GLOBAL EDITION

Business Analytics

SECOND EDITION

James Evans

ALWAYS LEARNING

Business
 Analytics

This page intentionally left blank

Business Analytics

Methods, Models, and Decisions James R. Evans University of Cincinnati

GLOBAL EDITION

SECOND EDITION

PEARSON

Boston Columbus Indianapolis New York San Francisco

Editorial Director: Chris Hoag
Editor in Chief: Deirdre Lynch
Acquisitions Editor: Patrick Barbera
Editorial Assistant: Justin Billing
Program Manager: Tatiana Anacki
Project Manager: Kerri Consalvo
Associate Project Editor, Global Edition: Amrita Kar
Assistant Acquisitions Editor, Global Edition: Debapriya Mukherjee
Project Manager, Global Edition: Vamanan Namboodiri
Manager, Media Production, Global Edition: Vikram Kumar
Senior Manufacturing Controller, Production, Global Edition: Trudy Kimber
Project Management Team Lead: Christina Lepre
Program Manager Team Lead: Marianne Stepanian

Media Producer: Nicholas Sweeney
MathXL Content Developer: Kristina Evans
Marketing Manager: Erin Kelly
Marketing Assistant: Emma Sarconi
Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Project Manager: Diahanne Lucas Dowridge
Procurement Specialist: Carole Melville
Associate Director of Design: Andrea Nix
Program Design Lead: Beth Paquin
Text Design: 10/12 TimesLTStd
Composition: Lumina Datamatics, Inc.
Cover Design: Lumina Datamatics, Inc.
Cover Image: ©bagiuiani/Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com
© Pearson Education Limited 2017

The rights of James R. Evans to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Understanding Financial Statements, 11th edition, ISBN 9780-321-99782-1, by James R. Evans, published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC 1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN-10: 1-292-09544-X
ISBN-13: 978-1-292-09544-8

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10987654321
Typeset by Lumina Datamatics, Inc.
Printed and bound by Vivar, Malaysia

Brief Contents

Preface 17
About the Author 23
Credits 25
Part 1 Foundations of Business Analytics
Chapter 1 Introduction to Business Analytics 27
Chapter 2 Analytics on Spreadsheets 63
Part 2 Descriptive Analytics
Chapter 3 Visualizing and Exploring Data 79
Chapter 4 Descriptive Statistical Measures 121
Chapter 5 Probability Distributions and Data Modeling 157
Chapter 6 Sampling and Estimation 207
Chapter 7 Statistical Inference 231
Part 3 Predictive Analytics
Chapter 8 Trendlines and Regression Analysis 259
Chapter 9 Forecasting Techniques 299
Chapter 10 Introduction to Data Mining 327
Chapter 11 Spreadsheet Modeling and Analysis 367
Chapter 12 Monte Carlo Simulation and Risk Analysis 403
Part 4 Prescriptive Analytics
Chapter 13 Linear Optimization 441
Chapter 14 Applications of Linear Optimization 483
Chapter 15 Integer Optimization 539
Chapter 16 Decision Analysis 579
Supplementary Chapter A (online) Nonlinear and Non-Smooth Optimization Supplementary Chapter B (online) Optimization Models with Uncertainty
Appendix A 611
Glossary 635
Index 643

This page intentionally left blank

Contents

Preface 17
About the Author 23
Credits 25
Part 1: Foundations of Business Analytics
Chapter 1: Introduction to Business Analytics 27
Learning Objectives 27
What Is Business Analytics? 30
Evolution of Business Analytics 31
Impacts and Challenges 34
Scope of Business Analytics 35
Software Support 38
Data for Business Analytics 39
Data Sets and Databases 40 • Big Data 41 • Metrics and DataClassification 42 • Data Reliability and Validity 44
Models in Business Analytics 44
Decision Models 47 • Model Assumptions 50 • Uncertainty and Risk 52 •
Prescriptive Decision Models 52
Problem Solving with Analytics 53
Recognizing a Problem 54 • Defining the Problem 54 • Structuring theProblem 54 • Analyzing the Problem 55 • Interpreting Results and Makinga Decision 55 - Implementing the Solution 55
Key Terms 56 • Fun with Analytics 57 • Problems and Exercises 57 •
Case: Drout Advertising Research Project 59 - Case: Performance Lawn Equipment 60
Chapter 2: Analytics on Spreadsheets 63
Learning Objectives 63
Basic Excel Skills 65
Excel Formulas 66° Copying Formulas 66° Other Useful Excel Tips 67
Excel Functions 68
Basic Excel Functions 68 - Functions for Specific Applications 69 •
Insert Function 70 Logical Functions 71
Using Excel Lookup Functions for Database Queries 73
Spreadsheet Add-Ins for Business Analytics 76
Key Terms 76 • Problems and Exercises 76 - Case: Performance Lawn
Equipment 78
Part 2: Descriptive Analytics
Chapter 3: Visualizing and Exploring Data 79
Learning Objectives 79
Data Visualization 80
Dashboards 81 - Tools and Software for Data Visualization 81
Creating Charts in Microsoft Excel 82
Column and Bar Charts 83 - Data Labels and Data Tables Chart
Options 85 - Line Charts 85 • Pie Charts 85 - Area Charts $86{ }^{\circ}$
Scatter Chart 86 • Bubble Charts 88 • Miscellaneous
Excel Charts 89 - Geographic Data 89
Other Excel Data Visualization Tools 90
Data Bars, Color Scales, and Icon Sets 90 - Sparklines 91 • Excel CameraTool 92
Data Queries: Tables, Sorting, and Filtering 93
Sorting Data in Excel 94 • Pareto Analysis 94 • Filtering Data 96
Statistical Methods for Summarizing Data 98
Frequency Distributions for Categorical Data 99 - Relative FrequencyDistributions 100 • Frequency Distributions for Numerical Data 101 •Excel Histogram Tool 101 - Cumulative Relative FrequencyDistributions 105 • Percentiles and Quartiles 106 • Cross-Tabulations 108Exploring Data Using PivotTables 110
PivotCharts 112 - Slicers and PivotTable Dashboards 113
Key Terms 116 • Problems and Exercises 117 • Case: Drout Advertising Research
Project 119 - Case: Performance Lawn Equipment 120
Chapter 4: Descriptive Statistical Measures 121
Learning Objectives 121
Populations and Samples 122
Understanding Statistical Notation 122
Measures of Location 123
Arithmetic Mean 123 • Median 124 • Mode 125 • Midrange 125 •
Using Measures of Location in Business Decisions 126
Measures of Dispersion 127
Range 127 • Interquartile Range 127 • Variance 128 • StandardDeviation 129 • Chebyshev's Theorem and the Empirical Rules 130 •Standardized Values 133 • Coefficient of Variation 134
Measures of Shape 135
Excel Descriptive Statistics Tool 136
Descriptive Statistics for Grouped Data 138
Descriptive Statistics for Categorical Data: The Proportion 140
Statistics in PivotTables 140
Measures of Association 141
Covariance 142 - Correlation 143 • Excel Correlation Tool 145
Outliers 146
Statistical Thinking in Business Decisions 148
Variability in Samples 149
Key Terms 151 • Problems and Exercises 152 - Case: Drout Advertising Research
Project 155 • Case: Performance Lawn Equipment 155
Chapter 5: Probability Distributions and Data Modeling 157
Learning Objectives 157
Basic Concepts of Probability 158
Probability Rules and Formulas 160 • Joint and Marginal Probability 161 •
Conditional Probability 163
Random Variables and Probability Distributions 166
Discrete Probability Distributions 168
Expected Value of a Discrete Random Variable 169 • Using Expected Value inMaking Decisions 170 - Variance of a Discrete Random Variable 172 •Bernoulli Distribution 173 - Binomial Distribution 173 •Poisson Distribution 175
Continuous Probability Distributions 176
Properties of Probability Density Functions 177 • Uniform Distribution 178 •Normal Distribution 180 - The NORM.INV Function 182 • Standard NormalDistribution 182 • Using Standard Normal Distribution Tables 184 •Exponential Distribution 184 • Other Useful Distributions $186{ }^{\circ}$ ContinuousDistributions 186
Random Sampling from Probability Distributions 187
Sampling from Discrete Probability Distributions 188 - Sampling from CommonProbability Distributions 189 • Probability Distribution Functions in Analytic SolverPlatform 192
Data Modeling and Distribution Fitting 194
Goodness of Fit 196 • Distribution Fitting with Analytic Solver Platform 196
Key Terms 198 • Problems and Exercises 199 - Case: Performance Lawn
Equipment 205
Chapter 6: Sampling and Estimation 207
Learning Objectives 207
Statistical Sampling 208
Sampling Methods 208
Estimating Population Parameters 211
Unbiased Estimators 212 • Errors in Point Estimation 212
Sampling Error 213
Understanding Sampling Error 213
Sampling Distributions 215Sampling Distribution of the Mean 215 - Applying the Sampling Distributionof the Mean 216
Interval Estimates 216
Confidence Intervals 217
Confidence Interval for the Mean with Known Population Standard Deviation 218 - The t-Distribution 219 • Confidence Interval for the Mean with Unknown Population Standard Deviation 220 • Confidence Interval for a Proportion 220 • Additional Types of Confidence Intervals 222
Using Confidence Intervals for Decision Making 222
Prediction Intervals 223
Confidence Intervals and Sample Size 224
Key Terms 226 • Problems and Exercises 226 - Case: Drout Advertising Research Project 228 - Case: Performance Lawn Equipment 229
Chapter 7: Statistical Inference 231
Learning Objectives 231
Hypothesis Testing 232
Hypothesis-Testing Procedure 233
One-Sample Hypothesis Tests 233
Understanding Potential Errors in Hypothesis Testing 234 • Selecting the Test Statistic 235 - Drawing a Conclusion 236
Two-Tailed Test of Hypothesis for the Mean 238p-Values 238 • One-Sample Tests for Proportions 239 • Confidence Intervalsand Hypothesis Tests 240
Two-Sample Hypothesis Tests 241
Two-Sample Tests for Differences in Means 241 - Two-Sample Test for Means withPaired Samples 244 - Test for Equality of Variances 245
Analysis of Variance (ANOVA) 247
Assumptions of ANOVA 249
Chi-Square Test for Independence 250
Cautions in Using the Chi-Square Test 252
Key Terms 253 • Problems and Exercises 254 • Case: Drout Advertising Research
Project 257 - Case: Performance Lawn Equipment 257
Part 3: Predictive Analytics
Chapter 8: Trendlines and Regression Analysis 259
Learning Objectives 259
Modeling Relationships and Trends in Data 260
Simple Linear Regression 264
Finding the Best-Fitting Regression Line 265 • Least-Squares Regression 267
Simple Linear Regression with Excel 269 • Regression as Analysis ofVariance 271 • Testing Hypotheses for Regression Coefficients 271 •Confidence Intervals for Regression Coefficients 272
Residual Analysis and Regression Assumptions 272
Checking Assumptions 274
Multiple Linear Regression 275
Building Good Regression Models 280
Correlation and Multicollinearity 282 • Practical Issues in Trendline and RegressionModeling 283
Regression with Categorical Independent Variables 284
Categorical Variables with More Than Two Levels 287
Regression Models with Nonlinear Terms 289
Advanced Techniques for Regression Modeling using XLMiner 291Key Terms 294 • Problems and Exercises 294 • Case: Performance Lawn
Equipment 298
Chapter 9: Forecasting Techniques 299
Learning Objectives 299
Qualitative and Judgmental Forecasting 300
Historical Analogy 300 - The Delphi Method 301 • Indicators and Indexes 301
Statistical Forecasting Models 302
Forecasting Models for Stationary Time Series 304
Moving Average Models 304 • Error Metrics and Forecast Accuracy $308{ }^{\circ}$Exponential Smoothing Models 310
Forecasting Models for Time Series with a Linear Trend 312
Double Exponential Smoothing 313 • Regression-Based Forecasting for Time Series with a Linear Trend 314
Forecasting Time Series with Seasonality 316Regression-Based Seasonal Forecasting Models 316 • Holt-Winters Forecasting forSeasonal Time Series 318 • Holt-Winters Models for Forecasting Time Series withSeasonality and Trend 318
Selecting Appropriate Time-Series-Based Forecasting Models 320
Regression Forecasting with Causal Variables 321
The Practice of Forecasting 322
Key Terms 324 • Problems and Exercises 324 • Case: Performance Lawn
Equipment 326
Chapter 10: Introduction to Data Mining 327
Learning Objectives 327
The Scope of Data Mining 329
Data Exploration and Reduction 330Sampling 330 • Data Visualization 332 • Dirty Data 334 • ClusterAnalysis 336
Classification 341
An Intuitive Explanation of Classification 342 - Measuring ClassificationPerformance 342 • Using Training and Validation Data 344 • ClassifyingNew Data 346
Classification Techniques 346k-Nearest Neighbors (k-NN) 347 • Discriminant Analysis 349 • LogisticRegression 354 • Association Rule Mining 358
Cause-and-Effect Modeling 361
Key Terms 364 • Problems and Exercises 364 • Case: Performance Lawn Equipment 366
Chapter 11: Spreadsheet Modeling and Analysis 367
Learning Objectives 367
Strategies for Predictive Decision Modeling 368
Building Models Using Simple Mathematics 368 • Building Models Using InfluenceDiagrams 369
Implementing Models on Spreadsheets 370
Spreadsheet Design 370 • Spreadsheet Quality 372
Spreadsheet Applications in Business Analytics 375
Models Involving Multiple Time Periods 377 - Single-Period Purchase
Decisions 379 - Overbooking Decisions 380
Model Assumptions, Complexity, and Realism 382
Data and Models 382
Developing User-Friendly Excel Applications 385
Data Validation 385 • Range Names 385 • Form Controls 386
Analyzing Uncertainty and Model Assumptions 388
What-If Analysis 388 • Data Tables 390 • Scenario Manager 392 •
Goal Seek 393
Model Analysis Using Analytic Solver Platform 394
Parametric Sensitivity Analysis 394 - Tornado Charts 396
Key Terms 397 • Problems and Exercises 397 - Case: Performance Lawn
Equipment 402
Chapter 12: Monte Carlo Simulation and Risk Analysis 403
Learning Objectives 403
Spreadsheet Models with Random Variables 405
Monte Carlo Simulation 405
Monte Carlo Simulation Using Analytic Solver Platform 407
Defining Uncertain Model Inputs 407 • Defining Output Cells 410 •
Running a Simulation 410 • Viewing and Analyzing Results 412
New-Product Development Model 414
Confidence Interval for the Mean 417 - Sensitivity Chart 418 • Overlay
Charts 418 • Trend Charts 420 • Box-Whisker Charts 420 。
Simulation Reports 421
Newsvendor Model 421
The Flaw of Averages 421 - Monte Carlo Simulation Using Historical
Data 422 • Monte Carlo Simulation Using a Fitted Distribution 423
Overbooking Model 424
The Custom Distribution in Analytic Solver Platform 425
Cash Budget Model 426
Correlating Uncertain Variables 429
Key Terms 433 • Problems and Exercises 433 - Case: Performance Lawn
Equipment 440
Part 4: Prescriptive Analytics
Chapter 13: Linear Optimization 441
Learning Objectives 441
Building Linear Optimization Models 442
Identifying Elements for an Optimization Model 442 - Translating ModelInformation into Mathematical Expressions 443 • More about
Constraints 445 - Characteristics of Linear Optimization Models 446
Implementing Linear Optimization Models on Spreadsheets 446
Excel Functions to Avoid in Linear Optimization 448
Solving Linear Optimization Models 448
Using the Standard Solver 449 • Using Premium Solver 451 • SolverAnswer Report 452
Graphical Interpretation of Linear Optimization 454
How Solver Works 459
How Solver Creates Names in Reports 461
Solver Outcomes and Solution Messages 461
Unique Optimal Solution 462 • Alternative (Multiple) Optimal Solutions 462 - Unbounded Solution 463 • Infeasibility 464
Using Optimization Models for Prediction and Insight 465
Solver Sensitivity Report 467 • Using the Sensitivity Report 470 •
Parameter Analysis in Analytic Solver Platform 472
Key Terms 476 • Problems and Exercises 476 • Case: Performance Lawn Equipment 481
Chapter 14: Applications of Linear Optimization 483
Learning Objectives 483
Types of Constraints in Optimization Models 485
Process Selection Models 486
Spreadsheet Design and Solver Reports 487
Solver Output and Data Visualization 489
Blending Models 493
Dealing with Infeasibility 494
Portfolio Investment Models 497
Evaluating Risk versus Reward 499 - Scaling Issues in Using Solver 500
Transportation Models 502
Formatting the Sensitivity Report 504 - Degeneracy 506
Multiperiod Production Planning Models 506
Building Alternative Models 508
Multiperiod Financial Planning Models 511
Models with Bounded Variables 515
Auxiliary Variables for Bound Constraints 519
A Production/Marketing Allocation Model 521
Using Sensitivity Information Correctly 523
Key Terms 525 • Problems and Exercises 525 - Case: Performance Lawn
Equipment 537
Chapter 15: Integer Optimization 539
Learning Objectives 539
Solving Models with General Integer Variables 540
Workforce-Scheduling Models 544 • Alternative Optimal Solutions 545
Integer Optimization Models with Binary Variables 549
Project-Selection Models 550 - Using Binary Variables to Model LogicalConstraints 552 - Location Models 553 • Parameter Analysis 555 •
A Customer-Assignment Model for Supply Chain Optimization 556
Mixed-Integer Optimization Models 559
Plant Location and Distribution Models 559 - Binary Variables, IF Functions, and
Nonlinearities in Model Formulation 560 • Fixed-Cost Models 562
Key Terms 564 - Problems and Exercises 564 - Case: Performance Lawn
Equipment 573
Chapter 16: Decision Analysis 579
Learning Objectives 579
Formulating Decision Problems 581
Decision Strategies without Outcome Probabilities 582
Decision Strategies for a Minimize Objective 582 • Decision Strategies for a Maximize Objective 583 - Decisions with Conflicting Objectives 584
Decision Strategies with Outcome Probabilities 586
Average Payoff Strategy 586 • Expected Value Strategy $586{ }^{\circ}$
Evaluating Risk 587
Decision Trees 588
Decision Trees and Monte Carlo Simulation 592 - Decision Trees and
Risk 592 - Sensitivity Analysis in Decision Trees 594
The Value of Information 595
Decisions with Sample Information 596 • Bayes's Rule 596
Utility and Decision Making 598
Constructing a Utility Function 599 • Exponential Utility Functions 602
Key Terms 604 • Problems and Exercises 604 • Case: Performance Lawn
Equipment 608

Supplementary Chapter A (online) Nonlinear and Non-Smooth Optimization
 Supplementary Chapter B (online) Optimization Models with Uncertainty
 Online chapters are available for download at www.pearsonglobaleditions.com/Evans.

Appendix A 611
Glossary 635
Index 643

This page intentionally left blank

Preface

In 2007, Thomas H. Davenport and Jeanne G. Harris wrote a groundbreaking book, Competing on Analytics: The New Science of Winning (Boston: Harvard Business School Press). They described how many organizations are using analytics strategically to make better decisions and improve customer and shareholder value. Over the past several years, we have seen remarkable growth in analytics among all types of organizations. The Institute for Operations Research and the Management Sciences (INFORMS) noted that analytics software as a service is predicted to grow three times the rate of other business segments in upcoming years. ${ }^{1}$ In addition, the MIT Sloan Management Review in collaboration with the IBM Institute for Business Value surveyed a global sample of nearly 3,000 executives, managers, and analysts. ${ }^{2}$ This study concluded that top-performing organizations use analytics five times more than lower performers, that improvement of information and analytics was a top priority in these organizations, and that many organizations felt they were under significant pressure to adopt advanced information and analytics approaches. Since these reports were published, the interest in and the use of analytics has grown dramatically.

In reality, business analytics has been around for more than a half-century. Business schools have long taught many of the core topics in business analytics-statistics, data analysis, information and decision support systems, and management science. However, these topics have traditionally been presented in separate and independent courses and supported by textbooks with little topical integration. This book is uniquely designed to present the emerging discipline of business analytics in a unified fashion consistent with the contemporary definition of the field.

About the Book

This book provides undergraduate business students and introductory graduate students with the fundamental concepts and tools needed to understand the emerging role of business analytics in organizations, to apply basic business analytics tools in a spreadsheet environment, and to communicate with analytics professionals to effectively use and interpret analytic models and results for making better business decisions. We take a balanced, holistic approach in viewing business analytics from descriptive, predictive, and prescriptive perspectives that today define the discipline.

[^0]This book is organized in five parts.

1. Foundations of Business Analytics

The first two chapters provide the basic foundations needed to understand business analytics, and to manipulate data using Microsoft Excel.
2. Descriptive Analytics

Chapters 3 through 7 focus on the fundamental tools and methods of data analysis and statistics, focusing on data visualization, descriptive statistical measures, probability distributions and data modeling, sampling and estimation, and statistical inference. We subscribe to the American Statistical Association's recommendations for teaching introductory statistics, which include emphasizing statistical literacy and developing statistical thinking, stressing conceptual understanding rather than mere knowledge of procedures, and using technology for developing conceptual understanding and analyzing data. We believe these goals can be accomplished without introducing every conceivable technique into an 800-1,000 page book as many mainstream books currently do. In fact, we cover all essential content that the state of Ohio has mandated for undergraduate business statistics across all public colleges and universities.
3. Predictive Analytics

In this section, Chapters 8 through 12 develop approaches for applying regression, forecasting, and data mining techniques, building and analyzing predictive models on spreadsheets, and simulation and risk analysis.
4. Prescriptive Analytics

Chapters 13 through 15 , along with two online supplementary chapters, explore linear, integer, and nonlinear optimization models and applications, including optimization with uncertainty.
5. Making Decisions

Chapter 16 focuses on philosophies, tools, and techniques of decision analysis.
The second edition has been carefully revised to improve both the content and pedagogical organization of the material. Specifically, this edition has a much stronger emphasis on data visualization, incorporates the use of additional Excel tools, new features of Analytic Solver Platform for Education, and many new data sets and problems. Chapters 8 through 12 have been re-ordered from the first edition to improve the logical flow of the topics and provide a better transition to spreadsheet modeling and applications.

Features of the Book

- Numbered Examples-numerous, short examples throughout all chapters illustrate concepts and techniques and help students learn to apply the techniques and understand the results.
- "Analytics in Practice"-at least one per chapter, this feature describes real applications in business.
- Learning Objectives-lists the goals the students should be able to achieve after studying the chapter.
- Key Terms-bolded within the text and listed at the end of each chapter, these words will assist students as they review the chapter and study for exams. Key terms and their definitions are contained in the glossary at the end of the book.
- End-of-Chapter Problems and Exercises-help to reinforce the material covered through the chapter.
- Integrated Cases-allows students to think independently and apply the relevant tools at a higher level of learning.
- Data Sets and Excel Models-used in examples and problems and are available to students at www.pearsonglobaleditions.com/evans

Software Support

While many different types of software packages are used in business analytics applications in the industry, this book uses Microsoft Excel and Frontline Systems' powerful Excel add-in, Analytic Solver Platform for Education, which together provide extensive capabilities for business analytics. Many statistical software packages are available and provide very powerful capabilities; however, they often require special (and costly) licenses and additional learning requirements. These packages are certainly appropriate for analytics professionals and students in master's programs dedicated to preparing such professionals. However, for the general business student, we believe that Microsoft Excel with proper add-ins is more appropriate. Although Microsoft Excel may have some deficiencies in its statistical capabilities, the fact remains that every business student will use Excel throughout their careers. Excel has good support for data visualization, basic statistical analysis, what-if analysis, and many other key aspects of business analytics. In fact, in using this book, students will gain a high level of proficiency with many features of Excel that will serve them well in their future careers. Furthermore Frontline Systems' Analytic Solver Platform for Education Excel add-ins are integrated throughout the book. This add-in, which is used among the top business organizations in the world, provides a comprehensive coverage of many other business analytics topics in a common platform. This add-in provides support for data modeling, forecasting, Monte Carlo simulation and risk analysis, data mining, optimization, and decision analysis. Together with Excel, it provides a comprehensive basis to learn business analytics effectively.

To the Students

To get the most out of this book, you need to do much more than simply read it! Many examples describe in detail how to use and apply various Excel tools or add-ins. We highly recommend that you work through these examples on your computer to replicate the outputs and results shown in the text. You should also compare mathematical formulas with spreadsheet formulas and work through basic numerical calculations by hand. Only in this fashion will you learn how to use the tools and techniques effectively, gain a better understanding of the underlying concepts of business analytics, and increase your proficiency in using Microsoft Excel, which will serve you well in your future career.

Visit the Companion Web site (www.pearsonglobaleditions.com/evans) for access to the following:

- Online Files: Data Sets and Excel Models—files for use with the numbered examples and the end-of-chapter problems (For easy reference, the relevant file names are italicized and clearly stated when used in examples.)
- Software Download Instructions: Access to Analytic Solver Platform for Education-a free, semester-long license of this special version of Frontline Systems' Analytic Solver Platform software for Microsoft Excel.

Integrated throughout the book, Frontline Systems' Analytic Solver Platform for Education Excel add-in software provides a comprehensive basis to learn business analytics effectively that includes:

- Risk Solver Pro-This program is a tool for risk analysis, simulation, and optimization in Excel. There is a link where you will learn more about this software at www.solver.com.
- XLMiner-This program is a data mining add-in for Excel. There is a link where you will learn more about this software at www.solver.com/xlminer.
- Premium Solver Platform, a large superset of Premium Solver and by far the most powerful spreadsheet optimizer, with its PSI interpreter for model analysis and five built-in Solver Engines for linear, quadratic, SOCP, mixed-integer, nonlinear, non-smooth and global optimization.
- Ability to solve optimization models with uncertainty and recourse decisions, using simulation optimization, stochastic programming, robust optimization, and stochastic decomposition.
- New integrated sensitivity analysis and decision tree capabilities, developed in cooperation with Prof. Chris Albright (SolverTable), Profs. Stephen Powell and Ken Baker (Sensitivity Toolkit), and Prof. Mike Middleton (TreePlan).
- A special version of the Gurobi Solver-the ultra-high-performance linear mixedinteger optimizer created by the respected computational scientists at Gurobi Optimization.

To register and download the software successfully, you will need a Texbook Code and a Course Code. The Textbook Code is EBA2 and your instructor will provide the Course Code. This download includes a 140 -day license to use the software. Visit www.pearsonglobaleditions.com/Evans for complete download instructions.

Instructor's Resource Center-Reached through a link at www.pearsonglobaleditions.com/Evans, the Instructor's Resource Center contains the electronic files for the complete Instructor's Solutions Manual, PowerPoint lecture presentations, and the Test Item File.

- Register, redeem, log in at www.pearsonglobaleditions.com/Evans, instructors can access a variety of print, media, and presentation resources that are available with this book in downloadable digital format. Resources are also available for course management platforms such as Blackboard, WebCT, and CourseCompass.
- Need help? Pearson Education's dedicated technical support team is ready to assist instructors with questions about the media supplements that accompany this text. Visit http://247pearsoned.com for answers to frequently asked questions and toll-free user support phone numbers. The supplements are available to adopting instructors. Detailed descriptions are provided at the Instructor's Resource Center. - Instructor's Solutions Manual-The Instructor's Solutions Manual, updated and revised for the second edition by the author, includes Excel-based solutions for all
end-of-chapter problems, exercises, and cases. The Instructor's Solutions Manual is available for download by visiting www.pearsonglobaleditions.com/Evans and clicking on the Instructor Resources link.
- PowerPoint presentations-The PowerPoint slides, revised and updated by the author, are available for download by visiting www.pearsonglobaleditions.com/Evans and clicking on the Instructor Resources link. The PowerPoint slides provide an instructor with individual lecture outlines to accompany the text. The slides include nearly all of the figures, tables, and examples from the text. Instructors can use these lecture notes as they are or can easily modify the notes to reflect specific presentation needs.
- Test Bank-The TestBank, prepared by Paolo Catasti from Virginia Commonwealth University, is available for download by visiting www.pearsonglobaleditions.com/Evans and clicking on the Instructor Resources link.
- Analytic Solver Platform for Education (ASPE)—This is a special version of Frontline Systems' Analytic Solver Platform software for Microsoft Excel.

Acknowledgements

I would like to thank the staff at Pearson Education for their professionalism and dedication to making this book a reality. In particular, I want to thank Kerri Consalvo, Tatiana Anacki, Erin Kelly, Nicholas Sweeney, and Patrick Barbera; Jen Carley at Lumina Datamatics, Inc.; accuracy checker Annie Puciloski; and solutions checker Regina Krahenbuhl for their outstanding contributions to producing this book. I also want to acknowledge Daniel Fylstra and his staff at Frontline Systems for working closely with me to allow this book to have been the first to include XLMiner with Analytic Solver Platform. If you have any suggestions or corrections, please contact the author via email at james.evans@uc.edu.

James R. Evans
Department of Operations, Business Analytics, and Information Systems
University of Cincinnati
Cincinnati, Ohio

Pearson would also like to thank Sahil Raj (Punjabi University) and Loveleen Gaur (Amity University, Noida) for their contribution to the Global Edition, and Ruben Garcia Berasategui (Jakarta International College), Ahmed R. ElMelegy (The American University, Dubai) and Hyelim Oh (National University of Singapore) for reviewing the Global Edition.

This page intentionally left blank

About the Author

James R. Evans
 Professor, University of Cincinnati College of Business

James R. Evans is professor in the Department of Operations, Business Analytics, and Information Systems in the College of Business at the University of Cincinnati. He holds BSIE and MSIE degrees from Purdue and a PhD in Industrial and Systems Engineering from Georgia Tech.

Dr. Evans has published numerous textbooks in a variety of business disciplines, including statistics, decision models, and analytics, simulation and risk analysis, network optimization, operations management, quality management, and creative thinking. He has published over 90 papers in journals such as Management Science, IIE Transactions, Decision Sciences, Interfaces, the Journal of Operations Management, the Quality Management Journal, and many others, and wrote a series of columns in Interfaces on creativity in management science and operations research during the 1990s. He has also served on numerous journal editorial boards and is a past-president and Fellow of the Decision Sciences Institute. In 1996, he was an INFORMS Edelman Award Finalist as part of a project in supply chain optimization with Procter \& Gamble that was credited with helping P\&G save over $\$ 250,000,000$ annually in their North American supply chain, and consulted on risk analysis modeling for Cincinnati 2012's Olympic Games bid proposal.

A recognized international expert on quality management, he served on the Board of Examiners and the Panel of Judges for the Malcolm Baldrige National Quality Award. Much of his current research focuses on organizational performance excellence and measurement practices.

This page intentionally left blank

Credits

Text Credits

Chapter 1 Pages 28-29 "The Cincinnati Zoo \& Botanical Garden" from Cincinnati Zoo Transforms Customer Experience and Boosts Profits, Copyright © 2012. Used by permission of IBM Corporation. Pages 30-31 "Common Types of Decisions that can be Enhanced by Using Analytics" by Thomas H. Davenport from How Organizations Make Better Decisions. Published by SAS Institute, Inc. Pages 36-37 Analytics in the Home Lending and Mortgage Industry by Craig Zielazny. Used by permission of Craig Zielazny. Page 52 Excerpt by Thomas Olavson, Chris Fry from Spreadsheet Decision-Support Tools: Lessons Learned at Hewlett-Packard. Published by Interfaces. Pages 55-56 Analytics in Practice: Developing Effective Analytical Tools at Hewlett-Packard: Thomas Olvason; Chris Fry; Interfaces Page 59 Drout Advertising Research Project by Jamie Drout. Used by permission of Jamie Drout.

Chapter 5 Page 177 Excerpt by Chris K. Anderson from Setting Prices on Priceline. Published by Interfaces.

Chapter 7 Page 253 Help Desk Service Improvement Project by Francisco Endara M from Help Desk Improves Service and Saves Money With Six Sigma. Used by permission of The American Society for Quality.

Chapter 12 Pages 436-437 Implementing Large-Scale Monte Carlo Spreadsheet Models by Yusuf Jafry from Hypo International Strengthens Risk Management with a Large-Scale, Secure Spreadsheet-Management Framework. Published by Interfaces, © 2008.

Chapter 13 Pages 478-479 Excerpt by Srinivas Bollapragada from NBC's Optimization Systems Increase Revenues and Productivity. Copyright © 2002. Used by permission of Interfaces.

Chapter 15 Pages 562-563 Supply Chain Optimization at Procter \& Gamble by Jeffrey D. Camm from Blending OR/MS, Judgment, and GIS: Restructuring P\&G's Supply Chain. Published by Interfaces, © 1997.

Chapter 16 Pages 606-607 Excerpt from How Bayer Makes Decisions to Develop New Drugs by Jeffrey S Stonebraker. Published by Interfaces.

Photo Credits

Chapter 1 Page 27 Analytics Business Analysis: Mindscanner/Fotolia Page 56 Computer, calculator, and spreadsheet: Hans12/Fotolia

Chapter 2 Page 63 Computer with Spreadsheet: Gunnar Pippel/Shutterstock

Chapter 3 Page 79 Spreadsheet with magnifying glass: Poles/Fotolia Page 98 Data Analysis: 2jenn/Shutterstock

Chapter 4 Page 121 Pattern of colorful numbers: JonnyDrake/Shutterstock Page 151 Computer screen with financial data: NAN728/Shutterstock

Chapter 5 Page 157 Faded spreadsheet: Fantasista/Fotolia Page 177 Probability and cost graph with pencil: Fantasista/Fotolia Page 198 Business concepts: Victor Correia/ Shutterstock

Chapter 6 Page 207 Series of bar graphs: Kalabukhava Iryna/Shutterstock Page 211 Brewery truck: Stephen Finn/Shutterstock

Chapter 7 Page 231 Business man solving problems with illustrated graph display: Serg Nvns/Fotolia Page 253 People working at a helpdesk: StockLite/Shutterstock

Chapter 8 Page 259 Trendline 3D graph: Sheelamohanachandran/Fotolia Page 279 Computer and Risk: Gunnar Pippel/Shutterstock Page 280C 4 blank square shape navigation web 2.0 button slider: Claudio Divizia/Shutterstock Page 280L Graph chart illustrations of growth and recession: Vector Illustration/Shutterstock Page 280R Audio gauge: Shutterstock

Chapter 9 Page 299 Past and future road sign: Karen Roach/Fotolia Page 324 NBC Studios: Sean Pavone/Dreamstine

Chapter 10 Page 327 Data Mining Technology Strategy Concept: Kentoh/Shutterstock Page 363 Business man drawing a marketing diagram: Helder Almeida/Shutterstock

Chapter 11 Page 367 3D spreadsheet: Dmitry/Fotolia Page 375 Buildings: ZUMA Press/Newscom Page 381 Health Clinic: Poprostskiy Alexey/Shutterstock

Chapter 12 Page 403 Analyzing Risk in Business: iQoncept/Shutterstock Page 432 Office Building: Verdeskerde/Shutterstock

Chapter 13 Page 441 3D spreadsheet, graph, pen: Archerix/Shutterstock Page 475 Television acting sign: Bizoo_n/Fotolia

Chapter 14 Page 483 People working on spreadsheets: Pressmaster/Shutterstock Page 515 Colored Stock Market Chart: 2jenn/Shutterstock

Chapter 15 Page 539 Brainstorming Concept: Dusit/Shutterstock Page 549 Qantas Airbus A380: Gordon Tipene/Dreamstine Page 559 Supply chain concept: Kheng Guan Toh/ Shutterstock

Chapter 16 Page 579 Person at crossroads: Michael D Brown/Shutterstock Page 604 Collage of several images from a drug store: Sokolov/Shutterstock

Supplementary Chapter A (online) Page 27 Various discount tags and labels: little Whale/Shutterstock Page 35 Red Cross facility: Littleny/Dreamstine

Supplementary Chapter B (online) Page 27 Confused man thinking over right decision: StockThings/Shutterstock Page 33 Lockheed Constellation Cockpit: Brad Whitsitt/ Shutterstock

Most of you have likely been to a zoo, seen the animals, had something to eat, and bought some souvenirs. You probably wouldn't think that managing a zoo is very difficult; after all, it's just feeding and taking care of the animals, right? A zoo might be the last place that you would expect to find business analytics being used, but not anymore. The Cincinnati Zoo \& Botanical Garden has been an "early adopter" and one of the first organizations of its kind to exploit business analytics. ${ }^{1}$

Despite generating more than two-thirds of its budget through its own fund-raising efforts, the zoo wanted to reduce its reliance on local tax subsidies even further by increasing visitor attendance and revenues from secondary sources such as membership, food and retail outlets. The zoo's senior management surmised that the best way to realize more value from each visit was to offer visitors a truly transformed customer experience. By using business analytics to gain greater insight into visitors' behavior and tailoring operations to their preferences, the zoo expected to increase attendance, boost membership, and maximize sales.

The project team - which consisted of consultants from IBM and BrightStar Partners, as well as senior executives from the zoo-began translating the organization's goals into technical solutions. The zoo worked to create a business analytics platform that was capable of delivering the desired goals by combining data from ticketing and point-of-sale systems throughout the zoo with membership information and geographical data gathered from the ZIP codes of all visitors. This enabled the creation of reports and dashboards that give everyone from senior managers to zoo staff access to real-time information that helps them optimize operational management and transform the customer experience.

By integrating weather forecast data, the zoo is able to compare current forecasts with historic attendance and sales data, supporting better decisionmaking for labor scheduling and inventory planning. Another area where the solution delivers new insight is food service. By opening food outlets at specific times of day when demand is highest (for example, keeping ice cream kiosks open in the final hour before the zoo closes), the zoo has been able to increase sales significantly. The zoo has been able to increase attendance and revenues dramatically, resulting in annual ROI of 411%. The business

[^1]analytics initiative paid for itself within three months, and delivers, on average, benefits of $\$ 738,212$ per year. Specifically,

- The zoo has seen a 4.2% rise in ticket sales by targeting potential visitors who live in specific ZIP codes.
- Food revenues increased by 25% by optimizing the mix of products on sale and adapting selling practices to match peak purchase times.
- Eliminating slow-selling products and targeting visitors with specific promotions enabled an 18\% increase in merchandise sales.
- Cut marketing expenditure, saving \$40,000 in the first year, and reduced advertising expenditure by 43% by eliminating ineffective campaigns and segmenting customers for more targeted marketing.

Because of the zoo's success, other organizations such as Point Defiance Zoo \& Aquarium, in Washington state, and History Colorado, a museum in Denver, have embarked on similar initiatives.

In recent years, analytics has become increasingly important in the world of business, particularly as organizations have access to more and more data. Managers today no longer make decisions based on pure judgment and experience; they rely on factual data and the ability to manipulate and analyze data to support their decisions. As a result, many companies have recently established analytics departments; for instance, IBM reorganized its consulting business and established a new 4,000-person organization focusing on analytics. ${ }^{2}$ Companies are increasingly seeking business graduates with the ability to understand and use analytics. In fact, in 2011, the U.S. Bureau of Labor Statistics predicted a 24\% increase in demand for professionals with analytics expertise.

No matter what your academic business concentration is, you will most likely be a future user of analytics to some extent and work with analytics professionals. The purpose of this book is to provide you with a basic introduction to the concepts, methods, and models used in business analytics so that you will develop not only an appreciation for its capabilities to support and enhance business decisions, but also the ability to use business analytics at an elementary level in your work. In this chapter, we introduce you to the field of business analytics, and set the foundation for many of the concepts and techniques that you will learn.

[^2]
What Is Business Analytics?

Everyone makes decisions. Individuals face personal decisions such as choosing a college or graduate program, making product purchases, selecting a mortgage instrument, and investing for retirement. Managers in business organizations make numerous decisions every day. Some of these decisions include what products to make and how to price them, where to locate facilities, how many people to hire, where to allocate advertising budgets, whether or not to outsource a business function or make a capital investment, and how to schedule production. Many of these decisions have significant economic consequences; moreover, they are difficult to make because of uncertain data and imperfect information about the future. Thus, managers need good information and assistance to make such critical decisions that will impact not only their companies but also their careers. What makes business decisions complicated today is the overwhelming amount of available data and information. Data to support business decisions-including those specifically collected by firms as well as through the Internet and social media such as Facebook-are growing exponentially and becoming increasingly difficult to understand and use. This is one of the reasons why analytics is important in today's business environment.

Business analytics, or simply analytics, is the use of data, information technology, statistical analysis, quantitative methods, and mathematical or computer-based models to help managers gain improved insight about their business operations and make better, factbased decisions. Business analytics is "a process of transforming data into actions through analysis and insights in the context of organizational decision making and problem solving." ${ }^{3}$ Business analytics is supported by various tools such as Microsoft Excel and various Excel add-ins, commercial statistical software packages such as SAS or Minitab, and morecomplex business intelligence suites that integrate data with analytical software.

Tools and techniques of business analytics are used across many areas in a wide variety of organizations to improve the management of customer relationships, financial and marketing activities, human capital, supply chains, and many other areas. Leading banks use analytics to predict and prevent credit fraud. Manufacturers use analytics for production planning, purchasing, and inventory management. Retailers use analytics to recommend products to customers and optimize marketing promotions. Pharmaceutical firms use it to get life-saving drugs to market more quickly. The leisure and vacation industries use analytics to analyze historical sales data, understand customer behavior, improve Web site design, and optimize schedules and bookings. Airlines and hotels use analytics to dynamically set prices over time to maximize revenue. Even sports teams are using business analytics to determine both game strategy and optimal ticket prices. ${ }^{4}$ Among the many organizations that use analytics to make strategic decisions and manage day-to-day operations are Harrah's Entertainment, the Oakland Athletics baseball and New England Patriots football teams, Amazon.com, Procter \& Gamble, United Parcel Service (UPS), and Capital One bank. It was reported that nearly all firms with revenues of more than $\$ 100$ million are using some form of business analytics.

Some common types of decisions that can be enhanced by using analytics include

- pricing (for example, setting prices for consumer and industrial goods, government contracts, and maintenance contracts),
- customer segmentation (for example, identifying and targeting key customer groups in retail, insurance, and credit card industries),

[^3]- merchandising (for example, determining brands to buy, quantities, and allocations),
- location (for example, finding the best location for bank branches and ATMs, or where to service industrial equipment),
and many others in operations and supply chains, finance, marketing, and human resources-in fact, in every discipline of business. ${ }^{5}$

Various research studies have discovered strong relationships between a company's performance in terms of profitability, revenue, and shareholder return and its use of analytics. Top-performing organizations (those that outperform their competitors) are three times more likely to be sophisticated in their use of analytics than lower performers and are more likely to state that their use of analytics differentiates them from competitors. ${ }^{6}$ However, research has also suggested that organizations are overwhelmed by data and struggle to understand how to use data to achieve business results and that most organizations simply don't understand how to use analytics to improve their businesses. Thus, understanding the capabilities and techniques of analytics is vital to managing in today's business environment.

One of the emerging applications of analytics is helping businesses learn from social media and exploit social media data for strategic advantage. ${ }^{7}$ Using analytics, firms can integrate social media data with traditional data sources such as customer surveys, focus groups, and sales data; understand trends and customer perceptions of their products; and create informative reports to assist marketing managers and product designers.

Evolution of Business Analytics

Analytical methods, in one form or another, have been used in business for more than a century. However, the modern evolution of analytics began with the introduction of computers in the late 1940s and their development through the 1960s and beyond. Early computers provided the ability to store and analyze data in ways that were either very difficult or impossible to do so manually. This facilitated the collection, management, analysis, and reporting of data, which is often called business intelligence (BI), a term that was coined in 1958 by an IBM researcher, Hans Peter Luhn. ${ }^{8}$ Business intelligence software can answer basic questions such as "How many units did we sell last month?" "What products did customers buy and how much did they spend?" "How many credit card transactions were completed yesterday?" Using BI, we can create simple rules to flag exceptions automatically, for example, a bank can easily identify transactions greater than $\$ 10,000$ to report to the Internal Revenue Service. ${ }^{9}$ BI has evolved into the modern discipline we now call information systems (IS).

[^4]Statistics has a long and rich history, yet only rather recently has it been recognized as an important element of business, driven to a large extent by the massive growth of data in today's world. Google's chief economist stated that statisticians surely have the "really sexy job" for the next decade. ${ }^{10}$ Statistical methods allow us to gain a richer understanding of data that goes beyond business intelligence reporting by not only summarizing data succinctly but also finding unknown and interesting relationships among the data. Statistical methods include the basic tools of description, exploration, estimation, and inference, as well as more advanced techniques like regression, forecasting, and data mining.

Much of modern business analytics stems from the analysis and solution of complex decision problems using mathematical or computer-based models-a discipline known as operations research, or management science. Operations research (OR) was born from efforts to improve military operations prior to and during World War II. After the war, scientists recognized that the mathematical tools and techniques developed for military applications could be applied successfully to problems in business and industry. A significant amount of research was carried on in public and private think tanks during the late 1940s and through the 1950s. As the focus on business applications expanded, the term management science (MS) became more prevalent. Many people use the terms operations research and management science interchangeably, and the field became known as Operations Research/Management Science (OR/MS). Many OR/MS applications use modeling and optimization-techniques for translating real problems into mathematics, spreadsheets, or other computer languages, and using them to find the best ("optimal") solutions and decisions. INFORMS, the Institute for Operations Research and the Management Sciences, is the leading professional society devoted to OR/MS and analytics, and publishes a bimonthly magazine called Analytics (http://analytics-magazine.com/). Digital subscriptions may be obtained free of charge at the Web site.

Decision support systems (DSS) began to evolve in the 1960s by combining business intelligence concepts with OR/MS models to create analytical-based computer systems to support decision making. DSSs include three components:

1. Data management. The data management component includes databases for storing data and allows the user to input, retrieve, update, and manipulate data.
2. Model management. The model management component consists of various statistical tools and management science models and allows the user to easily build, manipulate, analyze, and solve models.
3. Communication system. The communication system component provides the interface necessary for the user to interact with the data and model management components. ${ }^{11}$

DSSs have been used for many applications, including pension fund management, portfolio management, work-shift scheduling, global manufacturing and facility location, advertising-budget allocation, media planning, distribution planning, airline operations planning, inventory control, library management, classroom assignment, nurse scheduling, blood distribution, water pollution control, ski-area design, police-beat design, and energy planning. ${ }^{12}$

[^5]Figure : 1.1
A Visual Perspective of Business Analytics

Visualization
Simulation and Risk

What If?

Modeling and Optimization

Modern business analytics can be viewed as an integration of BI/IS, statistics, and modeling and optimization as illustrated in Figure 1.1. While the core topics are traditional and have been used for decades, the uniqueness lies in their intersections. For example, data mining is focused on better understanding characteristics and patterns among variables in large databases using a variety of statistical and analytical tools. Many standard statistical tools as well as more advanced ones are used extensively in data mining. Simulation and risk analysis relies on spreadsheet models and statistical analysis to examine the impacts of uncertainty in the estimates and their potential interaction with one another on the output variable of interest. Spreadsheets and formal models allow one to manipulate data to perform what-if analysis-how specific combinations of inputs that reflect key assumptions will affect model outputs. What-if analysis is also used to assess the sensitivity of optimization models to changes in data inputs and provide better insight for making good decisions.

Perhaps the most useful component of business analytics, which makes it truly unique, is the center of Figure 1.1-visualization. Visualizing data and results of analyses provide a way of easily communicating data at all levels of a business and can reveal surprising patterns and relationships. Software such as IBM's Cognos system exploits data visualization for query and reporting, data analysis, dashboard presentations, and scorecards linking strategy to operations. The Cincinnati Zoo, for example, has used this on an iPad to display hourly, daily, and monthly reports of attendance, food and retail location revenues and sales, and other metrics for prediction and marketing strategies. UPS uses telematics to capture vehicle data and display them to help make decisions to improve efficiency and performance. You may have seen a tag cloud (see the graphic at the beginning of this chapter), which is a visualization of text that shows words that appear more frequently using larger fonts.

The most influential developments that propelled the use of business analytics have been the personal computer and spreadsheet technology. Personal computers and spreadsheets provide a convenient way to manage data, calculations, and visual graphics simultaneously, using intuitive representations instead of abstract mathematical notation. Although the early

Analytics in Practice: Harrah's Entertainment ${ }^{13}$

One of the most cited examples of the use of analytics in business is Harrah's Entertainment. Harrah's owns numerous hotels and casinos and uses analytics to support revenue management activities, which involve selling the right resources to the right customer at the right price to maximize revenue and profit. The gaming industry views hotel rooms as incentives or rewards to support casino gaming activities and revenues, not as revenue-maximizing assets. Therefore, Harrah's objective is to set room rates and accept reservations to maximize the expected gaming profits from customers. They begin with collecting and tracking of customers' gaming activities (playing slot machines and casino games) using Harrah's "Total Rewards" card program, a customer loyalty program that provides rewards such as meals,
discounted rooms, and other perks to customers based on the amount of money and time they spend at Harrah's. The data collected are used to segment customers into more than 20 groups based on their expected gaming activities. For each customer segment, analytics forecasts demand for hotel rooms by arrival date and length of stay. Then Harrah's uses a prescriptive model to set prices and allocate rooms to these customer segments. For example, the system might offer complimentary rooms to customers who are expected to generate a gaming profit of at least $\$ 400$ but charge $\$ 325$ for a room if the profit is expected to be only $\$ 100$. Marketing can use the information to send promotional offers to targeted customer segments if it identifies low-occupancy rates for specific dates.
applications of spreadsheets were primarily in accounting and finance, spreadsheets have developed into powerful general-purpose managerial tools for applying techniques of business analytics. The power of analytics in a personal computing environment was noted some 20 years ago by business consultants Michael Hammer and James Champy, who said, "When accessible data is combined with easy-to-use analysis and modeling tools, frontline workers —when properly trained—suddenly have sophisticated decision-making capabilities."14 Although many good analytics software packages are available to professionals, we use Microsoft Excel and a powerful add-in called Analytic Solver Platform throughout this book.

Impacts and Challenges

The impact of applying business analytics can be significant. Companies report reduced costs, better risk management, faster decisions, better productivity, and enhanced bottom-line performance such as profitability and customer satisfaction. For example, 1-800-flowers.com uses analytic software to target print and online promotions with greater accuracy; change prices and offerings on its Web site (sometimes hourly); and optimize its marketing, shipping, distribution, and manufacturing operations, resulting in a $\$ 50$ million cost savings in one year. ${ }^{15}$

Business analytics is changing how managers make decisions. ${ }^{16}$ To thrive in today's business world, organizations must continually innovate to differentiate themselves from competitors, seek ways to grow revenue and market share, reduce costs, retain existing customers and acquire new ones, and become faster and leaner. IBM suggests that

[^6]traditional management approaches are evolving in today's analytics-driven environment to include more fact-based decisions as opposed to judgment and intuition, more prediction rather than reactive decisions, and the use of analytics by everyone at the point where decisions are made rather than relying on skilled experts in a consulting group. ${ }^{17}$ Nevertheless, organizations face many challenges in developing analytics capabilities, including lack of understanding of how to use analytics, competing business priorities, insufficient analytical skills, difficulty in getting good data and sharing information, and not understanding the benefits versus perceived costs of analytics studies. Successful application of analytics requires more than just knowing the tools; it requires a highlevel understanding of how analytics supports an organization's competitive strategy and effective execution that crosses multiple disciplines and managerial levels.

A 2011 survey by Bloomberg Businessweek Research Services and SAS concluded that business analytics is still in the "emerging stage" and is used only narrowly within business units, not across entire organizations. The study also noted that many organizations lack analytical talent, and those that do have analytical talent often don't know how to apply the results properly. While analytics is used as part of the decision-making process in many organizations, most business decisions are still based on intuition. ${ }^{18}$ Therefore, while many challenges are apparent, many more opportunities exist. These opportunities are reflected in the job market for analytics professionals, or "data scientists," as some call them. The Harvard Business Review called data scientist "the sexiest job of the 21st century," and McKinsey \& Company predicted a 50 to 60% shortfall in data scientists in the United States by $2018 .{ }^{19}$

Scope of Business Analytics

Business analytics begins with the collection, organization, and manipulation of data and is supported by three major components: ${ }^{20}$

1. Descriptive analytics. Most businesses start with descriptive analytics-the use of data to understand past and current business performance and make informed decisions. Descriptive analytics is the most commonly used and most well-understood type of analytics. These techniques categorize, characterize, consolidate, and classify data to convert it into useful information for the purposes of understanding and analyzing business performance. Descriptive analytics summarizes data into meaningful charts and reports, for example, about budgets, sales, revenues, or cost. This process allows managers to obtain standard and customized reports and then drill down into the data and make queries to understand the impact of an advertising campaign, for example, review business performance to find problems or areas of opportunity, and identify patterns and trends in data. Typical questions that descriptive analytics helps answer are "How much did we sell in each region?" "What was our revenue and profit last quarter?" "How many and what types of complaints did we

[^7]resolve?" "Which factory has the lowest productivity?" Descriptive analytics also helps companies to classify customers into different segments, which enables them to develop specific marketing campaigns and advertising strategies.
2. Predictive analytics. Predictive analytics seeks to predict the future by examining historical data, detecting patterns or relationships in these data, and then extrapolating these relationships forward in time. For example, a marketer might wish to predict the response of different customer segments to an advertising campaign, a commodities trader might wish to predict short-term movements in commodities prices, or a skiwear manufacturer might want to predict next season's demand for skiwear of a specific color and size. Predictive analytics can predict risk and find relationships in data not readily apparent with traditional analyses. Using advanced techniques, predictive analytics can help to detect hidden patterns in large quantities of data to segment and group data into coherent sets to predict behavior and detect trends. For instance, a bank manager might want to identify the most profitable customers or predict the chances that a loan applicant will default, or alert a credit-card customer to a potential fraudulent charge. Predictive analytics helps to answer questions such as "What will happen if demand falls by 10% or if supplier prices go up 5% ?" "What do we expect to pay for fuel over the next several months?" "What is the risk of losing money in a new business venture?"
3. Prescriptive analytics. Many problems, such as aircraft or employee scheduling and supply chain design, for example, simply involve too many choices or alternatives for a human decision maker to effectively consider. Prescriptive analytics uses optimization to identify the best alternatives to minimize or maximize some objective. Prescriptive analytics is used in many areas of business, including operations, marketing, and finance. For example, we may determine the best pricing and advertising strategy to maximize revenue, the optimal amount of cash to store in ATMs, or the best mix of investments in a retirement portfolio to manage risk. The mathematical and statistical techniques of predictive analytics can also be combined with optimization to make decisions that take into account the uncertainty in the data. Prescriptive analytics addresses questions such as "How much should we produce to maximize profit?" "What is the best way of shipping goods from our factories to minimize costs?" "Should we change our plans if a natural disaster closes a supplier's factory: if so, by how much?"

Analytics in Practice: Analytics in the Home Lending and Mortgage Industry ${ }^{21}$

Sometime during their lives, most Americans will receive a mortgage loan for a house or condominium. The process starts with an application. The application contains all pertinent information about the borrower that the lender will need. The bank or mortgage company then initiates a process that leads to a loan decision. It is here that key information about the borrower is provided by third-party providers. This information includes a credit report, verification of income, verification of
assets, verification of employment, and an appraisal of the property among others. The result of the processing function is a complete loan file that contains all the information and documents needed to underwrite the loan, which is the next step in the process. Underwriting is where the loan application is evaluated for its risk. Underwriters evaluate whether the borrower can make payments on time, can afford to pay back the loan, and has sufficient collateral in the property to back up the
(continued)

[^8]loan. In the event the borrower defaults on their loan, the lender can sell the property to recover the amount of the loan. But, if the amount of the loan is greater than the value of the property, then the lender cannot recoup their money. If the underwriting process indicates that the borrower is creditworthy, has the capacity to repay the loan, and the value of the property in question is greater than the loan amount, then the loan is approved and will move to closing. Closing is the step where the borrower signs all the appropriate papers agreeing to the terms of the loan.

In reality, lenders have a lot of other work to do. First, they must perform a quality control review on a sample of the loan files that involves a manual examination of all the documents and information gathered. This process is designed to identify any mistakes that may have been made or information that is missing from the loan file. Because lenders do not have unlimited money to lend to borrowers, they frequently sell the loan to a third party so that they have fresh capital to lend to others. This occurs in what is called the secondary market. Freddie Mac and Fannie Mae are the two largest purchasers of mortgages in the secondary market. The final step in the process is servicing. Servicing includes all the activities associated with providing the customer service on the loan like processing payments, managing property taxes held in escrow, and answering questions about the loan.

In addition, the institution collects various operational data on the process to track its performance and efficiency, including the number of applications, loan types and amounts, cycle times (time to close the loan), bottlenecks in the process, and so on. Many different types of analytics are used:

Descriptive Analytics-This focuses on historical reporting, addressing such questions as:

How many loan apps were taken each of the past 12 months?
What was the total cycle time from app to close?

- What was the distribution of loan profitability by credit score and loan-to-value (LTV), which is the mortgage amount divided by the appraised value of the property.

Predictive Analytics-Predictive modeling use mathematical, spreadsheet, and statistical models, and address questions such as:

What impact on loan volume will a given marketing program have?

- How many processors or underwriters are needed for a given loan volume?
Will a given process change reduce cycle time?
Prescriptive Analytics-This involves the use of simulation or optimization to drive decisions. Typical questions include:

What is the optimal staffing to achieve a given profitability constrained by a fixed cycle time?

- What is the optimal product mix to maximize profit constrained by fixed staffing?

The mortgage market has become much more dynamic in recent years due to rising home values, falling interest rates, new loan products, and an increased desire by home owners to utilize the equity in their homes as a financial resource. This has increased the complexity and variability of the mortgage process and created an opportunity for lenders to proactively use the data that are available to them as a tool for managing their business. To ensure that the process is efficient, effective and performed with quality, data and analytics are used every day to track what is done, who is doing it, and how long it takes.

A wide variety of tools are used to support business analytics. These include:
Database queries and analysis

- "Dashboards" to report key performance measures
- Data visualization
- Statistical methods
- Spreadsheets and predictive models
- Scenario and "what-if" analyses
- Simulation

[^9]Although the tools used in descriptive, predictive, and prescriptive analytics are different, many applications involve all three. Here is a typical example in retail operations.

EXAMPLE 1.1 Retail Markdown Decisions ${ }^{22}$

As you probably know from your shopping experiences, most department stores and fashion retailers clear their seasonal inventory by reducing prices. The key question they face is what prices should they set-and when should they set them-to meet inventory goals and maximize revenue? For example, suppose that a store has 100 bathing suits of a certain style that go on sale from April 1 and wants to sell all of them by the end of June. Over each week of the 12 -week selling season, they can make a decision to discount the price. They face two decisions: When to reduce the price and by how much? This results in 24 decisions to make. For a major national
chain that may carry thousands of products, this can easily result in millions of decisions that store managers have to make. Descriptive analytics can be used to examine historical data for similar products, such as the number of units sold, price at each point of sale, starting and ending inventories, and special promotions, newspaper ads, direct marketing ads, and so on, to understand what the results of past decisions achieved. Predictive analytics can be used to predict sales based on pricing decisions. Finally, prescriptive analytics can be applied to find the best set of pricing decisions to maximize the total revenue.

Software Support

Many companies, such as IBM, SAS, and Tableau have developed a variety of software and hardware solutions to support business analytics. For example, IBM's Cognos Express, an integrated business intelligence and planning solution designed to meet the needs of midsize companies, provides reporting, analysis, dashboard, scorecard, planning, budgeting, and forecasting capabilities. It's made up of several modules, including Cognos Express Reporter, for self-service reporting and ad hoc query; Cognos Express Advisor, for analysis and visualization; and Cognos Express Xcelerator, for Excel-based planning and business analysis. Information is presented to the business user in a business context that makes it easy to understand, with an easy to use interface they can quickly gain the insight they need from their data to make the right decisions and then take action for effective and efficient business optimization and outcome. SAS provides a variety of software that integrate data management, business intelligence, and analytics tools. SAS Analytics covers a wide range of capabilities, including predictive modeling and data mining, visualization, forecasting, optimization and model management, statistical analysis, text analytics, and more. Tableau Software provides simple drag and drop tools for visualizing data from spreadsheets and other databases. We encourage you to explore many of these products as you learn the basic principles of business analytics in this book.

[^10]
Data for Business Analytics

Since the dawn of the electronic age and the Internet, both individuals and organizations have had access to an enormous wealth of data and information. Data are numerical facts and figures that are collected through some type of measurement process. Information comes from analyzing data-that is, extracting meaning from data to support evaluation and decision making.

Data are used in virtually every major function in a business. Modern organizationswhich include not only for-profit businesses but also nonprofit organizations-need good data to support a variety of company purposes, such as planning, reviewing company performance, improving operations, and comparing company performance with competitors' or best-practice benchmarks. Some examples of how data are used in business include the following:

- Annual reports summarize data about companies' profitability and market share both in numerical form and in charts and graphs to communicate with shareholders.
- Accountants conduct audits to determine whether figures reported on a firm's balance sheet fairly represent the actual data by examining samples (that is, subsets) of accounting data, such as accounts receivable.
- Financial analysts collect and analyze a variety of data to understand the contribution that a business provides to its shareholders. These typically include profitability, revenue growth, return on investment, asset utilization, operating margins, earnings per share, economic value added (EVA), shareholder value, and other relevant measures.
- Economists use data to help companies understand and predict population trends, interest rates, industry performance, consumer spending, and international trade. Such data are often obtained from external sources such as Standard \& Poor's Compustat data sets, industry trade associations, or government databases.
- Marketing researchers collect and analyze extensive customer data. These data often consist of demographics, preferences and opinions, transaction and payment history, shopping behavior, and a lot more. Such data may be collected by surveys, personal interviews, focus groups, or from shopper loyalty cards.
- Operations managers use data on production performance, manufacturing quality, delivery times, order accuracy, supplier performance, productivity, costs, and environmental compliance to manage their operations.
- Human resource managers measure employee satisfaction, training costs, turnover, market innovation, training effectiveness, and skills development.

Such data may be gathered from primary sources such as internal company records and business transactions, automated data-capturing equipment, or customer market surveys and from secondary sources such as government and commercial data sources, custom research providers, and online research.

Perhaps the most important source of data today is data obtained from the Web. With today's technology, marketers collect extensive information about Web behaviors, such as the number of page views, visitor's country, time of view, length of time, origin and destination paths, products they searched for and viewed, products purchased, what reviews they read, and many others. Using analytics, marketers can learn what content is being viewed most often, what ads were clicked on, who the most frequent visitors are, and what types of visitors browse but don't buy. Not only can marketers understand what customers have done, but they can better predict what they intend to do in the future. For example,
if a bank knows that a customer has browsed for mortgage rates and homeowner's insurance, they can target the customer with homeowner loans rather than credit cards or automobile loans. Traditional Web data are now being enhanced with social media data from Facebook, cell phones, and even Internet-connected gaming devices.

As one example, a home furnishings retailer wanted to increase the rate of sales for customers who browsed their Web site. They developed a large data set that covered more than 7,000 demographic, Web, catalog, and retail behavioral attributes for each customer. They used predictive analytics to determine how well a customer would respond to different e-mail marketing offers and customized promotions to individual customers. This not only helped them to determine where to most effectively spend marketing resources but doubled the response rate compared to previous marketing campaigns, with a projected multimillion dollar increase in sales. ${ }^{23}$

Data Sets and Databases

A data set is simply a collection of data. Marketing survey responses, a table of historical stock prices, and a collection of measurements of dimensions of a manufactured item are examples of data sets. A database is a collection of related files containing records on people, places, or things. The people, places, or things for which we store and maintain information are called entities. ${ }^{24}$ A database for an online retailer that sells instructional fitness books and DVDs, for instance, might consist of a file for three entities: publishers from which goods are purchased, customer sales transactions, and product inventory. A database file is usually organized in a two-dimensional table, where the columns correspond to each individual element of data (called fields, or attributes), and the rows represent records of related data elements. A key feature of computerized databases is the ability to quickly relate one set of files to another.

Databases are important in business analytics for accessing data, making queries, and other data and information management activities. Software such as Microsoft Access provides powerful analytical database capabilities. However, in this book, we won't be delving deeply into databases or database management systems but will work with individual database files or simple data sets. Because spreadsheets are convenient tools for storing and manipulating data sets and database files, we will use them for all examples and problems.

EXAMPLE 1.2 A Sales Transaction Database File ${ }^{25}$

Figure 1.2 shows a portion of sales transactions on an Excel worksheet for a particular day for an online seller of instructional fitness books and DVDs. The fields are shown in row 3 of the spreadsheet and consist of the
customer ID, region, payment type, transaction code, source of the sale, amount, product purchased, and time of day. Each record (starting in row 4) has a value for each of these fields.

[^11]Figure: 1.2
A Portion of Excel File Sales Transactions Database

	A	B	C	D	E	F	G	H
1	Sales Transactions: July 14							
2								
3	Cust ID	Region	Payment	Transaction Code	Source	Amount	Product	Time Of Day
4	10001	East	Paypal	93816545	Web	\$20.19	DVD	22:19
5	10002	West	Credit	74083490	Web	\$17.85	DVD	13:27
6	10003	North	Credit	64942368	Web	\$23.98	DVD	14:27
7	10004	West	Paypal	70560957	Email	\$23.51	Book	15:38
8	10005	South	Credit	35208817	Web	\$15.33	Book	15:21
9	10006	West	Paypal	20978903	Email	\$17.30	DVD	13:11
10	10007	East	Credit	80103311	Web	\$177.72	Book	21:59
11	10008	West	Credit	14132683	Web	\$21.76	Book	4:04
12	10009	West	Paypal	40128225	Web	\$15.92	DVD	19:35
13	10010	South	Paypal	49073721	Web	\$23.39	DVD	13:26

Big Data

Today, nearly all data are captured digitally. As a result, data have been growing at an overwhelming rate, being measured by terabytes (10^{12} bytes), petabytes (10^{15} bytes), exabytes (10^{18} bytes), and even by higher-dimensional terms. Just think of the amount of data stored on Facebook, Twitter, or Amazon servers, or the amount of data acquired daily from scanning items at a national grocery chain such as Kroger and its affiliates. Walmart, for instance, has over one million transactions each hour, yielding more than 2.5 petabytes of data. Analytics professionals have coined the term big data to refer to massive amounts of business data from a wide variety of sources, much of which is available in real time, and much of which is uncertain or unpredictable. IBM calls these characteristics volume, variety, velocity, and veracity. Most often, big data revolves around customer behavior and customer experiences. Big data provides an opportunity for organizations to gain a competitive advantage-if the data can be understood and analyzed effectively to make better business decisions.

The volume of data continue to increase; what is considered "big" today will be even bigger tomorrow. In one study of information technology (IT) professionals in 2010, nearly half of survey respondents ranked data growth among their top three challenges. Big data come from many sources, and can be numerical, textual, and even audio and video data. Big data are captured using sensors (for example, supermarket scanners), click streams from the Web, customer transactions, e-mails, tweets and social media, and other ways. Big data sets are unstructured and messy, requiring sophisticated analytics to integrate and process the data, and understand the information contained in them. Not only are big data being captured in real time, but they must be incorporated into business decisions at a faster rate. Processes such as fraud detection must be analyzed quickly to have value. IBM has added a fourth dimension: veracity-the level of reliability associated with data. Having high-quality data and understanding the uncertainty in data are essential for good decision making. Data veracity is an important role for statistical methods.

Big data can help organizations better understand and predict customer behavior and improve customer service. A study by the McKinsey Global Institute noted that "The effective use of big data has the potential to transform economies, delivering a new wave of productivity growth and consumer surplus. Using big data will become a key basis of competition for existing companies, and will create new competitors who are able to attract employees that have the critical skills for a big data world. ${ }^{" 26}$ However, understanding big

[^12]data requires advanced analytics tools such as data mining and text analytics, and new technologies such as cloud computing, faster multi-core processors, large memory spaces, and solid-state drives.

Metrics and Data Classification

A metric is a unit of measurement that provides a way to objectively quantify performance. For example, senior managers might assess overall business performance using such metrics as net profit, return on investment, market share, and customer satisfaction. A plant manager might monitor such metrics as the proportion of defective parts produced or the number of inventory turns each month. For a Web-based retailer, some useful metrics are the percentage of orders filled accurately and the time taken to fill a customer's order. Measurement is the act of obtaining data associated with a metric. Measures are numerical values associated with a metric.

Metrics can be either discrete or continuous. A discrete metric is one that is derived from counting something. For example, a delivery is either on time or not; an order is complete or incomplete; or an invoice can have one, two, three, or any number of errors. Some discrete metrics associated with these examples would be the proportion of on-time deliveries; the number of incomplete orders each day, and the number of errors per invoice. Continuous metrics are based on a continuous scale of measurement. Any metrics involving dollars, length, time, volume, or weight, for example, are continuous.

Another classification of data is by the type of measurement scale. Data may be classified into four groups:

1. Categorical (nominal) data, which are sorted into categories according to specified characteristics. For example, a firm's customers might be classified by their geographical region (North America, South America, Europe, and Pacific); employees might be classified as managers, supervisors, and associates. The categories bear no quantitative relationship to one another, but we usually assign an arbitrary number to each category to ease the process of managing the data and computing statistics. Categorical data are usually counted or expressed as proportions or percentages.
2. Ordinal data, which can be ordered or ranked according to some relationship to one another. College football or basketball rankings are ordinal; a higher ranking signifies a stronger team but does not specify any numerical measure of strength. Ordinal data are more meaningful than categorical data because data can be compared to one another. A common example in business is data from survey scales-for example, rating a service as poor, average, good, very good, or excellent. Such data are categorical but also have a natural order (excellent is better than very good) and, consequently, are ordinal. However, ordinal data have no fixed units of measurement, so we cannot make meaningful numerical statements about differences between categories. Thus, we cannot say that the difference between excellent and very good is the same as between good and average, for example. Similarly, a team ranked number 1 may be far superior to the number 2 team, whereas there may be little difference between teams ranked 9th and 10th.
3. Interval data, which are ordinal but have constant differences between observations and have arbitrary zero points. Common examples are time and temperature. Time is relative to global location, and calendars have arbitrary starting dates (compare, for example, the standard Gregorian calendar with the Chinese
calendar). Both the Fahrenheit and Celsius scales represent a specified measure of distance-degrees-but have arbitrary zero points. Thus we cannot take meaningful ratios; for example, we cannot say that 50 degrees is twice as hot as 25 degrees. However, we can compare differences. Another example is SAT or GMAT scores. The scores can be used to rank students, but only differences between scores provide information on how much better one student performed over another; ratios make little sense. In contrast to ordinal data, interval data allow meaningful comparison of ranges, averages, and other statistics.

In business, data from survey scales, while technically ordinal, are often treated as interval data when numerical scales are associated with the categories (for instance, $1=$ poor, $2=$ average, $3=$ good, $4=$ very good, $5=$ excellent). Strictly speaking, this is not correct because the "distance" between categories may not be perceived as the same (respondents might perceive a larger gap between poor and average than between good and very good, for example). Nevertheless, many users of survey data treat them as interval when analyzing the data, particularly when only a numerical scale is used without descriptive labels.
4. Ratio data, which are continuous and have a natural zero. Most business and economic data, such as dollars and time, fall into this category. For example, the measure dollars has an absolute zero. Ratios of dollar figures are meaningful. For example, knowing that the Seattle region sold $\$ 12$ million in March whereas the Tampa region sold $\$ 6$ million means that Seattle sold twice as much as Tampa.

This classification is hierarchical in that each level includes all the information content of the one preceding it. For example, ordinal data are also categorical, and ratio information can be converted to any of the other types of data. Interval information can be converted to ordinal or categorical data but cannot be converted to ratio data without the knowledge of the absolute zero point. Thus, a ratio scale is the strongest form of measurement.

EXAMPLE 1.3 Classifying Data Elements in a Purchasing Database ${ }^{27}$

Figure 1.3 shows a portion of a data set containing all items that an aircraft component manufacturing company has purchased over the past 3 months. The data provide the supplier; order number; item number, description, and cost; quantity ordered; cost per order, the suppliers' accounts payable (A/P) terms; and the order and arrival dates. We may classify each of these types of data as follows:

- Supplier-categorical
- Order Number-ordinal
- Item Number-categorical

```
- Item Description-categorical
- Item Cost-ratio
- Quantity - ratio
- Cost per Order-ratio
- A/P Terms-ratio
- Order Date-interval
- Arrival Date-interval
```

We might use these data to evaluate the average speed of delivery and rank the suppliers (thus creating ordinal data) by this metric. (We see how to do this in the next chapter).

[^13]| 2 | A | B | C | D | E | F | G | H | 1 | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Purchase Orders | | | | | | | | | |
| 2 | | | | | | | | | | |
| 3 | Supplier | Order No. | Item No. | Item Description | Item Cost | Quantity | Cost per order | A/P Terms (Months) | Order Date | Arrival Date |
| 4 | Hulkey Fasteners | Aug11001 | 1122 | Airframe fasteners | \$ 4.25 | 19,500 | \$ 82,875.00 | 30 | 08/05/11 | 08/13/11 |
| 5 | Alum Sheeting | Aug11002 | 1243 | Airframe fasteners | \$ 4.25 | 10,000 | \$ 42,500.00 | 30 | 08/08/11 | 08/14/11 |
| 6 | Fast-Tie Aerospace | Aug11003 | 5462 | Shielded Cable/ft. | \$ 1.05 | 23,000 | \$ 24,150.00 | 30 | 08/10/11 | 08/15/11 |
| 7 | Fast-Tie Aerospace | Aug11004 | 5462 | Shielded Cable/ft. | \$ 1.05 | 21.500 | \$ 22,575.00 | 30 | 08/15/11 | 08/22/11 |
| 8 | Steelpin Inc. | Aug11005 | 5319 | Shielded Cable/ft. | \$ 1.10 | 17.500 | \$ 19,250.00 | 30 | 08/20/11 | 08/31/11 |
| 9 | Fast-Tie Aerospace | Aug11006 | 5462 | Shielded Cable/ft. | \$ 1.05 | 22.500 | \$ 23,625.00 | 30 | 08/20/11 | 08/26/11 |
| 10 | Steelpin Inc. | Aug11007 | 4312 | Bolt-nut package | \$ 3.75 | 4,250 | \$ 15,937.50 | 30 | 08/25/11 | 09/01/11 |
| 11 | Durrable Products | Aug11008 | 7258 | Pressure Gauge | \$ 90.00 | 100 | \$ 9.000 .00 | 45 | 08/25/11 | 08/28/11 |
| 12 | Fast-Tie Aerospace | Aug11009 | 6321 | O-Ring | \$ 2.45 | 1,300 | \$ 3,185.00 | 30 | 08/25/11 | 09/04/11 |
| 13 | Fast-Tie Aerospace | Aug11010 | 5462 | Shielded Cable/ft. | \$ 1.05 | 22,500 | \$ 23,625.00 | 30 | 08/25/11 | 09/02/11 |
| 14 | Steelpin Inc. | Aug11011 | 5319 | Shielded Cable/ft. | \$ 1.10 | 18,100 | \$ 19,910.00 | 30 | 08/25/11 | 09/05/11 |
| 15 | Hulkey Fasteners | Aug11012 | 3166 | Electrical Connector | \$ 1.25 | 5,600 | \$ 7,000.00 | 30 | 08/25/11 | 08/29/11 |

Figure : 1.3

Portion of Excel File Purchase Orders Data

Data Reliability and Validity

Poor data can result in poor decisions. In one situation, a distribution system design model relied on data obtained from the corporate finance department. Transportation costs were determined using a formula based on the latitude and longitude of the locations of plants and customers. But when the solution was represented on a geographic information system (GIS) mapping program, one of the customers was in the Atlantic Ocean.

Thus, data used in business decisions need to be reliable and valid. Reliability means that data are accurate and consistent. Validity means that data correctly measure what they are supposed to measure. For example, a tire pressure gauge that consistently reads several pounds of pressure below the true value is not reliable, although it is valid because it does measure tire pressure. The number of calls to a customer service desk might be counted correctly each day (and thus is a reliable measure), but not valid if it is used to assess customer dissatisfaction, as many calls may be simple queries. Finally, a survey question that asks a customer to rate the quality of the food in a restaurant may be neither reliable (because different customers may have conflicting perceptions) nor valid (if the intent is to measure customer satisfaction, as satisfaction generally includes other elements of service besides food).

Models in Business Analytics

To make a decision, we must be able to specify the decision alternatives that represent the choices that can be made and criteria for evaluating the alternatives. Specifying decision alternatives might be very simple; for example, you might need to choose one of three corporate health plan options. Other situations can be more complex; for example, in locating a new distribution center, it might not be possible to list just a small number of alternatives. The set of potential locations might be anywhere in the United States or even within a large geographical region such as Asia. Decision criteria might be to maximize discounted net profits, customer satisfaction, or social benefits or to minimize costs, environmental impact, or some measure of loss.

Many decision problems can be formalized using a model. A model is an abstraction or representation of a real system, idea, or object. Models capture the most important features of a problem and present them in a form that is easy to interpret. A model can be as simple as a written or verbal description of some phenomenon, a visual representation such as a graph or a flowchart, or a mathematical or spreadsheet representation (see Example 1.4).

Models can be descriptive, predictive, or prescriptive, and therefore are used in a wide variety of business analytics applications. In Example 1.4, note that the first two

EXAMPLE 1.4 Three Forms of a Model

The sales of a new product, such as a first-generation iPad, Android phone, or 3-D television, often follow a common pattern. We might represent this in one of three following ways:

1. A simple verbal description of sales might be: The rate of sales starts small as early adopters begin to evaluate a new product and then begins to grow at an increasing rate over time as positive customer feedback spreads. Eventually, the market begins to become saturated and the rate of sales begins to decrease.
2. A sketch of sales as an S-shaped curve over time, as shown in Figure 1.4, is a visual model that conveys this phenomenon.
3. Finally, analysts might identify a mathematical model that characterizes this curve. Several different mathematical functions do this; one is called a Gompertz curve and has the formula: $S=a e^{b e^{c t}}$, where $S=$ sales, $t=$ time, e is the base of natural logarithms, and a, b, and c are constants. Of course, you would not be expected to know this; that's what analytics professionals do. Such a mathematical model provides the ability to predict sales quantitatively, and to analyze potential decisions by asking "what if?" questions.

Figure : 1.4
New Product Sales
Over Time
forms of the model are purely descriptive; they simply explain the phenomenon. While the mathematical model also describes the phenomenon, it can be used to predict sales at a future time. Models are usually developed from theory or observation and establish relationships between actions that decision makers might take and results that they might expect, thereby allowing the decision makers to predict what might happen based on the model.

Models complement decision makers' intuition and often provide insights that intuition cannot. For example, one early application of analytics in marketing involved a study of sales operations. Sales representatives had to divide their time between large and small customers and between acquiring new customers and keeping old ones. The problem was to determine how the representatives should best allocate their time. Intuition suggested that they should concentrate on large customers and that it was much harder to acquire a new customer than to keep an old one. However, intuition could not tell whether they should concentrate on the 100 largest or the 1,000 largest customers, or how much effort to spend on acquiring new customers. Models of sales force effectiveness and customer response patterns provided the insight to make these decisions. However, it is important to understand that all models are only representations of the real world and, as such, cannot capture every nuance that decision makers face in reality. Decision makers must often

modify the policies that models suggest to account for intangible factors that they might not have been able to incorporate into the model.

A simple descriptive model is a visual representation called an influence diagram because it describes how various elements of the model influence, or relate to, others. An influence diagram is a useful approach for conceptualizing the structure of a model and can assist in building a mathematical or spreadsheet model. The elements of the model are represented by circular symbols called nodes. Arrows called branches connect the nodes and show which elements influence others. Influence diagrams are quite useful in the early stages of model building when we need to understand and characterize key relationships. Example 1.5 shows how to construct simple influence diagrams, and Example 1.6 shows how to build a mathematical model, drawing upon the influence diagram.

EXAMPLE 1.5 An Influence Diagram for Total Cost

From basic business principles, we know that the total cost of producing a fixed volume of a product is comprised of fixed costs and variable costs. Thus, a simple influence diagram that shows these relationships is given in Figure 1.5.

We can develop a more detailed model by noting that the variable cost depends on the unit variable cost as well as the quantity produced. The expanded model is shown in Figure 1.6. In this figure, all the nodes that have
no branches pointing into them are inputs to the model. We can see that the unit variable cost and fixed costs are data inputs in the model. The quantity produced, however, is a decision variable because it can be controlled by the manager of the operation. The total cost is the output (note that it has no branches pointing out of it) that we would be interested in calculating. The variable cost node links some of the inputs with the output and can be considered as a "building block" of the model for total cost.

Figure : 1.5
An Influence Diagram Relating Total Cost to Its Key Components

EXAMPLE 1.6 Building a Mathematical Model from an Influence Diagram

We can develop a mathematical model from the influence diagram in Figure 1.6. First, we need to specify the precise nature of the relationships among the various quantities. For example, we can easily state that

Total Cost $=$ Fixed Cost + Variable Cost
Logic also suggests that the variable cost is the unit variable cost times the quantity produced. Thus,

Variable Cost $=$ Unit Variable Cost \times Quantity Produced

Using these relationships, we may develop a mathematical representation by defining symbols for each of these quantities:

TC = total cost
$V=$ unit variable cost
$F=$ fixed cost
$Q=$ quantity produced
This results in the model

$$
\begin{equation*}
T C=F+V Q \tag{1.4}
\end{equation*}
$$

By substituting this into equation (1.1), we have

```
Total Cost = Fixed Cost + Variable Cost
= Fixed Cost + Unit Variable Cost }\times\mathrm{ Quantity Produced
```


Decision Models

A decision model is a logical or mathematical representation of a problem or business situation that can be used to understand, analyze, or facilitate making a decision. Most decision models have three types of input:

1. Data, which are assumed to be constant for purposes of the model. Some examples would be costs, machine capacities, and intercity distances.
2. Uncontrollable variables, which are quantities that can change but cannot be directly controlled by the decision maker. Some examples would be customer demand, inflation rates, and investment returns. Often, these variables are uncertain.
3. Decision variables, which are controllable and can be selected at the discretion of the decision maker. Some examples would be production quantities (see Example 1.5), staffing levels, and investment allocations.

Decision models characterize the relationships among the data, uncontrollable variables, and decision variables, and the outputs of interest to the decision maker (see Figure 1.7). Decision models can be represented in various ways, most typically with mathematical functions and spreadsheets. Spreadsheets are ideal vehicles for implementing decision models because of their versatility in managing data, evaluating different scenarios, and presenting results in a meaningful fashion.

Figure $\quad 1.7 \vdots$
Nature of Decision Models

How might we use the model in Example 1.6 to help make a decision? Suppose that a manufacturer has the option of producing a part in-house or outsourcing it from a supplier (the decision variables). Should the firm produce the part or outsource it? The decision depends on the anticipated volume of demand (an uncontrollable variable); for high volumes, the cost to manufacture in-house will be lower than outsourcing, because the fixed costs can be spread over a large number of units. For small volumes, it would be more economical to outsource. Knowing the total cost of both alternatives (based on data for fixed and variable manufacturing costs and purchasing costs) and the break-even point would facilitate the decision. A numerical example is provided in Example 1.7.

EXAMPLE 1.7 A Break-Even Decision Model

Suppose that a manufacturer can produce a part for $\$ 125 /$ unit with a fixed cost of $\$ 50,000$. The alternative is to outsource production to a supplier at a unit cost of $\$ 175$. The total manufacturing cost is expressed by using equation (1.5):

$$
T C(\text { manufacturing })=\$ 50,000+\$ 125 \times Q
$$

and the total outsourcing cost can be written as

$$
T C(\text { outsourcing) }=\$ 175 \times Q
$$

Mathematical models are easy to manipulate; for example, it is easy to find the break-even volume by setting $T C$ (manufacturing) $=T C$ (outsourcing) and solving for Q :

$$
\begin{aligned}
\$ 50,000+\$ 125 \times Q & =\$ 175 \times Q \\
\$ 50,000 & =50 \times Q \\
Q & =1,000
\end{aligned}
$$

Thus, if the anticipated production volume is greater than 1,000 , it is more economical to manufacture the part; if it is less than 1,000 , then it should be outsourced. This is shown graphically in Figure 1.8.

We may also develop a general formula for the breakeven point by letting C be the unit cost of outsourcing the part and setting TC (manufacturing) $=$ TC (outsourcing) using the formulas:

$$
\begin{gather*}
F+V Q=C Q \\
Q=\frac{F}{C-V} \tag{1.5}
\end{gather*}
$$

Many models are developed by analyzing historical data. Example 1.8 shows how historical data might be used to develop a decision model that can be used to predict the impact of pricing and promotional strategies in the grocery industry.

Figure 1.8
Graphical Illustration of Break-Even Analysis

EXAMPLE 1.8 A Sales-Promotion Decision Model

In the grocery industry, managers typically need to know how best to use pricing, coupons, and advertising strategies to influence sales. Grocers often study the relationship of sales volume to these strategies by conducting controlled experiments to identify the relationship between them and sales volumes. ${ }^{28}$ That is, they implement different combinations of pricing, coupons, and advertising, observe the sales that result, and use analytics
to develop a predictive model of sales as a function of these decision strategies.

For example, suppose that a grocer who operates three stores in a small city varied the price, coupons (yes $=1$, no $=0$), and advertising expenditures in a local newspaper over a 16-week period and observed the following sales:

Week	Price (\$)	Coupon (0,1)	Advertising (\$)	Store 1 Sales (Units)	Store 2 Sales (Units)	Store 3 Sales (Units)
1	6.99	0	0	501	510	481
2	6.99	0	150	772	748	775
3	6.99	1	0	554	528	506
4	6.99	1	150	838	785	834
5	6.49	0	0	521	519	500
6	6.49	0	150	723	790	723
7	6.49	1	0	510	556	520
8	6.49	1	150	818	773	800
9	7.59	0	0	479	491	486
10	7.59	0	150	825	822	757
11	7.59	1	0	533	513	540
12	7.59	1	150	839	791	832
13	5.49	0	0	484	480	508
14	5.49	0	150	686	683	708
15	5.49	1	0	543	531	530
16	5.49	1	150	767	743	779

To better understand the relationships among price, coupons, and advertising, the grocer might have developed the following model using business analytics tools:

$$
\begin{aligned}
\text { sales }= & 500-0.05 \times \text { price }+30 \times \text { coupons }+0.08 \\
& \times \text { advertising }+0.25 \times \text { price } \times \text { advertising }
\end{aligned}
$$

In this model, the decision variables are price, coupons, and advertising. The values $500,-0.05,30,0.08$, and 0.25 are effects of the input data to the model that are estimated from the data obtained from the experiment. They reflect the impact on sales of changing the decision variables. For example, an increase in price of $\$ 1$ results in a 0.05-unit decrease in weekly sales; using coupons results in a 30-unit increase in weekly sales. In this example, there are no uncontrollable input variables. The
output of the model is the sales units of the product. For example, if the price is $\$ 6.99$, no coupons are offered and no advertising is done (the experiment corresponding to week 1), the model estimates sales as

$$
\begin{aligned}
\text { sales }= & 500-0.05 \times \$ 6.99+30 \times 0+0.08 \times 0 \\
& +0.25 \times \$ 6.99 \times 0=500 \text { units }
\end{aligned}
$$

We see that the actual sales in week 1 varied between 481 and 510 in the three stores. Thus, this model predicts a good estimate for sales; however, it does not tell us anything about the potential variability or prediction error. Nevertheless, the manager can use this model to evaluate different pricing, promotion, and advertising strategies, and help choose the best strategy to maximize sales or profitability.

[^14]
Model Assumptions

All models are based on assumptions that reflect the modeler's view of the "real world." Some assumptions are made to simplify the model and make it more tractable; that is, able to be easily analyzed or solved. Other assumptions might be made to better characterize historical data or past observations. The task of the modeler is to select or build an appropriate model that best represents the behavior of the real situation. For example, economic theory tells us that demand for a product is negatively related to its price. Thus, as prices increase, demand falls, and vice versa (a phenomenon that you may recognize as price elasticity-the ratio of the percentage change in demand to the percentage change in price). Different mathematical models can describe this phenomenon. In the following examples, we illustrate two of them. (Both of these examples can be found in the Excel file Demand Prediction Models. We introduce the use of spreadsheets in analytics in the next chapter.)

EXAMPLE 1.9 A Linear Demand Prediction Model

A simple model to predict demand as a function of price is the linear model

$$
\begin{equation*}
D=a-b P \tag{1.6}
\end{equation*}
$$

where D is the demand rate, P is the unit price, a is a constant that estimates the demand when the price is zero, and b is the slope of the demand function. This model is most applicable when we want to predict the effect of small changes around the current price. For example, suppose we know that when the price is $\$ 100$, demand is 19,000 units and that demand falls by 10 for each dollar of price increase. Using simple algebra, we can determine that $a=20,000$ and $b=10$. Thus, if the price is $\$ 80$, the predicted demand is

If the price increases to $\$ 90$, the model predicts demand as

$$
D=20,000-10(90)=19,100 \text { units }
$$

If the price is $\$ 100$, demand would be

$$
D=20,000-10(100)=19,000 \text { units }
$$

and so on. A chart of demand as a function of price is shown in Figure 1.9 as price varies between $\$ 80$ and $\$ 120$. We see that there is a constant decrease in demand for each \$10 increase in price, a characteristic of a linear model.

$$
D=20,000-10(80)=19,200 \text { units }
$$

Figure : 1.9
Graph of Linear Demand Model $D=a-b P$

EXAMPLE 1.10 A Nonlinear Demand Prediction Model

An alternative model assumes that price elasticity is constant. In this case, the appropriate model is

$$
\begin{equation*}
D=c P^{-d} \tag{1.7}
\end{equation*}
$$

where, c is the demand when the price is 0 and $d>0$ is the price elasticity. To be consistent with Example 1.9, we assume that when the price is zero, demand is 20,000. Therefore, $c=20,000$. We will also, as in Example 1.9, assume that when the price is $\$ 100, D=19,000$. Using these values in equation (1.7), we can determine the value for d (we can do this mathematically using logarithms, but we'll see how to do this very easily using Excel in Chapter 11); this is $d=-0.0111382$. Thus, if the price is $\$ 80$, then the predicted demand is

$$
D=20,000(80)^{-0.0111382}=19,047
$$

If the price is 90 , the demand would be

$$
D=20,000(90)^{-0.0111382}=19022
$$

If the price is 100 , demand is

$$
D=20,000(100)^{-0.0111382}=19,000
$$

A graph of demand as a function of price is shown in Figure 1.10. The predicted demand falls in a slight nonlinear fashion as price increases. For example, demand decreases by 25 units when the price increases from $\$ 80$ to $\$ 90$, but only by 22 units when the price increases from $\$ 90$ to $\$ 100$. If the price increases to $\$ 100$, you would see a smaller decrease in demand. Therefore, we see a nonlinear relationship in contrast to Example 1.9.

Figure : 1.10 :
Graph of Nonlinear Demand Model $D=c P^{-d}$

Both models in Examples 1.9 and 1.10 make different predictions of demand for different prices (other than \$90). Which model is best? The answer may be neither. First of all, the development of realistic models requires many price point changes within a carefully designed experiment. Secondly, it should also include data on competition and customer disposable income, both of which are hard to determine. Nevertheless, it is possible to develop price elasticity models with limited price ranges and narrow customer segments. A good starting point would be to create a historical database with detailed information on all past pricing actions. Unfortunately, practitioners have observed that such models are not widely used in retail marketing, suggesting a lot of opportunity to apply business analytics. ${ }^{29}$

[^15]
Uncertainty and Risk

As we all know, the future is always uncertain. Thus, many predictive models incorporate uncertainty and help decision makers analyze the risks associated with their decisions. Uncertainty is imperfect knowledge of what will happen; risk is associated with the consequences and likelihood of what might happen. For example, the change in the stock price of Apple on the next day of trading is uncertain. However, if you own Apple stock, then you face the risk of losing money if the stock price falls. If you don't own any stock, the price is still uncertain although you would not have any risk. Risk is evaluated by the magnitude of the consequences and the likelihood that they would occur. For example, a 10% drop in the stock price would incur a higher risk if you own $\$ 1$ million than if you only owned $\$ 1,000$. Similarly, if the chances of a 10% drop were 1 in 5 , the risk would be higher than if the chances were only 1 in 100 .

The importance of risk in business has long been recognized. The renowned management writer, Peter Drucker, observed in 1974:

To try to eliminate risk in business enterprise is futile. Risk is inherent in the commitment of present resources to future expectations. Indeed, economic progress can be defined as the ability to take greater risks. The attempt to eliminate risks, even the attempt to minimize them, can only make them irrational and unbearable. It can only result in the greatest risk of all: rigidity. ${ }^{30}$

Consideration of risk is a vital element of decision making. For instance, you would probably not choose an investment simply on the basis of the return you might expect because, typically, higher returns are associated with higher risk. Therefore, you have to make a trade-off between the benefits of greater rewards and the risks of potential losses. Analytic models can help assess this. We will address this in later chapters.

Prescriptive Decision Models

A prescriptive decision model helps decision makers to identify the best solution to a decision problem. Optimization is the process of finding a set of values for decision variables that minimize or maximize some quantity of interest-profit, revenue, cost, time, and so on-called the objective function. Any set of decision variables that optimizes the objective function is called an optimal solution. In a highly competitive world where one percentage point can mean a difference of hundreds of thousands of dollars or more, knowing the best solution can mean the difference between success and failure.

EXAMPLE 1.11 A Prescriptive Model for Pricing

To illustrate an example of a prescriptive model, suppose that a firm wishes to determine the best pricing for one of its products to maximize revenue over the next year. A market research study has collected data that estimate the expected annual sales for different levels of pricing. Analysts determined that sales can be expressed by the following model:

$$
\text { sales }=-2.9485 \times \text { price }+3,240.9
$$

Because revenue equals price \times sales, a model for total revenue is

$$
\begin{aligned}
\text { total revenue } & =\text { price } \times \text { sales } \\
& =\text { price } \times(-2.9485 \times \text { price }+3240.9) \\
& =22.9485 \times \text { price }^{2}+3240.9 \times \text { price }
\end{aligned}
$$

The firm would like to identify the price that maximizes the total revenue. One way to do this would be to try different prices and search for the one that yields the highest total revenue. This would be quite tedious to do by hand or even with a calculator. We will see how to do this easily on a spreadsheet in Chapter 11.

[^16]Although the pricing model did not, most optimization models have constraintslimitations, requirements, or other restrictions that are imposed on any solution, such as "do not exceed the allowable budget" or "ensure that all demand is met." For instance, a consumer products company manager would probably want to ensure that a specified level of customer service is achieved with the redesign of the distribution system. The presence of constraints makes modeling and solving optimization problems more challenging; we address constrained optimization problems later in this book, starting in Chapter 13.

For some prescriptive models, analytical solutions-closed-form mathematical expressions or simple formulas-can be obtained using such techniques as calculus or other types of mathematical analyses. In most cases, however, some type of computer-based procedure is needed to find an optimal solution. An algorithm is a systematic procedure that finds a solution to a problem. Researchers have developed effective algorithms to solve many types of optimization problems. For example, Microsoft Excel has a built-in add-in called Solver that allows you to find optimal solutions to optimization problems formulated as spreadsheet models. We use Solver in later chapters. However, we will not be concerned with the detailed mechanics of these algorithms; our focus will be on the use of the algorithms to solve and analyze the models we develop.

If possible, we would like to ensure that an algorithm such as the one Solver uses finds the best solution. However, some models are so complex that it is impossible to solve them optimally in a reasonable amount of computer time because of the extremely large number of computations that may be required or because they are so complex that finding the best solution cannot be guaranteed. In these cases, analysts use search algorithms-solution procedures that generally find good solutions without guarantees of finding the best one. Powerful search algorithms exist to obtain good solutions to extremely difficult optimization problems. These are discussed in the supplementary online Chapter A.

Prescriptive decision models can be either deterministic or stochastic. A deterministic model is one in which all model input information is either known or assumed to be known with certainty. A stochastic model is one in which some of the model input information is uncertain. For instance, suppose that customer demand is an important element of some model. We can make the assumption that the demand is known with certainty; say, 5,000 units per month. In this case we would be dealing with a deterministic model. On the other hand, suppose we have evidence to indicate that demand is uncertain, with an average value of 5,000 units per month, but which typically varies between 3,200 and 6,800 units. If we make this assumption, we would be dealing with a stochastic model. These situations are discussed in the supplementary online Chapter B.

Problem Solving with Analytics

The fundamental purpose of analytics is to help managers solve problems and make decisions. The techniques of analytics represent only a portion of the overall problem-solving and decision-making process. Problem solving is the activity associated with defining, analyzing, and solving a problem and selecting an appropriate solution that solves a problem. Problem solving consists of several phases:

1. recognizing a problem
2. defining the problem
3. structuring the problem
4. analyzing the problem
5. interpreting results and making a decision
6. implementing the solution

Recognizing a Problem

Managers at different organizational levels face different types of problems. In a manufacturing firm, for instance, top managers face decisions of allocating financial resources, building or expanding facilities, determining product mix, and strategically sourcing production. Middle managers in operations develop distribution plans, production and inventory schedules, and staffing plans. Finance managers analyze risks, determine investment strategies, and make pricing decisions. Marketing managers develop advertising plans and make sales force allocation decisions. In manufacturing operations, problems involve the size of daily production runs, individual machine schedules, and worker assignments. Whatever the problem, the first step is to realize that it exists.

How are problems recognized? Problems exist when there is a gap between what is happening and what we think should be happening. For example, a consumer products manager might feel that distribution costs are too high. This recognition might result from comparing performance with a competitor, observing an increasing trend compared to previous years.

Defining the Problem

The second step in the problem-solving process is to clearly define the problem. Finding the real problem and distinguishing it from symptoms that are observed is a critical step. For example, high distribution costs might stem from inefficiencies in routing trucks, poor location of distribution centers, or external factors such as increasing fuel costs. The problem might be defined as improving the routing process, redesigning the entire distribution system, or optimally hedging fuel purchases.

Defining problems is not a trivial task. The complexity of a problem increases when the following occur:

- The number of potential courses of action is large.
- The problem belongs to a group rather than to an individual.
- The problem solver has several competing objectives.
- External groups or individuals are affected by the problem.
- The problem solver and the true owner of the problem-the person who experiences the problem and is responsible for getting it solved-are not the same.
- Time limitations are important.

These factors make it difficult to develop meaningful objectives and characterize the range of potential decisions. In defining problems, it is important to involve all people who make the decisions or who may be affected by them.

