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ВСТУП 
 

Значення рядів у математиці важко переоцінити внаслідок їх широкого 
застосування. Ряди різної природи – числові, функціональні, векторні – 
використовуються при розв’язанні великої кількості прикладних задач. Ряди 
дозволяють знаходити як точні аналітичні розв’язки задач, так і наближені, якщо 
замінити ряд його частковою сумою.  

Фактично дослідження рядів безпосередньо пов’язане з дослідженням 
послідовностей. Але ряди вимагають також самостійного поглибленого 
дослідження, оскільки вони є допоміжним засобом подання різноманітних 
функцій, що зустрічаються в аналізі. Зокрема, дуже важливою є відповідь на 
питання про збіжність ряду. Це питання пов’язане з коректністю отриманого за 
допомогою рядів розв’язку задачі, з доцільністю зроблених припущень, і, 
зрештою, з ефективністю запропонованої математичної моделі задачі.  

Зміст навчального посібника охоплює програмний матеріал одного семестру 
вивчення дисципліни «Математичний аналіз - ІІ». Основними завданнями 
вивчення дисципліни «Математичний аналіз - ІІ» є:  
– ознайомлення з можливістю застосування понять та фактів математичного 

аналізу до розв’язання конкретних задач; 
– підготовка бази для подальшого вивчення курсів диференціальних рівнянь, 

комплексного аналізу, теорії ймовірностей, функціонального аналізу, 
чисельних методів, рівнянь математичної фізики та інших. 
У результаті вивчення навчальної дисципліни студент повинен  
знати:  

– основні поняття теорії рядів та області їх застосування; 
– необхідні та достатні умови збіжності числових та функціональних рядів; 
– основні області застосування відомих понять та фактів з теорії рядів. 

уміти:  
– досліджувати числові ряди на абсолютну та умовну збіжність; 
– знаходити область збіжності функціональних рядів; 
– досліджувати основні властивості числових та функціональних 

послідовностей і рядів; 
– подавати функції у вигляді степеневих рядів та рядів Фур’є; 
– застосовувати подання функцій у вигляді рядів для розв’язання задач; 
– досліджувати на збіжність нескінченні добутки та подавати функції у вигляді 

нескінченних добутків. 
Теоретичні знання і практичні навички, набуті при вивченні теорії рядів, 

застосовуються в окремих темах функціонального, комплексного аналізу, 
диференціальних рівнянь, чисельних методів, рівнянь математичної фізики, при 
розв’язанні прикладних задач, розв’язок яких представляється функціональним 
рядом. Вони є необхідними при виконанні курсових і кваліфікаційних робіт.  

Навчальний посібник складається з трьох розділів, кожний з яких містить 
теоретичний матеріал, практикум із розв’язання задач та завдання для 
самостійного виконання. 
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Розділ 1. ЧИСЛОВІ РЯДИ ТА НЕСКІНЧЕННІ ДОБУТКИ:  
 

1.1 ТЕОРЕТИЧНІ ВІДОМОСТІ 
 
§1 Числові ряди 
 
1. Числові ряди. Сума  ряду. Критерій Коші  
Розглянемо числову послідовність  na . Формально утворену суму еле-

ментів цієї послідовності 







1
21 ......

n
nn aaaa        (1.1) 

назвемо числовим рядом. При цьому числа ,...,...,, 21 naaa  називаються членами 

ряду, na  – загальним членом ряду, а 



n

k
kn aS

1

 – частковою сумою ряду (1.1). 

 Означення 1.1. Якщо існує границя послідовності часткових сум  nS , 
тоді ряд (1.1) називають збіжним, при цьому число n

n
SS


 lim  називається су-

мою ряду. Позначення: Sa
n

n 


1

. Якщо послідовність часткових сум не збіга-

ється, тобто n
n

S


 lim , тоді ряд 


1n
na  називають розбіжним. 

Приклад 1.1. Дослідити числовий ряд, що утворюється членами геомет-
ричної прогресії 







0

32 ......1
n

nn qqqqq  

на збіжність за означенням. 
Розв’язання. Знайдемо часткову суму даного ряду: 

1,
1

1
...1

1

0

1 



 




 q
q

q
qqqS

nn

k

kn
n . 

Застосуємо той факт, що  
0lim 



n

n
q , якщо 1q ,  




n

n
qlim , якщо 1q  

для пошуку границі послідовності часткових сум. Отримаємо: 

n
n

S


lim =













1,

1,
1

1

q

q
q . 

Розглянемо окремо випадок 1q . Якщо 1q  , тоді часткова сума ряду має ви-

гляд  nS
n

n  1...11 , тобто є нескінченно великою (розбіжною). Якщо 
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1q   , то послідовність ;...}0;1;0;1{})1(...111{ 1  n
nS також розбігаєть-

ся. Отже, у випадку 1q  заданий ряд збігається, при цьому його сума дорів-

нює 
q1

1
. У всіх інших випадках ( 1q ) розглянутий ряд розбігається. ■ 

Приклад 1.2. Дослідити числовий ряд 




 











 1 )1(

1
...

)1(

1
...

43

1

32

1

21

1

n nnnn
 

на збіжність за означенням і знайти його суму. 
Розв’язання. Розглянемо часткову суму даного ряду: 

.
1

1
1

1
11

...
4
1

3
1

3
1

2
1

2
1

1

)1(

1
...

43

1

32

1

21

1



















 






 






 















nnn

nn
Sn

 

( Довести за допомогою принципу математичної індукції, що рівність  

1

1
1

)1(

1
...

43

1

32

1

21

1













 nnn
 

має місце для всіх натуральних n .) 
Оскільки існує границя 

1
1

1
1limlim 











 n
S

n
n

n
, 

то даний ряд збігається, а його сума дорівнює 1, тобто 1
)1(

1

1






n nn
. ■ 

Приклад 1.3. При фіксованому значенні Rx  дослідити числові ряди 

.....
)!2(

)1(
....

!6!4!2
1

...;
)!12(

)1(
...

!7!5!3

...;
!

...
!3!2

1

2642

121753

32
















n

xxxx

n

xxxx
x

n

xxx
x

nn

nn

n

 

на збіжність за означенням. 
Розв’язання. Розглянемо розвинення наступних функцій за формулою 

Маклорена [1, c. 271-272]: 
2 3

*1 ... ( );
2! 3! !

n
x

n

x x x
e x R x

n
        

3 5 7 1 2 1
**( 1)

sin ... ( );
3! 5! 7! (2 1)!

n n

n

x x x x
x x R x

n

 
      


 

2 4 6 2
***( 1)

cos 1 ... ( ).
2! 4! 6! (2 )!

n n

n

x x x x
x R x

n


        
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Розглянемо докладно перший ряд. Позначимо 

)!1(
...

!2
1

12






n

xx
xS

n

n . 

Застосуємо зазначене розвинення за формулою Маклорена з залишковим чле-
ном у формі Лагранжа  [1, с. 271-272], тоді 

n
n

x
n x

n

e
ReS

n




 !
*

1 ,   0 1n   . 

Отже, 




0
!

lim
!

lim

...
.

 







пмн

n

обмn

n

n n

x
ex

n
e

n
n

 Rx     

.
!

lim0lim
1

x

n

n
x

n
n

x
n

n
e

n
x

eSeS  



 

Таким чином, доведено збіжність першого ряду до xe . Збіжність другого і тре-
тього ряду до xsin  і xcos  відповідно довести самостійно ! ■ 

Зауваження 1.1. Поняття ряду і послідовності пов’язані між собою. Дійс-

но, будь-якому ряду 


1n
na  відповідає послідовність  nS  його часткових сум. А 

довільній послідовності  nS  можна поставити у відповідність ряд з членами 
2; 111   nSSaSa nnn . 

Детальніше: 

...

,

,

,

3213

212

11

aaaS

aaS

aS






      

...

,

233

,122

11

SSa

SSa

Sa






 

Зауваження 1.2. Додавання чи відкидання від ряду скінченої кількості 
членів не впливає на його збіжність.  

Дійсно, якщо 0n  кількість відкинутих членів даного ряду 


1n
na , який 

має часткові суми NnSn , . Тоді новий ряд 





1n

na  має члени 

Nnaa nnn   0
, а його часткові суми nS   відрізняються від nS  таким чином, 

що  
NnASS nnn  0

, 

де A  – сума відкинутих членів даного ряду. Отже, границі часткових сум двох 
рядів існують або не існують одночасно. Якщо вони існують, тоді 

)(limlim
0

ASS nn
n

n
n

  .  
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 Якщо тепер, навпаки, розглядати ряд 


1n
na як отриманий з ряду 






1n

na  до-

даванням деякої кількості членів, стає зрозумілим, що це додавання також не 
впливає на збіжність ряду.  

Зауваження 1.3. Розглянемо два ряди 


1n
na і 






1n

na , де 

0,  constccaa nn . Тоді nn cSS  , тобто границі часткових послідовностей 
цих рядів існують або не існують одночасно. Якщо границі існують, тоді 

n
n

n
n

cSS limlim  , тобто   









11 n
n

n
n acac . 

Висновок: ряди 


1n
na і 






1n

na  збігаються або розбігаються одночасно, а 

їх суми (у випадку збіжності) відрізняються сталою с:   









11 n
n

n
n acac . 

