.

 22. Determine if there is evidence to conclude that the 
mean GPA of males who plan to attend graduate 
school is larger than that of females who plan to at-
tend graduate school using the data in the Excel file 
Graduate School Survey. 

 23. The director of human resources for a large bank 
has compiled data on about 70 former employees 
at one of the bank’s call centers (see the Excel file 
Call Center Data). For each of the following, assume 
equal variances of the two populations.

 a. Test the null hypothesis that the average length of 
service for males is the same as for females.

 b. Test the null hypothesis that the average length of 
service for individuals without prior call center 
experience is the same as those with experience.

 c. Test the null hypothesis that the average length 
of service for individuals with a college degree 
is the same as for individuals without a college 
degree.

 d. Now conduct tests of hypotheses for equality of 
variances. Were your assumptions of equal vari-
ances valid? If not, repeat the test(s) for means 
using the unequal variance test.

 24. A producer of computer-aided design software for 
the aerospace industry receives numerous calls 
for technical support. Tracking software is used 
to monitor response and resolution times. In addi-
tion, the company surveys customers who request 
support using the following scale: 0—did not ex-
ceed expectations; 1—marginally met expectations;  
2—met expectations; 3—exceeded expectations; 4—
greatly exceeded expectations. The questions are as 
follows:

Q1:  Did the support representative explain the pro-
cess for resolving your problem?

Q2:  Did the support representative keep you in-
formed about the status of progress in resolving 
your problem?

Q3:  Was the support representative courteous and 
professional?

Q4: Was your problem resolved?
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Q5:  Was your problem resolved in an acceptable 
amount of time?

Q6:  Overall, how did you find the service provided 
by our technical support department?

  A final question asks the customer to rate the overall 
quality of the product using a scale of 0—very poor; 
1—poor; 2—good; 3—very good; 4—excellent. A 
sample of survey responses and associated resolution 
and response data are provided in the Excel file Cus-
tomer Support Survey.

 a. The company has set a service standard of 1 day 
for the mean resolution time. Does evidence ex-
ist that the response time is more than 1 day? 
How do the outliers in the data affect your result? 
What should you do about them?

 b. Test the hypothesis that the average service index 
is equal to the average engineer index.

 25. Using the data in the Excel file Ohio Education Per-
formance, test the hypotheses that the mean differ-
ence in writing and reading scores is zero and that 
the mean difference in math and science scores is 
zero. Use the paired-sample procedure.

 26. The Excel file Unions and Labor Law Data reports 
the percent of public- and private-sector employ-
ees in unions in 1982 for each state, along with 
indicators whether the states had a bargaining law 
that covered public employees or right-to-work 
laws.

 a. Test the hypothesis that the mean percent of 
 employees in unions for both the public sector 
and private sector is the same for states having 
bargaining laws as for those who do not.

 b. Test the hypothesis that the mean percent of 
 employees in unions for both the public sector 
and private sector is the same for states having 
right-to-work laws as for those who do not.

 27. Using the data in the Excel file Student Grades, 
which represent exam scores in one section of a large 
statistics course, test the hypothesis that the variance 
in grades is the same for both tests.

 28. In the Excel file Restaurant Sales, determine if the 
variance of weekday sales is the same as that of 
weekend sales for each of the three variables (lunch, 
dinner, and delivery).

 29. A college is trying to determine if there is a signifi-
cant difference in the mean GMAT score of students 
from different undergraduate backgrounds who 
 apply to the MBA program. The Excel file GMAT 

Scores contain data from a sample of students. What 
conclusion can be reached using ANOVA?

 30. Using the data in the Excel file Cell Phone Survey, apply 
ANOVA to determine if the mean response for Value for 
the Dollar is the same for different types of cell phones.

 31. Using the data in the Excel file Freshman College 
Data, use ANOVA to determine whether significant dif-
ferences exist in the mean retention rate for the different 
colleges over the 4-year period. Second, use ANOVA 
to determine if significant differences exist in the mean 
ACT and SAT scores among the different colleges.

 32. A car manufacturing firm is bringing out a new 
model. To figure out its advertising campaign, they 
want to determine whether the model appeal will be 
dependent on a particular age group. A sample of a 
customer survey revealed the following:

 Under 
20

20–40 40–50 50 and 
over

Total

Liked 140   70   70 25 305

Disliked   60   40   30 65 195

Total 200 110 100 90 500

  What can the manufacturer conclude?

 33. A survey of college students determined the prefer-
ence for cell phone providers. The following data 
were obtained:

 provider 

Gender T-Mobile aT&T Verizon Other

Male 12 39 27 16

Female 8 22 24 12

  Can we conclude that gender and cell phone provider 
are independent? If not, what implications does this 
have for marketing?

 34. For the data in the Excel file Accounting Profes-
sionals, perform a chi-square test of independence 
to determine if age group is independent of having a 
graduate degree.

 35. For the data in the Excel file Graduate School Sur-
vey, perform a chi-square test for independence to 
determine if plans to attend graduate school are inde-
pendent of gender.

 36. For the data in the Excel file New Account Process-
ing, perform chi-square tests for independence to de-
termine if certification is independent of gender, and 
if  certification is independent of having prior indus-
try background.
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Case: performance Lawn Equipment

Elizabeth Burke has identified some additional questions 
she would like you to answer.

 1. Are there significant differences in ratings of spe-
cific product/service attributes in the 2014 Cus-
tomer Survey worksheet?

 2. In the worksheet On-Time Delivery, has the 
proportion of on-time deliveries in 2014 signifi-
cantly improved since 2010?

 3. Have the data in the worksheet Defects After 
Delivery changed significantly over the past  
5 years?

 4. Although engineering has collected data on al-
ternative process costs for building  transmissions 

in the worksheet Transmission Costs, why didn’t 
they reach a conclusion as to whether one of 
the proposed processes is better than the current 
process?

 5. Are there differences in employee retention due to 
gender, college graduation status, or whether the 
employee is from the local area in the data in the 
worksheet Employee Retention?

Conduct appropriate statistical analyses and hypothesis 
tests to answer these questions and summarize your results 
in a formal report to Ms. Burke.

Case: Drout advertising Research project

The background for this case was introduced in Chapter 1.  
This is a continuation of the case in Chapter 6. For this 
part of the case, propose and test some meaningful hy-
potheses that will help Ms. Drout understand and explain 
the results. Include two-sample tests, ANOVA, and/or 
 Chi-Square tests for independence as appropriate. Write up 
your conclusions in a formal report, or add your  findings 

to the report you completed for the case in Chapter 6 as 
per your instructor’s requirements. If you have accumu-
lated all sections of this case into one report, polish it up 
so that it is as professional as possible, drawing final con-
clusions about the perceptions of the role of advertising in 
the reinforcement of gender stereotypes and the impact of 
empowerment advertising.
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Learning Objectives

After studying this chapter, you will be able to:

•	Explain the purpose of regression analysis and provide 
examples in business.

•	Use a scatter chart to identify the type of relationship 
between two variables.

•	List the common types of mathematical functions used 
in predictive modeling.

•	Use the Excel Trendline tool to fit models to data.

•	Explain how least-squares regression finds the best-
fitting regression model.

•	Use Excel functions to find least-squares regression 
coefficients.

•	Use the Excel Regression tool for both single and 
multiple linear regressions.

•	Interpret the regression statistics of the Excel 
Regression tool.

•	Interpret significance of regression from the Excel 
Regression tool output.

•	Draw conclusions for tests of hypotheses about 
regression coefficients.

•	Interpret confidence intervals for regression  
coefficients

•	Calculate standard residuals.

•	List the assumptions of regression analysis and 
describe methods to verify them.

•	Explain the differences in the Excel Regression tool 
output for simple and multiple linear regression 
models.

•	Apply a systematic approach to build good regression 
models.

•	Explain the importance of understanding 
multicollinearity in regression models.

•	Build regression models for categorical data using 
dummy variables.

•	Test for interactions in regression models with 
categorical variables.

•	Identify when curvilinear regression models are more 
appropriate than linear models.

Trendlines and 
Regression Analysis8Ch

ap
te

r
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Many applications of business analytics involve modeling relationships 

between one or more independent variables and some dependent variable. 

For example, we might wish to predict the level of sales based on the price 

we set, or extrapolate a trend into the future. As other examples, a company 

may wish to predict sales based on the U.S. GDP (gross domestic product) 

and the 10-year treasury bond rate to capture the influence of the business 

cycle,1 or a marketing researcher might want to predict the intent of buying a 

particular automobile model based on a survey that measured consumer at-

titudes toward the brand, negative word-of-mouth, and income level.2

Trendlines and regression analysis are tools for building such models and 

predicting future results. Our principal focus is to gain a basic understand-

ing of how to use and interpret trendlines and regression models, statistical 

issues associated with interpreting regression analysis results, and practical 

issues in using trendlines and regression as tools for making and evaluating 

decisions.

Modeling Relationships and Trends in Data

Understanding both the mathematics and the descriptive properties of different functional 
relationships is important in building predictive analytical models. We often begin by 
 creating a chart of the data to understand it and choose the appropriate type of functional 
relationship to incorporate into an analytical model. For cross-sectional data, we use a 
scatter chart; for time hyphenate as adjective for data series data we use a line chart.

Common types of mathematical functions used in predictive analytical models in-
clude the following:

•	Linear function: y = a + bx. Linear functions show steady increases or  
decreases over the range of x. This is the simplest type of function used in 
 predictive models. It is easy to understand, and over small ranges of values,  
can approximate behavior rather well.

•	Logarithmic function: y = ln1x2. Logarithmic functions are used when the rate 
of change in a variable increases or decreases quickly and then levels out, such as 
with diminishing returns to scale. Logarithmic functions are often used in mar-
keting models where constant percentage increases in advertising, for instance, 
result in constant, absolute increases in sales.

•	Polynomial function: y = ax2 + bx + c (second order—quadratic function), 
y = ax3 + bx2 + dx + e (third order—cubic function), and so on. A second-
order polynomial is parabolic in nature and has only one hill or valley; a third- 
order polynomial has one or two hills or valleys. Revenue models that  
incorporate price elasticity are often polynomial functions.

1James R. Morris and John P. Daley, Introduction to Financial Models for Management and Planning 
(Boca Raton, FL: Chapman & Hall/CRC, 2009): 257.
2Alvin C. Burns and Ronald F. Bush, Basic Marketing Research Using Microsoft Excel Data Analysis, 
2nd ed. (Upper Saddle River, NJ: Prentice Hall, 2008): 450.
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•	Power function: y = axb. Power functions define phenomena that increase at a 
specific rate. Learning curves that express improving times in performing a task 
are often modeled with power functions having a 7 0 and b 6 0.

•	Exponential function: y = abx. Exponential functions have the property that y 
rises or falls at constantly increasing rates. For example, the perceived brightness 
of a lightbulb grows at a decreasing rate as the wattage increases. In this case,  
a would be a positive number and b would be between 0 and 1. The exponential 
function is often defined as y = aex, where b = e, the base of natural logarithms 
(approximately 2.71828).

The Excel Trendline tool provides a convenient method for determining the best-fitting 
functional relationship among these alternatives for a set of data. First, click the chart to 
which you wish to add a trendline; this will display the Chart Tools menu. Select the Chart 
Tools Design tab, and then click Add Chart Element from the Chart Layouts group. From 
the Trendline submenu, you can select one of the options (Linear is the most common) or 
More Trendline Options. . . . If you select More Trendline Options, you will get the Format 
 Trendline pane in the worksheet (see Figure 8.1). A simpler way of doing all this is to right 
click on the data series in the chart and choose Add trendline from the pop-up menu—try 
it! Select the radio button for the type of functional relationship you wish to fit to the data. 
Check the boxes for Display Equation on chart and Display R-squared value on chart. You 
may then close the Format Trendline pane. Excel will display the results on the chart you 
have selected; you may move the equation and R-squared value for better readability by 
dragging them to a different location. To clear a trendline, right click on it and select Delete.

R2 (R-squared) is a measure of the “fit” of the line to the data. The value of R2 will 
be between 0 and 1. The larger the value of R2 the better the fit. We will discuss this fur-
ther in the context of regression analysis.

Trendlines can be used to model relationships between variables and understand 
how the dependent variable behaves as the independent variable changes. For example, 
the  demand-prediction models that we introduced in Chapter 1 (Examples 1.9 and 1.10) 
would generally be developed by analyzing data.

Figure 8.1

Excel Format Trendline 
Pane
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ExaMpLE 8.1 Modeling a price-Demand Function

A market research study has collected data on sales vol-
umes for different levels of pricing of a particular product. 
The data and a scatter diagram are shown in Figure 8.2  
(Excel file Price-Sales Data). The relationship between 
price and sales clearly appears to be linear, so a linear 
trendline was fit to the data. The resulting model is

sales = 20,512 − 9.5116 × price

This model can be used as the demand function in other 
marketing or financial analyses.

Figure 8.2

Price-Sales Data and Scatter 
Diagram with Fitted Linear 
Function

Trendlines are also used extensively in modeling trends over time—that is, when the 
variable x in the functional relationships represents time. For example, an analyst for an 
airline needs to predict where fuel prices are going, and an investment analyst would want 
to predict the price of stocks or key economic indicators.

ExaMpLE 8.2 predicting Crude Oil prices

Figure 8.3 shows a chart of historical data on crude oil 
prices on the first Friday of each month from January 
2006 through June 2008 (data are in the Excel file Crude 
Oil Prices). Using the Trendline tool, we can try to fit the 
various functions to these data (here x represents the 
number of months starting with January 2006). The re-
sults are as follows:

exponential: y = 50.49e0.021x  R2 = 0.664

logarithmic:  y = 13.02ln 1x 2 + 39.60 R2 = 0.382

polynomial (second order):
y = 0.130x2 − 2.399x +  68.01 R2 = 0.905

polynomial (third order):
y = 0.005x3 − 0.111x2 + 0.648x + 59.497

R2 = 0.928

power: y = 45.96x.0169 R2 = 0.397

The best-fitting model is the third-order polynomial, 
shown in Figure 8.4.
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Be cautious when using polynomial functions. The R2 value will continue to increase 
as the order of the polynomial increases; that is, a third-order polynomial will provide 
a better fit than a second order polynomial, and so on. Higher-order polynomials will 
generally not be very smooth and will be difficult to interpret visually. Thus, we don’t 
recommend going beyond a third-order polynomial when fitting data. Use your eye to 
make a good judgment!

Of course, the proper model to use depends on the scope of the data. As the chart 
shows, crude oil prices were relatively stable until early 2007 and then began to increase 
rapidly. By including the early data, the long-term functional relationship might not ad-
equately express the short-term trend. For example, fitting a model to only the data begin-
ning with January 2007 yields these models:

exponential: y = 50.56 e0.044x R2 = 0.969

polynomial (second order): y = 0.121x2 + 1.232x + 53.48 R2 = 0.968

linear: y = 3.548x + 45.76  R2 = 0.944

Figure 8.3

Chart of Crude Oil Prices

Figure 8.4

Polynomial Fit of Crude Oil 
Prices
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The difference in prediction can be significant. For example, to predict the price  
6 months after the last data point 1x = 362 yields $172.24 for the third-order polyno-
mial fit with all the data and $246.45 for the exponential model with only the recent 
data. Thus, the analysis must be careful to select the proper amount of data for the 
analysis. The question then becomes one of choosing the best assumptions for the 
model. Is it reasonable to assume that prices would increase exponentially or perhaps 
at a slower rate, such as with the linear model fit? Or, would they level off and start 
falling? Clearly, factors other than historical trends would enter into this choice. As 
we now know, oil prices plunged in the latter half of 2008; thus, all predictive models 
are risky.

Simple Linear Regression

Regression analysis is a tool for building mathematical and statistical models that char-
acterize relationships between a dependent variable (which must be a ratio variable and 
not categorical) and one or more independent, or explanatory, variables, all of which are 
numerical (but may be either ratio or categorical).

Two broad categories of regression models are used often in business settings:  
(1) regression models of cross-sectional data and (2) regression models of time-series 
data, in which the independent variables are time or some function of time and the focus is 
on predicting the future. Time-series regression is an important tool in forecasting, which 
is the subject of Chapter 9.

A regression model that involves a single independent variable is called simple 
 regression. A regression model that involves two or more independent variables is called 
multiple regression. In the remainder of this chapter, we describe how to develop and ana-
lyze both simple and multiple regression models.

Simple linear regression involves finding a linear relationship between one indepen-
dent variable, X, and one dependent variable, Y. The relationship between two variables 
can assume many forms, as illustrated in Figure 8.5. The relationship may be linear or 
nonlinear, or there may be no relationship at all. Because we are focusing our discussion 
on linear regression models, the first thing to do is to verify that the relationship is linear, 
as in Figure 8.5(a). We would not expect to see the data line up perfectly along a straight 
line; we simply want to verify that the general relationship is linear. If the relationship is 
clearly nonlinear, as in Figure 8.5(b), then alternative approaches must be used, and if no 
relationship is evident, as in Figure 8.5(c), then it is pointless to even consider developing 
a linear regression model.

To determine if a linear relationship exists between the variables, we recommend that 
you create a scatter chart that can show the relationship between variables visually.

Figure 8.5

Examples of Variable 
Relationships (a) Linear (b) Nonlinear (c) No relationship
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ExaMpLE 8.3 Home Market Value Data

The market value of a house is typically related to its 
size. In the Excel file Home Market Value (see Figure 8.6), 
data obtained from a county auditor provides informa-
tion about the age, square footage, and current market 
value of houses in a particular subdivision. We might 
wish to investigate the relationship between the market 
value and the size of the home. The independent vari-
able, X, is the number of square feet, and the dependent 
variable, Y, is the market value.

Figure 8.7 shows a scatter chart of the market value 
in relation to the size of the home. In general, we see that 
higher market values are associated with larger house 
sizes and the relationship is approximately linear. There-
fore, we could conclude that simple linear regression 
would be an appropriate technique for predicting market 
value based on house size.

Figure 8.6

Portion of Home Market Value

Figure 8.7

Scatter Chart of Market  
Value versus Home Size

Finding the Best-Fitting Regression Line

The idea behind simple linear regression is to express the relationship between the depen-
dent and independent variables by a simple linear equation, such as

market value = a + b * square feet

where a is the y-intercept and b is the slope of the line. If we draw a straight line through 
the data, some of the points will fall above the line, some will fall below it, and a few 
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might fall on the line itself. Figure 8.8 shows two possible straight lines that pass through 
the data. Clearly, you would choose A as the better-fitting line over B because all the 
points are closer to the line and the line appears to be in the middle of the data. The only 
difference between the lines is the value of the slope and intercept; thus, we seek to deter-
mine the values of the slope and intercept that provide the best-fitting line.

Figure 8.8

Two Possible Regression 
Lines

ExaMpLE 8.4 Using Excel to Find the Best Regression Line

When using the Trendline tool for simple linear regres-
sion in the Home Market Value example, be sure the lin-
ear function option is selected (it is the default option 
when you use the tool). Figure 8.9 shows the best fitting 
regression line. The equation is

market value = $32,673 + $35.036 × square feet

The value of the regression line can be explained as 
follows. Suppose we wanted to estimate the home mar-
ket value for any home in the population from which the 
sample data were gathered. If all we knew were the mar-
ket values, then the best estimate of the market value for 
any home would simply be the sample mean, which is 
$92,069. Thus, no matter if the house has 1,500 square 
feet or 2,200 square feet, the best estimate of market 
value would still be $92,069. Because the market values 
vary from about $75,000 to more than $120,000, there is 
quite a bit of uncertainty in using the mean as the esti-
mate. However, from the scatter chart, we see that larger 
homes tend to have higher market values. Therefore, if we 
know that a home has 2,200 square feet, we would expect 

the market value estimate to be higher than for one that 
has only 1,500 square feet. For example, the estimated 
market value of a home with 2,200 square feet would be

market value = $32,673 + $35.036 × 2,200 = $109,752

whereas the estimated value for a home with 1,500 square 
feet would be

market value = $32,673 + $35.036 × 1,500 = $85,227

The regression model explains the differences in market 
value as a function of the house size and provides better es-
timates than simply using the average of the sample data.

One important caution: it is dangerous to extrapo-
late a regression model outside the ranges covered by 
the observations. For instance, if you want to predict the 
market value of a house that has 3,000 square feet, the re-
sults may or may not be accurate, because the regression 
model estimates did not use any observations greater 
than 2,400 square feet. We cannot be sure that a linear 
extrapolation will hold and should not use the model to 
make such predictions.
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We can find the best-fitting line using the Excel Trendline tool (with the linear option 
chosen), as described earlier in this chapter.

Least-Squares Regression

The mathematical basis for the best-fitting regression line is called least-squares 
 regression. In regression analysis, we assume that the values of the dependent variable, 
Y, in the sample data are drawn from some unknown population for each value of the 
 independent variable, X. For example, in the Home Market Value data, the first and fourth 
observations come from a population of homes having 1,812 square feet; the second 
 observation comes from a population of homes having 1,914 square feet; and so on.

Because we are assuming that a linear relationship exists, the expected value of Y is 
b0 + b1X for each value of X. The coefficients b0 and b1 are population parameters that 
represent the intercept and slope, respectively, of the population from which a sample of 
observations is taken. The intercept is the mean value of Y when X = 0, and the slope is 
the change in the mean value of Y as X changes by one unit.

Thus, for a specific value of X, we have many possible values of Y that vary around 
the mean. To account for this, we add an error term, e (the Greek letter epsilon), to the 
mean. This defines a simple linear regression model:

 Y = b0 + b1X + e (8.1)

However, because we don’t know the entire population, we don’t know the true values of 
b0 and b1. In practice, we must estimate these as best we can from the sample data. Define b0 
and b1 to be estimates of b0 and b1. Thus, the estimated simple linear regression equation is

 Yn = b0 + b1X  (8.2)

Let Xi be the value of the independent variable of the ith observation. When the value of 
the independent variable is Xi, then Yni = b0 + b1Xi is the estimated value of Y for Xi.

One way to quantify the relationship between each point and the estimated regression 
equation is to measure the vertical distance between them, as illustrated in Figure 8.10. We 

Figure 8.9

Best-fitting Simple Linear 
Regression Line
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can think of these differences, ei, as the observed errors (often called residuals)  associated 
with estimating the value of the dependent variable using the regression line. Thus, the er-
ror associated with the ith observation is:

 ei = Yi - Yni  (8.3)

The best-fitting line should minimize some measure of these errors. Because some 
errors will be negative and others positive, we might take their absolute value or simply 
square them. Mathematically, it is easier to work with the squares of the errors.

Adding the squares of the errors, we obtain the following function:

 a
n

i = 1
e2

i = a
n

i = 1
1Yi - Yni 22 = a

n

i = 1
1Yi- 3b0 + b1Xi422 (8.4)

If we can find the best values of the slope and intercept that minimize the sum of squares 
(hence the name “least squares”) of the observed errors ei, we will have found the best-
fitting regression line. Note that Xi and Yi are the values of the sample data and that b0 
and b1 are unknowns in equation (8.4). Using calculus, we can show that the solution that 
minimizes the sum of squares of the observed errors is

 b1 =
a

n

i = 1
XiYi - nX Y

a
n

i = 1
X2

i - nX2

 (8.5)

 b0 = Y - b1X (8.6)

Although the calculations for the least-squares coefficients appear to be somewhat 
complicated, they can easily be performed on an Excel spreadsheet. Even better, Excel has 
built-in capabilities for doing this. For example, you may use the functions INTERCEPT 
(known_y’s, known_x’s) and SLOPE(known_y’s, known_x’s) to find the least-squares co-
efficients b0 and b1.

Figure 8.10

Measuring the Errors in a 
Regression Model

Y

X1

e1
e2

Y1

Y1
^

Y2

Y2
^

X2

X

Errors associated with individual observations

ExaMpLE 8.5 Using Excel Functions to Find Least-Squares Coefficients

For the Home Market Value Excel file, the range of the 
dependent variable Y (market value) is C4:C45; the 
range of the independent variable X (square feet) is 
B4:B45. The function INTERCEPT(C4:C45, B4:B45) 
yields b0 = 32,673 and SLOPE(C4:C45, B4:B45) yields 
b1 = 35.036, as we saw in Example 8.4. The slope tells 

us that for every additional square foot, the market value 
increases by $35.036.

We may use the Excel function TREND(known_y’s, 
known_x’s, new_x’s) to estimate Y for any value of X; for 
example, for a house with 1,750 square feet, the estimated 
market value is TREND(C4:C45, B4:B45, 1750) = $93,986.
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We could stop at this point, because we have found the best-fitting line for the ob-
served data. However, there is a lot more to regression analysis from a statistical perspec-
tive, because we are working with sample data—and usually rather small samples—which 
we know have a lot of variation as compared with the full population. Therefore, it is im-
portant to understand some of the statistical properties associated with regression analysis.

Simple Linear Regression with Excel

Regression-analysis software tools available in Excel provide a variety of information 
about the statistical properties of regression analysis. The Excel Regression tool can be 
used for both simple and multiple linear regressions. For now, we focus on using the tool 
just for simple linear regression.

From the Data Analysis menu in the Analysis group under the Data tab, select the  
Regression tool. The dialog box shown in Figure 8.11 is displayed. In the box for 
the  Input Y Range, specify the range of the dependent variable values. In the box for 
the  Input X Range, specify the range for the independent variable values. Check Labels 
if your data range contains a descriptive label (we highly recommend using this). You 
have the option of forcing the intercept to zero by checking Constant is Zero; however, 
you will usually not check this box because adding an intercept term allows a better fit 
to the data. You also can set a Confidence Level (the default of 95% is commonly used) 
to provide confidence intervals for the intercept and slope parameters. In the  Residuals 
section, you have the option of including a residuals output table by checking the boxes 
for Residuals, Standardized Residuals, Residual Plots, and Line Fit Plots. Residual Plots 
generates a chart for each independent variable versus the residual, and Line Fit Plots 
generates a scatter chart with the values predicted by the regression model included 
(however, creating a scatter chart with an added trendline is visually superior to what this 
tool provides).  Finally, you may also choose to have Excel construct a normal probability 
plot for the dependent variable, which transforms the cumulative probability scale (verti-
cal axis) so that the graph of the cumulative normal distribution is a straight line. The 
closer the points are to a straight line, the better the fit to a normal distribution.

Figure 8.12 shows the basic regression analysis output provided by the Excel 
 Regression tool for the Home Market Value data. The output consists of three sections: 
Regression Statistics (rows 3–8), ANOVA (rows 10–14), and an unlabeled section at the 
bottom (rows 16–18) with other statistical information. The least-squares estimates of the 
slope and intercept are found in the Coefficients column in the bottom section of the output.

Figure 8.11

Excel Regression Tool 
Dialog
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In the Regression Statistics section, Multiple R is another name for the sample corre-
lation coefficient, r, which was introduced in Chapter 4. Values of r range from -1 to 1,  
where the sign is determined by the sign of the slope of the regression line. A Multiple R  
value greater than 0 indicates positive correlation; that is, as the independent vari-
able increases, the dependent variable does also; a value less than 0 indicates negative 
 correlation—as X increases, Y decreases. A value of 0 indicates no correlation.

R-squared 1R22 is called the coefficient of determination. Earlier we noted that R2 
is a measure of the how well the regression line fits the data; this value is also provided 
by the Trendline tool. Specifically, R2 gives the proportion of variation in the dependent 
variable that is explained by the independent variable of the regression model. The value 
of R2 is between 0 and 1. A value of 1.0 indicates a perfect fit, and all data points lie on 
the regression line, whereas a value of 0 indicates that no relationship exists. Although we 
would like high values of R2, it is difficult to specify a “good” value that signifies a strong 
relationship because this depends on the application. For example, in scientific applica-
tions such as calibrating physical measurement equipment, R2 values close to 1 would 
be expected; in marketing research studies, an R2 of 0.6 or more is considered very good; 
however, in many social science applications, values in the neighborhood of 0.3 might be 
considered acceptable.

Adjusted R Square is a statistic that modifies the value of R2 by incorporating the 
sample size and the number of explanatory variables in the model. Although it does not 
give the actual percent of variation explained by the model as R2 does, it is useful when 
comparing this model with other models that include additional explanatory variables. We 
discuss it more fully in the context of multiple linear regression later in this chapter.

Standard Error in the Excel output is the variability of the observed Y-values from 
the predicted values 1Yn2. This is formally called the standard error of the estimate, SYX.  
If the data are clustered close to the regression line, then the standard error will be small; 
the more scattered the data are, the larger the standard error.

Figure 8.12

Basic Regression Analysis 
Output for Home Market Value 
Example

ExaMpLE 8.6 Interpreting Regression Statistics for Simple Linear Regression

After running the Excel Regression tool, the first things 
to look for are the values of the slope and intercept, 
namely, the estimates b1 and b0 in the regression 
model. In the Home Market Value example, we see that 
the  intercept is 32,673, and the slope (coefficient of the 

 independent variable, Square Feet) is 35.036, just as we 
had computed earlier. In the Regression Statistics sec-
tion, R2 = 0.5347. This means that approximately 53% 
of the variation in Market Value is explained by Square 
Feet. The remaining variation is due to other factors that 
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Regression as analysis of Variance

In Chapter 7, we introduced analysis of variance (ANOVA), which conducts an F-test 
to determine whether variation due to a particular factor, such as the differences in sam-
ple means, is significantly greater than that due to error. ANOVA is commonly applied 
to regression to test for significance of regression. For a simple linear regression model, 
 significance of regression is simply a hypothesis test of whether the regression coeffi-
cient b1 (slope of the independent variable) is zero:

 H0: b 1 = 0 

 H1: b1 ≠ 0 (8.7)

If we reject the null hypothesis, then we may conclude that the slope of the independent vari-
able is not zero and, therefore, is statistically significant in the sense that it explains some of the 
variation of the dependent variable around the mean. Similar to our discussion in Chapter 7,  
you needn’t worry about the mathematical details of how F is computed, or even its value, 
especially since the tool does not provide the critical value for the test. What is important is 
the value of Significance F, which is the p-value for the F-test. If Significance F is less than 
the level of significance (typically 0.05), we would reject the null hypothesis.

were not included in the model. The standard error of the 
estimate is $7,287.72. If we compare this to the standard 
deviation of the market value, which is $10,553, we see 
that the variation around the regression line ($7,287.72) 

is less than the variation around the sample mean 
($10,553). This is because the independent variable in 
the regression model explains some of the variation.

ExaMpLE 8.7 Interpreting Significance of Regression

For the Home Market Value example, the ANOVA test is 
shown in rows 10–14 in Figure 8.12. Significance F, that 
is, the p-value associated with the hypothesis test

H0: B1 = 0

H1: B1 3 0

is essentially zero (3.798 : 10−8). Therefore, assuming a 
level of significance of 0.05, we must reject the null hypoth-
esis and conclude that the slope—the coefficient for Square 
Feet—is not zero. This means that home size is a statistically 
significant variable in explaining the variation in market value.

Testing Hypotheses for Regression Coefficients

Rows 17–18 of the Excel output, in addition to specifying the least-squares coefficients, 
provide additional information for testing hypotheses associated with the intercept and 
slope. Specifically, we may test the null hypothesis that b0 or b1 equals zero. Usually, it 
makes little sense to test or interpret the hypothesis that b0 = 0 unless the intercept has 
a significant physical meaning in the context of the application. For simple linear regres-
sion, testing the null hypothesis H0: b1 = 0 is the same as the significance of regression 
test that we described earlier.

The t-test for the slope is similar to the one-sample test for the mean that we described 
in Chapter 7. The test statistic is

 t =
b1 - 0

standard error
 (8.8)

and is given in the column labeled t Stat in the Excel output. Although the critical value of 
the t-distribution is not provided, the output does provide the p-value for the test.
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Confidence Intervals for Regression Coefficients

Confidence intervals (Lower 95% and Upper 95% values in the output) provide informa-
tion about the unknown values of the true regression coefficients, accounting for sampling 
error. They tell us what we can reasonably expect to be the ranges for the population inter-
cept and slope at a 95% confidence level.

We may also use confidence intervals to test hypotheses about the regression coeffi-
cients. For example, in Figure 8.12, we see that neither confidence interval includes zero; 
therefore, we can conclude that b0 and b1 are statistically different from zero. Similarly, 
we can use them to test the hypotheses that the regression coefficients equal some value 
other than zero. For example, to test the hypotheses 

 H0: b1 = B1

 H1: b1 ≠ B1

we need only check whether B1 falls within the confidence interval for the slope. If it does 
not, then we reject the null hypothesis, otherwise we fail to reject it.

ExaMpLE 8.8 Interpreting Hypothesis Tests for Regression Coefficients

For the Home Market Value example, note that the value 
of t Stat is computed by dividing the coefficient by the 
standard error using formula (8.8). For instance, t Stat for 
the slope is 35.03637258>5.16738385 = 6.780292234. 
Because Excel does not provide the critical value with 
which to compare the t Stat value, we may use the  
p-value to draw a conclusion. Because the p-values for 
both coefficients are essentially zero, we would  conclude 

that neither coefficient is statistically equal to zero. Note 
that the p-value associated with the test for the slope 
coefficient, Square Feet, is equal to the Significance F 
value. This will always be true for a regression model 
with one independent variable because it is the only ex-
planatory variable. However, as we shall see, this will not 
be the case for multiple regression models.

ExaMpLE 8.9 Interpreting Confidence Intervals for Regression Coefficients

For the Home Market Value data, a 95% confidence in-
terval for the intercept is [14,823, 50,523]. Similarly, a 
95% confidence interval for the slope is [24.59, 45.48]. 
 Although the regression model is Yn = 32,673 + 35.036X, 
the confidence intervals suggest a bit of uncertainty 
about predictions using the model. Thus, although we 
estimated that a house with 1,750 square feet has a 

marke t  va lue  o f  32,673 + 35.036(1,750) = $93,986, 
if the true population parameters are at the extremes 
of the confidence intervals, the estimate might be as 
low as 14,823 + 24.59(1,750) = $57,855 or as high as 
50,523 + 45.48(1,750) = $130,113. Narrower confidence 
intervals provide more accuracy in our predictions.

Residual analysis and Regression assumptions

Recall that residuals are the observed errors, which are the differences between the actual 
values and the estimated values of the dependent variable using the regression equation. 
Figure 8.13 shows a portion of the residual table generated by the Excel Regression tool. 
The residual output includes, for each observation, the predicted value using the estimated 
regression equation, the residual, and the standard residual. The residual is simply the dif-
ference between the actual value of the dependent variable and the predicted value, or 
Yi - Yni. Figure 8.14 shows the residual plot generated by the Excel tool. This chart is actu-
ally a scatter chart of the residuals with the values of the independent variable on the x-axis.
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Standard residuals are residuals divided by their standard deviation. Standard re-
siduals describe how far each residual is from its mean in units of standard deviations 
(similar to a z-value for a standard normal distribution). Standard residuals are useful in 
checking assumptions underlying regression analysis, which we will address shortly, and 
to detect outliers that may bias the results. Recall that an outlier is an extreme value that 
is different from the rest of the data. A single outlier can make a significant difference in 
the regression equation, changing the slope and intercept and, hence, how they would be 
interpreted and used in practice. Some consider a standardized residual outside of {2 
standard deviations as an outlier. A more conservative rule of thumb would be to consider 
outliers outside of a {3 standard deviation range. (Commercial software packages have 
more sophisticated techniques for identifying outliers.)

Figure 8.13

Portion of Residual Output

Figure 8.14

Residual Plot for Square 
Feet

ExaMpLE 8.10 Interpreting Residual Output

For the Home Market Value data, the first observa-
tion has a market value of $90,000 and the regres-
sion model predicts $96,159.13. Thus, the residual is 
90,000 − 96,159.13 = −$6,159.13. The standard de-
viation of the residuals can be computed as 7,198.299. 
By dividing the residual by this value, we have the stan-
dardized residual for the first observation. The value of 
−0.8556 tells us that the first observation is about 0.85 
standard deviation below the regression line. If we check 
the values of all the standardized residuals, you will find 
that the value of the last data point is 4.53, meaning that 
the market value of this home, having only 1,581 square 

feet, is more than 4 standard deviations above the pre-
dicted value and would clearly be identified as an outlier. 
(If you look back at Figure 8.7, you may have noticed that 
this point appears to be quite different from the rest of 
the data.) You might question whether this observation 
belongs in the data, because the house has a large value 
despite a relatively small size. The explanation might be 
an outdoor pool or an unusually large plot of land. Be-
cause this value will influence the regression results 
and may not be representative of the other homes in the 
neighborhood, you might consider dropping this obser-
vation and recomputing the regression model.

M08_EVAN5448_02_SE_C08.indd   273 12/09/15   7:57 PM



274 Chapter 8  Trendlines and Regression Analysis

Checking assumptions

The statistical hypothesis tests associated with regression analysis are predicated on some 
key assumptions about the data.

 1. Linearity. This is usually checked by examining a scatter diagram of the data 
or examining the residual plot. If the model is appropriate, then the residuals 
should appear to be randomly scattered about zero, with no apparent pattern. 
If the residuals exhibit some well-defined pattern, such as a linear trend, a 
parabolic shape, and so on, then there is good evidence that some other func-
tional form might better fit the data.

 2. Normality of errors. Regression analysis assumes that the errors for each in-
dividual value of X are normally distributed, with a mean of zero. This can 
be verified either by examining a histogram of the standard residuals and in-
specting for a bell-shaped distribution or by using more formal goodness-of-
fit tests. It is usually difficult to evaluate normality with small sample sizes. 
However, regression analysis is fairly robust against departures from normal-
ity, so in most cases this is not a serious issue.

 3. Homoscedasticity. The third assumption is homoscedasticity, which means 
that the variation about the regression line is constant for all values of the 
independent variable. This can also be evaluated by examining the residual 
plot and looking for large differences in the variances at different values of the 
independent variable. Caution should be exercised when looking at residual 
plots. In many applications, the model is derived from limited data, and multi-
ple observations for different values of X are not available, making it difficult 
to draw definitive conclusions about homoscedasticity. If this assumption is 
seriously violated, then techniques other than least squares should be used for 
estimating the regression model.

 4. Independence of errors. Finally, residuals should be independent for each 
value of the independent variable. For cross-sectional data, this assumption is 
usually not a problem. However, when time is the independent variable, this is 
an important assumption. If successive observations appear to be correlated—
for example, by becoming larger over time or exhibiting a cyclical type of 
pattern—then this assumption is violated. Correlation among successive ob-
servations over time is called autocorrelation and can be identified by residual 
plots having clusters of residuals with the same sign. Autocorrelation can be 
evaluated more formally using a statistical test based on a measure called the 
Durbin–Watson statistic. The Durbin–Watson statistic is

 D =
a

n

i = 2
1ei - ei- 122

a
n

i = 1
e2

i

 (8.9)

  This is a ratio of the squared differences in successive residuals to the sum 
of the squares of all residuals. D will range from 0 to 4. When successive re-
siduals are positively autocorrelated, D will approach 0. Critical values of the 
statistic have been tabulated based on the sample size and number of indepen-
dent variables that allow you to conclude that there is either evidence of au-
tocorrelation or no evidence of autocorrelation or the test is inconclusive. For 
most practical purposes, values below 1 suggest autocorrelation; values above 
1.5 and below 2.5 suggest no autocorrelation; and values above 2.5 suggest 
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negative autocorrelation. This can become an issue when using regression in 
forecasting, which we discuss in the next chapter. Some software packages 
compute this statistic; however, Excel does not.

When assumptions of regression are violated, then statistical inferences drawn from 
the hypothesis tests may not be valid. Thus, before drawing inferences about regression 
models and performing hypothesis tests, these assumptions should be checked. However, 
other than linearity, these assumptions are not needed solely for model fitting and estima-
tion purposes.

ExaMpLE 8.11  Checking Regression assumptions  
for the Home Market Value Data

Linearity: The scatter diagram of the market value data ap-
pears to be linear; looking at the residual plot in Figure 8.14 
also confirms no pattern in the residuals.

Normality of errors: Figure 8.15 shows a histogram 
of the standard residuals for the market value data. The 
distribution appears to be somewhat positively skewed 
(particularly with the outlier) but does not appear to be a 

serious departure from normality, particularly as the sam-
ple size is small.

Homoscedasticity: In the residual plot in Figure 8.14, 
we see no serious differences in the spread of the data for 
different values of X, particularly if the outlier is eliminated.

Independence of errors: Because the data are cross-
sectional, we can assume that this assumption holds.

Figure 8.15

Histogram of Standard 
Residuals

Multiple Linear Regression

Many colleges try to predict student performance as a function of several characteristics. 
In the Excel file Colleges and Universities (see Figure 8.16), suppose that we wish to pre-
dict the graduation rate as a function of the other variables—median SAT, acceptance rate, 
expenditures/student, and percent in the top 10% of their high school class. It is logical to 
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propose that schools with students who have higher SAT scores, a lower acceptance rate, 
a larger budget, and a higher percentage of students in the top 10% of their high school 
classes will tend to retain and graduate more students.

A linear regression model with more than one independent variable is called a mul-
tiple linear regression model. Simple linear regression is just a special case of multiple 
linear regression. A multiple linear regression model has the form:

 Y = b0 + b1X1 + b2X2 + g + bkXk + e (8.10)

where

Y is the dependent variable,
X1, c, Xk are the independent (explanatory) variables,
b0 is the intercept term,
b1, c, bk are the regression coefficients for the independent variables,
e is the error term

Similar to simple linear regression, we estimate the regression coefficients—called 
partial regression coefficients—b0, b1, b2, cbk, then use the model:

 Yn = b0 + b1X1 + b2X2 + g + bkXk (8.11)

to predict the value of the dependent variable. The partial regression coefficients repre-
sent the expected change in the dependent variable when the associated independent vari-
able is increased by one unit while the values of all other independent variables are held 
constant.

For the college and university data, the proposed model would be

Graduation% = b0 + b1 SAT + b2  ACCEPTANCE + b3 EXPENDITURES

 + b4 TOP10% HS

Thus, b2 would represent an estimate of the change in the graduation rate for a unit in-
crease in the acceptance rate while holding all other variables constant.

As with simple linear regression, multiple linear regression uses least squares to es-
timate the intercept and slope coefficients that minimize the sum of squared error terms 
over all observations. The principal assumptions discussed for simple linear regression 
also hold here. The Excel Regression tool can easily perform multiple linear regression; 
you need to specify only the full range for the independent variable data in the dialog. One 
caution when using the tool: the independent variables in the spreadsheet must be in con-
tiguous columns. So, you may have to manually move the columns of data around before 
applying the tool.

Figure 8.16

Portion of Excel File 
Colleges and Universities
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The results from the Regression tool are in the same format as we saw for simple 
linear regression. However, some key differences exist. Multiple R and R Square (or R2)  
are called the multiple correlation coefficient and the coefficient of multiple determi-
nation, respectively, in the context of multiple regression. They indicate the strength of 
association between the dependent and independent variables. Similar to simple linear 
regression, R2 explains the percentage of variation in the dependent variable that is ex-
plained by the set of independent variables in the model.

The interpretation of the ANOVA section is quite different from that in simple lin-
ear regression. For multiple linear regression, ANOVA tests for significance of the entire 
model. That is, it computes an F-statistic for testing the hypotheses

H0: b1 = b2 = g = bk = 0

H1: at least one bj is not 0

The null hypothesis states that no linear relationship exists between the dependent and any 
of the independent variables, whereas the alternative hypothesis states that the dependent 
variable has a linear relationship with at least one independent variable. If the null hy-
pothesis is rejected, we cannot conclude that a relationship exists with every independent 
variable individually.

The multiple linear regression output also provides information to test hypothe-
ses about each of the individual regression coefficients. Specifically, we may test the 
null hypothesis that b0 (the intercept) or any bi equals zero. If we reject the null hy-
pothesis that the slope associated with independent variable i is zero, H0: bi = 0, then 
we may state that independent variable i is significant in the regression model; that 
is, it contributes to reducing the variation in the dependent variable and improves the 
ability of the model to better predict the dependent variable. However, if we cannot 
reject H0, then that independent variable is not significant and probably should not be 
included in the model. We see how to use this information to identify the best model 
in the next section.

Finally, for multiple regression models, a residual plot is generated for each indepen-
dent variable. This allows you to assess the linearity and homoscedasticity assumptions of 
regression.

ExaMpLE 8.12  Interpreting Regression Results for the Colleges and  
Universities Data

The multiple regression results for the college and uni-
versity data are shown in Figure 8.17.

From the Coefficients section, we see that the model is:

Graduation% =
17.92 + 0.072 SAT − 24.859 ACCEPTANCE
−  0.000136 EXPENDITURES − 0.163 TOP10% HS

The signs of some coefficients make sense; higher 
SAT scores and lower acceptance rates suggest higher 
graduation rates. However, we might expect that larger 
student expenditures and a higher percentage of top 
high school students would also positively influence the 
graduation rate. Perhaps the problem occurred because 

some of the best students are more demanding and 
change schools if their needs are not being met, some 
entrepreneurial students might pursue other interests 
before graduation, or there is sampling error. As with 
simple linear regression, the model should be used only 
for values of the independent variables within the range 
of the data.

The value of R2 (0.53) indicates that 53% of the varia-
tion in the dependent variable is explained by these in-
dependent variables. This suggests that other factors not 
included in the model, perhaps campus living conditions, 
social opportunities, and so on, might also influence the 
graduation rate.

(continued)
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Figure 8.17

Multiple Regression  
Results for Colleges  
and Universities Data

Figure 8.18

Residual Plot for Top 10% 
HS Variable

From the ANOVA section, we may test for signifi-
cance of regression. At a 5% significance level, we reject 
the null hypothesis because Significance F is essentially 
zero. Therefore, we may conclude that at least one slope 
is statistically different from zero.

Looking at the p-values for the independent vari-
ables in the last section, we see that all are less than 0.05; 
 therefore, we reject the null hypothesis that each partial 

regression coefficient is zero and conclude that each of 
them is statistically significant.

Figure 8.18 shows one of the residual plots from 
the Excel output. The assumptions appear to be met, 
and the other residual plots (not shown) also validate 
these assumptions. The normal probability plot (also not 
shown) does not suggest any serious departures from 
normality.
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3The author expresses his appreciation to John Toczek, Manager of Decision Support and Analytics at  
ARAMARK Corporation.

ARAMARK is a leader in professional services, pro-
viding award-winning food services, facilities man-
agement, and uniform and career apparel to health 
care institutions, universities and school districts, 
stadiums and arenas, and businesses around the 
world. Headquartered in Philadelphia, ARAMARK has 
 approximately 255,000 employees serving clients in  
22 countries.

A R A M A R K ’ s  G l o b a l  R i s k  M a n a g e m e n t 
 Department (GRM) needed a way to determine the 
statistical relationships between key business metrics  
(e.g., employee tenure, employee engagement, a 
trained workforce, account tenure, service offerings) 
and risk metrics (e.g., OSHA rate, workers’ compensa-
tion rate, customer injuries) to understand the impact 
of these risks on the business. GRM also needed a 
simple tool that field operators and the risk manage-
ment team could use to predict the impact of busi-
ness decisions on risk metrics before those decisions 
were implemented. Typical questions they would want 
to ask were, What would happen to our OSHA rate if 
we increased the percentage of part time labor? and 
How could we impact turnover if operations improved 
safety performance?

ARAMARK maintains extensive historical data. 
For example, the Global Risk Management group 
keeps track of data such as OSHA rates, slip/trip/fall 
rates, injury costs, and level of compliance with safety 
standards; the Human Resources department moni-
tors turnover and percentage of part-time labor; the 
Payroll department keeps data on average wages; and 
the Training and Organizational Development depart-
ment collects data on employee engagement. Excel-
based linear regression was used to determine the 
relationships between the dependent variables (such 
as OSHA rate, slip/trip/fall rate, claim cost, and turn-
over) and the independent variables (such as the per-
centage of part-time labor, average wage, employee 
engagement, and safety compliance).

Although the regression models provided the ba-
sic analytical support that ARAMARK needed, the GRM 
team used a novel approach to implement the models 

for use by their clients. They developed “Interactive 
Risk Simulators,” which are simple online tools that 
allowed users to manipulate the values of the inde-
pendent variables in the regression models using inter-
active sliders that correspond to the business metrics 
and instantaneously view the values of the dependent 
variables (the risk metrics) on gauges similar to those 
found on the dashboard of a car.

Figure 8.19 illustrates the structure of the simu-
lators. The gauges are updated instantly as the user 
adjusts the sliders, showing how changes in the busi-
ness environment affect the risk metrics. This visual 
representation made the models easy to use and un-
derstand, particularly for nontechnical employees.

GRM sent out more than 200 surveys to multiple 
levels of the organization to assess the usefulness of 
Interactive Risk Simulators. One hundred percent of 
respondents answered “Yes” to “Were the simula-
tors easy to use?” and 78% of respondents answered 
“Yes” to “Would these simulators be useful in running 
your business and helping you make decisions?” The 
deployment of Interactive Risk Simulators to the field 
has been met with overwhelming positive response 
and recognition from leadership within all lines of 
business, including frontline managers, food-service 
directors, district managers, and general managers.

analytics in practice:  Using Linear Regression and Interactive Risk 
Simulators to predict performance at aRaMaRK3
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Building Good Regression Models

In the colleges and universities regression example, all the independent variables were 
found to be significant by evaluating the p-values of the regression analysis. This will not 
always be the case and leads to the question of how to build good regression models that 
include the “best” set of variables.

Figure 8.20 shows a portion of the Excel file Banking Data, which provides data 
acquired from banking and census records for different zip codes in the bank’s current 
market. Such information can be useful in targeting advertising for new customers or 
for choosing locations for branch offices. The data show the median age of the popula-
tion, median years of education, median income, median home value, median household 
wealth, and average bank balance.

Figure 8.21 shows the results of regression analysis used to predict the average bank 
balance as a function of the other variables. Although the independent variables explain 
more than 94% of the variation in the average bank balance, you can see that at a 0.05 
significance level, the p-values indicate that both Education and Home Value do not ap-
pear to be significant. A good regression model should include only significant indepen-
dent variables. However, it is not always clear exactly what will happen when we add or 
remove variables from a model; variables that are (or are not) significant in one model 
may (or may not) be significant in another. Therefore, you should not consider dropping 
all insignificant variables at one time, but rather take a more structured approach.

Adding an independent variable to a regression model will always result in R2 equal 
to or greater than the R2 of the original model. This is true even when the new independent 

Figure 8.19

Structure of an Interactive Risk Simulator

Inputs: Independent Variables Regression Models Outputs: Dependent Variables
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Figure 8.20

Portion of Banking Data
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variable has little true relationship with the dependent variable. Thus, trying to maximize 
R2 is not a useful criterion. A better way of evaluating the relative fit of different models is 
to use adjusted R2. Adjusted R2 reflects both the number of independent variables and the 
sample size and may either increase or decrease when an independent variable is added 
or dropped, thus providing an indication of the value of adding or removing independent 
variables in the model. An increase in adjusted R2 indicates that the model has improved.

This suggests a systematic approach to building good regression models:

 1. Construct a model with all available independent variables. Check for signifi-
cance of the independent variables by examining the p-values.

 2. Identify the independent variable having the largest p-value that exceeds the 
chosen level of significance.

 3. Remove the variable identified in step 2 from the model and evaluate adjusted 
R2. (Don’t remove all variables with p-values that exceed a at the same time, 
but remove only one at a time.)

 4. Continue until all variables are significant.

In essence, this approach seeks to find a significant model that has the highest  adjusted R2.

Figure 8.21

Regression Analysis Results 
for Banking Data

ExaMpLE 8.13 Identifying the Best Regression Model

We will apply the preceding approach to the Banking 
Data example. The first step is to identify the variable 
with the largest p-value exceeding 0.05; in this case, it 
is Home Value, and we remove it from the model and 
rerun the Regression tool. Figure 8.22 shows the results 
after removing Home Value. Note that the adjusted R2 
has increased slightly, whereas the R2-value decreased 
slightly because we removed a variable from the model. 
All the p-values are now less than 0.05, so this now 

appears to be the best model. Notice that the p-value 
for Education, which was larger than 0.05 in the first 
regression analysis, dropped below 0.05 after Home 
Value was removed. This phenomenon often occurs 
when multicollinearity (discussed in the next section) is 
present and emphasizes the importance of not remov-
ing all variables with large p-values from the original 
model at the same time.

M08_EVAN5448_02_SE_C08.indd   281 12/09/15   7:57 PM



282 Chapter 8  Trendlines and Regression Analysis

Another criterion used to determine if a variable should be removed is the t-statistic. 
If 0 t 0 6 1, then the standard error will decrease and adjusted R2 will increase if the vari-
able is removed. If 0 t 0 7 1, then the opposite will occur. In the banking regression results, 
we see that the t-statistic for Home Value is less than 1; therefore, we expect the adjusted 
R2 to increase if we remove this variable. You can follow the same iterative approach out-
lined before, except using t-values instead of p-values.

These approaches using the p-values or t-statistics may involve considerable experi-
mentation to identify the best set of variables that result in the largest adjusted R2. For large 
numbers of independent variables, the number of potential models can be overwhelming. 
For example, there are 210 = 1,024 possible models that can be developed from a set of 
10 independent variables. This can make it difficult to effectively screen out insignificant 
variables. Fortunately, automated methods—stepwise regression and best subsets—exist 
that facilitate this process.

Correlation and Multicollinearity

As we have learned previously, correlation, a numerical value between -1 and +1, mea-
sures the linear relationship between pairs of variables. The higher the absolute value 
of the correlation, the greater the strength of the relationship. The sign simply indicates 
whether variables tend to increase together (positive) or not (negative). Therefore, ex-
amining correlations between the dependent and independent variables, which can be 
done using the Excel Correlation tool, can be useful in selecting variables to include in a 
multiple regression model because a strong correlation indicates a strong linear relation-
ship. However, strong correlations among the independent variables can be problematic. 
This can potentially signify a phenomenon called multicollinearity, a condition occurring 
when two or more independent variables in the same regression model contain high levels 
of the same information and, consequently, are strongly correlated with one another and 
can predict each other better than the dependent variable. When significant multicollinear-
ity is present, it becomes difficult to isolate the effect of one independent variable on the 
dependent variable, and the signs of coefficients may be the opposite of what they should 
be, making it difficult to interpret regression coefficients. Also, p-values can be inflated, 
resulting in the conclusion not to reject the null hypothesis for significance of regression 
when it should be rejected.

Figure 8.22

Regression Results without 
Home Value
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Some experts suggest that correlations between independent variables exceeding an 
absolute value of 0.7 may indicate multicollinearity. However, multicollinearity is best 
measured using a statistic called the variance inflation factor (VIF) for each independent 
variable. More-sophisticated software packages usually compute these; unfortunately, 
 Excel does not.

ExaMpLE 8.14 Identifying potential Multicollinearity

Figure 8.23 shows the correlation matrix for the variables 
in the Colleges and Universities data. You can see that SAT 
and Acceptance Rate have moderate correlations with 
the dependent variable, Graduation%, but the correla-
tion between Expenditures/Student and Top 10% HS with 
Graduation% are relatively low. The strongest correlation, 
however, is between two independent variables: Top 10% 
HS and Acceptance Rate. However, the value of −0.6097 
does not exceed the recommended threshold of 0.7, so 
we can likely assume that multicollinearity is not a prob-
lem here (a more advanced analysis using VIF calculations 
does indeed confirm that multicollinearity does not exist).

In contrast, Figure 8.24 shows the correlation matrix 
for all the data in the banking example. Note that large 

correlations exist between Education and Home Value and 
also between Wealth and Income (in fact, the variance in-
flation factors do indicate significant multicollinearity). If 
we remove Wealth from the model, the adjusted R2 drops 
to 0.9201, but we discover that Education is no longer 
significant. Dropping Education and leaving only Age and 
Income in the model results in an adjusted R2 of 0.9202. 
However, if we remove Income from the model instead 
of Wealth, the Adjusted R2 drops to only 0.9345, and all 
remaining variables (Age, Education, and Wealth) are sig-
nificant (see Figure 8.25). The R2-value for the model with 
these three variables is 0.936.

Figure 8.23

Correlation Matrix for 
Colleges and Universities 
Data

Figure 8.24

Correlation Matrix for 
Banking Data

practical Issues in Trendline and Regression Modeling

Example 8.14 clearly shows that it is not easy to identify the best regression model  simply 
by examining p-values. It often requires some experimentation and trial and error. From 
a practical perspective, the independent variables selected should make some sense in 
 attempting to explain the dependent variable (i.e., you should have some reason to  believe 
that changes in the independent variable will cause changes in the dependent variable 
even though causation cannot be proven statistically). Logic should guide your model 
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 development. In many applications, behavioral, economic, or physical theory might sug-
gest that certain variables should belong in a model. Remember that additional variables 
do contribute to a higher R2 and, therefore, help to explain a larger proportion of the varia-
tion. Even though a variable with a large p-value is not statistically significant, it could 
simply be the result of sampling error and a modeler might wish to keep it.

Good modelers also try to have as simple a model as possible—an age-old principle 
known as parsimony—with the fewest number of explanatory variables that will provide 
an adequate interpretation of the dependent variable. In the physical and management sci-
ences, some of the most powerful theories are the simplest. Thus, a model for the banking 
data that includes only age, education, and wealth is simpler than one with four variables; 
because of the multicollinearity issue, there would be little to gain by including income 
in the model. Whether the model explains 93% or 94% of the variation in bank deposits 
would probably make little difference. Therefore, building good regression models relies 
as much on experience and judgment as it does on technical analysis. 

One issue that one often faces in using trendlines and regression is overfitting the 
model. It is important to realize that sample data may have unusual variability that is dif-
ferent from the population; if we fit a model too closely to the sample data we risk not 
fitting it well to the population in which we are interested. For instance, in fitting the crude 
oil prices in Example 8.2, we noted that the R2-value will increase if we fit higher-order 
polynomial functions to the data. While this might provide a better mathematical fit to the 
sample data, doing so can make it difficult to explain the phenomena rationally. The same 
thing can happen with multiple regression. If we add too many terms to the model, then 
the model may not adequately predict other values from the population. Overfitting can be 
mitigated by using good logic, intuition, physical or behavioral theory, and parsimony as 
we have discussed.

Regression with Categorical Independent Variables

Some data of interest in a regression study may be ordinal or nominal. This is common when 
including demographic data in marketing studies, for example. Because regression analysis 
requires numerical data, we could include categorical variables by coding the variables. For 
example, if one variable represents whether an individual is a college graduate or not, we 
might code No as 0 and Yes as 1. Such variables are often called dummy variables.

Figure 8.25

Regression Results for Age, 
Education, and Wealth as 
Independent Variables
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ExaMpLE 8.15 a Model with Categorical Variables

The Excel file Employee Salaries, shown in Figure 8.26, 
provides salary and age data for 35 employees, along 
with an indicator of whether or not the employees have 
an MBA (Yes or No). The MBA indicator variable is cat-
egorical; thus, we code it by replacing No by 0 and Yes 
by 1.

If we are interested in predicting salary as a function 
of the other variables, we would propose the model

Y = B0 + B1X1 + B2X2 + E

where

 Y = salary

 X1 = age

 X2 = MBA indicator (0 or 1)

After coding the MBA indicator column in the data 
file, we begin by running a regression on the entire data 
set, yielding the output shown in Figure 8.27. Note that the 
model explains about 95% of the variation, and the p-values  
of both variables are significant. The model is

salary = 893.59 + 1044.15 × age + 14767.23 × MBA

Thus, a 30-year-old with an MBA would have an esti-
mated salary of

 salary = 893.59 + 1044.15 × 30 + 14767.23 × 1

 = $ 46,985.32

This model suggests that having an MBA increases the 
salary of this group of employees by almost $15,000. 
Note that by substituting either 0 or 1 for MBA, we obtain 
two models:

 No MBA: salary = 893.59 + 1044.15 × age

 MBA: salary = 15,660.82 + 1044.15 × age

The only difference between them is the intercept. The 
models suggest that the rate of salary increase for age 
is the same for both groups. Of course, this may not be 
true. Individuals with MBAs might earn relatively higher 
salaries as they get older. In other words, the slope of 
Age may depend on the value of MBA.

Figure 8.26

Portion of Excel File 
Employee Salaries

Figure 8.27

Initial Regression Model for 
Employee Salaries
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An interaction occurs when the effect of one variable (i.e., the slope) is dependent on 
another variable. We can test for interactions by defining a new variable as the product of 
the two variables, X3 = X1 * X2, and testing whether this variable is significant, leading 
to an alternative model.

ExaMpLE 8.16 Incorporating Interaction Terms in a Regression Model

For the Employee Salaries example, we define an interac-
tion term as the product of age 1X1 2  and MBA 1X2 2  by 
defining X3 = X1 × X2. The new model is

Y = B0 + B1X1 + B2X2 + B3X3 + E

In the worksheet, we need to create a new column (called 
Interaction) by multiplying MBA by Age for each observa-
tion (see Figure 8.28). The regression results are shown 
in Figure 8.29.

From Figure 8.29, we see that the adjusted R2 in-
creases; however, the p-value for the MBA indicator vari-
able is 0.33, indicating that this variable is not significant. 
Therefore, we drop this variable and run a regression 
using only age and the interaction term. The results are 
shown in Figure 8.30. Adjusted R2 increased slightly, and 
both age and the interaction term are significant. The final 
model is

salary = 3,323.11 + 984.25 × age + 425.58

 × MBA × age

The models for employees with and without an MBA are:

 No MBA: salary = 3,323.11 + 984.25 × age + 425.58 (0)

× age

 =  3323.11 + 984.25 × age

 MBA: salary = 3323.11 + 984.25 × age + 425.58 (1)

× age

 =  3,323.11 + 1,409.83 × age

Here, we see that salary depends not only on whether 
an employee holds an MBA, but also on age and is more 
realistic than the original model.

Figure 8.28

Portion of Employee 
Salaries Modified for 
Interaction Term

Figure 8.29

Regression Results with 
Interaction Term
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Categorical Variables with More Than Two Levels

When a categorical variable has only two levels, as in the previous example, we coded 
the levels as 0 and 1 and added a new variable to the model. However, when a categorical 
variable has k 7 2 levels, we need to add k - 1 additional variables to the model.

Figure 8.30

Final Regression Model for 
Salary Data

ExaMpLE 8.17 a Regression Model with Multiple Levels of Categorical Variables

The Excel file Surface Finish provides measurements of 
the surface finish of 35 parts produced on a lathe, along 
with the revolutions per minute (RPM) of the spindle and 
one of four types of cutting tools used (see Figure 8.31). 
The engineer who collected the data is interested in pre-
dicting the surface finish as a function of RPM and type 
of tool.

Intuition might suggest defining a dummy variable 
for each tool type; however, doing so will cause numer-
ical instability in the data and cause the regression tool 
to crash. Instead, we will need k − 1 = 3 dummy vari-
ables corresponding to three of the levels of the cat-
egorical variable. The level left out will correspond to 
a reference, or baseline, value. Therefore, because we 
have k = 4 levels of tool type, we will define a regres-
sion model of the form

Y = B0 + B1X1 + B2X2 + B3X3 + B4X4 + E

where

Y = surface finish

X1 = RPM

X2 = 1 if tool type is B and 0 if not

X3 = 1 if tool type is C and 0 if not

X4 = 1 if tool type is D and 0 if not

Note that when X2 = X3 = X4 = 0, then, by default, the 
tool type is A. Substituting these values for each tool 
type into the model, we obtain:

Tool type A: Y = B0 + B1X1 + E

Tool type B: Y = B0 + B1X1 + B2 + E

Tool type C: Y = B0 + B1X1 + B3 + E

Tool type D: Y = B0 + B1X1 + B4 + E

For a fixed value of RPM (X1), the slopes corresponding 
to the dummy variables represent the difference between 
the surface finish using that tool type and the baseline 
using tool type A.

To incorporate these dummy variables into the  regression 
model, we add three columns to the data, as shown in 
 Figure 8.32. Using these data, we obtain the regression results 
shown in Figure 8.33. The resulting model is

surface finish = 24.49 + 0.098 RPM − 13.31 type B
        −  20.49 type C − 26.04 type D

Almost 99% of the variation in surface finish is  explained 
by the model, and all variables are significant. The mod-
els for each individual tool are

 Tool A: surface finish = 24.49 + 0.098 RPM − 13.31(0)

− 20.49(0) − 26.04(0)

 = 24.49 + 0.098 RPM
(continued)
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 Tool B: surface finish = 24.49 + 0.098 RPM − 13.31(1)

− 20.49(0) − 26.04(0)

 = 11.18 + 0.098 RPM

 Tool C: surface finish = 24.49 + 0.098 RPM − 13.31(0)

− 20.49(1) − 26.04(0)

 = 4.00 + 0.098 RPM

 Tool D: surface finish = 24.49 + 0.098 RPM − 13.31(0)

− 20.49(0) − 26.04(1)

 = −1.55 + 0.098 RPM

Note that the only differences among these models are 
the intercepts; the slopes associated with RPM are the 
same. This suggests that we might wish to test for inter-
actions between the type of cutting tool and RPM; we 
leave this to you as an exercise.

Figure 8.31

Portion of Excel File Surface 
Finish

Figure 8.32

Data Matrix for Surface 
Finish with Dummy Variables
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Regression Models with Nonlinear Terms

Linear regression models are not appropriate for every situation. A scatter chart of the 
data might show a nonlinear relationship, or the residuals for a linear fit might result in a 
 nonlinear pattern. In such cases, we might propose a nonlinear model to explain the rela-
tionship. For instance, a second-order polynomial model would be

Y = b0 + b1X + b2X
2 + e

Sometimes, this is called a curvilinear regression model. In this model, b1 represents the 
linear effect of X on Y, and b2 represents the curvilinear effect. However, although this 
model appears to be quite different from ordinary linear regression models, it is still linear 
in the parameters (the betas, which are the unknowns that we are trying to estimate). In 
other words, all terms are a product of a beta coefficient and some function of the data, 
which are simply numerical values. In such cases, we can still apply least squares to esti-
mate the regression coefficients.

Curvilinear regression models are also often used in forecasting when the indepen-
dent variable is time. This and other applications of regression in forecasting are discussed 
in the next chapter.

Figure 8.33

Surface Finish Regression 
Model Results

ExaMpLE 8.18 Modeling Beverage Sales Using Curvilinear Regression

The Excel file Beverage Sales provides data on the sales 
of cold beverages at a small restaurant with a large out-
door patio during the summer months (see Figure 8.34). 
The owner has observed that sales tend to increase 
on hotter days. Figure 8.35 shows linear regression re-
sults for these data. The U-shape of the residual plot (a 
 second-order polynomial trendline was fit to the residual 
data) suggests that a linear relationship is not appropri-
ate. To apply a curvilinear regression model, add a col-
umn to the data matrix by squaring the temperatures. 

Now, both temperature and temperature squared are the 
independent variables. Figure 8.36 shows the results for 
the curvilinear regression model. The model is:

sales = 142,850 − 3,643.17 × temperature + 23.3

× temperature2

Note that the adjusted R2 has increased significantly 
from the linear model and that the residual plots now 
show more random patterns.
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Figure 8.34

Portion of Excel File 
Beverage Sales

Figure 8.35

Linear Regression Results 
for Beverage Sales

Figure 8.36

Curvilinear Regression 
Results for Beverage Sales
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advanced Techniques for Regression Modeling using XLMiner

XLMiner is an Excel add-in for data mining that accompanies Analytic Solver Platform. 
Data mining is the subject of Chapter 10 and includes a wide variety of statistical proce-
dures for exploring data, including regression analysis. The regression analysis tool in 
XLMiner has some advanced options not available in Excel’s Descriptive Statistics tool, 
which we discuss in this section.

Best-subsets regression evaluates either all possible regression models for a set of 
independent variables or the best subsets of models for a fixed number of independent 
variables. It helps you to find the best model based on the Adjusted R2. Best-subsets 
 regression evaluates models using a statistic called Cp, which is called the Bonferroni 
criterion. Cp estimates the bias introduced in the estimates of the responses by having an 
underspecified model (a model with important predictors missing). If Cp is much greater 
than k + 1 (the number of independent variables plus 1), there is substantial bias. The 
full model always has Cp = k + 1. If all models except the full model have large Cps, it 
suggests that important predictor variables are missing. Models with a minimum value or 
having Cp less than or at least close to k + 1 are good models to consider.

XLMiner offers five different procedures for selecting the best subsets of variables. 
Backward Elimination begins with all independent variables in the model and deletes one 
at a time until the best model is identified. Forward Selection begins with a model having 
no independent variables and successively adds one at a time until no additional variable 
makes a significant contribution. Stepwise Selection is similar to Forward Selection ex-
cept that at each step, the procedure considers dropping variables that are not statistically 
significant. Sequential Replacement replaces variables sequentially, retaining those that 
improve performance. These options might terminate with a different model. Exhaustive 
Search looks at all combinations of variables to find the one with the best fit, but it can be 
time consuming for large numbers of variables.

ExaMpLE 8.19 Using XLMiner for Regression

We will use the Banking Data example. After installation, 
XLMiner will appear as a new tab in the Excel ribbon. The 
XLMiner ribbon is shown in Figure 8.37. To use the basic 
regression tool, click the Predict button in the Data  Mining 
group and choose Multiple Linear Regression. The first of 
two dialogs will then be displayed, as shown in Figure 8.38.  
First, enter the data range (including headers) in the 
box near the top and check the box First row contains 
 headers. All the variables will be listed in the left pane 
(Variables in input data). Select the independent variables 
and move them using the arrow button to the Input vari-
ables pane; then select the dependent variable and move 
it to the Output variable pane as shown in the figure. Click 
Next. The second dialog shown in Figure 8.39 will appear. 
Select the output options and check the Summary report 
box. However, before clicking Finish, click on the Best 
subsets button. In the dialog shown in Figure 8.40, check 
the box at the top and choose the selection procedure. 
Click OK and then click Finish in the Step 2 dialog.

XLMiner creates a new worksheet with an “Output 
Navigator” that allows you to click on hyperlinks to see var-
ious portions of the output (see Figure 8.41). The regression 
model and ANOVA output are shown in Figure 8.42. Note 
that this is the same as the output shown in Figure 8.21. 
The Best subsets results appear below the ANOVA output, 
shown in Figure 8.43. RSS is the residual sum of squares, or 
the sum of squared deviations between the predicted prob-
ability of success and the actual value (1 or 0). Probability is 
a quasi-hypothesis test that a given subset is acceptable; 
if this is less than 0.05, you can rule out that subset. Note 
that the model with 5 coefficients (including the intercept) is 
the only one that has a Cp value less than k + 1 = 5, and 
its adjusted R2 is the largest. If you click “Choose Subset,” 
XLMiner will create a new worksheet with the results for 
this model, which is the same as we found in Figure 8.22; 
that is, the model without the Home Value variable.
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Figure 8.37

XLMiner Ribbon 

Figure 8.38

XLMiner Linear Regression 
Dialog, Step 1 of 2

Figure 8.39

XLMiner Linear Regression 
Dialog, Step 2 of 2
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Figure 8.40

XLMiner Best Subset Dialog

Figure 8.41

XLMiner Output 
Navigator

Figure 8.42

XLMiner 
Regression  
Output

Figure 8.43

XLMiner Best Subsets Results
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XLMiner also provides cross-validation—a process of using two sets of sample data; 
one to build the model (called the training set), and the second to assess the model’s per-
formance (called the validation set). This will be explained in Chapter 10 when we study 
data mining in more depth, but is not necessary for standard regression analysis.

Autocorrelation
Best-subsets regression
Coefficient of determination 1R22
Cross-validation
Coefficient of multiple determination
Curvilinear regression model
Dummy variables
Exponential function
Homoscedasticity
Interaction
Least-squares regression
Linear function
Logarithmic function
Multicollinearity

Multiple correlation coefficient
Multiple linear regression
Overfitting
Parsimony
Partial regression coefficient
Polynomial function
Power function
R2 (R-squared)
Regression analysis
Residuals
Significance of regression
Simple linear regression
Standard error of the estimate, SYX

Standard residuals

Key Terms

Problems and Exercises

 1. Each worksheet in the Excel file LineFit Data con-
tains a set of data that describes a functional rela-
tionship between the dependent variable y and the 
independent variable x. Construct a line chart of 
each data set, and use the Excel Trendline tool to 
determine the best-fitting functions to model these 
data sets.

 2. A consumer products company has collected some 
data relating to the advertising expenditure and sales 
of one of its products:

Advertising cost Sales

$300  $7000

$350  $9000

$400 $10000

$450 $10600

What type of model would best represent the data? 
Use the Excel Trendline tool to find the best among 
the options provided.

 3. Using the data in the Excel file Demographics, de-
termine if a linear relationship exists between un-
employment rates and cost of living indexes by 
constructing a scatter chart. Visually, do there appear 

to be any outliers? If so, delete them and then find 
the best-fitting linear regression line using the Excel 
Trendline tool. What would you conclude about the 
strength of any relationship? Would you use regres-
sion to make predictions of the unemployment rate 
based on the cost of living?

 4. Using the data in the Excel file Weddings construct 
scatter charts to determine whether any linear rela-
tionship appears to exist between (1) the wedding 
cost and attendance, (2) the wedding cost and the 
value rating, and (3) the couple’s income and wed-
ding cost only for the weddings paid for by the bride 
and groom. Then find the best-fitting linear regres-
sion lines using the Excel Trendline tool for each of 
these charts.

 5. Using the data in Excel file Loans, construct a scat-
ter chart for monthly income versus loan amount and 
add a linear trendline. What is the regression model? 
If an individual has 7336 as monthly income, what 
would you predict the loan amount to be?

 6. Using the results of fitting the Home Market Value 
regression line in Example 8.4, compute the errors 
associated with each observation using formula (8.3) 
and construct a histogram.
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 7. Set up an Excel worksheet to apply formulas (8.5) 
and (8.6) to compute the values of b0 and b1 for the 
data in the Excel file Home Market Value and verify 
that you obtain the same values as in Examples 8.4 
and 8.5.

 8. The managing director of a consulting group has the 
following monthly data on total overhead costs and 
professional labor hours to bill to clients:4

Overhead Costs Billable Hours

$365,000 3,000

$400,000 4,000

$430,000 5,000

$477,000 6,000

$560,000 7,000

$587,000 8,000

a. Develop a trendline to identify the relationship 
between billable hours and overhead costs.

b. Interpret the coefficients of your regression 
model. Specifically, what does the fixed compo-
nent of the model mean to the consulting firm?

c. If a special job requiring 1,000 billable hours 
that would contribute a margin of $38,000 be-
fore overhead was available, would the job be 
attractive?

 9. Using the Excel file Weddings, apply the  Excel Re-
gression tool using the wedding cost as the depen-
dent variable and attendance as the independent 
variable.

a. Interpret all key regression results, hypothesis 
tests, and confidence intervals in the output.

b. Analyze the residuals to determine if the assump-
tions underlying the regression analysis are valid.

c. Use the standard residuals to determine if any 
possible outliers exist.

d. If a couple is planning a wedding for 175 guests, 
how much should they budget?

 10. Using the Excel file Weddings, apply the  Excel Re-
gression tool using the wedding cost as the  dependent 
variable and the couple’s income as the independent 
variable, only for those weddings paid for by the 
bride and groom.

a. Interpret all key regression results, hypothesis 
tests, and confidence intervals in the output.

b. Analyze the residuals to determine if the assump-
tions underlying the regression analysis are valid.

c. Use the standard residuals to determine if any 
possible outliers exist.

d. If a couple makes $70,000 together, how much 
would they probably budget for the wedding?

 11. Using the data in Excel file Crime, apply the Excel 
regression tool using crime rate (CRIM) as the de-
pendent variable and pupil-teacher ratio (PTRATIO) 
in the region as the independent variable.

a. Interpret all key regression results, hypothesis 
tests, and confidence intervals in the output.

b. Use the standard residuals to determine if any 
outliers exist.

 12. Using the data in the Excel file Student Grades, ap-
ply the Excel Regression tool using the midterm 
grade as the independent variable and the final exam 
grade as the dependent variable.

a. Interpret all key regression results, hypothesis 
tests, and confidence intervals in the output.

b. Analyze the residuals to determine if the assump-
tions underlying the regression analysis are valid.

c. Use the standard residuals to determine if any 
possible outliers exist.

 13. The Excel file National Football League provides 
various data on professional football for one season.

a. Construct a scatter diagram for Points/Game and 
Yards/Game in the Excel file. Does there appear 
to be a linear relationship?

b. Develop a regression model for predicting  
Points/Game as a function of Yards/Game. 
 Explain the statistical significance of the model.

c. Draw conclusions about the validity of the re-
gression analysis assumptions from the residual 
plot and standard residuals.

 14. A deep-foundation engineering contractor has bid 
on a foundation system for a new building housing 
the world headquarters for a Fortune 500 company. 

4Modified from Charles T. Horngren, George Foster, and Srikant M. Datar, Cost Accounting: A Managerial Emphasis, 9th ed. (Englewood 
Cliffs, NJ: Prentice Hall, 1997): 371.
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A part of the project consists of installing 311 auger cast 
piles. The contractor was given bid information for 
cost-estimating purposes, which consisted of the 
estimated depth of each pile; however, actual drill 
footage of each pile could not be determined exactly 
until construction was performed. The Excel file Pile 
Foundation contains the estimates and actual pile 
lengths after the project was completed. Develop a 
linear regression model to estimate the actual pile 
length as a function of the estimated pile lengths. 
What do you conclude?

 15. The Excel file Concert Sales provides data on sales 
dollars and the number of radio, TV, and newspaper 
ads promoting the concerts for a group of cities. De-
velop simple linear regression models for predicting 
sales as a function of the number of each type of ad. 
Compare these results to a multiple linear regression 
model using both independent variables. Examine 
the residuals of the best model for regression as-
sumptions and possible outliers.

 16. Using the data in the Excel file Credit Card Spend-
ing, develop a multiple linear regression model for 
estimating the average credit card expenditure as a 
function of both the income and family size. Predict 
the average expense of a family that has two mem-
bers and an income of $188,000 per annum, and 
another that has three members and an income of 
$39,000 income per annum.

 17. The Excel file Cereal Data provides a variety of nu-
tritional information about 67 cereals and their shelf 
location in a supermarket. Use regression analysis to 
find the best model that explains the relationship be-
tween calories and the other variables. Investigate the 
model assumptions and clearly explain your conclu-
sions. Keep in mind the principle of parsimony!

 18. The Excel file Salary Data provides information on 
current salary, beginning salary, previous experience 
(in months) when hired, and total years of education 
for a sample of 100 employees in a firm.

a. Develop a multiple regression model for pre-
dicting current salary as a function of the other 
variables.

b. Find the best model for predicting current salary 
using the t-value criterion.

 19. The Excel file Credit Approval Decisions provides 
information on credit history for a sample of banking 
customers. Use regression analysis to identify the best 

model for predicting the credit score as a function of 
the other numerical variables. For the model you se-
lect, conduct further analysis to check for significance 
of the independent variables and for multicollinearity.

 20. Using the data in the Excel file Freshman College 
Data, identify the best regression model for pre-
dicting the first year retention rate. For the model 
you select, conduct further analysis to check for 
significance of the independent variables and for 
multicollinearity.

 21. The Excel file Major League Baseball provides data 
on the 2010 season.

a. Construct and examine the correlation matrix. Is 
multicollinearity a potential problem?

b. Suggest an appropriate set of independent vari-
ables that predict the number of wins by examin-
ing the correlation matrix.

c. Find the best multiple regression model for pre-
dicting the number of wins. How good is your 
model? Does it use the same variables you 
thought were appropriate in part (b)?

 22. The Excel file Golfing Statistics provides data for a 
portion of the 2010 professional season for the top  
25 golfers.

a. Find the best multiple regression model for pre-
dicting earnings/event as a function of the re-
maining variables.

b. Find the best multiple regression model for pre-
dicting average score as a function of the other 
variables except earnings and events.

 23. Use the p-value criterion to find a good model for 
predicting the number of points scored per game 
by football teams using the data in the Excel file 
 National Football League.

 24. The State of Ohio Department of Education has a man-
dated ninth-grade proficiency test that covers writing, 
reading, mathematics, citizenship (social studies), and 
science. The Excel file Ohio Education Performance 
provides data on success rates (defined as the percent of 
students passing) in school districts in the greater Cin-
cinnati metropolitan area along with state averages.

a. Suggest the best regression model to predict math 
success as a function of success in the other sub-
jects by examining the correlation matrix; then 
run the regression tool for this set of variables.
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b. Develop a multiple regression model to predict 
math success as a function of success in all other 
subjects using the systematic approach described 
in this chapter. Is multicollinearity a problem?

c. Compare the models in parts (a) and (b). Are they 
the same? Why or why not?

 25. A leading car manufacturer tracks the data of its used 
cars for resale. The Excel file Car Sales contains in-
formation on the selling price of the car, fuel type 
(diesel or petrol), horsepower (HP), and manufacture 
year.

a. Develop a multiple linear regression model for 
the selling price as a function of fuel type and HP 
without any interaction term.

b. Determine if any interaction exists between fuel 
type and HP and find the best model. What is the 
predicted price for either a petrol or diesel car 
with a horsepower of 69?

 26. For the Car Sales data described in Problem 25, de-
velop a regression model for selling price as a function 
of horsepower and manufacture year, incorporating an 
interaction term. What would be the predicted price 
for a car manufactured in either 2002 or 2003 with a 
horsepower of 69? How do these predictions compare 
to the overall average price in each year?

 27. For the Excel file Auto Survey,

a. Find the best regression model to predict miles/
gallon as a function of vehicle age and mileage.

b. Using your result from part (a), add the categori-
cal variable Purchased to the model. Does this 
change your result?

c. Determine whether any significant interac-
tion exists between Vehicle Age and Purchased 
variables.

 28. Cost functions are often nonlinear with volume be-
cause production facilities are often able to produce 
larger quantities at lower rates than smaller quanti-
ties.5 Using the following data, apply simple linear 
regression, and examine the residual plot. What do 
you conclude? Construct a scatter chart and use the 

Excel Trendline feature to identify the best type of 
curvilinear trendline that maximizes R2.

Units produced Costs

  500 $12,500

1,000 $25,000

1,500 $32,500

2,000 $40,000

2,500 $45,000

3,000 $50,000

 29. A product manufacturer wishes to determine the 
relationship between the shelf space of the prod-
uct and its sales. Past data indicates the following 
sales and shelf space in its stores.

Sales Shelf Space

$25,000   5 square feet

$15,000 3.2 square feet

$28,000 5.4 square feet

$30,000 6.1 square feet

$17,000 4.3 square feet

$16,000 3.1 square feet

$12,000 2.6 square feet

$21,000 6.4 square feet

$19,000 4.9 square feet

$27,000 5.7 square feet

Using these data points, apply simple linear regres-
sion, and examine the residual plot. What do you 
conclude? Construct a scatter chart and use the Excel  
Trendline feature to identify the best type of curvilin-
ear trendline that maximizes R2.

 30. For the Excel file Cereal Data, use XLMiner and 
best subsets with backward selection to find the best 
model.

 31. Use XLMiner and best subsets with stepwise selec-
tion to find the best model points per game for the 
National Football League data (see Problem 23).

5Horngren, Foster, and Datar, Cost Accounting: A Managerial Emphasis, 9th ed.: 349.
6Horngren, Foster, and Datar, Cost Accounting: A Managerial Emphasis, 9th ed.: 349.
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Case: performance Lawn Equipment

In reviewing the PLE data, Elizabeth Burke noticed that 
defects received from suppliers have decreased  (worksheet 
 Defects After Delivery). Upon investigation, she learned 
that in 2010, PLE experienced some quality problems 
due to an increasing number of defects in materials  
received from suppliers. The company instituted an ini-
tiative in  August 2011 to work with suppliers to reduce 
these defects, to more closely coordinate deliveries, and to 
 improve materials quality through reengineering supplier 
production policies. Elizabeth noted that the program ap-
peared to reverse an increasing trend in defects; she would 
like to predict what might have happened had the supplier 
initiative not been implemented and how the number of 
defects might further be reduced in the near future.

In meeting with PLE’s human resources director, 
Elizabeth also discovered a concern about the high rate 
of turnover in its field service staff. Senior managers have 
suggested that the department look closer at its recruiting 
policies, particularly to try to identify the characteristics 
of individuals that lead to greater retention. However, in 
a recent staff meeting, HR managers could not agree on 
these characteristics. Some argued that years of education 
and grade point averages were good predictors. Others 
argued that hiring more mature applicants would lead to 
greater retention. To study these factors, the staff agreed 
to conduct a statistical study to determine the effect that 
years of education, college grade point average, and age 
when hired have on retention. A sample of 40 field service 

engineers hired 10 years ago was selected to determine 
the influence of these variables on how long each indi-
vidual stayed with the company. Data are compiled in the  
Employee Retention worksheet.

Finally, as part of its efforts to remain competitive, 
PLE tries to keep up with the latest in production technol-
ogy. This is especially important in the highly competi-
tive lawn-mower line, where competitors can gain a real 
advantage if they develop more cost-effective means of 
production. The lawn-mower division therefore spends a 
great deal of effort in testing new technology. When new 
production technology is introduced, firms often experi-
ence learning, resulting in a gradual decrease in the time 
required to produce successive units. Generally, the rate of 
improvement declines until the production time levels off. 
One example is the production of a new design for lawn-
mower engines. To determine the time required to produce 
these engines, PLE produced 50 units on its production 
line; test results are given on the worksheet Engines in 
the database. Because PLE is continually developing new 
technology, understanding the rate of learning can be use-
ful in estimating future production costs without having to 
run extensive prototype trials, and Elizabeth would like a 
better handle on this.

Use techniques of regression analysis to assist her in 
evaluating the data in these three worksheets and reach-
ing useful conclusions. Summarize your work in a formal 
r eport with all appropriate results and analyses.
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Learning Objectives

After studying this chapter, you will be able to:

•	Explain how judgmental approaches are used for 
forecasting.

•	List different types of statistical forecasting models.

•	Apply moving average and exponential smoothing 
models to stationary time series.

•	State three error metrics used for measuring forecast 
accuracy and explain the differences among them.

•	Apply double exponential smoothing models to time 
series with a linear trend.

•	Use Holt-Winters and regression models to forecast 
time series with seasonality.

•	Apply Holt-Winters forecasting models to time series 
with both trend and seasonality.

•	Identify the appropriate choice of forecasting model 
based on the characteristics of a time series.

•	Explain how regression techniques can be used to 
forecast with explanatory or causal variables.

•	Apply XLMiner to different types of forecasting models.

Forecasting Techniques9Ch
ap

te
r
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Managers require good forecasts of future events to make good decisions. 

For example, forecasts of interest rates, energy prices, and other economic in-

dicators are needed for financial planning; sales forecasts are needed to plan 

production and workforce capacity; and forecasts of trends in demographics, 

consumer behavior, and technological innovation are needed for long-term stra-

tegic planning. The government also invests significant resources on predicting 

short-run U.S. business performance using the Index of Leading Indicators. This 

index focuses on the performance of individual businesses, which often is highly 

correlated with the performance of the overall economy and is used to forecast 

economic trends for the nation as a whole. In this chapter, we introduce some 

common methods and approaches to forecasting, including both qualitative and 

quantitative techniques.

Business analysts may choose from a wide range of forecasting techniques to 

support decision making. Selecting the appropriate method depends on the char-

acteristics of the forecasting problem, such as the time horizon of the variable be-

ing forecast, as well as available information on which the forecast will be based. 

Three major categories of forecasting approaches are qualitative and judgmental 

techniques, statistical time-series models, and explanatory/causal methods. In this 

chapter, we introduce forecasting techniques in each of these categories and use  

basic Excel tools, XLMiner, and linear regression to implement them in a spread-

sheet environment.

Qualitative and Judgmental Forecasting

Qualitative and judgmental techniques rely on experience and intuition; they are necessary 
when historical data are not available or when the decision maker needs to forecast far into 
the future. For example, a forecast of when the next generation of a microprocessor will be 
available and what capabilities it might have will depend greatly on the opinions and ex-
pertise of individuals who understand the technology. Another use of judgmental methods 
is to incorporate nonquantitative information, such as the impact of government regula-
tions or competitor behavior, in a quantitative forecast. Judgmental techniques range from 
such simple methods as a manager’s opinion or a group-based jury of executive opinion to 
more structured approaches such as historical analogy and the Delphi method.

Historical Analogy

One judgmental approach is historical analogy, in which a forecast is obtained through 
a comparative analysis with a previous situation. For example, if a new product is be-
ing introduced, the response of consumers to marketing campaigns to similar, previous 
products can be used as a basis to predict how the new marketing campaign might fare. 
Of course, temporal changes or other unique factors might not be fully considered in such 
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ExAMpLE 9.1 predicting the price of Oil

In early 1998, the price of oil was about $22 a barrel. How-
ever, in mid-1998, the price of a barrel of oil dropped to 
around $11. The reasons for this price drop included an 
oversupply of oil from new production in the Caspian Sea 
region, high production in non-OPEC regions, and lower-
than-normal demand. In similar circumstances in the 
past, OPEC would meet and take action to raise the price 

of oil. Thus, from historical analogy, we might forecast a 
rise in the price of oil. OPEC members did, in fact, meet in 
mid-1998 and agreed to cut their production, but nobody 
believed that they would actually cooperate effectively, 
and the price continued to drop for a time. Subsequently, 
in 2000, the price of oil rose dramatically, falling again in 
late 2001.

ExAMpLE 9.2 Economic Indicators

One variable that is important to the nation’s economy 
is the Gross Domestic Product (GDP), which is a mea-
sure of the value of all goods and services produced in 
the United States. Despite its shortcomings (for instance, 
unpaid work such as housekeeping and child care is not 

measured; production of poor-quality output inflates the 
measure, as does work expended on corrective action), 
it is a practical and useful measure of economic perfor-
mance. Like most time series, the GDP rises and falls in 
a cyclical fashion. Predicting future trends in the GDP is 

Analogies often provide good forecasts, but you need to be careful to recognize new 
or different circumstances. Another analogy is international conflict relative to the price 
of oil. Should war break out, the price would be expected to rise, analogous to what it has 
done in the past.

The Delphi Method

A popular judgmental forecasting approach, called the Delphi method, uses a panel of 
experts, whose identities are typically kept confidential from one another, to respond to a 
sequence of questionnaires. After each round of responses, individual opinions, edited to 
ensure anonymity, are shared, allowing each to see what the other experts think. Seeing 
other experts’ opinions helps to reinforce those in agreement and to influence those who 
did not agree to possibly consider other factors. In the next round, the experts revise their 
estimates, and the process is repeated, usually for no more than two or three rounds. The 
Delphi method promotes unbiased exchanges of ideas and discussion and usually results 
in some convergence of opinion. It is one of the better approaches to forecasting long-
range trends and impacts.

Indicators and Indexes

Indicators and indexes generally play an important role in developing judgmental fore-
casts. Indicators are measures that are believed to influence the behavior of a variable we 
wish to forecast. By monitoring changes in indicators, we expect to gain insight about the 
future behavior of the variable to help forecast the future.

(continued)

an approach. However, a great deal of insight can often be gained through an analysis of 
past experiences.

M09_EVAN5448_02_SE_C09.indd   301 12/09/15   7:58 PM



302 Chapter 9  Forecasting Techniques

Indicators are often combined quantitatively into an index, a single measure that 
weights multiple indicators, thus providing a measure of overall expectation. For example, 
financial analysts use the Dow Jones Industrial Average as an index of general stock mar-
ket performance. Indexes do not provide a complete forecast but rather a better picture of 
direction of change and thus play an important role in judgmental forecasting.

often done by analyzing leading indicators—series that 
tend to rise and fall for some predictable length of time 
prior to the peaks and valleys of the GDP. One example 
of a leading indicator is the formation of business enter-
prises; as the rate of new businesses grows, we would 
expect the GDP to increase in the future. Other exam-
ples of leading indicators are the percent change in the 

money supply (M1) and net change in business loans. 
Other indicators, called lagging indicators, tend to have 
peaks and valleys that follow those of the GDP. Some 
lagging indicators are the Consumer Price Index, prime 
rate, business investment expenditures, or inventories 
on hand. The GDP can be used to predict future trends in 
these indicators.

Statistical Forecasting Models

Statistical time-series models find greater applicability for short-range forecasting prob-
lems. A time series is a stream of historical data, such as weekly sales. We characterize the 
values of a time series over T periods as At , t = 1, 2, c, T. Time-series models assume 
that whatever forces have influenced sales in the recent past will continue into the near fu-
ture; thus, forecasts are developed by extrapolating these data into the future. Time series 
generally have one or more of the following components: random behavior, trends, sea-
sonal effects, or cyclical effects. Time series that do not have trend, seasonal, or cyclical 
effects but are relatively constant and exhibit only random behavior are called stationary  
time series.

Many forecasts are based on analysis of historical time-series data and are predicated 
on the assumption that the future is an extrapolation of the past. A trend is a gradual 
 upward or downward movement of a time series over time.

ExAMpLE 9.3 Leading Economic Indicators

The Department of Commerce initiated an Index of Leading 
Indicators to help predict future economic performance. 
Components of the index include the following:

•	average weekly hours, manufacturing

•	average weekly initial claims, unemployment 
insurance

•	new orders, consumer goods, and materials

•	vendor performance—slower deliveries

•	new orders, nondefense capital goods

•	building permits, private housing

•	stock prices, 500 common stocks (Standard & Poor)

•	money supply

•	interest rate spread

•	index of consumer expectations (University of 
Michigan)

Business Conditions Digest included more than 100 
time series in seven economic areas. This publication 
was discontinued in March 1990, but information re-
lated to the Index of Leading Indicators was continued 
in Survey of Current Business. In December 1995, the 
U.S. Department of Commerce sold this data source to 
The Conference Board, which now markets the informa-
tion under the title Business Cycle Indicators; information 
can be obtained at its Web site (www.conference-board 
.org). The site includes excellent current information 
about the calculation of the index as well as its current 
components.
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leveled off for a while and began increasing at a slower 
rate through the 1980s and 1990s. In the past decade, we 
 actually see a slight downward trend. This time series, 
then, is composed of several different short trends.

ExAMpLE 9.4 Identifying Trends in a Time Series

Figure 9.1 shows a chart of total energy  consumption 
from the data in the Excel file Energy Production & 
 Consumption. This time series shows an upward trend. 
However, we see that energy consumption was rising 
quite rapidly in a linear fashion during the 1960s, then 

Figure 9.1

Total Energy Consumption 
Time Series

Figure 9.2

Seasonal Effects in 
Natural Gas Usage

Time series may also exhibit short-term seasonal effects (over a year, month, week, 
or even a day) as well as longer-term cyclical effects, or nonlinear trends. A seasonal  
effect is one that repeats at fixed intervals of time, typically a year, month, week, or day. 
At a neighborhood grocery store, for instance, short-term seasonal patterns may occur 
over a week, with the heaviest volume of customers on weekends; seasonal patterns may 
also be evident during the course of a day, with higher volumes in the mornings and late 
afternoons. Figure 9.2 shows seasonal changes in natural gas usage for a homeowner over 
the course of a year (Excel file Gas & Electric). Cyclical effects describe ups and downs 
over a much longer time frame, such as several years. Figure 9.3 shows a chart of the data 
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in the Excel file Federal Funds Rates. We see some evidence of long-term cycles in the 
time series driven by economic factors, such as periods of inflation and recession.

Although visual inspection of a time series to identify trends, seasonal, or cyclical  
effects may work in a naïve fashion, such unscientific approaches may be a bit unset-
tling to a manager making important decisions. Subtle effects and interactions of sea-
sonal and cyclical factors may not be evident from simple visual extrapolation of data. 
Statistical methods, which involve more formal analyses of time series, are invaluable in 
 developing good forecasts. A variety of statistically-based forecasting methods for time 
series are  commonly used. Among the most popular are moving average methods, expo-
nential smoothing, and regression analysis. These can be implemented very easily on a 
spreadsheet using basic functions and Data Analysis tools available in Microsoft Excel, as 
well as with more powerful software such as XLMiner. Moving average and exponential 
smoothing models work best for time series that do not exhibit trends or seasonal factors. 
For time series that involve trends and/or seasonal factors, other techniques have been 
developed. These include double moving average and exponential smoothing models, 
 seasonal additive and multiplicative models, and Holt-Winters additive and multiplicative 
models. 

Forecasting Models for Stationary Time Series

Two simple approaches that are useful over short time periods when trend, seasonal, or 
cyclical effects are not significant are moving average and exponential smoothing models.

Moving Average Models

The simple moving average method is a smoothing method based on the idea of averag-
ing random fluctuations in the time series to identify the underlying direction in which 
the time series is changing. Because the moving average method assumes that future ob-
servations will be similar to the recent past, it is most useful as a short-range forecasting 
method. Although this method is very simple, it has proven to be quite useful in stable en-
vironments, such as inventory management, in which it is necessary to develop forecasts 
for a large number of items.

Specifically, the simple moving average forecast for the next period is computed 
as the average of the most recent k observations. The value of k is somewhat arbitrary,  

Figure 9.3

Cyclical Effects in Federal 
Funds Rates
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although its choice affects the accuracy of the forecast. The larger the value of k, the more 
the current forecast is dependent on older data, and the forecast will not react as quickly to 
fluctuations in the time series. The smaller the value of k, the quicker the forecast responds 
to changes in the time series. Also, when k is larger, extreme values have less effect on the 
forecasts. (In the next section, we discuss how to select k by examining errors associated 
with different values.)

ExAMpLE 9.5 Moving Average Forecasting

The Excel file Tablet Computer Sales contains data for 
the number of units sold for the past 17 weeks. Figure 9.4 
shows a chart of these data. The time series appears to 
be relatively stable, without trend, seasonal, or cyclical 
effects; thus, a moving average model would be appro-
priate. Setting k = 3, the three-period moving average 
forecast for week 18 is

week 18 forecast =
82 + 71 + 50

3
= 67.67

Moving average forecasts can be generated easily 
on a spreadsheet. Figure 9.5 shows the computations for 
a three-period moving average forecast of tablet com-
puter sales. Figure 9.6 shows a chart that contrasts the 
data with the forecasted values.

Figure 9.4

Chart of Weekly Tablet 
Computer Sales

ExAMpLE 9.6 Using Excel’s Moving Average Tool

For the Tablet Computer Sales Excel file, select Data 
Analysis and then Moving Average from the Analysis 
group. Excel displays the dialog box shown in Figure 9.7.  
You need to enter the Input Range of the data, the  Interval 
(the value of k), and the first cell of the Output Range. 
To align the  actual data with the forecasted values in the 
worksheet, select the first cell of the Output Range to 
be one row below the first value. You may also obtain a 
chart of the data and the moving  averages, as well as a 
column of standard  errors, by checking the appropriate 
boxes. However, we do not  recommend  using the chart 

or error options because the forecasts  generated by this 
tool are not properly aligned with the data (the forecast 
value aligned with a particular data point  represents the 
forecast for the next month) and, thus, can be mislead-
ing. Rather, we recommend that you generate your own 
chart as we did in Figure 9.6. Figure 9.8 shows the  results 
produced by the Moving Average tool (with some cus-
tomization of the formatting). Note that the forecast for 
week 18 is aligned with the actual value for week 17 on 
the chart. Compare this to Figure 9.6 and you can see the 
difference.

Moving average forecasts can also be obtained from Excel’s Data Analysis options.
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XLMiner also provides a tool for forecasting with moving averages. XLMiner is an 
Excel add-on that is available from Frontline Systems, developers of Analytic Solver 
 Platform. See the Preface for installation instructions. XLMiner will be discussed more 
thoroughly in Chapter 10.

Figure 9.5

Excel Implementation of 
Moving Average Forecast

Figure 9.6

Chart of Units Sold and 
Moving Average Forecast

Figure 9.7

Excel Moving Average Tool 
Dialog
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ExAMpLE 9.7 Moving Average Forecasting with XLMiner

To use XLMiner for the Tablet Computer Sales data, first 
click on any value in the data. Then select  Smoothing 
from the Time Series group and select Moving  Average. 
The dialog in Figure 9.9 appears. Next, move the vari-
ables from the Variables in input data field to the Time 
Variable and Selected variable fields using the arrow but-
tons (this was already done in Figure 9.9). In the Weights 
panel, adjust the value of Interval—the number of peri-
ods to use for the moving average. In the Output options 

panel, you may click Give Forecast and enter the num-
ber of forecasts to generate from the procedure. When 
you click OK, XLMiner generates the output on a new 
worksheet, as shown in Figure 9.10. The forecasts are 
shown in rows 24 through 40 along with a chart of the 
data and forecasts (without the initial periods that do not 
have corresponding forecasts). The forecast for week 18 
is shown at the bottom of the figure. We discuss other 
parts of the output next.

Figure 9.8

Results of Excel 
Moving Average Tool 
(Note misalignment of 
forecasts with actual 
sales in the chart.)