Structuring the Problem

This usually involves stating goals and objectives, characterizing the possible decisions, and identifying any constraints or restrictions. For example, if the problem is to redesign a distribution system, decisions might involve new locations for manufacturing plants and warehouses (where?), new assignments of products to plants (which ones?), and the amount of each product to ship from different warehouses to customers (how much?). The goal of cost reduction might be measured by the total delivered cost of the product. The manager would probably want to ensure that a specified level of customer servicefor instance, being able to deliver orders within 48 hours-is achieved with the redesign. This is an example of a constraint. Structuring a problem often involves developing a formal model.

Analyzing the Problem

Here is where analytics plays a major role. Analysis involves some sort of experimentation or solution process, such as evaluating different scenarios, analyzing risks associated with various decision alternatives, finding a solution that meets certain goals, or determining an optimal solution. Analytics professionals have spent decades developing and refining a variety of approaches to address different types of problems. Much of this book is devoted to helping you understand these techniques and gain a basic facility in using them.

Interpreting Results and Making a Decision

Interpreting the results from the analysis phase is crucial in making good decisions. Models cannot capture every detail of the real problem, and managers must understand the limitations of models and their underlying assumptions and often incorporate judgment into making a decision. For example, in locating a facility, we might use an analytical procedure to find a "central" location; however, many other considerations must be included in the decision, such as highway access, labor supply, and facility cost. Thus, the location specified by an analytical solution might not be the exact location the company actually chooses.

Implementing the Solution

This simply means making it work in the organization, or translating the results of a model back to the real world. This generally requires providing adequate resources, motivating employees, eliminating resistance to change, modifying organizational policies, and developing trust. Problems and their solutions affect people: customers, suppliers, and employees. All must be an important part of the problem-solving process. Sensitivity to political and organizational issues is an important skill that managers and analytical professionals alike must possess when solving problems.

In each of these steps, good communication is vital. Analytics professionals need to be able to communicate with managers and clients to understand the business context of the problem and be able to explain results clearly and effectively. Such skills as constructing good visual charts and spreadsheets that are easy to understand are vital to users of analytics. We emphasize these skills throughout this book.

Analytics in Practice: Developing Effective Analytical Tools at Hewlett-Packard ${ }^{31}$

Hewlett-Packard (HP) uses analytics extensively. Many applications are used by managers with little knowledge of analytics. These require that analytical tools be easily understood. Based on years of experience, HP analysts compiled some key lessons. Before creating an analytical decision tool, HP asks three questions:

1. Will analytics solve the problem? Will the tool enable a better solution? Should other non analytical solutions be used? Are there organizational or other issues that must be resolved? Often, what
may appear to be an analytical problem may actually be rooted in problems of incentive misalignment, unclear ownership and accountability, or business strategy.
2. Can we leverage an existing solution? Before "reinventing the wheel," can existing solutions address the problem? What are the costs and benefits?
3. Is a decision model really needed? Can simple decision guidelines be used instead of a formal decision tool?
(continued)

Once a decision is made to develop an analytical tool, they use several guidelines to increase the chances of successful implementation:

- Use prototyping-a quick working version of the tool designed to test its features and gather feedback;
- Build insight, not black boxes. A "black box" tool is one that generates an answer, but may not provide confidence to the user. Interactive tools that creates insights to support a decision provide better information.
- Remove unneeded complexity. Simpler is better. A good tool can be used without expert support.
Partner with end users in discovery and design. Decision makers who will actually use the tool should be involved in its development.
- Develop an analytic champion. Someone (ideally, the actual decision maker) who is knowledgeable about the solution and close to it must champion the process.

Key Terms

Algorithm
Big data
Business analytics (analytics)
Business intelligence (BI)
Categorical (nominal) data
Constraint
Continuous metric
Data mining
Data set
Database
Decision model
Decision support systems (DSS)
Descriptive analytics
Deterministic model
Discrete metric
Influence diagram
Information systems (IS)
Interval data
Measure
Measurement
Metric
Model
Modeling and optimization

Objective function
Operations Research/Management
Science (OR/MS)
Optimal solution
Optimization
Ordinal data
Predictive analytics
Prescriptive analytics
Price elasticity
Problem solving
Ratio data
Reliability
Risk
Search algorithm
Simulation and risk analysis
Statistics
Stochastic model
Tag cloud
Uncertainty
Validity
Visualization
What-if analysis

Mr. John Toczek, an analytics manager at ARAMARK Corporation, maintains a Web site called the PuzzlOR (OR being "Operations Research") at www.puzzlor.com. Each month he posts a new puzzle. Many of these can be solved using techniques in this book; however, even if you cannot develop a formal model, the puzzles can be fun and competitive challenges for students. We encourage you to explore these, in addition to the formal problems, exercises, and cases in this book. A good one to start with is "SurvivOR" from June 2010. Have fun!

Problems and Exercises

1. Discuss how business analytics can be used in sports, such as tennis, cricket, football, and so on. Identify as many opportunities as you can for each.
2. A multinational hotel chain has been implementing analytics digital marketing to its customers. However, the responses to the digital campaigns have not been favorable, and the revenue generation has not been as expected. Currently, they are trying to solve this problem by focusing on similar campaigns that use the same promotional content, and changing these campaigns to suit the specific tastes of the consumers in each nation. Discuss how business analytics can be utilized by the hotel management in this scenario. What is the data required to facilitate good decisions?
3. Suggest some metrics that a hotel might want to collect about their guests. How might these metrics be used with business analytics to support decisions at the hotel?
4. Suggest some metrics that a railway or bus ticketing agency might want to collect. Describe how a manager might utilize this data to facilitate better decisions.
5. Classify each of the data elements in the Sales Transactions database (Figure 1.1) as categorical, ordinal, interval, or ratio data and explain why.
6. Identify each of the variables in the Excel file Credit Approval Decisions as categorical, ordinal, interval, or ratio and explain why.
7. Classify each of the variables in the Excel file Weddings as categorical, ordinal, interval, or ratio and explain why.
8. A survey handed out to individuals at a major shopping mall in a small Florida city in July asked the following:

- gender
- age
- ethnicity
- length of residency
- overall satisfaction with city services (using a scale of $1-5$, going from poor to excellent)
- quality of schools (using a scale of $1-5$, going from poor to excellent)
What types of data (categorical, ordinal, interval, or ratio) would each of the survey items represent and why?

9. A bank developed a model for predicting the average checking and savings account balance as balance $=-17,732+367 \times$ age $+1,300 \times$ years education $+0.116 \times$ household wealth.
a. Explain how to interpret the numbers in this model.
b. Suppose that a customer is 32 years old, is a college graduate (so that years education $=16$), and has a household wealth of $\$ 150,000$. What is the predicted bank balance?
10. Four key marketing decision variables are price (P), advertising (A), transportation (T), and product quality (Q). Consumer demand (D) is influenced by these variables. The simplest model for describing demand in terms of these variables is

$$
D=k-p P+a A+t T+q Q
$$

where k, p, a, t, and q are positive constants.
a. How does a change in each variable affect demand?
b. How do the variables influence each other?
c. What limitations might this model have? Can you think of how this model might be made more realistic?
11. A firm installs 1500 air conditioners which need to be serviced every six months. The firm can hire a team from its logistics department at a fixed cost of $\$ 6,000$. Each unit will be serviced by the team at $\$ 15.00$. The firm can also outsource this at a cost of $\$ 17.00$ inclusive of all charges.
a. For the given number of units, compute the total cost of servicing for both options. Which is a better decision?
b. Find the break-even volume and characterize the range of volumes for which it is more economical to outsource.
12. Return on investment (ROI) is computed in the following manner: ROI is equal to turnover multiplied by earnings as a percent of sales. Turnover is sales divided by total investment. Total investment is current assets (inventories, accounts receivable, and cash) plus fixed assets. Earnings equal sales minus the cost of sales. The cost of sales consists of variable production costs, selling expenses, freight and delivery, and administrative costs.
a. Construct an influence diagram that relates these variables.
b. Define symbols and develop a mathematical model.
13. Total marketing effort is a term used to describe the critical decision factors that affect demand: price, advertising, distribution, and product quality. Let the variable x represent total marketing effort. A typical model that is used to predict demand as a function of total marketing effort is

$$
D=a x^{b}
$$

Suppose that a is a positive number. Different model forms result from varying the constant b. Sketch the graphs of this model for $b=0, b=1,0<\mathrm{b}<1$, $b<0$, and $b>1$. What does each model tell you about the relationship between demand and marketing effort? What assumptions are implied? Are they reasonable? How would you go about selecting the appropriate model?
14. Automobiles have different fuel economies (mpg), and commuters drive different distances to work or school. Suppose that a state Department of Transportation (DOT) is interested in measuring the average monthly fuel consumption of commuters in a certain city. The DOT might sample a group of commuters and collect information on the number of miles driven per day, number of driving days per month, and the fuel economy of their cars. Develop a predictive model for calculating the amount of gasoline consumed, using the following symbols for the data.
$G=$ gallons of fuel consumed per month
$m=$ miles driven per day to and from work or school
$d=$ number of driving days per month
$f=$ fuel economy in miles per gallon
Suppose that a commuter drives 30 miles round trip to work 20 days each month and achieves a fuel economy of 34 mpg . How many gallons of gasoline are used?
15. A manufacturer of mp3 players is preparing to set the price on a new model. Demand is thought to depend on the price and is represented by the model

$$
D=2,500-3 P
$$

The accounting department estimates that the total costs can be represented by

$$
C=5,000+5 D
$$

Develop a model for the total profit in terms of the price, P.
16. The demand for airline travel is quite sensitive to price. Typically, there is an inverse relationship between demand and price; when price decreases, demand increases and vice versa. One major airline has found that when the price (P) for a round trip between Chicago and Los Angeles is $\$ 600$, the demand (D) is 500 passengers per day. When the price is reduced to $\$ 400$, demand is 1,200 passengers per day.
a. Plot these points on a coordinate system and develop a linear model that relates demand to price.
b. Develop a prescriptive model that will determine what price to charge to maximize the total revenue.
c. By trial and error, can you find the optimal solution that maximizes total revenue?

Case: Drout Advertising Research Project ${ }^{32}$

Jamie Drout is interested in perceptions of gender stereotypes within beauty product advertising, which includes soap, deodorant, shampoo, conditioner, lotion, perfume, cologne, makeup, chemical hair color, razors, skin care, feminine care, and salon services; as well as the perceived benefits of empowerment advertising. Gender stereotypes specifically use cultural perceptions of what constitutes an attractive, acceptable, and desirable man or woman, frequently exploiting specific gender roles, and are commonly employed in advertisements for beauty products. Women are represented as delicately feminine, strikingly beautiful, and physically flawless, occupying small amounts of physical space that generally exploit their sexuality; men as strong and masculine with chiseled physical bodies, occupying large amounts of physical space to maintain their masculinity and power. In contrast, empowerment advertising strategies negate gender stereotypes and visually communicate the unique differences in each individual. In empowerment advertising, men and women are to represent the diversity in beauty, body type, and levels of perceived femininity and masculinity. Her project is focused on understanding consumer perceptions of these advertising strategies.

Jamie conducted a survey using the following questionnaire:

1. What is your gender?

Male
Female
2. What is your age?
3. What is the highest level of education you have completed?
Some High School Classes
High School Diploma
Some Undergraduate Courses
Associate Degree
Bachelor Degree
Master Degree
J.D.
M.D.

Doctorate Degree
4. What is your annual income?
$\$ 0$ to $<\$ 10,000$
$\$ 10,000$ to $<\$ 20,000$
$\$ 20,000$ to $<\$ 30,000$
$\$ 30,000$ to $<\$ 40,000$
$\$ 40,000$ to $<\$ 50,000$
$\$ 50,000$ to $<\$ 60,000$
$\$ 60,000$ to $<\$ 70,000$
$\$ 70,000$ to $<\$ 80,000$
$\$ 80,000$ to $<\$ 90,000$
$\$ 90,000$ to $<\$ 110,000$
$\$ 110,000$ to $<\$ 130,000$
$\$ 130,000$ to $<\$ 150,000$
\$150,000 or More
5. On average, how much do you pay for beauty and hygiene products or services per year? Include references to the following products: soap, deodorant, shampoo, conditioner, lotion, perfume, cologne, makeup, chemical hair color, razors, skin care, feminine care, and salon services.
6. On average, how many beauty and hygiene advertisements, if at all, do you think you view or hear per day? Include references to the following advertisements: television, billboard, Internet, radio, newspaper, magazine, and direct mail.
7. On average, how many of those advertisements, if at all, specifically subscribe to gender roles and stereotypes?
8. On the following scale, what role, if any, do these advertisements have in reinforcing specific gender stereotypes?
Drastic
Influential
Limited
Trivial
None
9. To what extent do you agree that empowerment advertising, which explicitly communicates the unique differences in each individual, would help transform cultural gender stereotypes?
Strongly agree
Agree
Somewhat agree
Neutral
Somewhat disagree
Disagree
Strongly disagree
10. On average, what percentage of advertisements that you view or hear per day currently utilize empowerment advertising?

[^17]Assignment: Jamie received 105 responses, which are given in the Excel file Drout Advertising Survey. Review the questionnaire and classify the data collected from each question as categorical, ordinal, interval, or ratio. Next, explain how the data and subsequent analysis using business analytics might lead to a better understanding of stereotype versus empowerment advertising. Specifically, state some of the key insights that you would hope to answer by analyzing the data.

An important aspect of business analytics is good communication. Write up your answers to this case formally in a well-written report as if you were a consultant to Ms. Drout. This case will continue in Chapters 3, 4, 6, and 7, and you will be asked to use a variety of descriptive analytics tools to analyze the data and interpret the results. As you do this, add your insights to the report, culminating in a complete project report that fully analyzes the data and draws appropriate conclusions.

Case: Performance Lawn Equipment

In each chapter of this book, we use a database for a fictitious company, Performance Lawn Equipment (PLE), within a case exercise for applying the tools and techniques introduced in the chapter. ${ }^{33}$ To put the database in perspective, we first provide some background about the company, so that the applications of business analytic tools will be more meaningful.

PLE, headquartered in St. Louis, Missouri, is a privately owned designer and producer of traditional lawn mowers used by homeowners. In the past 10 years, PLE has added another key product, a medium-size diesel power lawn tractor with front and rear power takeoffs, Class I three-point hitches, four-wheel drive, power steering, and full hydraulics. This equipment is built primarily for a niche market consisting of large estates, including golf and country clubs, resorts, private estates, city parks, large commercial complexes, lawn care service providers, private homeowners with five or more acres, and government (federal, state, and local) parks, building complexes, and military bases. PLE provides most of the products to dealerships, which, in turn, sell directly to end users. PLE employs 1,660 people worldwide. About half the workforce is based in St. Louis; the remainder is split among their manufacturing plants.

In the United States, the focus of sales is on the eastern seaboard, California, the Southeast, and the south central states, which have the greatest concentration of customers. Outside the United States, PLE's sales include a European market, a growing South American market, and developing markets in the Pacific Rim and China. The market is cyclical, but the different products and regions balance some of this, with just less than 30% of total sales in the spring and summer (in the United States), about 25% in the fall, and about 20% in the winter. Annual sales are approximately $\$ 180$ million.

Both end users and dealers have been established as important customers for PLE. Collection and analysis of end-user data showed that satisfaction with the products depends on high quality, easy attachment/dismount of implements, low maintenance, price value, and service. For dealers, key requirements are high quality, parts and feature availability, rapid restock, discounts, and timeliness of support.

PLE has several key suppliers: Mitsitsiu, Inc., the sole source of all diesel engines; LANTO Axles, Inc., which provides tractor axles; Schorst Fabrication, which provides subassemblies; Cuberillo, Inc, supplier of transmissions; and Specialty Machining, Inc., a supplier of precision machine parts.

To help manage the company, PLE managers have developed a "balanced scorecard" of measures. These data, which are summarized shortly, are stored in the form of a Microsoft Excel workbook (Performance Lawn Equipment) accompanying this book. The database contains various measures captured on a monthly or quarterly basis and used by various managers to evaluate business performance. Data for each of the key measures are stored in a separate worksheet. A summary of these worksheets is given next:

- Dealer Satisfaction, measured on a scale of 1-5 ($1=$ poor, $2=$ less than average, $3=$ average, $4=$ above average, and $5=$ excellent). Each year, dealers in each region are surveyed about their overall satisfaction with PLE. The worksheet contains summary data from surveys for the past 5 years.
- End-User Satisfaction, measured on the same scale as dealers. Each year, 100 users from each region are surveyed. The worksheet contains summary data for the past 5 years.

[^18]2014 Customer Survey, results from a survey for customer ratings of specific attributes of PLE tractors: quality, ease of use, price, and service on the same $1-5$ scale. This sheet contains 200 observations of customer ratings.

- Complaints, which shows the number of complaints registered by all customers each month in each of PLE's five regions (North America, South America, Europe, the Pacific, and China).
- Mower Unit Sales and Tractor Unit Sales, which provide sales by product by region on a monthly basis. Unit sales for each region are aggregated to obtain world sales figures.
- Industry Mower Total Sales and Industry Tractor Total Sales, which list the number of units sold by all producers by region.
- Unit Production Costs, which provides monthly accounting estimates of the variable cost per unit for manufacturing tractors and mowers over the past 5 years.
- Operating and Interest Expenses, which provides monthly administrative, depreciation, and interest expenses at the corporate level.
- On-Time Delivery, which provides the number of deliveries made each month from each of PLE's major suppliers, number on time, and the percent on time.
- Defects After Delivery, which shows the number of defects in supplier-provided material found in all shipments received from suppliers.
- Time to Pay Suppliers, which provides measurements in days from the time the invoice is received until payment is sent.
- Response Time, which gives samples of the times taken by PLE customer-service personnel to respond to service calls by quarter over the past 2 years.
- Employee Satisfaction, which provides data for the past 4 years of internal surveys of employees to determine their overall satisfaction with their jobs, using the same scale used for customers. Employees are surveyed quarterly, and results are stratified by employee category: design and production, managerial, and sales/administrative support.

In addition to these business measures, the PLE database contains worksheets with data from special studies:

- Engines, which lists 50 samples of the time required to produce a lawn-mower blade using a new technology.
- Transmission Costs, which provides the results of 30 samples each for the current process used to produce tractor transmissions and two proposed new processes.
- Blade Weight, which provides samples of mowerblade weights to evaluate the consistency of the production process.
- Mower Test, which lists test results of mower functional performance after assembly for 30 samples of 100 units each.
- Employee Retention, data from a study of employee duration (length of hire) with PLE. The 40 subjects were identified by reviewing hires from 10 years prior and identifying those who were involved in managerial positions (either hired into management or promoted into management) at some time in this 10 -year period.
- Shipping Cost, which gives the unit shipping cost for mowers and tractors from existing and proposed plants for a supply-chain-design study.
- Fixed Cost, which lists the fixed cost to expand existing plants or build new facilities, also as part of the supply-chain-design study.
- Purchasing Survey, which provides data obtained from a third-party survey of purchasing managers of customers of Performance Lawn Care.

Elizabeth Burke has recently joined the PLE management team to oversee production operations. She has reviewed the types of data that the company collects and has assigned you the responsibility to be her chief analyst in the coming weeks. To prepare for this task, you have decided to review each worksheet and determine whether the data were gathered from internal sources, external sources, or have been generated from special studies. Also, you need to know whether the measures are categorical, ordinal, interval, or ratio. Prepare a report summarizing the characteristics of the metrics used in each worksheet.

This page intentionally left blank

S. Dashkevych/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

- Find buttons and menus in the Excel 2013 ribbon.
- Write correct formulas in an Excel worksheet.
- Apply relative and absolute addressing in Excel formulas.
Copy formulas from one cell to another or to a range of cells.
- Use Excel features such as split screen, paste special, show formulas, and displaying grid lines and headers in your applications.
- Use basic and advanced Excel functions.
- Use Excel functions for business intelligence queries in databases.

Many commercial software packages are available to facilitate the application of business analytics. Although they often have unique features and capabilities, they can be expensive, generally require advanced training to understand and apply, and may work only on specific computer platforms. Spreadsheet software, on the other hand, is widely used across all areas of business and is standard on nearly every employee's computer. Spreadsheets are an effective platform for manipulating data and developing and solving models; they support powerful commercial add-ins and facilitate communication of results. Spreadsheets provide a flexible modeling environment and are particularly useful when the end user is not the designer of the model. Teams can easily use spreadsheets and understand the logic upon which they are built. Information in spreadsheets can easily be copied from Excel into other documents and presentations. A recent survey identified more than 180 commercial spreadsheet products that support analytics efforts, including data management and reporting, data- and model-driven analytical techniques, and implementation. ${ }^{1}$ Many organizations have used spreadsheets extremely effectively to support decision making in marketing, finance, and operations. Some illustrative applications include the following: ${ }^{2}$

- Analyzing supply chains (Hewlett-Packard)
- Determining optimal inventory levels to meet customer service objectives (Procter \& Gamble)
- Selecting internal projects (Lockheed Martin Space Systems Company)
- Planning for emergency clinics in response to a sudden epidemic or bioterrorism attack (Centers for Disease Control)
- Analyzing the default risk of a portfolio of real estate loans (Hypo International)
- Assigning medical residents to on-call and emergency rotations (University of Vermont College of Medicine)
- Performance measurement and evaluation (American Red Cross)

The purpose of this chapter is to provide a review of the basic features of Microsoft Excel that you need to know to use spreadsheets for analyzing and

[^19]solving problems with techniques of business analytics. In this text, we use Microsoft Excel 2013 for Windows to perform spreadsheet calculations and analyses. Excel files for all text examples and data used in problems and exercises are provided with this book (see the Preface). This review is not intended to be a complete tutorial; many good Excel tutorials can be found online, and we also encourage you to use the Excel help capability (by clicking the question mark button at the top right of the screen). Also, for any reader who may be a Mac user, we caution you that Mac versions of Excel do not have the full functionality that Windows versions have, particularly statistical features, although most of the basic capabilities are the same. In particular, the Excel add-in that we use in later chapters, Analytic Solver Platform, only runs on Windows. Thus, if you use a Mac, you should either run Bootcamp with Windows or use a third-party software product such as Parallels or VMWare.

Basic Excel Skills

To be able to apply the procedures and techniques that you will learn in this book, it is necessary for you to be relatively proficient in using Excel. We assume that you are familiar with the most elementary spreadsheet concepts and procedures, such as
opening, saving, and printing files;

- using workbooks and worksheets;
- moving around a spreadsheet;
- selecting cells and ranges;
- inserting/deleting rows and columns;
- entering and editing text, numerical data, and formulas in cells;
- formatting data (number, currency, decimal places, etc.);
- working with text strings;
- formatting data and text; and
- modifying the appearance of the spreadsheet using borders, shading, and so on.

Menus and commands in Excel 2013 reside in the "ribbon" shown in Figure 2.1. Menus and commands are arranged in logical groups under different tabs (File, Home, Insert, and so on); small triangles pointing downward indicate menus of additional choices. We often refer to certain commands or options and where they may be found in the ribbon.

Figure : 2.1 :
Excel 2013 Ribbon

FIIE	HOME	INSERT	PAGE LAYOUT	FORMULAS	DATA	Review	VIEW	ADD-INS	Ana	form	XLMiner	-	Tabs	James R Ev	
x屏- Paste Clipboard r_{0}		Font	$\begin{aligned} & A+ \\ & B-A . \end{aligned}$			Text		General $\$. \% \text {, }$ ns and men			as Cell - Styles *		Delete Format Cells		\wedge

Excel Formulas

Formulas in Excel use common mathematical operators:

- addition (+)
- subtraction (-)
- multiplication (*)
- division (/)

Exponentiation uses the \wedge symbol; for example, 2^{5} is written as $2^{\wedge} 5$ in an Excel formula.
Cell references in formulas can be written either with relative addresses or absolute addresses. A relative address uses just the row and column label in the cell reference (for example, A4 or C21); an absolute address uses a dollar sign (\$ sign) before either the row or column label or both (for example, $\$ \mathrm{~A} 2, \mathrm{C} \$ 21$, or $\$ \mathrm{~B} \$ 15$). Which one we choose makes a critical difference if you copy the cell formulas. If only relative addressing is used, then copying a formula to another cell changes the cell references by the number of rows or columns in the direction that the formula is copied. So, for instance, if we would use a formula in cell B8, $=\mathrm{B} 4-\mathrm{B} 5 * \mathrm{~A} 8$, and copy it to cell C 9 (one column to the right and one row down), all the cell references are increased by one and the formula would be changed to $=\mathrm{C} 5-\mathrm{C} 6 * \mathrm{~B} 9$.

Using a $\$$ sign before a row label (for example, $\mathrm{B} \$ 4$) keeps the reference fixed to row 4 but allows the column reference to change if the formula is copied to another cell. Similarly, using a $\$$ sign before a column label (for example, \$B4) keeps the reference to column B fixed but allows the row reference to change. Finally, using a $\$$ sign before both the row and column labels (for example, $\$ \mathbf{B} \$ 4$) keeps the reference to cell B4 fixed no matter where the formula is copied. You should be very careful to use relative and absolute addressing appropriately in your models, especially when copying formulas.

EXAMPLE 2.1 Implementing Price-Demand Models in Excel

In Chapter 1, we described two models for predicting demand as a function of price:

$$
D=a-b P
$$

and

$$
D=c P^{-d}
$$

Figure 2.2 shows a spreadsheet (Excel file Demand Prediction Models) for calculating demand for different prices using each of these models. For example, to
calculate the demand in cell B8 for the linear model, we use the formula

$$
=\$ \mathrm{~B} \$ 4-\$ \mathrm{~B} \$ 5^{*} \mathrm{~A} 8
$$

To calculate the demand in cell E8 for the nonlinear model, we use the formula

$$
=\$ E \$ 4 * D 8^{\wedge}-\$ E \$ 5
$$

Note how the absolute addresses are used so that as these formulas are copied down, the demand is computed correctly.

Copying Formulas

Excel provides several ways of copying formulas to different cells. This is extremely useful in building decision models, because many models require replication of formulas for different periods of time, similar products, and so on. One way is to select the cell with the formula to be copied, click the Copy button from the Clipboard group under the Home tab (or simply press Ctrl-C on your keyboard), click on the cell you wish to copy to, and then click the Paste button (or press Ctrl-V). You may also enter a formula directly in a range of cells without copying and pasting by selecting the range, typing in the formula, and pressing Ctrl-Enter.

Figure : 2.2
Excel Models for Demand Prediction

	A	B	C	D	E
1	Demand Prediction Models				
2					
3	Linear Model			Nonlinear Model	
4	a	20,000		c	20,000
5	b	10		d	0.0111382
6					
7	Price	Demand		Price	Demand
8	\$80.00	\$19,200		\$70.00	\$19,075.63
9	\$90.00	\$19,100		\$80.00	\$19,047.28
10	\$100.00	\$19,000		\$90.00	\$19,022.31
11	\$110.00	\$18,900		\$100.00	\$19,000.00
12	\$120.00	\$18,800		\$110.00	\$18,979.84
13				\$120.00	\$18,961.45
14				\$130.00	\$18,944.56

To copy a formula from a single cell or range of cells down a column or across a row, first select the cell or range, click and hold the mouse on the small square in the lower right-hand corner of the cell (the "fill handle"), and drag the formula to the "target" cells to which you wish to copy.

Other Useful Excel Tips

- Split Screen. You may split the worksheet horizontally and/or vertically to view different parts of the worksheet at the same time. The vertical splitter bar is just to the right of the bottom scroll bar, and the horizontal splitter bar is just above the right-hand scroll bar. Position your cursor over one of these until it changes shape, click, and drag the splitter bar to the left or down.
- Paste Special. When you normally copy (one or more) cells and paste them in a worksheet, Excel places an exact copy of the formulas or data in the cells (except for relative addressing). Often you simply want the result of formulas, so the data will remain constant even if other parameters used in the formulas change. To do this, use the Paste Special option found within the Paste menu in the Clipboard group under the Home tab instead of the Paste command. Choosing Paste Values will paste the result of the formulas from which the data were calculated.
- Column and Row Widths. Many times a cell contains a number that is too large to display properly because the column width is too small. You may change the column width to fit the largest value or text string anywhere in the column by positioning the cursor to the right of the column label so that it changes to a cross with horizontal arrows and then double-clicking. You may also move the arrow to the left or right to manually change the column width. You may change the row heights in a similar fashion by moving the cursor below the row number label. This can be especially useful if you have a very long formula to display. To break a formula within a cell, position the cursor at the break point in the formula bar and press Alt-Enter.
- Displaying Formulas in Worksheets. Choose Show Formulas in the Formula Auditing group under the Formulas tab. You often need to change the column width to display the formulas properly.
- Displaying Grid Lines and Row and Column Headers for Printing. Check the Print boxes for gridlines and headings in the Sheet Options group under the Page

Excel Functions

Layout tab. Note that the Print command can be found by clicking on the Office button.

- Filling a Range with a Series of Numbers. Suppose you want to build a worksheet for entering 100 data values. It would be tedious to have to enter the numbers from 1 to 100 one at a time. Simply fill in the first few values in the series and highlight them. Then click and drag the small square (fill handle) in the lower right-hand corner down (Excel will show a small pop-up window that tells you the last value in the range) until you have filled in the column to 100 ; then release the mouse.

Functions are used to perform special calculations in cells and are used extensively in business analytics applications. All Excel functions require an equal sign and a function name followed by parentheses, in which you specify arguments for the function.

Basic Excel Functions

Some of the more common functions that we will use in applications include the following:
MIN(range)—finds the smallest value in a range of cells
MAX(range)-finds the largest value in a range of cells
SUM (range)-finds the sum of values in a range of cells
AVERAGE(range) -finds the average of the values in a range of cells
COUNT(range)-finds the number of cells in a range that contain numbers
COUNTIF(range, criteria)—finds the number of cells within a range that meet a specified criterion.

The COUNTIF function counts the number of cells within a range that meet a criterion that you specify. For example, you can count all the cells that start with a certain letter, or you can count all the cells that contain a number that is larger or smaller than a number you specify. Examples of criteria are 100, " >100 ", a cell reference such as A4, a text string such as "Facebook." Note that text and logical formulas must be enclosed in quotes. See Excel Help for other examples.

Excel has other useful COUNT-type functions: COUNTA counts the number of nonblank cells in a range, and COUNTBLANK counts the number of blank cells in a range. In addition, COUNTIFS(rangel, criterion1, range2, criterion $2, \ldots$ range_n, criterion_n) finds the number of cells within multiple ranges that meet specific criteria for each range.

We illustrate these functions using the Purchase Orders data set in Example 2.2.

EXAMPLE 2.2 Using Basic Excel Functions

In the Purchase Orders data set, we will find the following:

- smallest and largest quantity of any item ordered
- total order costs
- average number of months per order for accounts payable
- number of purchase orders placed
number of orders placed for O-rings
- number of orders with A/P terms shorter than 30 months
number of O-ring orders from Spacetime Technologies

The results are shown in Figure 2.3. In this figure, we used the split-screen feature in Excel to reduce the number of rows shown in the spreadsheet. To find the smallest and largest quantity of any item ordered, we use the MIN and MAX functions for the data in column F. Thus, the formula in cell B99 is $=\operatorname{MIN}(F 4: F 97)$ and the formula in cell B100 is = MAX(F4:F97). To find the total order costs, we sum the data in column G using the SUM function: = SUM(G4:G97); this is the formula in cell B101. To find the average number of A/P months, we use the AVERAGE function for the data in column H . The formula in cell B102 is = AVERAGE(H4:H97). To find the number of purchase orders placed, use the COUNT function. Note that the COUNT function counts only the number of cells in a range that contain numbers,
so we could not use it in columns A, B, or D; however, any other column would be acceptable. Using the item numbers in column C, the formula in cell B103 is = COUNT(C4:C97). To find the number of orders placed for O-rings, we use the COUNTIF function. For this example, the formula used in cell B104 is = COUNTIF(D4:D97, "O-Ring"). We could have also used the cell reference for any cell containing the text O-Ring, such as = COUNTIF(D4:D97,D12). To find the number of orders with A/P terms less than 30 months, use the formula = COUNTIF(H4:H97,"<30") in cell B105. Finally, to count the number of O-Ring orders for Spacetime Technologies, we use = COUNTIFS(D4:D97,"O-Ring", A4:A97,"Spacetime Technologies").

Figure : 2.3 :
Application of Excel Functions to Purchase Orders Data

A	B	c	D	E	F	G	H	1	J
1 Purchase Orders									
2									
3 Supplier	Order No.	Item No.	Item Description	Item Cost	Quantity	Cost per order	A/P Terms (Months)	Order Date	Arrival Date
4 Hulkey Fasteners	Aug11001	1122	Airframe fasteners	\$ 4.25	19,500	\$ 82,875.00	30	08/05/11	08/13/11
5 Alum Sheeting	Aug11002	1243	Airframe fasteners	\$ 4.25	10,000	\$ 42,500.00	30	08/08/11	08/14/11
6 Fast-Tie Aerospace	Aug11003	5462	Shielded Cable/t.	\$ 1.05	23,000	\$ 24.150 .00	30	08/10/11	08/15/11
7 Fast-Tie Aerospace	Aug11004	5462	Shielded Cable/f.	\$ 1.05	21,500	\$ 22,575.00	30	08/15/11	08/22/11
8 Steelpin Inc.	Aug11005	5319	Shielded Cable/ft.	\$ 1.10	17.500	\$ 19,250.00	30	08/20/11	08/31/11
9 Fast-Tie Aerospace	Aug11006	5462	Shielded Cable/ft.	\$ 1.05	22,500	\$ 23,625.00	30	08/20/11	08/26/11
10 Steelpin Inc.	Aug11007	4312	Bolt-nut package	\$ 3.75	4.250	\$ 15,937.50	30	08/25/11	09/01/11
11 Durrable Products	Aug11008	7258	Pressure Gauge	\$ 90.00	100	\$ 9,000.00	45	08/25/11	08/28/11
12 Fast-Tie Aerospace	Aug11009	6321	O-Ring	\$ 2.45	1.300	\$ 3.185 .00	30	08/25/11	09/04/11
96 Steelpin Inc.	Nov11009	5677	Side Panel	\$ 195.00	110	\$ 21.450 .00	30	11/05/11	11/17/11
97 Manley Valve	Nov11010	9955	Door Decal	\$ 0.55	125	\$ 68.75	30	11/05/11	11/10/11
98 -									
99 Minimum Quantity	90								
100 Maximum Quantity	25.000								
101 Total Order Costs	\$2,471,760.00								
102 Average Number of A/P Months	30.63829787								
103 Number of Purchase Orders	94								
104 Number of O-ring Orders	12								
105 Number of A/P Terms < 30	17								
106 Number of O-ring Orders Spacetime	3								

account the time value of money. That is, a cash flow of F dollars t time periods in the future is worth $F /(1+i)^{t}$ dollars today, where i is the discount rate. The discount rate reflects the opportunity costs of spending funds now versus achieving a return through another investment, as well as the risks associated with not receiving returns until a later time. The sum of the present values of all cash flows over a stated time horizon is the net present value:

$$
\begin{equation*}
\mathrm{NPV}=\sum_{t=0}^{n} \frac{F_{t}}{(1+i)^{t}} \tag{2.1}
\end{equation*}
$$

where $F_{t}=$ cash flow in period t. A positive NPV means that the investment will provide added value because the projected return exceeds the discount rate.

The Excel function $\operatorname{NPV}($ rate, value1, value $2, \ldots)$ calculates the net present value of an investment by using a discount rate and a series of future payments (negative values) and income (positive values). Rate is the value of the discount rate i over the length of one period, and value1, value $2, \ldots$ are 1 to 29 arguments representing the payments and income for each period. The values must be equally spaced in time and are assumed to occur at the end of each period. The NPV investment begins one period before the date of the valuel cash flow and ends with the last cash flow in the list. The NPV calculation is based on future cash flows. If the first cash flow (such as an initial investment or fixed cost) occurs at the beginning of the first period, then it must be added to the NPV result and not included in the function arguments.

EXAMPLE 2.3 Using the NPV Function

A company is introducing a new product. The fixed cost for marketing and distribution is $\$ 25,000$ and is incurred just prior to launch. The forecasted net sales revenues for the first six months are shown in Figure 2.4. The formula
in cell B8 computes the net present value of these cash flows as $=$ NPV(B6,C4:H4) - B5. Note that the fixed cost is not a future cash flow and is not included in the NPV function arguments.

Insert Function

The easiest way to locate a particular function is to select a cell and click on the Insert function button $\left[\boldsymbol{f}_{\boldsymbol{x}}\right]$, which can be found under the ribbon next to the formula bar and also in the Function Library group in the Formulas tab. You may either type in a description in the search field, such as "net present value," or select a category, such as "Financial," from the drop-down box.

This feature is particularly useful if you know what function to use but are not sure of what arguments to enter because it will guide you in entering the appropriate data for the function arguments. Figure 2.5 shows the dialog from which you may select the function you wish

[^20]| | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Net Present Value | | | | | | | |
| 2 | | | | | | | | |
| 3 | | Month | January | February | March | April | May | June |
| 4 | | Sales Revenue Forecast | \$2,500 | \$4,000 | \$5,000 | \$8,000 | \$10,000 | \$12,500 |
| 5 | Fixed Cost | \$25,000.00 | | | | | | |
| 6 | Discount Rate | 3\% | | | | | | |
| 7 | | | | | | | | |
| 8 | NPV | \$11,975.81 | | | | | | |

Figure : 2.5
Insert Function Dialog

Figure: 2.6
Function Arguments Dialog for COUNTIF

to use. For example, if we would choose the COUNTIF function, the dialog in Figure 2.6 appears. When you click in an input cell, a description of the argument is shown. Thus, if you are not sure what to enter for the range, the explanation in Figure 2.6 will help you. For further information, you could click on the Help button in the lower left-hand corner.

Logical Functions

Logical functions return only one of two values: TRUE or FALSE. Three useful logical functions in business analytics applications are

IF(condition, value if true, value if false)-a logical function that returns one value if the condition is true and another if the condition is false,
AND(condition 1, condition 2...)-a logical function that returns TRUE if all conditions are true and FALSE if not,
OR(condition 1, condition 2...)-a logical function that returns TRUE if any condition is true and FALSE if not.

The IF function, IF (condition, value if true, value if false), allows you to choose one of two values to enter into a cell. If the specified condition is true, value if true will be put in

the cell. If the condition is false, value iffalse will be entered. Value if true and value iffalse can be a number or a text string enclosed in quotes. Note that if a blank is used between quotes, "", then the result will simply be a blank cell. This is often useful to create a clean spreadsheet. For example, if cell C 2 contains the function $=\operatorname{IF}(\mathrm{A} 8=2,7,12)$, it states that if the value in cell A8 is 2 , the number 7 will be assigned to cell C 2 ; if the value in cell A8 is not 2 , the number 12 will be assigned to cell C 2 . Conditions may include the following:

$$
\begin{aligned}
& =\text { equal to } \\
& >\text { greater than } \\
& <\text { less than } \\
& >=\text { greater than or equal to } \\
& <=\text { less than or equal to } \\
& <>\text { not equal to }
\end{aligned}
$$

You may "nest" up to seven IF functions by replacing value-if-true or value-if-false in an IF function with another IF function:

$$
=\operatorname{IF}(\mathrm{A} 8=2,(\mathrm{IF}(\mathrm{~B} 3=5, " \mathrm{YES} ", " ")), 15)
$$

This says that if cell A8 equals 2, then check the contents of cell B3. If cell B3 is 5, then the value of the function is the text string YES; if not, it is a blank space (represented by quotation marks with nothing in between). However, if cell A8 is not 2, then the value of the function is 15 no matter what cell B3 is.

AND and OR functions simply return the values of true or false if all or at least one of multiple conditions are met, respectively. You may use AND and OR functions as the

EXAMPLE 2.4 Using the IF Function

Suppose that the aircraft-component manufacturer considers any order of 10,000 units or more to be large, whereas any other order size is considered to be small. We may use the IF function to classify the orders. First, create a new column in the spreadsheet for the order size, say, column K. In cell K4, use the formula

$$
=\text { IF(F4>=10000,"Large","Small") }
$$

This function will return the value Large in cell K4 if the order size in cell F4 is 10,000 or more; otherwise, it
returns the value Small. Further, suppose that large orders with a total cost of at least $\$ 25,000$ are considered critical. We may flag these orders as critical by using the function in cell L4:

$$
=\text { IF(AND(K4 = "Large", G4> = 25000),"Critical","") }
$$

After copying these formulas down the columns, Figure 2.7 shows a portion of the results.

	A	B	c	D	E	F	G	H	1	J	K	L
1	Purchase Orders											
2												
3	Supplier	Order No.	Item No.	Item Description	Item Cost	Quantity	Cost per order	A/P Terms (Months)	Order Date	Arrival Date	Order Size	Type
4	Hulkey Fasteners	Aug11001	1122	Airframe fasteners	\$ 4.25	19,500	\$ 82,875.00	30	08/05/11	08/13/11	Large	Critical
5	Alum Sheoting	Aug11002	1243	Alframe fasteners	\$ 4.25	10,000	S 42,500.00	30	08/08/11	08/14/11	Large	Critical
6	Fast-Tie Aerospace	Aug11003	5462	Shielded Cable/ft.	\$ 1.05	23,000	\$ 24,150.00	30	08/10/11	08/15/11	Large	
7	Fast-Tie Aerospace	Aug11004	5462	Shielded Cable/ft.	\$ 1.05	21,500	\$ 22,575.00	30	08/15/11	08/22/11	Large	
8	Steelpin Inc.	Aug11005	5319	Shielded Cable/ft.	\$ 1.10	17,500	\$ 19,250.00	30	08/20/11	08/31/11	Large	
9	Fast-Tie Aerospace	Aug11006	5462	Shieided Cable/ft.	\$ 1.05	22,500	\$ 23,625.00	30	08/20/11	08/26/11	Large	
10	Steelpin Inc.	Aug11007	4312	Bolt-nut package	\$ 3.75	4,250	\$ 15,937.50	30	08/25/11	09/01/11	Small	
11	Durrable Products	Aug11008	7258	Pressure Gauge	\$ 90.00	100	\$ 9,000.00	45	08/25/11	08/28/11	Small	
12	Fast-Tie Aerospace	Aug11009	6321	O-Ring	\$ 2.45	1,300	\$ $3,185.00$	30	08/25/11	09/04/11	Small	
13	Fast-Tie Aerospace	Aug11010	5462	Shielded Cable/f.	\$ 1.05	22,500	\$ 23,625.00	30	08/25/11	09/02/11	Large	
14	Steelpin Inc.	Aug11011	5319	Shielded Cable/ft.	\$ 1.10	18,100	\$ 19,910.00	30	08/25/11	09/05/11	Large	
15	Hulkey Fasteners	Aug11012	3166	Electrical Connector	\$ 1.25	5.600	\$ 7.000 .00	30	08/25/11	08/29/11	Small	

Figure: 2.7
condition within an IF function; for example, $=\operatorname{IF}(\operatorname{AND}(\mathrm{B} 1=3, \mathrm{C} 1=5), 12,22)$. Here, if cell $\mathrm{B} 1=3$ and cell $\mathrm{C} 1=5$, then the value of the function is 12 ; otherwise it is 22 .

Using Excel Lookup Functions for Database Queries

In Chapter 1 we noted that business intelligence was instrumental in the evolution of business analytics. Organizations often need to extract key information from a database to support customer service representatives, technical support, manufacturing, and other needs. Excel provides some useful functions for finding specific data in a spreadsheet. These are:

> VLOOKUP(lookup_value, table_array, col_index_num, [range lookup]) looks up a value in the leftmost column of a table (specified by the table_array) and returns a value in the same row from a column you specify (col_index_num).
> HLOOKUP(lookup_value, table_array, row_index_num, [range lookup]) looks up a value in the top row of a table and returns a value in the same column from a row you specify.
> INDEX(array, row_num, col_num) returns a value or reference of the cell at the intersection of a particular row and column in a given range.
> MATCH(lookup_value, lookup_array, match_type) returns the relative position of an item in an array that matches a specified value in a specified order.

In the VLOOKUP and HLOOKUP functions, range lookup is optional. If this is omitted or set as True, then the first column of the table must be sorted in ascending numerical order. If an exact match for the lookup_value is found in the first column, then Excel will return the value the col_index_num of that row. If an exact match is not found, Excel will choose the row with the largest value in the first column that is less than the lookup_value. If range lookup is false, then Excel seeks an exact match in the first column of the table range. If no exact match is found, Excel will return \#N/A (not available). We recommend that you specify the range lookup to avoid errors.

EXAMPLE 2.5 Using the VLOOKUP Function

In Chapter 1, we introduced a database of sales transactions for a firm that sells instructional fitness books and DVDs (Excel file Sales Transactions). The database is sorted by customer ID, and a portion of it is shown in Figure 2.8. Suppose that a customer calls a representative about a payment issue. The representative finds the customer ID-for example, 10007-and needs to look up the type of payment and transaction code. We may use the VLOOKUP function to do this. In the function VLOOKUP(lookup_value, table_array, col_ index_num), lookup_value represents the customer ID. The table_array is the range of the data in the spreadsheet; in this case, it is the range $\mathrm{A} 4: \mathrm{H} 475$. The value for col_index_num represents the column in the table range we wish to retrieve. For the type of payment, this is column 3; for the transaction code, this is column 4. Note that the first column is already sorted in ascending
numerical order, so we can either omit the range lookup argument or set it as true. Thus, if we enter the formula below in any blank cell of the spreadsheet:
$=$ VLOOKUP $(10007, \$ A \$ 4: \$ H \$ 475,3)$
returns the payment type, Credit. If we use the following formula:

$$
=\text { VLOOKUP(10007,\$A\$4:\$H\$475,4) }
$$

the function returns the transaction code, 80103311.
Now suppose the database was sorted by transaction code so that the customer ID column is no longer in ascending numerical order as shown in Figure 2.9. If we use the function $=$ VLOOKUP(10007,\$A\$4:\$H\$475,4, True), Excel returns \#N/A. However, if we change the range lookup argument to False, then the function returns the correct value of the transaction code.

Figure : 2.8
Portion of Sales Transactions Data Sorted by Çustomer ID

	A	B	C	D	E	F	G	H
1	Sales Transactions: July 14							
2								
3	Cust ID	Region	Payment	Transaction Code	Source	Amount	Product	Time Of Day
4	10001	East	Paypal	93816545	Web	\$20.19	DVD	22:19
5	10002	West	Credit	74083490	Web	\$17.85	DVD	13:27
6	10003	North	Credit	64942368	Web	\$23.98	DVD	14:27
7	10004	West	Paypal	70560957	Email	\$23.51	Book	15:38
8	10005	South	Credit	35208817	Web	\$15.33	Book	15:21
9	10006	West	Paypal	20978903	Email	\$17.30	DVD	13:11
10	10007	East	Credit	80103311	Web	\$177.72	Book	21:59
11	10008	West	Credit	14132683	Web	\$21.76	Book	4:04
12	10009	West	Paypal	40128225	Web	\$15.92	DVD	19:35
13	10010	South	Paypal	49073721	Web	\$23.39	DVD	13:26

	A	B	C	D	E	F	G	H
1	Sales Transactions: July 14							
2								
3	Cust ID	Region	Payment	Transaction Code	Source	Amount	Product	Time Of Day
4	10391	West	Credit	10325805	Web	\$22.79	Book	0:00
5	10231	North	Paypal	10400774	Web	\$216.20	Book	10:33
6	10267	West	Paypal	10754185	Web	\$23.01	DVD	17:44
7	10228	West	Credit	10779898	Web	\$15.33	DVD	5:05
8	10037	South	Paypal	11165609	Web	\$217	Book	0:00
9	10297	North	Credit	11175481	Web	\$22.65	Book	6:06
10	10294	West	Paypal	11427628	Web	\$15.40	Book	17:16
11	10081	North	Credit	11673210	Web	\$16.14	DVD	4:04
12	10129	West	Credit	11739665	Web	\$22.03	DVD	14:49
13	10406	East	Credit	12075708	Web	\$22.99	Book	9:09
14	10344	East	Credit	12222505	Web	\$15.55	DVD	6:06

The HLOOKUP function works in a similar fashion. For most spreadsheet databases, we would normally need to use the VLOOKUP function. In some modeling situations, however, the HLOOKUP function can be useful if the data are arranged column by column rather than row by row.

The INDEX function works as a lookup procedure by returning the value in a particular row and column of an array. For example, in the Sales Transactions database, INDEX (\$A\$4:\$H\$475, 7, 4) would retrieve the transaction code, 80103311 that is in the 7th row and 4th column of the data array (see Figure 2.8), as the VLOOKUP function did in Example 2.5. The difference is that it relies on the row number rather than the actual value of the customer ID.

In the MATCH function, lookup_value is the value that you want to match in lookup_ array, which is the range of cells being searched. The match_type is either $-1,0$, or 1 . The default is 1 . If match_type $=1$, then the function finds the largest value that is less than or equal to lookup_value. The values in the lookup_array must be placed in ascending order. If match_type $=0$, MATCH finds the first value that is exactly equal to lookup_value. The values in the lookup_array can be in any order. If match_type $=-1$, then the function finds the smallest value that is greater than or equal to lookup_value. The values in the lookup_array must be placed in descending order. Example 2.6 shows how the INDEX and MATCH functions can be used.

The VLOOKUP function will not work if you want to look up something to the left of a specified range (because it uses the first column of the range to find the lookup value). However, we can use the INDEX and MATCH function easily to do this, as Example 2.7 shows.

EXAMPLE 2.6 Using INDEX and MATCH Functions for Database Queries

Figure 2.10 shows the data in the Excel file Monthly Product Sales Queries. Suppose we wish to design a simple query application to input the month and product name, and retrieve the corresponding sales. The three additional worksheets in the workbook show how to do this in three different ways. The Query1 worksheet (see Figure 2.11) uses the VLOOKUP function with embedded IF statements. The formulas in cell I8 is:

$$
\begin{aligned}
= & \text { VLOOKUP(I5,A4:F15,IF(I6 = "A",2,IF(I6 = "B",3, } \\
& \text { IF(I6 = "C",4,IF(I6 = "D",5,IF(I6 = "E", } 6))))), F A L S E)
\end{aligned}
$$

The IF functions are used to determine the column in the lookup table to use, and, as you can see, is somewhat complex, especially if the table were much larger.

The Query2 worksheet (not shown here; see the Excel workbook) uses the VLOOKUP and MATCH functions in cell I8. The formula in cell I8 is:

In this case, the MATCH function is used to identify the column in the table corresponding to the product name in cell I6. Note the use of the " +1 " to shift the relative column number of the product to the correct column number in the lookup table.

Finally, the Query3 worksheet (also not shown here) uses only INDEX and MATCH functions in cell I8. The formula in cell 18 is:
$=$ INDEX(A4:F15,MATCH(I5,A4:A15,0), MATCH(I6,A3:F3,0))
The MATCH functions are used as arguments in the INDEX function to identify the row and column numbers in the table based on the month and product name. The INDEX function then retrieves the value in the corresponding row and column. This is perhaps the cleanest formula of the three. By studying these examples carefully, you will better understand how to use these functions in other applications.
$=$ VLOOKUP(I5,A4:F15,MATCH(I6,B3:F3,0) + 1,FALSE)

Figure 2.10
Monthly Product Sales Queries Workbook

EXAMPLE 2.7 Using INDEX and MATCH for a Left Table Lookup

Suppose that, in the Sales Transactions database, we wish to find the customer ID associated with a specific transaction code. Refer back to Figure 2.8 or the Excel workbook. Suppose that we enter the transaction code in cell K2, and want to display the customer ID in cell K4. Use the formula in cell K4:

$$
=\text { INDEX(A4:A475,MATCH(K2,D4:D475,0),1) }
$$

Here, the MATCH function is used to identify the row number in the table range that matches the transaction code exactly, and the INDEX function uses this row number and column 1 to identify the associated customer ID.

Spreadsheet Add-Ins for Business Analytics

Microsoft Excel will provide most of the computational support required for the material in this book. Excel (Windows only) provides an add-in called the Analysis Toolpak, which contains a variety of tools for statistical computation, and Solver, which is used for optimization. These add-ins are not included in a standard Excel installation. To install them, click the File tab and then Options in the left column. Choose Add-Ins from the left column. At the bottom of the dialog, make sure Excel Add-ins is selected in the Manage: box and click Go. In the Add-Ins dialog, if Analysis Toolpak, Analysis Toolpak VBA, and Solver Add-in are not checked, simply check the boxes and click $O K$. You will not have to repeat this procedure every time you run Excel in the future.

In addition, many third-party add-ins are available to support analytic procedures in Excel. One add-in, Frontline Systems' Analytic Solver Platform, offers many other capabilities for both predictive and prescriptive analytics. See the Preface for instructions on how to download and install this software. We will use both the included Excel add-ins and Analytic Solver Platform throughout this book, so we encourage you to download and set up these add-ins on your computer at this time.

Key Terms

Absolute address
Discount rate

Net present value (discounted cash flow) Relative address

Problems and Exercises

1. The Excel file Firm Data shows the prices charged and different product sizes. Prepare a worksheet using VLOOKUP function that will compute the invoice to be sent to a customer when any product type, size, and order quantity are entered.
2. The Excel file Store and Regional Sales Database provides sales data for computers and peripherals showing the store identification number, sales region, item number, item description, unit price, units sold, and month when the sales were made during the fourth quarter of last year. ${ }^{3}$ Modify the

[^21]spreadsheet to calculate the total sales revenue for each of the eight stores as well as each of the three sales regions.
3. The Excel file President's Inn Guest Database provides a list of customers, rooms they occupied, arrival and departure dates, number of occupants, and daily rate for a small bed-and-breakfast inn during one month. ${ }^{4}$ Room rates are the same for one or two guests; however, additional guests must pay an additional $\$ 20$ per person per day for meals. Guests staying for seven days or more receive a 10% discount. Modify the spreadsheet to calculate the number of days that each party stayed at the inn and the total revenue for the length of stay.
4. The worksheet Base Data in the Excel file Credit Risk Data provides information about 425 bank customers who had applied for loans. The data include the purpose of the loan, checking and savings account balances, number of months as a customer of the bank, months employed, gender, marital status, age, housing status and number of years at current residence, job type, and credit-risk classification by the bank. ${ }^{5}$
a. Use the COUNTIF function to determine (1) how many customers applied for new-car, used-car, business, education, small-appliance, and furniture loans and (2) the number of customers with checking account balances less than $\$ 500$.
b. Modify the spreadsheet using IF functions to include new columns, classifying the checking and savings account balances as low if the balance is less than $\$ 250$, medium if between $\$ 250$ but less than $\$ 2000$, and high otherwise.
5. A manager needs to identify some information from the Purchase Orders Excel file but has only the order number. Modify the Excel file to use the VLOOKUP function to find the item description and cost per order for the following order numbers: Aug11008, Sep11023, and Oct1 1020.
6. A pharmaceutical manufacturer has projected net profits for a new drug that is being released to the market over the next five years:

Year	Net Profit
1	$\$(300,000,000)$
2	$\$(145,000,000)$
3	$\$ 50,000,000$
4	$\$ 125,000,000$
5	$\$ 530,000,000$

Use a spreadsheet to find the net present value of these cash flows for a discount rate of 3%.
7. Example 1.4 in Chapter 1 described a scenario for new product sales that can be characterized by a formula called a Gompertz curve: $S=a e^{b e^{a t}}$. Develop a spreadsheet for calculating sales using this formula for $t=0$ to 160 in increments of 10 when $a=15000, b=-8$, and $c=-0.05$.
8. Example 1.8 in Chapter 1 provided data from an experiment to identify the relationship between sales and pricing, coupon, and advertising strategies. Enter the data into a spreadsheet and implement the model in the example within your spreadsheet to estimate the sales for each of the weekly experiments. Compute the average sales for the three stores, and find the differences between the averages and the model estimates for each week.
9. The following exercises use the Purchase Orders database. Use MATCH and/or INDEX functions to find the following:
a. The row numbers corresponding to the first and last instance of item number 1369 in column C (be sure column C is sorted by order number).
b. The order cost associated with the first instance of item 1369 that you identified in part (a).
c. The total cost of all orders for item 1369. Use the answers to parts (a) and (b) along with the SUM function to do this. In other words, you should use the appropriate INDEX and MATCH functions within the SUM function to find the answer. Validate your results by applying the SUM function directly to the data in column G.

[^22]10. Use INDEX and MATCH functions to fill in a table that extracts the amounts shipped between each pair of cities in the Excel file General Appliance Corporation. Your table should display as follows, and the formula for the amount should reference the names in the From and To columns:

From	To	Amount
Marietta	Cleveland	0
Marietta	Baltimore	350
Marietta	Chicago	0
Marietta	Phoenix	850
Minneapolis	Cleveland	150
Minneapolis	Baltimore	0
Minneapolis	Chicago	500
Minneapolis	Phoenix	150

11. A firm is considering the purchase of a new technology that is expected to produce an annual net saving in labor costs of $\$ 8000$ in each of the six years. The initial cost is $\$ 30000$, and annual maintenance cost is $\$ 1000$. The company can access the required fund at the current market interest rate of 14% per annum compounded annually. By calculating NPV of the proposed expenditure, decide whether the technology should be purchased.

Case: Performance Lawn Equipment

Elizabeth Burke has asked you to do some preliminary analysis of the data in the Performance Lawn Equipment database. First, she would like you to edit the worksheets Dealer Satisfaction and End-User Satisfaction to display the total number of responses to each level of the survey scale across all regions for each year. Second, she wants a count of the number of failures in the worksheet Mower Test. Next, Elizabeth has provided you with prices for PLE products for the past 5 years:

Year	Mower Price (\$)	Tractor Price (\$)
2010	150	3,250
2011	175	3,400
2012	180	3,600
2013	185	3,700
2014	190	3,800

Create a new worksheet in the database to compute gross revenues by month and region, as well as worldwide totals, for each product using the data in Mower Unit Sales and Tractor Unit Sales. Finally, she wants to know the market share for each product and region based on the PLE and industry sales data in the database. Create and save these calculations in a new worksheet. Summarize all your findings in a report to Ms. Burke.

Laborant/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

Create Microsoft Excel charts.
Determine the appropriate chart to visualize different types of data.
Sort a data set in an Excel spreadsheet.

- Apply the Pareto Principle to analyze data.
- Use the Excel Autofilter to identify records in a database meeting certain characteristics.
- Explain the science of statistics and define the term statistic.
Construct a frequency distribution for both discrete and continuous data.

Construct a relative frequency distribution and histogram.
Compute cumulative relative frequencies.
Find percentiles and quartiles for a data set.
Construct a cross-tabulation (contingency table).

- Use PivotTables to explore and summarize data.
- Use PivotTables to construct a cross-tabulation.

Display the results of PivotTables using PivotCharts.

Data Visualization

Abstract

Converting data into information to understand past and current performance is the core of descriptive analytics and is vital to making good business decisions. Techniques for doing this range from plotting data on charts, extracting data from databases, and manipulating and summarizing data. In this chapter, we introduce a variety of useful techniques for descriptive analytics.

The old adage "A picture is worth 1000 words" is probably truer in today's informationrich environment than ever before. In Chapter 1 we stated that data visualization is at the core of modern business analytics. Data visualization is the process of displaying data (often in large quantities) in a meaningful fashion to provide insights that will support better decisions. Making sense of large quantities of disparate data is necessary not only for gaining competitive advantage in today's business environment but also for surviving in it. Researchers have observed that data visualization improves decision-making, provides managers with better analysis capabilities that reduce reliance on IT professionals, and improves collaboration and information sharing.

Raw data are important, particularly when one needs to identify accurate values or compare individual numbers. However, it is quite difficult to identify trends and patterns, find exceptions, or compare groups of data in tabular form. The human brain does a surprisingly good job processing visual information-if presented in an effective way. Visualizing data provides a way of communicating data at all levels of a business and can reveal surprising patterns and relationships. For many unique and intriguing examples of data visualization, visit the Data Visualization Gallery at the U.S. Census Bureau Web site, www.census.gov/dataviz/.

EXAMPLE 3.1 Tabular versus Visual Data Analysis

Figure 3.1 shows the data in the Excel file Monthly Product Sales. We can use the data to determine exactly how many units of a certain product were sold in a particular month, or to compare one month to another. For example, we see that sales of product A dropped in February, specifically by 6.7% (computed by the Excel formula $=1-$ B3/B2). Beyond such calculations, however, it is difficult to draw big picture conclusions.

Figure 3.2 displays a chart of monthly sales for each product. We can easily compare overall sales of different products (Product C sells the least, for example), and identify trends (sales of Product D are increasing), other patterns (sales of Product C is relatively stable while sales of Product B fluctuates more over time), and exceptions (Product E's sales fell considerably in September).

Data visualization is also important both for building decision models and for interpreting their results. For example, recall the demand-prediction models in Chapter 1 (Examples 1.9 and 1.10). To identify the appropriate model to use, we would normally have to collect and analyze data on sales demand and prices to determine the type of relationship (linear or nonlinear, for example) and estimate the values of the parameters in the model. Visualizing the data will help to identify the proper relationship and use the appropriate data analysis tool. Furthermore, complex analytical models often yield complex results. Visualizing the results often helps in understanding and gaining insight about model output and solutions.

Figure : 3.1
Monthly Product Sales Data

	A	B	c	D	E	F
1	Month	Product A	Product B	Product C	Product D	Product E
2	January	7792	5554	3105	3168	10350
3	February	7268	3024	3228	3751	8965
4	March	7049	5543	2147	3319	6827
5	April	7560	5232	2636	4057	8544
6	May	8233	5450	2726	3837	7535
7	June	8629	3943	2705	4664	9070
8	July	8702	5991	2891	5418	8389
9	August	9215	3920	2782	4085	7367
10	September	8986	4753	2524	5575	5377
11	October	8654	4746	3258	5333	7645
12	November	8315	3566	2144	4924	8173
13	December	7978	5670	3071	6563	6088

Dashboards

Making data visible and accessible to employees at all levels is a hallmark of effective modern organizations. A dashboard is a visual representation of a set of key business measures. It is derived from the analogy of an automobile's control panel, which displays speed, gasoline level, temperature, and so on. Dashboards provide important summaries of key business information to help manage a business process or function. Dashboards might include tabular as well as visual data to allow managers to quickly locate key data. Figure 3.3 shows a simple dashboard for the product sales data in Figure 3.1 showing monthly sales for each product individually, sales of all products combined, total annual sales by product, a comparison of the last two months, and monthly percent changes by product.

Tools and Software for Data Visualization

Data visualization ranges from simple Excel charts to more advanced interactive tools and software that allow users to easily view and manipulate data with a few clicks, not only on computers, but on iPads and other devices as well. In this chapter we discuss basic tools available in Excel. In Chapter 10, we will see several other tools used in data mining applications that are available with the Excel add-in, XLMiner, that is used in this book.

Figure : 3.3 :
Dashboard for Product Sales

While we will only focus on Excel-based tools in this book, you should be aware of other options and commercial packages that are available. In particular, we suggest that you look at the capabilities of Tableau (www.tableausoftware.com) and IBM's Cognos software (www.cognos10.com). Tableau is easy to use and offers a free trial.

Creating Charts in Microsoft Excel

Microsoft Excel provides a comprehensive charting capability with many features. With a little experimentation, you can create very professional charts for business analyses and presentations. These include vertical and horizontal bar charts, line charts, pie charts, area charts, scatter plots, and many other special types of charts. We generally do not guide you through every application but do provide some guidance for new procedures as appropriate.

Certain charts work better for certain types of data, and using the wrong chart can make it difficult for the user to interpret and understand. While Excel offers many ways to make charts unique and fancy, naive users often focus more on the attention-grabbing aspects of charts rather than their effectiveness of displaying information. So we recommend that you keep charts simple, and avoid such bells and whistles as 3-D bars, cylinders, cones, and so on. We highly recommend books written by Stephen Few, such as Show Me the Numbers (Oakland, CA: Analytics Press, 2004) for additional guidance in developing effective data visualizations.

To create a chart in Excel, it is best to first highlight the range of the data you wish to chart. The Excel Help files provide guidance on formatting your data for a particular type of chart. Click the Insert tab in the Excel ribbon (Figure 3.4). From the Charts group, click the chart type, and then click a chart subtype that you want to use. Once a basic chart is created, you may use the options in the Design and Format tabs within the Chart Tools tabs to customize your chart (Figure 3.5). In the Design tab, you can change the type of chart, data included in the chart, chart layout, and styles. The Format tab provides various formatting options. You may also customize charts easily by right-clicking on elements of the chart or by using the Quick Layout options in the Chart Layout group within the Chart Tools Design tab.

You should realize that up to 10% of the male population are affected by color blindness, making it difficult to distinguish between different color variations. Although we generally display charts using Excel's default colors, which often, unfortunately, use red, experts suggest using blue-orange palettes. We suggest that you be aware of this for professional and commercial applications.

Figure : 3.4
Excel Insert Tab

Figure : 3.5
Excel Chart Tools

Column and Bar Charts

Excel distinguishes between vertical and horizontal bar charts, calling the former column charts and the latter bar charts. A clustered column chart compares values across categories using vertical rectangles; a stacked column chart displays the contribution of each value to the total by stacking the rectangles; and a 100% stacked column chart compares the percentage that each value contributes to a total. Column and bar charts are useful for comparing categorical or ordinal data, for illustrating differences between sets of values, and for showing proportions or percentages of a whole.

EXAMPLE 3.2 Creating Column Charts

The Excel file EEO Employment Report provides data on the number of employees in different categories broken down by racial/ethnic group and gender (Figure 3.6). We will construct a simple column chart for the various employment categories for all employees. First, highlight the range C3:K6, which includes the headings and data for each category. Click on the Column Chart button and then on the first chart type in the list (a clustered column chart). To add a title, click on the Add Chart Elements button in the Design tab ribbon. Click on "Chart Title" in the chart and change it to "EEO Employment Report-

Abstract

Alabama." The names of the data series can be changed by clicking on the Select Data button in the Data group of the Design tab. In the Select Data Source dialog (see Figure 3.7), click on "Series1" and then the Edit button. Enter the name of the data series, in this case "All Employees." Change the names of the other data series to "Men" and "Women" in a similar fashion. You can also change the order in which the data series are displayed on the chart using the up and down buttons. The final chart is shown in Figure 3.8.

Be cautious when changing the scale of the numerical axis. The heights or lengths of the bars only accurately reflect the data values if the axis starts at zero. If not, the relative sizes can paint a misleading picture of the relative values of the data.

	A	B	C	D	E	F	G	H	1	J	K
1	Equal Employment Opportunity Commission Report - Number Employed in State of Alabama, 2006										
2											
3	Racial/Ethnic Group and Gender	Total Employment	$\begin{gathered} \text { Officials } \\ \& \\ \hline \end{gathered}$	Professionals	Technicians	Sales Workers	Office \& Clerical	Craft Workers	Operatives	Laborers	Service Workers
4	ALL EMPLOYEES	632,329	60,258	80,733	39,868	62,019	67,014	61,322	120,810	68,752	71,553
5	Men	349,353	41,777	39,792	19,848	23,727	11,293	55,853	84,724	44,736	27,603
6	Women	282,976	18,481	40,941	20,020	38,292	55,721	5,469	36,086	24,016	43,950
7											
8	WHITE	407,545	51,252	67,622	28,830	41,091	44,565	45,742	67,555	26,712	34,176
9	Men	237,516	36,536	34,842	16,004	17,756	7,656	42,699	50,537	17,802	13,684
10	Women	170,029	14,716	32,780	12,826	23,335	36,909	3,043	17,018	8,910	20,492
11											
12	MINORITY	224,784	9,006	13,111	11,038	20,928	22,449	15,580	53,255	42,040	37,377
13	Men	111,837	5,241	4,950	3,844	5,971	3,637	13,154	34,187	26,934	13,919
14	Women	112,947	3,765	8,161	7,194	14,957	18,812	2,426	19,068	15,106	23,458

Figure : 3.6

Portion of EEO Employment Report Data

Figure: 3.7 :
Select Data Source Dialog

Figure: 3.8
Column Chart for Alabama Employment Data

Figure: 3.9
Alternate Column Chart Format

Data Labels and Data Tables Chart Options

Excel provides options for including the numerical data on which charts are based within the charts. Data labels can be added to chart elements to show the actual value of bars, for example. Data tables can also be added; these are usually better than data labels, which can get quite messy. Both can be added from the Add Chart Element Button in the Chart Tools Design tab, or also from the Quick Layout button, which provides standard design options. Figure 3.9 shows a data table added to the Alabama Employment chart. You can see that the data table provides useful additional information to improve the visualization.

Line Charts

Line charts provide a useful means for displaying data over time, as Example 3.3 illustrates. You may plot multiple data series in line charts; however, they can be difficult to interpret if the magnitude of the data values differs greatly. In that case, it would be advisable to create separate charts for each data series.

EXAMPLE 3.3 A Line Chart for China Export Data

Figure 3.10 shows a line chart giving the amount of U.S. exports to China in billions of dollars from the Excel file China Trade Data. The chart clearly shows a significant
rise in exports starting in the year 2000, which began to level off around 2008.

Pie Charts

For many types of data, we are interested in understanding the relative proportion of each data source to the total. A pie chart displays this by partitioning a circle into pie-shaped areas showing the relative proportion. Example 3.4 provides one application.

Figure : 3.10
Chart with Data Labels and Data Table

EXAMPLE 3.4 A Pie Chart for Census Data

Consider the marital status of individuals in the U.S. population in the Excel file Census Education Data, a portion of which is shown in Figure 3.11. To show the relative proportion in each category, we can use a pie chart, as shown
in Figure 3.12. This chart uses a layout option that shows the labels associated with the data as well as the actual proportions as percentages. A different layout that shows both the values and/or proportions can also be chosen.

Data visualization professionals don't recommend using pie charts. For example, contrast the pie chart in Figure 3.12 with the column chart in Figure 3.13 for the same data. In the pie chart, it is difficult to compare the relative sizes of areas; however, the bars in the column chart can easily be compared to determine relative ratios of the data. If you do use pie charts, restrict them to small numbers of categories, always ensure that the numbers add to 100%, and use labels to display the group names and actual percentages. Avoid threedimensional (3-D) pie charts-especially those that are rotated-and keep them simple.

Area Charts

An area chart combines the features of a pie chart with those of line charts. Area charts present more information than pie or line charts alone but may clutter the observer's mind with too many details if too many data series are used; thus, they should be used with care.

EXAMPLE 3.5 An Area Chart for Energy Consumption

Figure 3.14 displays total energy consumption (billion Btu) and consumption of fossil fuels from the Excel file Energy Production \& Consumption. This chart shows that although total energy consumption has grown since

1949, the relative proportion of fossil fuel consumption has remained generally consistent at about half of the total, indicating that alternative energy sources have not replaced a significant portion of fossil-fuel consumption.

Scatter Chart

Scatter charts show the relationship between two variables. To construct a scatter chart, we need observations that consist of pairs of variables. For example, students in a class might have grades for both a midterm and a final exam. A scatter chart would show whether high or low grades on the midterm correspond strongly to high or low grades on the final exam or whether the relationship is weak or nonexistent.

Figure : 3.11 :
Portion of Census Education Data

	A	B	C	D	E	F	G
2	Census Education Data						
		Not a High School Grad	High School Graduate	Some College No Degree	Associate's Degree	Bachelor's Degree	Advanced Degree
18	Marital Status						
19	Never Married	4,120,320	7,777,104	4,789,872	1,828,392	5,124,648	2,137,416
20	Married, spouse present	15,516,160	36,382,720	18,084,352	8,346,624	19,154,432	9,523,712
21	Married, spouse absent	1,847,880	2,368,024	1,184,012	465,392	670,712	301,136
22	Separated	1,188,090	1,667,010	842,715	336,165	405,240	165,780
23	Widowed	5,145,683	4,670,488	1,765,010	556,657	977,544	475,195
24	Divorced	2,968,680	7,003,040	3,806,000	1,674,640	2,340,690	1,217,920

Figure : 3.12 :
Pie Chart for Marital Status

Figure : 3.13 :
Alternative Column Chart for Marital Status: Not a High School Grad

Figure : 3.14
Area Chart for Energy Consumption

EXAMPLE 3.6 A Scatter Chart for Real Estate Data

Figure 3.15 shows a scatter chart of house size (in square feet) versus the home market value from the Excel file

Home Market Value. The data clearly suggest that higher market values are associated with larger homes.

Bubble Charts

A bubble chart is a type of scatter chart in which the size of the data marker corresponds to the value of a third variable; consequently, it is a way to plot three variables in two dimensions.

EXAMPLE 3.7 A Bubble Chart for Comparing Stock Characteristics

Figure 3.16 shows a bubble chart for displaying price, P/E (price/earnings) ratio, and market capitalization for five different stocks on one particular day in the Excel
file Stock Comparisons. The position on the chart shows the price and P/E; the size of the bubble represents the market cap in billions of dollars.

Figure : 3.15 :
Scatter Chart of House Size versus Market Value

Figure : 3.16
Bubble Chart for Stock Comparisons

Miscellaneous Excel Charts

Excel provides several additional charts for special applications. These additional types of charts (including bubble charts) can be selected and created from the Other Charts button in the Excel ribbon. These include the following:

- A stock chart allows you to plot stock prices, such as the daily high, low, and close. It may also be used for scientific data such as temperature changes.
- A surface chart shows 3-D data.
- A doughnut chart is similar to a pie chart but can contain more than one data series.
- A radar chart allows you to plot multiple dimensions of several data series.

Geographic Data

Many applications of business analytics involve geographic data. For example, problems such as finding the best location for production and distribution facilities, analyzing regional sales performance, transporting raw materials and finished goods, and routing vehicles such as delivery trucks involve geographic data. In such problems, data mapping can help in a variety of ways. Visualizing geographic data can highlight key data relationships, identify trends, and uncover business opportunities. In addition, it can often help to spot data errors and help end users understand solutions, thus increasing the likelihood of acceptance of decision models. Companies like Nike use geographic data and information systems for visualizing where products are being distributed and how that relates to demographic and sales information. This information is vital to marketing strategies. The use of prescriptive analytic models in combination with data mapping was instrumental in the success of Procter \& Gamble Company's North American Supply Chain study, which saved the company in excess of $\$ 200$ million dollars per year. ${ }^{1}$ We discuss this application in Chapter 15.

[^23]Geographic mapping capabilities were introduced in Excel 2000 but were not available in Excel 2002 and later versions. These capabilities are now available through Microsoft MapPoint 2010, which must be purchased separately. MapPoint is a geographic data-mapping tool that allows you to visualize data imported from Excel and other database sources and integrate them into other Microsoft Office applications. For further information, see http://www.microsoft.com/mappoint/en-us/home.aspx.

Other Excel Data Visualization Tools

Microsoft Excel offers numerous other tools to help visualize data. These include data bars, color scales, and icon sets; sparklines, and the camera tool. We will describe each of these in the following sections.

Data Bars, Color Scales, and Icon Sets

These options are part of Excel's Conditional Formatting rules, which allow you to visualize different numerical values through the use of colors and symbols. Excel has a variety of standard templates to use, but you may also customize the rules to meet your own conditions and styles. We encourage you to experiment with these tools.

EXAMPLE 3.8 Data Visualization through Conditional Formatting

Data bars display colored bars that are scaled to the magnitude of the data values (similar to a bar chart) but placed directly within the cells of a range. Figure 3.17 shows data bars applied to the data in the Monthly Product Sales worksheet. Highlight the data in each column, click the Conditional Formatting button in the Styles group within the Home tab, select Data Bars, and choose the fill option and color.

Color scales shade cells based on their numerical value using a color palette. This is another option in the Conditional Formatting menu. For example, in Figure 3.18 we use a green-yellow-red color scale, which highlights
cells containing large values in green, small values in red, and middle values in yellow. The darker the green, the larger the value; the darker the red, the smaller the value. For intermediate values, you can see that the colors blend together. This provides a quick way of identifying the largest and smallest product-month sales values. Color-coding of quantitative data is commonly called a heatmap. We will see another application of a heatmap in Chapter 14.

Finally, Icon Sets provide similar information using various symbols such as arrows or stoplight colors. Figure 3.19 shows an example.

Figure : 3.17
Example of Data Bars

	A	B	C	D	E	F
1	Month	Product A	Product B	Product C	Product D	Product E
2	January	7792	5554	3105	3168	10350
3	February	7268	3024	3228	3751	8965
4	March	7049	5543	2147	3319	6827
5	April	7560	5232	2636	4057	8544
6	May	8233	5450	2726	3837	7535
7	June	8629	3943	2705	4664	9070
8	July	8702	5991	2891	5418	8389
9	August	9215	3920	2782	4085	7367
10	September	8986	4753	2524	5575	5377
11	October	8654	4746	3258	5333	7645
12	November	8315	3566	2144	4924	8173
13	December	7978	5670	3071	6563	6088

Figure ： 3.18
Example of Color Scales

Figure ： 3.19
Example of Icon Sets

	A	B	C	D	E	F
1	Month	Product A	Product B	Product C	Product D	Product E
2	January	7792	5554	3105	3168	10350
3	February	7268	3024	3228	3751	8965
4	March	7049	5543	2147	3319	6827
5	April	7560	5232	2636	4057	8544
6	May	8233	5450	2726	3837	7535
7	June	8629	3943	2705	4664	9070
8	July	8702	5991	2891	5418	8389
9	August	9215	3920	2782	4085	7367
10	September	8986	4753	2524	5575	5377
11	October	8654	4746	3258	5333	7645
12	November	8315	3566	2144	4924	8173
13	December	7978	5670	3071	6563	6088

	A	$\begin{gathered} \text { B } \\ \hline \text { Product A } \end{gathered}$									F
1	Month			Product B		Product C		Product D		Product E	
2	January	个	7792		5554	多	3105	，	3168		10350
3	February	\Rightarrow	7268		3024	\checkmark	3228	）	3751		8965
4	March	\Rightarrow	7049		5543	，	2147	年	3319		6827
5	April	\Rightarrow	7560		5232	，	2636	，	4057		8544
6	May	r	8233		5450		2726	令	3837		7535
7	June	个	8629		3943	$\sqrt{8}$	2705	\checkmark	4664	r	9070
8	July		8702		5991	$\sqrt{8}$	2891		5418	－	8389
9	August		9215		3920		2782		4085		7367
10	September		8986		4753	，	2524		5575		5377
11	October		8654		4746		3258		5333		7645
12	November		8315		3566		2144		4924		8173
13	December	饣	7978		5670		3071		6563		6088

Sparklines

Sparklines are graphics that summarize a row or column of data in a single cell．Spar－ klines were introduced by Edward Tufte，a famous expert on visual presentation of data． He described sparklines as＂data－intense，design－simple，word－sized graphics．＂Excel has three types of sparklines：line，column，and win／loss．Line sparklines are clearly useful for time－series data，while column sparklines are more appropriate for categorical data． Win－loss sparklines are useful for data that move up or down over time．They are found in the Sparklines group within the Insert menu on the ribbon．

EXAMPLE 3.9 Examples of Sparklines

We will again use the Monthly Product Sales data．Figure 3.20 shows line sparklines in row 14 for each product．In col－ umn G，we display column sparklines，which are essentially small column charts．Generally you need to expand the row or column widths to display them effectively．Notice，how－ ever，that the lengths of the bars are not scaled properly to the data；for example，in the first one，products D and E are roughly one－third the value of Product E yet the bars are not scaled correctly．So be careful when using them．

Figure 3.21 shows a modified worksheet in which we computed the percentage change from 1 month to the next for products A and B．The win－loss sparklines in row 14 show the patterns of sales increases and decreases， suggesting that product A has a cyclical pattern while product B changed in a more random fashion．If you click on any cell containing a sparkline，the Sparkline Tools Design tab appears，allowing you to customize colors and other options．

Figure : 3.20
Line and Column Sparklines

Figure : 3.21
Win-Loss Sparklines

	A	B	C	D	E	F	G
1	Month	Product A	Product B	Product C	Product D	Product E	
2	January	7792	5554	3105	3168	10350	
3	February	7268	3024	3228	3751	8965	
4	March	7049	5543	2147	3319	6827	
5	April	7560	5232	2636	4057	8544	
6	May	8233	5450	2726	3837	7535	
7	June	8629	3943	2705	4664	9070	
8	July	8702	5991	2891	5418	8389	
9	August	9215	3920	2782	4085	7367	
10	September	8986	4753	2524	5575	5377	
11	October	8654	4746	3258	5333	7645	
12	November	8315	3566	2144	4924	8173	
13	December	7978	5670	3071	6563	6088	

	A	B	C	D	E
1	Month	Product A	Percent Change	Product B	Percent Change
2	January	7792		5554	
3	February	7268	-6.72\%	3024	-45.55\%
4	March	7049	-3.01\%	5543	83.30\%
5	April	7560	7.25\%	5232	-5.61\%
6	May	8233	8.90\%	5450	4.17\%
7	June	8629	4.81\%	3943	-27.65\%
8	July	8702	0.85\%	5991	51.94\%
9	August	9215	5.90\%	3920	-34.57\%
10	September	8986	-2.49\%	4753	21.25\%
11	October	8654	-3.69\%	4746	-0.15\%
12	November	8315	-3.92\%	3566	-24.86\%
13	December	7978	-4.05\%	5670	59.00\%
14			- 1 II		-

Excel Camera Tool

A little-known feature of Excel is the camera tool. This allows you to create live pictures of various ranges from different worksheets that you can place on a single page, size them, and arrange them easily. They are simply linked pictures of the original ranges, and the advantage is that as any data are changed or updated, the camera shots are also. This is particularly valuable for printing summaries when you need to extract data from multiple worksheets, consolidating PivotTables (introduced later in this chapter) onto one page, or for creating dashboards when the tables and charts are scattered across multiple worksheets. To use the camera too, first add it to the Quick Access Toolbar (the set of buttons above the ribbon). From the File menu, choose Options and then Quick Access Toolbar. Choose Commands, and then Commands Not in the Ribbon. Select Camera and add it. It will then appear as shown in Figure 3.22. To use it, simply highlight a range of cells

Figure : 3.22 :
Excel Camera Tool Button

(if you want to capture a chart, highlight a range of cells surrounding it), click the camera tool button and then click the location where you want to place the picture. You may size the picture just like any other Microsoft Excel object. We will illustrate this tool later in the chapter when we discuss PivotTables.

Data Queries: Tables, Sorting, and Filtering

Managers make numerous queries about data. For example, in the Purchase Orders database (Figure 1.3), they might be interested in finding all orders from a certain supplier, all orders for a particular item, or tracing orders by order data. To address these queries, we need to sort the data in some way. In other cases, managers might be interested in extracting a set of records having certain characteristics. This is termed filtering the data. For example, in the Purchase Orders database, a manager might be interested in extracting all records corresponding to a certain item.

Excel provides a convenient way of formatting databases to facilitate analysis, called Tables.

EXAMPLE 3.10 Creating an Excel Table

We will use the Credit Risk Data file to illustrate an Excel table. First, select the range of the data, including headers (a useful shortcut is to select the first cell in the upper left corner, then click Ctrl+Shift+down arrow, and then Ctrl+Shift+right arrow). Next, click Table from the Tables group on the Insert tab and make sure that the box for My Table Has Headers is checked. (You may also just select a cell within the table and then click on Table from the Insert menu. Excel will choose the table range
for you to verify.) The table range will now be formatted and will continue automatically when new data are entered. Figure 3.23 shows a portion of the result. Note that the rows are shaded and that each column header has a drop-down arrow to filter the data (we'll discuss this shortly). If you click within a table, the Table Tools Design tab will appear in the ribbon, allowing you to do a variety of things, such as change the color scheme, remove duplicates, change the formatting, and so on.

	A	B	C	D	E	F	G	H	1	J		K	L
1	Credit Risk Data												
2													
3	Loan Purpo -	Checkir -	Savin -	Months Customer -	Months Employ -	Gend -	Marital Stat -	Age -	Housi -	Years	-	J-	Credit Ri
4	Small Appliance	\$0	\$739	13	12	M	Single	23	Own		3	Unskilled	Low
5	Furniture	\$0	\$1,230	25	0	M	Divorced	32	Own		1	Skilled	High
6	New Car	50	\$389	19	119	M	Single	38	Own		4	Management	High
7	Furniture	\$638	\$347	13	14	M	Single	36	Own		2	Unskilled	High
8	Education	\$963	\$4,754	40	45	M	Single	31	Rent		3	Skilled	Low
9	Furniture	\$2,827	\$0	11	13	M	Married	25	Own		1	Skilled	Low
10	New Car	\$0	\$229	13	16	M	Married	26	Own		3	Unskilled	Low
11	Business	\$0	\$533	14	2	M	Single	27	Own		1	Unskilled	Low
12	Small Appliance	\$6,509	\$493	37	9	M	Single	25	Own		2	Skilled	High
13	Small Appliance	\$966	\$0	25	4	F	Divorced	43	Own		1	Skilled	High
14	Business	\$0	\$989	49	0	M	Single	32	Rent		2	Management	High

Figure : 3.23 :
Portion of Credit Risk Data Formatted as an Excel Table

An Excel table allows you to use table references to perform basic calculations, as the next example illustrates.

EXAMPLE 3.11 Table-Based Calculations

Suppose that in the Credit Risk Data table, we wish to calculate the total amount of savings in column C. We could, of course, simply use the function SUM(C4:C428). However, with a table, we could use the formula = SUM(Table1[Savings]). The table name, Table1, can be found (and changed) in the Properties group of the Table Tools Design tab. Note that Savings is the name
of the header in column C . One of the advantages of doing this is that if we add new records to the table, the calculation will be updated automatically, and we don't have to change the range in the formula or get a wrong result if we forget to. As another example, we could find the number of home owners using the function = COUNTIF(Table1[Housing], "Own").

If you add additional records at the end of the table, they will automatically be included and formatted, and if you create a chart based on the data, the chart will automatically be updated if you add new records.

Sorting Data in Excel

Excel provides many ways to sort lists by rows or column or in ascending or descending order and using custom sorting schemes. The sort buttons in Excel can be found under the Data tab in the Sort \& Filter group (see Figure 3.24). Select a single cell in the column you want to sort on and click the "AZ down arrow" button to sort from smallest to largest or the "AZ up arrow" button to sort from largest to smallest. You may also click the Sort button to specify criteria for more advanced sorting capabilities.

EXAMPLE 3.12 Sorting Data in the Purchase Orders Database

In Chapter 1 (Figure 1.3), we introduced a data set for purchase orders for an aircraft-component manufacturer. Suppose we wish to sort the data by supplier. Click on any cell in column A of the data (but not the header cell A3) and then the "AZ down" button in the

Data tab. Excel will select the entire range of the data and sort by name of supplier in column A, a portion of which is shown in Figure 3.25. This allows you to easily identify the records that correspond to all orders from a particular supplier.

Pareto Analysis

Pareto analysis is a term named after an Italian economist, Vilfredo Pareto, who, in 1906, observed that a large proportion of the wealth in Italy was owned by a relatively small proportion of the people. The Pareto principle is often seen in many business situations. For example, a large percentage of sales usually comes from a small percentage of cus-

Figure : 3.24 :
Excel Ribbon Data Tab tomers, a large percentage of quality defects stems from just a couple of sources, or a large

	A	B	C	D	E	F	G	H	I	J
1	Purchase Orders									
2										
3	Supplier	Order No.	Item No.	Item Description	Item Cost	Quantity	Cost per order	A/P Terms (Months)	Order Date	Arrival Date
4	Alum Sheeting	Aug11002	1243	Airframe fasteners	\$ 4.25	10,000	\$ 42,500.00	30	08/08/11	08/14/11
5	Alum Sheeting	Sepl1002	5417	Control Panel	\$ 255.00	406	\$ 103,530.00	30	09/01/11	09/10/11
6	Alum Sheeting	Sep11008	1243	Airframe fasteners	\$ 4.25	9.000	\$ 38,250.00	30	09/05/11	09/12/11
7	Alum Sheeting	Oct11016	1243	Airframe fasteners	\$ 4.25	10,500	\$ 44,625.00	30	10/10/11	10/17/11
8	Alum Sheeting	Oct11022	4224	Bolt-nut package	\$ 3.95	4,500	\$ 17,775.00	30	10/15/11	10/20/11
9	Alum Sheeting	Oct11026	5417	Control Panel	\$ 255.00	500	\$ 127,500.00	30	10/20/11	10/27/11
10	Alum Sheeting	Oct11028	5634	Side Panel	\$ 185.00	150	\$ 27,750.00	30	10/25/11	11/03/11
11	Alum Sheeting	Oct11036	5634	Side Panel	\$ 185.00	140	\$ 25,900.00	30	10/29/11	11/04/11
12	Durrable Products	Aug11008	7258	Pressure Gauge	\$ 90.00	100	\$ 9,000.00	45	08/25/11	08/28/11
13	Durrable Products	Sep11009	7258	Pressure Gauge	\$ 90.00	120	\$ 10,800.00	45	09/05/11	09/09/11
14	Durrable Products	Sep11027	1369	Airframe fasteners	\$ 4.20	15,000	\$ 63,000.00	45	09/25/11	09/30/11
15	Durrable Products	Sep11031	1369	Airframe fasteners	\$ 4.20	14,000	\$ 58,800.00	45	09/27/11	10/03/11

Figure : 3.25 :

Portion of Purchase Orders Database Sorted by Supplier Name
ation in which 80% of some output comes from 20% of some input. A Pareto analysis relies on sorting data and calculating the cumulative percentage of the characteristic of interest.

EXAMPLE 3.13 Applying the Pareto Principle

The Excel file Bicycle Inventory lists the inventory of bicycle models in a sporting goods store (see columns A through F in Figure 3.26). ${ }^{2}$ To conduct a Pareto analysis, we first compute the inventory value of each product by multiplying the quantity on hand by the purchase cost; this is the amount invested in the items that are currently in stock. Then we sort the data in decreasing order of in-
ventory value and compute the percentage of the total inventory value for each product and the cumulative percentage. See columns G through I in Figure 3.26. We see that about 75% of the inventory value is accounted for by less than 40% (9 of 24) of the items. If these high-value inventories aren't selling well, the store manager may wish to keep fewer in stock.

,	A	B	C	D	E	F		G	H	I
1	Bicycle Inventory									
2										
3	Product Category	Product Name	Purchase Cost	Selling Price	Supplier	Quantity on Hand		entory Value	Percentage	Cumulative \%
4	Road	Runroad 5000	\$450.95	\$599.99	Run-Up Bikes	5	\$	2,254.75	11.2\%	11.2\%
5	Road	Runroad 1000	\$250.95	\$350.99	Run-Up Blkes	8	\$	2,007.60	10.0\%	21.1\%
6	Road	Elegant 210	\$281.52	\$394.13	Bicyclist's Choice	7	\$	1,970.64	9.8\%	30.9\%
7	Road	Runroad 4000	\$390.95	\$495.99	Run-Up Bikes	5	\$	1,954.75	9.7\%	40.6\%
8	Mtn.	Eagle 3	\$350.52	\$490.73	Bike-One	5	\$	1,752.60	8.7\%	49.3\%
9	Road	Classic 109	\$207.49	\$290.49	Bicyclist's Choice	7	\$	1,452.43	7.2\%	56.5\%
10	Hybrid	Eagle 7	\$150.89	\$211.46	Bike-One	9	\$	1,358.01	6.7\%	63.3\%
11	Hybrid	Tea for Two	\$429.02	\$609.00	Simpson's Bike Supply	3	\$	1,287.06	6.4\%	69.7\%
12	Mtn.	Bluff Breaker	\$375.00	\$495.00	The Bike Path	3	\$	1,125.00	5.6\%	75.2\%
13	Mtn.	Eagle 2	\$401.11	\$561.54	Bike-One	2	\$	802.22	4.0\%	79.2\%
14	Leisure	Breeze LE	\$109.95	\$149.95	The Bike Path	5	\$	549.75	2.7\%	81.9\%
15	Children	Runkidder 100	\$50.95	\$75.99	Run-Up Bikes	10	\$	509.50	2.5\%	84.5\%
16	Mtn.	Jetty Breaker	\$455.95	\$649.95	The Bike Path	1	\$	455.95	2.3\%	86.7\%
17	Leisure	Runcool 3000	\$85.95	\$135.99	Run-Up Bikes	5	\$	429.75	2.1\%	88.9\%
18	Children	Coolest 100	\$69.99	\$97.98	Bicyclist's Choice	6	\$	419.94	2.1\%	91.0\%
19	Mtn.	Eagle 1	\$410.01	\$574.01	Bike-One	1	\$	410.01	2.0\%	93.0\%
20	Children	Green Rider	\$95.47	\$133.66	Simpson's Bike Supply	4	\$	381.88	1.9\%	94.9\%
21	Lelsure	Breeze	\$89.95	\$130.95	The Bike Path	4	\$	359.80	1.8\%	96.7\%
22	Leisure	Blue Moon	\$75.29	\$105.41	Simpson's Bike Supply	4	\$	301.16	1.5\%	98.2\%
23	Leisure	Supreme 350	\$50.00	\$70.00	Bicyclist's Choice	3	\$	150.00	0.7\%	98.9\%
24	Children	Red Rider	\$15.00	\$25.50	Simpson's Bike Supply	8	\$	120.00	0.6\%	99.5\%
25	Leisure	Starlight	\$100.47	\$140.66	Simpson's Bike Supply	1	\$	100.47	0.5\%	100.0\%
26	Hybrid	Runblend 2000	\$180.95	\$255.99	Run-Up Bikes	0	\$	- -	0.0\%	100.0\%
27	Road	Twist \& Shout	\$490.50	\$635.70	Simpson's Bike Supply	0	\$	-	0.0\%	100.0\%
28						Total	\$	20,153.27		

Figure : 3.26

Pareto Analysis of Bicycle Inventory

[^24]
Filtering Data

For large data files, finding a particular subset of records that meet certain characteristics by sorting can be tedious. Excel provides two filtering tools: AutoFilter for simple criteria and Advanced Filter for more complex criteria. These tools are best understood by working through some examples.

EXAMPLE 3.14 Filtering Records by Item Description

In the Purchase Orders database, suppose we are interested in extracting all records corresponding to the item Bolt-nut package. First, select any cell within the database. Then, from the Excel Data tab, click on Filter in the Sort \& Filter group. A dropdown arrow will then be displayed on the right side of each header column. Clicking on one of these will display a drop-down box. These are the options for filtering on that column of data. Click the one next to the Item Description header. Uncheck the box for Select All and then check the box correspond-
ing to the Bolt-nut package, as shown in Figure 3.27. Click the OK button, and the Filter tool will display only those orders for this item (Figure 3.28). Actually, the filter tool does not extract the records; it simply hides the records that don't match the criteria. However, you can copy and paste the data to another Excel worksheet, Microsoft Word document, or a PowerPoint presentation, for instance. To restore the original data file, click on the drop-down arrow again and then click Clear filter from "Item Description."

Figure : 3.27 :
Selecting Records for Bolt-Nut Package

A		B	C	D		E	F	G		H	1	J
1	Purchase Orders											
2												
3	Supplier	Order N -	Item $\mathrm{Nc}{ }^{-}$	Item Description	7	Item Co -	Quanti -	Cost	t per orde -	A/P Terms (Months .	Order Dat -	Arrival Dat -
6	Steelpin Inc.	A0123	4312	Bolt-nut package		\$ 3.75	4,250	\$	15,937.50	30	08/25/11	09/01/11
9	Steelpin Inc.	A0207	4312	Bolt-nut package		\$ 3.75	4,200	\$	15,750.00	30	09/01/11	09/10/11
10	Alum Sheeting	A0223	4224	Bolt-nut package		\$ 3.95	4,500	\$	17,775.00	30	10/15/11	10/20/11
19	Spacetime Technologies	A1222	4111	Bolt-nut package		\$ 3.55	4,200	\$	14,910.00	25	09/15/11	10/15/11
25	Spacetime Technologies	A1444	4111	Bolt-nut package		\$ 3.55	4,250	\$	15,087.50	25	09/20/11	10/10/11
26	Spacetime Technologies	A1445	4111	Bolt-nut package		\$ 3.55	4,200	\$	14,910.00	25	09/25/11	10/25/11
27	Spacetime Technologies	A1449	4111	Bolt-nut package		\$ 3.55	4,600	\$	16,330.00	25	10/05/11	10/19/11
29	Durrable Products	A1457	4569	Bolt-nut package		\$ 3.50	3,900	\$	13,650.00	45	10/05/11	10/10/11
35	Spacetime Technologies	A3467	4111	Bolt-nut package		\$ 3.55	4,800	\$	17,040.00	25	09/05/11	09/20/11
36	Spacetime Technologies	A5689	4111	Bolt-nut package		\$ 3.55	4,585	\$	16,276.75	25	09/10/11	09/30/11
43	Steelpin Inc.	B0445	4312	Bolt-nut package		\$ 3.75	4,150	\$	15,562.50	30	09/03/11	09/11/11

Figure : 3.28 :
Filter Results for Bolt-Nut Package

EXAMPLE 3.15 Filtering Records by Item Cost

In this example, suppose we wish to identify all records in the Purchase Orders database whose item cost is at least $\$ 200$. First, click on the drop-down arrow in the Item Cost column and position the cursor over Numbers Filter. This displays a list of options, as shown in Figure 3.29. Select Greater Than Or Equal To . . . from the list. This
brings up a Custom AutoFilter dialog (Figure 3.30) that allows you to specify up to two specific criteria using "and" and "or" logic. Enter 200 in the box as shown and then click OK. The tool will display all records having an item cost of \$200 or more.

Figure: 3.29 :
Selecting Records for Item Cost Filtering

Figure : 3.30
Custom AutoFilter Dialog

Analytics in Practice: Discovering the Value of Data Analysis at Allders International ${ }^{3}$

Allders International specializes in duty-free operations with 82 tax-free retail outlets throughout Europe, including shops in airports and seaports and on cross-channel ferries. Like most retail outlets, Allders International must track masses of point-of-sale data to assist in inventory and productmix decisions. Which items to stock at each of its outlets can have a significant impact on the firm's profitability. To assist them, they implemented a computer-based data warehouse to maintain the data. Prior to doing this, they had to analyze large quantities of paper-based data. Such a manual process was so overwhelming and timeconsuming that the analyses were often too late to provide useful information for their decisions. The data warehouse allowed the company to make simple queries, such as finding the performance of a particular item across all retail outlets or the financial performance of a particular outlet, quickly and easily. This allowed them to identify which inventory items or outlets were underperforming. For instance, a Pareto analysis of its product lines

(groups of similar items) found that about 20\% of the product lines were generating 80% of the profits. This allowed them to selectively eliminate some of the items from the other 80% of the product lines, which freed up shelf space for more profitable items and reduced inventory and supplier costs.