Зауваження 1.4. Якщо ряди 


1n
na і 



1n
nb  збігаються, тоді збігаються 

ряди )(
1

n
n

n ba



 , крім того, 




)(

1
n

n
n ba 










11 n
n

n
n ba . 

Дійсно, оскільки ряди 


1n
na і 



1n
nb  збігаються, існують границі 




n

k
k

n

n

k
k

n
ba

11

lim,lim . З існування цих границь випливає, по-перше, існування гра-

ниць 



n

k
kk

n
ba

1

)(lim , по-друге, рівність 



n

k
k

n

n

k
k

n

n

k
kk

n
baba

111

limlim)(lim . 

Отже,  за означенням суми ряду маємо 















111

.)(
n

n
n

nn
n

n baba
 

Теорема 1.1 (критерій Коші збіжності числового ряду). Ряд 


1n
na  збіга-

ється тоді і лише тоді, коли він задовольняє вимогу:  

 




pn

nk
kaNpnnNn

1
000 . 

Доведення. Пригадаємо критерій Коші для послідовності [1, c. 114]:  
    npnn SSpnnnS NN0збігається 0 .     (1.2) 



Розділ 1. ЧИСЛОВІ РЯДИ ТА НЕСКІНЧЕННІ ДОБУТКИ: 

 10

Якщо }{ nS  – послідовність часткових сум ряду 


1n
na , тоді 

  



 

pn

nk
knpnnnnpn aaaaaaaaaSS

1
21121 )...(...... .      (1.3) 

Підставляючи (1.3) в (1.2) отримаємо потрібне. ■ 

Наслідок 1.1. Ряд 


1n
na  збігається, тоді і тільки тоді, коли послідовність 

залишків ряду 








 


 1nk
kn ar  є нескінченно малою послідовністю (н.м.п.), тобто  

  0lim.н.м.пзбігається
1
















 n

тnk
knn rarS . 

Доведення. Необхідність. За критерієм Коші збіжності числового ряду,  

ряд 


1n
na  збігається  2/0

1
00  





pn

nk
kaNpnnNn .         (1.4) 

Здійснимо граничний перехід при p  під знаком останньої нерівності в 
(1.4). При цьому зауважимо, що для кожного фіксованого значення Nn  сума 






pn

nk
ka

1

 є частковою сумою ряду 





1nk
kn ar , який утворено відкиданням скін-

ченної кількості членів ряду 


1n
na , тому він є збіжним для кожного Nn . От-

же, існує границя 









11

lim
nk

k

pn

nk
k

p
aa , що ми й використаємо при граничному 

переході в (1.4): 

}{N0
2 1

00
1

n
nk

kn
nk

k rarnnna 


 







 – н.м.п. 

Достатність. За означенням нескінченно малої послідовності маємо: 

2/N0н.м.п.}{
1

00  


nk
knn arnnnr . 

Тоді 2/0   pnrNpnn . Оскільки N
1

 



 parr

pn

nk
kpnn , то 

 






22
N

1
0 pnnpnn

pn

nk
k rrrrapnn . 

 

Таким чином,  




pn

nk
kapnnn

1
00 NN0 . 
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 Тобто, за критерієм Коші, ряд 


1n
na  збігається.  ■ 

Наслідок 1.2 (необхідна умова збіжності ряду). Якщо ряд (1.1) збігаєть-
ся, то загальний член ряду прямує до нуля, тобто 

0limзбігається
1







 n

nn
n aa . 

Зауважимо, що цю умову можна сформулювати іншим чином:  

сярозбігаєть0lim  


 n
nn

n
aa . 

У такому випадку будемо писати: «н.у. не виконується». 
Доведення.   

Застосуємо до збіжного ряду 


n
na  умову критерію Коші при 1p : 

 




 1

1

1
00 N0 n

n

nk
k aannn







n
nn

n
aa lim0lim 1 . ■ 

Приклад 1.4.  Розглянемо ряд 

...
1

...
3

1

2

1
1

1




nnn

 – гармонічний  ряд. 

Для нього 
1

lim lim 0n
nn

a
n

  , тобто необхідна умова виконується. Доведемо за 

критерієм Коші розбіжність ряду. Для N np  маємо: 

2

1

2

1
...

2

1

1

1

1
















 n

n

pn

p

pnnn
a

pn

nk
k . 

Отже,  

 




pn

nk
kanpnnn

1
00 нерівністьявиконуєтьсдляіNдляN

2
1

для . 

За критерієм Коші, це означає, що  гармонічний ряд розбігається. ■ 
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Розглянемо ряд 


1n
na , де N0  nan . Тоді 
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,
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тобто послідовність часткових сум такого ряду є неспадною. Це дає можливість 
сформулювати наступну теорему. 

Теорема 1.2 (критерій збіжності ряду з невід’ємними членами). Ряд з не-
від’ємними членами збігається тоді і тільки тоді, коли послідовність його част-
кових сум є обмеженою. 

Доведення. Необхідність. 

    .обмеженазбігаєтьсязбігається
1





nn

n
n SSa  

Достатність. Як було зазначено перед теоремою, послідовність  nS  є 
монотонною. Якщо ця послідовність додатково є обмеженою, за теоремою 
Вейєрштрасса про збіжність монотонної обмеженої послідовності [1, c.96], оде-
ржимо, що  nS  збігається, тобто ряд збігається. ■ 

Приклад 1.5. Дослідити ряд 


1
2

1

n n
 на збіжність. 

Розв’язання. Розглянемо часткову суму даного ряду: 

2 2 2 2
1

1

1 1 1 1 1 1 1
1 ... 1 ...

2 3 1 2 2 3 ( 1)
1 1 1 1

1 ...
1 2 2 3 ( 1) ( 1)
1 1

1 (див.приклад1.2) 1 1 2.
( 1) 1

n

n
k

n

k

S
k n n n

n n n n

k k n





            
   

      
     

      
  





 

Звідки випливає обмеженість послідовності часткових сум даного ряду з не-
від’ємними членами, а, отже, його збіжність (за теоремою1.2).  ■ 

1. Ознаки збіжності знакопостійних  рядів (порівняння,   
Коші , інтегральна ознака) 

Теорема 1.3 (загальна ознака порівняння). Нехай 


1n
na   і  



1n
nb  – ряди з 

невід’ємними членами, тобто такі, що N0,0  nba nn , тоді 

.сярозбігаєть
сярозбігаєть

,NII)

;збігається
збігається

,NI)

1
1

1
1















































n
n

n
n

nn

n
n

n
n

nn

b
a

nba

a
b

nba

 

Доведення. І) Для часткових сум даних рядів маємо: 

N

,N

,,
11 











 
 nBA

nba

bBaA
nn

nn

n

k
nn

n

k
kn . 
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Для ряду з невід’ємними членами –  

  MBnMB

nb

b
nn

n

n
n 














 :N0обмежена

,N0

,збігається
1 . 

Отже, 

N
:N0

,N









nMBA
MBnM

nBA
nn

n

nn , 

тобто послідовність часткових сум  nA  ряду 


1n
na  є обмеженою. Тоді, за кри-

терієм збіжності ряду з невід’ємними членами, ряд 


1n
na  збігається. 

ІІ) Для отримання другої частини твердження теореми достатньо прига-
дати, що для двох висловлювань V  і U  імплікація V U  рівносильна імпліка-
ції U V  (принцип контрапозиції). ■ 

Теорема 1.4 (ознака порівняння в граничній формі). Нехай 


1n
na  і 



1n
nb  – 

ряди з додатними членами, тобто такі, що N0,0  nba nn  і K
b

a

n

n

n
lim  

 0 K   , тоді 

І) збігаєтьсязбігається
11









 







 n
n

n
n aKb ; 

ІІ) сярозбігаєть0сярозбігаєть
11









 







 n
n

n
n aKb . 

Зокрема, якщо  K0 , то ряди збігаються або розбігаються одночасно. 

Доведення. 


K
b

a
nnnK

b

a

n

n

n

n

n
00 N0limI)  

  n

const

n

n

n

bKann

K
b

a
Knn

 



0

0

. 

 З загальної ознаки порівняння (теорема 1.3 (І)) та збіжності ряду 


1n
nb  

випливає збіжність ряду 


1n
na . Насправді доведено збіжність ряду 



 0nn
na , але 
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його збіжність рівносильна збіжності усього ряду 


1n
na  відповідно до заува-

ження 1.2. 

ІІ) 
 Ka

b
K

b

a

n

n

nn

n

n

1
lim0lim .  

Тоді із частини І) випливає, що у випадку збіжності ряду 


1n
nb , збіжним 

буде також ряд 


1n
na . Ця імплікація є рівносильною імплікації: 



1n
na  – розбіга-

ється    


1n
nb  – розбігається. ■ 

Теорема 1.5 (додаткова ознака порівняння).  Нехай ряди 


1n
na   і  



1n
nb  

такі, що N0,0  nba nn  і 
n

n

n

n

b

b

a

a
nnn 11

00 N   . Тоді   




1n
nb  – збігається    



1n
na – збігається, 




1n
na  – розбігається    



1n
nb  – розбігається. 

Доведення.  І) Без обмеження загальності міркувань можна вважати, що 
10 n , тоді  

























 ,

...

,

,

11

2

3

2

3

1

2

1

2

n

n

n

n

b

b

a

a

b

b

a

a

b

b

a

a

 /перемножимо/ 
1

1

1

1

b

b

a

a nn         


N1
1

1
1   nb

b

a
a n

const

n  . 