Figure 9.9

XLMiner Moving Average 
Dialog
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Figure 9.10

XLMiner Moving  
Average Results

Error Metrics and Forecast Accuracy

The quality of a forecast depends on how accurate it is in predicting future values of a 
time series. In the simple moving average model, different values for k will produce dif-
ferent forecasts. How do we know which is the best value for k? The error, or residual, in a 
forecast is the difference between the forecast and the actual value of the time series (once 
it is known). In Figure 9.6, the forecast error is simply the vertical distance between the 
forecast and the data for the same time period.

To analyze the effectiveness of different forecasting models, we can define error 
metrics, which compare quantitatively the forecast with the actual observations. Three 
metrics that are commonly used are the mean absolute deviation, mean square error, and 
mean absolute percentage error. The mean absolute deviation (MAD) is the absolute 
difference between the actual value and the forecast, averaged over a range of forecasted 
values:

 MAD =
a

n

t = 1
� At - Ft �

n
 (9.1)

where At is the actual value of the time series at time t, Ft is the forecast value for time t, 
and n is the number of forecast values (not the number of data points since we do not have 
a forecast value associated with the first k data points). MAD provides a robust measure of 
error and is less affected by extreme observations.
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Mean square error (MSE) is probably the most commonly used error metric. It 
 penalizes larger errors because squaring larger numbers has a greater impact than squaring 
smaller numbers. The formula for MSE is

 MSE =
a

n

t = 1
1At - Ft22

n
 (9.2)

Again, n represents the number of forecast values used in computing the average. Some-
times the square root of MSE, called the root mean square error (RMSE), is used:

 RMSE = H a
n

t = 1
1At - Ft22

n
 (9.3)

Note that unlike MSE, RMSE is expressed in the same units as the data (similar to the 
difference between a standard deviation and a variance), allowing for more practical 
comparisons.

A fourth commonly used metric is mean absolute percentage error (MAPE). 
MAPE is the average of absolute errors divided by actual observation values.

 MAPE =
a

n

t = 1

2 At - Ft

At

2
n

* 100 (9.4)

The values of MAD and MSE depend on the measurement scale of the time-series 
data. For example, forecasting profit in the range of millions of dollars would result  
in very large MAD and MSE values, even for very accurate forecasting models. On  
the other hand, market share is measured in proportions; therefore, even bad forecasting 
models will have small values of MAD and MSE. Thus, these measures have no meaning  
except in comparison with other models used to forecast the same data. Generally, MAD 
is less affected by extreme observations and is preferable to MSE if such extreme obser-
vations are considered rare events with no special meaning. MAPE is different in that the  
measurement scale is eliminated by dividing the absolute error by the time-series data 
value. This allows a better relative comparison. Although these comments provide some 
guidelines, there is no universal agreement on which measure is best.

Note that the output from XLMiner in Figure 9.10 calculates residuals for the fore-
casts and provides the values of MAPE, MAD, and MSE.

ExAMpLE 9.8 Using Error Metrics to Compare Moving Average Forecasts

The metrics we have described can be used to com-
pare different moving average forecasts for the  Tablet 
 Computer Sales data. A spreadsheet that shows the fore-
casts as well as the calculations of the error metrics for 
two-, three-, and four-period moving average  models is 
given in Figure 9.11. The error is the difference  between 
the actual value of the units sold and the forecast. To 
compute MAD, we first compute the  absolute values of 

the errors and then average them. For MSE, we compute 
the squared errors and then find the average. For MAPE, 
we find the absolute values of the  errors divided by the 
actual observation multiplied by 100 and then average 
them. The results suggest that a two- period moving 
 average model provides the best forecast among these 
alternatives because the error metrics are all smaller 
than for the other models.
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Figure 9.11

Error Metrics Alternative 
Moving Average Forecasts

Exponential Smoothing Models

A versatile, yet highly effective, approach for short-range forecasting is simple exponen-
tial smoothing. The basic simple exponential smoothing model is

Ft+ 1 = 11 - a2Ft + aAt

   = Ft + a1At - Ft2 (9.5)

where Ft+ 1is the forecast for time period t + 1, Ft is the forecast for period t, At is the 
observed value in period t, and a is a constant between 0 and 1 called the smoothing 
constant. To begin, set F1 and F2 equal to the actual observation in period 1, A1.

Using the two forms of the forecast equation just given, we can interpret the simple 
exponential smoothing model in two ways. In the first model, the forecast for the next 
period, Ft+ 1, is a weighted average of the forecast made for period t, Ft, and the actual 
observation in period t, At. The second form of the model, obtained by simply rearrang-
ing terms, states that the forecast for the next period, Ft+ 1, equals the forecast for the last 
period, Ft, plus a fraction a of the forecast error made in period t, At - Ft. Thus, to make a 
forecast once we have selected the smoothing constant, we need to know only the previous 
forecast and the actual value. By repeated substitution for Ft in the equation, it is easy to 
demonstrate that Ft+ 1 is a decreasingly weighted average of all past time-series data. Thus, 
the forecast actually reflects all the data, provided that a is strictly between 0 and 1.

ExAMpLE 9.9 Using Exponential Smoothing to Forecast Tablet Computer Sales

For the tablet computer sales data, the forecast for week 
2 is 88, the actual observation for week 1. Suppose we 
choose A = 0.7; then the forecast for week 3 would be

week 3 forecast = (1−0.7)(88) + (0.7)(44) = 57.2

The actual observation for week 3 is 60; thus, the forecast 
for week 4 would be

week 4 forecast = (1−0.7)(57.2) + (0.7)(60) = 59.16

Because the simple exponential smoothing model requires only the previous fore-
cast and the current time-series value, it is very easy to calculate; thus, it is highly suit-
able for environments such as inventory systems, where many forecasts must be made. 
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is not included because we do not have a forecast for the 
first period, Week 1. A smoothing constant of A = 0.6 
provides the lowest  error for all three metrics.

ExAMpLE 9.10  Finding the Best Exponential Smoothing Model  
for Tablet Computer Sales

An Excel spreadsheet for evaluating exponential smooth-
ing models for the Tablet Computer Sales data using 
 values of A between 0.1 and 0.9 is shown in Figure 9.12. 
Note that in computing the error measures, the first row 

The smoothing constant a is usually chosen by experimentation in the same manner as 
choosing the number of periods to use in the moving average model. Different values of 
a affect how quickly the model responds to changes in the time series. For instance, a 
value of a = 0 would simply repeat last period’s forecast, whereas a = 1 would fore-
cast last period’s actual demand. The closer a is to 1, the quicker the model responds to 
changes in the time series, because it puts more weight on the actual current observation 
than on the forecast. Likewise, the closer a is to 0, the more weight is put on the prior 
forecast, so the model would respond to changes more slowly.

Excel has a Data Analysis tool for exponential smoothing.

Figure 9.12

Exponential Smoothing 
Forecasts for Tablet 
Computer Sales

ExAMpLE 9.11 Using Excel’s Exponential Smoothing Tool

In the Table Computer Sales example, from the  Analysis 
group, select Data Analysis and then Exponential 
 Smoothing. In the dialog (Figure 9.13), as in the Moving 
Average dialog, you must enter the Input Range of the 
time-series data, the Damping Factor is (1 − A)—not the 
smoothing constant as we have defined it—and the first 
cell of the Output Range, which should be adjacent to the 

first data point. You also have options for labels, to chart 
output, and to obtain standard errors. As opposed to the 
Moving Average tool, the chart generated by this tool does 
correctly align the forecasts with the actual data, as shown 
in Figure 9.14. You can see that the exponential smoothing 
model follows the pattern of the data quite closely, although 
it tends to lag with an increasing trend in the data.
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XLMiner also has an exponential smoothing capability. The dialog (which appears 
when Exponential . . . is selected from the Time Series/Smoothing menu) is similar to the 
one for moving averages in Figure 9.9. However, within the Weights pane, it provides op-
tions to either enter the smoothing constant, Level (Alpha) or to check an Optimize box, 
which will find the best value of the smoothing constant.

ExAMpLE 9.12 Optimizing Exponential Smoothing Forecasts Using XLMiner

Select Exponential Smoothing from the Smoothing menu 
in XLMiner. For the Tablet Computer Sales data, enter the  
data (similar to the dialog in Figure 9.9), and check  
the Optimize box in the Weights pane. Figure 9.15 
shows the results. In row 16, we see that the optimized 

 smoothing constant is 0.63. You can see that this is close 
to the value of 0.6 that we estimated in Figure 9.12; the 
error measures shown in rows 48–50 are slightly lower 
than those in Figure 9.12.

Figure 9.13

Exponential Smoothing Tool 
Dialog

Figure 9.14

Excel Exponential 
Smoothing Forecasts  
for A = 0.6

Forecasting Models for Time Series with a Linear Trend

For time series with a linear trend but no significant seasonal components, double mov-
ing average and double exponential smoothing models are more appropriate than using 
simple moving average or exponential smoothing models. Both methods are based on the 
linear trend equation:

 Ft+ k = at + btk (9.6)
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Figure 9.15

XLMiner Exponential 
Smoothing Results for 
Tablet Computer Sales

That is, the forecast for k periods into the future from period t is a function of a base value 
at, also known as the level, and a trend, or slope, bt. Double moving average and double 
exponential smoothing differ in how the data are used to arrive at appropriate values for 
at and bt. Because the calculations are more complex than for simple moving average and 
exponential smoothing models, it is easier to use forecasting software than to try to imple-
ment the models directly on a spreadsheet. Therefore, we do not discuss the theory or for-
mulas underlying the methods. XLMiner does not support a procedure for double moving 
average; however, it does provide one for double exponential smoothing.

Double Exponential Smoothing

In double exponential smoothing, the estimates of at and bt are obtained from the follow-
ing equations:

 at = aFt + 11 - a21at- 1 + bt- 12
  bt = b1at - at- 12 + 11 - b2bt- 1 

(9.7)

In essence, we are smoothing both parameters of the linear trend model. From the first 
equation, the estimate of the level in period t is a weighted average of the observed value 
at time t and the predicted value at time t, at-1 + bt-1, based on simple exponential 
smoothing. For large values of a, more weight is placed on the observed value. Lower 
values of a put more weight on the smoothed predicted value. Similarly, from the second 
equation, the estimate of the trend in period t is a weighted average of the differences in 
the  estimated levels in periods t and t - 1 and the estimate of the level in period t - 1.  
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ExAMpLE 9.13 Double Exponential Smoothing with XLMiner

Figure 9.16 shows a portion of the Excel file Coal 
 Production, which provides data on total tons produced 
from 1960 through 2011. The data appear to follow a linear 
trend. The XLMiner dialog is similar to the one used for 
single exponential smoothing. Using the optimization fea-
ture to find the best values of A and B, XLMiner produces 
the output, a portion of which is shown in Figure 9.17. We 
see that the best values of A and B are 0.684 and 0.00, 

respectively. Forecasts generated by XLMiner for the next 
3 years (not shown in Figure 9.17) are

2012: 1,115,563,804

2013: 1,130,977,341

2014: 1,146,390,878

Regression-Based Forecasting for Time Series  
with a Linear Trend

Equation 9.6 may look familiar from simple linear regression. We introduced regression 
in the previous chapter as a means of developing relationships between a dependent and 
independent variables. Simple linear regression can be applied to forecasting using time as 
the independent variable.

Figure 9.16

Portion of Excel File 
Coal Production

Larger values of b place more weight on the differences in the levels, but lower values of 
b put more emphasis on the previous estimate of the trend. Initial values are chosen for a1 
as A1 and b1 as A2 - A1. Equations (9.7) must then be used to compute at and bt for the 
entire time series to be able to generate forecasts into the future.

As with simple exponential smoothing, we are free to choose the values of a and b. 
However, it is easier to let XLMiner optimize these values using historical data.

ExAMpLE 9.14 Forecasting Using Trendlines

For the data in the Excel file Coal Production, a linear 
trendline, shown in Figure 9.18, gives an R2 value of 0.95 
(the fitted model assumes that the years are numbered 1 
through 52, not as actual dates). The model is

tons = 438,819,885.29 + 15,413,536.97 × year

Thus, a forecast for 2012 would be

tons = 438,819,885.29 + 15,413,536.97 × (53)
 = 1,255,737,345

Note however, that the linear model does not adequately 
predict the recent drop in production after 2008.
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Figure 9.17

Portion of XLMiner 
Output for Double 
Exponential Smoothing 
of Coal-Production Data

Figure 9.18

Trendline-Based Forecast 
for Coal Production

In Chapter 8, we noted that an important assumption for using regression analysis 
is the lack of autocorrelation among the data. When autocorrelation is present, succes-
sive observations are correlated with one another; for example, large observations tend to 
follow other large observations, and small observations also tend to follow one another. 
This can often be seen by examining the residual plot when the data are ordered by time. 
Figure 9.19 shows the time-ordered residual plot from the Excel Regression tool for the 
coal-production example. The residuals do not appear to be random; rather, successive 
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ExAMpLE 9.15 Regression-Based Forecasting for Natural Gas Usage

With monthly data, as we have for natural gas usage in the 
Gas & Electric Excel file, we have a seasonal categorical 
variable with k = 12 levels. As discussed in Chapter 8, we 
construct the regression model using k − 1 dummy vari-
ables. We will use January as the reference month; therefore, 
this variable does not appear in the model:

gas usage = B0 + B1 time + B2 February + B3 March
 + B4 April + B5 May + B6 June + B7 July
 +B8 August + B9 September + B10 October
 +B11 November + B12 December

This coding scheme results in the data matrix shown in 
Figure 9.20. This model picks up trends from the regression 
coefficient for time and seasonality from the dummy vari-
ables for each month. The forecast for the next January will 
be B0 + B1(25). The variable coefficients (betas) for each 
of the other 11 months will show the adjustment relative to 
January. For example, the forecast for next February will be 
B0 + B1(26) + B2(1), and so on.

Figure 9.21 shows the results of using the Regression 
tool in Excel after eliminating insignificant variables (time 
and Feb). Because the data show no clear linear trend, the 

Figure 9.19

Residual Plot for Linear 
Regression Forecasting 
Model

 observations seem to be related to one another. This suggests autocorrelation, indicating 
that other approaches, called autoregressive models, are more appropriate. However, these 
are more advanced than the level of this book and are not discussed here.

Forecasting Time Series with Seasonality

Quite often, time-series data exhibit seasonality, especially on an annual basis. We saw an 
example of this in Figure 9.2. When time series exhibit seasonality, different techniques 
provide better forecasts than the ones we have described.

Regression-Based Seasonal Forecasting Models

One approach is to use linear regression. Multiple linear regression models with categori-
cal variables can be used for time series with seasonality. To do this, we use dummy cat-
egorical variables for the seasonal components.
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variable time could not explain any significant variation in 
the data. The dummy variable for February was probably 
insignificant because the historical gas usage for both 
January and February were very close to each other. The 
R2 for this model is 0.971, which is very good. The final 
regression model is

 gas usage = 236.75 − 36.75 March − 99.25 April
 − 192.25 May − 203.25 June − 208.25 July
 − 209.75 August − 208.25 September
 − 196.75 October − 149.75 November
 − 43.25 December

Figure 9.20

Data Matrix for Seasonal 
Regression Model

Figure 9.21

Final Regression Model for Forecasting Gas Usage
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ExAMpLE 9.16  Forecasting Natural Gas Usage Using Holt-Winters  
No-Trend Model

Figure 9.22 shows the dialog for the Holt-Winters 
smoothing model with no trend for the natural gas 
data in the Gas & Electric Excel file in Figure 9.2. In the 
 Parameters pane, the value of Period is the length of 
the season, in this case, 12 months. Note that we have 
two complete seasons of data. Because the procedure 
does not optimize the parameters, you will generally 

have to experiment with the smoothing constants A and 
G (gamma) that apply to the level and seasonal factors 
in the model. Figure 9.23 shows a portion of the output. 
We see that this choice of parameters results in a fairly 
close forecast with low error metrics. The forecasts at 
the bottom of the output provide point estimates along 
with confidence intervals.

Holt-Winters Models for Forecasting Time Series  
with Seasonality and Trend

Many time series exhibit both trend and seasonality. Such might be the case for growing 
sales of a seasonal product. These models combine elements of both the trend and sea-
sonal models. Two types of Holt-Winters smoothing models are often used.

Figure 9.22

XLMiner Holt-Winters 
Smoothing No-Trend Model 
Dialog

Holt-Winters Forecasting for Seasonal Time Series

The methods we describe here and in the next section are based on the work of two 
 researchers, C.C. Holt, who developed the basic approach, and P.R. Winters, who  extended 
Holt’s work. Hence, these approaches are commonly referred to as Holt-Winters models. 
Holt-Winters models are similar to exponential smoothing models in that smoothing con-
stants are used to smooth out variations in the level and seasonal patterns over time. For 
time series with seasonality but no trend, XLMiner supports a Holt-Winters method but 
does not have the ability to optimize the parameters.
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The Holt-Winters additive model is based on the equation

 Ft+ 1 = at + bt + St- s + 1 (9.8)

and the Holt-Winters multiplicative model is

 Ft+ 1 = 1at + bt2St- s + 1 (9.9)

The additive model applies to time series with relatively stable seasonality, whereas the 
multiplicative model applies to time series whose amplitude increases or decreases over 
time. Therefore, a chart of the time series should be viewed first to identify the appropriate 
type of model to use. Three parameters, a, b, and g, are used to smooth the level, trend, 
and seasonal factors in the time series. XLMiner supports both models.

Figure 9.23

Portion of XLMiner Output 
for Forecasting Natural Gas 
Usage

ExAMpLE 9.17 Forecasting New Car Sales Using Holt-Winters Models

Figure 9.24 shows a portion of the Excel file New Car 
Sales, which contain 3 years of monthly retail sales’ 
data. There is clearly a stable seasonal factor in the 
time series, along with an increasing trend; therefore, 
the Holt-Winters additive model would appear to be 
the most appropriate. In XLMiner, choose Smoothing/ 
  Holt-Winters/Additive from the Time-Series group.  

As with other procedures, some experimentation is nec-
essary to identify the best parameters for the model. The 
 dialog in Figure 9.25 shows the default values. In the 
 results shown in Figure 9.26, you can see that the fore-
casts do not track the data very well. This may be due to 
the low value of G used to smooth out the seasonal factor. 
We leave it to you to experiment to find a better model.
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Figure 9.24

Portion of Excel File New 
Car Sales

Figure 9.25

Holt-Winters Smoothing 
Additive Model Dialog

Selecting Appropriate Time-Series-Based Forecasting Models

Table 9.1 summarizes the choice of forecasting approaches that can be implemented by 
XLMiner based on characteristics of the time series.

Table 9.1

Forecasting Model Choice

No Seasonality Seasonality

No trend Simple moving average or  
simple exponential smoothing

Holt-Winters no-trend smoothing 
model or multiple regression

Trend Double exponential  
smoothing

Holt-Winters additive or Holt-Winters 
multiplicative model

M09_EVAN5448_02_SE_C09.indd   320 12/09/15   7:59 PM



 Chapter 9  Forecasting Techniques 321

Figure 9.26

Results form Holt-Winters 
Additive Model for 
Forecasting New-Car Sales

Regression Forecasting with Causal Variables

In many forecasting applications, other independent variables besides time, such as eco-
nomic indexes or demographic factors, may influence the time series. For example, a man-
ufacturer of hospital equipment might include such variables as hospital capital spending 
and changes in the proportion of people over the age of 65 in building models to forecast 
future sales. Explanatory/causal models, often called econometric models, seek to iden-
tify factors that explain statistically the patterns observed in the variable being forecast, 
usually with regression analysis. We will use a simple example of forecasting gasoline 
sales to illustrate econometric modeling.

ExAMpLE 9.18  Forecasting Gasoline Sales Using  
Simple Linear Regression

Figure 9.27 shows gasoline sales over 10 weeks during 
June through August along with the average price per gal-
lon and a chart of the gasoline sales time series with a 
fitted trendline (Excel file Gasoline Sales). During the sum-
mer months, it is not unusual to see an increase in sales 
as more people go on vacations. The chart shows a linear 

trend, although R2 is not very high. The trendline is:

sales =  4,790.1 +  812.99 week

Using this model, we would predict sales for week 11 as

sales = 4,790.1 + 812.99(11) = 13,733 gallons
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In the gasoline sales data, we also see that the average price per gallon changes each 
week, and this may influence consumer sales. Therefore, the sales trend might not simply 
be a factor of steadily increasing demand, but it might also be influenced by the average 
price per gallon. The average price per gallon can be considered as a causal variable. 
Multiple linear regression provides a technique for building forecasting models that incor-
porate not only time, but other potential causal variables also.

ExAMpLE 9.19  Incorporating Causal Variables in a Regression-Based 
Forecasting Model

For the gasoline sales data, we can incorporate the 
price/gallon by using two independent variables. This  
results in the multiple regression model

sales = B0 + B1 week + B2 price>gallon

The results are shown in Figure 9.28, and the regres-
sion model is

sales = 72333.08 + 508.67 week − 16463.2 price>gallon

Notice that the R2 value is higher when both variables are 
included, explaining more than 86% of the variation in 
the data. If the company estimates that the average price 
for the next week will drop to $3.80, the model would 
forecast the sales for week 11 as

sales = 72333.08 + 508.67(11) − 16463.2(3.80)
= 15,368 gallons

Figure 9.27

Gasoline Sales Data and 
Trendline

The practice of Forecasting

Surveys of forecasting practices have shown that both judgmental and quantitative meth-
ods are used for forecasting sales of product lines or product families as well as for 
broad company and industry forecasts. Simple time-series models are used for short- and  
medium-range forecasts, whereas regression analysis is the most popular method for long-
range forecasting. However, many companies rely on judgmental methods far more than 
quantitative methods, and almost half judgmentally adjust quantitative forecasts. In this 
chapter, we focus on these three approaches to forecasting.

In practice, managers use a variety of judgmental and quantitative forecasting tech-
niques. Statistical methods alone cannot account for such factors as sales promotions, un-
usual environmental disturbances, new product introductions, large one-time orders, and 
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Figure 9.28

Regression Results for 
Gasoline Sales

so on. Many managers begin with a statistical forecast and adjust it to account for intangi-
ble factors. Others may develop independent judgmental and statistical forecasts and then 
combine them, either objectively by averaging or in a subjective manner. It is important to 
compare quantitatively generated forecasts to judgmental forecasts to see if the forecast-
ing method is adding value in terms of an improved forecast. It is impossible to provide 
universal guidance as to which approaches are best, because they depend on a variety of 
factors, including the presence or absence of trends and seasonality, the number of data 
points available, length of the forecast time horizon, and the experience and knowledge 
of the forecaster. Often, quantitative approaches will miss significant changes in the data, 
such as reversal of trends, whereas qualitative forecasts may catch them, particularly when 
using indicators as discussed earlier in this chapter.

NBC Universal (NBCU), a subsidiary of the General 
Electric Company (GE), is one of the world’s leading 
media and entertainment companies in the distribu-
tion, production, and marketing of entertainment, 
news, and information. The television broadcast 
year in the United States starts in the third week 
of September. The major broadcast networks an-
nounce their programming schedules for the new 
broadcast year in the middle of May. Shortly there-
after, the sale of advertising time, which generates 
the majority of revenues, begins. The broadcast 
networks sell 60% to 80% of their airtime inventory 
during a brief period starting in late May and lasting  

2 to 3 weeks. This sales period is known as the up-
front market. Immediately after announcing their 
program schedules, the networks finalize their rat-
ings forecasts and estimate the market demand. The 
ratings forecasts are projections of the numbers of 
people in each of several demographic groups who 
are expected to watch each airing of the shows in 
the program schedule for the entire broadcast year. 
After they finalize their ratings projections and market- 
demand estimates, the networks set the rate cards 
that contain the prices for commercials on all their 
shows and develop pricing strategies.

Analytics in practice: Forecasting at NBC Universal1

(continued)

1Based on Srinivas Bollapragada, Salil Gupta, Brett Hurwitz, Paul Miles, and Rajesh Tyagi,  
“NBC-Universal Uses a Novel Qualitative Forecasting Technique to Predict Advertising Demand,”  
Interfaces, 38, 2 (March–April 2008): 103–111.
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Forecasting upfront market demand has  always 
been a challenge. NBCU initially relied on historical pat-
terns, expert knowledge, and intuition for  estimating 
demand. Later, it tried time-series forecasting models 
based on historical demand and leading economic indi-
cator data and implemented the models in a M icrosoft 
Excel–based system. However, these models proved 
to be unsatisfactory because of the unique nature of 
NBCU’s demand population. The time-series models 
had fit and prediction errors in the range of 5% to 12% 
based on the historical data. These errors were consid-
ered reasonable, but the sales executives were reluctant 
to use the models because the models did not consider 
several qualitative factors that they believe influence 
the demand. As a result, they did not trust the forecasts 
that these models generated; therefore, they had never 
used them. Analytics staff at NBCU then decided to 
d evelop a qualitative demand forecasting model that 
captures the knowledge of the sales experts.

Their approach incorporates the Delphi method 
and “grass-roots forecasting,” which is based on the 
concept of asking those who are close to the end 
consumer, such as salespeople, about the custom-
ers’ purchasing plans, along with historical data to 
develop forecasts. Since 2004, more than 200 sales 

and finance personnel at NBCU have been using the 
system to support sales decisions during the upfront 
market when NBCU signs advertising deals worth 
more than $4.5 billion. The system enables NBCU to 
sell and analyze pricing scenarios across all NBCU’s  
television properties with ease and sophistication  
while predicting demand with a high accuracy.  
NBCU’s sales leaders credit the system with having 
given them a unique competitive advantage.

Key Terms

Cyclical effect
Delphi method
Double exponential smoothing
Double moving average
Econometric model
Historical analogy
Holt-Winters additive model
Holt-Winters models
Holt-Winters multiplicative model
Index
Indicator

Mean absolute deviation (MAD)
Mean absolute percentage error (MAPE)
Mean square error (MSE)
Root mean square error (RMSE)
Seasonal effect
Simple exponential smoothing
Simple moving average
Smoothing constant
Stationary time series
Time series
Trend
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 1. Identify some business applications in which judg-
mental forecasting techniques such as historical anal-
ogy and the Delphi method would be useful.

 2. Search the Conference Board’s Web site to find 
business cycle indicators, and the components and 

methods adopted to compute the same. Write a short 
report about your findings.

 3. The Excel file Energy Production & Consumption 
provides data on production, imports, exports, and 
consumption. Develop line charts for each variable 
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and identify key characteristics of the time series  
(e.g., trends or cycles). Are any of these time series 
stationary?  In forecasting the future, discuss whether 
all or only a portion of the data should be used.

 4. The Excel file New Registered Users provides data 
on monthly new registrations on a Web site for four 
years. Compare the three-month and twelve-month 
moving average forecasts using the MAD criterion. 
Explain which model yields better results and why.

 5. The Excel file Closing Stock Prices provides data for 
four stocks and the Dow Jones Industrials Index over 
a 1-month period.

a. Develop spreadsheet models for forecasting each 
of the stock prices using simple 2-period moving 
average and simple exponential smoothing with a 
smoothing constant of 0.3.

b. Compare your results to the outputs from Excel’s 
Data Analysis tools.

c. Using MAD, MSE, and MAPE as guidance, find 
the best number of moving average periods and best 
smoothing constant for exponential smoothing.

d. Use XLMiner to find the best number of periods 
for the moving average forecast and optimal ex-
ponential smoothing constant.

 6. For the data in the Excel file Gasoline Prices do the 
following:

a. Develop spreadsheet models for forecasting 
prices using simple moving average and simple 
exponential smoothing.

b. Compare your results to the outputs from Excel’s 
Data Analysis tools.

c. Using MAD, MSE, and MAPE as guidance, 
find the best number of moving average peri-
ods and best smoothing constant for exponential 
smoothing.

d. Use XLMiner to find the best number of periods 
for the moving average forecast and optimal ex-
ponential smoothing constant.

 7. Consider the prices for the DJ Industrials in the  
Excel file Closing Stock Prices. The data appear to 
have a linear trend over the time period provided.

a. Use simple linear regression to forecast the data. 
What would be the forecasts for the next 3 days?

b. Use the double exponential smoothing procedure 
in XLMiner to find forecasts for the next 3 days.

 8. Consider the data in the Excel file Consumer Price 
Index.

a. Use simple linear regression to forecast the data. 
What would be the forecasts for the next 2 years?

b. Use the double exponential smoothing procedure 
in XLMiner to find forecasts for the next 2 years.

 9. Consider the data in the Excel file Internet Users. 
Use simple linear regression to forecast the data. 
What would be the forecast for the next three years?

 10. Develop a multiple linear regression model with cat-
egorical variables that incorporate seasonality for 
forecasting the deaths caused by accidents in the U.S. 
Use the data for years 1976 and 1977 in the Excel file 
 Accidental Deaths. Use the model to generate forecasts 
for the next nine months, and compare the forecasts to 
actual observations noted in the data for the year 1978.

 11. Develop a multiple regression model with categori-
cal variables that incorporate seasonality for fore-
casting sales using the last three years of data in the 
Excel file New Car Sales.

 12. Develop a multiple regression model with categori-
cal variables that incorporate seasonality for fore-
casting housing starts beginning in June 2006 using 
the data in the Excel file Housing Starts.

 13. The Excel file Census Data provides annual average 
expenditures and income levels of the people in the 
U.S. Develop forecasting models for each of the data 
type. What do your models predict for the next two 
years?.

 14. Use the Holt-Winters no-trend model to find the best 
model to find forecasts for the next 12 months in the 
Excel file Housing Starts.

 15. The Excel file CD Interest Rates provides annual 
average interest rates on 6-month certificate of de-
posits.  Compare the Holt-Winters additive and mul-
tiplicative models using XLMiner with the default 
parameters and a season of 6 years.  Why does the 
multiplicative model provide better results?

 16. The Excel file Olympic Track and Field Data provides 
the gold medal-winning distances for the high jump, 
discus, and long jump for the modern  Olympic Games. 
Develop forecasting models for each of the events. 
What do your models predict for the next Olympics?

 17. Choose an appropriate forecasting technique for the 
data in the Excel file Coal Consumption and find the 

M09_EVAN5448_02_SE_C09.indd   325 12/09/15   7:59 PM



326 Chapter 9  Forecasting Techniques

best forecasting model. Explain how you would use 
the model to forecast and how far into the future it 
would be appropriate to forecast.

 18. Choose an appropriate forecasting technique for the 
data in the Excel file DJIA December Close and find 
the best forecasting model. Explain how you would 
use the model to forecast and how far into the future it 
would be appropriate to forecast.

 19. Choose an appropriate forecasting technique for the 
data in the Excel file Inflation Rates US and find the 
best forecasting model. Explain how you would use 
the model to forecast, and how far into the future it 
would be appropriate to forecast.

 20. Choose an appropriate forecasting technique for the 
data in the Excel file Mortgage Rates and find the 
best forecasting model. Explain how you would use 
the model to forecast and how far into the future it 
would be appropriate to forecast.

 21. Choose an appropriate forecasting technique for the 
data in the Excel file Gaussian Response and find the 

best forecasting model. Explain how you would use 
the model to forecast and how far into the future it 
would be appropriate to forecast.

 22. Choose an appropriate forecasting technique for the 
data in the Excel file Treasury Yield Rates and find 
the best forecasting model. Explain how you would 
use the model to forecast and how far into the future 
it would be appropriate to forecast.

 23. Data in the Excel File Microprocessor Data shows 
the demand for one type of chip used in industrial 
equipment from a small manufacturer.

a. Construct a chart of the data. What appears to 
happen when a new chip is introduced?

b. Develop a causal regression model to forecast de-
mand that includes both time and the introduction 
of a new chip as explanatory variables.

c. What would the forecast be for the next month if 
a new chip is introduced? What would it be if a 
new chip is not introduced?

Case: performance Lawn Equipment

An important part of planning manufacturing capacity is 
having a good forecast of sales. Elizabeth Burke is inter-
ested in forecasting sales of mowers and tractors in each 
marketing region as well as industry sales to assess future 

changes in market share. She also wants to forecast future 
increases in production costs. Develop forecasting models 
for these data and prepare a report of your results with ap-
propriate charts and output from Excel.
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Learning Objectives

After studying this chapter, you will be able to:

•	Define data mining and some common approaches 
used in data mining.

•	Explain how cluster analysis is used to explore and 
reduce data.

•	Apply cluster analysis techniques using XLMiner.

•	Explain the purpose of classification methods,  
how to measure classification performance, and  
the use of training and validation data.

•	Apply k-Nearest Neighbors, discriminant analysis, 
and logistic regression for classification using 
XLMiner.

•	Describe association rule mining and its use in  
market basket analysis.

•	Use XLMiner to develop association rules.

•	Use correlation analysis for cause-and-effect  
modeling

Ch
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In an article in Analytics magazine, Talha Omer observed that using a cell 

phone to make a voice call leaves behind a significant amount of data. “The cell 

phone provider knows every person you called, how long you talked, what time 

you called and whether your call was successful or if was dropped. It also knows 

where you are, where you make most of your calls from, which promotion you 

are responding to, how many times you have bought before, and so on.”1 Con-

sidering the fact that the vast majority of people today use cell phones, a huge 

amount of data about consumer behavior is available. Similarly, many stores now 

use loyalty cards. At supermarket, drugstores, retail stores, and other outlets, 

loyalty cards enable consumers to take advantage of sale prices available only 

to those who use the card. However, when they do, the cards leave behind a 

digital trail of data about purchasing patterns. How can a business exploit these 

data? If they can better understand patterns and hidden relationships in the data, 

they can not only understand buying habits but also customize advertisements, 

promotions, coupons, and so on, for each individual customer and send targeted 

text messages and e-mail offers (we’re not talking spam here, but registered us-

ers who opt into such messages).

Data mining is a rapidly growing field of business analytics that is focused 

on better understanding characteristics and patterns among variables in large 

databases using a variety of statistical and analytical tools. Many of the tools that 

we have studied in previous chapters, such as data visualization, data summa-

rization, PivotTables, correlation and regression analysis, and other techniques, 

are used extensively in data mining. However, as the amount of data has grown 

exponentially, many other statistical and analytical methods have been devel-

oped to identify relationships among variables in large data sets and understand 

hidden patterns that they may contain.

In this chapter, we introduce some of the more popular methods and use 

XLMiner software to implement them in a spreadsheet environment. Many data-

mining procedures require advanced statistical knowledge to understand the un-

derlying theory. Therefore, our focus is on simple applications and understanding 

the purpose and application of the techniques rather than their theoretical un-

derpinnings.2 In addition, we note that this chapter is not intended to cover all 

aspects of data mining. Many other techniques are available in XLMiner that are 

not described in this chapter.

1Talha Omer, “From Business Intelligence to Analytics,” Analytics (January/February 2011): 20.  
www.analyticsmagazine.com.
2Many of the descriptions of techniques supported by XLMiner have been adapted from the XLMiner help 
files. Please note that the example output screen shots in this chapter may differ from the newest release 
of XLMiner.
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The Scope of Data Mining

Data mining can be considered part descriptive and part prescriptive analytics. In de-
scriptive analytics, data-mining tools help analysts to identify patterns in data. Excel 
charts and PivotTables, for example, are useful tools for describing patterns and analyz-
ing data sets; however, they require manual intervention. Regression analysis and fore-
casting models help us to predict relationships or future values of variables of interest. 
As some researchers observe, “the boundaries between prediction and description are not 
sharp (some of the predictive models can be descriptive, to the degree that they are un-
derstandable, and vice versa).”3 In most business applications, the purpose of descriptive 
analytics is to help managers predict the future or make better decisions that will impact 
future performance, so we can generally state that data mining is primarily a predictive 
analytic approach.

Some common approaches in data mining include the following:

•	Data Exploration and Reduction. This often involves identifying groups in which 
the elements of the groups are in some way similar. This approach is often used 
to understand differences among customers and segment them into homogenous 
groups. For example, Macy’s department stores identified four lifestyles of its 
customers: “Katherine,” a traditional, classic dresser who doesn’t take a lot of 
risks and likes quality; “Julie,” neotraditional and slightly more edgy but still 
classic; “Erin,” a contemporary customer who loves newness and shops by brand; 
and “Alex,” the fashion customer who wants only the latest and greatest (they 
have male versions also).4 Such segmentation is useful in design and marketing 
activities to better target product offerings. These techniques have also been used 
to identify characteristics of successful employees and improve recruiting and 
hiring practices.

•	Classification. Classification is the process of analyzing data to predict how to 
classify a new data element. An example of classification is spam filtering in an 
e-mail client. By examining textual characteristics of a message (subject header, 
key words, and so on), the message is classified as junk or not. Classification 
methods can help predict whether a credit-card transaction may be fraudulent, 
whether a loan applicant is high risk, or whether a consumer will respond to an 
advertisement.

•	Association. Association is the process of analyzing databases to identify natural 
associations among variables and create rules for target marketing or buying rec-
ommendations. For example, Netflix uses association to understand what types 
of movies a customer likes and provides recommendations based on the data. 
Amazon.com also makes recommendations based on past purchases. Supermar-
ket loyalty cards collect data on customers’ purchasing habits and print coupons 
at the point of purchase based on what was currently bought.

•	Cause-and-effect modeling. Cause-and-effect modeling is the process of de-
veloping analytic models to describe the relationship between metrics that 
drive business performance—for instance, profitability, customer satisfac-
tion, or employee satisfaction. Understanding the drivers of performance can 

3Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, “From Data Mining to Knowledge 
 Discovery in Databases,” AI Magazine, American Association for Artificial Intelligence (Fall 1996): 37–54.
4“Here’s Mr. Macy,” Fortune (November 28, 2005): 139–142.
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lead to better decisions to improve performance. For example, the controls 
group of Johnson Controls, Inc., examined the relationship between satisfac-
tion and contract-renewal rates. They found that 91% of contract renewals 
came from customers who were either satisfied or very satisfied, and custom-
ers who were not satisfied had a much higher defection rate. Their model 
predicted that a one-percentage-point increase in the overall satisfaction score 
was worth $13 million in service contract renewals annually. As a result,  
they identified decisions that would improve customer satisfaction.5  
Regression and correlation analysis are key tools for cause-and-effect 
modeling.

Data Exploration and Reduction

Some basic techniques in data mining involve exploring data and “data reduction”—
that is, breaking down large sets of data into more-manageable groups or segments that  
provide better insight. We have seen numerous techniques earlier in this book for exploring  
data and data reduction. For example, charts, frequency distributions and histograms, 
and summary statistics provide basic information about the characteristics of data. Pivot-
Tables, in particular, are very useful in exploring data from different perspectives and for 
data reduction. 

XLMiner provides a variety of tools and techniques for data exploration that comple-
ment or extend the concepts and tools we have studied in previous chapters. These are 
found in the Data Analysis group of the XLMiner ribbon, shown in Figure 10.1.

Sampling

When dealing with large data sets and “big data,” it might be costly or time-consuming to 
process all the data. Instead, we might have to use a sample. We introduced sampling pro-
cedures in Chapter 6. XLMiner can sample from an Excel worksheet or from a Microsoft 
Access database.

5Steve Hoisington and Earl Naumann, “The Loyalty Elephant,” Quality Progress (February 2003): 33–41.

ExaMpLE 10.1 Using xLMiner to Sample from a Worksheet

Figure 10.2 shows a portion of the Base Data work-
sheet Excel File Credit Risk Data. While certainly not 
“big data,” it consists of 425 records. From the Data 
Analysis group in the XLMiner ribbon, click the Sample 
button and choose Sample from Worksheet. Make sure 
the Data range is correct and includes headers. Select 
all variables in the left window pane and move them 
to the right using the # button (which changes to a 
"  if all variables are moved to the right). Choose the 

 options in the Sampling Options section; in this case, 
we selected 20 samples (without replacement unless the 
Sample with replacement box is checked—this avoids 
duplicates) using simple random sampling. By entering 
a value in the Set seed box, you can obtain the same 
results at another time for control purposes; otherwise 
a different random sample will be selected. Figure 10.3 
shows the completed dialog and Figure 10.4 shows the 
results.
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Figure 10.3

XLMiner Sampling Dialog

Figure 10.2

Portion of Excel File Credit Risk Data

Figure 10.1

XLMiner Ribbon
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ExaMpLE 10.2 a Boxplot for Credit Risk Data

We will construct a boxplot for the number of months 
employed for each marital status value from the Credit 
Risk Data. First, select the Chart Wizard from the Explore 
button in the Data Analysis group in the XLMiner tab. 
Select Boxplot; in the second dialog, choose Months 
 Employed as the variable to plot on the vertical axis. In 
the next dialog, choose Marital Status as the variable 
to plot on the horizontal axis. Click Finish. The result is 
shown in Figure 10.5. The box range shows the 25th and 
75th percentiles (the interquartile range, IQR), the solid 
line within the box is the median, and the dotted line 
within the box is the mean. The “whiskers” extend on  

either side of the box to represent the minimum and 
maximum values in a data set. If you hover the cursor 
over any box, the chart will display these values. Very 
long whiskers suggest possible outliers in the data. 
You can easily see the differences in the data between 
those who are single as compared with those married 
or divorced. You can also filter the data by checking or 
unchecking the boxes in the filter pane to display the 
boxplots for only a portion of the data, for example, to 
compare those with a high credit risk with those with a 
low credit risk classification.

Figure 10.4

XLMiner Sampling Results

Data Visualization

XLMiner offers numerous charts to visualize data. We have already seen many of 
these, such as bar, line, and scatter charts, and histograms. However, XLMiner also has 
the capability to produce boxplots, parallel coordinate charts, scatterplot matrix charts, 
and variable charts. These are found from the Explore button in the Data Analysis 
group.
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Figure 10.5

Boxplot for Months 
Employed by Marital Status

Boxplots (sometimes called box-and-whisker plots) graphically display five 
key statistics of a data set—the minimum, first quartile, median, third quartile, and 
 maximum—and are very useful in identifying the shape of a distribution and outliers 
in the data.

A parallel coordinates chart consists of a set of vertical axes, one for each variable 
selected. For each observation, a line is drawn connecting the vertical axes. The point at 
which the line crosses an axis represents the value for that variable. A parallel coordinates 
chart creates a “multivariate profile,” and helps an analyst to explore the data and draw 
basic conclusions.

ExaMpLE 10.3 a parallel Coordinates Chart for Credit Risk Data

First, select the Chart Wizard from the Explore button 
in the Data Analysis group in the XLMiner tab.  Select 
 Parallel Coordinates. In the second dialog, choose 
Checking, Savings, Months Employed, and Age as the 
variables to include. Figure 10.6 shows the results. In 
the small drop-down box at the top, you can choose 
to color the lines by one of the variables; in this case, 

we chose to color by credit risk. Yellow represents 
low credit risk, and blue represents high. We see that  
individuals with a low number of months employed and 
lower ages tend to have high credit risk as shown by the 
density of the blue lines. As with boxplots, you can eas-
ily filter the data to explore other combinations of vari-
ables or subsets of the data.

A scatterplot matrix combines several scatter charts into one panel, allowing the 
user to visualize pairwise relationships between variables.
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Finally, a variable plot simply plots a matrix of histograms for the variables selected.

ExaMpLE 10.5 a Variable plot of Credit Risk Data

Select the Chart Wizard from the Explore button in the 
Data Analysis group in the XLMiner tab. Select Variable. 
In the next dialog, check the boxes for the variables  
you wish to include (we kept them all) and click Finish. 

Figure 10.8 shows the results. This tool is much easier 
to use than Excel's Histogram tool, especially for many 
variables in a data set and you can easily filter the data 
to create different perspectives.

Figure 10.6

Example of a Parallel 
Coordinates Plot

ExaMpLE 10.4 a Scatterplot Matrix for Credit Risk Data

Select the Chart Wizard from the Explore button in 
the Data Analysis group in the XLMiner tab. Select 
 Scatterplot Matrix. In the next dialog, check the boxes 
for Months Customer, Months Employed, and Age and 
click Finish. Figure 10.7 shows the result. Along the 
 diagonal are histograms of the individual variables. Off 
the diagonal are scatterplots of pairs of variables. For 
example, the chart in the third row and second column of 
the figure shows the scatter chart of Months Employed 

versus Age. Note that months employed is on the x-axis 
and age on the y-axis. The data appear to have a slight 
upward linear trend, signifying that older individuals have 
been employed for a longer time. Note that there are two 
charts for each pair of variables with the axes flipped. 
For example, the chart in the second row and third col-
umn is the same as the one we discussed, but with age 
on the x-axis. As before, you can easily filter the data to 
create different views.

Dirty Data

It is not unusual to find real data sets that have missing values or errors. Such data sets 
are called “dirty” and need to be “cleaned” prior to analyzing them. Several approaches 
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Figure 10.7

Example of a Scatterplot 
Matrix

are used for handling missing data. For example, we could simply eliminate the records 
that contain missing data; estimate reasonable values for missing observations, such as the 
mean or median value; or use a data mining procedure to deal with them. XLMiner has the 
capability to deal with missing data in the Transform menu in the Data Analysis group. 
We suggest that you consult the XLMiner User Guide from the Help menu for further 
 information. In any event, you should try to understand whether missing data are simply 
random events or if there is a logical reason why they are missing. Eliminating sample data 
indiscriminately could result in misleading information and conclusions about the data.

Figure 10.8

Example of a Variable Plot
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Data errors can often be identified from outliers (see the discussion in Chapter 3). A 
typical approach is to evaluate the data with and without outliers and determine whether 
their impact will significantly change the conclusions, and whether more effort should be 
spent on trying to understand and explain them.

Cluster analysis

Cluster analysis, also called data segmentation, is a collection of techniques that seek 
to group or segment a collection of objects (i.e., observations or records) into subsets or 
clusters, such that those within each cluster are more closely related to one another than 
objects assigned to different clusters. The objects within clusters should exhibit a high 
amount of similarity, whereas those in different clusters will be dissimilar.

Cluster analysis is a data-reduction technique in the sense that it can take a large 
number of observations, such as customer surveys or questionnaires, and reduce the infor-
mation into smaller, homogenous groups that can be interpreted more easily. The segmen-
tation of customers into smaller groups, for example, can be used to customize advertising 
or promotions. As opposed to many other data-mining techniques, cluster analysis is pri-
marily descriptive, and we cannot draw statistical inferences about a sample using it. In 
addition, the clusters identified are not unique and depend on the specific procedure used; 
therefore, it does not result in a definitive answer but only provides new ways of looking 
at data. Nevertheless, it is a widely used technique.

There are two major methods of clustering—hierarchical clustering and k-means cluster-
ing. In hierarchical clustering, the data are not partitioned into a particular cluster in a single 
step. Instead, a series of partitions takes place, which may run from a single cluster containing 
all objects to n clusters, each containing a single object. Hierarchical clustering is subdivided 
into agglomerative clustering methods, which proceed by series of fusions of the n objects 
into groups, and divisive clustering methods, which separate n objects successively into 
finer groupings. Figure 10.9 illustrates the differences between these two types of methods.

Agglomerative techniques are more commonly used, and this is the method imple-
mented in XLMiner. Hierarchical clustering may be represented by a two-dimensional 

Figure 10.9

Agglomerative versus 
Divisive Clustering
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diagram known as a dendrogram, which illustrates the fusions or divisions made at each 
successive stage of analysis.

An agglomerative hierarchical clustering procedure produces a series of partitions of 
the data, Pn, Pn - 1, c, P1. Pn consists of n single-object clusters, and P1 consists of a single 
group containing all n observations. At each particular stage, the method joins together 
the two clusters that are closest together (most similar). At the first stage, this consists of 
simply joining together the two objects that are closest together. Different methods use 
different ways of defining distance (or similarity) between clusters.

The most commonly used measure of distance between objects is Euclidean dis-
tance. This is an extension of the way in which the distance between two points on a 
plane is computed as the hypotenuse of a right triangle (see Figure 10.10). The Euclidean 
distance measure between two points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is

 21x1 - y122 + 1 x2 - y222 + g + 1xn - yn22 (10.1)

Some clustering methods use the squared Euclidean distance (i.e., without the square root) 
because it speeds up the calculations.

One of the simplest agglomerative hierarchical clustering methods is single linkage 
clustering, also known as the nearest-neighbor technique. The defining feature of the 
method is that distance between groups is defined as the distance between the closest pair 
of objects, where only pairs consisting of one object from each group are considered. In 
the single linkage method, the distance between two clusters, r and s, D (r,s), is defined as 
the minimum distance between any object in cluster r and any object in cluster s. In other 
words, the distance between two clusters is given by the value of the shortest link between 
the clusters. At each stage of hierarchical clustering, we find the two clusters with the 
minimum distance between them and merge them together.

Another method that is basically the opposite of single linkage clustering is called 
complete linkage clustering. In this method, the distance between groups is defined as 
the distance between the most distant pair of objects, one from each group. A third method 

Figure 10.10

Computing the Euclidean 
Distance Between Two 
Points
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ExaMpLE 10.6 Clustering Colleges and Universities Data

Figure 10.11 shows a portion of the Excel file Colleges and 
Universities. The characteristics of these institutions differ 
quite widely. Suppose that we wish to cluster them into more 
homogeneous groups based on the median SAT, accep-
tance rate, expenditures/student, percentage of students in 
the top 10% of their high school, and graduation rate.

In XLMiner, choose Hierarchical Clustering from the 
Cluster menu in the Data Analysis group. In the dialog shown 
in Figure 10.12, specify the data range and move the vari-
ables that are of interest into the Selected Variables list. Note 
that we are clustering the numerical variables, so School 
and Type are not included. After clicking Next, the Step 2 
dialog appears (see Figure 10.13). Check the box Normalize 
input data; this is important to ensure that the distance mea-
sure accords equal weight to each variable; without normal-
ization, the variable with the largest scale will dominate the 
measure. Hierarchical clustering uses the Euclidean dis-
tance as the similarity measure for numeric data. The other 
two options apply only for binary (0 or 1) data. Select the 
clustering method you wish to use. In this case, we choose 
Group Average Linkage. In the final dialog (Figure 10.14), se-
lect the number of clusters. The agglomerative method of 
hierarchical clustering keeps forming clusters until only one  
cluster is left. This option lets you stop the process at a 
given number of clusters. We selected four clusters.

The output is saved on multiple worksheets. Figure 10.15  
shows the summary of the inputs. You may use the  Output 
Navigator bar at the top of the worksheet to display  
various parts of the output rather than trying to navigate 
through the worksheets yourself.

Clustering Stages output details the history of the 
cluster formation, showing how the clusters are formed 
at each stage of the algorithm. At various stages of the 
clustering process, there are different numbers of clus-
ters. A dendrogram lets you visualize this. This is shown 
in Figure 10.16. The y-axis measures intercluster distance. 
Because of the size of the problem, each individual obser-
vation is not shown, and some of them are already clus-
tered in the  “subclusters.” The Sub Cluster IDs are listed 
along the x-axis, with a legend below it. For example, 
during the clustering procedure, records 20 and 25, and 
records 14 and 16 were merged; these subclusters were 
then merged  together. At the top of the diagram, we see 
that all clusters are merged into a single cluster. If you 
draw a horizontal line through the dendogram at any value 
of the y-axis, you can identify the number of clusters and 
the observations in each of them. For example, drawing 
the line at the distance value of 3, you can see that we 
have four clusters; just follow the subclusters at the ends 
of the branches to identify the individual observations in 
each of them.

The Predicted Clusters shows the assignment of ob-
servations to the number of clusters we specified in the in-
put dialog, in this case four. This is shown in Figure 10.17. 
For instance, cluster 3 consists of only three schools, 
records 4, 28, and 29; and cluster 4 consists of only one 
observation, record 6. (You may sort the data in Excel to 
see this more easily.) These schools and their data are ex-
tracted in the following database:

is average linkage clustering. Here the distance between two clusters is defined as the 
average of distances between all pairs of objects, where each pair is made up of one object 
from each group. Other methods are average group linkage clustering, which uses the 
mean values for each variable to compute distances between clusters, and Ward’s hierar-
chical clustering method, which uses a sum-of-squares criterion. Different methods gen-
erally yield different results, so it is best to experiment and compare the results.

We can see that the schools in cluster 3 have quite similar profiles, whereas Cal Tech stands out considerably 
from the others.
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Figure 10.12

Hierarchical Clustering 
Dialog, Step 1

Figure 10.11

Portion of the Excel File Colleges and Universities

Figure 10.13

Hierarchical Clustering 
Dialog, Step 2
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Figure 10.14

Hierarchical Clustering 
Dialog, Step 3

Figure 10.15

Hierarchical Clustering 
Results: Inputs

Figure 10.16

Hierarchical Clustering 
Results: Dendogram and 
Partial Cluster Legend
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Figure 10.17

Portion of Hierarchical 
Clustering Results: 
Predicted Clusters

Classification

Classification methods seek to classify a categorical outcome into one of two or more 
categories based on various data attributes. For each record in a database, we have 
a categorical variable of interest (e.g., purchase or not purchase, high risk or no risk), 
and a number of additional predictor variables (age, income, gender, education, assets, 
etc.). For a given set of predictor variables, we would like to assign the best value of 
the categorical variable. We will be illustrating various classification techniques using the  
Excel database Credit Approval Decisions. 

A portion of this database is shown in Figure 10.18. In this database, the categorical 
variable of interest is the decision to approve or reject a credit application. The remain-
ing variables are the predictor variables. Because we are working with numerical data, 
however, we need to code the Homeowner and Decision fields numerically. We code the 
Homeowner attribute “Y” as 1 and “N” as 0; similarly, we code the Decision attribute 

Figure 10.18

Portion of the Excel File 
Credit Approval Decisions
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ExaMpLE 10.7 Classifying Credit-approval Decisions Intuitively

Figure 10.20 shows a chart of the credit scores and years 
of credit history in the Credit Approval Decisions data. 
The chart plots the credit scores of loan applicants on the  
x-axis and the years of credit history on the y-axis. The large 
bubbles represent the applicants whose credit applications 
were rejected; the small bubbles represent those that were 
approved. With a few exceptions (the points at the bottom 
right corresponding to high credit scores with just a few 
years of credit history that were rejected), there appears to 
be a clear separation of the points. When the credit score is 
greater than 640, the applications were approved, but most 
applications with credit scores of 640 or less were rejected. 
Thus, we might propose a simple classification rule: ap-
prove an application with a credit score greater than 640.

Another way of classifying the groups is to use both 
the credit score and years of credit history by visually 
drawing a straight line to separate the groups, as shown in 
Figure 10.21. This line passes through the points (763, 2)  
and (595, 18). Using a little algebra, we can calculate the 
equation of the line as

years = −0.095 × credit score + 74.66

Therefore, we can propose a different classification rule: 
whenever years + 0.095 × credit score " 74.66, the 
application is rejected; otherwise, it is approved. Here 
again, however, we see some misclassification.

“Approve” as 1 and “Reject” as 0. Figure 10.19 shows a portion of the modified database 
(Excel file Credit Approval Decisions Coded).

an Intuitive Explanation of Classification

To develop an intuitive understanding of classification, we consider only the credit score 
and years of credit history as predictor variables.

Figure 10.19

Modified Excel File with 
Numerically Coded Variables

Although this is easy to do intuitively for only two predictor variables, it is more  
difficult to do when we have more predictor variables. Therefore, more-sophisticated  
procedures are needed as we will discuss.

Measuring Classification performance

As we saw in the previous example, errors may occur with any classification rule, result-
ing in misclassification. One way to judge the effectiveness of a classification rule is to 
find the probability of making a misclassification error and summarizing the results in a 
classification matrix, which shows the number of cases that were classified either cor-
rectly or incorrectly.
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Figure 10.20

Chart of Credit-Approval 
Decisions

Figure 10.21

Alternate Credit-Approval 
Classification Scheme

ExaMpLE 10.8 Classification Matrix for Credit-approval Classification Rules

In the credit-approval decision example, using just the 
credit score to classify the applications, we see that in two 
cases, applicants with credit scores exceeding 640 were re-
jected, out of a total of 50 data points. Table 10.1 shows a 
classification matrix for the credit score rule in Figure 10.20. 

The off-diagonal elements are the frequencies of misclas-
sification, whereas the diagonal elements are the numbers 
that were correctly classified. Therefore, the probability of 
misclassification was 2

50, or 0.04. We leave it as an exercise 
for you to develop a classification matrix for the second rule.
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Using Training and Validation Data

Most data-mining projects use large volumes of data. Before building a model, we typi-
cally partition the data into a training data set and a validation data set. Training data 
sets have known outcomes and are used to “teach” a data-mining algorithm. To get a more 
realistic estimate of how the model would perform with unseen data, you need to set aside 
a part of the original data into a validation data set and not use it in the training process. If 
you were to use the training data set to compute the accuracy of the model fit, you would 
get an overly optimistic estimate of the accuracy of the model. This is because the training 
or model-fitting process ensures that the accuracy of the model for the training data is as 
high as possible—the model is specifically suited to the training data.

The validation data set is often used to fine-tune models. When a model is finally chosen, 
its accuracy with the validation data set is still an optimistic estimate of how it would perform 
with unseen data. This is because the final model has come out as the winner among the 
competing models based on the fact that its accuracy with the validation data set is highest. 
Thus, data miners often set aside another portion of data, which is used neither in training nor 
in validation. This set is known as the test data set. The accuracy of the model on the test data 
gives a realistic estimate of the performance of the model on completely unseen data.

predicted Classification

Actual Classification Decision = 1 Decision = 0

Decision = 1 23  2

Decision = 0  0 25

Table 10.1

Classification Matrix for 
Credit Score Rule

ExaMpLE 10.8 partitioning Data Sets in XLMiner

To partition the data into training and validation sets 
in XLMiner, select Partition from the Data Mining group 
and then choose Standard Partition. The Standard 
Data Partition dialog prompts you for basic information;  
Figure 10.22 shows the completed dialog. The dialog 
first allows you to specify the data range and whether it  
contains headers in the Excel file as well as the variables 
to include in the partition. To select a variable for the 
partition, click on it and then click the # button (which 
changes to a " button if all variables have been moved to 
the right pane). You may use the Ctrl key to select multiple 
variables. The random number seed defaults to 12345, but 
this can be changed. XLMiner provides three options:

 1. Automatic percentages: If you select this, 60% of the 
total number of records in the data set are assigned 
randomly to the training set and the rest to the valida-
tion set. If the data set is large, then 60% will perhaps 
exceed the limit on number of records in the training 
partition. In that case, XLMiner will allocate a maxi-
mum percentage to the training set that will be just 
within the limits. It will then assign the remaining per-
centage to the validation set.

 2. Specify percentages: You can specify the required 
partition percentages. In case of large data sets, 
XLMiner will suggest the maximum possible per-
centage to the training set, so that the training parti-
tion is within the specified limits. It will then allocate 
the remaining records to the validation and test sets 
in the proportion 60:40. You may change these and 
specify percentages. XLMiner will execute your 
specifications as long as the limits are met.

 3. Equal percentages: XLMiner will divide the records 
equally in training, validation, and test sets. If the 
data set is large, it will assign maximum possible 
records to training so that the number is within  
the specified limit for training partition and assigns 
the same percentage to the validation and test 
sets. This means all the records may not be accom-
modated. So, in case of large data sets, specify 
 percentages if required.

Figure 10.23 shows a portion of the output for the Credit 
Approval Decisions example. You may display the training 
data and validation data using the Output Navigator links at 
the top of the worksheet.
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Figure 10.22

Standard Data Partition 
Dialog

Figure 10.23

Portion of Data Partition Output

XLMiner provides two ways of standard partitioning: random partitioning and user-
defined partitioning. Random partitioning uses simple random sampling, in which every 
observation in the main data set has equal probability of being selected for the parti-
tion data set. For example, if you specify 60% for the training data set, then 60% of the 
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ExaMpLE 10.9  Classifying New Data for Credit Decisions Using Credit  
Scores and Years of Credit History

The Excel files Credit Approval Decisions and Credit Approval 
Decisions Coded include a small set of new data that we 
wish to classify in the worksheet Additional Data. These data 
are shown in Figure 10.24. If we use the simple credit-score  
rule from Example 10.7 that a score of more than 640 is needed  
to approve an application, then we would classify the decision 

for the first, third, and sixth records to be 1 and the rest to be 0. 
If we use the rule developed in Example 10.7, which includes 
both the credit score and years of credit history—that is, reject 
the application if years + 0.095 × credit score " 74.66—
then the decisions would be as follows:

Homeowner Credit Score
Years of  

Credit History
Revolving  
Balance

Revolving 
Utilization

Years + 0.095*Credit 
Score Decision

1 700 8 $21,000.00 15% 74.50 0

0 520 1 $4,000.00 90% 50.40 0

1 650 10 $8,500.00 25% 71.75 0

0 602 7 $16,300.00 70% 64.19 0

0 549 2 $2,500.00 90% 54.16 0

1 742 15 $16,700.00 18% 85.49 1

Only the last record would be approved.

 total observations would be randomly selected and would comprise the training data set. 
Random partitioning uses random numbers to generate the sample. You can specify any  
nonnegative random number seed to generate the random sample. Using the same seed al-
lows you to replicate the partitions exactly for different runs.

Classifying New Data

The purpose of developing a classification model is to be able to classify new data. After a 
classification scheme is chosen and the best model is developed based on existing data, we 
use the predictor variables as inputs to the model to predict the output.

Figure 10.24

Additional Data in the 
Excel File Credit Approval 
Decisions Coded

Classification Techniques

We will describe three different data-mining approaches used for classification: k-Nearest 
Neighbors, discriminant analysis, and logistic regression.
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k-Nearest Neighbors (k-NN)

The k-Nearest Neighbors (k-NN) algorithm is a classification scheme that attempts to 
find records in a database that are similar to one we wish to classify. Similarity is based 
on the “closeness” of a record to numerical predictors in the other records. In the Credit 
Approval Decisions database, we have the predictors Homeowner, Credit Score, Years 
of Credit History, Revolving Balance, and Revolving Utilization. We seek to classify the 
decision to approve or reject the credit application.

Suppose that the values of the predictors of two records X and Y are labeled 
1x1, x2, c, xn2 and 1y1, y2, c, xn2. We measure the distance between two records by 
the Euclidean distance in formula (10.1). Because predictors often have different scales, 
they are often standardized before computing the distance.

Suppose we have a record X that we want to classify. The nearest neighbor to that re-
cord in the training data set is the one that that has the smallest distance from it. The 1-NN 
rule then classifies record X in the same category as its nearest neighbor. We can extend 
this idea to a k-NN rule by finding the k-nearest neighbors in the training data set to each 
record we want to classify and then assigning the classification as the classification of ma-
jority of the k-nearest neighbors. The choice of k is somewhat arbitrary. If k is too small, 
the classification of a record is very sensitive to the classification of the single record to 
which it is closest. A larger k reduces this variability, but making k too large introduces 
bias into the classification decisions. For example, if k is the count of the entire training 
dataset, all records will be classified the same way. Like the smoothing constants for mov-
ing average or exponential smoothing forecasting, some experimentation is needed to find 
the best value of k to minimize the misclassification rate in the validation data. XLMiner 
provides the ability to select a maximum value for k and evaluate the performance of the 
algorithm on all values of k up to the maximum specified value. Typically, values of k 
between 1 and 20 are used, depending on the size of the data sets, and odd numbers are 
often used to avoid ties in computing the majority classification of the nearest neighbors.

ExaMpLE 10.10 Classifying Credit Decisions Using the k-NN algorithm

First, partition the data in the Credit Approval Decisions 
Coded Excel file into training and validation data sets, 
as described in Example 10.8. Next, select Classify from 
the XLMiner Data Mining group and choose k-Nearest  
Neighbors. In the dialog as shown in Figure 10.25,  
ensure that the Data source worksheet matches the name 
of the worksheet with the data partion, not the original 
data. Move the input variables (the predictor variables) and 
output variable (the one being classified) into the proper 
panes using the arrow buttons. Click on Next to proceed.

In the second dialog (see Figure 10.26), we recom-
mend checking the box Normalize input data. Normalizing 
the data is important to ensure that the distance measure 
gives equal weight to each variable; without normalization, 
the variable with the largest scale will dominate the mea-
sure. In the field below, enter the value of k. In the Scoring 
Option section, if you select Score on specified value of k 
as above, the output is displayed by scoring on the speci-
fied value of k. If you select Score on best k between 1 
and specified value, XLMiner evaluates models for all val-
ues of k up to the maximum specified value and scoring 

is done on the best of these models. In this example, we  
set k = 5 and evaluate all models from k = 1 to 5. We 
leave Prior Class Probabilities at its default selection.  
Leave the Step 3 dialog as is and click Finish.

The output of the k-NN algorithm is displayed in a 
separate sheet (see Figure 10.27) and various sections of 
the output can be navigated using the Output Navigator 
bar at the top of the worksheet by clicking on the high-
lighted  titles. The Validation error log for different k lists 
the percentage errors for all values of k for the training 
and validation data sets and selects that value as best k 
for which the percentage error validation is minimum (in 
this case, k = 2). The scoring is performed later using this 
value.

Of particular interest is the Training Data Scoring and 
Validation Data Scoring summary reports, which tally the 
actual and computed clas sifications. Correct classification 
counts are along the diagonal from upper left to lower right 
in the Classification Confusion Matrix. In this case, there 
were no misclassifications in the training data, and two 
misclassifications in the validation data.
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Figure 10.25

k-NN Dialog, Step 1 of 2

Figure 10.26

k-NN Dialog, Steps 2 and 3
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Figure 10.27

Portion of k-NN Output

in the Score new data pane of the dialog. In the Match 
Variables in the New Range dialog,  select the Addi-
tional Data worksheet in the Worksheet field and high-
light the range of the new data in the Data range field, 
including headers. Because we use the same headers,  
click on Match By Name; this  results in the dia-
log shown in Figure 10.28. Click Finish in the Step 3  
dialog. In the Output Navigator, choose New Data  Detail 
Rpt. Figure 10.29 shows the results. The first, third, and 
fourth records are classified as “Approved.”

ExamplE 10.11 Classifying New Data Using k-NN

We use the Credit Approval Decisions Coded data-
base that we used in Example 10.9 to classify the new 
data in the Additional Data worksheet. First, parti-
tion the data or use the data partition worksheet that 
was analyzed in the previous example. In Step 2 of the  
k-NN procedure (see Figure 10.26), normalize the in-
put data and set the number of nearest neighbors (k) to 
2, since this was the best value identified in the previ-
ous  example, and choose Score on specified value of 
k as above. In the Step 3 dialog click on In worksheet 

Discriminant analysis

Discriminant analysis is a technique for classifying a set of observations into predefined 
classes. The purpose is to determine the class of an observation based on a set of predictor 
variables. Based on the training data set, the technique constructs a set of linear functions 
of the predictors, known as discriminant functions, which have the form:

 L = b1X1  +   b2X2   + c +   bnXn  +   c (10.2)

where the bs are weights, or discriminant coefficients, the Xs are the input variables, or 
predictors, and c is a constant or the intercept. The weights are determined by maximizing  
the between-group variance relative to the within-group variance. These discriminant functions 
are used to predict the category of a new observation. For k categories, k discriminant functions 
are constructed. For a new observation, each of the k discriminant functions is evaluated, and 
the observation is assigned to class i if the ith discriminant function has the highest value.
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ExaMpLE 10.12 Classifying Credit Decisions Using Discriminant analysis

In the Credit Approval Decisions Coded database, first, 
partition the data into training and validation sets, as de-
scribed earlier. From the XLMiner options, select Dis-
criminant Analysis from the Classify menu in the Data 
Mining group. The first dialog that appears is shown in Fig-
ure 10.30. Make sure the worksheet specified is the one 
with the data partition. Specify the input variables and the 
output variable. The “success” class corresponds to the 
outcome value that you consider a success—in this case, 
the approval of the loan to which we assigned the value 1. 
The cutoff probability defaults to 0.5, and this is typically 
used.

The second dialog is shown in Figure 10.31. The dis-
criminant analysis procedure incorporates prior assump-

tions about how frequently the different classes occur. 
Three options are available:

 1. According to relative occurrences in training data. 
This option assumes that the probability of en-
countering a particular category is the same as the 
frequency with which it occurs in the training data.

 2. Use equal prior probabilities. This option assumes 
that all categories occur with equal probability.

 3. User specified prior probabilities. This option is avail-
able only if the output variable has two categories. 
If you have information about the probabilities that 
an observation will belong to a particular category 
(regardless of the training sample) then you may 
specify probability values for the two categories.

Figure 10.29

The k-NN Procedure 
Classification of New  
Data

Figure 10.28

Match Variables in the New 
Range Dialog for Scoring 
New Data
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This dialog also allows you to specify the cost of misclas-
sification when there are two categories. If the costs are 
equal for the two groups, then the method will attempt to 
misclassify the fewest number of observations across all 
groups. If the misclassification costs are unequal, XLMiner 
takes into consideration the relative costs and attempts to 
fit a model that minimizes the total cost of misclassification.

The third dialog (Figure 10.32) allows you to specify the 
output options. These include some advanced statistical  
information and more detailed reports; check the box for 
the Classification Function.

Figure 10.33 shows the classification (discriminant) 
functions for the two categories from the worksheet  
DA_Stored. For category 1 (approve the loan application), 
the discriminant function is

L(1) = −149.871 + 10.66073 × homeowner + 0.355209 
 × credit score + 0.858509 × years of credit history 
 − 0.00015 × revolving balance + 115.9978  
 × revolving utilization

For category 0 (reject the loan application), the discrimi-
nant function is

L(0) = −174.22 + 7.589715 × homeowner + 0.364829  
 × credit score + 0.54185 × years of credit history 
 − 0.00023 × revolving balance + 170.6218  
 × revolving utilization

For example, for the first record in the database,

L(1) = −149.871 + 10.66073 × 1 + 0.355209 × 725 
 + 0.858509 × 20 − 0.00015 × $11,320 
 + 115.9978 × 0.25 = 162.7879

L(0) = −174.22 + 7.589715 × 1 + 0.364829 × 725 
 + 0.54185 × 20 − 0.00023 × 11,320 + 170.6218 
 × 0.25 = 148.7596

Therefore, this record would be assigned to category 1.
Figure 10.34 shows the scoring reports for the train-

ing and validation data sets. We see that there is an over-
all misclassification rate of 15%.

Figure 10.30

Discriminant Analysis Dialog, 
Step 1
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Figure 10.32

Discriminant Analysis Dialog, 
Step 3

Figure 10.33

Discriminant Analysis 
Results—Classification 
Function Data

Figure 10.31

Discriminant Analysis Dialog, 
Step 2
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Like many statistical procedures, discriminant analysis requires certain assump-
tions, such as normality of the independent variables as well as other assumptions, to 
apply properly. The normality assumption is often violated in practice, but the method 
is generally robust to violations of the assumptions. The next technique, called logistic 
regression, does not rely on these assumptions, making it preferred by many analytics 
practitioners.

Logistic Regression

In Chapter 8, we studied linear regression, in which the dependent variable is continu-
ous and numerical. Logistic regression is a variation of ordinary regression in which 
the dependent variable is categorical. The independent variables may be continuous 
or categorical, as in the case of ordinary linear regression. However, whereas mul-
tiple linear regression seeks to predict the numerical value of the dependent variable Y 
based on the values of the dependent variables, logistic regression seeks to predict the 
probability that the output variable will fall into a category based on the values of the 
independent (predictor) variables. This probability is used to classify an observation 
into a category.

Logistic regression is generally used when the dependent variable is binary—that is, 
takes on two values, 0 or 1, as in the credit-approval decision example that we have been 
using, in which Y =  1 if the loan is approved and Y =  0 if it is rejected. This situation is 
very common in many other business situations, such as when we wish to classify custom-
ers as buyers or nonbuyers or credit-card transactions as fraudulent or not.

To classify an observation using logistic regression, we first estimate the probability 
p that it belongs to category 1, P1Y =  12, and, consequently, the probability 1 - p that it 
belongs to category 0, P1Y =  02. Then we use a cutoff value, typically 0.5, with which 
to compare p and classify the observation into one of the two categories. For instance, if 
p 7 0.5, the observation would be classified into category 1; otherwise it would be clas-
sified into category 0.

You may recall from Chapter 8 that a multiple linear regression model has the form 
Y =  b0 + b1X1 + b2X2 + g+ bkXk. In logistic regression, we use a different dependent 
variable, called the logit, which is the natural logarithm of p>11 - p2. Thus, the form of 
a logistic regression model is

 ln 
p

1 - p
 = b0 + b1X1 + b2X2 + g +  bkXk (10.3)

where p is the probability that the dependent variable Y =  1, and X1, X2, c, Xk are the 
independent variables (predictors). The parameters b0, b1, b2, c, bk are the unknown re-
gression coefficients, which have to be estimated from the data.

The ratio p>11 - p2 is called the odds of belonging to category 1 1Y =  12. This 
is a common notion in gambling. For example, if the probability of winning a game is 
p =  0.2, then 1 - p =  0.8, so the odds of winning are 0.2>0.8 =  1

4, or one in four. That is, 
you would win once for every four times you would lose, on average. The logit is continu-
ous over the range from - ∞  to + ∞  and from equation (10.3) is a linear function of the 
predictor variables. The values of this predictor variable are then transformed into prob-
abilities by a logistic function:

 p =
1

1 + e-1b0 +b1X1 +b2X2 +c+bkXk2 (10.4)
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ExaMpLE 10.14  Classifying Credit approval Decisions Using  
Logistic Regression

In the Credit Approval Decisions Coded database, first, 
partition the data into training and validation sets. In 
XLMiner, select Logistic Regression from the  Classify  
menu in the Data Mining group. The dialog shown in 
 Figure 10.36 appears, where you need to specify the 
data range, the input variables, and the output variable. 
The “success” class corresponds to the outcome value 
that you consider a success—in this case, the approval 
of the loan to which we assigned the value 1.

The second logistic regression dialog is shown in  
Figure 10.37. You can choose to force the constant term to 
zero and omit it from the regression. You can also change 
the confidence level for the confidence intervals displayed 
in the results for the odds ratio. Typically this is set to 95%. 
The Advanced button allows you to change or select some 
additional options; for our purposes we leave these alone.

The Variable Selection button allows XLMiner 
to  evaluate all possible models with subsets of the 
 independent variables. This is useful in choosing models 
that eliminate insignificant independent variables. Figure 
10.38 shows the dialog. Several options are available for 
the selection procedure that the algorithm uses to choose 
the variables in the models:

•	Backward elimination: Variables are eliminated 
one at a time, starting with the least significant.

•	Forward selection: Variables are added one at 
a time, starting with the most significant.

•	Exhaustive search: All combinations of vari-
ables are searched for the best fit (can be quite 
time consuming, depending on the number of 
variables).

•	Sequential replacement: For a given number of 
variables, variables are sequentially replaced 
and replacements that improve performance 
are retained.

•	Stepwise selection: Like forward selection, but 
at each stage, variables can be dropped or 
added.

Each option may yield different results, so it is usually wise 
to experiment with the different options. For our  purposes, 
we will use the default values in this dialog.

Figure 10.39 shows the third dialog. Check the appro-
priate options. For simple problems, the summary reports 
for scoring the training and validation data will suffice.

The logistic regression output is displayed on a new 
worksheet, and you can use the Output Navigator links to 
display different sections of the worksheet. Figure 10.40 
shows the regression model and best subsets output. The 
output contains the beta coefficients, their standard errors, 

Figure 10.36

Logistic Regression  
Dialog, Step 1
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Figure 10.37

Logistic Regression Dialog, 
Step 2

Figure 10.38

Logistic Regression Best 
Subset Variable Selection 
Dialog

Figure 10.39

Logistic Regression Dialog, 
Step 3

the p-value, the odds ratio for each variable (which is sim-
ply ex, where x is the value of the coefficient), and confi-
dence interval for the odds. Summary statistics to the right 
show the residual degrees of freedom (number of observa-
tions − number of predictors), a standard deviation–type 
measure (Residual Dev.) for the model (which typically has 
a chi-square distribution), the percentage of successes 
(1s) in the training data, the number of iterations required 
to fit the model, and the multiple R-squared value.

If we select the best subsets option, then XLMiner 
shows the best regression model. Figure 10.40 shows the 
regression model. The coefficients are the betas in Equa-
tion 10.3.

The choice of the best model depends on the calcu-
lated values of various error values and the probability. 

RSS is the residual sum of squares, or the sum of squared 
deviations between the predicted probability of success 
and the actual value (1 or 0). Cp is a measure of the error 
in the best subset model, relative to the error incorporat-
ing all variables. Adequate models are those for which Cp 
is roughly equal to the number of parameters in the model 
(including the constant), and/or Cp is at a minimum. Prob-
ability is a quasi-hypothesis test of the proposition that a 
given subset is acceptable; if Probability * 0.05 we can 
rule out that subset.

The training and validation summary reports are 
shown in Figure 10.41. We see that all cases were classi-
fied correctly for the training data, and there was an over-
all error rate of 15% for the validation data.
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ExaMpLE 10.15 Using Logistic Regression to Classifying New Data

We use the Credit Approval Decisions Coded database 
that contains the new data. First, partition the data or 
use the existing data partition worksheet that was ana-
lyzed in the previous example. In Step 3 of the  logistic 
regression procedure (see Figure 10.39), click on In 
worksheet in the Score new data pane of the dialog.  

The information in the Match Variables in the New Range 
dialog should be the same as in previous  examples 
(see Figure 10.28). After you return to the Step 3  
dialog, click Finish. XLMiner creates a new worksheet la-
beled LR_NewScore shown in Figure 10.42 that provides 
the predicted classification for each new record.

Figure 10.40

Logistic Regression Model and Best Subsets Output

Figure 10.41

Logistic Regression 
Training and Validation Data 
Summaries
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ExaMpLE 10.16 Custom Computer Configuration

Figure 10.43 shows a portion of the Excel file PC 
 Purchase Data. The data represent the configurations for 
a small number of orders of laptops placed over the Web. 
The main options from which customers can choose are 
the type of processor, screen size, memory, and hard 
drive. A “1” signifies that a customer selected a particular 

option. If the manufacturer can better understand what 
types of components are often ordered together, it can 
speed up final assembly by having partially completed 
laptops with the most popular combinations of compo-
nents configured prior to order, thereby reducing delivery 
time and improving customer satisfaction.

Figure 10.42

Logistic Regression Classification of New Data

association Rule Mining

Association rule mining, often called affinity analysis, seeks to uncover interesting as-
sociations and/or correlation relationships among large sets of data. Association rules 
identify attributes that occur frequently together in a given data set. A typical and widely 
used example of association rule mining is market basket analysis. For example, super-
markets routinely collect data using bar-code scanners. Each record lists all items bought 
by a customer for a single-purchase transaction. Such databases consist of a large number 
of transaction records. Managers would be interested to know if certain groups of items 
are consistently purchased together. They could use these data for adjusting store layouts 
(placing items optimally with respect to each other), for cross-selling, for promotions, for 
catalog design, and to identify customer segments based on buying patterns. Association 
rule mining is how companies such as Netflix and Amazon.com make recommendations 
based on past movie rentals or item purchases, for example.

Association rules provide information in the form of if-then statements. These rules 
are computed from the data but, unlike the if-then rules of logic, association rules are 
probabilistic in nature. In association analysis, the antecedent (the “if” part) and conse-
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Figure 10.43

Portion of the Excel File PC Purchase Data

quent (the “then” part) are sets of items (called item sets) that are disjoint (do not have any 
items in common).

To measure the strength of association, an association rule has two numbers that  
express the degree of uncertainty about the rule. The first number is called the support 
for the (association) rule. The support is simply the number of transactions that include 
all items in the antecedent and consequent parts of the rule. (The support is sometimes 
expressed as a percentage of the total number of records in the database.) One way to 
think of support is that it is the probability that a randomly selected transaction from the 
database will contain all items in the antecedent and the consequent. The second number 
is the confidence of the (association) rule. Confidence is the ratio of the number of 
transactions that include all items in the consequent as well as the antecedent (namely, 
the support) to the number of transactions that include all items in the antecedent. The 
confidence is the conditional probability that a randomly selected transaction will include 
all the items in the consequent given that the transaction includes all the items in the 
antecedent:

 confidence =  P (consequent �antecedent) =  
P1antecedent and consequent2

P1antecedent2  (10.5)

The higher the confidence, the more confident we are that the association rule provides 
useful information.

Another measure of the strength of an association rule is lift, which is defined as the 
ratio of confidence to expected confidence. Expected confidence is the number of transac-
tions that include the consequent divided by the total number of transactions. Expected 
confidence assumes independence between the consequent and the antecedent. Lift pro-
vides information about the increase in probability of the then (consequent) given the if 
(antecedent) part. The higher the lift ratio, the stronger the association rule; a value greater 
than 1.0 is usually a good minimum.
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ExaMpLE 10.18 Identifying association Rules for PC Purchase Data

In XLMiner, select Association Rules from the Associate 
menu in the Data Mining group. In the dialog shown in 
Figure 10.44, specify the data range to be processed, the 
input data format desired, and your requirements for how 
much support and confidence rules must be  reported. 
Two input options are available:

 1. Data in binary matrix format: Choose this option 
if each column in the data represents a distinct 
item and the data are expressed as 0s and 1s. All 
 nonzeros are treated as 1s. A 0 under a variable 
name means that item is absent in that transaction, 
and a 1 means it is present.

 2. Data in item list format: Choose this option if each 
row of data consists of item codes or names that 
are present in that transaction.

In the Parameters pane, specify the minimum num-
ber of transactions in which a particular item set must 
appear for it to qualify for inclusion in an association rule 
in the Minimum support (# transactions) field. For a small 
data set, as in this example, we set this number to be 5. 
In the Minimum confidence (%) field, specify the minimum 

confidence threshold for rule generation. If this is set too 
high, the algorithm might not find any association rules; low 
 values will result in many rules which may be difficult to in-
terpret. We selected 80%.

Figure 10.45 shows the results. Rule 1 states that if a 
customer purchased an Intel Core i7 processor and a 4 GB 
memory, then a 12 inch screen was also purchased.

This particular rule has confidence of 83.33%, mean-
ing that of the people who bought a core i7 processor and 
a 4 GB memory, 83.33% of them bought 12 inch screens as 
well. The value in the column Support for A indicates that 
it has support of 6 transactions, meaning that 6 customers 
bought a core i7 processor with 4 GB memory. The value 
in the column Support for C indicates the number of trans-
actions involving the purchase of options, total. The value 
in the column Support (a & c) is the number of transactions 
in which a 12-inch screen, Intel Core i7, and 4 GB mem-
ory were ordered. The value in the Lift Ratio column indi-
cates how much more likely we are to encounter a 12 inch 
screen transaction if we consider just those transactions 
where an Intel Core i7 and 4 GB memory are purchased, as 
compared to the entire population of transactions.

Figure 10.44

Association Rule Dialog

ExaMpLE 10.17 Measuring Strength of association

Suppose that a supermarket database has 100,000 
point-of-sale t ransact ions,  out  of  which 2,000  
include both items A and B and 800 of these in-
clude item C. The association rule “If A and B are pur-
chased, then C is also purchased” has a support of 

800 transactions (alternatively 0.8% = 800 ,100,000)  
and a confidence of 40% (= 800 ,2,000).  Suppose 
the number of total transactions for C is 5,000. Then, 
expected confidence is 5,000 ,100,000 = 5%, and 
lift = confidence ,expected confidence = 40% ,5% = 8.

We next illustrate how XLMiner is used for the PC purchase data.
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Figure 10.45 Association Results for PC Purchase Data

Cause-and-Effect Modeling

Managers are always interested in results, such as profit, customer satisfaction and reten-
tion, production yield, and so on. Lagging measures, or outcomes, tell what has  happened 
and are often external business results, such as profit, market share, or customer satis-
faction. Leading measures (performance drivers) predict what will happen and usually 
are internal metrics, such as employee satisfaction, productivity, turnover, and so on.  
For example, customer satisfaction results in regard to sales or service transactions would 
be a lagging measure; employee satisfaction, sales representative behavior, billing accu-
racy, and so on, would be examples of leading measures that might influence customer 
satisfaction. If employees are not satisfied, their behavior toward customers could be neg-
atively affected, and customer satisfaction could be low. If this can be explained using 
business analytics, managers can take steps to improve employee satisfaction, leading to 
improved customer satisfaction. Therefore, it is important to understand what controllable 
factors significantly influence key business performance measures that managers cannot 
directly control. Correlation analysis can help to identify these influences and lead to the 
development of cause-and-effect models that can help managers make better decisions 
today that will influence results tomorrow.

Recall from Chapter 4 that correlation is a measure of the linear relationship between 
two variables. High values of the correlation coefficient indicate strong relationships be-
tween the variables. The following example shows how correlation can be useful in cause-
and-effect modeling.
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ExaMpLE 10.19 Using Correlation for Cause-and-Effect Modeling

The Excel file Ten Year Survey shows the results of 40 
quarterly surveys conducted by a major electronics de-
vice manufacturer, a portion of which is shown in Fig-
ure 10.46.6 The data provide average scores on a 1–5 
scale for customer satisfaction, overall employee satis-
faction, employee job satisfaction, employee satisfaction 
with their supervisor, and employee perception of train-
ing and skill improvement. Figure 10.47 shows the corre-
lation matrix. All the correlations except the one between 
job satisfaction and customer satisfaction are relatively 
strong, with the highest correlations between overall 
employee satisfaction and employee job satisfaction,  

employee satisfaction with their supervisor, and em-
ployee perception of training and skill improvement.

Although correlation analysis does not prove any 
cause and effect, we can logically infer that a cause-and-
effect relationship exists. The data indicate that customer 
satisfaction, the key external business result, is strongly 
influenced by internal factors that drive employee satis-
faction. Logically, we could propose the model shown 
in Figure 10.48. This suggests that if managers want to 
improve customer satisfaction, they need to start by en-
suring good relations between supervisors and their em-
ployees and focus on improving training and skills.

6Based on a description of a real application by Steven H. Hoisington and Tse-His Huang, “Customer  
Satisfaction and Market Share: An Empirical Case Study of IBM’s AS/400 Division,” in Earl Naumann 
and Steven H. Hoisington (eds.) Customer-Centered Six Sigma (Milwaukee, WI: ASQ Quality Press, 
2001). The data used in this example are fictitious, however.

Figure 10.46

Portion of Ten Year Survey Data

Figure 10.47

Correlation Matrix of Ten Year Survey Data
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Satisfaction with
Supervisor 

Job
Satisfaction 

Training and Skill
Improvement 

Employee
Satisfaction 

Customer
Satisfaction 

Figure 10.48

Cause-and-Effect Model

A wide range of companies have deployed data min-
ing successfully. Although early adopters of this tech-
nology have tended to be in information- intensive 
industries such as financial services and direct-mail 
marketing, data mining has found application in 
any company looking to leverage a large data ware-
house to better manage their customer relationships. 
Two critical factors for success with data mining are 
a large, well-integrated data warehouse and a well- 
defined understanding of the business process within 
which data mining is to be applied (such as customer 
prospecting, retention, campaign management, and 
so on).

Some successful application areas of data mining 
include the following:

•	A pharmaceutical company analyzes its recent 
sales force activity and uses their results to im-
prove targeting of high-value physicians and  
determine which marketing activities will have 
the greatest impact in the near future. The re-
sults are distributed to the sales force via a 
wide-area network that enables the representa-
tives to review the recommendations from the 
perspective of the key attributes in the decision 
process. The ongoing, dynamic analysis of the 
data warehouse allows best practices from 

throughout the organization to be applied in 
specific sales situations.

•	A credit-card company leverages its vast ware-
house of customer transaction data to identify 
customers most likely to be interested in a new 
credit product. Using a small test mailing, the 
attributes of customers with an affinity for the 
product are identified. Recent projects have indi-
cated more than a 20-fold decrease in costs for 
targeted mailing campaigns over conventional 
approaches.

analytics in practice:  Successful Business applications  
of Data Mining7
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7Based on Kurt Thearling, “An Introduction to Data Mining,” White Paper from Thearling.com. http://
www.thearling.com/text/dmwhite/dmwhite.htm.

(continued)
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Key Terms

Agglomerative clustering methods
Association rule mining
Average group linkage clustering
Average linkage clustering
Boxplot
Classification matrix
Cluster analysis
Complete linkage clustering
Confidence of the (association) rule
Data mining
Dendogram
Discriminant analysis
Discriminant function
Divisive clustering methods
Euclidean distance
Hierarchical clustering

k-nearest neighbors (k-NN) algorithm
Lagging measures
Leading measures
Lift
Logistic regression
Logit
Market basket analysis
Odds
Parallel coordinates chart
Scatterplot matrix
Single linkage clustering
Support for the (association) rule
Training data set
Validation data set
Variable plot
Ward’s hierarchical clustering

problems and Exercises

 1. Use XLMiner to generate a simple random sample of 
10 records from the Excel file Banking Data. 

 2. Use the Excel file Banking Data.

 a.  Construct a boxplot for the Median Income, 
 Median Home Value, Median Household Wealth, 
and Average Bank Balance.

 b.  What observations can you make about these 
data?

 3. Construct a parallel coordinates chart for Median 
Income, Median Home Value, Median Household 
Wealth, and Average Bank Balance in the Excel file 
Banking Data. What conclusions can you reach? 

 4. Construct a scatterplot matrix for Median Income, 
Median Home Value, Median Household Wealth, 
and Average Bank Balance in the Excel file Banking 
Data. What conclusions can you reach? 

•	A diversified transportation company with a large 
direct sales force uses data mining to identify the 
best prospects for its services. Using data mining 
to analyze its own customer experience, this com-
pany builds a unique segmentation identifying the 
attributes of high-value prospects.  
Applying this segmentation to a general business 
database such as those provided by Dun &  
Bradstreet can yield a prioritized list of prospects 
by region.

•	A large consumer package goods company 
 applies data mining to improve its sales pro-
cess to retailers. Data from consumer panels, 

 shipments, and competitor activity are used 
to understand the reasons for brand and store 
switching. Through this analysis, the manufac-
turer can select promotional strategies that best 
reach their target customer segments.

In each of these examples, companies have leveraged 
their knowledge about customers to reduce costs and 
improve the value of customer relationships. These 
organizations can now focus their efforts on the most 
important (profitable) customers and prospects and 
design targeted marketing strategies to best reach 
them.
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 5. Construct a variable plot for all the variables in the 
Excel file Banking Data. 

 6. Compute the Euclidean distance between the follow-
ing set of points:

 a. (1.06, 9.2) and (0.89, 10.3)

 b. (1.6, 0.628, 9.077) and (2.2, 1.555, 5.088)

 7. For the Excel file Pharmaceuticals, normalize 
each column of the numerical data (i.e., compute a  
Z-score for each of the values) and then compute the 
Euclidean distances between the following pharma-
ceutical companies: ABT, CHTT and MRX.

 8. For the four clusters identified in Example 10.6, find 
the average and standard deviations of each numeri-
cal variable for the schools in each cluster and com-
pare them with the averages and standard deviations 
for the entire data set. Does the clustering show dis-
tinct differences among the clusters?

 9. For the Colleges and Universities data, use XLMiner 
to find four clusters using each of the other clustering 
methods (see Figure 10.13); compare the results with  
Example 10.6.

 10. Apply cluster analysis to the numerical data in the 
Excel file Credit Approval Decisions. Analyze the 
clusters and determine if cluster analysis would be a 
useful classification method for approving or reject-
ing loan applications.

 11. Apply cluster analysis to the Excel file Sales Data, 
using the input variables Percent Gross Profit, 
 Industry Code, and Competitive Rating. Create four 
clusters and draw conclusions about the groupings.

 12. Cluster the records in the Excel file Ten Year Survey. 
Create up to five clusters and analyze the results to 
draw conclusions about the survey.

 13. Use the k-NN algorithm to classify the new data in the 
Excel file Mortgage Defaulters Additional using only 
credit score and value of loan as input variables.

 14. Use discriminant analysis to classify the new data 
in the Excel file Credit  Approval Decisions Coded 
using only credit score and years of credit history as 
input variables.

 15. Use logistic regression to classify the new data in the 
Excel file Credit Approval Decisions Coded using 

only credit score and years of credit history as input 
variables.

 16. The Excel file Credit Risk Data provides a database 
of information about loan applications along with a 
classification of credit risk in column L. Convert the 
categorical data into numerical codes as appropriate. 
Sample 200 records from the data set. Then apply the 
k-NN algorithm to classify training and validation 
data sets and the additional data in the file. Summa-
rize your findings.

 17. The Excel file Credit Risk Data provides a database 
of information about loan applications along with a 
classification of credit risk in column L. Convert the 
categorical data into numerical codes as appropriate. 
Sample 200 records from the data set. Then apply 
discriminant analysis to classify training and valida-
tion data sets and the new data in the file. Summarize 
your findings.

 18. The Excel file Credit Risk Data provides a database 
of information about loan applications, along with a 
classification of credit risk in column L. Convert the 
categorical data into numerical codes as appropriate. 
Then apply logistic regression to classify training 
and validation data sets and the new data in the file. 
Summarize your findings.

 19. For the PC Purchase Data, identify association rules 
with the following input parameters for the XLMiner 
association rules procedure:

 a. support = 3; confidence = 90,
 b. support = 7; confidence = 90,
 c. support = 3; confidence = 70,
 d. support = 7; confidence = 70,
  Compare your results with those in Example 

10.18.

 20. The Excel file Cosmetics Data provides data on pur-
chases of different cosmetic items at a large chain 
store. Develop a market basket analysis using the 
XLMiner association rules procedure with the input 
parameters support = 35 and confidence = 80.

 21. The Excel file Myatt Steak House provides 5 years of 
data on key business results for a restaurant. Identify 
the leading and lagging measures, find the correla-
tion matrix, and propose a cause-and-effect model 
using the strongest correlations.
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8The data and description of this case are based on the HATCO example on pages 28–29 in Joseph F. Hair, Jr., Rolph E. Anderson, Ronald L. 
Tatham, and William C. Black, Multivariate Analysis, 5th ed. (Upper Saddle River, NJ: Prentice Hall, 1998).

Case: performance Lawn Equipment

The worksheet Purchasing Survey in the Performance 
Lawn Care database provides data related to predict-
ing the level of business (Usage Level) obtained from a 
third-party survey of purchasing managers of customers 
 Performance Lawn Care.8 The seven PLE attributes rated 
by each respondent are

Delivery speed—the amount of time it takes to deliver 
the product once an order is confirmed

Price level—the perceived level of price charged by 
PLE

Price flexibility—the perceived willingness of PLE 
representatives to negotiate price on all types of purchases

Manufacturing image—the overall image of the 
manufacturer

Overall service—the overall level of service neces-
sary for maintaining a satisfactory relationship between 
PLE and the purchaser

Sales force image—the overall image of the PLE’s 
sales force

Product quality—perceived level of quality

Responses to these seven variables were obtained us-
ing a graphic rating scale, where a 10-centimeter line was 
drawn between endpoints labeled “poor” and “excellent.” 
Respondents indicated their perceptions using a mark on 
the line, which was measured from the left endpoint. The 
result was a scale from 0 to 10 rounded to one decimal 
place.

Two measures were obtained that reflected the out-
comes of the respondent’s purchase relationships with 
PLE:

Usage level—how much of the firm’s total product is 
purchased from PLE, measured on a 100-point scale, rang-
ing from 0% to 100%

Satisfaction level—how satisfied the purchaser is with 
past purchases from PLE, measured on the same graphic 
rating scale as perceptions 1 through 7

The data also include four characteristics of the respond-
ing firms:

Size of firm—size relative to others in this market  
(0 = small; 1 = large)

Purchasing structure—the purchasing method used in 
a particular company (1 = centralized procurement, 0 =  
decentralized procurement)

Industry—the industry classification of the purchaser 
[1 = retail (resale such as Home Depot), 0 = private 
(nonresale, such as a landscaper)]

Buying type—a variable that has three categories  
(1 = new purchase, 2 = modified rebuy, 3 = straight 
rebuy)

Elizabeth Burke would like to understand what she 
learned from these data. Apply appropriate data-mining 
techniques to analyze the data. For example, can PLE 
segment customers into groups with similar perceptions 
about the company? Can cause-and-effect models provide 
insight about the drivers of satisfaction and usage level? 
Summarize your results in a report to Ms. Burke.
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•	Explain	how	to	use	simple	mathematics	and	influence	
diagrams	to	help	develop	predictive	analytic	models.

•	Apply	principles	of	spreadsheet	engineering	to	
designing	and	implementing	spreadsheet	models.

•	Use	Excel	features	and	spreadsheet	engineering	to	
ensure	the	quality	of	spreadsheet	models.

•	Develop	and	implement	analytic	models	for	multiple-
time-period	problems.

•	Describe	the	newsvendor	problem	and	implement		
it	on	a	spreadsheet.

•	Describe	how	overbooking	decisions	can	be	modeled	
on	spreadsheets.

•	Explain	how	model	validity	can	be	assessed.

•	Perform	what-if	analysis	on	spreadsheet	models.

•	Construct	one-	and	two-way	data	tables.

•	Use	data	tables	to	analyze	uncertainty	in	decision	
models.

•	Use	the	Excel	Scenario Manager	to	evaluate	different	
model	scenarios.

•	Apply	the	Excel	Goal Seek	tool	for	break-even	analysis	
and	other	types	of	models.

•	Create	data	tables	and	tornado	charts	using	Analytic 
Solver Platform.

•	Use	Excel	tools	to	create	user-friendly	Excel	models	
and	applications.

Learning Objectives

After	studying	this	chapter,	you	will	be	able	to:

Spreadsheet Modeling 
and Analysis11Ch

ap
te

r 

Rufous/Shutterstock.com
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The late management	and	quality	guru	Dr.	W.	Edwards	Deming	once	stated	

that	all	management	is	prediction.	What	he	was	implying	is	that	when	manag-

ers	make	decisions,	they	do	so	with	an	eye	to	the	future	and	essentially	are	

predicting	that	their	decisions	will	achieve	certain	results.	Predictive	modeling	

is	the	heart	and	soul	of	business	analytics.

We	introduced	the	concept	of	a	decision	model	in	Figure	1.7	in		Chapter	

1.	Decision	models	transform	inputs—data,	uncontrollable	variables,	and	deci-

sion	variables—into	outputs,	or	measures	of	performance	or	behavior.	When	

we	build	a	decision	model,	we	are	essentially	predicting	what	outputs	will	occur	

based	on	the	model	inputs.	The	model	itself	is	simply	a	set	of	assumptions	that	

characterize	the	relationships	between	the	inputs	and	the	outputs.	For	instance,	

in	Examples	1.9	and	1.10,	we	presented	two	different	models	for	predicting	

demand	as	a	function	of	price,	each	based	on	different	assumptions.	The	first	

model	assumes	that	demand	is	a	linear	function	of	price,	whereas	the	second	

assumes	a	nonlinear	price-elasticity	relationship.	Which	model	more	accurately	

predicts	demand	can	be	verified	only	by	observing	data	in	the	future.	Since	the	

future	is	unknown,	the	choice	of	the	model	must	be	driven	either	by	sound	logic	

and	experience	or	the	analysis	of	historical	data	that	may	be	available.	These	

are	the	two	basic	approaches	that	we		develop	in	this	chapter.	We	also	describe	

approaches	for	analyzing	models	to	evaluate	future	scenarios	and	ask	what-if	

types	of	questions	to	facilitate		better	business	decisions.

Strategies for Predictive Decision Modeling

Building decision models is more of an art than a science. Creating good decision models 
requires a solid understanding of basic business principles in all functional areas, such 
as accounting, finance, marketing, and operations, knowledge of business practice and 
research, and logical skills. Models often evolve from simple to complex and from de-
terministic to stochastic (see the definitions in Chapter 1), so it is generally best to start 
simple and enrich models as necessary.

Building Models Using Simple Mathematics

Sometimes a simple “back-of-the-envelope” calculation can help managers make better 
decisions and lead to the development of useful models.

ExaMPLE 11.1 The Economic Value of a Customer

Few companies take the time to estimate the value of 
a good customer (and often spend little effort to keep 
one). Suppose that a customer at a restaurant spends, 
on average, $50 per visit and comes six times each year.  
Assuming that the restaurant realizes a 40% margin on 
the average bill for food and drinks, then their gross 

profit would be ($50)(6) (.40) = $120. If 30% of custom-
ers do not return each year, then the average lifetime of 
a customer is 1 ,0.3 = 3.33 years. Therefore, the average 
nondiscounted gross profit during a customer’s lifetime 
is $120(3.33) = $400.
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Although this example calculated the economic value of a customer for one particular 
scenario, what we’ve really done is to set the stage for constructing a general decision 
model. Suppose we define the following variables:

R  = revenue per purchase
F  =  purchase frequency in number per year (e.g., if a customer purchases once  

every 2 years, then F =  12 =  0.5)
M  = gross profit margin (expressed as a fraction)
D  = defection rate (fraction of customers defecting each year)

Then, the value of a loyal customer, V, would be

 V =
R * F * M

D
 (11.1)

In the previous example, R = +50, F = 6, M = 0.4, and D = 0.3. We can use this 
model to evaluate different scenarios systematically.

Building Models Using Influence Diagrams

Although it can be easy to develop a model from simple numerical calculations, as we 
illustrated in the previous example, most model development requires a more formal 
 approach. Influence diagrams were introduced in Chapter 1, and are a logical and visual 
representation of key model relationships, which can be used as a basis for developing a 
mathematical decision model.