Statistical Methods for Summarizing Data

Statistics, as defined by David Hand, past president of the Royal Statistical Society in the UK, is both the science of uncertainty and the technology of extracting information from data. ${ }^{4}$ Statistics involves collecting, organizing, analyzing, interpreting, and presenting data. A statistic is a summary measure of data. You are undoubtedly familiar with the concept of statistics in daily life as reported in newspapers and the media: baseball batting averages, airline on-time arrival performance, and economic statistics such as the Consumer Price Index are just a few examples.

Statistical methods are essential to business analytics and are used throughout this book. Microsoft Excel supports statistical analysis in two ways:

1. With statistical functions that are entered in worksheet cells directly or embedded in formulas
2. With the Excel Analysis Toolpak add-in to perform more complex statistical computations. We wish to point out that Excel for the Mac does not support the Analysis Toolpak. Some of these procedures are available in the free
[^25]| | A | B | C | D | E | F | G | H | 1 | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Purchase Orders | | | | | | | | | |
| 2 | | | | | | | | | | |
| 3 | Supplier | Order No. | Item No. | Item Description | Item Cost | Quantity | Cost per order | A/P Terms (Months) | Order Date | Arrival Date |
| 4 | Hulkey Fasteners | Aug11001 | 1122 | Airframe fasteners | \$ 4.25 | 19,500 | \$ 82,875.00 | 30 | 08/05/11 | 08/13/11 |
| 5 | Alum Sheeting | Aug 11002 | 1243 | Airframe fasteners | \$ 4.25 | 10,000 | \$ 42,500.00 | 30 | 08/08/11 | 08/14/11 |
| 6 | Fast-Tie Aerospace | Aug11003 | 5462 | Shielded Cable/ft. | \$ 1.05 | 23,000 | \$ $24,150.00$ | 30 | 08/10/11 | 08/15/11 |
| 7 | Fast-Tie Aerospace | Aug11004 | 5462 | Shielded Cable/ft. | \$ 1.05 | 21,500 | \$ 22,575.00 | 30 | 08/15/11 | 08/22/11 |
| 8 | Steelpin Inc. | Aug11005 | 5319 | Shielded Cable/ft. | \$ 1.10 | 17,500 | \$ 19,250.00 | 30 | 08/20/11 | 08/31/11 |
| 9 | Fast-Tie Aerospace | Aug11006 | 5462 | Shielded Cable/ft. | \$ 1.05 | 22,500 | \$ 23,625.00 | 30 | 08/20/11 | 08/26/11 |
| 10 | Steelpin Inc. | Aug11007 | 4312 | Bolt-nut package | \$ 3.75 | 4,250 | \$ 15,937.50 | 30 | 08/25/11 | 09/01/11 |
| 11 | Durrable Products | Aug11008 | 7258 | Pressure Gauge | \$ 90.00 | 100 | \$ 9,000.00 | 45 | 08/25/11 | 08/28/11 |
| 12 | Fast-Tie Aerospace | Aug11009 | 6321 | O-Ring | \$ 2.45 | 1,300 | \$ 3,185.00 | 30 | 08/25/11 | 09/04/11 |

Figure : 3.31 :
Portion of Purchase Orders Database
edition of StatPlus:mac LE (www.analystsoft.com). A more complete version, StatPlus:mac Pro, can also be purchased. Some significant differences, however, exist in the tools between the Excel and Mac versions.

We use both statistical functions and the Analysis Toolpak in many examples.
Descriptive statistics refers to methods of describing and summarizing data using tabular, visual, and quantitative techniques. In the remainder of this chapter, we focus on some tabular and visual methods for analyzing categorical and numerical data; in the next chapter, we discuss quantitative measures.

Frequency Distributions for Categorical Data

A frequency distribution is a table that shows the number of observations in each of several nonoverlapping groups. Categorical variables naturally define the groups in a frequency distribution. For example, in the Purchase Orders database (see Figure 3.31), orders were placed for the following items:

Airframe fasteners	Machined Valve
Bolt-nut package	O-Ring
Control Panel	Panel Decal
Door Decal	Pressure Gauge
Electrical Connector	Shielded Cable/ft.
Gasket	Side Panel
Hatch Decal	

To construct a frequency distribution, we need only count the number of observations that appear in each category. This can be done using the Excel COUNTIF function.

EXAMPLE 3.16 Constructing a Frequency Distribution for Items in the Purchase Orders Database

First, list the item names in a column on the spreadsheet. We used column A, starting in cell A100, below the existing data array. It is important to use the exact names as used in the data file. To count the number of orders placed for each item, use the function = COUNTIF(\$D\$4:\$D\$97, cell_reference), where cell_ reference is the cell containing the item name, our cell A101. This is shown in Figure 3.32. The resulting fre-
quency distribution for the items is shown in Figure 3.33. Thus, the company placed 14 orders for Airframe fasteners and 11 orders for the Bolt-nut package. We may also construct a column chart to visualize these frequencies, as shown in Figure 3.34. We might wish to sort these using Pareto analysis to gain more insight into the order frequency.

Figure : 3.32 :
Using the COUNTIF Function to Construct a Frequency Distribution

	A	B
100	Item Description	Frequency
101	Airframe fasteners	=COUNTIF(\$D\$4:SD\$97,A101)
102	Bolt-nut package	=COUNTIF(\$DS4:SD\$97,A102)
103	Control Panel	=COUNTIF(\$D\$4:\$D\$97.A103)
104	Door Decal	=COUNTIF(SDS4:SDS97.A104)
105	Electrical Connector	=COUNTIF(\$D\$4:SD\$97,A105)
106	Gasket	=COUNTIF(SDS4:SD\$97,A106)
107	Hatch Decal	=COUNTIF(\$D\$4:SD\$97,A107)
108	Machined Valve	=COUNTIF(SDS4:SD\$97,A108)
109	O-Ring	=COUNTIF(SDS4:SD\$97,A109)
110	Panel Decal	=COUNTIF(SDS4:SD\$97.A110)
111	Pressure Gauge	=COUNTIF(\$D\$4:SD\$97.A111)
112	Shielded Cable/ft.	=COUNTIF(SDS4:SD\$97,A112)
113	Side Panel	=COUNTIF(\$D\$4:\$D\$97,A113)

A	B	
100	Item Description	Frequency
101	Airframe fasteners	14
102	Bolt-nut package	11
103	Control Panel	4
104	Door Decal	2
105	Electrical Connector	8
106	Gasket	10
107	Hatch Decal	2
108	Machined Valve	4
109	O-Ring	12
110	Panel Decal	1
111	Pressure Gauge	7
112	Shielded Cable/f.	11
113	Side Panel	8

Relative Frequency Distributions

We may express the frequencies as a fraction, or proportion, of the total; this is called the relative frequency. If a data set has n observations, the relative frequency of category i is computed as

$$
\begin{equation*}
\text { relative frequency of category } i=\frac{\text { frequency of category } i}{n} \tag{3.1}
\end{equation*}
$$

We often multiply the relative frequencies by 100 to express them as percentages. A relative frequency distribution is a tabular summary of the relative frequencies of all categories.

Figure : 3.35
Relative Frequency Distribution for Items Purchased

A	B		C
100	Item Description	Frequency	Relative Frequency
101	Airframe fasteners	14	0.1489
102	Bolt-nut package	11	0.1170
103	Control Panel	4	0.0426
104	Door Decal	2	0.0213
105	Electrical Connector	8	0.0851
106	Gasket	10	0.1064
107	Hatch Decal	2	0.0213
108	Machined Valve	4	0.0426
109	O-Ring	12	0.1277
110	Panel Decal	1	0.0106
111	Pressure Gauge	7	0.0745
112	Shielded Cable/tt.	11	0.1170
113	Side Panel	8	0.0851
114		Total	94

EXAMPLE 3.17 Constructing a Relative Frequency Distribution for Items in the Purchase Orders Database

The calculations for relative frequencies are simple. First, sum the frequencies to find the total number (note that the sum of the frequencies must be the same as the total number of observations, n). Then divide the frequency of each category by this value. Figure 3.35 shows the relative frequency distribution for the purchase order items. The formula in cell C101, for example, is = B101/\$B\$114 .

You then copy this formula down the column to compute the other relative frequencies. Note that the sum of the relative frequencies must equal 1.0. A pie chart of the frequencies is sometimes used to show these proportions visually, although it is more appealing for a smaller number of categories. For a large number of categories, a column or bar chart would work better.

Frequency Distributions for Numerical Data

For numerical data that consist of a small number of discrete values, we may construct a frequency distribution similar to the way we did for categorical data; that is, we simply use COUNTIF to count the frequencies of each discrete value.

EXAMPLE 3.18 Frequency and Relative Frequency Distribution for A/P Terms

In the Purchase Orders data, the A/P terms are all whole numbers $15,25,30$, and 45 . A frequency and relative frequency distribution for these data is shown in Figure 3.36.

A bar chart showing the proportions, or relative frequencies, in Figure 3.37, clearly shows that the majority of orders had accounts payable terms of 30 months.

Excel Histogram Tool

A graphical depiction of a frequency distribution for numerical data in the form of a column chart is called a histogram. Frequency distributions and histograms can be created using the Analysis Toolpak in Excel. To do this, click the Data Analysis tools button in the

A			B
117	A/P Terms	Frequency	Relative Frequency
118	15	5	0.0532
119	25	12	0.1277
120	30	64	0.6809
121	45	13	0.1383
122	Total	94	1.0000

Figure : 3.37 :
Bar Chart of Relative Frequencies of A/P Terms

Analysis group under the Data tab in the Excel menu bar and select Histogram from the list. In the dialog box (see Figure 3.38), specify the Input Range corresponding to the data. If you include the column header, then also check the Labels box so Excel knows that the range contains a label. The Bin Range defines the groups (Excel calls these "bins") used for the frequency distribution. If you do not specify a Bin Range, Excel will automatically determine bin values for the frequency distribution and histogram, which often results in a rather poor choice. If you have discrete values, set up a column of these values in your spreadsheet for the bin range and specify this range in the Bin Range field. We describe how to handle continuous data shortly. Check the Chart Output box to display a histogram in addition to the frequency distribution. You may also sort the values as a Pareto chart and display the cumulative frequencies by checking the additional boxes.

EXAMPLE 3.19 Using the Histogram Tool

We will create a frequency distribution and histogram for the A/P Terms variable in the Purchase Orders database. Figure 3.39 shows the completed histogram dialog. The input range includes the column header as well as the data in column H . We defined the bin range below the data in cells H99:H103 as follows:

If you check the Labels box, it is important that both the Input Range and the Bin Range have labels included in the first row. Figure 3.40 shows the results from this tool.

Months
15
25
30
45

For numerical data that have many different discrete values with little repetition or are continuous, a frequency distribution requires that we define by specifying

1. the number of groups,
2. the width of each group, and
3. the upper and lower limits of each group.

Figure : 3.38 :
Histogram Tool Dialog

Figure : 3.39 :
Histogram Dialog for A/P Terms Data

It is important to remember that the groups may not overlap, so that each value is counted in exactly one group.

You should define the groups after examining the range of the data. Generally, you should choose between 5 to 15 groups, and the range of each should be equal. The more data you have, the more groups you should generally use. Note that with fewer groups, the group widths will be wider. Wider group widths provide a "coarse" histogram. Sometimes you need to experiment to find the best number of groups to provide a useful visualization of the data. Choose the lower limit of the first group (LL) as a whole number smaller than the minimum data value and the upper limit of the last group (UL) as a whole number
larger than the maximum data value. Generally, it makes sense to choose nice, round whole numbers. Then you may calculate the group width as

$$
\begin{equation*}
\text { group width }=\frac{\text { UL }- \text { LL }}{\text { number of groups }} \tag{3.2}
\end{equation*}
$$

EXAMPLE 3.20 Constructing a Frequency Distribution and Histogram for Cost per Order

In this example, we apply the Excel Histogram tool to the Cost per order data in column G of the Purchase Orders database. The data range from a minimum of $\$ 68.75$ to a maximum of $\$ 127,500$. You can find this either by using the MIN and MAX functions or simply by sorting the data. To ensure that all the data will be included in some group, it makes sense to set the lower limit of the first group to $\$ 0$ and the upper limit of the last group to $\$ 130,000$. Thus, if we select 5 groups, using equation (3.2) the width of each group is ($\$ 130,000-0) / 5=\$ 26,000$; if we choose 10 groups, the width is $(\$ 130,000-0) / 10=\$ 13,000$. We select 5 groups. Doing so, the bin range is specified as

Upper Group Limit
$\$ 0.00$
$\$ 26,000.00$
$\$ 52,000.00$
$\$ 78,000.00$
$\$ 104,000.00$
$\$ 130,000.00$

This means that the first group includes all values less than or equal to $\$ 0$; the second group includes all values greater than $\$ 0$ but less than or equal to $\$ 26,000$, and so on. Note that the groups do not overlap because the lower limit of one group is strictly greater than the upper limit of the previous group. We suggest using the header "Upper Group Limit" for the bin range to make this clear. In the spreadsheet, this bin range is entered in cells G99:G105. The Input Range in the Histogram dialog is G4:G97. Figure 3.41 shows the results. These results show that the vast majority of orders were for $\$ 26,000$ or less and fall rapidly beyond this value. Selecting a larger number of groups might help to better understand the nature of the data. Figure 3.42 shows results using 10 groups. This shows that a higher percentage of orders were for $\$ 13,000$ or less than were between $\$ 13,000$ and $\$ 26,000$.

Figure : 3.41
Frequency Distribution and Histogram for Cost per Order (5 Groups)

4	A	B	C	D	E	F	G	H			
1	Upper Group Limit	Frequency			Histogram						
2	0	0						- Frequency			
3	26000	68									
4	52000	8									
5	78000	11									
6	104000	4									
7	130000	3									
8	More	0									
9											
10											
11				$V^{10^{\circ}}$ Upper Group Limit							
12											
13											
14											
15											

Figure : 3.42
Frequency Distribution and Histogram for Cost per Order (10 Groups)

	A	B	C	D	E	F	G	H
1	Upper Group Limit	Frequency						
2	0	0	Histogram					
3	13000	42						
4	26000	26						
5	39000	5						
6	52000	3						
7	65000	6						
8	78000	5						
9	91000	2						
10	104000	2						- Frequency
11	117000	1	105					
12	130000	2						
13	More	0		Upper Group Limit				
14								
16								
17								

One limitation of the Excel Histogram tool is that the frequency distribution and histogram are not linked to the data; thus, if you change any of the data, you must repeat the entire procedure to construct a new frequency distribution and histogram.

Cumulative Relative Frequency Distributions

For numerical data, we may also compute the relative frequency of observations in each group. By summing all the relative frequencies at or below each upper limit, we obtain the cumulative relative frequency. The cumulative relative frequency represents the proportion of the total number of observations that fall at or below the upper limit of each group. A tabular summary of cumulative relative frequencies is called a cumulative relative frequency distribution.

EXAMPLE 3.21 Computing Cumulative Relative Frequencies

Figure 3.43 shows the relative frequency and cumulative relative frequency distributions for the Cost per order data using 10 groups. The relative frequencies are computed using the same approach as in Example 3.17-namely, by dividing the frequency by the total number of observations (94). In column D, we set the cumulative relative frequency of the first group equal to its relative frequency. Then we add the relative frequency of the next group to the cumulative relative frequency.

For, example, the cumulative relative frequency in cell D3 is computed as $=\mathrm{D} 2+\mathrm{C} 3=0.000+0.447=0.447$; the cumulative relative frequency in cell D 4 is computed as $=\mathrm{D} 3+\mathrm{C} 4=0.447+0.277=0.723$, and so on. (Values shown are rounded to three decimal places.) Because relative frequencies must be between 0 and 1 and must add up to 1, the cumulative frequency for the last group must equal 1.

Figure 3.44 shows a chart for the cumulative relative frequency, which is called an ogive. From this chart, you can easily estimate the proportion of observations that fall below a certain value. For example, you can see that slightly more than 70% of the data fall at or below $\$ 26,000$, about 90% of the data fall at or below $\$ 78,000$, and so on.

Figure : 3.43 :
Cumulative Relative Frequency Distribution for Cost per Order Data

	A	B	C	D
1	Upper Group Limit	Frequency	Relative Frequency	Cumulative Relative Frequency
2	0	0	0.0000	0.0000
3	13000	42	0.4468	0.4468
4	26000	26	0.2766	0.7234
5	39000	5	0.0532	0.7766
6	52000	3	0.0319	0.8085
7	65000	6	0.0638	0.8723
8	78000	5	0.0532	0.9255
9	91000	2	0.0213	0.9468
10	104000	2	0.0213	0.9681
11	117000	1	0.0106	0.9787
12	130000	2	0.0213	1.0000
13	More	0	0.0000	1.0000
14	Total	94		

Percentiles and Quartiles

Data are often expressed as percentiles and quartiles. You are no doubt familiar with percentiles from standardized tests used for college or graduate school entrance examinations (SAT, ACT, GMAT, GRE, etc.). Percentiles specify the percent of other test takers who scored at or below the score of a particular individual. Generally speaking, the $\boldsymbol{k} \mathbf{t h}$ percentile is a value at or below which at least k percent of the observations lie. However, the way by which percentiles are calculated is not standardized. The most common way to compute the k th percentile is to order the data values from smallest to largest and calculate the rank of the k th percentile using the formula

$$
\begin{equation*}
\frac{n k}{100}+0.5 \tag{3.3}
\end{equation*}
$$

where n is the number of observations. Round this to the nearest integer, and take the value corresponding to this rank as the k th percentile.

EXAMPLE 3.22 Computing Percentiles

In the Purchase Orders data, we have $n=94$ observations. The rank of the 90th percentile $(k=90)$ for the Cost per order data is computed as $94(90) / 100+0.5=85.1$,
or, rounded, 85 . The 85 th ordered value is $\$ 74,375$ and is the 90th percentile. This means that 90% of the costs per order are less than or equal to $\$ 74,375$, and 10% are higher.

Statistical software use different methods that often involve interpolating between ranks instead of rounding, thus producing different results. The Excel function PERCENTILE.INC(array, k) computes the k th percentile of data in the range specified in the array field, where k is in the range 0 to 1 , inclusive.

EXAMPLE 3.23 Computing Percentiles in Excel

To find the 90th percentile for the Cost per order data in the Purchase Orders data, use the Excel function PERCENTILE. INC(G4:G97,0.9). This calculates the 90th
percentile as $\$ 73,737.50$, which is different from using formula (3.3).

Excel also has a tool for sorting data from high to low and computing percentiles associated with each value. Select Rank and Percentile from the Data Analysis menu and specify the range of the data in the dialog. Be sure to check the Labels in First Row box if your range includes a header in the spreadsheet.

EXAMPLE 3.24 Excel Rank and Percentile Tool

A portion of the results from the Rank and Percentile tool for the Cost per order data are shown in Figure 3.45. You can see that the Excel value of the 90th percentile that
we computed in Example 3.22 as $\$ 74,375$ is the 90.3 rd percentile value.

Figure : 3.45
Portion of Rank and
Percentile Tool Results

Quartiles break the data into four parts. The 25th percentile is called the first quartile, Q_{1}; the 50th percentile is called the second quartile, Q_{2}; the 75th percentile is called the third quartile, Q_{3}; and the 100th percentile is the fourth quartile, Q_{4}. One-fourth of the data fall below the first quartile, one-half are below the second quartile, and threefourths are below the third quartile. We may compute quartiles using the Excel function QUARTILE.INC(array, quart), where array specifies the range of the data and quart is a whole number between 1 and 4 , designating the desired quartile.

EXAMPLE 3.25 Computing Quartiles in Excel

For the Cost per order data in the Purchase Orders database, we may use the Excel function = QUARTILE.INC (G4:G97,k), where k ranges from 1 to 4 , to compute the quartiles. The results are as follows:

$k=1$	First quartile	$\$ 6,757.81$
$k=2$	Second quartile	$\$ 15,656.25$
$k=3$	Third quartile	$\$ 27,593.75$
$k=4$	Fourth quartile	$\$ 127,500.00$

We may conclude that 25% of the order costs fall at or below $\$ 6,757.81 ; 50 \%$ fall at or below $\$ 15,656.25 ; 75 \%$ fall at or below $\$ 27,593.75$, and 100% fall at or below the maximum value of $\$ 127,500$.

We can extend these ideas to other divisions of the data. For example, deciles divide the data into 10 sets: the 10 th percentile, 20th percentile, and so on. All these types of measures are called data profiles, or fractiles.

Cross-Tabulations

One of the most basic statistical tools used to summarize categorical data and examine the relationship between two categorical variables is cross-tabulation. A cross-tabulation is a tabular method that displays the number of observations in a data set for different subcategories of two categorical variables. A cross-tabulation table is often called a contingency table. The subcategories of the variables must be mutually exclusive and exhaustive, meaning that each observation can be classified into only one subcategory, and, taken together over all subcategories, they must constitute the complete data set. Cross-tabulations are commonly used in marketing research to provide insight into characteristics of different market segments using categorical variables such as gender, educational level, marital status, and so on.

EXAMPLE 3.26 Constructing a Cross-Tabulation

Let us examine the Sales Transactions database, a portion of which is shown in Figure 3.46. Suppose we wish to identify the number of books and DVDs ordered by region. A cross-tabulation will have rows corresponding to the different regions and columns corresponding to the products. Within the table we list the count of the number in each pair of categories. A cross-tabulation of these data is shown in Table 3.1. Visualizing the data as a chart is a good way of communicating the results. Figure 3.47 shows the differences between product and regional sales. It is somewhat difficult to directly count the numbers of observations easily in an Excel data file; however, an Excel tool called a PivotTable makes this easy. PivotTables are introduced in the next section.

Expressing the results as percentages of a row or column makes it easier to interpret differences between regions or products, particularly as the totals for each category differ. Table 3.2 shows the percentage of book and DVD sales within each region; this is computed by dividing the counts by the row totals and multiplying by 100 (in Excel, simply divide the count by the total and format the result as a percentage by clicking the \% button in the Number group within the Home tab in the ribbon). For example, we see that although more books and DVDs are sold in the West region than in the North, the relative percentages of each product are similar, particularly when compared to the East and South regions.

Figure : 3.46 :
Portion of Sales Transactions Database

	A	B	C	D	E	F	G	H
1	Sales Transactions: July 14							
2								
3	Cust ID	Region	Payment	Transaction Code	Source	Amount	Product	Time Of Day
4	10001	East	Paypal	93816545	Web	\$20.19	DVD	22:19
5	10002	West	Credit	74083490	Web	\$17.85	DVD	13:27
6	10003	North	Credit	64942368	Web	\$23.98	DVD	14:27
7	10004	West	Paypal	70560957	Email	\$23.51	Book	15:38
8	10005	South	Credit	35208817	Web	\$15.33	Book	15:21
9	10006	West	Paypal	20978903	Email	\$17.30	DVD	13:11
10	10007	East	Credit	80103311	Web	\$177.72	Book	21:59
11	10008	West	Credit	14132683	Web	\$21.76	Book	4:04
12	10009	West	Paypal	40128225	Web	\$15.92	DVD	19:35
13	10010	South	Paypal	49073721	Web	\$23.39	DVD	13:26

Table : 3.1
 Cross-Tabulation of Sales Transaction Data

Region	Book	DVD	Total
East	56	42	98
North	43	42	85
South	62	37	99
West	100	90	190
Total	261	211	472

Region	Book	DVD	Total
East	57.1%	42.9%	100.0%
North	50.6%	49.4%	100.0%
South	62.6%	37.4%	100.0%
West	52.6%	47.4%	100.0%

Figure : 3.47 :
Chart of Regional Sales by Product

Regional Sales by Product

Exploring Data Using PivotTables

Excel provides a powerful tool for distilling a complex data set into meaningful information: PivotTables (yes, it is one word!). PivotTables allows you to create custom summaries and charts of key information in the data. PivotTables can be used to quickly create cross-tabulations and to drill down into a large set of data in numerous ways.

To apply PivotTables, you need a data set with column labels in the first row, similar to the data files we have been using. Select any cell in the data set and choose PivotTable from the Tables group under the Insert tab and follow the steps of the wizard. Excel first asks you to select a table or range of data; if you click on any cell within the data matrix before inserting a PivotTable, Excel will default to the complete range of your data. You may either put the PivotTable into a new worksheet or in a blank range of the existing worksheet. Excel then creates a blank PivotTable, as shown in Figure 3.48.

In the PivotTable Field List on the right side of Figure 3.48 is a list of the fields that correspond to the headers in the data file. You select which ones you want to include, either as row labels, column labels, values, or what is called a Report Filter. You should first decide what types of tables you wish to create-that is, what fields you want for the rows, columns, and data values.

EXAMPLE 3.27 Creating a PivotTable

Let us create a cross-tabulation of regional sales by product, as we did in the previous section. If you drag the field Region from the PivotTable Field List in Figure 3.48 to the Row Labels area, the field Product into the Column Labels area, and any of the other fields, such as Cust ID, into the Values area, you will create the PivotTable shown in Figure 3.49. However, the sum of customer ID values (the default) is meaningless; we simply want a count of the number of records in each category. Click the Analyze tab, and then in the Active Field group and choose Field Settings. You will be able to change
the summarization method in the PivotTable in the Value Field Settings dialog shown in Figure 3.50. Selecting Count results in the PivotTable shown in Figure 3.51, which is the cross-tabulation we showed in Table 3.1. The Value Field Settings options in Figure 3.50 include other options, such as Average, Max, Min, and other statistical measures that we introduce in the next chapter. It also allows you to format the data properly (for example, currency or to display a fixed number of decimals) by clicking on the Number Format button.

Figure : 3.48 :
Blank PivotTable

Figure : 3.49 :
Default PivotTable for Regional Sales by Product

Figure : 3.50 :
Value Field Settings Dialog

Figure : 3.51 :
PivotTable for Count of Regional Sales by Product

The beauty of PivotTables is that if you wish to change the analysis, you can simply uncheck the boxes in the PivotTable Field List or drag the field names to different areas. You may easily add multiple variables in the fields to create different views of the data. For example, if you drag the Source field into the Row Labels area, you will create the

Figure : 3.52 :
PivotTable for Sales by Region, Product, and Order Source

PivotTable shown in Figure 3.52. This shows a count of the number of sales by region and product that is also broken down by how the orders were placed-either by e-mail or on the Web.

Dragging a field into the Report Filter area in the PivotTable Field list allows you to add a third dimension to your analysis. Example 3.28 illustrates this. You may create other PivotTables without repeating all the steps in the Wizard. Simply copy and paste the first table. The best way to learn about PivotTables is simply to experiment with them.

EXAMPLE 3.28 Using the PivotTable Report Filter

Going back to the cross-tabulation PivotTable of regional sales by product, drag the Payment field into the Report Filter area. This places payment in row 1 of the PivotTable and allows you to break down the crosstabulation by type of payment, as shown in Figure 3.53.

Click on the drop-down arrow in row 1, and you can choose to display a cross-tabulation for one of the different payment types, Credit or Paypal. Figure 3.54 shows the results for credit-card payments, which accounted for 299 of the total number of transactions.

PivotCharts

Microsoft Excel provides a simple one-click way of creating PivotCharts to visualize data in PivotTables. To display a PivotChart for a PivotTable, first select the PivotTable. From the Analyze tab, click on PivotChart. Excel will display an Insert Chart dialog that allows you to choose the type of chart you wish to display.

Figure : 3.53 :
PivotTable Filtered by Payment Type

Figure : 3.54 :
Cross-Tabulation PivotTable for Credit-Card Transactions

	A		B		C	D
1	Payment		Credit	Fr		
2						
3	Count of Cust		Column Labels			
4	Row Labels	\checkmark	Book		DVD	Grand Total
5	East			40	34	74
6	North			21	29	50
7	South			44	17	61
8	West			54	60	114
9	Grand Total			159	140	299

EXAMPLE 3.29 A PivotChart for Sales Data

For the PivotTable shown in Figure 3.52, we choose to display a column chart from the Insert Chart dialog. Figure 3.55 shows the chart generated by Excel. By clicking on the drop-down buttons, you can easily change the data that are displayed by filtering the data. Also, by
clicking on the chart and selecting the PivotChart Tools Design tab, you can switch the rows and columns to display an alternate view of the chart or change the chart type entirely.

Slicers and PivotTable Dashboards

Excel 2010 introduced slicers-a tool for drilling down to "slice" a PivotTable and display a subset of data. To create a slicer for any of the columns in the database, click on the PivotTable and choose Insert Slicer from the Analyze tab in the PivotTable Tools ribbon.

Figure : 3.55
PivotChart for Sales by Region, Product, and Order Source

EXAMPLE 3.30 Using Slicers

For the PivotTable, we created in Figure 3.51 for the count of regional sales by product, let us insert a slicer for the source of the transaction as shown in Figure 3.56. In this case, we choose Source as the slicer. This results in the slicer window shown in Figure 3.57. If you click on
one of the source buttons, Email or Web, the PivotTable reflects only those records corresponding to that source. In Figure 3.57, we now have a cross-tabulation only for e-mail orders.

Figure : 3.56
Insert Slicers Window

Figure : 3.57 :
Cross-Tabulation Sliced by E-mail

	A	B		C	D	E	F	G
1								
2						Source		7
3	Count of Cust	Column Labels	\cdots			Source		x
4	Row Labels	Book		DVD	nd Total	Email		
5	East		18	6	24			
6	North		12	13	25	Web		
7	South		20	10	30			
8	West		29	21	50			
9	Grand Total		79	50	129			

Figure : 3.58
Camera-Based Dashboard

Finally, we introduced the Excel camera tool earlier in this chapter. This is a useful tool for creating PivotTable-based dashboards. If you create several different PivotTables and charts, you can easily use the camera tool to take pictures of them and consolidate them onto one worksheet. In this fashion, you can still make changes to the PivotTables and they will automatically be reflected in the camera shots. Figure 3.58 shows a simple dashboard created using the camera tool for the Sales Transactions database.

Analytics in Practice: Driving Business Transformation with IBM Business Analytics ${ }^{5}$

Founded in the 1930s and headquartered in Ballinger, Texas, Mueller is a leading retailer and manufacturer of pre-engineered metal buildings and metal roofing products. Today, the company sells its products directly to consumers all over the southwestern United States from 35 locations across Texas, New Mexico, Louisiana, and Oklahoma.

Historically, Mueller saw itself first and foremost as a manufacturer; the retail aspects of the business were a secondary focus. However, in the early 2000s, the company decided to shift the focus of its strategy and become much more retail-centric-getting closer to its end-use customers and driving new business through a better understanding of their needs. To achieve its transformation objective, the company
needed to communicate its retail strategy to employees across the organization.

As Mark Lack, Manager of Strategy Analytics and Business Intelligence at Mueller, explains: "The transformation from pure manufacturing to retail-led manufacturing required a more end-customer-focused approach to sales. We wanted a way to track how successfully our sales teams across the country were adapting to this new strategy, and identify where improvements could be made."

To keep track of sales performance, Mueller worked with IBM to deploy IBM ${ }^{\circledR}$ Cognos $^{\circledR}$ Business Intelligence. The IBM team helped Mueller apply technology to its balanced scorecard process for strategy management in Cognos Metric Studio.
(continued)

[^26]By using a common set of KPIs, Mueller can easily identify the strengths and weaknesses of all of its sales teams through sales performance analytics. "Using Metric Studio in Cognos Business Intelligence, we get a clear picture of each team's strategy performance," says Mark Lack. "Using sales performance insights from Cognos scorecards, we can identify teams that are hitting their targets, and determine the reasons for their success. We can then share this knowledge with underperforming teams, and demonstrate how they can change their way of working to meet their targets.
"Instead of just trying to impose or enforce new ways of working, we are able to show sales teams exactly how they are contributing to the business, and explain what they need to do to improve their metrics. It's a much more effective way of driving the changes in behavior that are vital for business transformation."

Recently, IBM Business Analytics Software Services helped Mueller upgrade to IBM Cognos 10. With the new version in place, Mueller has started using a new feature called Business Insight to empower regional sales managers to track and improve the performance of their sales teams by creating their own personalized dashboards.
"Static reports are a good starting point, but people don't enjoy reading through pages of data to find the information they need," comments Mark Lack. "The new version of Cognos gives us the ability to create customized interactive dashboards that give each user immediate insight into their own specific area of
the business, and enable them to drill down into the raw data if they need to. It's a much more intuitive and compelling way of using information."

Mueller now uses Cognos to investigate the reasons why some products sell better in certain areas, which of its products have the highest adoption rates, and which have the biggest margins. Using these insights, the company can adapt its strategy to ensure that it markets the right products to the right customers-increasing sales.

By using IBM SPSS ${ }^{\circledR}$ Modeler to mine enormous volumes of transactional data, the company aims to reveal patterns and trends that will help to predict future risks and opportunities, as well as uncover unseen problems and anomalies in its current operations. One initial project with IBM SPSS Modeler aims to help Mueller find ways to reduce its fuel costs. Using SPSS Modeler, the company is building a sophisticated statistical model that will automate the process of analyzing fuel transactions for hundreds of vehicles, drivers and routes.
"With SPSS Modeler, we will be able to determine the average fuel consumption for each vehicle on each route over the course of a week," says Mark Lack. "SPSS will automatically flag up any deviations from the average consumption, and we then drill down to find the root cause. The IBM solution helps us to determine if higher-than-usual fuel transactions are legitimate-for example, a driver covering extra milesor the result of some other factor, such as fraud."

Area chart
Bar chart
Bubble chart
Column chart
Contingency table
Cross-tabulation
Cumulative relative frequency
Cumulative relative frequency distribution
Dashboard
Data profile (fractile)
Data visualization
Descriptive statistics
Doughnut chart
Frequency distribution
Histogram
k th percentile

Line chart
Ogive
Pareto analysis
Pie chart
PivotChart
PivotTables
Quartile
Radar chart
Relative frequency
Relative frequency distribution
Scatter chart
Slicers
Sparklines
Statistic
Statistics
Stock chart
Surface chart

Problems and Exercises

1. Create a line chart for the closing prices for all years, and a stock chart for the high/low/close prices for August 2013 in the Excel file $S \& P 500$.
2. The Excel file Traveler contains the months of a year and the number of travelers that arrive by flight in the morning (AM) and the evening (PM). Prepare a line chart showing the number of AM and PM travelers for each month.
3. The Excel file Facebook Survey provides data gathered from a sample of college students. Create a scatter diagram showing the relationship between Hours online/week and Friends.
4. The Excel file Sales contain list of the products in different regions. Sort the list of products in ascending order of the sales volume in Asia. Arrange the regions (from left to right) in ascending order for the sales volume of Product 5 and determine which region has the highest sales.
5. Create a bubble chart for the first five colleges in the Excel file Colleges and Universities for which the x-axis is the Top 10% HS, y-axis is Acceptance Rate, and bubbles represent the Expenditures per Student.
6. The Excel file Expenditure shows the spending of a country on various sports during a particular year. Create a pie chart and determine the percentage of total spending on tennis.
7. The Excel file Internet Usage provides data about users of the Internet. Construct stacked bar charts that will allow you to compare any differences due to age or educational attainment and draw any conclusions that you can. Would another type of charts be more appropriate?
8. The Excel file McDonald's contains the monthly sales data of their burgers in a year. Construct the histogram and predict which type of burger has the highest sale.
9. In the Excel file Banking Data, apply the following data visualization tools:
a. Use data bars to visualize the relative values of Median Home Value.
b. Use color scales to visualize the relative values of Median Household Wealth.
c. Use an icon set to show high, medium, and low bank balances, where high is above $\$ 30,000$, low
is below $\$ 10,000$, and medium is anywhere in between.
10. Apply three different colors of data bars to lunch, dinner, and delivery sales in the Excel file Restaurant Sales to visualize the relative amounts of sales. Then sort the data (hint: use a custom sort) by the day of the week beginning on Sunday. Compare the nonsorted data with the sorted data as to the information content of the visualizations.
11. For the Store and Regional Sales database, apply a four-traffic light icon set to visualize the distribution of the number of units sold for each store, where green corresponds to at least 30 units sold, yellow to at least 20 but less than 30 , red to at least 10 but less than 20, and black to below 10 .
12. For the Excel file Closing Stock Prices,
a. Apply both column and line sparklines to visualize the trends in the prices for each of the four stocks in the file.
b. Compute the daily change in the Dow Jones index and apply a win/loss sparkline to visualize the daily up or down movement in the index.
13. Convert the Store and Regional Sales database to an Excel table. Use the techniques described in Example 3.11 to find:
a. the total number of units sold
b. the total number of units sold in the South region
c. the total number of units sold in December
14. Convert the Purchase Orders database to an Excel table. Use the techniques described in Example 3.11 to find:
a. the total cost of all orders
b. the total quantity of airframe fasteners purchased
c. the total cost of all orders placed with Manley Valve.
15. The Excel file Economic Poll provides some demographic and opinion data on whether the economy is moving in the right direction. Convert this data into an Excel table, and filter the respondents who are homeowners and perceive that the economy is not moving in the right direction. What is the distribution of their political party affiliations?
16. The total runs scored by 30 players in a test cricket match in the year 2011 were recorded to determine which score was the highest and which the lowest. The runs are:

423, 369, 387, 411, 393, 394, 371, 377, 389, 409, 392, 408, 431, 401, 363, 391, 405, 382, 400, 381, 399, 415, 428, 422, 396, 372, 410, 419, 386, 390

Construct the frequency distribution table and calculate relative frequency.
17. Sort the data in the Excel file Automobile Quality from highest to lowest number of problems per 100 vehicles using the sort capability in Excel.
18. In the Purchase Orders database, conduct a Pareto analysis of the Cost per order data. What conclusions can you reach?
19. Use Excel's filtering capability to (1) extract all orders for control panels, (2) all orders for quantities of less than 500 units, and (3) all orders for control panels with quantities of less than 500 units in the Purchase Orders database.
20. In the Sales Transactions database, use Excel's filtering capability to extract all orders that used PayPal, all orders under $\$ 100$, and all orders that were over $\$ 100$ and used a credit card.
21. The Excel file Credit Risk Data provides information about bank customers who had applied for loans. ${ }^{6}$ The data include the purpose of the loan, checking and savings account balances, number of months as a customer of the bank, months employed, gender, marital status, age, housing status and number of years at current residence, job type, and credit-risk classification by the bank.
a. Compute the combined checking and savings account balance for each record in the database. Then sort the records by the number of months as a customer of the bank. From examining the data, does it appear that customers with a longer association with the bank have more assets? Construct a scatter chart to validate your conclusions.
b. Apply Pareto analysis to draw conclusions about the combined amount of money in checking and savings accounts.
c. Use Excel's filtering capability to extract all records for new-car loans. Construct a pie chart showing the marital status associated with these loans.
d. Use Excel's filtering capability to extract all records for individuals employed less than 12 months. Can you draw any conclusions about the credit risk associated with these individuals?
22. The Excel sheet Engagement contains the number of rings sold each day of the week in a jewelry store chain in different cities across India. Use sparklines to summarize the data.
23. Use the Histogram tool to construct a frequency distribution of lunch sales amounts in the Restaurant Sales database.
24. A community health-status survey obtained the following demographic information from the respondents:

Age	Frequency
18 to 29	297
30 to 45	743
46 to 64	602
$65+$	369

Compute the relative frequency and cumulative relative frequency of the age groups.
25. Construct frequency distributions and histograms for the numerical data in the Excel file Cell Phone Survey. Also, compute the relative frequencies and cumulative relative frequencies.
26. Use the Histogram tool to develop a frequency distribution and histogram with six bins for the age of individuals in the Excel file Credit Risk Data. Compute the relative and cumulative relative frequencies and use a line chart to construct an ogive.
27. Use the Histogram tool to develop a frequency distribution and histogram for the number of months as a customer of the bank in the Excel file Credit Risk Data. Use your judgment for determining the number of bins to use. Compute the relative and cumulative relative frequencies and use a line chart to construct an ogive.
28. Construct frequency distributions and histograms using the Excel Histogram tool for the Gross Sales and Gross Profit data in the Excel file Sales Data. First let Excel automatically determine the number of bins

[^27]and bin ranges. Then determine a more appropriate set of bins and rerun the Histogram tool.
29. The Excel sheet Sampling contains the responses on a scale of 1 to 5 from consumers regarding a product. Construct a cluttered pivot table, and show the sampling data in the histogram.
30. Find the 20th and 80th percentiles of home prices in the Excel file Home Market Value.
31. Find the 10th and 90th percentiles and 1st, 2nd, and 3rd quartiles for the combined amounts of checking and savings accounts in the Excel file Credit Risk Data.
32. Construct cross-tabulations of Gender versus Carrier and Type versus Usage in the Excel file Cell Phone Survey. What might you conclude from this analysis?
33. Using the data in the Excel sheet Hardware Store, construct a pivot table and calculate the percentage of sales , the total revenue generated in the month of March and the percentage of sales for the month of August.
34. Use PivotTables to construct a cross-tabulation for marital status and housing type in the Excel file Credit Risk Data. Illustrate the results on a PivotChart.
35. Create a PivotTable to find the average amount of travel expenses for each sales representative in the Excel file Travel Expenses. Illustrate your results with a PivotChart.
36. Use PivotTables to find the number of loans by different purposes, marital status, and credit risk in the Excel file Credit Risk Data. Illustrate the results on a PivotChart.
37. Use PivotTables to find the number of sales transactions by product and region, total amount of revenue
by region, and total revenue by region and product in the Sales Transactions database.
38. Create a PivotTable for the data in the Excel file Weddings to analyze the wedding cost by type of payor and value rating. What conclusions do you reach?
39. The Excel File Rin's Gym provides sample data on member body characteristics and gym activity. Create PivotTables to find:
a. a cross-tabulation of gender and body type versus BMI classification
b. average running times, run distance, weight lifting days, lifting session times, and time spent in the gym by gender.
Summarize your conclusions.
40. Create useful dashboards for each of the following databases. Use appropriate charts and layouts (for example, Explain why you chose the elements of the dashboards and how a manager might use them.
a. President's Inn
b. Restaurant Sales
c. Store and Regional Sales
d. Peoples Choice Bank
41. A marketing researcher surveyed 92 individuals, asking them if they liked a new product concept or not. The results are shown below:

	Yes	No
Male	30	50
Female	6	6

Convert the data into percentages. Then construct a chart of the counts and a chart of the percentages. Discuss what each conveys visually and how the different charts may lead to different interpretations of the data.

Case: Drout Advertising Research Project

The background for this case was introduced in Chapter 1. For this part of the case, use appropriate charts to visualize the data. Summarize the data using frequency distributions and histograms for numerical variables,
cross-tabulations, and other appropriate applications of PivotTables to break down the data and develop useful insights. Add your findings to the report you started for the case in Chapter 1.

Case: Performance Lawn Equipment

Part 1: PLE originally produced lawn mowers, but a significant portion of sales volume over recent years has come from the growing small-tractor market. As we noted in the case in Chapter 1, PLE sells their products worldwide, with sales regions including North America, South America, Europe, and the Pacific Rim. Three years ago a new region was opened to serve China, where a booming market for small tractors has been established. PLE has always emphasized quality and considers the quality it builds into its products as its primary selling point. In the past 2 years, PLE has also emphasized the ease of use of their products.

Before digging into the details of operations, Elizabeth Burke wants to gain an overview of PLE's overall business performance and market position by examining the information provided in the database. Specifically, she is asking you to construct appropriate charts for the data in the following worksheets and summarize your conclusions from analysis of these charts.
a. Dealer Satisfaction
b. End-User Satisfaction
c. Complaints
d. Mower Unit Sales
e. Tractor Unit Sales
f. On-Time Delivery
g. Defects after Delivery
h. Response Time

Part 2: As noted in the case in Chapter 1, the supply chain worksheets provide cost data associated with logistics between existing plants and customers as well as proposed new plants. Ms. Burke wants you to extract the records associated with the unit shipping costs of proposed plant locations and compare the costs of existing locations against those of the proposed locations using quartiles.

Part 3: Ms. Burke would also like a quantitative summary of the average responses for each of the customer attributes in the worksheet 2014 Customer Survey for each market region as a cross-tabulation (use PivotTables as appropriate), along with frequency distributions, histograms, and quartiles of these data.

Part 4: Propose a monthly dashboard of the most important business information that Ms. Burke can use on a routine basis as data are updated. Create one using the most recent data. Your dashboard should not consist of more than 6-8 charts, which should fit comfortably on one screen.

Write a formal report summarizing your results for all four parts of this case.

Jonny Drake/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

- Explain the difference between a population and a sample.
- Understand statistical notation.

List different measures of location.

- Compute the mean, median, mode, and midrange of a set of data.
- Use measures of location to make practical business decisions.
List different measures of dispersion.
Compute the range, interquartile range, variance, and standard deviation of a set of data.
Explain Chebyshev's theorem.
State the Empirical Rules and apply them to practical data.
- Compute a standardized value (z-score) for observations in a data set.
Define and compute the coefficient of variation.
Explain the nature of skewness and kurtosis in a distribution.
- Interpret the coefficients of skewness and kurtosis.
- Use the Excel Descriptive Statistics tool to summarize data.
Calculate the mean, variance, and standard deviation for grouped data.
- Calculate a proportion.
- Use PivotTables to compute the mean, variance, and standard deviation of summarized data.
Explain the importance of understanding relationships between two variables. Explain the difference between covariance and correlation.
- Calculate measures of covariance and correlation.
- Use the Excel Correlation tool.
- Identify outliers in data.
- State the principles of statistical thinking.
- Interpret variation in data from a logical and practical perspective.
- Explain the nature of variation in sample data.

Abstract

As we noted in Chapter 3, frequency distributions, histograms, and crosstabulations are tabular and visual tools of descriptive statistics. In this chapter, we introduce numerical measures that provide an effective and efficient way of obtaining meaningful information from data. Before discussing these measures, however, we need to understand the differences between populations and samples.

Populations and Samples

A population consists of all items of interest for a particular decision or investigation-for example, all individuals in the United States who do not own cell phones, all subscribers to Netflix, or all stockholders of Google. A company like Netflix keeps extensive records on its customers, making it easy to retrieve data about the entire population of customers. However, it would probably be impossible to identify all individuals who do not own cell phones.

A sample is a subset of a population. For example, a list of individuals who rented a comedy from Netflix in the past year would be a sample from the population of all customers. Whether this sample is representative of the population of customers-which depends on how the sample data are intended to be used-may be debatable; nevertheless, it is a sample. Most populations, even if they are finite, are generally too large to deal with effectively or practically. For instance, it would be impractical as well as too expensive to survey the entire population of TV viewers in the United States. Sampling is also clearly necessary when data must be obtained from destructive testing or from a continuous production process. Thus, the purpose of sampling is to obtain sufficient information to draw a valid inference about a population. Market researchers, for example, use sampling to gauge consumer perceptions on new or existing goods and services; auditors use sampling to verify the accuracy of financial statements; and quality control analysts sample production output to verify quality levels and identify opportunities for improvement.

Most data with which businesses deal are samples. For instance, the Purchase Orders and Sales Transactions databases that we used in previous chapters represent samples because the purchase order data include only orders placed within a three-month time period, and the sales transactions represent orders placed on only one day, July 14. Therefore, unless noted otherwise, we will assume that any data set is a sample.

Understanding Statistical Notation

We typically label the elements of a data set using subscripted variables, x_{1}, x_{2}, \ldots, and so on. In general, x_{i} represents the i th observation. It is a common practice in statistics to use Greek letters, such as μ (mu), σ (sigma), and π (pi), to represent population measures and italic letters such as by \bar{x} (x-bar), s, and p to represent sample statistics. We will use N to represent the number of items in a population and n to represent the number of observations in a sample. Statistical formulas often contain a summation operator, Σ (Greek capital sigma), which means that the terms that follow it are added together. Thus, $\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}$. Understanding these conventions and mathematical notation will help you to interpret and apply statistical formulas.

Measures of Location

Measures of location provide estimates of a single value that in some fashion represents the "centering" of a set of data. The most common is the average. We all use averages routinely in our lives, for example, to measure student accomplishment in college (e.g., grade point average), to measure the performance of sports teams (e.g., batting average), and to measure performance in business (e.g., average delivery time).

Arithmetic Mean

The average is formally called the arithmetic mean (or simply the mean), which is the sum of the observations divided by the number of observations. Mathematically, the mean of a population is denoted by the Greek letter μ, and the mean of a sample is denoted by \bar{x}. If a population consists of N observations $x_{1}, x_{2}, \ldots, x_{N}$, the population mean, μ, is calculated as

$$
\begin{equation*}
\mu=\frac{\sum_{i=1}^{N} x_{i}}{N} \tag{4.1}
\end{equation*}
$$

The mean of a sample of n observations, $x_{1}, x_{2}, \ldots, x_{n}$, denoted by \bar{x}, is calculated as

$$
\begin{equation*}
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \tag{4.2}
\end{equation*}
$$

Note that the calculations for the mean are the same whether we are dealing with a population or a sample; only the notation differs. We may also calculate the mean in Excel using the function AVERAGE(data range).

One property of the mean is that the sum of the deviations of each observation from the mean is zero:

$$
\begin{equation*}
\sum_{i}\left(x_{i}-\bar{x}\right)=0 \tag{4.3}
\end{equation*}
$$

This simply means that the sum of the deviations above the mean are the same as the sum of the deviations below the mean; essentially, the mean "balances" the values on either side of it. However, it does not suggest that half the data lie above or below the mean-a common misconception among those who don't understand statistics.

In addition, the mean is unique for every set of data and is meaningful for both interval and ratio data. However, it can be affected by outliers-observations that are radically different from the rest-which pull the value of the mean toward these values. We discuss more about outliers later in this chapter.

EXAMPLE 4.1 Computing the Mean Cost per Order

In the Purchase Orders database, suppose that we are interested in finding the mean cost per order. Figure 4.1 shows a portion of the data file. We calculate the mean cost per order by summing the values in column G and then dividing by the number of observations. Using formula (4.2), note that $x_{1}=\$ 2,700, x_{2}=\$ 19,250$, and so on, and $n=94$. The sum of these order costs is $\$ 2,471,760$. Therefore, the
mean cost per order is $\$ 2,471,760 / 94=\$ 26,295.32$. We show these calculations in a separate worksheet, Mean in the Purchase Orders Excel workbook. A portion of this worksheet in split-screen mode is shown in Figure 4.2. Alternatively, we used the Excel function = AVERAGE (B2:B95) in this worksheet to arrive at the same value. We encourage you to study the calculations and formulas used.

	A	B	c	D	E	F	G	H	1	J
1	Purchase Orders									
2										
3	Supplier	Order No.	Item No.	Item Description	Item Cost	Quantity	Cost per order	A/P Terms (Months)	Order Date	Arrival Date
4	Hulkey Fasteners	Aug11001	1122	Aliframe fasteners	\$ 4.25	19,500	\$ 82,875.00	30	08/05/11	08/13/11
5	Alum Sheeting	Aug11002	1243	Airframe fasteners	\$ 4.25	10,000	\$ 42,500.00	30	08/08/11	08/14/11
6	Fast-Tie Aerospace	Aug11003	5462	Shielded Cable/t.	\$ 1.05	23.000	\$ $24,150.00$	30	08/10/11	08/15/11
7	Fast-Tie Aerospace	Aug11004	5462	Shielded Cable/ft.	\$ 1.05	21,500	\$ 22,575.00	30	08/15/11	08/22/11
8	Steelpin Inc.	Aug11005	5319	Shielded Cable/ft.	\$ 1.10	17.500	\$ 19,250.00	30	08/20/11	08/31/11
9	Fast-Tie Aerospace	Aug11006	5462	Shielded Cable/t.	\$ 1.05	22,500	\$ 23,625.00	30	08/20/11	08/26/11
10	Steelpin inc.	Aug11007	4312	Bolt-nut package	\$ 3.75	4.250	\$ 15.937.50	30	08/25/11	09/01/11

Figure : 4.1 :
Portion of Purchase Orders Database

	A	B
1	Observation	Cost per order
2	x 1	\$2,700.00
3	x 2	\$19,250.00
4	x3	\$15,937.50
5	$\times 4$	\$18,150.00
93	x92	\$74,375.00
94	x93	\$72,250.00
95	x94	\$6,562.50
96	Sum of cost/order	\$2,471,760.00
97	Number of observations	94
98		
99	Mean cost/order	\$26,295.32
100		
101	Excel AVERAGE function	\$26,295.32

Median

The measure of location that specifies the middle value when the data are arranged from least to greatest is the median. Half the data are below the median, and half the data are above it. For an odd number of observations, the median is the middle of the sorted numbers. For an even number of observations, the median is the mean of the two middle numbers. We could use the Sort option in Excel to rank-order the data and then determine the median. The Excel function MEDIAN(data range) could also be used. The median is meaningful for ratio, interval, and ordinal data. As opposed to the mean, the median is not affected by outliers.

EXAMPLE 4.2 Finding the Median Cost per Order

In the Purchase Orders database, sort the data in Column G from smallest to largest. Since we have 94 observations, the median is the average of the 47th and 48th observations. You should verify that the 47th sorted observation is $\$ 15,562.50$ and the 48 th observation is $\$ 15,750$. Taking the average of these two values results in the median value of $(\$ 15,562.5+\$ 15,750) / 2=\$ 15,656.25$. Thus, we
may conclude that the total cost of half the orders were less than $\$ 15,656.25$ and half were above this amount. In this case, the median is not very close in value to the mean. These calculations are shown in the worksheet Median in the Purchase Orders Excel workbook, as shown in Figure 4.3.

Figure : 4.3
Excel Calculations for Median Cost per Order

	A	B	C	D
1	Rank	Cost per order		
2	1	\$68.75		
3	2	\$82.50		
4	3	\$375.00		
5	4	\$467.50		
45	44	\$14,910.00		
46	45	\$14,910.00		
47	46	\$15,087.50		
48	47	\$15,562.50		\$15,562.50
49	48	\$15,750.00		\$15,750.00
50	49	\$15,937.50	Average	\$15,656.25
51	50	\$16,276.75		
52	51	\$16,330.00		

Mode

A third measure of location is the mode. The mode is the observation that occurs most frequently. The mode is most useful for data sets that contain a relatively small number of unique values. For data sets that have few repeating values, the mode does not provide much practical value. You can easily identify the mode from a frequency distribution by identifying the value having the largest frequency or from a histogram by identifying the highest bar. You may also use the Excel function MODE.SNGL(data range). For frequency distributions and histograms of grouped data, the mode is the group with the greatest frequency.

EXAMPLE 4.3 Finding the Mode

In the Purchase Orders database, the frequency distribution and histogram for A/P Terms in Figure 3.40 in Chapter 3, we see that the greatest frequency corresponds to a value of 30 months; this is also the highest bar in the histogram.

Therefore, the mode is 30 months. For the grouped frequency distribution and histogram of the Cost per order variable in Figure 3.42, we see that the mode corresponds to the group between $\$ 0$ and $\$ 13,000$.

Some data sets have multiple modes; to identify these, you can use the Excel function MODE.MULT(data range), which returns an array of modal values.

Midrange

A fourth measure of location that is used occasionally is the midrange. This is simply the average of the greatest and least values in the data set.

EXAMPLE 4.4 Computing the Midrange

We may identify the minimum and maximum values using the Excel functions MIN and MAX or sort the data and find them easily. For the Cost per order data, the minimum
value is $\$ 68.78$ and the maximum value is $\$ 127,500$. Thus, the midrange is $(\$ 127,500+\$ 68.78) / 2=\$ 63,784.39$.

Caution must be exercised when using the midrange because extreme values easily distort the result, as this example illustrated. This is because the midrange uses only two pieces of data, whereas the mean uses all the data; thus, it is usually a much rougher estimate than the mean and is often used for only small sample sizes.

Using Measures of Location in Business Decisions

Because everyone is so familiar with the concept of the average in daily life, managers often use the mean inappropriately in business when other statistical information should be considered. The following hypothetical example, which was based on a real situation, illustrates this.

EXAMPLE 4.5 Quoting Computer Repair Times

The Excel file Computer Repair Times provides a sample of the times it took to repair and return 250 computers to customers who used the repair services of a national electronics retailer. Computers are shipped to a central facility, where they are repaired and then shipped back to the stores for customer pickup. The mean, median, and mode are all very close and show that the typical repair time is about 2 weeks (see Figure 4.4). So you might think that if a customer brought in a computer for repair, it would be reasonable to quote a repair time of 2 weeks. What would happen if the stores quoted all customers a time of 2 weeks? Clearly about half the customers would be upset because their computers would not be completed by this time.

Figure 4.5 shows a portion of the frequency distribution and histogram for these repair times (see the

Histogram tab in the Excel file). We see that the longest repair time took almost 6 weeks. So, should the company give customers a guaranteed repair time of 6 weeks? They probably wouldn't have many customers because few would want to wait that long. Instead, the frequency distribution and histogram provide insight into making a more rational decision. You may verify that 90% of the time, repairs are completed within 21 days; on the rare occasions that it takes longer, it generally means that technicians had to order and wait for a part. So it would make sense to tell customers that they could probably expect their computers back within 2 to 3 weeks and inform them that it might take longer if a special part was needed.

From this example, we see that using frequency distributions, histograms, and percentiles can provide more useful information than simple measures of location. This leads us to introduce ways of quantifying variability in data, which we call measures of dispersion.

Figure : 4.4
Measures of Location for Computer Repair Times

	A	
1	Computer Repair Times	
2		
3	Sample	Repair Time (Days)
4	1	18
5	2	15
6	3	17
250	247	31
251	248	6
252	249	17
253	250	13
254		
255	Mean	14.912
256	Median	14
257	Mode	15

Figure : 4.5
Frequency Distribution and Histogram for Computer Repair Times

Measures of Dispersion

Dispersion refers to the degree of variation in the data, that is, the numerical spread (or compactness) of the data. Several statistical measures characterize dispersion: the range, variance, and standard deviation.

Range

The range is the simplest and is the difference between the maximum value and the minimum value in the data set. Although Excel does not provide a function for the range, it can be computed easily by the formula $=$ MAX (data range $)-\mathrm{MIN}($ data range $)$. Like the midrange, the range is affected by outliers and, thus, is often only used for very small data sets.

EXAMPLE 4.6 Computing the Range

For the Cost per order data in the Purchase Or- the maximum value is $\$ 127,500$. Thus, the range is ders database, the minimum value is $\$ 68.78$ and $\$ 127,500-\$ 68.78=\$ 127,431.22$.

Interquartile Range

The difference between the first and third quartiles, $Q_{3}-Q_{1}$, is often called the interquartile range (IQR), or the midspread. This includes only the middle 50% of the data and, therefore, is not influenced by extreme values. Thus, it is sometimes used as an alternative measure of dispersion.

EXAMPLE 4.7 Computing the Interquartile Range

For the Cost per order data, we identified the first and third quartiles as $Q_{1}=\$ 6,757.81$ and $Q_{3}=\$ 27,593.75$ in Example 3.25. Thus, IQR = \$27,593.75-\$6,757.81 = $\$ 20,835.94$. Therefore, the middle 50% of the data are
concentrated over a relatively small range of $\$ 20,835.94$. Note that the upper 25% of the data span the range from $\$ 27,593.75$ to $\$ 127,500$, indicating that high costs per order are spread out over a large range of $\$ 99,906$.25.

Variance

A more commonly used measure of dispersion is the variance, whose computation depends on all the data. The larger the variance, the more the data are spread out from the mean and the more variability one can expect in the observations. The formula used for calculating the variance is different for populations and samples.

The formula for the variance of a population is

$$
\begin{equation*}
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N} \tag{4.4}
\end{equation*}
$$

where x_{i} is the value of the i th item, N is the number of items in the population, and μ is the population mean. Essentially, the variance is the average of the squared deviations of the observations from the mean.

A significant difference exists between the formulas for computing the variance of a population and that of a sample. The variance of a sample is calculated using the formula

$$
\begin{equation*}
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \tag{4.5}
\end{equation*}
$$

where n is the number of items in the sample and \bar{x} is the sample mean. It may seem peculiar to use a different denominator to "average" the squared deviations from the mean for populations and samples, but statisticians have shown that the formula for the sample variance provides a more accurate representation of the true population variance. We discuss this more formally in Chapter 6. For now, simply understand that the proper calculations of the population and sample variance use different denominators based on the number of observations in the data.

The Excel function VAR.S(data range) may be used to compute the sample variance, s^{2}, whereas the Excel function VAR.P(data range) is used to compute the variance of a population, σ^{2}.

EXAMPLE 4.8 Computing the Variance

Figure 4.6 shows a portion of the Excel worksheet Variance in the Purchase Orders workbook. To find the variance of the cost per order using formula (4.5), we first need to calculate the mean, as done in Example 4.1. Then for each observation, calculate the difference between the observation and the mean, as shown in column C. Next,
square these differences, as shown in column D. Finally, add these square deviations (cell D96) and divide by $n-1=93$. This results in the variance 890,594,573.82. Alternatively, the Excel function =VAR.S(B2:B95) yields the same result.

Figure : 4.6
Excel Calculations for Variance of Cost per Order

	A	B	c	D
1	Observation	Cost per order	(xi - mean)	(xi - mean)^2
2	$\times 1$	\$2,700.00	-\$23,595.32	\$556,739,085.74
3	$\times 2$	\$19,250.00	-\$7,045.32	\$49,636,521.91
4	$\times 3$	\$15,937.50	-\$10,357.82	\$107,284,417.52
5	$\times 4$	\$18,150.00	-\$8,145.32	\$66,346,224.04
93	x92	\$74,375.00	\$48,079.68	\$2,311,655,710.74
94	x93	\$72,250.00	\$45,954.68	\$2,111,832,692.12
95	x94	\$6,562.50	-\$19,732.82	\$389,384,151.56
96	Sum of cost/order	\$2,471,760.00	Sum of squared deviations	\$82,825,295,365.68
97	Number of observations	94		
98				
99	Mean cost/order	\$26,295.32	Variance	890,594,573.82
100				
101			Excel VAR.S function	890,594,573.82

Note that the dimension of the variance is the square of the dimension of the observations. So for example, the variance of the cost per order is not expressed in dollars, but rather in dollars squared. This makes it difficult to use the variance in practical applications. However, a measure closely related to the variance that can be used in practical applications is the standard deviation.

Standard Deviation

The standard deviation is the square root of the variance. For a population, the standard deviation is computed as

$$
\begin{equation*}
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}} \tag{4.6}
\end{equation*}
$$

and for samples, it is

$$
\begin{equation*}
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \tag{4.7}
\end{equation*}
$$

The Excel function STDEV.P(data range) calculates the standard deviation for a population (σ); the function STDEV.S(data range) calculates it for a sample (s).

EXAMPLE 4.9 Computing the Standard Deviation

We may use the same worksheet calculations as in Example 4.8. All we need to do is to take the square root of the computed variance to find the standard deviation. Thus, the standard deviation of the cost per order
is $\sqrt{890,594,573.82}=\$ 29,842.8312$. Alternatively, we could use the Excel function =STDEV.S(B2:B95) to find the same value.

The standard deviation is generally easier to interpret than the variance because its units of measure are the same as the units of the data. Thus, it can be more easily related to the mean or other statistics measured in the same units.

The standard deviation is a popular measure of risk, particularly in financial analysis, because many people associate risk with volatility in stock prices. The standard deviation

Figure : 4.7
Excel File Closing Stock Prices

	A		B	C	D	E	F
1	Closing Stock Prices						
2							
3	Date		IBM	INTC	CSCO	GE	DJ Industrials Index
4		9/3/2010	\$127.58	\$18.43	\$21.04	\$15.39	10447.93
5		9/7/2010	\$125.95	\$18.12	\$20.58	\$15.44	10340.69
6		9/8/2010	\$126.08	\$17.90	\$20.64	\$15.70	10387.01
7		9/9/2010	\$126.36	\$18.00	\$20.61	\$15.91	10415.24
8		9/10/2010	\$127.99	\$17.97	\$20.62	\$15.98	10462.77
9		9/13/2010	\$129.61	\$18.56	\$21.26	\$16.25	10544.13
10		9/14/2010	\$128.85	\$18.74	\$21.45	\$16.16	10526.49
11		9/15/2010	\$129.43	\$18.72	\$21.59	\$16.34	10572.73
12		9/16/2010	\$129.67	\$18.97	\$21.93	\$16.23	10594.83
13		9/17/2010	\$130.19	\$18.81	\$21.86	\$16.29	10607.85
14		9/20/2010	\$131.79	\$18.93	\$21.75	\$16.55	10753.62
15		9/21/2010	\$131.98	\$19.14	\$21.64	\$16.52	10761.03
16		9/22/2010	\$132.57	\$19.01	\$21.67	\$16.50	10739.31
17		9/23/2010	\$131.67	\$18.98	\$21.53	\$16.14	10662.42
18		9/24/2010	\$134.11	\$19.42	\$22.09	\$16.66	10860.26
19		9/27/2010	\$134.65	\$19.24	\$22.11	\$16.43	10812.04
20		9/28/2010	\$134.89	\$19.51	\$21.86	\$16.44	10858.14
21		9/29/2010	\$135.48	\$19.24	\$21.87	\$16.36	10835.28
22		9/30/2010	\$134.14	\$19.20	\$21.90	\$16.25	10788.05
23		10/1/2010	\$135.64	\$19.32	\$21.91	\$16.36	10829.68

measures the tendency of a fund's monthly returns to vary from their long-term average (as Fortune stated in one of its issues, ". . . standard deviation tells you what to expect in the way of dips and rolls. It tells you how scared you'll be."). ${ }^{1}$ For example, a mutual fund's return might have averaged 11% with a standard deviation of 10%. Thus, about two-thirds of the time the annualized monthly return was between 1% and 21%. By contrast, another fund's average return might be 14% but have a standard deviation of 20%. Its returns would have fallen in a range of -6% to 34% and, therefore, is more risky. Many financial Web sites, such as IFA.com and Morningstar.com, provide standard deviations for market indexes and mutual funds.

For example, the Excel file Closing Stock Prices (see Figure 4.7) lists daily closing prices for four stocks and the Dow Jones Industrial Average index over a 1-month period. The average closing prices for Intel (INTC) and General Electric (GE) are quite similar, $\$ 18.81$ and $\$ 16.19$, respectively. However, the standard deviation of Intel's price over this time frame was $\$ 0.50$, whereas GE's was $\$ 0.35$. GE had less variability and, therefore, less risk. A larger standard deviation implies that while a greater potential of a higher return exists, there is also greater risk of realizing a lower return. Many investment publications and Web sites provide standard deviations of stocks and mutual funds to help investors assess risk in this fashion. We learn more about risk in other chapters.

Chebyshev's Theorem and the Empirical Rules

One of the more important results in statistics is Chebyshev's theorem, which states that for any set of data, the proportion of values that lie within k standard deviations $(k>1)$ of the mean is at least $1-1 / k^{2}$. Thus, for $k=2$, at least $3 / 4$, or 75%, of the data lie within two standard deviations of the mean; for $k=3$, at least $8 / 9$, or 89% of the data lie within three standard deviations of the mean. We can use these values to provide a basic understanding of the variation in a set of data using only the computed mean and standard deviation.

[^28]
EXAMPLE 4.10 Applying Chebyshev’s Theorem

For Cost per order data in the Purchase Orders database, a two standard deviation interval around the mean is [$-\$ 33,390.34, \$ 85,980.98$]. If we count the number of observations within this interval, we find that 89 of 94 , or 94.68%, fall within two standard deviations of the mean.

A three-standard deviation interval is [$-\$ 63,233.17$, $\$ 115,823.81$], and we see that 92 of 94 , or 97.9%, fall in this interval. Both are above at least 75% and at least 89\% of Chebyshev's Theorem.

For many data sets encountered in practice, such as the Cost per order data, the percentages are generally much higher than what Chebyshev's theorem specifies. These are reflected in what are called the empirical rules:

1. Approximately 68% of the observations will fall within one standard deviation of the mean, or between $\bar{x}-s$ and $\bar{x}+s$.
2. Approximately 95% of the observations will fall within two standard deviations of the mean, or within $\bar{x} \pm 2 s$.
3. Approximately 99.7% of the observations will fall within three standard deviations of the mean, or within $\bar{x} \pm 3 s$.

We see that the Cost per order data reflect these empirical rules rather closely. Depending on the data and the shape of the frequency distribution, the actual percentages may be higher or lower.

Two or three standard deviations around the mean are commonly used to describe the variability of most practical sets of data. As an example, suppose that a retailer knows that on average, an order is delivered by standard ground transportation in 8 days with a standard deviation of 1 day. Using the second empirical rule, the retailer can, therefore, tell a customer with confidence that their package should arrive within 6 to 10 days.

As another example, it is important to ensure that the output from a manufacturing process meets the specifications that engineers and designers require. The dimensions for a typical manufactured part are usually specified by a target, or ideal, value as well as a tolerance, or "fudge factor," that recognizes that variation will exist in most manufacturing processes due to factors such as materials, machines, work methods, human performance, environmental conditions, and so on. For example, a part dimension might be specified as $5.00 \pm 0.2 \mathrm{~cm}$. This simply means that a part having a dimension between 4.80 and 5.20 cm will be acceptable; anything outside of this range would be classified as defective. To measure how well a manufacturing process can achieve the specifications, we usually take a sample of output, measure the dimension, compute the total variation using the third empirical rule (i.e., estimate the total variation by six standard deviations), and then compare the result to the specifications by dividing the specification range by the total variation. The result is called the process capability index, denoted as $C p$:

$$
\begin{equation*}
C p=\frac{\text { upper specification }- \text { lower specification }}{\text { total variation }} \tag{4.8}
\end{equation*}
$$

Manufacturers use this index to evaluate the quality of their products and determine when they need to make improvements in their processes.

EXAMPLE 4.11 Using Empirical Rules to Measure the Capability of a Manufacturing Process

Figure 4.8 shows a portion of the data collected from a manufacturing process for a part whose dimensions are specified as 5.00 ± 0.2 centimeters. These are provided in the Excel workbook Manufacturing Measurements. The mean and standard deviation are first computed in cells J3 and J4 using the Excel AVERAGE and STDEV.S functions (these functions work correctly whether the data are arranged in a single column or in a matrix form). The total variation is then calculated as the mean plus or minus three standard deviations. In cell $\mathrm{J} 14, \mathrm{Cp}$ is calculated using formula (4.8). A $C p$ value less than 1.0 is not good; it means that the variation in the process is wider than the specification limits, signifying that some of the parts will not meet the specifications. In practice, many manufacturers want to have $C p$ values of at least 1.5.

Figure 4.9 shows a frequency distribution and histogram of these data (worksheet Histogram in the Manufacturing Measurements workbook). Note that the bin values represent the upper limits of the groupings in the histogram; thus, 3 observations fell at or below 4.8, the lower specification limit. In addition, 5 observations exceeded the upper specification limit of 5.2. Therefore, 8 of the 200 observations, or 4%, were actually defective, and 96% were acceptable. Although this doesn't meet the empirical rule exactly, you must remember that we are dealing with sample data. Other samples from the same process would have different characteristics, but overall, the empirical rule provides a good estimate of the total variation in the data that we can expect from any sample.

	A	B	C	D	E	F	G	H	I	J
1	Manufacturing Measurements									
2										
3	5.21	5.87	4.85	4.95	5.07	4.96	4.96	5.11	Mean	4.99
4	5.02	5.33	4.82	4.86	4.82	4.96	5.06	5.11	Standard deviation	0.117
5	4.90	5.11	5.02	5.13	5.03	4.94	4.86	5.08		
6	5.00	5.07	4.90	4.95	4.85	5.19	4.96	5.03	Mean - ${ }^{*}$ Stdev	4.640
7	5.16	4.93	4.73	5.22	4.89	4.91	4.99	4.94	Mean + 3^{\star} Stdev	5.340
8	5.03	4.99	5.04	4.81	4.82	5.01	4.94	4.88	Total variaton	0.700
9	4.96	5.04	5.07	4.91	5.18	4.93	5.06	4.91		
10	5.04	5.14	4.81	4.95	5.02	5.05	4.95	4.86	Lower Specification	4.8
11	4.98	5.09	5.04	4.94	5.05	4.96	5.02	4.89	Upper Specification	5.2
12	5.07	5.06	5.03	4.81	4.88	4.92	5.01	4.91	Specification range	0.4
13	5.02	4.85	5.01	5.11	5.08	4.95	5.04	4.87		
14	5.08	4.93	5.14	4.81	4.98	5.08	5.01	4.93	Cp	0.57

Figure : 4.8
Calculation of $C p$ Index

Figure $\because 4.9$ 亿
Frequency Distribution and Histogram of Manufacturing Measurements

Standardized Values

A standardized value, commonly called a \boldsymbol{z}-score, provides a relative measure of the distance an observation is from the mean, which is independent of the units of measurement. The z-score for the i th observation in a data set is calculated as follows:

$$
\begin{equation*}
z_{i}=\frac{x_{i}-\bar{x}}{s} \tag{4.9}
\end{equation*}
$$

We subtract the sample mean from the i th observation, x_{i}, and divide the result by the sample standard deviation. In formula (4.9), the numerator represents the distance that x_{i} is from the sample mean; a negative value indicates that x_{i} lies to the left of the mean, and a positive value indicates that it lies to the right of the mean. By dividing by the standard deviation, s, we scale the distance from the mean to express it in units of standard deviations. Thus, a z-score of 1.0 means that the observation is one standard deviation to the right of the mean; a z-score of -1.5 means that the observation is 1.5 standard deviations to the left of the mean. Thus, even though two data sets may have different means and standard deviations, the same z-score means that the observations have the same relative distance from their respective means.

Z-scores can be computed easily on a spreadsheet; however, Excel has a function that calculates it directly, STANDARDIZE(x, mean, standard_dev).

EXAMPLE 4.12 Computing z-Scores

Figure 4.10 shows the calculations of z-scores for a portion of the Cost per order data. This worksheet may be found in the Purchase Orders workbook as z-scores. In cells B97 and B98, we compute the mean and standard deviation using the Excel AVERAGE and STDEV.S functions. In column C, we could either use formula (4.9) or the Excel STANDARDIZE function. For example, the formula in cell C 2 is $=(\mathrm{B} 2-\$ B \$ 97) / \$ B \$ 98$, but it could also
be calculated as =STANDARDIZE(B2,\$B\$97,\$B\$98). Thus, the first observation $\$ 2,700$ is 0.79 standard deviations below the mean, whereas observation 92 is 1.61 standard deviations above the mean. Only two observations (x19 and x8) are more than 3 standard deviations above the mean. We saw this in Example 4.10 when we applied Chebyshev's theorem to the data.

Figure : 4.10 :
Computing z-Scores for Cost per Order Data

	A	B	C
1	Observation	Cost per order	z-score
2	x 1	\$2,700.00	-0.79
3	x2	\$19,250.00	-0.24
4	x3	\$15,937.50	-0.35
5	$\times 4$	\$18,150.00	-0.27
6	x5	\$23,400.00	-0.10
91	x90	\$6,750.00	-0.65
92	x91	\$16,625.00	-0.32
93	x92	\$74,375.00	1.61
94	x93	\$72,250.00	1.54
95	x94	\$6,562.50	-0.66
96			
97	Mean	\$26,295.32	
98	Standard Deviation	\$29,842.83	

Figure : 4.11
Calculating Coefficients of Variation for Closing Stock Prices

	A	B	C	D	E	F
1	Closing Stock Prices					
2						
3	Date	IBM	INTC	CSCO	GE	DJ Industrials Index
4	9/3/2010	\$127.58	\$18.43	\$21.04	\$15.39	10447.93
5	9/7/2010	\$125.95	\$18.12	\$20.58	\$15.44	10340.69
6	9/8/2010	\$126.08	\$17.90	\$20.64	\$15.70	10387.01
22	9/30/2010	\$134.14	\$19.20	\$21.90	\$16.25	10788.05
23	10/1/2010	\$135.64	\$19.32	\$21.91	\$16.36	10829.68
24	Mean	\$130.93	\$18.81	\$21.50	\$16.20	\$10,639.98
25	Standard Deviation	\$3.22	\$0.50	\$0.52	\$0.35	\$171.94
26	Coefficient of Variation	0.025	0.027	0.024	0.022	0.016

Coefficient of Variation

The coefficient of variation (CV) provides a relative measure of the dispersion in data relative to the mean and is defined as

$$
\begin{equation*}
\mathrm{CV}=\frac{\text { standard deviation }}{\text { mean }} \tag{4.10}
\end{equation*}
$$

Sometimes the coefficient of variation is multiplied by 100 to express it as a percent. This statistic is useful when comparing the variability of two or more data sets when their scales differ.

The coefficient of variation provides a relative measure of risk to return. The smaller the coefficient of variation, the smaller the relative risk is for the return provided. The reciprocal of the coefficient of variation, called return to risk, is often used because it is easier to interpret. That is, if the objective is to maximize return, a higher return-to-risk ratio is often considered better. A related measure in finance is the Sharpe ratio, which is the ratio of a fund's excess returns (annualized total returns minus Treasury bill returns) to its standard deviation. If several investment opportunities have the same mean but different variances, a rational (risk-averse) investor will select the one that has the smallest variance. ${ }^{2}$ This approach to formalizing risk is the basis for modern portfolio theory, which seeks to construct minimum-variance portfolios. As Fortune magazine once observed, "It's not that risk is always bad. . . It's just that when you take chances with your money, you want to be paid for it." ${ }^{3}$ One practical application of the coefficient of variation is in comparing stock prices.

EXAMPLE 4.13 Applying the Coefficient of Variation

For example, by examining only the standard deviations in the Closing Stock Prices worksheet, we might conclude that IBM is more risky than the other stocks. However, the mean stock price of IBM is much greater than the other stocks. Thus, comparing standard deviations directly provides little information. The coefficient of variation provides a more comparable measure. Figure 4.11 shows the calculations of the coefficients of variation for
these variables. For IBM, the CV is 0.025 ; for Intel, 0.027 ; for Cisco, 0.024; for GE, 0.022; and for the DJIA, 0.016 . We see that the coefficients of variation of the stocks are not very different; in fact, Intel is just slightly more risky than IBM relative to its average price. However, an index fund based on the Dow Industrials would be less risky than any of the individual stocks.

[^29]Histograms of sample data can take on a variety of different shapes. Figure 4.12 shows the histograms for Cost per order and A/P Terms that we created in Chapter 3 for the Purchase Orders data. The histogram for A/P Terms is relatively symmetric, having its modal value in the middle and falling away from the center in roughly the same fashion on either side. However, the Cost per order histogram is asymmetrical, or skewed; that is, more of the mass is concentrated on one side, and the distribution of values "tails off" to the other. Those that tail off to the right, like this example, are called positively skewed; those that tail off to the left are said to be negatively skewed. Skewness describes the lack of symmetry of data.

The coefficient of skewness (CS) measures the degree of asymmetry of observations around the mean. The coefficient of skewness is computed as

$$
\begin{equation*}
\mathrm{CS}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{3}}{\sigma^{3}} \tag{4.11}
\end{equation*}
$$

For sample data, replace the population mean and standard deviation with the corresponding sample statistics. Although CS can be computed on a spreadsheet, it can easily be found using the Excel function SKEW(data range). If CS is positive, the distribution of values is positively skewed; if negative, it is negatively skewed. The closer CS is to zero, the less the degree of skewness. A coefficient of skewness greater than 1 or less than -1 suggests a high degree of skewness. A value between 0.5 and 1 or between -0.5 and -1 represents moderate skewness. Coefficients between 0.5 and -0.5 indicate relative symmetry.

EXAMPLE 4.14 Measuring Skewness

Using the Excel function in the Purchase Orders database SKEW, the coefficients of skewness for the Cost per order and A/P Terms data are calculated as

```
CS (cost per order) = 1.66
        CS (A/P terms) = 0.60
```

This tells us that the Cost per order data are highly positively skewed, whereas the A/P Terms data have a small positive skewness. These are evident from the histograms in Figure 4.12.

Figure : 4.12

Figure : 4.13

Characteristics of Skewed Distributions

Histograms that have only one "peak" are called unimodal. (If a histogram has exactly two peaks, we call it bimodal. This often signifies a mixture of samples from different populations.) For unimodal histograms that are relatively symmetric, the mode is a fairly good estimate of the mean. For example, the mode for the A/P Terms data is clearly 30 months; the mean is 30.638 months. On the other hand, for the Cost per order data, the mode occurs in the group $(0,13,000)$. The midpoint of the group, $\$ 6,500$, which can be used as a numerical estimate of the mode, is not very close at all to the true mean of $\$ 26,295.32$. The high level of skewness pulls the mean away from the mode.

Comparing measures of location can sometimes reveal information about the shape of the distribution of observations. For example, if the distribution was perfectly symmetrical and unimodal, the mean, median, and mode would all be the same. If it was negatively skewed, we would generally find that mean < median < mode, whereas a positive skewness would suggest that mode < median < mean (see Figure 4.13).

Kurtosis refers to the peakedness (i.e., high, narrow) or flatness (i.e., short, flattopped) of a histogram. The coefficient of kurtosis (CK) measures the degree of kurtosis of a population and can be computed using the Excel function KURT(data range). The coefficient of kurtosis is computed as

$$
\begin{equation*}
\mathrm{CK}=\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{4}}{\sigma^{4}} \tag{4.12}
\end{equation*}
$$

(Again, for sample data, use the sample statistics instead of the population measures.) Distributions with values of CK less than 3 are more flat with a wide degree of dispersion; those with values of CK greater than 3 are more peaked with less dispersion.

Skewness and kurtosis can help provide more information to evaluate risk than just using the standard deviation. For example, both a negatively and positively skewed distribution may have the same standard deviation, but clearly if the objective is to achieve high return, the negatively skewed distribution will have higher probabilities of larger returns. The higher the kurtosis, the more area the histogram has in the tails rather than in the middle. This can indicate a greater potential for extreme and possibly catastrophic outcomes.

Excel Descriptive Statistics Tool

Excel provides a useful tool for basic data analysis, Descriptive Statistics, which provides a summary of numerical statistical measures that describe location, dispersion, and shape for sample data (not a population). Click on Data Analysis in the Analysis group under the Data tab in the Excel menu bar. Select Descriptive Statistics from the list of tools. The Descriptive Statistics dialog shown in Figure 4.14 will appear. You need to enter only the range of the data, which must be in a single row or column. If the data are in multiple columns, the tool treats each row or column as a separate data set, depending on which you specify. This means that if you have a single data set arranged in a matrix

Figure : 4.14
Descriptive Statistics Dialog

format, you would have to stack the data in a single column before applying the Descriptive Statistics tool. Check the box Labels in First Row if labels are included in the input range. You may choose to save the results in the current worksheet or in a new one. For basic summary statistics, check the box Summary statistics; you need not check any others.

EXAMPLE 4.15 Using the Descriptive Statistics Tool

We will apply the Descriptive Statistics tool to the Cost per order and A/P Terms data in columns G and H of the Purchase Orders database. The results are provided in the Descriptive Statistics worksheet in the Purchase

Orders workbook and are shown in Figure 4.15. The tool provides all the measures we have discussed as well as the standard error, which we discuss in Chapter 6, along with the minimum, maximum, sum, and count.

Figure : 4.15 :
Purchase Orders Data
Descriptive Statistics
Summary

One important point to note about the use of the tools in the Analysis Toolpak versus Excel functions is that while Excel functions dynamically change as the data in the spreadsheet are changed, the results of the Analysis Toolpak tools do not. For example, if you compute the average value of a range of numbers directly using the function AVERAGE(range), then changing the data in the range will automatically update the result. However, you would have to rerun the Descriptive Statistics tool after changing the data.

	A	B	C	D
1	Cost per order		A/P Terms (Months)	
2				
3	Mean	26295.31915	Mean	30.63829787
4	Standard Error	3078.053014	Standard Error	0.702294026
5	Median	15656.25	Median	30
6	Mode	14910	Mode	30
7	Standard Deviation	29842.8312	Standard Deviation	6.808993205
8	Sample Variance	890594573.8	Sample Variance	46.36238847
9	Kurtosis	2.079637302	Kurtosis	1.512188562
10	Skewness	1.664271519	Skewness	0.599265003
11	Range	127431.25	Range	30
12	Minimum	68.75	Minimum	15
13	Maximum	127500	Maximum	45
14	Sum	2471760	Sum	2880
15	Count	94	Count	94

Descriptive Statistics for Grouped Data

In some situations, data may already be grouped in a frequency distribution, and we may not have access to the raw data. This is often the case when extracting information from government databases such as the Census Bureau or Bureau of Labor Statistics. In these situations, we cannot compute the mean or variance using the standard formulas.

When sample data are summarized in a frequency distribution, the mean of a population may be computed using the formula

$$
\begin{equation*}
\mu=\frac{\sum_{i=1}^{N} f_{i} x_{i}}{N} \tag{4.13}
\end{equation*}
$$

For samples, the formula is similar:

$$
\begin{equation*}
\bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{n} \tag{4.14}
\end{equation*}
$$

where f_{i} is the frequency of observation i. Essentially, we multiply the frequency by the value of observation i, add them up, and divide by the number of observations.

We may use similar formulas to compute the population variance for grouped data,

$$
\begin{equation*}
\sigma^{2}=\frac{\sum_{i=1}^{N} f_{i}\left(x_{i}-\mu\right)^{2}}{N} \tag{4.15}
\end{equation*}
$$

and sample variance,

$$
\begin{equation*}
s^{2}=\frac{\sum_{i=1}^{n} f_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \tag{4.16}
\end{equation*}
$$

To find the standard deviation, take the square root of the variance, as we did earlier.
Note the similarities between these formulas and formulas (4.13) and (4.14). In multiplying the values by the frequency, we are essentially adding the same values f_{i} times. So they really are the same formulas, just expressed differently.

EXAMPLE 4.16 Computing Statistical Measures from Frequency Distributions

The worksheet Statistical Calculations in the Computer Repair Times workbook shows the calculations of the mean and variance using formulas (4.14) and (4.16) for the frequency distribution of repair times. A portion of this is shown in Figure 4.16. In column C, we multiply the frequency by the value of the observations [the numerator
in formula (4.14)] and then divide by n, the sum of the frequencies in column B, to find the mean in cell C49. Columns D, E, and F provide the calculations needed to find the variance. We divide the sum of the data in column F by $n-1=249$ to find the variance in cell F49.

4	A	B	C	D	E	F
1	Computer Repair Times					
2						
3	Days (x)	Frequency (f)	Frequency*Days	Days - Mean	(Days - mean)^2	Frequency*(Days - Mean) ${ }^{\wedge} 2$
4	0	0	0	-14.912	222.368	0.000
5	1	0	0	-13.912	193.544	0.000
6	2	0	0	-12.912	166.720	0.000
7	3	0	0	-11.912	141.896	0.000
43	39	1	39	24.088	580.232	580.232
44	40	1	40	25.088	629.408	629.408
45	41	0	0	26.088	680.584	0.000
46	42	0	0	27.088	733.760	0.000
47	Sum	250	3728			8840.064
48						
49		Mean	14.912		Variance	35.50226506

Figure : 4.16
Calculations of Mean and Variance Using a Frequency Distribution
If the data are grouped into k cells in a frequency distribution, we can use modified versions of these formulas to estimate the mean and variance by replacing x_{i} with a representative value (such as the midpoint) for all the observations in each cell.

EXAMPLE 4.17 Computing Descriptive Statistics for a Grouped Frequency Distribution

Figure 4.17 shows data obtained from the U.S. Census Bureau showing the number of households that spent different percentages of their income on rent. Suppose we wanted to calculate the average percentage and the standard deviation. Because we don't have the raw data, we can only estimate these statistics by assuming some representative value for each group. For the groups that are defined by an upper and lower value, this is easy to do; we can use the midpoints - for instance, 5% for the first group and 12\% for the second group. However, it's not clear what to do for the 50 percent or more group. For
this group, we have no information to determine what the best value might be. It might be unreasonable to assume the midpoint between 50% and 100%, or 75%; a more rational value might be 58% or 60%. When dealing with uncertain or ambiguous information in business analytics applications, we often have to make the best assumption we can. In this case, we choose 60%. The calculations, shown in Figure 4.18 (worksheet Calculations in the Census Rent Data workbook), find a mean of close to 30% and a standard deviation of 17.61%.

Figure : 4.17
Census Bureau Rent Data

	A	B	C
1	Gross Rent as a Percentage of Household Income in 1999		
2	Source: US Census B		
4	Group	Number of Households	
5	Less than 10 percent	2,239,346	
6	10 to 14 percent	4,130,91	
7	15 to 19 percent	5,037,981	
8	20 to 24 percent	4,498,604	
9	25 to 29 percent	3,666,233	
10	30 to 34 percent	2,585,327	
11	35 to 39 percent	1,809,948	
12	40 to 49 percent	2,364,443	
13	50 percent or more	6,209,568	
14	Not computed	2,657,135	

Figure: 4.18

Census Rent Data

Calculations

	A	B	C	D	E	F	G
1							
2	Group	Percent (x)	Number (f)	$\mathrm{f}^{*} \mathrm{x}$	x-mean	(x - mean)^2	$\mathrm{f}^{*}(\mathrm{x}-\mathrm{mean})^{\wedge} \mathbf{2}$
3	Less than 10 percent	5\%	2,239,346	111967.30	-24.8645\%	0.0618	138446.0126
4	10 to 14 percent	12\%	4,130,917	495710.04	-17.8645\%	0.0319	131834.1452
5	15 to 19 percent	17\%	5,037,981	856456.77	-12.8645\%	0.0165	83376.1701
6	20 to 24 percent	22\%	4,498,604	989692.88	-7.8645\%	0.0062	27823.9852
7	25 to 29 percent	27\%	3,666,233	989882.91	-2.8645\%	0.0008	3008.2636
8	30 to 34 percent	32\%	2,585,327	827304.64	2.1355\%	0.0005	1179.0089
9	35 to 39 percent	37\%	1,809,948	669680,76	7.1355\%	0.0051	9215.4310
10	40 to 49 percent	44.50\%	2,364,443	1052177.14	14.6355\%	0.0214	50645.9048
11	50 percent or more	60\%	6,209,568	3725740.80	30.1355\%	0.0908	563921.1249
12		Sum	32,542,367	9718613.24			1009450.0462
13							
14			Mean	29.86\%		Variance	0.031019565
15						Standard Dev.	17.61\%

It is important to understand that because we have not used all the original data in computing these statistics, they are only estimates of the true values.

Descriptive Statistics for Categorical Data: The Proportion

Statistics such as means and variances are not appropriate for categorical data. Instead, we are generally interested in the fraction of data that have a certain characteristic. The formal statistical measure is called the proportion, usually denoted by p. Proportions are key descriptive statistics for categorical data, such as defects or errors in quality control applications or consumer preferences in market research.

EXAMPLE 4.18 Computing a Proportion

In the Purchase Orders database, column A lists the name of the supplier for each order. We may use the Excel function =COUNTIF(data range, criteria) to count the number of observations meeting specified characteristics. For instance, to find the number of orders placed
with Spacetime Technologies, we used the function =COUNTIF(A4:A97, "Spacetime Technologies"). This returns a value of 12. Because 94 orders were placed, the proportion of orders placed with Spacetime Technologies is $p=12 / 94=0.128$.

It is important to realize that proportions are numbers between 0 and 1 . Although we often convert these to percentages-for example, 12.8% of orders were placed with Spacetime Technologies in the last example-we must be careful to use the decimal expression of a proportion when statistical formulas require it.

We introduced PivotTables in Chapter 3 and applied them to finding simple counts and creating cross-tabulations. PivotTables also have the functionality to calculate many basic statistical measures from the data summaries. If you look at the Value Field Settings dialog shown in Figure 4.19, you can see that you can calculate the average, standard deviation, and variance of a value field.

Figure : 4.19
Value Field Settings Dialog

Figure : 4.20 :
PivotTable for Average
Checking and Savings
Account Balances by Job

EXAMPLE 4.19 Statistical Measures in PivotTables

In the Credit Risk Data Excel file, suppose that we want to find the average amount of money in checking and savings accounts by job classification. Create a PivotTable, and in the PivotTable Field List, move Job to the Row Labels field and Checking and Savings to the Values field. Then change the field settings from "Sum of Checking"
and "Sum of Savings" to the averages. The result is shown in Figure 4.20; we have also formatted the values as currency using the Number Format button in the dialog. In a similar fashion, you could find the standard deviation or variance of each group by selecting the appropriate field settings.

Measures of Association

Two variables have a strong statistical relationship with one another if they appear to move together. We see many examples on a daily basis; for instance, attendance at baseball games is often closely related to the win percentage of the team, and ice cream sales likely have a strong relationship with daily temperature. We can examine relationships between two variables visually using scatter charts, which we introduced in Chapter 3.

When two variables appear to be related, you might suspect a cause-and-effect relationship. Sometimes, however, statistical relationships exist even though a change in one variable is not caused by a change in the other. For example, the New York Times reported a strong statistical relationship between the golf handicaps of corporate CEOs and their companies' stock market performance over 3 years. CEOs who were better-than-average golfers

A		B	C	D	E	F	G
1	Colleges and Universities						
2							
3	School	Type	Median SAT	Acceptance Rate	Expenditures/Student	Top 10\% HS	Graduation \%
4	Amherst	Lib Arts	1315	22\%	\$ 26,636	85	93
5	Barnard	Lib Arts	1220	53\%	\$ 17,653	69	80
6	Bates	Lib Arts	1240	36\%	\$ 17,554	58	88
7	Berkeley	University	1176	37\%	\$ 23,665	95	68
8	Bowdoin	Lib Arts	1300	24\%	\$ 25,703	78	90
9	Brown	University	1281	24\%	\$ 24,201	80	90
10	Bryn Mawr	Lib Arts	1255	56\%	\$ 18,847	70	84

Figure : 4.21 :
Portion of Excel File Colleges and Universities
were likely to deliver above-average returns to shareholders. ${ }^{4}$ Clearly, the ability to golf would not cause better business performance. Therefore, you must be cautious in drawing inferences about causal relationships based solely on statistical relationships. (On the other hand, you might want to spend more time out on the practice range!)

Understanding the relationships between variables is extremely important in making good business decisions, particularly when cause-and-effect relationships can be justified. When a company understands how internal factors such as product quality, employee training, and pricing factors affect such external measures as profitability and customer satisfaction, it can make better decisions. Thus, it is helpful to have statistical tools for measuring these relationships.

The Excel file Colleges and Universities, a portion of which is shown in Figure 4.21, contains data from 49 top liberal arts and research universities across the United States. Several questions might be raised about statistical relationships among these variables. For instance, does a higher percentage of students in the top 10% of their high school class suggest a higher graduation rate? Is acceptance rate related to the amount spent per student? Do schools with lower acceptance rates tend to accept students with higher SAT scores? Questions such as these can be addressed by computing statistical measures of association between the variables.

Covariance

Covariance is a measure of the linear association between two variables, X and Y. Like the variance, different formulas are used for populations and samples. Computationally, covariance of a population is the average of the products of deviations of each observation from its respective mean:

$$
\begin{equation*}
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N} \tag{4.17}
\end{equation*}
$$

To better understand the covariance, let us examine formula (4.17). The covariance between X and Y is the average of the product of the deviations of each pair of observations from their respective means. Suppose that large (small) values of X are generally associated with large (small) values of Y. Then, in most cases, both x_{i} and y_{i} are either above or below their respective means. If so, the product of the deviations from the means will be a positive number and when added together and averaged will give a positive value for the covariance. On the other hand, if small (large) values of X are associated with large (small) values of

[^30]Y, then one of the deviations from the mean will generally be negative while the other is positive. When multiplied together, a negative value results, and the value of the covariance will be negative. Thus, the larger the absolute value of the covariance, the higher is the degree of linear association between the two variables. The sign of the covariance tells us whether there is a direct relationship (i.e., one variable increases as the other increases) or an inverse relationship (i.e., one variable increases while the other decreases, or vice versa). We can generally identify the strength of any linear association between two variables and the sign of the covariance by constructing a scatter diagram. The Excel function COVARIANCE.P(array1, array2) computes the covariance of a population.

The sample covariance is computed as

$$
\begin{equation*}
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1} \tag{4.18}
\end{equation*}
$$

Similar to the sample variance, note the use of $n-1$ in the denominator. The Excel function COVARIANCE.S(array1, array2) computes the covariance of a sample.

EXAMPLE 4.20 Computing the Covariance

Figure 4.22 shows a scatter chart of graduation rate (Y-variable) versus median SAT scores (X-variable) for the Colleges and Universities data. It appears that as the median SAT scores increase, the graduate rate also increases; thus, we would expect to see a positive
covariance. Figure 4.23 shows the calculations using formula (4.18); these are provided in the worksheet Covariance in the Colleges and Universities Excel workbook. The Excel function =COVARIANCE.S(B2:B50,C2:C50) in cell F55 verifies the calculations.

Figure : 4.22 :
Scatter Chart of Graduation Rate versus Median SAT

Correlation

The numerical value of the covariance is generally difficult to interpret because it depends on the units of measurement of the variables. For example, if we expressed the graduation rate as a true proportion rather than as a percentage in the previous example, the numerical value of the covariance would be smaller, although the linear association between the variables would be the same.

Correlation is a measure of the linear relationship between two variables, X and Y, which does not depend on the units of measurement. Correlation is measured by the

Figure : 4.23
Covariance Calculations for Graduation Rate and Median SAT

Figure : 4.24
Examples of Correlation

	A	B	C	D	E	F
1		Graduation \% (X)	Median SAT (Y)	X - Mean(X)	Y - Mean(Y)	(X - Mean(X))(Y-Mean(Y))
2		93	1315	9.755	51.898	506.2698875
3		80	1220	-3.245	-43.102	139.8617243
4		88	1240	4.755	-23.102	-109.8525614
47		86	1250	2.755	-13.102	-36.09745939
48		91	1290	7.755	26.898	208.5964182
49		93	1336	9.755	72.898	711.1270304
50		93	1350	9.755	86.898	847.698459
51	Mean	83.245	1263.102		Sum	12641.77551
52					Count	49
53					Covariance	263.3703231
54						
55					COVARIANCE.S	263.3703231

correlation coefficient, also known as the Pearson product moment correlation coefficient. The correlation coefficient for a population is computed as

$$
\begin{equation*}
\rho_{x y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{x} \sigma_{y}} \tag{4.19}
\end{equation*}
$$

By dividing the covariance by the product of the standard deviations, we are essentially scaling the numerical value of the covariance to a number between -1 and 1 .