 Застосуємо теорему 1.3 та отримаємо, що ряд 


1n
na – збігається. 

ІІ) Друга частина теореми випливає з принципу контрапозиції алгебри логіки. ■ 
 

Теорема 1.6 (радикальна ознака Коші (загальне формулювання)). Нехай 

N0,
1





naa n

n
n , тоді 
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І)    


1
11 1:N

n
n

n
n apannn  збігається; 

ІІ)    


1
22 1:N

n
n

n
n aannn  розбігається. 

Доведення. І) Оскільки n
n pannn  11 :N  та при 1p  ряд  




1n

np збігається (див. приклад 1.1), тоді ряд 


1n
na  також збігається. 

ІІ) Оскільки 1:N 22  n
nannn , тоді 12  nann , тобто не мо-

же виконуватися необхідна умова, і ряд 


1n
na розбігається. ■ 

Теорема 1.7 (радикальна ознака Коші (гранична форма)). 


























































.випадокcумнівний1)3

,сярозбігаєть1)2

,збігається1)1

а),нескінченн

або(скінченнаlim

,0,

1

11

q

aq

aq

qa

naa

n
n

n
n

n
n

n

n
n

n

. 

Доведення. 1) Запишемо означення границі qan
n

n



lim  при 10  q  для  

2

1 q
 :  





2

1
:N 00

q
qannn n

n  

 1
2

1

2

1
0 







qq
qqaqnn n

n  . 

  Позначимо тепер  
2

1 q
p


 , тоді 10  pann n

n . Отже, за радикаль-

ною ознакою Коші у загальному формулюванні, ряд 


1n
na  збігається. 

2) Випадок   q1  розіб’ємо на два: (2б)i(2a)1  qq . 

2а) Нехай  q1 , тоді запишемо означення границі qan
n

n



lim  для 

)1(  q :  1:N 11 qqannn n
n  

.11)1( 11  n
n

n
n annqqann  

 Отже, за радикальною ознакою Коші у загальному формулюванні, ряд 




1n
na  розбігається. 
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2б) Якщо 


n
n

n
alim , тоді для 1  

 1:N 22
n

nannn  


1
2:1

n
n

n
n anna  розбігається. 

3) Розглянемо ряди 


 nn nn 2
1

1
;

1
. Для них q

n
n

n



1

1
lim   і 

q
n

n
n

1
1

lim
2

. Але перший із цих рядів є гармонічним розбіжним, а другий є 

збіжним (див. приклад 1.5).■ 
 
Теорема 1.8 (інтегральна ознака Маклорена-Коші). 

 
 

  





















,на

зростає не )2

,)1

,N0,

0

1

n

xf

anf

naa

n

n
n

n  




































)сярозбігаєть(збігається

)сярозбігаєть(збігається

1

0

n
n

n

a

dxxf

 

Доведення. Розглянемо числовий ряд N0,
1





naa n

n
n  і функцію 

)(xf  такі, що задовольняють умови 1) і 2). 

Уведемо до розгляду функцію 
x

n

dttfxF
0

)()( , яка є інтегралом із змін-

ною верхньою межею. Ця функція має властивості: 
   

  


x

n

nxdttfxF

nxFnxxfxF

0

.,0)()(

;,на зростає  )(,0)()(

0

00

 

З монотонності функції випливає, що 




 


)(lim)(lim xFxF

xx
. 

Тоді у випадку, коли 





0

)()(lim
n

x
dttfxF  інтеграл 



0

)(
n

dttf  збігається, а у 

випадку 


)(lim xF
x

 він розбігається. 

Розглянемо різницю ( 0nn  ) 

dttfdttfdttfnFnF
n

n

n

n

n

n




11

)()()()()1(
00

.   (1.5) 

 Функція )(xF  диференційовна на відрізку ]1,[ nn , а тому неперервна на 
ньому. Це дозволяє застосувати формулу Лагранжа  [1, c. 245] до )(xF : 
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  .10),(1))1(()()1(  nnn nFnnnnnFnFnF  

Оскільки  0( ) ( ) на ,F x f x n   , то  

  )()(1 nnfnFnF  . 
В наслідок незростання функції )(xf , маємо: 

    );()(11

);1()()(1

nfnFnFnf

nfnfnfnnn nn




 

 1 1 ( )n na F n F n a     .    (1.6) 

Із (1.5) і (1.6), отримаємо: 

.)(
1

1 n

n

n
n adttfa  



      (1.7) 

Розглянемо суму 

        

  .)()1()()(1

...12)(1)(1

0

0

0

0000










N

n

N

nn

dttfNFnFNFNF

nFnFnFnFnFnF

 

Із рівності     


N

n

N

nn

dttfnFnF
00

)()(1  випливає, що інтеграл 


0

)(
n

dttf  і ряд 

  





0

)(1
nn

nFnF  збігаються або розбігаються одночасно. В наслідок ознаки 

порівняння і нерівності (1.7) одночасно з ними збігається або розбігається ряд 




 0nn
na . Оскільки скінченна кількість членів ряду не впливає на його збіжність, 

таку ж поведінку буде мати і весь ряд 


1n
na  (див. зауваження 1.2). ■ 

Геометрична інтерпретація інтегральної ознаки Маклорена-Коші. Знай-
демо суму нерівностей (1.7) для 10  Nnn  







1

1 000

)(
N

nn
n

N

n

N

nn
n adxxfa  

та здійснимо граничний перехід при N  , враховуючи монотонність послі-
довностей часткових сум, 

,lim)(lim

,lim)(lim

1

1

00

00















N

nn
n

N

N

n
N

N

nn
n

N

N

n
N

adxxf

adxxf
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тобто 

   сярозбігаєть збігаєтьсясярозбігаєть збігається)(
0 1

 
 

n n
nadxxf  і 

.)(
000 1











nn
n

nnn
n adxxfa     (1.8) 

Невласному інтегралу 


0

)(
n

dxxf  геометрично відповідає площа нескін-

ченного криволінійного трикутника, обмеженого графіками ліній 

0),(,0 nxxfyy   а 

ряду 


 0nn
na  – площа  

східчастої фігури. На рис. 
1.1 зображено геометрич-
ну інтерпретацію нерів-
ності (1.8) у випадку 

10 n .  
Висновок. Якщо пло-

ща нескінченного криво-
лінійного трикутника під 
графіком функції 

)(xfy   на промені 
);[ 0 n  скінчена, то скін-

ченною є площа східчас-
тої фігури, що лежить 

всередині цього трикутника, тому ряд 


1n
na  збігається. Якщо площа фігури під 

графіком функції )(xfy   нескінченна, то нескінченою є площа східчастої фі-

гури, розташованої зовні трикутника, тому ряд 


1n
na  розбігається. 

Оцінка залишку 





1nk
kn ar  збіжного ряду 



1n
na . Підсумуємо нерівності 

k

k

k
k adttfa  





1

1 )(  (див. (1.7)) від n  до 1mn : 











1

1

)(
mn

nk
k

mn

n

mn

nk
k adxxfa  

та здійснимо граничний перехід при m : 

1 2 3 4 5 6 7 8 х О 

1 (1)a f  1a

2a  

3a  

4a
5a

6a

  y 

2 (2)a f  

( )y f x

3 (3)a f  2a  

3a  

4a
5a  

6a

Рис. 1.1 
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 












1

1

lim)(limlim
mn

nk
k

m

mn

n
m

mn

nk
k

m
adxxfa  

.)(
1











nk
k

nnk
k adxxfa  

Звідси отримаємо оцінку залишку ряду: 

  






 nn nk
k dxxfadxxf )()(

1 1

 

.)()(
1







nn

n dxxfrdxxf  

 
Приклад 1.6. Довести, що 

узагальнений гармонічний ряд 
1

1
p

n n




  

         збігається при 1p  ,  

         розбігається при 1p  . 

Для розв’язані поставленої задачі потрібно застосувати інтегральну 
ознаку Маклорена-Коші і той факт, що невласний інтеграл 

a

dx

x



  , а > 0 

збігається при 1   розбігається при 1 . 
Детальне доведення провести самостійно ! ■ 
Приклад 1.7. За допомогою інтегральної ознаки Маклорена-Коші  довес-

ти, що ряд 


2 ln

1

n nn
 розбігається. 

Розв’язання. Для функції 

xx
xf

ln
1

)(   

маємо: 

1) na
nn

nf 
ln
1

)(  2n ; 

2) );2[наспадає)( xf , оскільки функція xxxg ln)(   зростає 
на );2[  (як добуток двох зростаючих функцій); 
3) Невласний інтеграл 





2

222

lnln
ln
ln

ln
)( x

x
xd

xx
dx

dxxf  

розбігається, тому (за інтегральною ознакою Маклорена-Коші) розбігається ряд 




2 ln

1

n nn
. ■ 
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2. Ознаки збіжності знакопостійних  рядів (Кумера , Далам-
бера , Раабе, Бертрана , Гаусса) 

Теорема 1.9 (ознака Кумера). Розглянемо ряд 


1n
na , в якому 

N0  nan  та довільну послідовність   ,...,...,, 21 nCCC , що задовольняє ви-
моги 

ся,розбігаєть
1

)2

,N0)1

1








n n

n

C

nC

 

і послідовність 








 


1
1

n
n

n
nn C

a

a
Cx . Тоді 

І) якщо 0N 11  nxnnn , ряд ;збігається
1




n
na  

ІІ) якщо ,0N. 22  nxnnn ряд ся.розбігаєть
1




n
na  

Доведення. І) Оскільки  


1
1

n
n

n
nn C

a

a
Cx , то  

111   nnnnn aaCaC .      (1.9) 
 Щоб застосувати до цієї нерівності ознаку порівняння, дослідимо на збі-

жність ряд   







 

11
11

n
n

n
nnnn baCaC . Маємо: 

.спадає}{

00

1111

1111
1

1











nnnnnnnn

nnnnnn
n

n
nn

aСnnaCaC

aCaCbnnC
a

a
Cxnn

 

 Зауважимо також, що ця послідовність обмежена знизу 
( 0N  nnaCn ), отже, за теоремою Вейєршрасса вона має границю 

.lim SaC nn
n




 

 Дослідимо ряд   







 

11
11

n
n

n
nnnn baCaC  на збіжність за означенням: 

 

.constlim

...