ExaMPLE 11.2 Developing a Decision Model Using an Influence Diagram

We will develop a decision model for predicting profit 
in the face of uncertain future demand. To help develop 
the model, we use the influence-diagram approach. We 
all know that profit = revenue − cost. Using a little 
“Business 101” logic, revenue depends on the unit price 
and the quantity sold, and cost depends on the unit cost, 
quantity produced, and fixed costs of production. How-
ever, if demand is uncertain, then the amount  produced 
may be less than or greater than the actual demand. Thus, 
the quantity sold depends on both the demand and the 
quantity produced. Putting these facts together, we can 
build the influence diagram shown in Figure 11.1.

The next step is to translate the influence diagram 
into a more formal model. Define

P = profit

R = revenue

C = cost

p = unit price

c = unit cost

F = fixed cost

S = quantity sold

Q = quantity produced

D = demand

First, note that cost consists of the fixed cost (F ) plus the 
variable cost of producing Q units (cQ):

C = F + cQ

Next, revenue equals the unit price ( p) multiplied by the 
quantity sold (S):

R = pS

The quantity sold, however, must be the smaller of the  
demand (D) and the quantity produced (Q), or

S = min5D, Q6
Therefore, R = pS = p*min5D, Q6 . Substituting these 
results into the basic formula for profit P = R − C, we 
have

 P = p*min5D, Q6 − (F + cQ) (11.2)
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Figure 11.1

An Influence 
Diagram for Profit

Implementing Models on Spreadsheets

We may creatively apply various Excel tools and capabilities to improve the structure and use of 
spreadsheet models. In this section, we discuss approaches for developing good, useful, and cor-
rect spreadsheet models. Good spreadsheet analytic applications should also be user-friendly; 
that is, it should be easy to input or change data and see key results, particularly for users who 
may not be as proficient in using spreadsheets. Good design reduces the potential for errors and 
misinterpretation of information, leading to more insightful decisions and better results.

Spreadsheet Design

In Chapter 1, Example 1.7, we developed a simple decision model for a break-even analy-
sis situation. Recall that the scenario involves a manufacturer who can produce a part for 
$125/unit with a fixed cost of $50,000. The alternative is to outsource production to a 
 supplier at a unit cost of $175. We developed mathematical models for the total manu-
facturing cost and the total cost of outsourcing as a function of the production volume, Q:

 TC 1manufacturing2 = +50,000 + +125 * Q

 TC 1outsourcing2 = +175 * Q

Profit

Unit Price Quantity Sold

Demand

Cost

Quantity
Produced

Fixed CostUnit Cost

Revenue

ExaMPLE 11.3 a Spreadsheet Model for the Outsourcing Decision

Figure 11.2 shows a spreadsheet for implementing  
the  outsourcing decision model (Excel file  Outsourcing 
 Decision Model). The input data consist of the costs 
associated with manufacturing the product  in-house  
or purchasing it from an outside supplier and the 
 production volume. The model calculates the total cost 
for manufacturing and  outsourcing. The key outputs in the 
model are the difference in these costs and the decision 
that results in the lowest cost. The data are clearly sepa-
rated from the model component of the spreadsheet.

Observe how the IF function is used in cell B20 to 
identify the best decision. If the cost difference is  negative 

or zero, then the function returns “Manufacture” as the 
best decision; otherwise it returns “Outsource.” Also ob-
serve the correspondence between the spreadsheet for-
mulas and the mathematical model:

TC (manufacturing) = $50,000 + $125 × Q = B6 + B7*B12
 TC (outsourcing) = $175 × Q = B12*B10

Thus, if you can write a spreadsheet formula, you can de-
velop a mathematical model by substituting symbols or 
numbers into the Excel formulas.
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Because decision models characterize the relationships between inputs and outputs, it 
is useful to separate the data, model calculations, and model outputs clearly in designing 
a spreadsheet. It is particularly important not to use input data in model formulas, but to 
reference the spreadsheet cells that contain the data. In this way, if the data change or you 
want to experiment with the model, you need not change any of the formulas, which can 
easily result in errors.

Figure 11.2

Outsourcing Decision Model 
Spreadsheet

ExaMPLE 11.4 Pricing Decision Spreadsheet Model

Another model we developed in Chapter 1 is one in 
which a firm wishes to determine the best pricing for 
one of its products to maximize revenue. The model was 
 developed by incorporating an equation for sales into a 
total revenue calculation:

 sales = −  2.9485 × price + 3,240.9
 total revenue = price × sales

 = price × (−  2.9485 × price + 3,240.9)
 = −2.9485 × price2 + 3,240.9 × price

Figure 11.3 shows a spreadsheet for calculating both 
sales and revenue as a function of price.

Figure 11.3

Pricing Decision Spreadsheet 
Model

Mathematical models are easy to manipulate; for example, we showed in Chapter 1 that 
it was easy to find the break-even point by setting TC (manufacturing) = TC (outsourcing) 
and solving for Q. In contrast, it is more difficult to find the break-even volume using trial and 
error on the spreadsheet without knowing some advanced tools and approaches. However, 
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ExaMPLE 11.5 Spreadsheet Implementation of the Profit Model

The analytical model we developed in Example 11.2 can 
easily be implemented in an Excel spreadsheet to evalu-
ate profit (Excel file Profit Model). Let us assume that unit 
price =  $40, unit cost =  $24, fixed cost =  $400,000, and 
demand =  50,000. The decision variable is the quantity 
produced; for the purposes of building a spreadsheet 
model, we assume a value of 40,000 units. Figure 11.4 
shows a spreadsheet implementation of this model. To 

better understand the model, study the relationships be-
tween the spreadsheet formulas, the influence diagram, 
and the mathematical model. A manager might use the 
spreadsheet to evaluate how profit would be expected 
to change for different values of the uncertain future de-
mand and/or the quantity produced, which is a decision 
variable that the manager can control. We do this later in 
this chapter.

spreadsheets have the advantage of allowing you to easily modify the model inputs and calcu-
late the numerical results. We will use both spreadsheets and analytical modeling approaches 
in our model-building applications—it is important to be able to “speak both languages.”

1S. Powell, K. Baker, and B. Lawson, “Errors in Operational Spreadsheets,” Journal of End User 
 Computing, 21 (July–September 2009): 24–36.

Figure 11.4

Spreadsheet Implementation 
of Profit Model

Spreadsheet Quality

Building spreadsheet models, often called spreadsheet engineering, is part art and part 
science. The quality of a spreadsheet can be assessed both by its logical accuracy and its 
design. Spreadsheets need to be accurate, understandable, and user-friendly.

First and foremost, spreadsheets should be accurate. Verification is the process of en-
suring that a model is accurate and free from logical errors. Spreadsheet errors can be disas-
trous. A large investment company once made a $2.6 billion error. They notified holders of 
one mutual fund to expect a large dividend; fortunately, they caught the error before sending 
the checks. One research study of 50 spreadsheets found that fewer than 10% were error 
free.1 Significant errors in business have resulted from mistakes in copying and pasting, sort-
ing, numerical input, and spreadsheet-formula references. Industry research has found that 
more than 90% of spreadsheets with more than 150 rows were incorrect by at least 5%.

There are three basic approaches to spreadsheet engineering that can improve spread-
sheet quality:
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 1. Improve the design and format of the spreadsheet itself. After the inputs, out-
puts, and key model relationships are well understood, you should sketch a log-
ical design of the spreadsheet. For example, you might want the spreadsheet to 
resemble a financial statement to make it easier for managers to read. It is good 
practice to separate the model inputs from the model itself and to reference the 
input cells in the model formulas; that way, any changes in the inputs will be 
automatically reflected in the model. We have done this in the examples.

Another useful approach is to break complex formulas into smaller pieces. 
This reduces typographical errors, makes it easier to check your  results, and also 
makes the spreadsheet easier to read for the user. Finally, it is also important to set 
up the spreadsheet in a form that the end user—who may be a financial manager, 
for example—can easily interpret and use. Example 11.6 illustrates these ideas.

 2. Improve the process used to develop a spreadsheet. If you sketched out a 
 conceptual design of the spreadsheet, work on each part individually before mov-
ing on to the others to ensure that each part is correct. As you enter formulas, 
check the results with simple numbers (such as 1) to determine if they make 
sense, or use inputs with known results. Be careful in using the Copy and Paste 
commands in Excel, particularly with respect to relative and absolute addresses. 
Use the Excel function wizard (the fx button on the formula bar) to ensure that 
you are entering the correct values in the correct fields of the function.

 3. Inspect your results carefully and use appropriate tools available in Excel. 
For example, the Excel Formula Auditing tools (in the Formulas tab) help you 
validate the logic of formulas and check for errors.  Using Trace Precedents 
and Trace Dependents, you can visually show what cells affect or are affected 
by the value of a selected cell, similar to an influence diagram.  The Formula 
Auditing tools also include Error Checking, which checks for common errors 
that occur when using formulas, and Evaluate Formula, which helps to debug 
a complex formula by evaluating each part of the formula individually. We 
encourage you to learn how to use these tools.

ExaMPLE 11.6 Modeling Net Income on a Spreadsheet

The calculation of net income is based on the following 
formulas:

•	gross profit = sales − cost of goods sold

•	operating expenses = administrative expenses
  +  selling expenses
  + depreciation expenses

•	net operating income = gross profit −
  − operating expenses

•	earnings before taxes = net operating income
  − interest expense

•	net income = earnings before taxes − taxes

We could develop a simple model to compute net  
income using these formulas by substitution:

net income = sales −  cost of goods sold −  administrative
 expenses −  selling expenses −  depreciation
 expenses − interest expense − taxes

We can implement this model on a spreadsheet, as 
shown in Figure 11.5. This spreadsheet provides only the

end result and, from a financial perspective, provides little 
information to the end user.

An alternative is to break down the model by writ-
ing the preceding formulas in separate cells in the 
 spreadsheet using a data-model format, as shown in  
Figure 11.6. This clearly shows the individual calculations 
and provides better information. However, although both 
of these models are technically correct, neither is in the 
form to which most accounting and financial employees 
are accustomed.

A third alternative is to express the calculations as  
a pro forma income statement using the structure  
and formatting that accountants are used to, as shown in 
Figure 11.7. Although this has the same calculations as in  
Figure 11.6, note that the use of negative dollar amounts 
requires a change in the formulas (i.e., addition of negative 
amounts rather than subtraction of positive amounts). The 
Excel workbook Net Income Models contains each of these 
examples in separate worksheets.
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Figure 11.5

Simple Spreadsheet Model  
for Net Income

Figure 11.7

Pro Forma Income Statement 
Format

Figure 11.6

Data-Model Format for  
Net Income
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2Based on Ingrid Farasyn, Koray Perkoz, Wim Van de Velde, “Spreadsheet Models for Inventory Target 
Setting at Procter & Gamble,” Interfaces, 38, 4 (July–August 2008): 241–250.

In the mid-1980s, Procter & Gamble (P&G) needed 
an easy and consistent way to manage safety stock 
 inventory. P&G’s Western European Business  Analysis 
group created a spreadsheet model that eventu-
ally grew into a suite of global inventory models. The 
model was designed to help supply chain planners 
better understand inventories in supply chains and to 
provide a quick method for setting safety stock levels. 
P&G also developed several spin-off models based on 
this application that are used around the world.

In designing the model, analysts used many of the 
principles of spreadsheet engineering. For example, 
they separated the input sections from the calculation 
and results sections by grouping the appropriate cells 
and using different formatting. This speeded up the 
data entry process. In addition, the spreadsheet was 
designed to display all relevant data on one screen so 
the user does not need to switch between different 
sections of the model.

Analysts also used a combination of data valida-
tion and conditional formatting to highlight errors in 
the data input. They also provided a list of warnings 
and errors that a user should resolve before using the 
results of the model. The list flags obvious mistakes 
such as negative transit times and input data that may 
require checking and forecast errors that fall outside 
the boundaries of the model’s statistical validity

At the basic level, all input fields had comments 
attached; this served as a quick online help function 
for the planners. For each model, they also provided a 
user manual that describes every input and result and 
explains the formulas in detail. The model templates 
and all documentation were posted on an intranet site 
that was accessible to all P&G employees. This en-
sured that all employees had access to the most cur-
rent versions of the models, supporting material, and 
training schedules.

analytics in Practice: Spreadsheet Engineering at Procter & Gamble2
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Spreadsheet applications in Business analytics

A wide variety of practical problems in business analytics can be modeled using spread-
sheets. In this section, we present several examples and families of models that illustrate 
different applications. One thing to note is that a useful spreadsheet model need not be com-
plex; often, simple models can provide managers with the information they need to make 
good decisions. Example 11.7 is adapted from a real application in the banking industry.

ExaMPLE 11.7 a Predictive Model for Staffing3

Staffing is an area of any business where making 
changes can be expensive and time-consuming. Thus, 
it is quite important to understand staffing requirements 
well in advance. In many cases, the time to hire and train 

new employees can be 90 to 180 days, so it is not al-
ways possible to react quickly to staffing needs. Hence, 
 advance planning is vital so that managers can make 
good decisions about overtime or reductions in work 

3The author is indebted to Mr. Craig Zielanzy of BlueNote Analytics, LLC, for providing this example.
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Figure 11.8

Staffing Model Spreadsheet 
Implementation

hours, or adding or reducing temporary or permanent 
staff. Planning for staffing requirements is an area where 
analytics can be of tremendous benefit.

Suppose that the manager of a loan-processing de-
partment wants to know how many employees will be 
needed over the next several months to process a certain 
number of loan files per month so she can better plan ca-
pacity. Let’s also suppose that there are different types 
of products that require processing. A product could be 
a 30-year fixed rate mortgage, 7/1 ARM, FHA loan, or a 
construction loan. Each of these loan types vary in their 
complexity and require different levels of documenta-
tion and, consequently, have different times to complete. 
 Assume that the manager forecasts 700 loan applications 
in May, 750 in June, 800 in July, and 825 in August. Each 
employee works productively for 6.5 hours each day, and 
there are 22 working days in May, 20 in June, 22 in July, 
and 22 in August. The manager also knows, based on 
 historical loan data, the percentage of each product type 
and how long it takes to process one loan of each type. 
These data are presented next:

Products Product Mix (%) Hours Per File

Product 1  22 3.50

Product 2  17 2.00

Product 3  13 1.50

Product 4  12 5.50

Product 5   9 4.00

Product 6   9 3.00

Product 7   6 2.00

Product 8   5 2.00

Product 9   3 1.50

Product 10   1 3.50

Misc   3 3.00

Total 100

The manager would like to predict the number of full time 
equivalent (FTE) staff needed each month to ensure that 
all loans can be processed.

Figure 11.8 shows a simple predictive model on a 
spreadsheet to calculate the FTEs required (Excel file 
 Staffing Model). For each month, we take the desired 
throughput and convert thus to the number of files for 
each product based on the product mix percentages. By 
multiplying by the hours per file, we then calculate the 
number of hours required for each product. Finally, we di-
vide the total number of hours required each month by the 
number of working hours each month (hours worked per 
day * days in the month). This yields the number of FTEs 
required.
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Models Involving Multiple Time Periods

Most practical models used in business analytics are more complex and involve basic 
financial analysis similar to the profit model. One example is the decision to launch a 
new product. In the pharmaceutical industry, for example, the process of research and 
development is a long and arduous process (see Example 11.8); total development ex-
penses can approach $1 billion.

Models for these types of applications typically incorporate multiple time periods 
that are logically linked together, and predictive analytical capabilities are vital to mak-
ing good business decisions. However, taking a systematic approach to putting the pieces 
 together logically can often make a seemingly difficult problem much easier.

ExaMPLE 11.8 New-Product Development

Suppose that Moore Pharmaceuticals has discovered a 
potential drug breakthrough in the laboratory and needs 
to decide whether to go forward to conduct clinical tri-
als and seek FDA approval to market the drug. Total 
R&D costs are expected to reach $700 million, and the 
cost of clinical trials will be about $150 million. The cur-
rent market size is estimated to be 2 million people and 
is expected to grow at a rate of 3% each year. In the 
first year, Moore estimates gaining an 8% market share, 
which is anticipated to grow by 20% each year. It is dif-
ficult to estimate beyond 5 years because new competi-
tors are expected to be entering the market. A monthly 
prescription is anticipated to generate revenue of $130 
while incurring variable costs of $40. A discount rate of 
9% is assumed for computing the net present value of 
the project. The company needs to know how long it will 
take to recover its fixed expenses and the net present 
value over the first 5 years.

Figure 11.9 shows a spreadsheet model for this situa-
tion (Excel file Moore Pharmaceuticals). The model is based 

on a variety of known data, estimates, and assumptions. If 
you examine the model closely, you will see that some of 
the inputs in the model are easily obtained from corporate 
accounting (e.g., discount rate, unit revenue, and unit cost)  
using historical data (e.g., project costs), forecasts, or judg-
mental estimates based on preliminary market research or 
previous experience (e.g., market size, market share, and 
yearly growth rates). The model itself is a straightforward 
application of accounting and financial logic; you should 
examine the Excel formulas to see how the model is built.

The assumptions used represent the “most likely” 
estimates, and the spreadsheet shows that the product 
will begin to be profitable by the fourth year. However, 
the model is based on some rather tenuous assumptions 
about the market size and market-share growth rates. In 
reality, much of the data used in the model are uncertain, 
and the corporation would be remiss if it simply used the 
results of this one scenario. The real value of the model 
would be in analyzing a variety of scenarios that use differ-
ent values for these assumptions.

Figure 11.8

Staffing Model Spreadsheet 
Implementation (continued)
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Figure 11.9

Spreadsheet Implementation  
of Moore Pharmaceuticals 
Model
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Single-Period Purchase Decisions

Banana Republic, a division of Gap, Inc., was trying to build a name for itself in fash-
ion circles as parent Gap shifted its product line to basics such as cropped pants, jeans, 
and khakis. In one recent holiday season, the company had bet that blue would be the 
 top-selling color in stretch merino wool sweaters. They were wrong; as the company pres-
ident noted, “The number 1 seller was moss green. We didn’t have enough.”4

This situation describes one of many practical situations in which a one-time pur-
chase decision must be made in the face of uncertain demand. Department store buyers 
must purchase seasonal clothing well in advance of the buying season, and candy shops 
must decide on how many special holiday gift boxes to assemble. The general scenario is  
commonly known as the newsvendor problem: A street newsvendor sells daily 
 newspapers and must make a decision about how many to purchase. Purchasing too few 
results in lost opportunity to increase profits, but purchasing too many results in a loss 
since the excess must be discarded at the end of the day.

We first develop a general model for this problem and then illustrate it with an ex-
ample. Let us assume that each item costs $C to purchase and is sold for $R. At the end of 
the period, any unsold items can be disposed of at $S each (the salvage value). Clearly, it 
makes sense to assume that R 7 C 7 S. Let D be the number of units demanded during 
the period and Q be the quantity purchased. Note that D is an uncontrollable input, whereas 
Q is a decision variable. If demand is known, then the optimal decision is obvious: Choose 
Q = D. However, if D is not known in advance, we run the risk of overpurchasing or un-
derpurchasing. If Q 6 D, then we lose the opportunity of realizing additional profit (since 
we assume that R 7 C), and if Q 7 D, we incur a loss (because C 7 S).

Notice that we cannot sell more than the minimum of the actual demand and the 
amount produced. Thus, the quantity sold at the regular price is the smaller of D and Q. 
Also, the surplus quantity is the larger of 0 and Q - D. The net profit is calculated as:

 net profit = R * quantity sold + S * surplus quantity - C * Q (11.3)

In reality, the demand D is uncertain and can be modeled using a probability distribu-
tion based on approaches that we described in Chapter 5. For now, we do not deal with mod-
els that involve probability distributions (building the models is enough of a challenge at this 
point); however, we learn how to deal with them in the next chapter. Another example of an 
application of predictive analytics that involve probability distributions is overbooking.

ExaMPLE 11.9 a Single-Period Purchase Decision Model

Suppose that a small candy store makes Valentine’s 
Day gift boxes that cost $12.00 and sell for $18.00. In 
the past, at least 40 boxes have been sold by Valentine’s 
Day, but the actual amount is uncertain, and in the past, 
the owner has often run short or made too many. After 
the holiday, any unsold boxes are discounted 50% and 
are eventually sold.

The net profit can be calculated using formula (11.3) 
for any values of Q and D:

net profit = $18.00 × min5D, Q6 +$9.00 × max50, Q − D6
 − $12.00 × Q

Figure 11.10 shows a spreadsheet that implements 
this model assuming a demand of 41 and a purchase 
quantity of 44 (Excel file Newsvendor Model).

4Louise Lee, “Yes, We Have a New Banana,” BusinessWeek (May 31, 2004): 70–72.
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Overbooking Decisions

An important operations decision for service businesses such as hotels, airlines, and 
car-rental companies is the number of reservations to accept to effectively fill capacity 
knowing that some customers may not use their reservations or tell the business. If a 
hotel, for example, holds rooms for customers who do not show up, they lose revenue 
opportunities. (Even if they charge a night’s lodging as a guarantee, rooms held for ad-
ditional days may go unused.) A common practice in these industries is to overbook 
reservations. When more customers arrive than can be handled, the business usually in-
curs some cost to satisfy them (by putting them up at another hotel or, for most airlines, 
providing extra compensation such as ticket vouchers). Therefore, the decision becomes 
how much to overbook to balance the costs of overbooking against the lost revenue for 
underuse.

of customers who decide to cancel their reservation. In 
this example, we assume that only 6 of the 310 reser-
vations are cancelled. Therefore, the actual number of 
customers who arrive (cell B15) is the difference between 
the number of reservations made and the number of 
cancellations. If the actual number of customer arrivals 
exceeds the room capacity, overbooking occurs. This is 
modeled by the MAX function in cell B17. Net revenue is 
computed in cell B18. A manager would probably want 
to use this model to analyze how the number of over-
booked customers and net revenue would be influenced 
by changes in the reservation limit, customer demand, 
and cancellations.

As with the newsvendor model, the customer de-
mand and the number of cancellations are in reality, ran-
dom variables that we cannot specify with certainty. We 
also show how to incorporate randomness into the model 
in the next chapter.

ExaMPLE 11.10 a Hotel Overbooking Model

Figure 11.11 shows a spreadsheet model (Excel file Hotel 
Overbooking Model) for a popular resort hotel that has 
300 rooms and is usually fully booked. The hotel charges 
$120 per room. Reservations may be canceled by the 
6:00 p.m. deadline with no penalty. The hotel has esti-
mated that the average overbooking cost is $100.

The logic of the model is straightforward. In the 
model section of the spreadsheet, cell B12 represents 
the decision variable of how many reservations to ac-
cept. In this example, we assume that the hotel is will-
ing to accept 310 reservations; that is, to overbook by 10 
rooms. Cell B13 represents the actual customer demand 
(the number of customers who want a reservation). Here 
we assume that 312 customers tried to make a reserva-
tion. The hotel cannot accept more reservations than its 
predetermined limit, so, therefore, the number of reser-
vations made in cell B13 is the smaller of the customer 
demand and the reservation limit. Cell B14 is the number 

Figure 11.10

Spreadsheet Implementation  
of Newsvendor Model
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Figure 11.11

Hotel Overbooking Model 
Spreadsheet

The East Carolina University (ECU) Student Health 
 Service (SHS) provides health-care services and well-
ness education to enrolled students.5 Patient volume 
consists almost entirely of scheduled appointments 
for non urgent health-care needs. In a recent aca-
demic year, 35,050 appointments were scheduled. 
Patients failed to arrive for over 10% of these appoint-
ments. The no-show problem is not unique. Various 
studies report that no-show rates for health service 
providers often range as high as 30% to 50%.

To address this problem, a quality-improvement 
(QI) team was formed to analyze an overbooking 
 option. Their efforts resulted in developing a novel 
overbooking model that included the effects of 
e mployee burnout resulting from the need to see more  
patients than the normal capacity allowed. The 
model provided strong evidence that a 10% to 
15% overbooking level produces the highest value. 
The   overbooking model was also instrumental in 
alleviating staff concerns about disruption and 
pressures that result from large numbers of over-
scheduled  patients. At a 5% overbooking rate, 
the staff was  reassured by model results that pre-
dicted 95% of the operating days with no patients 
being overscheduled; in the worst case, 8 patients 
would be overscheduled a few days each month. 
In  addition, at a 10% overbooking rate the model 

 predicted that during 85% of the operating days 
per month, no patients would be overscheduled; a 
 maximum of 16 overscheduled patients would rarely 
ever occur.

Based on the model predictions, the SHS imple-
mented an overbooking policy and overbooked by  
7.3% with plans to increase to 10% in future semes-
ters. The SHS director estimated the actual savings 
from overbooking during the first semester of imple-
mentation would be approximately $95,000.

analytics in Practice:  Using an Overbooking Model at a Student  
Health Clinic
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5Based on John Kros, Scott Dellana, and David West, “Overbooking Increases Patient Access at East Carolina 
University’s Student Health Services Clinic,” Interfaces, Vol. 39, No. 3 May–June 2009, pp. 271–287.
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Data and Models

Data used in models can come from subjective judgment based on past experience, exist-
ing databases and other data sources, analysis of historical data, or surveys, experiments, 
and other methods of data collection. For example, in the profit model we might query 
accounting records for values of the unit cost and fixed costs. Statistical methods that we 
have studied are often used to estimate data required in predictive models. For example, 
we might use historical data to compute the mean demand; we might also use quartiles 
or percentiles in the model to evaluate different scenarios. However, even if data are not 
available, using a good subjective estimate is better than sacrificing the completeness of a 
model that may be useful to managers.6

ExaMPLE 11.11 a Retirement-Planning Model

 variables will clearly vary each year. A second validity 
issue is how the model calculates the return on invest-
ment. The model in Figure 11.12 assumes that the return 
on investment is applied to the previous year’s balance 
and not to the current year’s contributions (examine the 
formula used in cell E15). An alternative would be to cal-
culate the investment return based on the end-of-year 
balance, including current-year contributions, using the 
formula =(E14 + C15 +D15)* (1+ $B$8) in cell E15 and 
copying it down the spreadsheet. This will produce a dif-
ferent result.

Neither of these assumptions is quite correct, since 
the contributions would normally be made on a monthly 
basis. To reflect this would require a much larger and 
more-complex spreadsheet model. Thus, building realis-
tic models requires careful thought and creativity, and a 
good working knowledge of the capabilities of Excel.

Consider modeling a typical retirement plan. Suppose 
that an employee starts working after college at age 22 
at a starting salary of $50,000. She expects an average 
salary increase of 3% each year. Her retirement plan re-
quires that she contribute 8% of her salary, and her em-
ployer adds an additional 35% of her contribution. She 
anticipates an annual return of 8% on her retirement 
portfolio.

Figure 11.12 shows a spreadsheet model of her 
retirement investments through age 50 (Excel file 
 Retirement Plan). There are two validity issues with this 
model. One, of course, is whether the assumptions of 
the annual salary increase and return on investment are 
reasonable and whether they should be assumed to be 
the same each year. Assuming the same rate of salary 
increases and investment returns each year simplifies 
the model but detracts from the realism because these 

6Glen L. Urban, “Building Models for Decision Makers,” Interfaces, 4, 3 (May 1974): 1–11.

Model assumptions, Complexity, and Realism

Models cannot capture every detail of the real problem, and managers must understand 
the limitations of models and their underlying assumptions. Validity refers to how well 
a model represents reality. One approach for judging the validity of a model is to iden-
tify and examine the assumptions made in a model to see how they agree with our 
perception of the real world; the closer the agreement, the higher the validity. Another 
approach is to compare model results to observed results; the closer the agreement, 
the more valid the model. A “perfect” model corresponds to the real world in every re-
spect; unfortunately, no such model has ever existed and never will exist in the future, 
because it is impossible to include every detail of real life in one model. To add more 
realism to a model generally requires more complexity and analysts have to know how 
to balance these.
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Figure 11.12

Portion of Retirement Plan 
Spreadsheet

Let’s develop a simple example based on retail markdown pricing decisions that we 
described in Example 1.1 in Chapter 1.

ExaMPLE 11.12 Modeling Retail Markdown Pricing Decisions

A chain of department stores is introducing a new brand 
of bathing suit for $70. The prime selling season is 50 
days during the late spring and early summer; after that, 
the store has a clearance sale around July 4 and marks 
down the price by 70% (to $21.00), typically selling any 
remaining inventory at the clearance price. Merchandise 
buyers have purchased 1,000 units and allocated them to 
the stores prior to the selling season. After a few weeks, 
the stores reported an average sales of 7 units/day, and 
past experience suggests that this constant level of sales 
will continue over the remainder of the selling season. 
Thus, over the 50-day selling season, the stores would be 

expected to sell 50 × 7 = 350 units at the full retail price 
and earn a revenue of $70.00 × 350 = $24,500. The re-
maining 650 units would be sold at $21.00, for a clear-
ance revenue of $13,650. Therefore, the total revenue 
would be predicted as $24,500 + $13,650 = $38,150.

As an experiment, the store reduced the price to $49  
for one weekend and found that the average daily sales 
were 32.2 units. Assuming a linear trend model for sales 
as a function of price, as in Example 1.9,

daily sales = a − b × price

(continued)
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Figure 11.13

Markdown 
Pricing Model 
Spreadsheet

we can find values for a and b by solving these two equa-
tions simultaneously based on the data the store obtained.

7 = a − b × $70.00
32.2 = a − b × $49.00

This leads to the linear demand model:

daily sales = 91 − 1.2 × price

We may also use Excel’s SLOPE and INTERCEPT 
functions to find the slope and intercept of the straight 
line between the two points ($70, 7) and ($49, 32.2); this is 
incorporated into the Excel model that follows.

Because this model suggests that higher sales can 
be driven by price discounts, the marketing department 
has the basis for making improved discounting decisions. 
For instance, suppose they decide to sell at full retail 
price for x days and then discount the price by y% for the 
 remainder of the selling season, followed by the clearance 
sale. What total revenue could they predict?

We can compute this easily. Selling at the full retail 
price for x days yields revenue of

full retail price revenue = 7 units>day × x days
  × $70.00 = $490.00x

The markdown price applies for the remaining 50 − x days:

markdown price =  $70(100% − y%)
 daily sales =  a − b × markdown price
 =  91 − 1.2 × $70 x (100% − y%)

units sold at markdown =  daily sales × (50 − x) as 
long as this is less than or equal to the number of units 
 remaining in inventory from full retail sales.  If not, this 
number needs to be adjusted.  

Then we can compute the markdown revenue as

markdown revenue =  units sold x markdown price

Finally, the remaining inventory after 50 days is

clearance inventory = 1000 − units sold at full retail
 −  units sold at markdown
 = 1,000 − 7x −  [91−1.2 
 ×  $70.00 × (100% − y%)]
 ×  (50 − x)

This amount is sold at a price of $21.00, resulting in  
revenue of

clearance price revenue = 31,000 − 7x −  [91−  1.2
 × $70.00 ×  1100% − y% 2 ]
 × 150 − x 2 4 × $21.00

The total revenue would be found by adding the models 
developed for full retail price revenue, discounted price 
revenue, and clearance price revenue.

Figure 11.13 shows a spreadsheet implementation of 
this model (Excel file Markdown Pricing Model ). By chang-
ing the values in cells B7 and B8, the marketing manager 
could predict the revenue that could be achieved for dif-
ferent markdown decisions.
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Developing User-Friendly Excel applications

Using business analytics requires good communication between analysts and the clients 
or managers who use the tools. In many cases, users may not be as familiar with Excel. 
Thus, developing user-friendly spreadsheets is vital to gaining acceptance of the tools and 
making them useful.

Data Validation

One useful Excel tool is the data validation feature. This feature allows you to define 
acceptable input values in a spreadsheet, and provide an error alert if an invalid entry 
is made. This can help to avoid inadvertent user errors. This can be found in the Data 
Tools Group within the Data tab on the Excel ribbon. Select the cell range, click on  
Data  Validation, and then specify the criteria that Excel will use to flag invalid data.

Range Names

Use cell and range names to simplify formulas and make them more user-friendly. For 
example, suppose that the unit price is stored in cell B13 and quantity sold is in cell 
B14. Suppose you wish to calculate revenue in cell C15. Instead of writing the formula 
=B13*B14, you could define the name of cell B13 in Excel as “UnitPrice” and the name 
of cell B14 as “QuantitySold.” Then in cell C15, you could simply write the formula 
=UnitPrice*QuantitySold. (In this book, however, we use cell references so that you can 
more easily trace formulas in the examples.)

Figure 11.14

Data Validation Dialog

ExaMPLE 11.13 Using Data Validation

Let us use the Outsourcing Decision Model spreadsheet 
as an example. Suppose that an employee is asked to use 
the spreadsheet to evaluate the manufacturing and pur-
chase cost options and best decisions for a large number 
of parts used in an automobile system assembly. She is 
given lists of data that cost accountants and purchas-
ing managers have compiled and printed and must look 
up the data and enter them into the spreadsheet. Such 
a manual process leaves plenty of opportunity for error. 
However, suppose that we know that the unit cost of any 
item is at least $10 but no more than $100. If a cost is 

$47.50, for instance, a misplaced decimal would result 
in either $4.75 or $475, which would clearly be out of 
range. In the Data Validation dialog, you can specify that 
the value must be a decimal number between 10 and 100 
as shown in Figure 11.14. On the Error Alert tab, you can 
also create an alert box that pops up when an invalid en-
try is made (see Figure 11.15). On the Input Message tab, 
you can create a prompt to display a comment in the cell 
about the correct input format. Data validation has other 
customizable options that you might want to explore.
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Figure 11.16

Excel Developer Tab

Figure 11.15

Example of an Error Alert

Form Controls

Form controls are buttons, boxes, and other mechanisms for inputting or changing data 
on spreadsheets easily that can be used to design user-friendly spreadsheets. To use form 
controls, you must first activate the Developer tab on the ribbon. Click the File tab, then 
Options, and then Customize Ribbon. Under Customize the Ribbon, make sure that Main 
Tabs is displayed in the drop-down box, and then click the check box next to Developer 
(which is typically unchecked in a standard Excel installation). You will see the new tab in 
the Excel ribbon as shown in Figure 11.16.

If you click the Insert button in the Controls group, you will see the form controls 
available (do not confuse these with the Active X Controls in the same menu). Form con-
trols include

•	Button

•	Combo box

•	Check box

•	Spin button

•	List box

•	Option button

•	Group box

•	Label

•	Scroll bar

These allow the user to more easily interface with models to enter or change data with-
out the potential of inadvertently introducing errors in formulas. With form controls, you 
can keep the spreadsheets hidden and make them easier to use, especially for individuals 
without much spreadsheet knowledge. To insert a form control, click the Insert button in 
the Controls tab under the Developer menu, click on the control you want to use and then 
click within your worksheet. The following example shows how to use both a spin button 
and scroll bar in the Outsourcing Decision Model Excel file.
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ExaMPLE 11.14 Using Form Controls for the Outsourcing Decision Model

We will design a simple spreadsheet interface to allow a 
user to evaluate different values of the supplier cost and 
production volume in the Outsourcing Decision Model 
spreadsheet. We will use a spin button for the supplier 
unit cost (which we will assume might vary between 
$150 and $200 in increments of $5) and a scroll bar for 
the production volume (in unit increments between 500 
and 3000 units). The completed spreadsheet is shown in 
 Figure 11.17.

First, click the Insert button in the Controls group 
of the Developer tab, select the spin button, click it, 
and then click somewhere in the worksheet. The spin 
button (and any form control) can be re-sized by drag-
ging the handles along the edge and moved within the 
worksheet. Move it to a convenient location, and  enter 
the name you wish to use (such as Supplier Unit Cost) 
 adjacent to it. Next, right click the spin button and  
select Format  Control. You will see the dialog box shown 
in Figure 11.18. Enter the values shown and click OK. Now 
if you click the up or down buttons, the value in cell D3 
will change within the specified range. Next, repeat this 
process by inserting the scroll bar next to the production 
volume in  column D. The next step is to link the values 
in column D to the model by replacing the value in cell 
B10 with =D3, and the value in cell B12 with =D8. (We 
could have assigned the cell link references in the Format  
Control dialogs to cells B10 and B12, but it is easier to 

see the values next to the form controls.) Now, using 
the  controls, you can easily see how the model outputs 
change without having to type in new values.

Form controls only allow integer increments, so we 
have to make some modifications to a spreadsheet if we 
want to change a number by a fractional value. For exam-
ple, suppose that we want to use a spin button to change 
an interest rate in cell B8 from 0% to 10% in increments 
of 0.1% (i.e., 0.001). Choose some empty cell, say C8 and 
 enter a value between 0 and 100 in it. Then enter the formula 
= C8/1000 in cell B8. Note that if the value in C8 = 40, 
for  example,  then the value in cel l  B8 wi l l  be  
40/1000=  0.04, or 4%. Then as the value in cell C8 changes 
by 1, the value in cell B8 changes by 1/1000, or 0.1%.  
In the  Format Control dialog, specify the minimum value 
at 0 and the maximum value at 100 and link the button 
to cell C8. Now as you click the up or down arrows on 
the spin button, the value in cell C8 changes by 1 and the 
value in cell B8 changes by 0.1%.

Other form controls can also be used; we encourage 
you to experiment and identify creative ways to use them. 
Excel also has many other features that can be used to 
improve the design and implementation of spreadsheet 
models. The serious analyst should consider learning 
about macro recording and Visual Basic for Applications 
(VBA), but these topics are well-beyond the scope of this 
book.

Figure 11.17

Outsourcing Decision Model 
Spreadsheet with Form 
Controls
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analyzing Uncertainty and Model assumptions

Because predictive analytical models are based on assumptions about the future and incor-
porate variables that most likely will not be known with certainty, it is usually important to 
investigate how these assumptions and uncertainty affect the model outputs. This is one of 
the most important and valuable activities for using predictive models to gain insights and 
make good decisions. In this section, we describe several different approaches for doing this.

What-If analysis

Spreadsheet models allow you to easily evaluate what-if questions—how specific combi-
nations of inputs that reflect key assumptions will affect model outputs. What-if analysis 
is as easy as changing values in a spreadsheet and recalculating the outputs. However, 
systematic approaches make this process easier and more useful.

In Example 11.2, we developed a model for profit and suggested how a manager 
might use the model to change inputs and evaluate different scenarios. A more informa-
tive way of evaluating a wider range of scenarios is to build a table in the spreadsheet to 
vary the input or inputs in which we are interested over some range, and calculate the out-
put for this range of values. The following example illustrates this.

ExaMPLE 11.15 Using Excel for What-If analysis

In the profit model used in Example 11.2, we stated that 
demand is uncertain. A manager might be interested 
in the following question: For any fixed quantity pro-
duced, how will profit change as demand changes? In  
Figure 11.19, we created a table for varying levels of de-
mand, and computed the profit. This shows that a loss is 
incurred for low levels of demand, whereas profit is limited 
to $240,000 whenever the demand exceeds the quantity 
produced, no matter how high it is. Notice that the formula 

refers to cells in the model; thus, the user could change 
the quantity produced or any of the other model inputs 
and still have a correct evaluation of the profit for these 
values of demand. One of the advantages of evaluating 
what-if questions for a range of values rather than one at 
a time is the ability to visualize the results in a chart, as 
shown in Figure 11.20. This clearly shows that profit in-
creases as demand increases until it hits the value of the 
quantity produced.

Figure 11.18

Format Control Dialog
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Figure 11.19

What-If Table for 
Uncertain Demand

Figure 11.20

Chart of What-If Analysis
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Figure 11.21

Data Table Dialog

ExaMPLE 11.16 a One-Way Data Table for Uncertain Demand

In this example, we create a one-way data table for profit 
for varying levels of demand. First, create a column of 
demand values in column E exactly as we did in Exam-
ple 11.15. Then in cell F3, enter the formula =C22. This 
simply references the output of the profit model. High-
light the range E3:F11 (note that this range includes both 
the column of demand as well as the cell reference to 

profit), and select Data Table from the What-If Analysis 
menu. In the Column input cell field, enter B8; this tells 
the tool that the values in column E are different values 
of demand in the model. When you click OK, the tool 
produces the results (which we formatted as currency) 
shown in Figure 11.22.

Conducting what-if analysis in this fashion can be quite tedious. Fortunately, Excel 
provides several tools—data tables, Scenario Manager, and Goal Seek—that facilitate 
what-if and other types of decision model analyses. These can be found within the What-If 
Analysis menu in the Data tab.

Data Tables

Data tables summarize the impact of one or two inputs on a specified output. Excel al-
lows you to construct two types of data tables. A one-way data table evaluates an output 
variable over a range of values for a single input variable. Two-way data tables evaluate 
an output variable over a range of values for two different input variables.

To create a one-way data table, first create a range of values for some input cell in your 
model that you wish to vary. The input values must be listed either down a column (column 
oriented) or across a row (row oriented). If the input values are column oriented, enter the 
cell reference for the output variable in your model that you wish to evaluate in the row 
above the first value and one cell to the right of the column of input values. Reference any 
other output variable cells to the right of the first formula. If the input values are listed across 
a row, enter the cell reference of the output variable in the column to the left of the first 
value and one cell below the row of values. Type any additional output cell references below 
the first one. Next, select the range of cells that contains both the formulas and values you 
want to substitute. From the Data tab in Excel, select Data Table under the What-If Analysis 
menu. In the dialog box (see Figure 11.21), if the input range is column oriented, type the 
cell reference for the input cell in your model in the Column input cell box. If the input range 
is row oriented, type the cell reference for the input cell in the Row input cell box.

and “Revenue” in G2 to identify the results. Then, highlight  
the range E3:G11 and proceed as described in the previ-
ous example. This process results in the data table shown 
in Figure 11.23.

ExaMPLE 11.17 One-Way Data Tables with Multiple Outputs

Suppose that we want to examine the impact of the uncer-
tain demand on revenue in addition to profit. We simply add 
another column to the data table. For this case, insert the 
formula =C15 into cell G3. Also, add the labels “Profit” in F2 

We may evaluate multiple outputs using one-way data tables.
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Figure 11.22

One-Way Data Table for 
Uncertain Demand

To create a two-way data table, type a list of values for one input variable in a column 
and a list of input values for the second input variable in a row, starting one row above 
and one column to the right of the column list. In the cell in the upper left-hand corner 
immediately above the column list and to the left of the row list, enter the cell reference 
of the output variable you wish to evaluate. Select the range of cells that contain this cell 
reference and both the row and column of values. On the What-If Analysis menu, click 
Data Table. In the Row input cell of the dialog box, enter the reference for the input cell 
in the model that corresponds to the input values in the row. In the Column input cell box, 

Figure 11.23

One-Way Data Table 
with Two Outputs

ExaMPLE 11.18 a Two-Way Data Table for the Profit Model

In most models, the assumptions used for the input data 
are often uncertain. For example, in the profit model, the 
unit cost might be affected by supplier price changes and 
inflationary factors. Marketing might be considering price 
adjustments to meet profit goals. We use a two-way data 
table to evaluate the impact of changing these assump-
tions. First, create a column for the unit prices you wish 
to evaluate and a row for the unit costs in the form of a 
matrix. In the upper left corner enter the formula  =C22, 

which references the profit in the model. Select the range 
of all the data (not including the descriptive titles) and 
then select the data table tool in the What-If Analysis 
menu. In the Data Table dialog, enter B6 for the Row in-
put cell since the unit cost corresponds to cell B6 in the 
model, and enter B5 for the Column input cell since the 
unit price corresponds to cell B5. Figure 11.24 shows the 
completed result. 
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enter the reference for the input cell in the model that corresponds to the input values in 
the column. Then click OK.

Two-way data tables can evaluate only one output variable. To evaluate multiple out-
put variables, you must construct multiple two-way tables.

Scenario Manager

The Excel Scenario Manager tool allows you to create scenarios—sets of values that are 
saved and can be substituted automatically on your worksheet. Scenarios are useful for 
conducting what-if analyses when you have more than two output variables (which data 
tables cannot handle). The Excel Scenario Manager is found under the What-If Analysis 
menu in the Data Tools group on the Data tab. When the tool is started, click the Add button 
to open the Add Scenario dialog and define a scenario (see Figure 11.25). Enter the name 
of the scenario in the Scenario name box. In the Changing cells box, enter the references, 
separated by commas, for the cells in your model that you want to include in the  scenario 
(or hold down the Ctrl key and click on the cells). In the Scenario Values dialog that  
appears next, enter values for each of the changing cells. If you have put these into your 
spreadsheet, you can simply reference them. After all scenarios are added, they can be 
selected by clicking on the name of the scenario and then the Show button. Excel will 
change all values of the cells in your spreadsheet to correspond to those defined by the 
scenario for you to see the results within the model. When you click the Summary but-
ton on the Scenario Manager dialog, you will be prompted to enter the result cells and 
choose either a summary or a PivotTable report. The Scenario Manager can handle up to 
32 variables.

Figure 11.24

Two-Way Data Table

Figure 11.25

Add Scenario Dialog
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ExaMPLE 11.19 Using the Scenario Manager for the Markdown Pricing Model
In the Markdown Pricing Model spreadsheet, suppose 
that we wish to evaluate four different strategies, which 
are shown in Figure 11.26. In the Add Scenario dialog, 
enter Ten/ten as the scenario name, and specify the 
changing cells as B7 and B8 (that is, the number of days 
at full retail price and the intermediate markdown). In the 
 Scenario Values dialog, enter the values for these vari-
ables in the appropriate fields, or enter the formulas for the 
cell references; for instance, enter =E2 for the changing  

cell B7 or =E3 for the changing cell B8. Repeat this pro-
cess for each scenario. Click the Summary button. In 
the Scenario Summary dialog that appears next, enter 
C33 (the total revenue) as the result cell. The Scenario 
Manager evaluates the model for each combination of 
values and creates the summary report shown in Figure 
11.27. The results indicate that the largest profit can be 
obtained using the twenty/twenty markdown strategy.

Figure 11.26

Markdown Pricing Model with Scenarios

Figure 11.27

Scenario Summary for the 
Markdown Pricing Model

Goal Seek

If you know the result that you want from a formula but are not sure what input value the 
formula needs to get that result, use the Goal Seek feature in Excel. Goal Seek works only 
with one variable input value. If you want to consider more than one input value or wish to 
maximize or minimize some objective, you must use the Solver add-in, which is discussed 
in other chapters. On the Data tab, in the Data Tools group, click What-If Analysis, and 
then click Goal Seek. The dialog shown in Figure 11.28 will appear. In the Set cell box, 
enter the reference for the cell that contains the formula that you want to resolve. In the 
To value box, type the formula result that you want. In the By changing cell box, enter the 
reference for the cell that contains the value that you want to adjust.

Figure 11.28

Goal Seek Dialog

M11_EVAN5448_02_SE_C11.indd   393 12/09/15   8:02 PM



394 Chapter 11  Spreadsheet	Modeling	and	Analysis

ExaMPLE 11.20 Finding the Break-Even Point in the Outsourcing Model

In the outsourcing decision model we introduced in Chap-
ter 1 and developed a spreadsheet for in Example 11.3 
p. 352, we might wish to find the break-even point. The 
break-even point is the value of demand volume for 
which total manufacturing cost equals total purchased 
cost, or, equivalently, for which the difference is zero. 
Therefore, you seek to find the value of production vol-

ume in cell B12 that yields a value of zero in cell B19. In 
the Goal Seek dialog, enter B19 for the Set cell, enter 0 in 
the To value box, and enter B12 in the By changing cell 
box. The Goal Seek tool determines that the break-even 
volume is 1,000 and enters this value in cell B12 in the 
model, as shown in Figure 11.29.

Model analysis Using Analytic Solver Platform

Analytic Solver Platform (see the section in Chapter 2 regarding spreadsheet add-ins) 
 provides sensitivity analysis capabilities to explore a spreadsheet model and identify and 
visualize the key input parameters that have the greatest impact on model results.

Parametric Sensitivity analysis

Parametric sensitivity analysis is the term used by Analytic Solver Platform for system-
atic methods of what-if analysis. A parameter is simply a piece of input data in a model. 
With Analytic Solver Platform you can easily create one- and two-way data tables and a 
special type of chart, called a tornado chart, that provides useful what-if information.

ExaMPLE 11.21 Creating Data Tables with Analytic Solver Platform

Suppose that we wish to create a one-way data table to 
evaluate the profit as the unit price in cell B5 is varied be-
tween $35 and $45 in the profit model (see Figure 11.4). 
First, define this cell as a parameter in Analytic Solver 
 Platform. Select cell B5 and then click the Parameters 
button in the ribbon (Figure 11.30), and select Sensitivity. 

This opens a Function Arguments dialog (Figure 11.31), 
in which you specify a set of values or a range. To cre-
ate the data table,  select the result cell that corresponds 
to the model output—in this case, cell C22. Then click the 
Reports button and click on Parameter Analysis from the 
 Sensitivity menu. This displays a Sensitivity Report dialog 

Figure 11.29

Break-Even Analysis Using 
Goal Seek
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as the unit cost. With two parameters, be sure to check 
the box Vary Parameters Independently near the bottom.

You can also create charts to visualize the data tables 
by selecting the results cell, clicking the Charts button, 
and then clicking Parameter Analysis from the Sensitivity 
menu. Figure 11.34 shows a two-way data table and a 
three-dimensional chart when both the unit price and unit 
cost are varied. We encourage you to replace the cell ref-
erences ($B$5, $B$6, and $C$22) by descriptive names to 
facilitate understanding the results.

Figure 11.30

Analytic Solver Platform 
Ribbon

(Figure 11.32). You may use the  arrows to move cells into 
the panes on the right; this is useful if you have  defined 
multiple input  parameters and want to conduct differ-
ent sensitivity  analyses. Analytic Solver Platform will cre-
ate a new worksheet with the data table, as shown in 
Figure 11.33. 

To create a two-way data table, define two  inputs as 
parameters and in the Sensitivity Report dialog. For exam-
ple, we might want to change both the unit price as well 

Figure 11.31

Analytic Solver 
Platform Function 
Arguments Dialog

Figure 11.32 

Sensitivity Report Dialog
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Figure 11.33

Sensitivity Analysis Report—
One-Way Data Table

Figure 11.34

Two-Way Data Table and Chart

Tornado Charts

As we have seen, charts, graphs, and other visual aids play an important part in analyzing 
data and models. One useful tool is a tornado chart. A tornado chart graphically shows 
the impact that variation in a model input has on some output while holding all other in-
puts constant. Typically, we choose a base case and then vary the inputs by some percent-
age, say plus or minus 10% or 20%. As each input is varied, we record the values of the 
output and chart the ranges of the output in a bar chart in descending order. This usually 
results in a funnel shape, hence the name.

A tornado chart shows which inputs are the most influential on the output and which 
are the least influential. If these inputs are uncertain, then you would probably want to 
study the more influential ones to reduce uncertainty and its effect on the output. If the 
effects are small, you might ignore any uncertainty or eliminate those effects from the 
model. They are also useful in helping you select the inputs that you would want to ana-
lyze further with data tables or scenarios.

ExaMPLE 11.22 Creating a Tornado Chart in Analytic Solver Platform

Creating a tornado chart in Analytic Solver Platform is 
extremely easy to do. Analytic Solver Platform automati-
cally identifies all the data input cells on which the output 
cell depends and creates the chart. In the Profit Model 
spreadsheet, select cell C22; then click the  Parameters 
button and choose Identify. Figure 11.35 shows the 

results. We see that a 10% change in cell B5, the unit 
price, affects profit the most, followed by the unit cost, 
quantity produced, fixed cost, and demand. If you don’t 
want to vary all parameters by the same percentage, you 
may define ranges in the same fashion as we did for the 
data table examples.
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Figure 11.35

Tornado Sensitivity 
Chart for the Profit 
Model

Key Terms

Data table
Data validation
Form controls
Newsvendor problem
One-way data table
Overbook
Parametric sensitivity analysis
Pro forma income statement

Scenarios
Spreadsheet engineering
Tornado chart
Two-way data table
Validity
Verification
What-if analysis

Problems and Exercises
 1. Develop a spreadsheet model for gasoline usage 

scenario, Problem 4 in Chapter 1, using the data 
provided. Apply the principles of spreadsheet engi-
neering in developing your model.

 2. Develop a spreadsheet model for Problem 5 in Chap-
ter 1. Apply the principles of spreadsheet engineer-
ing in developing your model. Use the spreadsheet to 
create a table for a range of prices to help you iden-
tify the price that results in the maximum revenue.

 3. Develop a spreadsheet model to determine how 
much a person or a couple can afford to spend on a 
house.7 Lender guidelines suggest that the allow-
able monthly housing expenditure should be no more 
than 28% of monthly gross income. From this, you 
must subtract total nonmortgage housing expenses, 
which would include insurance and property taxes 
and any other additional expenses. This defines the 

affordable monthly mortgage payment. In addition, 
guidelines also suggest that total affordable monthly 
debt payments, including housing expenses, should 
not exceed 36% of gross monthly income. This is 
calculated by subtracting total nonmortgage housing 
expenses and any other installment debt, such as car 
loans, student loans, credit-card debt, and so on, from 
36% of total monthly gross income. The smaller of 
the affordable monthly mortgage payment and the 
total affordable monthly debt payments is the afford-
able monthly mortgage. To calculate the maximum 
that can be  borrowed, find the monthly payment 
per $1,000 mortgage based on the current interest 
rate and duration of the loan. Divide the affordable 
monthly mortgage amount by this monthly payment 
to find the affordable mortgage.  Assuming a 20% 
down payment, the maximum price of a house would 
be the affordable mortgage divided by 0.8. Use the 

7Based on Ralph R. Frasca, Personal Finance, 8th ed. (Boston: Prentice Hall, 2009).

M11_EVAN5448_02_SE_C11.indd   397 12/09/15   8:02 PM



398 Chapter 11  Spreadsheet	Modeling	and	Analysis

8Based on an example of the Parfitt-Collins model in Gary L. Lilien, Philip Kotler, and K. Sridhar Moorthy, Marketing Models (Englewood 
Cliffs, NJ: Prentice Hall, 1992): 483.

following data to test your model: total monthly gross 
income =  $6,500; nonmortgage housing expenses 
=  $350; monthly installment debt =  $500; monthly 
payment per $1,000 mortgage =  $7.25.

 4. A company records the following components of 
fixed and variable costs for a product.

Fixed Cost 
(in dollars): Plaint Maintenance -  15,000
 Salaries -  40,000
 Depreciation -  100,000
 Rent -  8,000
  Manufacturing expenses -  12,000
 Advertising -  5,000
  Administrative expenses -  20,000
Variable
Cost per unit:  Labor -  3.00, Materials -  5.00,
 Sales Commission -  2.00

Assuming Sales Price per unit =  $15, develop a 
spreadsheet model to calculate the break-even point 
using the above. Design your spreadsheet using ef-
fective spreadsheet-engineering principles.

 5. For inventory problems, the cost is a function of the 
order size. A company has collected the following 
data for one of its product. 

 Annual requirement, R =  12,000

Ordering cost per order, S =  150

Cost per unit, C =  4

Carrying cost per unit, I =  0.20

Quantity ordered per order, Q =  100

Develop a general model for computing ordering 
cost, carrying cost, and total cost functions. Use the 
following formulas:

Ordering cost =  (R/Q)*S

Carrying Cost =  (Q/2)*I*C

 Total Cost =  Ordering cost + Carrying Cost

 6. A (greatly) simplified model of the national econ-
omy can be described as follows. The national in-
come is the sum of three components: consumption, 
investment, and government spending. Consumption 
is related to the total income of all individuals and to 
the taxes they pay on income. Taxes depend on total 
income and the tax rate. Investment is also related to 
the size of the total income.

 a. Use this information to draw an influence dia-
gram by recognizing that the phrase “A is related 
to B” implies that A influences B in the model.

 b. If we assume that the phrase “A is related to B” 
can be translated into mathematical terms as 
A = kB, where k is some constant, develop a 
mathematical model for the information provided.

 7. Thomas wants to predict the sales figures of his 
company for the upcoming year. On the basis of 
historical data, he concludes that a linear function 
passes through the observed data points for the first 
and sixth years. The sales figure for the first year is 
$24,000, and for the sixth year is $2,000. Develop a 
spreadsheet model to find intercept and slope of the 
linear function and predict sales for the seventh year.

 8. The Radio Shop sells two popular models of portable 
sport radios, model A and model B. The sales of these 
products are not independent of each other (in econom-
ics, we call these substitutable products, because if the 
price of one increases, sales of the other will  increase). 
The store wishes to establish a pricing policy to maxi-
mize revenue from these products. A study of price and 
sales data shows the following relationships between 
the quantity sold (N) and prices (P) of each model:

 NA = 20 - 0.62PA + 0.30PB

 NB = 29 + 0.10PA - 0.60PB

 a. Construct a model for the total revenue and im-
plement it on a spreadsheet.

 b. What is the predicted revenue if PA = +18 and 
PB = +30? What if the prices are PA = +25 
and PB = +50?

 9. For a new product, sales volume in the first year is 
estimated to be 80,000 units and is projected to grow 
at a rate of 4% per year. The selling price is $12 and 
will increase by $0.50 each year. Per-unit variable 
costs are $3, and annual fixed costs are $400,000. 
Per-unit costs are expected to increase 5% per year. 
Fixed costs are expected to increase 8% per year. 
Develop a spreadsheet model to calculate the net 
present value of profit over a 3-year period, assum-
ing a 4% discount rate.

 10. A stockbroker calls on potential clients from refer-
rals. For each call, there is a 10% chance that the 
client will decide to invest with the firm. Fifty-five 
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percent of those interested are found not to be quali-
fied, based on the brokerage firm’s screening crite-
ria. The remaining are qualified. Of these, half will 
invest an average of $5,000, 25% will invest an 
average of $20,000, 15% will invest an average of 
$50,000, and the remainder will invest $100,000. 
The commission schedule is as follows:

Transaction amount Commission

Up to $25,000 $50 + 0.5% of the amount

$25,001 to $50,000 $75 + 0.4% of the amount

$50,001 to $100,000 $125 + 0.3% of the amount

  The broker keeps half the commission. Develop 
a spreadsheet to calculate the broker’s commis-
sion based on the number of calls per month made. 
What is the expected commission based on making 
600 calls?

 11. The director of a nonprofit ballet company in a me-
dium-sized U.S. city is planning its next fundraising 
campaign. In recent years, the program has found the 
following percentages of donors and gift levels:

 
Gift Level

 
amount

average Number  
of Gifts

Benefactor $10,000  3

Philanthropist $5,000 10

Producer’s 
Circle

$1,000 25

Director’s 
Circle

$500 50

Principal $100 7% of solicitations

Soloist $50 12% of solicitations

  Develop a spreadsheet model to calculate the to-
tal amount donated based on this information if the 
number of the company contacts 1000 potential do-
nors to donate at the $100 level or below.

 12. A gasoline mini-mart orders 25 copies of a monthly 
magazine. Depending on the cover story, demand 
for the magazine varies. The gasoline mini-mart 
purchases the magazines for $1.50 and sells them 
for $4.00. Any magazines left over at the end of the 
month are donated to hospitals and other health-care 
facilities.  Modify the newsvendor example spread-
sheet to model this situation. Investigate the  financial 
implications of this policy if the demand is expected 

to vary between 10 and 30 copies each month. How 
many must be sold to at least break even?

 13. Koehler Vision Associates (KVA) specializes in 
laser-assisted corrective eye surgery. Prospective 
patients make appointments for prescreening exams 
to determine their candidacy for the surgery: if they 
qualify, a $250 charge is applied as a deposit for 
the actual procedure. The weekly demand is 150, 
and about 12% of prospective patients fail to show 
up or cancel their exam at the last minute. Patients 
that do not show up are refunded the prescreening 
fee less a $25 processing fee. KVA can handle 125 
patients per week and is considering overbooking its 
appointments to reduce the lost revenue associated 
with cancellations. However, any patient that is over-
booked may spread unfavorable comments about the 
company; thus, the overbooking cost is estimated to 
be $125. Develop a spreadsheet model for calculating 
net revenue. Find the net revenue and number over-
booked if 140 through 150 appointments are taken.

 14. Tanner Park is a small amusement park that provides 
a variety of rides and outdoor activities for children 
and teens. In a typical summer season, the number 
of adult and children’s tickets sold are 20,000 and 
10,000, respectively. Adult ticket prices are $18 and 
the children’s price is $10. Revenue from food and 
beverage concessions is estimated to be $60,000, and 
souvenir revenue is expected to be $25,000. Variable 
costs per person (adult or child) are $3, and fixed 
costs amount to $150,000. Determine the profitabil-
ity of this business.

 15. With the growth of digital photography, a young 
entrepreneur is considering establishing a new busi-
ness, Cruz Wedding Photography. He believes that 
the average number of wedding bookings per year is 
15. One of the key variables in developing his busi-
ness plan is the life he can expect from a single digital 
single lens reflex (DSLR) camera before it needs to 
be replaced. Due to heavy usage, the shutter life ex-
pectancy is estimated to be 150,000 clicks. For each 
booking, the average number of photographs taken is 
assumed to be 2,000. Develop a model to determine 
the camera life (in years).

 16. The Executive Committee of Reder Electric Vehicles 
is debating whether to replace its original model, the 
REV-Touring, with a new model, the REV-Sport, 
which would appeal to a younger audience. Whatever 
vehicle chosen will be produced for the next 4 years, 
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after which time a reevaluation will be necessary. 
The REV-Sport has passed through the concept and 
initial design phases and is ready for final design and 
manufacturing. Final development costs are estimated 
to be $75 million, and the new fixed costs for tooling 
and manufacturing are estimated to be $600 million. 
The REV-Sport is expected to sell for $30,000. The 
first year sales for the REV-Sport is estimated to be 
60,000, with a sales growth for the subsequent years 
of 6% per year. The variable cost per vehicle is un-
certain until the design and supply-chain decisions are 
finalized, but is estimated to be $22,000. Next-year 
sales for the REV-Touring are estimated to be 50,000, 
but the sales are expected to decrease at a rate of 
10% for each of the next 3 years. The selling price is 
$28,000. Variable costs per vehicle are $21,000. Since 
the model has been in production, the fixed costs for 
development have already been recovered. Develop a 
4-year model to recommend the best decision using a 
net present value discount rate of 5%. How sensitive 
is the result to the estimated variable cost of the REV-
Sport? How might this affect the decision?

 17. The Schoch Museum is embarking on a 5-year fun-
draising campaign. As a nonprofit institution, the 
museum finds it challenging to acquire new donors 
as many donors do not contribute every year. Sup-
pose that the museum has identified a pool of 8,000 
potential donors. The actual number of donors in the 
first year of the campaign is estimated to be 65% 
of this pool. For each subsequent year, the museum 
expects that 35% of current donors will discontinue 
their contributions. In addition, the museum expects 
to attract some percentage of new donors. This is as-
sumed to be 10% of the pool. The average contribu-
tion in the first year is assumed to be $50, and will 
increase at a rate of 2.5%. Develop a model to pre-
dict the total funds that will be raised over the 5-year 
period, and investigate the impacts of the percentage 
assumptions used in the model.

 18. Apply the data-validation tool to the Bank Data Ex-
cel file with an error alert message box to ensure that 
a two-digit number is correctly entered under Age, 
the data entered under ZipCode should not exceed 5 
digits, and the Education field takes the values 1, 2 
and 3 for ‘undergraduate’, ‘graduate’ and ‘post grad-
uate’ respectively. Enter some fictitious additional 
data to verify that your results are correct.

 19. Insert a spin button and scroll bar in the Outsourcing 
Decision Model to allow the user to easily change the 

production volume in cell B12 from 500 to 3000. Which 
one is easier to use? Discuss the pros and cons of each.

 20. Insert a spin button in the car lease purchase model 
to change the discount rate in cell F8 from 1% to 
10% in increments of one-tenth.

 21. For the Pro Forma Income Statement model in the 
Excel file Net Income Models (Figure 11.7), add 
a scroll bar form control to allow the user to eas-
ily change the level of sales from 3,000,000 to 
10,000,000 in increments of 1,000 and recalculate 
the spreadsheet. (Hint: the scroll values must be be-
tween 0 and 30,000 so you will need to modify the 
spreadsheet to make it work correctly.)

 22. Create a new worksheet in the Retirement Portfolio 
workbook. In this worksheet, add a list box form con-
trol to allow the user to select one of the mutual funds 
on the original worksheet, and display a summary of the 
net asset value, number of shares, and total value using 
the VLOOKUP function. (Hint: your list box should 
show the fund names, but you will need to modify the 
original spreadsheet to use VLOOKUP correctly!)

 23. The Excel sheet  Travelling Salesman contains data on 
cost incurred by salesman on travelling from one city to 
another. Using this data matrix, add list box controls so 
that manager can choose two cities and find the cost of 
travelling between them. (Hint: Set the cell links to be 
any blank cells as the list boxes return the number of po-
sition in the list; then use VLOOKUP to find the cost).

 24. Problem 15 in Chapter 1 posed the following situa-
tion: A manufacturer of mp3 players is preparing to 
set the price on a new model. Demand is thought to 
depend on the price and is represented by the model

D = 2,500 - 3P

The accounting department estimates that the total 
costs can be represented by

C = 5,000 + 5D

Implement your model on a spreadsheet and con-
struct a one-way data table to estimate the price for 
which profit is maximized.

 25. Problem 16 in Chapter 1 posed the following situa-
tion: The demand for airline travel is quite sensitive 
to price. Typically, there is an inverse relationship 
between demand and price; when price decreases, 
demand increases, and vice versa. One major air-
line has found that when the price (p) for a round 
trip between Chicago and Los Angeles is $600, the 
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  demand (D) is 500 passengers per day. When the price 
is reduced to $400, demand is 1,200 passengers per 
day. You were asked to develop an appropriate model. 
Implement your model on a spreadsheet and use a data 
table to estimate the price that maximizes total revenue.

 26. Develop a spreadsheet model for determining value, 
using the simple valuation function Value =  D/(r - g),  
where r is the discount rate = 10% and g is the 
growth rate = 4% and D is dividend =  1.25. Use 
a two-way data table to determine value if g varies 
from 1% to 5% in increments of 1, and r varies from 
8% to 16% in increments of 2%.

 27. The booking price for motivational seminar (held every 
week) is charged at $650 per booking, with maximum 
seats =  100. The total cost for arranging such a seminar 
comes to $35,000 per week. The manager offers 10% 
discount on group bookings, allowing 5 seats per group. 
On an average, he receives 2 to 10 (maximum allowed 
in a seminar) group booking orders. Construct a spread-
sheet model to determine the profit all seats are booked, 
and none of which is group booking.

 a. Use data tables to evaluate the profit for the 
specified range of booked group seats.

 b. Suppose the manager is considering lowering or 
increasing the group booking discount by 5%. 
How will profit be affected?

 28. For the Koehler Vision Associates model you devel-
oped in Problem 13, use data tables to study how 
revenue is affected by changes in the number of ap-
pointments accepted and patient demand.

 29. For the stockbroker model you developed in Problem 
10, use data tables to show how the commission is a 
function of the number of calls made.

 30. For the nonprofit ballet company fundraising model 
you developed in Problem 11, use a data table to 
show how the amount varies based on the number of 
solicitations.

 31. For the garage-band model you developed in Prob-
lem 7, define and run some reasonable scenarios us-
ing the Scenario Manager to evaluate profitability 
for the following scenarios:

Scenarios for Problem 31 Likely Optimistic Pessimistic

Expected Crowd 3000 4500 2500

Concession Expenditure $15 $20 $12.50

Fixed cost $10,000 $8,500 $12,500

 32. Think of any retailer that operates many stores 
throughout the country, such as Old Navy, Hallmark 
Cards, or Radio Shack, to name just a few. The re-
tailer is often seeking to open new stores and needs 
to evaluate the profitability of a proposed location 

that would be leased for 5 years. An Excel model is 
provided in the New Store Financial Model spread-
sheet. Use Scenario Manager to evaluate the cumu-
lative discounted cash flow for the fifth year under 
the following scenarios:

Scenarios for Problem 32 Scenario 1 Scenario 2 Scenario 3

Inflation rate  1%  5%  3%

Cost of merchandise (% of sales) 25% 30% 26%

Labor cost $150,000 $225,000 $200,000

Other expenses $300,000 $350,000 $325,000

First-year sales revenue $600,000 $600,000 $800,000

Sales growth year 2 15% 22% 25%

Sales growth year 3 10% 15% 18%

Sales growth year 4  6%  11% 14%

Sales growth year 5  3%  5%  8%
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 33. The Hyde Park Surgery Center specializes in high-
risk cardiovascular surgery. The center needs to 
forecast its profitability over the next 3 years to plan 
for capital growth projects. For the first year, the 
hospital anticipates serving 1,200 patients, which 
is expected to grow by 8% per year. Based on cur-
rent reimbursement formulas, each patient provides 
an average billing of $125,000, which will grow by 
3% each year. However, because of managed care, 
the center collects only 25% of billings. Variable 
costs for supplies and drugs are calculated to be 10% 
of billings. Fixed costs for salaries, utilities, and so 
on, will amount to $20,000,000 in the first year and 
are assumed to increase by 5% per year. Develop a 
spreadsheet model to calculate the net present value 
of profit over the next 3 years. Use a discount rate of 
4%. Define three reasonable scenarios that the center 
director might wish to evaluate and use the Scenario 
Manager to compare them.

 34. For the garage-band model in Problem 7, construct 
a tornado chart and explain the sensitivity of each of 
the model’s parameters on total profit.

 35. For the new-product model in Problem 9, construct 
a tornado chart and explain the sensitivity of each of 
the model’s parameters on the NPV of profit.

 36. The admissions director of an engineering college 
has $500,000 in scholarships each year from an en-
dowment to offer to high-achieving applicants. The 
value of each scholarship offered is $25,000 (thus, 
20 scholarships are offered). The benefactor who 
provided the money would like to see all of it used 
each year for new students. However, not all students 
accept the money; some take offers from compet-
ing schools. If they wait until the end of the admis-
sions’s deadline to decline the scholarship, it cannot 
be offered to someone else because any other good 
students would already have committed to other pro-
grams. Consequently, the admissions director offers 
more money than available in anticipation that a per-
centage of offers will be declined. If more than 20 
students accept the offers, the college is committed 
to honoring them, and the additional amount has to 
come out of the dean’s budget. Based on prior his-
tory, the percentage of applicants that accept the of-
fer is about 70%. Develop a spreadsheet model for 
this situation, and apply whatever analysis tools you 
deem appropriate to help the admissions director 
make a decision on how many scholarships to offer. 
Explain your results in a business memo to the direc-
tor, Mr. P. Woolston.

Case: Performance Lawn Equipment

Part 1: The Performance Lawn Equipment database contains data needed to develop a pro 
forma income statement. Dealers selling PLE products all receive 18% of sales revenue 
for their part of doing business, and this is accounted for as the selling expense. The tax 
rate is 50%. Develop an Excel worksheet to extract and summarize the data needed to de-
velop the income statement for 2014 and implement an Excel model in the form of a pro 
forma income statement for the company.

Part 2: The CFO of Performance Lawn Equipment, J. Kenneth Valentine, would like 
to have a model to predict the net income for the next 3 years. To do this, you need to 
determine how the variables in the pro forma income statement will likely change in the 
future. Using the calculations and worksheet that you developed along with other histori-
cal data in the database, estimate the annual rate of change in sales revenue, cost of goods 
sold, operating expense, and interest expense. Use these rates to modify the pro Forma 
income statement to predict the net income over the next 3 years.

Because the estimates you derived from the historical data may not hold in the future, 
conduct appropriate what-if, scenario, and/or parametric sensitivity analyses to investigate 
how the projections might change if these assumptions don’t hold. Construct a tornado 
chart to show how the assumptions impact the net income in your model. Summarize your 
results and conclusions in a report to Mr. Valentine.

M11_EVAN5448_02_SE_C11.indd   402 12/09/15   8:02 PM



iQoncept/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

•	Explain the concept and importance of analyzing risk  
in business decisions.

•	Use data tables to conduct simple Monte Carlo 
simulations.

•	Use Analytic Solver Platform to develop, implement, 
and analyze Monte Carlo simulation models.

•	Compute confidence intervals for the mean value of  
an output in a simulation model.

•	Construct and interpret sensitivity, overlay, trend,  
and box-whisker charts for a simulation model.

•	Explain the significance of the “flaw of averages.”

•	Conduct Monte Carlo simulation using historical data 
and resampling techniques.

•	Use fitted distributions to define uncertain variables in 
a simulation.

•	Define and use custom distributions in Monte Carlo 
simulations.

•	Correlate uncertain variables in a simulation model 
using Analytic Solver Platform.

403
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For many of the predict ive decis ion models we developed in  

Chapter 11, all the data—particularly the uncontrollable inputs—were assumed 

to be known and constant. Other models, such as the newsvendor, overbook-

ing, and retirement-planning models, incorporated  uncontrollable inputs, such as 

customer demand, hotel cancellations, and annual returns on investments, which 

exhibit random behavior. We often assume such variables to be constant to sim-

plify the model and the analysis. However, many situations dictate that random-

ness be explicitly incorporated into our models. This is usually done by specifying 

probability distributions for the appropriate uncontrollable inputs. As we noted 

earlier in this book, models that include randomness are called  stochastic, or 

probabilistic, models. These types of models help to evaluate risks associated 

with undesirable consequences and to find optimal decisions under uncertainty.

Risk is the likelihood of an undesirable outcome. It can be assessed by 

evaluating the probability that the outcome will occur along with the severity of 

the outcome. For example, an investment that has a high probability of losing 

money is riskier than one with a lower probability. Similarly, an investment that 

may result in a $10 million loss is certainly riskier than one that might result in 

only a $10,000 loss. In assessing risk, we could answer questions such as, What 

is the probability that we will incur a financial loss? How do the probabilities of 

different potential losses compare? What is the probability that we will run out 

of inventory? What are the chances that a project will be completed on time? 

Risk analysis is an approach for developing “a comprehensive understanding 

and awareness of the risk associated with a particular variable of interest (be it a 

payoff measure, a cash flow profile, or a macroeconomic forecast).”1 Hertz and 

Thomas present a simple  scenario to illustrate the concept of risk analysis:

The executives of a food company must decide whether to launch a new pack-

aged cereal. They have come to the conclusion that five factors are the deter-

mining variables: advertising and promotion  expense, total cereal market, share 

of market for this product, operating costs, and new capital investment. On the 

basis of the “most likely” estimate for each of these variables, the picture looks 

very bright—a healthy 30% return, indicating a significantly positive  expected 

net present value. This future, however, depends on each of the “most likely” 

estimates coming true in the actual case. If each of these  “educated guesses” 

has, for example, a 60% chance of  being correct, there is only an 8% chance 

that all five will be correct (0.60 * 0.60 * 0.60 * 0.60 * 0.60) if the factors 

are assumed to be independent. So the “expected” return, or present value 

1David B. Hertz and Howard Thomas, Risk Analysis and Its Applications (Chichester, UK: John Wiley & 
Sons, Ltd., 1983): 1.
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measure, is actually dependent on a rather unlikely coincidence. The decision 

maker needs to know a great deal more about the other values used to make 

each of the five estimates and about what he stands to gain or lose from vari-

ous combinations of these values.2

Thus, risk analysis seeks to examine the impacts of uncertainty in the estimates and 

their potential interaction with one another on the output variable of interest. Hertz 

and Thomas also note that the challenge to risk analysts is to frame the output of 

risk analysis procedures in a manner that makes sense to the manager and provides 

clear insight into the problem, suggesting that simulation has many advantages.

In this chapter, we discuss how to build and analyze models involving 

 uncertainty and risk using Excel. We then introduce  Analytic Solver Platform to 

implement Monte Carlo simulation. We wish to point out that the topic of simula-

tion can fill an entire book. An entirely different area of simulation, which we do not 

address in this book, is the simulation of dynamic systems, such as waiting lines, 

inventory systems, manufacturing systems, and so on. This requires different mod-

eling and implementation tools, and is best approached using commercial software. 

Systems simulation is an important tool for analyzing operations, whereas Monte 

Carlo simulation, as we describe it, is focused more on financial risk analysis. 

Spreadsheet Models with Random Variables

In Chapter 5, we described how to sample randomly from probability distributions and 
to generate certain random variates using Excel tools and functions. We will use these 
 techniques to show how to incorporate uncertainty into decision models.

2Ibid., 24.

ExaMpLE 12.1  Incorporating Uncertainty in the Outsourcing Decision Model 

Refer back to the outsourcing decision model we intro-
duced in Chapter 1 and for which we  developed an Excel 
model in Chapter 11. The model is shown again in Fig-
ure 12.1. Assume that the production volume is uncertain. 
We can model the demand as a random variable having 
some probability distribution. Suppose the manufacturer 
has enough data and information to assume that demand 
(production volume) will be normally distributed with a 
mean of 1,000 and a standard deviation of 100. We could 
use the Excel function NORM.INV  (probability, mean, 

standard_deviation), as described in Chapter 5, to gen-
erate random values of the demand (Production Volume) 
by replacing the input in cell B12 of the spreadsheet with 
the formula =ROUND(NORM.INV (RAND( ), 1000, 100),0). 
The ROUND function is used to ensure that the values will 
be whole numbers. Whenever the F9 key is pressed (on a 
Windows PC) or the Calculate Now button is clicked from 
the Calculation group in the Formula tab, the worksheet 
will be recalculated, and the value of  demand will change 
randomly.

Monte Carlo Simulation

Monte Carlo simulation is the process of generating random values for uncertain inputs 
in a model, computing the output variables of interest, and repeating this process for many 
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trials to understand the distribution of the output results. For example, in the  outsourcing 
decision model, we can randomly generate the production volume and compute the cost dif-
ference and associated decision and then repeat this for some number of trials. Monte Carlo 
simulation can easily be accomplished on a spreadsheet using a data table. 

Figure 12.1

Outsourcing Decision Model 
Spreadsheet

ExaMpLE 12.2  Using Data Tables for Monte Carlo Spreadsheet Simulation 

Figure 12.2 shows a Monte Carlo simulation for the outsourc-
ing decision model (Excel file Outsourcing Decision Monte 
Carlo Simulation Model). First, construct a data table (see 
Chapter 11) by listing the number of trials down a column 
(here we used 20 trials) and referencing the cells associated 
with demand, the difference, and the decision in cells E3, 
F3, and G3, respectively (i.e., the formula in cell E3 is =B12; 
in cell F3, =B19; and in cell G3, =B20). Select the range 
of the table (D3:G23)—and here’s the trick—in the Column  
Input Cell field in the Data Table dialog, enter any blank cell 
in the spreadsheet. This is done because the trial number 
does not relate to any parameter in the model; we simply 
want to repeat the spreadsheet recalculation independently 
for each row of the data table, knowing that the demand will 
change each time because of the use of the RAND function 
in the demand formula.

As you can see from the results, each trial has a 
randomly generated demand. The data table process 
substitutes these demands into cell B12 and finds the as-
sociated difference and decision in columns F and G. The 
average difference is $535, and 55% of the trials resulted 
in outsourcing as the best decision; the histogram shows 
the distribution of the results. These results might suggest 
that, although the future demand is not known, the manu-
facturer’s best choice might be to outsource. However, 
there is a risk that this may not be the best decision.

The small number of trials that we used in this exam-
ple makes sampling error an important issue. We could 
easily obtain significantly different results if we repeat the 
simulation (by pressing the F9 key on a Windows PC). For 
example, repeated simulations yielded the following per-
centages for outsourcing as the best decision: 40%, 60%, 
65%, 45%, 75%, 45%, and 35%. There is considerable 
variability in the results, but this can be reduced by using 
a larger number of trials.

To understand this variability better, let us construct 
a confidence interval for the proportion of decisions 
that result in a manufacturing recommendation with the 
sample size (number of trials) n = 20 using the data in 
Figure 12.2. Using formula (6.4) from Chapter 6, a 95% 
confidence interval for the proportion is 0.55 ± 1.96 B0.55 10.45 2

20
= 0.55 ± 0.22, or [0.33, 0.77]. Because the 

CI includes values below and above 0.5, this suggests that 
we have little certainty as to the best decision. However, 
if we obtained the same proportion using 1,000 trials, the 

confidence interval would be 0.55 ± 1.96 B0.55 10.45 2
1000

 =

0.55 ± 0.03, or [0.52, 0.58]. This would indicate that we 
would have confidence that outsourcing would be the 
better decision more than half the time.
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Figure 12.2

Monte Carlo Simulation of the 
Outsourcing Decision Model

Although the use of a data table illustrates how we can apply Monte Carlo sim-
ulation to a decision model, it is impractical to apply to more complex problems. 
For example, in the Moore Pharmaceuticals model in Chapter 11, many of the 
model parameters, such as the initial market size, project costs, market-size growth 
factors, and market-share growth rates, may all be uncertain. In addition, we need 
to be able to capture and save the results of thousands of trials to obtain good  
statistical results, and it would be useful to construct a histogram of the results and 
calculate a variety of statistics to conduct further analyses. Fortunately, sophisti-
cated software approaches that easily perform these functions are available. The 
remainder of this chapter is focused on learning to use Analytic Solver Platform 
software to perform large-scale Monte Carlo simulation. We will start with the simple 
outsourcing decision model.

Monte Carlo Simulation Using Analytic Solver Platform

To use Analytic Solver Platform, you must perform the following steps:

 1. Develop the spreadsheet model.
 2. Determine the probability distributions that describe the uncertain inputs in 

your model.
 3. Identify the output variables that you wish to predict.
 4. Set the number of trials or repetitions for the simulation.
 5. Run the simulation.
 6. Interpret the results.

Defining Uncertain Model Inputs

When model inputs are uncertain, we need to characterize them by some probability 
distribution. For many decision models, empirical data may be available, either in his-
torical records or collected through special efforts. For example, maintenance  records 
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might provide data on machine failure rates and repair times, or observers might col-
lect data on service times in a bank or post office. This provides a factual basis for 
choosing the appropriate probability distribution to model the input variable. We can 
identify an appropriate distribution by fitting historical data to a theoretical model, as 
we illustrated in Chapter 5. 

In other situations, historical data are not available, and we can draw upon the prop-
erties of common probability distributions and typical applications that we discussed in 
Chapter 5 to help choose a representative distribution that has the shape that would most 
reasonably represent the analyst’s understanding about the uncertain variable. For exam-
ple, a normal distribution is symmetric, with a peak in the middle. Exponential data are 
very positively skewed, with no negative values. A triangular distribution has a limited 
range and can be skewed in either direction. 

Very often, uniform or triangular distributions are used in the absence of data. 
These distributions depend on simple parameters that one can easily identify based 
on managerial knowledge and judgment. For example, to define the uniform distribu-
tion, we need to know only the smallest and largest possible values that the variable 
might assume. For the triangular distribution, we also include the most likely value. 
In the construction industry, for instance, experienced supervisors can easily tell you 
the fastest, most likely, and slowest times for performing a task such as framing a 
house, taking into account possible weather and material delays, labor absences, and 
so on.

There are two ways to define uncertain variables in Analytic Solver Platform. One is 
to use the custom Excel functions for generating random samples from probability distri-
butions that we described in Table 5.1 in Chapter 5. This is similar to the method that we 
used for the outsourcing example when we used the NORM.INV function in the Monte 
Carlo spreadsheet simulation. For example, the Analytic Solver Platform function that 
is equivalent to NORM.INV(RAND( ), mean, standard deviation) is PsiNormal(mean, 
standard deviation).

ExaMpLE 12.3  Using Analytic Solver Platform probability Distribution Functions 

For the Outsourcing Decision Model, we assume that the 
production volume is normally distributed with a mean 
of 1,000 and a standard deviation of 100, as in the previ-
ous example. However, we make the problem a bit more 
complicated by  assuming that the unit cost of purchas-
ing from the supplier is also uncertain and has a triangu-
lar distribution with a  minimum value of $160, most likely 
value of $175, and maximum value of $200. To model the 

distribution of the production volume in the outsourcing 
decision model, we could use the PsiNormal(mean, stan-
dard deviation) function. Thus, we could  enter the formula  
=PsiNormal(1000, 100) into cell B12. To ensure that the re-
sult is a whole number, we could modify the formula to be 
=ROUND(PsiNormal(1000,100),0). To model the unit cost, 
we could enter the formula =PsiTriangular(160, 175, 200) 
in cell B10.

The second way to define an uncertain variable is to use the Distributions button in 
the Analytic Solver Platform ribbon. First, select the cell in the spreadsheet for which you 
want to define a distribution. Click on the Distributions button as shown in Figure 12.3. 
Choose a distribution from one of the categories in the list that pops up. This will display a 
dialog in which you may define the parameters of the distribution.
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Figure 12.3

Analytic Solver Platform 
Distributions Options

ExaMpLE 12.4  Using the Distributions Button in Analytic Solver Platform 

In the Outsourcing Decision Model spreadsheet, select 
cell B12, the production volume. Click the Distributions 
button in the Analytic Solver Platform ribbon and select 
the normal distribution from the Common category. This 
displays the dialog shown in Figure 12.4. In the pane on 
the right, change the values of the mean and stdev under 
 Parameters to reflect the distribution you wish to model; 
in this case, set mean to 1,000 and stdev to 100. Click 

the Save button at the top of the dialog. Analytic Solver 
 Platform will enter the correct Psi function into the cell in 
the spreadsheet and you may close the dialog. For the unit 
cost, select cell B10 and select the triangular  distribution 
from the list. Figure 12.5 shows the completed dialog after 
the min, likely, and max parameters have been entered. If 
you double-click an uncertain cell, you can bring up this 
dialog to perform additional editing if necessary.

Figure 12.4

Analytic Solver Platform 
Normal Distribution Dialog
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Running a Simulation

To run a simulation, first click on the Options button in the Options group in the  Analytic 
Solver Platform ribbon. This displays a dialog (see Figure 12.7) in which you can specify 
the number of trials and other options to run the simulation (make sure the  Simulation 
tab is selected). Trials per Simulation allows you to choose the number of times that 
 Analytic Solver Platform will generate random values for the uncertain cells in the model 
and recalculate the entire spreadsheet. Because Monte Carlo simulation is essentially sta-
tistical sampling, the larger the number of trials you use, the more precise will be the 
 result.  Unless the model is extremely complex, a large number of trials will not unduly 
tax  today’s computers, so we recommend that you use at least 5,000 trials (the educational 
version restricts this to a maximum of 10,000 trials). You should use a larger number of 
trials as the number of uncertain cells in your model increases so that the simulation can 
generate representative samples from all distributions for assumptions. You may run more 
than one simulation if you wish to examine the variability in the results. 

The procedure that Analytic Solver Platform uses generates a stream of random num-
bers from which the values of the uncertain inputs are selected from their probability 

Figure 12.5

Analytic Solver Platform 
Triangular Distribution Dialog

Defining Output Cells

To define a cell you wish to predict and create a distribution of output values from your 
model (which Analytic Solver Platform calls an uncertain function cell), first select it, 
and then click on the Results button in the Simulation Model group in the Analytic Solver 
Platform ribbon. Choose the Output option and then In Cell. 

ExaMpLE 12.5  Using the Results Button in Analytic Solver Platform

For the Outsourcing Decision Model, select cell B19 (the 
cost difference value) and then choose the In Cell op-
tion, as we described. Figure 12.6 shows the process.  
Analytic Solver Platform modifies the formula in the cell 
to be = B16 − B17 + PsiOutput( ). You may also add  

+PsiOutput( ) manually to the cell formula to designate it 
as an output cell. However, you may choose only output 
cells that are numerical; thus, you could not choose cell 
B20, which displays a text result.
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Figure 12.6

Analytic Solver Platform  
Results Options

Figure 12.7

Analytic Solver Platform 
Options Dialog

 distributions. Every time you run the model, you will get slightly different results because 
of sampling error. However, you may control this by setting a value for Sim. Random 
Seed in the dialog. If you choose a nonzero number, then the same sequence of random 
numbers will be used for generating the random values for the uncertain inputs; this will 
guarantee that the same values will be used each time you run the model. This is useful 
when you wish to change a controllable variable in your model and compare results for the 
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same assumption values. As long as you use the same number, the assumptions generated 
will be the same for all simulations. 

Analytic Solver Platform has alternative sampling methods; the two most common 
are Monte Carlo and Latin Hypercube sampling. Monte Carlo sampling selects random 
variates independently over the entire range of possible values of the distribution. With 
Latin Hypercube sampling, the uncertain variable’s probability distribution is divided 
into  intervals of equal probability and generates a value randomly within each interval. 
Latin Hypercube sampling results in a more even distribution of output values because 
it samples the entire range of the distribution in a more consistent manner, thus achiev-
ing more  accurate forecast statistics (particularly the mean) for a fixed number of Monte 
Carlo  trials. However, Monte Carlo sampling is more representative of reality and should 
be used if you are interested in evaluating the model performance under various what-if 
scenarios. Unless you are an advanced user, we recommend leaving the other options at 
their default values.

The last step is to run the simulation by clicking the Simulate button in the Solve 
 Action group. When the simulation finishes, you will see a message “Simulation finished 
successfully” in the lower-left corner of the Excel window.

Viewing and analyzing Results

You may specify whether you want output charts to automatically appear after a simula-
tion is run by clicking the Options button in the Analytic Solver Platform ribbon, and 
either checking or unchecking the box Show charts after simulation in the Charts tab. You 
may also view the results of the simulation at any time by double-clicking on an output 
cell that contains the PsiOutput() function or by choosing Simulation from the Reports 
button in the Analysis group in the Analytic Solver Platform ribbon. This displays a win-
dow with various tabs showing different charts to analyze results.

ExaMpLE 12.6  analyzing Simulation Results for the Outsourcing  
Decision Model 

Figure 12.8 shows the Frequency tab in the simula-
tion results window. This is a frequency distribution of 
the cost difference for the 5,000 trials using the Monte 
Carlo sampling method. You can see that the distribu-
tion is somewhat negatively skewed. In the Statistics 
pane on the right, we see that the mean cost difference 
is − $3,068, which suggests that, on average, it would 
be better to manufacture in-house than to outsource. We 
also see that the minimum cost difference was −$43,222 
and the maximum difference was $24,367. These are es-
timates of the best- and worst-case results that can be 
expected, lending further evidence that it might be better 
to manufacture in-house.

In the Chart Statistics section of the Statistics 
pane, you may specify a Lower Cutoff, Likelihood, or 
 Upper  Cutoff value. These options help you analyze the 
 frequency chart. For example, if we set the Upper  Cutoff to 
0, we obtain the chart shown in Figure 12.9. This illustrates 
the probability of a negative (as well as a positive) cost 

 difference. From the chart, we see that there is about a 
59% chance of a negative value for outsourcing, whereby 
in-house manufacturing would be best. The red line that 
divides the  regions in the chart is called a marker line. You 
can move it with your mouse to calculate different areas 
of probability. As you do, the values in the Chart Statis-
tics section will change. You may right-click on a marker 
line to remove it; you may also add new marker lines by 
 right-clicking to show probabilities between marker lines 
in the chart. If you specify both a Lower Cutoff and Up-
per Cutoff value, marker lines will be added at both values, 
and the  Likelihood statistic will be the probability between 
them. The other tabs in the results window display a cu-
mulative  frequency distribution and a reverse cumulative 
frequency distribution, as well as a sensitivity chart and 
scatter plots, which we discuss in other examples. The 
best way to learn to analyze the charts is by experimenting.

In addition, you can change the display in the right 
pane by selecting other  options in the drop-down menu 
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In the remainder of this chapter, we present several additional examples of Monte 
Carlo simulation using Analytic Solver Platform. These serve to illustrate the wide range 
of applications in which the approach may be used and also various features of Analytic 
Solver Platform and tools for analyzing simulation models.

by clicking on the down arrow to the right of the Statis-
tics header. The options are Percentiles, Chart Type, 
Chart Options, Axis  Options, and Markers. The Per-
centiles  option displays percentiles of the simula-
tion results and is  essentially a numerical tabulation 

of the cumulative distribution of the output; for exam-
ple, the 10th percentile in these simulation results was  
−$16,550 (not shown). This means that 10% of the simu-
lated cost differences were less than or equal to −$16,550. 
The other  options are simply for customizing the charts.

Figure 12.8

Simulation Results—
Cost Difference 
Frequency 
Distribution

Figure 12.9

Probability of a  
Negative Cost  
Difference
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New-product Development Model

The Moore Pharmaceuticals spreadsheet model to support a new-product development deci-
sion was introduced in Chapter 11; Figure 12.10 shows the model again. Although the values 
used in the spreadsheet suggest that the new drug would become profitable by the fourth year, 
much of the data in this model are uncertain. Thus, we might be interested in evaluating the 
risk associated with the project. Three questions we might be interested in are as follows:

 1. What is the risk that the net present value over the 5 years will not be positive?
 2. What are the chances that the product will show a cumulative net profit in the 

third year?
 3. What cumulative profit in the fifth year are we likely to realize with a prob-

ability of at least 0.90?

Suppose that the project manager of Moore Pharmaceuticals has identified the fol-
lowing uncertain variables in the model and the distributions and parameters that describe 
them, as follows:

•	Market size: normal with mean of 2,000,000 units and standard deviation of 
400,000 units

•	R&D costs: uniform between $600,000,000 and $800,000,000

•	Clinical trial costs: lognormal with mean of $150,000,000 and standard deviation 
$30,000,000

•	Annual market growth factor: triangular with minimum = 2%, maximum = 6%, 
and most likely = 3%

•	Annual market share growth rate: triangular with minimum = 15%,  
maximum = 25%, and most likely = 20% 

Figure 12.10

Moore Pharmaceuticals 
Spreadsheet Model 

M12_EVAN5448_02_SE_C12.indd   414 12/09/15   8:03 PM



 Chapter 12  Monte Carlo Simulation and Risk Analysis 415

Now we are prepared to run the simulation and analyze the results. If your simulation 
model contains more than one output function, then a Variables Chart containing fre-
quency graphs of up to 9 output functions and uncertain variables will appear as shown in 
Figure 12.11. In this case, the Variables Chart shows the frequency charts for all 6 uncer-
tain functions (cells B28:F28 and B30) and 3 of the uncertain inputs (B5, B11, and B12) in 
the Moore Pharmaceutical model. You may customize this by checking or unchecking the 
boxes in the Filters pane; for example, you can remove the uncertain input distributions 
and only show the six outputs. As noted earlier in this chapter, you may also suppress the 
automatic display of the chart in the Charts tab after clicking the Options button.

In this example, we used 10,000 trials. We may use the frequency charts in the simu-
lation results to answer the risk analysis questions we posed earlier. 

ExaMpLE 12.7  Setting Up the Simulation Model for Moore Pharmaceuticals 

As we learned earlier, we may use either the Psi func-
tions or the Distribution buttons in the Analytic Solver 
Platform  ribbon to specify the uncertain variables. Al-
though the result is the same, the Psi functions are often 
easier to use. To model the market size, we could use the 
PsiNormal(mean, standard deviation) function. Thus, we 
could enter the formula =PsiNormal(2000000, 400000) 
into cell B5. Similarly, we could use the following func-
tions for the remaining uncertain variables:

•	R&D Costs (cell B11): =PsiUniform(600000000, 
800000000)

•	Clinical trial costs (cell B12):  
=PsiLognormal(150000000, 30000000)

•	Annual market growth factor (cells C18 to F18): 
=PsiTriangular(2%, 3%, 6%)

•	Annual market share growth rate (cells C20 to 
F20): =PsiTriangular(15%, 20%, 25%)

Because the annual market-growth factors and 
 market-share-growth rates use the same distributions, 
we need enter them only once and then copy them to the 
other cells. 

We define the cumulative net profit for each year 
(cells B28 through F28) and the net present value (cell 
B30) as the output cells.

Figure 12.11

Variables Chart for Simulation 
Results 
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ExaMpLE 12.8 Risk analysis for Moore Pharmaceuticals

 1.  What is the probability that the net present value 
over the 5 years will not be positive? Double-click 
on cell B30 to display the simulation results for the 
net present value output. Enter the number 0 for the 
Upper Cutoff value in the Statistics pane. The re-
sults are shown in Figure 12.12; this shows about an 
18% chance that the NPV will not be positive.

 2. What are the chances that the product will show a cu-
mulative net profit in the third year? Double-click cell 
D28, the cumulative net profit in year 3. Enter the value 
0 for the Lower Cutoff value, as illustrated in Figure 
12.13. This shows that the probability of a positive cu-
mulative net profit in the third year is only about 9%.

 3. What cumulative profit in the fifth year are we 
likely to realize with a probability of at least 0.90? 
An easy way to answer this question is to view the 
 Percentiles results (see Figure 12.14). Therefore, we 
can expect a cumulative net profit of about $180,000 
or more with 90% certainty. Another way is to set 
the lower cutoff in the Chart Statistics field to some 
number smaller than the minimum value and then 
set the likelihood to 10%. Analytic Solver Platform 
will calculate and draw a marker line for the value of 
the upper cutoff that provides a certainty less than 
the upper cutoff of 10% and, consequently, a cer-
tainty of 90% greater than the upper cutoff.

Figure 12.12

Probability of a Nonpositive 
Net Present Value

Figure 12.13

Probability of a Non-Positive 
Cumulative Third-Year Net 
Profit
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Figure 12.14

Percentiles for Fifth-Year 
Cumulative Net Profit

Confidence Interval for the Mean

Monte Carlo simulation is essentially a sampling experiment. Each time you run a simu-
lation, you will obtain slightly different results as we observed in Example 12.2 for the 
outsourcing decision model. Therefore, statistics such as the mean are a single observation 
from a sample of n trials from some unknown population. In Chapter 6, we discussed how 
to construct a confidence interval for the population mean to measure the error in estimat-
ing the true population mean. We may use the statistical information to construct a confi-
dence interval for the mean using a variant of formula (6.3) in Chapter 6:

 x { za>21s>1n2 (12.1)

Because a Monte Carlo simulation will generally have a very large number of trials (we 
used 10,000), we may use the standard normal z-value instead of the t-distribution in the 
confidence interval formula. 

ExaMpLE 12.9  a Confidence Interval for the Mean Net present Value 

We will construct a 95% confidence interval for the mean NPV 
using the simulation results from the Moore Pharmaceuticals 
example. From statistics shown in Figure 12.12, we have

 mean = $200,608,120
 standard deviation = $220,980,564

   n = 10,000

For a 95% confidence interval, zA>2 = 1.96. Therefore, 
 using formula (12.1), a 95% confidence interval for the 
mean would be

$200,608,120 ± 1.96 1220,980,564 ,!10,000 2 ,
or [$196,276,901, $204,939,339]

This means that if we ran the simulation again with dif-
ferent random inputs, we could expect the mean NPV to 
generally fall within this interval. To reduce the size of the 
confidence interval, we would need to run the simulation 
for a larger number of trials. For most risk analysis appli-
cations, however, the mean is less important than the ac-
tual distribution of outcomes.
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Sensitivity Chart

The sensitivity chart feature allows you to determine the influence that each uncertain 
model input has individually on an output variable based on its correlation with the output 
variable. The sensitivity chart displays the rankings of each uncertain variable according to 
its impact on an output cell as a tornado chart. A sensitivity chart provides three benefits:

 1. It tells which uncertain variables influence output variables the most and 
which would benefit from better estimates.

 2. It tells which uncertain variables influence output variables the least and can 
be ignored or discarded altogether.

 3. By providing understanding of how the uncertain variables affect your model, 
it allows you to develop more realistic spreadsheet models and improve the 
accuracy of your results.

The sensitivity chart can be viewed by clicking the Sensitivity tab in the results window 
(see Figure 12.15).

ExaMpLE 12.10 Interpreting the Sensitivity Chart for NpV 

Figure 12.15 shows the sensitivity chart and the net pres-
ent value output cell (B30). The uncertain variable cells are 
ranked from top to bottom, beginning with the one having 
the highest absolute value of correlation with NPV. In this 
example, we see that cell B5, the market size, has a cor-
relation of about 0.95 with NPV; the R&D cost (cell B11) has 
a negative 0.255 correlation, and the clinical trial cost (cell 
B12) has a negative 0.130 correlation with NPV. The other 

uncertain variable cells have a negligible effect. This means 
that if you want to reduce the variability in the distribution 
of NPV the most, you would need to obtain better informa-
tion about the estimated market size and use a probability 
distribution that has a smaller variance. The small correla-
tions between NPV and the market-growth factors suggest 
that using constant values instead of uncertain probability 
distributions would have little effect on the results.

Overlay Charts

If a simulation has multiple related forecasts, the overlay chart feature allows you to 
superimpose the frequency distributions from selected forecasts on one chart to compare 
differences and similarities that might not be apparent. 

Figure 12.15

Sensitivity Chart for Net 
Present Value
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ExaMpLE 12.11 Creating an Overlay Chart 

To create an overlay chart, click the Charts button in the 
Analysis group in the Analytic Solver Platform  ribbon. 
Click Multiple Simulation Results (do not choose  Multiple 
Simulations!) and then choose Overlay. In the Reports 
dialog that appears, select the output variable cells you 
wish to include in the chart and move them to the right 
side of the dialog using the arrow buttons (see Figure 
12.16). In this example, we selected cells B28 and F28, 

which correspond to the cumulative net profit for years 
1 and 5. Figure 12.17 shows the overlay chart for the 
distributions of cumulative net profit for years 1 and 5. 
This chart makes it clear that the mean value for year 1 
is smaller than for year 5, and the variance in year 5 is 
much larger than that in year 1. This is to be expected  
because there is more uncertainty in predicting farther in 
the future, and the model captures this.

