
Монотонність функції. Локальний екстремум.  

Найбільше і найменше значення функції на відрізку. 

 

Приклад 1. Знайти інтервали монотонності та екстремуми даної функції, користуючись 

першою похідною: 
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Розв’язання. Область визначення даної функції 0x  . Знаходимо критичні точки, тобто 

точки, в яких похідна дорівнює 0 або не існує: 
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Визначаємо інтервали монотонності та точки екстремуму функції, використовуючи знак 

першої похідної: 

 

 



 

Знаки y : 

  

Характерні 
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Значення 

функції  в 

точках extr 
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Отже, на інтервалі  ;0  і на  5;  функція зростає; на інтервалі  0;5  функція спадає; 

точка 5x   є точкою мінімуму.   

 

Приклад 2. Дослідити на екстремум функцію 
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Розв’язання. Знайдемо похідну  
2 5 6y x x    . Вона існує при всіх дійсних х . 

Прирівнявши похідну до нуля, отримуємо стаціонарні точки 1 2х  , 2 3х  . Визначаємо 

інтервали монотонності та екстремуми функції. Для цього використовуємо знак першої 

похідної (достатню умову монотонності функції на інтервалі та першу достатню умову 

локального екстремуму): 

  2 3y x x    .  
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Висновок: На інтервалах  ; 2  та  3;   функція зростає, на  2; 3  функція спадає, 2х   

– точка максимуму, 3х   – точка мінімуму.  max
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3
f f   min

9
3

2
f f  . 

Приклад 3. Знайти інтервали монотонності та екстремуми даної функції, користуючись 

першою похідною: 
 2

2

5x
y

x


 . 

Розв’язання. Область визначення цієї функції 0x  . Знаходимо критичні точки, тобто 

точки, в яких похідна дорівнює нулю або не існує: 
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Визначаємо інтервали монотонності та точки екстремуму функції, використовуючи знак 

першої похідної (достатня умова монотонності функції на інтервалі та перша достатня умови 

локального екстремуму): 
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Висновок:  

На інтервалі  ;0  і на  5;  функція зростає; 

на інтервалі  0;5  функція спадає; 

точка 5x   є точкою локального мінімуму.    

 



Приклад 4. Дослідити на екстремум функцію  1у х х  . 

Розв’язання. Похідна має вигляд:  

1
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у х х x        . 

Функція монотонно зростає на своїй області визначення.  

Висновок. Точки екстремуму відсутні.  

 

Приклад 5. Дослідити на екстремум функцію  5 ху х е  . 

Розв’язання. Областю визначення функції є вся числова пряма. Знайдемо похідну та 

прирівняємо її до нуля. Отримуємо: 

 

   5 4x x xy e x e x e      . 

0 4y x    . 

 

При 4x     0y x  , при 4x     0y x  , тому 4х   є точкою мінімуму. 



Висновок. На  ; 4  функція спадає, на  4;   функція зростає, 4х   – точка мінімуму, 
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miny e  .   

 

Приклад 6. Дослідити на екстремум функцію 21у х х  .   

Розв’язання. Область визначення функції – це відрізок  1;1  . Похідна має вигляд: 
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Приклад 7. Знайти найбільше та найменше значення функції на зазначеному відрізку: 
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Розв’язання. Знайдемо критичні точки функції: 
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Знаходимо значення функції в критичних точках та на кінцях інтервалу: 
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Приклад 8. Дослідити на опуклість функцію 
4 3 23 8 6 12y x x x     

та знайти її точки перегину. 

Розв’язання. Областю визначення функції є вся числова пряма. Знаходимо похідні: 
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236 48 12y x x    . 

 

Розв’язуємо рівняння 0у  . Отримуємо: 
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Знайшли два корені рівняння  0у  : 1
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З’ясуємо знак другої похідної  у х  на кожному з цих проміжків. Отримуємо:  на  
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 0у  , функція опукла вгору; на 

проміжку   1;   0y  , функція опукла вниз.  

Отже, при переході аргументу х  через точки 1х  та 2х    у х  змінює знак, тому точки з 

абсцисами 1
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3
x   та  2 1x   є точками перегину функції. 

Приклад 9. Дослідити на опуклість криву 
3 5у х  та знайти її точки перегину. 

Розв’язання. Область визначення функції: хℝ . Знайдемо другу похідну заданої 
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x   ; 0                 0  0;    

 f x         –          Не існує    + 
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  0,у х х  ℝ , проте у точці 0 0х   друга похідна не існує. При цьому 0у   при 0х  , 

тут функція є опуклою вгору;  0y   при 0x  , функція опукла вниз. . Отже, у точці з абсцисою 

0 0х   функція має перегин.  

 

Приклад 10. Дослідити на опуклість функцію ху хе . 

Розв’язання.  Область визначення функції – вся числова пряма. Знаходимо ху . 
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Друга похідна змінює знак у точці 2х   . При 2x     0у  , тут функція є опуклою вгору, 

при  2x    0y  , тому тут функція опукла вниз. 

 

 

 

 

 