1
11111111

443333222211
1

11
















n
nn

n
nnnnnn

n

k
kkkkn

bSaCSaCaCaCaC

aCaCaCaCaCaCaCaCS

 Отже, із (1.9) і ознаки порівняння випливає збіжність ряду 


1n
na .  
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ІІ) Оскільки )(0 21
1

nnC
a

a
C n

n

n
n  


, тоді  







 

,0,0

),( 211

nn

nnnn

Ca

nnaCaC
 )(

/1

/1
2

111

1

nn
a

a

C

C

a

a

C

C

n

n

n

n

n

n

n

n  


. 

Застосуємо додаткову ознаку порівняння: 
























ся,розбігаєть
1

),(
/1

/1

1

2
11

n n

n

n

n

n

C

nn
a

a

C

C







1n
na  розбігається. ■ 

 

Теорема 1.10 (ознака Кумера (гранична форма)). Розглянемо ряд 


1n
na , в 

якому N0  nan  та довільну послідовність   ,...,...,, 21 nCCC , що задоволь-
няє умови 

ся.розбігаєть
1

)2

,N0)1

1








n n

n

C

nC

 

 Якщо існує (скінченна або нескінченна) границя xC
a

a
C n

n

n
n

n









 


1

1

lim , 

тоді: 1) при 0x  ряд 


1n
na збігається; 2) при 0x  ряд 



1n
na розбігається; 3) 

при 0x  – сумнівний випадок. 
Доведення проводиться аналогічно доведенню радикальної ознаки Коші в 

граничній формі на основі ознаки Кумера в загальному формулюванні. 
 
Наступні ознаки є наслідками ознаки Кумера. 
Теорема 1.11 (ознака Д’Аламбера).  
 



























,а)нескінченн

або(скінченнаlim

,N0,

1

1

q
a

a

naa

n

n

n

n
n

n

    























.випадоксумнівний1)3

,сярозбігаєть1)2

,збігається1)1

q

aq

aq

n
n

n
n

 

 

Доведення. Нехай N1  nCn , тоді N0  nCn  і ряд 









11 1

11

nn nC
 

розбігається. Тоді 
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111
11

1
1





 n

n

n

n
n

n

n
nn a

a

a

a
C

a

a
Cx

1

11


 

nn

n

xa

a
. 

Оскільки за умовою q
a

a

n

n

n
 1lim , то xxn

n
lim  і  

1

1




x
q . Отже, застосову-

ючи ознаку Кумера, отримаємо 
 

ся,розбігаєть
;01

;0111)2

,збігається
;00

;0111)1

1

1




























n
n

n
n

a
xq

xxq

a
xq

xxq

 

випадоксумнівний01)3  xq .  ■ 
 
Теорема 1.12 (ознака Раабе).  



































,а)нескінченн

або(скінченна1lim

,N0,

1

1

r
a

a
n

naa

n

n

n

n
n

n

 

































.випадоксумнівний1)3

,збігається1)2

,сярозбігаєть1)1

1

1

r

ar

ar

n
n

n
n

 

Доведення. Нехай N nnCn , тоді N0  nCn  і ряд 









11

11

nn n nC
 

розбігається, а  

)1(
1

1
1







n
a

a
nC

a

a
Cx

n

n
n

n

n
nn . 

Покладемо 










1

1n

n
n a

a
nr , тоді 1 nn rx . Оскільки (за умовою) rrn

n
lim , 

то xxn
n

lim  і 1 rx . Отже, за ознакою Кумера, отримаємо: 

,збігається
,0

,01)2

,сярозбігаєть

,0

,010

,01)1

1

1



































n
n

n
n

a
xr

xr

a

xr

xr

xr

 

випадоксумнівний01)3  xr .   ■ 
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Теорема 1.13 (ознака Бертрана).  












































































.випадоксумнівний1)3

,збігається1)2

,сярозбігаєть1)1

,а)нескінченн

або(скінченна11lnlim

,N0,

1

1

1

1

b

ab

ab

b
a

a
nn

naa

n
n

n
n

n

n

n

n
n

n

 

Доведення. Нехай }1{\Nln  nnnCn , тоді ряд 









22 ln

11

nn n nnC
 роз-

бігається (див. приклад 1.7). Тоді 

.
1

1ln11ln)1(
1

ln11ln

]ln)1[ln(]ln)1[ln(11lnlnlnlnln

)1ln()1ln(ln)1ln()1(ln

1

11

1

11
1

1


















 

























































n

n

n

n

n

n

n

n

n

n

n
n

n

n
nn

na

a
nnn

n

n

a

a
nn

nnnnn
a

a
nnnnnnnn

nnn
a

a
nnnn

a

a
nnC

a

a
Cx

 

Звідки 

ex
n

x
a

a
nnb n

n

n

n
nn

n

n
lnlim

1
1lnlim11lnlim

1

1

















 


























. 

Тобто xxn
n

lim  і 1 xb  . Отже, за ознакою Кумера, одержимо: 

;сярозбігаєть
,010

,01)2

;збігається
,0

,01)1

1

1




























n
n

n
n

a
xb

xb

a
xb

xb

 

випадоксумнівний01)3  xb . ■ 
Теорема 1.14 (ознака Гаусса).  
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Доведення. Спочатку до ряду 


1n
na  застосуємо ознаку Д’Аламбера при 

1 , тоді  







 







2
1

limlim
nna

a n

nn

n

n
, 







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






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





















ся.розбігаєть0

ся,розбігаєть11
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1
lim

1

1

1

1

n
n

n
n

n
n

n

n

n

aq

aq

aq

q
a
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До ряду 


1n
na  застосуємо ознаку Раабе при 1 , тоді 





















 


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 
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









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n
n

n

n

n

nn

n

n
ar

ar

r
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n
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a
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Застосуємо ознаку Бертрана при 11  , тоді 

 








 





 

















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
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a
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.сярозбігаєть
1

 


n
na   ■ 

3. Відсутність універсального  ряду  порівняння . 

При доведенні радикальної ознаки Коші збіжності знакододатного ряду 
ми оцінювали його члени геометричною прогресією, а при доведенні розбіжно-

сті – членами ряду 


1

1
n

. При доведенні ознаки Д’Аламбера за ряд порівняння 

(при дослідженні на розбіжність) застосовували ряд 


1

1
n

 , в ознаці Бертрана - 

ряд 


1 ln

1

n nn
, в ознаці Раабе – ряд 



1

1

n n
. 

Якщо доводити останні три ознаки не як наслідки ознаки Кумера, то в за-
гальному випадку з використанням ознаки порівняння застосовуються для дос-

лідження на збіжність ряди 0,
1

1
1







n n
. 
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Поставимо питання: чи існує універсальний, найповільніше збіжний (роз-
біжний) ряд, порівняно з яким можна зробити висновок про збіжність (розбі-
жність) ряду з невід’ємними членами. 
 Означення 1.2.  

 Нехай 






 11

i
n

n
n

n CC  збігаються, N0,0  nCC nn . Говорять, що 

ряд 





1

¥

1

ряда
n

n
n

n СзповільнішезбігаєтьсяC , якщо послідовність залишків 









 


 1nk
kn C  ряду 



1n
nC  є нескінченно малою послідовністю (н.м.п.) більш 

високого порядку мализни ніж послідовність залишків 








 


 1nk
kn C  ряду 







1n

nC , тобто  nn o   або 0lim 



n

n

n
. 

 
 Означення 1.3. 

 Нехай N0,0,сярозбігаютьi
11









ndddd nn

n
n

n
n . Говорять, що 

ряд 





1n

nd  розбігається повільніше за ряд 


1n
nd , якщо послідовність часткових 

сум 








 


n

k
kn dD

1

 ряду 





1n

nd  є нескінченно великою послідовністю (н.в.п.) ни-

жчого порядку ніж послідовність часткових сум 








 


n

k
kn dD

1

 ряду 


1n
nd , тоб-

то 






















0limабоlim
n

n

nn

n

n D

D

D

D
. 

Твердження 1.1. Для довільного збіжного ряду )0(
1

nCC n
n

n 



 існує 

інший збіжний ряд )0(
1

nCC n
n

n 



, який збігається повільніше за 



1n
nC . 

Доведення. За шуканий ряд візьмемо ряд з членами nnnC  1 . 