Figure 12.16

Reports Dialog for Selecting 
Output Cells for an Overlay 
Chart

Figure 12.17

Overlay Chart for Year 1 and 
Year 5 Cumulative Net Profit
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Trend Charts

If a simulation has multiple output variables that are related to one another (such as over 
time), you can view the distributions of all output variables on a single chart, called a 
trend chart. In Analytic Solver Platform, the trend chart shows the mean values as well 
as 75% and 90% bands (probability intervals) around the mean. For example, the band 
representing the 90% band range shows the range of values into which the output variable 
has a 90% chance of falling.

Figure 12.18

Trend Chart for Cumulative 
Net Profit Over 5 Years

ExaMpLE 12.12 Creating a Trend Chart 

To create a trend chart for the Moore Pharmaceuticals 
example, click the Charts button in the Analysis group 
in the Analytic Solver Platform ribbon. Click Multiple 
 Simulation Results and then choose Trend. (Be care-
ful not to confuse “Multiple Simulation Results” with 
“ Multiple Simulations” in the drop-down menu; these 
are different options.) In the Reports dialog that appears, 
 select the output variable cells you wish to include in the 

chart and move them to the right side of the dialog using  
the arrow buttons. In this example, we selected cells B28 
through F28, which correspond to the cumulative net 
profit for all years. Figure 12.18 shows a trend chart for 
these variables. We see that although the mean net cumu-
lative profit increases over time, so does the variation, in-
dicating that the uncertainty in forecasting the future also 
increases with time.

Box-Whisker Charts

Finally, Analytic Solver Platform can create box-whisker charts to illustrate the statistical prop-
erties of the output variable distributions in an alternate fashion. A box-whisker chart shows 
the minimum, first quartile, median, third quartile, and maximum values in a data set graphi-
cally. The first and third quartiles form a box around the median, showing the middle 50% of 
the data, and the whiskers extend to the minimum and maximum values. They can be created 
by clicking on the Charts button similar to the overlay and trend charts. Figure 12.19 shows an 
example for the cumulative net profits in the Moore Pharmaceuticals simulation.
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Simulation Reports

Analytic Solver Platform allows you to create reports in the form of Excel worksheets that 
summarize a simulation. To do this, click the Reports button in the Analysis group in the 
Analytic Solver Platform ribbon, and choose Simulation from the options that appear. The 
report summarizes basic statistical information about the model, simulation options, un-
certain variables, and output variables, most of which we have already seen in the charts. 
It is useful to provide a record of the simulation for quick reference.

Newsvendor Model

In Chapter 11, we developed the newsvendor model to analyze a single-period purchase 
decision. Here we apply Monte Carlo simulation to forecast the profitability of different 
purchase quantities when the future demand is uncertain. 

Let us suppose that the store owner kept records for the past 20 years on the number 
of boxes sold at full price, as shown in the spreadsheet in Figure 12.20 (Excel file News-
vendor Model with Historical Data). The distribution of sales seems to be some type of 
positively skewed unimodal distribution.

The Flaw of averages

You might wonder why we cannot simply use average values for the uncertain inputs in 
a decision model and eliminate the need for Monte Carlo simulation. Let’s see what hap-
pens if we do this for the newsvendor model. 

Figure 12.19

Example of Analytic Solver 
Platform Box-Whisker Chart

ExaMpLE 12.13  Using average Values in the Newsvendor Model 

If we find the average of the historical candy sales, we 
obtain 44.05, or, rounded to a whole number, 44. Using 
this value for demand and purchase quantity, the model 
predicts a profit of $264 (see  Figure 12.21). However, if we 

construct a data table to evaluate the profit for each of the 
historical values (also shown in  Figure 12.21), we see that 
the average profit is only $255.00.
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Dr. Sam Savage, a strong proponent of spreadsheet modeling, coined the term the 
flaw of averages to describe this phenomenon. Basically what this says is that the evalu-
ation of a model output using the average value of the input is not necessarily equal to the 
average value of the outputs when evaluated with each of the input values. The reason this 
occurs in the newsvendor example is because the quantity sold is limited to the smaller of 
the demand and purchase quantity, so even when demand exceeds the purchase quantity, 
the profit is limited. Using averages in models can conceal risk, and this is a common  error 
among users of analytic models. This is why Monte Carlo simulation is valuable. 

Monte Carlo Simulation Using Historical Data

We can perform a Monte Carlo simulation by resampling from the historical sales 
 distribution—that is, by selecting a value randomly from the historical data as the demand 
in the model.

Figure 12.20

Newsvendor Model with 
Historical Data

Figure 12.21

Example of the Flaw of 
Averages
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ExaMpLE 12.14  Simulating the Newsvendor Model Using Resampling 

In the Newsvendor Model with Historical Data spread-
sheet, we have the historical data listed in the range 
D2:D21. All we need to do is to define the distribution of 
demand in cell B11 using the PsiDisUniform function in 
Analytic Solver Platform. This function will sample a value 
from the historical data for each trial of the simulation. 
Enter the formula =PsiDisUniform(D2:D21) into cell B11. 
Now, you may set up the simulation model by defining the 

profit cell B17 as an uncertain function cell, set the simula-
tion options (we chose 5,000 trials), and run the simulation. 
Figure 12.22 shows the results; for the purchase quantity 
of 44, the mean profit is $255.00. The frequency chart, 
also shown in Figure 12.22, looks somewhat odd. How-
ever, recall that if demand exceeds the purchase quantity,  
then sales are limited to the number purchased, which 
 explains the large spike at the right of the distribution.

Figure 12.22

Newsvendor Model 
Simulation Results Using 
Resampling for Purchase 
Quantity = 44

Monte Carlo Simulation Using a Fitted Distribution

While sampling from empirical data is easy to do, it does have some drawbacks. First, the 
empirical data may not adequately represent the true underlying population because of 
sampling error. Second, using an empirical distribution precludes sampling values outside 
the range of the actual data. Therefore, it is usually advisable to fit a distribution and use 
it for the uncertain variable. We can do this by fitting a distribution to the data using the 
techniques we described in Chapter 5. 

if you wish to accept the fitted distribution. Click Yes, and a 
pop-up will allow you to drag and place the function into a 
cell in the spreadsheet. Place the Psi function for the nega-
tive binomial distribution in the first cell of the data (cell D2). 
To use this for the simulation, simply reference cell D2 in cell 
B11, corresponding to the demand in the model. Figure 12.24 
shows the results, which are quite similar to the results found 
by resampling in Example 12.14.

ExaMpLE 12.15  Using a Fitted Distribution for Monte Carlo Simulation 

Following the steps in Example 5.42, first highlight the 
range of the data in the Newsvendor Model with Historical 
Data spreadsheet, and click Fit from the Tools group in the 
 Analytic Solver Platform ribbon. Because the number of 
sales is discrete, select the Discrete radio button in the Fit 
Options dialog and click Fit. Figure 12.23 shows the best- 
fitting distribution, a negative  binomial distribution. When you 
attempt to close the dialog, Analytic Solver Platform will ask 
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Analytic Solver Platform has a feature called Interactive Simulation. Whenever the 
Simulate button is clicked, you will notice that the lightbulb in the icon turns bright. If 
you change any number in the model, Analytic Solver Platform will automatically run the 
simulation for that quantity; this makes it easy to conduct what-if analyses. For example, 
changing the purchase quantity to 50 yields the results shown in Figure 12.25. The mean 
profit drops to $246.05. You could use this approach to identify the best purchase quantity; 
however, a more systematic method is described in the online Supplementary Chapter B.

Overbooking Model

In Chapter 11, we developed a model for overbooking decisions (Hotel Overbooking 
Model). In any realistic overbooking situation, the actual customer demand as well as the 
number of cancellations would be random variables. We illustrate how a simulation model 
can help in making the best overbooking decision and introduce a new type of distribution 
in Analytic Solver Platform, a custom distribution.

Figure 12.23

Best-Fitting Distribution for 
Historical Candy Sales

Figure 12.24

Newsvendor Simulation 
Results Using the Negative 
Binomial Distribution for 
Purchase Quantity = 44
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The Custom Distribution in Analytic Solver Platform

Let us assume that historical data for the demand have been collected and summarized in 
a relative frequency distribution, but that the actual data are no longer available. These are 
shown in columns D and E in Figure 12.26 (Excel file Hotel Overbooking Monte Carlo 
Simulation Model with Custom Demand). We also assume that each reservation has a 
 constant probability p = 0.04 of being canceled; therefore, the number of cancellations 
(cell B14) can be modeled using a binomial distribution with n = number of reservations 
made and p = probability of cancellation. 

Figure 12.25

Newsvendor Simulation 
Results for Purchase 
Quantity = 50

Figure 12.26

Hotel Overbooking 
Simulation Model and 
Demand Distribution

ExaMpLE 12.16  Defining a Custom Distribution in Analytic Solver Platform 

To use the relative frequency distribution to define the uncer-
tain demand in the Hotel Overbooking Model with Custom 
Demand (note that this spreadsheet is already completed; 
to follow along, copy columns D and E to the original  Hotel 
Overbooking Model worksheet) first select cell B12 that 

corresponds to the demand, then click on the Distributions 
button in the Analytic Solver Platform ribbon and choose 
Discrete from the Custom category. In the dialog, edit the 
range for “values” and “weights” in the Parameters section 
in the fields on the right. Values correspond to the range 

(continued )
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Figures 12.29 and 12.30 show frequency charts of the two output variables—number 
of overbooked customers and net revenue—for accepting 310 reservations. There is about 
a 14% chance of overbooking at least one customer. Observe that there seem to be two 
different distributions superimposed over one another in the net revenue frequency distri-
bution. Can you explain why this is so? As with the newsvendor problem, we can easily 
change the number of reservations made, and the Interactive Simulation capability will 
quickly run a new simulation and change the results in the frequency charts.

Cash Budget Model

Cash budgeting is the process of projecting and summarizing a company’s cash inflows 
and outflows expected during a planning horizon, usually 6 to 12 months.3 The cash bud-
get also shows the monthly cash balances and any short-term borrowing used to cover 

3Douglas R. Emery, John D. Finnerty, and John D. Stowe, Principles of Financial Management (Upper 
Saddle River, NJ: Prentice Hall, 1998): 652–654.

Figure 12.27

Custom Discrete Distribution 
Dialog

Figure 12.28

Binomial Distribution Dialog

of demand in cells D2:D13, and weights are the relative 
frequencies or probabilities in cells E2:E13. The dialog will 
then display the actual form of the distribution, as shown in  
Figure 12.27. Alternatively, you could use the function =Psi
Discrete($D$2:$D$13,$E$2:$E$13) in cell B12. 

To model the number of cancellations in cell B14, 
choose the binomial distribution from the Discrete cat-
egory in the Distributions list. Note that the number of  

trials must be the value in cell B13. This is critical in this 
example, because the number of reservations made will 
change, depending on the customer demand in cell B12. 
Therefore, in the Parameters section of the dialog, we 
must reference cell B13 and not use a constant value, 
as shown in  Figure 12.28. Alternatively, we could use the 
function =PsiBinomial(B13, 0.04) in cell B14. Define cells 
B17 and B18 as output cells and run the model.
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cash  shortfalls. Positive cash flows can increase cash, reduce outstanding loans, or be used 
elsewhere in the business; negative cash flows can reduce cash available or be offset with 
additional borrowing. Most cash budgets are based on sales forecasts. With the inherent 
uncertainty in such forecasts, Monte Carlo simulation is an appropriate tool to analyze 
cash budgets.

Figure 12.31 shows an example of a cash budget spreadsheet (Excel file Cash 
Budget Model). The highlighted cells represent the uncertain variables and outputs 
we want to predict from the simulation model. The budget begins in April (thus, sales 
for April and subsequent months are uncertain). These are assumed to be normally 
 distributed with a standard deviation of 10% of the mean. In addition, we assume that 
sales in adjacent months are correlated with one another, with a correlation coefficient 
of 0.6. On average, 20% of sales are collected in the month of sale, 50%, in the month 
following the sale, and 30%, in the second month following the sale. However, these 
figures are uncertain, so a uniform distribution is used to model the first two values 
(15% to 20% and 40% to 50%, respectively), with the assumption that all remaining 
revenues are collected in the second month following the sale. Purchases are 60% of 

Figure 12.29

Frequency Chart of Number 
of Overbooked Customers

Figure 12.30

Frequency Chart of Net 
Revenue
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sales and are paid for 1 month prior to the sale. Wages and salaries are 12% of sales 
and are paid in the same month as the sale. Rent of $10,000 is paid each month. Addi-
tional cash operating expenses of $30,000 per month will be incurred for April through 
July, decreasing to $25,000 for August and September. Tax payments of $20,000 and 
$30,000 are expected in April and July, respectively. A capital expenditure of $150,000 
will occur in June, and the company has a mortgage payment of $60,000 in May. The 
cash balance at the end of March is $150,000, and managers want to maintain a mini-
mum balance of $100,000 at all times. The company will borrow the amounts necessary 
to ensure that the minimum balance is achieved. Any cash above the minimum will be 
used to pay off any loan balance until it is eliminated. The available cash balances in 
row 25 of the spreadsheet are the output variables we wish to predict.

Figure 12.31

Cash Budget Model

the uniform distribution =PsiUniform(15%, 20%), and  
for the previous month collections rate in cell B8, use  
=PsiUniform(40%, 50%). Define the available balances in 
row 25 as output variables in the simulation model. The 
Excel file Cash Budget Monte Carlo Simulation Model 
provides the completed simulation model.

ExaMpLE 12.17 Simulating the Cash Budget Model without Correlations 

Build the basic simulation model by defining distributions 
for each of the uncertain variables. First, specify the sales 
for April through October (cells E5:K5) to be normally 
 distributed with means equal to the values in the spread-
sheet and standard deviations equal to 10% of the means. 
For example, use the function =PsiNormal(600000,60000) 
in cell E5. For the current collections rate in cell B7, use 

Figure 12.32 shows the results of Example 12.17 in the form of a trend chart. We see 
that there is a high likelihood that the cash balances for the first 3 months will be negative 
before increasing. Viewing the frequency charts and statistics for the individual months 
will provide the details of the distributions of likely cash balances and the probabilities 
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Figure 12.32

Cash Balance Simulation 
Trend Chart

of requiring loans. For example, in April, the probability that the balance will not exceed 
the minimum of $100,000 and require an additional loan is about 0.70 (see Figure 12.33). 
This actually worsens in May and June and becomes zero by July.

Correlating Uncertain Variables

Unless you specify otherwise, Monte Carlo simulation assumes that each of the uncertain 
variables is independent of all the others. This may not be the case. In the cash budget 
model, if the sales in April are high, then it would make sense that the sales in May 
would be high also. Thus, we might expect a positive correlation between these variables. 
In this scenario, we assume a correlation coefficient of 0.6 between sales in successive 
months. The following example shows how to incorporate this assumption into the simu-
lation model.

Figure 12.33

Likelihood of Not Meeting 
Minimum Balance in April
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ExaMpLE 12.18  Incorporating Correlations in Analytic Solver Platform 

To correlate the uncertain variables in the Cash Budget 
Monte Carlo Simulation Model, first click the  Correlations 
button in the Simulation Model group in the Analytic Solver 
Platform ribbon. This brings up the Create new correlation 
matrix dialog shown in Figure 12.34 that lists the uncertain 
variables in the model. In this example, we are only correlat-
ing the variables in the range E5:K5. In the left pane, hold the 
Ctrl key and click on each of the distributions in the range 
E5:K5, or click on $E5$, hold the Shift key and then click 
on $K$5 to select them. Then click on the right arrow. (The 
double right arrow selects all of them, which we do not want 
in this example.) This creates an initial correlation matrix 
as shown in Figure 12.35. The numerical values show the 
correlations (initially set to zero); the green distributions are 
those used in the uncertain cells, and the blue scatterplots 
show visual representations of the correlations between the 
variables. Replace the zeros by the correlations you want 
in the model. In this example, we will assume a 0.6 correla-
tion between each successive month. In boxes 2 and 3, you 
can name the correlation matrix and specify the location to 
place it in the spreadsheet. This is shown in Figure 12.36.

Now, it is very important to ensure that the correlations 
are mathematically consistent with each other (a mathemat-
ical property called positive semidefinite). You can select 
the Validate button in the Manage Correlations dialog, or 
Analytic Solver Platform will perform an  automatic check for 
this when you try to close the dialog. If the correlation  matrix 

does not satisfy this property, it will ask you if you want to 
adjust the correlations so that it does. Always choose Yes. 
Click the Update Matrix button (you can make changes 
manually, but we recommend this only for advanced users) 
and then Accept Update. The adjusted matrix is shown in 
Figure 12.37. Note that the correlations between successive 
months are close to 0.6, but that the matrix now includes 
some small correlations between other months. This en-
sures the mathematical consistency needed to run the sim-
ulation. You may now close the dialog.

The cell range of the correlation matrix is used 
in the function PsiCorrMatrix(cell range, position, in-
stance), where position corresponds to the number 
of the uncertain variables in the correlation matrix 
and instance refers to the name given to the correla-
tion matrix. Analytic Solver Platform adds these func-
tions to the distributions for the uncertain variables 
that are correlated. For example, the  formula in 
cell E5 for April sales is changed to: = PsiNormal 
(600000,60000,PsiCorrMatrix($B$33:$H$39,1, “Monthly 
Correlations”)). The  formula in cell F5 for May sales is 
changed to: =PsiNormal(700000,70000,PsiCorrMatrix 
($B$33:$H$39,2, “Monthly Correlations”)), and so on. 
Now set the simulation options and run the model. The 
Excel file Cash Budget Monte Carlo Simulation Model 
with Correlations provides the completed model for this 
example.

Figure 12.34

Create New Correlation 
Matrix Dialog
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Figure 12.35

Initial Correlation Matrix

Figure 12.36

Completed Correlation 
Matrix

Figure 12.37

Adjusted Correlations
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4Based on Yusuf Jafry, Christopher Marrison, and Ulrike Umkehrer-Neudeck, “Hypo International  
Strengthens Risk Management with a Large-Scale, Secure Spreadsheet-Management Framework,” Interfaces, 
38, 4 (July–August 2008): 281–288.

Implementing large-scale Monte Carlo models in 
spreadsheets in practice can be challenging. This ex-
ample shows how one company used Monte Carlo 
simulation for commercial real estate credit-risk 
analysis but had to develop new approaches to effec-
tively implementing spreadsheet analytics across the 
company.

Based in Stuttgart, Germany, Hypo Real Estate 
Bank International (Hypo), with a large portfolio in 
commercial real estate lending, undertakes some of 
the world’s largest real estate transactions. Hypo was 
faced with the challenge of complying with Basel II 
banking regulations in Europe. Basel II was a new reg-
ulation for setting the minimum capital to be held in  
reserve by internationally active banks. If a bank is 
able to comply with the more demanding require-
ments of the regulation, it can potentially save 
E20–E60 million per year in capital costs. To qualify 
however, Hypo needed new risk models and report-
ing systems. The company also wished to upgrade 
its internal reporting and management framework to 
provide better analytical tools to its lending officers, 
who were responsible for structuring new loans, and 
to provide its managers with better insights into the 
risks of the overall portfolio.

Monte Carlo simulation is the only practical ap-
proach for analyzing risk models the bank needed. For 
example, in one commercial real estate application, 
200 different macroeconomic and market variables are 
typically simulated over 20 years. The cash-flow mod-
eling process can be even more complex, particularly if 
the effects of all the intricate details of the transaction 
must be quantified. However, the computational pro-
cess of Monte Carlo simulation is numerically intensive 

because the entire spreadsheet must be recalculated 
both for each iteration of the simulation and each in-
dividual asset (or transaction) within the portfolio. This 
pushes the limits of stand-alone Excel models, even 
for a single asset. Moreover, because the bank is usu-
ally interested in analyzing its entire portfolio of thou-
sands of assets, in practice, it becomes impossible to 
do so using stand-alone Excel.

Therefore, Hypo needed a way to implement the 
complex analytics of simulation in a way that its global 
offices could use on all their thousands of loans. In 
addition to the computational intensity of simulation 
analytics, the option to build the entire simulation 
framework in Excel can lead to human error, which 

analytics in practice:  Implementing Large-Scale Monte Carlo  
Spreadsheet Models4

You will observe some slight differences in the results when uncertain variables 
are correlated. For example, the standard deviation for the September balance is lower 
when correlations are included in the model than when they are not. Generally, induc-
ing correlations into a simulation model tends to reduce the variance of the predicted 
outputs.

V
la

di
tto

/S
hu

tte
rs

to
ck

.c
om

M12_EVAN5448_02_SE_C12.indd   432 12/09/15   8:03 PM



 Chapter 12  Monte Carlo Simulation and Risk Analysis 433

they called spreadsheet risk. Spreadsheet risks that 
Hypo wished to minimize included the following:

•	Proliferation of spreadsheet models that are 
stored on individual users’ desktop computers 
throughout the organization are untested and lack 
version data, and the unsanctioned manipulation 
of the results of spreadsheet calculations.

•	Potential for serious mistakes resulting from typo-
graphical and “cut and copy-and-paste” errors when 
entering data from other applications or spreadsheets.

•	Accidental acceptance of results from incomplete 
calculations.

•	Errors associated with running an insufficient 
number of Monte Carlo iterations because of data 
or time constraints.

Given these potential problems, Hypo deemed 
a pure Excel solution as  impractical. Instead, they 
used a consulting firm’s proprietary software, called 
the Specialized Finance System (SFS), that embeds 
spreadsheets within a  high-performance, server-based 
system for enterprise applications. This eliminated the 
spreadsheet risks but allowed users to exploit the flex-
ible programming power that spreadsheets provide, 
while giving confidence and trust in the results. The new 
system has improved management reporting and the 
efficiency of internal processes and has also provided 
insights into structuring new loans to make them less 
risky and more profitable.

Box-whisker chart
Flaw of averages
Marker line
Monte Carlo simulation
Overlay chart

Risk
Risk analysis
Sensitivity chart
Trend chart
Uncertain function

Key Terms

problems and Exercises

 1. For the market share model in Problem 5 of Chapter 11,  
suppose that the estimate of the percentage of new 
purchasers who will ultimately try the brand is un-
certain and assumed to be normally distributed with 
a mean of 35% and a standard deviation of 4%. Use 
the NORM.INV function and a one-way data table to 
conduct a Monte Carlo simulation with 25 trials to 
find the distribution of the long-run market share.

 2. For the garage-band model in Problem 7 of Chapter 11,  
suppose that the expected crowd is normally distrib-
uted with a mean of 3,000 and standard deviation of 
200. Use the NORM.INV function and a one-way 
data table to conduct a Monte Carlo simulation with 
25 trials to find the distribution of the expected profit.

 3. A professional football team is preparing its budget 
for the next year. One component of the budget is 

the revenue that they can expect from ticket sales. 
The home venue, Dylan Stadium, has five different 
seating zones with different prices. Key information 
is given below. The demands are all assumed to be 
normally distributed.

Seating 
Zone

Seats 
 available

Ticket 
price

Mean 
 Demand

Standard 
 Deviation

First 
Level 
Sideline

15,000 $100.00 14,500 750

Second 
Level

5,000 $90.00 4,750 500

First 
Level 
End Zone

10,000 $80.00 9,000 1,250

(continued )
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Seating 
Zone

Seats 
 available

Ticket 
price

Mean 
 Demand

Standard 
 Deviation

Third 
Level 
Sideline

21,000 $70.00 17,000 2,500

Third 
Level 
End Zone

14,000 $60.00 8,000 3,000

Determine the distribution of total revenue under these 
assumptions using an Excel data table with 50 simu-
lated trials. Summarize your results with a  histogram.

 4. For the new-product model in Problem 9 of  Chapter 11,  
suppose that the first-year sales volume is normally 
distributed with a mean of 100,000 units and a stan-
dard deviation of 10,000. Use the NORM.INV func-
tion and a one-way data table to conduct a Monte 
Carlo simulation to find the distribution of the net 
present value profit over the 3-year period.

 5. Financial analysts often use the following model to 
characterize changes in stock prices:

Pt = P0e
(m- 0.5s2)t+sZ2t

where
P0 = current stock price
Pt = price at time t
m =  mean (logarithmic) change of the stock 

price per unit time
s =  (logarithmic) standard deviation of price 

change
Z = standard normal random variable

This model assumes that the logarithm of a stock’s price 
is a normally distributed random variable (see the dis-
cussion of the lognormal distribution and note that the 
first term of the exponent is the mean of the lognormal 
distribution). Using historical data, we can estimate val-
ues for m and s. Suppose that the  average daily change 
for a stock is $0.003227, and the standard deviation is 
0.026154. Develop a spreadsheet to simulate the price 
of the stock over the next 30 days if the current price is 
$53. Use the Excel function NORM.S.INV(RAND( )) 
to generate values for Z. Construct a chart showing the 
movement in the stock price.

 6. Use Analytic Solver Platform to simulate the 
 Outsourcing Decision Model under the assumptions 
that the production volume will be triangular with 
a minimum of 800, maximum of 1,700, and most 
likely value of 1,400, and that the unit supplier cost 

is  normally distributed with a mean of $175 and a 
standard deviation of $12. Find the probability that 
outsourcing will result in the best decision.

 7. For the Outsourcing Decision Model, suppose that the 
demand volume is lognormally distributed with a mean 
of 1,500 and standard deviation of 500. What is the 
distribution of the cost differences between manufac-
turing in-house and purchasing? What decision would 
you recommend? Define both the cost difference 
and decision as output cells. Because output cells in 
 Analytic Solver Platform must be numeric, replace the 
formula in cell B20 with =IF(B19<=0,1,0); that is, 1 
represents manufacturing and 0 represents outsourcing.

 8. Suppose that several variables in the model for the 
economic value of a customer in Example 11.1 in 
Chapter 11 are uncertain. Specifically, assume that 
the revenue per purchase is normal with a mean of 
$50 and standard deviation of $5 and the defection 
rate is uniform between 20% and 40%. Find the dis-
tribution of V using Analytic Solver Platform.

 9. For the profit model developed in Example 11.2 in 
Chapter 11 and the Excel model in Figure 11.4, sup-
pose that the demand is triangular with a minimum 
of 35,000, maximum of 60,000 and most likely value 
of 50,000; fixed costs are normal with a mean of 
$400,000 and a standard deviation of $25,000; and unit 
costs are triangular with a minimum of $22.00, most 
likely value of $24.00, and maximum value of $30.00.

a. Use Analytic Solver Platform to find the distribu-
tion of profit.

b. What is the mean profit that can be expected?

c. How much profit can be expected with probabil-
ity of at least 0.7?

d. Find a 95% confidence interval for a 5,000-trial 
simulation.

e. Interpret the sensitivity chart.

 10. For the Moore Pharmaceuticals model, suppose that 
analysts have made the following assumptions:

•	R&D costs: Triangular($500, $700, $800) in 
 millions of dollars

•	Clinical trials costs: Triangular($135, $150, 
$160) in millions of dollars

•	Market size: Normal(2000000, 250000)

•	Market share in year 1: Uniform(6%, 10%)

All other data are considered constant. Develop and 
run a Monte Carlo simulation model to predict the 
net  present value and cumulative net profit for each 
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year. Summarize your results in a short memo to the 
R&D director.

 11. Cruz Wedding Photography (see Problem 15 in 
 Chapter 11) believes that the average number of wed-
ding bookings per year can be estimated by triangular 
distribution with a minimum of 10,  maximum of 22, 
and most likely value of 15. One of the key variables 
in developing his business plan is the life he can expect 
from a single digital single lens reflex (DSLR) camera 
before it needs to be replaced. Due to heavy usage, the 
shutter life expectancy is estimated by a normal distri-
bution with a mean of 150,000 clicks with a standard 
deviation of 10,000. For each booking, the average 
number of photographs taken is assumed to be nor-
mally distributed with a mean of 2,000 with a standard 
deviation of 300. Develop a simulation model to deter-
mine the distribution of the camera life (in years).

 12. Use the Newsvendor Model spreadsheet to set up and 
run a Monte Carlo simulation assuming that demand 
is Poisson with a mean of 45 but a minimum value of 
40 (use the lower cutoff parameter in the distribution 
dialog to truncate the distribution and ensure that no 
values less that 40 are generated during the simula-
tion). Find the distribution of profit for order quanti-
ties of 40, 45, and 50.

 13. Simulate the newsvendor model for the mini-mart sit-
uation described in Problem 12 of Chapter 11. Use the 
IntUniform distribution in Analytic Solver  Platform  
to model the demand and find the distribution of profit 
for order quantities of 10, 15, 20, 25, and 30.

 14. Using the profit model developed in Chapter 11, 
implement a financial simulation model for a new 
product proposal and determine a distribution of prof-
its using the discrete distributions below for the unit 
cost, demand, and fixed costs. Price is fixed at $1,000. 
Unit costs are unknown and follow the distribution:

Unit Cost probability

$400 0.20

$600 0.40

$700 0.25

$800 0.15

Demand is also variable and follows the following 
distribution:

Demand probability

120 0.25

140 0.50

160 0.25

Fixed costs are estimated to follow the following 
 distribution:

Fixed Costs probability

$45,000 0.20

$50,000 0.50

$55,000 0.30

Experiment with the model to determine the best 
production quantity to maximize the average profit. 
Would you conclude that this product is a good 
 investment?

 15. The manager of the extended-stay hotel in Problem 
27 of Chapter 11 believes that the number of rooms 
rented during any given week has a triangular dis-
tribution with minimum 32, most likely 38, and 
maximum 50. The weekly price is $950 and weekly 
operating costs follow a normal distribution with 
mean $20,000 and a standard deviation of $2500 but 
with a minimum value of $15,000 (lower cutoff pa-
rameter in the dialog; this prevents values less than 
$15,000 from being generated). Run a simulation to 
answer the following questions.

a. What is the probability that weekly profit will be 
positive?

b. What is the probability that weekly profit will 
 exceed $20,000?

c. What is the probability that weekly profit will be 
less than $10,000?

 16. Develop a Monte Carlo simulation model for the 
garage-band in Problem 7 in Chapter 11 with the 
 following assumptions. The expected crowd is nor-
mally distributed with mean of 3,000 and standard 
deviation 400 (truncate the distribution to have a mini-
mum of 0). The average expenditure on concessions is 
also normally distributed with mean $15, standard de-
viation $3, and minimum 0. Identify the mean profit, 
the minimum observed profit, maximum observed 
profit, and probability of achieving a profit of at least 
$60,000. Develop and interpret a confidence interval 
for the mean profit for a 5,000-trial simulation.

 17. Tanner Park (see Problem 14 in Chapter 11) is a small 
amusement park that provides a variety of rides and 
outdoor activities for children and teens. In a typical 
summer season, the number of adult tickets sold has a 
normal distribution with a mean of 20,000 and a stan-
dard deviation of 2,000. The number of children’s 
tickets sold has a normal distribution with a mean 
of 10,000 and a standard deviation of 1,000. Adult 
ticket prices are $18 and the children’s price is $10.  
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Revenue from food and beverage concessions is es-
timated to be between $50,000 and $100,000, with 
a most likely value of $60,000. Likewise, souvenir 
revenue has a minimum of $20,000, most likely 
value of $25,000, and a maximum value of $30,000. 
Variable costs per person are $3, and fixed costs 
amount to $150,000. Determine the profitability of 
this business. What is the probability that the park 
will incur a loss in any given season?

 18. Lily’s Gourmet Ice Cream Shop offers a variety of 
gourmet ice cream and shakes. Although Lily’s com-
petes with other ice cream shops and frozen yogurt 
stores, none of them offer gourmet ice creams with 
a wide variety of different flavors. The shop is also 
 located in an upscale area and therefore can com-
mand higher prices. The owner is a culinary school 
graduate without much business experience and 
has engaged the services of one of her friends who 
 recently obtained an MBA to assist her with finan-
cial analysis of the business and evaluation of the 
profitability of introducing a new product. The shop 
is open during the spring and summer, with higher 
sales in the summer season.

Based on past observation, Lily has defined three 
sales scenarios for the new product.

Summer:

•	High—3,000 Units

•	Most Likely—2,500 Units

•	Low—2,100 Units

Spring:

•	High—2,500 Units

•	Most Likely—1,500 Units

•	Low—1,000 Units

The expected price is $3.00. However, the unit cost is 
uncertain, and driven by the costs of the ingredients 
she has to buy for the product. This is estimated to be 
between $1.40 and $2.00, with a most likely value of 
$1.50 in the summer, but in the spring, to most likely 
cost is $2.00 because the ingredients are more  difficult 
to obtain. Fixed costs are estimated to be $2,600.

a. Find the distribution of profit for each season and 
the overall distribution.

b. How does a price increase of $.50 in the sum-
mer and decrease of $.50 in the spring impact the 
results?

 19. A plant manager is considering investing in a new 
$30,000 machine. Use of the new machine is 

 expected to generate a cash flow of about $8,000 per 
year for each of the next 5 years. However, the cash 
flow is uncertain, and the manager estimates that the 
actual cash flow will be normally distributed with a 
mean of $8,000 and a standard deviation of $500. 
The discount rate is set at 8% and assumed to remain 
constant over the next 5 years. The company evalu-
ates capital investments using net present value. 
How risky is this investment? Develop an appropri-
ate simulation model and conduct experiments and 
statistical output analysis to answer this question.

 20. The Kelly Theater produces plays and musicals for a 
regional audience. For a typical performance, the the-
ater sells at least 250 tickets and occasionally reaches 
its capacity of 600 seats. Most often, about 450 tickets 
are sold. The fixed cost for each performance is nor-
mal with a mean of $2,500 and a standard deviation of 
$250. Ticket prices range from $30 to $70 depending 
on the location of the seat. Of the 600 seats, 150 are 
priced at $70, 200 at $55, and the remaining at $30. 
Of all the tickets sold, the $55 seats sell out first. If 
the total demand is at least 500, then all the $70 seats 
sell out. If not, then between 50% and 75% of the $70 
seats sell, with the remainder being the $30 seats. If, 
however, the total demand is less than or equal to 350, 
then the number of $70 and $30 seats sold are usually 
split evenly. The theater runs 160 performances per 
year and incurs an annual fixed cost of $2 million. De-
velop a simulation model to evaluate the profitability 
of the theater. What is the distribution of net profit and 
the risk of losing money over a year?

 21. Develop a simulation model for a 3-year financial 
analysis of total profit based on the following data and 
information. Sales volume in the first year is estimated 
to be 100,000 units and is projected to grow at a rate 
that is normally distributed with a mean of 7% per year 
and a standard deviation of 4%. The selling price is 
$10, and the price increase is  normally distributed with 
a mean of $0.50 and standard deviation of $0.05 each 
year. Per-unit variable costs are $3, and annual fixed 
costs are $200,000. Per-unit costs are expected to in-
crease by an amount normally distributed with a mean 
of 5% per year and standard deviation of 2%. Fixed 
costs are expected to increase following a normal dis-
tribution with a mean of 10% per year and standard de-
viation of 3%. Based on 10,000 simulation trials, find 
the average 3-year cumulative profit. Generate and ex-
plain a trend chart showing net profit by year.

 22. The Executive Committee of Reder Electric Vehicles 
(see Problem 16 in Chapter 11) is debating whether 
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to replace its original model, the REV-Touring, with 
a new model, the REV-Sport, which would appeal to 
a younger audience. Whatever vehicle chosen will 
be produced for the next 4 years, after which time 
a reevaluation will be necessary. The REV-Sport 
has passed through the concept and initial design 
phases and is ready for final design and manufac-
turing. Final development costs are estimated to be 
$75 million, and the new fixed costs for tooling and 
manufacturing are estimated to be $600 million. The 
REV-Sport is expected to sell for $30,000. The first 
year sales for the REV-Sport is estimated to be nor-
mally distributed with an average of 60,000/year and 
standard deviation of 12,000/year. The sales growth 
for the subsequent years is estimated to be normally 
distributed with an average of 6% and standard de-
viation of 2%. The variable cost per vehicle is uncer-
tain until the design and supply-chain decisions are 
finalized but is estimated to be between $20,000 and 
$28,000 with the most likely value being $22,000. 
Next-year sales for the REV-Touring are estimated 
to be 50,000 with a standard deviation of 9,000/year, 
but the sales are expected to decrease at a rate that is 
normally distributed with a mean of 10% and stan-
dard deviation of 3.5% for each of the next 3 years. 
The selling price is $28,000. Variable costs are con-
stant at $21,000. Since the model has been in produc-
tion, the fixed costs for development have already 
been recovered. Develop a 4-year Monte Carlo simu-
lation model to recommend the best decision using a 
net present value discount rate of 5%.

 23. Develop and analyze a simulation model for Koehler 
Vision Associates (KVA) in Problem 13 of Chapter 11  
with the following assumptions. Assume that the de-
mand is uniform between 110 and 160 per week and 
that anywhere between 10% and 20% of prospective 
patients fail to show up or cancel their exam at the 
last minute. Determine the distribution of net profit 
(revenue less overbooking costs) and number over-
booked for scheduling 133, 140, or 150 patients.

 24. For the Hyde Park Surgery Center scenario described 
in Problem 33 in Chapter 11, suppose that the fol-
lowing assumptions are made. The number of pa-
tients served the first year is uniform between 1,300 
and 1,700; the growth rate for subsequent years is 
triangular with parameters (5%, 8%, 9%), and the 
growth rate for year 2 is independent of the growth 
rate for year 3; average billing is normal with mean 
of $150,000 and standard deviation $10,000; and the 
annual increase in fixed costs is uniform between 5% 

and 7% and independent of other years. Find the dis-
tribution of the NPV of profit over the 3-year horizon 
and analyze the sensitivity and trend charts. Summa-
rize your conclusions.

 25. The Schoch Museum (see Problem 17 in Chapter 
11) is embarking on a 5-year fundraising campaign. 
As a nonprofit institution, the museum finds it chal-
lenging to acquire new donors as many donors do 
not contribute every year. Suppose that the museum 
has identified a pool of 8,000 potential donors. The 
actual number of donors in the first year of the cam-
paign is estimated to be somewhere between 60% 
and 75% of this pool. For each subsequent year, the 
museum expects that a certain percentage of current 
donors will discontinue their contributions. This is 
expected to be between 10% and 60%, with a most 
likely value of 35%. In addition, the museum expects 
to attract some percentage of new donors. This is 
assumed to be between 5% and 40% of the current 
years’ donors, with a most likely value of 10%. The 
average contribution in the first year is assumed to be 
$50 and will increase at a rate between 0% and 8% 
each subsequent year, with the most likely increase 
of 2.5%. Develop and analyze a model to predict the 
total funds that will be raised over the 5-year period.

 26. Review the retirement-planning situation described 
in Chapter 11 (Example 11.11). Modify the spread-
sheet to include the assumptions that the annual sal-
ary increase is triangular with a minimum of 1%, 
most likely value of 3%, and maximum value of 5%, 
and that the annual investment return is triangular 
with minimum of 5%, most likely value of 8%, and 
maximum value of 9%. Use Analytic Solver  Platform 
to find the distribution of the ending retirement fund 
balance under these assumptions. How do the results 
compare with the base case?

 27. The retirement planning model described in  
Chapter 11 (Example 11.11) assumes that the data in 
rows 5–8 of the spreadsheet are the same for each 
year of the model. Modify the spreadsheet to allow 
the annual salary increases and return on investment 
to change independently each year and use the in-
formation in Problem 26 to run a simulation model. 
Compare your results to Problem 26.

 28. Adam is 24 years old and has a 401(k) plan through 
his employer, a large financial institution. His com-
pany matches 50% of his contributions up to 6% of 
his salary. He currently contributes the maximum 
amount he can. In his 401(k), he has three funds. 
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 Investment A is a large-cap index fund, which has 
had an average annual growth over the past 10 years 
of 6.63% with a standard deviation of 13.46%. 
 Investment B is a mid-cap index fund with a 10-year 
average annual growth of 9.89% and standard devia-
tion of 15.28%. Finally, Investment C is a small-cap 
Index fund with a 10-year average annual growth rate 
of 8.55% and a standard deviation of 16.90%. Fifty 
percent of his contribution is directed to  Investment A, 
25% to Investment B, and 25% to Investment C. His 
current salary is $48,000 and based on a compensa-
tion survey of financial institutions, he expects an 
average raise of 2.7% with a standard deviation of 
0.4% each year. Develop a simulation model to pre-
dict how much he will have available at age 60.

 29. Develop a realistic retirement planning simulation 
model for your personal situation. If you are currently 
employed, use as much information as you can gather 
for your model, including potential salary increases, 
promotions, contributions, and rates of return based 
on the actual funds in which you invest. If you are 
not employed, try to find information about salaries 
in the industry in which you plan to work and the re-
tirement benefits that companies in that industry of-
fer for your model. Estimate rates of returns based on 
popular mutual funds used for retirement or average 
performance of stock market indexes. Clearly state 
your assumptions and how you arrived at them and 
fully analyze and explain your model results.

 30. Waring Solar Systems provides solar panels and 
other energy-efficient technologies for buildings. 
In response to a customer inquiry, the company is 
 conducting a feasibility study to determine if so-
lar panels will provide enough energy to pay for 
themselves within the payback period. Capacity is 
measured in MWh/year (1000 kWh). This figure is 
determined by the number of panels installed and the 
amount of sunlight the panels receive each year. Ca-
pacity can vary greatly due to weather conditions, es-
pecially clouds and snow. Engineers have determined 
that this client should use an 80MWh/year system. 
The cost of the system and installation is $80,000. 
The amount of power the system will produce is 
normally distributed with a standard deviation of 10 
MWh/year. The solar panels become less efficient 
over time mostly due to clouding of their protective 
cases. The annual loss in efficiency is normally dis-
tributed with a mean of 1% and a standard deviation 
of 0.2% and will apply after the first year. The cli-
ent currently obtains electricity from its provider at 

a rate of $0.109/kWh. Based on analysis of previous 
years’ electric bills, the annual cost of electricity is 
expected to increase following a triangular distribu-
tion with  most likely value of 3%, min of 2.5%, and 
max of 4%, beginning with the first year. The cost of 
capital is estimated to be 5%. Develop a simulation 
model to find the net present value of the technol-
ogy over a 10-year period, including the system and 
installation cost. What is the probability that the sys-
tem will be economical?

 31. Refer back to the college admission director scenario 
(Problem 36 in Chapter 11). Develop a spreadsheet 
model and identify uncertain distributions that you 
believe would be appropriate to conduct a Monte 
Carlo simulation. Based on your model and simula-
tion, make a recommendation on how many scholar-
ships to offer.

 32. J&G Bank receives a large number of credit-card 
applications each month, an average of 30,000 with 
a standard deviation of 4,000, normally distributed. 
Approximately 60% of them are approved, but this 
typically varies between 50% and 70%. Each cus-
tomer charges a total of $2,000, normally distrib-
uted, with a standard deviation of $250, to his or 
her credit card each month. Approximately 85% 
pay off their balances in full, and the remaining in-
cur finance charges. The average finance charge 
has recently varied from 3% to 4% per month. The 
bank also receives income from fees charged for late 
payments and annual fees associated with the credit 
cards. This is a percentage of total monthly charges 
and has  varied between 6.8% and 7.2%. It costs the 
bank $20 per application, whether it is approved or 
not. The monthly maintenance cost for credit-card 
customers is normally distributed with a mean of $10 
and standard deviation of $1.50. Finally, losses due 
to charge-offs of customers’ accounts range between 
4.6% and 5.4% of total charges.

a. Using average values for all uncertain inputs, 
 develop a spreadsheet model to calculate the 
bank’s total monthly profit.

b. Use Monte Carlo simulation to analyze the profit-
ability of the credit card product. Use any of the 
Analytic Solver Platform tools as appropriate to 
fully analyze your results and provide a complete 
and useful report to the manager of the credit card 
division.

 33. SPD Tax Service is a regional tax preparation firm 
that competes with such national chains as H&R 
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Block. The company is considering expanding and 
needs a financial model to analyze the decision to 
open a new store. Key factors affecting this decision 
include the demographics of the proposed location, 
price points that can be achieved in the target mar-
ket, and the availability of funds for marketing and 
advertising. Capital expenditures will be ignored 
because unused equipment from other locations can 
often be shifted to a new store for the first year until 
they can be replaced periodically through the fixed 
cost budget. SPD’s target markets being considered 
are communities with populations between 30,000 
and 50,000, assumed to be uniformly distributed. 
Market demand for tax preparation service is directly 
related to the number of households in the territory; 
approximately 15% of households are anticipated to 
use a tax preparation service. Assuming an average 
of 2.5 people per household, this can be expressed as 
0.15*population/2.5. SPD estimates that its first year 
demand will have a mean of 5% of the total market 
demand, and for every dollar of advertising, the mean 
increases by 2%. The first year demand is assumed 
to be normal with a standard deviation of 20% of the 
mean demand. An advertising budget of $5,000 has 
been approved but is limited to 10% of annual reve-
nues. Demand grows fairly aggressively in the second 
and third year and is assumed to have a triangular dis-
tribution with a minimum value of 20%, most likely 
value of 35%, and maximum value of 40%.  After 
year 3, demand growth is  between 5% and 15%, with 
a most likely value of 7%. The  average charge for 
each tax return is $175, and increases at a rate that 
is normally distributed with a mean of 4% with a 
standard deviation of 1.0% each year. Variable costs 
average $15 per customer, and increase annually at a 
rate that is normally  distributed with a mean of 3% 
with a standard deviation of 1.5%. Fixed costs are 
estimated to be approximately $35,000 for the first 
year, and grow annually at a rate between 1.5% and 
3%. Develop a Monte Carlo simulation model to find 
the distribution of the net present value of the prof-
itability of a new store over a 5-year period using a 
discount rate of 5%.

 34. Sturgill Manufacturing, Inc. needs to predict the 
numbers of machines and employees required to 
 produce its planned production for the coming year. 
The plant runs three shifts continuously during the 
workweek, for a total of 120 hours of capacity per 
week. The shop efficiency (the percent of total time 
available for production), which accounts for  setups, 

changeovers, and maintenance, averages 70% with 
a standard deviation of 5%, which r educes the 
weekly capacity. Six key parts are produced, and  
the plant has three different types of machines to 
 produce each part. The machines are not interchange-
able as they each have a specific function. The time 
to produce each part on each machine varies. The 
mean time and standard deviation (in hours) to 
 produce each part on each machine are shown below:

Mean Time

part Type Machine a Machine B Machine C

1 3.5 2.6  8.9

2 3.4 2.5 8

3 1.8 3.5 12.6

4 2.4 5.8 12.5

5 4.2 4.3 28

6 4 4.3 28

Standard Deviation

part Type Machine a Machine B Machine C

1 0.15 0.12 0.15

2 0.15 0.12 0.15

3 0.1 0.15 0.25

4 0.15 0.15 0.25

5 0.15 0.15 0.5

6 0.15 0.15 0.5

The forecasted demand is shown below

part Type Demand (parts/Week)

1 42

2 18

3 6

4 6

5 6

6 6

Machines A and B only require one person to run two 
machines. Machine C requires only one person per 
machine. Develop a simulation model to  determine 
how many machines of each type and number of 
 employees will be required to meet the forecasted 
demand.

 35. O’Brien Chemicals makes three types of products: 
industrial cleaning, chemical treatment, and some 
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miscellaneous products. Each is sold in 55-gallon 
drums. The selling price and unit manufacturing cost 
are shown below:

Manufacturing

product Type Selling price/drum Cost/drum

Industrial Cleaning

Alkaline Cleaner $700.00 $275.00

Acid Cleaner $600.00 $225.00

Neutral Cleaner $450.00 $150.00

Chemical Treatment

Iron Phosphate $920.00 $400.00

Zirconium $1,350.00 $525.00

Zinc Phosphate $1,400.00 $625.00

Other

Sealant $850.00 $350.00

Rust Prevention $600.00 $260.00

Fixed costs are assumed normal with a mean of 
$5 million and a standard deviation of $20,000. 
 Demands are all assumed to be normally dis-
tributed with the following means and standard 
 deviations:

 
product Type

Mean  
Demand

Standard 
 Deviation

Industrial Cleaning

Alkaline Cleaner 5,000 100

Acid Cleaner 2,000 500

Neutral Cleaner 5,000 350

Chemical Treatment

Iron Phosphate 5,500 250

Zirconium 2,800 130

Zinc Phosphate 4,350 300

Other

Sealant 8,000 350

Rust Prevention 4,250 250

The operations manager has to determine the quan-
tity to produce in the face of uncertain demand. 
One option is to simply produce the mean demand; 
 depending on the actual demand, this could result in 
a shortage (lost sales) or excess inventory. Two other 
options are to produce at a level equal to either 75% 
or 90% of the demand (i.e., find the value so that 75% 
or 90% of the area under the normal distribution is to 
the left). Using Monte Carlo simulation, evaluate and 
compare these three policies and write a report to the 
operations manager summarizing your findings.

Case: performance Lawn Equipment

One of PLE’s manufacturing plants supplies various 
 engine components to manufacturers of motorcycles on 
a just-in-time basis. Planned production capacity for one 
component is 100 units per shift, and the plant operates 
one shift per day. Because of fluctuations in customers’ 
assembly operations, however, demand fluctuates and is 
historically between 80 and 130 units per day. To maintain 
sufficient inventory to meet its just-in-time commitments, 
PLE’s management is considering a policy to run a second 
shift the next day if inventory falls to 50 or below at the 
end of a day (after the daily demand is known). For the 
annual budget planning process, managers need to know 
how many additional shifts will be needed. The fundamen-
tal equation that governs this process each day is

ending inventory = beginning inventory
 + production - demand

Develop a spreadsheet model to simulate 260 working 
days (1 year), and count the number of additional shifts 
that are required. Assume that the initial inventory is 100 
units. Use Psi functions for all uncertain cells in building 
your model. Using the number of additional shifts required 
as the output cell for a Monte Carlo simulation, find the 
distribution of the number of shifts that the company can 
expect to need over the next year. Explain and summarize 
your findings in a report to the plant manager and make 
a recommendation as to how many shifts to plan in next 
year’s budget. 
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13 Linear Optimization

Learning Objectives

After studying this chapter, you will be able to:

•	Apply the four-step process to develop a mathematical 
model for an optimization problem.

•	Recognize different types of constraints in problem 
statements.

•	State the properties that characterize linear 
optimization models.

•	Implement linear optimization models on spreadsheets.

•	Use the standard and premium Solver add-ins to solve 
linear optimization models in Excel.

•	Interpret the Solver Answer Report.

•	Illustrate and solve two-variable linear optimization 
problems graphically.

•	Explain how Solver works.

•	List the four possible outcomes when solving a linear 
optimization model and recognize them from Solver 
messages.

•	Use Solver for conducting what-if analysis of 
optimization models.

•	Interpret the Solver Sensitivity Report.

•	Use the Sensitivity Report to evaluate scenarios.

Ch
ap

te
r 
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Up to now, we have concentrated on the role of descriptive analyt-

ics and predictive analytics in managerial decisions. While many deci-

sions involve only a limited number of alternatives and can be addressed 

using statistical analysis, simple decision models, or simulation, others 

have a very large or even an infinite number of possibilities. We introduced  

optimization—the fundamental tool in prescriptive analytics—in Chapter 1.  

Optimization is the process of selecting values of decision variables that mini-

mize or maximize some quantity of interest and is the most important tool for 

prescriptive analytics.

Optimization models have been used extensively in operations and supply 

chains, finance, marketing, and other disciplines for more than 50 years to help 

managers allocate resources more efficiently and make lower-cost or more- 

profitable decisions. Optimization is a very broad and complex topic; in this 

chapter, we introduce you to the most common class of optimization models—

linear optimization models. In subsequent chapters, we discuss more complex 

types of optimization models.

Building Linear Optimization Models

Developing any optimization model consists of four basic steps:

 1. Identify the decision variables.
 2. Identify the objective function.
 3. Identify all appropriate constraints.
 4. Write the objective function and constraints as mathematical expressions.

Decision variables are the unknown values that the model seeks to determine.  
Depending on the application, decision variables might be the quantities of different prod
ucts to produce, amount of money spent on R&D projects, the amount to ship from a 
warehouse to a customer, the amount of shelf space to devote to a product, and so on. The 
quantity we seek to minimize or maximize is called the objective function; for example, 
we might wish to maximize profit or revenue, or minimize cost or some measure of risk. 
Constraints are limitations, requirements, or other restrictions that are imposed on any 
solution, either from practical or technological considerations or by management policy. 
The presence of constraints along with a large number of variables usually makes identify
ing an optimal solution considerably more difficult and necessitates the use of powerful 
software tools. The essence of building an optimization model is to first identify these 
model components, and then translate the objective function and constraints into mathe
matical expressions.

Identifying Elements for an Optimization Model

Managers can generally describe the decisions they have to make, the performance measures 
they use to evaluate the success of their decisions, and the limitations and requirements they 

M13_EVAN5448_02_SE_C13.indd   442 12/09/15   8:05 PM



 Chapter 13  Linear Optimization 443

face or must ensure rather easily in plain language. The task of the analyst is to take this 
information and extract the key elements that form the basis for developing a model. Here is 
a simple scenario.

ExaMpLE 13.1 Sklenka Ski Company: Identifying Model Components

Sklenka Ski Company (SSC) is a small manufacturer of 
two types of popular all-terrain snow skis, the Jordanelle 
and the Deercrest models. The manufacturing process 
consists of two principal departments: fabrication and 
finishing. The fabrication department has 12 skilled work-
ers, each of whom works 7 hours per day. The finishing 
department has 3 workers, who also work a 7-hour shift. 
Each pair of Jordanelle skis requires 3.5 labor-hours in 
the fabricating department and 1 labor-hour in finishing. 
The Deercrest model requires 4 labor-hours in fabricat-
ing and 1.5 labor-hours in finishing. The company oper-
ates 5 days per week. SSC makes a net profit of $50 on 
the Jordanelle model and $65 on the Deercrest model. In 
anticipation of the next ski-sale season, SSC must plan 
its production of these two models. Because of the pop-
ularity of its products and limited production capacity, its 
products are in high demand, and SSC can sell all it can 
produce each season. The company anticipates selling 
at least twice as many Deercrest models as Jordanelle 
models. The company wants to determine how many of 
each model should be produced on a daily basis to max-
imize net profit.

We illustrate the first three steps of the model- 
building process: identifying the decision variables,  
objective function, and constraints.

 Step 1.  Identify the decision variables. SSC makes two 
different models of skis. The decisions are stated 
clearly in the last sentence: how many of each 
model ski should be produced each day? Thus, 
we may define

  Jordanelle =  number of pairs of Jordanelle  
skis produced/day

  Deercrest =  number of pairs of Deercrest  
skis produced/day

It is very important to clearly specify the dimensions of 
the variables, for example, “pairs of skis produced/day” 
rather than simply “Jordanelle skis.”

 Step 2.  Identify the objective function. The problem states 
that SSC wishes to maximize net profit, and we 
are given the net profit figures for each type of 
ski. In some problems, the objective is not explic-
itly stated, and we must use logic and business 
experience to identify the appropriate objective.

 Step 3.  Identify the constraints. To identify constraints, look 
for clues in the problem statement that describe 
limited resources that are available, requirements 
that must be met, or other restrictions. In this exam-
ple, we see that both the fabrication and finishing 
departments have limited numbers of workers, who 
work only 7 hours each day; this limits the amount 
of production time available in each department. 
Therefore, we have the following constraints:

  Fabrication: Total labor hours used in fabrication 
cannot exceed the amount of labor hours available.

  Finishing: Total labor hours used in finishing cannot 
exceed the amount of labor hours available.

In addition, the problem notes that the company antici-
pates selling at least twice as many Deercrest models as 
Jordanelle models. Thus, we need a constraint that states

Number of pairs of Deercrest skis must be at least 
twice the number of parts of Jordanelle skis.

Finally, we must ensure that negative values of the deci-
sion variables cannot occur. Nonnegativity constraints are 
assumed in nearly all optimization models.

Translating Model Information into Mathematical Expressions

The challenging part of developing optimization models is translating the descriptions of 
the objective function and constraints into mathematical expressions. We usually represent 
decision variables by descriptive names (such as Jordanelle and Deercrest),  abbreviations, 
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or subscripted letters such as X1 and X2. For mathematical formulations involving many 
variables, subscripted letters are often more convenient; however, in spreadsheet models 
we recommend using descriptive names to make the models and solutions easier to under
stand. In Example 13.1 we noted the importance of specifying the dimension of the deci
sion variables. This is extremely helpful to ensure the accuracy of the model.

ExaMpLE 13.2 Sklenka Ski Company: Modeling the Objective Function

The decision variables are the number of pairs of skis to 
produce each day. Because SSC makes a net profit of $50 
on the Jordanelle model and $65 on the Deercrest model, 
then for example, if we produce 10 pairs of Jordanelle skis 
and 20 pairs of Deercrest skis during one day, we would 
make a profit of 1$50/pair of Jordanelle skis 2 110 pairs of 
Jordanelle skis 2 + 1$65/pair of Jordanelle skis 2 120 pairs 
of Deercrest skis 2 = $500 + $1,300 = $1,800. Because 

we don’t know how many pairs of skis to produce, we 
write each term of the objective function by multiplying 
the unit profit by the decision variables we have defined:

maximize total profit = $50 Jordanelle +  $65 Deercrest

Note how the dimensions verify that the expression is  
correct: 1$ ,pair of skis 2 1number of pairs of skis 2 =$.

ExaMpLE 13.3 Sklenka Ski Company: Modeling the Constraints

The amount of labor available in fabrication is (12 work-
ers)(7 hours/day) = 84 hours/day, whereas in finishing we 
have (3 workers)(7 hours/day) = 21 hours/day. Because 

each pair of Jordanelle skis requires 3.5 labor-hours and 
each pair of Deercrest skis requires 4 labor-hours in the 
fabricating department, the total labor used in fabrication 

Constraints are generally expressed mathematically as algebraic inequalities or 
 equations with all variables on the left side and constant terms on the right (this facilitates 
solving the model on a spreadsheet as we will discuss later). To model the constraints, 
we use a similar approach. First, consider the fabrication and finishing constraints. We 
expressed these constraints as

Fabrication: Total laborhours used in fabrication cannot exceed the amount of labor 
hours available.

Finishing: Total laborhours used in finishing cannot exceed the amount of labor 
hours available.

First, note that the phrase “cannot exceed” translates mathematically as “… .” In other  
constraints we might find the phrase “at least,” which would translate as “Ú” or “must 
contain exactly,” which would specify an “=” relationship. All constraints in optimization 
models must be one of these three forms.

Second, note that “cannot exceed” divides each constraint into two parts—the 
 lefthand side (“total laborhours used”) and the righthand side (“amount of labor
hours available”). The lefthand side of each of these expressions is called a constraint 
 function. A constraint function is a function of the decision variables in the problem. The 
righthand sides are numerical values (although occasionally they may be constraint func
tions as well). All that remains is to translate both the constraint functions and the right
hand sides into mathematical expressions.
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The complete optimization model for the SSC problem is

Maximize Total Profit =  50 Jordanelle + 65 Deercrest

  3.5 Jordanelle + 4 Deercrest … 84

  1 Jordanelle + 1.5 Deercrest … 21

  Deercrest - 2 Jordanelle Ú 0

  Deercrest Ú 0

  Jordanelle Ú 0

More about Constraints

Constraints may take on many different forms. Here are some additional examples of con
straints that we may find in a linear optimization model, expressed in plain English:

 1. The amount of money spent on research and development projects cannot 
 exceed the assigned budget of $300,000.

 2. Contractual requirements specify that at least 500 units of product must be 
produced.

 3. A mixture of fertilizer must contain exactly 30% nitrogen.

To model any constraint, first identify the phrase that corresponds to either … , Ú , or =  
and substitute these into the constraint. Thus, for these examples, we would write the 
following:

 1. amount spent on research and development … $300,000
 2. number of units of product produced Ú 500
 3. amount of nitrogen in mixture/total amount in mixture = 0.30

Then it simply becomes an exercise to translate the constraint function into mathematical 
expressions using the decision variables in the problem.

is 3.5 Jordanelle + 4 Deercrest. Note that the dimensions 
of these terms are (hours/pair of skis)(number of skis pro-
duced) = hours. Similarly, for the finishing department, the 
total labor used is 1 Jordanelle + 1.5 Deercrest. Therefore, 
the appropriate constraints are:

Fabrication: 3.5 Jordanelle + 4 Deercrest " 84

Finishing: 1 Jordanelle + 1.5 Deercrest " 21

For the market mixture constraint “Number of pairs of 
Deercrest skis must be at least twice the number of pairs 
of Jordanelle skis,” we have

Deercrest # 2 Jordanelle

It is customary to write all the variables on the left-hand 
side of the constraint. Thus, an alternative expression for 
this constraint is

Deercrest −  2 Jordanelle # 0

The difference between the number of Deercrest skis and 
twice the number of Jordanelle skis can be thought of as 
the excess number of Deercrest skis produced over the 
minimum market mixture requirement. Finally, nonnega-
tivity constraints are written as

Deercrest # 0

Jordanelle # 0
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Characteristics of Linear Optimization Models

In Example 13.4, you might be wondering why we simplified the constraint expression. 
We did this to make the constraint linear. A linear optimization model (often called 
a linear program, or LP) has two basic properties. First, the objective function and all 
constraints are linear functions of the decision variables. This means that each function is 
simply a sum of terms, each of which is some constant multiplied by a decision variable. 
The SSC model has this property. In Example 13.4, the constraint function

0.20x + 0.33y

x + y
= 0.3

as originally written is not linear. However, we were able to convert it to a linear form 
using simple algebra. This is advantageous because special, highly efficient solution algo
rithms are used for linear optimization problems.

The second property of a linear optimization model is that all variables are continu-
ous, meaning that they may assume any real value (typically, nonnegative). Of course, 
this assumption may not be realistic for a practical business problem (you cannot produce 
half a refrigerator). However, because this assumption simplifies the solution method and 
analysis, we often apply it in many situations where the solution would not be seriously 
affected. In the next chapter, we discuss situations where it is necessary to force variables 
to be whole numbers (integers). For all examples and problems in this chapter, we assume 
continuity of the variables.

Implementing Linear Optimization Models on Spreadsheets

We will learn how to solve optimization models using an Excel tool called Solver. To fa
cilitate the use of Solver, we suggest the following spreadsheet engineering guidelines for 
designing spreadsheet models for optimization problems:

•	Put the objective function coefficients, constraint coefficients, and right-hand 
values in a logical format in the spreadsheet. For example, you might assign  
the decision variables to columns and the constraints to rows, much like the 
mathematical formulation of the model, and input the model parameters in a 

ExaMpLE 13.4 Modeling a Mixture Constraint

Consider the third illustration of constraints on the pre-
vious page. Suppose that two ingredients contain 20% 
and 33% nitrogen, respectively; then the fraction of  
nitrogen in a mixture of x pounds of the first ingredient 
and y pounds of the second ingredient is expressed by 
the constraint function:

0.20x + 0.33y

x + y

If the fraction of nitrogen in the mixture must be 0.30, then 
we would have

0.20x + 0.33y

 x + y
= 0.3

This can be rewritten as

0.20x + 0.33y = 0.3( x + y)

and simplified as

−0.1x + 0.03y = 0
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matrix. If you have many more variables than constraints, it might make sense to 
use rows for the variables and columns for the constraints.

•	Define a set of cells (either rows or columns) for the values of the decision vari-
ables. In some models, it may be necessary to define a matrix to represent the 
decision variables. The names of the decision variables should be listed directly 
above the decision variable cells. Use shading or other formatting to distinguish 
these cells.

•	Define separate cells for the objective function and each constraint function  
(the left-hand side of a constraint). Use descriptive labels directly above  
these cells.

ExaMpLE 13.5 a Spreadsheet Model for Sklenka Skis

Figure 13.1 shows a spreadsheet model for the SSC ex-
ample (Excel file Sklenka Skis). We use the principles of 
spreadsheet engineering that we discussed in Chapter 2 to 
implement the model. The Data portion of the spreadsheet 
provides the objective function coefficients, constraint co-
efficients, and right-hand sides of the model. Such data 
should be kept separate from the actual model so that if 
any data are changed, the model will automatically be up-
dated. In the Model section, the number of each product to 
make is given in cells B14 and C14. Also in the Model sec-
tion are calculations for the constraint functions,

3.5 Jordanelle + 4 Deercrest  (hours used in fabrication, 
cell D15)

1 Jordanelle + 1.5 Deercrest  (hours used in finishing, 
cell D16)

Deercrest −  2 Jordanelle (market mixture, cell D19)

and the objective function, 50 Jordanelle + 65 Deercrest 
(cell D22).

Figure 13.1

Sklenka Skis Model Spreadsheet Implementation
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To help you understand the correspondence between the mathematical model and the 
spreadsheet model more clearly, we will write the model in terms of the spreadsheet cells:

maximize profit = D22 = B9*B14 + C9*C14

subject to the constraints:

D15 = B6*B14 + C6*C14 … D6 1fabrication2
D16 = B7*B14 + C7*C14 … D7 1finishing2
D19 = C14 - 2*B14 Ú 0 1market mixture2

B14 Ú 0, C14 Ú 0 1nonnegativity2
Observe how the constraint functions and righthandside values are stored in separate 
cells within the spreadsheet.

In Excel, the pairwise sum of products of terms can easily be computed using the 
SUMPRODUCT function. For example, the objective function formula could have been 
written as

B9*B14 + C9*C14 = SUMPRODUCT1B9:C9,B14:C142

Similarly, the labor limitation constraints could have been expressed as

 B6*B14 + C6*C14 = SUMPRODUCT1B6:C6,B14:C142
 B7*B14 + C7*C14 = SUMPRODUCT1B7:C7,B14:C142

The SUMPRODUCT function often simplifies the modelbuilding process, particularly 
when many variables are involved.

Excel Functions to avoid in Linear Optimization

Several common functions in Excel can cause difficulties when attempting to solve lin
ear programs using Solver because they are discontinuous (or “nonsmooth”) and do not 
satisfy the conditions of a linear model. For instance, in the formula IF(A12 6 45,0,1), the 
cell value jumps from 0 to 1 when the value of cell A12 crosses 45. In such situations, the 
correct solution may not be identified. Common Excel functions to avoid are ABS, MIN, 
MAX, INT, ROUND, IF, and COUNT. Although these are useful in general modeling 
tasks with spreadsheets, you should avoid them in linear optimization models.

Solving Linear Optimization Models

To solve an optimization problem, we seek values of the decision variables that maximize 
or minimize the objective function and also satisfy all constraints. Any solution that satis
fies all constraints of a problem is called a feasible solution. Finding an optimal solution 
among the infinite number of possible feasible solutions to a given problem is not an easy 
task. A simple approach is to try to manipulate the decision variables in the spreadsheet 
models to find the best solution possible; however, for many problems, it might be very 
difficult to find a feasible solution, let alone an optimal solution. You might try to find  
the best solution you can for the Sklenka Ski problem by using the spreadsheet model. 
With a little experimentation and perhaps a bit of luck, you might be able to zero in on 
the optimal solution or something close to it. However, to guarantee finding an optimal 
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 solution, some type of systematic mathematical solution procedure is necessary. Fortu
nately, such a procedure is provided by the Excel Solver tool, which we discuss next.

Solver (“standard Solver”) is an addin packaged with Excel that was developed by 
Frontline Systems, Inc. (www.solver.com), and can be used to solve many different types 
of optimization problems. Premium Solver, which is part of Analytic Solver Platform that 
accompanies this book, is an improved alternative to the standard Excelsupplied Solver. 
Premium Solver has better functionality, numerical accuracy, reporting, and user inter
face. We show how to solve the SSC model using both the standard and premium ver
sions; however, we highly recommend using the premium version, and we use it in the 
remainder of this chapter.

Using the Standard Solver

The standard Solver can be found in the Analysis group under the Data tab in Excel. When 
Solver is invoked, the Solver Parameters dialog appears. You use this dialog to define the 
objective, decision variables, and constraints from your spreadsheet model within Solver.

ExaMpLE 13.6 Using Standard Solver for the SSC problem

Figure 13.2 shows the completed Solver Parameters dia-
log for the SSC example. Define the objective function cell 
in the spreadsheet (D22) in the Set Objective field. Either 
enter the cell reference or click within the field and then 
in the cell in the spreadsheet. Click the appropriate radio 
button for Max or Min. Decision variables (cells B14 and 
C14) are entered in the field called By Changing Variable 
Cells; click within this field and highlight the range cor-
responding to the decision variables in your spreadsheet.

To enter a constraint, click the Add button. A new 
dialog, Add Constraint, appears (see Figure 13.3). In the 
left field, Cell Reference, enter the cell that contains the 
constraint function (left-hand side of the constraint). For 
example, the constraint function for the fabrication con-
straint is in cell D15. Make sure that you select the correct 
type of constraint (" , # , or =) in the drop-down box in 
the middle of the dialog. The other options are discussed 
in the next chapter. In the right field, called Constraint, en-
ter the numerical value of the right-hand side of the con-
straint or the cell reference corresponding to it. For the 
fabrication constraint, this is cell D6. Figure 13.3 shows 
the completed dialog for the fabrication constraint. To 
add other constraints, click the Add button.

You may also define a group of constraints that all 
have the same algebraic form (either all " , all # , or all = )  
and enter them together. For example, the department 
resource limitation constraints are expressed within the 
spreadsheet model as:

D15 " D6

D16 " D7

Because both constraints are "  types, we could define 
them as a group by entering the range D15:D16 in the 
Cell Reference field and D6:D7 in the Constraint field 
to simplify the input process. When all constraints are 
added, click OK to return to the Solver Parameters dia-
log box. You may add, change, or delete these as nec-
essary by clicking the appropriate buttons. You need 
not enter nonnegativity constraints explicitly. Just check 
the box in the dialog Make Unconstrained Variables 
Non-Negative.

For linear optimization problems, it is very important 
to select the correct solving method. The standard Excel 
Solver provides three options for the solving method:

 1. GRG Nonlinear—used for solving nonlinear optimi-
zation problems

 2. Simplex LP—used for solving linear and linear inte-
ger optimization problems

 3. Evolutionary—used for solving complex nonlinear 
and nonlinear integer problems

In the field labeled Select a Solving Method, choose 
 Simplex LP. Then, click the Solve button to solve the 
problem. The Solver Results dialog appears, as shown in 
Figure 13.4, with the message “Solver found a solution.” 
If a solution could not be found, Solver would notify you 
with a message to this effect. This generally means that 
you have an error in your model or you have included 
conflicting constraints that no solution can satisfy. In 
such cases, you need to reexamine your model.
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Figure 13.2

Solver Parameters Dialog

Figure 13.3

Add Constraint Dialog

Solver generates three reports, as listed in Figure 13.4: Answer, Sensitivity, and Limits. 
To add them to your Excel workbook, click on the ones you want and then click OK. Do not 
check the box Outline Reports; this is an Excel feature that produces the reports in “outlined 
format.” Solver will replace the current values of the decision variables and the objective in 
the spreadsheet with the optimal solution, as shown in Figure 13.5. The maximum profit is 

Figure 13.4

Solver Results Dialog
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$945, obtained by producing 5.25 pairs of Jordanelle skis and 10.5 pairs of Deercrest skis per 
day (remember that linear models allow fractional values for the decision variables). If you 
save your spreadsheet after setting up a Solver model, the Solver model will be saved also.

Using Premium Solver

After installing Analytic Solver Platform, Premium Solver will be found under the  Add-Ins 
tab in the Excel ribbon. Premium Solver has a different user interface than the standard 
Solver. When Premium Solver is clicked from the Add-Ins tab, Analytic Solver Platform 
will also display a “Solver Options and Model Specifications” pane at the right of the 
 spreadsheet, which provides an optional method for specifying the model components, and 
additional information for advanced users. You may delete this pane by clicking on the “x” 
in the upper right corner or toggling the Model button in the Analytic Solver Platform ribbon. 
We recommend that you simply choose Premium Solver from the Add-Ins tab and use the 
Solver Parameters dialog shown in the following example for solving optimization models. 
In the remainder of this book, we will use Premium Solver for all examples.

Figure 13.5

Optimal Solution to  
the SSC Model

ExaMpLE 13.7 Using Premium Solver for the SSC Model

Figure 13.6 shows the Premium Solver dialog. First click 
on Objective and then click the Add button. The Add  
Objective dialog appears, prompting you for the cell 
reference for the objective function and the type of 
objective (min or max) similar to the top portion of the 
standard Solver Parameters dialog. Next, highlight Nor-
mal under the Variables list and click Add; this will bring 
up an Add Variable Cells dialog. Enter the range of the 
decisions variables in the Cell Reference field. Next, 
highlight Normal under the Constraints list and click the 
Add button; this brings up the Add Constraint dialog, 
just like in the standard version. Add the constraints in 

the same fashion as in the standard Solver. Check the 
box Make Unconstrained Variables Non-Negative. The 
premium version provides the same solving method op-
tions as the standard version (except that Simplex LP is 
called  Standard LP/Quadratic), so select this for linear 
 optimization (note that the default option in Figure 13.6 is 
Standard GRG Nonlinear; be sure to change this for solv-
ing linear models.) The premium version also has three 
additional advanced solving methods. Figure 13.7 shows 
the completed dialog for the SSC model. The Solver 
 Results dialog is the same as in the standard version.
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Figure 13.6

Premium Solver Parameters 
Dialog

Figure 13.7

Completed Solver 
Parameters Dialog in 
Premium Solver

Solver answer Report

The Solver Answer Report (all reports in this section were generated using Premium 
Solver) provides basic information about the solution, including the values of the origi
nal and optimal objective function (in the Objective Cell section) and decision variables 
(in the Decision Variable Cells section). In the Constraints section, Cell Value refers to 
the value of the constraint function using the optimal values of the decision variables. 
The Status column tells whether each constraint is binding or not binding. A binding 
constraint is one for which the Cell Value is equal to the righthand side of the value of 
the constraint. Slack refers to the difference between the left and righthand sides of the 
constraints for the optimal solution. We discuss the sensitivity and limits reports later in 
this chapter.
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ExaMpLE 13.8 Interpreting the SSC answer Report

The Solver Answer Report for the SSC problem is shown 
in Figure 13.8. The Objective Cell section provides 
the optimal value of the objective function, $945. The 
 Decision Variable Cells section lists the optimal values 
of the decision variables: 5.25 pairs of Jordanelle skis 
and 10.5 pairs of Deercrest skis. In the Constraints sec-
tion, the Cell Values state that we used 60.375 hours in 
the fabrication department and 21 hours in the finishing 
department by producing 5.25 pairs of Jordanelle skis 
and 10.5 pairs of Deercrest skis. You may easily iden-
tify the constraints from the spreadsheet model in the 
Formulas column. From the Status column, we see that 
the constraint for fabrication is not binding, although the 
constraints for finishing and market mixture are binding. 
This means that there is excess time that is not used in 
fabrication; this value is shown in the Slack column as 
23.626 hours. For finishing, we used all the time avail-
able; hence, the slack value is zero. Because we pro-
duced exactly twice the number of Deercrest skis as 
Jordanelle skis, the market mixture constraint is binding. 
It would not have been binding if we had produced more 
than twice the number of Deercrest skis as Jordanelle.

To understand the value of slack better, examine the 
fabrication constraint:

3.5 Jordanelle + 4 Deercrest " 84

We interpret this as

number of fabrication hours used " hours available

Note that if the amount used is strictly less than the 
availability, we have slack, which represents the amount 
unused; thus,

number of fabrication +  
number of fabrication =  

hours  
hours used   hours unused  available

or

slack = number of hours unused

= hours available − number of fabrication hours used

 = 84 − 1 3.5 × 5.25 + 4 × 10.5 2 = 23.625

Slack variables are always nonnegative, so for #  con-
straints, slack represents the difference between the left-
hand side of the constraint function and the right-hand 
side of the requirement. The slack on a binding constraint 
will always be zero.

Figure 13.8

Solver Answer Report
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ExaMpLE 13.9 Graphing the Constraints in the SSC problem

The fabrication constraint is 3.5 Jordanelle +  4 Deercrest 
"  84. Whenever a constraint is in the form of an inequality 
(i.e., #  or "  type), we first graph the equation of the line by 
replacing the inequality sign by an equal sign. Therefore, we 
graph the equation: 3.5 Jordanelle + 4 Deercrest = 84. 
If we set Jordanelle = 0, then solving the equation for 
Deercrest yields Deercrest = 21. Similarly, if we set 
Deercrest = 0, we find that Jordanelle = 24. This gives 
us two points, (0, 21) and (24, 0), on the coordinate system 
and defines the equation of the straight line, as shown in 
Figure 13.10.

However, the actual constraint is an inequality; there-
fore, all the points on one side of the line will satisfy the 

constraint, but points on the other side will not. To identify 
the proper direction, simply select any point not on the 
line—the easiest one to choose is the origin, (0, 0), and  
determine if that point satisfies the constraint. If it does, 
then all points on that side of the line will; if not, then all 
points on the other side of the line must satisfy the con-
straint. Clearly, 3.5 10 2  +  4 10 2  =  0 * 84; therefore, all 
points below the constraint line satisfy the inequality. In 
mathematical terms, the set of points on one side of the 
line is called a half-space. Only points lying in this half-
space can be potential solutions to the optimization model.

To graph the finishing constraint 1 Jordanelle +
1.5 Deercrest " 21, we follow the same procedure. 

Graphical Interpretation of Linear Optimization

We can easily illustrate optimization problems with two decision variables graphically. 
This can help you to better understand the properties of linear optimization models and the 
interpretation of the Solver output. Recall that a feasible solution is a set of values for the 
decision variables that satisfy all of the constraints. Linear programs generally have an in
finite number of feasible solutions. We first characterize the set of feasible solutions,  often 
called the feasible region. We use the SSC model to illustrate this graphical approach:

 maximize Total Profit = 50 Jordanelle + 65 Deercrest

  3.5 Jordanelle + 4 Deercrest … 84

  1 Jordanelle + 1.5 Deercrest … 21

  Deercrest - 2 Jordanelle Ú 0

  Deercrest Ú 0

  Jordanelle Ú 0

For a problem with only two decision variables, x1 and x2, we can draw the feasible 
region on a twodimensional coordinate system. Let us begin by considering the simplest 
constraints in a linear optimization model, namely, that the decision variables must be non
negative. These constraints are x1 Ú 0 and x2 Ú 0. The constraint x1 Ú 0 corresponds to 
all points on or to the right of the x2axis; the constraint x2 Ú 0 corresponds to all points 
on or above the x1axis (see Figure 13.9, where x1 = Jordanelle and x2 = Deercrest). 
Taken together, these nonnegativity restrictions imply that any feasible solution must be 
restricted to the first (upperright) quadrant of the coordinate system. This is true for the 
feasible solutions to the SSC problem.

You are probably very familiar with equations in two dimensions, which define points 
on a line. An inequality constraint divides the coordinate system into two regions, the set 
of points that do satisfy the inequality and the set of points that don’t. In two dimensions, 
an equality constraint is simply a line. To graph a line in two dimensions, we need to 
find two points that lie on the line. As long as the righthand side term is not zero, the 
two points that are easiest to find are the x1 and x2intercepts (the points where the line 
crosses the x1 and x2 axes). To find the x2intercept, set x1 = 0 and solve for x2. Likewise, 
to find the x1 intercept, set x2 = 0 and solve for x1.
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Set Jordanelle = 0 and solve for Deercrest, obtaining 
Deercrest = 14; set Deercrest = 0 and solve for Jor-
danelle, obtaining Jordanelle = 21. Choosing the origin 
again verifies that all points below the line satisfy the in-
equality constraint. This is shown in Figure 13.11.

The third constraint is the market mix constraint: 
Deercrest −  2 Jordanelle # 0. If we try to set each vari-
able in the equation Deercrest −  2 Jordanelle = 0 to 
zero and solve for the other, we end up with (0, 0) each 
time because the equation of the line passes through 
the origin. When this occurs, we need to select a differ-
ent value for one of the variables to identify a second 
point on the line. For example, if we set Jordanelle = 5, 

then Deercrest = 10. Now we have two points, (0, 0) and 
(5, 10), which we can use to graph the equation (see 
 Figure 13.12). However, since the line passes through 
the origin, we cannot determine the proper half-space 
using the origin (0, 0). Instead, choose any other point 
not on the line. For example, if we choose the point 
(2, 10), which is on the left side of the line, we see that 
Deercrest − 2 Jordanelle = 10 − 2 (2) = 6 + 0; there-
fore, all points to the left of the line satisfy the inequality 
constraint. Had we chosen a point on the right, say, (5, 2), 
we would have found that Deercrest −2 Jordanelle =  
2 −  2(5) = −6 * 0, which does not satisfy the inequality.

After graphing each of the constraints, we identify the feasible region. For a linear 
optimization problem, the feasible region will be some geometric shape that is bounded 
by straight lines. The points at which the constraint lines intersect along the feasible 
region are called corner points. One of the important properties of linear optimization 

Figure 13.9

Feasible Points Satisfying Nonnegativity Constraints
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Figure 13.10

Graph of the 
Fabrication 
Constraint

Figure 13.11

Graph of the Finishing Constraint
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models is that if an optimal solution exists, then it will occur at a corner point. This 
makes it easy to identify optimal solutions and is the basis for the computational proce
dure used by Solver.

Compare the graphical interpretation of the solution to the SSC problem with the 
Solver Answer report in Figure 13.8. Notice that Solver reported that both the finishing 

ExaMpLE 13.10 Identifying the Feasible Region and Optimal Solution

The feasible region is the set of points that satisfy all 
constraints simultaneously. From Figure 13.12, we see 
that the feasible region must be below the fabrication 
constraint line, below the finishing constraint line, to 
the left of the market mix constraint line, and, of course, 
within the first quadrant defined by the nonnegativ-
ity constraints. This is shown by the triangular region in  
Figure 13.13. Notice that every point that satisfies the fin-
ishing constraint also satisfies the fabrication constraint. 
In this case, we say that the fabrication constraint is a 
redundant constraint, because it does not impact the 
feasible region at all.

Because our objective is to maximize profit, we  
seek a corner point that has the largest value of the objec-
tive function total profit = 50 Jordanelle + 65 Deercrest. 
Note that if we set the objective function to any numeri-
cal value, we define a straight line. For example, if we set 
50 Jordanelle + 65 Deercrest = 600, then any point on 
this line will have a total profit of $600. Figure 13.14 shows 
the dashed-line graphs of the objective function for profit 
values of $600, $800, and $1,000. Notice that as the profit 
increases, the graph of the objective function moves in 
an upward direction. However, for a profit of $1,000, no 
points on the line also pass through the feasible region. 

Figure 13.12

Graph of the Market Mix Constraint
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constraint and market mix constraint are binding. Graphically this means that these con
straints intersect at the optimal solution. The fabrication constraint, however, is not bind
ing and has a positive value of slack because it does not intersect at the optimal solution. 
Slack can be interpreted as a measure of the distance from the optimal corner point to the 
nonbinding constraint.

From the figure, then, we can conclude that the maximum 
profit must be somewhere between $800 and $1,000.

We also see that as the profit increases, then the last 
point in the feasible region that the profit lines will cross 
is the corner point on the right side of the triangle, identi-
fied by the circle in Figure 13.14. This must be the optimal 
solution. This point is the intersection of the finishing and 
market mix constraint lines. We can find this point mathe-
matically by solving these constraint lines simultaneously:

1 Jordanelle + 1.5 Deercrest = 21

Deercrest −  2 Jordanelle = 0

From the second equation, we have Deercrest =
2 Jordanelle; substituting this into the first equation we 
obtain:

 1 Jordanelle + 1.5 (2 Jordanelle) = 21

  4 Jordanelle = 21

  Jordanelle = 5.25

Then Deercrest = 2(5.25) = 10.5. This is exactly the so-
lution that Solver provided.

Figure 13.13

Identifying the Feasible Region
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Figure 13.14

Identifying the Optimal Solution

How Solver Works

Solver uses a mathematical algorithm called the simplex method, which was developed in 
1947 by the late Dr. George Dantzig. The simplex method characterizes feasible solutions 
algebraically by solving systems of linear equations. It moves systematically from one 
corner point to another to improve the objective function until an optimal solution is found 
(or until the problem is deemed infeasible or unbounded). Because of the linearity of the 
constraints and objective function, the simplex method is guaranteed to find an optimal 
solution if one exists and usually does so quickly and efficiently. To gain some intuition 
into the logic of Solver, consider the following example.

ExaMpLE 13.11 Crebo Manufacturing

Crebo Manufacturing produces four types of structural 
support fittings—plugs, rails, rivets, and clips—which are 
machined on two CNC machining centers. The machining  

centers have a capacity of 280,000 minutes per year. The 
gross margin per unit and machining requirements are 
provided in the following table:

(continued)
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To solve this problem, your first thought might be to choose the variable with the high
est marginal profit. Because X2 has the highest marginal profit, you might try producing as 
many rails as possible. Since each rail requires 2.5 minutes, the maximum number that can 
be produced is 280,000>2.5 = 112,000, for a total profit of $1.31112,0002 = $145,600. 
However, notice that each rail uses a lot more machining time than the other products. 
The best solution isn’t necessarily the one with the highest marginal profit but the one that 
provides the highest total profit. Therefore, more profit might be realized by producing 
a proportionately larger quantity of a different product having a smaller marginal profit. 
This is the key insight. What the simplex method essentially does is evaluate the impact 
of constraints in terms of their contribution to the objective function for each variable. For 
the simple case of only one constraint, the optimal (maximum) solution is found by simply 
choosing the variable with the highest ratio of the objective coefficient to the constraint 
coefficient.

product plugs Rails Rivets Clips

Gross margin/unit $0.30 $1.30 $0.75 $1.20

Minutes/unit  1  2.5   1.5  2

How many of each product should be made to maximize 
gross profit margin?

To formulate this as a linear optimization model,  
define X1, X2, X3, and X4 to be the number of plugs, rails, 
rivets, and clips to produce. The problem is to maximize
gross margin = 0.3X1+ 1.3X2 +0.75X3 +1.2X4 subject to 

the constraint that limits the machining capacity and  
nonnegativity of the variables:

1X1 + 2.5 X2 + 1.5 X3 + 2 X4 " 280,000

X1, X2, X3, X4 # 0

ExaMpLE 13.12 Solving the Crebo Manufacturing Model

In the Crebo Manufacturing Model, compute the ratio 
of the gross margin/unit to the minutes per unit of ma-
chining capacity used, as shown in row 6 in Figure 13.15 
(Excel file Crebo Manufacturing Model). These ratios can 
be interpreted as the marginal profit per unit of resource  

consumed. The highest ratio occurs for clips. If we produce 
the maximum number of clips, 280,000 ,2 = 140,000, the 
total profit is $1.20(140000) = $168,000. The mathemat-
ics gets complicated with more constraints and requires 
multiple iterations to systematically improve the solution.

Figure 13.15

Crebo Manufacturing 
Model Analysis
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If we apply similar logic to the SSC problem, we would at first want to produce as 
many Deercrest skis as possible because they have the largest profit contribution. So for 
example, if we do, we find that the constraints limit us to the minimum of 84>4 = 21 units 
(from the fabrication constraint) or 21>1.5 = 14 (from the finishing constraint). Note that 
producing 14 Deercrest skis will also satisfy the market mix constraint. The total profit is 
$651142 = $910. However, note that finishing requires 50% more time for Deercrest skis 
than for Jordanelle skis, so the profit contribution per finishing hour for Deercrest is only 
$65>1.5 = $43.33, so on a relative basis, the Jordanelle skis are more profitable. Thus, 
for example, if we produce 1 Jordanelle ski, we can produce 20>1.5 = 13.33 Deercrest 
skis, for a total profit of $50112 + $65113.332 = $916.67, an increase of $6.67. Simi
larly, if we produce 2 Jordanelle skis, we can produce 12.67 Deercrest with a total profit 
of $923.33.  If we continue to produce more Jordanelle skis, the profit will continue to 
increase, but the ratio of Jordanelle to Deercrest also gets larger, and eventually we will 
violate the market mix constraint. This occurs when more than 5.25 Jordanelle skis are 
produced. At this point, we have the maximum profit.  

Of course, for problems involving many constraints, it is difficult to apply such in
tuitive logic. The simplex method allows many real business problems involving thou
sands or even millions of variables—and often hundreds or thousands of constraints—to 
be solved in reasonable computational time and is the basis for advanced optimization 
algorithms involving integer variables that we describe in the next chapter.

How Solver Creates Names in Reports

How you design your spreadsheet model will affect how Solver creates the names used 
in the output reports. Poor spreadsheet design can make it difficult or confusing to in
terpret the Answer and Sensitivity reports. Thus, it is important to understand how to do 
this properly.

Solver assigns names to target cells, changing cells, and constraint function cells by 
concatenating the text in the first cell containing text to the left of the cell with the first cell 
containing text above it. For example, in the SSC model in Figure 13.1, the target cell is 
D22. The first cell containing text to the left of D22 is “Profit Contribution” in A22, and the 
first cell containing text above D22 is “Total Profit” in cell D21. Concatenating these text 
strings yields the target cell name “Profit Contribution Total Profit,” which is found in the  
Solver reports. The constraint functions are calculated in cells D15 and D16. Note that 
their report names are “Fabrication Hours Used” and “Finishing Hours Used.” Similarly, 
the changing cells in B14 and C14 have the names “Quantity Produced Jordanelle” and 
“Quantity Produced Deercrest.” These names make it easy to interpret the information in 
the Answer and Sensitivity reports. We encourage you to examine each of the target cells, 
changing variable cells, and constraint function cells in your models carefully so that re
port names are properly established.

Solver Outcomes and Solution Messages

Solving a linear optimization model can result in four possible outcomes:

 1. a unique optimal solution
 2. alternative (multiple) optimal solutions
 3. unbounded solution
 4. infeasibility
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Unique Optimal Solution

When a model has a unique optimal solution, it means that there is exactly one solution 
that will result in the maximum (or minimum) objective. The solution to the SSC model 
is unique; there are no solutions other than producing 5.25 pairs of Jordanelle skis and 
10.5 pairs of Deercrest skis that result in the maximum profit of $945. We could see this 
graphically in Figure 13.14 because there is a unique corner point that passes through the 
objective function line at the optimal value of profit.

alternative (Multiple) Optimal Solutions

If a model has alternative optimal solutions, the objective is maximized (or minimized) 
by more than one combination of decision variables, all of which have the same objective 
function value. Solver does not tell you when alternative solutions exist and reports only 
one of the many possible alternative optimal solutions. However, you can use the sensitivity 
report information to identify the existence of alternative optimal solutions. When any of the 
 Allowable Increase or Allowable Decrease values for changing cells are zero, then alterna
tive optimal solutions exist, although Solver does not provide an easy way to find them.

ExaMpLE 13.13 a Model with alternative Optimal Solutions

To illustrate a model with alternative optimal solutions, 
suppose we change the objective function in the SSC 
model to Max 50 Jordanelle + 75 Deercrest. A solution 
obtained using Solver is shown in Figure 13.16, produc-
ing no Jordanelle skis and 14 pairs of Deercrest skis and 
resulting in a profit of $1,050. However, notice that the 
original optimal solution also has the same objective 
function value: profit = $50(5.25) +  $75(10.5) = $1,050.

This may be seen graphically in Figure 13.17. The 
new objective function lines are parallel to the finishing  

constraint line. Thus, as the profit increases, you can see 
that the profit line must stop along the top boundary of 
the feasible region defined by the finishing constraint. 
Both corner points that are circled are optimal solutions, 
as is any point connecting them. Therefore, when alterna-
tive optimal solutions exist, there actually are an infinite  
number of them; however, identifying them other than 
graphically requires some advanced analysis.

Figure 13.16

A Solution to the SSC 
Problem with Modified 
Objective
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Unbounded Solution

A solution is unbounded if the value of the objective can be increased or decreased with
out bound (i.e., to infinity for a maximization problem or negative infinity for a mini
mization problem) without violating any of the constraints. This generally indicates an 
incorrect model, usually when some constraint or set of constraints have been left out.

Figure 13.17

Graph of Alternative Optimal 
Solutions

ExaMpLE 13.14 a Model with an Unbounded Solution

Suppose that we solve the SSC model without the fabri-
cation or finishing constraints:

maximize Total Profit = 50 Jordanelle + 65 Deercrest
 Deercrest − 2 Jordanelle # 0
 Deercrest # 0
 Jordanelle # 0

Figure 13.18 shows the Solver Results dialog; the mes-
sage “The objective (Set Cell) values do not converge” 
is an indication that the solution is unbounded. This can 

easily be seen graphically in Figure 13.19. Without the 
finishing and fabrication constraints, the feasible region 
extends upward in the shaded triangular region with no 
limit. As the profit values increase, there are no boundary 
lines to stop the objective function from getting larger 
and larger. However, it is important to realize that just 
because the feasible region may be unbounded, the 
problem can have a finite optimal solution if the profit 
lines move in a different direction.
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Figure 13.18

Solver Results Dialog for 
Unbounded Problem

Figure 13.19

An Unbounded Feasible Region

Infeasibility

Finally, an infeasible problem is one for which no feasible solution exists—that is, 
when there is no solution that satisfies all constraints together. When a problem is infea
sible, Solver will report “Solver could not find a feasible solution.” Infeasible problems 
can occur in practice—for example, when a demand requirement is higher than avail
able capacity or when managers in different departments have conflicting requirements 
or limitations. In such cases, the model must be reexamined and modified. Sometimes 
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infeasibility, or unboundedness, is simply a result of a misplaced decimal, an incorrect 
inequality sign, or other error in the model or spreadsheet implementation, so accuracy 
checks should be made.

ExaMpLE 13.15 an Infeasible Model

Suppose the modeler for the SSC problem mistakenly 
 reversed the inequality sign for the fabrication constraint:

maximize Total Profit = 50 Jordanelle + 65 Deercrest

 3.5 Jordanelle + 4 Deercrest #  84

 1 Jordanelle + 1.5 Deercrest " 21

 Deercrest −  2 Jordanelle #  0 

 Deercrest #  0

 Jordanelle #  0

Figure 13.20 shows the Solver Results dialog for this 
model. When Solver provides the message “Solver could 
not find a feasible solution,” then we know the problem 
is infeasible. Figure 13.21 shows what happened graphi-
cally. The points satisfying the erroneous fabrication con-
straint lie above the constraint and do not intersect the 
points that are feasible to the market mix and finishing  
constraints.

Figure 13.20

Solver Results Dialog for 
Infeasible Solution

Using Optimization Models for prediction and Insight

The principal purpose of formulating and solving an optimization model should never be 
to just find a “best answer”; rather, the model should be used to provide insight for mak
ing better decisions. Thus, it is important to analyze optimization models from a predic
tive analytics perspective to determine what might happen should the model assumptions 
change or when the data used in the model are uncertain. For example, managers have 
some control over pricing but may not be able to control supplier costs. Even though we 
may have solved a model to find an optimal solution, it would be beneficial to determine 
what impact a change in a price or cost would have on net profit. Similarly, many con
straints represent resource limitations or customer commitments. Limited capacity can be 
adjusted through overtime or supplier contracts can be renegotiated. So managers would 
want to know whether it would be worth it to increase capacity or change a contract. With 
Solver, answers to such questions can easily be found by simply changing the data and 
 resolving the model.

In this example, we evaluated only a few distinct scenarios. Managers might also 
want to know what would happen if the profit for Jordanelle skis is decreased only by $1, 
$2, or $5, and so on. We could keep changing the data and resolving the model, but that 
would be tedious. Fortunately, we can answer these and other whatif questions more eas
ily by using the Sensitivity Report generated by Solver.
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Figure 13.21

Graphical Illustration 
of Infeasibility

ExaMpLE 13.16 Using Solver for What-If analysis

In the Sklenka Ski Company model, managers might 
wish to answer the following questions:

 1. Suppose that the unit profit on Jordanelle skis is 
increased by $10. How will the optimal solution 
change? What is the best product mix?

 2. Suppose that the unit profit on Jordanelle skis is 
decreased by $10 because of higher material costs. 
How will the optimal solution change? What is the 
best product mix?

 3. Suppose that 10 additional finishing hours become 
available through overtime. How will manufacturing 
plans be affected?

 4. What if the number of finishing hours available is 
decreased by 2 hours because of planned equip-
ment maintenance? How will manufacturing plans 
be affected?

Figure 13.22 shows a summary of the solutions for each 
of these scenarios after re-solving the model.

In the first scenario, when the unit profit of Jordanelle 
skis is increased to $60, the optimal product mix does not 
change from the base scenario; however, the total profit 
increases. You might think that if the profit of Jordanelle 

skis increases, it would be advantageous to produce 
more of them. However, doing so would require producing 
more Deercrest skis to meet the marketing mix constraint, 
which would then violate the finishing time constraint. 
Therefore, the solution is “maxed out,” so to speak, 
 because of the constraints. Nevertheless, each pair of 
Jordanelle produced would gain an additional $10 in 
profit, so the 5.25 pairs we produce increase the profit by 
5.25($10) = $52.5  to $997.50. From a practical perspec-
tive, a manager might need to consider whether the price 
increase will still ensure that all the skis can be sold—an 
implicit assumption in the model.

In the second scenario, the situation is different. If 
the profit of Jordanelle skis is reduced to $40, it becomes 
unprofitable to produce any of them. The marketing mix 
constraint is no longer relevant, and similar to the Crebo 
Manufacturing example, the profit per unit of finishing 
time is higher for Deercrest; consequently, it is best to 
produce only that model. Eliminating a product from the 
optimal mix might be a poor marketing decision, or it can 
offer advantages by simplifying the supply chain.

In the third scenario, we see that we still have a mix 
of both products. With the additional finishing hours, we 
are able to produce more of the higher-profit Deercrest 
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Solver Sensitivity Report

The Solver Sensitivity Report provides a variety of useful information for managerial in
terpretation of the solution. Specifically, it allows us to understand how the optimal objec
tive value and optimal decision variables are affected by changes in the objective function 
coefficients, the impact of forced changes in certain decision variables, or the impact of 
changes in the constraint resource limitations or requirements. Figure 13.23 shows the 
Sensitivity Report for the SSC model. We use this for the examples in this section.

skis and use the remaining capacity to produce a smaller 
amount of the Jordanelle skis. However, you can also see 
that we have now used all the fabrication hours as well 
as all the finishing hours, suggesting that the operations 
manager has no slack in fabrication; any breakdown of 
equipment or absence of labor will affect the solution.

Finally in the last scenario, a small reduction in the 
finishing capacity results in the same two-to-one ratio of 
Deercrest to Jordanelle skis because of the marketing mix 
constraint, but the reduction in finishing capacity reduced 
the amount of each product that can be produced, as well 
as reducing the overall profit by $90.

Figure 13.22

Summary of What-If 
Scenarios

Figure 13.23

Solver Sensitivity Report
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One important caution: the Sensitivity Report information applies to changes in only 
one of the model parameters at a time; all others are assumed to remain at their original 
values. In other words, you cannot accumulate or add the effects of sensitivity information 
if you change the values of multiple parameters in a model simultaneously.

The Decision Variable Cells section provides information about the decision vari
ables and objective function coefficients and how changes in their values would affect the 
optimal solution.

ExaMpLE 13.17 Interpreting Sensitivity Information for Decision Variables

The Decision Variable Cells section lists the final value 
for each decision variable, a number called the reduced 
cost, the coefficients associated with the decision vari-
ables from the objective function, and two numbers 
called allowable increase and allowable decrease. The 
reduced cost tells how much the objective coefficient 
needs to be reduced for a nonnegative variable that is 
zero in the optimal solution to become positive. If a vari-
able is positive in the optimal solution, as it is for both 
variables in the SSC example, its reduced cost is always 
zero. We will see an example later that will help you to 
understand reduced costs.

The Allowable Increase and Allowable Decrease val-
ues tell how much an individual objective function coeffi-
cient can change before the optimal values of the decision 
variables will change (a value listed as “1E + 30” is in-
terpreted as infinity). For example, the Allowable Increase 
for Deercrest skis is 10, and the Allowable Decrease is 90. 
This means that if the unit profit for Deercrest skis, $65, 
either increases by more than 10 or decreases by more 
than 90, then the optimal values of the decision variables 
will change (as long as all other objective coefficients 
stay the same). For instance, if we increase the unit profit 
by $11 (to $76) and re-solve the model, the new optimal 

 solution will be to produce 14 pairs of Deercrest skis and 
no  Jordanelle skis. However, any increase less than 10 
will keep the current solution optimal. For Jordanelle skis, 
we can increase the unit profit as much as we wish with-
out affecting the current optimal solution; however, a de-
crease of at least 6.66 will force a change in the solution.