In a similar fashion, the sample correlation coefficient is computed as

$$
\begin{equation*}
r_{x y}=\frac{\operatorname{cov}(X, Y)}{s_{x} s_{y}} \tag{4.20}
\end{equation*}
$$

Excel's CORREL function computes the correlation coefficient of two data arrays.
A correlation of 0 indicates that the two variables have no linear relationship to each other. Thus, if one changes, we cannot reasonably predict what the other variable might do. A positive correlation coefficient indicates a linear relationship for which one variable increases as the other also increases. A negative correlation coefficient indicates a linear relationship for one variable that increases while the other decreases. In economics, for instance, a price-elastic product has a negative correlation between price and sales; as price increases, sales decrease, and vice versa. These relationships are illustrated in Figure 4.24. Note that although Figure 4.24(d) has a clear relationship between the variables, the relationship is not linear and the correlation is zero.

(a) Positive Correlation

(c) No Correlation

(b) Negative Correlation

(d) A Nonlinear Relationship with No Linear Correlation

	A	B	C	D	E	F
1		Graduation \% (X)	Median SAT (Y)	X - Mean(X)	Y - Mean(Y)	(X - Mean(X))(Y-Mean(Y))
2		93	1315	9.755	51.898	506.2698875
3		80	1220	-3.245	-43.102	139.8617243
4		88	1240	4.755	-23.102	-109.8525614
47		86	1250	2.755	-13.102	-36.09745939
48		91	1290	7.755	26.898	208.5964182
49		93	1336	9.755	72.898	711.1270304
50		93	1350	9.755	86.898	847.698459
51	Mean	83.245	1263.102		Sum	12641.77551
52	Standard Deviation	7.449	62.676		Count	49
53					Covariance	263.3703231
54					Correlation	0.564146827
55						
56					CORREL Function	0.564146827

Figure : 4.25 :
Correlation Calculations for Graduation Rate and Median SAT

EXAMPLE 4.21 Computing the Correlation Coefficient

Figure 4.25 shows the calculations for computing the sample correlation coefficient for the graduation rate and median SAT variables in the Colleges and Universities data file. We first compute the standard deviation of each
variable in cells B52 and C52 and then divide the covariance by the product of these standard deviations in cell F54. Cell F56 shows the same result using the Excel function =CORREL(B2:B50,C2:C50).

When using the CORREL function, it does not matter if the data represent samples or populations. In other words,

$$
\operatorname{CORREL}(\text { array1, array } 2)=\frac{\operatorname{COVARIANCE.P~}(\text { array } 1, \text { array } 2)}{\operatorname{STDEV} \cdot \mathrm{P}(\text { array } 1) \times \operatorname{STDEV} \cdot \mathrm{P}(\text { array } 2)}
$$

and

$$
\operatorname{CORREL}(\text { array } 1, \text { array } 2)=\frac{\text { COVARIANCE.S }(\text { array } 1, \text { array } 2)}{\text { STDEV.S }(\text { array1 }) \times \operatorname{STDEV} \cdot \mathrm{S}(\text { array } 2)}
$$

For instance, in Example 4.21, if we assume that the data are populations, we find that the population standard deviation for X is 7.372 and the population standard deviation for Y is 62.034 (using the function STDEV.P). By dividing the population covariance, 257.995 (using the function COVARIANCE.P), by the product of these standard deviations, we find that the correlation coefficient is still 0.564 as computed by the CORREL function.

Excel Correlation Tool

The Data Analysis Correlation tool computes correlation coefficients for more than two arrays. Select Correlation from the Data Analysis tool list. The dialog is shown in Figure 4.26. You need to input only the range of the data (which must be in contiguous columns; if not, you must move them in your worksheet), specify whether the data are grouped by rows or columns (most applications will be grouped by columns), and indicate whether the first row contains data labels. The output of this tool is a matrix giving the correlation between each pair of variables. This tool provides the same output as the CORREL function for each pair of variables.

Correlation		-2 x
Input		
Input Range:	\square 園	
Grouped By:	- columns	Canced
	(1) Bows	Help
Labels in First Row		
Output options		
- Output Range:	罭	
O- New Worksheet Ply:		
Dew Workbook		

Figure : 4.27 :
Correlation Results for Colleges and Universities Data

	A	B	C	D	E	F
1		Median SAT	Acceptance Rate	Expenditures/Student	Top 10\% HS	Graduation \%
2	Median SAT	1				
3	Acceptance Rate	-0.601901959	1			
4	Expenditures/Student	0.572741729	-0.284254415	1		
5	Top 10\% HS	0.503467995	-0.609720972	0.505782049	1	
6	Graduation \%	0.564146827	-0.55037751	0.042503514	0.138612667	1

EXAMPLE 4.22 Using the Correlation Tool

The correlation matrix among all the variables in the Colleges and Universities data file is shown in Figure 4.27. None of the correlations are very strong. The moderate positive correlation between the graduation rate and SAT scores indicates that schools with higher median SATs have higher graduation rates. We see a moderate negative correlation between acceptance rate and graduation rate, indicating that schools with lower
acceptance rates have higher graduation rates. We also see that the acceptance rate is also negatively correlated with the median SAT and Top $10 \% \mathrm{HS}$, suggesting that schools with lower acceptance rates have higher student profiles. The correlations with Expenditures/Student also suggest that schools with higher student profiles spend more money per student.

Earlier we had noted that the mean and range are sensitive to outliers-unusually large or small values in the data. Outliers can make a significant difference in the results we obtain from statistical analyses. An important statistical question is how to identify them. The first thing to do from a practical perspective is to check the data for possible errors, such as a misplaced decimal point or an incorrect transcription to a computer file. Histograms can help to identify possible outliers visually. We might use the empirical rule and z-scores to identify an outlier as one that is more than three standard deviations from the mean. We can also identify outliers based on the interquartile range. "Mild" outliers are often defined as being between $1.5 * \mathrm{IQR}$ and $3 * \mathrm{IQR}$ to the left of Q1 or to the right of Q3, and "extreme" outliers, as more than 3*IQR away from these quartiles. Basically, there is no standard definition of what constitutes an outlier other than an unusual observation as compared with the rest. However, it is important to try to identify outliers and determine their significance when conducting business analytic studies.

Figure : 4.28
Portion of Home Market Value

	A	B	C
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00
11	33	1.850	\$96.000.00

Figure : 4.29 :
Computing z-Scores for Examining Outliers

A		B	C	D	E
1	Home Market Value				
2					
3	House Age	Square Feet	z-score	Market Value	z-score
4	33	1,812	0.5300	\$90,000.00	-0.196
5	32	1,914	0.9931	\$104,400.00	1.168
6	32	1,842	0.6662	\$93,300.00	0.117
7	33	1,812	0.5300	\$91,000.00	-0.101
41	27	1,484	-0.9592	\$81,300.00	-1.020
42	27	1,520	-0.7957	\$100,700.00	0.818
43	28	1,520	-0.7957	\$87,200.00	-0.461
44	27	1,684	-0.0511	\$96,700.00	0.439
45	27	1,581	-0.5188	\$120,700.00	2.713
46	Mean	1,695		92,069	
47	Standard Deviation	220.257		10553.083	

EXAMPLE 4.23 Investigating Outliers

The Excel data file Home Market Value provides a sample of data for homes in a neighborhood (Figure 4.28). Figure 4.29 shows z-score calculations for the square feet and market value variables. None of the z-scores for either of these variables exceed 3 (these calculations can be found in the worksheet Outliers in the Excel Home Market Value workbook). However, while individual variables might not exhibit outliers, combinations of them might. We see this in the scatter diagram in Figure 4.30. The last observation has a high market value $(\$ 120,700)$ but a relatively small
house size (1,581 square feet). The point on the scatter diagram does not seem to coincide with the rest of the data.

The question is what to do with possible outliers. They should not be blindly eliminated unless there is a legitimate reason for doing so-for instance, if the last home in the Home Market Value example has an outdoor pool that makes it significantly different from the rest of the neighborhood. Statisticians often suggest that analyses should be run with and without the outliers so that the results can be compared and examined critically.

Figure : 4.30 :
Scatter Diagram of House Size versus Market Value

Statistical Thinking in Business Decisions

The importance of applying statistical concepts to make good business decisions and improve performance cannot be overemphasized. Statistical thinking is a philosophy of learning and action for improvement that is based on the principles that
all work occurs in a system of interconnected processes,

- variation exists in all processes, and
better performance results from understanding and reducing variation. ${ }^{5}$

Work gets done in any organization through processes-systematic ways of doing things that achieve desired results. Understanding business processes provides the context for determining the effects of variation and the proper type of action to be taken. Any process contains many sources of variation. In manufacturing, for example, different batches of material vary in strength, thickness, or moisture content. During manufacturing, tools experience wear, vibrations cause changes in machine settings, and electrical fluctuations cause variations in power. Workers may not position parts on fixtures consistently, and physical and emotional stress may affect workers’ consistency. In addition, measurement gauges and human inspection capabilities are not uniform, resulting in measurement error. Similar phenomena occur in service processes because of variation in employee and customer behavior, application of technology, and so on. Reducing variation results in more consistency in manufacturing and service processes, fewer errors, happier customers, and better accuracy of such things as delivery time quotes.

Although variation exists everywhere, many managers often do not recognize it or consider it in their decisions. How often do managers make decisions based on one or two data points without looking at the pattern of variation, see trends in data that aren't justified, or try to manipulate measures they cannot truly control? Unfortunately, the answer is quite often. For example, if sales in some region fell from the previous quarter, a regional manager might quickly blame her sales staff for not working hard enough, even though the drop in sales may simply be the result of uncontrollable variation. Usually, it is simply a matter of ignorance of how to deal with variation in data. This is where business analytics can play a significant role. Statistical analysis can provide better insight into the facts and nature of relationships among the many factors that may have contributed to an event and enable managers to make better decisions.

EXAMPLE 4.24 Applying Statistical Thinking

Figure 4.31 shows a portion of data in the Excel file Surgery Infections that document the number of infections that occurred after surgeries over 36 months at one hospital, along with a line chart of the number of infections. (We will assume that the number of surgeries performed each month was the same.) The number of infections tripled in months 2 and 3 as compared to the first month. Is this indicative of trend caused by failure of some health care protocol or simply random variation? Should action be taken to determine a cause? From a statistical perspective, three points are insufficient to
conclude that a trend exists. It is more appropriate to look at a larger sample of data and study the pattern of variation.

Over the 36 months, the data clearly indicate that variation exists in the monthly infection rates. The number of infections seems to fluctuate between 0 and 3 with the exception of month 12. However, a visual analysis of the chart cannot necessarily lead to a valid conclusion. So let's apply some statistical thinking. The average number of infections is 1.583 and the standard deviation is 1.180 . If we apply the empirical rule that most observations should fall within three standard deviations of the mean, we arrive at the range

[^31]of -1.957 (clearly the number of infections cannot be negative, so let's set this value to zero), and 5.12. This means that, from a statistical perspective, we can expect almost all the observations to fall within these limits. Figure 4.32 shows the chart displaying these ranges. The number of infections for month 12 clearly exceeds the upper range value and suggests that the number of infections for this month is statistically different from the rest. The
hospital administrator should seek to investigate what may have happened that month and try to prevent similar occurrences.

Similar analyses are used routinely in quality control and other business applications to monitor performance statistically. The proper analytical calculations depend on the type of measure and other factors and are explained fully in books dedicated to quality control and quality management.

Variability in Samples

Because we usually deal with sample data in business analytics applications, it is extremely important to understand that different samples from any population will vary; that is, they will have different means, standard deviations, and other statistical measures and will have differences in the shapes of histograms. In particular, samples are extremely sensitive to the sample size-the number of observations included in the samples.

	A	B	C	D	E	F	G	H	1	J	K	L
1	Surgery	Infections										
2				Mean	1.58333							
3	Month	Infections		Standard Deviation	1.18019							
4	1	1		Mean-3 Stdev	-1.95725							
5	2	3		Mean + 3 Stdev	5.12391							
6	3	3										
7	4	1										
8	5	3						ons				
9	6	1										
10	7	1	7									
11	8	1										
12	9	1										
13	10	0										
14	11	2			-							
15	12	6										
16	13	2		\square								
17	14	1		,								
18	15	2		V	,							
19	16	0		1	-							
20	17	1										
21	18	1										
22	19	1		12	101	14		22	25	293	33	
23	20	2										
24	21	1										
25	22	0										

Figure : 4.32 :
Infections with Empirical Rule Ranges

EXAMPLE 4.25 Variation in Sample Data

In Example 4.5, we illustrated a frequency distribution for 250 computer repair times. The average repair time is 14.9 days, and the variance of the repair times is 35.50 . Suppose we selected some smaller samples from these data. Figure 4.33 shows two samples of size 50 randomly selected from the 250 repair times. Observe that the means and variances differ from each other as well as from the
mean and variance of the entire sample shown in Figure 4.5. In addition, the histograms show a slightly different profile. In Figure 4.34 we show the results for two smaller samples of size 25 . Here we actually see more variability in both the statistical measures and the histograms as compared with the entire data set.

Figure : 4.33 :
Two Samples of Size 50 of Computer Repair Times

Figure : 4.34
Two Samples of Size 25 of Computer Repair Times

This example demonstrates that it is important to understand the variability in sample data and that statistical information drawn from a sample may not accurately represent the population from which it comes. This is one of the most important concepts in applying business analytics. We explore this topic more in Chapter 6.

Analytics in Practice: Applying Statistical Thinking to Detecting Financial Problems ${ }^{6}$

Over the past decade, there have been numerous discoveries of management fraud that have led to the downfall of several prominent companies. These companies had been effective in hiding their financial difficulties, and investors and creditors are now seeking ways to identify financial problems before scandals occur. Even with the passage of the Sar-banes-Oxley Act in July 2002, which helped to improve the quality of the data being disclosed to the public, it is still possible to misjudge an organization's financial strength without analytical evaluation. Several warning signs exist, but there is no systematic and objective way to determine whether a given financial metric, such as a write-off or insider-trading pattern, is high or unusual.

Researchers have proposed using statistical thinking to detect anomalies. They propose an "anomaly detection score," which is the difference between a target financial measure and the company's own past performance or its competitors' current performance using standard deviations. This technique is a variation of a standardized z-score. Specifically, their approach involves comparing performance to past performance (within analysis) and comparing performance to the performance of the company's peers over the same period (between analyses). They created two types of exceptional anomaly scores: z-between $\left(Z_{b}\right)$ to address the variation between companies and z-within $\left(Z_{w}\right)$ to address the variation within the company. These measures quantify the number of standard deviations a company's financial measure deviates from the
average. Using these measures, the researchers applied the technique to 25 case studies. These included several high-profile companies that had been charged with financial statement fraud by the SEC or had admitted accounting errors, causing a restatement of their financials. The method was able to identify anomalies for critical metrics known by experts to be warning signs for financial-statement fraud. These warning signs were consistent when compared with expert postmortem commentary on the high-profile fraud cases. More importantly, they signaled anomalous behavior at least six quarters before an SEC investigation announcement with fewer than 5% false negatives and 40% false positives.

Key Terms

Arithmetic mean (mean)	Coefficient of kurtosis (CK)
Bimodal	Coefficient of skewness (CS)
Chebyshev's theorem	Coefficient of variation (CV)

[^32]Correlation
Correlation coefficient (Pearson product moment correlation coefficient)
Covariance
Dispersion
Empirical rules
Interquartile range (IRQ, or midspread)
Kurtosis
Median
Midrange
Mode
Outlier

Population
Process capability index
Proportion
Range
Return to risk
Sample
Sample correlation coefficient
Skewness
Standard deviation
Standardized value (z-score)
Statistical thinking
Unimodal
Variance

Problems and Exercises

1. Data obtained from a county auditor in the Excel file Home Market Value provide information about the age, square footage, and current market value of houses along one street in a particular subdivision. Considering these data as a population of homeowners on this street, compute the mean, variance, and standard deviation for each of these variables using a spreadsheet and formulas (4.1), (4.4), and (4.6). Verify your calculations using the appropriate Excel function.
2. In the Excel file Facebook Survey, find the average and median hours online/week and number of friends in the sample using the appropriate Excel functions. Compute the midrange and compare all measures of location.
3. For the Excel file Tablet Computer Sales, find the average number, standard deviation, and interquartile range of units sold per week. Show that Chebyshev's theorem holds for the data and determine how accurate the empirical rules are.
4. The Excel file Atlanta Airline Data provides arrival and taxi-in time statistics for one day at Atlanta Hartsfield International airport. Find the average and standard deviation of the difference between the scheduled and actual arrival times and the taxiin time to the gate. Compute the z-scores for each of these variables.
5. Data obtained from a county auditor in the Excel file Home Market Value provides information about the age, square footage, and current market value of houses along one street in a particular subdivision.
a. Considering these data as a sample of homeowners on this street, compute the mean, variance, and standard deviation for each of these variables using formulas (4.2), (4.5), and (4.7). Verify your calculations using the appropriate Excel function.
b. Compute the coefficient of variation for each variable. Which has the least and greatest relative dispersion?
6. Find 30 days of stock prices for three companies in different industries. The average stock prices should have a wide range of values. Using the data, compute and interpret the coefficient of variation.
7. Compute descriptive statistics for liberal arts colleges and research universities in the Excel file Colleges and Universities. Compare the two types of colleges. What can you conclude?
8. Use the Descriptive Statistics tool to summarize the mean, median, variance, and standard deviation of the prices of shares in the Excel file Coffee Shares Data.
9. The worksheet Data in the Excel file Airport Service Times lists a large sample of the times in seconds to process customers at a ticket counter. The second worksheet shows a frequency distribution and histogram of the data.
a. Summarize the data using the Descriptive Statistics tool. What can you say about the shape of the distribution of times?
b. Find the 90th percentile.
c. How might the airline use these results to manage its ticketing counter operations?
10. The data in the Excel file Church Contributions were reported on annual giving for a church. Estimate the mean and standard deviation of the annual contributions of all parishioners by implementing formulas (4.13) and (4.15) on a spreadsheet, assuming these data represent the entire population of parishioners. Second, estimate the mean contribution of families with children in the parish school. How does this compare with all parishioners?
11. The average monthly wages and standard deviations for the two garments manufacturing factories X and Yare given below:

- Factory X: the average monthly wage is $\$ 4600$, the standard deviation of the wage is $\$ 500$, and the number of wage-earners is 100
- Factory Y: the average monthly wage is $\$ 4900$, standard deviation is $\$ 400$, and the number of wage-earners is 80
a. Which factory pays the larger amount as monthly wages?
b. Which factory shows greater variability in the distribution of wages?

12. Consider the Excel file Mobiles Usage, which shows the number of people using different kinds of mobile phones in the northern region. Find the proportion of BlackBerry and Android usage in that region.
13. In the Excel file Bicycle Inventory, find the proportion of bicycle models that sell for less than $\$ 200$.
14. In the Sales Transactions database, find the proportion of customers who used PayPal and the proportion of customers who used credit cards. Also, find the proportion that purchased a book and the proportion that purchased a DVD.
15. In the Excel file Economic Poll, find the proportions of each categorical variable.
16. In the Excel file Facebook Survey, use a PivotTable to find the average and standard deviation of hours online/week and number of friends for females and males in the sample.
17. In the Excel file Cell Phone Survey, use PivotTables to find the average for each of the numerical variables for different cell phone carriers and gender of respondents.
18. Using PivotTables, find the average and standard deviation of sales in the Sales Transactions database.

Also, find the average sales by source (Web or e-mail). Do you think this information could be useful in advertising? Explain how and why or why not.
19. For the Excel file Travel Expenses, use a PivotTable to find the average and standard deviation of expenses for each sales rep.
20. Using PivotTables, compute the mean and standard deviation for each metric by year in the Excel file Freshman College Data. Are any differences apparent from year to year?
21. The Excel file Freshman College Data shows data for 4 years at a large urban university. Use PivotTables to examine differences in student high school performance and first-year retention among different colleges at this university. What conclusions do you reach?
22. The Excel file Cell Phone Survey reports opinions of a sample of consumers regarding the signal strength, value for the dollar, and customer service for their cell phone carriers. Use PivotTables to find the following:
a. the average signal strength by type of carrier
b. average value for the dollar by type of carrier and usage level
c. variance of perception of customer service by carrier and gender
What conclusions might you reach from this information?
23. Call centers have high turnover rates because of the stressful environment. The national average is approximately 50%. The director of human resources for a large bank has compiled data about 70 former employees at one of the bank's call centers (see the Excel file Call Center Data). Use PivotTables to find these statistics:
a. the average length of service for males and females in the sample
b. the average length of service for individuals with and without a college degree
c. the average length of service for males and females with and without prior call center experience
24. In the Excel file Weddings, determine the correlation between the wedding costs and attendance.
25. For the data in the Excel file Rin's Gym, find the covariances and correlations among height, weight, and BMI calculation.
26. For the Excel file Test Scores and Sales made by nine salesmen during the past year, compute the coefficient of correlation between the test scores and sales using Excel's CORREL function.
27. The Excel file Beverage Sales lists a sample of weekday sales at a convenience store, along with the daily high temperature. Compute the covariance and correlation between temperature and sales.
28. For the Excel file Credit Risk Data, compute the correlation between age and months employed, age and combined checking and savings account balance, and the number of months as a customer and amount of money in the bank. Interpret your results.
29. In the Excel file Call Center Data, how strongly is length of service correlated with starting age?
30. A national homebuilder builds single-family homes and condominium-style townhouses. The Excel file House Sales provides information on the selling price, lot cost, type of home, and region of the coun$\operatorname{try}(\mathrm{M}=$ Midwest, $\mathrm{S}=$ South $)$ for closings during 1 month. Use PivotTables to find the average selling price and lot cost for each type of home in each region of the market. What conclusions might you reach from this information?
31. The Excel file Auto Survey contains a sample of data about vehicles owned, whether they were purchased new or used, and other types of data. Use the Descriptive Statistics tool to summarize the numerical data, find the correlations among each of the numerical variables, and construct PivotTables to find the average miles/gallon for each type of vehicle, and also the average miles/gallon and average age for each type of new and used vehicle. Summarize the observations that you can make from these results.
32. Compute the z-scores for the data in the Excel file Airport Service Times. How many observations fall farther than three standard deviations from the mean? Would you consider these as outliers? Why or why not?
33. Use the Manufacturing Measurements data to compute sample averages, assuming that each row in the data file represents a sample from the manufacturing process. Plot the sample averages on a line chart, add the control limits, and interpret your results.
34. Find the mean and variance of a deck of 52 cards, where an ace is counted as 11 and a picture card as 10. Construct a frequency distribution and histogram of the card values. Shuffle the deck and deal two
samples of 20 cards (starting with a full deck each time); compute the mean and variance and construct a histogram. How does the sample data differ from the population data? Repeat this experiment for samples of 5 cards and summarize your conclusions.
35. Examine the z-scores you computed in Problem 4 for the Atlanta Airline Data. Do they suggest any outliers in the data?
36. In the Excel file Weddings, find the averages and median wedding cost and the sample standard deviation. What would you tell a newly engaged couple about what cost to expect? Consider the effect of possible outliers in the data.
37. A producer of computer-aided design software for the aerospace industry receives numerous calls for technical support. Tracking software is used to monitor response and resolution times. In addition, the company surveys customers who request support using the following scale:

0 -did not exceed expectations
1 -marginally met expectations
2-met expectations
3-exceeded expectations
4-greatly exceeded expectations
The questions are as follows:
Q1: Did the support representative explain the process for resolving your problem?
Q2: Did the support representative keep you informed about the status of progress in resolving your problem?
Q3: Was the support representative courteous and professional?
Q4: Was your problem resolved?
Q5: Was your problem resolved in an acceptable amount of time?
Q6: Overall, how did you find the service provided by our technical support department?
A final question asks the customer to rate the overall quality of the product using this scale:

```
0-very poor
1-poor
2-good
3-very good
4-excellent
```

A sample of survey responses and associated resolution and response data are provided in the Excel
file Customer Support Survey. Use whatever Excel charts and descriptive statistics you deem appropriate to convey the information in these sample data and write a report to the manager explaining your findings and conclusions.
38. A Midwest pharmaceutical company manufactures individual syringes with a self-contained, single dose of an injectable drug. ${ }^{7}$ In the manufacturing process, sterile liquid drug is poured into glass syringes and sealed with a rubber stopper. The remaining stage involves insertion of the cartridge into plastic syringes and the electrical "tacking" of the containment cap at a precisely determined length of the syringe. A cap that is tacked at a shorter-than-desired length (less than 4.920 inches) leads to pressure on the cartridge stopper and,
hence, partial or complete activation of the syringe. Such syringes must then be scrapped. If the cap is tacked at a longer-than-desired length (4.980 inches or longer), the tacking is incomplete or inadequate, which can lead to cap loss and a potential cartridge loss in shipment and handling. Such syringes can be reworked manually to attach the cap at a lower position. However, this process requires a 100% inspection of the tacked syringes and results in increased cost for the items. This final production step seemed to be producing more and more scrap and reworked syringes over successive weeks.

The Excel file Syringe Samples provides samples taken every 15 minutes from the manufacturing process. Develop control limits using the data and use statistical thinking ideas to draw conclusions.

Case: Drout Advertising Research Project

The background for this case was introduced in Chapter 1. This is a continuation of the case in Chapter 3. For this part of the case, summarize the numerical data using descriptive statistics measures, find proportions for categorical variables, examine correlations, and use

PivotTables as appropriate to compare average values. Write up your findings in a formal document, or add your findings to the report you completed for the case in Chapter 3 at the discretion of your instructor.

Case: Performance Lawn Equipment

Elizabeth Burke wants some detailed statistical information about much of the data in the PLE database. In particular, she wants to know the following:
a. the mean satisfaction ratings and standard deviations by year and region in the worksheets Dealer Satisfaction and End-User Satisfaction
b. a descriptive statistical summary for the 2012 customer survey data
c. how the response times differ in each quarter of the worksheet Response Time
d. how defects after delivery (worksheet Defects after Delivery) have changed over these 5 years
e. how sales of mowers and tractors compare with industry totals and how strongly monthly product sales are correlated with industry sales

Perform these analyses and summarize your results in a written report to Ms. Burke.

[^33]This page intentionally left blank

5
 Probability Distributions and Data Modeling

,

 π
Learning Objectives

After studying this chapter, you will be able to:

- Explain the concept of probability and provide examples of the three definitional perspectives of probability.
- Use probability rules and formulas to perform probability calculations.
- Explain conditional probability and how it can be applied in a business context.
- Compute conditional probabilities from crosstabulation data.
- Determine if two events are independent using probability arguments.
- Apply the multiplication law of probability.
- Explain the difference between a discrete and a continuous random variable.
Define a probability distribution.
- Verify the properties of a probability mass function.
- Use the cumulative distribution function to compute probabilities over intervals.
- Compute the expected value and variance of a discrete random variable.
- Use expected values to support simple business decisions.
- Calculate probabilities for the Bernoulli, binomial, and Poisson distributions, using the probability mass function and Excel functions.
- Explain how a probability density function differs from a probability mass function.
- List the key properties of probability density functions.
- Use the probability density and cumulative distribution functions to calculate probabilities for a uniform distribution.
Describe the normal and standard normal distributions and use Excel functions to calculate probabilities.
Use the standard normal distribution table and z-values to compute normal probabilities.
- Describe properties of the exponential distribution and compute probabilities.
- Give examples of other types of distributions used in business applications.
- Sample from discrete distributions in a spreadsheet using VLOOKUP.
- Use Excel's Random Number Generation tool.
- Generate random variates using Analytic Solver Platform functions.
Fit distributions using Analytic Solver Platform.

Most business decisions involve some elements of uncertainty and randomness. For example, the times to repair computers in the Computer Repair Times Excel file that we discussed in Chapter 4 showed quite a bit of uncertainty that we needed to understand to provide information to customers about their computer repairs. We also saw that different samples of repair times result in different means, variances, and frequency distributions. Therefore, it would be beneficial to be able to identify some general characteristics of repair times that would apply to the entire population-even those repairs that have not yet taken place. In other situations, we may not have any data for analysis and simply need to make some judgmental assumptions about future uncertainties. For example, to develop a model to predict the profitability of a new and innovative product, we would need to make reliable assumptions about sales and consumer behavior without any prior data on which to base them. Characterizing the nature of distributions of data and specifying uncertain assumptions in decision models relies on fundamental knowledge of probability concepts and probability distributions-the subject of this chapter.

Basic Concepts of Probability

The notion of probability is used everywhere, both in business and in our daily lives; from market research and stock market predictions to the World Series of Poker and weather forecasts. In business, managers need to know such things as the likelihood that a new product will be profitable or the chances that a project will be completed on time. Probability quantifies the uncertainty that we encounter all around us and is an important building block for business analytics applications. Probability is the likelihood that an outcome-such as whether a new product will be profitable or not or whether a project will be completed within 15 weeks-occurs. Probabilities are expressed as values between 0 and 1 , although many people convert them to percentages. The statement that there is a 10% chance that oil prices will rise next quarter is another way of stating that the probability of a rise in oil prices is 0.1 . The closer the probability is to 1 , the more likely it is that the outcome will occur.

To formally discuss probability, we need some new terminology. An experiment is a process that results in an outcome. An experiment might be as simple as rolling two dice, observing and recording weather conditions, conducting a market research study, or watching the stock market. The outcome of an experiment is a result that
we observe; it might be the sum of two dice, a description of the weather, the proportion of consumers who favor a new product, or the change in the Dow Jones Industrial Average (DJIA) at the end of a week. The collection of all possible outcomes of an experiment is called the sample space. For instance, if we roll two fair dice, the possible outcomes are the numbers 2 through 12; if we observe the weather, the outcome might be clear, partly cloudy, or cloudy; the outcomes for customer reaction to a new product in a market research study would be favorable or unfavorable, and the weekly change in the DJIA can theoretically be any positive or negative real number. Note that a sample space may consist of a small number of discrete outcomes or an infinite number of outcomes.

Probability may be defined from one of three perspectives. First, if the process that generates the outcomes is known, probabilities can be deduced from theoretical arguments; this is the classical definition of probability.

EXAMPLE 5.1 Classical Definition of Probability

Suppose we roll two dice. If we examine all possible outcomes that may occur, we can easily determine that there are 36: rolling one of six numbers on the first die and rolling one of six numbers on the second die, for example, $(1,1),(1,2),(1,3), \ldots,(6,4),(6,5),(6,6)$. Out of these 36 possible outcomes, 1 outcome will be the number 2 , 2 outcomes will be the number 3 (you can roll a 1 on the first die and 2 on the second, and vice versa), 6 outcomes will be the number 7 , and so on. Thus, the probability of rolling any number is the ratio of the number of ways of rolling that number to the total number of possible outcomes. For instance, the probability of rolling a

2 is $1 / 36$, the probability of rolling a 3 is $2 / 36=1 / 18$, and the probability of rolling a 7 is $6 / 36=1 / 6$. Similarly, if two consumers are asked whether or not they like a new product, there could be 4 possible outcomes:

1. (like, like)
2. (like, dislike)
3. (dislike, like)
4. (dislike, dislike)

If these are assumed to be equally likely, the probability that at least one consumer would respond unfavorably is $3 / 4$.

The second approach to probability, called the relative frequency definition, is based on empirical data. The probability that an outcome will occur is simply the relative frequency associated with that outcome.

EXAMPLE 5.2 Relative Frequency Definition of Probability

Using the sample of computer repair times in the Excel file Computer Repair Times, we developed the relative frequency distribution in Chapter 4, shown again in Figure 5.1. We could state that the probability that a computer would be repaired in as little as 4 days is 0 , the
probability that it would be repaired in exactly 10 days is 0.076 , and so on. In using the relative frequency definition, it is important to understand that as more data become available, the distribution of outcomes and, hence, the probabilities may change.

Finally, the subjective definition of probability is based on judgment and experience, as financial analysts might use in predicting a 75% chance that the DJIA will increase 10% over the next year, or as sports experts might predict, at the start of the football season, a 1 -in- 5 chance (0.20 probability) of a certain team making it to the Super Bowl.

Which definition to use depends on the specific application and the information we have available. We will see various examples that draw upon each of these perspectives.

Figure : 5.1
Distribution of Computer
Repair Times

Probability Rules and Formulas

Suppose we label the n outcomes in a sample space as $O_{1}, O_{2}, \ldots, O_{n}$, where O_{i} represents the i th outcome in the sample space. Let $P\left(O_{i}\right)$ be the probability associated with the outcome O_{i}. Two basic facts govern probability:

The probability associated with any outcome must be between 0 and 1 , or

$$
\begin{equation*}
0 \leq P\left(O_{i}\right) \leq 1 \text { for each outcome } O_{i} \tag{5.1}
\end{equation*}
$$

The sum of the probabilities over all possible outcomes must be 1.0 , or

$$
\begin{equation*}
P\left(O_{1}\right)+P\left(O_{2}\right)+\cdots+P\left(O_{n}\right)=1 \tag{5.2}
\end{equation*}
$$

An event is a collection of one or more outcomes from a sample space. An example of an event would be rolling a 7 or an 11 with two dice, completing a computer repair in between 7 and 14 days, or obtaining a positive weekly change in the DJIA. This leads to the following rule:

Rule 1. The probability of any event is the sum of the probabilities of the outcomes that comprise that event.

EXAMPLE 5.3 Computing the Probability of an Event

Consider the event of rolling a 7 or 11 on two dice. The probability of rolling a 7 is $\frac{6}{36}$ and the probability of rolling an 11 is $\frac{2}{36}$; thus, the probability of rolling a 7 or 11 is $\frac{6}{36}+\frac{2}{36}=\frac{8}{36}$. Similarly, the probability of repairing a computer in 7 days or less is the sum of the probabilities of the outcomes
$O_{1}=0, O_{2}=1, O_{3}=2, O_{4}=3, O_{5}=4, O_{6}=5, O_{7}=6$, and $\mathrm{O}_{8}=7$ days, or $P\left(\mathrm{O}_{6}\right)+P\left(\mathrm{O}_{7}\right)+P\left(\mathrm{O}_{8}\right)=0.004+$ $0.008+0.020=0.032$ (note that the probabilities $P\left(O_{1}\right)=P\left(O_{2}\right)=P\left(O_{3}\right)=P\left(O_{4}\right)=P\left(O_{5}\right)=0$; see Figure 5.1).

If A is any event, the complement of A, denoted A^{c}, consists of all outcomes in the sample space not in A.

Rule 2. The probability of the complement of any event A is $P\left(A^{c}\right)=1-P(A)$.

EXAMPLE 5.4 Computing the Probability of the Complement of an Event

If $A=\{7,11\}$ in the dice example, then $A^{c}=$ $\{2,3,4,5,6,8,9,10,12\}$. Thus, the probability of rolling anything other than a 7 or 11 is $P\left(A^{c}\right)=1-\frac{8}{36}=\frac{28}{36}$. If $A=\{0,1,2,3,4,5,6,7\}$ in the computer repair example,
$A^{c}=\{8,9, \ldots, 42\}$ and $P\left(A^{c}\right)=1-0.032=0.968$. This is the probability of completing the repair in more than a week.

The union of two events contains all outcomes that belong to either of the two events. To illustrate this with rolling two dice, let A be the event $\{7,11\}$ and B be the event $\{2,3,12\}$. The union of A and B is the event $\{2,3,7,11,12\}$. If A and B are two events, the probability that some outcome in either A or B (i.e., the union of A and B) occurs is denoted as $P(A$ or $B)$. Finding this probability depends on whether the events are mutually exclusive or not.

Two events are mutually exclusive if they have no outcomes in common. The events A and B in the dice example are mutually exclusive. When events are mutually exclusive, the following rule applies:

Rule 3. If events A and B are mutually exclusive, then $P(A$ or $B)=P(A)+P(B)$.

EXAMPLE 5.5 Computing the Probability of Mutually Exclusive Events

For the dice example, the probability of event $A=\{7,11\}$ is $P(A)=\frac{8}{36}$, and the probability of event $B=\{2,3,12\}$ is $P(B)=\frac{4}{36}$. Therefore, the probability
that either event A or B occurs, that is, the roll of the dice is either $2,3,7,11$, or 12 , is $\frac{8}{36}+\frac{4}{36}=\frac{12}{36}$.

If two events are not mutually exclusive, then adding their probabilities would result in double-counting some outcomes, so an adjustment is necessary. This leads to the following rule:

Rule 4. If two events A and B are not mutually exclusive, then $P(A$ or $B)=$ $P(A)+P(B)-P(A$ and $B)$.

Here, (A and B) represents the intersection of events A and B-that is, all outcomes belonging to both A and B.

EXAMPLE 5.6 Computing the Probability of Non-Mutually Exclusive Events

In the dice example, let us define the events $A=\{2,3,12\}$ and $B=$ \{even number $\}$. Then A and B are not mutually exclusive because both events have
the numbers 2 and 12 in common. Thus, the intersection $(A$ and $B)=\{2,12\}$. Therefore, $P(A$ or $B)=P\{2,3,12\}+$ $P($ even number $)-P(A$ and $B)=\frac{4}{36}+\frac{18}{36}-\frac{2}{36}=\frac{20}{36}$.

Joint and Marginal Probability

In many applications, more than one event occurs simultaneously, or in statistical terminology, jointly. We will only discuss the simple case of two events. For instance, suppose that a sample of 100 individuals were asked to evaluate their preference for three new
proposed energy drinks in a blind taste test. The sample space consists of two types of outcomes corresponding to each individual: gender $(F=$ female or $M=$ male $)$ and brand preference (B_{1}, B_{2}, or B_{3}). We may define a new sample space consisting of the outcomes that reflect the different combinations of outcomes from these two sample spaces. Thus, for any respondent in the blind taste test, we have six possible (mutually exclusive) combinations of outcomes:

1. $O_{1}=$ the respondent is female and prefers brand 1
2. $O_{2}=$ the respondent is female and prefers brand 2
3. $O_{3}=$ the respondent is female and prefers brand 3
4. $O_{4}=$ the respondent is male and prefers brand 1
5. $O_{5}=$ the respondent is male and prefers brand 2
6. $O_{6}=$ the respondent is male and prefers brand 3

Here, the probability of each of these events is the intersection of the gender and brand preference event. For example, $P\left(O_{1}\right)=P\left(F\right.$ and $\left.B_{1}\right), P\left(O_{2}\right)=P\left(F\right.$ and $\left.B_{2}\right)$, and so on. The probability of the intersection of two events is called a joint probability. The probability of an event, irrespective of the outcome of the other joint event, is called a marginal probability. Thus, $P(F), P(M), P\left(B_{1}\right), P\left(B_{2}\right)$, and $P\left(B_{3}\right)$ would be marginal probabilities.

EXAMPLE 5.7 Applying Probability Rules to Joint Events

Figure 5.2 shows a portion of the data file Energy Drink Survey, along with a cross-tabulation constructed from a PivotTable. The joint probabilities of gender and brand preference are easily calculated by dividing the number of respondents corresponding to each of the six outcomes listed above by the total number of respondents, 100. Thus, $P\left(F\right.$ and $\left.B_{1}\right)=$ $P\left(O_{1}\right)=9 / 100=0.09, P\left(F\right.$ and $\left.B_{2}\right)=P\left(O_{2}\right)=6 / 100=$ 0.06 , and so on. Note that the sum of the probabilities of all these outcomes is 1.0 .

We see that the event F, (respondent is female) is comprised of the outcomes $\mathrm{O}_{1}, \mathrm{O}_{2}$, and O_{3}, and therefore $P(F)=P\left(O_{1}\right)+P\left(O_{2}\right)+P\left(O_{3}\right)=0.37$ using Rule 1. The complement of this event is M; that is, the respondent is male. Note that $P(M)=0.63=1-P(F)$, as reflected by Rule 2. The event B_{1} is comprised of the outcomes O_{1} and O_{4}, and thus, $P\left(B_{1}\right)=P\left(O_{1}\right)+P\left(O_{4}\right)=0.34$. Similarly, we find that $P(B 2)=0.23$ and $P\left(B_{3}\right)=0.43$.

Events F and M are mutually exclusive, as are events B_{1}, B_{2}, and B_{3} since a respondent may be only male
or female and prefer exactly one of the three brands. We can use Rule 3 to find, for example, $P\left(B_{1}\right.$ or $\left.B_{2}\right)=$ $0.34+0.23=0.57$. Events F and B_{1}, however, are not mutually exclusive because a respondent can be both female and prefer brand 1. Therefore, using Rule 4, we have $P\left(F\right.$ or $\left.B_{1}\right)=P(F)+P\left(B_{1}\right)-P\left(F\right.$ and $\left.B_{1}\right)=$ $0.37+0.34-0.09=0.62$.

The joint probabilities can easily be computed, as we have seen, by dividing the values in the cross-tabulation by the total, 100. Below the PivotTable in Figure 5.2 is a joint probability table, which summarizes these joint probabilities.

The marginal probabilities are given in the margins of the joint probability table by summing the rows and columns. Note, for example, that $P(F)=P\left(F\right.$ and $\left.B_{1}\right)+P(F$ and $\left.B_{2}\right)+P\left(F\right.$ and $\left.B_{3}\right)=0.09+0.06+0.22=0.37$. Similarly, $P\left(B_{1}\right)=P\left(F\right.$ and $\left.B_{1}\right)+P\left(M\right.$ and $\left.B_{1}\right)=0.09+$ $0.25=0.34$.

This discussion of joint probabilities leads to the following probability rule:

Rule 5. If event A is comprised of the outcomes $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and event B is comprised of the outcomes $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$, then

$$
P\left(A_{i}\right)=P\left(A_{i} \text { and } B_{1}\right)+P\left(A_{i} \text { and } B_{2}\right)+\cdots+P\left(A_{i} \text { and } B_{n}\right)
$$

	A	B	C	D	E	F		G	H	1
1	Energy Drink Survey									
2										
3	Respondent	Gender	Brand Preference							
4	1	Male	Brand 3		Count of Respondent	Column Labels	\checkmark			
5	2	Female	Brand 3		Row Labels	Brand 1		Brand 2	Brand 3	Grand Total
6	3	Male	Brand 3		Female		9	6	22	37
7	4	Male	Brand 1		Male		25	17	21	63
8	5	Male	Brand 1		Grand Total		34	23	43	100
9	6	Female	Brand 2							
10	7	Male	Brand 2							
11	8	Female	Brand 2		Joint Probability Table	Brand 1		Brand 2	Brand 3	Grand Total
12	9	Male	Brand 1		Female		0.09	0.06	0.22	0.37
13	10	Female	Brand 3		Male		0.25	0.17	0.21	0.63
14	11	Male	Brand 3		Grand Total		0.34	0.23	0.43	1
15	12	Male	Brand 2							
16	13	Female	Brand 3							

Figure : 5.2 :
Portion of Excel File Energy Drink Survey

Conditional Probability

Conditional probability is the probability of occurrence of one event A, given that another event B is known to be true or has already occurred.

EXAMPLE 5.8 Computing a Conditional Probability in a Cross-Tabulation

We will use the information shown in the energy drink survey example in Figure 5.2 to illustrate how to compute conditional probabilities from a cross-tabulation or joint probability table.

Suppose that we know that a respondent is male. What is the probability that he prefers brand 1? From the PivotTable, note that there are only 63 males in the group
and of these, 25 prefer brand 1 . Therefore, the probability that a male respondent prefers brand 1 is $\frac{25}{63}$. We could have obtained the same result from the joint probability table by dividing the joint probability 0.25 (the probability that the respondent is male and prefers brand 1) by the marginal probability 0.63 (the probability that the respondent is male).

Conditional probabilities are useful in analyzing data in cross-tabulations, as well as in other types of applications. Many companies save purchase histories of customers to predict future sales. Conditional probabilities can help to predict future purchases based on past purchases.

EXAMPLE 5.9 Conditional Probability in Marketing

The Excel file Apple Purchase History presents a hypothetical history of consumer purchases of Apple products, showing the first and second purchase for a sample of 200 customers that have made repeat purchases (see Figure 5.3). The PivotTable in Figure 5.4 shows the count of the type of second purchase given that each product was purchased first. For example, 13 customers purchased iMacs as their first Apple product. Then the conditional probability of purchasing
an iPad given that the customer first purchased an iMac is $\frac{2}{13}=0.15$. Similarly, 74 customers purchased a MacBook as their first purchase; the conditional probability of purchasing an iPhone if a customer first purchased a MacBook is $\frac{26}{74}=0.35$. By understanding which products are more likely to be purchased by customers who already own other products, companies can better target advertising strategies.

Figure : 5.3
Portion of Excel File Apple Purchase History

Figure : 5.4
PivotTable of Purchase Behavior

A		
1	B	
2	Apple Products	Purchase History
3	First Purchase	Second Purchase
4	iPod	iMac
5	iPhone	MacBook
6	iMac	iPhone
7	iPhone	iPod
8	iPod	iPhone
9	MacBook	iPod
10	iPhone	MacBook
11	MacBook	iPhone
12	iPod	MacBook

	A	B		C		D	E		F	G
1										
2										
3	Count of Second Purchase	Column Labels	\checkmark							
4	Row Labels	IMac		IPad		IPhone	IPod		MacBook	Grand Total
5	iMac				2	3		2	6	13
6	iPad		1			1		2	10	14
7	iPhone		3		4			14	21	42
8	iPod		3		12	12			30	57
9	MacBook		8		16	26		24		74
10	Grand Total		15		34	42		42	67	200

In general, the conditional probability of an event A given that event B is known to have occurred is

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)} \tag{5.3}
\end{equation*}
$$

We read the notation $P(A \mid B)$ as "the probability of A given B."

EXAMPLE 5.10 Using the Conditional Probability Formula

Using the data from the energy drink survey example, substitute B_{1} for A and M for B in formula (5.3). This results in the conditional probability of B_{1} given M :

$$
P\left(B_{1} \mid M\right)=\frac{P\left(B_{1} \text { and } M\right)}{P(M)}=\frac{0.25}{0.63}=0.397 .
$$

Similarly, the probability of preferring brand 1 if the respondent is female is

$$
P\left(B_{1} \mid F\right)=\frac{P\left(B_{1} \text { and } F\right)}{P(F)}=\frac{0.09}{0.37}=0.243 \text {. }
$$

The following table summarizes the conditional probabilities of brand preference given gender:

P (Brand\|Gender)	Brand 1	Brand 2	Brand 3
Male	0.397	0.270	0.333
Female	0.243	0.162	0.595

Such information can be important in marketing efforts. Knowing that there is a difference in preference by gender can help focus advertising. For example, we see that about 40% of males prefer brand 1, whereas only about 24% of females do, and a higher proportion of females prefer brand 3 . This suggests that it would make more sense to focus on advertising brand 1 more in maleoriented media and brand 3 in female-oriented media.

The conditional probability formula may be used in other ways. For example, multiplying both sides of formula (5.3) by $P(B)$, we obtain $P(A$ and $B)=P(A \mid B) P(B)$. Note that we may switch the roles of A and B and write $P(B$ and $A)=P(B \mid A) P(A)$. But $P(B$ and $A)$ is the same as $P(A$ and $B)$; thus we can express $P(A$ and $B)$ in two ways:

$$
\begin{equation*}
P(A \text { and } B)=P(A \mid B) P(B)=P(B \mid A) P(A) \tag{5.4}
\end{equation*}
$$

This is often called the multiplication law of probability.

We may use this concept to express the probability of an event in a joint probability table in a different way. Using the energy drink survey again in Figure 5.2, note that

$$
P(F)=P(F \text { and Brand } 1)+P(F \text { and Brand } 2)+P(F \text { and Brand } 3)
$$

Using formula (5.4), we can express the joint probabilities $P(A$ and $B)$ by $P(A \mid B) P(B)$. Therefore,
$P(F)=P(F \mid$ Brand 1) $P($ Brand 1) $+P(F \mid$ Brand 2) $P($ Brand 2) $+P(F \mid$ Brand 3) $P($ Brand 3 $)=(0.265)(0.34)+(0.261)(0.23)+(0.512)(0.43)=0.37$ (within rounding precision).
We can express this calculation using the following extension of the multiplication law of probability. Suppose $B_{1}, B_{2}, \ldots, B_{n}$ are mutually exclusive events whose union comprises the entire sample space. Then

$$
\begin{equation*}
P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\cdots+P\left(A \mid B_{n}\right) P\left(B_{n}\right) \tag{5.5}
\end{equation*}
$$

EXAMPLE 5.11 Using the Multiplication Law of Probability

Abstract

Texas Hold 'Em has become a popular game because of the publicity surrounding the World Series of Poker. At the beginning of a game, players each receive two cards face down (we won't worry about how the rest of the game is played). Suppose that a player receives an ace on her first card. The probability that she will end up with "pocket aces" (two aces in the hand) is P (ace on first card and ace on second card) $=$ $P($ ace on second card | ace on first card $) \times P($ ace on first

card). Since the probability of an ace on the first card is $4 / 52$ and the probability of an ace on the second card if she has already drawn an ace is $3 / 51$, we have $P($ ace on first card and ace on second card)

$$
=P(\text { ace on second card |ace on first card })
$$

$\times \mathrm{P}$ (ace on first card)
$=\left(\frac{3}{51}\right) \times\left(\frac{4}{52}\right)=0.004525$

In Example 5.10, we see that the probability of preferring a brand depends on gender. We may say that brand preference and gender are not independent. We may formalize this concept by defining the notion of independent events: Two events A and B are independent if $P(A \mid B)=P(A)$.

EXAMPLE 5.12 Determining if Two Events Are Independent

We use this definition in the energy drink survey example. Recall that the conditional probabilities of brand preference given gender are

P (Brand\|Gender)	Brand 1	Brand 2	Brand 3
Male	0.397	0.270	0.333
Female	0.243	0.162	0.595

We see that whereas $P\left(B_{1} \mid M\right)=0.397, P\left(B_{1}\right)$ was shown to be 0.34 in Example 5.7; thus, these two events are not independent.

Finally, we see that if two events are independent, then we can simplify the multiplication law of probability in equation (5.4) by substituting $P(A)$ for $P(A \mid B)$:

$$
\begin{equation*}
P(A \text { and } B)=P(B) P(A)=P(A) P(B) \tag{5.6}
\end{equation*}
$$

EXAMPLE 5.13 Using the Multiplication Law for Independent Events

Suppose A is the event that a 6 is first rolled on a pair of dice and B is the event of rolling a 2,3 , or 12 on the next roll. These events are independent because the roll of a pair of
dice does not depend on the previous roll. Then we may compute $P(A$ and $B)=P(A) P(B)=\left(\frac{5}{36}\right)\left(\frac{4}{36}\right)=\frac{20}{1296}$.

Random Variables and Probability Distributions

Some experiments naturally have numerical outcomes, such as a roll of the dice, the time it takes to repair computers, or the weekly change in a stock market index. For other experiments, such as obtaining consumer response to a new product, the sample space is categorical. To have a consistent mathematical basis for dealing with probability, we would like the outcomes of all experiments to be numerical. A random variable is a numerical description of the outcome of an experiment. Formally, a random variable is a function that assigns a real number to each element of a sample space. If we have categorical outcomes, we can associate an arbitrary numerical value to them. For example, if a consumer likes a product in a market research study, we might assign this outcome a value of 1 ; if the consumer dislikes the product, we might assign this outcome a value of 0 . Random variables are usually denoted by capital italic letters, such as X or Y.

Random variables may be discrete or continuous. A discrete random variable is one for which the number of possible outcomes can be counted. A continuous random variable has outcomes over one or more continuous intervals of real numbers.

EXAMPLE 5.14 Discrete and Continuous Random Variables

The outcomes of rolling two dice (the numbers 2 through 12) and customer reactions to a product (like or dislike) are discrete random variables. The number of outcomes may be finite or theoretically infinite, such as the number of hits on a Web site link during some period of time - we cannot place a guaranteed upper limit on this
number; nevertheless, the number of hits can be counted. Example of continuous random variables are the weekly change in the DJIA, which may assume any positive or negative value, the daily temperature, the time to complete a task, the time between failures of a machine, and the return on an investment.

A probability distribution is the characterization of the possible values that a random variable may assume along with the probability of assuming these values. A probability distribution can be either discrete or continuous, depending on the nature of the random variable it models. Discrete distributions are easier to understand and work with, and we deal with them first.

We may develop a probability distribution using any one of the three perspectives of probability. First, if we can quantify the probabilities associated with the values of a random variable from theoretical arguments; then we can easily define the probability distribution.

EXAMPLE 5.15 Probability Distribution of Dice Rolls

The probabilities of the outcomes for rolling two dice are calculated by counting the number of ways to roll each number divided by the total number of possible outcomes.

These, along with an Excel column chart depicting the probability distribution, are shown from the Excel file Dice Rolls in Figure 5.5.

Figure : 5.5
Probability Distribution of Rolls of Two Dice

Second, we can calculate the relative frequencies from a sample of empirical data to develop a probability distribution. Thus, the relative frequency distribution of computer repair times (Figure 5.1) is an example. Because this is based on sample data, we usually call this an empirical probability distribution. An empirical probability distribution is an approximation of the probability distribution of the associated random variable, whereas the probability distribution of a random variable, such as the one derived from counting arguments, is a theoretical model of the random variable.

Finally, we could simply specify a probability distribution using subjective values and expert judgment. This is often done in creating decision models for the phenomena for which we have no historical data.

EXAMPLE 5.16 A Subjective Probability Distribution

Figure 5.6 shows a hypothetical example of the distribution of one expert's assessment of how the DJIA might change in the next year. This might have been created purely by intuition and expert judgment,
but we hope it would be supported by some extensive analysis of past and current data using business analytics tools.

Researchers have identified many common types of probability distributions that are useful in a variety of applications of business analytics. A working knowledge of common families of probability distributions is important for several reasons. First, it can help you to understand the underlying process that generates sample data. We investigate the relationship between distributions and samples later. Second, many phenomena in business and nature follow some theoretical distribution and, therefore, are useful in building decision models. Finally, working with distributions is essential in computing probabilities of occurrence of outcomes to assess risk and make decisions.

Figure : 5.6
Subjective Probability Distribution of DJIA Change

4	A	B	C	D		E	F	F	G		H		I
1	Change in DJIA Subjective Probability		Predicted Change in DJIA										
2	-20\%	0.01											
3	-15\%	0.05											
4	-10\%	0.08	$\begin{array}{rr} & 0.25 \\ \text { ¿ } & 0.2 \\ \text { " } & 0.15 \\ \text { N0 } & 0.5 \\ \text { 20 } & 0.1 \end{array}$										
5	-5\%	0.15											
6	0\%	0.2		\square									
7	5\%	0.25											
8	10\%	0.18											
9	15\%	0.06	0.050										
10	20\%	0.02										\square	
11				-20\%		-10\%	$\begin{aligned} & -5 \% \quad 0 \% \\ & \text { Outcom } \end{aligned}$		5\% 10\%		15\%	20\%	
12													
13													

Discrete Probability Distributions

For a discrete random variable X, the probability distribution of the discrete outcomes is called a probability mass function and is denoted by a mathematical function, $f(x)$. The symbol x_{i} represents the i th value of the random variable X and $f\left(x_{i}\right)$ is the probability.

EXAMPLE 5.17 Probability Mass Function for Rolling Two Dice

For instance, in Figure 5.5 for the dice example, the values of the random variable X, which represents the sum of the rolls of two dice, are $x_{1}=2, x_{2}=3$ $x_{3}=4, x_{4}=5, x_{5}=6, x_{6}=7, x_{7}=8, x_{8}=9, x_{3}=10$

$$
x_{10}=11, x_{11}=12 . \text { The probability mass function for }
$$

$$
\begin{aligned}
& f\left(x_{5}\right)=\frac{5}{36}=0.1389 \\
& f\left(x_{6}\right)=\frac{6}{36}=0.1667 \\
& f\left(x_{7}\right)=\frac{5}{36}=0.1389 \\
& f\left(x_{8}\right)=\frac{4}{36}=0.1111 \\
& f\left(x_{9}\right)=\frac{3}{36}=0.0833 \\
& f\left(x_{10}\right)=\frac{2}{36}=0.0556 \\
& f\left(x_{11}\right)=\frac{1}{36}=0.0278
\end{aligned}
$$ X is

$$
\begin{aligned}
& f\left(x_{1}\right)=\frac{1}{36}=0.0278 \\
& f\left(x_{2}\right)=\frac{2}{36}=0.0556 \\
& f\left(x_{3}\right)=\frac{3}{36}=0.0833 \\
& f\left(x_{4}\right)=\frac{4}{36}=0.1111
\end{aligned}
$$

A probability mass function has the properties that (1) the probability of each outcome must be between 0 and 1 and (2) the sum of all probabilities must add to 1 ; that is,

$$
\begin{align*}
& 0 \leq f\left(x_{i}\right) \leq 1 \quad \text { for all } i \tag{5.7}\\
& \sum_{i} f\left(x_{i}\right)=1 \tag{5.8}
\end{align*}
$$

You can easily verify that this holds in each of the examples we have described.

A cumulative distribution function, $F(x)$, specifies the probability that the random variable X assumes a value less than or equal to a specified value, x. This is also denoted as $P(X \leq x)$ and read as "the probability that the random variable X is less than or equal to x."

EXAMPLE 5.18 Using the Cumulative Distribution Function

The cumulative distribution function for rolling two dice is shown in Figure 5.7, along with an Excel line chart that describes it visually from the worksheet CumDist in the Dice Rolls Excel file. To use this, suppose we want to know the probability of rolling a 6 or less. We simply look up the cumulative probability for 6 , which is 0.5833 . Alternatively, we could locate the point for $x=6$ in the chart and estimate the probability from the graph. Also note that since the probability of rolling a 6 or less is 0.5833 , then the probability of the complementary event (rolling a 7 or more) is $1-0.5833=0.4167$. We can also
use the cumulative distribution function to find probabilities over intervals. For example, to find the probability of rolling a number between 4 and $8, P(4 \leq X \leq 8)$, we can find $P(X \leq 8)$ and subtract $P(X \leq 3)$; that is,

$$
\begin{aligned}
& P(4 \leq X \leq 8)=P(X \leq 8)-P(X \leq 3) \\
& \quad=0.7222-0.0833=0.6389
\end{aligned}
$$

A word of caution. Be careful with the endpoints when computing probabilities over intervals for discrete distributions; because 4 is included in the interval we wish to compute, we need to subtract $P(X \leq 3)$, not $P(X \leq 4)$.

Expected Value of a Discrete Random Variable

The expected value of a random variable corresponds to the notion of the mean, or average, for a sample. For a discrete random variable X, the expected value, denoted $E[X]$, is the weighted average of all possible outcomes, where the weights are the probabilities:

$$
\begin{equation*}
E[X]=\sum_{i=1}^{\infty} x_{i} f\left(x_{i}\right) \tag{5.9}
\end{equation*}
$$

	A	B	C	D	E	F	G	H	I	J	K	L	M	
1	Dice Roll Probabilities													
2														
3	Outcome	2	3	4	5	6	7	8	9	10	11	12	Total	
4	Number of Ways	1	2	3	4	5	6	5	4	3	2	1	36	
5	Probability	0.0278	0.0556	0.0833	0.1111	0.1389	0.1667	0.1389	0.1111	0.0833	0.0556	0.0278	1	
6	Cumulative Probability	0.0278	0.0833	0.1667	0.2778	0.4167	0.5833	0.7222	0.8333	0.9167	0.9722	1.0000		
7														
8			Cumulative Distribution Function											
9														
10			1.0000											
11			0.8000											
12				0.6000										
13				$\Psi_{0.4000}$										
14			$\begin{aligned} & 0.2000 \\ & 0.0000 \end{aligned}$											
15					23	45		89	101	1112				
16							67							
17					\times									
18														

Note the similarity to computing the population mean using formula (4.13) in Chapter 4:

$$
\mu=\frac{\sum_{i=1}^{N} f_{i} x_{i}}{N}
$$

If we write this as the sum of x_{i} multiplied by $\left(f_{i} / N\right)$, then we can think of f_{i} / N as the probability of x_{i}. Then this expression for the mean has the same basic form as the expected value formula.

EXAMPLE 5.19 Computing the Expected Value

We may apply formula (5.9) to the probability distribution of rolling two dice. We multiply the outcome 2 by its probability $1 / 36$, add this to the product of the outcome 3 and its probability, and so on. Continuing in this fashion, the expected value is

```
```

E[X]=2(0.0278) + 3(0.0556) + 4(0.0833) + 5(0.01111)

```
```

E[X]=2(0.0278) + 3(0.0556) + 4(0.0833) + 5(0.01111)
+ 6(0.1389) + 7(0.1667) + 8(0.1389) + 9(0.1111)
+ 6(0.1389) + 7(0.1667) + 8(0.1389) + 9(0.1111)
+10(0.0833) + 11(0.0556) + 12(0.0278) = 7

```
```

 +10(0.0833) + 11(0.0556) + 12(0.0278) = 7
    ```
```


Using Expected Value in Making Decisions

Expected value can be helpful in making a variety of decisions, even those we see in
daily life.

EXAMPLE 5.20 Expected Value on Television

One of the author's favorite examples stemmed from a task in season 1 of Donald Trump's TV show, The Apprentice. Teams were required to select an artist and sell his or her art for the highest total amount of money. One team selected a mainstream artist who specialized in abstract art that sold for between \$1,000 and \$2,000; the second team chose an avant-garde artist whose surrealist and rather controversial art was priced much higher. Guess who won? The first team did, because the probability of selling a piece of mainstream art was much higher than the avant-garde artist whose bizarre art (the team members themselves didn't even like it!) had a very low probability of a sale. A back-of-the-envelope expected value calculation would have easily predicted the winner. A popular game show that took TV audiences by storm several years ago was called Deal or No Deal. The game involved a set of numbered briefcases that contain amounts of money from 1 cent to $\$ 1,000,000$. Contestants begin choosing cases to be opened and removed, and their amounts are shown. After each set of cases is

Figure 5.8 shows these calculations in an Excel spreadsheet (worksheet Expected Value in the Dice Rolls Excel file). As expected (no pun intended), the average value of the roll of two dice is 7 .
opened, the banker offers the contestant an amount of money to quit the game, which the contestant may either choose or reject. Early in the game, the banker's offer is usually less than the expected value of the remaining cases, providing an incentive to continue. However, as the number of remaining cases becomes small, the banker's offers approach or may even exceed the average of the remaining cases. Most people press on until the bitter end and often walk away with a smaller amount than they could have had they been able to estimate the expected value of the remaining cases and make a more rational decision. In one case, a contestant had five briefcases left with $\$ 100, \$ 400, \$ 1,000, \$ 50,000$, and $\$ 300,000$. Because the choice of each case is equally likely, the expected value was $0.2(\$ 100+\$ 400+\$ 1000+\$ 50,000+\$ 300,000)=$ $\$ 70,300$ and the banker offered $\$ 80,000$ to quit. Instead, she said "No Deal" and proceeded to open the \$300,000 suitcase, eliminating it from the game, and took the next banker's offer of $\$ 21,000$, which was more than 60% larger than the expected value of the remaining cases. ${ }^{1}$

[^34]Figure: 5.8
Expected Value Calculations for Rolling Two Dice

| | A | B | C |
| :---: | :---: | :---: | :---: |
| 1 | Expected Value Calculations | | |
| 2 | | | |
| 3 | Outcome, x | Probability, $\mathrm{f}(\mathrm{x})$ | $x^{*} \mathrm{f}(\mathrm{x})$ |
| 4 | 2 | 0.0278 | 0.0556 |
| 5 | 3 | 0.0556 | 0.1667 |
| 6 | 4 | 0.0833 | 0.3333 |
| 7 | 5 | 0.1111 | 0.5556 |
| 8 | 6 | 0.1389 | 0.8333 |
| 9 | 7 | 0.1667 | 1.1667 |
| 10 | 8 | 0.1389 | 1.1111 |
| 11 | 9 | 0.1111 | 1.0000 |
| 12 | 10 | 0.0833 | 0.8333 |
| 13 | 11 | 0.0556 | 0.6111 |
| 14 | 12 | 0.0278 | 0.3333 |
| 15 | | Expected value | 7.0000 |

It is important to understand that the expected value is a "long-run average" and is appropriate for decisions that occur on a repeated basis. For one-time decisions, however, you need to consider the downside risk and the upside potential of the decision. The following example illustrates this.

EXAMPLE 5.21 Expected Value of a Charitable Raffle

Suppose that you are offered the chance to buy one of 1,000 tickets sold in a charity raffle for $\$ 50$, with the prize being $\$ 25,000$. Clearly, the probability of winning is $\frac{1}{1,000}$, or 0.001 , whereas the probability of losing is $1-0.001-0.999$. The random variable X is your net winnings, and its probability distribution is

| x | $f(x)$ |
| :---: | :---: |
| $-\$ 50$ | 0.999 |
| $\$ 24,950$ | 0.001 |

The expected value, $E[X]$, is $-\$ 50(0.999)+\$ 24,950(0.001)$ $=-\$ 25.00$. This means that if you played this game
repeatedly over the long run, you would lose an average of $\$ 25.00$ each time you play. Of course, for any one game, you would either lose $\$ 50$ or win $\$ 24,950$. So the question becomes, Is the risk of losing $\$ 50$ worth the potential of winning $\$ 24,950$? Although the expected value is negative, you might take the chance because the upside potential is large relative to what you might lose, and, after all, it is for charity. However, if your potential loss is large, you might not take the chance, even if the expected value were positive.

Decisions based on expected values are common in real estate development, day trading, and pharmaceutical research projects. Drug development is a good example. The cost of research and development projects in the pharmaceutical industry is generally in the hundreds of millions of dollars and often approaches $\$ 1$ billion. Many projects never make it to clinical trials or might not get approved by the Food and Drug Administration. Statistics indicate that 7 of 10 products fail to return the cost of the company's capital. However, large firms can absorb such losses because the return from one or two blockbuster drugs can easily offset these losses. On an average basis, drug companies make a net profit from these decisions.

EXAMPLE 5.22 Airline Revenue Management

Let us consider a simplified version of the typical revenue management process that airlines use. At any date prior to a scheduled flight, airlines must make a decision as to whether to reduce ticket prices to stimulate demand for unfilled seats. If the airline does not discount the fare, empty seats might not be sold and the airline will lose revenue. If the airline discounts the remaining seats too early (and could have sold them at the higher fare), they would lose profit. The decision depends on the probability p of selling a full-fare ticket if they choose not to discount the price. Because an airline makes hundreds or thousands of such decisions each day, the expected value approach is appropriate.

Assume that only two fares are available: full and discount. Suppose that a full-fare ticket is $\$ 560$, the discount fare is $\$ 400$, and $p=0.75$. For simplification, assume that
if the price is reduced, then any remaining seats would be sold at that price. The expected value of not discounting the price is $0.25(0)+0.75(\$ 560)=\$ 420$. Because this is higher than the discounted price, the airline should not discount at this time. In reality, airlines constantly update the probability p based on the information they collect and analyze in a database. When the value of p drops below the break-even point: $\$ 400=p(\$ 560)$, or $p=0.714$, then it is beneficial to discount. It can also work in reverse; if demand is such that the probability that a higher-fare ticket would be sold, then the price may be adjusted upward. This is why published fares constantly change and why you may receive last-minute discount offers or may pay higher prices if you wait too long to book a reservation. Other industries such as hotels and cruise lines use similar decision strategies.

Variance of a Discrete Random Variable

We may compute the variance, $\operatorname{Var}[X]$, of a discrete random variable X as a weighted average of the squared deviations from the expected value:

$$
\begin{equation*}
\operatorname{Var}[X]=\sum_{j=1}^{\infty}\left(x_{j}-E[X]\right)^{2} f\left(x_{j}\right) \tag{5.10}
\end{equation*}
$$

EXAMPLE 5.23 Computing the Variance of a Random Variable

We may apply formula (5.10) to calculate the variance of the probability distribution of rolling two dice. Figure 5.9
shows these calculations in an Excel spreadsheet (worksheet Variance in Random Variable Calculations Excel file).

Figure: 5.9
Variance Calculations for Rolling Two Dice

Similar to our discussion in Chapter 4, the variance measures the uncertainty of the random variable; the higher the variance, the higher the uncertainty of the outcome. Although variances are easier to work with mathematically, we usually measure the variability of a random variable by its standard deviation, which is simply the square root of the variance.

| 1 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Variance Calculations | | | | | |
| 2 | | | | | | |
| 3 | Outcome, x | Probability, $f(x)$ | $\mathrm{x}^{\star} \mathrm{f}(\mathrm{x})$ | ($\mathrm{x}-\mathrm{E}[\mathrm{X}]$) | $(x-E[X])^{\wedge} 2$ | $(\mathrm{x}-\mathrm{E}[\mathrm{X}])^{\wedge} 2^{\star} \mathrm{f}(\mathrm{x})$ |
| 4 | 2 | 0.0278 | 0.0556 | -5.0000 | 25.0000 | 0.6944 |
| 5 | 3 | 0.0556 | 0.1667 | -4.0000 | 16.0000 | 0.8889 |
| 6 | 4 | 0.0833 | 0.3333 | -3.0000 | 9.0000 | 0.7500 |
| 7 | 5 | 0.1111 | 0.5556 | -2.0000 | 4.0000 | 0.4444 |
| 8 | 6 | 0.1389 | 0.8333 | -1.0000 | 1.0000 | 0.1389 |
| 9 | 7 | 0.1667 | 1.1667 | 0.0000 | 0.0000 | 0.0000 |
| 10 | 8 | 0.1389 | 1.1111 | 1.0000 | 1.0000 | 0.1389 |
| 11 | 9 | 0.1111 | 1.0000 | 2.0000 | 4.0000 | 0.4444 |
| 12 | 10 | 0.0833 | 0.8333 | 3.0000 | 9.0000 | 0.7500 |
| 13 | 11 | 0.0556 | 0.6111 | 4.0000 | 16.0000 | 0.8889 |
| 14 | 12 | 0.0278 | 0.3333 | 5.0000 | 25.0000 | 0.6944 |
| 15 | | Expected value | 7.0000 | | Variance | 5.8333 |

Bernoulli Distribution

The Bernoulli distribution characterizes a random variable having two possible outcomes, each with a constant probability of occurrence. Typically, these outcomes represent "success" $(x=1)$ having probability p and "failure" $(x=0)$, having probability $1-p$. A success can be any outcome you define. For example, in attempting to boot a new computer just off the assembly line, we might define a success as "does not boot up" in defining a Bernoulli random variable to characterize the probability distribution of a defective product. Thus, success need not be a favorable result in the traditional sense.

The probability mass function of the Bernoulli distribution is

$$
f(x)= \begin{cases}p & \text { if } x=1 \tag{5.11}\\ 1-p & \text { if } x=0\end{cases}
$$

where p represents the probability of success. The expected value is p, and the variance is $p(1-p)$.

EXAMPLE 5.24 Using the Bernoulli Distribution

A Bernoulli distribution might be used to model whether an individual responds positively $(x=1)$ or negatively $(x=0)$ to a telemarketing promotion. For example, if you estimate that 20% of customers contacted will make a purchase, the probability distribution that describes whether or not a particular individual makes a purchase is Bernoulli with
$p=0.2$. Think of the following experiment. Suppose that you have a box with 100 marbles, 20 red and 80 white. For each customer, select one marble at random (and then replace it). The outcome will have a Bernoulli distribution. If a red marble is chosen, then that customer makes a purchase; if it is white, the customer does not make a purchase.

Binomial Distribution

The binomial distribution models n independent replications of a Bernoulli experiment, each with a probability p of success. The random variable X represents the number of successes in these n experiments. In the telemarketing example, suppose that we call $n=10$ customers, each of which has a probability $p=0.2$ of making a purchase. Then the probability distribution of the number of positive responses obtained from 10 customers is binomial. Using the binomial distribution, we can calculate the probability that exactly x customers out of the 10 will make a purchase for any value of x between 0 and 10 . A binomial distribution might also be used to model the results of sampling inspection in a production operation or the effects of drug research on a sample of patients.

The probability mass function for the binomial distribution is

$$
f(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x}, & \text { for } x=0,1,2, \ldots, n \tag{5.12}\\ 0, & \text { otherwise }\end{cases}
$$

The notation $\binom{n}{x}$ represents the number of ways of choosing x distinct items from a group of n items and is computed as

$$
\begin{equation*}
\binom{n}{x}=\frac{n!}{x!(n-x)!} \tag{5.13}
\end{equation*}
$$

where $n!(n$ factorial $)=n(n-1)(n-2) \cdots(2)(1)$, and $0!$ is defined to be 1 .

EXAMPLE 5.25 Computing Binomial Probabilities

We may use formula (5.12) to compute binomial probabilities. For example, if the probability that any individual will make a purchase from a telemarketing solicitation is 0.2 , then the probability distribution that x individuals out of 10 calls will make a purchase is

$$
f(x)= \begin{cases}\binom{10}{x}(0.2)^{x}(0.8)^{10-x}, & \text { for } x=0,1,2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

Thus, to find the probability that 3 people will make a purchase among the 10 calls, we compute

$$
\begin{aligned}
& f(3)=\binom{10}{3}(0.2)^{3}(0.8)^{10-3} \\
= & (10!/ 3!7!)(0.008)(0.2097152) \\
= & 120(0.008)(0.2097152)=0.20133
\end{aligned}
$$

The formula for the probability mass function for the binomial distribution is rather complex, and binomial probabilities are tedious to compute by hand; however, they can easily be computed in Excel using the function

> BINOM.DIST(number_s, trials, probability_s, cumulative)

In this function, number_s plays the role of x, and probability_s is the same as p. If cumulative is set to TRUE, then this function will provide cumulative probabilities; otherwise the default is FALSE, and it provides values of the probability mass function, $f(x)$.

EXAMPLE 5.26 Using Excel's Binomial Distribution Function

Figure 5.10 shows the results of using this function to compute the distribution for the previous example (Excel file Binomial Probabilities). For instance, the probability that exactly 3 individuals will make a purchase is BINOM.DIST(A10,\$B\$3,\$B\$4,FALSE) $=0.20133=f(3)$.

The probability that 3 or fewer individuals will make a purchase is BINOM.DIST(A10,\$B\$3,\$B\$4,TRUE) = $0.87913=F(3)$. Correspondingly, the probability that more than 3 out of 10 individuals will make a purchase is $1-F(3)=1-0.87913=0.12087$.

Figure : 5.10 :
Computing Binomial Probabilities in Excel

| | A | B | C | D | E | | | F | | G | | | H | | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Binomial Probabilities | | | Binomial Distribution | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | | | |
| 3 | n | 10 | | | | | | | | | | | | | |
| 4 | p | 0.2 | | 0.40000
 0.30000 | | | | | | | | | | | |
| 5 | | | | | | | | | | | | | | | |
| 6 | x | $f(x)$ | $F(x)$ | 0.20000 | | | | | | | | | | | |
| 7 | 0 | 0.10737 | 0.10737 | | | | | | | | | | | | |
| 8 | 1 | 0.26844 | 0.37581 | 0.10000 | | | | | | | | | | | |
| 9 | 2 | 0.30199 | 0.67780 | | | | | | | | | | | | |
| 10 | 3 | 0.20133 | 0.87913 | 0.00000 | | | | | | \square | | | | | |
| 11 | 4 | 0.08808 | 0.96721 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 12 | 5 | 0.02642 | 0.99363 | | | | | | | | | | | | |
| 13 | 6 | 0.00551 | 0.99914 | | | | | | | | | | | | |
| 14 | 7 | 0.00079 | 0.99992 | | | | | | | | | | | | |
| 15 | 8 | 0.00007 | 1.00000 | | | | | | | | | | | | |
| 16 | 9 | 0.00000 | 1.00000 | | | | | | | | | | | | |
| 17 | 10 | 0.00000 | 1.00000 | | | | | | | | | | | | |

Figure : 5.11 :
Example of the Binomial Distribution with $p=0.8$

The expected value of the binomial distribution is $n p$, and the variance is $n p(1-p)$. The binomial distribution can assume different shapes and amounts of skewness, depending on the parameters. Figure 5.11 shows an example when $p=0.8$. For larger values of p, the binomial distribution is negatively skewed; for smaller values, it is positively skewed. When $p=0.5$, the distribution is symmetric.

Poisson Distribution

The Poisson distribution is a discrete distribution used to model the number of occurrences in some unit of measure-for example, the number of customers arriving at a Subway store during a weekday lunch hour, the number of failures of a machine during a month, number of visits to a Web page during 1 minute, or the number of errors per line of software code.

The Poisson distribution assumes no limit on the number of occurrences (meaning that the random variable X may assume any nonnegative integer value), that occurrences are independent, and that the average number of occurrences per unit is a constant, λ (Greek lowercase lambda). The expected value of the Poisson distribution is λ, and the variance also is equal to λ.

The probability mass function for the Poisson distribution is:

$$
f(x)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!}, & \text { for } x=0,1,2, \ldots \tag{5.14}\\ 0, & \text { otherwise }\end{cases}
$$

EXAMPLE 5.27 Computing Poisson Probabilities

Suppose that, on average, the number of customers arriving at Subway during lunch hour is 12 customers per hour. The probability that exactly x customers will arrive during the hour is given by a Poisson distribution with a mean of 12 . The probability that exactly x customers will arrive during the hour would be calculated using formula (5.14):

$$
f(x)= \begin{cases}\frac{e^{-12} 12^{x}}{x!}, & \text { for } x=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Substituting $x=5$ in this formula, the probability that exactly 5 customers will arrive is $f(5)=0.1274$.

Like the binomial, Poisson probabilities are cumbersome to compute by hand. Probabilities can easily be computed in Excel using the function POISSON.DIST(x, mean, cumulative).

EXAMPLE 5.28 Using Excel's Poisson Distribution Function

Figure 5.12 shows the results of using this function to compute the distribution for Example 5.26 with $\lambda=12$ (see the Excel file Poisson Probabilities). Thus, the probability of exactly one arrival during the lunch hour is calculated by the Excel function $=$ POISSON.DIST(A7,\$B\$3,FALSE) $=0.00007=f(1)$; the probability of 4 arrivals or fewer is calculated by
$=$ POISSON.DIST(A10, \$B\$3,TRUE) $=0.00760=F(4)$, and so on. Because the possible values of a Poisson random variable are infinite, we have not shown the complete distribution. As x gets large, the probabilities become quite small. Like the binomial, the specific shape of the distribution depends on the value of the parameter λ; the distribution is more skewed for smaller values.

Continuous Probability Distributions

Figure : 5.12 :
Computing Poisson
Probabilities in Excel

Figure : 5.13 :
Refined Probability Distribution of DJIA Change

As we noted earlier, a continuous random variable is defined over one or more intervals of real numbers and, therefore, has an infinite number of possible outcomes. Suppose that the expert who predicted the probabilities associated with next year's change in the DJIA in Figure 5.6 kept refining the estimates over larger and larger ranges of values. Figure 5.13

Analytics in Practice: Using the Poisson Distribution for Modeling Bids on Priceline ${ }^{2}$

Priceline is well known for allowing customers to name their own prices (but not the service providers) in bidding for services such as airline flights or hotel stays. Some hotels take advantage of Priceline's approach to fill empty rooms for leisure travelers while not diluting the business market by offering discount rates through traditional channels. In one study using business analytics to develop a model to optimize pricing strategies for Kimpton Hotels, which develops, owns, or manages more than 40 independent boutique lifestyle hotels in the United States and Canada, the distribution of the number of bids for a given number of days before arrival was modeled as a Poisson distribution because it corresponded well with data that were observed. For example, the average number of bids placed per day 3 days before arrival on a weekend (the random variable X) was 6.3. Therefore, the distribution used in the model was $f(x)=e^{-6.3} 6.3^{x} / x$!, where x is the number of bids placed. The analytic model helped to determine the prices to post on Priceline and the inventory allocation for each price. After using the model, rooms sold via Priceline increased 11% in 1 year, and the average rate for these rooms increased 3.7%.

shows what such a probability distribution might look like using 2.5% increments rather than 5%. Notice that the distribution is similar in shape to the one in Figure 5.6 but simply has more outcomes. If this refinement process continues, then the distribution will approach the shape of a smooth curve, as shown in the figure. Such a curve that characterizes outcomes of a continuous random variable is called a probability density function and is described by a mathematical function $f(x)$.

Properties of Probability Density Functions

A probability density function has the following properties:

1. $f(x) \geq 0$ for all values of x. This means that a graph of the density function must lie at or above the x-axis.
2. The total area under the density function above the x-axis is 1.0 . This is analogous to the property that the sum of all probabilities of a discrete random variable must add to 1.0 .
3. $P(X=x)=0$. For continuous random variables, it does not make mathematical sense to attempt to define a probability for a specific value of x because there are an infinite number of values.

[^35]4. Probabilities of continuous random variables are only defined over intervals. Thus, we may calculate probabilities between two numbers a and b, $P(a \leq X \leq b)$, or to the left or right of a number c-for example, $P(X<c)$ and $P(X>c)$.
5. $P(a \leq X \leq b)$ is the area under the density function between a and b.

The cumulative distribution function for a continuous random variable is denoted the same way as for discrete random variables, $F(x)$, and represents the probability that the random variable X is less than or equal to $x, P(X \leq x)$. Intuitively, $F(x)$ represents the area under the density function to the left of $x . F(x)$ can often be derived mathematically from $f(x)$.

Knowing $F(x)$ makes it easy to compute probabilities over intervals for continuous distributions. The probability that X is between a and b is equal to the difference of the cumulative distribution function evaluated at these two points; that is,

$$
\begin{equation*}
P(a \leq X \leq b)=P(X \leq b)-P(X \leq a)=F(b)-F(a) \tag{5.15}
\end{equation*}
$$

For continuous distributions we need not be concerned about the endpoints, as we were with discrete distributions, because $P(a \leq X \leq b)$ is the same as $P(a<X<b)$.

The formal definitions of expected value and variance for a continuous random variable are similar to those for a discrete random variable; however, to understand them, we must rely on notions of calculus, so we do not discuss them in this book. We simply state them when appropriate.

Uniform Distribution

The uniform distribution characterizes a continuous random variable for which all outcomes between some minimum and maximum value are equally likely. The uniform distribution is often assumed in business analytics applications when little is known about a random variable other than reasonable estimates for minimum and maximum values. The parameters a and b are chosen judgmentally to reflect a modeler's best guess about the range of the random variable.

For a uniform distribution with a minimum value a and a maximum value b, the density function is

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { for } a \leq x \leq b \tag{5.16}\\ 0, & \text { otherwise }\end{cases}
$$

and the cumulative distribution function is

$$
F(x)= \begin{cases}0, & \text { if } x<a \tag{5.17}\\ \frac{x-a}{b-a}, & \text { if } a \leq x \leq b \\ 1, & \text { if } b<x\end{cases}
$$

Although Excel does not provide a function to compute uniform probabilities, the formulas are simple enough to incorporate into a spreadsheet. Probabilities are also easy to compute for the uniform distribution because of the simple geometric shape of the density function, as Example 5.29 illustrates.

EXAMPLE 5.29 Computing Uniform Probabilities

Suppose that sales revenue, X, for a product varies uniformly each week between $a=\$ 1000$ and $b=\$ 2000$. The density function is $f(x)=1 /(2000-1000)=1 / 1000$ and is shown in Figure 5.14. Note that the area under the density is function is 1.0 , which you can easily verify by multiplying the height by the width of the rectangle.

Suppose we wish to find the probability that sales revenue will be less than $x=\$ 1,300$. We could do this in two ways. First, compute the area under the density function using geometry, as shown in Figure 5.15. The area is $(1 / 1,000)(300)=0.30$. Alternatively, we could use formula (5.17) to compute $F(1,300)$:

$$
F(1,300)=(1,300-1,000) /(2,000-1,000)=0.30
$$

In either case, the probability is 0.30 .

Now suppose we wish to find the probability that revenue will be between $\$ 1,500$ and $\$ 1,700$. Again, using geometrical arguments (see Figure 5.16), the area of the rectangle between $\$ 1,500$ and $\$ 1,700$ is $(1 / 1,000)(200)=$ 0.2 . We may also use formula (5.15) and compute it as follows:

$$
\begin{aligned}
P(1,500 \leq X \leq 1,700) & =P(X \leq 1,700)-P(X \leq 1,500) \\
& =F(1,700)-F(1,500) \\
& =\frac{(1,700-1,000)}{(2,000-1,000)}-\frac{(1,500-1,000)}{(2,000-1,000)} \\
& =0.7-0.5=0.2
\end{aligned}
$$

Figure : 5.14 :
Uniform Probability Density Function

Figure : 5.15
Probability that $X<\$ 1,300$

Figure : 5.16
$P(\$ 1,500<X<\$ 1,700)$

The expected value and variance of a uniform random variable X are computed as follows:

$$
\begin{align*}
& \mathrm{E}[X]=\frac{a+b}{2} \tag{5.18}\\
& \operatorname{Var}[X]=\frac{(b-a)^{2}}{12} \tag{5.19}
\end{align*}
$$

A variation of the uniform distribution is one for which the random variable is restricted to integer values between a and b (also integers); this is called a discrete uniform

distribution. An example of a discrete uniform distribution is the roll of a single die. Each of the numbers 1 through 6 has a $\frac{1}{6}$ probability of occurrence.

Normal Distribution

The normal distribution is a continuous distribution that is described by the familiar bellshaped curve and is perhaps the most important distribution used in statistics. The normal distribution is observed in many natural phenomena. Test scores such as the SAT, deviations from specifications of machined items, human height and weight, and many other measurements are often normally distributed.

The normal distribution is characterized by two parameters: the mean, μ, and the standard deviation, σ. Thus, as μ changes, the location of the distribution on the x-axis also changes, and as σ is decreased or increased, the distribution becomes narrower or wider, respectively. Figure 5.17 shows some examples.

The normal distribution has the following properties:

1. The distribution is symmetric, so its measure of skewness is zero.
2. The mean, median, and mode are all equal. Thus, half the area falls above the mean and half falls below it.
3. The range of X is unbounded, meaning that the tails of the distribution extend to negative and positive infinity.

Figure : 5.17 :
Examples of Normal Distributions
4. The empirical rules apply exactly for the normal distribution; the area under the density function within ± 1 standard deviation is 68.3%, the area under the density function within ± 2 standard deviation is 95.4%, and the area under the density function within ± 3 standard deviation is 99.7%.

Examples of Normal Distributions

Normal probabilities cannot be computed using a mathematical formula. Instead, we may use the Excel function NORM.DIST(x, mean, standard_deviation, cumulative). NORM.DIST (x, mean, standard_deviation, TRUE) calculates the cumulative probability $F(x)=P(X \leq x)$ for a specified mean and standard deviation. (If cumulative is set to $F A L S E$, the function simply calculates the value of the density function $f(x)$, which has little practical application other than tabulating values of the density function. This was used to draw the distributions in Figure 5.17.)

EXAMPLE 5.30 Using the NORM.DIST Function to Compute Normal Probabilities

Suppose that a company has determined that the distribution of customer demand (X) is normal with a mean of 750 units/month and a standard deviation of 100 units/ month. Figure 5.18 shows some cumulative probabilities calculated with the NORM.DIST function (see the Excel file Normal Probabilities). The company would like to know the following:

1. What is the probability that demand will be at most 900 units?
2. What is the probability that demand will exceed 700 units?
3. What is the probability that demand will be between 700 and 900 units?

To answer the questions, first draw a picture. This helps to ensure that you know what area you are trying to calculate and how to use the formulas for working with a cumulative distribution correctly.
Question 1. Figure 5.19(a) shows the probability that demand will be at most 900 units, or $P(X<900)$.

This is simply the cumulative probability for $x=900$, which can be calculated using the Excel function $=$ NORM.DIST(900,750,100,TRUE) $=0.9332$.
Question 2. Figure 5.19 (b) shows the probability that demand will exceed 700 units, $P(X>700)$. Using the principles we have previously discussed, this can be found by subtracting $P(X<700)$ from 1:

$$
\begin{aligned}
P(X>700)=1-P(X<700) & =1-F(700) \\
& =1-0.3085=0.6915
\end{aligned}
$$

This can be computed in Excel using the formula $=1-\operatorname{NORM} . \operatorname{DIST}(700,750,100$, TRUE $)$.

Question 3. The probability that demand will be between 700 and $900, P(700<X<900)$, is illustrated in Figure 5.19(c). This is calculated by

$$
\begin{aligned}
& P(700<X<900)=P(X<900)-P(X<700) \\
& \quad=F(900)-F(700)=0.9332-0.3085=0.6247
\end{aligned}
$$

In Excel, we would use the formula = NORM.DIST (900,750,100,TRUE) - NORM.DIST(700,750,100,TRUE).

Figure : 5.18 :
Normal Probability
Calculations in Excel

| 3 | A | B | C | D | E | | F | | G | | H | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Normal Probabilities | | Cumulative Distribution Function | | | | | | | | | |
| 2 | | | | | | | | | | | | |
| 3 | Mean | 750 | | | | | | | | | | |
| 4 | Standard Deviation | 100 | $\begin{aligned} & 1.0000 \\ & 0.9000 \end{aligned}$ | | | | | | | | | |
| 5 | | | | | | | | | | | | |
| 6 | x | F(x) | 0.8000 | | | | | | | | | |
| 7 | 500 | 0.0062 | $\begin{aligned} & 0.7000 \\ & 0.6000 \end{aligned}$ | | | | | | | | | |
| 8 | 550 | 0.0228 | | | | | | | | | | |
| 9 | 600 | 0.0668 | 0.5000 | | | | | | | | | |
| 10 | 650 | 0.1587 | 0.4000
 0.3000 | | | | | | | | | |
| 11 | 700 | 0.3085 | | | | | | | | | | |
| 12 | 750 | 0.5000 | 0.2000 | | | | | | | | | |
| 13 | 800 | 0.6915 | $\begin{aligned} & 0.1000 \\ & 0.0000 \end{aligned}$ | | , | | | | | | | |
| 14 | 850 | 0.8413 | | \longrightarrow | - | | | | | | | |
| 15 | 900 | 0.9332 | | 550 | 600650 | 700 | 750 | 800 | 850 | 900 | 950 | 1000 |
| 16 | 950 | 0.9772 | | | | | | | | | | |
| 17 | 1000 | 0.9938 | | | | | | | | | | |

Figure : 5.19
Computing Normal Probabilities

The NORM.INV Function

With the NORM.DIST function, we are given a value of the random variable X and can find the cumulative probability to the left of x. Now let's reverse the problem. Suppose that we know the cumulative probability but don't know the value of x. How can we find it? We are often faced with such a question in many applications. The Excel function NORM.INV(probability, mean, standard_dev) can be used to do this. In this function, probability is the cumulative probability value corresponding to the value of x we seek "INV" stands for inverse.

EXAMPLE 5.31 Using the NORM.INV Function

In the previous example, what level of demand would be exceeded at most 10% of the time? Here, we need to find the value of x so that $P(X>x)=0.10$. This is illustrated in Figure 5.19(d). Because the area in the upper tail of the normal distribution is 0.10 , the cumulative probability must be $1-0.10=0.90$. From Figure 5.18 ,
we can see that the correct value must be somewhere between 850 and 900 because $F(850)=0.8413$ and $F(900)=0.9332$. We can find the exact value using the Excelfunction $=$ NORM.INV $(0.90,750,100)=878.155$, Therefore, a demand of approximately 878 will satisfy the criterion.

Standard Normal Distribution

Figure 5.20 provides a sketch of a special case of the normal distribution called the standard normal distribution-the normal distribution with $\mu=0$ and $\sigma=1$. This distribution is important in performing many probability calculations. A standard normal random variable is usually denoted by Z, and its density function by $f(z)$. The scale along the z-axis represents the number of standard deviations from the mean of zero. The Excel function NORM.S.DIST (z) finds probabilities for the standard normal distribution.

EXAMPLE 5.32 Computing Probabilities with the Standard Normal Distribution

We have previously noted that the empirical rules apply to any normal distribution. Let us find the areas under the standard normal distribution within 1, 2, and 3 standard deviations of the mean. These can be found by using the function NORM.S.DIST(z). Figure 5.21 shows a tabulation of the cumulative probabilities for z ranging from -3 to +3 and calculations of the areas within 1 , 2 , and 3 standard deviations of the mean. We apply formula (5.15) to find the difference between the cumulative
probabilities, $F(b)-F(a)$. For example, the area within 1 standard deviation of the mean is found by calculating $P(-1<Z<1)=F(1)-F(-1)=$ NORM.S.DIST(1) - NORM.S.DIST $(-1)=0.84134-0.15866=0.6827$ (the difference due to decimal rounding). As the empirical rules stated, about 68% of the area falls within 1 standard deviation; 95\%, within 2 standard deviations; and more than 99%, within 3 standard deviations of the mean.

Figure : 5.20
Standard Normal Distribution

Standard Normal Distribution

Standard Normal Distribution

Figure : 5.21
Computing Standard
Normal Probabilities

| | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Standard Normal Probabilities | | | | | | | |
| 2 | | | | | | | | |
| 3 | z | F(z) | | a | b | $F(a)$ | F(b) | $F(b)-F(a)$ |
| 4 | -3 | 0.00135 | | -1 | 1 | 0.15866 | 0.84134 | 0.6827 |
| 5 | -2 | 0.02275 | | -2 | 2 | 0.02275 | 0.97725 | 0.9545 |
| 6 | -1 | 0.15866 | | -3 | 3 | 0.00135 | 0.99865 | 0.9973 |
| 7 | 0 | 0.50000 | | | | | | |
| 8 | 1 | 0.84134 | | | | | | |
| 9 | 2 | 0.97725 | | | | | | |
| 10 | 3 | 0.99865 | | | | | | |

Using Standard Normal Distribution Tables

Although it is quite easy to use Excel to compute normal probabilities, tables of the standard normal distribution are commonly found in textbooks and professional references when a computer is not available. Such a table is provided in Table A. 1 of Appendix A at the end of this book. The table allows you to look up the cumulative probability for any value of z between -3.00 and +3.00 .

One of the advantages of the standard normal distribution is that we may compute probabilities for any normal random variable X having a mean μ and standard deviation σ by converting it to a standard normal random variable Z. We introduced the concept of standardized values (z-scores) for sample data in Chapter 4. Here, we use a similar formula to convert a value x from an arbitrary normal distribution into an equivalent standard normal value, z :

$$
\begin{equation*}
z=\frac{(x-\mu)}{\sigma} \tag{5.20}
\end{equation*}
$$

EXAMPLE 5.33 Computing Probabilities with Standard Normal Tables

We will answer the first question posed in Example 5.30: What is the probability that demand will be at most $x=900$ units if the distribution of customer demand (X) is normal with a mean of 750 units/month and a standard deviation of 100 units/month? Using formula (5.19), convert x to a standard normal value:

Note that 900 is 150 units higher than the mean of 750; since the standard deviation is 100 , this simply means that 900 is 1.5 standard deviations above the mean, which is the value of z. Using Table A. 1 in Appendix A, we see that the cumulative probability for $z=1.5$ is 0.9332 , which is the same answer we found for Example 5.30.

$$
z=\frac{900-750}{100}=1.5
$$

Exponential Distribution

The exponential distribution is a continuous distribution that models the time between randomly occurring events. Thus, it is often used in such applications as modeling the time between customer arrivals to a service system or the time to or between failures of machines, lightbulbs, hard drives, and other mechanical or electrical components.

Similar to the Poisson distribution, the exponential distribution has one parameter, λ. In fact, the exponential distribution is closely related to the Poisson; if the number of events occurring during an interval of time has a Poisson distribution, then the time between events is exponentially distributed. For instance, if the number of arrivals at a bank is Poisson-distributed, say with mean $\lambda=12 /$ hour then the time between arrivals is exponential, with mean $\mu=1 / 12$ hour, or 5 minutes.

The exponential distribution has the density function

$$
\begin{equation*}
f(x)=\lambda e^{-\lambda x}, \text { for } x \geq 0 \tag{5.21}
\end{equation*}
$$

and its cumulative distribution function is

$$
\begin{equation*}
F(x)=1-e^{-\lambda x}, \text { for } x \geq 0 \tag{5.22}
\end{equation*}
$$

Sometimes, the exponential distribution is expressed in terms of the mean μ rather than the rate λ. To do this, simply substitute $1 / \mu$ for λ in the preceding formulas.

The expected value of the exponential distribution is $1 / \lambda$ and the variance is $(1 / \lambda)^{2}$. Figure 5.22 provides a sketch of the exponential distribution. The exponential distribution has the properties that it is bounded below by 0 , it has its greatest density at 0 , and the density declines as x increases. The Excel function EXPON.DIST (x, lambda, cumulative) can be used to compute exponential probabilities. As with other Excel probability distribution functions, cumulative is either TRUE or FALSE, with TRUE providing the cumulative distribution function.

EXAMPLE 5.34 Using the Exponential Distribution

Suppose that the mean time to failure of a critical component of an engine is $\mu=8,000$ hours. Therefore, $\lambda=1 / \mu=1 / 8,000$ failures/hour. The probability that the component will fail before x hours is given by the cumulative distribution function $F(x)$. Figure 5.23 shows
a portion of the cumulative distribution function, which may be found in the Excel file Exponential Probabilities. For example, the probability of failing before 5,000 hours is $F(5000)=0.4647$.

Figure : 5.22
Example of an Exponential Distribution ($\lambda=1$)

Exponential Distribution

| | A | B | C | D | E | | | F | | | G | G | H | | 1 | | | J | K |
| :---: |
| 1 | Exponential Probabilities | | | | | | | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | | | | | | | |
| 3 | Mean | 8000 | | | | | | | | | | | | | | | | | |
| 4 | Lambda | 0.000125 | | | Cum | n | lat | ive | | | trib | ibuti | ion F | Fun | ctio | | | | |
| 5 | | | | | | | | | | | | | | | | | | | |
| 6 | x | F(x) | 1 | | T | | | | | | | - | 1 | 1 | | | | T | |
| 7 | 0 | 0 | 0.9 | | | | | | | | | - | T | | | | | 1 | |
| 8 | 1000 | 0.117503 | 0.8 | | | | | | | | | | | | | | | | |
| 9 | 2000 | 0.221199 | 0.7 | | | | | | | | | | | | | | | | |
| 10 | 3000 | 0.312711 | 0.6 | | | | | | | | | | | | | | | | |
| 11 | 4000 | 0.393469 | 0.5 | | , | | | | | | | | | | | | | | |
| 12 | 5000 | 0.464739 | | | | | | | | | | | | | | | | | |
| 13 | 6000 | 0.527633 | 0.4 | | | | | | | | | | | | | | | | |
| 14 | 7000 | 0.583138 | 0.3 | | | | | | | | | | | | | | | | |
| 15 | 8000 | 0.632121 | 0.2 | | | | | | | | | | | | | | | - | |
| 16 | 9000 | 0.675348 | | | | | | | | | | | | | | | | | |
| 17 | 10000 | 0.713495 | | | | | | | | | | | | | | | | | |
| 18 | 11000 | 0.74716 | | | - | | | | | | | 0 | - | - | 0 | | | | |
| 19 | 12000 | 0.77687 | | 0 | $8^{\circ}{ }^{10}$ | | | | | | | $0^{\circ} 0^{\circ}$ | $0^{\circ} 0^{\circ}$ | $0^{\circ} 0^{\circ}$ | 0 | 0 | | 0° | |
| 20 | 13000 | 0.803088 | | | | | | | | | | | | | | | | | |
| 21 | 14000 | 0.826226 | | | | | | | | | | | | | | | | | |
| 22 | 15000 | 0.846645 | | | | | | | | | | | | | | | | | |
| 23 | 16000 | 0.864665 | | | | | | | | | | | | | | | | | |

Figure : 5.23 :
Computing Exponential Probabilities in Excel

Other Useful Distributions

Many other probability distributions, especially those distributions that assume a wide variety of shapes, find application in decision models for characterizing a wide variety of phenomena. Such distributions provide a great amount of flexibility in representing both empirical data or when judgment is needed to define an appropriate distribution. We provide a brief description of these distributions; however, you need not know the mathematical details about them to use them in applications.

Continuous Distributions

Triangular Distribution. The triangular distribution is defined by three parameters: the minimum, a; maximum, b; and most likely, c. Outcomes near the most likely value have a higher chance of occurring than those at the extremes. By varying the most likely value, the triangular distribution can be symmetric or skewed in either direction, as shown in Figure 5.24. The triangular distribution is often used when no data are available to characterize an uncertain variable and the distribution must be estimated judgmentally.
Lognormal Distribution. If the natural logarithm of a random variable X is normal, then X has a lognormal distribution. Because the lognormal distribution is positively skewed and bounded below by zero, it finds applications in modeling phenomena that have low probabilities of large values and cannot have negative values, such as the time to complete a task. Other common examples include stock prices and real estate prices. The lognormal distribution is also often used for "spiked" service times, that is, when the probability of zero is very low, but the most likely value is just greater than zero.
Beta Distribution. One of the most flexible distributions for modeling variation over a fixed interval from 0 to a positive value is the beta. The beta distribution is a function of two parameters, α and β, both of which must be positive. If α and β are equal, the distribution is symmetric. If either parameter is 1.0 and the other is greater than 1.0 , the distribution is in the shape of a J. If α is

Figure : 5.24
Examples of Triangular Distributions

less than β, the distribution is positively skewed; otherwise, it is negatively skewed. These properties can help you to select appropriate values for the shape parameters.

Random Sampling from Probability Distributions

Many applications in business analytics require random samples from specific probability distributions. For example, in a financial model, we might be interested in the distribution of the cumulative discounted cash flow over several years when sales, sales growth rate, operating expenses, and inflation factors are all uncertain and are described by probability distributions. The outcome variables of such decision models are complicated functions of the random input variables. Understanding the probability distribution of such variables can be accomplished only by sampling procedures called Monte Carlo simulation, which we address in Chapter 12.

The basis for generating random samples from probability distributions is the concept of a random number. A random number is one that is uniformly distributed between 0 and 1 . Technically speaking, computers cannot generate truly random numbers since they must use a predictable algorithm. However, the algorithms are designed to generate a sequence of numbers that appear to be random. In Excel, we may generate a random number within any cell using the function RAND(). This function has no arguments; therefore, nothing should be placed within the parentheses (but the parentheses are required). Figure 5.25 shows a table of 10 random numbers generated in Excel. You should be aware that unless the automatic recalculation feature is suppressed, whenever any cell in the spreadsheet is modified, the values in any cell containing the RAND() function will change. Automatic recalculation can be changed to manual by choosing Calculation Options in the Calculation group under the Formulas tab. Under manual recalculation mode, the worksheet is recalculated only when the F9 key is pressed.

Figure : 5.25
A Sample of Random Numbers

| | A | B |
| :---: | :---: | :---: |
| 1 | Random Numbers | |
| 2 | | |
| 3 | Sample | Random Number |
| 4 | 1 | 0.326510048 |
| 5 | 2 | 0.743390121 |
| 6 | 3 | 0.801687688 |
| 7 | 4 | 0.804777187 |
| 8 | 5 | 0.848401291 |
| 9 | 6 | 0.614517898 |
| 10 | 7 | 0.452136913 |
| 11 | 8 | 0.600374163 |
| 12 | 9 | 0.533963502 |
| 13 | 10 | 0.638112424 |

Sampling from Discrete Probability Distributions

Sampling from discrete probability distributions using random numbers is quite easy. We will illustrate this process using the probability distribution for rolling two dice.

EXAMPLE 5.35 Sampling from the Distribution of Dice Outcomes

The probability mass function and cumulative distribution in decimal form are as follows:

| \boldsymbol{x} | $\boldsymbol{f}(\boldsymbol{x})$ | $\boldsymbol{F}(\boldsymbol{x})$ |
| ---: | :---: | :---: |
| 2 | 0.0278 | 0.0278 |
| 3 | 0.0556 | 0.0833 |
| 4 | 0.0833 | 0.1667 |
| 5 | 0.1111 | 0.2778 |
| 6 | 0.1389 | 0.4167 |
| 7 | 0.1667 | 0.5833 |
| 8 | 0.1389 | 0.7222 |
| 9 | 0.1111 | 0.8333 |
| 10 | 0.0833 | 0.9167 |
| 11 | 0.0556 | 0.9722 |
| 12 | 0.0278 | 1.0000 |

Notice that the values of $F(x)$ divide the interval from 0 to 1 into smaller intervals that correspond to the probabilities of the outcomes. For example, the interval from (but not including) 0 and up to and including 0.0278 has a probability of 0.028 and corresponds to the outcome $x=2$; the interval from (but not including) 0.0278 and up to and
including 0.0833 has a probability of 0.0556 and corresponds to the outcome $x=3$; and so on. This is summarized as follows:

| Interval | Outcome |
| :---: | :---: |
| 0 to 0.0278 | 2 |
| 0.0278 to 0.0833 | 3 |
| 0.0833 to 0.1667 | 4 |
| 0.1667 to 0.2778 | 5 |
| 0.2778 to 0.4167 | 6 |
| 0.4167 to 0.5833 | 7 |
| 0.5833 to 0.7222 | 8 |
| 0.7222 to 0.8323 | 9 |
| 0.8323 to 0.9167 | 10 |
| 0.9167 to 0.9722 | 11 |
| 0.9722 to 1.0000 | 12 |

Any random number, then, must fall within one of these intervals. Thus, to generate an outcome from this distribution, all we need to do is to select a random number and determine the interval into which it falls. Suppose we use the data in Figure 5.25. The first random
number is 0.326510048 . This falls in the interval corresponding to the sample outcome of 6 . The second random number is 0.743390121 . This number falls in the interval corresponding to an outcome of 9 . Essentially, we have developed a technique to roll dice on a com-
puter. If this is done repeatedly, the frequency of occurrence of each outcome should be proportional to the size of the random number range (i.e., the probability associated with the outcome) because random numbers are uniformly distributed.

We can easily use this approach to generate outcomes from any discrete distribution; the VLOOKUP function in Excel can be used to implement this on a spreadsheet.

EXAMPLE 5.36 Using the VLOOKUP Function for Random Sampling

Suppose that we want to sample from the probability distribution of the predicted change in the Dow Jones Industrial Average index shown in Figure 5.6. We first construct the cumulative distribution $F(x)$. Then assign intervals to the outcomes based on the values of the cumulative distribution, as shown in Figure 5.26. This specifies the table range for the VLOOKUP function, namely, \$E\$2:\$G\$10. List the random numbers in a column using the RAND() function. The formula in
cell J 2 is $=$ VLOOKUP(I2,\$E\$2:\$G\$10,3), which is copied down that column. This function takes the value of the random number in cell 12 , finds the last number in the first column of the table range that is less than the random number, and returns the value in the third column of the table range. In this case, 0.49 is the last number in column E that is less than 0.530612386 , so the function returns 5% as the outcome.

Sampling from Common Probability Distributions

This approach of generating random numbers and transforming them into outcomes from a probability distribution may be used to sample from most any distribution. A value randomly generated from a specified probability distribution is called a random variate. For example, it is quite easy to transform a random number into a random variate from a uniform distribution between a and b. Consider the formula:

$$
\begin{equation*}
U=a+(b-a) * \operatorname{RAND}() \tag{5.23}
\end{equation*}
$$

Note that when $\operatorname{RAND}()=0, U=a$, and when $\operatorname{RAND}()$ approaches $1, U$ approaches b. For any other value of $\operatorname{RAND}()$ between 0 and $1,(b-a) * \operatorname{RAND}()$ represents the same proportion of the interval (a, b) as $\operatorname{RAND}()$ does of the interval $(0,1)$. Thus, all

Figure 5.26 :
Using the VLOOKUP
Function to Sample from a Discrete Distribution

| 4 | A | B | C | D | E | F | G | H | I | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Change in DJIA | $f(x)$ | $F(x)$ | | Interval | | Change in DJIA | | Random Number Outcome | |
| 2 | -20\% | 0.01 | 0.01 | | 0 | 0.01 | -20\% | | 0.530612386 | 5\% |
| 3 | -15\% | 0.05 | 0.06 | | 0.01 | 0.06 | -15\% | | 0.232776591 | -5\% |
| 4 | -10\% | 0.08 | 0.14 | | 0.06 | 0.14 | -10\% | | 0.780924503 | 10\% |
| 5 | -5\% | 0.15 | 0.29 | | 0.14 | 0.29 | -5\% | | 0.363267546 | 0\% |
| 6 | 0\% | 0.2 | 0.49 | | 0.29 | 0.49 | 0\% | | 0.489479718 | 0\% |
| 7 | 5\% | 0.25 | 0.74 | | 0.49 | 0.74 | 5\% | | 0.062832805 | -10\% |
| 8 | 10\% | 0.18 | 0.92 | | 0.74 | 0.92 | 10\% | | 0.53878251 | 5\% |
| 9 | 15\% | 0.06 | 0.98 | | 0.92 | 0.98 | 15\% | | 0.52525315 | 5\% |
| 10 | 20\% | 0.02 | 1 | | 0.98 | 1 | 20\% | | 0.99381738 | 20\% |
| 11 | | | | | | | | | 0.840872917 | 10\% |

Figure : 5.27
Excel Random Number Generation Dialog

real numbers between a and b can occur. Since RAND() is uniformly distributed, so also is U.

Although this is quite easy, it is certainly not obvious how to generate random variates from other distributions such as normal or exponential. We do not describe the technical details of how this is done but rather just describe the capabilities available in Excel. Excel allows you to generate random variates from discrete distributions and certain others using the Random Number Generation option in the Analysis Toolpak. From the Data tab in the ribbon, select Data Analysis in the Analysis group and then Random Number Generation. The Random Number Generation dialog, shown in Figure 5.27, will appear. From the Random Number Generation dialog, you may select from seven distributions: uniform, normal, Bernoulli, binomial, Poisson, and patterned, as well as discrete. (The patterned distribution is characterized by a lower and upper bound, a step, a repetition rate for values, and a repetition rate for the sequence.) If you select the Output Range option, you are asked to specify the upper-left cell reference of the output table that will store the outcomes, the number of variables (columns of values you want generated), number of random numbers (the number of data points you want generated for each variable), and the type of distribution. The default distribution is the discrete distribution.

EXAMPLE 5.37 Using Excel's Random Number Generation Tool

We will generate 100 outcomes from a Poisson distribution with a mean of 12. In the Random Number Generation dialog, set the Number of Variables to 1 and the Number of Random Numbers to 100 and select Poisson from the drop-down Distribution box. The dialog will
change and prompt you for the value of Lambda, the mean of the Poisson distribution; enter 12 in the box and click OK. The tool will display the random numbers in a column. Figure 5.28 shows a histogram of the results.

The dialog in Figure 5.27 also allows you the option of specifying a random number seed. A random number seed is a value from which a stream of random numbers

Figure : 5.28 :
Histogram of Samples from a Poisson Distribution

is generated. By specifying the same seed, you can produce the same random numbers at a later time. This is desirable when we wish to reproduce an identical sequence of "random" events in a simulation to test the effects of different policies or decision variables under the same circumstances. However, one disadvantage with using the Random Number Generation tool is that you must repeat the process to generate a new set of sample values; pressing the recalculation (F9) key will not change the values. This can make it difficult to use this tool to analyze decision models.

Excel also has several inverse functions of probability distributions that may be used to generate random variates. For the normal distribution, use

NORM.INV(probability, mean, standard_deviation)—normal distribution with a specified mean and standard deviation,
NORM.S.INV(probability)—standard normal distribution.
For some advanced distributions, you might see

- LOGNORM.INV(probability, mean, standard_deviation)—lognormal distribution, where $\ln (X)$ has the specified mean and standard deviation,
- BETA.INV (probability, alpha, beta, A, B)-beta distribution.

To use these functions, simply enter RAND() in place of probability in the function. For example, NORM.INV(RAND(), 5, 2) will generate random variates from a normal distribution with mean 5 and standard deviation 2. Each time the worksheet is recalculated, a new random number and, hence, a new random variate, are generated. These functions may be embedded in cell formulas and will generate new values whenever the worksheet is recalculated.

The following example shows how sampling from probability distributions can provide insights about business decisions that would be difficult to analyze mathematically.

EXAMPLE 5.38 A Sampling Experiment for Evaluating Capital Budgeting Projects

In finance, one way of evaluating capital budgeting projects is to compute a profitability index (PI), which is defined as the ratio of the present value of future cash flows (PV) to the initial investment (l):

$$
\begin{equation*}
P I=P V / I \tag{5.24}
\end{equation*}
$$

Because the cash flow and initial investment that may be required for a particular project are often uncertain, the profitability index is also uncertain. If we can characterize $P V$ and / by some probability distributions, then we would like to know the probability distribution for PI. For example, suppose that $P V$ is estimated to be normally distributed with a mean of $\$ 12$ million and a standard deviation of $\$ 2.5$ million, and the initial investment is also estimated to be normal with a mean of $\$ 3.0$ million and standard deviation of $\$ 0.8$ million. Intuitively, we might believe that the profitability index is also normally distributed with a mean of $\$ 12$ million $/ \$ 3$ million $=\$ 4$ million; however, as
we shall see, this is not the case. We can use a sampling experiment to identify the probability distribution of $P I$ for these assumptions.

Figure 5.29 shows a simple model from the Excel file Profitability Index Experiment. For each experiment, the values of $P V$ and I are sampled from their assumed normal distributions using the NORM.INV function. $P I$ is calculated in column D, and the average value for 1,000 experiments is shown in cell E8. We clearly see that this is not equal to 4 as previously suspected. The histogram in Figure 5.30 also demonstrates that the distribution of $P I$ is not normal but is skewed to the right. This experiment confirms that the ratio of two normal distributions is not normally distributed. We encourage you to create this spreadsheet and replicate this experiment (note that your results will not be exactly the same as these because you are generating random values!)

Probability Distribution Functions in Analytic Solver Platform

Analytic Solver Platform (see the section on Spreadsheet Add-ins in Chapter 2) provides custom Excel functions that generate random samples from specified probability distributions. Table 5.1 shows a list of these for distributions we have discussed. These functions return random values from the specified distributions in worksheet cells. These functions will be very useful in business analytics applications in later chapters, especially Chapter 12 on simulation and risk analysis.

| | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Profitability Index Analysis | | | | Experiment | PV | I | PI |
| 2 | | | | | 1 | 11.79045 | 2.116217 | 5.571475 |
| 3 | Mean Standard Deviation | | | | 2 | 10.62588 | 2.839064 | 3.742741 |
| 4 | PV | 12 | 2.5 | | 3 | 12.22324 | 1.049416 | 11.64765 |
| 5 | 1 | 3 | 0.8 | | 4 | 11.25269 | 3.947846 | 2.850337 |
| 6 | | | | | 5 | 11.3254 | 3.995613 | 2.83446 |
| 7 | Mean Pl for 1000 Experiments | | | 4.365203 | 6 | 15.02659 | 3.324238 | 4.52031 |
| 8 | | | | | 7 | 12.79318 | 3.255405 | 3.929827 |
| 9 | | | | | 8 | 13.19409 | 3.000283 | 4.397616 |
| 10 | | | | | 9 | 12.7466 | 3.532532 | 3.608346 |
| 11 | | | | | 10 | 12.5399 | 3.675463 | 3.411789 |

Figure : 5.30
Frequency Distribution and Histogram of Profitability Index

Table | 5.1 |
| :--- |
| |
| Analytic Solver Platform |
| Probability Distribution |
| Functions | \quad

| Distribution | Analytic Solver Platform Function |
| :--- | :--- |
| Bernoulli | PsiBernoulli(probability) |
| Binomial | PsiBinomial(trials, probability) |
| Poisson | PsiPoisson(mean) |
| Uniform | PsiUniform(lower, upper) |
| Normal | PsiNormal(mean, standard deviation) |
| Exponential | PsiExponential(mean) |
| Discrete Uniform | PsiDisUniform(values) |
| Geometric | PsiGeometric(probability) |
| Negative Binomial | PsiNegBinomial(successes, probability) |
| Hypergeometric | PsiHyperGeo(trials, success, population size) |
| Triangular | PsiTriangular(minimum, most likely, maximum) |
| Lognormal | PsiLognormal(mean, standard deviation) |
| Beta | PsiBeta(alpha, beta) |

EXAMPLE 5.39 Using Analytic Solver Platform Distribution Functions

An energy company was considering offering a new product and needed to estimate the growth in PC ownership. Using the best data and information available, they determined that the minimum growth rate was 5.0%, the most likely value was 7.7%, and the maximum value was 10.0%. These parameters characterize a triangular
distribution. Figure 5.31 (Excel file PC Ownership Growth Rates) shows a portion of 500 samples that were generated using the function PsiTriangular(5\%, $7.7 \%, 10 \%)$. Notice that the histogram exhibits a clear triangular shape.

Figure: 5.31
Samples from a Triangular Distribution

Data Modeling and Distribution Fitting

In many applications of business analytics, we need to collect sample data of important variables such as customer demand, purchase behavior, machine failure times, and service activity times, to name just a few, to gain an understanding of the distributions of these variables. Using the tools we have studied, we may construct frequency distributions and histograms and compute basic descriptive statistical measures to better understand the nature of the data. However, sample data are just that-samples.

Using sample data may limit our ability to predict uncertain events that may occur because potential values outside the range of the sample data are not included. A better approach is to identify the underlying probability distribution from which sample data come by "fitting" a theoretical distribution to the data and verifying the goodness of fit statistically.

To select an appropriate theoretical distribution that fits sample data, we might begin by examining a histogram of the data to look for the distinctive shapes of particular distributions. For example, normal data are symmetric, with a peak in the middle. Exponential data are very positively skewed, with no negative values. Lognormal data are also very positively skewed, but the density drops to zero at 0 . Various forms of the gamma, Weibull, or beta distributions could be used for distributions that do not seem to fit one of the other common forms. This approach is not, of course, always accurate or valid, and sometimes it can be difficult to apply, especially if sample sizes are small. However, it may narrow the search down to a few potential distributions.

Summary statistics can also provide clues about the nature of a distribution. The mean, median, standard deviation, and coefficient of variation often provide information about the nature of the distribution. For instance, normally distributed data tend to have a fairly low coefficient of variation (however, this may not be true if the mean is small). For normally distributed data, we would also expect the median and mean to be approximately the same. For exponentially distributed data, however, the median will be less than the mean. Also, we would expect the mean to be about equal to the standard deviation, or, equivalently, the coefficient of variation would be close to 1 . We could also look at the skewness index. Normal data are not skewed, whereas lognormal and exponential data are positively skewed. The following examples illustrate some of these ideas.

EXAMPLE 5.40 Analyzing Airline Passenger Data

An airline operates a daily route between two mediumsized cities using a 70-seat regional jet. The flight is rarely booked to capacity but often accommodates business travelers who book at the last minute at a high price. Figure 5.32 shows the number of passengers for a sample of 25 flights (Excel file Airline Passengers). The histogram shows a relatively symmetric distribution. The mean, median, and mode are all similar, although
there is some degree of positive skewness. From our discussion in Chapter 4 about the variability of samples, it is important to recognize that this is a relatively small sample that can exhibit a lot of variability compared with the population from which it is drawn. Thus, based on these characteristics, it would not be unreasonable to assume a normal distribution for the purpose of developing a predictive or prescriptive analytics model.

EXAMPLE 5.41 Analyzing Airport Service Times

Figure 5.33 shows a portion of the data and statistical analysis of 812 samples of service times at an airport's ticketing counter (Excel file Airport Service Times). It is not clear what the distribution might be. It does not appear to be exponential, but it might be lognormal or even another distribution with which you might not be familiar.

From the descriptive statistics, we can see that the mean is not close to the standard deviation, suggesting that the data are probably not exponential. The data are positively skewed, suggesting that a lognormal distribution might be appropriate. However, it is difficult to make a definitive conclusion.

The examination of histograms and summary statistics might provide some idea of the appropriate distribution; however, a better approach is to analytically fit the data to the best type of probability distribution.

Figure : 5.32
Data and Statistics for Passenger Demand

| 4 | A | B | C | D | E | F | G | H | 1 | J | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Airline Passengers | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | |
| 3 | Sample Data | | Bin | Frequency | | | | | | | | | |
| 4 | 36 | | 30.00 | 0 | | Passengers | | | Passenger Demand | | | | |
| 5 | 55 | | 30.00 | 0 | | | | | | | | | |
| 6 | 47 | | 32.50 | 0 | | Mean | 45.68 | | | | | | |
| 7 | 45 | | 32.50 | 0 | | Standard Error | 1.043584 | | | | | | |
| 8 | 48 | | 35.00 | 1 | | Median | 45 | | | | | | |
| 9 | 43 | | 37.50 | 0 | | Mode | 45 | | | | | | |
| 10 | 42 | | 40.00 | 2 | | Standard Deviation | 5.217918 | | | | | | |
| 11 | 56 | | 42.50 | 2 | | Sample Variance | 27.22667 | | | | | | |
| 12 | 40 | | 45.00 | 6 | | Kurtosis | 0.707219 | | | | | | |
| 13 | 47 | | 47.50 | 3 | | Skewness | 0.823163 | | 8 | | | | |
| 14 | 44 | | 50.00 | 5 | | Range | 22 | | | | | | |
| 15 | 46 | | 52.50 | 3 | | Minimum | 36 | | | | | | |
| 16 | 53 | | 55.00 | 2 | | Maximum | 58 | | | | | | |
| 17 | 45 | | 57.50 | 1 | | Sum | 1142 | | | | | | |
| 18 | 44 | | 60.00 | 0 | | Count | 25 | | | | | | |
| 19 | 45 | | More | 0 | | | | | | | | | |
| 20 | 45 | | | | | | | | | | | | |
| 21 | 41 | | | | | | | | | | | | |
| 22 | 47 | | | | | | | | | | | | |
| 23 | 46 | | | | | | | | | | | | |
| 24 | 40 | | | | | | | | | | | | |
| 25 | 46 | | | | | | | | | | | | |
| 26 | 42 | | | | | | | | | | | | |
| 27 | 41 | | | | | | | | | | | | |
| 28 | 58 | | | | | | | | | | | | |

Figure : 5.33 :

Airport Service Times Statistics

Goodness of Fit

The basis for fitting data to a probability distribution is a statistical procedure called goodness of fit. Goodness of fit attempts to draw a conclusion about the nature of the distribution. For instance, in Example 5.40 we suggested that it might be reasonable to assume that the distribution of passenger demand is normal. Goodness of fit would provide objective, analytical support for this assumption. Understanding the details of this procedure requires concepts that we will learn in Chapter 7. However, software exists (which we illustrate shortly) that run statistical procedures to determine how well a theoretical distribution fits a set of data, and also find the best-fitting distribution.

Determining how well sample data fits a distribution is typically measured using one of three types of statistics, called chi-square, Kolmogorov-Smirnov, and AndersonDarling statistics. Essentially, these statistics provide a measure of how well the histogram of the sample data compares with a specified theoretical probability distribution. The chisquare approach breaks down the theoretical distribution into areas of equal probability and compares the data points within each area to the number that would be expected for that distribution. The Kolmogorov-Smirnov procedure compares the cumulative distribution of the data with the theoretical distribution and bases its conclusion on the largest vertical distance between them. The Anderson-Darling method is similar but puts more weight on the differences between the tails of the distributions. This approach is useful when you need a better fit at the extreme tails of the distribution. If you use chi-square, you should have at least 50 data points; for small samples, the Kolmogorov-Smirnov test generally works better.

Distribution Fitting with Analytic Solver Platform

Analytic Solver Platform has the capability of "fitting" a probability distribution to data using one of the three goodness-of-fit procedures. This is often done to analyze and define inputs to simulation models that we discuss in Chapter 12. However, you need not understand simulation at this time to use this capability. We illustrate this procedure using the airport service time data.

EXAMPLE 5.42 Fitting a Distribution to Airport Service Times

Step 1: Highlight the range of the data in the Airport Service Times worksheet. Click on the Tools button in the Analytic Solver Platform ribbon and then click Fit. This displays the Fit Options dialog shown in Figure 5.34.
Step 2: In the Fit Options dialog, choose whether to fit the data to a continuous or discrete distribution. In this example, we select Continuous. You may also choose the statistical procedure used to evaluate the results, either chi-square, Kolmogorov-Smirnov, or Anderson-Darling. We choose the default option, Kolmogorov-Smirnov. Click the Fit button.

Analytic Solver Platform displays a window with the results as shown in Figure 5.35. In this case, the best-fitting distribution is called an Erlang distribution. If you want
to compare the results to a different distribution, simply check the box on the left side. You don't have to know the mathematical details to use the distribution in a spreadsheet application because the formula for the Psi function corresponding to this distribution is shown in the panel on the right side of the output. When you exit the dialog, you have the option to accept the result; if so, it asks you to select a cell to place the Psi function for the distribution, in this case, the function:

```
=PsiErlang(1.46504838280818,80.0576462180289,
    PsiShift 8.99)
```

We could use this function to generate samples from this distribution, similar to the way we used the NORM.INV function in Example 5.38.

Figure $\quad 5.34$:
Fit Options Dialog

| Fit Options | | | |
| :---: | :---: | :---: | :---: |
| Sample data | | | |
| Locallion | 3ast manic | | 困 |
| Type | - Continuous | (5) Discrete | |
| Fitting | | | |
| \checkmark Alow Shillad Distributions | | | |
| \checkmark Run Sample Independence Test Goodness of Fit Test | | | |
| (1) Chi-Square statistios | | | |
| (0) Kolmogorov-Smimov stalistics | | | |
| (6) Anderson-Darining stalistics | | | |
| Fit Cancel | | | |

Analytics in Practice: The Value of Good Data Modeling in Advertising

To illustrate the importance of identifying the correct distribution in decision modeling, we discuss an example in advertising. ${ }^{3}$ The amount that companies spend on the creative component of advertising (i.e., making better ads) is traditionally quite small relative to the overall media budget. One expert noted that the expenditure on creative development was about 5% of that spent on the media delivery campaign.

Whatever money is spent on creative development is usually directed through a single advertising agency. However, one theory that has been proposed is that more should be spent on creative ad development, and the expenditures should be spread across a number of competitive advertising agencies. In research studies of this theory, the distribution of advertising effectiveness was assumed to be normal. In reality, data collected on the response to consumer product ads show that this distribution is actually quite skewed and, therefore, not normally distributed. Using the wrong assumption in any model or application can produce erroneous results. In this situation, the skewness actually provides an advantage for advertisers, making it more effective to obtain ideas from a variety of advertising agencies.

A mathematical model (called Gross's model) relates the relative contributions of creative and media dollars to total advertising effectiveness and is often used to identify the best number of draft ads to purchase. This model includes factors of ad development cost, total media spending budget, the distribution of effectiveness across ads (assumed to be normal), and the unreliability of identifying the most effective ad from a set of independently generated alternatives. Gross's model concluded that large gains were possible if multiple ads were obtained from independent sources, and the best ad is selected.

Since the data observed on ad effectiveness was clearly skewed, other researchers examined ad effectiveness by studying standard industry data on ad recall without requiring the assumption of normally distributed effects. This analysis found that the best of a number of ads was more effective than any single ad. Further analysis revealed that the optimal number of ads to commission can vary significantly, depending on the shape of the distribution of effectiveness for a single ad.

The researchers developed an alternative to Gross's model. From their analyses, they found that as the number of draft ads was increased, the effectiveness of the best ad also increased. Both the optimal number of draft ads and the payoff from creating multiple independent drafts were higher when the correct distribution was used than the results reported in Gross's original study.

Key Terms

Bernoulli distribution
Binomial distribution Complement Conditional probability

Continuous random variable
Cumulative distribution function
Discrete random variable
Discrete uniform distribution

[^36]Empirical probability distribution
Event
Expected value
Experiment
Exponential distribution
Goodness of fit
Independent events
Intersection
Joint probability
Joint probability table
Marginal probability
Multiplication law of probability
Mutually exclusive
Normal distribution

Problems and Exercises

1. a. A die is rolled. Find the probability that the number obtained is greater than 4.
b. Two coins are tossed. Find the probability that only one head is obtained.
c. Two dice are rolled. Find the probability that the sum is equal to 5 .
d. A card is drawn at random from a deck of cards. Find the probability of getting the King of Hearts.
2. Consider the experiment of drawing two cards without replacement from a deck consisting of only the ace through 10 of a single suit (e.g., only hearts).
a. Describe the outcomes of this experiment. List the elements of the sample space.
b. Define the event A_{i} to be the set of outcomes for which the sum of the values of the cards is i (with an ace $=1$). List the outcomes associated with A_{i} for $i=3$ to 19 .
c. What is the probability of obtaining a sum of the two cards equaling from 3 to 19 ?
3. Find the probability of getting the each of the total values when two dice is rolled: $1,2,5,6,7,10$, and 11 .
4. The students of a class have elected five candidates to represent them on the college management council:

| S.No. | Gender | Age |
| :--- | :---: | :---: |
| 1 | Male | 18 |
| 2 | Male | 19 |
| 3 | Female | 22 |
| 4 | Female | 20 |
| 5 | Male | 23 |

This group decides to elect a spokesperson by randomly drawing a name from a hat. Calculate the probability of the spokesperson being either female or over 21.
5. Refer to the card scenario described in Problem 2.
a. Let A be the event "total card value is odd." Find $P(A)$ and $P\left(A^{c}\right)$.
b. What is the probability that the sum of the two cards will be more than 14 ?
6. The latest nationwide political poll in a particular country indicates that the probability for the candidate to be a republican is 0.55 , a communist is 0.30 , and a supporter of the patriots of that country is 0.15 . Assuming that these probabilities are accurate, within a randomly chosen group of 10 citizens:
a. What is the probability that four are communists?
b. What is the probability that none are republican?
7. Roulette is played at a table similar to the one in Figure 5.36. A wheel with the numbers 1 through 36 (evenly distributed with the colors red and black) and two green numbers 0 and 00 rotates in a shallow bowl with a curved wall. A small ball is spun on the inside of the wall and drops into a pocket corresponding to one of the numbers. Players may make 11 different types of bets by placing chips on different areas of the table. These include bets on a single number, two adjacent numbers, a row of three numbers, a block of four numbers, two adjacent rows of six numbers, and the five number combinations of $0,00,1,2$, and 3 ; bets on the numbers $1-18$ or $19-36$; the first, second, or third group of 12 numbers; a column of

Figure : 5.36
Layout of a Typical Roulette Table

12 numbers; even or odd; and red or black. Payoffs differ by bet. For instance, a single-number bet pays 35 to 1 if it wins; a three-number bet pays 11 to 1 ; a column bet pays 2 to 1 ; and a color bet pays even money. Define the following events: $C 1=$ column 1 number, $C 2=$ column 2 number, $C 3=$ column 3 number, $O=$ odd number, $E=$ even number, $G=$ green number, $F 12=$ first 12 numbers, $S 12=$ second 12 numbers, and $T 12=$ third 12 numbers.
a. Find the probability of each of these events.
b. Find $P(G$ or $O), P(O$ or $F 12), P(C 1$ or $C 3)$, $P(E$ and $F 12), P(E$ or $F 12), P(S 12$ and $T 12)$, $P(O$ or $C 2)$.
8. From a bag full of colored balls (red, blue, green and orange), some are picked out and replaced. This is done a thousand times and the number of times each colored ball is picked out is-Blue: 300, Red: 200, Green: 450, and Orange: 50.
a. What is the probability of picking a green ball?
b. What is the probability of picking a blue ball?
c. If there are 100 balls in the bag, how many of them are likely to be green?
d. If there are 10000 balls in the bag, how many of them are likely to be orange?
9. A box contains marbles of three different colors: 8 black, 6 white, and 4 red. Three marbles are selected at random without replacement. Find the probability that the selection contains each of the outcomes listed.
a. Three black marbles
b. A red, a black and a white marble, in that order
c. A red marble and two white marbles, in any order
10. A survey of 200 college graduates who have been working for at least 3 years found that 90 owned only mutual funds, 20 owned only stocks, and 70 owned both.
a. What is the probability that an individual owns a stock? A mutual fund?
b. What is the probability that an individual owns neither stocks nor mutual funds?
c. What is the probability that an individual owns either a stock or a mutual fund?
11. Row 26 of the Excel file Census Education Data gives the number of employed persons having a specific educational level.
a. Find the probability that an employed person has attained each of the educational levels listed in the data.
b. Suppose that A is the event "has at least an Associate's Degree" and B is the event "is at least a high school graduate." Find the probabilities of these events. Are they mutually exclusive? Why or why not? Find the probability $P(A$ or $B)$.
12. A survey of shopping habits found the percentage of respondents that use technology for shopping as shown in Figure 5.37. For example, 17.39% only use online coupons; 21.74% use online coupons and check prices online before shopping, and so on.
a. What is the probability that a shopper will check prices online before shopping?
b. What is the probability that a shopper will use a smart phone to save money?
c. What is the probability that a shopper will use online coupons?
d. What is the probability that a shopper will not use any of these technologies?

Figure : 5.37 :

e. What is the probability that a shopper will check prices online and use online coupons but not use a smart phone?
f. If a shopper checks prices online, what is the probability that he or she will use a smart phone?
g. What is the probability that a shopper will check prices online but not use online coupons or a smart phone?
13. A Canadian business school summarized the gender and residency of its incoming class as follows:

| | Residency | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Gender | Canada | United States | Europe | Asia | Other |
| Male | 123 | 24 | 17 | 52 | 8 |
| Female | 86 | 8 | 10 | 73 | 4 |

a. Construct the joint probability table.
b. Calculate the marginal probabilities.
c. What is the probability that a female student is from outside Canada or the United States?
14. In an example in Chapter 3, we developed the following cross-tabulation of sales transaction data:

| Region | Book | DVD | Total |
| :--- | :---: | :---: | :---: |
| East | 56 | 42 | 98 |
| North | 43 | 42 | 85 |
| South | 62 | 37 | 99 |
| West | 100 | 90 | 190 |
| Total | 261 | 211 | 472 |

a. Find the marginal probabilities that a sale originated in each of the four regions and the marginal probability of each type of sale (book or DVD).
b. Find the conditional probabilities of selling a book given that the customer resides in each region.
15. Use the Civilian Labor Force data in the Excel file Census Education Data to find the following:
a. P (unemployed and advanced degree)
b. P (unemployed \mid advanced degree)
c. P (not a high school grad |unemployed)
d. Are the events "unemployed" and "at least a high school graduate" independent?
16. Using the data in the Excel file Consumer Transportation Survey, develop a contingency table for Gender and Vehicle Driven; then convert this table into probabilities.
a. What is the probability that respondent is female?
b. What is the probability that a respondent drives an SUV?
c. What is the probability that a respondent is male and drives a minivan?
d. What is the probability that a female respondent drives either a truck or an SUV?
e. If it is known that an individual drives a car, what is the probability that the individual is female?
f. If it is known that an individual is male, what is the probability that he drives an SUV?
g. Determine whether the random variables "gender" and the event "vehicle driven" are statistically independent. What would this mean for advertisers?
17. A home pregnancy test is not always accurate. Suppose the probability is 0.015 that the test indicates that a woman is pregnant when she actually is not, and the probability is 0.025 that the test indicates that a woman is not pregnant when she really is. Assume that the probability that a woman who takes the test is actually pregnant is 0.7 . What is the probability that a woman is pregnant if the test yields a not-pregnant result?
18. A political candidate running for local office is considering the votes she can get in an upcoming election. Assume that the votes can take on only four possible values. If the candidate assessment is per the given Excel sheet Votes, construct the probability distribution graph.

| Number of
 Votes | Probability this
 Will Happen |
| :---: | :---: |
| 1000 | 0.2 |
| 2000 | 0.4 |
| 3000 | 0.3 |
| 4000 | 0.1 |

19. In the roulette example described in Problem 7, what is the probability that the outcome will be green twice in a row? What is the probability that the outcome will be black twice in a row?
20. A consumer products company found that 48% of successful products also received favorable results from test market research, whereas 12% had unfavorable results but nevertheless were successful. They also found that 28% of unsuccessful products had unfavorable research results, whereas 12% of them had favorable research results. That is, P (successful product and favorable test market $)=0.48, P($ successful product and unfavorable test market $)=0.12, P($ unsuccessful product and favorable test market) $=0.12$, and $P($ unsuccessful product and unfavorable test market $)=$ 0.28 . Find the probabilities of successful and unsuccessful products given known test market results.
21. A particular training program has been designed to upgrade the administrative skills of managers. The program is self-administered; the manager requires putting in different number of hours to complete the program. The previous participant's input indicates that the mean length of time spent on the program is 500 hours, and that this normally distributed random variables has standard deviation of 100 hours. Calculate the probability of a randomly selected participant who will require more than 500 hours.
22. The weekly demand of a slow-moving product has the following probability mass function:

| Demand, \boldsymbol{x} | Probability, $f(x)$ |
| :---: | :---: |
| 0 | 0.2 |
| 1 | 0.4 |
| 2 | 0.3 |
| 3 | 0.1 |
| 4 or more | 0 |

Find the expected value, variance, and standard deviation of weekly demand.
23. The Excel sheet Baseball contains information about a team which is using an automatic pitching machine. If the machine is correctly setup and properly adjusted, it will strike 85 percent of the time. If it is incorrectly set up, it will strike only 35 percent of the time. Past data indicates that 75 percent of the setup of the machine is correctly done. After the machine has been set up, at batting practice one day, it throws three strikes on the first three pitches. What is the revised probability that has setup done correctly?

| Event | $\mathbf{P}($ Event $)$ | $\mathbf{P}($ 1Strike/Event $)$ |
| :--- | :---: | :---: |
| Correct | 0.75 | 0.85 |
| Incorrect | x | 0.35 |

24. Based on the data in the Excel file Consumer Transportation Survey, develop a probability mass function and cumulative distribution function (both tabular and as charts) for the random variable Number of Children. What is the probability that an individual in this survey has fewer than three children? At least one child? Five or more children?
25. A major application of analytics in marketing is determining the attrition of customers. Suppose that the probability of a long-distance carrier's customer leaving for another carrier from one month to the next is 0.12 . What distribution models the retention of an individual customer? What is the expected value and standard deviation?
26. The Excel file Call Center Data shows that in a sample of 70 individuals, 27 had prior call center experience. If we assume that the probability that any potential hire will also have experience with a probability of 27/70, what is the probability that among 10 potential hires, more than half of them will have experience? Define the parameter(s) for this distribution based on the data.
27. If a cell phone company conducted a telemarketing campaign to generate new clients and the probability of successfully gaining a new customer was 0.07 , what is the probability that contacting 50 potential customers would result in at least 5 new customers?
28. During 1 year, a particular mutual fund has outperformed the S\&P 500 index 33 out of 52 weeks. Find the probability that this performance or better would happen again.
29. A popular resort hotel has 300 rooms and is usually fully booked. About 6% of the time a reservation is canceled before the $6: 00 \mathrm{p} . \mathrm{m}$. deadline with no penalty. What is the probability that at least 280 rooms will be occupied? Use the binomial distribution to find the exact value.
30. A telephone call center where people place marketing calls to customers has a probability of success of 0.08 . The manager is very harsh on those who do not get a sufficient number of successful calls. Find the number of calls needed to ensure that there is a probability of 0.90 of obtaining 5 or more successful calls.
31. Ravi sells three life insurance policies on an average per week. Use Poisson's distribution to calculate the probability that in a given week he will sell
a. some policies.
b. two or more policies but less than 5 policies.
c. one policy, assuming that there are 5 working days per week.
32. The number and frequency of Atlantic hurricanes annually from 1940 through 2012 is shown here.

| Number | Frequency |
| :---: | :---: |
| 0 | 5 |
| 1 | 16 |
| 2 | 19 |
| 3 | 14 |
| 4 | 3 |
| 5 | 5 |
| 6 | 4 |
| 7 | 3 |
| 8 | 2 |
| 10 | 1 |
| 12 | 1 |

a. Find the probabilities of $0-12$ hurricanes each season using these data.
b. Assuming a Poisson distribution and using the mean number of hurricanes per season from the empirical data, compute the probabilities of experiencing 0-12 hurricanes in a season. Compare these to your answer to part (a). How good does a Poisson distribution model this phenomenon? Construct a chart to visualize these results.
33. Verify that the function corresponding to the following figure is a valid probability density function. Then find the following probabilities:
a. $P(x<8)$
b. $P(x>7)$
c. $P(6<x<10)$
d. $P(8<x<11)$

34. The time required to play a game of Battleship ${ }^{\mathrm{TM}}$ is uniformly distributed between 15 and 60 minutes.
a. Find the expected value and variance of the time to complete the game.
b. What is the probability of finishing within 30 minutes?
c. What is the probability that the game would take longer than 40 minutes?
35. A contractor has estimated that the minimum number of days to remodel a bathroom for a client is 10 days. He also estimates that 80% of similar jobs are completed within 18 days. If the remodeling time is uniformly distributed, what should be the parameters of the uniform distribution?
36. In determining automobile-mileage ratings, it was found that the $\mathrm{mpg}(X)$ for a certain model is normally distributed, with a mean of 33 mpg and a standard deviation of 1.7 mpg . Find the following:
a. $P(X<30)$
b. $P(28<X<32)$
c. $P(X>35)$
d. $P(X>31)$
e. The mileage rating that the upper 5% of cars achieve.
37. The distribution of the SAT scores in math for an incoming class of business students has a mean of 590 and standard deviation of 22. Assume that the scores are normally distributed.
a. Find the probability that an individual's SAT score is less than 550.
b. Find the probability that an individual's SAT score is between 550 and 600 .
c. Find the probability that an individual's SAT score is greater than 620.
d. What percentage of students will have scored better than 700 ?
e. Find the standardized values for students scoring $550,600,650$, and 700 on the test.
38. A popular soft drink is sold in 2-liter (2,000-milliliter) bottles. Because of variation in the filling process, bottles have a mean of 2,000 milliliters and a standard deviation of 20 , normally distributed.
a. If the process fills the bottle by more than 50 milliliters, the overflow will cause a machine malfunction. What is the probability of this occurring?
b. What is the probability of underfilling the bottles by at least 30 milliliters?
39. A supplier contract calls for a key dimension of a part to be between 1.96 and 2.04 centimeters. The supplier has determined that the standard deviation of its process, which is normally distributed, is 0.04 centimeter.
a. If the actual mean of the process is 1.98 , what fraction of parts will meet specifications?
b. If the mean is adjusted to 2.00 , what fraction of parts will meet specifications?
c. How small must the standard deviation be to ensure that no more than 2% of parts are nonconforming, assuming the mean is 2.00 ?
40. Dev scored 940 on a national mathematics test. The mean test score was 850 with a standard deviation of 100. What proportion of students had a higher score than Dev? (Assume that the test scores are normally distributed.)
41. A lightbulb is warranted to last for 5,000 hours. If the time to failure is exponentially distributed with a true mean of 4,750 hours, what is the probability that it will last at least 5,000 hours?
42. The actual delivery time from Giodanni's Pizza is exponentially distributed with a mean of 20 minutes.
a. What is the probability that the delivery time will exceed 30 minutes?
b. What proportion of deliveries will be completed within 20 minutes?
43. Develop a procedure to sample from the probability distribution of soft-drink choices in Problem 1. Implement your procedure on a spreadsheet and use the VLOOKUP function to sample 10 outcomes from the distribution.
44. Develop a procedure to sample from the probability distribution of two-card hands in Problem 2. Implement your procedure on a spreadsheet and use the VLOOKUP function to sample 20 outcomes from the distribution.
45. Use formula (5.23) to obtain a sample of 25 outcomes for a game of Battleship ${ }^{\text {TM }}$ as described in Problem 34. Find the average and standard deviation for these 25 outcomes.
46. Use the Excel Random Number Generation tool to generate 100 samples of the number of customers that the financial consultant in Problem 31 will have on a daily basis. What percentage will meet his target of at least 5?
47. A formula in financial analysis is: Return on equity $=$ net profit margin \times total asset turnover \times equity multiplier. Suppose that the equity multiplier is fixed at 4.0, but that the net profit margin is normally distributed with a mean of 3.8% and a standard deviation of 0.4%, and that the total asset turnover is normally distributed with a mean of 1.5 and a standard deviation of 0.2. Set up and conduct a sampling experiment to find the distribution of the return on equity. Show your results as a histogram to help explain your analysis and conclusions. Use the empirical rules to predict the return on equity.
48. A government agency is putting a large project out for low bid. Bids are expected from 10 different contractors and will have a normal distribution with a mean of $\$ 3.5$ million and a standard deviation of $\$ 0.25$ million. Devise and implement a sampling
experiment for estimating the distribution of the minimum bid and the expected value of the minimum bid.
49. Use Analytic Solver Platform to fit the hurricane data in Problem 32 to a discrete distribution? Does the Poisson distribution give the best fit?
50. Use Analytic Solver Platform to fit a distribution to the data in the Excel file Computer Repair Times.

Case: Performance Lawn Equipment

PLE collects a variety of data from special studies, many of which are related to the quality of its products. The company collects data about functional test performance of its mowers after assembly; results from the past 30 days are given in the worksheet Mower Test. In addition, many inprocess measurements are taken to ensure that manufacturing processes remain in control and can produce according to design specifications. The worksheet Blade Weight shows 350 measurements of blade weights taken from the manufacturing process that produces mower blades during the most recent shift. Elizabeth Burke has asked you to study these data from an analytics perspective. Drawing upon your experience, you have developed a number of questions.

1. For the mower test data, what distribution might be appropriate to model the failure of an individual mower?
2. What fraction of mowers fails the functional performance test using all the mower test data?
3. What is the probability of having x failures in the next 100 mowers tested, for x from 0 to 20?
4. What is the average blade weight and how much variability is occurring in the measurements of blade weights?

Try the three different statistical measures for evaluating goodness of fit and see if they result in different best-fitting distributions.
51. The Excel file Investment Returns provides sample data for the annual return of the S\&P 500, and monthly returns of a stock portfolio and bond portfolio. Construct histograms for each data set and use Analytic Solver Platform to find the best fitting distribution.
5. Assuming that the data are normal, what is the probability that blade weights from this process will exceed 5.20?
6. What is the probability that weights will be less than 4.80 ?
7. What is the actual percent of weights that exceed 5.20 or are less than 4.80 from the data in the worksheet?
8. Is the process that makes the blades stable over time? That is, are there any apparent changes in the pattern of the blade weights?
9. Could any of the blade weights be considered outliers, which might indicate a problem with the manufacturing process or materials?
10. Was the assumption that blade weights are normally distributed justified? What is the best-fitting probability distribution for the data?

Summarize all your findings to these questions in a wellwritten report.

This page intentionally left blank

Learning Objectives

After studying this chapter, you will be able to:
Describe the elements of a sampling plan.

- Explain the difference between subjective and probabilistic sampling.
State two types of subjective sampling.
Explain how to conduct simple random sampling and use Excel to find a simple random sample from an Excel database.
Explain systematic, stratified, and cluster sampling, and sampling from a continuous process.
Explain the importance of unbiased estimators.
- Describe the difference between sampling error and nonsampling error.
Explain how the average, standard deviation, and distribution of means of samples changes as the sample size increases.
Define the sampling distribution of the mean.
- Calculate the standard error of the mean.

Explain the practical importance of the central limit theorem.

Use the standard error in probability calculations.
Explain how an interval estimate differs from a point estimate.
Define and give examples of confidence intervals.

- Calculate confidence intervals for population means and proportions using the formulas in the chapter and the appropriate Excel functions.
- Explain how confidence intervals change as the level of confidence increases or decreases.
- Describe the difference between the t-distribution and the normal distribution.
- Use confidence intervals to draw conclusions about population parameters.
- Compute a prediction interval and explain how it differs from a confidence interval.
- Compute sample sizes needed to ensure a confidence interval for means and proportions with a specified margin of error.

Abstract

We discussed the difference between population and samples in Chapter 4. Sampling is the foundation of statistical analysis. We use sample data in business analytics applications for many purposes. For example, we might wish to estimate the mean, variance, or proportion of a very large or unknown population; provide values for inputs in decision models; understand customer satisfaction; reach a conclusion as to which of several sales strategies is more effective; or understand if a change in a process resulted in an improvement. In this chapter, we discuss sampling methods, how they are used to estimate population parameters, and how we can assess the error inherent in sampling.

The first step in sampling is to design an effective sampling plan that will yield representative samples of the populations under study. A sampling plan is a description of the approach that is used to obtain samples from a population prior to any data collection activity. A sampling plan states

- the objectives of the sampling activity,
- the target population,
- the population frame (the list from which the sample is selected),
- the method of sampling,
- the operational procedures for collecting the data, and
- the statistical tools that will be used to analyze the data.

EXAMPLE 6.1 A Sampling Plan for a Market Research Study

Suppose that a company wants to understand how golfers might respond to a membership program that provides discounts at golf courses in the golfers' locality as well as across the country. The objective of a sampling study might be to estimate the proportion of golfers who would likely subscribe to this program. The target population might be all golfers over 25 years old. However, identifying all golfers in America might be impossible. A practical population frame might be a list of golfers who
have purchased equipment from national golf or sporting goods companies through which the discount card will be sold. The operational procedures for collecting the data might be an e-mail link to a survey site or direct-mail questionnaire. The data might be stored in an Excel database; statistical tools such as PivotTables and simple descriptive statistics would be used to segment the respondents into different demographic groups and estimate their likelihood of responding positively.

Sampling Methods

Many types of sampling methods exist. Sampling methods can be subjective or probabilistic. Subjective methods include judgment sampling, in which expert judgment is used to select the sample (survey the "best" customers), and convenience sampling, in which samples are selected based on the ease with which the data can be collected (survey all customers who happen to visit this month). Probabilistic sampling involves selecting the

Figure : 6.1
Excel Sampling Tool Dialog

items in the sample using some random procedure. Probabilistic sampling is necessary to draw valid statistical conclusions.

The most common probabilistic sampling approach is simple random sampling. Simple random sampling involves selecting items from a population so that every subset of a given size has an equal chance of being selected. If the population data are stored in a database, simple random samples can generally be easily obtained.

EXAMPLE 6.2 Simple Random Sampling with Excel

Suppose that we wish to sample from the Excel database Sales Transactions. Excel provides a tool to generate a random set of values from a given population size. Click on Data Analysis in the Analysis group of the Data tab and select Sampling. This brings up the dialog shown in Figure 6.1. In the Input Range box, we specify the data range from which the sample will be taken. This tool requires that the data sampled be numeric, so in this example we sample from the first column of the data set, which corresponds to the customer ID number. There are two options for sampling:

1. Sampling can be periodic, and we will be prompted for the Period, which is the interval between sample
observations from the beginning of the data set. For instance, if a period of 5 is used, observations 5 , 10,15 , and so on, will be selected as samples.
2. Sampling can also be random, and we will be prompted for the Number of Samples. Excel will then randomly select this number of samples from the specified data set. However, this tool generates random samples with replacement, so we must be careful to check for duplicate observations in the sample created.

Figure 6.2 shows 20 samples generated by the tool. We sorted them in ascending order to make it easier to identify duplicates. As you can see, two of the customers were duplicated by the tool.

Other methods of sampling include the following:
Systematic (Periodic) Sampling. Systematic, or periodic, sampling is a sampling plan (one of the options in the Excel Sampling tool) that selects every nth item from the population. For example, to sample 250 names from a list of 400,000 , the first name could be selected at random from the first 1,600 , and then every 1,600 th name could be selected. This approach can be used for telephone sampling when supported by an automatic dialer that is programmed to dial numbers in a systematic manner. However, systematic sampling is not the same

| A
 1 Sample of Customer IDs | |
| :---: | ---: |
| 3 | 10009 |
| 4 | 10092 |
| 5 | 10102 |
| 6 | 10118 |
| 7 | 10167 |
| 8 | 10176 |
| 9 | 10256 |
| 10 | 10261 |
| 11 | 10266 |
| 12 | 10293 |
| 13 | 10320 |
| 14 | 10336 |
| 15 | 10355 |
| 16 | 10355 |
| 17 | 10377 |
| 18 | 10393 |
| 19 | 10413 |
| 20 | 10438 |
| 21 | 10438 |
| | 10455 |

as simple random sampling because for any sample, every possible sample of a given size in the population does not have an equal chance of being selected. In some situations, this approach can induce significant bias if the population has some underlying pattern. For instance, sampling orders received every 7 days may not yield a representative sample if customers tend to send orders on certain days every week.

- Stratified Sampling. Stratified sampling applies to populations that are divided into natural subsets (called strata) and allocates the appropriate proportion of samples to each stratum. For example, a large city may be divided into political districts called wards. Each ward has a different number of citizens. A stratified sample would choose a sample of individuals in each ward proportionate to its size. This approach ensures that each stratum is weighted by its size relative to the population and can provide better results than simple random sampling if the items in each stratum are not homogeneous. However, issues of cost or significance of certain strata might make a disproportionate sample more useful. For example, the ethnic or racial mix of each ward might be significantly different, making it difficult for a stratified sample to obtain the desired information.
- Cluster Sampling. Cluster sampling is based on dividing a population into subgroups (clusters), sampling a set of clusters, and (usually) conducting a complete census within the clusters sampled. For instance, a company might segment its customers into small geographical regions. A cluster sample would consist of a random sample of the geographical regions, and all customers within these regions would be surveyed (which might be easier because regional lists might be easier to produce and mail).
- Sampling from a Continuous Process. Selecting a sample from a continuous manufacturing process can be accomplished in two main ways. First, select a time at random; then select the next n items produced after that time. Second, select n times at random; then select the next item produced after each of these times. The first approach generally ensures that the observations will come from a homogeneous population; however, the second approach might include items from different populations if the characteristics of the process should change over time, so caution should be used.

Analytics in Practice: Using Sampling Techniques to Improve Distribution ${ }^{1}$

U.S. breweries rely on a three-tier distribution system to deliver product to retail outlets, such as supermarkets and convenience stores, and on-premise accounts, such as bars and restaurants. The three tiers are the manufacturer, wholesaler (distributor), and retailer. A distribution network must be as efficient and cost effective as possible to deliver to the market a fresh product that is damage free and is delivered at the right place at the right time.

To understand distributor performance related to overall effectiveness, MillerCoors brewery defined seven attributes of proper distribution and collected data from 500 of its distributors. A field quality specialist (FQS) audits distributors within an assigned region of the country and collects data on these attributes. The FQS uses a handheld device to scan the universal product code on each package to identify the product type and amount. When audits are complete, data are summarized and uploaded from the handheld device into a master database.

This distributor auditing uses stratified random sampling with proportional allocation of samples based on the distributor's market share. In addition to providing a more representative sample and better logistical control of sampling, stratified random sampling enhances statistical precision when data are aggregated by market area served by the distributor. This enhanced precision is a consequence of smaller and typically homogeneous market regions, which are able to provide realistic estimates of variability, especially when compared to another market region that is markedly different.

Randomization of retail accounts is achieved through a specially designed program based on the GPS location of the distributor and serviced retail accounts. The sampling strategy ultimately addresses a specific distributor's performance related to out-ofcode product, damaged product, and out-of-rotation product at the retail level. All in all, more than 6,000 of the brewery's national retail accounts are audited during a sampling year. Data collected by the FQSs during the year are used to develop a performance ranking of distributors and identify opportunities for improvement.

Estimating Population Parameters

Sample data provide the basis for many useful analyses to support decision making. Estimation involves assessing the value of an unknown population parameter-such as a population mean, population proportion, or population variance-using sample data. Estimators are the measures used to estimate population parameters; for example, we use the sample mean \bar{x} to estimate a population mean μ. The sample variance s^{2} estimates a population variance σ^{2}, and the sample proportion p estimates a population proportion π. A point estimate is a single number derived from sample data that is used to estimate the value of a population parameter.

[^37]
Unbiased Estimators

It seems quite intuitive that the sample mean should provide a good point estimate for the population mean. However, it may not be clear why the formula for the sample variance that we introduced in Chapter 4 has a denominator of $n-1$, particularly because it is different from the formula for the population variance (see formulas (4.4) and (4.5) in Chapter 4). In these formulas, the population variance is computed by

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{N}
$$

whereas the sample variance is computed by the formula

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Why is this so? Statisticians develop many types of estimators, and from a theoretical as well as a practical perspective, it is important that they "truly estimate" the population parameters they are supposed to estimate. Suppose that we perform an experiment in which we repeatedly sampled from a population and computed a point estimate for a population parameter. Each individual point estimate will vary from the population parameter; however, we would hope that the long-term average (expected value) of all possible point estimates would equal the population parameter. If the expected value of an estimator equals the population parameter it is intended to estimate, the estimator is said to be unbiased. If this is not true, the estimator is called biased and will not provide correct results.

Fortunately, all the estimators we have introduced are unbiased and, therefore, are meaningful for making decisions involving the population parameter. In particular, statisticians have shown that the denominator $n-1$ used in computing s^{2} is necessary to provide an unbiased estimator of σ^{2}. If we simply divided by the number of observations, the estimator would tend to underestimate the true variance.

Errors in Point Estimation

One of the drawbacks of using point estimates is that they do not provide any indication of the magnitude of the potential error in the estimate. A major metropolitan newspaper reported that, based on a Bureau of Labor Statistics survey, college professors were the highest-paid workers in the region, with an average salary of $\$ 150,004$. Actual averages for two local universities were less than $\$ 70,000$. What happened? As reported in a follow-up story, the sample size was very small and included a large number of highly paid medical school faculty; as a result, there was a significant error in the point estimate that was used.

When we sample, the estimators we use-such as a sample mean, sample proportion, or sample variance-are actually random variables that are characterized by some distribution. By knowing what this distribution is, we can use probability theory to quantify the uncertainty associated with the estimator. To understand this, we first need to discuss sampling error and sampling distributions.

Sampling Error

In Chapter 4, we observed that different samples from the same population have different characteristics-for example, variations in the mean, standard deviation, frequency distribution, and so on. Sampling (statistical) error occurs because samples are only a subset of the total population. Sampling error is inherent in any sampling process, and although it can be minimized, it cannot be totally avoided. Another type of error, called nonsampling error, occurs when the sample does not represent the target population adequately. This is generally a result of poor sample design, such as using a convenience sample when a simple random sample would have been more appropriate or choosing the wrong population frame. It may also result from inadequate data reliability, which we discussed in Chapter 1. To draw good conclusions from samples, analysts need to eliminate nonsampling error and understand the nature of sampling error.

Sampling error depends on the size of the sample relative to the population. Thus, determining the number of samples to take is essentially a statistical issue that is based on the accuracy of the estimates needed to draw a useful conclusion. We discuss this later in this chapter. However, from a practical standpoint, one must also consider the cost of sampling and sometimes make a trade-off between cost and the information that is obtained.

Understanding Sampling Error

Suppose that we estimate the mean of a population using the sample mean. How can we determine how accurate we are? In other words, can we make an informed statement about how far the sample mean might be from the true population mean? We could gain some insight into this question by performing a sampling experiment.

EXAMPLE 6.3 A Sampling Experiment

Let us choose a population that is uniformly distributed between $a=0$ and $b=10$. Formulas (5.17) and (5.18) state that the expected value is $(0+10) / 2=5$, and the variance is $(10-0)^{2} / 12=8.333$. We use the Excel Random Number Generation tool described in Chapter 5 to generate 25 samples, each of size 10 from this population. Figure 6.3 shows a portion of a spreadsheet for this experiment, along with a histogram of the data (on the left side) that shows that the 250 observations are approximately uniformly distributed. (This is available in the Excel file Sampling Experiment.)

In row 12 we compute the mean of each sample. These statistics vary a lot from the population values because of sampling error. The histogram on the right shows the distribution of the 25 sample means, which vary from less than 4 to more than 6 . Now let's compute the average and standard deviation of the sample means in row 12 (cells AB12
and AB13). Note that the average of all the sample means is quite close to the true population mean of 5.0.

Now let us repeat this experiment for larger sample sizes. Table 6.1 shows some results. Notice that as the sample size gets larger, the averages of the 25 sample means are all still close to the expected value of 5 ; however, the standard deviation of the 25 sample means becomes smaller for increasing sample sizes, meaning that the means of samples are clustered closer together around the true expected value. Figure 6.4 shows comparative histograms of the sample means for each of these cases. These illustrate the conclusions we just made and, also, perhaps even more surprisingly, the distribution of the sample means appears to assume the shape of a normal distribution for larger sample sizes. In our experiment, we used only 25 sample means. If we had used a much-larger number, the distributions would have been more well defined.

Figure: 6.3
Portion of Spreadsheet for Sampling Experiment

Table 6.1
Results from Sampling
Experiment

| Sample Size | Average of 25 Sample
 Means | Standard Deviation of
 25 Sample Means |
| :---: | :---: | :---: |
| 10 | 5.0108 | 0.816673 |
| 25 | 5.0779 | 0.451351 |
| 100 | 4.9173 | 0.301941 |
| 500 | 4.9754 | 0.078993 |

Figure : 6.4
Histograms of Sample Means for Increasing Sample Sizes

If we apply the empirical rules to these results, we can estimate the sampling error associated with one of the sample sizes we have chosen.

EXAMPLE 6.4 Estimating Sampling Error Using the Empirical Rules

Using the results in Table 6.1 and the empirical rule for three standard deviations around the mean, we could state, for example, that using a sample size of 10, the distribution of sample means should fall approximately from $5.0-3(0.816673)=2.55$ to $5.0+3(0.816673)=7.45$. Thus, there is considerable error in estimating the mean
using a sample of only 10 . For a sample of size 25 , we would expect the sample means to fall between $5.0-3(0.451351)=3.65$ to $5.0+3(0.451351)=6.35$. Note that as the sample size increased, the error decreased. For sample sizes of 100 and 500, the intervals are [4.09, 5.91] and [4.76, 5.24].

Sampling Distributions

We can quantify the sampling error in estimating the mean for any unknown population. To do this, we need to characterize the sampling distribution of the mean.

Sampling Distribution of the Mean

The means of all possible samples of a fixed size n from some population will form a distribution that we call the sampling distribution of the mean. The histograms in Figure 6.4 are approximations to the sampling distributions of the mean based on 25 samples. Statisticians have shown two key results about the sampling distribution of the mean. First, the standard deviation of the sampling distribution of the mean, called the standard error of the mean, is computed as

$$
\begin{equation*}
\text { Standard Error of the Mean }=\sigma / \sqrt{n} \tag{6.1}
\end{equation*}
$$

where σ is the standard deviation of the population from which the individual observations are drawn and n is the sample size. From this formula, we see that as n increases, the standard error decreases, just as our experiment demonstrated. This suggests that the estimates of the mean that we obtain from larger sample sizes provide greater accuracy in estimating the true population mean. In other words, larger sample sizes have less sampling error.

EXAMPLE 6.5 Computing the Standard Error of the Mean

For our experiment, we know that the variance of the population is 8.33 (because the values were uniformly distributed). Therefore, the standard deviation of the population is $\sigma=2.89$. We may compute the standard error of the mean for each of the sample sizes in our experiment using formula (6.1). For example, with $n=10$, we have
Standard Error of the Mean $=\sigma / \sqrt{n}=2.89 / \sqrt{10}=0.914$

For the remaining data in Table 6.1 we have the following:

| Sample Size, \boldsymbol{n} | Standard Error of the Mean |
| :---: | :---: |
| 10 | 0.914 |
| 25 | 0.577 |
| 100 | 0.289 |
| 500 | 0.129 |

The standard deviations shown in Table 6.1 are simply estimates of the standard error of the mean based on the limited number of 25 samples. If we compare these estimates with the theoretical values in the previous example, we see that they are close but not exactly the same. This is because the true standard error is based on all possible sample means in the sampling
distribution, whereas we used only 25 . If you repeat the experiment with a larger number of samples, the observed values of the standard error would be closer to these theoretical values.

In practice, we will never know the true population standard deviation and generally take only a limited sample of n observations. However, we may estimate the standard error of the mean using the sample data by simply dividing the sample standard deviation by the square root of n.

The second result that statisticians have shown is called the central limit theorem, one of the most important practical results in statistics that makes systematic inference possible. The central limit theorem states that if the sample size is large enough, the sampling distribution of the mean is approximately normally distributed, regardless of the distribution of the population and that the mean of the sampling distribution will be the same as that of the population. This is exactly what we observed in our experiment. The distribution of the population was uniform, yet the sampling distribution of the mean converges to the shape of a normal distribution as the sample size increases. The central limit theorem also states that if the population is normally distributed, then the sampling distribution of the mean will also be normal for any sample size. The central limit theorem allows us to use the theory we learned about calculating probabilities for normal distributions to draw conclusions about sample means.

Applying the Sampling Distribution of the Mean

The key to applying sampling distribution of the mean correctly is to understand whether the probability that you wish to compute relates to an individual observation or to the mean of a sample. If it relates to the mean of a sample, then you must use the sampling distribution of the mean, whose standard deviation is the standard error, σ / \sqrt{n}.

EXAMPLE 6.6 Using the Standard Error in Probability Calculations

Suppose that the size of individual customer orders (in dollars), X, from a major discount book publisher Web site is normally distributed with a mean of \$36 and standard deviation of $\$ 8$. The probability that the next individual who places an order at the Web site will make a purchase of more than $\$ 40$ can be found by calculating

1 - NORM.DIST(40,36,8,TRUE) $=1-0.6915=0.3085$
Now suppose that a sample of 16 customers is chosen. What is the probability that the mean purchase for these 16 customers will exceed $\$ 40$? To find this, we must realize that we must use the sampling distribution of the mean to carry out the appropriate calculations. The sampling distribution
of the mean will have a mean of $\$ 36$ but a standard error of $\$ 8 / \sqrt{16}=\$ 2$. Then the probability that the mean purchase exceeds $\$ 40$ for a sample size of $n=16$ is
$1-$ NORM.DIST(40,36,2,TRUE) $=1-0.9772=0.0228$
Although about 30% of individuals will make purchases exceeding \$40, the chance that 16 customers will collectively average more than $\$ 40$ is much smaller. It would be very unlikely for all 16 customers to make highvolume purchases, because some individual purchases would as likely be less than $\$ 36$ as more, making the variability of the mean purchase amount for the sample of 16 much smaller than for individuals.

An interval estimate provides a range for a population characteristic based on a sample. Intervals are quite useful in statistics because they provide more information than a point estimate. Intervals specify a range of plausible values for the characteristic of interest and a way of assessing "how plausible" they are. In general, a $100(1-\alpha) \%$ probability interval is any interval $[A, B]$ such that the probability of falling between A and B is $1-\alpha$. Probability intervals are often centered on the mean or median. For instance,
in a normal distribution, the mean plus or minus 1 standard deviation describes an approximate 68% probability interval around the mean. As another example, the 5th and 95th percentiles in a data set constitute a 90% probability interval.

EXAMPLE 6.7 Interval Estimates in the News

We see interval estimates in the news all the time when trying to estimate the mean or proportion of a population. Interval estimates are often constructed by taking a point estimate and adding and subtracting a margin of error that is based on the sample size. For example, a Gallup poll might report that 56% of voters support a certain candidate with a margin of error of $\pm 3 \%$. We would conclude that the true percentage of voters that support
the candidate is most likely between 53% and 59%. Therefore, we would have a lot of confidence in predicting that the candidate would win a forthcoming election. If, however, the poll showed a 52% level of support with a margin of error of $\pm 4 \%$, we might not be as confident in predicting a win because the true percentage of supportive voters is likely to be somewhere between 48% and 56%.

The question you might be asking at this point is how to calculate the error associated with a point estimate. In national surveys and political polls, such margins of error are usually stated, but they are never properly explained. To understand them, we need to introduce the concept of confidence intervals.

Confidence interval estimates provide a way of assessing the accuracy of a point estimate. A confidence interval is a range of values between which the value of the population parameter is believed to be, along with a probability that the interval correctly estimates the true (unknown) population parameter. This probability is called the level of confidence, denoted by $1-\alpha$, where α is a number between 0 and 1 . The level of confidence is usually expressed as a percent; common values are $90 \%, 95 \%$, or 99%. (Note that if the level of confidence is 90%, then $\alpha=0.1$.) The margin of error depends on the level of confidence and the sample size. For example, suppose that the margin of error for some sample size and a level of confidence of 95% is calculated to be 2.0 . One sample might yield a point estimate of 10 . Then, a 95% confidence interval would be $[8,12]$. However, this interval may or may not include the true population mean. If we take a different sample, we will most likely have a different point estimate, say, 10.4 , which, given the same margin of error, would yield the interval estimate $[8.4,12.4]$. Again, this may or may not include the true population mean. If we chose 100 different samples, leading to 100 different interval estimates, we would expect that 95% of them-the level of confidence-would contain the true population mean. We would say we are " 95% confident" that the interval we obtain from sample data contains the true population mean. The higher the confidence level, the more assurance we have that the interval contains the true population parameter. As the confidence level increases, the confidence interval becomes wider to provide higher levels of assurance. You can view α as the risk of incorrectly concluding that the confidence interval contains the true mean.

When national surveys or political polls report an interval estimate, they are actually confidence intervals. However, the level of confidence is generally not stated because the average person would probably not understand the concept or terminology. While not stated, you can probably assume that the level of confidence is 95%, as this is the most common value used in practice (however, the Bureau of Labor Statistics tends to use 90% quite often).

Many different types of confidence intervals may be developed. The formulas used depend on the population parameter we are trying to estimate and possibly other characteristics or assumptions about the population. We illustrate a few types of confidence intervals.

Confidence Interval for the Mean with Known Population Standard Deviation

The simplest type of confidence interval is for the mean of a population where the standard deviation is assumed to be known. You should realize, however, that in nearly all practical sampling applications, the population standard deviation will not be known. However, in some applications, such as measurements of parts from an automated machine, a process might have a very stable variance that has been established over a long history, and it can reasonably be assumed that the standard deviation is known.

A $100(1-\alpha) \%$ confidence interval for the population mean μ based on a sample of $\operatorname{size} n$ with a sample mean \bar{x} and a known population standard deviation σ is given by

$$
\begin{equation*}
\bar{x} \pm z_{\alpha / 2}(\sigma / \sqrt{n}) \tag{6.2}
\end{equation*}
$$

Note that this formula is simply the sample mean (point estimate) plus or minus a margin of error.

The margin of error is a number $z_{\alpha / 2}$ multiplied by the standard error of the sampling distribution of the mean, σ / \sqrt{n}. The value $z_{\alpha / 2}$ represents the value of a standard normal random variable that has an upper tail probability of $\alpha / 2$ or, equivalently, a cumulative probability of $1-\alpha / 2$. It may be found from the standard normal table (see Table A. 1 in Appendix A at the end of the book) or may be computed in Excel using the value of the function NORM.S.INV $(1-\alpha / 2)$. For example, if $\alpha=0.05$ (for a 95% confidence interval), then $\operatorname{NORM.S.INV}(0.975)=1.96$; if $\alpha=0.10$ (for a 90% confidence interval), then $\operatorname{NORM.S.INV}(0.95)=1.645$, and so on.

Although formula (6.2) can easily be implemented in a spreadsheet, the Excel function CONFIDENCE.NORM(alpha, standard_deviation, size) can be used to compute the margin of error term, $z_{\alpha / 2} \sigma / \sqrt{n}$; thus, the confidence interval is the sample mean \pm CONFIDENCE.NORM(alpha, standard_deviation, size).

EXAMPLE 6.8 Computing a Confidence Interval with a Known Standard Deviation

In a production process for filling bottles of liquid detergent, historical data have shown that the variance in the volume is constant; however, clogs in the filling machine often affect the average volume. The historical standard deviation is 15 milliliters. In filling 800-milliliter bottles, a sample of 25 found an average volume of 796 milliliters. Using formula (6.2), a 95% confidence interval for the population mean is

$$
\begin{gathered}
\bar{x} \pm z_{\alpha / 2}(\sigma / \sqrt{n}) \\
=796 \pm 1.96(15 / \sqrt{25})=796 \pm 5.88, \text { or }[790.12,801.88]
\end{gathered}
$$

The worksheet Population Mean Sigma Known in the Excel workbook Confidence Intervals computes this interval using the CONFIDENCE.NORM function to compute the margin of error in cell B9, as shown in Figure 6.5.

As the level of confidence, $1-\alpha$, decreases, $z_{\alpha / 2}$ decreases, and the confidence interval becomes narrower. For example, a 90% confidence interval will be narrower than a 95% confidence interval. Similarly, a 99% confidence interval will be wider than a 95% confidence interval. Essentially, you must trade off a higher level of accuracy with the risk that the confidence interval does not contain the true mean. Smaller risk will result in a

Figure : 6.5
Confidence Interval for Mean Liquid Detergent Filling Volume

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Confidence Interval for Population Mean, Standard Deviation Known | | | | | |
| 2 | | | | | | |
| 3 | Alpha | 0.05 | | | | |
| 4 | Standard deviation | 15 | | | | |
| 5 | Sample size | 25 | | | | |
| 6 | Sample average | 796 | | | | |
| 7 | | | | | | |
| 8 | Confidence Interval | 95\% | | | | |
| 9 | Error | 5.879892 | | | | |
| 10 | Lower | 790.1201 | | | | |
| 11 | Upper | 801.8799 | | | | |

wider confidence interval. However, you can also see that as the sample size increases, the standard error decreases, making the confidence interval narrower and providing a more accurate interval estimate for the same level of risk. So if you wish to reduce the risk, you should consider increasing the sample size.

The t-Distribution

In most practical applications, the standard deviation of the population is unknown, and we need to calculate the confidence interval differently. Before we can discuss how to compute this type of confidence interval, we need to introduce a new probability distribution called the t-distribution. The t-distribution is actually a family of probability distributions with a shape similar to the standard normal distribution. Different t-distributions are distinguished by an additional parameter, degrees of freedom ($d f$). The t-distribution has a larger variance than the standard normal, thus making confidence intervals wider than those obtained from the standard normal distribution, in essence correcting for the uncertainty about the true standard deviation, which is not known. As the number of degrees of freedom increases, the t-distribution converges to the standard normal distribution (Figure 6.6). When sample sizes get to be as large as 120, the distributions are virtually identical; even for sample sizes as low as 30 to 35 , it becomes difficult to distinguish between the two. Thus, for large sample sizes, many people use z-values to establish confidence intervals even when the standard deviation is unknown. We must point out, however, that for any sample size, the true sampling distribution of the mean is the t-distribution, so when in doubt, use the t.

The concept of degrees of freedom can be puzzling. It can best be explained by examining the formula for the sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Note that to compute s^{2}, we first need to compute the sample mean, \bar{x}. If we know the value of the mean, then we need know only $n-1$ distinct observations; the nth is completely determined. (For instance, if the mean of three values is 4 and you know that two of the values are 2 and 4 , you can easily determine that the third number must be 6 .) The number of sample values that are free to vary defines the number of degrees of freedom; in general, $d f$ equals the number of sample values minus the number of estimated parameters. Because the sample variance uses one estimated parameter, the mean, the t-distribution used in confidence interval calculations has $n-1$ degrees of freedom. Because the t-distribution explicitly accounts for the effect of the sample size in estimating the population variance, it is the proper one to use for any sample size. However, for large samples, the difference between t - and z-values is very small, as we noted earlier.

Figure : 6.6
Comparison of the t-Distribution to the Standard Normal Distribution

Confidence Interval for the Mean with Unknown Population Standard Deviation

The formula for a $100(1-\alpha) \%$ confidence interval for the mean μ when the population standard deviation is unknown is

$$
\begin{equation*}
\bar{x} \pm t_{\alpha / 2, n-1}(s / \sqrt{n}) \tag{6.3}
\end{equation*}
$$

where $t_{\alpha / 2, n-1}$ is the value from the t-distribution with $n-1$ degrees of freedom, giving an upper-tail probability of $\alpha / 2$. We may find t-values in Table A. 2 in Appendix A at the end of the book or by using the Excel function T.INV $(1-\alpha / 2, n-1)$ or the function T.INV. $2 \mathrm{~T}(\alpha, n-1)$. The Excel function CONFIDENCE.T(alpha, standard_deviation, size) can be used to compute the margin of error term, $t_{\alpha / 2, n-1}(s / \sqrt{n})$; thus, the confidence interval is the sample mean \pm CONFIDENCE.T.

EXAMPLE 6.9 Computing a Confidence Interval with Unknown Standard Deviation

In the Excel file Credit Approval Decisions, a large bank has sample data used in making credit approval decisions (see Figure 6.7). Suppose that we want to find a 95% confidence interval for the mean revolving balance for the population of applicants that own a home. First, sort the data by homeowner and compute the mean and standard deviation of the revolving balance for the sample of homeowners. This results in $\bar{x}=\$ 12,630.37$ and $s=\$ 5393.38$. The sample size is $n=27$, so the standard
error $s / \sqrt{n}=\$ 1037.96$. The t-distribution has 26 degrees of freedom; therefore, $t_{.025,26}=2.056$. Using formula (6.3), the confidence interval is $\$ 12,630.37 \pm 2.056(\$ 1037.96)$ or [\$10,496, \$14,764]. The worksheet Population Mean Sigma Unknown in the Excel workbook Confidence Intervals computes this interval using the CONFIDENCE.T function to compute the margin of error in cell B10, as shown in Figure 6.8.

Confidence Interval for a Proportion

For categorical variables such as gender (male or female), education (high school, college, post-graduate), and so on, we are usually interested in the proportion of observations in a sample that has a certain characteristic. An unbiased estimator of a population proportion π (this is not the number $\mathrm{pi}=3.14159 \ldots$) is the statistic $\hat{p}=x / n$ (the sample proportion), where x is the number in the sample having the desired characteristic and n is the sample size.

| | A | B | C | | | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Credit Approval Decisions | | | | | | |
| 2 | | | | | | | |
| 3 | Homeowner | Credit Score | Years of Credit History | | alance | Revolving Utilization | Decision |
| 4 | Y | 725 | 20 | \$ | 11,320 | 25\% | Approve |
| 5 | Y | 573 | 9 | \$ | 7,200 | 70\% | Reject |
| 6 | Y | 677 | 11 | \$ | 20,000 | 55\% | Approve |
| 7 | N | 625 | 15 | \$ | 12,800 | 65\% | Reject |
| 8 | N | 527 | 12 | \$ | 5,700 | 75\% | Reject |
| 9 | Y | 795 | 22 | \$ | 9,000 | 12\% | Approve |
| 10 | N | 733 | 7 | \$ | 35,200 | 20\% | Approve |

Figure : 6.7
Portion of Excel File Credit Approval Decisions

Figure : 6.8
Confidence Interval for Mean Revolving Balance of Homeowners

| | A | | B | C | D |
| ---: | :--- | ---: | ---: | ---: | ---: |
| 1 | Confidence Interval for Population Mean, | Standard | Deviation | Unknown | |
| 2 | | | | | |
| 3 | Alpha | 0.05 | | | |
| 4 | Sample standard deviation | 5393.38 | | | |
| 5 | Sample size | | 27 | | |
| 6 | Sample average | | 12630.37 | | |
| 7 | | | | | |
| 8 | Confidence Interval | | 95% | | |
| 9 | | t-value | 2.056 | | |
| 10 | | Error | 2133.55 | | |
| 11 | | Lower | 10496.82 | | |
| 12 | | | Upper | 14763.92 | |

A $100(1-\alpha) \%$ confidence interval for the proportion is

$$
\begin{equation*}
\hat{p} \pm z_{a / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{6.4}
\end{equation*}
$$

Notice that as with the mean, the confidence interval is the point estimate plus or minus some margin of error. In this case, $\sqrt{\hat{p}(1-\hat{p}) / n}$ is the standard error for the sampling distribution of the proportion. Excel does not have a function for computing the margin of error, but it can easily be implemented on a spreadsheet.

EXAMPLE 6.10 Computing a Confidence Interval for a Proportion

The last column in the Excel file Insurance Survey (see Figure 6.9) describes whether a sample of employees would be willing to pay a lower premium for a higher deductible for their health insurance. Suppose we are interested in the proportion of individuals who answered yes. We may easily confirm that 6 out of the 24 employees, or 25%, answered yes. Thus, a point estimate for the proportion answering yes is $\hat{p}=0.25$. Using formula (6.4), we find that a 95% confidence interval for the proportion of employees answering yes is
$0.25 \pm 1.96 \sqrt{\frac{0.25(0.75)}{24}}=0.25 \pm 0.173$, or $[0.077,0.423]$
The worksheet Population Mean Sigma Unknown in the Excel workbook Confidence Intervals computes this interval, as shown in Figure 6.10. Notice that this is a fairly wide confidence interval, suggesting that we have quite a bit of uncertainty as to the true value of the population proportion. This is because of the relatively small sample size.

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Insurance Survey | | | | | | |
| 2 | | | | | | | |
| 3 | Age | Gender | Education | Marital Status | Years Employed | Satisfaction* | Premium/Deductible ${ }^{* *}$ |
| 4 | 36 | F | Some college | Divorced | 4 | 4 | N |
| 5 | 55 | F | Some college | Divorced | 2 | 1 | N |
| 6 | 61 | M | Graduate degree | Widowed | 26 | 3 | N |
| 7 | 65 | F | Some college | Married | 9 | 4 | N |
| 8 | 53 | F | Graduate degree | Married | 6 | 4 | N |
| 9 | 50 | F | Graduate degree | Married | 10 | 5 | N |
| 10 | 28 | F | College graduate | Married | 4 | 5 | N |
| 11 | 62 | F | College graduate | Divorced | 9 | 3 | N |
| 12 | 48 | M | Graduate degree | Married | 6 | 5 | N |

Figure : 6.9
Portion of Excel File Insurance Survey

Figure : 6.10
Confidence Interval for the Proportion

Additional Types of Confidence Intervals

Confidence intervals may be calculated for other population parameters such as a variance or standard deviation and also for differences in the means or proportions of two populations. The concepts are similar to the types of confidence intervals we have discussed, but many of the formulas are rather complex and more difficult to implement on a spreadsheet. Some advanced software packages and spreadsheet add-ins provide additional support. Therefore, we do not discuss them in this book, but we do suggest that you consult other books and statistical references should you need to use them, now that you understand the basic concepts underlying them.

Using Confidence Intervals for Decision Making

Confidence intervals can be used in many ways to support business decisions.

EXAMPLE 6.11 Drawing a Conclusion about a Population Mean Using a Confidence Interval

In packaging a commodity product such as laundry detergent, the manufacturer must ensure that the packages contain the stated amount to meet government regulations. In Example 6.8, we saw an example where the required volume is 800 milliliters, yet the sample average was only

796 milliliters. Does this indicate a serious problem? Not necessarily. The 95\% confidence interval for the mean we computed in Figure 6.5 was [790.12, 801.88]. Although the sample mean is less than 800, the sample does not provide sufficient evidence to draw that conclusion that the
population mean is less than 800 because 800 is contained within the confidence interval. In fact, it is just as plausible that the population mean is 801 . We cannot tell definitively because of the sampling error. However, suppose that the sample average is 792 . Using the Excel worksheet Population Mean Sigma Known in the workbook Confidence Intervals,
we find that the confidence interval for the mean would be [786.12, 797.88]. In this case, we would conclude that it is highly unlikely that the population mean is 800 milliliters because the confidence interval falls completely below 800; the manufacturer should check and adjust the equipment to meet the standard.

The next example shows how to interpret a confidence interval for a proportion.

EXAMPLE 6.12 Using a Confidence Interval to Predict Election Returns

Suppose that an exit poll of 1,300 voters found that 692 voted for a particular candidate in a two-person race. This represents a proportion of 53.23% of the sample. Could we conclude that the candidate will likely win the election? A 95% confidence interval for the proportion is [0.505, 0.559]. This suggests that the population proportion of voters who favor this candidate is highly likely to exceed 50%, so it is safe to predict the winner. On the other hand,
suppose that only 670 of the 1,300 voters voted for the candidate, a sample proportion of 0.515 . The confidence interval for the population proportion is [0.488, 0.543]. Even though the sample proportion is larger than 50%, the sampling error is large, and the confidence interval suggests that it is reasonably likely that the true population proportion could be less than 50%, so it would not be wise to predict the winner based on this information.

Prediction Intervals

Another type of interval used in estimation is a prediction interval. A prediction interval is one that provides a range for predicting the value of a new observation from the same population. This is different from a confidence interval, which provides an interval estimate of a population parameter, such as the mean or proportion. A confidence interval is associated with the sampling distribution of a statistic, but a prediction interval is associated with the distribution of the random variable itself.

When the population standard deviation is unknown, a $100(1-\alpha) \%$ prediction interval for a new observation is

$$
\begin{equation*}
\bar{x} \pm t_{\alpha / 2, n-1}\left(s \sqrt{1+\frac{1}{n}}\right) \tag{6.5}
\end{equation*}
$$

Note that this interval is wider than the confidence interval in formula (6.3) by virtue of the additional value of 1 under the square root. This is because, in addition to estimating the population mean, we must also account for the variability of the new observation around the mean.

One important thing to realize also is that in formula (6.3) for a confidence interval, as n gets large, the error term tends to zero so the confidence interval converges on the mean. However, in the prediction interval formula (6.5), as n gets large, the error term converges to $t_{\alpha / 2, n-1}(s)$, which is simply a $100(1-\alpha) \%$ probability interval. Because we are trying to predict a new observation from the population, there will always be uncertainty.

EXAMPLE 6.13 Computing a Prediction Interval

In estimating the revolving balance in the Excel file Credit Approval Decisions in Example 6.9, we may use formula (6.5) to compute a 95% prediction interval for the revolving balance of a new homeowner as
$\$ 12,630.37 \pm 2.056(\$ 5,393.38) \sqrt{1+\frac{1}{27}}$, or
[\$338.10, \$23,922.64]

Note that compared with Example 6.9, the size of the prediction interval is considerably wider than that of the confidence interval.

Confidence Intervals and Sample Size

An important question in sampling is the size of the sample to take. Note that in all the formulas for confidence intervals, the sample size plays a critical role in determining the width of the confidence interval. As the sample size increases, the width of the confidence interval decreases, providing a more accurate estimate of the true population parameter. In many applications, we would like to control the margin of error in a confidence interval. For example, in reporting voter preferences, we might wish to ensure that the margin of error is $\pm 2 \%$. Fortunately, it is relatively easy to determine the appropriate sample size needed to estimate the population parameter within a specified level of precision.

The formulas for determining sample sizes to achieve a given margin of error are based on the confidence interval half-widths. For example, consider the confidence interval for the mean with a known population standard deviation we introduced in formula (6.2):

$$
\bar{x} \pm z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

Suppose we want the width of the confidence interval on either side of the mean (i.e., the margin of error) to be at most E. In other words,

$$
E \geq z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

Solving for n, we find:

$$
\begin{equation*}
n \geq\left(z_{\alpha / 2}\right)^{2} \frac{\sigma^{2}}{E^{2}} \tag{6.6}
\end{equation*}
$$

In a similar fashion, we can compute the sample size required to achieve a desired confidence interval half-width for a proportion by solving the following equation (based on formula (6.4) using the population proportion π in the margin of error term) for n :

$$
E \geq z_{\alpha / 2} \sqrt{\pi(1-\pi) / n}
$$

This yields

$$
\begin{equation*}
n \geq\left(z_{\alpha / 2}\right)^{2} \frac{\pi(1-\pi)}{E^{2}} \tag{6.7}
\end{equation*}
$$

In practice, the value of π will not be known. You could use the sample proportion from a preliminary sample as an estimate of π to plan the sample size, but this might require several iterations and additional samples to find the sample size that yields the required precision. When no information is available, the most conservative estimate is to set $\pi=0.5$. This maximizes the quantity $\pi(1-\pi)$ in the formula, resulting in the sample size that will guarantee the required precision no matter what the true proportion is.

Figure : 6.11
Confidence Interval for the Mean Using a
Sample Size $=97$

| 4 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Confidence Interval for Population Mean, Standard Deviation Known | | | | | |
| 2 | | | | | | |
| 3 | Alpha | 0.05 | | | | |
| 4 | Standard deviation | 15 | | | | |
| 5 | Sample size | 97 | | | | |
| 6 | Sample average | 796 | | | | |
| 7 | | | | | | |
| 8 | Confidence Interval | 95\% | | | | |
| 9 | Error | 2.985063 | | | | |
| 10 | Lower | 793.0149 | | | | |
| 11 | Upper | 798.9851 | | | | |

EXAMPLE 6.14 Sample Size Determination for the Mean

In the liquid detergent example (Example 6.8), the confidence interval we computed in Figure 6.5 was [790.12, 801.88]. The width of the confidence interval is ± 5.88 milliliters, which represents the sampling error. Suppose the manufacturer would like the sampling error to be at most 3 milliliters. Using formula (6.6), we may compute the required sample size as follows:

$$
\begin{aligned}
n & \geq\left(z_{\alpha / 2}\right)^{2} \frac{\left(\sigma^{2}\right)}{E^{2}} \\
& =(1.96)^{2} \frac{\left(15^{2}\right)}{3^{2}}=96.04
\end{aligned}
$$

Rounding up we find that that 97 samples would be needed. To verify this, Figure 6.11 shows that if a sample of 97 is used along with the same sample mean and standard deviation, the confidence interval does indeed have a sampling error of error less than 3 milliliters.

Of course, we generally do not know the population standard deviation prior to finding the sample size. A commonsense approach would be to take an initial sample to estimate the population standard deviation using the sample standard deviation s and determine the required sample size, collecting additional data if needed. If the half-width of the resulting confidence interval is within the required margin of error, then we clearly have achieved our goal. If not, we can use the new sample standard deviation s to determine a new sample size and collect additional data as needed. Note that if s changes significantly, we still might not have achieved the desired precision and might have to repeat the process. Usually, however, this will be unnecessary.

EXAMPLE 6.15 Sample Size Determination for a Proportion

For the voting example we discussed, suppose that we wish to determine the number of voters to poll to ensure a sampling error of at most $\pm 2 \%$. As we stated, when no information is available, the most conservative approach is to use 0.5 for the estimate of the true proportion. Using formula (6.7) with $\pi=0.5$, the number of voters to poll to obtain a 95% confidence interval on the proportion of
voters that choose a particular candidate with a precision of ± 0.02 or less is

$$
\begin{aligned}
n & \geq\left(z_{\alpha / 2}\right)^{2} \frac{\pi(1-\pi)}{E^{2}} \\
& =(1.96)^{2} \frac{(0.5)(1-0.5)}{0.02^{2}}=2,401
\end{aligned}
$$

Key Terms

Central limit theorem
Cluster sampling
Confidence interval
Convenience sampling
Degrees of freedom (df)
Estimation
Estimators
Interval estimate
Judgment sampling
Level of confidence
Nonsampling error
Point estimate

Population frame
Prediction interval
Probability interval
Sample proportion
Sampling (statistical) error
Sampling distribution of the mean
Sampling plan
Simple random sampling
Standard error of the mean
Stratified sampling
Systematic (or periodic) sampling
t-Distribution

Problems and Exercises

1. Your college or university wishes to obtain reliable information about student perceptions of administrative communication. Describe how to design a sampling plan for this situation based on your knowledge of the structure and organization of your college or university. How would you implement simple random sampling, stratified sampling, and cluster sampling for this study? What would be the pros and cons of using each of these methods?
2. Number the rows in the Excel file Credit Risk Data to identify each record. The bank wants to sample from this database to conduct a more-detailed audit. Use the Excel Sampling tool to find a simple random sample of 20 unique records.
3. Describe how to apply stratified sampling to sample from the Credit Risk Data file based on the different types of loans. Implement your process in Excel to choose a random sample consisting of 10% of the records for each type of loan.
4. Find the current 30 stocks that comprise the Dow Jones Industrial Average. Set up an Excel spreadsheet for their names, market capitalization, and one or two other key financial statistics (search Yahoo! Finance or a similar Web source). Using the Excel Sampling tool, obtain a random sample of 5 stocks, compute point estimates for the mean and standard deviation, and compare them to the population parameters.
5. Repeat the sampling experiment in Example 6.3 for sample sizes 50, 100, 250, and 500. Compare your results to the example and use the empirical rules to
analyze the sampling error. For each sample, also find the standard error of the mean using formula (6.1).
6. Uncle's Pizza is doing good business in Delhi due to its prompt home delivery system. It guarantees that the pizza will be delivered within 30 minutes from the time order was placed or the order is free. The time that it takes to deliver each order on time is maintained in the Pizza Time System. Fourteen random entries from the Pizza Time System are listed.

| 10.1 | 19.6 | 12.2 | 32.6 | 18.2 | 29.5 | 13.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 10.8 | 14.8 | 22.1 | 15.6 | 45.6 | 15.6 |

a. Find the mean for the sample.
b. Explain if this sample can be used to estimate the average time that it takes for Uncle's Pizza to deliver the pizza.
7. A soft drink bottle filling machine is known to have a mean of 200 ml and a standard variation of 10 ml . The quality control manager took a random sample of the filled bottles and found the sample mean to be 215 ml . She assumed the sample must not be representative. Do you agree with the conclusion made by the quality control manager? Justify your answer.
8. A sample of 33 airline passengers found that the average check-in time is 2.167 . Based on long-term data, the population standard deviation is known to be 0.48 . Find a 95% confidence interval for the mean check-in time. Use the appropriate formula and verify your result using the Confidence Intervals workbook.
9. A sample of 20 international students attending an urban U.S. university found that the average amount budgeted for expenses per month was $\$ 1612.50$ with a standard deviation of $\$ 1179.64$. Find a 95% confidence interval for the mean monthly expense budget of the population of international students. Use the appropriate formula and verify your result using the Confidence Intervals workbook.
10. A sample of 25 individuals at a shopping mall found that the mean number of visits to a restaurant per week was 2.88 with a standard deviation of 1.59 . Find a 99% confidence interval for the mean number of restaurant visits. Use the appropriate formula and verify your result using the Confidence Intervals workbook.
11. A bank sampled its customers to determine the proportion of customers who use their debit card at least once each month. A sample of 50 customers found that only 12 use their debit card monthly. Find 95% and 99% confidence intervals for the proportion of customers who use their debit card monthly. Use the appropriate formula and verify your result using the Confidence Intervals workbook.
12. If, based on a sample size of 850 , a political candidate finds that 458 people would vote for him in a twoperson race, what is the 95% confidence interval for his expected proportion of the vote? Would he be confident of winning based on this poll? Use the appropriate formula and verify your result using the Confidence Intervals workbook.
13. If, based on a sample size of 200 , a political candidate found that 125 people would vote for her in a two-person race, what is the 99% confidence interval for her expected proportion of the vote? Would she be confident of winning based on this poll?
14. Using the data in the Excel file Accounting Professionals, find and interpret 95% confidence intervals for the following:
a. mean years of service
b. proportion of employees who have a graduate degree
15. Find the standard deviation of the total assets held by the bank in the Excel file Credit Risk Data.
a. Treating the records in the database as a population, use your sample in Problem 2 and compute
$90 \%, 95 \%$, and 99% confidence intervals for the total assets held in the bank by loan applicants using formula (6.2) and any appropriate Excel functions. Explain the differences as the level of confidence increases.
b. How do your confidence intervals differ if you assume that the population standard deviation is not known but estimated using your sample data?
16. The Excel file Restaurant Sales provides sample information on lunch, dinner, and delivery sales for a local Italian restaurant. Develop 95\% confidence intervals for the mean of each of these variables, as well as total sales for weekdays and weekends. What conclusions can you reach?
17. Using the data in the worksheet Consumer Transportation Survey, develop 95\% confidence intervals for the following:
a. the proportion of individuals who are satisfied with their vehicle
b. the proportion of individuals who have at least one child
18. The monthly sales of a mobile phone shop have been distributed with a standard deviation of $\$ 900$. A statistical study of sales in the last nine months has found a confidence interval for the mean of monthly sales with extremes of \$5663 and \$6839.
a. What were the average sales over the nine month period?
b. What is the confidence level for this interval?
19. Using data in the Excel file Colleges and Universities, find 95% confidence intervals for the median SAT for each of the two groups, liberal arts colleges and research universities. Based on these confidence intervals, does there appear to be a difference in the median SAT scores between the two groups?
20. The Excel file Baseball Attendance shows the attendance in thousands at San Francisco Giants' baseball games for the 10 years before the Oakland A's moved to the Bay Area in 1968, as well as the combined attendance for both teams for the next 11 years. Develop 95\% confidence intervals for the mean attendance of each of the two groups. Based on these confidence intervals, would you conclude that attendance has changed after the move?
21. A random sample of 100 teenagers was surveyed, and the mean number of songs that they had downloaded from the iTunes store in the past month was 9.4 with the results considered accurate is within 1.4 (18 times out of 20).
a. What percent of confidence level is the result?
b. What is the margin of error?
c. What is the confidence interval? Explain.
22. A study of nonfatal occupational injuries in the United States found that about 31% of all injuries in the service sector involved the back. The National Institute for Occupational Safety and Health (NIOSH) recommended conducting a comprehensive ergonomics assessment of jobs and workstations. In response to this information, Mark Glassmeyer developed a unique ergonomic handcart to help field service engineers be more productive and also to reduce back injuries from lifting parts and equipment during service calls. Using a sample of 382 field service engineers who were provided with these carts, Mark collected the following data:

| | Year 1 | | |
|---|---|---|---|
| (without Cart) | |\quad| Year 2 | |
|---|---|---|---|---|
| (with Cart) |$~$| Average call time | 8.27 hours | 7.98 hours |
| :--- | :---: | :--- |
| Standard deviation
 call time | 1.36 hours | 1.21 hours |
| Proportion of back
 injuries | 0.018 | 0.010 |

Find 95% confidence intervals for the average call times and proportion of back injuries in each year. What conclusions would you reach based on your results?
23. Using the data in the worksheet Consumer Transportation Survey, develop 95\% and 99% prediction intervals for the following:
a. the hours per week that an individual will spend in his or her vehicle
b. the number of miles driven per week

Case: Drout Advertising Research Project

The background for this case was introduced in Chapter 1. This is a continuation of the case in Chapter 4. For this part of the case, compute confidence intervals for means and proportions, and analyze the sampling errors, possibly
24. The Excel file Restaurant Sales provides sample information on lunch, dinner, and delivery sales for a local Italian restaurant. Develop 95\% prediction intervals for the daily dollar sales of each of these variables and also for the total sales dollars on a weekend day.
25. For the Excel file Credit Approval Decisions, find 95\% confidence and prediction intervals for the credit scores and revolving balance of homeowners and nonhomeowners. How do they compare?
26. Trade associations, such as the United Dairy Farmers Association, frequently conduct surveys to identify characteristics of their membership. If this organization conducted a survey to estimate the annual percapita consumption of milk and wanted to be 95% confident that the estimate was no more than ± 0.5 gallon away from the actual average, what sample size is needed? Past data have indicated that the standard deviation of consumption is approximately 6 gallons.
27. If a manufacturer conducted a survey among randomly selected target market households and wanted to be 95% confident that the difference between the sample estimate and the actual market share for its new product was no more than $\pm 2 \%$, what sample size would be needed?
28. After regular complaints of tire blowouts on the Yamuna Expressway, in an automotive test conducted by the authorities, the average tire pressure in a sample of 62 tires was found to be 24 pounds per square inch and the standard deviation was 2.1 pound per square inch.
a. What is the estimated population standard deviation for this population?
b. Calculate the estimated standard deviation error of the mean.
29. A music company wants to know how the illegal downloading of music online affects CD sales. 600 families are randomly chosen from various parts of a particular country and the number of songs that are downloaded in an hour are noted. The sample mean is 3947 with a sample standard deviation of 104. Determine a 90% confidence interval for this data. (Assume that the population variance is not known.)
suggesting larger sample sizes to obtain more precise estimates. Write up your findings in a formal report or add your findings to the report you completed for the case in Chapter 4, depending on your instructor's requirements.

Case: Performance Lawn Equipment

In reviewing your previous reports, several questions came to Elizabeth Burke's mind. Use point and interval estimates to help answer these questions.

1. What proportion of customers rate the company with "top box" survey responses (which is defined as scale levels 4 and 5) on quality, ease of use, price, and service in the 2012 Customer Survey worksheet? How do these proportions differ by geographic region?
2. What estimates, with reasonable assurance, can PLE give customers for response times to customer service calls?
3. Engineering has collected data on alternative process costs for building transmissions in the worksheet Transmission Costs. Can you determine whether one of the proposed processes is better than the current process?
4. What would be a confidence interval for an additional sample of mower test performance as in the worksheet Mower Test?
5. For the data in the worksheet Blade Weight, what is the sampling distribution of the mean, the overall mean, and the standard error of the mean? Is a normal distribution an appropriate assumption for the sampling distribution of the mean?
6. How many blade weights must be measured to find a 95% confidence interval for the mean blade weight with a sampling error of at most 0.2 ? What if the sampling error is specified as 0.1 ?

Answer these questions and summarize your results in a formal report to Ms. Burke.

This page intentionally left blank

Benis Arapovic/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

Explain the purpose of hypothesis testing.
Explain the difference between the null and alternative hypotheses.
List the steps in the hypothesis-testing procedure.

- State the proper forms of hypotheses for one-sample hypothesis tests.
Correctly formulate hypotheses.
- List the four possible outcome results from a hypothesis test.
Explain the difference between Type I and Type II errors.

State how to increase the power of a test.
Choose the proper test statistic for hypothesis tests involving means and proportions.

- Explain how to draw a conclusion for one- and twotailed hypothesis tests.
- Use p-values to draw conclusions about hypothesis tests.
State the proper forms of hypotheses for two-sample hypothesis tests.
Select and use Excel Analysis Toolpak procedures for two-sample hypothesis tests.
Explain the purpose of analysis of variance.
- Use the Excel ANOVA tool to conduct an analysis of variance test.
List the assumptions of ANOVA.
Conduct and interpret the results of a chi-square test for independence.

Abstract

Managers need to know if the decisions they have made or are planning to make are effective. For example, they might want to answer questions like the following: Did an advertising campaign increase sales? Will product placement in a grocery store make a difference? Did a new assembly method improve productivity or quality in a factory? Many applications of business analytics involve seeking statistical evidence that decisions or process changes have met their objectives. Statistical inference focuses on drawing conclusions about populations from samples. Statistical inference includes estimation of population parameters and hypothesis testing, which involves drawing conclusions about the value of the parameters of one or more populations based on sample data. The fundamental statistical approach for doing this is called hypothesis testing. Hypothesis testing is a technique that allows you to draw valid statistical conclusions about the value of population parameters or differences among them.

Hypothesis Testing

Hypothesis testing involves drawing inferences about two contrasting propositions (each called a hypothesis) relating to the value of one or more population parameters, such as the mean, proportion, standard deviation, or variance. One of these propositions (called the null hypothesis) describes the existing theory or a belief that is accepted as valid unless strong statistical evidence exists to the contrary. The second proposition (called the alternative hypothesis) is the complement of the null hypothesis; it must be true if the null hypothesis is false. The null hypothesis is denoted by H_{0}, and the alternative hypothesis is denoted by H_{1}. Using sample data, we either

1. reject the null hypothesis and conclude that the sample data provide sufficient statistical evidence to support the alternative hypothesis, or
2. fail to reject the null hypothesis and conclude that the sample data does not support the alternative hypothesis.

If we fail to reject the null hypothesis, then we can only accept as valid the existing theory or belief, but we can never prove it.

EXAMPLE 7.1 A Legal Analogy for Hypothesis Testing

A good analogy for hypothesis testing is the U.S. legal system. In our system of justice, a defendant is innocent until proven guilty. The null hypothesis-our belief in the absence of any contradictory evidence-is not guilty, whereas the alternative hypothesis is guilty. If the evidence (sample data) strongly indicates that the de-
fendant is guilty, then we reject the assumption of innocence. If the evidence is not sufficient to indicate guilt, then we cannot reject the not guilty hypothesis; however, we haven't proven that the defendant is innocent. In reality, you can only conclude that a defendant is guilty from the evidence; you still have not proven it!

Hypothesis-Testing Procedure

Conducting a hypothesis test involves several steps:

1. Identifying the population parameter of interest and formulating the hypotheses to test
2. Selecting a level of significance, which defines the risk of drawing an incorrect conclusion when the assumed hypothesis is actually true
3. Determining a decision rule on which to base a conclusion
4. Collecting data and calculating a test statistic
5. Applying the decision rule to the test statistic and drawing a conclusion

We apply this procedure to two different types of hypothesis tests; the first involving a single population (called one-sample tests) and, later, tests involving more than one population (multiple-sample tests).

One-Sample Hypothesis Tests

A one-sample hypothesis test is one that involves a single population parameter, such as the mean, proportion, standard deviation, and so on. To conduct the test, we use a single sample of data from the population. We may conduct three types of one-sample hypothesis tests:

$$
\begin{aligned}
& H_{0}: \text { population parameter } \geq \text { constant vs. } H_{1}: \text { population parameter }<\text { constant } \\
& H_{0}: \text { population parameter } \leq \text { constant vs. } H_{1}: \text { population parameter }>\text { constant } \\
& H_{0}: \text { population parameter }=\text { constant vs. } H_{1}: \text { population parameter } \neq \text { constant }
\end{aligned}
$$

Notice that one-sample tests always compare a population parameter to some constant. For one-sample tests, the statements of the null hypotheses are expressed as either \geq, \leq, or $=$. It is not correct to formulate a null hypothesis using $>,<$, or \neq.

How do we determine the proper form of the null and alternative hypotheses? Hypothesis testing always assumes that H_{0} is true and uses sample data to determine whether H_{1} is more likely to be true. Statistically, we cannot "prove" that H_{0} is true; we can only fail to reject it. Thus, if we cannot reject the null hypothesis, we have shown only that there is insufficient evidence to conclude that the alternative hypothesis is true. However, rejecting the null hypothesis provides strong evidence (in a statistical sense) that the null hypothesis is not true and that the alternative hypothesis is true. Therefore, what we wish to provide evidence for statistically should be identified as the alternative hypothesis.

EXAMPLE 7.2 Formulating a One-Sample Test of Hypothesis

CadSoft, a producer of computer-aided design software for the aerospace industry receives numerous calls for technical support. In the past, the average response time has been at least 25 minutes. The company has upgraded its information systems and believes that this
will help reduce response time. As a result, it believes that the average response time can be reduced to less than 25 minutes. The company collected a sample of 44 response times in the Excel file CadSoft Technical Support Response Times (see Figure 7.1).

Figure : 7.1
Portion of Technical Support Response-Time Data

| | A | B | C | D |
| ---: | ---: | ---: | ---: | ---: |
| 1 | CadSoft Technical Support Response Times | E | | |
| 2 | | | | |
| 3 | Customer | Time (min) | | |
| 4 | 1 | 20 | | |
| 5 | 2 | 12 | | |
| 6 | 3 | 15 | | |
| 7 | 4 | 11 | | |
| 8 | 5 | 22 | | |
| 9 | 6 | 6 | | |
| 10 | 7 | 39 | | |

If the new information system makes a difference, then data should be able to confirm that the mean response time is less than 25 minutes; this defines the alternative hypothesis, H_{1}.

Therefore, the proper statements of the null and alternative hypotheses are:

We would typically write this using the proper symbol for the population parameter. In this case, letting μ be the mean response time, we would write:
H_{0} : population mean response time ≥ 25 minutes
H_{1} : population mean response time <25 minutes

Understanding Potential Errors in Hypothesis Testing

We already know that sample data can show considerable variation; therefore, conclusions based on sample data may be wrong. Hypothesis testing can result in one of four different outcomes:

1. The null hypothesis is actually true, and the test correctly fails to reject it.
2. The null hypothesis is actually false, and the hypothesis test correctly reaches this conclusion.
3. The null hypothesis is actually true, but the hypothesis test incorrectly rejects it (called Type I error).
4. The null hypothesis is actually false, but the hypothesis test incorrectly fails to reject it (called Type II error).

The probability of making a Type I error, that is, P (rejecting $H_{0} \mid H_{0}$ is true), is denoted by α and is called the level of significance. This defines the likelihood that you are willing to take in making the incorrect conclusion that the alternative hypothesis is true when, in fact, the null hypothesis is true. The value of α can be controlled by the decision maker and is selected before the test is conducted. Commonly used levels for α are 0.10 , 0.05 , and 0.01 .

The probability of correctly failing to reject the null hypothesis, or P (not rejecting $H_{0} \mid H_{0}$ is true), is called the confidence coefficient and is calculated as $1-\alpha$. For a confidence coefficient of 0.95 , we mean that we expect 95 out of 100 samples to support the null hypothesis rather than the alternate hypothesis when H_{0} is actually true.

Unfortunately, we cannot control the probability of a Type II error, P (not rejecting $H_{0} \mid H_{0}$ is false), which is denoted by β. Unlike α, β cannot be specified in advance but depends on the true value of the (unknown) population parameter.

EXAMPLE 7.3 How β Depends on the True Population Mean

Consider the hypotheses in the CadSoft example:

$$
\begin{aligned}
& H_{0}: \text { mean response time } \geq 25 \text { minutes } \\
& H_{1}: \text { mean response time }<25 \text { minutes }
\end{aligned}
$$

If the true mean response from which the sample is drawn is, say, 15 minutes, we would expect to have a much smaller probability of incorrectly concluding that the null hypothesis is true than when the true mean response is 24 minutes, for example. If the true mean were 15 minutes, the sample mean would very likely be much less than 25 , leading
us to reject H_{0}. If the true mean were 24 minutes, even though it is less than 25 , we would have a much higher probability of failing to reject H_{0} because a higher likelihood exists that the sample mean would be greater than 25 due to sampling error. Thus, the farther away the true mean response time is from the hypothesized value, the smaller is $\boldsymbol{\beta}$. Generally, as α decreases, $\boldsymbol{\beta}$ increases, so the decision maker must consider the trade-offs of these risks. So, if you choose a level of significance of 0.01 instead of 0.05 and keep the sample size constant, you would reduce the probability of a Type I error but increase the probability of a Type II error.

The value $1-\beta$ is called the power of the test and represents the probability of correctly rejecting the null hypothesis when it is indeed false, or P (rejecting $H_{0} \mid H_{0}$ is false). We would like the power of the test to be high (equivalently, we would like the probability of a Type II error to be low) to allow us to make a valid conclusion. The power of the test is sensitive to the sample size; small sample sizes generally result in a low value of $1-\beta$. The power of the test can be increased by taking larger samples, which enable us to detect small differences between the sample statistics and population parameters with more accuracy. However, a larger sample size incurs higher costs, giving new meaning to the adage, there is no such thing as a free lunch. This suggests that if you choose a small level of significance, you should try to compensate by having a large sample size when you conduct the test.

Selecting the Test Statistic

The next step is to collect sample data and use the data to draw a conclusion. The decision to reject or fail to reject a null hypothesis is based on computing a test statistic from the sample data. The test statistic used depends on the type of hypothesis test. Different types of hypothesis tests use different test statistics, and it is important to use the correct one. The proper test statistic often depends on certain assumptions about the population-for example, whether or not the standard deviation is known. The following formulas show two types of one-sample hypothesis tests for means and their associated test statistics. The value of μ_{0} is the hypothesized value of the population mean; that is, the "constant" in the hypothesis formulation.

| Type of Test | Test Statistic |
| :---: | :---: |
| One-sample test for mean, σ known | $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$ |
| One-sample test for mean, σ unknown | $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$ |

$$
\begin{align*}
& z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \tag{7.1}\\
& t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \tag{7.2}
\end{align*}
$$

EXAMPLE 7.4 Computing the Test Statistic

For the CadSoft example, the average response time for the sample of 44 customers is $\bar{x}=21.91$ minutes and the sample standard deviation is $s=19.49$. The hypothesized mean is $\mu_{0}=25$. You might wonder why we even have to test the hypothesis statistically when the sample average of 21.91 is clearly less than 25 . The reason is because of sampling error. It is quite possible that the population mean truly is 25 or more and that we were just lucky to draw a sample whose mean was smaller. Because of potential sampling error, it would be dangerous to conclude that the company was meeting its goal just by looking at the sample mean without better statistical evidence.

Because we don't know the value of the population standard deviation, the proper test statistic to use is formula (7.2):

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

Therefore, the value of the test statistic is

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{21.91-25}{19.49 / \sqrt{44}}=\frac{-3.09}{2.938}=-1.05
$$

Observe that the numerator is the distance between the sample mean (21.91) and the hypothesized value (25). By dividing by the standard error, the value of t represents the number of standard errors the sample mean is from the hypothesized value. In this case, the sample mean is 1.05 standard errors below the hypothesized value of 25 . This notion provides the fundamental basis for the hypothesis test-if the sample mean is "too far" away from the hypothesized value, then the null hypothesis should be rejected.

Drawing a Conclusion

The conclusion to reject or fail to reject H_{0} is based on comparing the value of the test statistic to a "critical value" from the sampling distribution of the test statistic when the null hypothesis is true and the chosen level of significance, α. The sampling distribution of the test statistic is usually the normal distribution, t-distribution, or some other well-known distribution. For example, the sampling distribution of the z-test statistic in formula (7.1) is a standard normal distribution; the t-test statistic in formula (7.2) has a t-distribution with $n-1$ degrees of freedom. For a one-tailed test, the critical value is the number of standard errors away from the hypothesized value for which the probability of exceeding the critical value is α. If $\alpha=0.05$, for example, then we are saying that there is only a 5% chance that a sample mean will be that far away from the hypothesized value purely because of sampling error and should this occur, it suggests that the true population mean is different from what was hypothesized.

The critical value divides the sampling distribution into two parts, a rejection region and a nonrejection region. If the null hypothesis is false, it is more likely that the test statistic will fall into the rejection region. If it does, we reject the null hypothesis; otherwise, we fail to reject it. The rejection region is chosen so that the probability of the test statistic falling into it if H_{0} is true is the probability of a Type I error, α.

The rejection region occurs in the tails of the sampling distribution of the test statistic and depends on the structure of the hypothesis test, as shown in Figure 7.2. If the null hypothesis is structured as $=$ and the alternative hypothesis as \neq, then we would reject H_{0} if the test statistic is either significantly high or low. In this case, the rejection region will occur in both the upper and lower tail of the distribution [see Figure 7.2(a)]. This is called a two-tailed test of hypothesis. Because the probability that the test statistic falls into the rejection region, given that H_{0} is true, the combined area of both tails must be α; each tail has an area of $\alpha / 2$.

Figure $\quad 7.2$
Illustration of Rejection Regions in Hypothesis Testing

(a) Two-tailed test

The other types of hypothesis tests, which specify a direction of relationship (where H_{0} is either \geq or \leq), are called one-tailed tests of hypothesis. In this case, the rejection region occurs only in one tail of the distribution [see Figure 7.2(b)]. Determining the correct tail of the distribution to use as the rejection region for a one-tailed test is easy. If H_{1} is stated as $<$, the rejection region is in the lower tail; if H_{1} is stated as $>$, the rejection region is in the upper tail (just think of the inequality as an arrow pointing to the proper tail direction).

Two-tailed tests have both upper and lower critical values, whereas one-tailed tests have either a lower or upper critical value. For standard normal and t-distributions, which have a mean of zero, lower-tail critical values are negative; upper-tail critical values are positive.

Critical values make it easy to determine whether or not the test statistic falls in the rejection region of the proper sampling distribution. For example, for an upper one-tailed test, if the test statistic is greater than the critical value, the decision would be to reject the null hypothesis. Similarly, for a lower one-tailed test, if the test statistic is less than the critical value, we would reject the null hypothesis. For a two-tailed test, if the test statistic is either greater than the upper critical value or less than the lower critical value, the decision would be to reject the null hypothesis.

EXAMPLE 7.5 Finding the Critical Value and Drawing a Conclusion

For the CadSoft example, if the level of significance is 0.05 , then the critical value for a one-tail test is the value of the t-distribution with $n-1$ degrees of freedom that provides a tail area of 0.05 , that is, $t_{\alpha, n-1}$. We may find t-values in Table A. 2 in Appendix A at
the end of the book or by using the Excel function T.INV(1 $-\alpha, n-1$). Thus, the critical value is $t_{0.05,43}=$ $\operatorname{T} . \operatorname{INV}(0.95,43)=1.68$. Because the t-distribution is symmetric with a mean of 0 and this is a lower-tail test, we use the negative of this number (-1.68) as the critical value.

Figure : 7.3
t-Test for Mean Response Time

By comparing the value of the t-test statistic with this critical value, we see that the test statistic does not fall below the critical value (i.e., $-1.05>-1.68$) and is not in the rejection region. Therefore, we cannot reject H_{0} and cannot conclude that the mean response time has
improved to less than 25 minutes. Figure 7.3 illustrates the conclusion we reached. Even though the sample mean is less than 25 , we cannot conclude that the population mean response time is less than 25 because of the large amount of sampling error.

Two-Tailed Test of Hypothesis for the Mean

Basically, all hypothesis tests are similar; you just have to ensure that you select the correct test statistic, critical value, and rejection region, depending on the type of hypothesis. The following example illustrates a two-tailed test of hypothesis for the mean.

EXAMPLE 7.6 Conducting a Two-Tailed Hypothesis Test for the Mean

Figure 7.4 shows a portion of data collected in a survey of 34 respondents by a travel agency (provided in the Excel file Vacation Survey). Suppose that the travel agency wanted to target individuals who were approximately 35 years old. Thus, we wish to test whether the average age of respondents is equal to 35 . The hypothesis to test is

$$
\begin{aligned}
& H_{0}: \text { mean age }=35 \\
& H_{1}: \text { mean age } \neq 35
\end{aligned}
$$

The sample mean is computed to be 38.677 , and the sample standard deviation is 7.858 .

We use the t-test statistic:

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{38.677-35}{7.858 / \sqrt{34}}=2.73
$$

In this case, the sample mean is 2.73 standard errors above the hypothesized mean of 35 . However, because this is a two-tailed test, the rejection region and decision rule are different. For a level of significance α, we reject H_{0} if the t-test statistic falls either below the negative critical value, $-t_{\alpha / 2, n-1}$, or above the positive critical value, $t_{\alpha / 2, n-1}$. Using either Table A. 2 in Appendix A at the back of this book or the Excel function T.INV.2T(.05,33) to calculate $t_{0.025,33}$, we obtain 2.0345 . Thus, the critical values are ± 2.0345. Because the t-test statistic does not fall between these values, we must reject the null hypothesis that the average age is 35 (see Figure 7.5).

p-Values

An alternative approach to comparing a test statistic to a critical value in hypothesis testing is to find the probability of obtaining a test statistic value equal to or more extreme than that obtained from the sample data when the null hypothesis is true. This probability

Figure: 7.4
Portion of Vacation Survey Data

Figure : 7.5
Illustration of a Two-Tailed Test for Example 7.6

| A | | | | | | | | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Vacation Survey | | | | | | | | | | |
| 2 | | | | | | | | | | | |
| 3 | Age | Gender | Relationship Status | Vacations per Year | Number of Children | | | | | | |
| 4 | 24 | Male | Married | 2 | 0 | | | | | | |
| 5 | 26 | Female | Married | 4 | 0 | | | | | | |
| 6 | 28 | Male | Married | 2 | 2 | | | | | | |
| 7 | 33 | Male | Married | 4 | 0 | | | | | | |
| 8 | 45 | Male | Married | 2 | 0 | | | | | | |
| 9 | 49 | Male | Married | 2 | 2 | | | | | | |
| 10 | 29 | Male | Married | 1 | 0 | | | | | | |

is commonly called a \boldsymbol{p}-value, or observed significance level. To draw a conclusion, compare the p-value to the chosen level of significance α; whenever $p<\alpha$, reject the null hypothesis and otherwise fail to reject it. p-Values make it easy to draw conclusions about hypothesis tests. For a lower one-tailed test, the p-value is the probability to the left of the test statistic t in the t-distribution, and is found by T.DIST($t, n-1$, TRUE). For an upper one-tailed test, the p-value is the probability to the right of the test statistic t, and is found by 1 - T.DIST $(t, n-1$, TRUE). For a two-tailed test, the p-value is found by T.DIST. 2 T ($t, n-1$), if $t>0$; if $t<0$, use T.DIST.2T($-t, n-1$).

EXAMPLE 7.7 Using p-Values

For the CadSoft example, the t-test statistic for the hypothesis test in the response-time example is -1.05 . If the true mean is really 25 , then the p-value is the probability of obtaining a test statistic of $\mathbf{- 1 . 0 5}$ or less (the area to the left of -1.05 in Figure 7.3). We can calculate the p-value using the Excel function T.DIST(-1.05,43,TRUE) $=0.1498$. Because $p=0.1498$ is not less than $\alpha=0.05$, we do not reject H_{0}. In other words, there is about a 15% chance that the test statistic would be $\mathbf{- 1 . 0 5}$ or smaller if the null hypothesis were
true. This is a fairly high probability, so it would be difficult to conclude that the true mean is less than 25 and we could attribute the fact that the test statistic is less than the hypothesized value to sampling error alone and not reject the null hypothesis.

For the Vacation Survey two-tailed hypothesis test in Example 7.6, the p-value for this test is 0.010 , which can also be computed by the Excel function T.DIST.2T(2.73,33); therefore, since $0.010<0.05$, we reject H_{0}.

One-Sample Tests for Proportions

Many important business measures, such as market share or the fraction of deliveries received on time, are expressed as proportions. We may conduct a test of hypothesis about a population proportion in a similar fashion as we did for means. The test statistic for a one-sample test for proportions is

$$
\begin{equation*}
z=\frac{\hat{p}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}} \tag{7.3}
\end{equation*}
$$

where π_{0} is the hypothesized value and \hat{p} is the sample proportion. Similar to the test statistic for means, the z-test statistic shows the number of standard errors that the sample proportion is from the hypothesized value. The sampling distribution of this test statistic has a standard normal distribution.

EXAMPLE 7.8 A One-Sample Test for the Proportion

CadSoft also sampled 44 customers and asked them to rate the overall quality of the company's software product using a scale of

$$
\begin{aligned}
& 0-\text { very poor } \\
& 1-\text { poor } \\
& 2-\text { good } \\
& 3-\text { very good } \\
& 4-\text { excellent }
\end{aligned}
$$

These data can be found in the Excel File CadSoft Product Satisfaction Survey. The firm tracks customer satisfaction of quality by measuring the proportion of responses in the top two categories. Over the past, this proportion has averaged about 75%. For these data, 35 of the 44 responses, or 79.5%, are in the top two categories. Is there sufficient evidence to conclude that this satisfaction measure has significantly exceeded 75% using a significance level of 0.05 ? Answering this question involves testing the hypotheses about the population proportion π :

$$
\begin{aligned}
& H_{0}: \pi \leq 0.75 \\
& H_{1}: \pi>0.75
\end{aligned}
$$

This is an upper-tailed, one-tailed test. The test statistic is computed using formula (7.3):

$$
z=\frac{0.795-0.75}{\sqrt{0.75(1-0.75) / 44}}=0.69
$$

In this case, the sample proportion of 0.795 is 0.69 standard error above the hypothesized value of 0.75 . Because this is an upper-tailed test, we reject H_{0} if the value of the test statistic is larger than the critical value. Because the sampling distribution of z is a standard normal, the critical value of z for a level of significance of 0.05 is found by the Excel function NORM.S. $\operatorname{INV}(0.95)=1.645$. Because the test statistic does not exceed the critical value, we cannot reject the null hypothesis that the proportion is no greater than 0.75 . Thus, even though the sample proportion exceeds 0.75 , we cannot conclude statistically that the customer satisfaction ratings have significantly improved. We could attribute this to sampling error and the relatively small sample size. The p-value can be found by computing the area to the right of the test statistic in the standard normal distribution: 1 - NORM.S.DIST(0.69,TRUE) $=0.24$. Note that the p-value is greater than the significance level of 0.05 , leading to the same conclusion of not rejecting the null hypothesis.

For a lower-tailed test, the p-value would be computed by the area to the left of the test statistic; that is, $\operatorname{NORM.S.DIST(~} z$, TRUE). If we had a two-tailed test, the p-value is $2 *$ NORM.S.DIST $(z$, TRUE $)$ if $z<0$; otherwise, the p-value is $2 *(1-$ NORM.S.DIST $(-z$, TRUE $)$) if $z>0$.

Confidence Intervals and Hypothesis Tests

A close relationship exists between confidence intervals and hypothesis tests. For example, suppose we construct a 95% confidence interval for the mean. If we wish to test the hypotheses

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu \neq \mu_{0}
\end{aligned}
$$

at a 5% level of significance, we simply check whether the hypothesized value μ_{0} falls within the confidence interval. If it does not, then we reject H_{0}; if it does, then we cannot reject H_{0}.

For one-tailed tests, we need to examine on which side of the hypothesized value the confidence interval falls. For a lower-tailed test, if the confidence interval falls entirely below the hypothesized value, we reject the null hypothesis. For an upper-tailed test, if the confidence interval falls entirely above the hypothesized value, we also reject the null hypothesis.

Two-Sample Hypothesis Tests

Many practical applications of hypothesis testing involve comparing two populations for differences in means, proportions, or other population parameters. Such tests can confirm differences between suppliers, performance at two different factory locations, new and old work methods or reward and recognition programs, and many other situations. Similar to one-sample tests, two-sample hypothesis tests for differences in population parameters have one of the following forms:

1. Lower-tailed test H_{0} : population parameter (1) - population parameter (2) $\geq D_{0}$ vs. H_{1} : population parameter (1) - population parameter (2) $<D_{0}$. This test seeks evidence that the difference between population parameter (1) and population parameter (2) is less than some value, D_{0}. When $D_{0}=0$, the test simply seeks to conclude whether population parameter (1) is smaller than population parameter (2).
2. Upper-tailed test H_{0} : population parameter (1) - population parameter (2) $\leq D_{0}$ vs. H_{1} : population parameter (1) - population parameter (2) $>D_{0}$. This test seeks evidence that the difference between population parameter (1) and population parameter (2) is greater than some value, D_{0}. When $D_{0}=0$, the test simply seeks to conclude whether population parameter (1) is larger than population parameter (2).
3. Two-tailed test H_{0} : population parameter (1) - population parameter $(2)=D_{0}$ vs. H_{1} : population parameter $(1)-$ population parameter $(2) \neq D_{0}$. This test seeks evidence that the difference between the population parameters is equal to D_{0}. When $D_{0}=0$, we are seeking evidence that population parameter (1) differs from parameter (2).

In most applications $D_{0}=0$, and we are simply seeking to compare the population parameters. However, there are situations when we might want to determine if the parameters differ by some non-zero amount; for example, "job classification A makes at least \$5,000 more than job classification B."

The hypothesis-testing procedures are similar to those previously discussed in the sense of computing a test statistic and comparing it to a critical value. However, the test statistics for two-sample tests are more complicated than for one-sample tests and we will not delve into the mathematical details. Fortunately, Excel provides several tools for conducting two-sample tests, and we will use these in our examples. Table 7.1 summarizes the Excel Analysis Toolpak procedures that we will use.

Two-Sample Tests for Differences in Means

In a two-sample test for differences in means, we always test hypotheses of the form

$$
\begin{align*}
& H_{0}: \mu_{1}-\mu_{2}\{\geq, \leq, \text { or }=\} 0 \\
& H_{1}: \mu_{1}-\mu_{2}\{<,>, \text { or } \neq\} 0 \tag{7.4}
\end{align*}
$$

Table $\quad 7.1$:
Excel Analysis Toolpak Procedures for Two-Sample Hypothesis Tests

| Type of Test | Excel Procedure |
| :--- | :--- |
| Two-sample test for means, $\boldsymbol{\sigma}^{2}$ known | Excel \boldsymbol{z}-test: Two-sample for means |
| Two-sample test for means, $\boldsymbol{\sigma}^{2}$ unknown, | Excel \boldsymbol{t}-test: Two-sample assuming |
| assumed unequal | unequal variances |
| Two-sample test for means, $\boldsymbol{\sigma}^{2}$ unknown, | Excel t-test: Two-sample assuming |
| assumed equal | equal variances |
| Paired two-sample test for means | Excel \boldsymbol{t}-test: Paired two-sample for |
| | means |
| Two-sample test for equality of variances | Excel \boldsymbol{F}-test Two-sample for variances |

EXAMPLE 7.9 Comparing Supplier Performance

The last two columns in the Purchase Orders data file provide the order date and arrival date of all orders placed with each supplier. The time between placement of an order and its arrival is commonly called the lead time. We may compute the lead time by subtracting the Excel date function values from each other (Arrival Date - Order Date), as shown in Figure 7.6.

Figure 7.7 shows a pivot table for the average lead time for each supplier. Purchasing managers have noted that they order many of the same types of items from Alum Sheeting and Durrable Products and are considering dropping Alum Sheeting from its supplier base if its lead time is significantly longer than that of

Durrable Products. Therefore, they would like to test the hypothesis

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2} \leq 0 \\
& H_{1}: \mu_{1}-\mu_{2}>0
\end{aligned}
$$

where $\mu_{1}=$ mean lead time for Alum Sheeting and $\mu_{2}=$ mean lead time for Durrable Products.

Rejecting the null hypothesis suggests that the average lead time for Alum Sheeting is statistically longer than Durrable Products. However, if we cannot reject the null hypothesis, then even though the mean lead time for Alum Sheeting is longer, the difference would most likely be due to sampling error, and we could not conclude that there is a statistically significant difference.

Figure : 7.6
Portion of Purchase Orders
Database with Lead Time
Calculations

Selection of the proper test statistic and Excel procedure for a two-sample test for means depends on whether the population standard deviations are known, and if not, whether they are assumed to be equal.

1. Population variance is known. In Excel, choose z-Test: Two-Sample for Means from the Data Analysis menu. This test uses a test statistic that is based on the standard normal distribution.
2. Population variance is unknown and assumed unequal. From the Data Analysis menu, choose t-test: Two-Sample Assuming Unequal Variances. The test statistic for this case has a t-distribution.

| | A | B | c | D | E | F | G | H | 1 | J | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Purchase Orders | | | | | | | | | | |
| 2 | | | | | | | | | | | |
| 3 | Supplier | Order No. | Item No. | Item Description | Item Cost | Quantity | Cost per order | A/P Terms (Months) | Order Date | Arrival Date | Lead Time |
| 4 | Hulkey Fasteners | Aug11001 | 1122 | Airframe fasteners | \$ 4.25 | 19,500 | \$ 82,875.00 | 30 | 08/05/11 | 08/13/11 | 8 |
| 5 | Alum Sheeting | Aug11002 | 1243 | Airframe fasteners | \$ 4.25 | 10,000 | \$ 42,500.00 | 30 | 08/08/11 | 08/14/11 | 6 |
| 6 | Fast-Tie Aerospace | Aug11003 | 5462 | Shielded Cableft. | \$ 1.05 | 23,000 | \$ 24,150.00 | 30 | 08/10/11 | 08/15/11 | 5 |
| 7 | Fast-Tie Aerospace | Aug11004 | 5462 | Shielded Cableft. | \$ 1.05 | 21,500 | \$ 22,575.00 | 30 | 08/15/11 | 08/22/11 | 7 |
| 8 | Steelpin Inc. | Aug11005 | 5319 | Shielded Cableft. | \$ 1.10 | 17,500 | \$ 19,250.00 | 30 | 08/20/11 | 08/31/11 | 11 |
| 9 | Fast-Tie Aerospace | Aug11006 | 5462 | Shielded Cableft. | \$ 1.05 | 22,500 | \$ 23,625.00 | 30 | 08/20/11 | 08/26/11 | 6 |
| 10 | Steelpin Inc. | Aug11007 | 4312 | Bolt-nut package | \$ 3.75 | 4,250 | \$ 15,937.50 | 30 | 08/25/11 | 09/01/11 | 7 |

Figure : 7.7
Pivot Table for Average Supplier Lead Time

| | | A |
| :---: | :--- | ---: |
| 1 | | B |
| 2 | | |
| 3 | Row Labels | Average of Lead Time |
| 4 | Alum Sheeting | 7.00 |
| 5 | Durrable Products | 4.92 |
| 6 | Fast-Tie Aerospace | 8.47 |
| 7 | Hulkey Fasteners | 6.47 |
| 8 | Manley Valve | 6.45 |
| 9 | Pylon Accessories | 8.00 |
| 10 | Spacetime Technologies | 15.25 |
| 11 | Steelpin Inc. | 10.20 |
| 12 | Grand Total | $\mathbf{8 . 4 1}$ |

3. Population variance unknown but assumed equal. In Excel, choose t-test: TwoSample Assuming Equal Variances. The test statistic also has a t-distribution, but it is different from the unequal variance case.

These tools calculate the test statistic, the p-value for both a one-tail and two-tail test, and the critical values for one-tail and two-tail tests. For the z-test with known population variances, these are called $z, P(Z \leq z)$ one-tail or $P(Z \leq z)$ two-tail, and z Critical one-tail or z Critical two-tail, respectively. For the t-tests, these are called $t \operatorname{Stat}, P(T \leq t)$ one-tail or $P(T \leq t)$ two-tail, and t Critical one-tail or t Critical two-tail, respectively.

Caution: You must be very careful in interpreting the output information from these Excel tools and apply the following rules:

1. If the test statistic is negative, the one-tailed p-value is the correct p-value for a lower-tail test; however, for an upper-tail test, you must subtract this number from 1.0 to get the correct p-value.
2. If the test statistic is nonnegative (positive or zero), then the p-value in the output is the correct p-value for an upper-tail test; but for a lower-tail test, you must subtract this number from 1.0 to get the correct p-value.
3. For a lower-tail test, you must change the sign of the one-tailed critical value.

Only rarely are the population variances known; also, it is often difficult to justify the assumption that the variances of each population are equal. Therefore, in most practical situations, we use the t-test: Two-Sample Assuming Unequal Variances. This procedure also works well with small sample sizes if the populations are approximately normal. It is recommended that the size of each sample be approximately the same and total 20 or more. If the populations are highly skewed, then larger sample sizes are recommended.

EXAMPLE 7.10 Testing the Hypotheses for Supplier Lead-Time Performance

To conduct the hypothesis test for comparing the lead times for Alum Sheeting and Durrable Products, first sort the data by supplier and then select t-test: Two-Sample Assuming Unequal Variances from the Data Analysis menu. The dialog is shown in Figure 7.8. The dialog prompts you for the range of the data for each variable, hypothesized mean difference, whether the ranges have labels, and the level of significance α. If you leave the box Hypothesized Mean Difference blank or enter zero, the test
is for equality of means. However, the tool allows you to specify a value D_{0} to test the hypothesis $H_{0}: \mu_{1}-\mu_{2}=D_{0}$ if you want to test whether the population means have a certain distance between them. In this example, the Variable 1 range defines the lead times for Alum Sheeting, and the Variable 2 range for Durrable Products.

Figure 7.9 shows the results from the tool. The tool provides information for both one-tailed and twotailed tests. Because this is a one-tailed test, we use the
highlighted information in Figure 7.9 to draw our conclu－ sions．For this example，t Stat is positive and we have an upper－tailed test；therefore using the rules stated earlier， the p－value is 0.00166 ．Based on this alone，we reject the null hypothesis and must conclude that Alum Sheeting has a statistically longer average lead time than Durrable

Products．We may draw the same conclusion by compar－ ing the value of t Stat with the critical value t Critical one－ tail．Being an upper－tail test，the value of t Critical one－tail is 1.812 ．Comparing this with the value of t Stat，we would reject H_{0} only if t Stat $>t$ Critical one－tail．Since t Stat is greater than t Critical one－tail，we reject the null hypothesis．

Two－Sample Test for Means with Paired Samples

In the previous example for testing differences in the mean supplier lead times，we used independent samples；that is，the orders in each supplier＇s sample were not related to each other．In many situations，data from two samples are naturally paired or matched．For ex－ ample，suppose that a sample of assembly line workers perform a task using two different types of work methods，and the plant manager wants to determine if any differences exist between the two methods．In collecting the data，each worker will have performed the task using each method．Had we used independent samples，we would have randomly selected two different groups of employees and assigned one work method to one group and the alter－ native method to the second group．Each worker would have performed the task using only one of the methods．As another example，suppose that we wish to compare retail prices of grocery items between two competing grocery stores．It makes little sense to compare differ－ ent samples of items from each store．Instead，we would select a sample of grocery items and

| | A | K | L | M | N | 0 | P | Q | R | S | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | Supplier | Lead Time | t－Test：Two－Sample Assuming Unequal Variances | | | | | | ？x | |
| 4 | Alum Sheeting | 6 | | | | | | | | |
| 5 | Alum Sheeting | 9 | Input | | | | | | OK | |
| 6 | Alum Sheeting | 7 | | | | | | | |
| 7 | Alum Sheeting | 7 | Variable 1 Range： | | | \＄K\＄4：5K\＄11 | | 或 | | |
| 8 | Alum Sheeting | 5 | Variable 2 Range： | | | \＄K\＄12：\＄K\＄24 | | 䓥 | | Cancel | |
| 9 | Alum Sheeting | 7 | | | | | | | |
| 10 | Alum Sheeting | 9 | Hypothesized Mean Difference： | | | | | 0 | | | Help | |
| 11 | Alum Sheeting | 6 | | | | | | | | | |
| 12 | Durrable Products | 3 | \square Labels | | | | | | | |
| 13 | Durrable Products | 4 | Alpha： | | | | | | | |
| 14 | Durrable Products | 5 | | | | | | | | |
| 15 | Durrable Products | 6 | Output options | | | | | | | |
| 16 | Durrable Products | 5 | | | | | | | | |
| 17 | Durrable Products | 5 | （1）Qutput Range： | | | | | 䢒 | | |
| 18 | Durrable Products | 5 | （0）New Worksheet Bly： | | | | | | | |
| 19 | Durrable Products | 6 | （1）New | Work | | | | | | |
| 20 | Durrable Products | 5 | O New Workbook | | | | | | | |
| 21 | Durrable Products | 5 | | | | | | | | |
| 22 | Durrable Products | 5 | | | | | | | | |
| 23 | Durrable Products | 5 | | | | | | | | |
| 24 | Durrable Products | 5 | | | | | | | | |

Figure ： 7.9
Results for Two－Sample Test for Lead－Time Performance

| | A | B | C |
| :---: | :---: | :---: | :---: |
| 1 | t －Test：Two－Sample Assuming Unequal Variances | | |
| 2 | | Alum Sheeting | Durrable Products |
| 3 | | Variable 1 | Variable 2 |
| 4 | Mean | 7 | 4.923076923 |
| 5 | Variance | 2 | 0.576923077 |
| 6 | Observations | 8 | 13 |
| 7 | Hypothesized Mean Difference | 0 | |
| 8 | df | 10 | |
| 9 | t Stat | 3.827958507 | |
| 10 | $\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one－tail | 0.001664976 | |
| 11 | t Critical one－tail | 1.812461123 | |
| 12 | $P(T<=t)$ two－tail | 0.003329952 | |
| 13 | t Critical two－tail | 2.228138852 | |

find the price charged for the same items by each store. In this case, the samples are paired because each item would have a price from each of the two stores.

When paired samples are used, a paired t-test is more accurate than assuming that the data come from independent populations. The null hypothesis we test revolves around the mean difference $\left(\mu_{\mathrm{D}}\right)$ between the paired samples; that is

$$
\begin{aligned}
& H_{0}: \mu_{\mathrm{D}}\{\geq, \leq, \text { or }=\} 0 \\
& H_{1}: \mu_{\mathrm{D}}\{<,>, \text { or } \neq\} 0 .
\end{aligned}
$$

The test uses the average difference between the paired data and the standard deviation of the differences similar to a one-sample test.

Excel has a Data Analysis tool, t-Test: Paired Two-Sample for Means for conducting this type of test. In the dialog, you need to enter only the variable ranges and hypothesized mean difference.

EXAMPLE 7.11 Using the Paired Two-Sample Test for Means

The Excel file Pile Foundation contains the estimates used in a bid and actual auger-cast pile lengths that engineers ultimately had to use for a foundationengineering project. The contractor's past experience suggested that the bid information was generally accurate, so the average of the paired differences between the actual pile lengths and estimated lengths should be close to zero. After this project was completed, the contractor found that the average difference between the actual lengths and the estimated lengths was 6.38. Could the contractor conclude that the bid information was poor?

Figure 7.10 shows a portion of the data and the Excel dialog for the paired two-sample test. Figure 7.11 shows the output from the Excel tool using a significance level of 0.05 , where Variable 1 is the estimated lengths, and Variable 2 is the actual lengths. This is a two-tailed test, so in Figure 7.11 we interpret the results using only the two-tail information that is highlighted. The critical values are ± 1.968, and because t Stat is much smaller than the lower critical value, we must reject the null hypothesis and conclude that the mean of the differences between the estimates and the actual pile lengths is statistically significant. Note that the p-value is essentially zero, verifying this conclusion.

Test for Equality of Variances

Understanding variation in business processes is very important, as we have stated before. For instance, does one location or group of employees show higher variability than others? We can test for equality of variances between two samples using a new type of test,

| 2 | A | B | C | D | E | F | G | H | I | | J | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Pile Foundation Data | | | | | | | | | | |
| 2 | | | Pile Length (ft.) | t-Test: Paired Two Sample for Means | | | | | 9 | 23 | |
| 3 | Pile | Pile Length (ft.) | | | | | | | | | |
| 4 | Number | Estimated | Actual | Input | | | | | | | |
| 5 | 1 | 10.58 | 18.58 | Variable 1 Range: | | | \$854:58\$315 | 國 | | | |
| 6 | 2 | 10.58 | 18.58 | Variable 2 Range: | | | SC\$4:\$C\$315 | | Can | | |
| 7 | 3 | 10.58 | 18.58 | | | | | 6 | | | |
| 8 | 4 | 10.58 | 18.58 | Hypothesized Mean Difference: | | | 0 | | Help | | |
| 9 | 5 | 10.58 | 28.58 | | | | | | |
| 10 | 6 | 10.58 | 26.58 | \checkmark Labels | | | | | | | |
| 11 | 7 | 10.58 | 17.58 | Alpha: | | | | | | | | | |
| 12 | 8 | 10.58 | 27.58 | | . 05 | | | | | | |
| 13 | 9 | 10.58 | 27.58 | | Output options | | | | | | | |
| 14 | 10 | 10.58 | 37.58 | | | | | | | | | |
| 15 | 11 | 10.58 | 28.58 | Output Range: | | | | 國 | | | |
| 16 | 12 | 5.83 | 1.83 | (- New Worksheet Ply: | | | | | | | |
| 17 | 13 | 5.83 | 8.83 | | | | | | | | |
| 18 | 14 | 5.83 | 8.83 | (New Workbook | | | | | | | |
| 19 | 15 | 5.83 | 8.83 | | | | | | | | |
| 20 | 16 | 10.83 | 16.83 | | | | | | | | |

Figure : 7.11
Excel Output for Paired Two-Sample Test for Means

| A | | | |
| :--- | :--- | ---: | ---: |
| B | C | | |
| 1 | t-Test: Paired Two Sample for Means | | |
| 2 | | Estimated | Actual |
| 3 | | 28.17755627 | 34.55623794 |
| 4 | Mean | 255.8100385 | 267.0113061 |
| 5 | Variance | 311 | 311 |
| 6 | Observations | 0.79692836 | |
| 7 | Pearson Correlation | 0 | |
| 8 | Hypothesized Mean Difference | 310 | |
| 9 | df | -10.91225025 | |
| 10 | t Stat | $5.59435 \mathrm{E}-24$ | |
| 11 | P(T<=t) one-tail | 1.649783823 | |
| 12 | t Critical one-tail | $1.11887 \mathrm{E}-23$ | |
| 13 | P(T<=t) two-tail | 1.967645929 | |
| 14 | t Critical two-tail | | |

the F-test. To use this test, we must assume that both samples are drawn from normal populations. The hypotheses we test are

$$
\begin{align*}
& H_{0}: \sigma_{1}^{2}-\sigma_{2}^{2}=0 \\
& H_{1}: \sigma_{1}^{2}-\sigma_{2}^{2} \neq 0 \tag{7.5}
\end{align*}
$$

To test these hypotheses, we collect samples of n_{1} observations from population 1 and n_{2} observations from population 2 . The test uses an F-test statistic, which is the ratio of the variances of the two samples:

$$
\begin{equation*}
F=\frac{s_{1}^{2}}{s_{2}^{2}} \tag{7.6}
\end{equation*}
$$

The sampling distribution of this statistic is called the F-distribution. Similar to the t distribution, it is characterized by degrees of freedom; however, the F-distribution has two degrees of freedom, one associated with the numerator of the F-statistic, $n_{1}-1$, and one associated with the denominator of the F-statistic, $n_{2}-1$. Table A. 4 in Appendix A at the end of the book provides only upper-tail critical values, and the distribution is not symmetric, as is the standard normal or the t-distribution. Therefore, although the hypothesis test is really a two-tailed test, we will simplify it as a one-tailed test to make it easy to use tables of the F-distribution and interpret the results of the Excel tool that we will use. We do this by ensuring that when we compute F, we take the ratio of the larger sample variance to the smaller sample variance.

If the variances differ significantly from each other, we would expect F to be much larger than 1 ; the closer F is to 1 , the more likely it is that the variances are the same. Therefore, we need only to compare F to the upper-tail critical value. Hence, for a level of significance α, we find the critical value $F_{\alpha / 2, d f 1, d f 2}$ of the F-distribution, and then we reject the null hypothesis if the F-test statistic exceeds the critical value. Note that we are using $\alpha / 2$ to find the critical value, not α. This is because we are using only the upper tail information on which to base our conclusion.

EXAMPLE 7.12 Applying the F-Test for Equality of Variances

To illustrate the F-test, suppose that we wish to determine whether the variance of lead times is the same for Alum Sheeting and Durrable Products in the Purchase Orders data. The F-test can be applied using the Excel

Data Analysis tool F-test for Equality of Variances. The dialog prompts you to enter the range of the sample data for each variable. As we noted, you should ensure that the first variable has the larger variance; this might require you to

Figure : 7.12
Results for Two-Sample
F-Test for Equality of Variances

| | A | B | C |
| :---: | :---: | :---: | :---: |
| 1 | F-Test Two-Sample for Variances | | |
| 2 | | Alum Sheeting | Durrable Products |
| 3 | | Variable 1 | Variable 2 |
| 4 | Mean | 7 | 4.923076923 |
| 5 | Variance | 2 | 0.576923077 |
| 6 | Observations | 8 | 13 |
| 7 | df | 7 | 12 |
| 8 | F | 3.466666667 | |
| 9 | $P(F<=f)$ one-tail | 0.028595441 | |
| 10 | F Critical one-tail | 3.606514642 | |

calculate the variances before you use the tool. In this case, the variance of the lead times for Alum Sheeting is larger than the variance for Durrable Products (see Figure 7.9), so this is assigned to Variable 1. Note also that if we choose $\alpha=0.05$, we must enter 0.025 for the level of significance in the Excel dialog. The results are shown in Figure 7.12.

The value of the F-statistic, F, is 3.467 . We compare this with the upper-tail critical value, F Critical one-tail,
which is 3.607 . Because $F<F$ Critical one-tail, we cannot reject the null hypothesis and conclude that the variances are not significantly different from each other. Note that the p-value is $P(F<=f)$ one tail $=0.0286$. Although the level of significance is 0.05 , remember that we must compare this to $\alpha / 2=0.025$ because we are using only upper-tail information.

The F-test for equality of variances is often used before testing for the difference in means so that the proper test (population variance is unknown and assumed unequal or population variance is unknown and assumed equal, which we discussed earlier in this chapter) is selected.

Analysis of Variance (ANOVA)

To this point, we have discussed hypothesis tests that compare a population parameter to a constant value or that compare the means of two different populations. Often, we would like to compare the means of several different groups to determine if all are equal or if any are significantly different from the rest.

EXAMPLE 7.13 Differences in Insurance Survey Data

In the Excel data file Insurance Survey, we might be interested in whether any significant differences exist in satisfaction among individuals with different levels of
education. We could sort the data by educational level and then create a table similar to the following.

| | College Graduate | Graduate Degree | Some College |
| :--- | :---: | :---: | :---: |
| 5 | 3 | 4 | |
| 3 | 4 | 1 | |
| | 5 | 5 | 4 |
| | 3 | 5 | 2 |
| | 3 | 5 | 3 |
| | 3 | 4 | 4 |
| | 3 | 5 | 4 |
| | 4 | 5 | |
| Average | 2 | 4.500 | 3.143 |
| Count | 3.444 | 8 | 7 |

Although the average satisfaction for each group is somewhat different and it appears that the mean satisfaction of individuals with a graduate degree is higher, we cannot
tell conclusively whether or not these differences are significant because of sampling error.

In statistical terminology, the variable of interest is called a factor. In this example, the factor is the educational level, and we have three categorical levels of this factor, college graduate, graduate degree, and some college. Thus, it would appear that we will have to perform three different pairwise tests to establish whether any significant differences exist among them. As the number of factor levels increases, you can easily see that the number of pairwise tests grows large very quickly.

Fortunately, other statistical tools exist that eliminate the need for such a tedious approach. Analysis of variance (ANOVA) is one of them. The null hypothesis for ANOVA is that the population means of all groups are equal; the alternative hypothesis is that at least one mean differs from the rest:

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{m}
$$

H_{1} : at least one mean is different from the others
ANOVA derives its name from the fact that we are analyzing variances in the data; essentially, ANOVA computes a measure of the variance between the means of each group and a measure of the variance within the groups and examines a test statistic that is the ratio of these measures. This test statistic can be shown to have an F-distribution (similar to the test for equality of variances). If the F-statistic is large enough based on the level of significance chosen and exceeds a critical value, we would reject the null hypothesis. Excel provides a Data Analysis tool, ANOVA: Single Factor to conduct analysis of variance.

EXAMPLE 7.14 Applying the Excel ANOVA Tool

To test the null hypothesis that the mean satisfaction for all educational levels in the Excel file Insurance Survey are equal against the alternative hypothesis that at least one mean is different, select ANOVA: Single Factor from the Data Analysis options. First, you must set up the worksheet so that the data you wish to use are displayed in contiguous columns as shown in Example 7.13. In the dialog shown in Figure 7.13, specify the input range of the data (which must be in contiguous columns) and whether it is stored in rows or columns (i.e., whether each factor level or group is a row or column in the range). The sample size for each factor level need not be the same, but the input range must be a rectangular region that contains all data. You must also specify the level of significance (α).

The results for this example are given in Figure 7.14. The output report begins with a summary report of basic statistics for each group. The ANOVA section reports the details of the hypothesis test. You needn't worry about all the mathematical details. The important information to interpret the test is given in the columns labeled F (the F-test statistic), P-value (the p-value for the test), and F crit (the critical value from the F-distribution). In this example, $F=3.92$, and the critical value from the F-distribution is 3.4668 . Here $F>F$ crit; therefore, we must reject the null hypothesis and conclude that there are significant differences in the means of the groups; that is, the mean satisfaction is not the same among the three educational levels. Alternatively, we see that the p-value is smaller than the chosen level of significance, 0.05 , leading to the same conclusion.

Figure : 7.13 :
ANOVA Single Factor Dialog

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Anova: Single Factor | | | | | | |
| 2 | | | | | | | |
| 3 | SUMMARY | | | | | | |
| 4 | Groups | Count | Sum | Average | Variance | | |
| 5 | College graduate | 9 | 31 | 3.444444444 | 1.027777778 | | |
| 6 | Graduate degree | 8 | 36 | 4.5 | 0.571428571 | | |
| 7 | Some college | 7 | 22 | 3.142857143 | 1.476190476 | | |
| 8 | | | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | Source of Variation | SS | df | MS | F | P-value | Fcrit |
| 12 | Between Groups | 7.878968254 | 2 | 3.939484127 | 3.924651732 | 0.035635398 | 3.466800112 |
| 13 | Within Groups | 21.07936508 | 21 | 1.003779289 | | | |
| 14 | | | | | | | |
| 15 | Total | 28.95833333 | 23 | | | | |

Although ANOVA can identify a difference among the means of multiple populations, it cannot determine which means are different from the rest. To do this, we may use the Tukey-Kramer multiple comparison procedure. Unfortunately, Excel does not provide this tool, but it may be found in other statistical software.

Assumptions of ANOVA

ANOVA requires assumptions that the m groups or factor levels being studied represent populations whose outcome measures

1. are randomly and independently obtained,
2. are normally distributed, and
3. have equal variances.

If these assumptions are violated, then the level of significance and the power of the test can be affected. Usually, the first assumption is easily validated when random samples are chosen for the data. ANOVA is fairly robust to departures from normality, so in most cases this isn't a serious issue. If sample sizes are equal, violation of the third assumption does not have serious effects on the statistical conclusions; however, with unequal sample sizes, it can.

When the assumptions underlying ANOVA are violated, you may use a nonparametric test that does not require these assumptions; we refer you to more comprehensive texts on statistics for further information and examples.

Finally, we wish to point out that students often use ANOVA to compare the equality of means of exactly two populations. It is important to realize that by doing this, you are making the assumption that the populations have equal variances (assumption 3). Thus, you will find that the p-values for both ANOVA and the t-Test: Two-Sample Assuming Equal Variances will be the same and lead to the same conclusion. However, if the variances are unequal as is generally the case with sample data, ANOVA may lead to an erroneous conclusion. We recommend that you do not use ANOVA for comparing the means of two populations, but instead use the appropriate t-test that assumes unequal variances.

Chi-Square Test for Independence

A common problem in business is to determine whether two categorical variables are independent. We introduced the concept of independent events in Chapter 5. In the energy drink survey example (Example 5.9), we used conditional probabilities to determine whether brand preference was independent of gender. However, with sample data, sampling error can make it difficult to properly assess the independence of categorical variables. We would never expect the joint probabilities to be exactly the same as the product of the marginal probabilities because of sampling error even if the two variables are statistically independent. Testing for independence is important in marketing applications.

EXAMPLE 7.15 Independence and Marketing Strategy

Figure 7.15 shows a portion of the sample data used in Chapter 5 for brand preferences of energy drinks (Excel file Energy Drink Survey) and the cross-tabulation of the results. A key marketing question is whether the proportion of males who prefer a particular brand is no different from the proportion of females. For instance, of the 63 male students, 25 (40%) prefer brand 1. If gender and brand preference are indeed independent, we would expect that about the same proportion of the sample of
female students would also prefer brand 1. In actuality, only 9 of 37 (24\%) prefer brand 1. However, we do not know whether this is simply due to sampling error or represents a significant difference. Knowing whether gender and brand preference are independent can help marketing personnel better target advertising campaigns. If they are not independent, then advertising should be targeted differently to males and females, whereas if they are independent, it would not matter.

We can test for independence by using a hypothesis test called the chi-square test for independence. The chi-square test for independence tests the following hypotheses:
H_{0} : the two categorical variables are independent
H_{1} : the two categorical variables are dependent

The chi-square test is an example of a nonparametric test; that is, one that does not depend on restrictive statistical assumptions, as ANOVA does. This makes it a widely applicable and popular tool for understanding relationships among categorical data. The first step in the procedure is to compute the expected frequency in each cell of the crosstabulation if the two variables are independent. This is easily done using the following:

$$
\begin{equation*}
\text { expected frequency in row } i \text { and column } j=\frac{(\text { grand total row } i)(\text { grand total column } j)}{\text { total number of observations }} \tag{7.7}
\end{equation*}
$$

Figure : 7.15 :
Portion of Energy Drink Survey and Cross-Tabulation

| 4 | A | B | C | D | E | F | | G | H | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Energy Drink Survey | | | | | | | | | |
| 2 | | | | | | | | | | |
| 3 | Respondent | Gender | Brand Preference | | | | | | | |
| 4 | 1 | Male | Brand 3 | | Count of Respondent | Column Labels | \checkmark | | | |
| 5 | 2 | Female | Brand 3 | | Row Labels | Brand 1 | | Brand 2 | Brand 3 | Grand Total |
| 6 | 3 | Male | Brand 3 | | Female | | 9 | 6 | 22 | 37 |
| 7 | 4 | Male | Brand 1 | | Male | | 25 | 17 | 21 | 63 |
| 8 | 5 | Male | Brand 1 | | Grand Total | | 34 | 23 | 43 | 100 |
| 9 | 6 | Female | Brand 2 | | | | | | | |
| 10 | 7 | Male | Brand 2 | | | | | | | |

Figure : 7.16
Expected Frequencies for the Chi-Square Test

| | E | F | G | H | 1 | J | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chi-Square Test | | | | | | |
| 2 | | | | | | | |
| 3 | Count of Respondent | Column Labels | | | | | |
| 4 | Row Labels | Brand 1 | Brand 2 | Brand 3 | Grand Total | | |
| 5 | Female | 9 | 6 | 22 | 37 | | |
| 6 | Male | 25 | 17 | 21 | 63 | | |
| 7 | Grand Total | 34 | 23 | 43 | 100 | Expected
 frequency of
 Fernale and
 Brand 1 =
 $37 * 34 / 100$ | |
| 8 | | | | | , | | |
| 9 | | | | | - | | |
| 10 | Expected Frequency Female | Brand 1 | Brand 2-brand 3 | | Grand Total | | |
| 11 | | 12.58 | -8.51 | 15.91 | 37 | | |
| 12 | Male | 21.42 | 14.49 | 27.09 | 63 | | |
| 13 | Grand Total | 34 | 23 | 43 | 100 | | |

EXAMPLE 7.16 Computing Expected Frequencies

For the Energy Drink Survey data, we may compute the expected frequencies using the data from the cross-tabulation and formula (7.7). For example, the expected frequency of females who prefer brand 1 is $(37)(34) / 100=12.58$. This
can easily be implemented in Excel. Figure 7.16 shows the results (see the Excel file Chi-Square Test). The formula in cell F11, for example, is $=\$ 15^{*} \mathrm{~F} \$ 7 / \$ 1 \$ 7$, which can be copied to the other cells to complete the calculations.

Next, we compute a test statistic, called a chi-square statistic, which is the sum of the squares of the differences between observed frequency, f_{o}, and expected frequency, f_{e}, divided by the expected frequency in each cell:

$$
\begin{equation*}
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}} \tag{7.8}
\end{equation*}
$$

The closer the observed frequencies are to the expected frequencies, the smaller will be the value of the chi-square statistic. The sampling distribution of χ^{2} is a special distribution called the chi-square $\left(\chi^{2}\right)$ distribution. The chi-square distribution is characterized by degrees of freedom, similar to the t-distribution. Table A. 3 in Appendix A in the back of this book provides critical values of the chi-square distribution for selected values of α. We compare the chi-square statistic for a specified level of significance α to the critical value from a chi-square distribution with $(r-1)(c-1)$ degrees of freedom, where r and c are the number of rows and columns in the cross-tabulation table, respectively. The Excel function CHISQ.INV.RT(probability, deg_ freedom) returns the value of χ^{2} that has a right-tail area equal to probability for a specified degree of freedom. By setting probability equal to the level of significance, we can obtain the critical value for the hypothesis test. If the test statistic exceeds the critical value for a specified level of significance, we reject H_{0}. The Excel function CHISQ.TEST(actual_range, expected_range) computes the p-value for the chi-square test.

Figure : 7.17 :
Excel Implementation of Chi-Square Test

EXAMPLE 7.17 Conducting the Chi-Square Test

For the Energy Drink Survey data, Figure 7.17 shows the calculations of the chi-square statistic using formula (7.8). For example, the formula in cell F17 is $=(F 5-F 11)^{2} / F 11$, which can be copied to the other cells. The grand total in the lower right cell is the value of χ^{2}. In this case, the chi-square test statistic is 6.4924 . Since the cross-tabulation has $r=2$ rows and $c=3$ columns, we have $(2-1)(3-1)=2$ degrees of freedom for the chi-square distribution. Using $\alpha=0.05$, the Excel function CHISQ.INV.RT(0.05,2) returns the
critical value 5.99146. Because the test statistic exceeds the critical value, we reject the null hypothesis that the two categorical variables are independent.

Alternatively, we could simply use the CHISQ.TEST function to find the p-value for the test and base our conclusion on that without computing the chi-square statistic. For this example, the function CHISQ.TEST(F6:H7,F12:H13) returns the p-value of 0.0389 , which is less than $\alpha=0.05$; therefore, we reject the null hypothesis.

Cautions in Using the Chi-Square Test

First, when using PivotTables to construct a cross-tabulation and implement the chi-square test in Excel similar to Figure 7.17, be extremely cautious of blank cells in the PivotTable. Blank cells will not be counted in the chi-square calculations and will lead to errors. If you have blank cells in the PivotTable, simply replace them by zeros, or right-click in the PivotTable, choose PivotTable Options, and enter 0 in the field for the checkbox For empty cells show.

Second, the chi-square test assumes adequate expected cell frequencies. A rule of thumb is that there be no more than 20% of cells with expected frequencies smaller than 5, and no expected frequencies of zero. More advanced statistical procedures exist to handle this, but you might consider aggregating some of the rows or columns in a logical fashion to enforce this assumption. This, of course, results in fewer rows or columns.

Analytics in Practice: Using Hypothesis Tests and Business Analytics in a Help Desk Service Improvement Project ${ }^{1}$

Schlumberger is an international oilfield-services provider headquartered in Houston, Texas. Through an outsourcing contract, they supply help-desk services for a global telecom company that offers wireline communications and integrated telecom services to more than 2 million cellular subscribers. The help desk, located in Ecuador, faced increasing customer complaints and losses in dollars and cycle times. The company drew upon the analytics capability of one of the help-desk managers to investigate and solve the problem. The data showed that the average solution time for issues reported to the help desk was 9.75 hours. The company set a goal to reduce the average solution time by 50%. In addition, the number of issues reported to the help desk had reached an average of 30,000 per month. Reducing the total number of issues reported to the help desk would allow the company to address those issues that hadn't been resolved because of a lack of time, and to reduce the number of abandoned calls. They set a goal to identify preventable issues so that customers would not have to contact the help desk in the first place, and set a target of 15,000 issues.

As part of their analysis, they observed that the average solution time for help-desk technicians working at the call center seemed to be lower than the average for technicians working on site with clients. They conducted a hypothesis test structured around the question: Is there a difference between having help desk employees working at an off-site facility rather than on site within the client's main office? The null hypothesis was that there was no significant difference; the alternative hypothesis was that there was a significant difference. Using a two-sample t-test to assess whether the
call center and the help desk are statistically different from each other, they found no statistically significant advantage in keeping help-desk employees working at the call center. As a result, they moved help-desk agents to the client's main office area. Using a variety of other analytical techniques, they were able to make changes to their process, resulting in the following:

a decrease in the number of help-desk issues of 32%

- improved capability to meet the target of 15,000 total issues
- a reduction in the average desktop solution time from 9.75 hours to 1 hour, an improvement of 89.5%
- a reduction in the call-abandonment rate from 44% to 26%
- a reduction of 69% in help-desk operating costs

Key Terms

Alternative hypothesis
Analysis of variance (ANOVA)
Chi-square distribution
Chi-square statistic
Confidence coefficient
Factor
Hypothesis
Hypothesis testing
Level of significance

Null hypothesis
One-sample hypothesis test
One-tailed test of hypothesis
p-Value (observed significance level)
Power of the test
Statistical inference
Two-tailed test of hypothesis
Type I error
Type II error

[^38]
Problems and Exercises

For all hypothesis tests, assume that the level of significance is 0.05 unless otherwise stated.

1. Create an Excel workbook with worksheet templates (similar to the Excel workbook Confidence Intervals) for one-sample hypothesis tests for means and proportions. Apply your templates to the example problems in this chapter. (For subsequent problems, you should use the formulas in this chapter to perform the calculations, and use this template only to verify your results!)
2. A company is considering two different campaigns, A and B, for the promotion of their product. Two tests are conducted in two market areas with identical consumer characteristics, and in a random sample of 60 customers who saw campaign A, 18 tried the product. In a random sample of 100 customers who saw campaign B, 22 tried the product. What conclusion can management reach? (Assume that the population variance is not known.)
3. A management institute checked the past records of applicants and the mean score calculated was 350 . The administration is interested to know whether the quality of new applicants has changed or not. From the recent scores of 100 applicants, the mean is 365 with a standard deviation of 38. Does this data provide statistical evidence that the quality of recent applicants has improved?
4. A retailer believes that its new advertising strategy will increase sales. Previously, the mean spending in 15 categories of consumer items in both the 18-34 and $35+$ age groups was $\$ 70.00$.
a. Formulate a hypothesis test to determine if the mean spending in these categories has statistically increased.
b. After the new advertising campaign was launched, a marketing study found that the mean spending for 300 respondents in the 18-34 age group was $\$ 75.86$, with a standard deviation of $\$ 50.90$. Is there sufficient evidence to conclude that the advertising strategy significantly increased sales in this age group?
c. For 700 respondents in the $35+$ age group, the mean and standard deviation were $\$ 68.53$ and $\$ 45.29$, respectively. Is there sufficient evidence to conclude that the advertising strategy significantly increased sales in this age group?
5. A financial advisor believes that the proportion of investors who are risk-averse (i.e., try to avoid risk in their investment decisions) is at least 0.7 . A survey of 32 investors found that 20 of them were risk-averse.

Formulate and test the appropriate hypotheses to determine whether his belief is valid.
6. Metropolitan Press hypothesizes that the average life of its largest Web press is 14,500 hours. They know that the standard deviation of press life is 2,100 hours. From a sample of 25 presses, the company find sample mean of 13,000 hours. At a 0.01 significance level, should the company conclude that the average life of the presses is less than the hypothesized 14,500 hours?
7. Ice Cream Manufacture is to produce a new ice cream flavor. The company's marketing research department surveyed 6,000 families and 335 of them showed interest in purchasing the new flavor. A similar study made two year ago showed that 5% of the families would purchase the flavor. What should the company conclude regarding the new flavor?
8. Call centers typically have high turnover. The director of human resources for a large bank has compiled data on about 70 former employees at one of the bank's call centers in the Excel file Call Center Data. In writing an article about call center working conditions, a reporter has claimed that the average tenure is no more than 2 years. Formulate and test a hypothesis using these data to determine if this claim can be disputed.
9. The manager of a store claims that 60% of the shoppers entering the store leave without making a purchase. Out of a sample of 50 , it is found that 35 shoppers left without buying. Is the result consistent with the claim?
10. A sample of 400 athletes is found to have mean height of 171.38 cm . Can we call it a sample from a large population of mean height 171.17 and standard deviation of 3.30 cm ?
11. The State of Ohio Department of Education has a mandated ninth-grade proficiency test that covers writing, reading, mathematics, citizenship (social studies), and science. The Excel file Ohio Education Performance provides data on success rates (defined as the percent of students passing) in school districts in the greater Cincinnati metropolitan area along with state averages. Test null hypotheses that the average scores in the Cincinnati area are equal to the state averages in each test and also for the composite score.
12. Formulate and test hypotheses to determine if statistical evidence suggests that the graduation rate for (1) top liberal arts colleges or (2) research universities in the sample Colleges and Universities exceeds 90%. Do the data support a conclusion that the graduation rates exceed 85% ? Would your conclusions
change if the level of significance was 0.01 instead of 0.05 ?
13. The Excel file Sales Data provides data on a sample of customers. An industry trade publication stated that the average profit per customer for this industry was at least $\$ 4,500$. Using a test of hypothesis, do the data support this claim or not?
14. The Excel file Room Inspection provides data for 100 room inspections at each of 25 hotels in a major chain. Management would like the proportion of nonconforming rooms to be less than 2%. Test an appropriate hypothesis to determine if management can make this claim.
15. An employer is considering negotiating its pricing structure for health insurance with its provider if there is sufficient evidence that customers will be willing to pay a lower premium for a higher deductible. Specifically, they want at least 30% of their employees to be willing to do this. Using the sample data in the Excel file Insurance Survey, determine what decision they should make.
16. Using the data in the Excel file Consumer Transportation Survey, test the following null hypotheses:
a. Individuals spend at least 8 hours per week in their vehicles.
b. Individuals drive an average of 600 miles per week.
c. The average age of SUV drivers is no greater than 35.
d. At least 80% of individuals are satisfied with their vehicles.
17. Using the Excel file Facebook Survey, determine if the mean number of hours spent online per week is the same for males as it is for females.
18. Determine if there is evidence to conclude that the mean number of vacations taken by married individuals is less than the number taken by single/divorced individuals using the data in the Excel file Vacation Survey. Use a level of significance of 0.05 . Would your conclusion change if the level of significance is 0.01 ?
19. The Excel file Accounting Professionals provides the results of a survey of 27 employees in a tax division of a Fortune 100 company.
a. Test the null hypothesis that the average number of years of service is the same for males and females.
b. Test the null hypothesis that the average years of undergraduate study is the same for males and females.
20. In the Excel file Cell Phone Survey, test the hypothesis that the mean responses for Value for the Dollar and Customer Service do not differ by gender.
21. A sample size of 22 with a mean of 8 and a standard deviation of 12.5 test the hypothesis that the value of the population mean is 70 against the assumption that it is more than 70 . Use the 0.025 significant levels.
22. Determine if there is evidence to conclude that the mean GPA of males who plan to attend graduate school is larger than that of females who plan to attend graduate school using the data in the Excel file Graduate School Survey.
23. The director of human resources for a large bank has compiled data on about 70 former employees at one of the bank's call centers (see the Excel file Call Center Data). For each of the following, assume equal variances of the two populations.
a. Test the null hypothesis that the average length of service for males is the same as for females.
b. Test the null hypothesis that the average length of service for individuals without prior call center experience is the same as those with experience.
c. Test the null hypothesis that the average length of service for individuals with a college degree is the same as for individuals without a college degree.
d. Now conduct tests of hypotheses for equality of variances. Were your assumptions of equal variances valid? If not, repeat the test(s) for means using the unequal variance test.
24. A producer of computer-aided design software for the aerospace industry receives numerous calls for technical support. Tracking software is used to monitor response and resolution times. In addition, the company surveys customers who request support using the following scale: 0-did not exceed expectations; 1—marginally met expectations; 2—met expectations; 3-exceeded expectations; 4— greatly exceeded expectations. The questions are as follows:

Q1: Did the support representative explain the process for resolving your problem?
Q2: Did the support representative keep you informed about the status of progress in resolving your problem?
Q3: Was the support representative courteous and professional?
Q4: Was your problem resolved?

Q5: Was your problem resolved in an acceptable amount of time?
Q6: Overall, how did you find the service provided by our technical support department?
A final question asks the customer to rate the overall quality of the product using a scale of 0 -very poor; 1—poor; 2—good; 3-very good; 4—excellent. A sample of survey responses and associated resolution and response data are provided in the Excel file Customer Support Survey.
a. The company has set a service standard of 1 day for the mean resolution time. Does evidence exist that the response time is more than 1 day? How do the outliers in the data affect your result? What should you do about them?
b. Test the hypothesis that the average service index is equal to the average engineer index.
25. Using the data in the Excel file Ohio Education Performance, test the hypotheses that the mean difference in writing and reading scores is zero and that the mean difference in math and science scores is zero. Use the paired-sample procedure.
26. The Excel file Unions and Labor Law Data reports the percent of public- and private-sector employees in unions in 1982 for each state, along with indicators whether the states had a bargaining law that covered public employees or right-to-work laws.
a. Test the hypothesis that the mean percent of employees in unions for both the public sector and private sector is the same for states having bargaining laws as for those who do not.
b. Test the hypothesis that the mean percent of employees in unions for both the public sector and private sector is the same for states having right-to-work laws as for those who do not.
27. Using the data in the Excel file Student Grades, which represent exam scores in one section of a large statistics course, test the hypothesis that the variance in grades is the same for both tests.
28. In the Excel file Restaurant Sales, determine if the variance of weekday sales is the same as that of weekend sales for each of the three variables (lunch, dinner, and delivery).
29. A college is trying to determine if there is a significant difference in the mean GMAT score of students from different undergraduate backgrounds who apply to the MBA program. The Excel file GMAT

Scores contain data from a sample of students. What conclusion can be reached using ANOVA?
30. Using the data in the Excel file Cell Phone Survey, apply ANOVA to determine if the mean response for Value for the Dollar is the same for different types of cell phones.
31. Using the data in the Excel file Freshman College Data, use ANOVA to determine whether significant differences exist in the mean retention rate for the different colleges over the 4-year period. Second, use ANOVA to determine if significant differences exist in the mean ACT and SAT scores among the different colleges.
32. A car manufacturing firm is bringing out a new model. To figure out its advertising campaign, they want to determine whether the model appeal will be dependent on a particular age group. A sample of a customer survey revealed the following:

| | Under
 20 | $20-40$ | $40-50$ | 50 and
 over | Total |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Liked | 140 | 70 | 70 | 25 | 305 |
| Disliked | 60 | 40 | 30 | 65 | 195 |
| Total | 200 | 110 | 100 | 90 | 500 |

What can the manufacturer conclude?
33. A survey of college students determined the preference for cell phone providers. The following data were obtained:

| Provider | | | | |
| :--- | :---: | :---: | :---: | :---: |
| Gender | T-Mobile | AT\&T | Verizon | Other |
| Male | 12 | 39 | 27 | 16 |
| Female | 8 | 22 | 24 | 12 |

Can we conclude that gender and cell phone provider are independent? If not, what implications does this have for marketing?
34. For the data in the Excel file Accounting Professionals, perform a chi-square test of independence to determine if age group is independent of having a graduate degree.
35. For the data in the Excel file Graduate School Survey, perform a chi-square test for independence to determine if plans to attend graduate school are independent of gender.
36. For the data in the Excel file New Account Processing, perform chi-square tests for independence to determine if certification is independent of gender, and if certification is independent of having prior industry background.

Case: Drout Advertising Research Project

The background for this case was introduced in Chapter 1. This is a continuation of the case in Chapter 6. For this part of the case, propose and test some meaningful hypotheses that will help Ms. Drout understand and explain the results. Include two-sample tests, ANOVA, and/or Chi-Square tests for independence as appropriate. Write up your conclusions in a formal report, or add your findings
to the report you completed for the case in Chapter 6 as per your instructor's requirements. If you have accumulated all sections of this case into one report, polish it up so that it is as professional as possible, drawing final conclusions about the perceptions of the role of advertising in the reinforcement of gender stereotypes and the impact of empowerment advertising.

Case: Performance Lawn Equipment

Elizabeth Burke has identified some additional questions she would like you to answer.

1. Are there significant differences in ratings of specific product/service attributes in the 2014 Customer Survey worksheet?
2. In the worksheet On-Time Delivery, has the proportion of on-time deliveries in 2014 significantly improved since 2010 ?
3. Have the data in the worksheet Defects After Delivery changed significantly over the past 5 years?
4. Although engineering has collected data on alternative process costs for building transmissions
in the worksheet Transmission Costs, why didn't they reach a conclusion as to whether one of the proposed processes is better than the current process?
5. Are there differences in employee retention due to gender, college graduation status, or whether the employee is from the local area in the data in the worksheet Employee Retention?

Conduct appropriate statistical analyses and hypothesis tests to answer these questions and summarize your results in a formal report to Ms. Burke.

This page intentionally left blank

gibsons/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

- Explain the purpose of regression analysis and provide examples in business.
- Use a scatter chart to identify the type of relationship between two variables.
List the common types of mathematical functions used in predictive modeling.
Use the Excel Trendline tool to fit models to data.
- Explain how least-squares regression finds the bestfitting regression model.
- Use Excel functions to find least-squares regression coefficients.
- Use the Excel Regression tool for both single and multiple linear regressions.
- Interpret the regression statistics of the Excel Regression tool.
- Interpret significance of regression from the Excel Regression tool output.
- Draw conclusions for tests of hypotheses about regression coefficients.

Interpret confidence intervals for regression coefficients
Calculate standard residuals.
List the assumptions of regression analysis and describe methods to verify them.
Explain the differences in the Excel Regression tool output for simple and multiple linear regression models.
Apply a systematic approach to build good regression models.
Explain the importance of understanding multicollinearity in regression models.

- Build regression models for categorical data using dummy variables.
- Test for interactions in regression models with categorical variables.
- Identify when curvilinear regression models are more appropriate than linear models.

Many applications of business analytics involve modeling relationships between one or more independent variables and some dependent variable. For example, we might wish to predict the level of sales based on the price we set, or extrapolate a trend into the future. As other examples, a company may wish to predict sales based on the U.S. GDP (gross domestic product) and the 10-year treasury bond rate to capture the influence of the business cycle, ${ }^{1}$ or a marketing researcher might want to predict the intent of buying a particular automobile model based on a survey that measured consumer attitudes toward the brand, negative word-of-mouth, and income level. ${ }^{2}$

Trendlines and regression analysis are tools for building such models and predicting future results. Our principal focus is to gain a basic understanding of how to use and interpret trendlines and regression models, statistical issues associated with interpreting regression analysis results, and practical issues in using trendlines and regression as tools for making and evaluating decisions.

Modeling Relationships and Trends in Data

Understanding both the mathematics and the descriptive properties of different functional relationships is important in building predictive analytical models. We often begin by creating a chart of the data to understand it and choose the appropriate type of functional relationship to incorporate into an analytical model. For cross-sectional data, we use a scatter chart; for time hyphenate as adjective for data series data we use a line chart.

Common types of mathematical functions used in predictive analytical models include the following:

- Linear function: $y=a+b x$. Linear functions show steady increases or decreases over the range of x. This is the simplest type of function used in predictive models. It is easy to understand, and over small ranges of values, can approximate behavior rather well.
- Logarithmic function: $y=\ln (x)$. Logarithmic functions are used when the rate of change in a variable increases or decreases quickly and then levels out, such as with diminishing returns to scale. Logarithmic functions are often used in marketing models where constant percentage increases in advertising, for instance, result in constant, absolute increases in sales.
- Polynomial function: $y=a x^{2}+b x+c$ (second order-quadratic function), $y=a x^{3}+b x^{2}+d x+e$ (third order-cubic function), and so on. A secondorder polynomial is parabolic in nature and has only one hill or valley; a thirdorder polynomial has one or two hills or valleys. Revenue models that incorporate price elasticity are often polynomial functions.

[^39]- Power function: $y=a x^{b}$. Power functions define phenomena that increase at a specific rate. Learning curves that express improving times in performing a task are often modeled with power functions having $a>0$ and $b<0$.
- Exponential function: $y=a b^{x}$. Exponential functions have the property that y rises or falls at constantly increasing rates. For example, the perceived brightness of a lightbulb grows at a decreasing rate as the wattage increases. In this case, a would be a positive number and b would be between 0 and 1 . The exponential function is often defined as $y=a e^{x}$, where $b=e$, the base of natural logarithms (approximately 2.71828).

The Excel Trendline tool provides a convenient method for determining the best-fitting functional relationship among these alternatives for a set of data. First, click the chart to which you wish to add a trendline; this will display the Chart Tools menu. Select the Chart Tools Design tab, and then click Add Chart Element from the Chart Layouts group. From the Trendline submenu, you can select one of the options (Linear is the most common) or More Trendline Options. . . . If you select More Trendline Options, you will get the Format Trendline pane in the worksheet (see Figure 8.1). A simpler way of doing all this is to right click on the data series in the chart and choose Add trendline from the pop-up menu-try it! Select the radio button for the type of functional relationship you wish to fit to the data. Check the boxes for Display Equation on chart and Display R-squared value on chart. You may then close the Format Trendline pane. Excel will display the results on the chart you have selected; you may move the equation and R-squared value for better readability by dragging them to a different location. To clear a trendline, right click on it and select Delete.
$\boldsymbol{R}^{2}\left(\boldsymbol{R}\right.$-squared) is a measure of the "fit" of the line to the data. The value of R^{2} will be between 0 and 1 . The larger the value of R^{2} the better the fit. We will discuss this further in the context of regression analysis.

Trendlines can be used to model relationships between variables and understand how the dependent variable behaves as the independent variable changes. For example, the demand-prediction models that we introduced in Chapter 1 (Examples 1.9 and 1.10) would generally be developed by analyzing data.

Figure: 8.1
Excel Format Trendline
Pane

EXAMPLE 8.1 Modeling a Price-Demand Function

A market research study has collected data on sales volumes for different levels of pricing of a particular product. The data and a scatter diagram are shown in Figure 8.2 (Excel file Price-Sales Data). The relationship between price and sales clearly appears to be linear, so a linear trendline was fit to the data. The resulting model is

$$
\text { sales }=20,512-9.5116 \times \text { price }
$$

This model can be used as the demand function in other marketing or financial analyses.

Trendlines are also used extensively in modeling trends over time-that is, when the variable x in the functional relationships represents time. For example, an analyst for an airline needs to predict where fuel prices are going, and an investment analyst would want to predict the price of stocks or key economic indicators.

EXAMPLE 8.2 Predicting Crude Oil Prices

Figure 8.3 shows a chart of historical data on crude oil prices on the first Friday of each month from January 2006 through June 2008 (data are in the Excel file Crude Oil Prices). Using the Trendline tool, we can try to fit the various functions to these data (here x represents the number of months starting with January 2006). The results are as follows:

```
exponential: \(y=50.49 e^{0.021 x} \quad R^{2}=0.664\)
logarithmic: \(\quad y=13.02 \ln (x)+39.60 \quad R^{2}=0.382\)
```

polynomial (second order):

$$
y=0.130 x^{2}-2.399 x+68.01 \quad R^{2}=0.905
$$

polynomial (third order):
$y=0.005 x^{3}-0.111 x^{2}+0.648 x+59.497$

$$
R^{2}=0.928
$$

power: $y=45.96 x^{.0169}$
$R^{2}=0.397$
The best-fitting model is the third-order polynomial, shown in Figure 8.4.

Figure $\begin{gathered} \\ 8.2\end{gathered}$
Price-Sales Data and Scatter Diagram with Fitted Linear Function

Figure: 8.3

Chart of Crude Oil Prices

Figure : 8.4
Polynomial Fit of Crude Oil Prices

Be cautious when using polynomial functions. The R^{2} value will continue to increase as the order of the polynomial increases; that is, a third-order polynomial will provide a better fit than a second order polynomial, and so on. Higher-order polynomials will generally not be very smooth and will be difficult to interpret visually. Thus, we don't recommend going beyond a third-order polynomial when fitting data. Use your eye to make a good judgment!

Of course, the proper model to use depends on the scope of the data. As the chart shows, crude oil prices were relatively stable until early 2007 and then began to increase rapidly. By including the early data, the long-term functional relationship might not adequately express the short-term trend. For example, fitting a model to only the data beginning with January 2007 yields these models:

| exponential: | $y=50.56 e^{0.044 x}$ | $R^{2}=0.969$ |
| :--- | :--- | :--- |
| polynomial (second order): | $y=0.121 x^{2}+1.232 x+53.48$ | $R^{2}=0.968$ |
| linear: | $y=3.548 x+45.76$ | $R^{2}=0.944$ |

The difference in prediction can be significant. For example, to predict the price 6 months after the last data point $(x=36)$ yields $\$ 172.24$ for the third-order polynomial fit with all the data and $\$ 246.45$ for the exponential model with only the recent data. Thus, the analysis must be careful to select the proper amount of data for the analysis. The question then becomes one of choosing the best assumptions for the model. Is it reasonable to assume that prices would increase exponentially or perhaps at a slower rate, such as with the linear model fit? Or, would they level off and start falling? Clearly, factors other than historical trends would enter into this choice. As we now know, oil prices plunged in the latter half of 2008; thus, all predictive models are risky.

Simple Linear Regression

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between a dependent variable (which must be a ratio variable and not categorical) and one or more independent, or explanatory, variables, all of which are numerical (but may be either ratio or categorical).

Two broad categories of regression models are used often in business settings: (1) regression models of cross-sectional data and (2) regression models of time-series data, in which the independent variables are time or some function of time and the focus is on predicting the future. Time-series regression is an important tool in forecasting, which is the subject of Chapter 9 .

A regression model that involves a single independent variable is called simple regression. A regression model that involves two or more independent variables is called multiple regression. In the remainder of this chapter, we describe how to develop and analyze both simple and multiple regression models.

Simple linear regression involves finding a linear relationship between one independent variable, X, and one dependent variable, Y. The relationship between two variables can assume many forms, as illustrated in Figure 8.5. The relationship may be linear or nonlinear, or there may be no relationship at all. Because we are focusing our discussion on linear regression models, the first thing to do is to verify that the relationship is linear, as in Figure 8.5(a). We would not expect to see the data line up perfectly along a straight line; we simply want to verify that the general relationship is linear. If the relationship is clearly nonlinear, as in Figure 8.5(b), then alternative approaches must be used, and if no relationship is evident, as in Figure 8.5(c), then it is pointless to even consider developing a linear regression model.

To determine if a linear relationship exists between the variables, we recommend that you create a scatter chart that can show the relationship between variables visually.

Figure : 8.5
Examples of Variable Relationships

(a) Linear

(b) Nonlinear

(c) No relationship

EXAMPLE 8.3 Home Market Value Data

The market value of a house is typically related to its size. In the Excel file Home Market Value (see Figure 8.6), data obtained from a county auditor provides information about the age, square footage, and current market value of houses in a particular subdivision. We might wish to investigate the relationship between the market value and the size of the home. The independent variable, X, is the number of square feet, and the dependent variable, Y, is the market value.

Figure 8.7 shows a scatter chart of the market value in relation to the size of the home. In general, we see that higher market values are associated with larger house sizes and the relationship is approximately linear. Therefore, we could conclude that simple linear regression would be an appropriate technique for predicting market value based on house size.

Figure : 8.6
Portion of Home Market Value

| | A | B | C |
| :---: | :---: | :---: | :---: |
| 1 | Home Market Value | | |
| 2 | | | |
| 3 | House Age | Square Feet | Market Value |
| 4 | 33 | 1,812 | \$90,000.00 |
| 5 | 32 | 1,914 | \$104,400.00 |
| 6 | 32 | 1,842 | \$93,300.00 |
| 7 | 33 | 1,812 | \$91,000.00 |
| 8 | 32 | 1,836 | \$101,900.00 |
| 9 | 33 | 2,028 | \$108,500.00 |
| 10 | 32 | 1,732 | \$87,600.00 |

Finding the Best-Fitting Regression Line

The idea behind simple linear regression is to express the relationship between the dependent and independent variables by a simple linear equation, such as

$$
\text { market value }=a+b \times \text { square feet }
$$

where a is the y-intercept and b is the slope of the line. If we draw a straight line through the data, some of the points will fall above the line, some will fall below it, and a few

Figure : 8.8
Two Possible Regression Lines

Market Value

might fall on the line itself. Figure 8.8 shows two possible straight lines that pass through the data. Clearly, you would choose A as the better-fitting line over B because all the points are closer to the line and the line appears to be in the middle of the data. The only difference between the lines is the value of the slope and intercept; thus, we seek to determine the values of the slope and intercept that provide the best-fitting line.

EXAMPLE 8.4 Using Excel to Find the Best Regression Line

When using the Trendline tool for simple linear regression in the Home Market Value example, be sure the linear function option is selected (it is the default option when you use the tool). Figure 8.9 shows the best fitting regression line. The equation is
market value $=\$ 32,673+\$ 35.036 \times$ square feet
The value of the regression line can be explained as follows. Suppose we wanted to estimate the home market value for any home in the population from which the sample data were gathered. If all we knew were the market values, then the best estimate of the market value for any home would simply be the sample mean, which is $\$ 92,069$. Thus, no matter if the house has 1,500 square feet or 2,200 square feet, the best estimate of market value would still be $\$ 92,069$. Because the market values vary from about $\$ 75,000$ to more than $\$ 120,000$, there is quite a bit of uncertainty in using the mean as the estimate. However, from the scatter chart, we see that larger homes tend to have higher market values. Therefore, if we know that a home has 2,200 square feet, we would expect
the market value estimate to be higher than for one that has only 1,500 square feet. For example, the estimated market value of a home with 2,200 square feet would be
market value $=\$ 32,673+\$ 35.036 \times 2,200=\$ 109,752$
whereas the estimated value for a home with 1,500 square feet would be
market value $=\$ 32,673+\$ 35.036 \times 1,500=\$ 85,227$
The regression model explains the differences in market value as a function of the house size and provides better estimates than simply using the average of the sample data.

One important caution: it is dangerous to extrapolate a regression model outside the ranges covered by the observations. For instance, if you want to predict the market value of a house that has 3,000 square feet, the results may or may not be accurate, because the regression model estimates did not use any observations greater than 2,400 square feet. We cannot be sure that a linear extrapolation will hold and should not use the model to make such predictions.

Figure : 8.9
Best-fitting Simple Linear Regression Line

We can find the best-fitting line using the Excel Trendline tool (with the linear option chosen), as described earlier in this chapter.

Least-Squares Regression

The mathematical basis for the best-fitting regression line is called least-squares regression. In regression analysis, we assume that the values of the dependent variable, Y, in the sample data are drawn from some unknown population for each value of the independent variable, X. For example, in the Home Market Value data, the first and fourth observations come from a population of homes having 1,812 square feet; the second observation comes from a population of homes having 1,914 square feet; and so on.

Because we are assuming that a linear relationship exists, the expected value of Y is $\beta_{0}+\beta_{1} X$ for each value of X. The coefficients β_{0} and β_{1} are population parameters that represent the intercept and slope, respectively, of the population from which a sample of observations is taken. The intercept is the mean value of Y when $X=0$, and the slope is the change in the mean value of Y as X changes by one unit.

Thus, for a specific value of X, we have many possible values of Y that vary around the mean. To account for this, we add an error term, ε (the Greek letter epsilon), to the mean. This defines a simple linear regression model:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\varepsilon \tag{8.1}
\end{equation*}
$$

However, because we don't know the entire population, we don't know the true values of β_{0} and β_{1}. In practice, we must estimate these as best we can from the sample data. Define b_{0} and b_{1} to be estimates of β_{0} and β_{1}. Thus, the estimated simple linear regression equation is

$$
\begin{equation*}
\hat{Y}=b_{0}+b_{1} X \tag{8.2}
\end{equation*}
$$

Let X_{i} be the value of the independent variable of the i th observation. When the value of the independent variable is X_{i}, then $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$ is the estimated value of Y for X_{i}.

One way to quantify the relationship between each point and the estimated regression equation is to measure the vertical distance between them, as illustrated in Figure 8.10. We

Figure : 8.10
Measuring the Errors in a Regression Model

Errors associated with individual observations
can think of these differences, e_{i}, as the observed errors (often called residuals) associated with estimating the value of the dependent variable using the regression line. Thus, the error associated with the i th observation is:

$$
\begin{equation*}
e_{i}=Y_{i}-\hat{Y}_{i} \tag{8.3}
\end{equation*}
$$

The best-fitting line should minimize some measure of these errors. Because some errors will be negative and others positive, we might take their absolute value or simply square them. Mathematically, it is easier to work with the squares of the errors.

Adding the squares of the errors, we obtain the following function:

$$
\begin{equation*}
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\left[b_{0}+b_{1} X_{i}\right]\right)^{2} \tag{8.4}
\end{equation*}
$$

If we can find the best values of the slope and intercept that minimize the sum of squares (hence the name "least squares") of the observed errors e_{i}, we will have found the bestfitting regression line. Note that X_{i} and Y_{i} are the values of the sample data and that b_{0} and b_{1} are unknowns in equation (8.4). Using calculus, we can show that the solution that minimizes the sum of squares of the observed errors is

$$
\begin{align*}
& b_{1}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}} \tag{8.5}\\
& b_{0}=\bar{Y}-b_{1} \bar{X} \tag{8.6}
\end{align*}
$$

Although the calculations for the least-squares coefficients appear to be somewhat complicated, they can easily be performed on an Excel spreadsheet. Even better, Excel has built-in capabilities for doing this. For example, you may use the functions INTERCEPT (known_y's, known_x's) and SLOPE(known_y's, known_x's) to find the least-squares coefficients b_{0} and b_{1}.

EXAMPLE 8.5 Using Excel Functions to Find Least-Squares Coefficients

For the Home Market Value Excel file, the range of the dependent variable Y (market value) is C4:C45; the range of the independent variable X (square feet) is B4:B45. The function INTERCEPT(C4:C45, B4:B45) yields $b_{0}=32,673$ and $\operatorname{SLOPE}(C 4: C 45, B 4: B 45)$ yields $b_{1}=35.036$, as we saw in Example 8.4. The slope tells
us that for every additional square foot, the market value increases by $\$ 35.036$.

We may use the Excel function TREND(known_y's, known_x's, new_x's) to estimate Y for any value of X; for example, for a house with 1,750 square feet, the estimated market value is TREND(C4:C45, B4:B45, 1750) $=\$ 93,986$.

We could stop at this point, because we have found the best-fitting line for the observed data. However, there is a lot more to regression analysis from a statistical perspective, because we are working with sample data-and usually rather small samples-which we know have a lot of variation as compared with the full population. Therefore, it is important to understand some of the statistical properties associated with regression analysis.

Simple Linear Regression with Excel

Regression-analysis software tools available in Excel provide a variety of information about the statistical properties of regression analysis. The Excel Regression tool can be used for both simple and multiple linear regressions. For now, we focus on using the tool just for simple linear regression.

From the Data Analysis menu in the Analysis group under the Data tab, select the Regression tool. The dialog box shown in Figure 8.11 is displayed. In the box for the Input Y Range, specify the range of the dependent variable values. In the box for the Input X Range, specify the range for the independent variable values. Check Labels if your data range contains a descriptive label (we highly recommend using this). You have the option of forcing the intercept to zero by checking Constant is Zero; however, you will usually not check this box because adding an intercept term allows a better fit to the data. You also can set a Confidence Level (the default of 95% is commonly used) to provide confidence intervals for the intercept and slope parameters. In the Residuals section, you have the option of including a residuals output table by checking the boxes for Residuals, Standardized Residuals, Residual Plots, and Line Fit Plots. Residual Plots generates a chart for each independent variable versus the residual, and Line Fit Plots generates a scatter chart with the values predicted by the regression model included (however, creating a scatter chart with an added trendline is visually superior to what this tool provides). Finally, you may also choose to have Excel construct a normal probability plot for the dependent variable, which transforms the cumulative probability scale (vertical axis) so that the graph of the cumulative normal distribution is a straight line. The closer the points are to a straight line, the better the fit to a normal distribution.

Figure 8.12 shows the basic regression analysis output provided by the Excel Regression tool for the Home Market Value data. The output consists of three sections: Regression Statistics (rows 3-8), ANOVA (rows 10-14), and an unlabeled section at the bottom (rows 16-18) with other statistical information. The least-squares estimates of the slope and intercept are found in the Coefficients column in the bottom section of the output.

Figure : 8.11
Excel Regression Tool Dialog

Figure : 8.12
Basic Regression Analysis Output for Home Market Value Example

In the Regression Statistics section, Multiple R is another name for the sample correlation coefficient, r, which was introduced in Chapter 4. Values of r range from -1 to 1 , where the sign is determined by the sign of the slope of the regression line. A Multiple R value greater than 0 indicates positive correlation; that is, as the independent variable increases, the dependent variable does also; a value less than 0 indicates negative correlation-as X increases, Y decreases. A value of 0 indicates no correlation.
R-squared (R^{2}) is called the coefficient of determination. Earlier we noted that R^{2} is a measure of the how well the regression line fits the data; this value is also provided by the Trendline tool. Specifically, R^{2} gives the proportion of variation in the dependent variable that is explained by the independent variable of the regression model. The value of R^{2} is between 0 and 1. A value of 1.0 indicates a perfect fit, and all data points lie on the regression line, whereas a value of 0 indicates that no relationship exists. Although we would like high values of R^{2}, it is difficult to specify a "good" value that signifies a strong relationship because this depends on the application. For example, in scientific applications such as calibrating physical measurement equipment, R^{2} values close to 1 would be expected; in marketing research studies, an R^{2} of 0.6 or more is considered very good; however, in many social science applications, values in the neighborhood of 0.3 might be considered acceptable.

Adjusted R Square is a statistic that modifies the value of R^{2} by incorporating the sample size and the number of explanatory variables in the model. Although it does not give the actual percent of variation explained by the model as R^{2} does, it is useful when comparing this model with other models that include additional explanatory variables. We discuss it more fully in the context of multiple linear regression later in this chapter.

Standard Error in the Excel output is the variability of the observed Y-values from the predicted values (\hat{Y}). This is formally called the standard error of the estimate, $S_{Y X}$. If the data are clustered close to the regression line, then the standard error will be small; the more scattered the data are, the larger the standard error.

EXAMPLE 8.6 Interpreting Regression Statistics for Simple Linear Regression

After running the Excel Regression tool, the first things to look for are the values of the slope and intercept, namely, the estimates b_{1} and b_{0} in the regression model. In the Home Market Value example, we see that the intercept is 32,673 , and the slope (coefficient of the
independent variable, Square Feet) is 35.036 , just as we had computed earlier. In the Regression Statistics section, $R^{2}=0.5347$. This means that approximately 53% of the variation in Market Value is explained by Square Feet. The remaining variation is due to other factors that
were not included in the model. The standard error of the estimate is $\$ 7,287.72$. If we compare this to the standard deviation of the market value, which is $\$ 10,553$, we see that the variation around the regression line $(\$ 7,287.72)$
is less than the variation around the sample mean $(\$ 10,553)$. This is because the independent variable in the regression model explains some of the variation.

Regression as Analysis of Variance

In Chapter 7, we introduced analysis of variance (ANOVA), which conducts an F-test to determine whether variation due to a particular factor, such as the differences in sample means, is significantly greater than that due to error. ANOVA is commonly applied to regression to test for significance of regression. For a simple linear regression model, significance of regression is simply a hypothesis test of whether the regression coefficient β_{1} (slope of the independent variable) is zero:

$$
\begin{align*}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0 \tag{8.7}
\end{align*}
$$

If we reject the null hypothesis, then we may conclude that the slope of the independent variable is not zero and, therefore, is statistically significant in the sense that it explains some of the variation of the dependent variable around the mean. Similar to our discussion in Chapter 7, you needn't worry about the mathematical details of how F is computed, or even its value, especially since the tool does not provide the critical value for the test. What is important is the value of Significance F, which is the p-value for the F-test. If Significance F is less than the level of significance (typically 0.05), we would reject the null hypothesis.

EXAMPLE 8.7 Interpreting Significance of Regression

For the Home Market Value example, the ANOVA test is shown in rows 10-14 in Figure 8.12. Significance F, that is, the p-value associated with the hypothesis test

$$
\begin{aligned}
& H_{0}: \boldsymbol{\beta}_{1}=0 \\
& H_{1}: \boldsymbol{\beta}_{1} \neq 0
\end{aligned}
$$

is essentially zero (3.798×10^{-8}). Therefore, assuming a level of significance of 0.05 , we must reject the null hypothesis and conclude that the slope-the coefficient for Square Feet-is not zero. This means that home size is a statistically significant variable in explaining the variation in market value.

Testing Hypotheses for Regression Coefficients

Rows $17-18$ of the Excel output, in addition to specifying the least-squares coefficients, provide additional information for testing hypotheses associated with the intercept and slope. Specifically, we may test the null hypothesis that β_{0} or β_{1} equals zero. Usually, it makes little sense to test or interpret the hypothesis that $\beta_{0}=0$ unless the intercept has a significant physical meaning in the context of the application. For simple linear regression, testing the null hypothesis $H_{0}: \beta_{1}=0$ is the same as the significance of regression test that we described earlier.

The t-test for the slope is similar to the one-sample test for the mean that we described in Chapter 7. The test statistic is

$$
\begin{equation*}
t=\frac{b_{1}-0}{\text { standard error }} \tag{8.8}
\end{equation*}
$$

and is given in the column labeled t Stat in the Excel output. Although the critical value of the t-distribution is not provided, the output does provide the p-value for the test.

EXAMPLE 8.8 Interpreting Hypothesis Tests for Regression Coefficients

For the Home Market Value example, note that the value of t Stat is computed by dividing the coefficient by the standard error using formula (8.8). For instance, t Stat for the slope is $35.03637258 / 5.16738385=6.780292234$. Because Excel does not provide the critical value with which to compare the t Stat value, we may use the p-value to draw a conclusion. Because the p-values for both coefficients are essentially zero, we would conclude
that neither coefficient is statistically equal to zero. Note that the p-value associated with the test for the slope coefficient, Square Feet, is equal to the Significance F value. This will always be true for a regression model with one independent variable because it is the only explanatory variable. However, as we shall see, this will not be the case for multiple regression models.

Confidence Intervals for Regression Coefficients

Confidence intervals (Lower 95\% and Upper 95\% values in the output) provide information about the unknown values of the true regression coefficients, accounting for sampling error. They tell us what we can reasonably expect to be the ranges for the population intercept and slope at a 95% confidence level.

We may also use confidence intervals to test hypotheses about the regression coefficients. For example, in Figure 8.12, we see that neither confidence interval includes zero; therefore, we can conclude that β_{0} and β_{1} are statistically different from zero. Similarly, we can use them to test the hypotheses that the regression coefficients equal some value other than zero. For example, to test the hypotheses

$$
\begin{aligned}
& H_{0}: \beta_{1}=B_{1} \\
& H_{1}: \beta_{1} \neq B_{1}
\end{aligned}
$$

we need only check whether B_{1} falls within the confidence interval for the slope. If it does not, then we reject the null hypothesis, otherwise we fail to reject it.

EXAMPLE 8.9 Interpreting Confidence Intervals for Regression Coefficients

For the Home Market Value data, a 95\% confidence interval for the intercept is [14,823,50,523]. Similarly, a 95\% confidence interval for the slope is [24.59, 45.48]. Although the regression model is $\hat{Y}=32,673+35.036 X$, the confidence intervals suggest a bit of uncertainty about predictions using the model. Thus, although we estimated that a house with 1,750 square feet has a
market value of $32,673+35.036(1,750)=\$ 93,986$, if the true population parameters are at the extremes of the confidence intervals, the estimate might be as low as $14,823+24.59(1,750)=\$ 57,855$ or as high as $50,523+45.48(1,750)=\$ 130,113$. Narrower confidence intervals provide more accuracy in our predictions.

Residual Analysis and Regression Assumptions

Recall that residuals are the observed errors, which are the differences between the actual values and the estimated values of the dependent variable using the regression equation. Figure 8.13 shows a portion of the residual table generated by the Excel Regression tool. The residual output includes, for each observation, the predicted value using the estimated regression equation, the residual, and the standard residual. The residual is simply the difference between the actual value of the dependent variable and the predicted value, or $Y_{i}-\hat{Y}_{i}$. Figure 8.14 shows the residual plot generated by the Excel tool. This chart is actually a scatter chart of the residuals with the values of the independent variable on the x-axis.

Figure : 8.13 :
Portion of Residual Output

Figure : 8.14 :
Residual Plot for Square Feet

| | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| 22 | RESIDUAL OUTPUT | | | |
| 23 | | | | |
| 24 | Observation | Predicted Market Value | Resiouals | Standard Residuals |
| 25 | 1 | 96159.12702 | -6159.127018 | -0.855636403 |
| 26 | 2 | 99732.83702 | 4667.162978 | 0.64837022 |
| 27 | 3 | 97210.2182 | -3910.218196 | -0.543214164 |
| 28 | 4 | 96159.12702 | -5159.127018 | -0.716714702 |
| 29 | 5 | 96999.99996 | 4900.00004 | 0.680716341 |

Standard residuals are residuals divided by their standard deviation. Standard residuals describe how far each residual is from its mean in units of standard deviations (similar to a z-value for a standard normal distribution). Standard residuals are useful in checking assumptions underlying regression analysis, which we will address shortly, and to detect outliers that may bias the results. Recall that an outlier is an extreme value that is different from the rest of the data. A single outlier can make a significant difference in the regression equation, changing the slope and intercept and, hence, how they would be interpreted and used in practice. Some consider a standardized residual outside of ± 2 standard deviations as an outlier. A more conservative rule of thumb would be to consider outliers outside of a ± 3 standard deviation range. (Commercial software packages have more sophisticated techniques for identifying outliers.)

EXAMPLE 8.10 Interpreting Residual Output

For the Home Market Value data, the first observation has a market value of $\$ 90,000$ and the regression model predicts $\$ 96,159.13$. Thus, the residual is $90,000-96,159.13=-\$ 6,159.13$. The standard deviation of the residuals can be computed as $7,198.299$. By dividing the residual by this value, we have the standardized residual for the first observation. The value of -0.8556 tells us that the first observation is about 0.85 standard deviation below the regression line. If we check the values of all the standardized residuals, you will find that the value of the last data point is 4.53 , meaning that the market value of this home, having only 1,581 square
feet, is more than 4 standard deviations above the predicted value and would clearly be identified as an outlier. (If you look back at Figure 8.7, you may have noticed that this point appears to be quite different from the rest of the data.) You might question whether this observation belongs in the data, because the house has a large value despite a relatively small size. The explanation might be an outdoor pool or an unusually large plot of land. Because this value will influence the regression results and may not be representative of the other homes in the neighborhood, you might consider dropping this observation and recomputing the regression model.

Checking Assumptions

The statistical hypothesis tests associated with regression analysis are predicated on some key assumptions about the data.

1. Linearity. This is usually checked by examining a scatter diagram of the data or examining the residual plot. If the model is appropriate, then the residuals should appear to be randomly scattered about zero, with no apparent pattern. If the residuals exhibit some well-defined pattern, such as a linear trend, a parabolic shape, and so on, then there is good evidence that some other functional form might better fit the data.
2. Normality of errors. Regression analysis assumes that the errors for each individual value of X are normally distributed, with a mean of zero. This can be verified either by examining a histogram of the standard residuals and inspecting for a bell-shaped distribution or by using more formal goodness-offit tests. It is usually difficult to evaluate normality with small sample sizes. However, regression analysis is fairly robust against departures from normality, so in most cases this is not a serious issue.
3. Homoscedasticity. The third assumption is homoscedasticity, which means that the variation about the regression line is constant for all values of the independent variable. This can also be evaluated by examining the residual plot and looking for large differences in the variances at different values of the independent variable. Caution should be exercised when looking at residual plots. In many applications, the model is derived from limited data, and multiple observations for different values of X are not available, making it difficult to draw definitive conclusions about homoscedasticity. If this assumption is seriously violated, then techniques other than least squares should be used for estimating the regression model.
4. Independence of errors. Finally, residuals should be independent for each value of the independent variable. For cross-sectional data, this assumption is usually not a problem. However, when time is the independent variable, this is an important assumption. If successive observations appear to be correlatedfor example, by becoming larger over time or exhibiting a cyclical type of pattern-then this assumption is violated. Correlation among successive observations over time is called autocorrelation and can be identified by residual plots having clusters of residuals with the same sign. Autocorrelation can be evaluated more formally using a statistical test based on a measure called the Durbin-Watson statistic. The Durbin-Watson statistic is

$$
\begin{equation*}
D=\frac{\sum_{i=2}^{n}\left(e_{i}-e_{i-1}\right)^{2}}{\sum_{i=1}^{n} e_{i}^{2}} \tag{8.9}
\end{equation*}
$$

This is a ratio of the squared differences in successive residuals to the sum of the squares of all residuals. D will range from 0 to 4 . When successive residuals are positively autocorrelated, D will approach 0 . Critical values of the statistic have been tabulated based on the sample size and number of independent variables that allow you to conclude that there is either evidence of autocorrelation or no evidence of autocorrelation or the test is inconclusive. For most practical purposes, values below 1 suggest autocorrelation; values above 1.5 and below 2.5 suggest no autocorrelation; and values above 2.5 suggest

Figure : 8.15
Histogram of Standard Residuals

negative autocorrelation. This can become an issue when using regression in forecasting, which we discuss in the next chapter. Some software packages compute this statistic; however, Excel does not.

When assumptions of regression are violated, then statistical inferences drawn from the hypothesis tests may not be valid. Thus, before drawing inferences about regression models and performing hypothesis tests, these assumptions should be checked. However, other than linearity, these assumptions are not needed solely for model fitting and estimation purposes.

EXAMPLE 8.11 Checking Regression Assumptions for the Home Market Value Data

Linearity: The scatter diagram of the market value data appears to be linear; looking at the residual plot in Figure 8.14 also confirms no pattern in the residuals.

Normality of errors: Figure 8.15 shows a histogram of the standard residuals for the market value data. The distribution appears to be somewhat positively skewed (particularly with the outlier) but does not appear to be a
serious departure from normality, particularly as the sample size is small.

Homoscedasticity: In the residual plot in Figure 8.14, we see no serious differences in the spread of the data for different values of X, particularly if the outlier is eliminated.

Independence of errors: Because the data are crosssectional, we can assume that this assumption holds.

Multiple Linear Regression

Many colleges try to predict student performance as a function of several characteristics. In the Excel file Colleges and Universities (see Figure 8.16), suppose that we wish to predict the graduation rate as a function of the other variables-median SAT, acceptance rate, expenditures/student, and percent in the top 10% of their high school class. It is logical to

Figure : 8.16
Portion of Excel File Colleges and Universities

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Colleges and Universities | | | | | | |
| 2 | | | | | | | |
| 3 | School | Type | Median SAT | Acceptance Rate | Expenditures/Student | Top 10\% HS | Graduation \% |
| 4 | Amherst | Lib Arts | 1315 | 22\% | \$ 26,636 | 85 | 93 |
| 5 | Barnard | Lib Arts | 1220 | 53\% | \$ 17,653 | 69 | 80 |
| 6 | Bates | Lib Arts | 1240 | 36\% | \$ 17,554 | 58 | 88 |
| 7 | Berkeley | University | 1176 | 37\% | \$ 23,665 | 95 | 68 |
| 8 | Bowdoin | Lib Arts | 1300 | 24\% | \$ 25,703 | 78 | 90 |
| 9 | Brown | University | 1281 | 24\% | \$ 24,201 | 80 | 90 |

propose that schools with students who have higher SAT scores, a lower acceptance rate, a larger budget, and a higher percentage of students in the top 10% of their high school classes will tend to retain and graduate more students.

A linear regression model with more than one independent variable is called a multiple linear regression model. Simple linear regression is just a special case of multiple linear regression. A multiple linear regression model has the form:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{k} X_{k}+\varepsilon \tag{8.10}
\end{equation*}
$$

where
Y is the dependent variable,
X_{1}, \ldots, X_{k} are the independent (explanatory) variables,
β_{0} is the intercept term,
$\beta_{1}, \ldots, \beta_{k}$ are the regression coefficients for the independent variables,
ε is the error term

Similar to simple linear regression, we estimate the regression coefficients-called partial regression coefficients- $b_{0}, b_{1}, b_{2}, \ldots b_{k}$, then use the model:

$$
\begin{equation*}
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k} \tag{8.11}
\end{equation*}
$$

to predict the value of the dependent variable. The partial regression coefficients represent the expected change in the dependent variable when the associated independent variable is increased by one unit while the values of all other independent variables are held constant.

For the college and university data, the proposed model would be

$$
\begin{aligned}
\text { Graduation } \%= & b_{0}+b_{1} \mathrm{SAT}+b_{2} \text { ACCEPTANCE }+b_{3} \text { EXPENDITURES } \\
& +b_{4} \mathrm{TOP} 10 \% \mathrm{HS}
\end{aligned}
$$

Thus, b_{2} would represent an estimate of the change in the graduation rate for a unit increase in the acceptance rate while holding all other variables constant.

As with simple linear regression, multiple linear regression uses least squares to estimate the intercept and slope coefficients that minimize the sum of squared error terms over all observations. The principal assumptions discussed for simple linear regression also hold here. The Excel Regression tool can easily perform multiple linear regression; you need to specify only the full range for the independent variable data in the dialog. One caution when using the tool: the independent variables in the spreadsheet must be in contiguous columns. So, you may have to manually move the columns of data around before applying the tool.

The results from the Regression tool are in the same format as we saw for simple linear regression. However, some key differences exist. Multiple R and R Square (or R^{2}) are called the multiple correlation coefficient and the coefficient of multiple determination, respectively, in the context of multiple regression. They indicate the strength of association between the dependent and independent variables. Similar to simple linear regression, R^{2} explains the percentage of variation in the dependent variable that is explained by the set of independent variables in the model.

The interpretation of the ANOVA section is quite different from that in simple linear regression. For multiple linear regression, ANOVA tests for significance of the entire model. That is, it computes an F-statistic for testing the hypotheses

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0 \\
& H_{1}: \text { at least one } \beta_{j} \text { is not } 0
\end{aligned}
$$

The null hypothesis states that no linear relationship exists between the dependent and any of the independent variables, whereas the alternative hypothesis states that the dependent variable has a linear relationship with at least one independent variable. If the null hypothesis is rejected, we cannot conclude that a relationship exists with every independent variable individually.

The multiple linear regression output also provides information to test hypotheses about each of the individual regression coefficients. Specifically, we may test the null hypothesis that β_{0} (the intercept) or any β_{i} equals zero. If we reject the null hypothesis that the slope associated with independent variable i is zero, $H_{0}: \beta_{i}=0$, then we may state that independent variable i is significant in the regression model; that is, it contributes to reducing the variation in the dependent variable and improves the ability of the model to better predict the dependent variable. However, if we cannot reject H_{0}, then that independent variable is not significant and probably should not be included in the model. We see how to use this information to identify the best model in the next section.

Finally, for multiple regression models, a residual plot is generated for each independent variable. This allows you to assess the linearity and homoscedasticity assumptions of regression.

EXAMPLE 8.12 Interpreting Regression Results for the Colleges and Universities Data

The multiple regression results for the college and university data are shown in Figure 8.17.

From the Coefficients section, we see that the model is:

Graduation\% =

$17.92+0.072$ SAT - 24.859 ACCEPTANCE

- 0.000136 EXPENDITURES - 0.163 TOP10\% HS

The signs of some coefficients make sense; higher SAT scores and lower acceptance rates suggest higher graduation rates. However, we might expect that larger student expenditures and a higher percentage of top high school students would also positively influence the graduation rate. Perhaps the problem occurred because
some of the best students are more demanding and change schools if their needs are not being met, some entrepreneurial students might pursue other interests before graduation, or there is sampling error. As with simple linear regression, the model should be used only for values of the independent variables within the range of the data.

The value of $R^{2}(0.53)$ indicates that 53% of the variation in the dependent variable is explained by these independent variables. This suggests that other factors not included in the model, perhaps campus living conditions, social opportunities, and so on, might also influence the graduation rate.
(continued)

Figure : 8.17 :
Multiple Regression Results for Colleges and Universities Data

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regressi | atistics | | | | | |
| 4 | Multiple R | 0.731044486 | | | | | |
| 5 | R Square | 0.534426041 | | | | | |
| 6 | Adjusted R Square | 0.492101135 | | | | | |
| 7 | Standard Error | 5.30833812 | | | | | |
| 8 | Observations | 49 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 4 | 1423.209266 | 355.8023166 | 12.62675098 | $6.33158 \mathrm{E}-07$ | |
| 13 | Residual | 44 | 1239.851958 | 28.1784536 | | | |
| 14 | Total | 48 | 2663.061224 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 17.92095587 | 24.55722367 | 0.729763108 | 0.469402466 | -31.57087643 | 67.41278818 |
| 18 | Median SAT | 0.072006285 | 0.017983915 | 4.003927007 | 0.000236106 | 0.035762085 | 0.108250485 |
| 19 | Acceptance Rate | -24.8592318 | 8.315184822 | -2.989618672 | 0.004559569 | -41.61738567 | -8.101077939 |
| 20 | Expenditures/Student | -0.00013565 | $6.59314 \mathrm{E}-05$ | -2.057438385 | 0.045600178 | -0.000268526 | -2.77379E-06 |
| 21 | Top 10\% HS | -0.162764489 | 0.079344518 | -2.051364015 | 0.046213848 | -0.322672857 | -0.00285612 |

Figure : 8.18 :
Residual Plot for Top 10\% HS Variable

Top 10\% HS Residual Plot

Top 10\% HS

From the ANOVA section, we may test for significance of regression. At a 5% significance level, we reject the null hypothesis because Significance F is essentially zero. Therefore, we may conclude that at least one slope is statistically different from zero.

Looking at the p-values for the independent variables in the last section, we see that all are less than 0.05 ; therefore, we reject the null hypothesis that each partial
regression coefficient is zero and conclude that each of them is statistically significant.

Figure 8.18 shows one of the residual plots from the Excel output. The assumptions appear to be met, and the other residual plots (not shown) also validate these assumptions. The normal probability plot (also not shown) does not suggest any serious departures from normality.

Analytics in Practice: Using Linear Regression and Interactive Risk Simulators to Predict Performance at ARAMARK ${ }^{3}$

ARAMARK is a leader in professional services, providing award-winning food services, facilities management, and uniform and career apparel to health care institutions, universities and school districts, stadiums and arenas, and businesses around the world. Headquartered in Philadelphia, ARAMARK has approximately 255,000 employees serving clients in 22 countries.

ARAMARK's Global Risk Management Department (GRM) needed a way to determine the statistical relationships between key business metrics (e.g., employee tenure, employee engagement, a trained workforce, account tenure, service offerings) and risk metrics (e.g., OSHA rate, workers' compensation rate, customer injuries) to understand the impact of these risks on the business. GRM also needed a simple tool that field operators and the risk management team could use to predict the impact of business decisions on risk metrics before those decisions were implemented. Typical questions they would want to ask were, What would happen to our OSHA rate if we increased the percentage of part time labor? and How could we impact turnover if operations improved safety performance?

ARAMARK maintains extensive historical data. For example, the Global Risk Management group keeps track of data such as OSHA rates, slip/trip/fall rates, injury costs, and level of compliance with safety standards; the Human Resources department monitors turnover and percentage of part-time labor; the Payroll department keeps data on average wages; and the Training and Organizational Development department collects data on employee engagement. Excelbased linear regression was used to determine the relationships between the dependent variables (such as OSHA rate, slip/trip/fall rate, claim cost, and turnover) and the independent variables (such as the percentage of part-time labor, average wage, employee engagement, and safety compliance).

Although the regression models provided the basic analytical support that ARAMARK needed, the GRM team used a novel approach to implement the models
for use by their clients. They developed "Interactive Risk Simulators," which are simple online tools that allowed users to manipulate the values of the independent variables in the regression models using interactive sliders that correspond to the business metrics and instantaneously view the values of the dependent variables (the risk metrics) on gauges similar to those found on the dashboard of a car.

Figure 8.19 illustrates the structure of the simulators. The gauges are updated instantly as the user adjusts the sliders, showing how changes in the business environment affect the risk metrics. This visual representation made the models easy to use and understand, particularly for nontechnical employees.

GRM sent out more than 200 surveys to multiple levels of the organization to assess the usefulness of Interactive Risk Simulators. One hundred percent of respondents answered "Yes" to "Were the simulators easy to use?" and 78\% of respondents answered "Yes" to "Would these simulators be useful in running your business and helping you make decisions?" The deployment of Interactive Risk Simulators to the field has been met with overwhelming positive response and recognition from leadership within all lines of business, including frontline managers, food-service directors, district managers, and general managers.

[^40]

Figure : 8.19 :
Structure of an Interactive Risk Simulator

Building Good Regression Models

In the colleges and universities regression example, all the independent variables were found to be significant by evaluating the p-values of the regression analysis. This will not always be the case and leads to the question of how to build good regression models that include the "best" set of variables.

Figure 8.20 shows a portion of the Excel file Banking Data, which provides data acquired from banking and census records for different zip codes in the bank's current market. Such information can be useful in targeting advertising for new customers or for choosing locations for branch offices. The data show the median age of the population, median years of education, median income, median home value, median household wealth, and average bank balance.

Figure 8.21 shows the results of regression analysis used to predict the average bank balance as a function of the other variables. Although the independent variables explain more than 94% of the variation in the average bank balance, you can see that at a 0.05 significance level, the p-values indicate that both Education and Home Value do not appear to be significant. A good regression model should include only significant independent variables. However, it is not always clear exactly what will happen when we add or remove variables from a model; variables that are (or are not) significant in one model may (or may not) be significant in another. Therefore, you should not consider dropping all insignificant variables at one time, but rather take a more structured approach.

Adding an independent variable to a regression model will always result in R^{2} equal to or greater than the R^{2} of the original model. This is true even when the new independent

Figure : 8.20 :
Portion of Banking Data

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Banking Data | | | | | |
| 2 | | | | | | |
| 3 | Median | Median Years | Median | Median | Median Household | Average Bank |
| 4 | Age | Education | Income | Home Value | Wealth | Balance |
| 5 | 35.9 | 14.8 | \$91,033 | \$183,104 | \$220,741 | \$38,517 |
| 6 | 37.7 | 13.8 | \$86,748 | \$163,843 | \$223,152 | \$40,618 |
| 7 | 36.8 | 13.8 | \$72,245 | \$142,732 | \$176,926 | \$35,206 |
| 8 | 35.3 | 13.2 | \$70,639 | \$145,024 | \$166,260 | \$33,434 |
| 9 | 35.3 | 13.2 | \$64,879 | \$135,951 | \$148,868 | \$28,162 |
| 10 | 34.8 | 13.7 | \$75,591 | \$155,334 | \$188,310 | \$36,708 |

Figure : 8.21
Regression Analysis Results for Banking Data

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regression | tistics | | | | | |
| 4 | Multiple R | 0.97309221 | | | | | |
| 5 | R Square | 0.946908448 | | | | | |
| 6 | Adjusted R Square | 0.944143263 | | | | | |
| 7 | Standard Error | 2055.64333 | | | | | |
| 8 | Observations | 102 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 5 | 7235179873 | 1447035975 | 342.4394584 | $1.5184 \mathrm{E}-59$ | |
| 13 | Residual | 96 | 405664271.9 | 4225669.499 | | | |
| 14 | Total | 101 | 7640844145 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | -10710.64278 | 4260.976308 | -2.513659314 | 0.013613179 | -19168.61391 | -2252.671659 |
| 18 | Age | 318.6649626 | 60.98611242 | 5.225205378 | 1.01152E-06 | 197.6084862 | 439.721439 |
| 19 | Education | 621.8603472 | 318.9595184 | 1.949652891 | 0.054135377 | -11.26929279 | 1254.989987 |
| 20 | Income | 0.146323453 | 0.040781001 | 3.588029937 | 0.000526666 | 0.065373806 | 0.227273101 |
| 21 | Home Value | 0.009183067 | 0.011038075 | 0.831944635 | 0.407504891 | -0.012727338 | 0.031093473 |
| 22 | Wealth | 0.074331533 | 0.011189265 | 6.643111131 | $1.84838 \mathrm{E}-09$ | 0.052121017 | 0.096542049 |

variable has little true relationship with the dependent variable. Thus, trying to maximize R^{2} is not a useful criterion. A better way of evaluating the relative fit of different models is to use adjusted R^{2}. Adjusted R^{2} reflects both the number of independent variables and the sample size and may either increase or decrease when an independent variable is added or dropped, thus providing an indication of the value of adding or removing independent variables in the model. An increase in adjusted R^{2} indicates that the model has improved.

This suggests a systematic approach to building good regression models:

1. Construct a model with all available independent variables. Check for significance of the independent variables by examining the p-values.
2. Identify the independent variable having the largest p-value that exceeds the chosen level of significance.
3. Remove the variable identified in step 2 from the model and evaluate adjusted R^{2}. (Don't remove all variables with p-values that exceed α at the same time, but remove only one at a time.)
4. Continue until all variables are significant.

In essence, this approach seeks to find a significant model that has the highest adjusted R^{2}.

EXAMPLE 8.13 Identifying the Best Regression Model

We will apply the preceding approach to the Banking Data example. The first step is to identify the variable with the largest p-value exceeding 0.05 ; in this case, it is Home Value, and we remove it from the model and rerun the Regression tool. Figure 8.22 shows the results after removing Home Value. Note that the adjusted R^{2} has increased slightly, whereas the R^{2}-value decreased slightly because we removed a variable from the model. All the p-values are now less than 0.05 , so this now
appears to be the best model. Notice that the p-value for Education, which was larger than 0.05 in the first regression analysis, dropped below 0.05 after Home Value was removed. This phenomenon often occurs when multicollinearity (discussed in the next section) is present and emphasizes the importance of not removing all variables with large p-values from the original model at the same time.

Figure : 8.22
Regression Results without Home Value

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regression | atistics | | | | | |
| 4 | Multiple R | 0.97289551 | | | | | |
| 5 | R Square | 0.946525674 | | | | | |
| 6 | Adjusted R Square | 0.944320547 | | | | | |
| 7 | Standard Error | 2052.378536 | | | | | |
| 8 | Observations | 102 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 4 | 7232255152 | 1808063788 | 429.2386497 | $9.68905 \mathrm{E}-61$ | |
| 13 | Residual | 97 | 408588992.5 | 4212257.655 | | | |
| 14 | Total | 101 | 7640844145 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | -12432.45673 | 3718.674319 | -3.343249681 | 0.001177705 | -19812.99587 | -5051.917589 |
| 18 | Age | 325.0652837 | 60.40284468 | 5.381622098 | 5.1267E-07 | 205.1823574 | 444.9482101 |
| 19 | Education | 773.3800418 | 261.4330936 | 2.958233142 | 0.003886994 | 254.5077194 | 1292.252364 |
| 20 | Income | 0.159747379 | 0.037393587 | 4.272052794 | 4.52422E-05 | 0.085531459 | 0.233963298 |
| 21 | Wealth | 0.072988791 | 0.011054665 | 6.602532898 | 2.16051E-09 | 0.051048341 | 0.094929242 |

Another criterion used to determine if a variable should be removed is the t-statistic. If $|t|<1$, then the standard error will decrease and adjusted R^{2} will increase if the variable is removed. If $|t|>1$, then the opposite will occur. In the banking regression results, we see that the t-statistic for Home Value is less than 1; therefore, we expect the adjusted R^{2} to increase if we remove this variable. You can follow the same iterative approach outlined before, except using t-values instead of p-values.

These approaches using the p-values or t-statistics may involve considerable experimentation to identify the best set of variables that result in the largest adjusted R^{2}. For large numbers of independent variables, the number of potential models can be overwhelming. For example, there are $2^{10}=1,024$ possible models that can be developed from a set of 10 independent variables. This can make it difficult to effectively screen out insignificant variables. Fortunately, automated methods-stepwise regression and best subsets-exist that facilitate this process.

Correlation and Multicollinearity

As we have learned previously, correlation, a numerical value between -1 and +1 , measures the linear relationship between pairs of variables. The higher the absolute value of the correlation, the greater the strength of the relationship. The sign simply indicates whether variables tend to increase together (positive) or not (negative). Therefore, examining correlations between the dependent and independent variables, which can be done using the Excel Correlation tool, can be useful in selecting variables to include in a multiple regression model because a strong correlation indicates a strong linear relationship. However, strong correlations among the independent variables can be problematic. This can potentially signify a phenomenon called multicollinearity, a condition occurring when two or more independent variables in the same regression model contain high levels of the same information and, consequently, are strongly correlated with one another and can predict each other better than the dependent variable. When significant multicollinearity is present, it becomes difficult to isolate the effect of one independent variable on the dependent variable, and the signs of coefficients may be the opposite of what they should be, making it difficult to interpret regression coefficients. Also, p-values can be inflated, resulting in the conclusion not to reject the null hypothesis for significance of regression when it should be rejected.

Some experts suggest that correlations between independent variables exceeding an absolute value of 0.7 may indicate multicollinearity. However, multicollinearity is best measured using a statistic called the variance inflation factor (VIF) for each independent variable. More-sophisticated software packages usually compute these; unfortunately, Excel does not.

EXAMPLE 8.14 Identifying Potential Multicollinearity

Figure 8.23 shows the correlation matrix for the variables in the Colleges and Universities data. You can see that SAT and Acceptance Rate have moderate correlations with the dependent variable, Graduation\%, but the correlation between Expenditures/Student and Top 10\% HS with Graduation\% are relatively low. The strongest correlation, however, is between two independent variables: Top 10\% HS and Acceptance Rate. However, the value of -0.6097 does not exceed the recommended threshold of 0.7 , so we can likely assume that multicollinearity is not a problem here (a more advanced analysis using VIF calculations does indeed confirm that multicollinearity does not exist).

In contrast, Figure 8.24 shows the correlation matrix for all the data in the banking example. Note that large
correlations exist between Education and Home Value and also between Wealth and Income (in fact, the variance inflation factors do indicate significant multicollinearity). If we remove Wealth from the model, the adjusted R^{2} drops to 0.9201, but we discover that Education is no longer significant. Dropping Education and leaving only Age and Income in the model results in an adjusted R^{2} of 0.9202 . However, if we remove Income from the model instead of Wealth, the Adjusted R^{2} drops to only 0.9345 , and all remaining variables (Age, Education, and Wealth) are significant (see Figure 8.25). The R^{2}-value for the model with these three variables is 0.936 .

Figure : 8.23 :
Correlation Matrix for Colleges and Universities Data

Practical Issues in Trendline and Regression Modeling

Example 8.14 clearly shows that it is not easy to identify the best regression model simply by examining p-values. It often requires some experimentation and trial and error. From a practical perspective, the independent variables selected should make some sense in attempting to explain the dependent variable (i.e., you should have some reason to believe that changes in the independent variable will cause changes in the dependent variable even though causation cannot be proven statistically). Logic should guide your model

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | Median SAT | Acceptance Rate | Expenditures/Student | Top 10\% HS | Graduation \% |
| 2 | Median SAT | 1 | | | | |
| 3 | Acceptance Rate | -0.601901959 | 1 | | | |
| 4 | Expenditures/Student | 0.572741729 | -0.284254415 | 1 | | |
| 5 | Top 10\% HS | 0.503467995 | -0.609720972 | 0.505782049 | 1 | |
| 6 | Graduation \% | 0.564146827 | -0.55037751 | 0.042503514 | 0.138612667 | 1 |

Figure: 8.24
Correlation Matrix for Banking Data

| | A | B | C | D | E | F | G |
| :--- | :--- | ---: | ---: | :---: | :---: | :---: | :---: |
| 1 | | Age | Education | Income | Home Value | Wealth | Balance |
| 2 | Age | | 1 | | | | |
| 3 | Education | 0.173407147 | | 1 | | | |
| 4 | Income | 0.4771474 | 0.57539402 | 1 | | | |
| 5 | Home Value | 0.386493114 | 0.753521067 | 0.795355158 | | 1 | |
| 6 | Wealth | 0.468091791 | 0.469413035 | 0.946665447 | 0.698477789 | | 1 |
| 7 | Balance | 0.565466834 | 0.55488066 | 0.951684494 | 0.766387128 | 0.948711734 | 1 |

Figure : 8.25
Regression Results for Age, Education, and Wealth as Independent Variables

development. In many applications, behavioral, economic, or physical theory might suggest that certain variables should belong in a model. Remember that additional variables do contribute to a higher R^{2} and, therefore, help to explain a larger proportion of the variation. Even though a variable with a large p-value is not statistically significant, it could simply be the result of sampling error and a modeler might wish to keep it.

Good modelers also try to have as simple a model as possible-an age-old principle known as parsimony-with the fewest number of explanatory variables that will provide an adequate interpretation of the dependent variable. In the physical and management sciences, some of the most powerful theories are the simplest. Thus, a model for the banking data that includes only age, education, and wealth is simpler than one with four variables; because of the multicollinearity issue, there would be little to gain by including income in the model. Whether the model explains 93% or 94% of the variation in bank deposits would probably make little difference. Therefore, building good regression models relies as much on experience and judgment as it does on technical analysis.

One issue that one often faces in using trendlines and regression is overfitting the model. It is important to realize that sample data may have unusual variability that is different from the population; if we fit a model too closely to the sample data we risk not fitting it well to the population in which we are interested. For instance, in fitting the crude oil prices in Example 8.2, we noted that the R^{2}-value will increase if we fit higher-order polynomial functions to the data. While this might provide a better mathematical fit to the sample data, doing so can make it difficult to explain the phenomena rationally. The same thing can happen with multiple regression. If we add too many terms to the model, then the model may not adequately predict other values from the population. Overfitting can be mitigated by using good logic, intuition, physical or behavioral theory, and parsimony as we have discussed.

Regression with Categorical Independent Variables

Some data of interest in a regression study may be ordinal or nominal. This is common when including demographic data in marketing studies, for example. Because regression analysis requires numerical data, we could include categorical variables by coding the variables. For example, if one variable represents whether an individual is a college graduate or not, we might code No as 0 and Yes as 1 . Such variables are often called dummy variables.

EXAMPLE 8.15 A Model with Categorical Variables

The Excel file Employee Salaries, shown in Figure 8.26, provides salary and age data for 35 employees, along with an indicator of whether or not the employees have an MBA (Yes or No). The MBA indicator variable is categorical; thus, we code it by replacing No by 0 and Yes by 1 .

If we are interested in predicting salary as a function of the other variables, we would propose the model

$$
Y=\boldsymbol{\beta}_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

where

$$
\begin{aligned}
Y & =\text { salary } \\
X_{1} & =\text { age } \\
X_{2} & =\text { MBA indicator }(0 \text { or } 1)
\end{aligned}
$$

After coding the MBA indicator column in the data file, we begin by running a regression on the entire data set, yielding the output shown in Figure 8.27. Note that the model explains about 95% of the variation, and the p-values of both variables are significant. The model is
salary $=893.59+1044.15 \times$ age $+14767.23 \times$ MBA

Thus, a 30-year-old with an MBA would have an estimated salary of

$$
\begin{aligned}
\text { salary } & =893.59+1044.15 \times 30+14767.23 \times 1 \\
& =\$ 46,985.32
\end{aligned}
$$

This model suggests that having an MBA increases the salary of this group of employees by almost $\$ 15,000$. Note that by substituting either 0 or 1 for MBA, we obtain two models:

$$
\begin{aligned}
\text { No MBA: salary } & =893.59+1044.15 \times \text { age } \\
\text { MBA: salary } & =15,660.82+1044.15 \times \text { age }
\end{aligned}
$$

The only difference between them is the intercept. The models suggest that the rate of salary increase for age is the same for both groups. Of course, this may not be true. Individuals with MBAs might earn relatively higher salaries as they get older. In other words, the slope of Age may depend on the value of MBA.

Figure : 8.26 :
Portion of Excel File
Employee Salaries

| | A | | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Employee Salary Data | | | | |
| 2 | | | | | |
| 3 | Employee | | Salary | Age | MBA |
| 4 | 1 | \$ | 28,260 | 25 | No |
| 5 | 2 | \$ | 43,392 | 28 | Yes |
| 6 | 3 | \$ | 56,322 | 37 | Yes |
| 7 | 4 | \$ | 26,086 | 23 | No |
| 8 | 5 | \$ | 36,807 | 32 | No |

Figure : 8.27
Initial Regression Model for Employee Salaries

An interaction occurs when the effect of one variable (i.e., the slope) is dependent on another variable. We can test for interactions by defining a new variable as the product of the two variables, $X_{3}=X_{1} \times X_{2}$, and testing whether this variable is significant, leading to an alternative model.

EXAMPLE 8.16 Incorporating Interaction Terms in a Regression Model

For the Employee Salaries example, we define an interaction term as the product of age $\left(X_{1}\right)$ and MBA $\left(X_{2}\right)$ by defining $X_{3}=X_{1} \times X_{2}$. The new model is

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon
$$

In the worksheet, we need to create a new column (called Interaction) by multiplying MBA by Age for each observation (see Figure 8.28). The regression results are shown in Figure 8.29.

From Figure 8.29, we see that the adjusted R^{2} increases; however, the p-value for the MBA indicator variable is 0.33 , indicating that this variable is not significant. Therefore, we drop this variable and run a regression using only age and the interaction term. The results are shown in Figure 8.30. Adjusted R^{2} increased slightly, and both age and the interaction term are significant. The final model is

$$
\begin{aligned}
\text { salary }= & 3,323.11+984.25 \times \text { age }+425.58 \\
& \times \text { MBA } \times \text { age }
\end{aligned}
$$

The models for employees with and without an MBA are:

$$
\begin{aligned}
\text { No MBA: salary }= & 3,323.11+984.25 \times \text { age }+425.58(0) \\
& \times \text { age } \\
= & 3323.11+984.25 \times \text { age } \\
\text { MBA: salary }= & 3323.11+984.25 \times \text { age }+425.58(1) \\
& \times \text { age } \\
= & 3,323.11+1,409.83 \times \text { age }
\end{aligned}
$$

Here, we see that salary depends not only on whether an employee holds an MBA, but also on age and is more realistic than the original model.

Figure : 8.28
Portion of Employee Salaries Modified for Interaction Term

| | A | | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Employee Salary Data | | | | | |
| 2 | | | | | | |
| 3 | Employee | | Salary | Age | MBA | Interaction |
| 4 | 1 | \$ | 28,260 | 25 | 0 | 0 |
| 5 | 2 | \$ | 43,392 | 28 | 1 | 28 |
| 6 | 3 | \$ | 56,322 | 37 | 1 | 37 |
| 7 | 4 | \$ | 26,086 | 23 | 0 | 0 |

Figure: 8.29
Regression Results with Interaction Term

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regression Statistics | | | | | | |
| 4 | Multiple R | 0.989321416 | | | | | |
| 5 | R Square | 0.978756863 | | | | | |
| 6 | Adjusted R Square | 0.976701076 | | | | | |
| 7 | Standard Error | 2005.37675 | | | | | |
| 8 | Observations | 35 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 3 | 5743939086 | 1914646362 | 476.098288 | 5.31397E-26 | |
| 13 | Residual | 31 | 124667613.2 | 4021535.91 | | | |
| 14 | Total | 34 | 5868606699 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 3902.509386 | 1336.39766 | 2.920170772 | 0.006467654 | 1176.908389 | 6628.110383 |
| 18 | Age | 971.3090382 | 31.06887722 | 31.26308786 | 5.23658E-25 | 907.9436454 | 1034.674431 |
| 19 | MBA | -2971.080074 | 3026.24236 | -0.98177202 | 0.333812767 | -9143.142058 | 3200.981911 |
| 20 | Interaction | 501.8483604 | 81.55221742 | 6.153705887 | 7.9295E-07 | 335.5215164 | 668.1752044 |

Figure : 8.30
Final Regression Model for Salary Data

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regression Statistics | | | | | | |
| 4 | Multiple R | 0.98898754 | | | | | |
| 5 | R Square | 0.978096355 | | | | | |
| 6 | Adjusted R Square | 0.976727377 | | | | | |
| 7 | Standard Error | 2004.24453 | | | | | |
| 8 | Observations | 35 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 2 | 5740062823 | 2870031411 | 714.4720368 | $2.80713 \mathrm{E}-27$ | |
| 13 | Residual | 32 | 128543876.4 | 4016996.136 | | | |
| 14 | Total | 34 | 5868606699 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 3323.109564 | 1198.353141 | 2.773063675 | 0.009184278 | 882.1440943 | 5764.075033 |
| 18 | Age | 984.2455409 | 28,12039088 | 35.00113299 | $4.40388 \mathrm{E}-27$ | 926.9661791 | 1041.524903 |
| 19 | Interaction | 425.5845915 | 24.81794165 | 17.14826304 | 1.08793E-17 | 375.0320986 | 476.1370843 |

Categorical Variables with More Than Two Levels

When a categorical variable has only two levels, as in the previous example, we coded the levels as 0 and 1 and added a new variable to the model. However, when a categorical variable has $k>2$ levels, we need to add $k-1$ additional variables to the model.

EXAMPLE 8.17 A Regression Model with Multiple Levels of Categorical Variables

The Excel file Surface Finish provides measurements of the surface finish of 35 parts produced on a lathe, along with the revolutions per minute (RPM) of the spindle and one of four types of cutting tools used (see Figure 8.31). The engineer who collected the data is interested in predicting the surface finish as a function of RPM and type of tool.

Intuition might suggest defining a dummy variable for each tool type; however, doing so will cause numerical instability in the data and cause the regression tool to crash. Instead, we will need $k-1=3$ dummy variables corresponding to three of the levels of the categorical variable. The level left out will correspond to a reference, or baseline, value. Therefore, because we have $k=4$ levels of tool type, we will define a regression model of the form

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon
$$

where
$Y=$ surface finish
$X_{1}=R P M$
$X_{2}=1$ if tool type is B and 0 if not
$X_{3}=1$ if tool type is C and 0 if not
$X_{4}=1$ if tool type is D and 0 if not

Note that when $X_{2}=X_{3}=X_{4}=0$, then, by default, the tool type is A. Substituting these values for each tool type into the model, we obtain:

$$
\begin{aligned}
& \text { Tool type A: } Y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} X_{1}+\boldsymbol{\varepsilon} \\
& \text { Tool type B: } Y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} X_{1}+\boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon} \\
& \text { Tool type C: } Y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} X_{1}+\boldsymbol{\beta}_{3}+\boldsymbol{\varepsilon} \\
& \text { Tool type D: } Y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} X_{1}+\boldsymbol{\beta}_{4}+\boldsymbol{\varepsilon}
\end{aligned}
$$

For a fixed value of RPM $\left(X_{1}\right)$, the slopes corresponding to the dummy variables represent the difference between the surface finish using that tool type and the baseline using tool type A.

To incorporate these dummy variables into the regression model, we add three columns to the data, as shown in Figure 8.32. Using these data, we obtain the regression results shown in Figure 8.33. The resulting model is

$$
\begin{aligned}
\text { surface finish }= & 24.49+0.098 \text { RPM }-13.31 \text { type } B \\
& -20.49 \text { type } C-26.04 \text { type } D
\end{aligned}
$$

Almost 99\% of the variation in surface finish is explained by the model, and all variables are significant. The models for each individual tool are

$$
\begin{aligned}
& \text { Tool A: surface finish }= 24.49+0.098 \text { RPM }-13.31(0) \\
&-20.49(0)-26.04(0) \\
&= 24.49+0.098 \text { RPM } \\
& \text { (continued) }
\end{aligned}
$$

Tool B: surface finish $=24.49+0.098$ RPM $-13.31(1)$

$$
\begin{aligned}
& -20.49(0)-26.04(0) \\
= & 11.18+0.098 \mathrm{RPM}
\end{aligned}
$$

Tool C: surface finish $=24.49+0.098$ RPM $-13.31(0)$

$$
\begin{aligned}
& -20.49(1)-26.04(0) \\
= & 4.00+0.098 \mathrm{RPM}
\end{aligned}
$$

$$
\begin{aligned}
\text { Tool D: surface finish }= & 24.49+0.098 \text { RPM }-13.31(0) \\
& -20.49(0)-26.04(1) \\
= & -1.55+0.098 \text { RPM }
\end{aligned}
$$

Note that the only differences among these models are the intercepts; the slopes associated with RPM are the same. This suggests that we might wish to test for interactions between the type of cutting tool and RPM; we leave this to you as an exercise.

Figure : 8.31 :
Portion of Excel File Surface Finish

| | A | | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Surface Finish Data | C | D | |
| 2 | | | | |
| 3 | Part | Surface Finish | RPM | Cutting Tool |
| 4 | 1 | 45.44 | 225 | A |
| 5 | 2 | 42.03 | 200 | A |
| 6 | 3 | 50.10 | 250 | A |
| 7 | 4 | 48.75 | 245 | A |
| 8 | 5 | 47.92 | 235 | A |
| 9 | 6 | 47.79 | 237 | A |
| 10 | 7 | 52.26 | 265 | A |
| 11 | 8 | 50.52 | 259 | A |
| 12 | 9 | 45.58 | 221 | A |
| 13 | 10 | 44.78 | 218 | A |
| 14 | 11 | 33.50 | 224 | B |
| 15 | 12 | 31.23 | 212 | B |
| 16 | 13 | 37.52 | 248 | B |
| 17 | 14 | 37.13 | 260 | B |
| 18 | 15 | 34.70 | 243 | B |

Figure : 8.32 :
Data Matrix for Surface
Finish with Dummy Variables

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Surface Finish Data | | | | | |
| 2 | | | | | | |
| 3 | Part | Surface Finish | RPM | Type B | Type C | Type D |
| 4 | 1 | 45.44 | 225 | 0 | 0 | 0 |
| 5 | 2 | 42.03 | 200 | 0 | 0 | 0 |
| 6 | 3 | 50.10 | 250 | 0 | 0 | 0 |
| 7 | 4 | 48.75 | 245 | 0 | 0 | 0 |
| 8 | 5 | 47.92 | 235 | 0 | 0 | 0 |
| 9 | 6 | 47.79 | 237 | 0 | 0 | 0 |
| 10 | 7 | 52.26 | 265 | 0 | 0 | 0 |
| 11 | 8 | 50.52 | 259 | 0 | 0 | 0 |
| 12 | 9 | 45.58 | 221 | 0 | 0 | 0 |
| 13 | 10 | 44.78 | 218 | 0 | 0 | 0 |
| 14 | 11 | 33.50 | 224 | 1 | 0 | 0 |
| 16 | 12 | 31.23 | 212 | 1 | 0 | 0 |
| 16 | 13 | 37.52 | 248 | 1 | 0 | 0 |
| 17 | 14 | 37.13 | 260 | 1 | 0 | 0 |
| 18 | 15 | 34.70 | 243 | 1 | 0 | 0 |
| 19 | 16 | 33.92 | 238 | 1 | 0 | 0 |
| 20 | 17 | 32.13 | 224 | 1 | 0 | 0 |
| 21 | 18 | 35.47 | 251 | 1 | 0 | 0 |
| 22 | 19 | 33.49 | 232 | 1 | 0 | 0 |
| 23 | 20 | 32.29 | 216 | 1 | 0 | 0 |
| 24 | 21 | 27.44 | 225 | 0 | 1 | 0 |
| 25 | 22 | 24.03 | 200 | 0 | 1 | 0 |
| 26 | 23 | 27.33 | 250 | 0 | 1 | 0 |
| 27 | 24 | 27.20 | 245 | 0 | 1 | 0 |
| 28 | 25 | 27.10 | 235 | 0 | 1 | 0 |
| 29 | 26 | 27.30 | 237 | 0 | 1 | 0 |
| 30 | 27 | 28.30 | 265 | 0 | 1 | 0 |
| 31 | 28 | 28.40 | 259 | 0 | 1 | 0 |
| 32 | 29 | 26.80 | 221 | 0 | 1 | 0 |
| 33 | 30 | 26.40 | 218 | 0 | 1 | 0 |
| 34 | 31 | 21.40 | 224 | 0 | 0 | 1 |
| 35 | 32 | 20.50 | 212 | 0 | 0 | 1 |
| 36 | 33 | 21.90 | 248 | 0 | 0 | 1 |
| 37 | 34 | 22.13 | 260 | 0 | 0 | 1 |
| 38 | 35 | 22.40 | 243 | 0 | 0 | 1 |

Figure : 8.33 :
Surface Finish Regression Model Results

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Aegression Statistios | | | | | | |
| 4 | Multiple R | 0.994447053 | | | | | |
| 5 | R Square | 0.988924942 | | | | | |
| 6 | Adjusted R Square | 0.987448267 | | | | | |
| 7 | Standard Error | 1.089163115 | | | | | |
| 8 | Observations | 35 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 4 | 3177.784271 | 794.4460678 | 669.6973322 | 7.32449E-29 | |
| 13 | Residual | 30 | 35.58828875 | 1.186276292 | | | |
| 14 | Total | 34 | 3213.37256 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Efror | 1 Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 24.49437244 | 2.473298088 | 9.903526211 | $5.73134 \mathrm{E}-11$ | 19.44322388 | 29.54552101 |
| 18 | RPM | 0.097760627 | 0.010399996 | 9.400064035 | 1.89415E-10 | 0.076521002 | 0.119000252 |
| 19 | Type B | -13.31056756 | 0.487142953 | -27.32374035 | 9.37003E-23 | -14.3054462 | -12.31568893 |
| 20 | Type C | -20.487 | 0.487088553 | -42.06011387 | $3.12134 \mathrm{E}-28$ | -21.48176754 | -19.49223246 |
| 21 | Type D | -26.03674519 | 0.596886375 | -43.62094073 | $1.06415 \mathrm{E}-28$ | -27.25574979 | -24.81774059 |

Regression Models with Nonlinear Terms

Linear regression models are not appropriate for every situation. A scatter chart of the data might show a nonlinear relationship, or the residuals for a linear fit might result in a nonlinear pattern. In such cases, we might propose a nonlinear model to explain the relationship. For instance, a second-order polynomial model would be

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon
$$

Sometimes, this is called a curvilinear regression model. In this model, β_{1} represents the linear effect of X on Y, and β_{2} represents the curvilinear effect. However, although this model appears to be quite different from ordinary linear regression models, it is still linear in the parameters (the betas, which are the unknowns that we are trying to estimate). In other words, all terms are a product of a beta coefficient and some function of the data, which are simply numerical values. In such cases, we can still apply least squares to estimate the regression coefficients.

Curvilinear regression models are also often used in forecasting when the independent variable is time. This and other applications of regression in forecasting are discussed in the next chapter.

EXAMPLE 8.18 Modeling Beverage Sales Using Curvilinear Regression

The Excel file Beverage Sales provides data on the sales of cold beverages at a small restaurant with a large outdoor patio during the summer months (see Figure 8.34). The owner has observed that sales tend to increase on hotter days. Figure 8.35 shows linear regression results for these data. The U-shape of the residual plot (a second-order polynomial trendline was fit to the residual data) suggests that a linear relationship is not appropriate. To apply a curvilinear regression model, add a column to the data matrix by squaring the temperatures.

Now, both temperature and temperature squared are the independent variables. Figure 8.36 shows the results for the curvilinear regression model. The model is:

```
sales =142,850-3,643.17 }\times\mathrm{ temperature }+23.
    * temperature }\mp@subsup{}{}{2
```

Note that the adjusted R^{2} has increased significantly from the linear model and that the residual plots now show more random patterns.

Figure : 8.34
Portion of Excel File Beverage Sales

Figure : 8.35
Linear Regression Results for Beverage Sales

| A | | |
| :--- | :---: | :---: |
| B | | |
| 1 | Beverage Sales | |
| 2 | | |
| 3 | Temperature | Sales |
| 4 | 85 | $\$ 1,810$ |
| 5 | 90 | $\$ 4,825$ |
| 6 | 79 | $\$ 8$ |
| 7 | 82 | $\$ 38$ |
| 7 | 84 | $\$ 1,213$ |
| 8 | 96 | $\$ 8,692$ |
| 9 | 96 | |

Figure : 8.36 :
Curvilinear Regression Results for Beverage Sales

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | Temperature Residual Plot | | Temp^2 Residual Plot | | |
| 2 | | | | | | | |
| 3 | Regression Statistics | | | | | 2000 | |
| 4 | Multiple R | 0.973326989 | | | | | |
| 5 | R Square | 0.947365428 | | | | - | * |
| 6 | Adjusted R Square | 0.941517142 | | + | | | |
| 7 | Standard Error | 635.1365123 | | 80 90 | | $1000-$ | |
| 8 | Observations | 21 | -2000 | Temperature | | 000 | |
| 9 | | | | | | Temp^2 | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 2 | 130693232.2 | 65346616.12 | 161.9902753 | 3.10056E-12 | |
| 13 | Residual | 18 | 7261171.007 | 403398.3893 | | | |
| 14 | Total | 20 | 137954403.2 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 142850.3406 | 30575.70155 | 4.672021683 | 0.000189738 | 78613.17532 | 207087.5059 |
| 18 | Temperature | -3643.171723 | 705.2304165 | -5.165931075 | $6.492 \mathrm{E}-05$ | -5124.805849 | -2161.537598 |
| 19 | Temp^2 | 23.30035581 | 4.053196314 | 5.748637374 | 1.89343E-05 | 14.78490634 | 31.81580528 |

Advanced Techniques for Regression Modeling using XLMiner

XLMiner is an Excel add-in for data mining that accompanies Analytic Solver Platform. Data mining is the subject of Chapter 10 and includes a wide variety of statistical procedures for exploring data, including regression analysis. The regression analysis tool in XLMiner has some advanced options not available in Excel's Descriptive Statistics tool, which we discuss in this section.

Best-subsets regression evaluates either all possible regression models for a set of independent variables or the best subsets of models for a fixed number of independent variables. It helps you to find the best model based on the Adjusted R^{2}. Best-subsets regression evaluates models using a statistic called $C p$, which is called the Bonferroni criterion. $C p$ estimates the bias introduced in the estimates of the responses by having an underspecified model (a model with important predictors missing). If $C p$ is much greater than $k+1$ (the number of independent variables plus 1), there is substantial bias. The full model always has $C p=k+1$. If all models except the full model have large $C p s$, it suggests that important predictor variables are missing. Models with a minimum value or having $C p$ less than or at least close to $k+1$ are good models to consider.

XLMiner offers five different procedures for selecting the best subsets of variables. Backward Elimination begins with all independent variables in the model and deletes one at a time until the best model is identified. Forward Selection begins with a model having no independent variables and successively adds one at a time until no additional variable makes a significant contribution. Stepwise Selection is similar to Forward Selection except that at each step, the procedure considers dropping variables that are not statistically significant. Sequential Replacement replaces variables sequentially, retaining those that improve performance. These options might terminate with a different model. Exhaustive Search looks at all combinations of variables to find the one with the best fit, but it can be time consuming for large numbers of variables.

EXAMPLE 8.19 Using XLMiner for Regression

We will use the Banking Data example. After installation, XLMiner will appear as a new tab in the Excel ribbon. The XLMiner ribbon is shown in Figure 8.37. To use the basic regression tool, click the Predict button in the Data Mining group and choose Multiple Linear Regression. The first of two dialogs will then be displayed, as shown in Figure 8.38. First, enter the data range (including headers) in the box near the top and check the box First row contains headers. All the variables will be listed in the left pane (Variables in input data). Select the independent variables and move them using the arrow button to the Input variables pane; then select the dependent variable and move it to the Output variable pane as shown in the figure. Click Next. The second dialog shown in Figure 8.39 will appear. Select the output options and check the Summary report box. However, before clicking Finish, click on the Best subsets button. In the dialog shown in Figure 8.40, check the box at the top and choose the selection procedure. Click $O K$ and then click Finish in the Step 2 dialog.

XLMiner creates a new worksheet with an "Output Navigator" that allows you to click on hyperlinks to see various portions of the output (see Figure 8.41). The regression model and ANOVA output are shown in Figure 8.42. Note that this is the same as the output shown in Figure 8.21. The Best subsets results appear below the ANOVA output, shown in Figure 8.43. RSS is the residual sum of squares, or the sum of squared deviations between the predicted probability of success and the actual value (1 or 0). Probability is a quasi-hypothesis test that a given subset is acceptable; if this is less than 0.05 , you can rule out that subset. Note that the model with 5 coefficients (including the intercept) is the only one that has a $C p$ value less than $k+1=5$, and its adjusted R^{2} is the largest. If you click "Choose Subset," XLMiner will create a new worksheet with the results for this model, which is the same as we found in Figure 8.22; that is, the model without the Home Value variable.

Figure : 8.37 :

XLMiner Ribbon

Figure : 8.38 :
XLMiner Linear Regression Dialog, Step 1 of 2

Figure : 8.40 :

XLMiner Best Subset Dialog

Figure : 8.41 :
XLMiner Output Navigator

The Regression Model

| Input variables | Coefficient | Std. Error | p-value | SS |
| :--- | ---: | ---: | ---: | ---: |
| Constant term | -10710.64063 | 4260.976074 | 0.01361319 | 63179490000 |
| Age | 318.6649475 | 60.98611069 | 0.00000101 | 2443181000 |
| Education | 621.8602905 | 318.9594727 | 0.05413537 | 1643993000 |
| Income | 0.14632344 | 0.040781 | 0.00052667 | 2961454000 |
| Home Value | 0.00918307 | 0.01103808 | 0.40750477 | 68818.42188 |
| Wealth | 0.07433154 | 0.01118927 | 0 | 186482700 |

| Residual df | 96 |
| :--- | ---: |
| R-squared | 0.946908442 |
| Std. Dev. estimate | 2055.643311 |
| Residual SS | 405664300 |

Figure : 8.42 :
XLMiner
Regression Output

| Source | df | SS | MS | F-statistic | p-value |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regression | 5 | 7235179518 | 1447035904 | 342.4394179 | $1.51841 \mathrm{E}-59$ |
| Error | 96 | 405664300 | 4225669.792 | | |
| Total | 101 | 7640843818 | | | |

| Best subset selection | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \#Coeffs | RSS | Cp | R-Squared | Adj. RSquared | Probability | Model (Constant present in all models) | | | | | |
| | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 |
| Choose Subset | 2 | 720505856 | 72.5069046 | 0.90570337 | 0.904760403 | 0 | Constant | Income | - | * | * | - |
| Choose Subset | 3 | 552461888 | 34.73949051 | 0.927696223 | 0.926235541 | 0.00000139 | Constant | Income | Wealth | * | * | * |
| Choose Subset | 4 | 445451072 | 11.41549969 | 0.941701327 | 0.939916674 | 0.01116341 | Constant | Age | Income | Weath | - | - |
| Choose Subset | 5 | 408588992 | 4.69212961 | 0.946525674 | 0.944320547 | 0.40748432 | Constant | Age | Education | income | Wealh | * |
| Choose Subset | 6 | 405664288 | 6.00000191 | 0.946908446 | 0.944143261 | 1 | Constant | Age | Education | Income | Home Value | Wealth |

Figure : 8.43

XLMiner Best Subsets Results

XLMiner also provides cross-validation-a process of using two sets of sample data; one to build the model (called the training set), and the second to assess the model's performance (called the validation set). This will be explained in Chapter 10 when we study data mining in more depth, but is not necessary for standard regression analysis.

Key Terms

Autocorrelation
Best-subsets regression
Coefficient of determination $\left(R^{2}\right)$
Cross-validation
Coefficient of multiple determination
Curvilinear regression model
Dummy variables
Exponential function
Homoscedasticity
Interaction
Least-squares regression
Linear function
Logarithmic function
Multicollinearity

Multiple correlation coefficient
Multiple linear regression
Overfitting
Parsimony
Partial regression coefficient
Polynomial function
Power function
R^{2} (R-squared)
Regression analysis
Residuals
Significance of regression
Simple linear regression
Standard error of the estimate, $S_{Y X}$
Standard residuals

Problems and Exercises

1. Each worksheet in the Excel file LineFit Data contains a set of data that describes a functional relationship between the dependent variable y and the independent variable x. Construct a line chart of each data set, and use the Excel Trendline tool to determine the best-fitting functions to model these data sets.
2. A consumer products company has collected some data relating to the advertising expenditure and sales of one of its products:

| Advertising cost | Sales |
| :---: | ---: |
| $\$ 300$ | $\$ 7000$ |
| $\$ 350$ | $\$ 9000$ |
| $\$ 400$ | $\$ 10000$ |
| $\$ 450$ | $\$ 10600$ |

What type of model would best represent the data? Use the Excel Trendline tool to find the best among the options provided.
3. Using the data in the Excel file Demographics, determine if a linear relationship exists between unemployment rates and cost of living indexes by constructing a scatter chart. Visually, do there appear
to be any outliers? If so, delete them and then find the best-fitting linear regression line using the Excel Trendline tool. What would you conclude about the strength of any relationship? Would you use regression to make predictions of the unemployment rate based on the cost of living?
4. Using the data in the Excel file Weddings construct scatter charts to determine whether any linear relationship appears to exist between (1) the wedding cost and attendance, (2) the wedding cost and the value rating, and (3) the couple's income and wedding cost only for the weddings paid for by the bride and groom. Then find the best-fitting linear regression lines using the Excel Trendline tool for each of these charts.
5. Using the data in Excel file Loans, construct a scatter chart for monthly income versus loan amount and add a linear trendline. What is the regression model? If an individual has 7336 as monthly income, what would you predict the loan amount to be?
6. Using the results of fitting the Home Market Value regression line in Example 8.4, compute the errors associated with each observation using formula (8.3) and construct a histogram.
7. Set up an Excel worksheet to apply formulas (8.5) and (8.6) to compute the values of b_{0} and b_{1} for the data in the Excel file Home Market Value and verify that you obtain the same values as in Examples 8.4 and 8.5 .
8. The managing director of a consulting group has the following monthly data on total overhead costs and professional labor hours to bill to clients: ${ }^{4}$

| Overhead Costs | Billable Hours |
| :---: | :---: |
| $\$ 365,000$ | 3,000 |
| $\$ 400,000$ | 4,000 |
| $\$ 430,000$ | 5,000 |
| $\$ 477,000$ | 6,000 |
| $\$ 560,000$ | 7,000 |
| $\$ 587,000$ | 8,000 |

a. Develop a trendline to identify the relationship between billable hours and overhead costs.
b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm?
c. If a special job requiring 1,000 billable hours that would contribute a margin of $\$ 38,000$ before overhead was available, would the job be attractive?
9. Using the Excel file Weddings, apply the Excel Regression tool using the wedding cost as the dependent variable and attendance as the independent variable.
a. Interpret all key regression results, hypothesis tests, and confidence intervals in the output.
b. Analyze the residuals to determine if the assumptions underlying the regression analysis are valid.
c. Use the standard residuals to determine if any possible outliers exist.
d. If a couple is planning a wedding for 175 guests, how much should they budget?
10. Using the Excel file Weddings, apply the Excel Regression tool using the wedding cost as the dependent variable and the couple's income as the independent variable, only for those weddings paid for by the bride and groom.
a. Interpret all key regression results, hypothesis tests, and confidence intervals in the output.
b. Analyze the residuals to determine if the assumptions underlying the regression analysis are valid.
c. Use the standard residuals to determine if any possible outliers exist.
d. If a couple makes $\$ 70,000$ together, how much would they probably budget for the wedding?
11. Using the data in Excel file Crime, apply the Excel regression tool using crime rate (CRIM) as the dependent variable and pupil-teacher ratio (PTRATIO) in the region as the independent variable.
a. Interpret all key regression results, hypothesis tests, and confidence intervals in the output.
b. Use the standard residuals to determine if any outliers exist.
12. Using the data in the Excel file Student Grades, apply the Excel Regression tool using the midterm grade as the independent variable and the final exam grade as the dependent variable.
a. Interpret all key regression results, hypothesis tests, and confidence intervals in the output.
b. Analyze the residuals to determine if the assumptions underlying the regression analysis are valid.
c. Use the standard residuals to determine if any possible outliers exist.
13. The Excel file National Football League provides various data on professional football for one season.
a. Construct a scatter diagram for Points/Game and Yards/Game in the Excel file. Does there appear to be a linear relationship?
b. Develop a regression model for predicting Points/Game as a function of Yards/Game. Explain the statistical significance of the model.
c. Draw conclusions about the validity of the regression analysis assumptions from the residual plot and standard residuals.
14. A deep-foundation engineering contractor has bid on a foundation system for a new building housing the world headquarters for a Fortune 500 company.

[^41]A part of the project consists of installing 311 auger cast piles. The contractor was given bid information for cost-estimating purposes, which consisted of the estimated depth of each pile; however, actual drill footage of each pile could not be determined exactly until construction was performed. The Excel file Pile Foundation contains the estimates and actual pile lengths after the project was completed. Develop a linear regression model to estimate the actual pile length as a function of the estimated pile lengths. What do you conclude?
15. The Excel file Concert Sales provides data on sales dollars and the number of radio, TV, and newspaper ads promoting the concerts for a group of cities. Develop simple linear regression models for predicting sales as a function of the number of each type of ad. Compare these results to a multiple linear regression model using both independent variables. Examine the residuals of the best model for regression assumptions and possible outliers.
16. Using the data in the Excel file Credit Card Spending, develop a multiple linear regression model for estimating the average credit card expenditure as a function of both the income and family size. Predict the average expense of a family that has two members and an income of $\$ 188,000$ per annum, and another that has three members and an income of $\$ 39,000$ income per annum.
17. The Excel file Cereal Data provides a variety of nutritional information about 67 cereals and their shelf location in a supermarket. Use regression analysis to find the best model that explains the relationship between calories and the other variables. Investigate the model assumptions and clearly explain your conclusions. Keep in mind the principle of parsimony!
18. The Excel file Salary Data provides information on current salary, beginning salary, previous experience (in months) when hired, and total years of education for a sample of 100 employees in a firm.
a. Develop a multiple regression model for predicting current salary as a function of the other variables.
b. Find the best model for predicting current salary using the t-value criterion.
19. The Excel file Credit Approval Decisions provides information on credit history for a sample of banking customers. Use regression analysis to identify the best
model for predicting the credit score as a function of the other numerical variables. For the model you select, conduct further analysis to check for significance of the independent variables and for multicollinearity.
20. Using the data in the Excel file Freshman College Data, identify the best regression model for predicting the first year retention rate. For the model you select, conduct further analysis to check for significance of the independent variables and for multicollinearity.
21. The Excel file Major League Baseball provides data on the 2010 season.
a. Construct and examine the correlation matrix. Is multicollinearity a potential problem?
b. Suggest an appropriate set of independent variables that predict the number of wins by examining the correlation matrix.
c. Find the best multiple regression model for predicting the number of wins. How good is your model? Does it use the same variables you thought were appropriate in part (b)?
22. The Excel file Golfing Statistics provides data for a portion of the 2010 professional season for the top 25 golfers.
a. Find the best multiple regression model for predicting earnings/event as a function of the remaining variables.
b. Find the best multiple regression model for predicting average score as a function of the other variables except earnings and events.
23. Use the p-value criterion to find a good model for predicting the number of points scored per game by football teams using the data in the Excel file National Football League.
24. The State of Ohio Department of Education has a mandated ninth-grade proficiency test that covers writing, reading, mathematics, citizenship (social studies), and science. The Excel file Ohio Education Performance provides data on success rates (defined as the percent of students passing) in school districts in the greater Cincinnati metropolitan area along with state averages.
a. Suggest the best regression model to predict math success as a function of success in the other subjects by examining the correlation matrix; then run the regression tool for this set of variables.
b. Develop a multiple regression model to predict math success as a function of success in all other subjects using the systematic approach described in this chapter. Is multicollinearity a problem?
c. Compare the models in parts (a) and (b). Are they the same? Why or why not?
25. A leading car manufacturer tracks the data of its used cars for resale. The Excel file Car Sales contains information on the selling price of the car, fuel type (diesel or petrol), horsepower (HP), and manufacture year.
a. Develop a multiple linear regression model for the selling price as a function of fuel type and HP without any interaction term.
b. Determine if any interaction exists between fuel type and HP and find the best model. What is the predicted price for either a petrol or diesel car with a horsepower of 69 ?
26. For the Car Sales data described in Problem 25, develop a regression model for selling price as a function of horsepower and manufacture year, incorporating an interaction term. What would be the predicted price for a car manufactured in either 2002 or 2003 with a horsepower of 69 ? How do these predictions compare to the overall average price in each year?
27. For the Excel file Auto Survey,
a. Find the best regression model to predict miles/ gallon as a function of vehicle age and mileage.
b. Using your result from part (a), add the categorical variable Purchased to the model. Does this change your result?
c. Determine whether any significant interaction exists between Vehicle Age and Purchased variables.
28. Cost functions are often nonlinear with volume because production facilities are often able to produce larger quantities at lower rates than smaller quantities. ${ }^{5}$ Using the following data, apply simple linear regression, and examine the residual plot. What do you conclude? Construct a scatter chart and use the

Excel Trendline feature to identify the best type of curvilinear trendline that maximizes R^{2}.

| Units Produced | Costs |
| :---: | :---: |
| 500 | $\$ 12,500$ |
| 1,000 | $\$ 25,000$ |
| 1,500 | $\$ 32,500$ |
| 2,000 | $\$ 40,000$ |
| 2,500 | $\$ 45,000$ |
| 3,000 | $\$ 50,000$ |

29. A product manufacturer wishes to determine the relationship between the shelf space of the product and its sales. Past data indicates the following sales and shelf space in its stores.

| Sales | Shelf Space |
| :---: | ---: |
| $\$ 25,000$ | 5 square feet |
| $\$ 15,000$ | 3.2 square feet |
| $\$ 28,000$ | 5.4 square feet |
| $\$ 30,000$ | 6.1 square feet |
| $\$ 17,000$ | 4.3 square feet |
| $\$ 16,000$ | 3.1 square feet |
| $\$ 12,000$ | 2.6 square feet |
| $\$ 21,000$ | 6.4 square feet |
| $\$ 19,000$ | 4.9 square feet |
| $\$ 27,000$ | 5.7 square feet |

Using these data points, apply simple linear regression, and examine the residual plot. What do you conclude? Construct a scatter chart and use the Excel Trendline feature to identify the best type of curvilinear trendline that maximizes R^{2}.
30. For the Excel file Cereal Data, use XLMiner and best subsets with backward selection to find the best model.
31. Use XLMiner and best subsets with stepwise selection to find the best model points per game for the National Football League data (see Problem 23).

[^42]
Case: Performance Lawn Equipment

In reviewing the PLE data, Elizabeth Burke noticed that defects received from suppliers have decreased (worksheet Defects After Delivery). Upon investigation, she learned that in 2010, PLE experienced some quality problems due to an increasing number of defects in materials received from suppliers. The company instituted an initiative in August 2011 to work with suppliers to reduce these defects, to more closely coordinate deliveries, and to improve materials quality through reengineering supplier production policies. Elizabeth noted that the program appeared to reverse an increasing trend in defects; she would like to predict what might have happened had the supplier initiative not been implemented and how the number of defects might further be reduced in the near future.

In meeting with PLE's human resources director, Elizabeth also discovered a concern about the high rate of turnover in its field service staff. Senior managers have suggested that the department look closer at its recruiting policies, particularly to try to identify the characteristics of individuals that lead to greater retention. However, in a recent staff meeting, HR managers could not agree on these characteristics. Some argued that years of education and grade point averages were good predictors. Others argued that hiring more mature applicants would lead to greater retention. To study these factors, the staff agreed to conduct a statistical study to determine the effect that years of education, college grade point average, and age when hired have on retention. A sample of 40 field service
engineers hired 10 years ago was selected to determine the influence of these variables on how long each individual stayed with the company. Data are compiled in the Employee Retention worksheet.

Finally, as part of its efforts to remain competitive, PLE tries to keep up with the latest in production technology. This is especially important in the highly competitive lawn-mower line, where competitors can gain a real advantage if they develop more cost-effective means of production. The lawn-mower division therefore spends a great deal of effort in testing new technology. When new production technology is introduced, firms often experience learning, resulting in a gradual decrease in the time required to produce successive units. Generally, the rate of improvement declines until the production time levels off. One example is the production of a new design for lawnmower engines. To determine the time required to produce these engines, PLE produced 50 units on its production line; test results are given on the worksheet Engines in the database. Because PLE is continually developing new technology, understanding the rate of learning can be useful in estimating future production costs without having to run extensive prototype trials, and Elizabeth would like a better handle on this.

Use techniques of regression analysis to assist her in evaluating the data in these three worksheets and reaching useful conclusions. Summarize your work in a formal report with all appropriate results and analyses.

iQoncept/Shutterstock.com

Learning Objectives

After studying this chapter, you will be able to:

Explain how judgmental approaches are used for forecasting.
List different types of statistical forecasting models.

- Apply moving average and exponential smoothing models to stationary time series.
- State three error metrics used for measuring forecast accuracy and explain the differences among them.
- Apply double exponential smoothing models to time series with a linear trend.
- Use Holt-Winters and regression models to forecast time series with seasonality.
- Apply Holt-Winters forecasting models to time series with both trend and seasonality.
- Identify the appropriate choice of forecasting model based on the characteristics of a time series.
- Explain how regression techniques can be used to forecast with explanatory or causal variables.
- Apply XLMiner to different types of forecasting models.

Managers require good forecasts of future events to make good decisions. For example, forecasts of interest rates, energy prices, and other economic indicators are needed for financial planning; sales forecasts are needed to plan production and workforce capacity; and forecasts of trends in demographics, consumer behavior, and technological innovation are needed for long-term strategic planning. The government also invests significant resources on predicting short-run U.S. business performance using the Index of Leading Indicators. This index focuses on the performance of individual businesses, which often is highly correlated with the performance of the overall economy and is used to forecast economic trends for the nation as a whole. In this chapter, we introduce some common methods and approaches to forecasting, including both qualitative and quantitative techniques.

Business analysts may choose from a wide range of forecasting techniques to support decision making. Selecting the appropriate method depends on the characteristics of the forecasting problem, such as the time horizon of the variable being forecast, as well as available information on which the forecast will be based. Three major categories of forecasting approaches are qualitative and judgmental techniques, statistical time-series models, and explanatory/causal methods. In this chapter, we introduce forecasting techniques in each of these categories and use basic Excel tools, XLMiner, and linear regression to implement them in a spreadsheet environment.

Qualitative and Judgmental Forecasting

Qualitative and judgmental techniques rely on experience and intuition; they are necessary when historical data are not available or when the decision maker needs to forecast far into the future. For example, a forecast of when the next generation of a microprocessor will be available and what capabilities it might have will depend greatly on the opinions and expertise of individuals who understand the technology. Another use of judgmental methods is to incorporate nonquantitative information, such as the impact of government regulations or competitor behavior, in a quantitative forecast. Judgmental techniques range from such simple methods as a manager's opinion or a group-based jury of executive opinion to more structured approaches such as historical analogy and the Delphi method.

Historical Analogy

One judgmental approach is historical analogy, in which a forecast is obtained through a comparative analysis with a previous situation. For example, if a new product is being introduced, the response of consumers to marketing campaigns to similar, previous products can be used as a basis to predict how the new marketing campaign might fare. Of course, temporal changes or other unique factors might not be fully considered in such
an approach. However, a great deal of insight can often be gained through an analysis of past experiences.

EXAMPLE 9.1 Predicting the Price of Oil

In early 1998, the price of oil was about $\$ 22$ a barrel. However, in mid-1998, the price of a barrel of oil dropped to around \$11. The reasons for this price drop included an oversupply of oil from new production in the Caspian Sea region, high production in non-OPEC regions, and lower-than-normal demand. In similar circumstances in the past, OPEC would meet and take action to raise the price
of oil. Thus, from historical analogy, we might forecast a rise in the price of oil. OPEC members did, in fact, meet in mid-1998 and agreed to cut their production, but nobody believed that they would actually cooperate effectively, and the price continued to drop for a time. Subsequently, in 2000, the price of oil rose dramatically, falling again in late 2001.

Analogies often provide good forecasts, but you need to be careful to recognize new or different circumstances. Another analogy is international conflict relative to the price of oil. Should war break out, the price would be expected to rise, analogous to what it has done in the past.

The Delphi Method

A popular judgmental forecasting approach, called the Delphi method, uses a panel of experts, whose identities are typically kept confidential from one another, to respond to a sequence of questionnaires. After each round of responses, individual opinions, edited to ensure anonymity, are shared, allowing each to see what the other experts think. Seeing other experts' opinions helps to reinforce those in agreement and to influence those who did not agree to possibly consider other factors. In the next round, the experts revise their estimates, and the process is repeated, usually for no more than two or three rounds. The Delphi method promotes unbiased exchanges of ideas and discussion and usually results in some convergence of opinion. It is one of the better approaches to forecasting longrange trends and impacts.

Indicators and Indexes

Indicators and indexes generally play an important role in developing judgmental forecasts. Indicators are measures that are believed to influence the behavior of a variable we wish to forecast. By monitoring changes in indicators, we expect to gain insight about the future behavior of the variable to help forecast the future.

EXAMPLE 9.2 Economic Indicators

One variable that is important to the nation's economy is the Gross Domestic Product (GDP), which is a measure of the value of all goods and services produced in the United States. Despite its shortcomings (for instance, unpaid work such as housekeeping and child care is not
measured; production of poor-quality output inflates the measure, as does work expended on corrective action), it is a practical and useful measure of economic performance. Like most time series, the GDP rises and falls in a cyclical fashion. Predicting future trends in the GDP is
often done by analyzing leading indicators - series that tend to rise and fall for some predictable length of time prior to the peaks and valleys of the GDP. One example of a leading indicator is the formation of business enterprises; as the rate of new businesses grows, we would expect the GDP to increase in the future. Other examples of leading indicators are the percent change in the
money supply (M1) and net change in business loans. Other indicators, called lagging indicators, tend to have peaks and valleys that follow those of the GDP. Some lagging indicators are the Consumer Price Index, prime rate, business investment expenditures, or inventories on hand. The GDP can be used to predict future trends in these indicators.

Indicators are often combined quantitatively into an index, a single measure that weights multiple indicators, thus providing a measure of overall expectation. For example, financial analysts use the Dow Jones Industrial Average as an index of general stock market performance. Indexes do not provide a complete forecast but rather a better picture of direction of change and thus play an important role in judgmental forecasting.

EXAMPLE 9.3 Leading Economic Indicators

The Department of Commerce initiated an Index of Leading Indicators to help predict future economic performance. Components of the index include the following:

- average weekly hours, manufacturing
- average weekly initial claims, unemployment insurance
- new orders, consumer goods, and materials
- vendor performance-slower deliveries
- new orders, nondefense capital goods
- building permits, private housing
- stock prices, 500 common stocks (Standard \& Poor)
- money supply
- interest rate spread
- index of consumer expectations (University of Michigan)

Business Conditions Digest included more than 100 time series in seven economic areas. This publication was discontinued in March 1990, but information related to the Index of Leading Indicators was continued in Survey of Current Business. In December 1995, the U.S. Department of Commerce sold this data source to The Conference Board, which now markets the information under the title Business Cycle Indicators; information can be obtained at its Web site (www.conference-board .org). The site includes excellent current information about the calculation of the index as well as its current components.

Statistical Forecasting Models

Statistical time-series models find greater applicability for short-range forecasting problems. A time series is a stream of historical data, such as weekly sales. We characterize the values of a time series over T periods as $A_{t}, t=1,2, \ldots, T$. Time-series models assume that whatever forces have influenced sales in the recent past will continue into the near future; thus, forecasts are developed by extrapolating these data into the future. Time series generally have one or more of the following components: random behavior, trends, seasonal effects, or cyclical effects. Time series that do not have trend, seasonal, or cyclical effects but are relatively constant and exhibit only random behavior are called stationary time series.

Many forecasts are based on analysis of historical time-series data and are predicated on the assumption that the future is an extrapolation of the past. A trend is a gradual upward or downward movement of a time series over time.

EXAMPLE 9.4 Identifying Trends in a Time Series

Figure 9.1 shows a chart of total energy consumption from the data in the Excel file Energy Production \& Consumption. This time series shows an upward trend. However, we see that energy consumption was rising quite rapidly in a linear fashion during the 1960s, then
leveled off for a while and began increasing at a slower rate through the 1980s and 1990s. In the past decade, we actually see a slight downward trend. This time series, then, is composed of several different short trends.

Time series may also exhibit short-term seasonal effects (over a year, month, week, or even a day) as well as longer-term cyclical effects, or nonlinear trends. A seasonal effect is one that repeats at fixed intervals of time, typically a year, month, week, or day. At a neighborhood grocery store, for instance, short-term seasonal patterns may occur over a week, with the heaviest volume of customers on weekends; seasonal patterns may also be evident during the course of a day, with higher volumes in the mornings and late afternoons. Figure 9.2 shows seasonal changes in natural gas usage for a homeowner over the course of a year (Excel file Gas \& Electric). Cyclical effects describe ups and downs over a much longer time frame, such as several years. Figure 9.3 shows a chart of the data

Figure : 9.3
Cyclical Effects in Federal Funds Rates

in the Excel file Federal Funds Rates. We see some evidence of long-term cycles in the time series driven by economic factors, such as periods of inflation and recession.

Although visual inspection of a time series to identify trends, seasonal, or cyclical effects may work in a naïve fashion, such unscientific approaches may be a bit unsettling to a manager making important decisions. Subtle effects and interactions of seasonal and cyclical factors may not be evident from simple visual extrapolation of data. Statistical methods, which involve more formal analyses of time series, are invaluable in developing good forecasts. A variety of statistically-based forecasting methods for time series are commonly used. Among the most popular are moving average methods, exponential smoothing, and regression analysis. These can be implemented very easily on a spreadsheet using basic functions and Data Analysis tools available in Microsoft Excel, as well as with more powerful software such as XLMiner. Moving average and exponential smoothing models work best for time series that do not exhibit trends or seasonal factors. For time series that involve trends and/or seasonal factors, other techniques have been developed. These include double moving average and exponential smoothing models, seasonal additive and multiplicative models, and Holt-Winters additive and multiplicative models.

Forecasting Models for Stationary Time Series

Two simple approaches that are useful over short time periods when trend, seasonal, or cyclical effects are not significant are moving average and exponential smoothing models.

Moving Average Models

The simple moving average method is a smoothing method based on the idea of averaging random fluctuations in the time series to identify the underlying direction in which the time series is changing. Because the moving average method assumes that future observations will be similar to the recent past, it is most useful as a short-range forecasting method. Although this method is very simple, it has proven to be quite useful in stable environments, such as inventory management, in which it is necessary to develop forecasts for a large number of items.

Specifically, the simple moving average forecast for the next period is computed as the average of the most recent k observations. The value of k is somewhat arbitrary,
although its choice affects the accuracy of the forecast. The larger the value of k, the more the current forecast is dependent on older data, and the forecast will not react as quickly to fluctuations in the time series. The smaller the value of k, the quicker the forecast responds to changes in the time series. Also, when k is larger, extreme values have less effect on the forecasts. (In the next section, we discuss how to select k by examining errors associated with different values.)

EXAMPLE 9.5 Moving Average Forecasting

The Excel file Tablet Computer Sales contains data for the number of units sold for the past 17 weeks. Figure 9.4 shows a chart of these data. The time series appears to be relatively stable, without trend, seasonal, or cyclical effects; thus, a moving average model would be appropriate. Setting $k=3$, the three-period moving average forecast for week 18 is

$$
\text { week } 18 \text { forecast }=\frac{82+71+50}{3}=67.67
$$

Moving average forecasts can be generated easily on a spreadsheet. Figure 9.5 shows the computations for a three-period moving average forecast of tablet computer sales. Figure 9.6 shows a chart that contrasts the data with the forecasted values.

Moving average forecasts can also be obtained from Excel's Data Analysis options.

EXAMPLE 9.6 Using Excel's Moving Average Tool

For the Tablet Computer Sales Excel file, select Data Analysis and then Moving Average from the Analysis group. Excel displays the dialog box shown in Figure 9.7. You need to enter the Input Range of the data, the Interval (the value of k), and the first cell of the Output Range. To align the actual data with the forecasted values in the worksheet, select the first cell of the Output Range to be one row below the first value. You may also obtain a chart of the data and the moving averages, as well as a column of standard errors, by checking the appropriate boxes. However, we do not recommend using the chart
or error options because the forecasts generated by this tool are not properly aligned with the data (the forecast value aligned with a particular data point represents the forecast for the next month) and, thus, can be misleading. Rather, we recommend that you generate your own chart as we did in Figure 9.6. Figure 9.8 shows the results produced by the Moving Average tool (with some customization of the formatting). Note that the forecast for week 18 is aligned with the actual value for week 17 on the chart. Compare this to Figure 9.6 and you can see the difference.

Figure : 9.4
Chart of Weekly Tablet
Computer Sales

Figure : 9.5
Excel Implementation of Moving Average Forecast

XLMiner also provides a tool for forecasting with moving averages. XLMiner is an Excel add-on that is available from Frontline Systems, developers of Analytic Solver Platform. See the Preface for installation instructions. XLMiner will be discussed more thoroughly in Chapter 10.

Figure: 9.8
Results of Excel Moving Average Tool (Note misalignment of forecasts with actual sales in the chart.)

EXAMPLE 9.7 Moving Average Forecasting with XLMiner

To use XLMiner for the Tablet Computer Sales data, first click on any value in the data. Then select Smoothing from the Time Series group and select Moving Average. The dialog in Figure 9.9 appears. Next, move the variables from the Variables in input data field to the Time Variable and Selected variable fields using the arrow buttons (this was already done in Figure 9.9). In the Weights panel, adjust the value of Interval-the number of periods to use for the moving average. In the Output options
panel, you may click Give Forecast and enter the number of forecasts to generate from the procedure. When you click OK, XLMiner generates the output on a new worksheet, as shown in Figure 9.10. The forecasts are shown in rows 24 through 40 along with a chart of the data and forecasts (without the initial periods that do not have corresponding forecasts). The forecast for week 18 is shown at the bottom of the figure. We discuss other parts of the output next.

Figure : 9.9
XLMiner Moving Average Dialog

Figure : 9.10 :
XLMiner Moving Average Results

| 4 | A B | c | D | E | F | G | H | 1 | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | XLMiner : Time Series - Moving Average Smoothing | | | | | | | | | | |
| 3 | Dutueu Mavigatar | | | | | | | | | | |
| 4 | haus | Eiluduche | Exeast | | | | | | | | |
| 5 | Elevecime | Eraxmear | Hexinad | Erao Mesenes | vadidiome | | | | | | |
| | Fitted Model | | | | | | | | | | |
| 23 | | weok | Aetual | Forecesal | Fresiduats | | | | | | |
| 24 25 26 27 28 28 29 30 31 32 32 34 34 35 36 36 37 38 39 40 | | | | | | $\begin{array}{r} 100 \\ 90 \\ 80 \\ 80 \\ 70 \\ 700 \\ \hline 60 \\ 50 \\ 50 \\ 50 \\ 50 \\ 30 \\ 20 \\ 10 \\ 0 \end{array}$ | P Plo | tual | ast | ${ }_{9}$ | |
| $\left\lvert\, \begin{aligned} & 42 \\ & 43 \end{aligned}\right.$ | Error Mea | sures (Tra | ing) | | | | | -atu | Free | | |
| $\left\lvert\, \begin{aligned} & 44 \\ & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}\right.$ | | $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { MME } \\ \mathrm{MSOE}} \end{array}$ | | | | | | | | | |
| 49 | Forecast | | | | | | | | | | |
| $\begin{aligned} & 51 \\ & 50 \\ & 52 \end{aligned}$ | | | | | | | | | | | |

Error Metrics and Forecast Accuracy

The quality of a forecast depends on how accurate it is in predicting future values of a time series. In the simple moving average model, different values for k will produce different forecasts. How do we know which is the best value for k ? The error, or residual, in a forecast is the difference between the forecast and the actual value of the time series (once it is known). In Figure 9.6, the forecast error is simply the vertical distance between the forecast and the data for the same time period.

To analyze the effectiveness of different forecasting models, we can define error metrics, which compare quantitatively the forecast with the actual observations. Three metrics that are commonly used are the mean absolute deviation, mean square error, and mean absolute percentage error. The mean absolute deviation (MAD) is the absolute difference between the actual value and the forecast, averaged over a range of forecasted values:

$$
\begin{equation*}
\mathrm{MAD}=\frac{\sum_{i=1}^{n}\left|A_{t}-F_{t}\right|}{n} \tag{9.1}
\end{equation*}
$$

where A_{t} is the actual value of the time series at time t, F_{t} is the forecast value for time t, and n is the number of forecast values (not the number of data points since we do not have a forecast value associated with the first k data points). MAD provides a robust measure of error and is less affected by extreme observations.

Mean square error (MSE) is probably the most commonly used error metric. It penalizes larger errors because squaring larger numbers has a greater impact than squaring smaller numbers. The formula for MSE is

$$
\begin{equation*}
\text { MSE }=\frac{\sum_{t=1}^{n}\left(A_{t}-F_{t}\right)^{2}}{n} \tag{9.2}
\end{equation*}
$$

Again, n represents the number of forecast values used in computing the average. Sometimes the square root of MSE, called the root mean square error (RMSE), is used:

$$
\begin{equation*}
\mathrm{RMSE}=\sqrt{\frac{\sum_{t=1}^{n}\left(A_{t}-F_{t}\right)^{2}}{n}} \tag{9.3}
\end{equation*}
$$

Note that unlike MSE, RMSE is expressed in the same units as the data (similar to the difference between a standard deviation and a variance), allowing for more practical comparisons.

A fourth commonly used metric is mean absolute percentage error (MAPE). MAPE is the average of absolute errors divided by actual observation values.

$$
\begin{equation*}
\text { MAPE }=\frac{\sum_{t=1}^{n}\left|\frac{A_{t}-F_{t}}{A_{t}}\right|}{n} \times 100 \tag{9.4}
\end{equation*}
$$

The values of MAD and MSE depend on the measurement scale of the time-series data. For example, forecasting profit in the range of millions of dollars would result in very large MAD and MSE values, even for very accurate forecasting models. On the other hand, market share is measured in proportions; therefore, even bad forecasting models will have small values of MAD and MSE. Thus, these measures have no meaning except in comparison with other models used to forecast the same data. Generally, MAD is less affected by extreme observations and is preferable to MSE if such extreme observations are considered rare events with no special meaning. MAPE is different in that the measurement scale is eliminated by dividing the absolute error by the time-series data value. This allows a better relative comparison. Although these comments provide some guidelines, there is no universal agreement on which measure is best.

Note that the output from XLMiner in Figure 9.10 calculates residuals for the forecasts and provides the values of MAPE, MAD, and MSE.

EXAMPLE 9.8 Using Error Metrics to Compare Moving Average Forecasts

The metrics we have described can be used to compare different moving average forecasts for the Tablet Computer Sales data. A spreadsheet that shows the forecasts as well as the calculations of the error metrics for two-, three-, and four-period moving average models is given in Figure 9.11. The error is the difference between the actual value of the units sold and the forecast. To compute MAD, we first compute the absolute values of
the errors and then average them. For MSE, we compute the squared errors and then find the average. For MAPE, we find the absolute values of the errors divided by the actual observation multiplied by 100 and then average them. The results suggest that a two-period moving average model provides the best forecast among these alternatives because the error metrics are all smaller than for the other models.

| | A | B | c | D | E | F | G | H | 1 | J | K | L | M | | N | 0 | P | Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tablet Computer Sales | | | | | | | | | | | | | | | | | |
| 2 | | | $\mathrm{k}=2$ | | | | | $\mathrm{k}=3$ | | | | | k=4 | | | | | |
| 3 | Week | Units Sold | Forecast | Error | Absolute | Squared | Absolute | Forecast | Error | Absolute | Squared | Absolute | Forecast | Error | | Absolute | Squared | Absolute |
| 4 | 1 | 88 | | | Deviation | Error | \% Error | | | Deviation | Error | \% Error | | | | Deviation | Error | \% Error |
| 5 | 2 | 44 | | | | | | | | | | | | | | | | |
| 6 | 3 | 60 | 68.00 | -6.00 | 6.00 | 36.00 | 10.00 | | | | | | | | | | | |
| 7 | 4 | 56 | 52.00 | 4.00 | 4.00 | 16.00 | 7.14 | 64.00 | -8.00 | 8.00 | 64.00 | 14.29 | | | | | | |
| 8 | 5 | 70 | 58.00 | 12.00 | 12.00 | 144.00 | 17.14 | 53.33 | 16.67 | 16.67 | 277.78 | 23.81 | 62.00 | | 8.00 | 8.00 | 64.00 | 11.43 |
| 9 | 6 | 91 | 63.00 | 28.00 | 28.00 | 784.00 | 30.77 | 62.00 | 29.00 | 29.00 | 841.00 | 31.87 | 57.50 | | 33.50 | 33.50 | 1122.25 | 36.81 |
| 10 | 7 | 54 | 80.50 | -26.50 | 26.50 | 702.25 | 49.07 | 72.33 | -18.33 | 18.33 | 336.11 | 33.95 | 69.25 | | -15.25 | 15.25 | 232.56 | 28.24 |
| 11 | 8 | 60 | 72.50 | -12.50 | 12.50 | 156.25 | 20.83 | 71.67 | -11.67 | 11.67 | 136.11 | 19.44 | 67.75 | | -7.75 | 7.75 | 60.06 | 12.92 |
| 12 | 9 | 48 | 57.00 | -9.00 | 9.00 | 81.00 | 18.75 | 68.33 | -20.33 | 20.33 | 413.44 | 42.36 | 68.75 | | -20.75 | 20.75 | 430.56 | 43.23 |
| 13 | 10 | 35 | 54.00 | -19.00 | 19.00 | 361.00 | 54.29 | 54.00 | -19.00 | 19.00 | 361.00 | 54.29 | 63.25 | | -28.25 | 28.25 | 798.06 | 80.71 |
| 14 | 11 | 49 | 41.50 | 7.50 | 7.50 | 56.25 | 15.31 | 47.67 | 1.33 | 1.33 | 1.78 | 2.72 | 49.25 | | -0.25 | 0.25 | 0.06 | 0.51 |
| 15 | 12 | 44 | 42.00 | 2.00 | 2.00 | 4.00 | 4.55 | 44.00 | 0.00 | 0.00 | 0.00 | 0.00 | 48.00 | | -4.00 | 4.00 | 16.00 | 9.09 |
| 16 | 13 | 61 | 46.50 | 14.50 | 14.50 | 210.25 | 23.77 | 42.67 | 18.33 | 18.33 | 336.11 | 30.05 | 44.00 | | 17.00 | 17.00 | 289.00 | 27.87 |
| 17 | 14 | 68 | 52.50 | 15.50 | 15.50 | 240.25 | 22.79 | 51.33 | 16.67 | 16.67 | 277.78 | 24.51 | 47.25 | | 20.75 | 20.75 | 430.56 | 30.51 |
| 18 | 15 | 82 | 64.50 | 17.50 | 17.50 | 306.25 | 21.34 | 57.67 | 24.33 | 24.33 | 592.11 | 29.67 | 55.50 | | 26.50 | 26.50 | 702.25 | 32.32 |
| 19 | 16 | 71 | 75.00 | -4.00 | 4.00 | 16.00 | 5.63 | 70.33 | 0.67 | 0.67 | 0.44 | 0.94 | 63.75 | | 7.25 | 7.25 | 52.56 | 10.21 |
| 20 | 17 | 50 | 76.50 | -26.50 | 26.50 | 702.25 | 53.00 | 73.67 | -23.67 | 23.67 | 560.11 | 47.33 | 70.50 | | -20.50 | 20.50 | 420.25 | 41.00 |
| 21 | 18 | | 60.50 | | 13.63 | 254.38 | 23.63 | 67.67 | | 14.86 | 299.84 | 25.37 | 67.75 | | | 16.13 | 355.25 | 28.07 |
| 22 | | | | | MAD | MSE | MAPE | | | MAD | MSE | MAPE | | | | MAD | MSE | MAPE |

Figure : 9.11
Error Metrics Alternative Moving Average Forecasts

Exponential Smoothing Models

A versatile, yet highly effective, approach for short-range forecasting is simple exponential smoothing. The basic simple exponential smoothing model is

$$
\begin{align*}
F_{t+1} & =(1-\alpha) F_{t}+\alpha A_{t} \\
& =F_{t}+\alpha\left(A_{t}-F_{t}\right) \tag{9.5}
\end{align*}
$$

where F_{t+1} is the forecast for time period $t+1, F_{t}$ is the forecast for period t, A_{t} is the observed value in period t, and α is a constant between 0 and 1 called the smoothing constant. To begin, set F_{1} and F_{2} equal to the actual observation in period $1, A_{1}$.

Using the two forms of the forecast equation just given, we can interpret the simple exponential smoothing model in two ways. In the first model, the forecast for the next period, F_{t+1}, is a weighted average of the forecast made for period t, F_{t}, and the actual observation in period t, A_{t}. The second form of the model, obtained by simply rearranging terms, states that the forecast for the next period, F_{t+1}, equals the forecast for the last period, F_{t}, plus a fraction α of the forecast error made in period $t, A_{t}-F_{t}$. Thus, to make a forecast once we have selected the smoothing constant, we need to know only the previous forecast and the actual value. By repeated substitution for F_{t} in the equation, it is easy to demonstrate that F_{t+1} is a decreasingly weighted average of all past time-series data. Thus, the forecast actually reflects all the data, provided that α is strictly between 0 and 1 .

EXAMPLE 9.9 Using Exponential Smoothing to Forecast Tablet Computer Sales

For the tablet computer sales data, the forecast for week 2 is 88 , the actual observation for week 1 . Suppose we choose $\alpha=0.7$; then the forecast for week 3 would be
week 3 forecast $=(1-0.7)(88)+(0.7)(44)=57.2$

The actual observation for week 3 is 60 ; thus, the forecast for week 4 would be

$$
\text { week } 4 \text { forecast }=(1-0.7)(57.2)+(0.7)(60)=59.16
$$

Because the simple exponential smoothing model requires only the previous forecast and the current time-series value, it is very easy to calculate; thus, it is highly suitable for environments such as inventory systems, where many forecasts must be made.

The smoothing constant α is usually chosen by experimentation in the same manner as choosing the number of periods to use in the moving average model. Different values of α affect how quickly the model responds to changes in the time series. For instance, a value of $\alpha=0$ would simply repeat last period's forecast, whereas $\alpha=1$ would forecast last period's actual demand. The closer α is to 1 , the quicker the model responds to changes in the time series, because it puts more weight on the actual current observation than on the forecast. Likewise, the closer α is to 0 , the more weight is put on the prior forecast, so the model would respond to changes more slowly.

EXAMPLE 9.10 Finding the Best Exponential Smoothing Model for Tablet Computer Sales

An Excel spreadsheet for evaluating exponential smoothing models for the Tablet Computer Sales data using values of α between 0.1 and 0.9 is shown in Figure 9.12. Note that in computing the error measures, the first row
is not included because we do not have a forecast for the first period, Week 1. A smoothing constant of $\alpha=0.6$ provides the lowest error for all three metrics.

Excel has a Data Analysis tool for exponential smoothing.

EXAMPLE 9.11 Using Excel's Exponential Smoothing Tool

In the Table Computer Sales example, from the Analysis group, select Data Analysis and then Exponential Smoothing. In the dialog (Figure 9.13), as in the Moving Average dialog, you must enter the Input Range of the time-series data, the Damping Factor is $(1-\alpha)$-not the smoothing constant as we have defined it-and the first cell of the Output Range, which should be adjacent to the
first data point. You also have options for labels, to chart output, and to obtain standard errors. As opposed to the Moving Average tool, the chart generated by this tool does correctly align the forecasts with the actual data, as shown in Figure 9.14. You can see that the exponential smoothing model follows the pattern of the data quite closely, although it tends to lag with an increasing trend in the data.

Figure : 9.12
Exponential Smoothing Forecasts for Tablet Computer Sales

| | A | B | C | D | E | F | G | H | 1 | J | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Tablet Computer Sales | | | | | | | | | | |
| 2 | | | Smoothing Constant | | | | | | | | |
| 3 | Week | Units Sold | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.96 |
| 4 | 1 | 88 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 |
| 5 | 2 | 44 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.00 | 88.0 C |
| 6 | 3 | 60 | 83.60 | 79.20 | 74.80 | 70.40 | 66.00 | 61.60 | 57.20 | 52.80 | 48.4 C |
| 7 | 4 | 56 | 81.24 | 75.36 | 70.36 | 66.24 | 63.00 | 60.64 | 59.16 | 58.56 | 58.84 |
| 8 | 5 | 70 | 78.72 | 71.49 | 66.05 | 62.14 | 59.50 | 57.86 | 56.95 | 56.51 | 56.2ε |
| 9 | 6 | 91 | 77.84 | 71.19 | 67.24 | 65.29 | 64.75 | 65.14 | 66.08 | 67.30 | 68.68 |
| 10 | 7 | 54 | 79.16 | 75.15 | 74.37 | 75.57 | 77.88 | 80.66 | 83.53 | 86.26 | $88.7 €$ |
| 11 | 8 | 60 | 76.64 | 70.92 | 68.26 | 66.94 | 65.94 | 64.66 | 62.86 | 60.45 | 57.4ε |
| 12 | 9 | 48 | 74.98 | 68.74 | 65.78 | 64.17 | 62.97 | 61.87 | 60.86 | 60.09 | 59.75 |
| 13 | 10 | 35 | 72.28 | 64.59 | 60.45 | 57.70 | 55.48 | 53.55 | 51.86 | 50.42 | 49.17 |
| 14 | 11 | 49 | 68.55 | 58.67 | 52.81 | 48.62 | 45.24 | 42.42 | 40.06 | 38.08 | 36.42 |
| 15 | 12 | 44 | 66.60 | 56.74 | 51.67 | 48.77 | 47.12 | 46.37 | 46.32 | 46.82 | 47.74 |
| 16 | 13 | 61 | 64.34 | 54.19 | 49.37 | 46.86 | 45.56 | 44.95 | 44.70 | 44.56 | 44.37 |
| 17 | 14 | 68 | 64.00 | 55.55 | 52.86 | 52.52 | 53.28 | 54.58 | 56.11 | 57.71 | 59.34 |
| 18 | 15 | 82 | 64.40 | 58.04 | 57.40 | 58.71 | 60.64 | 62.63 | 64.43 | 65.94 | 67.18 |
| 19 | 16 | 71 | 66.16 | 62.83 | 64.78 | 68.03 | 71.32 | 74.25 | 76.73 | 78.79 | 80.51 |
| 20 | 17 | 50 | 66.65 | 64.47 | 66.65 | 69.22 | 71.16 | 72.30 | 72.72 | 72.56 | 71.95 |
| 21 | 18 | | 64.98 | 61.57 | 61.65 | 61.53 | 60.58 | 58.92 | 56.82 | 54.51 | 52.20 |
| 22 | | MAD | 19.33 | 17.16 | 16.15 | 15.36 | 14.93 | 14.71 | 14.72 | 14.88 | 15.36 |
| 23 | | MSE | 496.07 | 390.84 | 359.18 | 346.56 | 340.77 | 338.41 | 339.03 | 343.32 | 352.38 |
| 24 | | MAPE | 38.28\% | 32.71\% | 30.12\% | 28.36\% | 27.54\% | 27.09\% | 27.09\% | 27.38\% | 28.23\% |

Figure : 9.13
Exponential Smoothing Tool Dialog

Figure : 9.14 :
Excel Exponential Smoothing Forecasts for $\alpha=0.6$

XLMiner also has an exponential smoothing capability. The dialog (which appears when Exponential . . . is selected from the Time Series/Smoothing menu) is similar to the one for moving averages in Figure 9.9. However, within the Weights pane, it provides options to either enter the smoothing constant, Level (Alpha) or to check an Optimize box, which will find the best value of the smoothing constant.

EXAMPLE 9.12 Optimizing Exponential Smoothing Forecasts Using XLMiner

Select Exponential Smoothing from the Smoothing menu in XLMiner. For the Tablet Computer Sales data, enter the data (similar to the dialog in Figure 9.9), and check the Optimize box in the Weights pane. Figure 9.15 shows the results. In row 16, we see that the optimized
smoothing constant is 0.63 . You can see that this is close to the value of 0.6 that we estimated in Figure 9.12; the error measures shown in rows 48-50 are slightly lower than those in Figure 9.12.

Forecasting Models for Time Series with a Linear Trend

For time series with a linear trend but no significant seasonal components, double moving average and double exponential smoothing models are more appropriate than using simple moving average or exponential smoothing models. Both methods are based on the linear trend equation:

$$
\begin{equation*}
F_{t+k}=a_{t}+b_{t} k \tag{9.6}
\end{equation*}
$$

Figure : 9.15 :
XLMiner Exponential Smoothing Results for Tablet Computer Sales

That is, the forecast for k periods into the future from period t is a function of a base value a_{t}, also known as the level, and a trend, or slope, b_{t}. Double moving average and double exponential smoothing differ in how the data are used to arrive at appropriate values for a_{t} and b_{t}. Because the calculations are more complex than for simple moving average and exponential smoothing models, it is easier to use forecasting software than to try to implement the models directly on a spreadsheet. Therefore, we do not discuss the theory or formulas underlying the methods. XLMiner does not support a procedure for double moving average; however, it does provide one for double exponential smoothing.

Double Exponential Smoothing

In double exponential smoothing, the estimates of a_{t} and b_{t} are obtained from the following equations:

$$
\begin{align*}
& a_{t}=\alpha F_{t}+(1-\alpha)\left(a_{t-1}+b_{t-1}\right) \\
& b_{t}=\beta\left(a_{t}-a_{t-1}\right)+(1-\beta) b_{t-1} \tag{9.7}
\end{align*}
$$

In essence, we are smoothing both parameters of the linear trend model. From the first equation, the estimate of the level in period t is a weighted average of the observed value at time t and the predicted value at time $t, a_{t-1}+b_{t-1}$, based on simple exponential smoothing. For large values of α, more weight is placed on the observed value. Lower values of α put more weight on the smoothed predicted value. Similarly, from the second equation, the estimate of the trend in period t is a weighted average of the differences in the estimated levels in periods t and $t-1$ and the estimate of the level in period $t-1$.

Larger values of β place more weight on the differences in the levels, but lower values of β put more emphasis on the previous estimate of the trend. Initial values are chosen for a_{1} as A_{1} and b_{1} as $A_{2}-A_{1}$. Equations (9.7) must then be used to compute a_{t} and b_{t} for the entire time series to be able to generate forecasts into the future.

As with simple exponential smoothing, we are free to choose the values of α and β. However, it is easier to let XLMiner optimize these values using historical data.

EXAMPLE 9.13 Double Exponential Smoothing with XLMiner

Figure 9.16 shows a portion of the Excel file Coal Production, which provides data on total tons produced from 1960 through 2011. The data appear to follow a linear trend. The XLMiner dialog is similar to the one used for single exponential smoothing. Using the optimization feature to find the best values of α and β, XLMiner produces the output, a portion of which is shown in Figure 9.17. We see that the best values of α and β are 0.684 and 0.00 ,
respectively. Forecasts generated by XLMiner for the next 3 years (not shown in Figure 9.17) are

2012: 1,115,563,804
2013: 1,130,977,341
2014: 1,146,390,878

Regression-Based Forecasting for Time Series with a Linear Trend

Equation 9.6 may look familiar from simple linear regression. We introduced regression in the previous chapter as a means of developing relationships between a dependent and independent variables. Simple linear regression can be applied to forecasting using time as the independent variable.

EXAMPLE 9.14 Forecasting Using Trendlines

For the data in the Excel file Coal Production, a linear trendline, shown in Figure 9.18, gives an R^{2} value of 0.95 (the fitted model assumes that the years are numbered 1 through 52, not as actual dates). The model is