Оскільки nCn  0 , то 










nk
kn

nk
kn CC 1

1

, тому nCn  0 . Знайдемо 

залишок побудованого ряду: 

nnnnnnn
nk

kn C  




 ...32211

1
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(довести !). Тоді 

   .збігаєтьсян.м.п.i

0limlim0limзбігається

1

1


















n
nnn

n
т

n
т

n
тn

n
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Порівняємо нескінченно малі послідовності: 

.0limlimlim 







n
nn

n

nn

n

n
 

Це і доводить потрібне. ■ 

Твердження 1.2. Для довільного розбіжного ряду )0(
1

ndd n
n

n 



 існує 

інший розбіжний ряд  





1n

nd , який розбігається повільніше за 


1n
nd . 

Доведення. За шуканий ряд візьмемо ряд з членами 
)2(, 111   nDDdDd nnn . 

Оскільки ndn  0 ,то 
1

1
1 1

n n

n n n n
k k

D d D d



 

    , тому ndn  0  і }{ nD зростає. 

Маємо 
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;
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2
2312111

1
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k
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k
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отже, 






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


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D
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lim limn n
т т

D D
 

    
1

n
n

d




 – розбігається. 

Порівняємо нескінченно великі послідовності: 


 n

nn

n

nn

n

n
D

D

D

D

D
limlimlim . 

Отже, ряд 





1n

nd розбігається повільніше за ряд 


1n
nd . ■ 

 
Теорема 1.15. Ніякий збіжний (розбіжний) ряд не може бути універсаль-

ним засобом для встановлення – шляхом порівняння з ним – збіжності (розбіж-
ності) інших рядів. 
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Доведення. Припустимо, що навпаки, існує збіжний ряд 


1n
nC  з не-

від’ємними членами, що є універсальним для перевірки на збіжність. Тоді розг-
лянемо ряд із твердження 1.1 з членами nnnC  1 . Виразимо члени ряду 




1n
nC  через n : 

nnn

nk
kn

nk
kn

C

C

C





























1

1

1

,

. 

Порівняємо члени цих рядів: 

  0limlimlim 1
1

1 





 



nn

nnn

nn

nn

n

n C

C
. 

Оскільки 0lim 
n
n

n C

C
, то nn CCnnn  00 N . 

 Отже, дослідити на збіжність ряд 





1n

nC , порівнюючи його з рядом 


1n
nC , 

неможливо. Таким чином, ряд 


1n
nC  не є універсальним рядом порівняння для 

дослідження на збіжність, тобто наше припущення невірне.  

Припустимо тепер, що розбіжний ряд 


1n
nd  з невід’ємними членами є 

універсальним для перевірки на розбіжність. Тоді розглянемо ряд із тверджен-
ня 1.2 з членами )2(, 111   nDDdDd nnn . Оскільки 










1

1
1

1

,
n

k
kn

n

k
kn dDdD , то )2(, 111   nDDdDd nnn .  

Порівняємо члени рядів 


1n
nd  і 






1n

nd : 

  




 




1

1

1 limlimlim nn
nnn
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n

n
DD
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d

d
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 Оскільки 
n
n

n d

d
lim , то .N 00 nn ddnnn   

 Отже, неможливо дослідити на розбіжність ряд 





1n

nd , порівнюючи його з 




1n
nd , тобто ряд 



1n
nd  не є універсальним рядом порівняння для дослідження
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 на розбіжність і наше припущення невірне. ■ 
 

§3 Знакозмінні ряди 
 

1. Абсолютна  та умовна збіжність знакозмінних  рядів 

До довільних рядів відносять ряди, які містять як додатні так і від’ємні 
члени. Якщо ряд містить скінчену кількість від’ємних елементів, то вони не 
впливають на збіжність ряду, і досліджувати цей ряд на збіжність можна як 
знакододатний. Якщо, навпаки, додатних членів скінченна кількість, то дослі-

джувати ряд 


 0nn
na  на збіжність можна як знаковід’ємний, та робити висновок 

про збіжність ряду, досліджуючи ряд із його модулів  00
0

nnaa n
nn

n 



. 

Такі ряди не відносять до довільних, а без обмеження загальності міркувань 
вважають знакосталими. До довільних рядів відносять ряди, що містять нескін-
чену кількість як додатних, так і від’ємних членів. 

Означення 1.4. Ряд 
1

n
n

a



  називають абсолютно збіжним, якщо збіга-

ється ряд, утворений із його модулів, тобто 

збігається
11

 






 т
n

def

n
n aзбігаєтьсяабсолютноa . 

Означення 1.5. Ряд 


1n
na  називають умовно збіжним, якщо він збіга-

ється, але не абсолютно. Тобто  




















 








 .сярозбігаєтьабсолютно)2

,збігається)1

1

1

1

n
n

n
ndef

n
n

a

a

збігаєтьсяумовноa  

Теорема 1.16. .збігаєтьсязбігаєтьсяабсолютно
11

 






 n
n

n
n aa  

Доведення. І спосіб. Застосовуємо критерій Коші збіжності ряду: 

.NN0

збігаєтьсязбігаєтьсяабсолютно

1
00

11



















pn

nk
k

n
n

n
n

apnnn

aa

. 

За нерівністю трикутника ,
11











pn

nk
k

pn

nk
k aa  тому 
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 




pn

nk
kapnnn

1
00 NN0 . 

Це означає, що за критерієм Коші ряд 


1n
na  збігається. 

ІІ спосіб. Позначимо  










.0якщо,0

,0якщо,

a

aa
a ,      aaa . 

Для даного ряду маємо:  










11 n
nn

n
n aaa . Дослідимо ряди 












11

i
n

n
n

n aa  на 

збіжність. Для ряду 






1n
na  маємо: 

.
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;збігаєтьсязбігаєтьсяабсолютно
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Аналогічно ряд 






1n
na  збігається, а його суму позначимо A . Тоді 

  


















  AAaaaaa

n
n

n
n

n
nn

n
n

1111

. 

Це означає, що ряд 


1n
na  збігається, а його сума дорівнює   AA . ■ 

Отже. під довільним рядом розуміємо ряд, що містить нескінченну кіль-
кість додатних і від’ємних членів. Довільні ряді ще називають знакозмінними. 
Окремим випадком знакозмінного ряду є ряд знакопочережний ряд, тобто ряд, 
знаки елементів якого строго чергуються: 

  N0,1...)1(...
1

11
4321  





 nCCCCCCC nn
n

n
n

n . 

Для дослідження на абсолютну збіжність довільних рядів до ряду 


1n
na  

застосовуються ознаки збіжності знакододатних рядів: порівняння, радикальна 
ознака Коші, інтегральна ознака Маклорена-Коші, ознаки  Д’Аламбера, Раабе, 
Гаусса, Бертрана. 

Знакопочережні ряди, як правило, досліджуються на збіжність за допомо-
гою ознаки Лейбніца. Знакозмінні ряди загального вигляду (ті, що не є знако-
почережними) досліджуються на збіжність за допомогою ознак Абеля і Діріхле. 
Саме про ці ознаки йдеться у пункті 1.3.2. 
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2. Перетворення Абеля 

Нехай 



k

i
ikB

1

, тоді  

123312211 ...;;;  mmm BBBBBBB . 

Розглянемо суму добутків вигляду i

k

i
i 

1

: 

   

    ).()(...

)(...

1

1

1
1322211

123312211
1

ii

m

i
immmmm

mmmi

k

i
i

BBBBB

BBBBBBB


















  

Отже, отримано рівність, що носить назву перетворення Абеля: 

 ii

m

i
immi

m

i
i BB  




 1

1

11

 

Лема 1.1. Якщо 

1)  m
ii 1  – монотонна скінченна множина, 

2)  m
ii 1  – така скінченна множина, що сукупність 

m

k

k

i
ikB

11  







 обмежена 

за модулем додатним числом L , тобто mkLBk ,1 , 

тоді  

m

m

i
ii LL 


21

1

. 

 Зокрема, якщо скінченна множина  m
ii 1  не зростає і ii  0 , тоді 

.1
1




Li

m

i
i  

Доведення. Оскільки множина  
1

m

i i
  – монотонна, то 

  mm

m

i
ii

m

i
ii  









 11

1

1
1

1

1
1 )( , 

де «+» обирається, якщо  m
ii 1  – зростає, а «–» у випадку її спадання. 

Застосуємо перетворення Абеля: 

.2 11

1

1

1
11

1

11



 
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





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i
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i
immi

m

i
i

 

Зокрема, коли  m
ii 1  – не зростає і ii  0 , тоді 
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.111
1




LLLLLL mmmmi

m

i
i    ■ 

3. Ознаки збіжності знакозмінних  рядів (ознаки Абеля,  
Діріхле і Лейбніца.  

Теорема 1.17 (ознака Абеля). 

 
 


























,N0

тобтообмежена,)3

,(нестрого)монотонна)2

,збігається)1
1

KanK

a

a

b

n

n

n

n
n

.збігається
1




n
nnba  

Доведення. Розглянемо відрізок ряду 









p

i
inin

pn

nk
kk baba

11

. Застосуємо 

умову 1) і критерій Коші збіжності ряду: 

.NN0збігається
11

00
1

 












p

i
in

pn

nk
k

i
n bbpnnnb  

 Щоб застосувати лему 1.1, введемо позначення iniini ba   , . Всі 
вимоги леми виконуються, причому pmL  , , тому 

p

p

i
ii 


21

1

. 