If the objective coefficient of any one variable that has 
positive value in the current solution changes but stays 
within the range specified by the Allowable Increase and 
Allowable Decrease, the optimal decision variables will 
stay the same; however, the objective function value will 
change. For example, if the unit profit of Jordanelle skis 
were changed to $46 (a decrease of 4, within the allow-
able increase), then we are guaranteed that the optimal 
solution will still be to produce 5.25 pairs of Jordanelle 
and 10.5 pairs of Deercrest. However, each of the 5.25 
pairs of Jordanelle skis produced and sold would real-
ize $4 less profit—a total decrease of 5.25 1$4 2 = $21. 
Thus, the new value of the objective function would be 
$945 − $21 = $924. If an objective coefficient changes 
beyond the Allowable Increase or Allowable Decrease, 
then we must re-solve the problem with the new value to 
find the new optimal solution and profit.

The range within which the objective function coefficients will not change the opti
mal solution provides a manager with some confidence about the stability of the solution 
in the face of uncertainty. If the allowable ranges are large, then reasonable errors in esti
mating the coefficients will have no effect on the optimal policy (although they will affect 
the value of the objective function). Tight ranges suggest that more effort might be spent 
in ensuring that accurate data or estimates are used in the model.

To understand what a nonzero reduced cost means, let us use the second scenario in 
Example 13.16.

ExaMpLE 13.18 Understanding Nonzero Reduced Costs

Figure 13.24 shows the Sensitivity Report when the unit 
profit for Jordanelle skis is $40. As before, the reduced 
cost for Deercrest skis is 0 because the value of the 

 variable is positive. We do not produce any Jordanelle 
skis in this optimal solution simply because it is not prof-
itable to do so. Using the definition of the reduced cost, 
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how much the objective coefficient needs to be  reduced 
for a nonnegative variable that is zero in the  optimal 
solution to become positive, we see that the profit on 
Jordanelle skis must be reduced by at least −$3.34 (or 
equivalently, increased by $3.33) to make it profitable 

to produce them. If you re-solve the model with the unit 
profit for Jordanelle as $43.34, you will obtain the origi-
nal optimal product mix (except that the total profit will 
be $910.04 because of the different objective function 
coefficient.

The Constraints section of the Sensitivity Report lists the final value of the constraint 
function (the lefthand side), a number called the shadow price, the original righthand
side value of the constraint, and an Allowable Increase and Allowable Decrease. The 
shadow price tells how much the value of the objective function will change as the right-
hand side of a constraint is increased by 1. Whenever a constraint has positive slack, the 
shadow price is zero. When a constraint involves a limited resource, the shadow price 
represents the economic value of having an additional unit of that resource.

Figure 13.24

Solver Sensitivity Report 
for SSC Objective: Max 40 
Jordanelle + 65 Deercrest

ExaMpLE 13.19 Interpreting Sensitivity Information for Constraints

In the fabrication constraint (see Figure 13.23), we are 
using only 60.375 of the 84 available hours in the optimal 
solution. Thus, having one more hour available will not 
help us to increase our profit. However, if a constraint 
is binding, then any change in the right-hand side will 
cause the optimal values of the decision variables as 
well as the objective function value to change. We illus-
trate this with the finishing constraint.

The shadow price of the finishing constraint is 45. 
This means that if an additional hour of finishing time is 
available, then the total profit will change by $45. To see 
this, change the limitation of the number of finishing hours 
available to 22 and re-solve the problem. The new  solution 
is to produce 5.5 pairs of Jordanelle and 11.0 pairs of 

Deercrest, yielding a profit of $990. We see that the total 
profit increases by $45, as predicted.

The shadow price is a valid predictor of the change 
in the objective function value for each unit of increase 
in the right-hand side of the constraint up to the value of 
the Allowable Increase. Thus, if up to about 8.2 additional 
hours of finishing time were available, profit would in-
crease by $45 for each additional hour (but we would have 
to re-solve the problem to actually find the optimal val-
ues of the decision variables). Similarly, a negative of the 
shadow price predicts the change in the objective func-
tion value for each unit the constraint’s right-hand side 
is decreased, up to the value of the Allowable  Decrease. 
For example, if one person were ill or injured, resulting in 

(continued)
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Shadow prices are useful to a manager because they provide guidance on how to real
locate resources or change values over which the manager may have control. In linear op
timization models, the parameters of some constraints cannot be controlled. For instance, 
the amount of time available for production or physical limitations on machine capacities 
would clearly be uncontrollable. Other constraints represent policy decisions, which, in 
essence, are arbitrary. Although it is correct to state that having an additional hour of 
finishing time will improve profit by $45, does this necessarily mean that the company 
should spend up to this amount for additional hours? This depends on whether the rel
evant costs have been included in the objective function coefficients. If the cost of labor 
has not been included in the objective function unit profit coefficients, then the company 
will benefit by paying less than $45 for additional hours. However, if the cost of labor has 
been included in the profit calculations, the company should be willing to pay up to an 
additional $45 over and above the labor costs that have already been included in the unit 
profit calculations.

The Limits Report (Figure 13.25) shows the lower limit and upper limit that each 
variable can assume while satisfying all constraints and holding all the other variables 
constant. Generally, this report provides little useful information for decision making and 
can be effectively ignored.

Using the Sensitivity Report

It is easy to use the sensitivity information to evaluate the impact of different scenarios. 
The following rules summarize how to do this:

 a. If a change in an objective function coefficient remains within the Allowable 
Increase and Allowable Decrease ranges in the Decision Variable Cells sec
tion of the report, then the optimal values of the decision variables will not 
change. However, you must recalculate the value of the objective function 
using the new value of the coefficient.

only 14 hours of finishing time available, then profit would 
decrease by 7 1$45 2 = $315, resulting in a total profit of 
$945 −  $315 = $630. This can be  predicted because a 
decrease of 7 hours is within the Allowable Decrease of 
21. Beyond these ranges, the shadow price does not pre-
dict what will happen, and the problem must be re-solved.

Another way of understanding the shadow price is to 
break down the impact of a change in the right-hand side 
of the value. How was the extra hour of finishing time used? 
After solving the model with 22 hours of finishing time, we 
see that we were able to produce an additional 0.25 pairs 
of Jordanelle and 0.5 pairs of Deercrest skis as compared 
to the original solution. Therefore, the profit increased by 
0.25 1$50 2 + 0.5 165 2 = $12.50 + 32.50 = $45.  I n  e s -
sence, a small change in a binding constraint causes a real-
location of how the resources are used.

Interpreting the shadow price associated with the 
market mixture constraint is a bit more difficult. If you 
examine the constraint Deercrest −  2 Jordanelle # 0 
closely, an increase in the right-hand side from 0 to 1 re-
sults in a change of the constraint to

1Deercrest−1 2  −  2 Jordanelle # 0

This means that the number of pairs of Deercrest skis 
 produced would be one short of the requirement that it be 
at least twice the number of Jordanelle skis. If the prob-
lem is re-solved with this constraint, we find the new opti-
mal solution to be 4.875 Jordanelle, 10.75 Deercrest, and 
profit = $942.50. The profit changed by the value of the 
shadow price, and we see that 2 × Jordanelle = 9.75, 
one short of the requirement.

M13_EVAN5448_02_SE_C13.indd   470 12/09/15   8:05 PM



 Chapter 13  Linear Optimization 471

 b. If a change in an objective function coefficient exceeds the Allowable  Increase 
or Allowable Decrease limits in the Decision Variable Cells section of the re
port, then you must resolve the model to find the new optimal values.

 c. If a change in the righthand side of a constraint remains within the  Allowable 
Increase and Allowable Decrease ranges in the Constraints section of the 
 report, then the shadow price allows you to predict how the objective function 
value will change. Multiply the change in the righthand side (positive if an 
increase, negative if a decrease) by the value of the shadow price. However, 
you must resolve the model to find the new values of the decision variables.

 d. If a change in the righthand side of a constraint exceeds the Allowable 
 Increase or Allowable Decrease limits in the Constraints section of the report, 
then you cannot predict how the objective function value will change using 
the shadow price. You must resolve the problem to find the new solution.

We will illustrate these for the SSC whatif scenarios (see Example 13.16) using the 
sensitivity report in Figure 13.23.

Figure 13.25

Solver Limits Report

ExaMpLE 13.20 Using Sensitivity Information to Evaluate Scenarios

 1. Suppose that the unit profit on Jordanelle skis is 
increased by $10. How will the optimal solution 
change? What is the best product mix?

  The first thing to do is to determine if the increase in 
the objective function coefficient is within the range 
of the Allowable Increase and Allowable  Decrease 
in the Decision Variable Cells portion of the report. 
Because $10 is less than the Allowable Increase 
of infinity, we can safely conclude that the optimal 
quantities of the decision variables will not change. 
However, because the objective function changed, 
we need to compute the new value of the total 
profit: 5.25($60) + 10.5($65) = $997.50.

 2. Suppose that the unit profit on Jordanelle skis is 
decreased by $10 because of higher material costs. 
How will the optimal solution change? What is the 
best product mix?

  In this case, the change in the unit profit exceeds 
the Allowable Decrease ($6.67). We can conclude 

that the optimal values of the decision variables will 
change, although we must re-solve the problem to 
determine what the new values would be.

 3. Suppose that 10 additional finishing hours become 
available through overtime. How will manufacturing 
plans be affected?

  When the scenario relates to the right-hand side of 
a constraint, first check if the change in the right-
hand-side value is within the range of the Allowable 
Increase and Allowable Decrease in the Constraints 
section of the report. In this case, 10 additional  
finishing hours exceeds the Allowable Increase. 
Therefore, we must re-solve the problem to deter-
mine the new solution.

 4. What if the number of finishing hours available is 
decreased by 2 hours because of planned equip-
ment maintenance? How will manufacturing plans 
be affected?
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parameter analysis in Analytic Solver Platform

As we have discussed, we could perform sensitivity analysis by either changing data in the 
model and resolving it or by examining the Sensitivity Report. Analytic Solver Platform 
provides an alternative approach, called parameter analysis. With this approach, you can 
automatically run multiple optimizations while varying model parameters within predefined 
ranges.

ExaMpLE 13.21 Single parameter analysis for the SSC problem

Suppose that we wish to investigate the impact of chang-
ing the amount of time available in the Finishing depart-
ment, which is currently 21 hours. First, we need to define 
a range of values for this parameter. Choose an empty cell 
in the spreadsheet, say F3, and then click on the Param-
eters button in the Analytic Solver Platform ribbon and 
choose Optimization. In the Function  Arguments dialog 
that appears, enter the lower, upper, and, optionally, the 
base case values, as shown in Figure 13.26. Click OK, 
and then replace the value in cell D7 by the  reference 
to cell F3; that is =F3. Next, from the Reports button in 
the Analysis group in the Analytic Solver  Platform rib-
bon, select Optimization Reports and then Parameter 
 Analysis. A Multiple Optimizations Report dialog appears 
 (Figure 13.27). Select each of the variables in cells B14 
and C14 and the objective in cell D22 and move them 
to the window at the right. (You might encounter a situ-
ation in which the variables are not displayed in the dia-
log. Should this be the case, click on the Model button 
at the left of the Analytic Solver Platform ribbon. In the 

Model tab in task pane at the right of the spreadsheet, 
click on your variables. In the window below, make sure 
that “Monitor Value” is TRUE.) Also select the parameter 
we defined in cell F3 and move it to the window on the 
right. The number in the Major Axis Points field at the 
bottom of the dialog specifies the number of values be-
tween the lower and upper limit that Solver will test; if we 
want to test values 10, 20, 30, 40, 50, and 60, then change 
this to 6. In the drop-down box, select Vary All Selected  
Parameters Simultaneously. Solver will solve the model 
for each parameter value and insert a new worksheet 
called Analysis Report in the workbook. Figure 13.28 
shows the results, which indicate that after 40 hours, there 
is no improvement in the solution. We could, of course, 
obtain more detailed information by increasing the num-
ber of test values. In using this tool, we encourage you to 
reformat the results to make them easier to understand. 
For example, in Figure 13.28, name the columns with de-
scriptive labels instead of cell references. You could also 
use charts to visualize the results.

  In this case, a decrease of 2 hours in finishing ca-
pacity is within the Allowable Decrease. We may 
 conclude that the total profit will decrease by the 
value of the shadow price for each hour that  finishing 

capacity is decreased. Therefore, we can predict that 
the total profit will decrease by 2 × $45 = $90 to 
$855. However, we must re-solve the model to deter-
mine the new values of the decision variables.

Figure 13.26

Parameter Definition for 
Finishing Hours
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Figure 13.27

Multiple Optimizations 
Report Dialog

Figure 13.28

Solver Parameter Analysis 
Results

ExaMpLE 13.22 Multiple parameter analysis for the SSC problem

Analytic Solver Platform also allows you to run multiple 
optimizations by varying two or more parameters. For 
example, suppose that we wish to examine the effect on 
the optimal profit of changing both the Fabrication and 
Finishing hour limitations, similar to a two-way data table.  
We follow the procedure in Example 13.21 to define the 
parameter for the Finishing limitation. In this case, we 
also specify a new cell (e.g., F2) for the Fabrication hour 
parameter and replace cell D6 with =F2. In the Function 
Arguments dialog, set the range for the Fabrication limi-
tation between 50 and 100. In the Multiple Optimizations 
Report dialog (see Figure 13.29), choose both parameter 
cells F2 and F3; however, we can only choose one result 

cell. In this case, we choose $D$22, which represents the 
objective function value. In the drop-down box, select 
Vary Two Selected Parameters Independently. Solver 
will create a two-way table (actually a PivotTable) shown 
in Figure 13.30. This gives the optimal profit for each 
combination of the Finishing and Fabrication limitations 
(again, we encourage you to replace the cell references 
by descriptive labels for better interpretation of the re-
sults). Finally, if you have several parameters that you 
wish to evaluate individually for their effects on a result 
cell, you may select Vary All Selected Parameters One at 
a Time from the drop-down box in the Multiple Optimiza-
tions Report dialog.
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1Based on Srinivas Bollapragada, Hong Cheng, Mary Phillips, Marc Garbiras, Michael Scholes, Tim 
Gibb, and Mark Humphreville, “NBC’s Optimization Systems Increase Revenues and Productivity,”  
Interfaces, 32, 1 (January–February 2002): 47–60.

The National Broadcasting Company (NBC), a subsidiary 
of General Electric, is primarily in the business of deliv-
ering eyeballs (audiences) to advertisers.1 NBC’s televi-
sion network, cable network, TV stations, and Internet 
divisions generated more than $5 billion in revenues for 

General Electric in 2000. Of these, the television network 
business is by far the largest, contributing more than 
$4 billion in revenues.

The television broadcast year in the United States 
starts in the third week of September. The broadcast 

analytics in practice:  Using Optimization Models for Sales  
planning at NBC

Figure 13.30

Multiple Optimizations Report Data Table

Figure 13.29

Multiple Optimizations 
Report Dialog
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networks announce their programming schedules for 
the new broadcast year in the middle of May. Shortly 
after that, the sale of inventory (advertising slots) be-
gins. The broadcast networks sell about 60% to 80% 
of their airtime inventory during a brief period start-
ing in late May and lasting about 2 to 3 weeks. This 
sales period is known as the up-front market. During 
this time, advertising agencies approach the TV net-
works with requests to purchase time for their clients 
for the entire season. A typical request consists of the 
dollar amount, the demographic (e.g., adults between  
18 and 49 years of age) in which the client is inter-
ested, the program mix, weekly weighting, unit-length 
distribution, and a negotiated cost per 1,000 viewers. 
NBC must develop a detailed sales plan consisting of 
the schedule of commercials to be aired to meet the 
requirements. In addition, the plan should also meet 
the objectives of NBC’s sales management, whose 
goal is to maximize the revenues for the available fixed 
amount of inventory.

Traditionally, NBC developed sales plans manu-
ally. This process was laborious, taking several hours. 
Moreover, most plans required a great deal of rework 
because, owing to their complexity, they initially met nei-
ther management’s goals nor the customer’s require-
ments. NBC developed a linear programming–based 
system that would generate sales plans quickly in a 

manner that made optimal use of the available inven-
tory. The sales-planning problem was to minimize 
the amount of premium inventory assigned to a plan 
and the total penalty incurred in meeting goals, while 
meeting constraints on inventory, airtime availability,  
product conflicts, client requirements, budget, show-mix, 
weekly weighting, and unit-mix. The decision variables 
are the numbers of commercials of each spot length re-
quested by the client that are to be placed in the shows 
and weeks included in the sales plan. The objective 
function includes a term that represents the total value 
of inventory assigned to the sales plan and terms that 
measure the penalties incurred in not meeting the client 
requirements these systems have provided.

The model and its implementation have saved 
millions of dollars of good inventory for NBC while 
meeting all the customer requirements, increased 
 revenues, reduced the time needed to produce a sales 
plan from 3 to 4 hours to about 20 minutes, helped 
NBC to respond quickly to agencies and secure a 
greater share of the available money in the market, 
helped NBC sales managers to resolve deals more 
quickly than in the past and better read the market 
resulting in a more accurate prediction of the up-
front outcome, decreased rework on plans by more 
than 80%, and increased NBC’s revenues by at least  
$50 million a year.
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Key Terms

Alternative optimal solution
Binding constraint
Constraint function
Constraints
Corner point
Decision variables
Feasible region
Feasible solution
Infeasible problem

 Linear optimization model  
 (linear program, LP)
Objective function
Optimization
Parameter analysis
Reduced cost
Shadow price
Unbounded solution
Unique optimal solution

problems and Exercises

 1. Valencia Products makes automobile radar detec
tors and assembles two models: LaserStop and 
SpeedBuster. The firm can sell all it produces. Both 
models use the same electronic components. Two of 
these can be obtained only from a single supplier. 
For the next month, the supply of these is limited to 
4,000 of component A and 3,500 of component B. 
The number of each component required for each 
product and the profit per unit are given in the table.

Components 
Required/Unit

a B profit/unit

LaserStop 18  6 $24

SpeedBuster 12 10 $40

 a. Identify the decision variables, objective func
tion, and constraints in simple verbal statements.

 b. Mathematically formulate a linear optimization 
model.

 2. A brand manager for ColPal Products must de
termine how much time to allocate between radio 
and television advertising during the next month. 
 Market research has provided estimates of the audi
ence  exposure for each minute of advertising in each 
 medium, which it would like to maximize. Costs per 
minute of advertising are also known, and the man
ager has a limited budget of $25,000. The manager 
has decided that because television ads have been 
found to be much more  effective than radio ads, at 

least 70% of the time should be allocated to televi
sion. Suppose that we have the following data:

Type of ad Exposure/Minute Cost/Minute

Radio 350 $ 400

TV 800 $2,000

 a. Identify the decision variables, objective func
tion, and constraints in simple verbal expressions.

 b. Mathematically formulate a linear optimization 
model.

 3. Burger Office Equipment produces two types of 
desks, standard and deluxe. Deluxe desks have oak 
tops and moreexpensive hardware and require addi
tional time for finishing and polishing. Standard desks 
require 70 board feet of pine and 10 hours of labor, 
whereas deluxe desks require 60 board feet of pine, 18 
square feet of oak, and 15 hours of labor. For the next 
week, the company has 5,000 board feet of pine, 750 
square feet of oak, and 400 hours of labor available. 
Standard desks net a profit of $225, and deluxe desks 
net a profit of $320. All desks can be sold to national 
chains such as Staples or Office Depot.

 a. Identify the decision variables, objective func
tion, and constraints in simple verbal statements.

 b. Mathematically formulate a linear optimization 
model.

 4. A business student has $2,500 available from a sum
mer job and has identified three potential stocks in 
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which to invest. The cost per share and expected re-
turn over the next 2 years is given in the table.

Stock A B C

Price/share $25 $15 $30

Return/share  $8 $7 $11

 a. Identify the decision variables, objective func-
tion, and constraints in simple verbal statements.

 b. Mathematically formulate a linear optimization 
model.

 5. Implement the linear optimization model that you 
developed for Valencia Products in Problem 1 in 
Excel and use Solver to find an optimal solution. 
Interpret the Solver Answer report and identify the 
binding constraints and verify the values of the slack 
variables by substituting the optimal solution into the 
model constraints.

 6. Implement the linear optimization model that you devel-
oped for ColPal Products in Problem 2 in  Excel and use 
Solver to find an optimal solution. Interpret the Solver 
Answer report and identify the binding constraints and 
verify the values of the slack variables by substituting 
the optimal solution into the model constraints.

 7. A farmer has 1000 acres of land on which he can 
grow corn, wheat, and soybean. The following table 
lists the cost of preparation for each acre, man-days 
of work required and profit yielded in $.

Cost ($) Work Days Profit ($)

Corn 100  7 30

Wheat 120 10 40

Soyabean  70  8 20

  The farmer has $100,000 for preparation and can 
count on 8000 man-days of work. Develop a linear 
optimization model use Solver to find an optimal so-
lution. Interpret the Solver Answer Report and iden-
tify the binding constraints and verify the values of 
the slack variables by substituting the optimal solu-
tion into the model constraints.

 8. Implement the linear optimization model that you 
developed for the investment scenario in Problem 4 
in Excel and use Solver to find an optimal solution. 
Save the Answer and Sensitivity reports in your Ex-
cel workbook. Interpret the Solver Answer report and 
identify the binding constraints and verify the values 
of the slack variables by substituting the optimal so-
lution into the model constraints.

 9. For the Valencia Products model in Problem 1, graph 
the constraints and identify the feasible region. Then 

identify each of the corner points and show how 
 increasing the objective function value identifies the 
optimal solution.

 10. For ColPal model in Problem 2, graph the constraints 
and identify the feasible region. Then identify each of 
the corner points and show how increasing the objec-
tive function value identifies the optimal solution.

 11. For the Burger Office Equipment model in Problem 
3, graph the constraints and identify the feasible re-
gion. Then identify each of the corner points and 
show how increasing the objective function value 
identifies the optimal solution.

 12. Use Solver to determine if the problem below has opti-
mal solution or not:

  Maximize Z = a + 2b, given the constraints -2a +  
b + c 6 =  2; - a + b - c 6 =  1, and a, b, c 
 satisfy non negativity constraint. 

 13. A firm produces three products P, Q and R using two 
raw materials A, B and labor L. The requirements per 
unit are:

P Q R
Availability/ 

day

A 1 2 2  8

B 3 2 6 12

L 2 3 4 12

Profit/unit ($) 3 2 5

  Using Solver, determine if the solution is unique. If 
not, what is the alternate solution?

 14. For the given mathematical LPP problem, use Solver 
to find out whether the solution is feasible or not:

  Maximize Z = 4A + 3B, subject to A + B 6=  50;  
A + 2B 7=  80 and 3A + 2B 7=  140 and all vari-
ables satisfy non-negativity constraints.

 15. Figure 13.31 shows the sensitivity report after solv-
ing the Crebo Manufacturing model (Example 13.12) 
using Solver. Using only the information in the sen-
sitivity report, answer the following questions.

 a. Explain the value of the reduced cost (-0.3) for 
the number of plugs to produce.

 b. If the gross margin for rails is decreased to $1.05, 
can you predict what the optimal solution and 
profit will be?

 c. Suppose that the gross margin for rivets is in-
creased to $0.85. Can you predict what the opti-
mal solution and profit will be?
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Figure 13.32

Sensitivity Report for 
Valencia Products

 d. If the gross margin for clips is reduced to $1.10, 
can you predict what the optimal solution and 
profit will be? What if the gross margin is re
duced to $1.00?

 e. Suppose that an additional 500 minutes of machine 
capacity is available. How will the optimal solu
tion and profit change? What if planned mainte
nance reduces capacity by 300 minutes?

 16. Figure 13.32 shows the Solver sensitivity report 
for Valencia Products in Problem 1. Using only the 
 information in the sensitivity report, answer the fol
lowing questions.

 a. Explain why the reduced cost for SpeedBuster is 0.

 b. If the unit profit for SpeedBuster is decreased to 
$35, can you predict how the optimal solution 
and profit will change?

 c. If the unit profit for LaserStop is increased to 
$64, can you predict how the optimal solution 
and profit will change?

 d. If an additional 500 units of component A are 
available, can you predict how the optimal solu
tion and profit will be affected?

 e. If a supplier delay results in only 3,400 units of 
component B available, can your predict how the 
optimal solution and profit will be affected?

 17. Figure 13.33 shows the Solver sensitivity report for 
the ColPal Products scenario in Problem 2. Using 
only the information in the sensitivity report, answer 
the following questions.

 a. Suppose that the exposure for TV advertising was 
incorrectly estimated and should have been 875. 
How would the optimal solution have been affected?

 b. Radio listening has gone down, and new marketing 
studies have found that the exposure has dropped to 
150. How will this affect the optimal solution?

Figure 13.31

Sensitivity Report for 
Crebo Manufacturing 
Problem
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 c. The marketing manager has increased the budget 
by $2,000. How will this affect the solution and 
total exposure?

 d. The shadow price for the mix constraint (that at 
least 70% of the time should be allocated to TV) 
is –250. The marketing manager was told that this 
means that if the percentage of TV advertising 
is increased to 71%, exposure will fall by 250.  
Explain why this statement is incorrect.

 18. Figure 13.34 shows the Solver sensitivity report for 
the Burger Office Equipment scenario in Problem 3. 
Using only the information in the sensitivity report, 
answer the following questions.

 a. Explain the reduced cost associated with deluxe 
desks.

 b. If 25% of the pine is deemed to be cosmeti
cally defective, how will the optimal solution be 
affected?

 c. The shop supervisor is suggesting that the work
force be allowed to work an additional 50 hours 
at an overtime premium of $18/hour. Is this a 
good suggestion? Why or why not?

 d. If the unit profit for standard desks is decreased 
to $215, how will the optimal solution and total 
profit be affected?

 e. If the unit profit of standard desks is only $210, 
how will the optimal solution and total profit be 
affected?

 19. Figure 13.35 shows the Solver sensitivity report for 
the investment scenario in Problem 4. Using only the 
information in the sensitivity report, answer the fol
lowing questions.

 a. How much would the return on stock A have to 
increase to invest fully in that stock?

 b. How much would the return on stock C have to 
be to invest fully in that stock?

Figure 13.33

Sensitivity Report for ColPal 
Products

Figure 13.34

Sensitivity Report for Burger 
Office Equipment
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 c. Explain the value of the shadow price for the total 
investment constraint. If the student could bor
row $1,000 at 8% a year to increase her total in
vestment, what would you recommend and why?

 20. Conduct a Solver parameter analysis for the unit profit 
of Deercrest skis in the SSC model. Define the param
eter range from $65 to $80 in increments of $5.

 21. Conduct a Solver parameter analysis for the number 
of components A available in the Valencia Products 
model in Problem 1. Define the parameter range 
from 4,000 to 4,500 in increments of 100.

 22. Bangs Leisure Chairs produces three types of hand
crafted outdoor chairs that are popular for beach, 
pool, and patios: sling chairs, Adirondack chairs, and 
hammocks. The unit profit for these products is $35, 
$75, and $100, respectively.  Each type of chair re
quires cutting, assembling, and finishing. The owner 
is retired and is willing to work 6 hours/day for 5 
days/week, so has 120 hours available each month. 
He does not want to spend more than 50 hours each 
month on any one activity (i.e., cutting, assembling, 
and finishing). The retailer he works with is certain 
that all products he makes can easily be sold. 

Sling chairs are made up of 10 wood pieces for 
the frame, and one piece of cloth. The actual cutting 
of the wood takes 30 minutes. Assembling includes 
sewing of the fabric, and the attachment of rivets, 
screws, fabric, and dowel rod and takes 45 minutes. 
The finishing stage involves sanding, staining, and 
varnishing of the various parts and takes 1 hour. 
Adirondack chairs take 2 hours for both the cutting 
and assembling phases, and finishing takes 1 hour. 
For hammocks, cutting takes 0.4 hours; assembly 
takes 3 hours; and finishing also takes 1 hour. How 

many of each type of chair should he produce each 
month to maximize profit?  

 a. Develop and implement a linear optimization 
model and clearly explain the sensitivity report.

 b. Suppose that Mr. Bangs wants to limit the num
ber of sling chairs to at most 25. How will the 
solution from part (a) change?

 c. Suppose that Mr. Bangs does not want to spend 
more than 40 hours each month on any one 
activity. How will the solution from part (a) 
change? 

 23. The Morton Supply Company produces clothing, 
footwear, and accessories for dancing and gymnas
tics. They produce three models of pointe shoes used 
by  ballerinas to balance on the tips of their toes. The 
shoes are produced from four materials: cardstock, 
satin, plain fabric, and leather. The number of square 
inches of each type of material used in each model of 
shoe, the amount of material available, and the profit/
model are shown below:

Material  
(measured  

in square inches)
Model 

1
Model 

2
Model 

3
Material 
available

Cardstock  12  10  14 1200

Satin  24  20  15 2000

Plain Fabric  45  40  30 7500

Leather  11  11  10 1000

Profit per model $50 $44 $40  

 a. Develop and solve an optimization model to find 
the number of each model to produce to maxi
mize the total profit.

Figure 13.35

Sensitivity Report for 
Investment Problem
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 b. What constraints are binding? Interpret the slack 
values for the nonbinding constraints.

 c. Clearly explain all the key information in the 
sensitivity report in language that the production 
manager would understand. 

 24. Malloy Milling grinds calcined alumina to a standard 
granular size. The mill produces two different size 
products from the same raw material. Regular Grind 
can be produced at a rate of 10,000 pounds per hour 
and has a demand of 400 tons per week with a price 
per ton of $900. Super Grind can be produced at a rate 
of 6,000 pounds per hour and has demand of 200 tons 
per week with a price of $1,900 per ton. A minimum of 
700 tons has to be ground every week to make room in 
the raw material storage bins for previously purchased 

incoming raw material by rail. The mill operates 24/7 
for a total of 168 hours/week.  

 a. Develop and solve a linear optimization model to 
determine the number of tons of each product to 
produce each week to maximize revenue.

 b. What impact will changing the required minimum 
number of tons per week (currently 700) have 
on the solution? Explain using the  Sensitivity 
Report.

 c. If the price per ton for Regular Grind is increased 
to $1100, how will the solution be affected?

 d. If the price per ton for Super Grind is decreased 
to $1400 because of low demand, how will the 
solution change?

Case: performance Lawn Equipment

One of PLE’s manufacturing facilities produces metal 
engine housings from sheet metal for both mowers and 
tractors. Production of each product consists of five steps: 
stamping, drilling, assembly, painting, and packaging to 
ship to its final assembly plant. The  production rates in 
hours per unit and the number of production hours avail
able in each department are given in the following table:

 
Department

Mower 
Housings

Tractor 
Housings

production  
Hours available

Stamping 0.03 0.07 200

Drilling 0.09 0.06 300

Assembly 0.15 0.10 300

Painting 0.04 0.06 220

Packaging 0.02 0.04 100

In addition, mower housings require 1.2 square feet of sheet 
metal per unit and tractor housings require 1.8 square feet 
per unit, and 2,500 square feet of sheet metal is available. 
The company would like to maximize the total number of 
housings they can produce during the planning period. For
mulate and solve a linear optimization model using Solver 
and recommend a production plan. Illustrate the results 
visually to help explain them in a presentation to Ms. Burke. 
In addition, conduct whatever whatif analyses (e.g., run 
different scenarios and apply parameter analysis) you feel 
are appropriate to include in your presentation. Summarize 
your results in a wellwritten report.
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Learning Objectives

After studying this chapter, you will be able to:

•	State the characteristics of some generic types of 
linear optimization models.

•	Describe the different categories of constraints that are 
typically used in optimization models.

•	Build linear optimization models for a variety of 
applications.

•	Use Excel to evaluate scenarios and visualize results 
for linear optimization models and gain practical 
insights into the solutions.

•	Correctly interpret the Solver Sensitivity report for 
models that have bounded variables.

•	Use auxiliary variables to model bound constraints and 
obtain more complete sensitivity information.

•	Ensure that assumptions underlying the use of 
sensitivity information hold when interpreting Solver 
reports.

14Ch
ap

te
r Applications of Linear 

Optimization
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Linear optimization models are the most ubiquitous of optimization mod-

els used in organizations today. Applications abound in operations, finance, 

 marketing, engineering, and many other disciplines. Table 14.1 summarizes 

some common types of generic linear optimization models. This list represents 

but a very small sample of the many practical types of linear optimization models 

that are used in practice throughout business.

Building optimization models is more of an art than a science because there 

often are several ways of formulating a particular problem. Learning how to build 

optimization models requires logical thought but can be facilitated by studying 

 examples of different models and observing their characteristics. The Sklenka Ski 

model we developed and analyzed in Chapter 13 was one example of a  simple 

product-mix model. In this chapter, we illustrate examples of other types of linear 

optimization models and describe unique issues associated with formulation, imple-

mentation on spreadsheets, interpreting results, sensitivity and scenario analysis, 

using Premium Solver and Excel, and gaining insight for making good decisions.Table 14.1

Generic Examples of Linear 
Optimization Models

Type of Model Decision Variables Objective Function Typical Constraints

Product mix Quantities of product to  
produce and sell

Maximize contribu-
tion to profit

Resource limitations (e.g., pro-
duction time, labor, material); 
minimum sales requirements; 
maximum sales potential

Process selection Quantities of product to make 
using alternative processes

Minimize cost Demand requirements; resource 
limitations

Blending Quantity of materials to mix  
to produce one unit of output

Minimize cost Specifications on acceptable 
mixture

Portfolio selection Proportions to invest in  
different financial  
instruments

Maximize future  
return or minimize 
risk exposure

Limit on available funds; sector 
requirements or restrictions;  
proportional relationships on  
investment mix

Transportation Amount to ship between 
sources of supply and 
destinations

Minimize total 
transportation cost

Limited availability at sources; 
required demands met at 
destinations

Multiperiod produc-
tion planning

Quantities of product to pro-
duce in each of several time 
periods; amount of inventory 
to hold between periods

Minimize total pro-
duction and inven-
tory costs

Limited production rates; material 
balance equations

Multiperiod financial 
management

Amounts to invest in short-
term instruments

Maximize cash on 
hand

Cash balance equations; required 
cash obligations

Production/ 
marketing

Allocation of advertising 
expenditures; production 
quantities

Maximize profit Budget limitation; production limi-
tations; demand requirements
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Types of Constraints in Optimization Models

The most challenging aspect of model formulation is identifying constraints. Understanding 
the different types of constraints can help in proper identification and modeling. Constraints 
generally fall into one of the following categories:

•	Simple Bounds. Simple bounds constrain the value of a single variable. You can 
recognize simple bounds in problem statements such as no more than $10,000 
may be invested in stock ABC or we must produce at least 350 units of product 
Y to meet customer commitments this month. The mathematical forms for these 
examples are

ABC … 10,000

Y Ú 350

•	Limitations. Limitations usually involve the allocation of scarce resources. Prob-
lem statements such as the amount of material used in production cannot exceed 
the amount available in inventory, minutes used in assembly cannot exceed the 
available labor hours, or the amount shipped from the Austin plant in July cannot 
exceed the plant’s capacity are typical of these types of constraints.

•	Requirements. Requirements involve the specification of minimum levels of 
performance. Such statements as enough cash must be available in February to 
meet financial obligations, production must be sufficient to meet promised cus-
tomer orders, or the marketing plan should ensure that at least 400 customers are 
contacted each month are some examples.

•	Proportional Relationships. Proportional relationships are often found in prob-
lems involving mixtures or blends of materials or strategies. Examples include 
the amount invested in aggressive growth stocks cannot be more than twice the 
amount invested in equity-income funds or the octane rating of gasoline obtained 
from mixing different crude blends must be at least 89.

•	Balance Constraints. Balance constraints essentially state that input = output and 
ensure that the flow of material or money is accounted for at locations or between 
time periods. Examples include production in June plus any available inventory 
must equal June’s demand plus inventory held to July, the total amount shipped to 
a distribution center from all plants must equal the amount shipped from the dis-
tribution center to all customers, or the total amount of money invested or saved in 
March must equal the amount of money available at the end of February.

Constraints in linear optimization models are generally some combination of con-
straints from these categories. Problem data or verbal clues in a problem statement often 
help you identify the appropriate constraint. In some situations, all constraints may not be 
explicitly stated, but are required for the model to represent the real problem accurately. 
An example of an implicit constraint is nonnegativity of the decision variables.

In the following sections, we present examples of different types of linear optimiza-
tion applications. Each of these models has different characteristics, and by studying how 
they are developed, you will improve your ability to model other problems. We will also 
use these examples to illustrate how data visualization can be effectively used with opti-
mization modeling, and also provide further insights into using Solver. We encourage you 
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to use the process that we illustrated with the Sklenka Ski problem; however, to conserve 
space in this book, we will go directly to the mathematical model instead of first conceptu-
alizing the constraints and objective functions in verbal terms.

Process Selection Models

Process selection models generally involve choosing among different types of processes 
to produce a good. Make-or-buy decisions are examples of process selection models, 
whereby we must choose whether to make one or more products in-house or subcontract 
them out to another firm. The following example illustrates these concepts.

ExaMPLE 14.1 Camm Textiles

Camm Textiles has a mill that produces three types of fab-
rics on a make-to-order basis. The mill operates on a 24/7 
basis. The key decision facing the plant manager is about 
the type of loom needed to process each fabric during the  
coming quarter (13 weeks) to meet demands for the three 
fabrics and not exceed the capacity of the looms in  
the mill. Two types of looms are used: dobbie and regular. 
Dobbie looms can be used to make all fabrics and are the 
only looms that can weave certain fabrics, such as plaids. 
Demands, variable costs for each fabric, and production 
rates on the looms are given in Table 14.2. The mill has 15 
regular looms and 3 dobbie looms. After weaving, fabrics 
are sent to the finishing department and then sold. Any 
fabrics that cannot be woven in the mill because of limited 
capacity will be purchased from an external supplier, fin-
ished at the mill, and sold at the selling price. In addition 
to determining which looms to use to process the fabrics, 
the manager also needs to determine which fabrics to buy 
externally.

To formulate a linear optimization model, define 
Di = number of yards of fabric i to produce on dobbie 
looms, i = 1, N , 3. For example, D1 = number of yards 
of fabric 1 to produce on dobbie looms, D2 = number 
of yards of fabric 2 to produce on dobbie looms, and 
D3 = number of yards of fabric 3 to produce on dobbie 
looms. In a similar fashion, define:

Ri = number of yards of fabric i to produce on regu-
lar looms, i = 2, 3 only

Pi = number of yards of fabric i to purchase from an 
outside supplier, i = 1, N , 3

Note that we are using subscripted variables to simplify 
their definition rather than defining nine individual vari-
ables with unique names.

The objective function is to minimize total cost, found 
by multiplying the cost per yard based on the mill cost or 
outsourcing by the number of yards of fabric for each type 
of decision variable:

min 0.65D1 + 0.61D2 + 0.50D3 + 0.61R2 + 0.50R3

+ 0.85P1 + 0.75P2 + 0.65P3

Constraints to ensure meeting production require-
ments are

Fabric 1 demand: D1 + P1 = 45,000

This constraint states that the amount of fabric 1 pro-
duced on dobbie looms or outsourced must equal the to-
tal demand of 45,000 yards. The constraints for the other 
two fabrics are

Fabric 2 demand: D2 + R2 + P2 = 76,500

Fabric 3 demand: D3 + R3 +  P3 = 10,000

To specify the constraints on loom capac-
ity, we must convert yards per hour into hours per 
yard. For example, for fabric 1 on a dobbie loom, 
4.7 yards ,hour = 0.213 hour ,yard. Therefore, the term 
0.213D1 represents the total time required to produce D1 
yards of fabric 1 on a dobbie loom (hours/yard × yards). 
The total capacity for dobbie looms is

124 hours ,day 2 17 days ,week 2 113 weeks 2 13 looms 2
= 6,552 hours
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Spreadsheet Design and Solver Reports

Figure 14.1 shows a spreadsheet implementation (Excel file Camm Textiles) with the 
optimal solution to Example 14.1. Observe the design of the spreadsheet and, in par-
ticular, the use of labels in the rows and columns in the model section. Using the prin-
ciples discussed in the previous chapter, this design makes it easy to read and interpret 
the Answer and Sensitivity reports. Figure 14.2 shows the Solver model. It is easier 
to define the decision variables as the range B14:D16; however, because we cannot 
produce fabric 1 on regular looms, we set cell C14 to zero as a constraint. Whenever 
you restrict a single decision variable to equal a value or set it as a Ú or …  type of 
constraint, Solver considers it as a simple “bound” constraint, which makes the solu-
tion process more efficient.

Thus, the constraint on available production time on 
dobbie looms is

0.213D1 + 0.192D2 + 0.227D3 " 6,552

For regular looms we have

0.192R2 + 0.227R3 " 32,760

Finally, all variables must be nonnegative.
The complete model is

min 0.65D1 + 0.61D2 + 0.50D3 + 0.61R2 + 0.50R3 
+ 0.85P1 + 0.75P2 + 0.65P3

Fabric 1 demand: D1 + P1 = 45,000

Fabric 2 demand: D2 + R2 + P2 = 76,500

Fabric 3 demand: D3 + R3 +  P3 = 10,000

Dobbie loom capacity:

0.213D1 + 0.192D2 + 0.227D3 " 6,552

Regular loom capacity:

0.192R2 + 0.227R3 " 32,760

Nonnegativity: all variables # 0

Table 14.2

Textile Production Data

Fabric
Demand  
(yards)

Dobbie Loom  
Capacity  

(yards/hour)

Regular Loom  
Capacity  

(yards/hour)
Mill Cost  
($/yard)

Outsourcing  
Cost ($/yard)

1 45,000 4.7 0.0 $0.65 $0.85

2 76,500 5.2 5.2 $0.61 $0.75

3 10,000 4.4 4.4 $0.50 $0.65

ExaMPLE 14.2 Interpreting Solver Reports for the Camm Textiles Problem

Figures 14.3 and 14.4 show the Solver Answer and 
 Sensitivity reports for the Camm Textiles model. In the 
Answer report, we see that only the regular loom capacity 
constraint is not binding; the slack value of 15,775.73 hours  
means that the regular looms have excess capacity, 
whereas the fact that the dobbie loom constraint is bind-
ing means that all capacity is used to meet the demand. 
Because of the limited dobbie loom capacity and the fact 

that fabric 1 cannot be made on a regular loom, some of 
fabric 1 needs to be outsourced, even though the out-
sourcing cost is high.

The Sensitivity report contains a lot of information, 
and we highlight only a few pieces of it. Note that the 
mill cost for fabric 2 is $0.61, whereas the outsourcing 
cost is $0.75. Therefore, the reduced cost of $0.14 is the 
difference and is the amount that the outsourcing cost 

(continued )
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Figure 14.1

Spreadsheet Model for Camm Textiles

would have to be lowered to make it economical to pur-
chase fabric 2 rather than to make it. The shadow price 
of − $0.94 for the dobbie loom constraint means that 
an increase in dobbie loom capacity (up to 3,022 hours) 
would lower the total cost by 94 cents for each addi-
tional hour of capacity. This can help financial managers 
to justify purchasing or possibly renting new equipment. 
The shadow prices on the fabric demand constraints ex-
plain how much the total cost would  increase if  demand 

for the fabric should rise up to the Allowable Increase 
limits. Producing an extra yard of fabric 1 will cost $0.85 
(the cost of outsourcing, because there is not enough 
dobbie capacity), whereas producing an extra yard of 
fabrics 2 and 3 would cost only $0.61 and $0.50, respec-
tively (the mill costs), while maintaining the same loom 
capacities. This information can help the marketing de-
partment set prices or promotions with its customers.
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Figure 14.2

Solver Model for Camm 
Textiles

Figure 14.3

Solver Answer 
Report for Camm 
Textiles

Solver Output and Data Visualization

As you certainly know by now, interpreting the output from Solver requires some techni-
cal knowledge of linear optimization concepts and terminology, such as reduced costs and 
shadow prices. Data visualization can help analysts present optimization results in forms 
that are more understandable and can be easily explained to managers and clients in a re-
port or presentation. We will use the Camm Textiles example to illustrate this.

The first thing that one might do is to visualize the values of the optimal decision 
variables and constraints, drawing upon the model output or the information contained 
in the Answer Report. Figure 14.5 shows a chart of the decision variables, showing the 
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Figure 14.4

Solver Sensitivity Report for 
Camm Textile

amounts of each fabric produced on each type of loom and outsourced. Figure 14.6 shows 
the capacity utilization of each type of loom. We can easily see that the utilization of 
regular looms is approximately half the capacity, while dobbie looms are fully utilized, 
suggesting that the purchase of additional dobbie looms might be useful, at least under the 
current demand scenario.

The Sensitivity Report is more challenging to visualize effectively. The reduced costs 
describe how much the unit production or purchasing cost must be changed to force the 
value of a variable to become positive in the solution. Figure 14.7 shows a visualization of 
the reduced cost information. The chart displays the unit cost coefficients for each produc-
tion or outsourcing decision, and for those not currently utilized, the change in cost required 
to force that variable to become positive in the solution. Note that since fabric 1 cannot be 
produced on a regular loom, its reduced cost is meaningless and therefore, not displayed.

Figure 14.5

Summary of Optimal 
Solution
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Figure 14.6

Chart of Capacity Utilization

We may also visualize the ranges over which the unit cost coefficients may change 
without changing the optimal values of the decision variables by using an Excel Stock 
Chart. A stock chart typically shows the “high-low-close” values of daily stock prices; 
here we can compute the maximum-minimum-current values of the unit cost coefficients. 
To do this, follow these steps:

 1. Create a table in the worksheet by adding the Allowable Increase values and 
subtracting the Allowable Decrease values from the cost coefficients as shown 
in Table 14.3. Replace 1E+30 by #N/A in the worksheet so that infinite  values 
are not displayed.

 2. Highlight the range of this table and insert an Excel Stock Chart and name the 
series as Maximum, Minimum, and Current.

 3. Click the chart, and in the Format tab of Chart Tools, go to the Current 
 Selection group to the left of the ribbon and click on the drop down box (it 
usually says “Chart Area”). Find the series you wish to format and then click 
Format Selection.

Figure 14.7

Summary of Reduced Cost 
Information
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 4. In the Format Data Series pane that appears in the worksheet, click the paint 
icon and then Marker, making sure to expand the Marker Options menu.

 5. Choose the type of marker you wish and increase the width of the markers to 
make them more visible. We chose the green symbol * for the current value, 
a red triangle for the minimum value, and a blue dash for the maximum value. 
This results in the chart shown in Figure 14.8.

Now it is easy to visualize the allowable unit cost ranges. For those lines that have 
no maximum limit (the blue dash) such as with Fabric 1 Purchased, the unit costs can in-
crease to infinity; for those that have no lower limit (the red triangle) such as Fabric 1 on 
Dobbie, the unit costs can decrease indefinitely.

Shadow prices show the impact of changing the right-hand side of a binding con-
straint. Because the plant operates on a 24/7 schedule, changes in loom capacity would 
require in “chunks” (i.e., purchasing an additional loom) rather than incrementally. How-
ever, changes in the demand can easily be assessed using the shadow price information. 
Figures 14.9 and 14.10 show a simple summary of the shadow prices associated with each 
product, as well as the ranges based on the Allowable Increase and Allowable  Decrease 
values over which these prices are valid, using a similar approach as described earlier for 
the cost-coefficient ranges.

Table 14.3

Data Used to Construct 
Stock Chart for Cost 
Coefficient Ranges

Figure 14.8

Chart of Allowable Unit Cost 
Ranges

  Maximum  Minimum Current

Fabric 1 on Dobbie  0.85  #N/A  0.65

Fabric 1 Purchased  #N/A  0.65  0.85

Fabric 2 on Dobbie  #N/A  0.429231  0.61

Fabric 2 on Regular 0.75  #N/A  0.61

Fabric 2 Purchased  #N/A  0.61  0.75

Fabric 3 on Dobbie  #N/A  0.286364  0.5

Fabric 3 on Regular 0.65  #N/A  0.5

Fabric 3 Purchased  #N/A  0.5  0.65
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Figure 14.9

Summary of Shadow Prices

Figure 14.10

Chart of Allowable Demand 
Ranges for Valid Shadow 
Prices

Blending Models

Blending problems involve mixing several raw materials that have different characteristics 
to make a product that meets certain specifications. Dietary planning, gasoline and oil re-
fining, coal and fertilizer production, and the production of many other types of bulk com-
modities involve blending. We typically see proportional constraints in blending models.

ExaMPLE 14.3 BG Seed Company

The BG Seed Company specializes in food products 
for birds and other household pets. In developing a 
new birdseed mix, company nutritionists have speci-
fied that the mixture should contain at least 13% pro-
tein and 15% fat and no more than 14% fiber. The 
percentages of each of these nutrients in eight types 
of ingredients that can be used in the mix are given in 
Table 14.4, along with the wholesale cost per pound. 
What is the minimum-cost mixture that meets the 
stated nutritional requirements?

The decisions are the amount of each ingredient to 
include in a given quantity—for example, 1 pound—of mix. 
Define Xi = number of pounds of ingredient i to  include in 
1 pound of the mix, for i = 1, N , 8. By defining the vari-
ables in this fashion makes the solution easily scalable to 
any quantity.

The objective is to minimize total cost, obtained by 
multiplying the cost per pound by the number of pounds 
used for each ingredient:

minimize 0.22X1 + 0.19X2 + 0.10X3 + 0.10X4 + 0.07X5 
+ 0.05X6 + 0.26X7 + 0.11X8

(continued )
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To ensure that the mix contains the appropriate pro-
portion of ingredients, observe that multiplying the num-
ber of pounds of each ingredient by the percentage of 
nutrient in that ingredient (a dimensionless quantity) spec-
ifies the number of pounds of nutrient provided. For ex-
ample, sunflower seeds contain 16.9% protein; so 0.169X1 
represents the number of pounds of protein in X1 pounds 
of sunflower seeds. Therefore, the total number of pounds 
of protein provided by all ingredients is

0.169X1 + 0.12X2 + 0.085X3 + 0.154X4 + 0.085X5

 + 0.12X6 + 0.18X7 + 0.119X8

Because the total number of pounds of ingredients that 
are mixed together equals X1 + X2 + X3 + X4 + X5 +
X6 + X7 + X8, the proportion of protein in the mix is

0.169X1 + 0.12X2 + 0.085X3

+ 0.154X4 + 0.085X5 + 0.12X6 + 0.18X7 + 0.119X8

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8

This proportion must be at least 0.13 and can be converted 
to a linear form as discussed in Chapter 13. However, we 
wish to determine the best amount of ingredients to in-
clude in 1 pound of mix; therefore, we add the constraint

 X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 = 1

Now we can substitute 1 for the denominator in the pro-
portion of protein, simplifying the constraint:

0.169X1 + 0.12X2 + 0.085X3 + 0.154X4 + 0.085X5

  + 0.12X6 + 0.18X7 +  0.119X8 # 0.13

This ensures that at least 13% of the mixture will be pro-
tein. In a similar fashion, the constraints for the fat and 
fiber requirements are

0.26X1 + 0.014X2 + 0.038X3 + 0.063X4 + 0.038X5 

   + 0.017X6 + 0.179X7 + 0.04X8 # 0.15

0.29X1 + 0.083X2 + 0.027X3 + 0.024X4 + 0.027X5

   + 0.023X6 + 0.288X7 + 0.109X8 " 0.14

Finally, we have nonnegative constraints:

Xi # 0, for i = 1, 2, . . . , 8

The complete model is:

minimize 0.22X1 + 0.19X2 + 0.10X3 + 0.10X4 + 0.07X5 
 + 0.05X6 + 0.26X7 + 0.11X8

Mixture: X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 = 1

Protein: 0.169X1 + 0.12X2 + 0.085X3 + 0.154X4 + 0.085X5

    + 0.085X5 + 0.12X6 + 0.18X7 + 0.119X8 # 0.13

Fat: 0.26X1 + 0.041X2 + 0.038X3 + 0.063X4 + 0.038X5

+ 0.017X6 + 0.179X7 + 0.04X8 # 0.15

Fiber: 0.29X1 + 0.083X2 + 0.027X3 + 0.024X4 + 0.027X5

+ 0.023X6 + 0.288X7 + 0.109X8 " 0.14

Nonnegativity:  Xi # 0, for i = 1, 2, . . . , 8

Table 14.4 

Birdseed Nutrition Data

Ingredient Protein % Fat % Fiber % Cost/lb

Sunflower seeds 16.9 26.0 29.0 $0.22

White millet 12.0  4.1  8.3 $0.19

Kibble corn  8.5  3.8  2.7 $0.10

Oats 15.4  6.3  2.4 $0.10

Cracked corn  8.5  3.8  2.7 $0.07

Wheat 12.0  1.7  2.3 $0.05

Safflower 18.0 17.9 28.8 $0.26

Canary grass seed 11.9  4.0 10.9 $0.11

Dealing with Infeasibility

Figure 14.11 shows an implementation of this model on a spreadsheet (Excel file BG Seed 
Company) and Figure 14.12 shows the Solver model. If we solve the model, however, we 
find that the problem is infeasible. Solver provides a report, called the Feasibility report, 
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Figure 14.11

Spreadsheet 
Model for BG Seed 
Company Problem

that can help in understanding why. This is shown in Figure 14.13. From this report it ap-
pears that a conflict exists in trying to meet both the fat and fiber constraints. If you look 
closely at the data, you can see that only sunflower seeds and safflower seeds have the 
high-enough amounts of fat needed to meet the 15% requirement; however, they also have 
very high amounts of fiber, so including them in the mixture makes it impossible to meet 
the fiber limitation.
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So what should the company owner do? One option is to investigate other potential 
ingredients to use in the mixture that have different nutritional characteristics and see if 
a feasible solution can be found. The second option is to either lower the fat require-
ment or raise the fiber limitation, recognizing that these are not ironclad constraints, but 
simply nutritional goals that can probably be modified in consultation with the company 
nutritionists. Figure 14.14 shows Solver solutions to two what-if scenarios, where the fat 
requirement is lowered to 14.5%, and the fiber limitation is raised to 14.5%, with all other 
data remaining the same in each case. Feasible solutions were found for both cases, and 
there is little difference in the results.

Figure 14.12

Solver Model for BG Seed 
Company Problem

Figure 14.13

Feasibility Report for BG 
Seed Model

Figure 14.14

Model Scenarios for BG 
Seed Company Problem

M14_EVAN5448_02_SE_C14.indd   496 12/09/15   8:07 PM



 Chapter 14  Applications of Linear Optimization 497

Portfolio Investment Models

Many types of financial investment problems are modeled and solved using linear  
optimization. Such portfolio investment models problems have the basic characteristics of 
blending models.

ExaMPLE 14.4 Innis Investments

Innis Investments is a small, family-owned business that 
manages personal financial portfolios. The company 
manages six mutual funds and has a client that has ac-
quired $500,000 from an inheritance. Characteristics of 
the funds are given in Table 14.5.

Innis Investments uses a proprietary algorithm to 
establish a measure of risk for its funds based on the 
historical volatility of the investments. The higher the 
volatility, the greater the risk. The company recom-
mends that no more than $200,000 be invested in any in-
dividual fund, that at least $50,000 be invested in each of 
the multinational and balanced funds, and that the total 
amount invested in income equity and balanced funds 
be at least 40% of the total investment, or $200,000. The 
client would like to have an average return of at least 
5% but would like to minimize risk. What portfolio would 
achieve this?

Let X1 through X6 represent the dollar amount in-
vested in funds 1 through 6, respectively. The total risk 
would be measured by the weighted risk of the port-
folio, where the weights are the proportion of the total  
investment in any fund (Xj ,500,000). Thus, the objective  
function is

minimize total risk =

10.57X1 + 13.22X2 + 14.02X3 + 2.39X4 + 9.30X5 + 7.61X6

500,000

The first constraint ensures that $500,000 is invested:

X1 + X2 + X3 + X4 + X5 + X6 = 500,000

The next constraint ensures that the weighted return is 
at least 5%:

8.13X1+ 9.02X2 +7.56X3 + 3.62X4 +7.79X5 + 4.40X6

500,000
# 5.00

The next constraint ensures that at least 40% be invested 
in the income equity and balanced funds:

X5 + X6 # 0.4(500,000)

The following constraints specify that at least $50,000 be 
invested in each of the multinational and balanced funds:

X2 # 50,000

X6 # 50,000

Finally, we restrict each investment to a maximum of 
$200,000 and include nonnegativity:

Xj " 200,000 for j = 1, N, 6

Xj # 0 for j = 1, N, 6

Table 14.5

Mutual Fund Data

Fund Expected annual Return Risk Measure

1. Innis Low-priced Stock Fund 8.13% 10.57

2. Innis Multinational Fund 9.02% 13.22

3. Innis Mid-cap Stock Fund 7.56% 14.02

4. Innis Mortgage Fund 3.62%  2.39

5. Innis Income Equity Fund 7.79%  9.30

6. Innis Balanced Fund 4.40%  7.61
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Figure 14.15

Spreadsheet Model for Innis 
Investments
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Figure 14.15 shows a spreadsheet implementation of this model (Excel file Innis 
 Investments) with the optimal solution. The Solver model is given in Figure 14.16. All 
constraints are met with a minimum risk measure of 6.3073.

Evaluating Risk versus Reward

In financial decisions such as these, it is often useful to compare risk versus reward to 
make an informed decision, particularly since the target return is subjective.

ExaMPLE 14.5 Risk versus Reward

If you examine the Sensitivity report (not shown) in the 
Excel file for the Innis investment problem, you will find 
that the Allowable Increase and Allowable Decrease val-
ues for the weighted return are very small, 0.00906 and 
0.00111, respectively; so any changes in the target re-
turn will require re-solving the model. Figure 14.17 shows 
such an analysis for target returns between 4% and 
7%. We see that below 5%, we can obtain a return of 
4.89% with a minimum risk. The chart on the right shows  
that as the target return increases, the risk increases, 
and at 6%, begins to increase at a faster rate. As the 

target return increases, the investment mix begins to 
change toward a higher percentage of low-price stock, 
which is a riskier investment, as shown in the chart on 
the left. A more conservative client might be willing to 
take a small amount of additional risk to achieve a 6% 
return but not venture beyond that value. We will discuss 
this further in Chapter 16 when we address decision 
analysis. This example clearly shows the value of using 
optimization models in a predictive analytics context, as 
we discussed at the end of the previous chapter.

Figure 14.16

Solver Model for Innis 
Investments
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Scaling Issues in Using Solver

A poorly scaled model is one that computes values of the objective, constraints, or inter-
mediate results that differ by several orders of magnitude. Because of the finite precision 
of computer arithmetic, when these values of very different magnitudes (or others derived 
from them) are added, subtracted, or compared—in the user's model or in the Solver's 
own calculations—the result will be accurate to only a few significant digits. As a result, 
Solver may detect or suffer from “numerical instability.” The effects of poor scaling in an 
optimization model can be among the most difficult problems to identify and resolve. It 
can cause Solver engines to return messages such as “Solver could not find a feasible solu-
tion,” “Solver could not improve the current solution,” or even “The linearity conditions 
required by this Solver engine are not satisfied,” or it may return results that are subopti-
mal or otherwise very different from your expectations.

In the Solver options, you can check the box Use Automatic Scaling. When this 
option is selected, the Solver rescales the values of the objective and constraint func-
tions internally to minimize the effects of poor scaling. But this can only help with the 
Solver's own calculations—it cannot help with poorly scaled results that arise in the 
middle of your Excel formulas. The best way to avoid scaling problems is to carefully 
choose the “units” implicitly used in your model so that all computed results are within 
a few orders of magnitude of each other. For example, if you express dollar amounts in 
units of (say) millions, the actual numbers computed on your worksheet may range from 
perhaps 1 to 1,000.

Figure 14.17

Scenario Analysis for Innis Investments
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ExaMPLE 14.6 Little Investment advisors

Little Investment Advisors is working with a client on 
 determining an optimal portfolio of bond funds. The firm 

suggests six different funds, each with different expected 
returns and risk measures (based on historical data):

The client wants to invest $350,000. Find the optimal 
investment strategy to achieve the largest weighted per-
centage return while keeping the weighted risk measure 
no greater than 5.00.

The model is simple. Let X1 through X6 be the 
amount invested in each of the six funds.

Bond Portfolio  Expected Return Risk Measure

1. Ohio National Bond Portfolio  6.11%  4.62

2. PIMCO Global Bond Unhedged Portfolio  7.61%  7.22

3. Federated High Income Bond Portfolio  5.29%  9.75

4.  Morgan Stanley UIF Core Plus Fixed Income Portfolio  2.79%  3.95

5. PIMCO Real Return Portfolio  7.37%  6.04

6. PIMCO Total Return Portfolio  5.65%  5.17

Figure 14.18

Solution without Scaling

Maximize 
16.11X1 + 7.61X2 + 5.29X3 + 2.79X4 + 7.37X5 + 5.65X6 2 ,
350,000 

X1 + X2 + X3 + X4 + X5 + X6 = 350,000

14.62X1 + 7.22X2 + 9.75X3 + 3.95X4 + 6.04X5 + 5.17X6 2 ,
350,000 " 5.00

X1, N, X6 # 0 

Figure 14.18 shows the solution using Premium Solver without scaling the vari-
ables. Solver displayed no messages, but the answer is incorrect! This occurs because the 
 objective function (in percent) is several orders of magnitude smaller than the decision 
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variables and investment constraint (in hundreds of thousands of dollars). Figure 14.19 
shows the result after the data have been scaled by expressing the decision variables and 
investment amount to thousands of dollars. This is the correct answer. So check your mod-
els carefully for possible scaling issues!

Figure 14.19

Solution after Scaling the 
Model

Transportation Models

Many practical models in supply chain optimization stem from a very simple model called 
the transportation problem. This involves determining how much to ship from a set of 
sources of supply (factories, warehouses, etc.) to a set of demand locations (warehouses, 
customers, etc.) at minimum cost.

ExaMPLE 14.7 General appliance Corporation

General Appliance Corporation (GAC) produces refriger-
ators at two plants: Marietta, Georgia, and Minneapolis, 
Minnesota. They ship them to major distribution centers 
in Cleveland, Baltimore, Chicago, and Phoenix. The ac-
counting, production, and marketing departments have 
provided the information in Table 14.6, which shows the 
unit cost of shipping between any plant and distribution 
center, plant capacities over the next planning period, 
and distribution center demands. GAC’s supply chain 
manager faces the problem of determining how much to 

ship between each plant and distribution center to mini-
mize the total transportation cost, not exceed available 
capacity, and meet customer demand.

To develop a linear optimization model, we first de-
fine the decision variables as the amount to ship between 
each plant and distribution center. In this model, we use 
double-subscripted variables to simplify the formulation. 
Define Xij = amount shipped from plant i to distribution 
center j, where i = 1 represents Marietta, i = 2 repre-
sents Minneapolis, j = 1 represents Cleveland, and so on.  
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Table 14.6 

GAC Cost, Capacity, 
and Demand Data

Distribution Center

Plant Cleveland Baltimore Chicago Phoenix Capacity

Marietta $12.60 $14.35 $11.52 $17.58 1,200

Minneapolis  $9.75 $16.26  $8.11 $17.92 800

Demand 150 350 500 1,000

Using the unit-cost data in Table 14.5, the total cost of 
shipping is equal to the unit cost multiplied by the amount 
shipped, summed over all combinations of plants and dis-
tribution centers. Therefore, the objective function is to 
minimize total cost:

minimize 12.60X11 + 14.35X12 + 11.52X13 + 17.58X14

+ 9.75X21 + 16.26X22 + 8.11X23 + 17.92X24

Because capacity is limited, the amount shipped 
from each plant cannot exceed its capacity. The total 
amount shipped from Marietta, for example, is X11 +  
X12 + X13 + X14. Therefore, we have the constraint

X11 +  X12 + X13 + X14 " 1,200

Similarly, the capacity limitation at Minneapolis leads to 
the constraint

X21 +  X22 +  X23 + X24 " 800

Next, we must ensure that the demand at each distribution 
center is met. This means that the total amount shipped to 
any distribution center from both plants must equal the de-
mand. For instance, at Cleveland, we must have:

X11 + X21 = 150

For the remaining three distribution centers, the con-
straints are

 X12 + X22 = 350

 X13 + X23 = 500

  X14 + X24 = 1,000

Last, we need nonnegativity, Xij # 0, for all i and j. The 
complete model is

minimize 12.60X11 + 14.35X12 + 11.52X13 + 17.58X14 
+ 9.75X21 + 16.26X22 + 8.11X23 + 17.92X24

 X11 + X12 + X13 + X14 " 1200

X21 + X22 + X23 + X24 " 800

 X11+X21 = 150

 X12+X22 = 350

 X13+X23 = 500

 X14+X24 = 1000

 Xij # 0, for all i and j

Figure 14.20 shows a spreadsheet implementation for the GAC transportation problem 
with the optimal solution (Excel file General Appliance Corporation), and  Figure 14.21 
shows the Solver model. The Excel model is very simple. In the model section, the  decision 

Figure 14.20

General Appliance 
Corporation Model 
Spreadsheet Implementation 
and Solution
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Figure 14.21

General Appliance 
Corporation Solver Model

variables are stored in the plant-distribution-center matrix. The objective function in cell 
B18 can be stated as

total cost = B6 * B13 + C6 * C13 + D6 * D13 + E6 * E13 + B7 * B14
+ C7 * C14 + D7 * D14 + E7 * E14

However, the SUMPRODUCT function is particularly useful for such large expressions; 
so it is more convenient to express the total cost as

SUMPRODUCT(B6:E7,B13:E14)

The SUMPRODUCT function can be used for any two arrays as long as the dimensions are 
the same. Here, the function multiplies pairwise the cost coefficients in the range B6:E7 
by the amounts shipped in the range B13:E14 and then adds the terms. In the model, we 
also use the SUM function in cells F13 and F14 to sum the amount shipped from each 
plant, and also in cells B15 to E15 to sum the total amount shipped to each distribution 
center.

Formatting the Sensitivity Report

Depending on how cells in your spreadsheet model are formatted, the Sensitivity re-
port produced by Solver may not reflect the accurate values of reduced costs or shadow 
prices because an insufficient number of decimal places may be displayed. For example,  
Figure 14.22 shows the Sensitivity report created by Solver. Note that the data in columns 
headed reduced cost and shadow price are formatted as whole numbers. More-accurate 
values are shown in Figure 14.23 (obtained by simply formatting the data to have two 
decimal places). Thus, we highly recommend that after you save the Sensitivity report 
to your workbook, you select the reduced cost and shadow price ranges and format them  
to have at least two or three decimal places.
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Figure 14.22

Original Sensitivity 
Report for GAC 
Transportation Model

Figure 14.23

Accurate Sensitivity Report 
for GAC Transportation 
Model
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ExaMPLE 14.8 Interpreting Sensitivity Information for the GaC Model

The transportation model is a good example to use to 
discuss the interpretation of reduced costs. First, note 
that the reduced costs are zero for all variables that 
are positive in the solution. Now examine the reduced 
cost, 3.19, associated with shipping from Marietta to 
 Cleveland. A question to ask is, Why does the optimal 
solution ship nothing between these cities? The answer 
is simple: It is not economical to do so. In other words, 
it costs too much to ship from Marietta to Cleveland; the 
demand can be met less expensively by shipping from 
Minneapolis. The next logical question to ask is, What 
would the unit shipping cost have to be to make it attrac-
tive to ship from Marietta instead of Minneapolis? The  
answer is given by the reduced cost. If the unit cost can 
be reduced by at least $3.19, then the optimal solution 
will change and would include a positive value for the 
Marietta–Cleveland variable. Again, this is true only if all 
other data are held constant. A supply chain manager 
might use this information to identify alternative trans-
portation carriers or negotiate freight rates.

To interpret the shadow prices, you need to look 
at the information closely. For instance, the Allowable 
 Increase for all the demand constraints is zero. This is 
because the total capacity equals the total demand; 
therefore, we cannot increase the demand at any distri-
bution center without creating an infeasible problem. 
Nevertheless, the shadow prices do reflect the cost  

savings that would occur for a unit decrease in demand at 
one of the distribution centers. For example, the shadow 
price for the demand constraint at Cleveland is $9.75, 
which is exactly equal to the unit cost of shipping from 
Minneapolis. If the demand at Cleveland decreases by 1,  
we simply ship one less unit from Minneapolis. However, 
note that the shadow price for the Baltimore  constraint, 
$14.69, is not equal to the unit cost of shipping from ei-
ther Marietta or Minneapolis. If we ship one less unit 
from Marietta, we save only $14.35. We could save more 
by adjusting other shipping decisions. If you change the 
Baltimore demand to 349 and re-solve the model, you 
will find that the optimal solution ships 349 units from 
Marietta to Cleveland at a cost savings of $14.35 but now 
also ships 851 units from Marietta to Phoenix at a cost  
increase of $17.58 and 149 units from Minneapolis to 
Phoenix at a cost savings of $17.92. The net change in 
cost is −$14.35 + $17.58 − $17.92 = $14.69, which is 
the value of the shadow price.

Finally, the shadow price of −0.34 for the Marietta 
constraint states that if the capacity at Marietta can be 
increased (up to 150 units), the total cost can be  reduced 
by $0.34 per unit by reallocating the shipping deci-
sions. However, the shadow price of 0 for  Minneapolis 
means that even if the capacity is increased, no cost 
savings will occur because the optimal solution will  
not change.

Degeneracy

Example 14.8 also exhibits a phenomenon called degeneracy. A solution is a degenerate 
solution if the right-hand-side value of any constraint has a zero Allowable Increase or 
Allowable Decrease, as we see in Figure 14.23. A full discussion of the implications of 
degeneracy is beyond the scope of this book; however, it is important to know that degener-
acy can impact the interpretation of sensitivity analysis information. For example, reduced 
costs and shadow prices may not be unique, and you may have to change objective function 
coefficients beyond their allowable increases or decreases before the optimal solution will 
change. Thus, some caution should be exercised when interpreting the information. When 
in doubt, consult a business analytics expert.

Multiperiod Production Planning Models

Many linear optimization problems involve planning production over multiple time 
 periods. The basic decisions are how much to produce in each time period to meet antici-
pated demand over each period. Although it might seem obvious to simply produce to the 
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ExaMPLE 14.9 K&L Designs

K&L Designs is a home-based company that makes 
hand-painted jewelry boxes for teenage girls. Forecasts 
of sales for the next year are 150 in the autumn, 400 in the 
winter, and 50 in the spring. Plain jewelry boxes are pur-
chased from a supplier for $20. The cost of capital is es-
timated to be 24% per year (or 6% per quarter); thus, the 
holding cost per item is 0.06 1$20 2 = $1.20 per quarter.  
The company hires art students part-time to craft de-
signs during the autumn, and they earn $5.50 per hour. 
Because of the high demand for part-time help during 
the winter holiday season, labor rates are higher in the 
winter, and workers earn $7.00 per hour. In the spring, 
labor is more difficult to keep, and the owner must pay 
$6.25 per hour to retain qualified help. Each jewelry box 
takes 2 hours to complete. How should production be 
planned over the three quarters to minimize the com-
bined production and inventory-holding costs?

The principal decision variables are the number of 
jewelry boxes to produce during each of the three quar-
ters. However, since we have the option of carrying inven-
tory to other time periods, we must also define decision 
variables for the number of units to hold in inventory at the 
end of each quarter. The decision variables are

 PA = amount to produce in autumn

 PW = amount to produce in winter

 PS = amount to produce in spring

 IA = inventory held at the end of autumn

 IW = inventory held at the end of winter

 IS = inventory held at the end of spring

The production cost per unit is computed by multi-
plying the labor rate by the number of hours required 
to produce one. Thus, the unit cost in the autumn is 
($5.50) (2) = $11.00; in the winter, ($7.00)(2) = $14.00; 
and in the spring, ($6.25) (2) = $12.50. The objective 
function is to minimize the total cost of production and 
inventory. (Because the cost of the boxes themselves is 

constant, it is not relevant to the problem we are address-
ing.) The objective function is, therefore,

minimize 11PA+ 14PW +12.50PS + 1.20IA + 1.20IW + 1.20IS

The only explicit constraint is that demand must be 
satisfied. Note that both the production in a quarter as 
well as the inventory held from the previous time quarter 
can be used to satisfy demand. In addition, any amount in 
excess of the demand is held to the next quarter. There-
fore, the constraints take the form of inventory balance 
equations that essentially say that what is available in 
any time period must be accounted for somewhere. More 
formally,

production + inventory from the previous quarter 
 = demand + inventory held to the next quarter

This can be represented visually using the diagram in 
Figure 14.24. For each quarter, the sum of the variables 
coming in must equal the sum of the variables going out. 
Drawing such a figure is very useful for any type of mul-
tiple time period planning model. This results in the con-
straint set

 PA + 0 = 150 + IA

PW + IA = 400 + IW

 PS + IW = 50 + IS

Moving all variables to the left-side results in the model

minimize 11PA + 14PW +12.50PS + 1.20IA + 1.20IW + 1.20IS

subject to

PA − IA = 150

PW + IA − IW = 400

PS + IW − IS = 50

Pi # 0, for all i

Ij # 0, for all j

 anticipated level of sales, it may be advantageous to produce more than needed in earlier 
time periods when production costs may be lower and store the excess production as in-
ventory for use in later time periods, thereby letting lower production costs offset the costs 
of holding the inventory. So the best decision is often not obvious.
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Figure 14.25 shows a spreadsheet implementation for the K&L Designs model (Excel 
file K&L Designs); Figure 14.26 shows the associated Solver model. For the optimal solu-
tion, we produce the demand for the autumn and winter quarters in the autumn and store 
the excess inventory until the winter. This takes advantage of the lower production cost in 
the autumn. However, it is not economical to pay the inventory holding cost to carry the 
spring demand for two quarters.

Building alternative Models

As we have seen, developing models is more of an art than a science; consequently, there 
is often more than one way to model a particular problem. Using the ideas presented in the 
K&L Designs example, we may construct an alternative model involving only the produc-
tion variables.

Figure 14.24

Material Balance 
Constraint 
Structure

ExaMPLE 14.10 an alternative Optimization Model for K&L Designs

In the  K&L Designs problem, we simply have to ensure 
that demand is satisfied. We can do this by guaranteeing 
that the cumulative production in each quarter is at least 
as great as the cumulative demand. This is expressed by 
the following constraints:

 PA # 150

 PA + PW # 550

PA + PW + PS # 600

 PA, PW, PS # 0

The differences between the left- and right-hand sides 
of these constraints are the ending inventories for each 
period (and we need to keep track of these amounts be-
cause inventory has a cost associated with it). Thus, we 
use the following objective function:

minimize 11PA + 14PW + 12.50PS + 1.20 1PA − 150 2
+ 1.20 1PA + PW − 550 2 + 1.20 1PA + PW + PS − 600 2

Of course, this function can be simplified algebraically by 
combining like terms. Although these two models look 
very different, they are mathematically equivalent and will 
produce the same solution.
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Figure 14.25

Spreadsheet Model and 
Optimal Solution for K&L 
Designs

Figure 14.26

Solver Model for  K&L 
Designs
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Figure 14.27

Alternative 
Spreadsheet 
Model for  K&L 
Designs

Figure 14.28

Solver Model for Alternative  
K&L Designs Model

Figure 14.27 shows a spreadsheet implementation of this alternate model (avail-
able on a separate worksheet in the K&L Designs workbook), and Figure 14.28 shows 
the Solver model. Both have the same optimal solution; however, significant differences 
 exist in the Sensitivity reports. Figure 14.29 shows a comparison of the Sensitivity reports. 
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ExaMPLE 14.11 D. a. Branch & Sons

The financial manager at D. A. Branch & Sons must en-
sure that funds are available to pay company expen-
ditures in the future but would also like to maximize 
investment income. Three short-term investment options 
are available over the next 6 months: A, a 1-month CD 
that pays 0.25%, available each month; B, a 3-month 
CD that pays 1.00% (at maturity), available at the be-
ginning of the first 4 months; and C, a 6-month CD that 
pays 2.3% (at maturity), available in the first month. The 
net expenditures for the next 6 months are forecast as 
$50,000, ($12,000), $23,000, ($20,000), $41,000, and 
($13,000). Amounts in parentheses indicate a net inflow 
of cash. The company must maintain a cash balance of 

at least $10,000 at the end of each month. The company 
currently has $200,000 in cash.

At the beginning of each month, the manager must 
decide how much to invest in each alternative that may be 
available. Define the following:

Ai = amount ($) to invest in a 1@month CD at the start  
 of month i

Bi = amount ($) to invest in a 3@month CD at the start  
 of month i

Ci = amount ($) to invest in a 6 @month CD at the start 
 of month i

Although the alternative model is more streamlined, the Sensitivity report provides less 
information of use to managers. For example, the alternative model does not provide the 
capability to study the effect of changing inventory costs or demands for each quarter in-
dividually. Therefore, it is important to consider the practical implications of generating 
good information from optimization models when building them.

Multiperiod Financial Planning Models

Financial planning often occurs over an extended time horizon. Financial planning models 
have similar characteristics to multiperiod production planning and can be formulated as 
multiperiod optimization models.

Figure 14.29

Comparison of Sensitivity 
Reports for  K&L Designs 
Models

(continued )
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Figure 14.31 shows a spreadsheet model for this problem (Excel file D. A. Branch & 
Sons); the Solver model is shown in Figure 14.32. The spreadsheet model may look some-
what complicated; however, it has similar characteristics of a typical financial spread-
sheet. The key to constructing the Solver model is the summary section. Here we calculate 
the monthly balance based on the amount of cash available (previous balance plus any 
investment returns), the net expenditures (remember that a negative expenditure is a cash 
inflow), and the amount invested as reflected by the decision variables. These balances are 
a practical interpretation of the constraint functions for each month in the model. In the 
Solver model, these balances simply need to be greater than or equal to the $10,000 cash-
balance requirement for each month.

Figure 14.30

Cash Balance Constraint 
Structure

Because the time horizons on these alternatives vary, it is 
helpful to draw a picture to represent the investments and 
returns for each year as shown in Figure 14.30. Each circle 
represents the beginning of a month. Arrows represent 
the investments and cash flows. For example, investing in 
a 3-month CD at the start of month 1 1B12 matures at the 
beginning of month 4. It is reasonable to assume that all 
funds available would be invested.

From Figure 14.30, we see that investments A6, B4, 
and C1 will mature at the end of month 6—that is, at the 
beginning of month 7. To maximize the amount of cash on 
hand at the end of the planning period, we have the objec-
tive function

maximize 1.0025A6 + 1.00B4 + 1.023C1

The only constraints necessary are minimum cash bal-
ance equations. For each month, the net cash available, 
which is equal to the cash in less cash out, must be at 

least $10,000. These follow directly from Figure 14.28. The 
complete model is

maximize 1.0025A6 + 1.01B4 + 1.023C1

subject to

 
200,000− 1A1+B1+C1+50,000 2 # 10,000 1month 1 2  

1.0025A1+12,000− 1A2+B2 2 # 10,000 1month 2 2
1.0025A2− 1A3+B3+23,000 2 # 10,000 1month 3 2

1.0025A3+1.01B1+20,000− 1A4+B4 2 # 10,000 1month 4 2
   1.0025A4+1.01B2− 1A5+41,000 2 # 10,000 1month 5 2

1.0025A5+1.01B3+13,000−A6 # 10,000 1month 6 2
 Ai, Bi, Ci # 0,  for all i
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Figure 14.31

Spreadsheet Model for 
D. A. Branch & Sons
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Figure 14.32

Solver Model for  
D. A. Branch & Sons

One of the first applications of linear optimization 
in banking was developed by Central Carolina Bank 
and Trust Company (CCB).1 The bank’s management 
became increasingly concerned with coordinating 
the activities of the bank to maximize interest rate 
differentials between sources and uses of funds. To 
address these concerns, the bank established a fi-
nancial planning committee comprising all senior 
bank officers. The committee was charged with the 
responsibility of integrating the following functions; 
(1) interest rate forecasting, (2) forecasting demand 
for bank services, (3) liquidity management policy, 
and (4) funds allocation. At the same time, CCB’s 
executive committee authorized the development 
of a balance sheet optimization model using linear 
programming.

The initial stage in the model’s development in-
volved a series of meetings with the financial plan-
ning committee to determine how complex the model 
needed to be. After a thorough discussion of the avail-
able options, the group settled on a 1-year single-period 
model, containing 66 asset and 32 liability and equity 
categories. Even though a single-period planning model 
ignores many important time-related linkages, it was felt 
that a single-period framework would result in a model 

structure whose output could be readily internalized by 
management. An integral part of these discussions in-
volved an attempt to assure senior managers that the 
resulting model would capture their perceptions of the 
banking environment.

Next, the model was formulated and its data  
requirements were clearly identified. The major data 
inputs needed to implement the model were

•	expected yields on all securities and loan 
categories,

•	expected interest rates on deposits and money 
market liabilities,

•	administrative and/or processing costs on  
major loan and deposit categories,

•	expected loan losses, by loan type, as a  
percentage of outstanding loans,

•	maturity structure of all asset and liability 
categories,

•	forecasts of demand for bank services.

The bank’s financial records served as a useful 
 database for the required inputs. In those instances 
where meaningful data did not exist, studies were initi-
ated to fill the gap.

analytics in Practice: Linear Optimization in Bank Financial Planning

1Based on Sheldon D. Balbirer and David Shaw, “An Application of Linear Programming to Bank 
 Financial Planning,” Interfaces 11, 5 (October 1981).
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The decision variables in the model represented 
different asset categories, such as cash, treasury 
securities, consumer loans, and commercial loans, 
among others; other variables represented liabilities 

and equities such as savings accounts, money mar-
ket certificates, and certificates of deposit. The ob-
jective function was to maximize profits, equaling the 
difference between net yields and costs. Constraints 
reflected various operational, legal, and policy con-
siderations, including bounds on various asset or li-
ability categories that represent forecasts of demand 
for bank services; minimum values of turnover for as-
sets and liabilities; policy constraints that influence 
the allocation of funds among earning assets or the 
mix of funds used to finance assets; legal and regu-
latory constraints; and constraints that prevent the  
allocation of short-term sources of funds to long-term 
uses, which gave the model a multiperiod dimension 
by considering the funds flow characteristics of the 
target balance sheet beyond the immediate planning 
horizon. Using the model, CCB successfully struc-
tured its assets and liabilities to better determine 
the bank’s future position under different sets of 
assumptions.

Models with Bounded Variables

Solver handles simple lower bounds (e.g., C Ú 500) and upper bounds (e.g., 
D … 1,000) quite differently from ordinary constraints in the Sensitivity report. In 
Solver, lower and upper bounds are treated in a manner similar to nonnegativity con-
straints, which also do not appear explicitly as constraints in the model. Solver does 
this to increase the efficiency of the solution procedure used; for large models this 
can represent significant savings in computer-processing time. However, it makes it  
more difficult to interpret the sensitivity information, because we no longer have 
the shadow prices and allowable increases and decreases associated with these con-
straints. Actually, this isn’t quite true; the shadow prices are there but in a different 
form. The following example explains these concepts.

ExaMPLE 14.12 J&M Manufacturing

Suppose that J&M Manufacturing makes four models of 
gas grills, A, B, C, and D. Each grill must flow through 
five departments, stamping, painting, assembly, inspec-
tion, and packaging. Table 14.7 shows the relevant data. 
Production rates are shown in units/hour. (Grill A uses 
imported parts and does not require painting). J&M 
wants to determine how many grills to make to maximize 
monthly profit.

To formulate this as a linear optimization model, let:

A, B, C, and D = number of units of models A, B, C, and 
  D to produce, respectively

The objective function is to maximize the total net profit:

maximize (250−210)A + (300−240)B + (400−300)C 
+ (650−520)D

  = 40A + 60B + 100C + 130D

The constraints include limitations on the amount of pro-
duction hours available in each department, the minimum 
sales requirements, and maximum sales potential lim-
its. Here is an example of where you must carefully look 
at the dimensions of the data. The production rates are 
given in units/hour, so if you multiply these values by the  
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(continued )
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Figure 14.33 shows a spreadsheet implementation (Excel file J&M Manufacturing) 
with the optimal solution and Figure 14.34 shows the Solver model used to find it. Ex-
amine the Answer and Sensitivity reports for the J&M Manufacturing model in Figures 
14.35 and 14.36. In the Answer report, all constraints are listed along with their status. 
For example, we see that the upper bound on model D and lower bound on model B are 
binding. However, none of the bound constraints appear in the Constraints section of the 
Sensitivity report.

First, let us interpret the reduced costs. Recall that in an ordinary model with only 
nonnegativity constraints and no other simple bounds, the reduced cost tells how much 
the objective coefficient needs to be reduced for a variable to become positive in an op-
timal solution. For product B, we have the lower bound constraint B Ú 0. Note that the 

number of units produced, you will have an expression 
that makes no sense. Therefore, you must divide the deci-
sion variables by units per hour—or, equivalently, convert 
these data to hours/unit—and then multiply by the deci-
sion variables:

A ,40 + B ,30 + C ,10 + D ,10 " 320 (stamping)

 B ,20 + C ,10 + D ,10 " 320 (painting)

A ,25 + B ,15 + C ,15 + D ,12 " 320 (assembly)

A ,20 + B ,20 + C ,25 + D ,15 " 320 (inspection)

A ,50 + B ,40 + C ,40 + D ,30 " 320 (packaging)

The sales constraints are simple upper and lower 
bounds on the variables:

A # 0

B # 0

C # 500

D # 500

A " 4,000

B " 3,000

C " 2,000

D " 1,000

Nonnegativity constraints are implied by the lower bounds 
on the variables and, therefore, do not need to be explic-
itly stated.

Table 14.7

J&M Manufacturing 
Data

Grill Model
Selling  

Price/Unit
Variable  

Cost/Unit
Minimum Monthly  

Sales Requirements
Maximum Monthly 

Sales Potential

A $250 $210  0 4,000

B $300 $240  0 3,000

C $400 $300 500 2,000

D $650 $520 500 1,000

Department a B C D Hours available

Stamping 40 30 10 10 320

Painting 20 10 10 320

Assembly 25 15 15 12 320

Inspection 20 20 25 15 320

Packaging 50 40 40 30 320
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Figure 14.33

Spreadsheet Implementation 
for J&M Manufacturing

optimal solution specifies that we produce only the minimum amount required. Why? 
It is simply not economical to produce more because the profit contribution of B is too 
low relative to the other products. How much more would the profit on B have to be for 
it to be economical to produce anything other than the minimum amount required? The 
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Figure 14.35

J&M Manufacturing Solver 
Answer Report

Figure 14.34

Solver Model for J&M 
Manufacturing

answer is given by the reduced cost. The unit profit on B would have to be reduced by 
at least -$1.905 (i.e., increased by at least + $1.905). If a nonzero lower-bound con-
straint is binding, the interpretation is similar; the reduced cost is the amount the unit 
profit would have to be reduced to produce more than the minimum amount.
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For product D, the reduced cost is $19.29. Note that D is at its upper bound, 1,000. 
We want to produce as much of D as possible because it generates a large profit. How 
much would the unit profit have to be lowered before it is no longer economical to pro-
duce the maximum amount? Again, the answer is the reduced cost, $19.29.

Now, let’s ask these questions in a different way. For product B, what would the ef-
fect be of increasing the right-hand-side value of the bound constraint, B Ú 0, by 1 unit? 
If we increase the right-hand side of a lower-bound constraint by 1, we are essentially 
forcing the solution to produce one more than the minimum requirement. How would the 
objective function change if we do this? It would have to decrease because we would lose 
money by producing an extra unit of a nonprofitable product. How much? The answer 
again is the reduced cost. Producing an additional unit of product B will result in a profit 
reduction of $1.905. Similarly, increasing the right-hand side of the constraint D … 1,000 
by 1 will increase the profit by $19.29. Thus, the reduced cost associated with a bounded 
variable is the same as the shadow price of the bound constraint. However, we no longer 
have the allowable range over which we can change the constraint values. (Important: The 
Allowable Increase and Allowable Decrease values in the Sensitivity report refer to the 
objective coefficients, not the reduced costs.)

auxiliary Variables for Bound Constraints

Interpreting reduced costs as shadow prices for bounded variables can be a bit confus-
ing. Fortunately, there is a neat little trick that you can use to eliminate this issue. In 
your spreadsheet model, define auxiliary variables—a new set of cells for any decision 

Figure 14.36

J&M Manufacturing Solver Sensitivity Report
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ExaMPLE 14.13 Using auxiliary Variable Cells

Figure 14.37 shows a portion of the J&M Manufacturing 
model with the inclusion of auxiliary variables in row 29.  
The formula in cell B29, for example, is =B25. The Solver 
is modified as shown in Figure 14.38 by changing the de-
cision variable cells in the bound constraints to the auxil-
iary variable cells. The Sensitivity report for this model is 
shown in Figure 14.39. We now see that the Constraints 

section has rows corresponding to the bound constraints 
and that the shadow prices are the same as the reduced 
costs in the original sensitivity report. Moreover, we now 
know the allowable increases and decreases for each 
shadow price, which we did not have before. Thus, we 
recommend that you use this approach unless solution 
efficiency is an important issue.

Figure 14.37

Auxiliary Variable Cells in 
J&M Manufacturing Model

Figure 14.38

Solver Model for J&M 
Manufacturing with Auxiliary 
Variables

 variables that have upper- or lower-bound constraints by referencing (not copying) the 
original changing cells. Then in the Solver model, use these auxiliary variable cells—not 
the changing variable cells as defined—to define the bound constraints.
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a Production/Marketing allocation Model

Many problems involve allocation of marketing effort, such as advertising dollars. The 
following is an example of combining elements of a product-mix model with marketing 
budget allocation decisions based on demand elasticity. This example also illustrates some 
important issues of properly interpreting sensitivity results and the influence that model-
ing approaches can have.

Figure 14.39

J&M Manufacturing 
Sensitivity Report with 
Auxiliary Variables

ExaMPLE 14.14 Walker Wines

A small winery, Walker Wines, buys grapes from local 
growers and blends the pressings to make two types of 
wine: Shiraz and merlot.2 It costs $1.60 to purchase the 
grapes needed to make a bottle of Shiraz and $1.40 to pur-
chase the grapes needed to make a bottle of merlot. The 
contract requires that they provide at least 40% but not 
more than 70% Shiraz. Based on market research related 
to it, it is estimated that the base demand for Shiraz is 
1,000 bottles, but demand increases by 5 bottles for each 
$1 spent on advertising; the base demand for merlot is 
2,000 bottles and increases by 8 bottles for each $1 spent 
on advertising. Production should not exceed demand. 
Shiraz sells to retail stores for $6.25 per bottle and mer-
lot is sold for $5.25 per bottle. Walker Wines has $50,000 
available to purchase grapes and advertise its products, 
with an objective of maximizing profit contribution.

To formulate this model, let

  S = number of bottles of Shiraz produced
  M = number of bottles of merlot produced
 As = dollar amount spent on advertising Shiraz
Am = dollar amount spent on advertising merlot

The objective is to maximize profit:

1revenue minus costs 2
= 1$6.25S + $5.25M 2 − 1$1.60S + $1.40M + As + Am 2  
= 4.65S + 3.85M − As − Am

Constraints are defined as follows:

 1. Budget cannot be exceeded:

$1.60S + $1.40M + As + Am " $50,000

(continued )
2Based on an example in Roger D. Eck, Operations Research for Business (Belmont, CA: Wadsworth, 1976): 
129–131.
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Figure 14.40

Walker Wines 
Spreadsheet Model

 2. Contractual requirements must be met:

0.4 " S , 1S + M 2 " 0.7

  Expressed in linear form,

0.6S − 0.4M # 0 and 0.3S − 0.7M " 0

 3. Production must not exceed demand:

S " 1,000 + 5As

M " 2,000 + 8Am

 4. Nonnegativity
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Figure 14.40 shows a spreadsheet implementation of this model (Excel file Walker 
Wines) along with the optimal solution. Figure 14.41 shows the Solver model.

Using Sensitivity Information Correctly

One crucial assumption in interpreting sensitivity analysis information for changes in 
model parameters is that all other model parameters are held constant. It is easy to fall 
into a trap of ignoring this assumption and blindly crunching through the numbers. This is 
particularly true when using spreadsheet models. The following example illustrates this.

ExaMPLE 14.15 Evaluating a Cost Increase for Walker Wines

Figure 14.42 shows the Solver sensitivity report. A vari-
ety of practical questions can be posed around the sen-
sitivity report. For example, suppose that the accountant 
noticed a small error in computing the profit contribution 
for Shiraz. The cost of Shiraz grapes should have been 
$1.65 instead of $1.60. How will this affect the solution?

In the model formulation, you can see that a $0.05 in-
crease in cost results in a drop in the unit profit of  Shiraz 
from $4.65 to $4.60. In the Sensitivity report, however, 
the change in the profit coefficient is within the allowable 
decrease of 0.05328, thus concluding that no change in 

the optimal solution will result. However, this is not the 
correct interpretation. If the model is re-solved using the 
new cost parameter, the solution changes dramatically, as 
shown in Figure 14.43.

Why did this happen? In this case, the unit cost is 
also reflected in the binding budget constraint. When we 
change the cost parameter, the constraint also changes. 
This violates the assumption that all other model param-
eters are held constant. The change causes the budget 
constraint to become infeasible, and the solution must be 
adjusted to maintain feasibility.

Figure 14.41

Walker Wines Solver Model
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Figure 14.42

Walker Wines Solver 
Sensitivity Report

This example points out the importance of fully understanding the mathematical 
model when analyzing sensitivity information. One suggestion to ensure that sensitiv-
ity analysis information is interpreted properly in spreadsheet models is to use Excel’s 
formula-auditing capability. If you select the cost of Shiraz (cell B5) and apply the 
“Trace Dependents” command from the Formula Auditing menu, you will see that the 
unit cost influences both the unit profit (cell B30) and the budget constraint function 
(cell B27).

Figure 14.43

Walker Wines Solver 
Solution after Cost 
Increase
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Key Terms

Auxiliary variables
Balance constraints
Degenerate solution
Feasibility report
Limitations

Proportional relationships
Requirements
Simple bounds
Transportation problem

Problems and Exercises

Note: Data for most of these problems can be found in 
the Excel file Chapter 14 Problem Data to facilitate model 
development and Excel implementation. Tab names cor-
respond to the problem scenario names.

 1. Classify the following descriptions of constraints as 
bounds, limitations, requirements, proportional rela-
tionships, or balance constraints:

 a. Each serving of chili should contain a quarter 
pound of beef.

 b. Customer demand for a cereal is not expected to 
exceed 800 boxes during the next month.

 c. The amount of cash available to invest in March 
is equal to the accounts receivable in February 
plus investment yields due on February 28.

 d. A can of premium nuts should have at least twice 
as many cashews as peanuts.

 e. A warehouse has 3,500 units available to ship to 
customers.

 f. A call center needs at least 15 service representa-
tives on Monday morning.

 g. An ice cream manufacturer has 40 dozen fresh 
eggs at the start of the production shift.

 2. An airlines corporation is considering the purchase 
of jet passenger planes so as to increase their pas-
senger service. The type A plane costs $450 mil-
lion each, the type B costs $400 million each, and 
the type C costs $250 million each. The corporation 
has budgeted $50 billion for the purchase of these 
planes in the forthcoming financial year. The three 
types of planes, if purchased, would be utilized at es-
sentially maximum capacity. It is estimated that the 
net annual profit resulting from utilization of these 
planes would be $15 million for type A, $10.5 mil-
lion for type B, and $7.5 million for type C. It is es-
timated that 25 trained pilots will be available, and if 
only C type planes were purchased, the maintenance 
facilities would be able to handle 30 new planes. 

However, each type B plane is equivalent to 4/3 type 
C plane and each type A plane is equivalent to 5/3 
type C planes in terms of their use of maintenance 
facilities.

 a. Develop a linear optimization model to deter-
mine how many of each type of plane should be 
purchased.

 b. Implement your model on a spreadsheet and find 
an optimal solution.

 3. Korey is a business student at State U. She has just 
completed a course in decision models, which had a 
midterm exam, a final exam, individual  assignments, 
and class participation. She earned an 86% on the 
midterm, 94% on the final, 93% on the individual 
assignments, and 85% on  participation. The benevo-
lent instructor is allowing his  students to determine 
their own weights for each of the four grade compo-
nents—of course, with some restrictions:

• The participation weight can be no more than 
15%.

•		The midterm weight must be at least twice as 
much as the individual assignment weight.

•	 The final exam weight must be at least three times 
as much as the individual assignment weight.

•		The weights of the four components must be at 
least 10%.

•	The weights must sum to 1.0 and be nonnegative.

 a. Develop a model that will yield a valid set of 
weights to maximize Korey’s score for the course.

 b. Implement your model on a spreadsheet and find 
a good solution using only your intuition.

 c. Find an optimal solution using Solver.

 4. The Martinez Model Car Company produces four 
different radio-controlled model cars based on exotic 
production models: Ferrari, BMW, Lotus, and Tesla. 
Each model requires production in five departments: 
molding, sanding, polishing, painting, and finishing. 
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The number of minutes required for each product in 
each department, the selling price per unit, and the 
minutes available in each department each day are 
shown below.

Ferrari BMW Lotus Tesla
Minutes 
available

Molding 5.00 3.50 1.00 3.00 600

Sanding 4.00 3.20 2.00 3.65 600

Polishing 3.50 2.00 3.00 1.00 480

Painting 3.75 3.25 1.75 2.00 480

Finishing 4.00 1.00 2.00 3.00 480

Price $350.00 $330.00 $270.00 $255.00

 a. How many of each type of car should be pro-
duced to maximize profit?

 b. If marketing requires that at least 25 units of each 
be produced each day, what is the optimal pro-
duction plan and profit? Before you solve this, 
how would you expect the profit to compare with 
your answer to part (a)?

 5. An international toy manufacturing company manu-
factures three types of stuffed animals – dog, lion 
and giraffe, each made from different combination of 
red, yellow and blue cloth and cotton. The data (cloth 
requirement in yards) is as below:

Toy Dog Lion Giraffe

Red 1/2 1/2 1.5

Yellow 2 1.5 1.5

Blue 1 1.5 1.5

Cotton (in kg.) 2 3 4

  The dog sells at $47.5, lion at $60, and giraffe at 
$75. The company has 1500 yards of red, 2000 
yards of blue and 200 yards of yellow cloth, while 
50,000 kg of cotton is available. Develop and solve 
a linear optimization model to determine the opti-
mal mix to maximize turnover, and write a short ex-
planation of the sensitivity information.

 6. Young Energy operates a power plant that includes 
a coal-fired boiler to produce steam to drive a gen-
erator. The company can purchase different types of 
coals and blend them to meet the requirements for 
burning in the boiler. The following table shows the 
characteristics of the different types of coals:

Type BTU/lb % ash % Moisture Cost ($/lb)

A 11,500 13% 10% $2.49

B 11,800 10%  8% $3.04

C 12,200 12%  8% $2.99

D 12,100 12%  8% $2.61

  The required BTU/pound must be at least 11,900. 
In addition, the ash content can be at most 12.2% 
and the moisture content, at most 9.4%. Develop 
and solve a linear optimization model to find the 
best coal blend for Young Energy. Explain how the 
company might reduce its costs by changing the 
blending restrictions.

 7. Holcomb Candles, Inc., manufactures decorative 
candles and has contracted with a national retailer to 
supply a set of special holiday candles to its 8,500 
stores. These include large jars, small jars, large pil-
lars, small pillars, and a package of four votive can-
dles. In negotiating the contract for the display, the 
manufacturer and retailer agreed that 8 feet would 
be designated for the display in each store, but that 
at least 2 feet would be dedicated to large jars and 
large pillars, and at least 1 foot, to the votive can-
dle packages. At least as many jars as pillars must 
be provided. The manufacturer has obtained 200,000 
pounds of wax, 250,000 feet of wick, and 100,000 
ounces of holiday fragrance. The amount of mate-
rials and display size required for each product are 
shown in the following table:

How many of each product should be made to 
maximize the profit? Interpret the shadow prices in 
the Sensitivity report.

Large Jar Small Jar Large Pillar Small Pillar Votive Pack

Wax 0.5 0.25 0.5  0.25   0.3125

Fragrance 0.24 0.12  0.24  0.12 0.15

Wick 0.43 0.22  0.58  0.33 0.8

Display feet 0.48 0.24  0.23  0.23 0.26

Profit/unit $0.25 $0.20 $0.24 $0.21 $0.16
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 8. The Children’s Theater Company is a nonprofit cor-
poration managed by Shannon Board. The theater 
performs in two venues: Kristin Marie Hall and the 
Lauren Elizabeth Theater. For the upcoming season, 
seven shows have been chosen. The question  Shannon 
faces is how many performances of each of the seven 
shows should be scheduled. A financial analysis has 
estimated revenues for each performance of the seven 
shows, and Shannon has set the minimum number of 
performances of each show based on union agree-
ments with Actor’s Equity Association and the popu-
larity of the shows in other markets. These data are 
shown in the table at the right.

Kristin Marie Hall is available for 60 perfor-
mances during the season, whereas Lauren Elizabeth 
 Theater is available for 150 performances. Shows 
3 and 7 must be performed in Kristin Marie Hall, 
and the other shows are performed in either venue. 