```
tons = 438,819,885.29 + 15,413,536.97 }\times\mathrm{ year
```

Thus, a forecast for 2012 would be

$$
\begin{aligned}
\text { tons } & =438,819,885.29+15,413,536.97 \times(53) \\
& =1,255,737,345
\end{aligned}
$$

Note however, that the linear model does not adequately predict the recent drop in production after 2008.

Figure : 9.16
Portion of Excel File Coal Production

Figure : 9.17 :
Portion of XLMiner Output for Double Exponential Smoothing of Coal-Production Data

| 4. A | B | C | D | E | F | G | H | 1 | J | K | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | XLMiner : Time Series - Double Exponential Smoothing | | | | | | | | | | |
| 3 | Outpua Navigator | | | | | | | | | | |
| 4 | lnouts | ElledModel | Eesecast | | | | | | | | |
| 5 | Elapsed Time | Eror Measuest Traininal | | Error Messures(Validationl | | | | | | | |
| $\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$ | | | ted | | 684530657
 91197E-15
 A.
 A.
 es | | | | | | |
| 24 | Fitted Model | | | | | | | | | | |
| 26 | | Year | Actual | Forecasi | Resictuals | | | | | | |
| 27 | | 1360 | 434329000 | 4542334223 | -19804422.26 | | | | | | |
| 28 | | 1961 | 420423000 | 455021772 | -35598771.99 | | PI | ual | ast | D | |
| 29 | | 1962 | 439043000 | 447066558.2 | -8023858.184 | | | | | | |
| 30 | | 1593 | 477195000 | 456597818.2 | 2020718176 | | | | | | |
| 31 32 | | 1984 1565 | 504182000 | 48852337390.6 | ${ }^{17948809388}$ | | | | | | |
| 32 33 | | 1555 1956 | 526354000 54682000 | 513833427.1
 53825994.4 | 13020572.85 856054592 | | | | | | |
| 34 | | 1967 | 564882000 | 55953447.12 | 534728766 | ${ }_{5}^{\circ} 80$ | | | | | |
| 35 | | 1588 | 556705000 | 578808555.6 | . 21902555.58 | ${ }_{6}^{6} 60$ | | | | | |
| 36 37 | | 1959 | 570978000 | $579029 \mathrm{LL1}$. . | - 5051121793 | | | | | | |
| 38 | | \$971 | 560915000 | 5889314191 6205855817 | 23725808.93 .5965561 .67 | | | | | | |
| 39 | | 1972 | 602492000 | 595156460.7 | 73355393 | | | | | | |
| 40 | | 1873 | 598568000 | 615591899.2 | -7023399.21 | | | | | | |
| 41 | | 1974 | 610023000 | 619351897.5 | .93288877.536 | | | | | | |
| 42 | | 1975 | 65664000 | 6283795181 | 2628648185 | | | | | | |
| 43 | | 1976 | 68993000 | 651769844.5 | 234385.45 | | | | | | |
| 44 | | 1977 | 697205000 | 693025580.9 | 4779479076 | | | | | | |
| 45 46 | | 1978 | 670164000 | 71380058.4 | -41156058.38 | | | Act | For | | |
| 46 47 | | 1779 | 78134000 | 6988547023 | 82579297,77 | | | | | | |
| | | 1580 | 829700000 | 7704s5300.2 | 59203699.83 | | | | | | |

In Chapter 8, we noted that an important assumption for using regression analysis is the lack of autocorrelation among the data. When autocorrelation is present, successive observations are correlated with one another; for example, large observations tend to follow other large observations, and small observations also tend to follow one another. This can often be seen by examining the residual plot when the data are ordered by time. Figure 9.19 shows the time-ordered residual plot from the Excel Regression tool for the coal-production example. The residuals do not appear to be random; rather, successive

Figure: 9.19
Residual Plot for Linear Regression Forecasting Model

observations seem to be related to one another. This suggests autocorrelation, indicating that other approaches, called autoregressive models, are more appropriate. However, these are more advanced than the level of this book and are not discussed here.

Forecasting Time Series with Seasonality

Quite often, time-series data exhibit seasonality, especially on an annual basis. We saw an example of this in Figure 9.2. When time series exhibit seasonality, different techniques provide better forecasts than the ones we have described.

Regression-Based Seasonal Forecasting Models

One approach is to use linear regression. Multiple linear regression models with categorical variables can be used for time series with seasonality. To do this, we use dummy categorical variables for the seasonal components.

EXAMPLE 9.15 Regression-Based Forecasting for Natural Gas Usage

With monthly data, as we have for natural gas usage in the Gas \& Electric Excel file, we have a seasonal categorical variable with $k=12$ levels. As discussed in Chapter 8, we construct the regression model using $k-1$ dummy variables. We will use January as the reference month; therefore, this variable does not appear in the model:

$$
\begin{aligned}
\text { gas usage }= & \boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \text { time }+\boldsymbol{\beta}_{2} \text { February }+\boldsymbol{\beta}_{3} \text { March } \\
& +\boldsymbol{\beta}_{4} \text { April }+\boldsymbol{\beta}_{5} \text { May }+\boldsymbol{\beta}_{6} \text { June }+\boldsymbol{\beta}_{7} \text { July } \\
& +\boldsymbol{\beta}_{8} \text { August }+\boldsymbol{\beta}_{9} \text { September }+\boldsymbol{\beta}_{10} \text { October } \\
& +\boldsymbol{\beta}_{11} \text { November }+\boldsymbol{\beta}_{12} \text { December }
\end{aligned}
$$

This coding scheme results in the data matrix shown in Figure 9.20. This model picks up trends from the regression coefficient for time and seasonality from the dummy variables for each month. The forecast for the next January will be $\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}(25)$. The variable coefficients (betas) for each of the other 11 months will show the adjustment relative to January. For example, the forecast for next February will be $\beta_{0}+\beta_{1}(26)+\beta_{2}(1)$, and so on.

Figure 9.21 shows the results of using the Regression tool in Excel after eliminating insignificant variables (time and Feb). Because the data show no clear linear trend, the
variable time could not explain any significant variation in the data. The dummy variable for February was probably insignificant because the historical gas usage for both January and February were very close to each other. The R^{2} for this model is 0.971 , which is very good. The final regression model is

$$
\begin{aligned}
\text { gas usage }= & 236.75-36.75 \text { March }-99.25 \text { April } \\
& -192.25 \text { May }-203.25 \text { June }-208.25 \text { July } \\
& - \text { 209.75 August }-208.25 \text { September } \\
& -196.75 \text { October }-149.75 \text { November } \\
& -43.25 \text { December }
\end{aligned}
$$

Figure : 9.20 :
Data Matrix for Seasonal Regression Model

| | A | B | C | D | E | F | G | H | 1 | J | K | L | M | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Gas and Electric Usage | | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | | |
| 3 | Month | Gas Use | Time | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| 4 | Jan | 244 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | Feb | 228 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | Mar | 153 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | Apr | 140 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | May | 55 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | Jun | 34 | 6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | Jul | 30 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 11 | Aug | 28 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 12 | Sep | 29 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 13 | Oct | 41 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 14 | Nov | 88 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 15 | Dec | 199 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 16 | Jan | 230 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 17 | Feb | 245 | 14 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 18 | Mar | 247 | 15 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 19 | Apr | 135 | 16 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 20 | May | 34 | 17 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 21 | Jun | 33 | 18 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 22 | Jul | 27 | 19 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 23 | Aug | 26 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 24 | Sep | 28 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 25 | Oct | 39 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
| 26 | Nov | 86 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 27 | Dec | 188 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

| | A | B | C | D | E | F | G | H | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | | | |
| 2 | | | | | | | | | |
| 3 | Regression Statistics | | | | | | | | |
| 4 | Multiple R | 0.985480895 | | | | | | | |
| 5 | R Square | 0.971172595 | | | | | | | |
| 6 | Adjusted R Square | 0.948997667 | | | | | | | |
| 7 | Standard Error | 19.54432831 | | | | | | | |
| 8 | Observations | 24 | | | | | | | |
| 9 | | | | | | | | | |
| 10 | ANOVA | | | | | | | | |
| 11 | | df | SS | MS | F | Significance F | | | |
| 12 | Regression | 10 | 167292.2083 | 16729.22083 | 43.79597661 | $2.33344 \mathrm{E}-08$ | | | |
| 13 | Residual | 13 | 4965.75 | 381.9807692 | | | | | |
| 14 | Total | 23 | 172257.9583 | | | | | | |
| 15 | | | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% | Lower 95.0\% | Upper 95.0\% |
| 17 | Intercept | 236.75 | 9.772164157 | 24.22697738 | 3.33921E-12 | 215.6385228 | 257.8614772 | 215.6385228 | 257.8614772 |
| 18 | Mar | -36.75 | 16.92588482 | -2.171230656 | 0.049016211 | -73.31615105 | -0.183848953 | -73.31615105 | -0.183848953 |
| 19 | Apr | -99.25 | 16.92588482 | -5.863799799 | $5.55744 \mathrm{E}-05$ | -135.816151 | -62.68384895 | -135.816151 | -62.68384895 |
| 20 | May | -192.25 | 16.92588482 | -11.35834268 | 4.02824E-08 | -228.816151 | -155.683849 | -228.816151 | -155.683849 |
| 21 | Jun | -203.25 | 16.92588482 | -12.00823485 | $2.07264 \mathrm{E}-08$ | -239.816151 | -166.683849 | -239.816151 | -166.683849 |
| 22 | Jul | -208.25 | 16.92588482 | -12.30364038 | 1.54767E-08 | -244.816151 | -171.683849 | -244.816151 | -171.683849 |
| 23 | Aug | -209.75 | 16.92588482 | -12.39226204 | 1.41949E-08 | -246.316151 | -173.183849 | -246.316151 | -173.183849 |
| 24 | Sep | -208.25 | 16.92588482 | -12.30364038 | 1.54767E-08 | -244.816151 | -171.683849 | -244.816151 | -171.683849 |
| 25 | Oct | -196.75 | 16.92588482 | -11.62420766 | 3.05791E-08 | -233.316151 | -160.183849 | -233.316151 | -160.183849 |
| 26 | Nov | -149.75 | 16.92588482 | -8.847395666 | 7.30451E-07 | -186.316151 | -113.183849 | -186.316151 | -113.183849 |
| 27 | Dec | -43.25 | 16.92588482 | -2.555257847 | 0.023953114 | -79.81615105 | -6.683848953 | -79.81615105 | -6.683848953 |

Figure : 9.21

Holt-Winters Forecasting for Seasonal Time Series

The methods we describe here and in the next section are based on the work of two researchers, C.C. Holt, who developed the basic approach, and P.R. Winters, who extended Holt's work. Hence, these approaches are commonly referred to as Holt-Winters models. Holt-Winters models are similar to exponential smoothing models in that smoothing constants are used to smooth out variations in the level and seasonal patterns over time. For time series with seasonality but no trend, XLMiner supports a Holt-Winters method but does not have the ability to optimize the parameters.

EXAMPLE 9.16 Forecasting Natural Gas Usage Using Holt-Winters No-Trend Model

Figure 9.22 shows the dialog for the Holt-Winters smoothing model with no trend for the natural gas data in the Gas \& Electric Excel file in Figure 9.2. In the Parameters pane, the value of Period is the length of the season, in this case, 12 months. Note that we have two complete seasons of data. Because the procedure does not optimize the parameters, you will generally
have to experiment with the smoothing constants α and γ (gamma) that apply to the level and seasonal factors in the model. Figure 9.23 shows a portion of the output. We see that this choice of parameters results in a fairly close forecast with low error metrics. The forecasts at the bottom of the output provide point estimates along with confidence intervals.

Figure : 9.22 :
XLMiner Holt-Winters Smoothing No-Trend Model Dialog

Holt-Winters Models for Forecasting Time Series with Seasonality and Trend

Many time series exhibit both trend and seasonality. Such might be the case for growing sales of a seasonal product. These models combine elements of both the trend and seasonal models. Two types of Holt-Winters smoothing models are often used.

Figure : 9.23
Portion of XLMiner Output for Forecasting Natural Gas Usage

The Holt-Winters additive model is based on the equation

$$
\begin{equation*}
F_{t+1}=a_{t}+b_{t}+S_{t-s+1} \tag{9.8}
\end{equation*}
$$

and the Holt-Winters multiplicative model is

$$
\begin{equation*}
F_{t+1}=\left(a_{t}+b_{t}\right) S_{t-s+1} \tag{9.9}
\end{equation*}
$$

The additive model applies to time series with relatively stable seasonality, whereas the multiplicative model applies to time series whose amplitude increases or decreases over time. Therefore, a chart of the time series should be viewed first to identify the appropriate type of model to use. Three parameters, α, β, and γ, are used to smooth the level, trend, and seasonal factors in the time series. XLMiner supports both models.

EXAMPLE 9.17 Forecasting New Car Sales Using Holt-Winters Models

Figure 9.24 shows a portion of the Excel file New Car Sales, which contain 3 years of monthly retail sales' data. There is clearly a stable seasonal factor in the time series, along with an increasing trend; therefore, the Holt-Winters additive model would appear to be the most appropriate. In XLMiner, choose Smoothing/ Holt-Winters/Additive from the Time-Series group.

As with other procedures, some experimentation is necessary to identify the best parameters for the model. The dialog in Figure 9.25 shows the default values. In the results shown in Figure 9.26, you can see that the forecasts do not track the data very well. This may be due to the low value of γ used to smooth out the seasonal factor. We leave it to you to experiment to find a better model.

Figure : 9.24 :
Portion of Excel File New Car Sales

Figure : 9.25
Holt-Winters Smoothing Additive Model Dialog

| | A | B | C | D | E | F | G | H | 1 | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | New Car Retail Sales | | | | | | | | | | | |
| 2 | | | | | | | | | | | | |
| 3 | Year | Month | Units | | | | | | | | | |
| 4 | 1 | Jan | 39,810 | | | | | | | | | |
| 5 | 1 | Feb | 40,081 | | | | ev | S | | | | |
| 6 | 1 | Mar | 47,440 | | | | | | | | | |
| 7 | 1 | Apr | 47,297 | 65,000 | | | | | | | | |
| 8 | 1 | May | 49,211 | 60,000 | | | | | | | | |
| 9 | 1 | Jun | 51,479 | | | | | | | | | |
| 10 | 1 | Jul | 46,466 | 55,000 | | | | | | | | |
| 11 | 1 | Aug | 45,208 | 50,000 | | | | | | | | |
| 12 | 1 | Sep | 44,800 | | | | | | | | | |
| 13 | 1 | Oct | 46,989 | 45,000 | | | | | | | | |
| 14 | 1 | Nov | 42,161 | 40,000 | | | | | | | | |
| 15 | 1 | Dec | 44,186 | | | | | | | | | |
| 16 | 2 | Jan | 42,227 | 35,000 | | | | | | | | |
| 17 | 2 | Feb | 45,422 | 30,000 | | | | | | | | |
| 18 | 2 | Mar | 54,075 | | | | | | | | | |
| 19 | 2 | Apr | 50,926 | | | | | | | | | |
| 20 | 2 | May | 53,572 | | | | | | | | | |

Selecting Appropriate Time-Series-Based Forecasting Models

Table 9.1 summarizes the choice of forecasting approaches that can be implemented by XLMiner based on characteristics of the time series.

Table : 9.1 :
Forecasting Model Choice

| | No Seasonality | Seasonality |
| :--- | :--- | :--- |
| No trend | Simple moving average or
 simple exponential smoothing | Holt-Winters no-trend smoothing
 model or multiple regression |
| Trend | Double exponential
 smoothing | Holt-Winters additive or Holt-Winters
 multiplicative model |

Figure : 9.26 :
Results form Holt-Winters Additive Model for Forecasting New-Car Sales

Regression Forecasting with Causal Variables

In many forecasting applications, other independent variables besides time, such as economic indexes or demographic factors, may influence the time series. For example, a manufacturer of hospital equipment might include such variables as hospital capital spending and changes in the proportion of people over the age of 65 in building models to forecast future sales. Explanatory/causal models, often called econometric models, seek to identify factors that explain statistically the patterns observed in the variable being forecast, usually with regression analysis. We will use a simple example of forecasting gasoline sales to illustrate econometric modeling.

EXAMPLE 9.18 Forecasting Gasoline Sales Using Simple Linear Regression

Figure 9.27 shows gasoline sales over 10 weeks during June through August along with the average price per galIon and a chart of the gasoline sales time series with a fitted trendline (Excel file Gasoline Sales). During the summer months, it is not unusual to see an increase in sales as more people go on vacations. The chart shows a linear
trend, although R^{2} is not very high. The trendline is:

$$
\text { sales }=4,790.1+812.99 \text { week }
$$

Using this model, we would predict sales for week 11 as

$$
\text { sales }=4,790.1+812.99(11)=13,733 \text { gallons }
$$

Figure : 9.27
Gasoline Sales Data and Trendline

In the gasoline sales data, we also see that the average price per gallon changes each week, and this may influence consumer sales. Therefore, the sales trend might not simply be a factor of steadily increasing demand, but it might also be influenced by the average price per gallon. The average price per gallon can be considered as a causal variable. Multiple linear regression provides a technique for building forecasting models that incorporate not only time, but other potential causal variables also.

EXAMPLE 9.19 Incorporating Causal Variables in a Regression-Based Forecasting Model

For the gasoline sales data, we can incorporate the price/gallon by using two independent variables. This results in the multiple regression model
sales $=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}$ week $+\boldsymbol{\beta}_{2}$ price $/$ gallon
The results are shown in Figure 9.28, and the regression model is
sales $=72333.08+508.67$ week -16463.2 price $/$ gallon

Notice that the R^{2} value is higher when both variables are included, explaining more than 86% of the variation in the data. If the company estimates that the average price for the next week will drop to $\$ 3.80$, the model would forecast the sales for week 11 as

$$
\begin{aligned}
\text { sales } & =72333.08+508.67(11)-16463.2(3.80) \\
& =15,368 \text { gallons }
\end{aligned}
$$

The Practice of Forecasting

Surveys of forecasting practices have shown that both judgmental and quantitative methods are used for forecasting sales of product lines or product families as well as for broad company and industry forecasts. Simple time-series models are used for short- and medium-range forecasts, whereas regression analysis is the most popular method for longrange forecasting. However, many companies rely on judgmental methods far more than quantitative methods, and almost half judgmentally adjust quantitative forecasts. In this chapter, we focus on these three approaches to forecasting.

In practice, managers use a variety of judgmental and quantitative forecasting techniques. Statistical methods alone cannot account for such factors as sales promotions, unusual environmental disturbances, new product introductions, large one-time orders, and

Figure : 9.28 :
Regression Results for Gasoline Sales

| | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SUMMARY OUTPUT | | | | | | |
| 2 | | | | | | | |
| 3 | Regression S | tatistics | | | | | |
| 4 | Multiple R | 0.930528528 | | | | | |
| 5 | R Square | 0.865883342 | | | | | |
| 6 | Adjusted R Square | 0.827564297 | | | | | |
| 7 | Standard Error | 1235.400329 | | | | | |
| 8 | Observations | 10 | | | | | |
| 9 | | | | | | | |
| 10 | ANOVA | | | | | | |
| 11 | | df | SS | MS | F | Significance F | |
| 12 | Regression | 2 | 68974748.7 | 34487374.35 | 22.59668368 | 0.000883465 | |
| 13 | Residual | 7 | 10683497.8 | 1526213.972 | | | |
| 14 | Total | 9 | 79658246.5 | | | | |
| 15 | | | | | | | |
| 16 | | Coefficients | Standard Error | t Stat | P-value | Lower 95\% | Upper 95\% |
| 17 | Intercept | 72333.08447 | 21969.92267 | 3.292368642 | 0.013259225 | 20382.47252 | 124283.6964 |
| 18 | Week | 508.6681395 | 168.1770861 | 3.024598364 | 0.019260863 | 110.9925232 | 906.3437559 |
| 19 | Price/Gallon | -16463.19901 | 5351.082403 | -3.076611005 | 0.017900405 | -29116.49823 | -3809.899786 |

so on. Many managers begin with a statistical forecast and adjust it to account for intangible factors. Others may develop independent judgmental and statistical forecasts and then combine them, either objectively by averaging or in a subjective manner. It is important to compare quantitatively generated forecasts to judgmental forecasts to see if the forecasting method is adding value in terms of an improved forecast. It is impossible to provide universal guidance as to which approaches are best, because they depend on a variety of factors, including the presence or absence of trends and seasonality, the number of data points available, length of the forecast time horizon, and the experience and knowledge of the forecaster. Often, quantitative approaches will miss significant changes in the data, such as reversal of trends, whereas qualitative forecasts may catch them, particularly when using indicators as discussed earlier in this chapter.

Analytics in Practice: Forecasting at NBC Universal ${ }^{1}$

NBC Universal (NBCU), a subsidiary of the General Electric Company (GE), is one of the world's leading media and entertainment companies in the distribution, production, and marketing of entertainment, news, and information. The television broadcast year in the United States starts in the third week of September. The major broadcast networks announce their programming schedules for the new broadcast year in the middle of May. Shortly thereafter, the sale of advertising time, which generates the majority of revenues, begins. The broadcast networks sell 60% to 80% of their airtime inventory during a brief period starting in late May and lasting

2 to 3 weeks. This sales period is known as the upfront market. Immediately after announcing their program schedules, the networks finalize their ratings forecasts and estimate the market demand. The ratings forecasts are projections of the numbers of people in each of several demographic groups who are expected to watch each airing of the shows in the program schedule for the entire broadcast year. After they finalize their ratings projections and marketdemand estimates, the networks set the rate cards that contain the prices for commercials on all their shows and develop pricing strategies.
(continued)

[^43]Forecasting upfront market demand has always been a challenge. NBCU initially relied on historical patterns, expert knowledge, and intuition for estimating demand. Later, it tried time-series forecasting models based on historical demand and leading economic indicator data and implemented the models in a Microsoft Excel-based system. However, these models proved to be unsatisfactory because of the unique nature of NBCU's demand population. The time-series models had fit and prediction errors in the range of 5% to 12% based on the historical data. These errors were considered reasonable, but the sales executives were reluctant to use the models because the models did not consider several qualitative factors that they believe influence the demand. As a result, they did not trust the forecasts that these models generated; therefore, they had never used them. Analytics staff at NBCU then decided to develop a qualitative demand forecasting model that captures the knowledge of the sales experts.

Their approach incorporates the Delphi method and "grass-roots forecasting," which is based on the concept of asking those who are close to the end consumer, such as salespeople, about the customers' purchasing plans, along with historical data to develop forecasts. Since 2004, more than 200 sales

and finance personnel at NBCU have been using the system to support sales decisions during the upfront market when NBCU signs advertising deals worth more than $\$ 4.5$ billion. The system enables NBCU to sell and analyze pricing scenarios across all NBCU's television properties with ease and sophistication while predicting demand with a high accuracy. NBCU's sales leaders credit the system with having given them a unique competitive advantage.

Key Terms

Cyclical effect
Delphi method
Double exponential smoothing
Double moving average
Econometric model
Historical analogy
Holt-Winters additive model
Holt-Winters models
Holt-Winters multiplicative model
Index
Indicator

Mean absolute deviation (MAD)
Mean absolute percentage error (MAPE)
Mean square error (MSE)
Root mean square error (RMSE)
Seasonal effect
Simple exponential smoothing
Simple moving average
Smoothing constant
Stationary time series
Time series
Trend

Problems and Exercises

1. Identify some business applications in which judgmental forecasting techniques such as historical analogy and the Delphi method would be useful.
2. Search the Conference Board's Web site to find business cycle indicators, and the components and
methods adopted to compute the same. Write a short report about your findings.
3. The Excel file Energy Production \& Consumption provides data on production, imports, exports, and consumption. Develop line charts for each variable
and identify key characteristics of the time series (e.g., trends or cycles). Are any of these time series stationary? In forecasting the future, discuss whether all or only a portion of the data should be used.
4. The Excel file New Registered Users provides data on monthly new registrations on a Web site for four years. Compare the three-month and twelve-month moving average forecasts using the MAD criterion. Explain which model yields better results and why.
5. The Excel file Closing Stock Prices provides data for four stocks and the Dow Jones Industrials Index over a 1-month period.
a. Develop spreadsheet models for forecasting each of the stock prices using simple 2-period moving average and simple exponential smoothing with a smoothing constant of 0.3 .
b. Compare your results to the outputs from Excel's Data Analysis tools.
c. Using MAD, MSE, and MAPE as guidance, find the best number of moving average periods and best smoothing constant for exponential smoothing.
d. Use XLMiner to find the best number of periods for the moving average forecast and optimal exponential smoothing constant.
6. For the data in the Excel file Gasoline Prices do the following:
a. Develop spreadsheet models for forecasting prices using simple moving average and simple exponential smoothing.
b. Compare your results to the outputs from Excel's Data Analysis tools.
c. Using MAD, MSE, and MAPE as guidance, find the best number of moving average periods and best smoothing constant for exponential smoothing.
d. Use XLMiner to find the best number of periods for the moving average forecast and optimal exponential smoothing constant.
7. Consider the prices for the DJ Industrials in the Excel file Closing Stock Prices. The data appear to have a linear trend over the time period provided.
a. Use simple linear regression to forecast the data. What would be the forecasts for the next 3 days?
b. Use the double exponential smoothing procedure in XLMiner to find forecasts for the next 3 days.
8. Consider the data in the Excel file Consumer Price Index.
a. Use simple linear regression to forecast the data. What would be the forecasts for the next 2 years?
b. Use the double exponential smoothing procedure in XLMiner to find forecasts for the next 2 years.
9. Consider the data in the Excel file Internet Users. Use simple linear regression to forecast the data. What would be the forecast for the next three years?
10. Develop a multiple linear regression model with categorical variables that incorporate seasonality for forecasting the deaths caused by accidents in the U.S. Use the data for years 1976 and 1977 in the Excel file Accidental Deaths. Use the model to generate forecasts for the next nine months, and compare the forecasts to actual observations noted in the data for the year 1978.
11. Develop a multiple regression model with categorical variables that incorporate seasonality for forecasting sales using the last three years of data in the Excel file New Car Sales.
12. Develop a multiple regression model with categorical variables that incorporate seasonality for forecasting housing starts beginning in June 2006 using the data in the Excel file Housing Starts.
13. The Excel file Census Data provides annual average expenditures and income levels of the people in the U.S. Develop forecasting models for each of the data type. What do your models predict for the next two years?.
14. Use the Holt-Winters no-trend model to find the best model to find forecasts for the next 12 months in the Excel file Housing Starts.
15. The Excel file CD Interest Rates provides annual average interest rates on 6 -month certificate of deposits. Compare the Holt-Winters additive and multiplicative models using XLMiner with the default parameters and a season of 6 years. Why does the multiplicative model provide better results?
16. The Excel file Olympic Track and Field Data provides the gold medal-winning distances for the high jump, discus, and long jump for the modern Olympic Games. Develop forecasting models for each of the events. What do your models predict for the next Olympics?
17. Choose an appropriate forecasting technique for the data in the Excel file Coal Consumption and find the
best forecasting model. Explain how you would use the model to forecast and how far into the future it would be appropriate to forecast.
18. Choose an appropriate forecasting technique for the data in the Excel file DJIA December Close and find the best forecasting model. Explain how you would use the model to forecast and how far into the future it would be appropriate to forecast.
19. Choose an appropriate forecasting technique for the data in the Excel file Inflation Rates US and find the best forecasting model. Explain how you would use the model to forecast, and how far into the future it would be appropriate to forecast.
20. Choose an appropriate forecasting technique for the data in the Excel file Mortgage Rates and find the best forecasting model. Explain how you would use the model to forecast and how far into the future it would be appropriate to forecast.
21. Choose an appropriate forecasting technique for the data in the Excel file Gaussian Response and find the
best forecasting model. Explain how you would use the model to forecast and how far into the future it would be appropriate to forecast.
22. Choose an appropriate forecasting technique for the data in the Excel file Treasury Yield Rates and find the best forecasting model. Explain how you would use the model to forecast and how far into the future it would be appropriate to forecast.
23. Data in the Excel File Microprocessor Data shows the demand for one type of chip used in industrial equipment from a small manufacturer.
a. Construct a chart of the data. What appears to happen when a new chip is introduced?
b. Develop a causal regression model to forecast demand that includes both time and the introduction of a new chip as explanatory variables.
c. What would the forecast be for the next month if a new chip is introduced? What would it be if a new chip is not introduced?

Case: Performance Lawn Equipment

An important part of planning manufacturing capacity is having a good forecast of sales. Elizabeth Burke is interested in forecasting sales of mowers and tractors in each marketing region as well as industry sales to assess future
changes in market share. She also wants to forecast future increases in production costs. Develop forecasting models for these data and prepare a report of your results with appropriate charts and output from Excel.

kensoh/Shutterstock.com
Learning Objectives
After studying this chapter, you will be able to:
Define data mining and some common approaches used in data mining.
Explain how cluster analysis is used to explore and reduce data.
Apply cluster analysis techniques using XLMiner.
Explain the purpose of classification methods, how to measure classification performance, and the use of training and validation data.

Apply k-Nearest Neighbors, discriminant analysis, and logistic regression for classification using XLMiner.
Describe association rule mining and its use in market basket analysis.
Use XLMiner to develop association rules.

- Use correlation analysis for cause-and-effect modeling

In an article in Analytics magazine, Talha Omer observed that using a cell phone to make a voice call leaves behind a significant amount of data. "The cell phone provider knows every person you called, how long you talked, what time you called and whether your call was successful or if was dropped. It also knows where you are, where you make most of your calls from, which promotion you are responding to, how many times you have bought before, and so on." ${ }^{1}$ Considering the fact that the vast majority of people today use cell phones, a huge amount of data about consumer behavior is available. Similarly, many stores now use loyalty cards. At supermarket, drugstores, retail stores, and other outlets, loyalty cards enable consumers to take advantage of sale prices available only to those who use the card. However, when they do, the cards leave behind a digital trail of data about purchasing patterns. How can a business exploit these data? If they can better understand patterns and hidden relationships in the data, they can not only understand buying habits but also customize advertisements, promotions, coupons, and so on, for each individual customer and send targeted text messages and e-mail offers (we're not talking spam here, but registered users who opt into such messages).

Data mining is a rapidly growing field of business analytics that is focused on better understanding characteristics and patterns among variables in large databases using a variety of statistical and analytical tools. Many of the tools that we have studied in previous chapters, such as data visualization, data summarization, PivotTables, correlation and regression analysis, and other techniques, are used extensively in data mining. However, as the amount of data has grown exponentially, many other statistical and analytical methods have been developed to identify relationships among variables in large data sets and understand hidden patterns that they may contain.

In this chapter, we introduce some of the more popular methods and use XLMiner software to implement them in a spreadsheet environment. Many datamining procedures require advanced statistical knowledge to understand the underlying theory. Therefore, our focus is on simple applications and understanding the purpose and application of the techniques rather than their theoretical underpinnings. ${ }^{2}$ In addition, we note that this chapter is not intended to cover all aspects of data mining. Many other techniques are available in XLMiner that are not described in this chapter.
${ }^{1}$ Talha Omer, "From Business Intelligence to Analytics," Analytics (January/February 2011): 20. www.analyticsmagazine.com.
${ }^{2}$ Many of the descriptions of techniques supported by XLMiner have been adapted from the XLMiner help files. Please note that the example output screen shots in this chapter may differ from the newest release of XLMiner.

The Scope of Data Mining

Data mining can be considered part descriptive and part prescriptive analytics. In descriptive analytics, data-mining tools help analysts to identify patterns in data. Excel charts and PivotTables, for example, are useful tools for describing patterns and analyzing data sets; however, they require manual intervention. Regression analysis and forecasting models help us to predict relationships or future values of variables of interest. As some researchers observe, "the boundaries between prediction and description are not sharp (some of the predictive models can be descriptive, to the degree that they are understandable, and vice versa). ${ }^{3}$ In most business applications, the purpose of descriptive analytics is to help managers predict the future or make better decisions that will impact future performance, so we can generally state that data mining is primarily a predictive analytic approach.

Some common approaches in data mining include the following:

- Data Exploration and Reduction. This often involves identifying groups in which the elements of the groups are in some way similar. This approach is often used to understand differences among customers and segment them into homogenous groups. For example, Macy's department stores identified four lifestyles of its customers: "Katherine," a traditional, classic dresser who doesn't take a lot of risks and likes quality; "Julie," neotraditional and slightly more edgy but still classic; "Erin," a contemporary customer who loves newness and shops by brand; and "Alex," the fashion customer who wants only the latest and greatest (they have male versions also). ${ }^{4}$ Such segmentation is useful in design and marketing activities to better target product offerings. These techniques have also been used to identify characteristics of successful employees and improve recruiting and hiring practices.
- Classification. Classification is the process of analyzing data to predict how to classify a new data element. An example of classification is spam filtering in an e-mail client. By examining textual characteristics of a message (subject header, key words, and so on), the message is classified as junk or not. Classification methods can help predict whether a credit-card transaction may be fraudulent, whether a loan applicant is high risk, or whether a consumer will respond to an advertisement.
- Association. Association is the process of analyzing databases to identify natural associations among variables and create rules for target marketing or buying recommendations. For example, Netflix uses association to understand what types of movies a customer likes and provides recommendations based on the data. Amazon.com also makes recommendations based on past purchases. Supermarket loyalty cards collect data on customers' purchasing habits and print coupons at the point of purchase based on what was currently bought.
- Cause-and-effect modeling. Cause-and-effect modeling is the process of developing analytic models to describe the relationship between metrics that drive business performance-for instance, profitability, customer satisfaction, or employee satisfaction. Understanding the drivers of performance can

[^44]lead to better decisions to improve performance. For example, the controls group of Johnson Controls, Inc., examined the relationship between satisfaction and contract-renewal rates. They found that 91% of contract renewals came from customers who were either satisfied or very satisfied, and customers who were not satisfied had a much higher defection rate. Their model predicted that a one-percentage-point increase in the overall satisfaction score was worth $\$ 13$ million in service contract renewals annually. As a result, they identified decisions that would improve customer satisfaction. ${ }^{5}$ Regression and correlation analysis are key tools for cause-and-effect modeling.

Data Exploration and Reduction

Some basic techniques in data mining involve exploring data and "data reduction"that is, breaking down large sets of data into more-manageable groups or segments that provide better insight. We have seen numerous techniques earlier in this book for exploring data and data reduction. For example, charts, frequency distributions and histograms, and summary statistics provide basic information about the characteristics of data. PivotTables, in particular, are very useful in exploring data from different perspectives and for data reduction.

XLMiner provides a variety of tools and techniques for data exploration that complement or extend the concepts and tools we have studied in previous chapters. These are found in the Data Analysis group of the XLMiner ribbon, shown in Figure 10.1.

Sampling

When dealing with large data sets and "big data," it might be costly or time-consuming to process all the data. Instead, we might have to use a sample. We introduced sampling procedures in Chapter 6. XLMiner can sample from an Excel worksheet or from a Microsoft Access database.

EXAMPLE 10.1 Using XLMiner to Sample from a Worksheet

Figure 10.2 shows a portion of the Base Data worksheet Excel File Credit Risk Data. While certainly not "big data," it consists of 425 records. From the Data Analysis group in the XLMiner ribbon, click the Sample button and choose Sample from Worksheet. Make sure the Data range is correct and includes headers. Select all variables in the left window pane and move them to the right using the \geq button (which changes to a \leq if all variables are moved to the right). Choose the
options in the Sampling Options section; in this case, we selected 20 samples (without replacement unless the Sample with replacement box is checked-this avoids duplicates) using simple random sampling. By entering a value in the Set seed box, you can obtain the same results at another time for control purposes; otherwise a different random sample will be selected. Figure 10.3 shows the completed dialog and Figure 10.4 shows the results.

[^45]Figure : 10.1 :

XLMiner Ribbon

| | A | B | C | D | E | F | G | H | 1 | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Credit Risk Data | | | | | | | | | | | |
| 2 | | | | | | | | | | | | |
| 3 | Loan Purpose | Checking | Savings | Months Customer | Months Employed | Gender | Marital Status | Age | Housing | Years | Job | Credit Risk |
| 4 | Small Appliance | S0 | \$739 | 13 | 12 | M | Single | 23 | Own | 3 | Unskilled | Low |
| 5 | Furniture | \$0 | \$1,230 | 25 | 0 | M | Divorced | 32 | Own | 1 | Skilled | High |
| 6 | New Car | S0 | \$389 | 19 | 119 | M | Single | 38 | Own | 4 | Management | High |
| 7 | Furniture | \$638 | \$347 | 13 | 14 | M | Single | 36 | Own | 2 | Unskilled | High |
| 8 | Education | \$963 | \$4,754 | 40 | 45 | M | Single | 31 | Rent | 3 | Skilled | Low |
| 9 | Furniture | \$2,827 | \$0 | 11 | 13 | M | Married | 25 | Own | 1 | Skilled | Low |
| 10 | New Car | \$0 | \$229 | 13 | 16 | M | Married | 26 | Own | 3 | Unskilled | Low |
| 11 | Business | \$0 | \$533 | 14 | 2 | M | Single | 27 | Own | 1 | Unskilled | Low |

Figure : 10.2 :

Portion of Excel File Credit Risk Data

Figure : 10.3
XLMiner Sampling Dialog

Figure : 10.4 :
XLMiner Sampling Results

| | A | B | C | D | E | F | G | H | 1 | J | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | | XLMiner: Sample from Worksheet | | | | | | | | | | | |
| 4 | | Output Navigator | | | | | | Elapsed Times in Milliseconds | | | | | |
| 5 | | Sample Variables | | Sample Data | | | | Sampling Time | Report Time | Total | | | |
| 6 | | | | | | | | - | 16 | 16 | | | |
| 7 | | | | | | | | | | | | | |
| 8 | | Dats | | | | | | | | | | | |
| 9 | | Workbook | | Credit Risk Data ${ }^{\text {djsx }}$ | | | | | | | | | |
| 10 | | Worksheet | | Base Data | | | | | | | | | |
| 11 | | Range | | SAS3:SLS428 | | | | | | | | | |
| 12 | | Sampling Method | | Simple Random Sampling | | | | | | | | | |
| 13 | | Sample With Replacement | | No | | | | | | | | | |
| 14 | | Rendom Seed | | 12345 | | | | | | | | | |
| 15 | | \#Records in input data | | 425 | | | | | | | | | |
| 16 | | Desired Sample Size | | 20 | | | | | | | | | |
| 17 | | \#Records sampled | | 20 | | | | | | | | | |
| 18 | | | | | | | | | | | | | |
| 19 | | Loan Purpose | Checking | Savings | Months Customer | Months Employed | Gender | Marital Status | Ag | Housing | Years | Job | Credit Risk |
| 20 | | New Car | 425 | 0 | 19 | | F | Divorced | 32 | Own | | Skilled | High |
| 21 | | Furniture | 0 | 800 | 13 | 69 | M | Single | 59 | Own | | 5killed | High |
| 22 | | New Car | 0 | 659 | 19 | | F | Divorced | 22 | Rent | | Skilled | High |
| 23 | | Furniture | 0 | 717 | 37 | 60 | M | Single | 40 | Own | | Skilled | High |
| 24 | | Business | 0 | 5180 | 22 | | M | Single | 40 | Own | | Unskilled | High |
| 25 | | Small Appliance | 0 | 503 | 13 | 62 | M | Single | 25 | Own | | Skilled | tow |
| 28 | | Furniture | 0 | 4486 | 10 | | F | Divorced | 21 | flent | | skilled | Low |
| 27 | | Small Appliance | 0 | 1218 | 13 | 38 | M | Single | 34 | Own | | Skilled | Low |
| 28 | | Small Appliance | 0 | 485 | 19 | 12 | M | Single | 23 | Own | | Skilled | Low |
| 29 | | Used Car | 109 | 540 | 37 | | M | Married | 27 | Rent | | Management | High |
| 30 | | Furniture | 0 | 0 | 31 | 53 | M | Single | 30 | Own | | Skilled | High |
| 31 | | Small Appliance | 3565 | 0 | 31 | 32 | M | Single | 35 | Own | | 5killed | tow |
| 32 | | Used Car | 0 | 396 | 49 | 73 | M | Single | 45 | Other | | Skilled | High |
| 33 | | Education | 0 | 3281 | 19 | 20 | F | Divorced | 29 | Own | | 5killed | High |
| 34 | | New Car | 0 | 713 | 13 | 29 | M | Single | 25 | Own | | Skilled | High |
| 35 | | Business | 257 | 460 | 49 | 75 | F | Divorced | 58 | flent | | 5killed | High |
| 36 | | Used Car | 0 | 612 | 49 | 32 | M | Single | 38 | Other | | Skilled | High |
| 37 | | Small Appliance | 0 | 867 | 31 | 27 | F | Divorced | 24 | Own | | Skilled | tow |
| 38 | | New Car | 461 | 140 | 19 | 32 | M | Single | 27 | flent | | Unskilled | Low |
| 39 | | New Car | 135 | 0 | 37 | | M | Single | 36 | Other | | Skilled | High |

Data Visualization

XLMiner offers numerous charts to visualize data. We have already seen many of these, such as bar, line, and scatter charts, and histograms. However, XLMiner also has the capability to produce boxplots, parallel coordinate charts, scatterplot matrix charts, and variable charts. These are found from the Explore button in the Data Analysis group.

EXAMPLE 10.2 A Boxplot for Credit Risk Data

We will construct a boxplot for the number of months employed for each marital status value from the Credit Risk Data. First, select the Chart Wizard from the Explore button in the Data Analysis group in the XLMiner tab. Select Boxplot; in the second dialog, choose Months Employed as the variable to plot on the vertical axis. In the next dialog, choose Marital Status as the variable to plot on the horizontal axis. Click Finish. The result is shown in Figure 10.5. The box range shows the 25th and 75th percentiles (the interquartile range, IQR), the solid line within the box is the median, and the dotted line within the box is the mean. The "whiskers" extend on
either side of the box to represent the minimum and maximum values in a data set. If you hover the cursor over any box, the chart will display these values. Very long whiskers suggest possible outliers in the data. You can easily see the differences in the data between those who are single as compared with those married or divorced. You can also filter the data by checking or unchecking the boxes in the filter pane to display the boxplots for only a portion of the data, for example, to compare those with a high credit risk with those with a low credit risk classification.

Figure : 10.5 :
Boxplot for Months Employed by Marital Status

Boxplots (sometimes called box-and-whisker plots) graphically display five key statistics of a data set-the minimum, first quartile, median, third quartile, and maximum-and are very useful in identifying the shape of a distribution and outliers in the data.

A parallel coordinates chart consists of a set of vertical axes, one for each variable selected. For each observation, a line is drawn connecting the vertical axes. The point at which the line crosses an axis represents the value for that variable. A parallel coordinates chart creates a "multivariate profile," and helps an analyst to explore the data and draw basic conclusions.

EXAMPLE 10.3 A Parallel Coordinates Chart for Credit Risk Data

First, select the Chart Wizard from the Explore button in the Data Analysis group in the XLMiner tab. Select Parallel Coordinates. In the second dialog, choose Checking, Savings, Months Employed, and Age as the variables to include. Figure 10.6 shows the results. In the small drop-down box at the top, you can choose to color the lines by one of the variables; in this case,
we chose to color by credit risk. Yellow represents low credit risk, and blue represents high. We see that individuals with a low number of months employed and lower ages tend to have high credit risk as shown by the density of the blue lines. As with boxplots, you can easily filter the data to explore other combinations of variables or subsets of the data.

A scatterplot matrix combines several scatter charts into one panel, allowing the user to visualize pairwise relationships between variables.

Example of a Parallel Coordinates Plot

EXAMPLE 10.4 A Scatterplot Matrix for Credit Risk Data

Select the Chart Wizard from the Explore button in the Data Analysis group in the XLMiner tab. Select Scatterplot Matrix. In the next dialog, check the boxes for Months Customer, Months Employed, and Age and click Finish. Figure 10.7 shows the result. Along the diagonal are histograms of the individual variables. Off the diagonal are scatterplots of pairs of variables. For example, the chart in the third row and second column of the figure shows the scatter chart of Months Employed
versus Age. Note that months employed is on the x-axis and age on the y-axis. The data appear to have a slight upward linear trend, signifying that older individuals have been employed for a longer time. Note that there are two charts for each pair of variables with the axes flipped. For example, the chart in the second row and third column is the same as the one we discussed, but with age on the x-axis. As before, you can easily filter the data to create different views.

Finally, a variable plot simply plots a matrix of histograms for the variables selected.

EXAMPLE 10.5 A Variable Plot of Credit Risk Data

Select the Chart Wizard from the Explore button in the Data Analysis group in the XLMiner tab. Select Variable. In the next dialog, check the boxes for the variables you wish to include (we kept them all) and click Finish.

Figure 10.8 shows the results. This tool is much easier to use than Excel's Histogram tool, especially for many variables in a data set and you can easily filter the data to create different perspectives.

Dirty Data

It is not unusual to find real data sets that have missing values or errors. Such data sets are called "dirty" and need to be "cleaned" prior to analyzing them. Several approaches

Figure : 10.7
Example of a Scatterplot Matrix

are used for handling missing data. For example, we could simply eliminate the records that contain missing data; estimate reasonable values for missing observations, such as the mean or median value; or use a data mining procedure to deal with them. XLMiner has the capability to deal with missing data in the Transform menu in the Data Analysis group. We suggest that you consult the XLMiner User Guide from the Help menu for further information. In any event, you should try to understand whether missing data are simply random events or if there is a logical reason why they are missing. Eliminating sample data indiscriminately could result in misleading information and conclusions about the data.

Data errors can often be identified from outliers (see the discussion in Chapter 3). A typical approach is to evaluate the data with and without outliers and determine whether their impact will significantly change the conclusions, and whether more effort should be spent on trying to understand and explain them.

Cluster Analysis

Cluster analysis, also called data segmentation, is a collection of techniques that seek to group or segment a collection of objects (i.e., observations or records) into subsets or clusters, such that those within each cluster are more closely related to one another than objects assigned to different clusters. The objects within clusters should exhibit a high amount of similarity, whereas those in different clusters will be dissimilar.

Cluster analysis is a data-reduction technique in the sense that it can take a large number of observations, such as customer surveys or questionnaires, and reduce the information into smaller, homogenous groups that can be interpreted more easily. The segmentation of customers into smaller groups, for example, can be used to customize advertising or promotions. As opposed to many other data-mining techniques, cluster analysis is primarily descriptive, and we cannot draw statistical inferences about a sample using it. In addition, the clusters identified are not unique and depend on the specific procedure used; therefore, it does not result in a definitive answer but only provides new ways of looking at data. Nevertheless, it is a widely used technique.

There are two major methods of clustering-hierarchical clustering and k-means clustering. In hierarchical clustering, the data are not partitioned into a particular cluster in a single step. Instead, a series of partitions takes place, which may run from a single cluster containing all objects to n clusters, each containing a single object. Hierarchical clustering is subdivided into agglomerative clustering methods, which proceed by series of fusions of the n objects into groups, and divisive clustering methods, which separate n objects successively into finer groupings. Figure 10.9 illustrates the differences between these two types of methods.

Agglomerative techniques are more commonly used, and this is the method implemented in XLMiner. Hierarchical clustering may be represented by a two-dimensional

Figure : 10.9 :
Agglomerative versus Divisive Clustering

diagram known as a dendrogram, which illustrates the fusions or divisions made at each successive stage of analysis.

An agglomerative hierarchical clustering procedure produces a series of partitions of the data, $P_{n}, P_{n-1}, \ldots, P_{1} . P_{n}$ consists of n single-object clusters, and P_{1} consists of a single group containing all n observations. At each particular stage, the method joins together the two clusters that are closest together (most similar). At the first stage, this consists of simply joining together the two objects that are closest together. Different methods use different ways of defining distance (or similarity) between clusters.

The most commonly used measure of distance between objects is Euclidean distance. This is an extension of the way in which the distance between two points on a plane is computed as the hypotenuse of a right triangle (see Figure 10.10). The Euclidean distance measure between two points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is

$$
\begin{equation*}
\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} \tag{10.1}
\end{equation*}
$$

Some clustering methods use the squared Euclidean distance (i.e., without the square root) because it speeds up the calculations.

One of the simplest agglomerative hierarchical clustering methods is single linkage clustering, also known as the nearest-neighbor technique. The defining feature of the method is that distance between groups is defined as the distance between the closest pair of objects, where only pairs consisting of one object from each group are considered. In the single linkage method, the distance between two clusters, r and $s, D(r, s)$, is defined as the minimum distance between any object in cluster r and any object in cluster s. In other words, the distance between two clusters is given by the value of the shortest link between the clusters. At each stage of hierarchical clustering, we find the two clusters with the minimum distance between them and merge them together.

Another method that is basically the opposite of single linkage clustering is called complete linkage clustering. In this method, the distance between groups is defined as the distance between the most distant pair of objects, one from each group. A third method

Figure $\quad 10.10$:
Computing the Euclidean Distance Between Two Points

is average linkage clustering. Here the distance between two clusters is defined as the average of distances between all pairs of objects, where each pair is made up of one object from each group. Other methods are average group linkage clustering, which uses the mean values for each variable to compute distances between clusters, and Ward's hierarchical clustering method, which uses a sum-of-squares criterion. Different methods generally yield different results, so it is best to experiment and compare the results.

EXAMPLE 10.6 Clustering Colleges and Universities Data

Figure 10.11 shows a portion of the Excel file Colleges and Universities. The characteristics of these institutions differ quite widely. Suppose that we wish to cluster them into more homogeneous groups based on the median SAT, acceptance rate, expenditures/student, percentage of students in the top 10% of their high school, and graduation rate.

In XLMiner, choose Hierarchical Clustering from the Cluster menu in the Data Analysis group. In the dialog shown in Figure 10.12, specify the data range and move the variables that are of interest into the Selected Variables list. Note that we are clustering the numerical variables, so School and Type are not included. After clicking Next, the Step 2 dialog appears (see Figure 10.13). Check the box Normalize input data; this is important to ensure that the distance measure accords equal weight to each variable; without normalization, the variable with the largest scale will dominate the measure. Hierarchical clustering uses the Euclidean distance as the similarity measure for numeric data. The other two options apply only for binary (0 or 1) data. Select the clustering method you wish to use. In this case, we choose Group Average Linkage. In the final dialog (Figure 10.14), select the number of clusters. The agglomerative method of hierarchical clustering keeps forming clusters until only one cluster is left. This option lets you stop the process at a given number of clusters. We selected four clusters.

The output is saved on multiple worksheets. Figure 10.15 shows the summary of the inputs. You may use the Output Navigator bar at the top of the worksheet to display various parts of the output rather than trying to navigate through the worksheets yourself.

Clustering Stages output details the history of the cluster formation, showing how the clusters are formed at each stage of the algorithm. At various stages of the clustering process, there are different numbers of clusters. A dendrogram lets you visualize this. This is shown in Figure 10.16. The y-axis measures intercluster distance. Because of the size of the problem, each individual observation is not shown, and some of them are already clustered in the "subclusters." The Sub Cluster IDs are listed along the x-axis, with a legend below it. For example, during the clustering procedure, records 20 and 25 , and records 14 and 16 were merged; these subclusters were then merged together. At the top of the diagram, we see that all clusters are merged into a single cluster. If you draw a horizontal line through the dendogram at any value of the y-axis, you can identify the number of clusters and the observations in each of them. For example, drawing the line at the distance value of 3 , you can see that we have four clusters; just follow the subclusters at the ends of the branches to identify the individual observations in each of them.

The Predicted Clusters shows the assignment of observations to the number of clusters we specified in the input dialog, in this case four. This is shown in Figure 10.17. For instance, cluster 3 consists of only three schools, records 4, 28, and 29; and cluster 4 consists of only one observation, record 6. (You may sort the data in Excel to see this more easily.) These schools and their data are extracted in the following database:

| Cluster | School | Type | Median SAT | Acceptance Rate | Expenditures/Student | Top 10% HS Graduation $\%$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 Berkeley | University | 1176 | 37% | $\$$ | 23,665 | 95 |
| 3 Oberlin | Lib Arts | 1247 | 54% | $\$$ | 23,591 | 64 |
| 3 Occidental | Lib Arts | 1170 | 49% | $\$$ | 20,192 | 54 |
| 4 Brown | University | 1281 | 24% | $\$$ | 24,201 | 77 |

We can see that the schools in cluster 3 have quite similar profiles, whereas Cal Tech stands out considerably from the others.

| | A | B | c | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Colleges and Universities | | | | | | |
| 2 | | | | | | | |
| 3 | School | Type | Median SAT | Acceptance Rate | Expenditures/Student | Top 10\% HS | Graduation \% |
| 4 | Amherst | Lib Arts | 1315 | 22\% | \$ 26,636 | 85 | 93 |
| 5 | Barnard | Lib Arts | 1220 | 53\% | \$ 17,653 | 69 | 80 |
| 6 | Bates | Lib Arts | 1240 | 36\% | \$ 17,554 | 58 | 88 |
| 7 | Berkeley | University | 1176 | 37\% | \$ 23,665 | 95 | 68 |
| 8 | Bowdoin | Lib Arts | 1300 | 24\% | \$ 25,703 | 78 | 90 |
| 9 | Brown | University | 1281 | 24\% | \$ 24,201 | 80 | 90 |
| 10 | Bryn Mawr | Lib Arts | 1255 | 56\% | \$ 18,847 | 70 | 84 |

Figure :10.11:
Portion of the Excel File Colleges and Universities

Figure :10.12

Hierarchical Clustering Dialog, Step 1

Figure $: 10.13:$
Hierarchical Clustering
Dialog, Step 2

| Hierarchical Clustering - Step 2 of 3 | | |
| :---: | :---: | :---: |
| V Normalize input data Similarity Measure | | |
| | | |
| - Eucidean distance | \bigcirc Jaccar's coefficent | O- Matching coefficents |
| - Clusterng Method | | |
| - Single Lnkage | \bigcirc Complete Linkage | Sroup Average Linkage |
| O McQurty's Method | O Median Method | OCentroid |
| Hodp | Canced < Bock | Next> Frish |
| Retum to the previous step. | | |

Figure :10.14
Hierarchical Clustering Dialog, Step 3

Figure :10.15:

Hierarchical Clustering

Results: Inputs

Figure : 10.16 :
Hierarchical Clustering Results: Dendogram and Partial Cluster Legend

Figure :10.17:
Portion of Hierarchical Clustering Results: Predicted Clusters

Classification methods seek to classify a categorical outcome into one of two or more categories based on various data attributes. For each record in a database, we have a categorical variable of interest (e.g., purchase or not purchase, high risk or no risk), and a number of additional predictor variables (age, income, gender, education, assets, etc.). For a given set of predictor variables, we would like to assign the best value of the categorical variable. We will be illustrating various classification techniques using the Excel database Credit Approval Decisions.

A portion of this database is shown in Figure 10.18. In this database, the categorical variable of interest is the decision to approve or reject a credit application. The remaining variables are the predictor variables. Because we are working with numerical data, however, we need to code the Homeowner and Decision fields numerically. We code the Homeowner attribute " Y " as 1 and " N " as 0 ; similarly, we code the Decision attribute

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Credit Approval Decisions | | | | | |
| 2 | | | | | | |
| 3 | Homeowner | Credit Score | Years of Credit History | Revolving Balance | Revolving Utilization | Decision |
| 4 | Y | 725 | 20 | \$ 11,320 | 25\% | Approve |
| 5 | Y | 573 | 9 | \$ 7,200 | 70\% | Reject |
| 6 | Y | 677 | 11 | \$ 20,000 | 55\% | Approve |
| 7 | N | 625 | 15 | \$ 12,800 | 65\% | Reject |
| 8 | N | 527 | 12 | \$ 5,700 | 75\% | Reject |
| 9 | Y | 795 | 22 | \$ 9,000 | 12\% | Approve |
| 10 | N | 733 | 7 | \$ 35,200 | 20\% | Approve |
| 11 | N | 620 | 5 | \$ 22,800 | 62\% | Reject |
| 12 | Y | 591 | 17 | \$ 16,500 | 50\% | Reject |
| 13 | Y | 660 | 24 | \$ 9,200 | 35\% | Approve |

Figure ${ }^{10.19}$
Modified Excel File with Numerically Coded Variables

| . | A | B | C | | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Coded Credit Approval Decisions | | | | | | |
| 2 | | | | | | | |
| 3 | Homeowner | Credit Score | Years of Credit History | | Revolving Balance | Revolving Utilization | Decision |
| 4 | 1 | 725 | 20 | \$ | $11,320$ | 25\% | 1 |
| 5 | 1 | 573 | 9 | \$ | 7,200 | 70\% | 0 |
| 6 | 1 | 677 | 11 | \$ | 20,000 | 55\% | 1 |
| 7 | 0 | 625 | 15 | \$ | 12,800 | 65\% | 0 |
| 8 | 0 | 527 | 12 | \$ | 5,700 | 75\% | 0 |
| 9 | 1 | 795 | 22 | \$ | 9,000 | 12\% | 1 |
| 10 | 0 | 733 | 7 | \$ | 35,200 | 20\% | 1 |
| 11 | 0 | 620 | 5 | \$ | 22,800 | 62\% | 0 |
| 12 | 1 | 591 | 17 | \$ | 16,500 | 50\% | 0 |
| 13 | 1 | 660 | 24 | \$ | 9,200 | 35\% | 1 |

"Approve" as 1 and "Reject" as 0 . Figure 10.19 shows a portion of the modified database (Excel file Credit Approval Decisions Coded).

An Intuitive Explanation of Classification

To develop an intuitive understanding of classification, we consider only the credit score and years of credit history as predictor variables.

EXAMPLE 10.7 Classifying Credit-Approval Decisions Intuitively

Figure 10.20 shows a chart of the credit scores and years of credit history in the Credit Approval Decisions data. The chart plots the credit scores of loan applicants on the x-axis and the years of credit history on the y-axis. The large bubbles represent the applicants whose credit applications were rejected; the small bubbles represent those that were approved. With a few exceptions (the points at the bottom right corresponding to high credit scores with just a few years of credit history that were rejected), there appears to be a clear separation of the points. When the credit score is greater than 640, the applications were approved, but most applications with credit scores of 640 or less were rejected. Thus, we might propose a simple classification rule: approve an application with a credit score greater than 640.

Another way of classifying the groups is to use both the credit score and years of credit history by visually drawing a straight line to separate the groups, as shown in Figure 10.21. This line passes through the points $(763,2)$ and $(595,18)$. Using a little algebra, we can calculate the equation of the line as

$$
\text { years }=-0.095 \times \text { credit score }+74.66
$$

Therefore, we can propose a different classification rule: whenever years $+0.095 \times$ credit score ≤ 74.66, the application is rejected; otherwise, it is approved. Here again, however, we see some misclassification.

Although this is easy to do intuitively for only two predictor variables, it is more difficult to do when we have more predictor variables. Therefore, more-sophisticated procedures are needed as we will discuss.

Measuring Classification Performance

As we saw in the previous example, errors may occur with any classification rule, resulting in misclassification. One way to judge the effectiveness of a classification rule is to find the probability of making a misclassification error and summarizing the results in a classification matrix, which shows the number of cases that were classified either correctly or incorrectly.

Figure : 10.20
Chart of Credit-Approval Decisions

Credit Approval Decisions

Figure :10.21
Alternate Credit-Approval Classification Scheme

Credit Approval Decisions

EXAMPLE 10.8 Classification Matrix for Credit-Approval Classification Rules

In the credit-approval decision example, using just the credit score to classify the applications, we see that in two cases, applicants with credit scores exceeding 640 were rejected, out of a total of 50 data points. Table 10.1 shows a classification matrix for the credit score rule in Figure 10.20.

The off-diagonal elements are the frequencies of misclassification, whereas the diagonal elements are the numbers that were correctly classified. Therefore, the probability of misclassification was $\frac{2}{50}$, or 0.04 . We leave it as an exercise for you to develop a classification matrix for the second rule.

| | Predicted Classification | |
| :--- | :---: | :---: |
| Actual Classification | Decision $=1$ | Decision $=0$ |
| Decision $=1$ | 23 | 2 |
| Decision $=0$ | 0 | 25 |

Using Training and Validation Data

Most data-mining projects use large volumes of data. Before building a model, we typically partition the data into a training data set and a validation data set. Training data sets have known outcomes and are used to "teach" a data-mining algorithm. To get a more realistic estimate of how the model would perform with unseen data, you need to set aside a part of the original data into a validation data set and not use it in the training process. If you were to use the training data set to compute the accuracy of the model fit, you would get an overly optimistic estimate of the accuracy of the model. This is because the training or model-fitting process ensures that the accuracy of the model for the training data is as high as possible-the model is specifically suited to the training data.

The validation data set is often used to fine-tune models. When a model is finally chosen, its accuracy with the validation data set is still an optimistic estimate of how it would perform with unseen data. This is because the final model has come out as the winner among the competing models based on the fact that its accuracy with the validation data set is highest. Thus, data miners often set aside another portion of data, which is used neither in training nor in validation. This set is known as the test data set. The accuracy of the model on the test data gives a realistic estimate of the performance of the model on completely unseen data.

EXAMPLE 10.8 Partitioning Data Sets in XLMiner

To partition the data into training and validation sets in XLMiner, select Partition from the Data Mining group and then choose Standard Partition. The Standard Data Partition dialog prompts you for basic information; Figure 10.22 shows the completed dialog. The dialog first allows you to specify the data range and whether it contains headers in the Excel file as well as the variables to include in the partition. To select a variable for the partition, click on it and then click the \geq button (which changes to $\mathrm{a} \leq$ button if all variables have been moved to the right pane). You may use the Ctrl key to select multiple variables. The random number seed defaults to 12345 , but this can be changed. XLMiner provides three options:

1. Automatic percentages: If you select this, 60% of the total number of records in the data set are assigned randomly to the training set and the rest to the validation set. If the data set is large, then 60% will perhaps exceed the limit on number of records in the training partition. In that case, XLMiner will allocate a maximum percentage to the training set that will be just within the limits. It will then assign the remaining percentage to the validation set.
2. Specify percentages: You can specify the required partition percentages. In case of large data sets, XLMiner will suggest the maximum possible percentage to the training set, so that the training partition is within the specified limits. It will then allocate the remaining records to the validation and test sets in the proportion 60:40. You may change these and specify percentages. XLMiner will execute your specifications as long as the limits are met.
3. Equal percentages: XLMiner will divide the records equally in training, validation, and test sets. If the data set is large, it will assign maximum possible records to training so that the number is within the specified limit for training partition and assigns the same percentage to the validation and test sets. This means all the records may not be accommodated. So, in case of large data sets, specify percentages if required.

Figure 10.23 shows a portion of the output for the Credit Approval Decisions example. You may display the training data and validation data using the Output Navigator links at the top of the worksheet.

Figure :10.22
Standard Data Partition Dialog

Figure : 10.23 :

Portion of Data Partition Output

XLMiner provides two ways of standard partitioning: random partitioning and userdefined partitioning. Random partitioning uses simple random sampling, in which every observation in the main data set has equal probability of being selected for the partition data set. For example, if you specify 60% for the training data set, then 60% of the

Figure $\quad 10.24$:
Additional Data in the Excel File Credit Approval Decisions Coded

| | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | |
| 2 | Homeowner | Credit Score | Years of Credit History | Revolving Balance | Revolving Utilization | Decision |
| 3 | 1 | 700 | 8 | $\$ 21,000$ | 15% | |
| 4 | 0 | 520 | 1 | $\$ 4,000$ | 90% | |
| 5 | 1 | 650 | 10 | $\$ 8,500.00$ | 25% | |
| 6 | 0 | 602 | 7 | $\$ 16,300.00$ | 70% | |
| 7 | 0 | 549 | 2 | $\$ 2,500.00$ | 90% | |
| 8 | 1 | 742 | 15 | $\$ 16,700.00$ | 18% | |

total observations would be randomly selected and would comprise the training data set. Random partitioning uses random numbers to generate the sample. You can specify any nonnegative random number seed to generate the random sample. Using the same seed allows you to replicate the partitions exactly for different runs.

Classifying New Data

The purpose of developing a classification model is to be able to classify new data. After a classification scheme is chosen and the best model is developed based on existing data, we use the predictor variables as inputs to the model to predict the output.

EXAMPLE 10.9 Classifying New Data for Credit Decisions Using Credit Scores and Years of Credit History

The Excel files Credit Approval Decisions and Credit Approval Decisions Coded include a small set of new data that we wish to classify in the worksheet Additional Data. These data are shown in Figure 10.24. If we use the simple credit-score rule from Example 10.7 that a score of more than 640 is needed to approve an application, then we would classify the decision
for the first, third, and sixth records to be 1 and the rest to be 0 . If we use the rule developed in Example 10.7, which includes both the credit score and years of credit history-that is, reject the application if years $+0.095 \times$ credit score $\leq 74.66-$ then the decisions would be as follows:

| Homeowner | Credit Score | Years of
 Credit History | Revolving
 Balance | Revolving
 Utilization | Years $+0.095^{*}$ Credit
 Score | Decision |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 700 | 8 | $\$ 21,000.00$ | 15% | 74.50 | 0 |
| 0 | 520 | 1 | $\$ 4,000.00$ | 90% | 50.40 | 0 |
| 1 | 650 | 10 | $\$ 8,500.00$ | 25% | 71.75 | 0 |
| 0 | 602 | 7 | $\$ 16,300.00$ | 70% | 64.19 | 0 |
| 0 | 549 | 2 | $\$ 2,500.00$ | 90% | 54.16 | 0 |
| 1 | 742 | 15 | $\$ 16,700.00$ | 18% | 85.49 | 1 |

Only the last record would be approved.

Classification Techniques

We will describe three different data-mining approaches used for classification: k-Nearest Neighbors, discriminant analysis, and logistic regression.

k-Nearest Neighbors (k-NN)

The \boldsymbol{k}-Nearest Neighbors (\boldsymbol{k}-NN) algorithm is a classification scheme that attempts to find records in a database that are similar to one we wish to classify. Similarity is based on the "closeness" of a record to numerical predictors in the other records. In the Credit Approval Decisions database, we have the predictors Homeowner, Credit Score, Years of Credit History, Revolving Balance, and Revolving Utilization. We seek to classify the decision to approve or reject the credit application.

Suppose that the values of the predictors of two records X and Y are labeled $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, x_{n}\right)$. We measure the distance between two records by the Euclidean distance in formula (10.1). Because predictors often have different scales, they are often standardized before computing the distance.

Suppose we have a record X that we want to classify. The nearest neighbor to that record in the training data set is the one that that has the smallest distance from it. The 1-NN rule then classifies record X in the same category as its nearest neighbor. We can extend this idea to a k-NN rule by finding the k-nearest neighbors in the training data set to each record we want to classify and then assigning the classification as the classification of majority of the k-nearest neighbors. The choice of k is somewhat arbitrary. If k is too small, the classification of a record is very sensitive to the classification of the single record to which it is closest. A larger k reduces this variability, but making k too large introduces bias into the classification decisions. For example, if k is the count of the entire training dataset, all records will be classified the same way. Like the smoothing constants for moving average or exponential smoothing forecasting, some experimentation is needed to find the best value of k to minimize the misclassification rate in the validation data. XLMiner provides the ability to select a maximum value for k and evaluate the performance of the algorithm on all values of k up to the maximum specified value. Typically, values of k between 1 and 20 are used, depending on the size of the data sets, and odd numbers are often used to avoid ties in computing the majority classification of the nearest neighbors.

EXAMPLE 10.10 Classifying Credit Decisions Using the \boldsymbol{k}-NN Algorithm

First, partition the data in the Credit Approval Decisions Coded Excel file into training and validation data sets, as described in Example 10.8. Next, select Classify from the XLMiner Data Mining group and choose k-Nearest Neighbors. In the dialog as shown in Figure 10.25, ensure that the Data source worksheet matches the name of the worksheet with the data partion, not the original data. Move the input variables (the predictor variables) and output variable (the one being classified) into the proper panes using the arrow buttons. Click on Next to proceed.

In the second dialog (see Figure 10.26), we recommend checking the box Normalize input data. Normalizing the data is important to ensure that the distance measure gives equal weight to each variable; without normalization, the variable with the largest scale will dominate the measure. In the field below, enter the value of k. In the Scoring Option section, if you select Score on specified value of k as above, the output is displayed by scoring on the specified value of k. If you select Score on best k between 1 and specified value, XLMiner evaluates models for all values of k up to the maximum specified value and scoring
is done on the best of these models. In this example, we set $k=5$ and evaluate all models from $k=1$ to 5 . We leave Prior Class Probabilities at its default selection. Leave the Step 3 dialog as is and click Finish.

The output of the k-NN algorithm is displayed in a separate sheet (see Figure 10.27) and various sections of the output can be navigated using the Output Navigator bar at the top of the worksheet by clicking on the highlighted titles. The Validation error log for different k lists the percentage errors for all values of k for the training and validation data sets and selects that value as best k for which the percentage error validation is minimum (in this case, $k=2$). The scoring is performed later using this value.

Of particular interest is the Training Data Scoring and Validation Data Scoring summary reports, which tally the actual and computed classifications. Correct classification counts are along the diagonal from upper left to lower right in the Classification Confusion Matrix. In this case, there were no misclassifications in the training data, and two misclassifications in the validation data.

Figure : 10.25:
k-NN Dialog, Step 1 of 2

Figure $: 10.26$
k-NN Dialog, Steps 2 and 3

Figure $: 10.27$
Portion of k-NN Output

EXAMPLE 10.11 Classifying New Data Using k-NN

We use the Credit Approval Decisions Coded database that we used in Example 10.9 to classify the new data in the Additional Data worksheet. First, partition the data or use the data partition worksheet that was analyzed in the previous example. In Step 2 of the k-NN procedure (see Figure 10.26), normalize the input data and set the number of nearest neighbors (k) to 2 , since this was the best value identified in the previous example, and choose Score on specified value of k as above. In the Step 3 dialog click on In worksheet
in the Score new data pane of the dialog. In the Match Variables in the New Range dialog, select the Additional Data worksheet in the Worksheet field and highlight the range of the new data in the Data range field, including headers. Because we use the same headers, click on Match By Name; this results in the dialog shown in Figure 10.28. Click Finish in the Step 3 dialog. In the Output Navigator, choose New Data Detail Rpt. Figure 10.29 shows the results. The first, third, and fourth records are classified as "Approved."

Discriminant Analysis

Discriminant analysis is a technique for classifying a set of observations into predefined classes. The purpose is to determine the class of an observation based on a set of predictor variables. Based on the training data set, the technique constructs a set of linear functions of the predictors, known as discriminant functions, which have the form:

$$
\begin{equation*}
L=b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{n} X_{n}+c \tag{10.2}
\end{equation*}
$$

where the $b s$ are weights, or discriminant coefficients, the X s are the input variables, or predictors, and c is a constant or the intercept. The weights are determined by maximizing the between-group variance relative to the within-group variance. These discriminant functions are used to predict the category of a new observation. For k categories, k discriminant functions are constructed. For a new observation, each of the k discriminant functions is evaluated, and the observation is assigned to class i if the i th discriminant function has the highest value.

Figure :10.28:
Match Variables in the New Range Dialog for Scoring New Data

Figure ${ }^{\mathbf{~} 10.29}$:
The k-NN Procedure Classification of New Data

EXAMPLE 10.12 Classifying Credit Decisions Using Discriminant Analysis

In the Credit Approval Decisions Coded database, first, partition the data into training and validation sets, as described earlier. From the XLMiner options, select Discriminant Analysis from the Classify menu in the Data Mining group. The first dialog that appears is shown in Figure 10.30. Make sure the worksheet specified is the one with the data partition. Specify the input variables and the output variable. The "success" class corresponds to the outcome value that you consider a success-in this case, the approval of the loan to which we assigned the value 1. The cutoff probability defaults to 0.5 , and this is typically used.

The second dialog is shown in Figure 10.31. The discriminant analysis procedure incorporates prior assump-
tions about how frequently the different classes occur. Three options are available:

1. According to relative occurrences in training data. This option assumes that the probability of encountering a particular category is the same as the frequency with which it occurs in the training data.
2. Use equal prior probabilities. This option assumes that all categories occur with equal probability.
3. Userspecified priorprobabilities. This option is available only if the output variable has two categories. If you have information about the probabilities that an observation will belong to a particular category (regardless of the training sample) then you may specify probability values for the two categories.

Figure : 10.30
Discriminant Analysis Dialog, Step 1

This dialog also allows you to specify the cost of misclassification when there are two categories. If the costs are equal for the two groups, then the method will attempt to misclassify the fewest number of observations across all groups. If the misclassification costs are unequal, XLMiner takes into consideration the relative costs and attempts to fit a model that minimizes the total cost of misclassification.

The third dialog (Figure 10.32) allows you to specify the output options. These include some advanced statistical information and more detailed reports; check the box for the Classification Function.

Figure 10.33 shows the classification (discriminant) functions for the two categories from the worksheet DA_Stored. For category 1 (approve the loan application), the discriminant function is
$L(1)=-149.871+10.66073 \times$ homeowner +0.355209 \times credit score $+0.858509 \times$ years of credit history $-0.00015 \times$ revolving balance +115.9978
\times revolving utilization

For category 0 (reject the loan application), the discriminant function is

$$
\begin{aligned}
L(0)= & -174.22+7.589715 \times \text { homeowner }+0.364829 \\
& \times \text { credit score }+0.54185 \times \text { years of credit history } \\
& -0.00023 \times \text { revolving balance }+170.6218 \\
& \times \text { revolving utilization }
\end{aligned}
$$

For example, for the first record in the database,

$$
\begin{aligned}
L(1)= & -149.871+10.66073 \times 1+0.355209 \times 725 \\
& +0.858509 \times 20-0.00015 \times \$ 11,320 \\
& +115.9978 \times 0.25=162.7879 \\
L(0)= & -174.22+7.589715 \times 1+0.364829 \times 725 \\
& +0.54185 \times 20-0.00023 \times 11,320+170.6218 \\
& \times 0.25=148.7596
\end{aligned}
$$

Therefore, this record would be assigned to category 1.
Figure 10.34 shows the scoring reports for the training and validation data sets. We see that there is an overall misclassification rate of 15%.

Figure :10.31
Discriminant Analysis Dialog, Step 2

Figure : 10.33

Discriminant Analysis

Results-Classification
Function Data

| | A | B | c | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | | | | | |
| 49 | Classification Function | | | | |
| 50 | | | | | |
| 51 | | | Classifi | ication Fu | ion |
| 52 | | Variables | 0 | 1 | |
| 53 | | Constants | -174.22 | -149.871 | |
| 54 | | Homeowner | 7.589715 | 10.66073 | |
| 55 | | Credit Score | 0.364829 | 0.355209 | |
| 56 | | Years of Credit History | 0.54185 | 0.858509 | |
| 57 | | Revolving Balance | -0.00023 | -0.00015 | |
| 58 | | Revolving Utilization | 170.6218 | 115.9978 | |

[^0]: ${ }^{1}$ Anne Robinson, Jack Levis, and Gary Bennett, INFORMS News: INFORMS to Officially Join Analytics Movement. http://www.informs.org/ORMS-Today/Public-Articles/October-Volume-37-Number-5/ INFORMS-News-INFORMS-to-Officially-Join-Analytics-Movement.
 2"Analytics: The New Path to Value," MIT Sloan Management Review Research Report, Fall 2010.

[^1]: ${ }^{1}$ Source: IBM Software Business Analtyics, "Cincinnati Zoo transforms customer experience and boosts profits," © IBM Corporation 2012.

[^2]: ${ }^{2}$ Matthew J. Liberatore and Wenhong Luo, "The Analytics Movement: Implications for Operations Research," Interfaces, 40, 4 (July-August 2010): 313-324.

[^3]: ${ }^{3}$ Liberatore and Luo, "The Analytics Movement."
 ${ }^{4}$ Jim Davis, " 8 Essentials of Business Analytics," in "Brain Trust—Enabling the Confident Enterprise with Business Analytics" (Cary, NC: SAS Institute, Inc., 2010): 27-29. www.sas.com/bareport

[^4]: ${ }^{5}$ Thomas H. Davenport, "How Organizations Make Better Decisions," edited excerpt of an article distributed by the International Institute for Analytics published in "Brain Trust-Enabling the Confident Enterprise with Business Analytics" (Cary, NC: SAS Institute, Inc., 2010): 8-11. www.sas.com/bareport ${ }^{6}$ Thomas H. Davenport and Jeanne G. Harris, Competing on Analytics (Boston: Harvard Business School Press, 2007): 46; Michael S. Hopkins, Steve LaValle, Fred Balboni, Nina Kruschwitz, and Rebecca Shockley, "10 Data Points: Information and Analytics at Work," MIT Sloan Management Review, 52, 1 (Fall 2010): 27-31.
 ${ }^{7}$ Jim Davis, "Convergence-Taking Social Media from Talk to Action," SASCOM (First Quarter 2011): 17. ${ }^{8}$ H. P. Luhn, "A Business Intelligence System." IBM Journal (October 1958).
 ${ }^{9}$ Jim Davis, "Business Analytics: Helping You Put an Informed Foot Forward," in "Brain Trust—Enabling the Confident Enterprise with Business Analytics," (Cary, NC: SAS Institute, Inc., 2010): 4-7. www.sas .com/bareport

[^5]: ${ }^{10}$ James J. Swain, "Statistical Software in the Age of the Geek," Analytics-magazine.org, March/April 2013, pp. 48-55. www.informs.org
 ${ }^{11}$ William E. Leigh and Michael E. Doherty, Decision Support and Expert Systems (Cincinnati, OH: South-Western Publishing Co., 1986).
 ${ }^{12}$ H. B. Eom and S. M. Lee, "A Survey of Decision Support System Applications (1971-April 1988)," Interfaces, 20, 3 (May-June 1990): 65-79.

[^6]: ${ }^{13}$ Based on Liberatore and Luo, "The Analytics Movement"; and Richard Metters et al., "The 'Killer Application' of Revenue Management: Harrah's Cherokee Casino \& Hotel," Interfaces, 38, 3 (May-June 2008): 161-175.
 ${ }^{14}$ Michael Hammer and James Champy, Reengineering the Corporation (New York: HarperBusiness, 1993): 96.
 ${ }^{15}$ Jim Goodnight, "The Impact of Business Analytics on Performance and Profitability," in "Brain TrustEnabling the Confident Enterprise with Business Analytics" (Cary, NC: SAS Institute, Inc., 2010): 4-7. www.sas.com/bareport
 ${ }^{16}$ Analytics: The New Path to Value, a joint MIT Sloan Management Review and IBM Institute for Business Value study.

[^7]: 17"Business Analytics and Optimization for the Intelligent Enterprise" (April 2009). www.ibm.com /qbs/intelligent-enterprise
 ${ }^{18}$ Bloomberg Businessweek Research Services and SAS, "The Current State of Business Analytics: Where Do We Go From Here?" (2011).
 ${ }^{19}$ Andrew Jennings, "What Makes a Good Data Scientist?" Analytics Magazine (July-August 2013): 8-13. www.analytics-magazine.org
 ${ }^{20}$ Parts of this section are adapted from Irv Lustig, Brenda Dietric, Christer Johnson, and Christopher Dziekan, "The Analytics Journey," Analytics (November/December 2010). www.analytics-magazine.org

[^8]: ${ }^{21}$ Contributed by Craig Zielazny, BlueNote Analytics, LLC.

[^9]: - Forecasting
 - Data and text mining
 - Optimization
 - Social media, Web, and text analytics

[^10]: ${ }^{22}$ Inspired by a presentation by Radhika Kulkarni, SAS Institute, "Data-Driven Decisions: Role of Operations Research in Business Analytics," INFORMS Conference on Business Analytics and Operations Research, April 10-12, 2011.

[^11]: ${ }^{23}$ Based on a presentation by Bill Franks of Teradata, "Optimizing Customer Analytics: How Customer Level Web Data Can Help," INFORMS Conference on Business Analytics and Operations Research, April 10-12, 2011.
 ${ }^{24}$ Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems, 9th ed. (Upper Saddle River, NJ: Prentice Hall, 2011): 159.
 ${ }^{25}$ Adapted and modified from Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems.

[^12]: ${ }^{26}$ James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela Hung Byers, "Big Data: The Next Frontier for Innovation, Competition, and Productivity," McKinsey \& Company May 2011.

[^13]: ${ }^{27}$ Based on Laudon and Laudon, Essentials of Management Information Systems.

[^14]: ${ }^{28}$ Roger J. Calantone, Cornelia Droge, David S. Litvack, and C. Anthony di Benedetto. "Flanking in a Price War," Interfaces, 19, 2 (1989): 1-12.

[^15]: ${ }^{29}$ Ming Zhang, Clay Duan, and Arun Muthupalaniappan, "Analytics Applications in Consumer Credit and Retail Marketing," analytics-magazine.org, November/December 2011, pp. 27-33.

[^16]: ${ }^{30}$ P. F. Drucker, The Manager and the Management Sciences in Management: Tasks, Responsibilities, Practices (London: Harper and Row, 1974).

[^17]: ${ }^{32}$ I express my appreciation to Jamie Drout for providing this original material from her class project as the basis for this case.

[^18]: ${ }^{33}$ The case scenario was based on Gateway Estate Lawn Equipment Co. Case Study, used for the 1997 Malcolm Baldrige National Quality Award Examiner Training course. This material is in the public domain. The database, however, was developed by the author.

[^19]: ${ }^{1}$ Thomas A. Grossman, "Resources for Spreadsheet Analysts," Analytics (May/June 2010): 8. analytics magazine.com
 ${ }^{2}$ Larry J. LeBlanc and Thomas A. Grossman, "Introduction: The Use of Spreadsheet Software in the Application of Management Science and Operations Research," Interfaces, 38, 4 (July-August 2008): 225-227.

[^20]: Figure : 2.4
 Net Present Value Calculation

[^21]: ${ }^{3}$ Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems, 9th ed. (Upper Saddle River, NJ: Prentice Hall, 2011).

[^22]: ${ }^{4}$ Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems.
 ${ }^{5}$ Based on Efraim Turban, Ranesh Sharda, Dursun Delen, and David King, Business Intelligence: A Managerial Approach, 2nd ed. (Upper Saddle River NJ: Prentice Hall, 2011).

[^23]: ${ }^{1}$ J. Camm et al., "Blending OR/MS, Judgment and GIS: Restructuring P\&G's Supply Chain," Interfaces, 27, 1 (1997): 128-142.

[^24]: ${ }^{2}$ Based on Kenneth C. Laudon and Jane P. Laudon, Essentials of Management Information Systems, 9th ed. (Upper Saddle River, NJ: Prentice Hall, 2011).

[^25]: ${ }^{3}$ Based on Stephen Pass, "Discovering Value in a Mountain of Data," OR/MS Today, 24, 5, (December 1997): 24-28. (OR/MS Today was the predecessor of Analytics magazine.)
 ${ }^{4}$ David Hand, "Statistics: An Overview," in Miodrag Lovric, Ed., International Encyclopedia of Statistical Science, Springer Major Reference; http://www.springer.com/statistics/book/978-3-642-04897-5, p. 1504.

[^26]: 5"Mueller builds a customer-focused business," IBM Software, Business Analytics, © IBM Corporation, 2013.

[^27]: ${ }^{6}$ Based on Efraim Turban, Ramesh Sharda, Dursun Delen, and David King, Business Intelligence: A Managerial Approach, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 2011).

[^28]: ${ }^{1}$ Fortune magazine 1999 Investor's Guide (December 21, 1998 issue).

[^29]: ${ }^{2}$ David G. Luenberger, Investment Science (New York: Oxford University Press, 1998).
 ${ }^{3}$ Fortune magazine 1999 Investor's Guide (December 21, 1998 issue).

[^30]: ${ }^{4}$ Adam Bryant, "CEOs' Golf Games Linked to Companies' Performance," Cincinnati Enquirer, June 7, 1998, El.

[^31]: ${ }^{5}$ Galen Britz, Don Emerling, Lynne Hare, Roger Hoerl, and Janice Shade, "How to Teach Others to Apply Statistical Thinking," Quality Progress (June 1997): 67-79.

[^32]: ${ }^{6}$ Based on Deniz Senturk, Christina LaComb, Radu Neagu, and Murat Doganaksoy, "Detect Financial Problems With Six Sigma," Quality Progress (April 2006): 41-47.

[^33]: ${ }^{7}$ Based on LeRoy A. Franklin and Samar N. Mukherjee, "An SPC Case Study on Stabilizing Syringe Lengths," Quality Engineering 12, 1 (1999-2000): 65-71.

[^34]: 1"Deal or No Deal: A Statistical Deal." www.pearsonified.com/2006/03/deal_or_no_deal_the_real_deal.php

[^35]: ${ }^{2}$ Based on Chris K. Anderson, "Setting Prices on Priceline," Interfaces, 39, 4 (July-August 2009): 307-315.

[^36]: ${ }^{3}$ Based on G. C. O’Connor, T. R. Willemain, and J. MacLachlan, "The Value of Competition Among Agencies in Developing Ad Campaigns: Revisiting Gross's Model," Journal of Advertising, 25, 1 (1996): 51-62.

[^37]: ${ }^{1}$ Based on Tony Gojanovic and Ernie Jimenez, "Brewed Awakening: Beer Maker Uses Statistical Methods to Improve How Its Products Are Distributed," Quality Progress (April 2010).

[^38]: ${ }^{1}$ Based on Francisco, Endara M. "Help Desk Improves Service and Saves Money with Six Sigma," American Society for Quality, http://asq.org /economic-case/markets/pdf/help-desk-24490.pdf, accessed 8/19/11.

[^39]: ${ }^{1}$ James R. Morris and John P. Daley, Introduction to Financial Models for Management and Planning (Boca Raton, FL: Chapman \& Hall/CRC, 2009): 257.
 ${ }^{2}$ Alvin C. Burns and Ronald F. Bush, Basic Marketing Research Using Microsoft Excel Data Analysis, 2nd ed. (Upper Saddle River, NJ: Prentice Hall, 2008): 450.

[^40]: ${ }^{3}$ The author expresses his appreciation to John Toczek, Manager of Decision Support and Analytics at ARAMARK Corporation.

[^41]: ${ }^{4}$ Modified from Charles T. Horngren, George Foster, and Srikant M. Datar, Cost Accounting: A Managerial Emphasis, 9th ed. (Englewood Cliffs, NJ: Prentice Hall, 1997): 371.

[^42]: ${ }^{5}$ Horngren, Foster, and Datar, Cost Accounting: A Managerial Emphasis, 9th ed.: 349.
 ${ }^{6}$ Horngren, Foster, and Datar, Cost Accounting: A Managerial Emphasis, 9th ed.: 349.

[^43]: ${ }^{1}$ Based on Srinivas Bollapragada, Salil Gupta, Brett Hurwitz, Paul Miles, and Rajesh Tyagi, "NBC-Universal Uses a Novel Qualitative Forecasting Technique to Predict Advertising Demand," Interfaces, 38, 2 (March-April 2008): 103-111.

[^44]: ${ }^{3}$ Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, "From Data Mining to Knowledge Discovery in Databases," AI Magazine, American Association for Artificial Intelligence (Fall 1996): 37-54. 4"Here's Mr. Macy," Fortune (November 28, 2005): 139-142.

[^45]: ${ }^{5}$ Steve Hoisington and Earl Naumann, "The Loyalty Elephant," Quality Progress (February 2003): 33-41.