Застосуємо умову 3) і зробимо зворотні позначення: 






pn

nk
kkba

1

K 3   N0  pnn . 

Тому за критерієм Коші ряд 


1n
nnba  збігається. ■ 

Теорема 1.18 (ознака Діріхле). 

.збігається

,N0

тобтообмежена,)3

0lim)2

,(нестрого)спадає}{)1

1
1








































b
n

n

i

n

i
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n
n

n

ba

MBnМ

bB

a

a

 

Доведення. Розглянемо відрізок ряду 









p

i
inin

pn

nk
kk baba

11

. Покладемо 

iniini ba   , . Тоді за лемою (окремий випадок), в наслідок умови 3), пот-
рібно обрати ML  , отримаємо 



Розділ 1. ЧИСЛОВІ РЯДИ ТА НЕСКІНЧЕННІ ДОБУТКИ: 

 32

1
1




M
p

i
ii . 

 Зауважимо, що із умов 1) і 2) випливає, що nan  0 . Застосуємо умову 

2):  nnn
n

aannna 00 N00lim . 

 Зробимо зворотні позначення та отримаємо 

MMaba n

pn

nk
kk  




 1

1

  N0  pnn . 

Тому, за критерієм Коші, ряд 


1n
nnba  збігається. ■ 

 

Теорема 1.19 (ознака Лейбніца). Нехай 1

1

( 1)n
n

n

C






 , 0nC n   – знакопо-

чережний ряд. Має місце твердження: 

 
 








 ,0lim)2

,(нестрого)спадає)1

n
n

n

C

C
1

1

( 1)n
n

n

C






  – збігається. 

Доведення. В ознаці Діріхле покладемо 1)1(,  n
nnn bCa . Тоді 

0lim2)  ,(нестрого)спадає}{)1 n
n

n aa ,  

   ,...0,1,0,1,0,1

...

1111

011

1

3213

212

11


















nB
bbbB

bbB

bB

 – обмежена. 

Отже, вимоги ознаки Діріхле виконуються, тому ряд n
n

n

C1

1

)1( 



   збігається. ■ 

 

Оцінка залишку k
nk

k
n Cr 






1

1)1(  ряду n
n

n

C1

1

)1( 



   лейбніцевого типу.  

Розглянемо знакопочережний ряд n
n

n

C1

1

)1( 



  , nCn  0 , у якого 

(нестрого)спадає}{)1 nC 0lim2) n
n

C . Оцінимо його відрізок 

1
,

1

( 1)
n p

k
n p k

k n

r C




 

   за окремим випадком леми 1.1 в тих же позначеннях, що й в 

доведенні ознаки Лейбніца: 
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.lim
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 Висновок: модуль залишку ряду лейбніцевого типа не перевищує моду-
ля першого відкинутого члена. 

Приклад 1.8. Дослідити ряд на збіжність 

...
)1(

..
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1
.
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Розв’язання. За ознакою Лейбніца  

спадає
1

)1






 

n
Cn , оскільки nC

nn
C nn 
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 11
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, 

2)  0
1

limlim 
 n

C
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n
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,  

тому даний ряд збігається. ■ 

Приклад 1.9. Дослідити ряд  



x

n

nx

n
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)cos(

1

 на збіжність.  

Розв’язання. Застосуємо ознаку Діріхле. Нехай  

n
anxb nn

1
),cos(  . 

При Z,2  mmx  із співвідношень 
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випливає, що 
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1
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
. 

Аналогічна нерівність виконується для синусів кратних дуг. Таким чином: 
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2
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1 x
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 (1.10)

1

1
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k

kx
x

 , 

Z,2  mmx  

(1.11)

1) Із першої нерівності випливає, що: 

N
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1
)cos(
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 
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n
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kxbB
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k
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Звідки отримаємо обмеженість послідовності   nB . 

2) Оскільки N
1

11
1 


  n

n
a

n
a nn , то }{ na спадає. 

3) 0
1

limlim 
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a
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n
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. 

Отже, за ознакою Діріхле  ряд збігається
)cos(

11

 






 n
n

n
n n

nx
ba . ■ 

§4 Властивості числових рядів 

1. Асоціативна  властивість числових  рядів 

Теорема 1.20. Якщо ряд 


1n
na  збігається, тоді ряд, що утворюється із да-

ного за допомогою групування його членів, 
 

...)...(...)....()...()...(
13221 1111 

 pp nnnnnnn aaaaaaaa    ( * ) 

(тут { pn } – зростаюча послідовність номерів) збігається завжди і має таку саму 

суму, що і даний ряд. 

Доведення. Позначимо через 



n

k
kn aA

1

 часткову суму даного ряду, че-

рез 
pA  – часткову  сума ряду (*). Очевидно, що 

pnp AA  . Оскільки  ряд 


1n
na  

збігається, і має суму 





1n
naA , то послідовність { nA } збігається до A . Тому 

послідовність {
pnA } збігається до A , як підпослідовність збіжної до A  послі-

довність. Отже, { 
pA } – послідовність часткових сум перегрупованого ряду (*) – 

збігається до A , тобто до суми даного ряду. ■ 
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Запитання: чи  правда, що із збіжності ряду ( * ) випливає збіжність ря-

ду 


1n
na ?  

Відповідь на це запитання не завжди є позитивною. Наприклад, ряд  
...)11()11()11(   збігається до 0. Але його отримано із розбіжного ряду 







1

1)1(
n

n  шляхом групування членів. 

Розглянемо випадок, коли відповідь на дане запитання є позитивною. 
 

Твердження 1.3. Якщо всі доданки в кожній із дужок ряду (*) мають 

один і той самий знак і ряд (*) збігається, тоді ряд 


1n
na збігається. 

Доведення. Якщо 



m

n
nm aA

1

, тоді pp nmnp   1:N 1 . Позначимо 

через 
pA  часткову суму ряду (*), тоді 

pnp AA  . Оскільки за умовою ряд (*) збі-

гається, то у випадку, коли кожен доданок в p -ій дужці  
додатний, то а коли від’ємний, то 



A

AAA

p

p

p

p

A

nm

A

n










1

1

 


A

AAA

p

p

p

p

A

nm

A

n










1

1

 

Об’єднуючи випадки, приходимо до висновку, що ряд 


1n
na збігається до A . ■ 

Приклад 1.10 (№ Д 26721). Дослідити ряд 






1

][)1(

n

n

n
 на абсолютну і 

умовну збіжність. 
Розв’язання. Абсолютна розбіжність очевидна. Дослідимо ряд на збіж-

ність за допомогою останнього твердження: 

 
 

  ...1......
11

1
...

1

11
1

...
24

1
...

16

1

15

1
...

11

1

10

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1
1

...
24

1
...

16

1

15

1
...

11

1

10

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1
1

)1(

1
4321222

1

][

4321






















 






 






 






 











k
k

C

k

CCCC

n

n

CCCCC
kkk

n

k

  

      
 

                                                 
1 Посилання на номери, в яких фігурує літера «Д», означатимуть, що цей приклад відповідає збірнику 
задач Демидовича Б.П. [4]. 
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Доведемо збіжність ряду   k
k

kC





1

1  за допомогою ознаки Лейбніца. Розгляне-

мо члени цього ряду 

    


kbka

kk

k
kkkkkkkk

C

доданків1

22

доданків

222 2

1
...

1

1

1
...

1

11













 , 

kkk baC  , 

k
k

k
ak

kkk k
111

1

1
22







, 

   
k

k
kk

bk
kkk k

1
1

1
1

12

1

1

1
22










. 

Маємо: 
1 1

1 ka
k k

 


, 

k
a

k k
1

1

1



,






k
C

k k
2

1

2



   

   154321 ... nn CCCCCCC . 
Тому  

 








 ,0lim)2

,спадає)1

n
n

n

C

C
ряд n

n

n

C)1(
1




  збігається  за ознакою Лейбніца. 

Всі доданки у дужках мають однакові знаки. Отже, за твердженням 1.3, 

заданий ряд збігається. Отже, ряд 






1

][)1(

n

n

n
 збігається умовно. ■ 

2. Комутативна властивість числових  рядів. Теорема  Рімана  

Означення 1.6. Переставленням множини A  називається взаємно од-
нозначне відображення AA :  множини A  на себе. 

 

Теорема 1.21. Знакопостійний збіжний ряд при переставленні своїх чле-
нів залишається збіжним та не змінює свою суму. 

Доведення. Без обмеження загальності міркувань можна вважати, що 

N0  kak . Позначимо часткові суми даного ряду через 



n

k
kn aS

1

, його су-

му – S , а часткові суми переставленого ряду – 



n

k
kn aS

1
)( . 

Оскільки N0  kak , тоді SSSS n  ...21 . За теоремою Вейєршт-
расса [1, с.96], існує границя S   зростаючої обмеженої послідовності }{ nS  , при-
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чому SS  . З іншого боку, 










1
))((

1
1

k
k

k
k aaS , тому SS  . Отже, SS   і 

SS  , звідки SS  . 
 

Теорема 1.22. Абсолютно збіжний ряд при довільному переставленні сво-
їх членів залишається абсолютно збіжним та не змінює свою суму. 

Доведення. Введемо позначення для будь-якого дійсного числа a :  










0якщо,0

0якщо,

a

aa
a ,  aaa   . 