The company wants to achieve revenues of at least 
$550,000 while minimizing its production costs. 
Develop and solve a linear optimization model to 
determine the best way to schedule the shows. Is it 
possible to achieve revenues of $600,000? What is 
the highest amount of revenue that can be achieved?

 
Show

 
Revenue

 
Cost

Minimum Number 
of Performances

1 $2,217 $  968 32

2 $2,330 $1,568 13

3 $1,993 $  755 23

4 $3,364 $1,148 34

5 $2,868 $1,180 35

6 $3,851 $1,541 16

7 $1,836 $1,359 21

Department Investment/sf
Risk as a % of  

$ Invested Minimum sf Maximum sf
Expected Profit 

per sf

Electronics $100 24  6,000 30,000 $12.00

Furniture  $50 12 10,000 30,000  $6.00

Men’s Clothing  $30  5  2,000  5,000  $2.00

Clothing $600 10  3,000 40,000 $30.00

Jewelry $900 14  1,000 10,000 $20.00

Books  $50  2  1,000  5,000  $1.00

Appliances $400  3 12,000 40,000 $13.00

  The company has gathered $20 million to invest in 
floor stock. The risk column is a measure of risk as-
sociated with investment in floor stock based on past 
data from other stores and accounts for outdated in-
ventory, pilferage, breakage, and so on. For instance, 
electronics loses 24% of its total investment, furni-
ture loses 12% of its total investment, and so on. The 

amount of risk should be no more than 10% of the 
total investment.

 a. Develop a linear optimization model to maximize 
profit.

 b. If the chain obtains another $1 million of in-
vestment capital for stock, what would the new 
 solution be?

 9. Jaycee’s department store chain is planning to open 
a new store. It needs to decide how to allocate the 
100,000 square feet of available floor space among 

seven departments. Data on expected performance of 
each department per month, in terms of square feet 
(sf), are shown next.

 10. A recent MBA graduate, Dara, has gained control 
over custodial accounts that her parents had es-
tablished. Currently, her money is invested in four 
funds, but she has identified several other funds as 

options for investment. She has $100,000 to invest 
with the following restrictions:

•	Keep at least $5,000 in savings.

•	Invest at least 14% in the money market fund.
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•	Invest at least 16% in international funds.

• Keep 35% of funds in current holdings.
•		Do not allocate more than 20% of funds to any 

one investment except for the money market and 
savings account.

•	Allocate at least 30% into new investments.

average Return Expenses

1. Large cap blend 17.2% 0.93% (current holding)

2. Small cap growth 20.4% 0.56% (current holding)

3. Green fund 26.3% 0.70% (current holding)

4. Growth and income 15.6% 0.92% (current holding)

5. Multicap growth 19.8% 0.92%

6. Midcap index 22.1% 0.22%

7. Multicap core 27.9% 0.98%

8. Small cap international 35.0% 0.54%

9. Emerging international 36.1% 1.17%

10. Money market fund 4.75% 0

11. Savings account 1.0% 0

 a. Develop a linear optimization model to maximize 
the net return.

 b. Interpret the Sensitivity report.

 c. Use Solver’s parameter-analysis method to inves-
tigate different assumptions about the portfolio 
constraints.

 d. Summarize your results and write a short memo 
in nontechnical language to Dara.

Ingredient Brownies Cupcakes
Peanut Butter 

Cups
Shortbread 

Cookies Cost/Unit

Butter (cups) 0.67 0.33 1 0.75 $1.44

Flour (cups) 1.5 1.5 1.25 2 $0.09

Sugar (cups) 1.75 1 2 0.25 $0.16

Vanilla (tsp) 2 0.5 0 0 $0.06

Eggs 3 2 1 0 $0.12

Walnuts (cups) 2 0 0 0 $0.31

Milk (cups) 0.5 1 2 0 $0.05

Chocolate (oz) 8 2.5 9 0 $0.10

Baking soda (tsp) 2 1 0 0 $0.07

Frosting (cups) 0.5 1.5 0 1 $2.74

Peanut butter (cups) 0 0 2.5 0 $2.04

 11. Janette Douglas is coordinating a bake sale for a 
nonprofit organization. The organization has ac-
quired $2,200 in donations to hold the sale. The 

following table shows the amounts and costs of 
ingredients used per batch of each baked good.
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  One batch of each results in 10 brownies, 12 cupcakes, 
8 peanut butter cups, and 12 shortbread cookies. Each 
batch of brownies can be sold for $6.00, cupcakes for 
$10.00, peanut butter cups for $12.00, and shortbread 
cookies for $7.50. The organization anticipates that a 
total of at least 4,000 baked goods must be made. For 
adequate variety, at least 30 batches of each baked 
good are required, except for the popular brownies, 
which require at least 100 batches. In addition, no 
more than 40 batches of shortbread cookies should be 
made. How can the organization best use its budget 
and make the largest amount of money?

 12. Example 14.6 described the Little Investment 
 Advisors problem and illustrated scaling issues. In 
answering the following questions, be sure to scale 
the model appropriately.

 a. How would the results in Figure 14.19 change if 
there is a limit of $100,000 in each fund?

 b. What if, in addition to the limitation in part (a), 
the client wants to invest at least $50,000 in the 
Federated High Income Bond fund?

 c. What would be the optimal investment strategy 
if the client wants to minimize risk and achieve 
a return of at least 6% (with no additional limita-
tions or requirements)?

 d. How would your results to part (c) change if there 
is a limit of $100,000 in each fund?

 e. What if, in addition to the limitation in part (d), 
the client wants to invest at least $50,000 in the 
Federated High Income Bond fund?

 f. Use parameter analysis to analyze the solution to 
the base case by varying the risk limitation and 
return requirement, respectively, and visualize 
the results.

Plant/Customer Chicago Cincinnati Indianapolis Pittsburgh

Akron $1.70 $2.30 $2.50 $2.15

Evansville $1.95 $2.35 $1.65 $2.95

  The plant in Akron has a capacity of 2,800 cases per 
week, and the Evansville plant can produce 4,500 
cases per week. Customer orders for the next week are

Chicago: 2,000 cases
Cincinnati: 1,200 cases
Indianapolis: 2,500 cases
Pittsburgh: 1,400 cases

  Find the minimum-cost shipping plan. Interpret the 
Sensitivity report and write a short memo to the VP 
of Operations explaining your results.

 13. Kelly Foods has two plants and ships canned vegeta-
bles to customers in four cities. The cost of shipping 

one case from a plant to a customer is given in the 
following table.

 14. Liquid Gold, Inc., transports radioactive waste from 
nuclear power plants to disposal sites around the 
country. Each plant has an amount of material that 
must be moved each period. Each site has a limited 
capacity per period. The cost of transporting between 
sites is given in the accompanying table (some com-
binations of plants and storage sites are not to be 
used, and no figure is given). Develop and solve a 
transportation model for this problem.

Cost to Site

Plant Material S1 S2 S3 S4 Site Capacity

P1 20,876 $105 $86 — $23 S1 285,922

P2 50,870  $86 $58 $41 — S2 308,578

P3 38,652  $93 $46 $65 $38 S3 111,955

P4 28,951 $116 $27 $94 — S4 208,555

P5 87,423  $88 $56 $82 $89

P6 76,190 $111 $36 $72 —

P7 58,237 $169 $65 $48 —

 15. Shafer Office Supplies has four distribution centers, 
located in Atlanta, Lexington, Milwaukee, and Salt 
Lake City, and ships to 12 retail stores, located in 

 Seattle, San Francisco, Las Vegas, Tuscon, Denver, 
Charlotte, Minneapolis, Fayetteville, Birmingham, 
Orlando, Cleveland, and Philadelphia. The company 
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wants to minimize the transportation costs of ship-
ping one of its higher-volume products, boxes of 
standard copy paper. The per-unit shipping cost from 
each distribution center to each retail location and the 
amounts currently in inventory and ordered at each 
retail location are shown in the following table. De-
velop and solve an optimization model to minimize 
the total transportation cost and answer the following 
questions. Use the sensitivity report to answer parts c 
and d.

 a. What is the minimum cost of shipping?

 b. Which distribution centers will operate at capac-
ity in this solution?

 c. Suppose that 500 units of extra supply are avail-
able (and that the cost of this extra capacity is a 
sunk cost). To which distribution center should 
this extra supply be allocated, and why?

 d. Suppose that the cost of shipping from Atlanta 
to Birmingham increased to $0.45 per unit. What 
would happen to the optimal solution?

Seattle San Francisco Las Vegas Tuscon Denver Charlotte Minneapolis

Atlanta $2.15 $2.10 $1.75 $1.50 $1.20 $0.65 $0.90

Lexington $1.95 $2.00 $1.70 $1.53 $1.10 $0.55 $0.60

Milwaukee $1.70 $1.85 $1.50 $1.41 $0.95 $0.40 $0.40

Salt Lake City $0.60 $0.55 $0.35 $0.60 $0.40 $0.95 $1.00

Demand  5,000 16,000 4,200 3,700 4,500 7,500 3,000

Fayetteville Birmingham Orlando Cleveland Philadelphia Supply

Atlanta $0.80 $0.35 $0.15 $0.60 $0.50 40,000

Lexington $1.05 $0.60 $0.50 $0.25 $0.30 35,000

Milwaukee $0.95 $0.70 $0.70 $0.35 $0.40 15,000

Salt Lake City $1.10 $1.35 $1.60 $1.60 $1.70 16,000

Demand  9,000  3,300 12,000  9,500 16,000

 16. Roberto’s Honey Farm in Chile makes five types 
of honey: cream, filtered, pasteurized, mélange (a 
mixture of several types), and strained, which are 

sold in 1-kilogram or 0.5-kilogram glass containers, 
1-kilogram and 0.75-kilogram plastic containers, or 
in bulk. Key data are shown in the following tables.

Selling Prices (Chilean pesos)

0.75-kg Plastic 1-kg Plastic 0.5-kg Glass 1-kg Glass Bulk/kg

Cream 744 880 760 990 616

Filtered 635 744 678 840 521

Pasteurized 696 821 711 930 575

Mélange 669 787 683 890 551

Strained 683 804 697 910 563

Minimum Demand

0.75-kg Plastic 1-kg Plastic 0.5-kg Glass 1-kg Glass

Cream 300 250 350 200

Filtered 250 240 300 180

Pasteurized 230 230 350 300

Mélange 350 300 250 350

Strained 360 350 250 380
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Maximum Demand

0.75-kg Plastic 1-kg Plastic 0.5-kg Glass 1-kg Glass

Cream 550 350 470 310

Filtered 400 380 440 300

Pasteurized 360 390 490 400

Mélange 530 410 390 430

Strained 480 420 380 500

Package Costs (Chilean pesos)

0.75-kg Plastic 1-kg Plastic 0.5-kg Glass 1-kg Glass

91 112 276 351

  Harvesting and production costs (in pesos) for each 
product per kilogram are

Cream: 322
Filtered: 255
Pasteurized: 305
Mélange: 272
Strained: 287

  Develop a linear optimization model to maximize 
profit if a total of 10,000 kilograms of honey are 
available.

 17. Sandford Tile Company makes ceramic and porce-
lain tile for residential and commercial use. They 
produce three different grades of tile (for walls, resi-
dential flooring, and commercial flooring), each of 
which requires different amounts of materials and 
production time, and generates different contribu-
tions to profit. The following information shows the 
percentage of materials needed for each grade and 
the profit per square foot.

Grade I Grade II Grade III

Profit/square foot $2.50 $4.00 $5.00

Clay 50% 30% 25%

Silica 5% 15% 10%

Sand 20% 15% 15%

Feldspar 25% 40% 50%

  Each week, Sanford Tile receives raw-material ship-
ments, and the operations manager must schedule 
the plant to efficiently use the materials to maximize 
profitability. Currently, inventory consists of 6,000 
pounds of clay, 3,000 pounds of silica, 5,000 pounds 
of sand, and 8,000 pounds of feldspar. Because  

demand varies for the different grades, marketing 
estimates that at most 8,000 square feet of Grade 
III tile should be produced, and that at least 1,500 
square feet of Grade I tiles are required. Each square 
foot of tile weighs approximately 2 pounds.

 a. Develop a linear optimization model to deter-
mine how many of each grade of tile the com-
pany should make next week to maximize profit 
contribution.

 b. Implement your model on a spreadsheet and find 
an optimal solution.

 c. Explain the sensitivity information for the objec-
tive coefficients. What happens if the profit on 
Grade I is increased by $0.05?

 d. If an additional 500 pounds of feldspar is avail-
able, how will the optimal solution be affected?

 e. Suppose that 1,000 pounds of clay are found to 
be of inferior quality. What should the company 
do?

 f. Use the auxiliary variable cells technique to han-
dle the bound constraints and generate all shadow 
prices.

 18. The Hansel Corporation, located in Bangalore, India, 
makes plastics materials that are mixed with vari-
ous additives and reinforcing materials before being 
melted, extruded, and cut into small pellets for sale 
to other manufacturers. Four grades of plastic are 
made, each of which might include up to four differ-
ent additives. The following table shows the number 
of pounds of additive per pound of each grade of fi-
nal product, the weekly availability of the additives, 
and cost and profitability information.
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Grade 1 Grade 2 Grade 3 Grade 4 availability

Additive A 0.40 0.37 0.34 0.90 100,000

Additive B 0.30 0.33 0.33 90,000

Additive C 0.20 0.25 0.33 40,000

Additive D 0.10 0.05 0.10 10,000

Profit/lb $2.00 $1.70 $1.50 $2.80

  Because of marketing considerations, the total 
amount of grades 1 and 2 should not exceed 65% of 
the total of all grades produced, and at least 25% of 
the total product mix should be grade 4.

 a. How much of each grade should be produced to 
maximize profit? Develop and solve a linear opti-
mization model.

 b. A labor strike in India leads to a shortage of 
20,000 units of additive C. What should the pro-
duction manager do?

 c. Management is considering raising the price on 
grade 2 to $2.00 per pound. How will the solution 
be changed?

 19. Mirza Manufacturing makes four electronic prod-
ucts, each of which comprises three main mate-
rials: magnet, wiring, and casing. The products 
are shipped to three distribution centers in North 
 America, Europe, and Asia. Marketing has speci-
fied that no location should receive more than the 
maximum demand and should receive at least the 
minimum demand. The material costs/unit are mag-
net—$0.59, wire—$0.29, and casing—$0.31. The 
following table shows the number of units of each 
material required in each unit of end product and the 
production cost per unit.

Product
Production  
Cost/Unit Magnets Wire Casing

A $0.25 4 2 2

B $0.35 3 1 3

C $0.15 2 2 1

D $0.10 8 3 2

  Additional information is provided next.

Min Demand

Product Na EU asia

A 850 900 100

B 700 200 500

C 1,100 800 600

D 1,500 3,500 2,000

Max Demand

Product Na EU asia

A 2,550  2,700   300

B 2,100   600 1,500

C 3,300  2,400 1,800

D 4,500 10,500 6,000

Packaging and Shipping Cost/Unit

Product Na EU asia

A $0.20 $0.25 $0.35

B $0.18 $0.22 $0.30

C $0.18 $0.22 $0.30

D $0.17 $0.20 $0.25

Unit Sales Revenue

Product Na EU asia

A $4.00 $4.50 $4.55

B $3.70 $3.90 $3.95

C $2.70 $2.90 $2.40

D $6.80 $6.50 $6.90

available Raw Material

Magnet 120,000

Wire 50,000

Casing 40,000

  Develop an appropriate linear optimization model to 
maximize net profit.
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 20. A furniture manufacturing company planes to make 
three products – chairs, tables and desks from its avail-
able weekly resources, which consist of 400 cubic 
feet of timber and 500 man-hours of labor. To make 
a chair, it requires 5 cubic feet of timber and 10 man-
hours of labor and yields a profit of $25. A table uses 
20 cubic feet of timber and 15 man-hours of labor and 
yields a profit of $40. A desk needs 25 cubic feet of 
timber and 20 man-hours of labor and yields a profit 
of $50. Develop a linear optimization model and find 
optimal product mix.

 21. Reddy & Rao (R&R) is a small company in India 
that makes handmade artistic chairs for commercial 
businesses. The company makes four models. The 
time required to make each of the models and cost 
per chair is given below.

Model a Model B Model C Model D

Cost per Unit $900.00 $650.00 $500.00 $750.00 

Hours Required 
per unit

40 22 12 34

  R&R employs four people. Each of them works 8 
hour shifts, 5 days a week (assume 4 weeks/ month). 
The demand for the next 3 months is estimated to be:

Demand (Units) Model A Model B Model C Model D

Month 1 7 4 4 9

Month 2 7 4 5 4

Month 3 6 8 8 6

  R&R keeps at most two of each model in inventory 
each month but wants to have at least one of Model D 
in inventory at all times. The current inventory of each 
model is 2. The cost to hold these finished chairs is 10% 
of the production cost. Develop and solve an optimiza-
tion model to determine the optimal number of chairs 
to produce each month and the monthly inventories to 
minimize total cost and meet the expected demand.

 22. An international graduate student will receive a 
$28,000 foundation scholarship and reduced tuition. 

She must pay $1,500 in tuition for each of the autumn, 
winter, and spring quarters, and $500 in the sum-
mer. Payments are due on the first day of September, 
 December, March, and May, respectively. Living ex-
penses are estimated to be $1,500 per month, payable 
on the first day of the month. The foundation will pay 
her $18,000 on August 1 and the remainder on May 1. 
To earn as much interest as possible, the student wishes 
to invest the money. Three types of investments are 
available at her bank: a 3-month CD, earning 0.75% 
(net 3-month rate); a 6-month CD, earning 1.9%; and a 
12-month CD, earning 4.2%. Develop a linear optimi-
zation model to determine how she can best invest the 
money and meet her financial obligations.

 23. Jason Wright is a part-time business student who 
would like to optimize his financial decisions. Cur-
rently, he has $16,000 in his savings account. Based 
on an analysis of his take-home pay, expected bo-
nuses, and anticipated tax refund, he has estimated 
his income for each month over the next year. In ad-
dition, he has estimated his monthly expenses, which 
vary because of scheduled payments for insurance, 
utilities, tuition and books, and so on. The following 
table summarizes his estimates:

Month Income Expenses

1. January $3,400 $3,360

2. February $3,400 $2,900

3. March $3,400 $6,600

4. April $9,500 $2,750

5. May $3,400 $2,800

6. June $5,000 $6,800

7. July $4,600 $3,200

8. August $3,400 $3,600

9. September $3,400 $6,550

10. October $3,400 $2,800

11. November $3,400 $2,900

12. December $5,000 $6,650
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  Jason has identified several short-term investment 
opportunities:

•	a 3-month CD yielding 0.60% at maturity

•	a 6-month CD yielding 1.42% at maturity

•	an 11-month CD yielding 3.08% at maturity

•	a savings account yielding 0.0375% per month

  To ensure enough cash for emergencies, he would 
like to maintain at least $2,000 in the savings ac-
count. Jason’s objective is to maximize his cash 
balance at the end of the year. Develop a linear 
optimization model to find the best investment 
strategy.

 24. Pavlick Products supplies a key component for 
automobile interiors to U.S. assembly plants. The 
components can be manufactured in China or 
 Mexico. Unit cost in China is $333, and the unit 
cost in Mexico is $350. However, shipping costs per 
500 units are $10,000 from China, and only $2,000 
from Mexico and are expected to increase 4% 
each month from China and 1% each month from 
 Mexico. Each unit is sold to the automotive cus-
tomer for $400. Contracts with the Chinese  vendor 
require that a minimum of 2,500 units be produced 
each month. Demand for the next 12 months is 
 estimated to be:

Demand

January 14,000

February 16,000

March 14,000

April 14,000

May 16,000

June 10,500

July 14,000

August 20,000

September 20,000

October 16,000

November 14,000

December 10,500

  The Mexican plant is new and is gearing up produc-
tion; its capacity will increase over the next year as 
follows:

Mexican Plant Capacity

January      0

February  2,500

March  5,000

April  7,500

May 10,000

June 12,500

July 15,000

August 15,000

September 15,000

October 15,000

November 15,000

December 15,000

  How should the company source production to maxi-
mize total profit?

 25. Michelle is a business student who plans to attend 
medical school. The average state university medical 
school education expense can cost around $35,000 
per year and is escalating rapidly. Michelle created a 
spreadsheet model to calculate the total expenses for 
each year of medical school, including both educa-
tion and living expenses. Her estimates are Year 1: 
$57,067, Year 2: $56,572, Year 3: $67,846, and Year 
4: $55,662. She is considering three loan options: 
the Stafford loan, a 6.8% loan with a cap of $47,167 
that does not accrue interest during medical school; 
the Graduate Plus loan, a 7.9% loan with no cap that 
does accrue interest during medical school; and a pri-
vate bank loan, a 5.9% loan with a cap of $30,000, 
also with accruing interest during medical school. 
Assume that each loan will be paid over 25 years 
after graduation. Michelle currently has $39,500 
saved from investments, family gifts, and work, 
and will receive an additional $4,500 in gifts from 
her grandparents in years 2 through 4.  Develop and 
solve an optimization model to determine how much 
money to fund from each type of loan to minimize 
the amount of interest that will have to be paid on the 
loans. (Hint: use the Excel function  CUMIPMT to 
find the total interest that will be paid over the life of 
a loan. For example, if a 30-year loan for $100,000 
has an interest rate of 9%, then the formula =  -
CUMIPMT(9%, 30, 100,000, 1, 30, 0) will yield 
$192,009 cumulative interest paid between years 
1 and 30. (Note that this function yields a negative 
value so include the minus sign.)
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 26. Marketing managers have various media alternatives, 
such as radio, TV, magazines, and so on, in which 
to advertise and must determine which to use, the 
number of insertions in each, and the timing of inser-
tions to maximize advertising effectiveness within a 
limited budget. Suppose that three media options are 
available to Kernan Services Corporation: radio, TV, 
and magazine. The following table provides some  

information about costs, exposure values, and bounds 
on the permissible number of ads in each medium de-
sired by the firm. The exposure value is a measure of 
the number of people exposed to the advertisement 
and is derived from market research studies, and the 
client’s objective is to maximize the total exposure 
value. The company would like to achieve a total ex-
posure value of at least 90,000.

Medium Cost/ad Exposure Value/ad Min Units Max Units

Radio  $500 2,000  0 15

TV  $2,000 4,000 10

Magazine  $200 2,700  6 12

  How many of each type of ad should be placed to 
minimize the cost of achieving the minimum re-
quired total exposure? Use the auxiliary variable 
approach to model this problem, and write a short 
memo to the marketing manager explaining the solu-
tion and sensitivity information.

 27. Klein Industries manufactures three types of portable 
air compressors: small, medium, and large, which 
have unit profits of $20.50, $34.00, and $42.00, 

respectively. The projected monthly sales are as 
follows:

Small Medium Large

Minimum 14,000  6,200 2,600

Maximum 21,000 12,500 4,200

  The production process consists of three primary ac-
tivities: bending and forming, welding, and painting. 
The amount of time in minutes needed to process 
each product in each department is as follows:

Small Medium Large available Time

Bending/forming 0.4 0.7 0.8 23,400

Welding 0.6 1.0 1.2 23,400

Painting 1.4 2.6 3.1 46,800

  How many of each type of air compressor should the 
company produce to maximize profit?

 a. Formulate and solve a linear optimization model 
using the auxiliary variable cells method and 
write a short memo to the production manager 
explaining the sensitivity information.

 b. Solve the model without the auxiliary variables 
and explain the relationship between the reduced 
costs and the shadow prices found in part a.

 28. Fruity Juices, Inc., produces five different flavors of 
fruit juice: apple, cherry, pomegranate, orange, and 
pineapple. Each batch of product requires processing 
in three departments (blending, straining, and bot-
tling). The relevant data (per 1,000-gallon batches) 
are shown next.
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Time Required in Minutes/Batch

apple Cherry Pomegranate Orange Pineapple Minutes avail.

Blend 23 22 18 19 19 5,000

Strain 22 40 20 31 28 3,000

Bottle 10 10 10 10 10 5,000

Profit and Sales Potential

apple Cherry Pomegranate Orange Pineapple

Profit ($/1,000 gal) $800 $320 $1,120 $1,440 $800

Max Sales (000)  20  30   50   50  20

Min Sales (000)  10  15   20   40  10

 a. Formulate a linear program to find the amount of 
each product to produce.

 b. Implement your model on a spreadsheet and find 
an optimal solution with Solver.

 c. What effect would an increase of capacity in the 
straining department have on profit?

 29. Worley Fluid Supplies produces three types of fluid-
handling equipment: control valves, metering pumps, 
and hydraulic cylinders. All three products require 
assembly and testing before they can be shipped to 
customers.

Control Valve Metering Pump Hydraulic Cylinder

Assembly time (min)   45   20   30

Testing time (min)   20   15   25

Profit/unit $372 $174 $288

Maximum sales   20   50   45

Minimum sales    5   12   22

  A total of 3,150 minutes of assembly time and 2,100 
minutes of testing time are available next week.

 a. Develop a linear optimization model to deter-
mine how many pieces of equipment the com-
pany should make next week to maximize profit 
contribution.

 b. Implement your model on a spreadsheet and find 
an optimal solution.

 c. Explain the sensitivity information for the objec-
tive coefficients. What happens if the profit on 
hydraulic cylinders is decreased by $10?

 d. Due to scheduled maintenance, the assembly 
time is expected to be only 3,000 minutes. How 
will this affect the solution?

 e. A worker in the testing department has to take a 
personal leave because of a death in the family 
and will miss 3 days (24 hours). How will this af-
fect the optimal solution?

 f. Use the auxiliary variable technique to handle the 
bound constraints and generate all shadow prices.

 30. Beverly Ann Cosmetics has created two new per-
fumes: Summer Passion and Ocean Breeze. It costs 
$5.25 to purchase the fragrance needed for each bot-
tle of Summer Passion and $4.70 for each bottle of 
Ocean Breeze. The marketing department has stated 
that at least 30% but no more than 70% of the prod-
uct mix be Summer Passion; the forecasted monthly 
demand is 7,000 bottles and is estimated to increase 
by 8 bottles for each $1 spent on advertising. For 
Ocean Breeze, the demand is forecast to be 12,000 
bottles and is expected to increase by 15 bottles for 
each $1 spent on advertising. Summer Passion sells 
for $42.00 per bottle and Ocean Breeze, for $30.00 
per bottle. A monthly budget of $100,000 is available 
for both advertising and purchase of the fragrances. 
Develop and solve a linear optimization model to de-
termine how much of each type of perfume should be 
produced to maximize the net profit.
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Case: Performance Lawn Equipment

Elizabeth Burke wants to develop a model to more effec-
tively plan production for the next year. Currently, PLE 
has a planned capacity of producing 9,100 mowers each 
month, which is approximately the average monthly de-
mand over the previous year. However, looking at the unit 
sales figures for the previous year, she observed that the 
demand for mowers has a seasonal fluctuation, so with 
this “level” production strategy, there is overproduction 
in some months, resulting in excess inventory buildup and 
underproduction in others, which may result in lost sales 
during peak demand periods.

In discussing this with her, she explained that she 
could change the production rate by using planned over-
time or undertime (producing more or less than the av-
erage monthly demand), but this incurs additional costs, 
although it may offset the cost of lost sales or of main-
taining excess inventory. Consequently, she believes that 
the company can save a significant amount of money by 
optimizing the production plan.

Ms. Burke saw a presentation at a conference about a 
similar model that another company used but didn’t fully 
understand the approach. The PowerPoint notes didn’t 
have all the details, but they did explain the variables and 
the types of constraints used in the model. She thought 
they would be helpful to you in implementing an optimiza-
tion model. Here are the highlights from the presentation:

Variables:

 Xt = planned production in period t

 It = inventory held at the end of period t

 Lt = number of lost sales incurred in period t

 Ot = amount of overtime scheduled in period t

 Ut = amount of undertime scheduled in period t

 Rt = increase in production rate from period t - 1  
   to period t

 Dt = decrease in production rate from period t - 1  
   to period t

Material balance constraint:

Xt + It-1 - It + Lt = demand in month t

Overtime/undertime constraint:

Ot - Ut = Xt - normal production capacity

Production rate-change constraint:

Xt - Xt -1 = Rt - Dt

Ms. Burke also provided the following data and es-
timates for the next year: unit production cost = $70.00; 
inventory- holding cost = $1.40 per  unit per month; lost 
sales cost = +200 per unit; overtime cost = +6.50 per 
unit; undertime cost = +3.00 per unit; and production-
rate-change cost = +5.00 per unit, which applies to any 
increase or decrease in the production rate from the previ-
ous month. Initially, 900 units are expected to be in in-
ventory at the beginning of January, and the production 
rate for December 2012 was 9,100 units. She believes that 
monthly demand will not change substantially from last 
year, so the sales figures for last year in the PLE database 
should be used for the monthly demand forecasts.

Your task is to design a spreadsheet that provides de-
tailed information on monthly production, inventory, lost 
sales, and the different cost categories and solve a linear 
optimization model for minimizing the total cost of meet-
ing demand over the next year. Compare your solution 
with the level production strategy of producing 9,100 units 
each month. Interpret the Sensitivity report, and conduct 
an appropriate study of how the solution will be affected 
by changing the assumption of the lost sales costs. Sum-
marize all your results in a report to Ms. Burke.
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Learning Objectives

After studying this chapter, you will be able to:

•	Recognize when to use integer variables  
in optimization models.

•	Incorporate integer variables into Solver models.

•	Develop integer optimization models for practical 
applications such as workforce scheduling and 
location.

•	Find alternative optimal solutions to integer 
optimization models.

•	Formulate and solve optimization models with binary 
variables and logical constraints.

•	Develop and solve mixed-integer optimization models 
such as facility location and fixed-cost models.

Integer Optimization15Ch
ap

te
r 

marekuliasz/Shutterstock.com
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In the previous chapters, we saw that the variables in linear optimization mod-

els can assume any real value. For many practical applications, we need not be 

concerned with this assumption. For example, in deciding on the optimal number 

of cases of diapers to produce next month, we could use a linear model, since 

rounding a value like 5,621.63 would have little impact on the results. However, 

in a production-planning decision involving low-volume, high-cost items such as 

airplanes, an optimal value of 10.42 would make little sense, and a difference of 

one unit (rounded up or down) could have significant economic and production 

planning consequences.

In an integer linear optimization model (integer program), some of or all 

the variables are restricted to being whole numbers. If only a subset of variables 

is restricted to being integer while others are continuous, we call this a mixed-

integer linear optimization model. A special type of integer problem is one in 

which variables can be only 0 or 1; these are used to model logical yes-or-no 

decisions. Integer linear optimization models are generally more difficult to solve 

than pure linear optimization models but have many important applications in 

areas such as scheduling and supply chains.

Solving Models with General Integer Variables

Decision variables that we force to be integers are called general integer variables. We 
may specify any variable in an ordinary linear optimization model to be a general integer 
variable. Of course, if we solve the linear optimization model without the integer restric-
tions (called linear program [LP] relaxation) and the optimal solution happens to have 
all integer values, then it clearly would have solved the integer model. This is generally 
not the case, however. The algorithm used to solve integer optimization models begins 
by solving the LP relaxation and proceeds to enforce the integer restrictions using a sys-
tematic search process that involves solving a series of modified linear optimization prob-
lems. You need not worry about understanding how this is accomplished, because Solver 
takes care of the algorithmic details.

When using Solver, it is important to set a parameter called the Integer Tolerance. 
This value specifies when the Solver algorithm will terminate. By default, the Integer 
T olerance is set to 0.05 within Solver. This means that Solver will stop if it finds an in-
teger solution that is within 5% of the optimal solution. With this value, you may end up 
with a solution that is not the optimum, but is 95% of the way there. It does this for com-
putational efficiency because many practical problems take a very long time to solve, even 
with today’s technology (hours or even days!). A manager might be satisfied with a near-
optimal solution that is guaranteed to be within a fixed percentage of the best if an answer 
is needed quickly. To find the guaranteed optimal integer solution, Integer Tolerance must 
be set to 0. To do this, click the Options button in the Solver Parameters dialog and ensure 
that the value of Integer Optimality (%) is 0.

Because integer models are discontinuous by their very nature, sensitivity informa-
tion cannot be generated in the same manner as for linear models; therefore, no Sensitivity 
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ExaMpLE 15.1 Sklenka Skis Revisited

In Chapter 13, we developed a simple linear optimization 
model for finding the optimal product mix for a ski manu-
facturer. The model was

maximize Total Profit = 50 Jordanelle + 65 Deercrest

 3.5 Jordanelle + 4 Deercrest " 84

 1 Jordanelle + 1.5 Deercrest " 21

 Deercrest − 2 Jordanelle # 0

 Deercrest # 0

 Jordanelle # 0

We saw that the optimal solution was to produce 5.25 
pairs of Jordanelle skis and 10.5 pairs of Deercrest skis. 
Because the solution involves fractions, it would be ben-
eficial to find the optimal solution for which the decision 
variables are integers. To do this, we simply add the con-
straints that Deercrest and Jordanelle must be integers to 
the model. Figure 15.1 shows the graphical illustration of 

the set of feasible values (dark blue dots) that satisfy all 
constraints as well as the integer restrictions.

To enforce integer restrictions on variables using 
Solver, click on Integers under the Constraints list and then 
click the Add button. In the Add Constraint dialog, enter the 
variable range in the Cell Reference field and choose int 
from the drop-down box as shown in Figure 15.2. We also 
need to ensure that we set the Integer Tolerance parameter 
to zero as discussed earlier. Figure 15.3 shows the resulting 
solution. Notice that the maximum value of the objective 
function for the model with integer restrictions is smaller 
than the linear optimization solution. This is expected be-
cause we have added an additional constraint (the integer 
restrictions). Whenever you add a constraint to a model, the 
value of the objective function can never improve and usu-
ally worsens. Figure 15.4 illustrates this graphically. As the 
profit line increases, the last feasible integer point through 
which it passes is (3, 12). Notice also that the optimal inte-
ger solution is not the same as the solution you would ob-
tain from rounding the optimal solution to the LP relaxation.

Figure 15.1

Graphical Illustration of Feasible Integer Solutions for the Sklenka Ski Problem
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report is provided by Solver—only the Answer report is available. To investigate changes 
in model parameters, it is necessary to re-solve the model.

If Sklenka Skis were a real situation, they would be producing thousands of pairs 
of skis for the world market. As we noted, it probably would not make much difference 

Figure 15.2

Defining General Integer 
Variables in Solver

Figure 15.3

Optimal Integer Solution to 
Sklenka Skis Problem

Figure 15.4

Graphical Illustration of 
Optimal Integer Solution
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ExaMpLE 15.2 a Cutting-Stock problem

Suppose that a company makes standard 110-inch-
wide rolls of thin sheet metal and slits them into smaller 
rolls to meet customer orders for widths of 12, 15, and 
30 inches. The demands for these widths vary from 
week to week.

From a 110-inch roll, there are many different ways to 
slit 12-, 15-, and 30-inch pieces. A cutting pattern is a con-
figuration of the number of smaller rolls of each type that 
are cut from the raw stock. Of course, we would want to 
use as much of the roll as possible to avoid costly scrap. 
For example, we could cut seven 15-inch rolls, leaving 
a 5-inch piece of scrap; or cut three 30-inch rolls and 
one 12-inch roll, leaving 8 inches of scrap. Finding good  
cutting patterns for a large set of end products is, in itself, 
a challenging problem. Suppose that the company has 
proposed the following cutting patterns:

Size of End Item

pattern 12 in. 15 in. 30 in. Scrap

1 0 7 0 5 in.

2 0 1 3 5 in.

3 1 0 3 8 in

4 9 0 0 2 in

5 2 1 2 11 in

6 7 1 0 11 in

Demands for the coming week are 500 12-inch rolls, 715 
15-inch rolls, and 630 30-inch rolls. The problem is to  
develop a model that will determine how many 110-inch 
rolls to cut into each of the six patterns to meet demand 
and minimize scrap.

Define Xi to be the number of 110-inch rolls to cut us-
ing cutting pattern i, for i = 1, . . . , 6. Note that Xi needs 
to be a whole number because each roll that is cut gen-
erates a different number of end items. Thus, Xi will be 
modeled using general integer variables. Because the  
objective is to minimize scrap, the objective function is

min 5X1 + 5X2 + 8X3 + 2X4 + 11X5 + 11X6

The only constraints are that end item demand must be 
met; that is, we must produce at least 500 12-inch rolls, 
715 15-inch rolls, and 630 30-inch rolls. The number of 
end-item rolls produced is found by multiplying the num-
ber of end-item rolls produced by each cutting pattern by 
the number of 110-inch rolls cut using that pattern. There-
fore, the constraints are

0X1 + 0X2 + 1X3 + 9X4 + 2X5 + 7X6 # 500  (12@inch rolls)

7X1 + 1X2 + 0X3 + 0X4 + 1X5 + 1X6 # 715  (15@inch rolls)

0X1 + 3X2 + 3X3 + 0X4 + 2X5 + 0X6 # 630  (30@inch rolls)

Finally, we include nonnegativity and integer restrictions:

Xi # 0 and integer

Figure 15.5 shows the cutting-stock model implementation on a spreadsheet (Excel 
file Cutting Stock Model) with the optimal solution. The constraint functions for the num-
ber produced in cells B23:D23 and the objective function in cell B26 are SUMPRODUCT 
functions of the decision variables in B15:B20 and the data in rows 5 through 10. The 
Solver model is shown in Figure 15.6.

if they simply rounded the optimal linear optimization model. For other types of mod-
els, however, it is critical to enforce integer restrictions. For example, the paper industry 
needs to find the best mix of cutting patterns to meet demand for various sizes of paper 
rolls. In a similar fashion, sheet steel producers cut strips of different sizes from rolled 
coils of thin steel. For these types of problems, fractional values for the decision vari-
ables make no sense at all. Finding the best solution for such problems requires integer 
optimization.
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Figure 15.6

Solver Model for Cutting-
Stock Problem

Figure 15.5

Spreadsheet Model and 
Optimal Solution for the 
Cutting-Stock Model

Workforce-Scheduling Models

Workforce scheduling is a practical, yet highly complex, problem that many businesses 
face. Many fast-food operations hire students who can work in only small chunks of time 
during the week, resulting in a huge number of possible schedules. In such operations, 
customer demand varies by day of week and time of day, further complicating the prob-
lem of assigning workers to time slots. Similar problems exist in scheduling nurses in 
hospitals, flight crews in airlines, and many other service operations.
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ExaMpLE 15.3 Brewer Services

Brewer Services contracts with outsourcing partners 
to handle various customer-service functions. The  
customer-service department is open Monday through 
Friday from 8 a.m. to 5 p.m. Calls vary over the course of 
a typical day. Based on a study of call volumes provided 
by one of the firm’s partners, the minimum number of 
staff needed each hour of the day are as follows:

Hour Minimum Staff Required

8–9  5

9–10 12

10–11 15

11–Noon 12

Noon–1 11

1–2 18

2–3 17

3–4 19

4–5 14

Mr. Brewer wants to hire some permanent employees and 
staff the remaining requirements using part-time employees 
who work 4-hour shifts (four consecutive hours starting as 
early as 8 a.m. or as late as 1 p.m.). Suppose that Mr. Brewer 
has five permanent employees. What is the minimum num-
ber of part-time employees he will need for each 4-hour shift 
to ensure meeting the staffing requirements?

Assuming that the five permanent employees work the 
full day, the part-time coverage requirements can be cal-
culated by subtracting 5 from each of the time slots in the 

table. Define Xi to be the number of part-time employees  
that will work a 4-hour shift beginning at hour i, where 
i = 1 corresponds to an 8:00 a.m. start, i = 2 corre-
sponds to a 9:00 a.m. start, and so on, with i = 6 cor-
responding to a 1:00 p.m. start as the last part-time shift. 
The objective is to minimize the total number of part-time 
employees:

min X1 + X2 + X3 + X4 + X5 + X6

For each hour, we need to ensure that the total number of 
part-time employees who work that hour is at least as large 
as the minimum requirements. For example, only workers 
starting at 8:00 a.m. will cover the 8:00–9:00 time slot; thus,

 X1 # 0

Workers starting at either 8:00 a.m. or 9:00 a.m. will cover 
the second time slot; therefore,

 X1 + X2 # 7

The remaining constraints are

 X1 + X2 + X3 # 10

 X1 + X2 + X3 + X4 # 7

 X2 + X3 + X4 + X5 # 6

 X3 + X4 + X5 + X6 # 13

 X4 + X5 + X6 # 12

 X5 + X6 # 14

 X6 # 9

All the variables must also be integers.

Figures 15.7 and 15.8 show the spreadsheet (Excel file Brewer Services) and Solver 
models for this example. The optimal solution is to hire 24 part-time workers.

alternative Optimal Solutions

In looking at the solution, a manager might not be satisfied with the distribution of work-
ers, particularly the fact that there are nine excess employees during the first hour. In most 
scheduling problems, many alternative optimal solutions usually exist. A little creativity 
in using the optimization model can help identify these.
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Figure 15.7

Spreadsheet Model for 
Brewer Services
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Figure 15.8

Solver Model for Brewer 
Services

ExaMpLE 15.4 Finding alternative Optimal Solutions for Brewer Services Model

An easy way to find an alternative optimal solution that 
reduces the number of excess employees at 8:00 a.m. is to 
define a constraint setting the objective function equal to 
its optimal value and then changing the objective function 
to minimize the number of excess employees during the 
first hour. Figure 15.9 shows the modified Solver model 
with the constraint

X1 + X2 + X3 + X4 + X5 + X6 = 24

and the new objective function to minimize the  
excess number of employees at 8:00 a.m., the value 
in cell E21. The solution is shown in Figure 15.10. In a  

“whack-a-mole” fashion, we now have 9 excess employ-
ees during the noon hour, a solution which isn’t any better 
than the original one.

A better approach would be to define additional con-
straints to restrict the excess number of employees in the 
range E21:E29 to be less than or equal to some maximum 
number k and then attempt to minimize the original objec-
tive function. The Solver model is shown in Figure 15.11.  
If we do this, we find that the smallest value of k that  
results in a feasible solution is k = 3. The result is shown in 
Figure 15.12. We have achieved a better balance while still 
maintaining the minimum number of part-time employees.

Figure 15.9

Modified Solver Model to 
Identify an Alternate Optimal 
Solution
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Figure 15.10

Alternative Optimal 
Solution to Brewer 
Services Problem

Figure 15.11

Solver Model with 
Constraints on Excess 
Employees

Figure 15.12

Improved Alternative 
Optimal Solution to Brewer 
Services Problem
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Integer Optimization Models with Binary Variables

Many optimization models require binary variables, which are variables that are restricted 
to being either 0 or 1. Mathematically, a binary variable x is simply a general integer 
variable that is restricted to being between 0 and 1:

 0 … x … 1 and integer (15.1)

However, we usually just write this as x = 0 or 1. Binary variables enable us to model log-
ical decisions in optimization models. For example, binary variables can be used to model 
decisions such as whether 1x = 12 or not 1x = 02 to place a facility at a certain location, 
whether or not to run a production line, or whether or not to invest in a certain stock.

Service sector operations such as airlines, hotels, and 
restaurants must deal constantly with staffing prob-
lems in the face of fluctuating demand.1 If the staff is 
too small, the firm cannot serve its customers well. 
This can result in lost sales and the loss of customer 
goodwill. A staff that is too large can meet customer 
demand, but labor costs might be excessive. Qantas 
Airways uses an integer programming model to deter-
mine the least-cost staff size in its telephone reserva-
tion system to meet projected demand.

The airline industry has been and continues to 
be an extremely competitive industry. Survival de-
pends on maximizing efficiency in operations and 
capturing a sufficient share of the customer market. 
 Qantas decided to analyze the size of its reservation 
staff because—as just discussed—an oversized staff 
is inefficient, but an undersized staff will result in lost 
market share. The fluctuation of demand over time 
makes the search for an optimal staff size a formi-
dable task.

Qantas began its analysis by collecting demand 
data (number of calls) by month over a 2-year period. 
Then, for a 3-month period, data were collected on a 
half-hour basis. The data showed that demand var-
ied by time of day and day of the week, but that for 
a given month, variation over weeks was insignificant. 
Therefore, a typical or average week could be used for 
a given month’s planning purposes.

The integer programming model uses demand 
forecasts to optimize staff size over time. The follow-
ing assumptions were made:

1. Shifts start only on the hour or half-hour.

2. Shifts start during the hours of 7:00 a.m. to  
9:30 a.m., plus one shift that starts at 3:00 p.m.  
(7 possible shifts).

3. The length of shifts starting between 8:30 and 
9:30 is 8.5 hours, with a 1-hour lunch; all other 
shifts are 8 hours with a 0.5-hour lunch.

Outputs from the model include the number of staff 
per shift, start and finish times of each shift, lunch 
schedule for each shift, and total staff needed for the 
day. Using the output of the daily integer optimization 
model, a manual approach was developed for devis-
ing a minimum workforce schedule permitting each 
employee two consecutive days off. This model and 
scheduling process saved more than $200,000 over  
2 years in the Sydney office alone. Because of the 
success of this approach, similar approaches were 
later used in other offices and in other customer-
contact areas, such as passenger sales and check-in 
facilities.

analytics in practice: Sales Staffing at Qantas

1Based on A. Gaballa and W. Pearce, “Telephone Sales Manpower Planning at Qantas,” Interfaces,  
9, 3 (May, 1979): 1–9.
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project-Selection Models

One common example we present next is project selection, in which a subset of potential 
projects must be selected with limited resource constraints. Capital-budgeting problems in 
finance have a similar structure.

project 1 project 2 project 3 project 4 project 5
available  

Resources

Expected return (NPV) $180,000 $220,000 $150,000 $140,000 $200,000

Cash requirements  $55,000  $83,000  $24,000  $49,000  $61,000 $150,000

Personnel requirements 5 3 2 5 3 12

ExaMpLE 15.5 Hahn Engineering

Hahn Engineering’s research and development group has 
identified five potential new engineering and development 
projects; however, the firm is constrained by its available 
budget and human resources. Each project is expected 
to generate a return (given by the net present value) but 
requires a fixed amount of cash and personnel. Because 
the resources are limited, all projects cannot be selected. 
Projects cannot be partially completed; thus, either the 
project must be undertaken completely or not at all. The 
data are given in Table 15.1. If a project is selected, it gen-
erates the full value of the expected return and requires 
the full amount of cash and personnel shown in Table 15.1.  
For example, if we select projects 1 and 3, the total 
 return is $180,000 + $150,000 = $330,000, and these 
projects require cash totaling $55,000 + $24,000 =
$79,000 and 5 + 2 = 7 personnel.

To model this situation, we define the decision vari-
ables to be binary, corresponding to either not selecting 
or selecting each project, respectively. Define xi = 1 if 
project i is selected and 0 if it is not selected. By multi-
plying these binary variables by the expected returns, the 
objective function is

maximize $180,000x1 + $220,000x2 + $150,000x3

 + $140,000x4 + $200,000x5

Because cash and personnel are limited, we have the  
following constraints:

$55,000x1 + $83,000x2 + $24,000x3 + $49,000x4

 + $61,000x5 " $150,000    (cash limitation)

5x1 + 3x2 + 2x3 + 5x4 + 3x5 " 12    (personnel limitation)

Note that if projects 1 and 3 are selected, then x1 = 1 and 
x3 = 1, and the objective and constraint functions, equal

return = $180,000(1) + $220,000(0) + $150,000(1)

 + $140,000(0) + $200,000(0) = $330,000

cash required = $55,000(1) + $83,000(0) + $24,000(1)

 + $49,000(02 + $61,000(0) = $79,000

personnel required = 5(1) + 3(0) + 2(1) + 5(0) + 3(0) = 7

This model is easy to implement on a spreadsheet, as shown in Figure 15.13 
(Excel file Hahn Engineering Project Selection). The decision variables are defined in 
cells B11:F11. By multiplying these values by the data for each project in rows 5–7, we 
can easily compute the total return, cash used, and personnel used for the projects that 
are selected in rows 12–14. The objective function is computed in cell G12 as the sum of the 
returns for the selected projects. Similarly, the amounts of cash and personnel used are also 
summed for the projects selected, representing the constraint functions in cells G13 and 
G14. The optimal solution is to select projects 1, 3, and 5 for a total return of $530,000.Table  15.1 

Project-Selection Data
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The Solver model is shown in Figure 15.14. To invoke the binary constraints on the 
variables, use the same process as defining integer variables, but choose bin from the drop-
down box in the Add Constraint dialog. The resulting constraint is $B11:$F11 = binary, 
as shown in the Solver model.

As we noted, sensitivity analysis for integer optimization can be conducted only 
by re-solving the model for changes in the data. In the project-selection problem, it 
would probably benefit the manager to determine the impact of additional resources on 
the total expected return. First, note that if all projects are selected, they would require 
$272,000 in cash and 18 personnel. By setting all the decision variables to 1, we obtain a 
return of $890,000. As the amount of cash and personnel vary from the base case to this 
extreme, we may find the optimal returns, as shown in Figure 15.15. The color-coded 

Figure 15.13

Spreadsheet Model for 
Project-Selection Problem

Figure 15.14

Solver Model for  
Hahn Engineering  
Project Selection Problem

Figure 15.15

Sensitivity Analysis  
of Optimal Returns  
for Project- 
Selection Model
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regions in the matrix show combinations of personnel and cash with the same minimal 
values of the return; such a visual display is often called a heat map, and it allows 
you to easily identify different solutions. This information can help the manager evalu-
ate the trade-offs between increasing the expected return and acquiring additional re-
sources. The upper-left-hand corner of each colored region (shown boxed in the figure) 
represents the lowest amount of resources required to achieve that return. For example, 
the company can improve the return by $40,000 by increasing its cash availability by 
$20,000 with no additional personnel or improve the return by $140,000 by increasing 
the cash availability by $40,000 with three additional personnel. Although the best deci-
sion may not be clear, analysis provides the decision maker with better information to 
make an informed choice.

Using Binary Variables to Model Logical Constraints

Binary variables allow us to model a wide variety of logical constraints. For example, sup-
pose that if project 1 is selected, then project 4 must also be selected. Your first thought 
might be to incorporate an IF function in the Excel model; however, recall that we noted 
in Chapter 13 that such functions destroy the linearity property of the Excel model; there-
fore, we need to express such constraints differently. (We do, however, address these is-
sues further in the next chapter.) If project 1 is selected, then x1 = 1, and we want to force 
x4 to be 1 also. This can be done using the following constraint:

x4 Ú x1

Mathematically, if x1 = 1 then this constraint implies that x4 Ú 1 and, consequently, x4 
must equal 1. If x1 = 0, then x4 Ú 0 and x4 can be either 0 or 1. Table 15.2 summarizes 
how to model a variety of logical conditions using binary variables.

Logical Condition Constraint Model Form

If A, then B B # A or B − A # 0

If not A, then B B # 1 − A or A + B # 1

If A, then not B B " 1 − A or A + B " 1

At most one of A and B A + B " 1

If A, then B and C 1B # A and C # A 2  or B + C # 2A

If A and B, then C C # A + B − 1 or A + B − C " 1

Table 15.2 

Modeling Logical Conditions 
Using Binary Variables

ExaMpLE 15.6 adding Logical Constraints into the project-Selection Model

Suppose that we want to ensure that if project 1 is se-
lected, then project 4 is selected, and that at most one of 
projects 1 and 3 can be selected in the Hahn  Engineering 
model. To incorporate the constraint x4 # x1, write it as 
x4 − x1 # 0 by defining a cell for the constraint func-
tion x4 − x1 (cell B17 in Figure 15.16). Similarly, for the 
constraint x1 + x3 " 1, define a cell for x1 + x3 (cell 

B18 in Figure 15.16). Then add these constraints to the 
Solver model, as shown in Figure 15.17 (Excel file Hahn 
 Engineering Project Selection with Logical Conditions). 
In the optimal solution, we do not select project 1, al-
though project 4 is selected anyway. With the additional 
constraints, the expected return is smaller than the origi-
nal solution.
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Location Models

Integer optimization models have wide applications in locating facilities. The following is 
an example of a “covering” problem, one in which we seek to choose a subset of locations 
that serve, or cover, all locations in a service area.

Figure 15.16

Modified Project-Selection 
Model with Logical 
Conditions

Figure 15.17

Modified Solver Model with 
Logical Conditions

ExaMpLE 15.7 anderson Village Fire Department

Suppose that an unincorporated village wishes to find 
the best locations for fire stations. Assume that the vil-
lage is divided into smaller districts, or neighborhoods, 
and that transportation studies have estimated the  

response time for emergency vehicles to travel between 
each pair of districts. The village wants to locate the fire 
stations so that all districts can be reached within an 
8-minute response time. The following table shows the 

(continued)
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Figure 15.18 shows a spreadsheet model for this problem (Excel file Anderson 
 Village Fire Station Location Model). To develop the constraints in the model, we con-
struct a matrix by converting all response times that are within 8 minutes to 1s and those 
that exceed 8 minutes to 0s. Then the constraint functions for each district are simply the 
SUMPRODUCT of the decision variables and the rows of this matrix, making the Solver 
model, shown in Figure 15.19, easy to define. For instance, the formula in cell I20 is 
= SUMPRODUCT($B$28:$H$28,B20:H20). For this example, the solution is to site fire 
stations in districts 3 and 7.

estimated response time in minutes between each pair 
of districts:

From/To 1 2 3 4 5 6 7

1 0 2 10 6 12 5 8

2 2 0 6 9 11 7 10

3 10 6 0 5 5 12 6

4 6 9 5 0 9 4 3

5 12 11 5 9 0 10 8

6 5 7 12 4 10 0 6

7 8 10 6 3 8 6 0

Define Xj = 1 if a fire station is located in district j 
and 0 if not. The objective is to minimize the number of fire 
stations that need to be built:

min X1 + X2 + X3 + X4 + X5 + X6 + X7

Each district must be reachable within 8 minutes by some 
fire station. Thus, from the table, for example, we see that 
to be able to respond to district 1 in 8 minutes or less, a 
station must be located in either district 1, 2, 4, 6, or 7. 
Therefore, we must have the constraint:

X1 + X2 + X4 + X6 + X7 # 1

Similar constraints may be formulated for each of the 
other districts:

    X1 + X2 + X3 + X6 # 1

    X2 + X3 + X4 + X5 + X7 # 1

    X1 + X3 + X4 + X6 + X7 # 1

 X3 + X5 + X7 # 1

    X1 + X2 + X4 + X6 + X7 # 1

    X1 + X3 + X4 + X5 + X6 + X7 # 1

Figure 15.18

Spreadsheet Model 
for Anderson 
Village Fire Station 
Location Model
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Figure 15.19

Solver Model for Anderson 
Village Fire Station Location

Figure 15.20

Parameter Analysis Report

ExaMpLE 15.8 parameter analysis for Response Time

As described in Chapter 13, first choose an empty cell 
and define the parameter range (in this case, choose cell 
D5 with a lower value of 5 and upper value of 10) and 
then reference the defined parameter cell in place of 
the response time (cell B5) in the model. Then, choose 
Parameter Analysis from the Optimization list within the 
Reports menu in the Analytic Solver Platform ribbon. 
Select the variable cells, objective function cell, and pa-
rameter cell in the Multiple Optimizations Report dialog 
and change Major Axis Points to 6, and the model will 
be run for each response time from 5 through 10.

Figure 15.20 shows the report summary using 
 Analytic Solver Platform Parameter Analysis (we added 

the descriptive titles in rows 1 and 2). In column A are the 
parameterized values of the response time. The 1s in col-
umns B through H show where the fire stations should be 
located.  Column I shows the minimum number of fire sta-
tions required. These results show the maximum response 
time can be reduced to 6 minutes while still using only two 
fire  stations (the model solution yields districts 1 and 3). 
This would clearly be a better alternative. Also, if the re-
sponse time is increased by only 1 minute from its original 
target, the township could save the cost of building a sec-
ond facility. Of course, such decisions need to be evalu-
ated carefully.

parameter analysis 

Suppose that the Anderson Village township’s board of trustees wants to better understand 
the trade-offs between the response time and minimum number of fire stations needed. 
We could change the value of the response time in cell B5 and resolve the model or use 
the Analytic Solver Platform Parameter Analysis feature that we described in Chapter 13.
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a Customer-assignment Model for Supply Chain Optimization

Supply chain optimization is one of the broadest applications of integer optimization 
and is used extensively today as companies seek to reduce logistics costs and improve 
customer service in tough economic environments. Although many applications  involve 
optimization models with both normal and binary variables, which we describe in  
the next section, some applications require only binary variables.

Suppose that a company has numerous potential locations for distribution centers that 
will ship products to many customers and wants to redesign its supply chain by selecting a 
fixed number of distribution centers. In an effort to provide exceptional customer service, 
some companies have a single-sourcing policy—that is, every customer can be supplied 
from only one distribution center. The problem is to determine how to assign customers to 
the distribution centers so as to minimize the total cost of shipping to the customers.

Define Xij = 1 if customer j is assigned to distribution center i and 0 if not; 
Yi = 1 if distribution center i is chosen from among a set of potential locations; and 
Cij = the total cost of satisfying the demand of customer j from distribution center i. We 
wish to minimize the total cost, ensure that every customer is assigned to one and only 
one distribution center, and select k distribution centers from the set of potential locations. 
This can be accomplished by the following model:

min a
i
a

j
CijXij

a
i

Xij = 1, for every j

a
i

Yi = k

Xij … Yi, for every i and j

Xij and Yi are binary

The first constraint ensures that each customer is assigned to exactly one distribution center. 
The next constraint limits the number of distribution centers selected. The final constraint 
ensures that customer j cannot be assigned to distribution center i unless that distribution 
center is selected in the supply chain. This is similar to the logical constraints we described in 
Table 15.2. If Yi = 1, then any customer may be assigned to distribution center i; if Yi = 0, 
then Xij is forced to be 0 for all customers j because distribution center i is not selected.

ExaMpLE 15.9 paul & Giovanni Foods

Paul & Giovanni Foods distributes supplies to restaurants 
in five major cities: Houston, Las Vegas, New Orleans,  
Chicago, and San Francisco. In a study to reconfigure their 
supply chain, they have identified four possible locations 

for distribution centers: Los Angeles, Denver, Pensacola, 
and Cincinnati. The costs of supplying each customer city 
from each possible distribution center are shown next:

Sourcing Costs Houston Las Vegas New Orleans Chicago San Francisco

Los Angeles $40,000 $11,000  $75,000 $70,000  $60,000

Denver $72,000 $77,000 $120,000 $30,000  $75,000

Pensacola $24,000 $44,000  $45,000 $80,000  $90,000

Cincinnati $32,000 $55,000  $90,000 $20,000 $105,000
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P&G Foods wishes to determine the best supply chain 
configuration to minimize cost.

Define Xij = 1 if customer city j is assigned to distri-
bution center i and 0 if not and Yi = 1 if distribution center 
i is chosen from among a set of potential locations. The 
integer optimization model is

 Xij " Yi, for every i and j (e.g., X11 " Y1, X21 " Y1, and so on)

Xij and Yi are binary

Figure 15.21 shows a spreadsheet model and the op-
timal solution for k = 2 (Excel file Paul & Giovanni Foods); 
Figure 15.22 shows the Solver model. We see the distribu-
tion centers in Los Angeles and Cincinnati should be cho-
sen, with Los Angeles serving Las Vegas, New Orleans, and 
San Francisco and Cincinnati serving Houston and Chicago.

This model can easily be used to evaluate alternatives 
for different values of k using parameter analysis techniques. 
For example, when k = 1, the model selects Los Angeles 
with a total cost of $256,000; when k = 3, Los Angeles, 
Cincinnati, and Pensacola are chosen with a minimum cost 
of $160,000; and if all four distribution centers are chosen, 
the same solution results. The supply chain manager can 
use this information to determine the trade-offs associated 
with opening different numbers of distribution centers.

Figure 15.21

Spreadsheet Model and 
Optimal Solution for Paul & 
Giovanni Foods for k = 2

minimize  $40,000X11 + $11,000X12 + $75,000X13 
  +  $70,000X14 + $60,000X15 + $72,000X21 + $77,000X22  
 +  $120,000X23 + $30,000X24 + $75,000X25 + $24,000X31 
 +  $44,000X32 + $45,000X33 + $80,000X34 + $90,000X35 
 +  $32,000X41 + $55,000X42 + $90,000X43 + $20,000X44 
 +  $105,000X45

X11 + X21 + X31 + X41 = 1

X12 + X22 + X32 + X42 = 1

X13 + X23 + X33 + X43 = 1

X14 + X24 + X34 + X44 = 1

X15 + X25 + X35 + X45 = 1

 Y1 + Y2 + Y3 + Y4 = k
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In 1993, Procter & Gamble began an effort entitled 
Strengthening Global Effectiveness (SGE) to stream-
line work processes, drive out non-value-added costs, 
and eliminate duplication.2

A principal component of SGE was the North 
American Product Supply Study, designed to reexam-
ine and reengineer P&G’s product-sourcing and distri-
bution system for its North American operations, with 
an emphasis on plant consolidation. Prior to the study, 
the North American supply chain consisted of  hundreds 

of suppliers, more than 50 product categories, more 
than 60 plants, 15 distribution centers, and more than 
1,000 customers. The need to consolidate plants was 
driven by the move to global brands and common 
packaging, and the need to reduce manufacturing ex-
pense, improve speed to market, avoid major capital 
investments, and deliver better consumer value.

P&G had a policy of single sourcing; therefore, one 
of the key submodels in the overall optimization  effort 
was the customer assignment optimization model 

analytics in practice: Supply Chain Optimization at procter & Gamble

2Based on Jeffrey D. Camm, Thomas E. Chorman, Franz A. Dill, James R. Evans, Dennis J. Sweeney,  
and Glenn W. Wegryn, “Blending OR/MS, Judgment, and GIS: Restructuring P&G’s Supply Chain,” 
Interfaces, 27, 1 (January–February, 1997): 128–142.

Figure 15.22

Solver Model for Paul & 
Giovanni Foods
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Table 15.3

Plant Location Data

Distribution Center

plant Cleveland Baltimore Chicago phoenix Capacity

Marietta $12.60 $14.35 $11.52 $17.58 1,200

Minneapolis  $9.75 $16.26  $8.11 $17.92   800

Fayetteville $10.41 $11.54  $9.87 $11.64 1,500

Chico $13.88 $16.95 $12.51  $8.32 1,500

Demand 300 500 700 1,800

Mixed-Integer Optimization Models

Many practical applications of optimization involve a combination of continuous vari-
ables and binary variables. This provides the flexibility to model many different types of 
complex decision problems.

plant Location and Distribution Models

Suppose that in the GAC transportation model example discussed in Chapter 14, demand 
forecasts exceed the existing capacity and the company is considering adding a new plant 
from among two choices: Fayetteville, Arkansas, or Chico, California. Both plants would 
have a capacity of 1,500 units, but only one can be built. Table 15.3 shows the revised 
data.

The company now faces two decisions. It must decide which plant to build and then 
how to best ship the product from the plant to the distribution centers. Of course, one 
approach would be to solve two separate transportation models, one that includes the 
Fayetteville plant and the other that includes the Chico plant. However, we demonstrate 
how to answer both questions simultaneously, because this provides the most efficient ap-
proach, especially if the number of alternative locations is large. The difference between 
this situation and the customer-assignment model in the previous section is that single 
sourcing is not required; therefore, any distribution center may receive some of its demand 
from more than one plant.

described in this section to identify optimal distribu-
tion center locations in the supply chain and to assign 
customers to the distribution centers. Customers were  
aggregated into 150 zones. The parameter k was var-
ied by the analysis team to examine the effects of 
choosing different numbers of locations. This model 
was used in conjunction with a simple transportation 
model for each of 30 product categories. Product-
strategy teams used these models to specify plant 
locations and capacity options and optimize the flow 
of product from plants to distribution centers and  
customers. In reconfiguring the supply chain, P&G  
realized annual cost savings of more than $250 million.
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ExaMpLE 15.10 a Mixed-Integer plant Location Model

To build an optimization model to simultaneously 
choose which location to build the plant and how to ship 
the product from the plants to the distribution centers, 
define a binary variable for the decision of which plant to 
build: Y1 = 1 if the Fayetteville plant is built and Y2 = 1 
if the Chico plant is built; and define normal variables 
Xij, representing the amount shipped from plant i to dis-
tribution center j. The objective function now includes 
terms for the proposed plant locations as well as the  
existing ones:

minimize 12.60X11 + 14.35X12 + 11.52X13 + 17.58X14

 +  9.75X21 + 16.26X22 + 8.11X23 + 17.92X24

+ 10.41X31 + 11.54X32 + 9.87X33 + 11.64X34

+  13.88X41 + 16.95X42 + 12.51X43 + 8.32X44

Capacity constraints for the Marietta and  Minneapolis 
plants remain as before. However, for Fayetteville and 
Chico, we can allow shipping from those locations only if 
a plant is built there. In other words, if we do not build a 
plant in Fayetteville (if Y1 = 0), for example, then we must 
ensure that the amount shipped from Fayetteville to any 
distribution center must be zero, or X3j = 0 for j = 1 to 4. 
To do this, we multiply the capacity by the binary variable 
corresponding to the location:

X11 + X12 + X13 + X14 " 1,200

X21 + X22 + X23 + X24 " 800

X31 + X32 + X33 + X34 " 1,500Y1

X41 + X42 + X43 + X44 " 1,500Y2

Note that if the binary variable is zero, then the right-hand 
side of the constraint is zero, forcing all shipment vari-
ables to be zero also. If, however, a particular Y-variable 
is 1, then shipping up to the plant capacity is allowed. The 
demand constraints are the same as before, except that 
additional variables corresponding to the possible plant  
locations are added and new demand values are used:

X11 + X21 + X31 + X41 = 300

X12 + X22 + X32 + X42 = 500

X13 + X23 + X33 + X43 = 700

  X14 + X24 + X34 + X44 = 1,800

To guarantee that only one new plant is built, we must have

Y1 + Y2 = 1

Finally, we have nonnegativity for the continuous variables: 
Xij # 0, for all i and j.

Figure 15.23 shows the spreadsheet model (Excel file Plant Location Model) and 
 optimal solution. Note that in addition to the continuous variables Xij, in the range B16:E19, 
we defined binary variables Yi in cells I16 and I17. Cells J16 and J17 represent the constraint 
functions 1,500Y1 - X31 - X32 - X33 - X34 and 1500Y2 - X41 - X42 - X43 - X44, 
 respectively. These are restricted to be greater than or equal to zero to enforce the capac-
ity constraints at the potential locations in the Solver model (Figure 15.24). You should 
closely examine the other constraints in the Solver model to verify that they are correct. 
The solution specifies selecting the Chico location. Models of this type are commonly 
used in supply chain design and other facility location applications.

Binary Variables, IF Functions, and Nonlinearities  
in Model Formulation

You may be wondering about why we need to express the constraints in the following 
fashion to ensure that if we don’t build a plant, then we must ensure that no product is 
shipped from that plant:

X31 + X32 + X33 + X34 … 1,500Y1

X41 + X42 + X43 + X44 … 1,500Y2
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Frequent users of Excel might immediately focus on the “if” condition and want to 
model the problem on the spreadsheet using a logical IF function to define the capac-
ity in cells F8 and F9. For example, we might enter the formula = IF(I16 = 1, 1500, 0) 
into cell F8. This says that if the Fayetteville plant is chosen, then the available capac-
ity is 1,500; otherwise it is zero. Simple, right? From a spreadsheet perspective, there is 
nothing wrong with this. However, from a linear optimization perspective, the use of an 
IF function no longer preserves the linearity of the model (technically, the model would 
be called nonsmooth) and we would get an error message in trying to solve the model  
using a linear-based Solver algorithm. Similarly, you might think to model the constraint as 
X31Y1 + X32Y1 + X33Y1 + X34Y1 … 1,500. Although this is logically correct, multiplying 
the two variables together results in a nonlinear function. Both nonsmooth and nonlinear 
models are much more difficult to solve than linear models. You can learn about these in 
the online Supplementary Chapter A. So for now, it is important that the models we develop 
retain linear characteristics.

Figure 15.23

Spreadsheet Model for 
Plant Location Model
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Figure 15.24

Solver Model for Plant 
Location Problem

Fixed-Cost Models

Many business problems involve fixed costs; they are either incurred in full or not at all. 
Binary variables can be used to model such problems in a similar fashion as we did for the 
plant location model.

ExaMpLE 15.11 Incorporating Fixed Costs into the K&L Designs Model

Consider the multiperiod production-inventory-planning 
model for K&L Designs that we developed in Chapter 14.  
Suppose that the company must rent some equipment, 
which costs $65 for 3 months. The equipment can be 
rented or returned each quarter, so if nothing is produced 
in a quarter, it makes no sense to incur the rental cost.

The fixed costs can be incorporated into the model 
by defining an additional set of variables:

YA = 1 if production occurs during the autumn and 0 if not

YW = 1 if production occurs during the winter and 0 if not

YS = 1 if production occurs during the spring and 0 if not

Then, the objective function becomes

minimize 11PA + 14PW + 12.50PS + 1.20IA
+  1.20IW + 1.20IS + 65(YA + YW + YS)

The basic material balance equations are the same:

PA − IA = 150

PW + IA − IW = 400

PS + IW − IS = 50

However, we must ensure that whenever a production 
variable, P, is positive, the corresponding Y variable is 
equal to 1; conversely, if the Y variable is 0 (you don’t 
rent the equipment), then the corresponding production  
variable must also be 0. This can be accomplished with 
the following constraints:

PA " 600YA

PW " 600YW

PS " 600YS

Note that if any Y is 0 in a solution, then P is forced to be 
zero, and if P is positive, then Y must be 1. Because we 
don’t know how much the value of any production vari-
able will be, we use 600, which is the sum of the demands 
over the time horizon, to multiply by Y. So when Y is 1, 
any amount up to 600 units can be produced. Actually any 
large number can be used, so long as it doesn’t restrict 
the possible values of P. Generally, the smallest value 
should be used for efficiency. Finally, PA, PW, and PS must 
be nonnegative, and YA, YW, and YS are binary.
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Figure 15.25

Spreadsheet Model for  
K&L Designs Fixed-Cost 
Model

Figure 15.26

Solver Model for K&L 
Designs Fixed-Cost Problem
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Key Terms

Binary variable
General integer variables
Heat map
Integer linear optimization model  
 (integer program)

Linear program (LP) relaxation
Mixed-integer linear optimization  
 model

problems and Exercises

Note: Data for most of these problems are provided in the 
Excel files Chapter 14 Problem Data (for Problems 1–4) 
or Chapter 15 Problem Data to facilitate model building. 
Worksheet tabs correspond to problem scenario names.

 1. Solve Problem 6 in Chapter 13 to ensure that the 
number of minutes of each type of ad are integer 
valued. How much difference is there between the 
optimal integer solution and the linear optimization 
solution? Would rounding the continuous solution 
have provided the optimal integer solution?

 2. Solve the J&M Manufacturing model in Chapter 14 to 
ensure that the number of units produced is integer val-
ued. How much difference is there between the optimal 
integer solution and the linear optimization solution?

 3. Solve the Toy Manufacturing model in Problem 5 
of Chapter 14 with the restriction that the number 
of units manufactured must be an integer. Compare 
your solution with the linear optimization solution.

 4. Solve the media selection model in Problem 21 of 
Chapter 14 with the restriction that the number of ads 
placed must be integer. Compare your solution with 
the linear optimization solution.

 5. Solve the following as integer optimization model:

  Maximize Z = a + 4b; subject to 2a + 4b 6= 7; 5a +  
3b 6= 15; and a, b are integers satisfying non-negativity  
constraints.

 6. The Gardner Theater, a community playhouse, needs 
to determine the lowest-cost production budget for 
an upcoming show. Specifically, they have to de-
termine which set pieces to construct and which, if 
any, set pieces to rent from another local theater at 
a predetermined fee. However, the organization has 
only two weeks to fully construct the set before the 
play goes into technical rehearsals. The theater has 
two part-time carpenters who work up to 12 hours a 
week each at $10 an hour. Additionally, the theater 
has a part-time scenic artist who can work 15 hours 
per week to paint the set and props as needed at a rate 
of $15 per hour.

The set design requires 20 flats (walls), 2 hanging 
drops with painted scenery, and 3 large wooden tables 
(props). The number of hours required for each piece 
for carpentry and painting is shown below:

Carpentry painting

Flats 0.5  2.0

Hanging Drops 2.0 12.0

Props 3.0  4.0

  Flats, hanging drops, and props can also be rented 
at a cost of $75, $500, and $350 each, respectively. 
How many of each units should be built by the the-
ater and how many should be rented to minimize 
 total costs?

Figure 15.25 shows a spreadsheet implementation for this model with the optimal so-
lution (Excel file K&L Designs Fixed Cost Model). Figure 15.26 shows the Solver model. 
With the fixed costs of equipment, it is better to produce everything in the first quarter and 
carry the inventory, in contrast to the solution we found in Chapter 14.

You might observe that this model does not preclude feasible solutions in which a 
production variable is 0 while its corresponding Y-variable is 1. This implies that we incur 
the fixed cost even though no production is incurred during that time period. Although 
such a solution is feasible, it can never be optimal, because a lower cost could be obtained 
by setting the Y-variable to 0 without affecting the value of the production variable, and 
the solution algorithm will always ensure this. Therefore, it is not necessary to explicitly 
try to incorporate this in the model.

M15_EVAN5448_02_SE_C15.indd   564 12/09/15   8:09 PM



 Chapter 15  Integer Optimization 565

 7. Van Nostrand Hospital must schedule nurses so that 
the hospital’s patients are provided with adequate 
care. At the same time, in the face of tighter com-
petition in the health-care industry, careful attention 
must be paid to keeping costs down. From histori-
cal records, administrators can project the minimum 
number of nurses to have on hand for the vari-
ous times of day and days of the week. The nurse-
scheduling problem seeks to find the minimum 
total number of nurses required to provide adequate 
care. Nurses start work at the beginning of one of 
the 4-hour shifts given next and work for 8 hours. 

 Formulate and solve the nurse-scheduling problem 
as an integer program for one day for the data below.

Shift Time
Minimum Number 
of Nurses Needed

1 12:00 a.m.–4:00 a.m.  5

2 4:00 a.m.–8:00 a.m. 12

3 8:00 a.m.–12:00 p.m. 14

4 12:00 p.m.–4:00 p.m.  8

5 4:00 p.m.–8:00 p.m. 14

6 8:00 p.m.–12:00 a.m. 10

 
Food

protein  
(grams)

Fat  
(grams)

Carbohydrates  
(grams)

Sodium  
(grams) Cost/Serving

Max  
Servings

Chicken Breast 40 10  2  6 $4.99 5

Steak 49 16  3 11 $8.99 1

Pulled Pork Sandwich 27 16 27 19 $3.99 3

Salmon Filet 39 15.5  1  5 $5.15 5

Rolled Oats  9 1 27  9 $0.80 5

Baked Potato  4  0 34 18 $1.50 5

Nutrition Bar 19 18 17  3 $3.00 1

Serving of Broccoli  2  0  6  2 $0.50 5

Serving of Carrots  1  1  7  2 $0.50 2

 9. Jubilee Works has three types of jobs in one of its plant 
and needs to assign it to three men. Each assignment 
of a man to a job fetches different cost of performing 
that job. The data below shows the cost matrix ($) for 
assignment of the three men to three jobs.

J1 J2 J3

M1 5 8  9

M2 6 7 11

M3 8 9 10

Use this data to construct and solve an integer opti-
mization model for finding the assignments to mini-
mize costs.

 8. Joe is an active 26-year-old male who lifts weights 6 
days a week. His rigorous training program requires 
a diet that will help his body recover efficiently. He 
is also a graduate student who is looking to minimize 
the cost of consuming his favorite foods. Joe is try-
ing to gain weight, or at least maintain his current 
body weight so he is not concerned about calories. 
His personal trainer suggests at least 300 grams of 
protein, 95 grams of fat, 225 grams of carbohydrates, 
and no more than 110 grams of sodium per day. His 
favorite foods are all items that he is familiar with 
preparing as shown in the table below. He is  willing 

to consume multiple servings of each food per day to 
meet his requirements, although he cannot eat more 
than one steak per day and does not want to eat more 
than three pulled pork sandwiches a day. He needs 
to consume at least two servings of broccoli per day, 
and one serving of carrots but is willing to eat two 
servings of carrots if necessary. Joe likes a certain 
brand of nutrition bars, but he would not eat more 
than one. Unless previously noted, he does not want 
more than five servings of any one food. How many 
servings of each food should he have in an  optimal 
daily diet?
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 11. Fuller Legal Services wants to determine how much 
time to allocate to four different services: business 
consulting, criminal work, nonprofit consulting, and 
wills/trusts. Mr. Fuller has determined the average 
hourly fees and the minimum and maximum hours 

(for consulting and criminal work) and cases (for 
wills/trusts) that he would like to spend on each. He 
has no shortage of demand for his  services. The rel-
evant data are shown below:

 Billables/hr Minimum Hours Maximum Hours

Business Consulting $200.00 30.00  45.00

Criminal Work $150.00 20.00 100.00

Nonprofit Consulting $100.00 35.00  70.00

 Billables/Client Minimum Cases Maximum Cases Hours/Case Hours Worked per Month

Wills/Trusts $3,000.00 2.00 6.00 17 200.00

  Develop an optimization model to maximize monthly revenue.

 12. Four items are considered for loading on an airplane, 
which has a capacity to load up to 25 metric ton. The 
weights and values of the items are provided in the 
table. Which items and what quantities should be 
loaded onto the plane so as to maximize the value of 

the cargo  transported? Formulate this as integer opti-
mization model.

Item a b c d

Weight (tons)  2  7  5   3

Value (per unit) 10 36 25 14

 10. A building contractor has just won a contract to 
build a municipal library building. His present la-
bor work force is inadequate to take this work im-
mediately as he has already got other jobs on hand. 
Therefore he can either hire new labor on full-time 
basis (for 8-hours day each) at $80 per day or al-
low over time to existing labor (for 5-hour day 
each) which will cost $ 110 per day. The contractor 

wants to limit his extra payment to $ 1000 per day 
and utilize no more than 20 laborers (either full-
time or part-time) because of limited supervision. 
He estimates that new labor employed will gener-
ate $30 per day as profit while an overtime worker 
will generate $50 per day. Develop an integer op-
timization model and solve it to aid the building 
contractor in deciding optimal labor mix.
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 14. The Kelmer Performing Arts Center offers a series 
of four programs that includes jazz, bluegrass, folk, 
classical, and comedy. The Program Coordinator 
needs to determine which acts to choose for next 
year’s series. She assigned an “impact” rating to 
each artist that reflects how well the act meets the 
Center’s mission and provides community value. 
This rating is on a scale from 1 to 4, with 4 being 
the greatest impact and 1 being the least impact. The 
theater has 500 seats with an  average ticket price of 
$12. Based on an estimate of the potential sales, the 

 13. A software-support division of Blain Information 
 Services has eight projects that can be performed. 
Each project requires different amounts of devel-
opment time and testing time. In the coming plan-
ning  period, 1,150 hours of development time and  

900 hours of testing time are available, based on the 
skill mix of the staff. The internal transfer price (rev-
enue to the support division) and the times required 
for each project are shown in the table. Which projects 
should be selected to maximize revenue?

project Development Time Testing Time Transfer price

1 80 67 $23,520

2 248 208 $72,912

3 41 34 $12,054

4 10 92 $32,340

5 240 202 $70,560

6 195 164 $57,232

7 269 226 $79,184

8 110 92 $32,340

 revenue from each artist is calculated. The center has 
a budget of $20,000 and would like the total impact 
factor to be at least 12, reflecting an average impact 
per artist of at least 3. To avoid duplication of genres, 
at most one of artists 2, 7, and 9 may be chosen, and 
at most one of artists 3 and 6 may be chosen. Finally, 
the center wishes to maximize its revenue. Data are 
shown below.

Develop and solve an optimization model to 
find the best program schedule to maximize the total 
profit.

 artist Cost Impact Ticket Estimate

1 $7,000.00 3 350

2      $975.00 4 500

3 $1,500.00 3 350

4 $5,000.00 3 400

5 $8,000.00 2 400

6 $1,500.00 3 300

7 $6,500.00 4 500

8 $3,000.00 2 350

9 $2,500.00 4 400

 15. Dannenfelser Design works with clients in three major 
project categories: architecture, interior design, and 
combined. Each type of project requires an estimated 

number of hours for different categories of employees, 
as shown in the following table.
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architecture Interior Design Combined Hourly Rate

Principal 15  5 18 $150

Sr. designer 25 35 40 $110

Drafter 40 30 60  $75

Administrator  5  5  8  $50

  In the coming planning period, 184 hours of prin-
cipal time, 414 hours of senior designer time, 588 
hours of drafter time, and 72 hours of administra-
tor time are available. Revenue per project averages 
$12,900 for architecture, $11,110 for interior design, 

and $18,780 for combined projects. The firm would 
like to work on at least one of each type of project for 
exposure among clients. Assuming that the firm has 
more demand than they can possibly handle, find the 
best mix of projects to maximize profit.

She chose a sample of meals in the table above 
that could be obtained from healthier quick-service 
restaurants around town as well as some items that 
could be purchased at the grocery store.

Anya does not want to eat the same entrée (first 
six foods) more than once each day but does not 

mind eating breakfast or side items (last five foods) 
twice a day and protein powder-based drinks up to 
four times a day, for convenience. Develop an in-
teger linear optimization model to find the number 
of servings of each food choice in a daily diet to 
minimize cost and meet the nutritional targets.

Food Cost/Serving Calories Fat Carbs Fiber protein

Turkey sandwich $4.69 530 14 73 4 28

Baked-potato soup $3.39 260 16 23 1  6

Whole-grain chicken sandwich $6.39 750 28 83 10 44

Bacon turkey sandwich $5.99 770 28 84 5 47

Southwestern refrigerated chicken wrap $3.69 220 8 29 15 21

Sesame chicken refrigerated chicken wrap $3.69 250 10 26 15 26

Yogurt $0.75 110 2 19 0  5

Raisin bran with skim milk $0.40 270 1 58 8 12

Cereal bar $0.43 110 2 22 0  1

1 cup broccoli $0.50 25 0.3  4.6  2.6 2.6

1 cup carrots $0.50 55 0.25 13  3.8 1.3

1 scoop protein powder $1.29 120 4  5 0 17

 16. Anya is a part-time business student who works full 
time and is constantly on the run. She recognized 
the challenge of eating a balanced diet and wants to 
minimize cost while meeting some basic nutritional 
requirements. Based on some research, she found that 
a very active woman should consume 2,250 calories 
per day. According to one author’s guidelines, the 
following daily nutritional requirements are recom-
mended in the table at the right.

 
Source

Recommended Intake  
(Grams)

Fat Maximum 75

Carbohydrates Maximum 225

Fiber Maximum 30

Protein At least 168.75
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Media price
Local 

Exposure
National 
Exposure Limit

FM radio spot   $80.00 110 40 30

AM radio spot   $65.00  55 20 30

Cityscape ad $250.00  80  5 24

MetroWeekly ad $225.00  65  8 24

Hometown paper ad $500.00 400 70 10

Neighborhood paper ad $300.00 220 40 10

Downtown magazine ad   $55.00  35  0 15

Choir journal ad $350.00  10 75 12

Professional organization 
magazine ad

$300.00  20 65 12

 17. Josh Steele manages a professional choir in a ma-
jor city. His marketing plan is focused on generating 
additional local demand for concerts and increas-
ing ticket revenue and also gaining attention at the 
national level to build awareness of the ensemble 
across the country. He has $20,000 to spend on 

 media advertising. The goal of the advertising cam-
paign is to generate as much local recognition as 
possible while reaching at least 4,000 units of na-
tional exposure. He has set a limit of 100 total ads. 
Additional information is shown next.

  The last column sets limits on the number of ads to 
ensure that the advertising markets do not become 
saturated.

 a. Find the optimal number of ads of each type to 
run to meet the choir’s goals by developing and 
solving an integer optimization model.

 b. What if he decides to use no more than six differ-
ent types of ads? Modify the model in part (a) to 
answer this question.

 18. Timberland Inc. produces cars and has 4 plants and 
6 sales depots. The data below depicts the transpor-

tation cost (of moving the car from plant to sales 
 depot), fixed cost, and demand schedule:

plant 1 2 3 4 5 6 production units Fixed costs

1 80  15 30 70 40 120 40  430

2 60  85 35 10 20  60 30  300

3 20 70 20 15 30  40 50  370

4 40 30 22 30 26 100 45  180

Demand units 20 10 15  7 9  25 86/165 1280

The total production is 165 cars and the demand is  
86 cars. Since production is more than demand, man-
agement wishes to shut down some plants if required. 

Develop an integer optimization model to determine 
where to setup plants and sales depots (production and 
distribution system) such that cost is minimized.
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 19. Cady Industries produces custom induction motors 
for specific customer applications. Each motor can 
be configured from different options for horsepower, 
the driveshaft forming process, spider bar compo-
nent material, rotor plate process, type of bearings, 
tophat (a system of channels encased in a box that is 
placed on top of the motor to reduce airflow velocity 
both entering and exiting the motor) design, torque 
direction, and an optional mounting base.

Cost Time Requirement (Days)

Horsepower

1000 HP $155,000 32

5000 HP $165,000 36

10000 HP $180,000 42

15000 HP $205,000 50

Shaft

Heat-Rolled $10,000 10

Oil-Quenched $5,000 16

Forged $15,000  8

Spider Bar Material

Copper $10,000  4

Aluminum $2,500  8

Rotor plates

Laser-Cut $12,500  5

Machine-Punched $7,500 12

Bearings

Sleeve $5,000  4

Anti-Friction $5,000  4

Oil Well $3,000  2

Oil guard $5,000  4

Tophat Design

Box $5,000 15

V-Box $20,000 15

Torque Direction

Vertical $35,000 10

Horizontal $40,000  6

Optional Base $75,000 10

  Copper spider bars are required on 10,000 and 15,000 
horsepower motors. If a V-box tophat is required,  
a horizontal torque direction must be used. Finally, if 
the optional base is required, a horizontal torque di-
rection must be chosen.

 a. Develop and solve an optimization model to find 
the minimum cost  configuration of a motor.

 b. Develop and solve an optimization model to find 
the configuration that can be completed in the 
shortest amount of time.

 c. Customer A has a new plant opening in 90 days 
and needs a motor with at least 5,000 horsepower. 
The customer has specified that sleeve bearings 
be installed for easy maintenance and a V-box 
tophat is required to meet airflow velocity limita-
tions. Find the optimal configuration that can be 
built within the 90-day requirement.

 d. Customer B has a budget of $365,000 and re-
quires a motor with 15,000 horsepower, a heat-
rolled shaft, and the optional base. They want the 
highest-quality product, which implies that they 
are willing to maximize the cost up to the bud-
get limitation. Find the optimal configuration that 
will meet these requirements.

 20. For the General Appliance Corporation transpor-
tation model discussed in Chapter 14, suppose that 
the company wants to enforce a single sourcing 
constraint that each distribution center be served 
from only one plant. Assume that the capacity at the 
 Marietta plant is 1,500. Set up and solve a model to 
find the minimum cost solution.

 21. For the Shafer Office Supplies problem (Problem 15 
in Chapter 14), suppose that the company wants to en-
force a single sourcing constraint that each retail store 
be served only from one distribution center. Set up 
and solve a model to find the minimum cost solution.

 22. Premier Paints supplies to major contractors. One of 
their contracts for a specialty paint requires them to 
supply 750, 500, 400, and 950 gallons over the next 
4 months. To produce this paint requires a shutdown 
and cleaning of one of their manufacturing depart-
ments at a cost of $1,000. The entire contract re-
quirement can be produced during the first month 
in one production run; however, the inventory that 
must be held until delivery costs $0.75 per gallon per 
month. If the paint is produced in other months, then 
the cleaning costs are incurred during each month of 
production. Formulate and solve an integer optimiza-
tion model to determine the best monthly production 
schedule to meet delivery contracts and minimize 
 total costs.

 23. Chris Corry has a company-sponsored retirement 
plan at a major brokerage firm. He has the following 
funds available:
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Fund Risk Type Return

1 High Stock 11.98%

2 High Stock 13.18%

3 High Stock 9.40%

4 High Stock 7.71%

5 High Stock 8.35%

6 High Stock 16.38%

7 Medium Blend 4.10%

8 Medium Blend 12.52%

9 Medium Blend 8.62%

10 Medium Blend 11.14%

11 Medium Blend 8.78%

12 Low Blend 9.44%

13 Low Blend 8.38%

14 Low Bond 7.65%

15 Low Bond 6.90%

16 Low Bond 5.53%

17 Low Bond 6.30%

  His financial advisor has suggested that at most 40% of 
the portfolio should be composed of high-risk funds. At 
least 25% should be invested in bond funds, and at most 
40% can be invested in any single fund. At least six funds 
should be selected, and if a fund is selected, it should be 
funded with at least 5% of the total contribution.

Develop and solve an integer optimization 
model to determine which funds should be selected 
and what percentage of his total investment should 
be allocated to each fund.

 24. The Spurling Group is considering using magazine 
outlets to advertise their online Web site. The com-
pany has identified seven publishers. Each publisher 
breaks down its subscriber base into a number of 
groups based on demographics and location. These 
data are shown in the table.

publisher Groups Subscribers/Group Cost/Group

A  5 460,000 $1,560

B 10 50,000   $290

C  4 225,000 $1,200

D 20 24,000   $130

E  5 1,120,000 $2,500

F  1 1,700,000 $7,000

G  2 406,000 $1,700

  The company has set a budget of $25,000 for 
 advertising and wants to maximize the number of 

subscribers exposed to their ads. However, publishers 
B and D are competitors and only one of these may 
be chosen. A similar situation exists with publishers 
C and G. Formulate and solve an integer optimiza-
tion model to determine which publishers to select 
and how many groups to purchase for each publisher.

 25. Tunningley Services is establishing a new business to 
serve customers in the Ohio, Kentucky, and Indiana 
region around the Cincinnati Ohio area. The com-
pany has identified 15 key market areas and wants 
to establish regional offices to meet the goal of being 
able to travel to all key markets within 60 minutes. 
The data file Tunningley.xlsx provides travel times in 
minutes between each pair of cities.

 a. Develop and solve an optimization model to find 
the minimum number of locations required to 
meet their goal.

 b. Suppose they change the goal to 90 minutes. 
What would be the best solution?

 26. Tindall Bookstores is a major national retail chain 
with stores located principally in shopping malls. For 
many years, the company has published a Christmas 
catalog that was sent to current customers on file. This 
strategy generated additional mail-order business, 
while also attracting customers to the stores. However, 
the cost-effectiveness of this strategy was never deter-
mined. In 2008, John Harris, vice president of market-
ing, conducted a major study on the effectiveness of 
direct-mail delivery of  Tindall’s Christmas catalog. 
The results were favorable:  Patrons who were catalog 
recipients spent more, on average, than did compa-
rable nonrecipients. These revenue gains more than 
compensated for the costs of production, handling, 
and mailing, which had been substantially reduced by 
cooperative allowances from suppliers.

With the continuing interest in direct mail as a ve-
hicle for delivering holiday catalogs, Harris continued 
to investigate how new customers could most effec-
tively be reached. One of these ideas involved pur-
chasing mailing lists of magazine subscribers through 
a list broker. To determine which magazines might be 
more appropriate, a mail questionnaire was admin-
istered to a sample of current customers to ascertain 
which magazines they regularly read. Ten magazines 
were selected for the survey. The assumption behind 
this strategy is that subscribers of magazines that a 
high proportion of current customers read would be 
viable targets for future purchases at Tindall stores. 
The question is which magazine lists should be pur-
chased to maximize reaching of potential customers in 
the presence of a limited budget for purchasing lists.
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Data from the customer survey have begun to 
trickle in. The information about the 10 magazines 
to which a customer subscribes is provided on the 
returned questionnaire. Harris has asked you to de-
velop a prototype model, which later can be used to 
decide which lists to purchase. So far only 53 surveys 

have been returned. To keep the prototype model 
manageable, Harris has instructed you to go ahead 
with the model development using the data from 
the 53 returned surveys. These data are shown in 
Table 15.4. The costs of the first 10 lists are given 
next, and your budget is $3,000.

Data for Tindall Bookstores Survey

List 1 2 3 4 5 6 7 8 9 10

Cost (000) $1 $1 $1 $1.5 $1.5 $1.5 $1 $1.2 $0.5 $1.1

 a. What magazines should be chosen to maximize 
overall exposure?

 b. Conduct a budget sensitivity analysis on the 
 Tindall magazine list–selection problem. Solve 
the problem for a variety of budgets and graph 

percentage of total reach (number reached/53) 
versus budget amount. As an analyst, make a 
recommendation as to when an increment in 
budget is no longer warranted.

Table 15.4 

Survey Results

Customer Magazines

1 10

2 1, 4

3 1

4 5, 6

5 5

6 10

7 2, 9

8 5, 8

9 1, 5, 10

10 4, 6, 8, 10

11 6

12 3

13 5

14 2, 6

15 8

16 6

17 4, 5

18 7

19 5, 6

50 2, 8

21 7, 9

22 6

23 3, 6, 10

24 None

25 5, 8

26 3, 10

27 2, 8

Customer Magazines

28 4, 7

29 6

30 3, 4, 5, 10

31 4

32 8

33 1, 3, 10

34 4, 5

35 1, 5, 6

36 1, 3

37 3, 5, 8

38 3

39 2, 7

40 2, 7

41 7

42 4, 5, 6

43 None

44 5, 10

45 1, 2

46 7

47 1, 5, 10

48 3

49 1, 3, 4

50 None

51 2, 6

52 None

53 2, 5, 8, 9, 10
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Case: performance Lawn Equipment

PLE produces its most popular model of lawn tractor in its 
Kansas City and Santiago plants and ships these units to 
major distribution centers in Atlanta, Caracas, Melbourne, 
Mexico City, London, Shanghai, and Toronto. Unit ship-
ping costs can be found in the PLE database. Both the 
Kansas City and the Santiago plants have a maximum an-
nual  capacity of 60,000 units. Long-term forecasts of an-
nual demands at the distribution centers within 5 years that 
PLE wants to plan for are

  Atlanta—60,000

  Caracas—10,000

  Melbourne—6,000

  Mexico City—4,000

  London—40,000

  Toronto—5,000

  Shanghai—50,000

To support its growing sales, PLE is considering add-
ing additional plants. The capacities of the proposed plants 

and the fixed costs of construction can be found in the 
PLE database. If a new plant is constructed, only one of 
the two potential capacities can be considered.  Locations 
being considered are Birmingham, Alabama; Singapore; 
Frankfurt, Germany; Mumbai, India; and Auckland, New 
Zealand. Other options are to increase the capacities of the 
existing plants in Kansas City and Santiago. Fixed costs 
of constructing new facilities or expanding the existing 
plants can be found in the PLE database. Develop and 
solve an optimization model to identify the best location 
for the new plants and transportation allocations to meet 
demand. Some members of the executive committee are 
concerned that the estimate for the China market (demand 
at Shanghai) is too uncertain and may range from 20,000 
to 60,000 units. In addition, it was suggested that the ca-
pacity of the Kansas City plant be reduced to save distri-
bution costs. Write a report explaining your solution and 
any recommendations you may develop after conducting 
appropriate sensitivity analyses with the model to address 
the concerns of the executive committee.
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Learning Objectives

After studying this chapter, you will be able to:

•	Recognize when to use nonlinear optimization models.

•	Develop and solve nonlinear optimization models for 
different applications.

•	Interpret Solver reports for nonlinear optimization.

•	Use empirical data and line-fitting techniques in 
nonlinear optimization.

•	Recognize a quadratic optimization model.

•	Identify non-smooth optimization models and when to 
use Evolutionary Solver.

•	Formulate and solve sequencing and scheduling 
models using Solver’s alldifferent constraint.

Nonlinear and  
Non-Smooth 
OptimizationA
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Learning Objectives

After studying this chapter, you will be able to:

•	Evaluate risk in solutions to optimization models using 
Monte Carlo simulation.

•	Solve optimization models with chance constraints.

•	Use multiple parameterized simulations in Analytic 
Solver Platform to find optimal solutions in simulation 
models with decision variables.

•	Use Analytic Solver Platform to combine simulation 
modeling and optimization to maximize or minimize the 
expected value of a model output.

•	Incorporate uncertainty into optimization models such 
as project selection.

Optimization Models 
with UncertaintyB
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Learning Objectives

After studying this chapter, you will be able to:

•	List the three elements needed to characterize 
decisions with uncertain consequences.

•	Construct a payoff table for a decision situation.

•	Apply average, aggressive, conservative, and 
opportunity-loss decision strategies for problems 
involving minimization and maximization objectives.

•	Assess risk in choosing a decision.

•	Apply expected values to a decision problem when 
probabilities of events are known.

• Use Analytic Solver Platform to construct decision trees.

•	Incorporate Monte Carlo simulation in decision trees.

•	Find the risk profile for a decision strategy.

•	Compute the expected value of perfect information.

•	Incorporate sample information in decision trees and 
apply Bayes’s rule to compute conditional probabilities.

•	Construct a utility function and use it to make a decision.

•	State the properties of different types of utility 
functions.

579
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Everybody makes decisions, both personal and professional. Managers are 

continually faced with decisions involving new products, supply chain configura-

tions, new equipment, downsizing, and many others. The ability to make good 

decisions is the mark of a successful (and promotable) manager. In today’s com-

plex business world, intuition alone is not sufficient. This is where analytics plays 

an important role.

Throughout this book we have discussed how to analyze data and  models 

using methods of business analytics. Predictive models such as Monte Carlo 

simulations can provide insight about the impacts of potential decisions, and 

prescriptive models such as linear optimization provide recommendations as to 

the best course of action to take. However, the real purpose of such informa-

tion is to help managers make decisions. Their decisions often have significant 

economic or human resource consequences that cannot always be predicted ac-

curately. For example, in Chapter 12 we analyzed the outsourcing decision model 

with uncertain demand. Although the results showed that on average, it is bet-

ter to manufacture than to outsource, Figure 12.9 showed that there was only a 

60% chance that this would be the best decision. So what decision should the 

company make? Similarly, in the Innis Investment example in Chapter 14, we 

performed a scenario analysis to evaluate the trade-offs between risk and reward 

(Figure 14.17). How should the client make a trade-off between risk and reward 

for their portfolio?

Analytic models and analyses provide decision makers with a wealth of 

information; however, people make the final decision. Good decisions don’t 

simply implement the results of analytic models; they require an assessment 

of intangible factors and risk attitudes.  Decision making is the study of how 

people make decisions, particularly when faced with imperfect or uncertain 

information, as well as a collection of techniques to support decision choices. 

Decision analysis differs from other modeling approaches by explicitly con-

sidering individual’s preferences and attitudes toward risk, and modeling the 

decision process itself.

Decisions involving uncertainty and risk have been studied for many 

years. A large body of knowledge has been developed that helps to explain 

the philosophy associated with making decisions and also provide techniques 

for incorporating uncertainty and risk in making decisions.
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Formulating Decision Problems

Many decisions involve a choice from among a small set of alternatives with uncertain 
consequences. We may formulate such decision problems by defining three things:

 1. the decision alternatives that can be chosen,
 2. the uncertain events that may occur after a decision is made along with their 

possible outcomes, and
 3. the consequences associated with each decision and outcome, which are usu-

ally expressed as payoffs.

The outcomes associated with uncertain events (which are often called states of nature), 
are defined so that one and only one of them will occur. They may be quantitative or 
qualitative. For instance, in selecting the size of a new factory, the future demand for the 
product would be an uncertain event. The demand outcomes might be expressed quantita-
tively in sales units or dollars. On the other hand, suppose that you are planning a spring-
break vacation to Florida in January; you might define an uncertain event as the weather; 
these outcomes might be characterized qualitatively: sunny and warm, sunny and cold, 
rainy and warm, rainy and cold, and so on. A payoff is a measure of the value of making 
a decision and having a particular outcome occur. This might be a simple estimate made 
judgmentally or a value computed from a complex spreadsheet model. Payoffs are often 
summarized in a payoff table, a matrix whose rows correspond to decisions and whose 
columns correspond to events. The decision maker first selects a decision alternative, after 
which one of the outcomes of the uncertain event occurs, resulting in the payoff.