Розглянемо два ряди з невід’ємними членами






1n
na  і 







1n
na . Із оцінок nn aa   і 

nn aa   та загальної ознаки порівняння випливає їх збіжність, а також можли-

вість подання 




1n
na 






1n

na 





1n

na .    (1.12) 

Із (1.12) випливає збіжність вихідного ряду. Позначимо суми рядів у запису 
(1.12) відповідно S , S , S , тоді S  S  S . За теоремою 1.21, при будь-

якому переставленні NN:   виконується 







 
1

)(
n

naS  і 







 
1

)(
n

nsS , звідки 







1
)(

n
na 






 

1
)(

n
na SSSa

n
n  








1
)( 






1n
nS .  

 Отже, для абсолютно збіжних рядів виконується умова комутативності 
додавання. Іншим чином поводять себе умовно збіжні ряди. Їх члени можна пе-
реставити так, щоб новий ряд збігався до будь-якого наперед заданого числа 
або навіть розбігався. Це стверджується наступною теоремою.  

Теорема 1.23. (теорема Рімана). Якщо числовий ряд 


1n
na  збігається 

умовно, тоді  

1) RS   :NN:    Sa
n

n 





1
)( ; 

2) :NN:     





1
)(

n
na . 

Доведення. Розглянемо множини 
}0:,...,...,,{ 21 

ncn aсссС , }0:,...,...,,{ 21 
nbn abbbB  

та частини даного ряду 


1n
cn

a , 


1n
bn

a , що їм відповідають. Якщо обидва ці ря-

ди збігаються, то даний ряд збігається абсолютно. Якщо один із цих рядів збіга-
ється, а інший розбігається, то вихідний ряд є розбіжним. Отже, умовна збіж-
ність вимагає одночасної розбіжності двох рядів, тобто
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


1n
cn

a 


1n
bn

a  .     (1.13) 

1) Розглянемо випадок, коли 0S  (випадок 0S  можна розглянути 
аналогічно). Якщо 0S , тоді переставлення   будуємо наступним чином: спо-
чатку беремо саме стільки додатних елементів вихідного ряду, щоб їх сума пе-
ребільшила S . Потім беремо саме стільки від’ємних елементів, щоб загальна 
сума вибраних елементів стала менше за S . Знову беремо саме стільки додат-
них елементів, щоб загальна сума перебільшила S . Продовжуючи цей процес 
до нескінченності, ми отримаємо ряд, в який увійдуть усі елементи вихідного 
ряду: 

1)1( c ,   

2)2( c ,…,  

1
)( 1 jcj  , причому SaS

j

k
kj  




1

1
1

)( , а SS j 11
; 

11 )1( bj  ,   

21 )2( bj  ,…,   

2
)( 21 jbjj  ,  де SS jj  21

,  а SS jj  121
; 

121 1
)1(  jcjj ,…,   

31
)( 321 jjcjjj  , де SS jjj  321

,  SS jjj  1321
; 

1321 2
)1(  jbjjj ,…,   

42
)( 4321 jjbjjjj  , де ,

4321
SS jjjj 

 

;14321
SS jjjj 

 
………………………………   

Така побудова є можливою завдяки (1.13).  
Покажемо, що переставлений таким чином ряд буде збігатися до S . Дійс-

но, нехай номер m  задовольняє нерівність 

12121 ......  kk jjjmjjj , тоді )...( 1 kjjm aSS  . Якщо ж 

121 ...  kjjjm , тоді )...( 11 
kjjm aSS . В будь-якому разі, в наслідок 

збіжності вихідного ряду, його загальний член прямує до нуля. Тому із останніх 
співвідношень отримаємо:  

SSn
n

lim . 

2) Шукане переставлення  , при якому ряд розбігається, будуємо та-
ким чином, щоб отримана послідовність часткових сум була нескінченно 
великою: 

1)1( с ,  

2)2( с ,…,
1

)( 1 jсj  , причому      
1

1

1
1

1
)( b

j

k
kj aaS  


 ; 

1 1( 1)j b   , тоді 
1 1 1jS   ; 
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1( 2)j  11 jc ,…,  

121 21
)(  jjcjj , де 

221
2 bjj aS  ; 

1 2 2( 1)j j b    , тоді 
1 2 1 2j jS    ; 

………………………………..  

1...11 11
)2...(  


kjjk cjj ,…,  

1...11 11
)...(  


kk jjjkk cjjj , 

де 
kkk bjjj akS  11 ... ; 

kkk bjjj   )1...( 11 , тоді kS
kk jjj   1... 11

; 

……………………………….  
Якщо 1 2 1 2 1... ...k kj j j m j j j         , то mS k . Тому lim n

n
S   . Отже,  

( )
1

n
n

x




  .  

3. Арифметичні операції над рядами. 

Для суми, різниці і добутку на скаляр вже було доведено (зауваження 1.3 
і 1.4), що  

 

зб

n
n

зб

n
nn

n aсca

constc

зa
 










 












11
1

,0

,бігається)1
 

 

 



























































111

1

1

1

.

,бігaється

,бігaється

,бігaється)2

n
n

n
n

n
nn

n
nn

n
n

n
n

baba

зba

зb

зa

 

За означенням, добутком двох рядів 


1n
na  і 



1n
nb  називають ряд 

ji
jiba

,

, 

членами якого є всілякі добутки jiba  членів даних двох рядів. Тобто 

     






 n
n

ji
ji

def

n
n

n
n wbabbaaba

,
2121

11

...... . 

Поставимо запитання: чи буде із збіжності двох рядів випливати збіж-
ність їхнього добутку та чи буде при цьому сума добутку дорівнювати добутку 
сум, тобто чи буде мати місце імплікація 

бігaється

,бігaється

,бігaється

1

?

1

1 зw

зb

зa

n
n

n
n

n
n




















 








 ,
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а разом з нею рівність 















11

?

1 n
n

n
n

n
n baw ? 

 Позитивні відповіді на ці запитання мають місце у двох випадках: 

1) 


1n
na  і 



1n
nb  – абсолютно збігаються; 

2) один із рядів збігається абсолютно, а інший хоча б умовно, тоді буде 
збігатися ряд спеціального вигляду: 

 ...

4

133122

3

1221

2дорівнює
індексівсума

11
1





   babababababaw

n
n  

Якщо ж ми будемо розглядати ряд 
ji

jiba
,

 з членами, розташованими довіль-

ним чином, то у другому випадку жодного висновку зробити буде не можна. 
Спочатку розглянемо випадок 1). 
Теорема 1.24.  

.збігається

,дозбігаєтьсяабсолютно

,дозбігаєтьсяабсолютно

,1

1

1 


















 










ji
ji

n
n

n
n

n
n

baw

Bb

Аa

 

 Підсумований у будь-якому порядку ряд  
ji

ji
n

n baw
,

 так, щоб були 

присутні усі можливі комбінації добутків jiba , збігається до значення добутку 

сум двох рядів, тобто 











11 n
n

n
n aw BAb

n
n 



1

. 

Доведення. Уведемо позначення: 





n

k
kn aA

1

,   





1n
naA ,   




n

k
kn bB

1

,   





1n
nbB ; 




 
n

k
kn aA

1

,   





1

*

n
naA ,   



 
n

k
kn bB

1

,   





1

*

n
nbB  

Розглянемо часткову суму ряду  
ji

ji
n

n baw
,

, а саме: 


 
n

k
kn wS

1

. Поз-

начимо найбільший із номерів членів двох рядів, що присутні в 
nS , через m  

(цей номер, звичайно, залежить від n ). 
Тоді 

    ****
121

1

...... BABAbbaaawS mmmm

n

k
kn  



 . 



§5 Нескінченні добутки 

 41

 Отже, часткові суми  ряду знакосталого ряду
n

nw  обмежені зверху. Зна-

чить, цей ряд збігається, тобто ряд 
n

nw збігається абсолютно. Знайдемо тепер 

його суму.  
 Оскільки цей ряд абсолютно збігається, він задовольняє комутативну і 
асоціативну властивості. Отже, переставимо члени цього ряду так, щоб послі-
довність часткових сум переставленого ряду містила підпослідовність 

   
   

1 1 1

1 2 1 2 1 1 2 1 1 2 2 2 4

1 2 3 1 2 3 9

,

,

,...

a b W

a a b b a b a b a b a b W

a a a b b b W

 
      

    




 

Отриманий ряд (переставлений і перегрупований) збігається до тієї ж суми, що 
і будь-який інший ряд  

ji
ji

n
n baw

,

, отриманий із усіляких добутків jiba , тому 

BABAW n
n

n
nnn

 limlimlim 2 . ■ 

Випадок 2) доведено в теоремі Мертенса. 

Теорема 1.25 (теорема Мертенса). Якщо один із рядів 


1n
na  чи 



1n
nb  

збігається абсолютно, а інший хоча б умовно, тоді ряд спеціального вигляду: 

 ...

4

133122

3

1221

2дорівнює
індексівсума

11
1





   babababababaw

n
n  

збігається до добутку значень сум цих рядів, тобто  











11 n
n

n
n aw BAb

n
n 



1

. 

Доведення розглянути за бажанням самостійно [2, с.43] ! 
 
§5 Нескінченні добутки 
 
1. Нескінчені добутки. Подання функцій у  вигляді нескін-

ченних добутків 

Формально записаний добуток членів числової послідовності }{ na  вигля-
ду 







1
21 ......

n
nn aaaa  

називають нескінченним добутком; ,..,...,, 21 naaa . називають членами нескін-

ченного добутку; 


n

k
kn aP

1

 частковим добутком. 