Example 16.1 Selecting a Mortgage Instrument

Many young families face the decision of choosing a 
mortgage instrument. Suppose the Durr family is con-
sidering purchasing a new home and would like to fi-
nance $150,000. Three mortgage options are available, 
a 1-year adjusted-rate mortgage (ARM) at a low interest 
rate, a 3-year ARM at a slightly higher rate, and a 30-year 
fixed mortgage at the highest rate. However, both ARMs 
are sensitive to interest rate changes and the rates may 

change resulting in either higher or lower interest charges; 
thus, the potential future change in interest rates repre-
sents an uncertain event. Because the family anticipates 
staying in the home for at least 5 years, they want to know 
the total interest costs they might incur; these represent 
the payoffs associated with their choice and the future 
change in interest rates and can easily be calculated  using 
a spreadsheet. The payoff table is as follows:

Outcome

Decision Rates Rise Rates Stable Rates Fall

1-year ARM $61,134 $46,443 $40,161

3-year ARM $56,901 $51,075 $46,721

30-year fixed $54,658 $54,658 $54,658

Clearly, no decision is best for each event that may 
 occur. If rates rise, for example, then the 30-year fixed 
would be the best decision. If rates remain stable or fall, 
however, then the 1-year ARM is best. Of course, you 
cannot predict the future outcome with certainty, so the 
question is how to choose one of the options. Not every-
one views risk in the same fashion. Most individuals will 

weigh their potential losses against potential gains. For 
example, if they choose the 1-year ARM mortgage in-
stead of the fixed-rate mortgage, they risk losing money 
if rates rise; however, they would clearly save a lot if 
rates remain stable or fall. Would the potential savings 
be worth the risk? Such questions make decision making 
a difficult task.
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Decision Strategies without Outcome Probabilities

We discuss several quantitative approaches that model different risk behaviors for making 
decisions involving uncertainty when no probabilities can be estimated for the outcomes.

Decision Strategies for a Minimize Objective

Aggressive (Optimistic) Strategy An aggressive decision maker might seek the option 
that holds the promise of minimizing the potential loss. This type of decision maker 
would first ask the question, What is the best that could result from each decision? and 
then choose the decision that corresponds to the “best of the best.” For a minimization 
objective, this strategy is also often called a minimin strategy; that is, we choose the 
decision that minimizes the minimum payoff that can occur among all outcomes for each 
decision. Aggressive decision makers are often called speculators, particularly in financial 
arenas, because they increase their exposure to risk in hopes of increasing their return; 
while a few may be lucky, most will not do very well.

Example 16.2 Mortgage Decision with the Aggressive Strategy

For the mortgage-selection example, we find the best payoff—that is, the lowest-cost outcome—for each decision:

Outcome

Decision Rates Rise Rates Stable Rates Fall Best Payoff

1-year ARM $61,134 $46,443 $40,161 $40,161

3-year ARM $56,901 $51,075 $46,721 $46,721

30-year fixed $54,658 $54,658 $54,658 $54,658

Because our goal is to minimize costs, we would choose the 1-year ARM.

Example 16.3 Mortgage Decision with the Conservative Strategy

For the mortgage-decision problem, we first find the worst payoff—that is, the largest cost for each option:

Outcome

Decision Rates Rise Rates Stable Rates Fall Worst Payoff

1-year ARM $61,134 $46,443 $40,161 $61,134

3-year ARM $56,901 $51,075 $46,721 $56,901

30-year fixed $54,658 $54,658 $54,658 $54,658

In this case, we want to choose the decision that has the smallest worst payoff, or the 30-year fixed mortgage. Thus, no 
matter what the future holds, a minimum cost of $54,658 is guaranteed.

Conservative (Pessimistic) Strategy A conservative decision maker, on the other 
hand, might take a more-pessimistic attitude and ask, “What is the worst thing that 
might result from my decision?” and then select the decision that represents the “best 
of the worst.” Such a strategy is also known as a minimax strategy because we seek 
the decision that minimizes the largest payoff that can occur among all outcomes for 
each decision. Conservative decision makers are willing to forgo high returns to avoid 
undesirable losses. This rule typically models the rational behavior of most individuals.
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Opportunity-Loss Strategy A third approach that underlies decision choices for many 
individuals is to consider the opportunity loss associated with a decision. Opportunity loss 
represents the “regret” that people often feel after making a nonoptimal decision (I should 
have bought that stock years ago!). In general, the opportunity loss associated with any 
decision and event is the absolute difference between the best decision for that particular 
outcome and the payoff for the decision that was chosen. Opportunity losses can be 
only nonnegative values. If you get a negative number, then you made a mistake. Once 
opportunity losses are computed, the decision strategy is similar to a conservative strategy. 
The decision maker would select the decision that minimizes the largest opportunity loss 
among all outcomes for each decision. For these reasons, this is also called a minimax 
regret strategy.

Example 16.4 Mortgage Decision with the Opportunity-Loss Strategy

In our scenario, suppose we chose the 30-year fixed mort-
gage and later find out that the interest rates had risen. We 
could not have done any better by selecting a different de-
cision; in this case, the opportunity loss is zero. However, 
if we had chosen the 3-year ARM, we would have paid 
$56,901 instead of $54,658 with the 30-year fixed instrument, 
or $56,901 − $54,658 = $2,243 more. This represents 

the opportunity loss associated with making a nonoptimal 
decision. Similarly, had we chosen the 1-year ARM, we 
would have incurred an additional cost (opportunity loss) 
of $61,134 − $54,658 = $6,476. We repeat this analysis 
for the other two outcomes and compute the opportunity 
losses, as summarized here:

Outcome

Decision Rates Rise Rates Stable Rates Fall Max Opportunity Loss

1-year ARM $6,476 $— $— $6,476

3-year ARM $2,243 $4,632 $6,560 $6,560

30-year fixed $— $8,215 $14,497 $14,497

Then, find the maximum opportunity loss that would be in-
curred for each decision. The best decision is the one with 
the smallest maximum opportunity loss. Using this strategy, 

we would choose the 1-year ARM. This ensures that, no 
matter what outcome occurs, we will never be more than 
$6,476 away from the least cost we could have incurred.

Different criteria lead to different decisions; there is no “optimal” answer. Which 
criterion best reflects your personal values?

Decision Strategies for a Maximize Objective

When the objective is to maximize the payoff, we can still apply aggressive, conservative, 
and opportunity loss strategies, but we must make some key changes in the analysis.

•	For the aggressive strategy, the best payoff for each decision would be the larg-
est value among all outcomes, and we would choose the decision corresponding 
to the largest of these, called a maximax strategy.

•	For the conservative strategy, the worst payoff for each decision would be the 
smallest value among all outcomes, and we would choose the decision corre-
sponding to the largest of these, called a maximin strategy.
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• For the opportunity-loss strategy, we need to be careful in calculating the 
 opportunity losses. With a maximize objective, the decision with the largest 
value for a particular event has an opportunity loss of zero. The opportunity 
losses  associated with other decisions is the absolute difference between  
their payoff and the largest value. The actual decision is the same as when  
payoffs are costs: Choose the decision that minimizes the maximum opportunity 
loss.

Decisions with Conflicting Objectives

Many decisions require some type of tradeoff among conflicting objectives, such as risk 
versus reward. For example, In the Innis Investment example in Chapter 14, Figure 14.17 
showed the results of solving a series of linear optimization models to find the minimum 
risk that would occur for achieving increasing levels of investment returns. We saw that 
as the return went up, the risk begins to increase slowly, and then increases at a faster rate 
once a 6% investment target is achieved. What decision would be best? Another example 
we saw was the overbooking model. In this case, we can achieve lower costs but incur 
a loss in customer satisfaction and goodwill because of higher numbers of overbooked 
customers.

A simple decision rule can be used whenever one wishes to make an optimal tradeoff 
between any two conflicting objectives, one of which is good, and one of which is bad, 
that maximizes the ratio of the good objective to the bad (think of this as the “biggest 
bang for the buck”).1 First, display the tradeoffs on a chart with the “good” objective on 
the x-axis, and the “bad” objective on the y-axis, making sure to scale the axes properly to 
display the origin (0,0). Then graph the tangent line to the tradeoff curve that goes through 
the origin. The point at which the tangent line touches the curve (which represents the 
smallest slope) represents the best return to risk tradeoff.

1This rule was explained by Dr. Leonard Kleinrock at a lecture at the University of Cincinnati in 2011.

ExAMPLE 16.5 Risk-Reward Tradeoff Decision for Innis Investments Example

In Figure 14.17, if we take the ratios of the weighted re-
turns to the minimum risk values in the table, we will find 
that the largest ratio occurs for the target return of 6%. We 
can visualize this using the risk-reward tradeoff curve and 
a tangent line through the origin  as shown in  Figure 16.1.  

Note that the tangent line touches the curve at the 6% 
weighted return value. We can explain this easily from 
the chart by noting that for any other return, the risk is 
relatively larger (if all points fell on the tangent line, the 
risk would increase proportionately with the return).

Many other analytic techniques are available to deal with more complex multiple 
objective decisions. These include simple scoring models in which each decision is rated 
for each criterion (which may also be weighted to reflect the relative importance in com-
parison with other criteria). The ratings are summed over all criteria to rank the  decision 
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Figure 16.1

Innis Investments Risk-
Reward Assessment

Table 16.1

Summary of Decision Strategies Under Uncertainty

Strategy/
Objective

Aggressive  
Strategy

Conservative  
Strategy Opportunity-Loss Strategy

Minimize 
objective

Find the smallest 
payoff for each 
decision among 
all outcomes, 
and choose the 
decision with the 
smallest of these 
(minimum).

Find the largest  
payoff for each  
decision among 
all outcomes, and 
choose the decision 
with the smallest of 
these (minimax).

For each outcome, compute the 
opportunity loss for each  decision 
as the absolute difference 
 between its payoff and the small-
est payoff for that outcome. Find 
the maximum opportunity loss for 
each decision, and choose the 
decision with the smallest oppor-
tunity loss (minimax regret).

Maximize 
objective

Choose the  
decision with  
the largest  
average payoff.

Find the largest 
payoff for each 
decision among 
all outcomes, 
and choose the 
decision with the 
largest of these 
(maximax).

Find the smallest  
payoff for each  
decision among 
all outcomes, and 
choose the decision 
with the largest of 
these (maximin).

For each outcome, compute 
the opportunity loss for each 
 decision as the absolute 
 difference between its payoff 
and the  largest payoff for that 
outcome. Find the maximum 
 opportunity loss for each deci-
sion, and choose the decision 
with the  smallest opportunity 
loss (minimax regret).

alternatives. Other techniques include variations of linear optimization known as goal 
programming, and a pairwise comparison approach known as the analytic hierarchy 
 process (AHP).

Table 16.1 summarizes the decision rules for both minimize and maximize objectives.

M16_EVAN5448_02_SE_C16.indd   585 12/09/15   8:10 PM



586 Chapter 16  Decision Analysis

Example 16.7 Mortgage Decision with the Expected Value Strategy

Suppose that we can estimate the probabilities of rates ris-
ing as 0.6, rates stable as 0.3, and rates falling as 0.1. The 
following table shows the expected payoffs associated with 

each decision. The smallest expected payoff, $54,135.20, 
occurs for the 3-year ARM, which represents the best ex-
pected value decision.

Decision Strategies with Outcome Probabilities

The aggressive, conservative, and opportunity-loss strategies assume no knowledge of the 
probabilities associated with future outcomes. In many situations, we might have some as-
sessment of these probabilities, either through some method of forecasting or reliance on 
expert opinions.

Average Payoff Strategy

If we can assess a probability for each outcome, we can choose the best decision based on 
the expected value using concepts that we introduced in Chapter 5. For any decision, the 
expected value is the summation of the payoffs multiplied by their probability, summed over 
all outcomes. The simplest case is to assume that each outcome is equally likely to occur; 
that is, the probability of each outcome is simply 1/N, where N is the number of possible 
outcomes. This is called the average payoff strategy. This approach was proposed by the 
French mathematician Laplace, who stated the principle of insufficient reason: if there is 
no reason for one outcome to be more likely than another, treat them as equally likely. Un-
der this assumption, we evaluate each d ecision by simply averaging the payoffs. We then 
select the decision with the best average payoff.

Example 16.6 Mortgage Decision with the Average Payoff Strategy

For the mortgage-selection problem, computing the average payoffs results in the following:

Outcome

Decision Rates Rise Rates Stable Rates Fall Average Payoff

1-year ARM $61,134 $46,443 $40,161 $49,246

3-year ARM $56,901 $51,075 $46,721 $51,566

30-year fixed $54,658 $54,658 $54,658 $54,658

Based on this criterion, we choose the decision having the smallest average payoff, or the 1-year ARM.

Expected Value Strategy

A more general case of the average payoff strategy is when the probabilities of the out-
comes are not all the same. This is called the expected value strategy. We may use the 
expected value calculation that we introduced in formula (5.9) in Chapter 5.
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Outcome

0.6 0.3 0.1

Decision Rates Rise Rates Stable Rates Fall Expected Payoff

1-year ARM $61,134 $46,443 $40,161 $54,629.40

3-year ARM $56,901 $51,075 $46,721 $54,135.20

30-year fixed $54,658 $54,658 $54,658 $54,658.00

Evaluating Risk

An implicit assumption in using the average payoff or expected value strategy is that the 
decision is repeated a large number of times. However, for any one-time decision (with 
the trivial exception of equal payoffs), the expected value outcome will never occur.  
In the previous example, for instance, even though the expected value of the 3-year ARM 
(the best decision) is $54,135.20, the actual result would be only one of three possi-
ble payoffs, depending on the outcome of the mortgage rate event: $56,901 if rates rise, 
$51,075 if rates remain stable, or $46,721 if rates fall. Thus, for a one-time decision, we 
must carefully weigh the risk associated with the decision in lieu of blindly choosing the 
expected value decision.

Thus, it is important to understand that making decisions under uncertainty cannot be 
done using only simple rules, but by careful evaluation of risk versus rewards. This is why 
top executives make the big bucks. Evaluating risk in making a decision should also take 
into account the magnitude of potential gains and losses as well as their probabilities of 
occurrence, if this can be assessed. For example, a 70% chance of losing $10,000 against a 
30% chance of gaining $500,000 might be viewed as an acceptable risk for a company, but 
a 10% chance of losing $250,000 against a 90% chance of gaining $500,000 might not.

Example 16.8 Evaluating Risk in the Mortgage Decision

In the mortgage-selection example, although the aver-
age payoffs are fairly similar, note that the 1-year ARM 
has a larger variation in the possible outcomes. We may 
compute the standard deviation of the outcomes associ-
ated with each decision:

Decision Standard Deviation

1-year ARM $10,763.80

3-year ARM $5,107.71

30-year fixed $—

Based solely on the standard deviation, the 30-year fixed 
mortgage has no risk at all, whereas the 1-year ARM 
 appears to be the riskiest. Although based only on three 

data points, the 3-year ARM is fairly symmetric about the 
mean, whereas the 1-year ARM is positively skewed—
most of the variation around the average is driven by 
the upside potential (i.e., lower costs), not the downside 
risk of higher costs. Although none of the formal deci-
sion strategies chose the 3-year ARM, viewing risk from 
this perspective might lead to this decision. For instance, 
a conservative decision maker who is willing to tolerate a 
moderate amount of risk might choose the 3-year ARM 
over the 30-year fixed because the downside risk is rela-
tively small (and is smaller than the 1-year ARM) and the 
upside potential is much larger. The larger upside potential 
associated with the 1-year ARM might even make this de-
cision attractive.
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Decision Trees

A useful approach to structuring a decision problem involving uncertainty is to use a 
graphical model called a decision tree. Decision trees consist of a set of nodes and 
branches. Nodes are points in time at which events take place. The event can be a 
selection of a decision from among several alternatives, represented by a decision 
node, or an outcome over which the decision maker has no control, an event node. 
Event nodes are conventionally depicted by circles, and decision nodes are expressed 
by squares. Branches are associated with decisions and events. Many decision makers 
find decision trees useful because sequences of decisions and outcomes over time can 
be modeled easily.

Decision trees may be created in Excel using Analytic Solver Platform. Click the 
 Decision Tree button. To add a node, select Add Node from the Node drop-down list, as 
shown in Figure 16.2. Click on the radio button for the type of node you wish to create 
(decision or event). This displays one of the dialogs shown in Figure 16.3. For a deci-
sion node, enter the name of the node and names of the branches that emanate from 
the node (you may also add additional ones). The Value field can be used to input cash 
flows, costs, or revenues that result from choosing a particular branch. For an event 
node, enter the name of the node and branches. The Chance field allows you to enter the 
probabilities of the events.Figure 16.2

Decision Tree Menu 
in Analytic Solver 
Platform

Figure 16.3

Decision Tree Dialogs 
for Decisions and 
Events
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Example 16.9 Creating a Decision Tree

For the mortgage-selection problem, we will first create a 
decision node for the selection of one of the three mort-
gage instruments. In the dialog in Figure 16.3, we name 
the node “Mortgage Instrument” and name the branches 
from this node “1 Year ARM,” “3 Year ARM,” and 
“30 Year Fixed.” The result is shown in  Figure 16.4.  
Next, select the node at the end of the 1-Year ARM 
branch (cell F3) and choose Add Node. In the dialog, 
click the radio button for Event. In this example, we 
name the node “Outcomes” with branches “Rates Rise,” 
“Rates Stable,” and “Rates Fall.” We assign the probabil-
ities to these outcomes from Example 16.7. This creates 
the tree shown in Figure 16.5.

You may copy and paste a subtree rooted at the 
 selected node at another position in the decision tree. 

In Figure 16.6, the terminal values in column K are the sum of all the cash 
flows along the path leading to that terminal node; for example, the value in cell 
K3 is the sum of the values in cells D9 and H4. Analytic Solver Platform will auto-
matically identify the best strategy that maximizes the expected value of the  payoff. 
The tree is “rolled back” by computing  expected values at event nodes and by se-
lecting the optimal value of the alternative decisions at  decision nodes. For exam-
ple, if the 1-Year ARM is chosen, the expected value of the chance events is 
0.6 * 1-$61,1342 + 0.3 * 1-$46,4432 + 0.1 * 1-$40,1612 = -$54,629.40 in cell 
E9. At the decision node (cell B23), the maximum expected value is chosen and shown 
in cell A24. The number inside the decision node represents the branch that corre-
sponds to the best decision. In Figure 16.6, this is branch 2, or the 3-Year ARM, having 
an expected cost of $54,135.20 (the same decision we found in Example 16.7). You can 
see this visually by choosing Highlight 7 Highlight Best from the Decision Tree menu.

Many decision problems have multiple sequences of decisions and events. Decision 
trees help managers better understand the structure of the decisions they face.

 Select cell F8, choose Node + Copy Node, and then 
select cell F18 (the end of the 3-Year ARM branch), and 
choose Node + Paste Node. Repeat this process to copy 
the outcomes subtree to cell F38.

Finally, enter the payoffs of the outcomes associated 
with each event in the cells immediately below the branches 
(column H in this example). Because the payoffs are costs, 
we enter them as negative values. (Analytic Solver Platform 
defaults to maximizing the expected value of the decision 
tree. We could have entered the costs as positive values 
and changed the objective in the Task Pane by clicking 
the Model button in the ribbon, choosing the Platform Tab, 
and changing the value of the field Decision Node EV/CE 
to  Minimize.) The final decision tree is shown in Figure 16.6 
(Excel file Mortgage Selection Decision Tree).

Figure 16.4

First Partial Decision Tree for 
Mortgage Selection
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Figure 16.5

Second Partial Decision Tree 
for Mortgage Selection

Figure 16.6

Mortgage-Selection Decision 
Tree
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Example 16.10 A Pharmaceutical R&D Model

We will consider the R&D process for a new drug (you 
might recall the basic financial model we developed 
for the Moore Pharmaceuticals example in Chapter 11). 
 Suppose that the company has spent $300 million to 
date in research expenses. The first decision is whether 
or not to proceed with clinical trials. We can either de-
cide to conduct them, or stop development at this point, 
incurring the $300 million cost already spent on re-
search. The cost of  clinical trials is estimated to be $250 
million, and the probability of a successful outcome is 
0.3. Therefore, if we decide to conduct the trials, we face 
the chance events that the trials will either be successful 
or not successful. If they are not successful, then clearly 
the process stops at this point. If they are successful, 
the company may seek approval from the Food and Drug 
 Administration or decide to stop the development pro-
cess. The cost of seeking approval is $25 million, and 
there is a 60% chance of approval. If the company seeks 
approval, it faces the chance events that the FDA will 
approve the drug or not approve it. Finally, if the drug 

is approved and is released to the market, the market 
potential has been identified as either large,  medium, or 
small, with the following characteristics:

Market Potential Expected 
Revenues (millions of $) Probability

Large 4,500 0.6

Medium 2,200 0.3

Small 1,500 0.1

A decision tree for this situation is shown in Figure 16.7 
(Excel file Drug Development Decision Tree). When we 
have sequences of decisions and events, a decision 
strategy is a specification of an initial decision and subse-
quent decisions to make after knowing what events occur. 
We can identify the best strategy from the branch number 
in the decision nodes. For example, the best strategy is 
to conduct clinical trials and, if successful, seek FDA ap-
proval and, if approved, market the drug. The expected 
net revenue is calculated as $74.3 million.

Figure 16.7

New-Drug-Development Decision Tree
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Decision Trees and Monte Carlo Simulation

Because all computations use Excel formulas, you could easily perform what-if analy-
ses or create data tables to analyze changes in the assumptions of the model. One of 
the interesting features of decision trees in Analytic Solver Platform is that you can 
also use the Excel model to develop a Monte Carlo simulation or an optimization 
model using the decision tree.

Example 16.11 Simulating the Moore Pharmaceuticals Decision Tree Model

Suppose that the payoffs for the market outcomes are un-
certain. Let us assume that if the market is large, the pay-
off is lognormally distributed with a mean of $4,500 million 
and a standard deviation of $1,000 million; if the market is 
medium, the payoff is lognormally distributed with a mean 
of $2,200 million and a standard deviation of $500 million; 
and if the market is small, the payoff is normally distrib-
uted with a mean of $1,500 million and standard devia-
tion of $200 million. Insert the formula =PsiLogNormal 
(4500,1000) into cell T4, =PsiLogNormal(2200,500) into 
cell T9, and =PsiNormal(1500, 200) into cell T14. Further, 
assume that the cost of clinical trials is uncertain and es-
timates are modeled using a triangular distribution with 
a minimum of −$700 million, most likely value of −550 
million, and maximum value of −$500 million. Therefore, 
use the formula =PsiTriangular 1 −700, −550, −500 2  in 
cell D24.

Because of the way that Analytic Solver Platform per-
forms decision tree calculations to ensure that rollback 
values are consistent, we cannot define cell A29 as an 
output cell to predict the expected value of the decision 
tree. However, all we need to do is to copy the expected 
value of the decision tree to another cell and set this as an 
output cell for the simulation. We will do this in cell A32; 
the formula is = A29 + PsiOutput( ). You may examine 
the Excel file Drug Development Monte Carlo Simulation 
Model to see how the model is implemented.

Figure 16.8 shows the results of a simulation of this 
scenario. We see that there is about a 40% chance that 
the development of the drug will result in a loss. This 
might be considered too risky and the company might de-
cide to stop development rather than pursue the project.

Figure 16.8

Simulation Results of the 
New-Drug-Development 
Decision Tree

Decision Trees and Risk

The decision tree approach is an example of expected value decision making. Thus, in the 
drug-development example, if the company’s portfolio of drug-development projects has 
similar characteristics, then pursuing further development is justified on an expected value 
basis. However, this approach does not explicitly consider risk.
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From a classical decision analysis perspective, we may summarize the company’s 
decision as the following payoff table:

Unsuccessful 
Clinical Trials

Successful  
Clinical Trials;  

No FDA 
Approval

Successful  
Trials and  
Approval; 

Large Market

Successful  
Trials and  
Approval;  

Medium Market

Successful  
Trials and  
Approval;  

Small Market

Develop drug ($550) ($575) $3,925 $1,625 $925

Stop development ($300) ($300) ($300) ($300) ($300)

If we apply the aggressive, conservative, and opportunity-loss decision strategies to these 
data (note that the payoffs are profits as opposed to costs, so it is important to use the cor-
rect rule, as discussed earlier in the chapter), we obtain the following.

Aggressive strategy (maximax):

Maximum

Develop drug $3,925

Stop development  ($300)

The decision that maximizes the maximum payoff is to develop the drug.
Conservative strategy (maximin):

Minimum

Develop drug ($575)

Stop development ($300)

The decision that maximizes the minimum payoff is to stop development.
Opportunity loss: 

Unsuccessful 
Clinical Trials

Successful 
Clinical Trials;  

No FDA  
Approval

Successful 
Trials and 
Approval; 

Large Market

Successful 
Trials and 
Approval; 

Medium Market

Successful 
Trials and 
Approval; 

Small Market Maximum

Develop drug $250 $275 $— $— $— $275

Stop development $— $— $4,225 $1,925 $1,225 $4,225

The decision that minimizes the maximum opportunity loss is to develop the drug. How-
ever, as we noted, we must evaluate risk by considering both the magnitude of the payoffs 
and their chances of occurrence. The aggressive, conservative, and opportunity-loss rules 
do not consider the probabilities of the outcomes.

Each decision strategy has an associated payoff distribution, called a risk profile. 
Risk profiles show the possible payoff values that can occur and their probabilities.
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Example 16.12 Constructing a Risk Profile

In the drug-development example, consider the strategy 
of pursuing development. The possible outcomes that 
can occur and their probabilities are:

Terminal Outcome Net Revenue Probability

Market large $3,925 0.108

Market medium $1,625 0.054

Market small $925 0.018

FDA not approved ($575) 0.120

Clinical trials not 
successful

($550) 0.700

The probabilities are computed by multiplying the 
probabilities on the event branches along the path to the 
terminal outcome. For example, the probability of get-
ting to “Market large” is 0.3 × 0.6 × 0.6 = 0.108. Thus, 
we see that the probability that the drug will not reach 
the market is 1 − 10.108 + 0.054 + 0.018 2 = 0.82, and 
the company will incur a loss of more than $500 million. 
On the other hand, if they decide not to pursue clinical 
trials, the loss would be only $300 million, the cost of 
 research to date. If this were a one-time decision, what 
decision would you make if you were a top executive of 
this company?

Sensitivity Analysis in Decision Trees

We may use Excel data tables to investigate the sensitivity of the optimal decision to changes 
in probabilities or payoff values. We illustrate this using the airline revenue management 
scenario we discussed in Example 5.22 in Chapter 5.

Example 16.13 Sensitivity Analysis for Airline Revenue Management Decision

Figure 16.9 shows the decision tree (Excel file  Airline 
Revenue Management Decision Tree) for deciding 
whether or not to discount the fare with a data table for 
varying the probability of success with two output col-
umns, one providing the expected value from cell A10 
in the tree and the second providing the best decision. 
The formula in cell O3 is = IF(B9=1, “Full”, “ Discount”). 
 However, we must first modify the worksheet prior 
to constructing the data table so that  probabilities 

will  always sum to 1. To do this, enter the formula  
=  1 −H1 in cell H6, corresponding to the probability of 
not selling the full-fare ticket. When constructing the 
data table, use cell H1 as the column input cell. From 
the results, we see that if the probability of selling the 
full-fare ticket is 0.7 or less, then the best decision is 
to discount the price. Two-way data tables may also be 
used in a similar fashion to study simultaneous changes 
in model parameters.

Figure 16.9

Airline Revenue Management Decision Tree and Data Table
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Example 16.14 Finding EVPI for the Mortgage-Selection Decision

The following table shows the calculations of the 
 expected opportunity losses for each decision (see 
 Example 16.4 for calculation of the opportunity-loss 

 matrix). The minimum expected opportunity loss occurs 
for the 3-year ARM (which was the best expected value 
decision) and is $3,391.40. This is the value of EVPI.

Outcome

0.6 0.3 0.1

Decision Rates Rise Rates Stable Rates Fall Expected Opportunity Loss

1-year ARM $6,476 $— $— $3,885.60

3-year ARM $2,243 $4,632  $6,560 $3,391.40

30-year fixed $— $8,215 $14,497 $3,914.20

Another way to understand this is to use the follow-
ing logic. Suppose we know that rates will rise. Then, 
we should choose the 30-year fixed mortgage and 
 incur a cost of $54,658. If we know that rates will be 
stable, then our best decision would be to choose the 
1-year ARM, with a cost of $46,443. Finally, if we know 
that rates will fall, we should choose the 1-year ARM 
with a cost of $40,161. By weighting these values by 
the probabilities that their associated events will occur, 
under perfect information, our expected cost would  

be 0.6 × $54,658 + 0.3 × $46,443 + 0.1 × $40,161 =  
$50,743.80. If we did not have perfect information about 
the future, then we would choose the 3-year ARM no 
matter what happens and incur an expected cost of 
$54,135.20. By having perfect information, we would 
save $54,135.20 − $50,743.80 = $3,391.40. This is the 
expected value of perfect information. We would never 
want to pay more than $3,391.40 for any information 
about the future event, no matter how good.

The Value of Information

When we deal with uncertain outcomes, it is logical to try to obtain better information 
about their likelihood of occurrence before making a decision. The value of information 
represents the improvement in the expected return that can be achieved if the decision 
maker is able to acquire—before making a decision—additional information about the 
future event that will take place. In the ideal case, we would like to have perfect infor-
mation, which tells us with certainty what outcome will occur. Although this will never 
occur, it is useful to know the value of perfect information because it provides an upper 
bound on the value of any information that we may acquire. The expected value of per-
fect information (EVPI) is the expected value with perfect information (assumed at no 
cost) minus the expected value without any information; again, it represents the most you 
should be willing to pay for perfect information.

The expected opportunity loss represents the average additional amount the decision 
maker would have achieved by making the right decision instead of a wrong one. To find 
the expected opportunity loss, we create an opportunity-loss table, as discussed earlier in 
this chapter, and then find the expected value for each decision. It will always be true that 
the decision having the best expected value will also have the minimum expected opportu-
nity loss. The minimum expected opportunity loss is the EVPI.
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Decisions with Sample Information

Sample information is the result of conducting some type of experiment, such as a 
market research study or interviewing an expert. Sample information is always imper-
fect.  Often, sample information comes at a cost. Thus, it is useful to know how much 
we should be willing to pay for it. The expected value of sample information (EVSI) is 
the expected value with sample information (assumed at no cost) minus the expected value 
without sample information; it represents the most you should be willing to pay for the 
sample information.

Example 16.15 Decisions with Sample Information

Suppose that a company is developing a new touch-
screen cell phone. Historically, 70% of their new phones 
have resulted in high consumer demand, whereas 30% have 
resulted in low consumer demand. The company has the 
decision of choosing between two alternative models with 
different features that require different amounts of invest-
ment and also have different sales potential. Figure 16.10 
shows a completed decision tree in which all cash flows 
are in thousands of dollars. For  example, model 1  requires 
an initial investment for development of $200,000, and 
model 2 requires an investment of $175,000. If demand 
is high for model 1, the company will gain $500,000 in 
revenue, with a net profit of $300,000; it will receive only 
$160,000 if demand is low, resulting in a net profit of 
–$40,000. Based on the probabilities of demand, the ex-
pected profit is $198,000. For model 2, we see that the 
expected profit is only $188,000. Therefore, the best de-
cision is to  select model 1. Clearly there is risk in either 
decision, but on an expected value basis, model 1 is the 
best decision.

Now suppose that the firm conducts a market 
 research study to obtain sample information and  better 
understand the nature of consumer demand. Analysis 

of past market research studies, conducted prior to in-
troducing similar products, has found that 90% of all 
products that resulted in high consumer demand had 
previously received a high survey response, whereas 
only 20% of all products with ultimately low consumer 
demand had previously received a high survey response. 
These probabilities show that the market research is not 
always accurate and can lead to a false indication of 
the true  market potential. However, we should expect 
that a high survey response would increase the histori-
cal probability of high demand, whereas a low survey 
response would increase the historical probability of a 
low demand. Thus, we need to compute the conditional 
probabilities:

P 1high demand ∣ high survey response 2
P 1high demand ∣ low survey response 2
P 1 low demand ∣ high survey response 2
P 1 low demand ∣ low survey response 2

This can be accomplished using a formula called Bayes’s 
rule.

Bayes’s Rule

Bayes’s rule extends the concept of conditional probability to revise historical probabilities 
based on sample information. Suppose that A1, A2,…, Ak is a set of mutually exclusive and 
collectively exhaustive events, and we seek the probability that some event Ai occurs given 
that another event B has occurred. Bayes’s rule is stated as follows:

 P1Ai � B2 =
P1B � Ai2 P1Ai2

P1B � A12 P1A12 + P1B � A22 P1A22 + c + P1B � Ak2 P1Ak2
 (16.1)
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Example 16.16 Applying Bayes’s Rule to Compute Conditional Probabilities

In the cell phone example, define the events:

 A1 = high consumer demand
 A2 = low consumer demand
 B1 = high survey response
 B2 = low survey response

We need to compute P 1Ai ∣ Bj 2  for each i and j.
Using these definitions and the information presented 

in Example 16.15, we have

 P 1A1 2 = 0.7
 P 1A2 2 = 0.3

 P 1B1 ∣ A1 2 = 0.9
 P 1B1 ∣ A2 2 = 0.2

It is important to carefully distinguish between P 1A ∣ B 2  
and P 1B ∣ A 2 . As stated, among all products that re-
sulted in high consumer demand, 90% received a high 
market survey response. Thus, the probability of a high 
survey response given high consumer demand is 0.90 
and not the other way around. Because the probabilities 
P 1B1 ∣ Ai 2 + P 1B2 ∣ Ai 2  must add to 1 for each Ai, we have

 P 1B2 ∣ A1 2 = 1 − P 1B1 ∣ A1 2 = 0.1
 P 1B2 ∣ A2 2 = 1 − P 1B1 ∣ A2 2 = 0.8

Now we may apply Bayes’s rule to compute the con-
ditional probabilities of demand given the survey response:

 P 1A1 ∣ B1 2 =
P 1B1 ∣ A1 2  P 1A1 2

P 1B1 ∣ A1 2  P 1A1 2 + P 1B1 ∣ A2 2  P 1A2 2

 =
10.9 2 10.7 2

10.9 2 10.7 2 + 10.2 2 10.3 2 = 0.913

Therefore, P(A2 ∣ B1) = 1 − 0.913 = 0.087.

 P 1A1 ∣ B2 2 =
P 1B2 ∣ A1 2  P 1A1 2

P 1B2 ∣ A1 2  P 1A1 2 + P 1B2 ∣ A2 2  P 1A2 2

 =
10.1 2 10.7 2

10.1 2 10.7 2 + 10.8 2 10.3 2 = 0.226

Therefore P 1A2 ∣ B2 2 = 1 − 0.226 = 0.774.
Although 70% of all previous new models  historically 

had high demand, knowing that the marketing report is 
 favorable increases the likelihood to 91.3%, and if the 
marketing report is unfavorable, then the probability of 
low demand increases to 77%.

Finally, we need to compute the nonconditional (mar-
ginal) probabilities that the survey response will be either 
high or low—that is, P 1B1 2  and P 1B2 2 . These are simply 
the denominators in Bayes’s rule:

 P 1B1 2 = P 1B1 ∣ A1 2  P 1A1 2 + P 1B1 ∣ A2 2  P 1A2 2
 = 10.9 2 10.7 2 + 10.2 2 10.3 2 = 0.69

 P 1B2 2 = P 1B2 ∣ A1 2  P 1A1 2 + P 1B2 ∣ A2 2  P 1A2 2
 = 10.1 2 10.7 2 + 10.8 2 10.3 2 = 0.31

The marginal probabilities state that there is a 69% chance 
that the survey will return a high-demand response, and 
there is a 31% chance that the survey will result in a low-
demand response.

Figure 16.10

Cell Phone Decision Tree
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Figure 16.11 shows a decision tree that incorporates the market survey information 
and the probabilities we calculated in the previous example. The optimal decision strategy 
is to select model 1 if the survey response is high, and if the response is low, then select 
model 2. Note that the expected value (which includes the probabilities of obtaining the 
survey responses) is $202,257. Comparing this to Figure 16.10, we see that the sample 
information increases the expected value by $202,257 - $198,000 = $4,257. This is the 
value of EVSI. So we should not pay more than $4,257 to conduct the market survey.

Utility and Decision Making

In Example 5.21 in Chapter 5, we discussed a charity raffle in which 1,000 $50 tickets are 
sold to win a $5,000 prize. The probability of winning is only 0.001, and the expected pay-
off is 1-$0210.9992 + 1$24,950210.0012 = -$25.00. From a purely economic stand-
point, this would be a poor gamble. Nevertheless, many people would take this chance 
because the financial risk is low (and it’s for charity). On the other hand, if only 10 tickets 
were sold at $5,000 with a chance to win $100,000, even though the expected value would be 
1-$5000210.92 + 1$100,000210.12 = $5,500, most people would not take the chance be-
cause of the higher monetary risk involved.

An approach for assessing risk attitudes quantitatively is called utility the-
ory. This approach quantifies a decision maker’s relative preferences for particular 
 outcomes. We can determine an individual’s utility function by posing a series of deci-
sion  scenarios. This is best illustrated with an example; we use a personal investment 
problem to do this.

Figure 16.11

Cell Phone Decision Tree 
with Sample Market Survey
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Decision/Event Rates Rise Rates Stable Rates Fall

Bank CD $400 $400 $400

Bond fund −$500 $840 $1,000

Stock fund −$900 $600 $1,700

Constructing a Utility Function

The first step in determining a utility function is to rank-order the payoffs from highest to 
lowest. We conveniently assign a utility of 1.0 to the highest payoff and a utility of 0 to 
the lowest. Next, for each payoff between the highest and lowest, consider the following 
situation: Suppose you have the opportunity of achieving a guaranteed return of x or tak-
ing a chance of receiving the highest payoff with probability p or the lowest payoff with 
probability 1 - p. (We use the term certainty equivalent to represent the amount that a 
decision maker feels is equivalent to an uncertain gamble.) What value of p would make 
you indifferent to these two choices? Then repeat this process for each payoff.

Example 16.17 A Personal Investment Decision

Suppose that you have $10,000 to invest and are expect-
ing to buy a new car in a year, so you can tie the money 
up for only 12 months. You are considering three op-
tions: a bank CD paying 4%, a bond mutual fund, and a 
stock fund. Both the bond and stock funds are sensitive 
to changing interest rates. If rates remain the same over 
the coming year, the share price of the bond fund is ex-
pected to remain the same, and you expect to earn $840. 
The stock fund would return about $600 in dividends 

and capital gains. However, if interest rates rise, you can 
 anticipate losing about $500 from the bond fund after 
taking into account the drop in share price and, likewise, 
expect to lose $900 from the stock fund. If interest rates 
fall, however, the yield from the bond fund would be 
$1,000 and the stock fund would net $1,700. Table 16.2 
summarizes the payoff table for this decision problem. 
The decision could result in a variety of payoffs, ranging 
from a profit of $1,700 to a loss of $900.

Table 16.2 

Investment Return Payoff 
Table

Example 16.18  Constructing a Utility Function for the Personal  
Investment Decision

First rank the payoffs from highest to lowest; assign a 
utility of 1.0 to the highest and a utility of 0 to the lowest:

Payoff, X Utility, U(X)

$1,700 1.0

$1,000

$840

$600

$400

−$500

−$900 0.0

Let us start with x = $1,000. The decision is illustrated 
in the simple decision tree in Figure 16.12 (Excel file  Lottery 
Decision Tree). Because this is a relatively high value, you 
decide that p would have to be at least 0.9 to take this risk. 

This represents the utility of a payoff of $1,000, denoted 
as U($1,000). For example, $1,000 is this decision maker’s 
certainty equivalent for the uncertain situation of receiving 
$1,700 with probability 0.9 or −$900 with probability 0.1.

Repeating this process for each payoff, suppose we 
obtain the following utility function:

Payoff, X Utility, U(X)

$1,700  1.0

$1,000 0.90

$840 0.85

$600 0.80

$400 0.75

−$500 0.35

−$900  0.0
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If we compute the expected value of each of the gambles for the chosen values of p, 
we see that they are higher than the corresponding payoffs. For example, for the payoff of 
$1,000 and the corresponding p = 0.9, the expected value of taking the gamble is

0.91$1,7002 + 0.11-$9002 = $1,440

This is greater than accepting $1,000 outright. We can interpret this to mean that you re-
quire a risk premium of $1,440 - $1,000 = $440 to feel comfortable enough to risk los-
ing $900 if you take the gamble. In general, the risk premium is the amount an individual 
is willing to forgo to avoid risk. This indicates that you are a risk-averse individual, that is, 
relatively conservative.

Another way of viewing this is to find the break-even probability at which you would 
be indifferent to receiving the guaranteed return and taking the gamble. This probability is 
found by solving the equation

1,700 p - 90011 - p2 = 1,000

resulting in p =  19/26 =  0.73. Because you require a higher probability of winning the gam-
ble, it is clear that you are uncomfortable taking the risk.

If we graph the utility versus the payoffs, we can sketch a utility function, as shown 
in Figure 16.13. This utility function is generally concave downward. This type of curve 
is characteristic of risk-averse individuals. Such decision makers avoid risk, choosing 
conservative strategies and those with high return-to-risk values. Thus, a gamble must 
have a higher expected value than a given payoff to be preferable or, equivalently, 
a higher probability of winning than the break-even value.

Other individuals might be risk takers. What would their utility functions look like? As 
you might suspect, they are concave upward. These individuals would take a gamble that 
offers higher rewards even if the expected value is less than a certain payoff. An example of 
a utility function for a risk-taking individual in this situation would be as follows:

Payoff, X Utility, U(X)

$1,700  1.0

$1,000  0.6

$840 0.55

$600 0.45

$400 0.40

−$500  0.1

−$900  0.0

Figure 16.12

Decision Tree Lottery 
for Determining the Utility 
of $1,000
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For the payoff of $1,000, this individual would be indifferent between receiving $1,000 
and taking a chance at $1,700 with probability 0.6 and losing $900 with probability 0.4. 
The expected value of this gamble is

0.61$1,7002 + 0.41-$9002 = $660

Because this is considerably less than $1,000, the individual is taking a larger risk to try 
to receive $1,700. Note that the probability of winning is less than the break-even value. 
Risk takers generally prefer more aggressive strategies.

Finally, some individuals are risk neutral; they prefer neither taking risks nor avoiding 
them. Their utility function is linear and corresponds to the break-even probabilities for each 
gamble. For example, a payoff of $600 would be equivalent to the gamble if

$600 = p1$1,7002 + 11 - p21-$9002
Solving for p, we obtain p = 15>26, or 0.58, which represents the utility of this  payoff. 
The decision of accepting $600 outright or taking the gamble could be made by flipping a 
coin. These individuals tend to ignore risk measures and base their decisions on the aver-
age payoffs.

A utility function may be used instead of the actual monetary payoffs in a decision 
analysis by simply replacing the payoffs with their equivalent utilities and then computing 
expected values. The expected utilities and the corresponding optimal decision strategy 
then reflect the decision maker’s preferences toward risk. For example, if we use the aver-
age payoff strategy (because no probabilities of events are given) for the data in Table 16.2,  
the best decision would be to choose the stock fund. However, if we replace the payoffs in 
Table 16.2 with the (risk-averse) utilities that we defined and again use the average payoff 
strategy, the best decision would be to choose the bank CD as opposed to the stock fund, 
as shown in the following table.

Figure 16.13

Example of a Risk-Averse 
Utility Function
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Decision/Event Rates Rise Rates Stable Rates Fall Average Utility

Bank CD 0.75 0.75 0.75 0.75

Bond fund 0.35 0.85 0.9 0.70

Stock fund 0 0.80 1.0 0.60

If assessments of event probabilities are available, these can be used to compute the ex-
pected utility and identify the best decision.

Exponential Utility Functions

It can be rather difficult to compute a utility function, especially for situations involving a 
large number of payoffs. Because most decision makers typically are risk averse, we may 
use an exponential utility function to approximate the true utility function. The exponential 
utility function is

U1x2 = 1 - e-x>R (16.2)

where e is the base of the natural logarithm (2.71828 …) and R is a shape parameter that is 
a measure of risk tolerance. Figure 16.14 shows several examples of U(x) for different val-
ues of R. Notice that all these functions are concave and that as R increases, the functions 
become flatter, indicating more tendency toward risk neutrality.

One approach to estimating a reasonable value of R is to find the maximum payoff 
$R for which the decision maker is willing to take an equal chance on winning $R or los-
ing $R>2. The smaller the value of R, the more risk averse is the individual. For instance, 
would you take a bet on winning $10 versus losing $5? How about winning $10,000 ver-
sus losing $5,000? Most people probably would not worry about taking the first gamble 
but might definitely think twice about the second. Finding one’s maximum comfort level 
establishes the utility function.

Figure 16.14

Examples of Exponential 
Utility Functions
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Example 16.19 Using an Exponential Utility Function

For the personal investment decision example, suppose that R = $400. The utility function is U(x) = 1 − e−x,400, result-
ing in the following utility values:

Payoff, X Utility, U(X)

$1,700   0.9857

$1,000   0.9179

$840   0.8775

$600   0.7769

$400   0.6321

−$500 −2.4903

−$900 −8.4877

Using the utility values in the payoff table, we find that the bank CD remains the best decision, as shown in the 
 following table, as it has the highest average utility.

Decision/Event Rates Rise Rates Stable Rates Fall Average Utility

Bank CD  0.6321 0.6321 0.6321  0.6321

Bond fund −2.4903 0.8775 0.9179 −0.2316

Stock fund −8.4877 0.7769 0.9857 −2.2417

2Based on Jeffrey S. Stonebraker, “How Bayer Makes Decisions to Develop New Drugs,” Interfaces, 32, 
6 (November–December 2002): 77–90.

Drug development in the United States is time con-
suming, resource intensive, risky, and heavily regu-
lated.2 On average, it takes nearly 15 years to research 
and develop a drug in the United States, with an after-
tax cost in 1990 dollars of approximately $200 million.

In July 1999, the biological products leadership 
committee, composed of the senior managers within 
Bayer Biological Products (BP), a business unit of Bayer 
Pharmaceuticals (Pharma), made its newly formed 
 strategic-planning department responsible for the com-
mercial evaluation of a new blood-clot-busting drug. To 
ensure that it made the best drug- development deci-
sions, Pharma used a structured process based on the 
principles of decision analysis to evaluate the techni-
cal feasibility and market potential of its new drugs. 
 Previously, BP had analyzed a few business cases for 
review by Pharma. This commercial evaluation was 
BP’s first decision analysis project.

Probability distributions of uncertain variables 
were assessed by estimating the 10th percentile and 
90th percentile from experts, who were each asked 
to review the results to make sure they accurately  
reflect his or her judgment. Pharma used net present 
value (NPV) as its decision-making criterion. Given 
the complexity and inherent structure of decisions  
concerning new drugs, the new-drug-development  
decision making was defined as a sequence of six de-
cision points, with identified key market-related and 
scientific deliverables so senior managers can assess 
the likelihood of success versus the company’s expo-
sure to risk, costs, and strategic fit. Decision point 1 
was whether to begin preclinical development. After 
successful preclinical animal testing, Bayer can de-
cide (decision point 2) to begin testing the drug in hu-
mans. Decision point 3 and decision point 4 (are both 
decisions to invest or not in continuing clinical devel-

Analytics in Practice:  Using Decision Analysis in Drug  
Development
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Key Terms

Average payoff strategy
Branches
Certainty equivalent
Decision alternatives
Decision making
Decision node
Decision strategy
Decision tree
Event node
Expected opportunity loss
Expected value of perfect  

information (EVPI)
Expected value of sample information 

(EVSI)
Expected value strategy
Laplace, or average payoff, strategy
Maximax strategy

Maximin strategy
Minimax regret strategy
Minimax strategy
Minimin strategy
Nodes
Outcomes
Payoffs
Payoff table
Perfect information
Risk premium
Risk profile
Sample information
States of nature
Uncertain events
Utility theory
Value of information

opment. Following successful completion of devel-
opment, Bayer can choose to file a biological license 
application with the FDA (decision point 5). If the FDA 
approves it, Bayer can decide (decision point 6) to 
launch the new drug in the marketplace.

The project team presented their input assumptions 
and recommendations for the commercial evaluation 
of the drug to the three levels of Pharma decision mak-
ers, who eventually approved preclinical development. 
External validation of the data inputs and assump-
tions demonstrated their rigor and defensibility. Senior 
managers could compare the evaluation results for 
the proposed drug with those for other development 
drugs with confidence. The international committees 
lauded the project team’s effort as top-notch, and 
the decision-analysis approach set new standards for 
subsequent BP analyses.
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Note: Data for selected problems can be found in the 
 Excel file Chapter 16 Problem Data to facilitate your 
problem-solving efforts. Worksheet tabs correspond to the 
problem numbers.

 1. Use the Outsourcing Decision Model Excel file to 
compute the cost of in-house manufacturing and 
outsourcing for the following levels of demand: 
800, 1000, 1200, and 1400.  Use this information to 
set up a payoff table for the decision problem, and  

apply the aggressive, conservative, and opportunity 
loss strategies.

 2. The DoorCo Corporation is a leading manufacturer 
of garage doors. All doors are manufactured in their 
plant in Carmel, Indiana, and shipped to distribu-
tion centers or major customers. DoorCo recently 
acquired another manufacturer of garage doors, 
Wisconsin Door, and is considering moving its 
wood-door operations to the Wisconsin plant. Key 

Problems and Exercises
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considerations in this decision are the transportation, 
labor, and production costs at the two plants. Com-
plicating matters is the fact that marketing is pre-
dicting a decline in the demand for wood doors. The 
company developed three scenarios:

 1. Demand falls slightly, with no noticeable effect 
on production.

 2. Demand and production decline 20%.

 3. Demand and production decline 40%.

  The following table shows the total costs under each 
decision and scenario.

Slight 
Decline

20% 
Decline

40% 
Decline

Stay in 
Carmel $1,000,000 $900,000 $840,000

Move to 
Wisconsin $1,200,000 $915,000 $800,000

  What decision should DoorCo make using each 
strategy?

 a. aggressive strategy

 b. conservative strategy

 c. opportunity-loss strategy

 3. Suppose that a car-rental agency offers insurance for a 
week that costs $75. A minor fender bender will cost 
$2,000, whereas a major accident might cost $16,000 
in repairs. Without the insurance, you would be per-
sonally liable for any damages. What should you do? 
Clearly, there are two decision alternatives: take the 
insurance, or do not take the insurance. The uncertain 
consequences, or events that might occur, are that you 
would not be involved in an accident, that you would 
be involved in a fender bender, or that you would be 
involved in a major accident. Develop a payoff table 
for this situation. What decision should you make us-
ing each strategy?

 a. aggressive strategy

 b. conservative strategy

 c. opportunity-loss strategy

 4. Slaggert Systems is considering becoming certified 
to the ISO 9000 series of quality standards. Becom-
ing certified is expensive, but the company could 
lose a substantial amount of business if its major cus-
tomers suddenly demand ISO certification and the 
company does not have it. At a management retreat, 
the senior executives of the firm developed the fol-

lowing payoff table, indicating the net present value 
of profits over the next 5 years.

Customer Response

Standards 
Required

Standards 
Not Required

Become certified $575,000 $500,000

Stay uncertified $450,000 $600,000

  What decision should the company make using each 
strategy?

 a. aggressive strategy

 b. conservative strategy

 c. opportunity-loss strategy

 5. For the DoorCo Corporation decision in Problem 2, 
compute the standard deviation of the payoffs for 
each decision. What does this tell you about the risk 
in making the decision?

 6. For the car-rental situation in Problem 3, compute 
the standard deviation of the payoffs for each deci-
sion. What does this tell you about the risk in making 
the decision?

 7. For Slaggert Systems decision in Problem 4, com-
pute the standard deviation of the payoffs for each 
decision. What does this tell you about the risk in 
making the decision?

 8. What decisions should be made using the average 
payoff strategy in Problems 2, 3, and 4?

 9. For the DoorCo Corporation decision in Problem 2, 
suppose that the probabilities of the three scenarios 
are estimated to be 0.15, 0.40, and 0.45, respectively. 
Find the best expected value decision.

 10. For the car-rental situation described in Problem 3, 
assume that you researched insurance industry sta-
tistics and found out that the probability of a major 
accident is 0.05% and that the probability of a fender 
bender is 0.16%. What is the expected value deci-
sion? Would you choose this? Why or why not?

 11. For the DoorCo Corporation decision in Problems 2 
and 9, construct a decision tree and compute the roll-
back values to find the best expected value decision.

 12. For the car-rental decision in Problems 3 and 10, 
construct a decision tree and compute the rollback 
values to find the best expected value decision.

 13. For the car-rental decision in Problems 3 and 10, 
suppose that the cost of a minor fender bender is 
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 normally distributed with a mean of $2000 and 
standard deviation of $100, and the cost of a major 
 accident is triangular with a minimum of $10,000, 
maximum of $25,000, and most likely value of 
$16,000. Use Analytic Solver Platform to simulate 
the decision tree and find the distribution of the 
 expected value of not taking the insurance.

 14. An information system consultant is bidding on a 
project that involves some uncertainty. Based on 
past experience, if all went well (probability 0.1), 
the project would cost $1.2 million to complete. If 
moderate debugging were required (probability 0.7),  
the project would probably cost $1.4 million. If ma-
jor problems were encountered (probability 0.2), 
the project could cost $1.8 million. Assume that the 
firm is bidding competitively and the expectation of 
successfully gaining the job at a bid of $2.2 mil-
lion is 0, at $2.1 million is 0.1, at $2.0 million is 
0.2, at $1.9 million is 0.3, at $1.8 million is 0.5, at 
$1.7 million is 0.8, and at $1.6 million is practically 
certain.

 a. Calculate the expected value for the given bids.

 b. What is the best bidding decision?

 15. IM Retail deals in retail of all items of a popular cos-
metic brand Beau. For a particular item, the price of 
stocking, selling, and cost price varies with the sea-
son. The cost price of the item in season is $12, while 
its selling price in season is $18. After the season, 
the bargain price is $9 and cost of stocking the item 
after season is $1. Gathering past data IM Retail has 
developed the following probability distribution for 
demand:

Demand (units) Probability

 7 .20

 8 .20

 9 .25

10 .15

11 .20

 a. Construct a payoff table for IM Retail decision 
problem of how many units to be stocked. What 
is the best decision from an expected value basis? 

 b. Find the expected value of perfect information.

 c. What is the expected demand? What is the ex-
pected profit if the retailer stocks the expected 
demand?

 16. Bev’s Bakery specializes in sourdough bread. Early 
each morning, Bev must decide how many loaves to 
bake for the day. Each loaf costs $1.25 to make and 
sells for $3.50. Bread left over at the end of the day 
can be sold the next day for $1.00. Past data indicate 
that demand is distributed as follows:

Number of Loaves Probability

15 0.02

16 0.05

17 0.10

18 0.16

19 0.28

20 0.20

21 0.15

22 0.04

 a. Construct a payoff table and determine the opti-
mal quantity for Bev to bake each morning using 
expected values.

 b. What is the optimal quantity for Bev to bake if 
the unsold loaves are sold the next day but are do-
nated to a food bank?

 17. Ravex Yacht has developed a new cabin cruiser 
which they have earmarked for the medium to large 
boat market. A market analysis suggests a 30% prob-
ability of annual sales being 5000 boats, 40% prob-
ability of 4000 annual sales, and 30% probability 
of 3000 annual sales. The firm can go into limited 
production where variable costs are 10000$ per boat 
and fixed costs are 800,000$ annually. Or the firm 
can go into full scale production where variable costs 
are $9000 per boat and fixed costs are 5,000,000$ 
annually.

 a. Construct a decision tree for the situation.

 b. Compute payoffs and probabilities.

 c. If the boat is to be sold at $11,000, should the 
company go into limited or full scale production 
such that the profits are maximized?

 18. Midwestern Hardware must decide how many 
snow shovels to order for the coming snow sea-
son. Each shovel costs $15.00 and is sold for 
$29.95. No inventory is carried from one snow 
season to the next. Shovels unsold after  February 
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  are sold at a discount price of $10.00. Past data 
indicate that sales are highly dependent on the 
severity of the winter season. Past seasons have 
been classified as mild or harsh, and the follow-
ing distribution of regular price  demand has been 
tabulated:

Mild Winter Harsh Winter

No. of 
Shovels

Probability No. of 
Shovels

Probability

250 0.5 1,500 0.2

300 0.4 2,500 0.3

350 0.1 3,000 0.5

  Shovels must be ordered from the manufacturer in 
lots of 200; thus, possible order sizes are 200, 400, 
1,400, 1,600, 2,400, 2,600, and 3,000 units. Con-
struct a decision tree to illustrate the components of 
the decision model, and find the optimal quantity for 
Midwestern to order if the forecast calls for a 40% 
chance of a harsh winter.

 19. Perform a sensitivity analysis of the Midwestern 
Hardware scenario (Problem 18). Find the optimal 
order quantity and optimal expected profit for prob-
abilities of a harsh winter ranging from 0.2 to 0.8 in 
increments of 0.2. Plot optimal expected profit as a 
function of the probability of a harsh winter.

 20. Dean Kuroff started a business of rehabbing old 
homes. He recently purchased a circa-1800 Victorian 
mansion and converted it into a three-family resi-
dence. Recently, one of his tenants complained that 
the refrigerator was not working properly. Dean’s 
cash flow was not extensive, so he was not excited 
about purchasing a new refrigerator. He is consider-
ing two other options: purchase a used refrigerator or 
repair the current unit. He can purchase a new one for 
$400, and it will easily last 3 years. If he repairs the 
current one, he estimates a repair cost of $150, but he 
also believes that there is only a 30% chance that it 
will last a full 3 years and he will end up purchasing 
a new one anyway. If he buys a used refrigerator for 
$200, he estimates that there is a 0.6 probability that 
it will last at least 3 years. If it breaks down, he will 
still have the option of repairing it for $150 or buying 
a new one. Develop a decision tree for this situation 
and determine Dean’s optimal strategy.

 21. Many automobile dealers advertise lease options for 
new cars. Suppose that you are considering three 
alternatives:

 1. Purchase the car outright with cash.

 2. Purchase the car with 20% down and a 48-month 
loan.

 3. Lease the car.

  Select an automobile whose leasing contract is ad-
vertised in a local paper. Using current interest rates 
and advertised leasing arrangements, perform a deci-
sion analysis of these options. Make, but clearly de-
fine, any assumptions that may be required.

 22. Drilling decisions by oil and gas operators involve 
intensive capital expenditures made in an environ-
ment characterized by limited information and high 
risk. A well site is dry, wet, or gushing. Historically, 
50% of all wells have been dry, 30% wet, and 20% 
gushing. The value (net of drilling costs) for each 
type of well is as follows:

Dry −  $80.000

Wet $100,000

Gushing $200,000

  Wildcat operators often investigate oil prospects in 
areas where deposits are thought to exist by making 
geological and geophysical examinations of the area 
before obtaining a lease and drilling permit. This of-
ten includes recording shock waves from detonations 
by a seismograph and using a magnetometer to mea-
sure the intensity of Earth’s magnetic effect to detect 
rock formations below the surface. The cost of doing 
such studies is approximately $15,000. Of course, 
one may choose to drill in a location based on “gut 
feel” and avoid the cost of the study. The geological 
and geophysical examination classifies an area into 
one of three categories: no structure (NS), which is 
a bad sign; open structure (OS), which is an “OK” 
sign; and closed structure (CS), which is hopeful. 
Historically, 40% of the tests resulted in NS, 35% 
resulted in OS, and 25% resulted in CS readings. 
 After the result of the test is known, the company 
may decide not to drill. The following table shows 
probabilities that the well will actually be dry, wet, 
or gushing based on the classification provided by 
the examination (in essence, the examination cannot 
accurately predict the actual event):

Dry Wet Gushing

NS 0.73 0.22 0.05

OS 0.43 0.34 0.23

CS 0.23 0.372 0.398
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 a. Construct a decision tree of this problem that in-
cludes the decision of whether or not to perform 
the geological tests.

 b. What is the optimal decision under expected 
value when no experimentation is conducted?

 c. Find the overall optimal strategy by rolling back 
the tree.

 23. Hahn Engineering is planning on bidding on a job and 
often competes against a major competitor, Sweigart 
and Associates (S&A), as well as other firms. Histori-
cally, S&A has bid for the same jobs 80% of the time; 
thus the probability that S&A will bid on this job is 
0.80. If S&A bids on a job, the probability that Hahn 
Engineering will win it is 0.30. If S&A does not bid 
on a job, the probability that Hahn will win the bid is 
0.60. Apply Bayes’s rule to find the probability that 
Hahn Engineering will win the bid. If they do, what is 
the probability that S&A did bid on it?

 24. MJ Logistics has decided to build a new warehouse 
to support its supply chain activities. They have the 
option of building either a large warehouse or a small 
one. Construction costs for the large facility are $8 
million versus $3 million for the small facility. The 
profit (excluding construction cost) depends on the 
volume of work the company expects to contract for 
in the future. This is summarized in the following 
table (in millions of dollars):

High Volume Low Volume

Large warehouse $35   $20

Small warehouse $25 $15

  The company believes that there is a 60% chance 
that the volume of demand will be high.

 a. Construct a decision tree to identify the best 
choice.

 b. Suppose that the company engages an economic 
expert to provide an opinion about the volume of 
work based on a forecast of economic conditions. 
Historically, the expert’s upside predictions has 
been 75% accurate, whereas the downside pre-
dictions have been 90% accurate. In contrast to 
the company’s assessment, the expert believes 
that the chance for high demand is 70%. Deter-
mine the best strategy if their predictions suggest 
that the economy will improve or will deteriorate. 
Given the information, what is the probability 
that the volume will be high?

 25. Consider the car-rental insurance scenario in 
 Problems 3 and 10. Use the approach described in 
this chapter to develop your personal utility  function 
for the payoffs associated with this  decision. 
 Determine the decision that would result using 
the utilities  instead of the payoffs. Is the decision 
 consistent with your choice?

 26. A college football team is trailing 14–0 late in the 
game. The team just made a touchdown. If they can, 
hold the opponent and score one more time, they can 
tie or win the game. The coach is wondering whether 
to go for an extra-point kick or a two-point conver-
sion now and what to do if they can score again.

 a. Develop a decision tree for the coach’s decision.

 b. Estimate probabilities for successful kicks or 
two-point conversions and a last minute score. 
(You might want to do this by doing some group 
brainstorming or by calling on experts, such as 
your school’s coach or a sports journalist.) Using 
the probabilities from part (a), determine the opti-
mal strategy.

 c. Why would utility theory be a better approach 
than using the points for making a decision?  Pro-
pose a utility function and compare your results.

Case: Performance Lawn Equipment

PLE has developed a prototype for a new snow blower 
for the consumer market. This can exploit the company’s 
expertise in small-gasoline-engine technology and also 
balance seasonal demand cycles in the North American 
and European markets to provide additional revenues 
during the winter months. Initially, PLE faces two pos-
sible decisions: introduce the product globally at a cost 
of $850,000 or evaluate it in a North American test mar-
ket at a cost of $200,000. If it introduces the product 

globally, PLE might find either a high or low response 
to the product. Probabilities of these events are estimated 
to be 0.6 and 0.4, respectively. With a high response, 
gross revenues of $2,000,000 are expected; with a low 
response, the figure is $450,000. If it starts with a North 
American test market, it might find a low response or 
a high response with probabilities 0.3 and 0.7, respec-
tively. This may or may not reflect the global market 
potential. In any case, after conducting the marketing re-
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search, PLE next needs to decide whether to keep sales 
only in North America, market globally, or drop the 
product. If the North American response is high and PLE 
stays only in North America, the expected revenue is 
$1,200,000. If it markets globally (at an additional cost 
of $200,000), the probability of a high global response is 
0.9 with revenues of $2,000,000 ($450,000 if the global 
response is low). If the North American response is low 
and it remains in North America, the expected revenue 
is $200,000. If it markets globally (at an  additional cost 

of $600,000), the probability of a high global response 
is 0.05, with revenues of $2,000,000 ($450,000 if the 
global response is low).

Construct a decision tree, determine the optimal strat-
egy, and develop a risk profile associated with the optimal 
strategy. Evaluate the sensitivity of the optimal strategy to 
changes in the probability estimates. Summarize all your 
results, including your recommendation and justification 
for it, in a formal report to the executive committee, who 
will ultimately make this decision.
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611

Appendix A: Statistical Tables    

Table A.1

The Cumulative Standard Normal 
Distribution

(continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.9 .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003
−3.8 .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005

−3.7 .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008

−3.6 .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011

−3.5 .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017

−3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024

−3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035

−3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050

−3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071

−3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00103 .00100

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

−0.7 .2420 .2388 .2358 .2327 .2296 .2266 .2236 .2006 .2177 .2148

−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2482 .2451

−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7518 .7549

0.7 .7580 .7612 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9089 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .99865 .99869 .99874 .99878 .99882 .99886 .99889 .99893 .99897 .99900

3.1 .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929

3.2 .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950

3.3 .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965

3.4 .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976

3.5 .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983

3.6 .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989

3.7 .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992

3.8 .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995

3.9 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997

Entry represents area under the cumulative standardized normal distribution from −∞ to z.
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Table A.2

Critical Values of t

Degrees of 
Freedom

Upper Tail Areas

.25 .10 .05 .025 .01 .005

1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574

2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248

3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409

4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041

5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322

6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074

7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995

8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554

9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693

11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058

12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545

13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123

14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768

15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467

16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208

17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982

18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784

19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453

21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314

22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188

23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073

24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969

25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874

26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787

27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707

28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633

29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564

30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500
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Degrees of 
Freedom

Upper Tail Areas

.25 .10 .05 .025 .01 .005

31 0.6825 1.3095 1.6955 2.0395 2.4528 2.7440

32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385

33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333

34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284

35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238

36 0.6814 1.3055 1.6883 2.0281 2.4345 2.7195

37 0.6812 1.3049 1.6871 2.0262 2.4314 2.7154

38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116

39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079

40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045

41 0.6805 1.3025 1.6829 2.0195 2.4208 2.7012

42 0.6804 1.3020 1.6820 2.0181 2.4185 2.6981

43 0.6802 1.3016 1.6811 2.0167 2.4163 2.6951

44 0.6801 1.3011 1.6802 2.0154 2.4141 2.6923

45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896

46 0.6799 1.3002 1.6787 2.0129 2.4102 2.6870

47 0.6797 1.2998 1.6779 2.0117 2.4083 2.6846

48 0.6796 1.2994 1.6772 2.0106 2.4066 2.6822

49 0.6795 1.2991 1.6766 2.0096 2.4049 2.6800

50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778

51 0.6793 1.2984 1.6753 2.0076 2.4017 2.6757

52 0.6792 1.2980 1.6747 2.0066 2.4002 2.6737

53 0.6791 1.2977 1.6741 2.0057 2.3988 2.6718

54 0.6791 1.2974 1.6736 2.0049 2.3974 2.6700

55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682

56 0.6789 1.2969 1.6725 2.0032 2.3948 2.6665

57 0.6788 1.2966 1.6720 2.0025 2.3936 2.6649

58 0.6787 1.2963 1.6716 2.0017 2.3924 2.6633

59 0.6787 1.2961 1.6711 2.0010 2.3912 2.6618

60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603

61 0.6785 1.2956 1.6702 1.9996 2.3890 2.6589

62 0.6785 1.2954 1.6698 1.9990 2.3880 2.6575

63 0.6784 1.2951 1.6694 1.9983 2.3870 2.6561

64 0.6783 1.2949 1.6690 1.9977 2.3860 2.6549

65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536

66 0.6782 1.2945 1.6683 1.9966 2.3842 2.6524

67 0.6782 1.2943 1.6679 1.9960 2.3833 2.6512

68 0.6781 1.2941 1.6676 1.9955 2.3824 2.6501

69 0.6781 1.2939 1.6672 1.9949 2.3816 2.6490

70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479

(continued )
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Degrees of 
Freedom

Upper Tail Areas

.25 .10 .05 .025 .01 .005

71 0.6780 1.2936 1.6666 1.9939 2.3800 2.6469

72 0.6779 1.2934 1.6663 1.9935 2.3793 2.6459

73 0.6779 1.2933 1.6660 1.9930 2.3785 2.6449

74 0.6778 1.2931 1.6657 1.9925 2.3778 2.6439

75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430

76 0.6777 1.2928 1.6652 1.9917 2.3764 2.6421

77 0.6777 1.2926 1.6649 1.9913 2.3758 2.6412

78 0.6776 1.2925 1.6646 1.9908 2.3751 2.6403

79 0.6776 1.2924 1.6644 1.9905 2.3745 2.6395

80 0.6776 1.2922 1.6641 1.9901 2.3739 2.6387

81 0.6775 1.2921 1.6639 1.9897 2.3733 2.6379

82 0.6775 1.2920 1.6636 1.9893 2.3727 2.6371

83 0.6775 1.2918 1.6634 1.9890 2.3721 2.6364

84 0.6774 1.2917 1.6632 1.9886 2.3716 2.6356

85 0.6774 1.2916 1.6630 1.9883 2.3710 2.6349

86 0.6774 1.2915 1.6628 1.9879 2.3705 2.6342

87 0.6773 1.2914 1.6626 1.9876 2.3700 2.6335

88 0.6773 1.2912 1.6624 1.9873 2.3695 2.6329

89 0.6773 1.2911 1.6622 1.9870 2.3690 2.6322

90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316

91 0.6772 1.2909 1.6618 1.9864 2.3680 2.6309

92 0.6772 1.2908 1.6616 1.9861 2.3676 2.6303

93 0.6771 1.2907 1.6614 1.9858 2.3671 2.6297

94 0.6771 1.2906 1.6612 1.9855 2.3667 2.6291

95 0.6771 1.2905 1.6611 1.9853 2.3662 2.6286

96 0.6771 1.2904 1.6609 1.9850 2.3658 2.6280

97 0.6770 1.2903 1.6607 1.9847 2.3654 2.6275

98 0.6770 1.2902 1.6606 1.9845 2.3650 2.6269

99 0.6770 1.2902 1.6604 1.9842 2.3646 2.6264

100 0.6770 1.2901 1.6602 1.9840 2.3642 2.6259

110 0.6767 1.2893 1.6588 1.9818 2.3607 2.6213

120 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174

∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758

For particular number of degrees of freedom, entry represents the critical value of t corresponding to a specified  
upper tail area (A).
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Table A.3

Critical Values of X2

Degrees of 
Freedom

Upper Tail Areas (A)

.995 .99 .975 .95 .90 .75 .25 .10 .05 .025 .01 .005

1 0.001 0.004 0.016 0.102 1.323 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 0.575 2.773 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 1.213 4.108 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.923 5.385 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 2.675 6.626 9.236 11.071 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 3.455 7.841 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 4.255 9.037 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 5.071 10.219 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 5.899 11.389 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 6.737 12.549 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 7.584 13.701 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 8.438 14.845 18.549 21.026 23.337 26.217 28.299
13 3.565 4.107 5.009 5.892 7.042 9.299 15.984 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 10.165 17.117 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 11.037 18.245 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 11.912 19.369 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.792 20.489 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 13.675 21.605 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 14.562 22.718 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 15.452 23.828 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 16.344 24.935 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.042 17.240 26.039 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 18.137 27.141 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 19.037 28.241 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 19.939 29.339 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 20.843 30.435 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 21.749 31.528 36.741 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 22.657 32.620 37.916 41.337 44.461 48.278 50.993
29 13.121 14.257 16.047 17.708 19.768 23.567 33.711 39.087 42.557 45.722 49.588 52.336
30 13.787 14.954 16.791 18.493 20.599 24.478 34.800 40.256 43.773 46.979 50.892 53.672

For a particular number of degrees of freedom, entry represents the critical value of X2 corresponding to a specified upper tail area (A).

For larger values of degrees of freedom (df) the expression Z = 22x2 − 22(df ) − 1 may be used, and the resulting upper tail area can be obtained from the 

table of the standard normal distribution (Table A.1).
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Table A.4

Critical values of the F distribution

N2   
N1 1 2 3 4 5 6 7 8 9 10

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.882 240.543 241.882

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602

15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348

21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165

31 4.160 3.305 2.911 2.679 2.523 2.409 2.323 2.255 2.199 2.153

32 4.149 3.295 2.901 2.668 2.512 2.399 2.313 2.244 2.189 2.142

33 4.139 3.285 2.892 2.659 2.503 2.389 2.303 2.235 2.179 2.133

34 4.130 3.276 2.883 2.650 2.494 2.380 2.294 2.225 2.170 2.123

35 4.121 3.267 2.874 2.641 2.485 2.372 2.285 2.217 2.161 2.114

Upper critical values of the F distribution for numerator degrees of freedom N1 and denominator degrees  
of freedom N2, 5% significance level
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N2   
N1 1 2 3 4 5 6 7 8 9 10

36 4.113 3.259 2.866 2.634 2.477 2.364 2.277 2.209 2.153 2.106

37 4.105 3.252 2.859 2.626 2.470 2.356 2.270 2.201 2.145 2.098

38 4.098 3.245 2.852 2.619 2.463 2.349 2.262 2.194 2.138 2.091

39 4.091 3.238 2.845 2.612 2.456 2.342 2.255 2.187 2.131 2.084

40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077

41 4.079 3.226 2.833 2.600 2.443 2.330 2.243 2.174 2.118 2.071

42 4.073 3.220 2.827 2.594 2.438 2.324 2.237 2.168 2.112 2.065

43 4.067 3.214 2.822 2.589 2.432 2.318 2.232 2.163 2.106 2.059

44 4.062 3.209 2.816 2.584 2.427 2.313 2.226 2.157 2.101 2.054

45 4.057 3.204 2.812 2.579 2.422 2.308 2.221 2.152 2.096 2.049

46 4.052 3.200 2.807 2.574 2.417 2.304 2.216 2.147 2.091 2.044

47 4.047 3.195 2.802 2.570 2.413 2.299 2.212 2.143 2.086 2.039

48 4.043 3.191 2.798 2.565 2.409 2.295 2.207 2.138 2.082 2.035

49 4.038 3.187 2.794 2.561 2.404 2.290 2.203 2.134 2.077 2.030

50 4.034 3.183 2.790 2.557 2.400 2.286 2.199 2.130 2.073 2.026

51 4.030 3.179 2.786 2.553 2.397 2.283 2.195 2.126 2.069 2.022

52 4.027 3.175 2.783 2.550 2.393 2.279 2.192 2.122 2.066 2.018

53 4.023 3.172 2.779 2.546 2.389 2.275 2.188 2.119 2.062 2.015

54 4.020 3.168 2.776 2.543 2.386 2.272 2.185 2.115 2.059 2.011

55 4.016 3.165 2.773 2.540 2.383 2.269 2.181 2.112 2.055 2.008

56 4.013 3.162 2.769 2.537 2.380 2.266 2.178 2.109 2.052 2.005

57 4.010 3.159 2.766 2.534 2.377 2.263 2.175 2.106 2.049 2.001

58 4.007 3.156 2.764 2.531 2.374 2.260 2.172 2.103 2.046 1.998

59 4.004 3.153 2.761 2.528 2.371 2.257 2.169 2.100 2.043 1.995

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993

61 3.998 3.148 2.755 2.523 2.366 2.251 2.164 2.094 2.037 1.990

62 3.996 3.145 2.753 2.520 2.363 2.249 2.161 2.092 2.035 1.987

63 3.993 3.143 2.751 2.518 2.361 2.246 2.159 2.089 2.032 1.985

64 3.991 3.140 2.748 2.515 2.358 2.244 2.156 2.087 2.030 1.982

65 3.989 3.138 2.746 2.513 2.356 2.242 2.154 2.084 2.027 1.980

66 3.986 3.136 2.744 2.511 2.354 2.239 2.152 2.082 2.025 1.977

67 3.984 3.134 2.742 2.509 2.352 2.237 2.150 2.080 2.023 1.975

68 3.982 3.132 2.740 2.507 2.350 2.235 2.148 2.078 2.021 1.973

69 3.980 3.130 2.737 2.505 2.348 2.233 2.145 2.076 2.019 1.971

70 3.978 3.128 2.736 2.503 2.346 2.231 2.143 2.074 2.017 1.969

71 3.976 3.126 2.734 2.501 2.344 2.229 2.142 2.072 2.015 1.967

72 3.974 3.124 2.732 2.499 2.342 2.227 2.140 2.070 2.013 1.965

73 3.972 3.122 2.730 2.497 2.340 2.226 2.138 2.068 2.011 1.963

74 3.970 3.120 2.728 2.495 2.338 2.224 2.136 2.066 2.009 1.961

75 3.968 3.119 2.727 2.494 2.337 2.222 2.134 2.064 2.007 1.959

(continued)
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N2   
N1 1 2 3 4 5 6 7 8 9 10

76 3.967 3.117 2.725 2.492 2.335 2.220 2.133 2.063 2.006 1.958

77 3.965 3.115 2.723 2.490 2.333 2.219 2.131 2.061 2.004 1.956

78 3.963 3.114 2.722 2.489 2.332 2.217 2.129 2.059 2.002 1.954

79 3.962 3.112 2.720 2.487 2.330 2.216 2.128 2.058 2.001 1.953

80 3.960 3.111 2.719 2.486 2.329 2.214 2.126 2.056 1.999 1.951

81 3.959 3.109 2.717 2.484 2.327 2.213 2.125 2.055 1.998 1.950

82 3.957 3.108 2.716 2.483 2.326 2.211 2.123 2.053 1.996 1.948

83 3.956 3.107 2.715 2.482 2.324 2.210 2.122 2.052 1.995 1.947

84 3.955 3.105 2.713 2.480 2.323 2.209 2.121 2.051 1.993 1.945

85 3.953 3.104 2.712 2.479 2.322 2.207 2.119 2.049 1.992 1.944

86 3.952 3.103 2.711 2.478 2.321 2.206 2.118 2.048 1.991 1.943

87 3.951 3.101 2.709 2.476 2.319 2.205 2.117 2.047 1.989 1.941

88 3.949 3.100 2.708 2.475 2.318 2.203 2.115 2.045 1.988 1.940

89 3.948 3.099 2.707 2.474 2.317 2.202 2.114 2.044 1.987 1.939

90 3.947 3.098 2.706 2.473 2.316 2.201 2.113 2.043 1.986 1.938

91 3.946 3.097 2.705 2.472 2.315 2.200 2.112 2.042 1.984 1.936

92 3.945 3.095 2.704 2.471 2.313 2.199 2.111 2.041 1.983 1.935

93 3.943 3.094 2.703 2.470 2.312 2.198 2.110 2.040 1.982 1.934

94 3.942 3.093 2.701 2.469 2.311 2.197 2.109 2.038 1.981 1.933

95 3.941 3.092 2.700 2.467 2.310 2.196 2.108 2.037 1.980 1.932

96 3.940 3.091 2.699 2.466 2.309 2.195 2.106 2.036 1.979 1.931

97 3.939 3.090 2.698 2.465 2.308 2.194 2.105 2.035 1.978 1.930

98 3.938 3.089 2.697 2.465 2.307 2.193 2.104 2.034 1.977 1.929

99 3.937 3.088 2.696 2.464 2.306 2.192 2.103 2.033 1.976 1.928

100 3.936 3.087 2.696 2.463 2.305 2.191 2.103 2.032 1.975 1.927

N2   
N1 11 12 13 14 15 16 17 18 19 20

1 242.983 243.906 244.690 245.364 245.950 246.464 246.918 247.323 247.686 248.013

2 19.405 19.413 19.419 19.424 19.429 19.433 19.437 19.440 19.443 19.446

3 8.763 8.745 8.729 8.715 8.703 8.692 8.683 8.675 8.667 8.660

4 5.936 5.912 5.891 5.873 5.858 5.844 5.832 5.821 5.811 5.803

5 4.704 4.678 4.655 4.636 4.619 4.604 4.590 4.579 4.568 4.558

6 4.027 4.000 3.976 3.956 3.938 3.922 3.908 3.896 3.884 3.874

7 3.603 3.575 3.550 3.529 3.511 3.494 3.480 3.467 3.455 3.445

8 3.313 3.284 3.259 3.237 3.218 3.202 3.187 3.173 3.161 3.150

9 3.102 3.073 3.048 3.025 3.006 2.989 2.974 2.960 2.948 2.936

10 2.943 2.913 2.887 2.865 2.845 2.828 2.812 2.798 2.785 2.774

11 2.818 2.788 2.761 2.739 2.719 2.701 2.685 2.671 2.658 2.646
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N2   
N1 11 12 13 14 15 16 17 18 19 20

12 2.717 2.687 2.660 2.637 2.617 2.599 2.583 2.568 2.555 2.544

13 2.635 2.604 2.577 2.554 2.533 2.515 2.499 2.484 2.471 2.459

14 2.565 2.534 2.507 2.484 2.463 2.445 2.428 2.413 2.400 2.388

15 2.507 2.475 2.448 2.424 2.403 2.385 2.368 2.353 2.340 2.328

16 2.456 2.425 2.397 2.373 2.352 2.333 2.317 2.302 2.288 2.276

17 2.413 2.381 2.353 2.329 2.308 2.289 2.272 2.257 2.243 2.230

18 2.374 2.342 2.314 2.290 2.269 2.250 2.233 2.217 2.203 2.191

19 2.340 2.308 2.280 2.256 2.234 2.215 2.198 2.182 2.168 2.155

20 2.310 2.278 2.250 2.225 2.203 2.184 2.167 2.151 2.137 2.124

21 2.283 2.250 2.222 2.197 2.176 2.156 2.139 2.123 2.109 2.096

22 2.259 2.226 2.198 2.173 2.151 2.131 2.114 2.098 2.084 2.071

23 2.236 2.204 2.175 2.150 2.128 2.109 2.091 2.075 2.061 2.048

24 2.216 2.183 2.155 2.130 2.108 2.088 2.070 2.054 2.040 2.027

25 2.198 2.165 2.136 2.111 2.089 2.069 2.051 2.035 2.021 2.007

26 2.181 2.148 2.119 2.094 2.072 2.052 2.034 2.018 2.003 1.990

27 2.166 2.132 2.103 2.078 2.056 2.036 2.018 2.002 1.987 1.974

28 2.151 2.118 2.089 2.064 2.041 2.021 2.003 1.987 1.972 1.959

29 2.138 2.104 2.075 2.050 2.027 2.007 1.989 1.973 1.958 1.945

30 2.126 2.092 2.063 2.037 2.015 1.995 1.976 1.960 1.945 1.932

31 2.114 2.080 2.051 2.026 2.003 1.983 1.965 1.948 1.933 1.920

32 2.103 2.070 2.040 2.015 1.992 1.972 1.953 1.937 1.922 1.908

33 2.093 2.060 2.030 2.004 1.982 1.961 1.943 1.926 1.911 1.898

34 2.084 2.050 2.021 1.995 1.972 1.952 1.933 1.917 1.902 1.888

35 2.075 2.041 2.012 1.986 1.963 1.942 1.924 1.907 1.892 1.878

36 2.067 2.033 2.003 1.977 1.954 1.934 1.915 1.899 1.883 1.870

37 2.059 2.025 1.995 1.969 1.946 1.926 1.907 1.890 1.875 1.861

38 2.051 2.017 1.988 1.962 1.939 1.918 1.899 1.883 1.867 1.853

39 2.044 2.010 1.981 1.954 1.931 1.911 1.892 1.875 1.860 1.846

40 2.038 2.003 1.974 1.948 1.924 1.904 1.885 1.868 1.853 1.839

41 2.031 1.997 1.967 1.941 1.918 1.897 1.879 1.862 1.846 1.832

42 2.025 1.991 1.961 1.935 1.912 1.891 1.872 1.855 1.840 1.826

43 2.020 1.985 1.955 1.929 1.906 1.885 1.866 1.849 1.834 1.820

44 2.014 1.980 1.950 1.924 1.900 1.879 1.861 1.844 1.828 1.814

45 2.009 1.974 1.945 1.918 1.895 1.874 1.855 1.838 1.823 1.808

46 2.004 1.969 1.940 1.913 1.890 1.869 1.850 1.833 1.817 1.803

47 1.999 1.965 1.935 1.908 1.885 1.864 1.845 1.828 1.812 1.798

48 1.995 1.960 1.930 1.904 1.880 1.859 1.840 1.823 1.807 1.793

49 1.990 1.956 1.926 1.899 1.876 1.855 1.836 1.819 1.803 1.789

50 1.986 1.952 1.921 1.895 1.871 1.850 1.831 1.814 1.798 1.784

51 1.982 1.947 1.917 1.891 1.867 1.846 1.827 1.810 1.794 1.780

(continued)

Z01_EVAN5448_02_AppA.indd   621 12/10/15   9:46 AM



622 Appendix A  Statistical Tables

N2   
N1 11 12 13 14 15 16 17 18 19 20

52 1.978 1.944 1.913 1.887 1.863 1.842 1.823 1.806 1.790 1.776

53 1.975 1.940 1.910 1.883 1.859 1.838 1.819 1.802 1.786 1.772

54 1.971 1.936 1.906 1.879 1.856 1.835 1.816 1.798 1.782 1.768

55 1.968 1.933 1.903 1.876 1.852 1.831 1.812 1.795 1.779 1.764

56 1.964 1.930 1.899 1.873 1.849 1.828 1.809 1.791 1.775 1.761

57 1.961 1.926 1.896 1.869 1.846 1.824 1.805 1.788 1.772 1.757

58 1.958 1.923 1.893 1.866 1.842 1.821 1.802 1.785 1.769 1.754

59 1.955 1.920 1.890 1.863 1.839 1.818 1.799 1.781 1.766 1.751

60 1.952 1.917 1.887 1.860 1.836 1.815 1.796 1.778 1.763 1.748

61 1.949 1.915 1.884 1.857 1.834 1.812 1.793 1.776 1.760 1.745

62 1.947 1.912 1.882 1.855 1.831 1.809 1.790 1.773 1.757 1.742

63 1.944 1.909 1.879 1.852 1.828 1.807 1.787 1.770 1.754 1.739

64 1.942 1.907 1.876 1.849 1.826 1.804 1.785 1.767 1.751 1.737

65 1.939 1.904 1.874 1.847 1.823 1.802 1.782 1.765 1.749 1.734

66 1.937 1.902 1.871 1.845 1.821 1.799 1.780 1.762 1.746 1.732

67 1.935 1.900 1.869 1.842 1.818 1.797 1.777 1.760 1.744 1.729

68 1.932 1.897 1.867 1.840 1.816 1.795 1.775 1.758 1.742 1.727

69 1.930 1.895 1.865 1.838 1.814 1.792 1.773 1.755 1.739 1.725

70 1.928 1.893 1.863 1.836 1.812 1.790 1.771 1.753 1.737 1.722

71 1.926 1.891 1.861 1.834 1.810 1.788 1.769 1.751 1.735 1.720

72 1.924 1.889 1.859 1.832 1.808 1.786 1.767 1.749 1.733 1.718

73 1.922 1.887 1.857 1.830 1.806 1.784 1.765 1.747 1.731 1.716

74 1.921 1.885 1.855 1.828 1.804 1.782 1.763 1.745 1.729 1.714

75 1.919 1.884 1.853 1.826 1.802 1.780 1.761 1.743 1.727 1.712

76 1.917 1.882 1.851 1.824 1.800 1.778 1.759 1.741 1.725 1.710

77 1.915 1.880 1.849 1.822 1.798 1.777 1.757 1.739 1.723 1.708

78 1.914 1.878 1.848 1.821 1.797 1.775 1.755 1.738 1.721 1.707

79 1.912 1.877 1.846 1.819 1.795 1.773 1.754 1.736 1.720 1.705

80 1.910 1.875 1.845 1.817 1.793 1.772 1.752 1.734 1.718 1.703

81 1.909 1.874 1.843 1.816 1.792 1.770 1.750 1.733 1.716 1.702

82 1.907 1.872 1.841 1.814 1.790 1.768 1.749 1.731 1.715 1.700

83 1.906 1.871 1.840 1.813 1.789 1.767 1.747 1.729 1.713 1.698

84 1.905 1.869 1.838 1.811 1.787 1.765 1.746 1.728 1.712 1.697

85 1.903 1.868 1.837 1.810 1.786 1.764 1.744 1.726 1.710 1.695

86 1.902 1.867 1.836 1.808 1.784 1.762 1.743 1.725 1.709 1.694

87 1.900 1.865 1.834 1.807 1.783 1.761 1.741 1.724 1.707 1.692

88 1.899 1.864 1.833 1.806 1.782 1.760 1.740 1.722 1.706 1.691

89 1.898 1.863 1.832 1.804 1.780 1.758 1.739 1.721 1.705 1.690

90 1.897 1.861 1.830 1.803 1.779 1.757 1.737 1.720 1.703 1.688
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N2   
N1 11 12 13 14 15 16 17 18 19 20

91 1.895 1.860 1.829 1.802 1.778 1.756 1.736 1.718 1.702 1.687

92 1.894 1.859 1.828 1.801 1.776 1.755 1.735 1.717 1.701 1.686

93 1.893 1.858 1.827 1.800 1.775 1.753 1.734 1.716 1.699 1.684

94 1.892 1.857 1.826 1.798 1.774 1.752 1.733 1.715 1.698 1.683

95 1.891 1.856 1.825 1.797 1.773 1.751 1.731 1.713 1.697 1.682

96 1.890 1.854 1.823 1.796 1.772 1.750 1.730 1.712 1.696 1.681

97 1.889 1.853 1.822 1.795 1.771 1.749 1.729 1.711 1.695 1.680

98 1.888 1.852 1.821 1.794 1.770 1.748 1.728 1.710 1.694 1.679

99 1.887 1.851 1.820 1.793 1.769 1.747 1.727 1.709 1.693 1.678

100 1.886 1.850 1.819 1.792 1.768 1.746 1.726 1.708 1.691 1.676

N2   
N1 1 2 3 4 5 6 7 8 9 10

1 39.863 49.500 53.593 55.833 57.240 58.204 58.906 59.439 59.858 60.195

2 8.526 9.000 9.162 9.243 9.293 9.326 9.349 9.367 9.381 9.392

3 5.538 5.462 5.391 5.343 5.309 5.285 5.266 5.252 5.240 5.230

4 4.545 4.325 4.191 4.107 4.051 4.010 3.979 3.955 3.936 3.920

5 4.060 3.780 3.619 3.520 3.453 3.405 3.368 3.339 3.316 3.297

6 3.776 3.463 3.289 3.181 3.108 3.055 3.014 2.983 2.958 2.937

7 3.589 3.257 3.074 2.961 2.883 2.827 2.785 2.752 2.725 2.703

8 3.458 3.113 2.924 2.806 2.726 2.668 2.624 2.589 2.561 2.538

9 3.360 3.006 2.813 2.693 2.611 2.551 2.505 2.469 2.440 2.416

10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323

11 3.225 2.860 2.660 2.536 2.451 2.389 2.342 2.304 2.274 2.248

12 3.177 2.807 2.606 2.480 2.394 2.331 2.283 2.245 2.214 2.188

13 3.136 2.763 2.560 2.434 2.347 2.283 2.234 2.195 2.164 2.138

14 3.102 2.726 2.522 2.395 2.307 2.243 2.193 2.154 2.122 2.095

15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086 2.059

16 3.048 2.668 2.462 2.333 2.244 2.178 2.128 2.088 2.055 2.028

17 3.026 2.645 2.437 2.308 2.218 2.152 2.102 2.061 2.028 2.001

18 3.007 2.624 2.416 2.286 2.196 2.130 2.079 2.038 2.005 1.977

19 2.990 2.606 2.397 2.266 2.176 2.109 2.058 2.017 1.984 1.956

20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965 1.937

21 2.961 2.575 2.365 2.233 2.142 2.075 2.023 1.982 1.948 1.920

22 2.949 2.561 2.351 2.219 2.128 2.060 2.008 1.967 1.933 1.904

23 2.937 2.549 2.339 2.207 2.115 2.047 1.995 1.953 1.919 1.890

24 2.927 2.538 2.327 2.195 2.103 2.035 1.983 1.941 1.906 1.877

(continued)

Upper critical values of the F distribution for numerator degrees of freedom N1 and denominator degrees  
of freedom N2, 10% significance level
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N2   
N1 1 2 3 4 5 6 7 8 9 10

25 2.918 2.528 2.317 2.184 2.092 2.024 1.971 1.929 1.895 1.866

26 2.909 2.519 2.307 2.174 2.082 2.014 1.961 1.919 1.884 1.855

27 2.901 2.511 2.299 2.165 2.073 2.005 1.952 1.909 1.874 1.845

28 2.894 2.503 2.291 2.157 2.064 1.996 1.943 1.900 1.865 1.836

29 2.887 2.495 2.283 2.149 2.057 1.988 1.935 1.892 1.857 1.827

30 2.881 2.489 2.276 2.142 2.049 1.980 1.927 1.884 1.849 1.819

31 2.875 2.482 2.270 2.136 2.042 1.973 1.920 1.877 1.842 1.812

32 2.869 2.477 2.263 2.129 2.036 1.967 1.913 1.870 1.835 1.805

33 2.864 2.471 2.258 2.123 2.030 1.961 1.907 1.864 1.828 1.799

34 2.859 2.466 2.252 2.118 2.024 1.955 1.901 1.858 1.822 1.793

35 2.855 2.461 2.247 2.113 2.019 1.950 1.896 1.852 1.817 1.787

36 2.850 2.456 2.243 2.108 2.014 1.945 1.891 1.847 1.811 1.781

37 2.846 2.452 2.238 2.103 2.009 1.940 1.886 1.842 1.806 1.776

38 2.842 2.448 2.234 2.099 2.005 1.935 1.881 1.838 1.802 1.772

39 2.839 2.444 2.230 2.095 2.001 1.931 1.877 1.833 1.797 1.767

40 2.835 2.440 2.226 2.091 1.997 1.927 1.873 1.829 1.793 1.763

41 2.832 2.437 2.222 2.087 1.993 1.923 1.869 1.825 1.789 1.759

42 2.829 2.434 2.219 2.084 1.989 1.919 1.865 1.821 1.785 1.755

43 2.826 2.430 2.216 2.080 1.986 1.916 1.861 1.817 1.781 1.751

44 2.823 2.427 2.213 2.077 1.983 1.913 1.858 1.814 1.778 1.747

45 2.820 2.425 2.210 2.074 1.980 1.909 1.855 1.811 1.774 1.744

46 2.818 2.422 2.207 2.071 1.977 1.906 1.852 1.808 1.771 1.741

47 2.815 2.419 2.204 2.068 1.974 1.903 1.849 1.805 1.768 1.738

48 2.813 2.417 2.202 2.066 1.971 1.901 1.846 1.802 1.765 1.735

49 2.811 2.414 2.199 2.063 1.968 1.898 1.843 1.799 1.763 1.732

50 2.809 2.412 2.197 2.061 1.966 1.895 1.840 1.796 1.760 1.729

51 2.807 2.410 2.194 2.058 1.964 1.893 1.838 1.794 1.757 1.727

52 2.805 2.408 2.192 2.056 1.961 1.891 1.836 1.791 1.755 1.724

53 2.803 2.406 2.190 2.054 1.959 1.888 1.833 1.789 1.752 1.722

54 2.801 2.404 2.188 2.052 1.957 1.886 1.831 1.787 1.750 1.719

55 2.799 2.402 2.186 2.050 1.955 1.884 1.829 1.785 1.748 1.717

56 2.797 2.400 2.184 2.048 1.953 1.882 1.827 1.782 1.746 1.715

57 2.796 2.398 2.182 2.046 1.951 1.880 1.825 1.780 1.744 1.713

58 2.794 2.396 2.181 2.044 1.949 1.878 1.823 1.779 1.742 1.711

59 2.793 2.395 2.179 2.043 1.947 1.876 1.821 1.777 1.740 1.709

60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738 1.707

61 2.790 2.392 2.176 2.039 1.944 1.873 1.818 1.773 1.736 1.705

62 2.788 2.390 2.174 2.038 1.942 1.871 1.816 1.771 1.735 1.703

63 2.787 2.389 2.173 2.036 1.941 1.870 1.814 1.770 1.733 1.702
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N2   
N1 1 2 3 4 5 6 7 8 9 10

64 2.786 2.387 2.171 2.035 1.939 1.868 1.813 1.768 1.731 1.700

65 2.784 2.386 2.170 2.033 1.938 1.867 1.811 1.767 1.730 1.699

66 2.783 2.385 2.169 2.032 1.937 1.865 1.810 1.765 1.728 1.697

67 2.782 2.384 2.167 2.031 1.935 1.864 1.808 1.764 1.727 1.696

68 2.781 2.382 2.166 2.029 1.934 1.863 1.807 1.762 1.725 1.694

69 2.780 2.381 2.165 2.028 1.933 1.861 1.806 1.761 1.724 1.693

70 2.779 2.380 2.164 2.027 1.931 1.860 1.804 1.760 1.723 1.691

71 2.778 2.379 2.163 2.026 1.930 1.859 1.803 1.758 1.721 1.690

72 2.777 2.378 2.161 2.025 1.929 1.858 1.802 1.757 1.720 1.689

73 2.776 2.377 2.160 2.024 1.928 1.856 1.801 1.756 1.719 1.687

74 2.775 2.376 2.159 2.022 1.927 1.855 1.800 1.755 1.718 1.686

75 2.774 2.375 2.158 2.021 1.926 1.854 1.798 1.754 1.716 1.685

76 2.773 2.374 2.157 2.020 1.925 1.853 1.797 1.752 1.715 1.684

77 2.772 2.373 2.156 2.019 1.924 1.852 1.796 1.751 1.714 1.683

78 2.771 2.372 2.155 2.018 1.923 1.851 1.795 1.750 1.713 1.682

79 2.770 2.371 2.154 2.017 1.922 1.850 1.794 1.749 1.712 1.681

80 2.769 2.370 2.154 2.016 1.921 1.849 1.793 1.748 1.711 1.680

81 2.769 2.369 2.153 2.016 1.920 1.848 1.792 1.747 1.710 1.679

82 2.768 2.368 2.152 2.015 1.919 1.847 1.791 1.746 1.709 1.678

83 2.767 2.368 2.151 2.014 1.918 1.846 1.790 1.745 1.708 1.677

84 2.766 2.367 2.150 2.013 1.917 1.845 1.790 1.744 1.707 1.676

85 2.765 2.366 2.149 2.012 1.916 1.845 1.789 1.744 1.706 1.675

86 2.765 2.365 2.149 2.011 1.915 1.844 1.788 1.743 1.705 1.674

87 2.764 2.365 2.148 2.011 1.915 1.843 1.787 1.742 1.705 1.673

88 2.763 2.364 2.147 2.010 1.914 1.842 1.786 1.741 1.704 1.672

89 2.763 2.363 2.146 2.009 1.913 1.841 1.785 1.740 1.703 1.671

90 2.762 2.363 2.146 2.008 1.912 1.841 1.785 1.739 1.702 1.670

91 2.761 2.362 2.145 2.008 1.912 1.840 1.784 1.739 1.701 1.670

92 2.761 2.361 2.144 2.007 1.911 1.839 1.783 1.738 1.701 1.669

93 2.760 2.361 2.144 2.006 1.910 1.838 1.782 1.737 1.700 1.668

94 2.760 2.360 2.143 2.006 1.910 1.838 1.782 1.736 1.699 1.667

95 2.759 2.359 2.142 2.005 1.909 1.837 1.781 1.736 1.698 1.667

96 2.759 2.359 2.142 2.004 1.908 1.836 1.780 1.735 1.698 1.666

97 2.758 2.358 2.141 2.004 1.908 1.836 1.780 1.734 1.697 1.665

98 2.757 2.358 2.141 2.003 1.907 1.835 1.779 1.734 1.696 1.665

99 2.757 2.357 2.140 2.003 1.906 1.835 1.778 1.733 1.696 1.664

100 2.756 2.356 2.139 2.002 1.906 1.834 1.778 1.732 1.695 1.663

(continued)
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N2   
N1 11 12 13 14 15 16 17 18 19 20

1 60.473 60.705 60.903 61.073 61.220 61.350 61.464 61.566 61.658 61.740

2 9.401 9.408 9.415 9.420 9.425 9.429 9.433 9.436 9.439 9.441

3 5.222 5.216 5.210 5.205 5.200 5.196 5.193 5.190 5.187 5.184

4 3.907 3.896 3.886 3.878 3.870 3.864 3.858 3.853 3.849 3.844

5 3.282 3.268 3.257 3.247 3.238 3.230 3.223 3.217 3.212 3.207

6 2.920 2.905 2.892 2.881 2.871 2.863 2.855 2.848 2.842 2.836

7 2.684 2.668 2.654 2.643 2.632 2.623 2.615 2.607 2.601 2.595

8 2.519 2.502 2.488 2.475 2.464 2.455 2.446 2.438 2.431 2.425

9 2.396 2.379 2.364 2.351 2.340 2.329 2.320 2.312 2.305 2.298

10 2.302 2.284 2.269 2.255 2.244 2.233 2.224 2.215 2.208 2.201

11 2.227 2.209 2.193 2.179 2.167 2.156 2.147 2.138 2.130 2.123

12 2.166 2.147 2.131 2.117 2.105 2.094 2.084 2.075 2.067 2.060

13 2.116 2.097 2.080 2.066 2.053 2.042 2.032 2.023 2.014 2.007

14 2.073 2.054 2.037 2.022 2.010 1.998 1.988 1.978 1.970 1.962

15 2.037 2.017 2.000 1.985 1.972 1.961 1.950 1.941 1.932 1.924

16 2.005 1.985 1.968 1.953 1.940 1.928 1.917 1.908 1.899 1.891

17 1.978 1.958 1.940 1.925 1.912 1.900 1.889 1.879 1.870 1.862

18 1.954 1.933 1.916 1.900 1.887 1.875 1.864 1.854 1.845 1.837

19 1.932 1.912 1.894 1.878 1.865 1.852 1.841 1.831 1.822 1.814

20 1.913 1.892 1.875 1.859 1.845 1.833 1.821 1.811 1.802 1.794

21 1.896 1.875 1.857 1.841 1.827 1.815 1.803 1.793 1.784 1.776

22 1.880 1.859 1.841 1.825 1.811 1.798 1.787 1.777 1.768 1.759

23 1.866 1.845 1.827 1.811 1.796 1.784 1.772 1.762 1.753 1.744

24 1.853 1.832 1.814 1.797 1.783 1.770 1.759 1.748 1.739 1.730

25 1.841 1.820 1.802 1.785 1.771 1.758 1.746 1.736 1.726 1.718

26 1.830 1.809 1.790 1.774 1.760 1.747 1.735 1.724 1.715 1.706

27 1.820 1.799 1.780 1.764 1.749 1.736 1.724 1.714 1.704 1.695

28 1.811 1.790 1.771 1.754 1.740 1.726 1.715 1.704 1.694 1.685

29 1.802 1.781 1.762 1.745 1.731 1.717 1.705 1.695 1.685 1.676

30 1.794 1.773 1.754 1.737 1.722 1.709 1.697 1.686 1.676 1.667

31 1.787 1.765 1.746 1.729 1.714 1.701 1.689 1.678 1.668 1.659

32 1.780 1.758 1.739 1.722 1.707 1.694 1.682 1.671 1.661 1.652

33 1.773 1.751 1.732 1.715 1.700 1.687 1.675 1.664 1.654 1.645

34 1.767 1.745 1.726 1.709 1.694 1.680 1.668 1.657 1.647 1.638

35 1.761 1.739 1.720 1.703 1.688 1.674 1.662 1.651 1.641 1.632

36 1.756 1.734 1.715 1.697 1.682 1.669 1.656 1.645 1.635 1.626

37 1.751 1.729 1.709 1.692 1.677 1.663 1.651 1.640 1.630 1.620

38 1.746 1.724 1.704 1.687 1.672 1.658 1.646 1.635 1.624 1.615

39 1.741 1.719 1.700 1.682 1.667 1.653 1.641 1.630 1.619 1.610

40 1.737 1.715 1.695 1.678 1.662 1.649 1.636 1.625 1.615 1.605
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N2   
N1 11 12 13 14 15 16 17 18 19 20

41 1.733 1.710 1.691 1.673 1.658 1.644 1.632 1.620 1.610 1.601

42 1.729 1.706 1.687 1.669 1.654 1.640 1.628 1.616 1.606 1.596

43 1.725 1.703 1.683 1.665 1.650 1.636 1.624 1.612 1.602 1.592

44 1.721 1.699 1.679 1.662 1.646 1.632 1.620 1.608 1.598 1.588

45 1.718 1.695 1.676 1.658 1.643 1.629 1.616 1.605 1.594 1.585

46 1.715 1.692 1.672 1.655 1.639 1.625 1.613 1.601 1.591 1.581

47 1.712 1.689 1.669 1.652 1.636 1.622 1.609 1.598 1.587 1.578

48 1.709 1.686 1.666 1.648 1.633 1.619 1.606 1.594 1.584 1.574

49 1.706 1.683 1.663 1.645 1.630 1.616 1.603 1.591 1.581 1.571

50 1.703 1.680 1.660 1.643 1.627 1.613 1.600 1.588 1.578 1.568

51 1.700 1.677 1.658 1.640 1.624 1.610 1.597 1.586 1.575 1.565

52 1.698 1.675 1.655 1.637 1.621 1.607 1.594 1.583 1.572 1.562

53 1.695 1.672 1.652 1.635 1.619 1.605 1.592 1.580 1.570 1.560

54 1.693 1.670 1.650 1.632 1.616 1.602 1.589 1.578 1.567 1.557

55 1.691 1.668 1.648 1.630 1.614 1.600 1.587 1.575 1.564 1.555

56 1.688 1.666 1.645 1.628 1.612 1.597 1.585 1.573 1.562 1.552

57 1.686 1.663 1.643 1.625 1.610 1.595 1.582 1.571 1.560 1.550

58 1.684 1.661 1.641 1.623 1.607 1.593 1.580 1.568 1.558 1.548

59 1.682 1.659 1.639 1.621 1.605 1.591 1.578 1.566 1.555 1.546

60 1.680 1.657 1.637 1.619 1.603 1.589 1.576 1.564 1.553 1.543

61 1.679 1.656 1.635 1.617 1.601 1.587 1.574 1.562 1.551 1.541

62 1.677 1.654 1.634 1.616 1.600 1.585 1.572 1.560 1.549 1.540

63 1.675 1.652 1.632 1.614 1.598 1.583 1.570 1.558 1.548 1.538

64 1.673 1.650 1.630 1.612 1.596 1.582 1.569 1.557 1.546 1.536

65 1.672 1.649 1.628 1.610 1.594 1.580 1.567 1.555 1.544 1.534

66 1.670 1.647 1.627 1.609 1.593 1.578 1.565 1.553 1.542 1.532

67 1.669 1.646 1.625 1.607 1.591 1.577 1.564 1.552 1.541 1.531

68 1.667 1.644 1.624 1.606 1.590 1.575 1.562 1.550 1.539 1.529

69 1.666 1.643 1.622 1.604 1.588 1.574 1.560 1.548 1.538 1.527

70 1.665 1.641 1.621 1.603 1.587 1.572 1.559 1.547 1.536 1.526

71 1.663 1.640 1.619 1.601 1.585 1.571 1.557 1.545 1.535 1.524

72 1.662 1.639 1.618 1.600 1.584 1.569 1.556 1.544 1.533 1.523

73 1.661 1.637 1.617 1.599 1.583 1.568 1.555 1.543 1.532 1.522

74 1.659 1.636 1.616 1.597 1.581 1.567 1.553 1.541 1.530 1.520

75 1.658 1.635 1.614 1.596 1.580 1.565 1.552 1.540 1.529 1.519

76 1.657 1.634 1.613 1.595 1.579 1.564 1.551 1.539 1.528 1.518

77 1.656 1.632 1.612 1.594 1.578 1.563 1.550 1.538 1.527 1.516

78 1.655 1.631 1.611 1.593 1.576 1.562 1.548 1.536 1.525 1.515

79 1.654 1.630 1.610 1.592 1.575 1.561 1.547 1.535 1.524 1.514

80 1.653 1.629 1.609 1.590 1.574 1.559 1.546 1.534 1.523 1.513

(continued)
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N2   
N1 11 12 13 14 15 16 17 18 19 20

81 1.652 1.628 1.608 1.589 1.573 1.558 1.545 1.533 1.522 1.512

82 1.651 1.627 1.607 1.588 1.572 1.557 1.544 1.532 1.521 1.511

83 1.650 1.626 1.606 1.587 1.571 1.556 1.543 1.531 1.520 1.509

84 1.649 1.625 1.605 1.586 1.570 1.555 1.542 1.530 1.519 1.508

85 1.648 1.624 1.604 1.585 1.569 1.554 1.541 1.529 1.518 1.507

86 1.647 1.623 1.603 1.584 1.568 1.553 1.540 1.528 1.517 1.506

87 1.646 1.622 1.602 1.583 1.567 1.552 1.539 1.527 1.516 1.505

88 1.645 1.622 1.601 1.583 1.566 1.551 1.538 1.526 1.515 1.504

89 1.644 1.621 1.600 1.582 1.565 1.550 1.537 1.525 1.514 1.503

90 1.643 1.620 1.599 1.581 1.564 1.550 1.536 1.524 1.513 1.503

91 1.643 1.619 1.598 1.580 1.564 1.549 1.535 1.523 1.512 1.502

92 1.642 1.618 1.598 1.579 1.563 1.548 1.534 1.522 1.511 1.501

93 1.641 1.617 1.597 1.578 1.562 1.547 1.534 1.521 1.510 1.500

94 1.640 1.617 1.596 1.578 1.561 1.546 1.533 1.521 1.509 1.499

95 1.640 1.616 1.595 1.577 1.560 1.545 1.532 1.520 1.509 1.498

96 1.639 1.615 1.594 1.576 1.560 1.545 1.531 1.519 1.508 1.497

97 1.638 1.614 1.594 1.575 1.559 1.544 1.530 1.518 1.507 1.497

98 1.637 1.614 1.593 1.575 1.558 1.543 1.530 1.517 1.506 1.496

99 1.637 1.613 1.592 1.574 1.557 1.542 1.529 1.517 1.505 1.495

100 1.636 1.612 1.592 1.573 1.557 1.542 1.528 1.516 1.505 1.494

N2   
N1 1 2 3 4 5 6 7 8 9 10

1 4052.19 4999.52 5403.34 5624.62 5763.65 5858.97 5928.33 5981.10 6022.50 6055.85

2 98.502 99.000 99.166 99.249 99.300 99.333 99.356 99.374 99.388 99.399

3 34.116 30.816 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939

Upper critical values of the F distribution for numerator degrees of freedom N1 and denominator degrees of free-
dom N2, 1% significance level
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N2   
N1 1 2 3 4 5 6 7 8 9 10

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005

30 7.562 5.390 4.510 4.018 3.699 3.473 3.305 3.173 3.067 2.979

31 7.530 5.362 4.484 3.993 3.675 3.449 3.281 3.149 3.043 2.955

32 7.499 5.336 4.459 3.969 3.652 3.427 3.258 3.127 3.021 2.934

33 7.471 5.312 4.437 3.948 3.630 3.406 3.238 3.106 3.000 2.913

34 7.444 5.289 4.416 3.927 3.611 3.386 3.218 3.087 2.981 2.894

35 7.419 5.268 4.396 3.908 3.592 3.368 3.200 3.069 2.963 2.876

36 7.396 5.248 4.377 3.890 3.574 3.351 3.183 3.052 2.946 2.859

37 7.373 5.229 4.360 3.873 3.558 3.334 3.167 3.036 2.930 2.843

38 7.353 5.211 4.343 3.858 3.542 3.319 3.152 3.021 2.915 2.828

39 7.333 5.194 4.327 3.843 3.528 3.305 3.137 3.006 2.901 2.814

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801

41 7.296 5.163 4.299 3.815 3.501 3.278 3.111 2.980 2.875 2.788

42 7.280 5.149 4.285 3.802 3.488 3.266 3.099 2.968 2.863 2.776

43 7.264 5.136 4.273 3.790 3.476 3.254 3.087 2.957 2.851 2.764

44 7.248 5.123 4.261 3.778 3.465 3.243 3.076 2.946 2.840 2.754

45 7.234 5.110 4.249 3.767 3.454 3.232 3.066 2.935 2.830 2.743

46 7.220 5.099 4.238 3.757 3.444 3.222 3.056 2.925 2.820 2.733

47 7.207 5.087 4.228 3.747 3.434 3.213 3.046 2.916 2.811 2.724

48 7.194 5.077 4.218 3.737 3.425 3.204 3.037 2.907 2.802 2.715

49 7.182 5.066 4.208 3.728 3.416 3.195 3.028 2.898 2.793 2.706

50 7.171 5.057 4.199 3.720 3.408 3.186 3.020 2.890 2.785 2.698

51 7.159 5.047 4.191 3.711 3.400 3.178 3.012 2.882 2.777 2.690

52 7.149 5.038 4.182 3.703 3.392 3.171 3.005 2.874 2.769 2.683

53 7.139 5.030 4.174 3.695 3.384 3.163 2.997 2.867 2.762 2.675

54 7.129 5.021 4.167 3.688 3.377 3.156 2.990 2.860 2.755 2.668

(continued)
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N2   
N1 1 2 3 4 5 6 7 8 9 10

55 7.119 5.013 4.159 3.681 3.370 3.149 2.983 2.853 2.748 2.662

56 7.110 5.006 4.152 3.674 3.363 3.143 2.977 2.847 2.742 2.655

57 7.102 4.998 4.145 3.667 3.357 3.136 2.971 2.841 2.736 2.649

58 7.093 4.991 4.138 3.661 3.351 3.130 2.965 2.835 2.730 2.643

59 7.085 4.984 4.132 3.655 3.345 3.124 2.959 2.829 2.724 2.637

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632

61 7.070 4.971 4.120 3.643 3.333 3.113 2.948 2.818 2.713 2.626

62 7.062 4.965 4.114 3.638 3.328 3.108 2.942 2.813 2.708 2.621

63 7.055 4.959 4.109 3.632 3.323 3.103 2.937 2.808 2.703 2.616

64 7.048 4.953 4.103 3.627 3.318 3.098 2.932 2.803 2.698 2.611

65 7.042 4.947 4.098 3.622 3.313 3.093 2.928 2.798 2.693 2.607

66 7.035 4.942 4.093 3.618 3.308 3.088 2.923 2.793 2.689 2.602

67 7.029 4.937 4.088 3.613 3.304 3.084 2.919 2.789 2.684 2.598

68 7.023 4.932 4.083 3.608 3.299 3.080 2.914 2.785 2.680 2.593

69 7.017 4.927 4.079 3.604 3.295 3.075 2.910 2.781 2.676 2.589

70 7.011 4.922 4.074 3.600 3.291 3.071 2.906 2.777 2.672 2.585

71 7.006 4.917 4.070 3.596 3.287 3.067 2.902 2.773 2.668 2.581

72 7.001 4.913 4.066 3.591 3.283 3.063 2.898 2.769 2.664 2.578

73 6.995 4.908 4.062 3.588 3.279 3.060 2.895 2.765 2.660 2.574

74 6.990 4.904 4.058 3.584 3.275 3.056 2.891 2.762 2.657 2.570

75 6.985 4.900 4.054 3.580 3.272 3.052 2.887 2.758 2.653 2.567

76 6.981 4.896 4.050 3.577 3.268 3.049 2.884 2.755 2.650 2.563

77 6.976 4.892 4.047 3.573 3.265 3.046 2.881 2.751 2.647 2.560

78 6.971 4.888 4.043 3.570 3.261 3.042 2.877 2.748 2.644 2.557

79 6.967 4.884 4.040 3.566 3.258 3.039 2.874 2.745 2.640 2.554

80 6.963 4.881 4.036 3.563 3.255 3.036 2.871 2.742 2.637 2.551

81 6.958 4.877 4.033 3.560 3.252 3.033 2.868 2.739 2.634 2.548

82 6.954 4.874 4.030 3.557 3.249 3.030 2.865 2.736 2.632 2.545

83 6.950 4.870 4.027 3.554 3.246 3.027 2.863 2.733 2.629 2.542

84 6.947 4.867 4.024 3.551 3.243 3.025 2.860 2.731 2.626 2.539

85 6.943 4.864 4.021 3.548 3.240 3.022 2.857 2.728 2.623 2.537

86 6.939 4.861 4.018 3.545 3.238 3.019 2.854 2.725 2.621 2.534

87 6.935 4.858 4.015 3.543 3.235 3.017 2.852 2.723 2.618 2.532

88 6.932 4.855 4.012 3.540 3.233 3.014 2.849 2.720 2.616 2.529

89 6.928 4.852 4.010 3.538 3.230 3.012 2.847 2.718 2.613 2.527

90 6.925 4.849 4.007 3.535 3.228 3.009 2.845 2.715 2.611 2.524

91 6.922 4.846 4.004 3.533 3.225 3.007 2.842 2.713 2.609 2.522

92 6.919 4.844 4.002 3.530 3.223 3.004 2.840 2.711 2.606 2.520

93 6.915 4.841 3.999 3.528 3.221 3.002 2.838 2.709 2.604 2.518

94 6.912 4.838 3.997 3.525 3.218 3.000 2.835 2.706 2.602 2.515
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N2   
N1 1 2 3 4 5 6 7 8 9 10

95 6.909 4.836 3.995 3.523 3.216 2.998 2.833 2.704 2.600 2.513

96 6.906 4.833 3.992 3.521 3.214 2.996 2.831 2.702 2.598 2.511

97 6.904 4.831 3.990 3.519 3.212 2.994 2.829 2.700 2.596 2.509

98 6.901 4.829 3.988 3.517 3.210 2.992 2.827 2.698 2.594 2.507

99 6.898 4.826 3.986 3.515 3.208 2.990 2.825 2.696 2.592 2.505

100 6.895 4.824 3.984 3.513 3.206 2.988 2.823 2.694 2.590 2.503

N2   
N1 11 12 13 14 15 16 17 18 19 20

1 6083.35 6106.35 6125.86 6142.70 6157.28 6170.12 6181.42 6191.52 6200.58 6208.74

2 99.408 99.416 99.422 99.428 99.432 99.437 99.440 99.444 99.447 99.449

3 27.133 27.052 26.983 26.924 26.872 26.827 26.787 26.751 26.719 26.690

4 14.452 14.374 14.307 14.249 14.198 14.154 14.115 14.080 14.048 14.020

5 9.963 9.888 9.825 9.770 9.722 9.680 9.643 9.610 9.580 9.553

6 7.790 7.718 7.657 7.605 7.559 7.519 7.483 7.451 7.422 7.396

7 6.538 6.469 6.410 6.359 6.314 6.275 6.240 6.209 6.181 6.155

8 5.734 5.667 5.609 5.559 5.515 5.477 5.442 5.412 5.384 5.359

9 5.178 5.111 5.055 5.005 4.962 4.924 4.890 4.860 4.833 4.808

10 4.772 4.706 4.650 4.601 4.558 4.520 4.487 4.457 4.430 4.405

11 4.462 4.397 4.342 4.293 4.251 4.213 4.180 4.150 4.123 4.099

12 4.220 4.155 4.100 4.052 4.010 3.972 3.939 3.909 3.883 3.858

13 4.025 3.960 3.905 3.857 3.815 3.778 3.745 3.716 3.689 3.665

14 3.864 3.800 3.745 3.698 3.656 3.619 3.586 3.556 3.529 3.505

15 3.730 3.666 3.612 3.564 3.522 3.485 3.452 3.423 3.396 3.372

16 3.616 3.553 3.498 3.451 3.409 3.372 3.339 3.310 3.283 3.259

17 3.519 3.455 3.401 3.353 3.312 3.275 3.242 3.212 3.186 3.162

18 3.434 3.371 3.316 3.269 3.227 3.190 3.158 3.128 3.101 3.077

19 3.360 3.297 3.242 3.195 3.153 3.116 3.084 3.054 3.027 3.003

20 3.294 3.231 3.177 3.130 3.088 3.051 3.018 2.989 2.962 2.938

21 3.236 3.173 3.119 3.072 3.030 2.993 2.960 2.931 2.904 2.880

22 3.184 3.121 3.067 3.019 2.978 2.941 2.908 2.879 2.852 2.827

23 3.137 3.074 3.020 2.973 2.931 2.894 2.861 2.832 2.805 2.781

24 3.094 3.032 2.977 2.930 2.889 2.852 2.819 2.789 2.762 2.738

25 3.056 2.993 2.939 2.892 2.850 2.813 2.780 2.751 2.724 2.699

26 3.021 2.958 2.904 2.857 2.815 2.778 2.745 2.715 2.688 2.664

27 2.988 2.926 2.871 2.824 2.783 2.746 2.713 2.683 2.656 2.632

(continued)
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N2   
N1 11 12 13 14 15 16 17 18 19 20

28 2.959 2.896 2.842 2.795 2.753 2.716 2.683 2.653 2.626 2.602

29 2.931 2.868 2.814 2.767 2.726 2.689 2.656 2.626 2.599 2.574

30 2.906 2.843 2.789 2.742 2.700 2.663 2.630 2.600 2.573 2.549

31 2.882 2.820 2.765 2.718 2.677 2.640 2.606 2.577 2.550 2.525

32 2.860 2.798 2.744 2.696 2.655 2.618 2.584 2.555 2.527 2.503

33 2.840 2.777 2.723 2.676 2.634 2.597 2.564 2.534 2.507 2.482

34 2.821 2.758 2.704 2.657 2.615 2.578 2.545 2.515 2.488 2.463

35 2.803 2.740 2.686 2.639 2.597 2.560 2.527 2.497 2.470 2.445

36 2.786 2.723 2.669 2.622 2.580 2.543 2.510 2.480 2.453 2.428

37 2.770 2.707 2.653 2.606 2.564 2.527 2.494 2.464 2.437 2.412

38 2.755 2.692 2.638 2.591 2.549 2.512 2.479 2.449 2.421 2.397

39 2.741 2.678 2.624 2.577 2.535 2.498 2.465 2.434 2.407 2.382

40 2.727 2.665 2.611 2.563 2.522 2.484 2.451 2.421 2.394 2.369

41 2.715 2.652 2.598 2.551 2.509 2.472 2.438 2.408 2.381 2.356

42 2.703 2.640 2.586 2.539 2.497 2.460 2.426 2.396 2.369 2.344

43 2.691 2.629 2.575 2.527 2.485 2.448 2.415 2.385 2.357 2.332

44 2.680 2.618 2.564 2.516 2.475 2.437 2.404 2.374 2.346 2.321

45 2.670 2.608 2.553 2.506 2.464 2.427 2.393 2.363 2.336 2.311

46 2.660 2.598 2.544 2.496 2.454 2.417 2.384 2.353 2.326 2.301

47 2.651 2.588 2.534 2.487 2.445 2.408 2.374 2.344 2.316 2.291

48 2.642 2.579 2.525 2.478 2.436 2.399 2.365 2.335 2.307 2.282

49 2.633 2.571 2.517 2.469 2.427 2.390 2.356 2.326 2.299 2.274

50 2.625 2.562 2.508 2.461 2.419 2.382 2.348 2.318 2.290 2.265

51 2.617 2.555 2.500 2.453 2.411 2.374 2.340 2.310 2.282 2.257

52 2.610 2.547 2.493 2.445 2.403 2.366 2.333 2.302 2.275 2.250

53 2.602 2.540 2.486 2.438 2.396 2.359 2.325 2.295 2.267 2.242

54 2.595 2.533 2.479 2.431 2.389 2.352 2.318 2.288 2.260 2.235

55 2.589 2.526 2.472 2.424 2.382 2.345 2.311 2.281 2.253 2.228

56 2.582 2.520 2.465 2.418 2.376 2.339 2.305 2.275 2.247 2.222

57 2.576 2.513 2.459 2.412 2.370 2.332 2.299 2.268 2.241 2.215

58 2.570 2.507 2.453 2.406 2.364 2.326 2.293 2.262 2.235 2.209

59 2.564 2.502 2.447 2.400 2.358 2.320 2.287 2.256 2.229 2.203

60 2.559 2.496 2.442 2.394 2.352 2.315 2.281 2.251 2.223 2.198

61 2.553 2.491 2.436 2.389 2.347 2.309 2.276 2.245 2.218 2.192

62 2.548 2.486 2.431 2.384 2.342 2.304 2.270 2.240 2.212 2.187

63 2.543 2.481 2.426 2.379 2.337 2.299 2.265 2.235 2.207 2.182

64 2.538 2.476 2.421 2.374 2.332 2.294 2.260 2.230 2.202 2.177

65 2.534 2.471 2.417 2.369 2.327 2.289 2.256 2.225 2.198 2.172

66 2.529 2.466 2.412 2.365 2.322 2.285 2.251 2.221 2.193 2.168

67 2.525 2.462 2.408 2.360 2.318 2.280 2.247 2.216 2.188 2.163

68 2.520 2.458 2.403 2.356 2.314 2.276 2.242 2.212 2.184 2.159
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N2   
N1 11 12 13 14 15 16 17 18 19 20

69 2.516 2.454 2.399 2.352 2.310 2.272 2.238 2.208 2.180 2.155

70 2.512 2.450 2.395 2.348 2.306 2.268 2.234 2.204 2.176 2.150

71 2.508 2.446 2.391 2.344 2.302 2.264 2.230 2.200 2.172 2.146

72 2.504 2.442 2.388 2.340 2.298 2.260 2.226 2.196 2.168 2.143

73 2.501 2.438 2.384 2.336 2.294 2.256 2.223 2.192 2.164 2.139

74 2.497 2.435 2.380 2.333 2.290 2.253 2.219 2.188 2.161 2.135

75 2.494 2.431 2.377 2.329 2.287 2.249 2.215 2.185 2.157 2.132

76 2.490 2.428 2.373 2.326 2.284 2.246 2.212 2.181 2.154 2.128

77 2.487 2.424 2.370 2.322 2.280 2.243 2.209 2.178 2.150 2.125

78 2.484 2.421 2.367 2.319 2.277 2.239 2.206 2.175 2.147 2.122

79 2.481 2.418 2.364 2.316 2.274 2.236 2.202 2.172 2.144 2.118

80 2.478 2.415 2.361 2.313 2.271 2.233 2.199 2.169 2.141 2.115

81 2.475 2.412 2.358 2.310 2.268 2.230 2.196 2.166 2.138 2.112

82 2.472 2.409 2.355 2.307 2.265 2.227 2.193 2.163 2.135 2.109

83 2.469 2.406 2.352 2.304 2.262 2.224 2.191 2.160 2.132 2.106

84 2.466 2.404 2.349 2.302 2.259 2.222 2.188 2.157 2.129 2.104

85 2.464 2.401 2.347 2.299 2.257 2.219 2.185 2.154 2.126 2.101

86 2.461 2.398 2.344 2.296 2.254 2.216 2.182 2.152 2.124 2.098

87 2.459 2.396 2.342 2.294 2.252 2.214 2.180 2.149 2.121 2.096

88 2.456 2.393 2.339 2.291 2.249 2.211 2.177 2.147 2.119 2.093

89 2.454 2.391 2.337 2.289 2.247 2.209 2.175 2.144 2.116 2.091

90 2.451 2.389 2.334 2.286 2.244 2.206 2.172 2.142 2.114 2.088

91 2.449 2.386 2.332 2.284 2.242 2.204 2.170 2.139 2.111 2.086

92 2.447 2.384 2.330 2.282 2.240 2.202 2.168 2.137 2.109 2.083

93 2.444 2.382 2.327 2.280 2.237 2.200 2.166 2.135 2.107 2.081

94 2.442 2.380 2.325 2.277 2.235 2.197 2.163 2.133 2.105 2.079

95 2.440 2.378 2.323 2.275 2.233 2.195 2.161 2.130 2.102 2.077

96 2.438 2.375 2.321 2.273 2.231 2.193 2.159 2.128 2.100 2.075

97 2.436 2.373 2.319 2.271 2.229 2.191 2.157 2.126 2.098 2.073

98 2.434 2.371 2.317 2.269 2.227 2.189 2.155 2.124 2.096 2.071

99 2.432 2.369 2.315 2.267 2.225 2.187 2.153 2.122 2.094 2.069

100 2.430 2.368 2.313 2.265 2.223 2.185 2.151 2.120 2.092 2.067

Source: National Institute of Standards and Technology
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635

Absolute address. Use of a dollar sign ($) before either the row or 
column label or both.

Agglomerative clustering methods. A series of partitions takes 
place from a single cluster containing all objects to n clusters, 
which proceed by a series of fusions of the n objects into groups.

Algorithm. A systematic procedure that finds a solution to a problem.
Alternative hypothesis. The complement of the null hypothesis; 

it must be true if the null hypothesis is false. The alternative 
 hypothesis is denoted by H1.

Alternative optimal solution. A solution that results in maximizing 
(or minimizing) the objective by more than one combination of 
decision variables, all of which have the same objective function 
value.

Analysis of variance (ANOVA). A tool that analyzes variance in the 
data and examines a test statistic that is the ratio of measures.

Area chart. A chart that combines the features of a pie chart with 
those of line charts.

Arithmetic mean (mean). The average, which is the sum of the 
 observations divided by the number of observations.

Association rule mining. A tool used to uncover interesting associa-
tions and/or correlation relationships among large sets of data. 
The rules identify attributes that occur frequently together in a 
given data set.

Autocorrelation. Correlation among successive observations over 
time and identified by residual plots having clusters of residu-
als with the same sign. Autocorrelation can be evaluated more 
formally using a statistical test based on the measure, Durbin–
Watson statistic.

Auxiliary variables. The variables used to define the bound con-
straints and obtain more complete sensitivity information.

Average group linkage clustering. A method that uses the mean val-
ues for each variable to compute distances between clusters.

Average linkage clustering. Defines the distance between two clus-
ters as the average of distances between all pairs of objects 
where each pair is made up of one object from each group.

Average payoff strategy. French mathematician Laplace proposed 
this approach. For any decision, the expected value is the summa-
tion of the payoffs multiplied by their probability, summed over 
all outcomes. The simplest case is to assume that each outcome is 
equally likely to occur; that is, the probability of each outcome is 
simply 1/N, where N is the number of possible outcomes.

Balance constraints. Balance constraints ensure that the flow of ma-
terial or money is accounted for at locations or between time 
periods. Example: The total amount shipped to a distribution 
center from all plants must equal the amount shipped from the 
distribution center to all customers.

Bar chart. A horizontal bar chart.
Bernoulli distribution. The probability distribution of a random vari-

able with two possible outcomes, each with a constant probabil-
ity of occurrence.

Best-subsets regression. A tool that evaluates either all possible 
regression models for a set of independent variables or the best 
subsets of models for a fixed number of independent variables.

Big data. Massive amounts of business data from a wide variety of 
sources, much of which is available in real time and much of 
which is uncertain or unpredictable.

Bimodal. Histograms with exactly two peaks.
Binding constraint. A constraint for which the Cell Value is equal to 

the right-hand side of the value of the constraint.
Binary variable. The variable restricted to being either 0 or 1 and 

enables to model logical decisions in optimization models. The 
variable is usually written as x = 0 or 1.

Binomial distribution. The distribution that models n independent 
replications of a Bernoulli experiment, each with a probability 
p of success.

Boxplot. Graphically displays five key statistics of a data set—the 
minimum, first quartile, median, third quartile, and maximum—
and identifies the shape of a distribution and outliers in the data.

Box-whisker chart. A chart that shows the minimum, first quar-
tile, median, third quartile, and maximum values in a data set 
graphically.

Branches. Each branch of the decision tree represents an event or a 
decision.

Bubble chart. A type of scatter chart in which the size of the data 
marker corresponds to the value of a third variable—a way to 
plot three variables in two dimensions.

Business analytics (analytics). The use of data, information technol-
ogy, statistical analysis, quantitative methods, and mathematical 
or computer-based models to help managers gain improved in-
sight about their business operations and make better, fact-based 
decisions; a process of transforming data into actions through 
analysis and insights in the context of organizational decision 
making and problem solving.

Business intelligence (BI). The collection, management, analysis, 
and reporting of data.

Categorical (nominal) data. Data that are sorted into categories ac-
cording to specified characteristics.

Central limit theorem. A theory that states that if the population is 
normally distributed, then the sampling distribution of the mean 
will be normal for any sample size.

Certainty equivalent. The term represents the amount that a decision 
maker feels is equivalent to an uncertain gamble.

Chebyshev’s theorem. The theorem that states that for any set of 
data, the proportion of values that lie within k standard devia-
tions (k 7 1) of the mean is at least 1 - 1/k2.

Chi-square distribution. Distribution of Chi-square statistics charac-
terized by degrees of freedom.

Chi-square statistic. The sum of squares of the differences between 
observed frequency, fo, and expected frequency, fe, divided by 
the expected frequency in each cell.

Glossary
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Classification matrix. A tool that shows the number of cases that 
were classified either correctly or incorrectly.

Cluster analysis. A collection of techniques that seek to group or 
segment a collection of objects into subsets or clusters such 
that objects within each cluster are more closely related to one 
another than objects assigned to different clusters. The objects 
within clusters exhibit a high amount of similarity.

Cluster sampling. A theory based on dividing a population into sub-
groups (clusters), sampling a set of clusters, and (usually) con-
ducting a complete census within the clusters sampled.

Conditional probability. The probability of occurrence of one event 
A, given that another event B is known to be true or has already 
occurred.

Coefficient of determination (R2). The tool gives the proportion of 
variation in the dependent variable that is explained by the in-
dependent variable of the regression model and has the value 
between 0 and 1.

Coefficient of kurtosis (CK). A measure of the degree of kurtosis of 
a population computed using the Excel function KURT (data 
range).

Coefficient of multiple determination. Similar to simple linear re-
gression, the tool explains the percentage of variation in the de-
pendent variable. The coefficient of multiple determination in 
the context of multiple regression indicates the strength of asso-
ciation between the dependent and independent variables.

Coefficient of skewness (CS). A measure of the degree of asymme-
try of observations around the mean.

Coefficient of variation (CV). Relative measure of the dispersion in 
data relative to the mean.

Confidence interval. A range of values between which the value of 
the population parameter is believed to be along with a prob-
ability that the interval correctly estimates the true (unknown) 
population parameter.

Confidence coefficient. The probability of correctly failing to reject 
the null hypothesis, or P(not rejecting H0 � H0 is true), and is cal-
culated as 1 - a.

Confidence of the (association) rule. The conditional probability 
that a randomly selected transaction will include all the items in 
the consequent given that the transaction includes all the items 
in the antecedent.

Constraint function. A function of the decision variables in the 
problem.

Constraints. Limitations, requirements, or other restrictions that are 
imposed on any solution, either from practical or technological 
considerations or by management policy.

Contingency table. A cross-tabulation table.
Continuous metric. A metric that is based on a continuous scale of 

measurement.
Continuous random variable. A random variable that has outcomes 

over one or more continuous intervals of real numbers.
Convenience sampling. A method in which samples are selected 

based on the ease with which the data can be collected.
Column chart. A vertical bar chart.
Complete linkage clustering. The distance between groups is de-

fined as the distance between the most distant pair of objects, 
one from each group.

Complement. The set of all outcomes in the sample space that is not 
included in the event.

Corner point. The point at which the constraint lines intersect along 
the feasible region.

Correlation. A measure of the linear relationship between two 
variables, X and Y, which does not depend on the units of 
measurement.

Correlation coefficient (Pearson product moment correlation coef-
ficient). The value obtained by dividing the covariance of the 
two variables by the product of their standard deviations.

Covariance. A measure of the linear association between two vari-
ables, X and Y.

Cross-tabulation. A tabular method that displays the number of ob-
servations in a data set for different subcategories of two cat-
egorical variables.

Cross-validation. A process of using two sets of sample data; one to 
build the model (the training set), and the second to assess the 
model’s performance (the validation set).

Cumulative distribution function. A specification of the probability 
that the random variable X assumes a value less than or equal to 
a specified value x.

Cumulative relative frequency. The proportion of the total num-
ber of observations that fall at or below the upper limit of each 
group.

Cumulative relative frequency distribution. A tabular summary of 
cumulative relative frequencies.

Curvilinear regression model. The model is used in forecasting 
when the independent variable is time.

Cyclical effect. Characteristic of a time series that describes ups and 
downs over a much longer time frame, such as several years.

Dashboard. A visual representation of a set of key business 
measures.

Database. A collection of related files containing records on people, 
places, or things.

Data mining. A rapidly growing field of business analytics that is 
focused on better understanding characteristics and patterns 
among variables in large databases using a variety of statistical 
and analytical tools.

Data profile (fractile). A measure of dividing data into sets.
Data set. A collection of data.
Data table. A table that summarizes the impact of one or two inputs 

on a specified output.
Data validation. A tool that allows defining acceptable input values 

in a spreadsheet and providing an error alert if an invalid entry 
is made.

Data visualization. The process of displaying data (often in large 
quantities) in a meaningful fashion to provide insights that will 
support better decisions.

Decision alternatives. Decisions that involve a choice from among a 
small set of alternatives with uncertain consequences.

Decision making. The study of how people make decisions, partic-
ularly when faced with imperfect or uncertain information, as 
well as a collection of techniques to support decision choices.

Decision model. A logical or mathematical representation of a prob-
lem or business situation that can be used to understand, ana-
lyze, or facilitate making a decision.

Decision node. A decision node is expressed by a square, and it 
represents an event of a selected decision from among several 
alternatives.

Decision strategy. A decision strategy is a specification of an initial 
decision and subsequent decisions to make after knowing what 
events occur.

Decision support systems (DSS). A combination of business intel-
ligence concepts and OR/MS models to create analytical-based 
computer systems to support decision making.
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Decision tree. An approach to structuring a decision problem involv-
ing uncertainty to use a graphical model.

Decision variables. The unknown values that an optimization model 
seeks to determine.

Degenerate solution. A solution is a degenerate solution if the right-
hand-side value of any constraint has a zero allowable increase 
or allowable decrease.

Delphi method. A forecasting approach that uses a panel of experts, 
whose identities are typically kept confidential from one an-
other, to respond to a sequence of questionnaires to converge to 
an opinion of a future forecast. 

Dendrogram. Hierarchical clustering represented by a two-dimensional 
diagram that illustrates the fusions or divisions made at each suc-
cessive stage of analysis.

Degrees of freedom (df). An additional parameter used to distin-
guish different t-distributions.

Descriptive analytics. The use of data to understand past and current 
business performance and make informed decisions; the most 
commonly used and most well-understood type of analytics.

Descriptive statistics. Methods of describing and summarizing data 
using tabular, visual, and quantitative techniques.

Deterministic model. A prescriptive decision model in which all 
model input information is either known or assumed to be 
known with certainty.

Discriminant analysis. A technique for classifying a set of observa-
tions into predefined classes; the purpose is to determine the 
class of an observation based on a set of predictor variables.

Discriminant function. The technique constructs a set of linear func-
tions of the predictors based on the training data.

Discount rate. The opportunity costs of spending funds now versus 
achieving a return through another investment, as well as the 
risks associated with not receiving returns until a later time.

Discrete metric. A metric derived from counting something.
Discrete random variable. A random variable for which the number 

of possible outcomes can be counted.
Discrete uniform distribution. A variation of the uniform distribu-

tion for which the random variable is restricted to integer values 
between a and b (also integers).

Dispersion. The degree of variation in the data, that is, the numerical 
spread (or compactness) of the data.

Divisive clustering methods. A series of partitions takes place from 
a single cluster containing all objects to n clusters, which sepa-
rate n objects successively into finer groupings.

Double exponential smoothing. A forecasting approach similar to 
simple exponential smoothing used for time series with a linear 
trend and no significant seasonal components.

Double moving average. A forecasting approach similar to a simple 
moving average used for time series with a linear trend and no 
significant seasonal components. 

Doughnut chart. A chart that is similar to a pie chart but can contain 
more than one data series.

Dummy variables. A numerical variable used in regression analysis 
to represent subgroups of the sample in the study.

Econometric models. Explanatory/causal models that seek to iden-
tify factors that explain statistically the patterns observed in the 
variable being forecast.

Empirical probability distribution. An approximation of the prob-
ability distribution of the associated random variable.

Empirical rules. For a normal distribution, all data will fall within 
three standard deviations of the mean. Depending on the data 

and the shape of the frequency distribution, the actual percent-
ages may be higher or lower.

Estimation. A method used to assess the value of an unknown popu-
lation parameter such as a population mean, population propor-
tion, or population variance using sample data.

Estimators. Measures used to estimate population parameters.
Expected opportunity loss. The expected opportunity loss repre-

sents the average additional amount the decision maker would 
have achieved by making the right decision instead of a wrong 
one.

Expected value. The notion of the mean or average of a random vari-
able; the weighted average of all possible outcomes, where the 
weights are the probabilities.

Expected value of perfect information (EVPI). The expected value 
with perfect information (assumed at no cost) minus the ex-
pected value without any information.

Expected value of sample information (EVSI). The expected value 
with sample information (assumed at no cost) minus the ex-
pected value without sample information. It represents the most 
one should be willing to pay for the sample information.

Expected value strategy. A more general case of the average payoff 
strategy is when the probabilities of the outcomes are not all the 
same.

Experiment. A process that results in an outcome.
Exponential distribution. A continuous distribution that models the 

time between randomly occurring events.
Exponential function, y = abx. Exponential functions have the 

property that y rises or falls at constantly increasing rates.
Euclidean distance. The most commonly used measure of distance 

between objects in which the distance between two points on a 
plane is computed as the hypotenuse of a right triangle.

Event. A collection of one or more outcomes from a sample space.
Event node. An event node is an outcome over which the decision 

maker has no control.
Factor. The variable of interest in statistics terminology.
Feasibility report. The report analyzes limits on variables and the 

constraints that make the problem infeasible.
Feasible region. The set of feasible solutions to an optimization 

problem.
Feasible solution. Any solution that satisfies all constraints of an 

 optimization problem.
Flaw of averages. A phenomenon that says is that the evaluation of 

a model output using the average value of the input is not neces-
sarily equal to the average value of the outputs when evaluated 
with each of the input values.

Frequency distribution. A table that shows the number of observa-
tions in each of several non-overlapping groups.

General integer variables. Any variable in an ordinary linear opti-
mization model.

Goodness of fit. A procedures that attempts to draw a conclusion 
about the nature of a distribution.

Heat map. A visual map to identify different solutions easily.
Hierarchical clustering. The data are not partitioned into a particu-

lar cluster in a single step but a series of partitions takes place, 
which may run from a single cluster containing all objects to n 
clusters, each containing a single object.

Histogram. A graphical depiction of a frequency distribution for nu-
merical data in the form of a column chart.

Historical analogy. A forecasting approach in which a forecast is 
 obtained through a comparative analysis with a previous situation.
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Holt-Winters additive model. A forecasting model that applies to 
time series with relatively stable seasonality.

Holt-Winters models. Forecasting models similar to exponential 
smoothing models in that smoothing constants are used to smooth 
out variations in the level and seasonal patterns over time.

Holt-Winters multiplicative model. A forecasting model that applies 
to time series whose amplitude increases or decreases over time.

Homoscedasticity. The assumption means that the variation about 
the regression line is constant for all values of the independent 
variable. The data is evaluated by examining the residual plot 
and looking for large differences in the variances at different 
values of the independent variable.

Hypothesis. A proposed explanation made on the basis of limited 
evidence to interpret certain events or phenomena.

Hypothesis testing. Involves drawing inferences about two contrast-
ing propositions relating to the value of one or more population 
parameters, such as the mean, proportion, standard deviation, or 
variance.

Independent events. Events that do not affect the occurrence of each 
other.

Index. A single measure that weights multiple indicators, thus pro-
viding a measure of overall expectation.

Indicators. Measures that are believed to influence the behavior of a 
variable we wish to forecast.

Infeasible problem. A problem for which no feasible solution exists.
Influence diagram. A visual representation that describes how vari-

ous elements of a model influence, or relate to, others.
Information systems (IS). The modern discipline evolved from busi-

ness intelligence (BI).
Integer linear optimization model (integer program). In an integer 

linear optimization model (integer program), some of or all the 
variables are restricted to being whole numbers.

Interaction. Occurs when the effect of one variable (i.e., the slope) is 
dependent on another variable.

Interquartile range (IQR, or midspread). The difference between the 
first and third quartiles, Q3 - Q1.

Interval estimate. A method that provides a range for a population 
characteristic based on a sample.

Intersection. A composition with all outcomes belonging to both 
events.

Interval data. Data that are ordinal but have constant differences be-
tween observations and have arbitrary zero points.

Joint probability. The probability of the intersection of two events.
Joint probability table. A table that summarizes joint probabilities.
Judgment sampling. A plan in which expert judgment is used to se-

lect the sample.
k-nearest neighbors (k-NN) algorithm. A classification scheme that 

attempts to find records in a database that are similar to one that 
is to be classified.

kth percentile. A value at or below which at least k percent of the 
observations lie.

Kurtosis. The peakedness (i.e., high, narrow) or flatness (i.e., short, 
flat-topped) of a histogram.

Lagging measures. Outcomes that tell what happened and are often 
external business results, such as profit, market share, or cus-
tomer satisfaction.

Laplace or average payoff strategy. See Average payoff strategy.
Leading measures. Performance drivers that predict what will hap-

pen and usually are internal metrics, such as employee satisfac-
tion, productivity, turnover, and so on.

Least-squares regression. The mathematical basis for the best-
fitting regression line.

Level of confidence. A range of values between which the value of 
the population parameter is believed to be along with a prob-
ability that the interval correctly estimates the true (unknown) 
population parameter.

Level of significance. The probability of making Type 1 error, that 
is, P(rejecting H0 � H0 is true), is denoted by a.

Lift. Defined as the ratio of confidence to expected confidence. Lift 
provides information about the increase in probability of the 
‘then’ (consequent) given the ‘if’ (antecedent) part.

Line chart. A chart that provides a useful means for displaying data 
over time.

Linear function, y = a + bx. Linear functions show steady in-
crease or decrease over the range of x and used in predictive 
models.

Linear optimization model (linear program, LP). A model with two 
basic properties: i) The objective function and all constraints are 
linear functions of the decision variables and ii) all variables are 
continuous.

Linear program (LP) relaxation. A problem that arises by replacing 
the constraint that each variable must be 0 or 1.

Logarithmic function, y = ln 1 x 2 . Logarithmic functions are used 
when the rate of change in a variable increases or decreases 
quickly and then levels out, such as with diminishing returns to 
scale.

Logistic regression. A variation of ordinary regression in which the 
dependent variable is categorical; the independent variables may 
be categorical or continuous. The tool predicts the probability of 
output variable falling into a category based on the values of the 
independent variables.

Logit. A dependent variable in logistic regression with the natural 
logarithm of p/(1 - p).

Limitations. Limitations usually involve the allocation of scarce re-
sources. Example: Problem statements such as the amount of 
material used in production cannot exceed the amount available 
in inventory.

Marginal probability. The probability of an event irrespective of the 
outcome of the other joint event.

Marker line. The red line that divides the regions in a “probability of 
a negative cost difference” chart.

Market basket analysis. A typical and widely used example of as-
sociation rule mining. The transaction data routinely collected 
using bar-code scanners are used to make recommendations for 
promotions, for cross-selling, catalog design and so on.

Maximax strategy. For the aggressive strategy, the best payoff for 
each decision would be the largest value among all outcomes, 
and one would choose the decision corresponding to the largest 
of these.

Maximin strategy. For the conservative strategy, the worst payoff for 
each decision would be the smallest value among all outcomes, 
and one would choose the decision corresponding to the largest 
of these.

Mean absolute deviation (MAD). The absolute difference between 
the actual value and the forecast, averaged over a range of fore-
casted values.

Mean absolute percentage error (MAPE). The average of absolute 
errors divided by actual observation values.

Mean square error (MSE). The average of the square of the differ-
ence s between the actual value and the forecast. 

Z02_EVAN5448_09_SE_GLOS.indd   638 12/10/15   9:48 AM



 Glossary 639

Measure. Numerical value associated with a metric.
Measurement. The act of obtaining data associated with a metric.
Median. The measure of location that specifies the middle value 

when the data are arranged from the least to greatest.
Metric. A unit of measurement that provides a way to objectively 

quantify performance.
Midrange. The average of the greatest and least values in the data set.
Minimax regret strategy. The decision maker selects the decision 

that minimizes the largest opportunity loss among all outcomes 
for each decision.

Minimax strategy. One seeks the decision that minimizes the larg-
est payoff that can occur among all outcomes for each decision. 
Conservative decision makers are willing to forgo high returns 
to avoid undesirable losses.

Mixed-integer linear optimization model. If only a subset of vari-
ables is restricted to being integer while others are continuous, 
we call this a mixed integer linear optimization model.

Mode. The observation that occurs most frequently.
Model. An abstraction or representation of a real system, idea, or 

object.
Modeling and optimization. Techniques for translating real prob-

lems into mathematics, spreadsheets, or other computer lan-
guages, and using them to find the best (“optimal”) solutions 
and decisions.

Monte Carlo simulation. The process of generating random values 
for uncertain inputs in a model, computing the output variables 
of interest, and repeating this process for many trials to under-
stand the distribution of the output results.

Multicollinearity. A condition occurring when two or more indepen-
dent variables in the same regression model contain high levels 
of the same information and, consequently, are strongly corre-
lated with one another and can predict each other better than the 
dependent variable.

Multiple correlation coefficient. Multiple R and R Square (or R2) in 
the context of multiple regression indicate the strength of asso-
ciation between the dependent and independent variables.

Multiple linear regression. A linear regression model with more than 
one independent variable. Simple linear regression is just a spe-
cial case of multiple linear regression.

Multiplication law of probability. The probability of two events A 
and B is the product of the probability of A given B, and the 
probability of B (or) the product of the probability of B given A, 
and the probability of A.

Mutually exclusive. Events with no outcomes in common.
Net present value (discounted cash flow). The sum of the present 

values of all cash flows over a stated time horizon; a measure of 
the worth of a stream of cash flows, that takes into account the 
time value of money.

Newsvendor problem. A practical situation in which a one-time pur-
chase decision must be made in the face of uncertain demand.

Nodes. Nodes are points in time at which events take place.
Nonsampling error. An error that occurs when the sample does not 

represent the target population adequately.
Normal distribution. A continuous distribution described by the fa-

miliar bell-shaped curve and is perhaps the most important dis-
tribution used in statistics.

Null hypothesis. Describes the existing theory or a belief that is ac-
cepted as valid unless strong statistical evidence exists to the 
contrary.

Objective function. The quantity that is to be minimized or maxi-
mized; minimizing or maximizing some quantity of interest—
profit, revenue, cost, time, and so on—by optimization.

Ogive. A chart that displays the cumulative relative frequency.
One-sample hypothesis test. A test that involves a single popula-

tion parameter, such as the mean, proportion, standard deviation, 
and a single sample of data from the population is used to con-
duct the test.

One-tailed test of hypothesis. The hypothesis test that specify a di-
rection of relationship where H0 is either Ú or … .

One-way data table. A data table that evaluates an output variable 
over a range of values for a single input variable.

Overfitting. If too many terms are added to the model, then the model 
may not adequately predict other values from the population. 
Overfitting can be mitigated by using good logic, intuition, 
physical or behavioral theory, and parsimony.

Odds. The ratio p/(1 - p) is called the odds of belonging to category 
1 (Y = 1).

Operations Research/Management Science (OR/MS). The analysis 
and solution of complex decision problems using mathematical 
or computer-based models.

Optimal solution. Any set of decision variables that optimizes the 
objective function.

Optimization. The process of finding a set of values for decision 
variables that minimize or maximize some quantity of interest 
and the most important tool for prescriptive analytics.

Ordinal data. Data that can be ordered or ranked according to some 
relationship to one another.

Outcome. A result that can be observed.
Outcomes. Possible results of a decision or a strategy.
Outlier. The observation that is radically different from the rest.
Overbook. To accept reservations in excess of the number that can 

be accommodated.
Overlay chart. A feature for superimposition of the frequency distri-

butions from selected forecasts, when a simulation has multiple 
related forecasts, on one chart to compare differences and simi-
larities that might not be apparent.

Point estimate. A single number derived from sample data that is 
used to estimate the value of a population parameter.

Population frame. A listing of all elements in the population from 
which the sample is drawn.

Prediction interval. Provides a range for predicting the value of a 
new observation from the same population.

Probability interval. In general, a 100(1 - a)% is any interval  
[A, B] such that the probability of falling between A and B is 
1 - a. Probability intervals are often centered on the mean or 
median.

p-Value (observed significance level). An alternative approach to 
find the probability of obtaining a test statistic value equal to or 
more extreme than that obtained from the sample data when the 
null hypothesis is true.

Power of the test. Represents the probability of correctly rejecting the 
null hypothesis when it is indeed false, or P(rejecting H0 � H0 is 
false).

Parsimony. A model with the fewest number of explanatory vari-
ables that will provide an adequate interpretation of the depen-
dent variable.

Partial regression coefficient. The partial regression coefficients 
represent the expected change in the dependent variable when 
the associated independent variable is increased by one unit 
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while the values of all other independent variables are held 
constant.

Polynomial function. y = ax2 + bx + c (second order—quadratic 
function), y = ax3 + bx2 + dx + e (third order—cubic 
function), and so on. A second order polynomial is parabolic in 
nature and has only one hill or valley; a third order polynomial 
has one or two hills or valleys. Revenue models that incorporate 
price elasticity are often polynomial functions.

Power function. y = axb. Power functions define phenomena that 
increase at a specific rate. Learning curves that express improv-
ing times in performing a task are often modeled with power 
functions having a 7 0 and b 6 0.

Parallel coordinates chart. The chart consists of a set of vertical 
axes, one for each variable selected and creates a “multivariate 
profile,” that helps an analyst to explore the data and draw basic 
conclusions. For each observation, a line is drawn connecting 
the vertical axes. The point at which the line crosses an axis rep-
resents the value for that variable.

Proportional relationships. Proportional relationships are often 
found in problems involving mixtures or blends of materials or 
strategies.

Payoffs. The decision maker first selects a decision alternative, after 
which one of the outcomes of the uncertain event occurs, result-
ing in the payoff.

Payoff table. Payoffs are often summarized in a payoff table, a ma-
trix whose rows correspond to decisions and whose columns 
correspond to events.

Perfect information. The information that tells us with certainty 
what outcome will occur and it provides an upper bound on the 
value of any information that one may acquire.

Parameter analysis. An approach provided by Analytic Solver 
 Platform for automatically running multiple optimizations with 
varying model parameters within predefined ranges.

Parametric sensitivity analysis. The term used by Analytic Solver 
Platform for systematic methods of what-if analysis.

Pareto analysis. The analysis that uses the Pareto principle, the  
80–20 rule, that refers to the generic situation in which 80% of 
some output comes from 20% of some input.

Pie chart. A chart that partitions a circle into pie-shaped areas show-
ing the relative proportion of each data source to the total.

PivotChart. A data analysis tool provided by Microsoft Excel, which 
enables visualizing data in PivotTables.

PivotTables. A powerful tool, provided by Excel, for distilling a 
complex data set into meaningful information.

Poisson distribution. A discrete distribution used to model the num-
ber of occurrences in some unit of measure.

Population. Gathering of all items of interest for a particular decision 
or investigation.

Predictive analytics. A component of business analytics that seeks 
to predict the future by examining historical data, detecting pat-
terns or relationships in these data, and then extrapolating these 
relationships forward in time.

Prescriptive analytics. A component of business analytics that uses 
optimization to identify the best alternatives to minimize or 
maximize some objective.

Price elasticity. The ratio of the percentage change in demand to the 
percentage change in price.

Pro forma income statement. A calculation of net income using the 
structure and formatting that accountants are used to.

Probability. The likelihood that an outcome occurs.

Probability density function. The distribution that characterizes out-
comes of a continuous random variable.

Probability distribution. The characterization of the possible values 
that a random variable may assume along with the probability of 
assuming these values.

Probability mass function. The probability distribution of the dis-
crete outcomes for a discrete random variable X.

Problem solving. The activity associated with defining, analyzing, 
and solving a problem and selecting an appropriate solution that 
solves a problem.

Process capability index. The value obtained by dividing the speci-
fication range by the total variation; index used to evaluate the 
quality of the products and determine the requirement of process 
improvements.

Proportion. Formal statistical measure; key descriptive statistics for 
categorical data, such as defects or errors in quality control ap-
plications or consumer preferences in market research.

Quartile. The value that breaks data into four parts.
Radar chart. A chart that allows plotting of multiple dimensions of 

several data series.
Random number. A number that is uniformly distributed between 0 

and 1.
Random number seed. A value from which a stream of random 

numbers is generated.
Random variable. A numerical description of the outcome of an 

experiment.
Random variate. A value randomly generated from a specified prob-

ability distribution.
Range. The difference between the maximum value and the mini-

mum value in the data set.
Ratio data. Data that are continuous and have a natural zero.
Reduced cost. A number that tells how much the objective coeffi-

cient needs to be reduced for a nonnegative variable that is zero 
in the optimal solution to become positive.

Requirements. Requirements involve the specification of minimum 
levels of performance. Example: Production must be sufficient 
to meet promised customer orders.

Regression analysis. A tool for building mathematical and statistical 
models that characterize relationships between a dependent vari-
able and one or more independent, or explanatory, variables, all 
of which are numerical.

Relative address. Use of just the row and column label in the cell 
reference.

Relative frequency. Expression of frequency as a fraction, or propor-
tion, of the total.

Relative frequency distribution. A tabular summary of the relative 
frequencies of all categories.

Reliability. A term that refers to accuracy and consistency of data.
Return to risk. The reciprocal of the coefficient of variation.
R2 (R-squared). A measure of the “fit” of the line to the data; the 

value of R2 will be between 0 and 1. The larger the value of R2, 
the better the fit.

Residuals. Observed errors which are the differences between the 
actual values and the estimated values of the dependent variable 
using the regression equation.

Risk. The likelihood of an undesirable outcome; a condition as-
sociated with the consequences and likelihood of what might 
happen.

Risk analysis. An approach for developing a comprehensive under-
standing and awareness of the risk associated with a particular 
variable of interest.
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Risk premium. The amount an individual is willing to forgo to avoid 
risk, and this indicates that the person is a risk-averse individual 
(relatively conservative).

Risk profile. Risk profiles show the possible payoff values that can 
occur and their probabilities. Each decision strategy has an as-
sociated payoff distribution called a risk profile.

Root mean square error (RMSE). The square root of mean square 
error (MSE).

Sample. A subset of a population.
Sample correlation coefficient. The value obtained by dividing the 

covariance of the two variables by the product of their sample 
standard deviations.

Sample information. The information is a result of conducting some 
type of experiment, such as a market research study, or inter-
viewing an expert. Sample information is always imperfect and 
comes at a cost.

Sample proportion. An unbiased estimator of a population propor-
tion where x is the number in the sample having the desired 
characteristic and n is the sample size.

Sample space. The collection of all possible outcomes of an 
experiment.

Sampling distribution of the mean. The means of all possible 
samples of a fixed size n from some population will form a 
distribution.

Sampling plan. A description of the approach that is used to obtain 
samples from a population prior to any data collection activity.

Sampling (statistical) error. This occurs for samples are only a sub-
set of the total population. Sampling error is inherent in any 
sampling process, and although it can be minimized, it cannot 
be totally avoided.

Scatter chart. A chart that shows the relationship between two 
variables.

Scatterplot matrix. The chart combines several scatter charts into 
one panel, allowing the user to visualize pairwise relationships 
between variables.

Scenarios. Sets of values that are saved and can be substituted auto-
matically on a worksheet.

Search algorithm. Solution procedure that generally finds good solu-
tions without guarantees of finding the best one.

Seasonal effect. Characteristic of a time series that repeats at fixed 
intervals of time, typically a year, month, week, or day.

Sensitivity chart. A feature that allows determination of the influ-
ence that each uncertain model input has individually on an out-
put variable based on its correlation with the output variable.

Shadow price. A number that tells how much the value of the objec-
tive function will change as the right-hand side of a constraint is 
increased by 1.

Single linkage clustering. The distance between two clusters is 
given by the value of the shortest link between the clusters. The 
distance between groups is defined as the distance between the 
closest pair of objects, where only pairs consisting of one object 
from each group are considered.

Simple bounds. Simple bounds constrain the value of a single 
variable. Example: Problem statements such as no more than 
$10,000 may be invested in stock ABC.

Simple exponential smoothing. An approach for short-range fore-
casting that is a weighted average of the most recent forecast 
and actual value.

Simple moving average. A smoothing method based on the idea of 
averaging random fluctuations in the time series to identify the 
underlying direction in which the time series is changing.

Simple random sampling. The plan involves selecting items from 
a population so that every subset of a given size has an equal 
chance of being selected.

Significance of regression. A simple hypothesis test checks whether 
the regression coefficient is zero.

Simple linear regression. A tool used to find a linear relationship be-
tween one independent variable, X, and one dependent variable, Y.

Simulation and risk analysis. A methodology that relies on spread-
sheet models and statistical analysis to examine the impact of 
uncertainty in the estimates and their potential interaction with 
one another on the output variable of interest.

Skewness. Lacking symmetry of data.
Slicers. A tool for drilling down to “slice” a PivotTable and display 

a subset of data.
Smoothing constant. A value between 0 and 1 used to weight expo-

nential smoothing forecasts.
Sparklines. Graphics that summarize a row or column of data in a 

single cell.
Spreadsheet engineering. Building spreadsheet models.
Standard deviation. The square root of the variance.
Standard error of the estimate, SYX. The variability of the observed 

Y-values from the predicted values.
Standard residuals. Residuals divided by their standard deviation. 

Standard residuals describe how far each residual is from its 
mean in units of standard deviations.

Standard error of the mean. The standard deviation of the sampling 
distribution of the mean.

Standard normal distribution. A normal distribution with mean 0 
and standard deviation 1.

Standardized value (z-score). A relative measure of the distance an 
observation is from the mean, which is independent of the units 
of measurement.

States of nature. The outcomes associated with uncertain events are 
defined so that one and only one of them will occur. They may 
be quantitative or qualitative.

Stationary time series. A time series that does not have trend, sea-
sonal, or cyclical effects but is relatively constant and exhibits 
only random behavior.

Statistic. A summary measure of data.
Statistics. The science of uncertainty and the technology of extract-

ing information from data; an important element of business, 
driven to a large extent by the massive growth of data.

Statistical inference. The estimation of population parameters and 
hypothesis testing which involves drawing conclusions about 
the value of the parameters of one or more populations based on 
sample data.

Statistical thinking. A philosophy of learning and action for im-
provement that is based on the principles that i) all work occurs 
in a system of interconnected processes, ii) variation exists in all 
processes, and iii) better performance results from understand-
ing and reducing variation.

Stratified sampling. A plan that applies to populations that are di-
vided into natural subsets (called strata) and allocates the appro-
priate proportion of samples to each stratum.

Stochastic model. A prescriptive decision model in which some of 
the model input information is uncertain.

Stock chart. A chart that allows plotting of stock prices, such as the 
daily high, low, and close.

Support for the (association) rule. The number of transactions that 
include all items in the antecedent and consequent parts of the 
rule; shows probability that a randomly selected transaction 
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from the database will contain all items in the antecedent and 
the consequent.

Surface chart. A chart that shows 3-D data.
Systematic (or periodic) sampling. A sampling plan that selects ev-

ery nth item from the population.
Tag cloud. A visualization of text that shows words that appears 

more frequently using larger fonts.
t-Distribution. The t-distribution is actually a family of probabil-

ity distributions with a shape similar to the standard normal 
distribution.

Time series. A stream of historical data.
Training data set. Training data sets have known outcomes and are 

used to “teach” a data-mining algorithm. The training or model-
fitting process ensures that the accuracy of the model for the 
training data is as high as possible—the model is specifically 
suited to the training data.

Transportation problem. The problem involves determining how 
much to ship from a set of sources of supply (factories, ware-
houses, etc.) to a set of demand locations (warehouses, custom-
ers, etc.) at minimum cost.

Trend. A gradual upward or downward movement of a time series 
over time.

Trend chart. The single chart that shows the distributions of all out-
put variables, when a simulation has multiple output variables 
that are related to one another.

Tornado chart. A tool that graphically shows the impact that varia-
tion in a model input has on some output while holding all other 
inputs constant.

Type I error. The null hypothesis is actually true, but the hypothesis 
test incorrectly rejects it.

Type II error. The null hypothesis is actually false, but the hypothesis 
test incorrectly fails to reject it.

Two-tailed test of hypothesis. The rejection region occurs in both 
the upper and lower tail of the distribution

Two-way data table. A data table that evaluates an output variable 
over a range of values for two different input variables.

Unbounded solution. A solution that has the value of the objective 
to be increased or decreased without bound (i.e., to infinity for 
a maximization problem or negative infinity for a minimization 
problem) without violating any of the constraints.

Uncertain function. A cell referred, by Analytic Solver Platform, for 
which prediction and creation of a distribution of output values 
from the model is carried out.

Uncertain events. An event that occurs after a decision is made 
along with its possible outcome.

Uncertainty. Imperfect knowledge of what will happen.
Utility theory. An approach for assessing risk attitudes quantitatively.
Uniform distribution. A function that characterizes a continuous ran-

dom variable for which all outcomes between some minimum 
and maximum value are equal likely.

Unimodal. Histograms with only one peak.
Union. A composition of all outcomes that belongs to either of two 

events.
Unique optimal solution. The exact single solution that will result in 

the maximum (or minimum) objective.
Value of information. Represents the improvement in the expected 

return that can be achieved if the decision maker is able to 
acquire—before making a decision—additional information 
about the future event that will take place.

Validity. An estimate of whether the data correctly measure what they 
are supposed to measure; a term that refers to how well a model 
represents reality.

Validation data set. The validation data set is often used to fine-tune 
models. When a model is finally chosen, its accuracy with the 
validation data set is still an optimistic estimate of how it would 
perform with unseen data.

Variable plot. A variable plot simply plots a matrix of histograms for 
the variables selected.

Variance. The average of the squared deviations of the observations 
from the mean; a common measure of dispersion.

Verification. The process of ensuring that a model is accurate and 
free from logical errors.

Visualization. The most useful component of business analytics that 
is truly unique.

Ward’s hierarchical clustering. The clustering method uses a sum-
of-squares criterion.

What-if analysis. The analysis shows how specific combinations of 
inputs that reflect key assumptions will affect model outputs.
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A
Absolute address, 66
Adjusted R square, 270
Advertising, value of data modeling in, 

198
Affinity analysis. See Association rule 

mining
Agglomerative clustering methods, 336
Agglomerative hierarchical clustering

average group linkage clustering 
method, 338

average linkage clustering method, 338
complete linkage clustering method, 337
single linkage clustering method, 337
Ward’s hierarchical clustering method, 

338
XLMiner, 336

Aggressive (Optimistic) strategy, 582
Airline revenue management, expected 

value and, 172
Algorithms

defined, 53
search, 53

Allders International, data analysis at, 98
Alternative hypothesis, 232
Alternative optimal solutions, 462
Amazon.com, 30, 329
Analysis of variance (ANOVA), 247–250

assumptions of, 249–250
defined, 248
regression as, 271

Analytic hierarchy process (AHP), 585
Analytics. See Business analytics 

(analytics)
Analytic Solver Platform

creating data tables with, 394–395
creating tornado chart in, 396
decision trees, 588
defining custom distribution in, 425–426
distributions button in, 409, 410
distribution fitting with, 196–197
incorporating correlations in, 430
for model analysis, 394–397
for Monte Carlo simulation, 407–413
parameter analysis in, 472–473

probability distribution functions, 
192–194, 408

results button in, 410
running simulation with, 410–412

Anderson-Darling statistics, 196
Anderson village fire department, 

553–555
AND function, 71
ANOVA tool, Excel, 248
Answer Report (Solver), 452–453
ARAMARK, linear regression and 

 interactive risk simulators to predict 
performance at, 279

Area charts, 86, 88
Arithmetic mean, 123
Association, 329

measures of, 141–146
Association rule mining, 357–360

defined, 357
Assumptions, model, 382
Assumptions, regression, 272–275
Attributes, 40
Autocorrelation, 274
Autoregressive models, 316
Auxiliary variables, 519–520
Average group linkage clustering method, 

338
Average linkage clustering method, 338
Average payoff (Laplace) strategy, 586

B
Balance constraints, 485
Bank financial planning, linear optimization 

in, 514–515
Bar charts, 83
Bayes’s rule, 596–598
Bernoulli distribution, 173
Best-fitting regression line, 265–267

Excel for finding, 266
least-squares regression for, 267–269

Beta distribution, 186–187
Big data, 41–42
Bimodal histograms, 136
Binary variables

defined, 549

in formation of mixed-integer optimiza-
tion models, 560–561

integer linear optimization models with, 
549–558

to model logical constraints, 552–553
Binding constraint, 452
Binomial distribution, 173–175
Bloomberg businessweek research 

 services, 35
Bound constraints, auxiliary variables for, 

519–520
Bounded variables, models with, 515–521
Box-and-whisker plots. See Boxplots
Boxplots, 332, 333
Box-whisker charts, 420
Branches, 588
Break-even probability, 600
Brewer services, 545

alternative optimal solutions for, 547–548
Bubble charts, 88, 89
Business analytics (analytics)

company performance, 31
data for, 39–44
defined, 30–31
evolution of, 31–35
in help desk service improvement 

 project, 253
impact of, 34–35
models in, 44–53
scope of, 35–38
social media and, 31
software support, 38
spreadsheet add-ins for, 76
spreadsheet applications in, 375–381

Business intelligence, 31

C
Camera tool, excel, 92–93
Camm textiles, 486–487

interpreting Solver reports for, 487–488
Capital One bank, 31
Cash budgeting, 426
Cash budget model, 426–432

correlating uncertain variables, 429–432
simulating, 428

Index
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Categorical (nominal) data, 42
frequency distributions for, 99–100

Categorical variables
with more than two levels, 287–289
regression with, 284–289

Causal variables, regression forecasting 
with, 321–322

Cause-and-effect modeling, 329–330, 
360–363

correlation for, 362
Cell references, 66
Central limit theorem, 216
Certainty equivalent, 599
Champy, James, 34
Charts

area, 86, 88
bar, 83
bubble, 88, 89
column, 83
creating, in Microsoft Excel 2010, 

82–90
doughnut, 88
line, 85, 86
pie, 86
radar, 88
scatter, 86, 88
stock, 88
surface, 88

Chebyshev’s theorem, 130–131
Chi-square distribution, 251
Chi-square statistic, 196, 251
Chi-square test

cautions in using, 252
for independence, 250–252

Classification, 329, 341–346
intuitive explanation of, 342
measuring performance, 342, 344

Classification matrix, 342
Classification techniques, 346–357

discriminant analysis, 350–353
k-nearest neighbors (k-NN) algorithm, 

347–349
logistic regression, 353–357

Cluster analysis, 336–341
defined, 336
methods, 336–338

Clustered column charts, 83
Cluster sampling, 210
Coefficient of determination, 270
Coefficient of kurtosis (CK), 136
Coefficient of multiple determination  

(R-squared), 277
Coefficient of skewness (CS), 135
Coefficient of variation (CV), 134
Cognos Express Advisor, 38

Cognos Express Xcelerator, 38
Cognos system, 33
Color scales, 90
Column charts, 83–84

clustered, 83
creating, 83–84
stacked, 83

Common probability distributions, 
 sampling from, 189–192

Complement, of event, 160
Complete linkage clustering method,  

337
Concave downward curve, 600
Concave upward curve, 600
Conditional probability, 163–165

in cross-tabulation, 163
formula, 164
in marketing, 163

Confidence, level of, 191
Confidence coefficient, 234
Confidence interval for the mean, 417
Confidence intervals, 217–223

for decision making, 222–223
defined, 217
hypothesis test, 240–241
for the mean, in Monte Carlo simula-

tion, 417
for mean net present value, 417
of the mean with known population 

standard  deviation, 218–219
for the mean with unknown population 

standard deviation, 220
for proportion, 220–221
sample size and, 222–223
t-distribution, 219

Confidence of the (association) rule,  
359

Conservative (pessimistic) strategy, 582
Constraint function, 444
Constraints, 53, 442

forms of, 445
interpreting sensitivity information for, 

469–470
mathematical expression of, 444
modeling, 445–446
Sklenka Ski company, modeling, 

444–445
types of, in linear optimization models, 

485–486
Contingency tables, 108
Continuous distributions, 176–187

beta distribution, 186–187
exponential distribution, 184–186
lognormal distribution, 186
normal distribution, 180–182

probability density functions, 177–178
standard normal distribution, 182–184
triangular distribution, 186
uniform distribution, 178–180

Continuous metrics, 42
Continuous random variables, 166
Convenience, 208
Corner points, 455
Correlation

for cause-and-effect modeling, 362
defined, 143
Excel tool, 145–146
incorporating, in Analytic Solver 

 Platform, 430
multicollinearity and, 282–283
for uncertain variables, 429–432

Correlation coefficient (Pearson  
product moment  correlation 
 coefficient), 144

computing, 145
sample, 144

Correlation tool, Excel, 282
COUNTIF function, 99, 101
Covariance, 142–143

computing, 143
Critical values, 237
Cross-tabulations, 108, 109

computing conditional probability in, 
163

Cumulative distribution function, 169
Cumulative relative frequency, 105
Cumulative relative frequency 

 distribution, 105
Curvilinear regression models, 289
Customer-assignment model, for supply 

chain optimization, 556–558
Cutting pattern, 543
Cutting-stock problem, 543–544
Cyclical effects, 303, 304

D
D. A. branch & sons, 510–512
Dantzig, George, 459
Dashboard, 81
Data, 47

bars, 90
big, 41–42
for business analytics, 39–44
categorical (nominal), 42
classifying new, 346
descriptive statistics for grouped, 

138–140
dirty, 334–336
examples of uses of, 39
filtering, 93, 96–97
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geographic, 89–90
interval, 42–43
labels, 85
mining, 33
ordinal, 42
partitioning, 344–346
queries, 93–97
ratio, 43
reliability, 44
sorting, 93, 94
sources of, 39–40
statistical methods for summarizing, 

98–109
validity, 44
visualization, 332–334

Data bars, 90
Databases, defined, 40
Data exploration and reduction, 329, 

330–341
data visualization, 332–334
dirty data, 334–336
sampling, 330–332
XLMiner, 330–336

Data labels, 85
Data mining, 33

about, 328
approaches to, 329–330
successful business applications of, 

363–364
Data modeling, 194–195

value of, in advertising, 198
Data profiles, 108
Data segmentation. See Cluster analysis
Data sets, defined, 40
Data tables, 390–392

chart options, 85
creating, with Analytic Solver Platform, 

394–395
defined, 390
for Monte Carlo spreadsheet simulation, 

406, 407
one-way, 390–391
two-way, 390, 391–392

Data validation, 385
Data visualization, 80–82, 332–334

dashboard, 81
tools and software for, 81–82

Decision alternatives, 581
Decision analysis, using, in drug 

 development, 603–604
Decision making

confidence intervals for, 222–223
defined, 580
expected value in, 170–171
utility and, 598–602

Decision models, 47–49
defined, 47
intuition and, 45
prescriptive, 52–53
representation of, 45
types of input for, 47

Decision nodes, 588
Decisions

customer segmentation, 30
location, 31
merchandising, 31
pricing, 30
retail markdown, 38
types of, 30–31

Decision strategies
with outcome probabilities, 586–587

average payoff strategy, 586
evaluating risk, 587
expected value strategy, 586

without outcome probabilities, 582–585
with conflicting objectives, 584–585
for a maximize objective, 583–584
for a minimize objective, 582–583

Decision support systems (DDSs), 32–33
Decision trees, 588–594

airline revenue management, 594
Analytic Solver Platform, 588
Bayes’s rule, 596–598
cell phone, 596–598
creating a, 589
defined, 588
and Monte Carlo simulation, 592
and risk, 592–593
sensitivity analysis in, 594
simulating Moore pharmaceuticals, 592

Decision variables, 47, 442
interpreting sensitivity information for, 

468
Degenerate solution, 506
Degrees of freedom (df), 219
Delphi method, 301
Dendrograms, 337
Descriptive analytics, 35–36

for categorical data, 140
data mining and, 329

Descriptive statistics
for categorical data, 140
cross-tabulations, 108
cumulative relative frequency 

 distributions, 105
defined, 99
frequency distributions, 99–101
for grouped data, 138–140
for grouped frequency distributions, 139
histograms, 101–105

percentiles, 106–108
proportion, 140
quartiles, 108

Descriptive Statistics tool, Excel, 136–141
Deterministic models, 53
Dirty data, 334–336
Discounted cash flow, 69
Discount rate, 69–70
Discrete metrics, 42
Discrete probability distributions, 

168–176
discrete, 168–176
sampling from, 188–189

Discrete random variables, 166
Bernoulli distribution, 173
binomial distribution, 173–175
expected values of, 169–170
Poisson distribution, 175–176
variance of, 172

Discriminant analysis, 350–353
classifying credit decisions using, 

 example, 350–351
classifying new data using, example, 

353
Discriminant functions, 350
Dispersion

defined, 127
measures of, 127–134

range, 127
Dispersion, measures of

Chebyshev’s theorem, 130–131
coefficient of variation, 134
empirical rules, 131
interquartile range (IQR), 127
process capability index, 131–132
standard deviation, 129–130
standardized values, 133
variance, 128–129

Distribution fitting, 194–195
with Analytic Solver Platform, 196–197

Distributions button, in Analytic Solver 
Platform, 409, 410

Divisive clustering methods, 336
Double exponential smoothing models, 

312–314
Double moving average models,  

312–314
Doughnut charts, 88
Drucker, Peter, 52
Drug development, using decision 

 analysis in, 603–604
Drug-development decision tree model, 

602 simulating, 591–592
Dummy variables, 284
Durbin-Watson statistic, 274
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E
Econometric models, 321
Economic indicators, 301–302
Empirical probability distribution, 167
Empirical rules, 131

estimating sampling error using, 215
Entities, 40
Error metrics, 308–309

comparing moving average forecasts 
with, 309

mean absolute deviation (MAD), 308, 
309

mean absolute percentage (MAPE), 309
mean square error (MSE), 309
root mean square error (RMSE), 309

Errors
independence of, 274–275
normality of, 274

Estimation, 211
Estimators

defined, 211
unbiased, 212

Euclidean distance, 337
Event(s)

defined, 160
determining independent, 165
mutually exclusive, 161
union of, 161

Event nodes, 588
Excel

ANOVA tool, 248
camera tool, 92–93
correlation tool, 282
creating charts in, 82–90
descriptive statistics tool, 136–141
developing user-friendly applications, 

385–388
for finding best-fitting regression line, 

266
finding best regression line with, 266
formulas, 66
functions, basic, 68–69
functions for specific applications, 

69–70
for generating random variates, 191
Goal seek feature, 393
histogram tool, 101–105
Moving average tool, 305–307
Regression tool, 269–270
Sampling tool, 209–210
Scenario Manager tool, 392–393
simple linear regression with, 269–270
skills, basic, 65–68
sorting data in, 94

tips, 67–68
trendline tool, 267
using functions to find least-squares  

coefficients, 268
What-if analysis, 388–389

Expected opportunity loss, 595
Expected value

airline revenue management and, 172
of charitable raffle, 171
computing, 170, 171
in decision making, 170–171
of discrete random variable, 169–170
on television, 170

Expected value of perfect information 
(EVPI), 595

Expected value of sample information 
(EVSI), 596

Expected value strategy, 586
Experiment, 158
Exponential distribution, 184–186
Exponential smoothing forecasts, with 

XLMiner, 312–313
Exponential smoothing models, 310–312
Exponential Smoothing tool, Excel, 

311–312
Exponential utility functions, 602–603

F
Factor, 248
F-distribution, 246, 248
Feasible region, 454
Feasible solution, 448
Few, Stephen, 82
Fields, 40
Filtering, 93, 96–97

advanced, 96
autofilter, 96–97

Financial planning models, 511–514
Fixed-cost models, 562–564
Flaw of averages, 421–422
Forecasting, 264

at NBC Universal, 323–324
practice of, 322–323
qualitative and judgmental, 300–302
time series with seasonality, 316–320
using treadlines, 314

Forecasting models
regression-based seasonal, 316
selecting appropriate time-series-based, 

320–321
for stationary time series, 304–308
statistical, 302–313
for time series with linear trend, 

312–316

Form controls, 386
for the outsourcing decision model, 387

Formulas, Excel, 66
cell references in, 66
copying, 66–67
mathematical operators for, 66

Formulating decision problems, 581
Fractiles, 108
Frequency distributions

for categorical data, 99, 100
computing statistical measures from, 

138
cumulative relative, 105
defined, 99
descriptive statistics for grouped, 139
for numerical data, 101
relative, 100–101

Frontline Systems, Inc., 449
F-test statistic, 246
Functions, Excel

insert, 70–71
logical, 71–73
lookup, 73–76
for specific applications, 69–70

G
General integer variables

defined, 540
solving models with, 540–548

Geographic data, 89–90
Goal programming, 585
Goal Seek feature, Excel, 393
Goodness of fit, 196
Grouped data, descriptive statistics for, 

138–140

H
Hammer, Michael, 34
Harrah’s Entertainment, 30, 34
Harvard Business Review, 35
Heat map, 552
Hewlett-Packard, developing analytic 

tools at, 55–56
Hierarchical clustering, 336–337

agglomerative, 337
divisive, 336

Histograms, 101
bimodal, 136
unimodal, 136

Histogram tool, Excel, 101–105
Historical analogy, 300–301
HLOOKUP function, 73–74
Holt, C. C., 318
Holt-Winters additive model, 319
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Holt-Winters models, 318
forecasting new car sales with, 319–320
forecasting time series with seasonality 

and trend with, 318–319
Holt-Winters multiplicative model, 319
Homoscedasticity, 274
Hotel overbooking model, 380
Hypothesis

alternative, 232
defined, 232
null, 232
one-tailed tests of, 237
two-tailed tests of, 236

Hypothesis testing, 232–233
confidence intervals and, 240–241
in help desk service improvement 

 project, 253
one-sample tests of, 233–238
procedure, 233
for regression coefficients, 271–272

I
Icon sets, 90
IF function, 71–72

in formation of mixed-integer optimiza-
tion models, 560–561

Independence, testing for, 250–252
Independence of errors, 274–275
Independent events

determining, 165
multiplication law for, 166

Indexes, 302
INDEX function, 73–76
Indicators, 301–302
Infeasible solutions, 464–465
Infeasiblility, dealing with, 494–496
Influence diagrams, 46
Information, 39

expected value of perfect, 595
expected value of sample, 596
perfect, 595
sample, 596
value of, 595

Information systems (IS), 31
Insert function, 70–71
Institute for Operations Research and the 

Management Sciences (INFORMS), 32
Integer linear optimization models, 540.  

See also Mixed-integer linear optimi-
zation models

with binary variables, 549–558
location models, 553–554
parameter analysis, 555
project-selection models, 550–552

Interaction, 286

Interquartile range (midspread), 127
Interval data, 42–43
Interval estimates, 216–217
Intervals. See Confidence intervals; 

 Prediction intervals
Investment models, portfolio, 497–502

J
J&M manufacturing, 515–516, 517, 518, 

519, 520, 521
Joint probability, 162
Judgmental forecasting. See Qualitative 

and  judgmental forecasting
Judgment sampling, 208

K
K&L designs, 507

alternative optimization model for, 
508–510

k-means clustering, 336
k-nearest neighbors (k-NN) algorithm, 

347–349
classifying credit decisions using, 

 example, 347
classifying new data using, example, 

348
Kolmogorov-Smirnov procedure, 196
kth percentile, 106
Kurtosis

coefficient of, 136
defined, 136

L
Lagging measures, 360
Laplace (average payoff) strategy, 586
Leading measures, 360
Lead time, 242–244, 246–247
Least-squares regression, 267–269
Level of confidence, 217
Level of significance, 234
Lift, 359
Limitations, 485
Linearity, 274
Linear optimization

in bank financial planning, 514–515
graphical interpretation of, 454–458

Linear optimization models. See also Inte-
ger linear optimization models; Linear 
optimization models; Linear programs 
(LPs); Mixed-integer linear optimiza-
tion models

building, as art, 484
characteristics of, 446
defined, 446
generic examples of, 484

implementing, on spreadsheets, 446–448
possible outcomes in solving, 461–465
for prediction and insight, 465–474
solving, 448–453
types of constraints in, 485–486

Linear program (LP) relaxation, 540
Linear programs (LPs), 446. See also 

 Linear optimization models
Linear regression

multiple, 275–279
to predict performance at ARAMARK, 

279
simple, 264–272

Line charts, 85, 86
Location, measures of

arithmetic mean, 123
in business decisions, 126
median, 124
midrange, 125–126
mode, 125

Location decisions, 31
Location models, 553–554
Logarithmic functions, 260
Logical constraints

adding, to project-selection model, 552
using binary variables to model, 

552–553
Logical functions, 71–73
Logistic regression, 353–357

classifying credit approval decision 
 suing, example, 354–356

classifying new data using, example, 
354–356

Logit, 354
Lognormal distribution, 186
Lookup functions, 73–76
Loyalty cards, 328
Luhn, Hans Peter, 31

M
Make-or-buy decisions, 486
Management science (MS), 32
Marginal probability, 162
Marker line, 412
Market basket analysis, 357
MATCH function, 73–76
Maximax strategy, 583
Maximin strategy, 583
Mean (arithmetic mean), 123

sample-size determination for, 225
sampling distribution of the, 215–216
standard error of the, 215
two-tailed test of hypothesis for, 238
using paired two-sample test for, 

244–245
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Mean absolute deviation (MAD), 308, 309
Mean absolute percentage error (MAPE), 

309
Mean square error (MSE), 309
Measurement, defined, 42
Measures, defined, 42
Measures of location, 123–127

arithmetic mean, 123
in business decisions, 126
median, 124
midrange, 125–126
mode, 125

Median, 124
Merchandising decisions, 31
Metrics

continuous, 42
defined, 42
discrete, 42

Midrange, 125–126
Midspread (interquartile range), 127
Minimax strategy, 582
Minimin strategy, 582
Mixed-integer linear optimization model

binary variables, IF function, and non-
linearities in formation of, 560–561

defined, 540, 559–564
fixed-cost models, 562–564
plant location models, 559–560

Mode, 125
Model analysis, Analytic Solver Platform 

for, 394–397
Modeling, 32. See Logic-driven modeling
Models, 44–53

assumptions, 50, 382
data and, 382–384
defined, 44
multiple time periods and, 377
for overbooking decisions, 380
retirement-planning, 382
for single-period purchase decisions, 

379
validity of, 382

Models, building
using influence diagrams, 369–370
using simple mathematics, 368–369

Monte Carlo simulation, 405–407
Analytic Solver Platform for, 407–413
analyzing results of, 412–413
for cash budgets, 426–432
data tables for, 406, 407
decision trees, 592
implementing large-scale, 432–433
running, 410–412
uncertain model inputs, 407–408

using a fitted distribution for, 423
using fitted distribution, 423–424
using historical data, 422
viewing results of, 412–413

Mortgage decision
with aggressive strategy, 582
with average payoff strategy, 586
with conservative strategy, 582
evaluating risk in, 587
EVPI for, 595
with expected value strategy, 586–587
with opportunity-loss strategy, 583
partial decision tree for, 589–590

Mortgage instrument, mortgage, 581
Moving average forecasting

error metrics for, 309
with SLMiner, 307–308

Moving average models, 304–305
Moving average tool, Excel, 305–307
Multicollinearity

correlation and, 282–283
identifying potential, 283

Multiperiod financial planning models, 
511–514

Multiperiod production planning models, 
506–511

building alternative models, 508–511
Multiple correlation coefficient (Multiple 

R), 277
Multiple linear regression, 275–279
Multiple R (multiple correlation 

 coefficient), 277
Multiple regression, 264
Multiplication law of probability, 164–165

for independent events, 166
Mutually exclusive events, 161

N
NBC (National Broadcasting Company) 

optimization models for sales planning 
at, 474–475

NBC Universal, forecasting at, 323–324
Netflix, 329, 358
Net income, modeling, on spreadsheets, 

373–374
Net present value (NPV), 69–70

confidence interval for mean, 417
interpreting sensitivity chart for, 418
overlay charts, 418–419

New England Patriots, 30
New-product development model, 

414–421
box-whisker charts, 420
confidence interval for the mean, 417

overlay charts, 418–419
risk analysis for, 416
sensitivity charts, 418
setting up, 415
simulation reports, 421
trend charts, 420

Newsvendor model, 421–424
average values in, 421
flaw of averages and, 421–422
Monte Carlo simulation using fitted 

 distribution, 423
Monte Carlo simulation using historical 

data, 422
simulating, using resampling, 423

Newsvendor problem, 379
Nodes, 46, 588
Nonlinearities, in formation of mixed-

integer optimization models, 560–561
Nonlinear regression models, 289–290
Non-mutually exclusive events, 161
Nonsampling error, 213
Nonsmooth models, 561
Nonzero reduced, 468–469
Normal distributions, 180–182

defined, 180
standard, 182–184

Normality of errors, 274
NORM.DIST function, 181–182
NORM.INV function, 182
Null hypothesis, 232
Numerical data, frequency distributions 

for, 101

O
Oakland Athletics, 30
Objective function, 52, 442
Observed significance level, 238–239
Odds, 354
Ogive, 105
Omer, Talha, 328
1-800-FLOWERS.COM, 34
100% stacked column charts, 83
One-sample hypothesis tests, 233–241

conclusions for, 236–237
defined, 233
potential errors in, 234–235
for proportions, 239–240
selecting test statistic for, 235–236

One-tailed tests of hypothesis, 237
One-way data tables, 390–391

with multiple outputs, 390
for uncertain demand, 390

Operations research (OR), 32
Opportunity-loss strategy, 583
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Optimal solution, 52
Optimization, 52
Optimization models, 442–446

constraints and, 444
identifying elements for, 442–443
for sales planning at NBC, 474–475
steps in developing, 442
translating information into mathemati-

cal expressions step, 443–445
Ordinal data, 42
OR function, 71
Outcomes, 158–159, 581
Outliers, 123, 146–147
Output cells, defining, 410
Outsourcing decision model

analyzing simulation results for, 
412–413

incorporating uncertainty in, 405, 406
spreadsheet, 378–379

Overbook, 380
Overbooking decisions, models for, 381

hotel overbooking, 380–381
at student health clinic, 381

Overbooking model, 424–426
Overlay charts, 418–419

P
Parallel coordinates chart, 333
Parameter analysis, 555

in Analytic Solver Platform, 472–473
for response time, 555

Parametric sensitivity analysis, 394–396
Pareto, Vilfredo, 94
Pareto analysis, 94–95
Partial regression coefficients, 276
Paul & Giovanni foods, 556–557
Payoffs, 581
Payoff tables, 581
Pearson product moment correlation 

 coefficient  (correlation coefficient), 
144

computing, 145
Percentiles, 106–108
Perfect information, 595
Periodic (systematic) sampling, 209–210
Personal computers, 33
Personal investment decision, 599
Pharmaceutical R&D model, 591
Pie charts, 86
PivotCharts, 112
PivotTables, 110–115

creating, 110
dashboards, 113–115
Report Filter, 112
statistics in, 140

Plant location models, 559–560
Point estimates

defined, 211
errors in, 212

Poisson distribution, 175–176
for modeling bids on Priceline, 177

Polynomial function, 260
Population frame, 208
Populations, defined, 122
Portfolio investment models, 497–502
Power of the test, 235
Prediction intervals, 223
Predictive analytics, 36
Predictive decision modeling

strategies for, 368–370
Predictive models

analyzing uncertainty in, 388–394
data in, 382
types of mathematical functions in, 

260–261
Premium Solver, 449. See also Solver tool  

(standard)
using, 451

Prescriptive analytics, 36, 329
Prescriptive decision models, 52–53

deterministic, 52–53
stochastic, 52–53

Price-demand functions, modelling,  
262

Price elasticity, 50
Priceline, Poisson distribution for 

 modeling bids on, 177
Pricing decisions, 30
Pricing decision spreadsheet model, 

69–70, 371
Probabilistic models, 404
Probability

classical definition of, 159
of complement of event, 162
conditional, 163–165
definitions of, 158–159
joint, 162
marginal, 162
multiplication law of, 164–165
of mutually exclusive events, 161
of non-mutually exclusive events, 161
relative frequency definition of, 159
rules and formulas, 160–161
subjective definition of, 159

Probability density functions
defined, 177
properties of, 177–178

Probability distribution functions, in 
 Analytic Solver Platform, 408

Probability distributions
continuous, 176–187
defined, 166
of dice rolls, 166, 167
empirical, 167
random sampling from, 187–194
sampling from common, 189–192
sampling from discrete, 188–189
subjective, 167

Probability interval, 216
Probability mass function, 168

of Bernoulli distribution, 173
of binomial distribution, 173–174
of Poisson distribution, 175

Problem solving
analyzing phase of, 55
defined, 53
defining problem phase of, 54
implementing solution phase of, 55
interpreting results and making decision 

phase of, 55
recognizing problem phase of, 54
structuring problem phase of, 54

Process capability index, 131–132
Processes, 148
Process selection models, 486–493

blending models, 493–494
dealing with infeasibility and, 494–496
evaluating risk vs. reward, 499
models with bounded variables, 515–521
multiperiod production planning 

 models, 506–511
portfolio investment models, 497–502
production-marketing allocation model, 

521–524
scaling issues in using Solver, 500–502
Solver output and data visualization, 

489–493
spreadsheet design and Solver Reports, 

487–489
transportation models, 502–506

Procter & Gamble, 30
spreadsheet engineering at, 383
supply chain optimization at, 558–559

Production-marketing allocation model, 
521–524

Production planning models, 506–511
Pro forma income statements, 374
Project-selection models, 550–552

adding logical constraints to, 552
Proportion, 140

sample-size determination for, 225
Proportional relationships, 485
p-Values, 238–239
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Q
Qantas, sales staffing at, 549
Qualitative and judgmental forecasting

Delphi method, 301
historical analogy, 300–301
index, 302
indicators, 301–302

Quality spreadsheet, 372–374
Quartiles, 107
Queries, data, 93–97

R
Radar charts, 88
Random Number Generation tool, 190–191
Random numbers

defined, 187
sample, 187–188

Random number seed, 190–191
Random sampling, from probability 

 distributions, 187–194
Random variables, 166–167

Bernoulli distribution of, 173
binomial distribution of, 173–175
continuous, 166
defined, 166
discrete, 166

Random variates, 189
excel for generating, 191

Range, 127
Range names, 385
Ratio data, 43
Realism, 382
Reduced cost, 468
Regression analysis, 264

as analysis of variance, 271
Regression assumptions, 272–275
Regression-based forecasting models, in-

corporating causal variables in, 322
Regression-based seasonal forecasting 

models, 316
Regression coefficients

confidence intervals for, 272
hypothesis testing for, 271–272

Regression forecasting with causal vari-
ables, 321–322

Regression models
building good, 280–284
nonlinear, 289–290
types of, 264

Regression tool, Excel, 269–270
Relative address, 66
Relative frequency, 100
Relative frequency distribution, 100–101

Reliability, data, 44
Requirements, 485
Residual analysis, 272–273
Residuals, 268
Results button, in Analytic Solver 

 Platform, 410
Results button, in Analytic Solver 

 Platform, 411
Retail markdown decisions, 38
Return to risk, 134
Risk, 52

decision trees and, 592–593
defined, 404
premiums, 600
profile, 593

Risk analysis
defined, 404
illustration of, 404–405

Risk averse utility functions, 600, 601
Risk premiums, 600
Risk profile, 593
Risk-reward tradeoff decision, Innis 

 investments, 584–585
Risk vs. reward, evaluating, 499
Root mean square error (RMSE), 309
R-Square (R2) (coefficient of multiple 

 determination), 244, 251

S
Sales-promotion decision model, 49
Sample correlation coefficient, 144
Sample data, limitations, 194
Sample information

decisions with, 596
expected value of, 596

Sample proportion, 220
Samples

defined, 122
variability in, 149–151

Sample size, confidence intervals and, 
222–223

Sample space, 159
Sampling, 330–332

cluster, 210
from continuous process, 210
convenience, 208
to improve distribution, 211
judgment, 208
methods, 208–210
plan, 208
simple random, 209
stratified, 210
systematic (periodic), 209–210

Sampling distribution of the mean, 
215–216

Sampling (statistical) error, 213
about, 213–215
estimating, using empirical rules, 215

Sampling plan, 208
Sampling tool, Excel, 209–210
Scatter charts, 86, 88
Scatterplot matrix, 332, 333, 334, 335
Scenario Manager tool, Excel, 392–393
Scenarios, 392

using sensitivity information to  evaluate, 
471–472

Search algorithms, 53
Seasonal effects, 303, 304
Seasonal time series, Holt-Winters 

 forecasting for, 318
Sensitivity analysis, in decision trees,  

594
Sensitivity charts, 418
Sensitivity information

corrective use of, 523–524
to evaluate scenarios, 471–472
interpreting, for constraints, 469–470
interpreting, for decision variables, 468

Sensitivity report
formatting, 504–506
interpreting, for constraints, 506
rules for using, 470–471

Sensitivity Report, Solver, 467–470
Shadow prices, 470
Shapes, measures of, 135–136
Sharpe ratio, 134
Show Me the Numbers (Few), 82
Significance of regression, 271
Simple bounds, 485
Simple exponential smoothing  

model, 310
forecasting tablet computer sales with, 

310–312
Simple linear regression, 264–272

as analysis of variance, 271
best-fitting, 265–267
with Excel, 269–270
forecasting gasoline sales with, 321
least-squares regression, 267–269

Simple moving average method, 304–305
Simple random sampling, 209
Simplex method, 459
Simulation and risk analysis, 33
Simulation reports, 421
Single linkage clustering, 337
Single-period purchase decisions, 379
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Skewness
coefficient of, 135
defined, 135
measuring, 135

Sklenka Ski company
identifying model components, 443
modeling the constraints, 444–445
modeling the objective function, 444
spreadsheet model for, 447

Sklenka skis revisited, 541
Slicers, 113–115
Smoothing constant, 310
Social media, business analytics and, 31
Software support, 38
Solution messages

alternative, 462
infeasible, 464–465
unbounded, 463
unique, 462

Solutions, degenerate, 506
Solver tool (standard), 53, 449. See also 

Premium Solver
answer Report, 452–453
Feasibility report, 494–496
mechanics of, 459–461
model for K&L designs, 509–510
name creation in reports and, 461
outcomes, 461–465
scaling issues in using, 500–502
Sensitivity Report, formatting,  

504–506
solution messages, 461–465
using, 449–451
what-if analysis for, 466–467

Sorting, 93, 94
Spam filtering, 329
Sparklines, 91

column, 91, 92
line, 91, 92
win/loss, 91, 92

Spreadsheet
design, 370–372
engineering, 372
implementing models on, 370–374
model for the outsourcing decision,  

370–371
modeling net income on, 373–374
pricing decision, model, 371
quality, 372–374

Spreadsheet design, 370–372
Spreadsheet engineering, 372

approaches to, 372–373
at Procter & Gamble, 375

Spreadsheets, 33, 47, 63–76. See also Excel
add-ins for business analytics, 76
modeling net income on, 373

Stacked column charts, 83
Standard deviation, 129–130
Standard error of the estimate (SYX), 270
Standard error of the mean, 215
Standardized values (z-scores), 133
Standard normal distribution, 182–184

tables, 184
Standard residuals, 273
States of nature, 581
Stationary time series, 302

forecasting models for, 304–308
Statistical inference

defined, 232
Statistical notation, 122
Statistical thinking

applying, 148–149
in business decisions, 148–151
for detecting financial problems, 151

Statistics
defined, 32, 98
in PivotTables, 140

Stochastic models, 53, 404
Stock charts, 88
Strata, 210
Stratified sampling, 210
Subjective probability distribution, 167
Supply chain optimization

customer-assignment model for, 
556–558

at Procter & Gamble, 558–559
Support for the (association) rule, 359
Surface charts, 88
Systematic (periodic) sampling, 209–210

T
Tableau, 38
Tag cloud, 33
t-distribution, 219
Test statistic, selecting, 235–236
Time series, stationary, 302
Time-series-based forecasting models, 

selecting  appropriate, 320–321
Time series with linear trend

forecasting models for, 312–316
regression-based forecasting for, 

314–316
Tornado charts, 396–397
Training data set, 344
Transportation problem, 502–506
Trend charts, 420

Trendline tool, Excel, 267
Trends, 302–303
Triangular distribution, 186, 193–194
Tufte, Edward, 91
Two-sample hypothesis tests, 241–247

for differences in means, 241–243
for means with paired samples, 244–245

Two-tailed tests of hypothesis, 236
for mean, 238

Two-way data tables, 390, 391–392
Type I error, 234
Type II error, 234

U
Unbiased estimators, 212
Unbounded problem, 463
Uncertain events, 581
Uncertain function, 410
Uncertain model inputs, defining, 

407–408
Uncertainty, defined, 52
Uncontrollable variables, 47
Uniform distribution, 178–180

defined, 178
discrete, 179

Unimodal histograms, 136
Unique optimal solutions, 462
United Parcel Service (UPS), 30
Utility, decision making and,  

598–602
Utility theory, 598

exponential, 602–603
risk-averse, 600, 601

V
Validation data sets, 344
Validity

data, 44
of models, 382

Value of information, 595–598
defined, 595

Variable plot, 334, 335
Variables

categorical independent, 284–289
causal, 321–322
decision, 47
dummy, 284
uncontrollable, 47

Variance, 128–129
analysis of. See Analysis of variance 

(ANOVA)
of discrete random variable, 172
test for equality of, 245–247

Variance inflation factor (VIF), 283
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Verification, 372
Visualization, 33
VLOOKUP function, 73–75

for sampling from discrete distribution, 
189

W
Walker wines, 521–522, 523, 524
Ward’s hierarchical clustering method, 

338
What-if analysis, 33, 388–389

Solver for, 466–467

Winters, P. R., 318
Workforce-scheduling models, 544

X
XLMiner

agglomerative techniques, 336
clustering colleges and universities,  

338
discriminant analysis, 350–353
double exponential smoothing with, 314
exponential smoothing forecasts with, 

312–313

Holt-Winters method and, 318
k-NN algorithm, 344–345
moving average forecasting with, 

307–308
optimizing exponential smoothing 

 forecasts with, 313
partitioning data sets with, 344

Z
z-scores (standardized values), 133
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