Означення 1.7. Якщо існує скінченна, не рівна нулю (!), границя част-
кових добутків, тоді нескінченний добуток називається збіжним, тобто
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1
n

n

a



  збіжний 





  PPPPn

n

def

0lim . 

 Значення  границі n
n

PP lim  називають значенням нескінченного добутку 




1n
na  і застосовують позначення: Pa

n
n 



1

. 

Зауваження 1.5. Нескінченні добутки і послідовності взаємозв’язані: не-

скінченному добутку 
1

n
n

a



  відповідає послідовність часткових добутків  nP , у 

той же час, послідовності  nP  відповідає нескінченний добуток 


1n
na  з члена-

ми  

na =
1

11

1 ...

...





 



nn

nn

n

n

aa

aaa

P

P
. 

Теорема 1.26 (необхідна умова збіжності нескінченного добутку). Якщо 

нескінченний добуток 


1n
na  збігається, тоді його загальний член прямує до 1, 

тобто 1lim n
n

a . 

Доведення. Оскільки нескінченний добуток 


1n
na  збігається, то  

 PPPPn
n

0lim . 

Тоді  

n
n

alim
1

lim n

n
n

P

P 

=
1

lim
1

lim

n
n

n
n

P P

P P

  . ■ 

Зауваження 1.6. Оскільки границя послідовності часткових добутків для 
збіжного добутку не дорівнює нулю, то добутки, в яких хоча б один із членів 
дорівнює нулю, не розглядаються. 

Зауваження 1.7. Згідно з необхідною умовою збіжності нескінченних до-
бутків, 1lim n

n
a , тому, починаючи з деякого номеру, усі члени нескінченного 

добутку будуть мати додатні знаки, тобто  
0N 00  nannn . 

Приклад 1.11. Дослідити нескінченний добуток на збіжність за означен-

ням і знайти його значення, якщо


1 2
cos

n
n

x
. 

Розв’язання. Спростимо цей частковий добуток 

nk

n

k
n

xxxxx
P

2
cos...

2
cos

2
cos

2
cos

2
cos

32
1




, 
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для чого помножимо його на 

n

n

x

x

2
sin

2
sin

1  : 

.
2

sin
2

cos
2

cos
2

cos...
2

cos
2

cos

2
sin

1
123 nnnn

n

n
xxxxxx

x
P   

Оскільки   

12
sin

2

1

2

2
sin

2

1

2
sin

2
cos 

nnnn

xxxx
, 

2111 2
sin

4

1

2
cos

2
sin

2

1

2
sin

2
cos

2
cos  

nnnnnn

xxxxxx
, 

32212 2
sin

8

1

2
cos

2
sin

4

1

2
sin

2
cos

2
cos

2
cos   nnnnnnn

xxxxxxx
, 

тоді 

x
x

x
x

P

n

n

nnn

n

n sin

2
sin

2

1

2
sin

2

1

2
sin

1
  . 

Перевіримо останній висновок за індукцією. Для 1n  ця рівність вико-
нується. Припустимо, закономірність для nP  є вірною. Доведемо її для 1nP : 

x
xxx

x
x

x
x

x
x

PP

n

n

nn

nn

n

n

n

nnn sin

2
sin

2

1

2
cos

2
sin2

2
cossin

2

1

2
cossin

2
sin

2

1

2
cos

1

1

11

1

111 













 . 

Відповідно до принципу математичної індукції, рівність x
x

P

n

n

n sin

2
sin

2

1

  вико-

нується для всіх натуральних номерів n .  
Знайдемо границю послідовності часткових добутків: 

.
sin

sin

2

2

1

limsin

2
sin

2

1

limlim
x

x
x

x
x

x
P

n

n

n
n

n

n
n

n
  

Висновок: нескінченний добуток збігається, крім того, 
x

xx

n

sin

2
cos

1





. ■ 

Встановимо зв’язок між нескінченними добутками і рядами.  
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Теорема 1.27. Нескінченний добуток 


1n
na  і ряд 



1

ln
n

na  де 0na  

Nn  збігаються або розбігаються одночасно, а значення P  нескінченного 
добуток і суми ряду S  пов’язані рівністю 

 
SP ln  або SeP  . 

Доведення. Нехай 



n

k
kn aP

1

 – частковий добуток, N0  kak  – члени 

добутку, тоді n

n

k
k

n

k
kn SaaP  

 11

lnlnln  – часткова сума ряду 


1

ln
n

na , а 

nn SP ln . 

Нехай добуток 


1n
na  збігається, тоді  PPPPn

n
0lim . Оскіль-

ки функція xxf ln)(   неперервна на ),0(  , тоді  
PPP n

n
n

n
lnlimlnlnlim 




. 

 До того ж, значення нескінченного добутку і сума ряду пов’язані рівніс-
тю: 

SP ln . 

Нехай тепер ряд 


1

ln
n

na  збігається, тоді SSn
n

lim . Оскільки nS
n eP  , а 

xexg )( – неперервна на R , тоді   

S

S

S

n
eee

n
n

n  







lim

lim . 

 До того ж, сума ряду і значення нескінченного добутку пов’язані рівністю 
SeP  , яка еквівалентна отриманій раніше. ■ 

Зауваження 1.8. У загальному випадку, якщо добуток 


1n
na  збігається, 

тоді (за необхідною умовою збіжності добутку), 1lim 


n
n

a . Звідки випливає, що 

0N 00  nannn . Тоді (за теоремою1.27) збігається ряд 


 0

ln
nn

na . 

Зауваження 1.9.  

1. Якщо нескінченний добуток 


1n
na  розбігається до P , тоді ряд 
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 


1

ln
n

na  розбігається до    )ln(ln PS .  

2. Якщо добуток 


1n
na  розбігається до 0P , тоді ряд 



1

ln
n

na  розбіга-

ється до    )0ln(ln PS . 
Саме тому обидва випадки, коли 0P    і P   , відносять до випадків 

розбіжності нескінченного добутку. 
Будемо використовувати наступну термінологію: 

1) нескінченний добуток 


1n
na  розбігається до   

def

  ряд 


1

ln
n

na  роз-

бігається до  ; 

2)  добуток 


1n
na  розбігається до 0 

def

 ряд 


1

ln
n

na  розбігається до  . 

 
Твердження 1.4. Нескінченний добуток збігається тоді і тільки тоді, коли 

послідовність його залишків прямує до 1. Тобто 

1limlimзбігається
11

 






 nk
k

n
n

nn
n ara . 

Доведення. Із зауваження 1.8 випливає, що 

.збігаєтьсяlnNзбігається
0

0
1

 






 nn
n

n
n ana  

У свою чергу, з наслідку 1.1 випливає, що ряд 


 0

ln
nn

na збігається тоді та 

тільки тоді, коли 





1

0lnlim
nk

n
n

a . Але, враховуючи неперервність функції 

xy ln , .1lim0lnlim
11

 






 nk
k

nnk
n

n
aa  ■ 

 

Теорема 1.28. Нескінченний добуток  





1

1
n

nv , в якому nv  мають один 

знак Nn , збігається тоді і тільки тоді, коли ряд 


1n
nv  збігається. 

Доведення. Необхідність. Якщо нескінченний добуток  





1

1
n

nv  збіга-

ється, тоді (за необхідною умовою збіжності добутку) 1)1(lim  n
n

v , звідки ви-

пливає, що 
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01N 00  nvnnn . 

За теоремою 1.27 добуток  
0

1 n
n n

v




  збігається одночасно з рядом 





0

)1ln(
nn

nv . 

Оскільки 1)1(lim  n
n

v , тоді 0lim n
n

v . Крім того, за умовою, nv  мають 

однаковий знак Nn . Отже, можна застосувати ознаку порівняння в гранич-

ній формі: оскільки )(~)1ln(  nvv nn , із збіжності ряду 
0

ln(1 )n
n n

v




  ви-

пливає збіжність ряду 


 0nn
nv . Скінченна кількість членів ряду не впливає на йо-

го збіжність, тому ряд 
1

n
n

v



  є збіжним. 

Достатність перевірити самостійно ! ■ 
 

 Теорема 1.29. Якщо збігаються ряди 


1n
nv  та 



1

2

n
nv , тоді нескінченний 

добуток  





1

1
n

nv  збігається.  

 Доведення. Оскільки ряд 


1n
nv збігається, 0lim n

n
v , тобто 1)1(lim  n

n
v  

і виконується необхідна умова збіжності нескінченного добутку  





1

1
n

nv . 

 Розглянемо знакододатний ряд 

     


































1

2
2

1

2
2

1 22
)1ln(

n
n

n

n
n

n
nn

n
nn vo

v
vo

v
vvvv . (1.14) 

Оскільки 
 

12lim
2

2
2




n

n
n

n v

vo
v

, за ознакою порівняння в граничній формі, ряд (1.14) 

поводить себе однаково з рядом 


1

2

n
nv , який збігається. 

  Отже, збіжним є і ряд   













111

)1ln()1ln(
n

n
n

n
n

nn vvvv , а це означає, 

що ряд 





1

)1ln(
n

nv  подається у вигляді різниці двох збіжних рядів  
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 













111

)1ln()1ln(
n

nn
n

n
n

n vvvv , тобто є збіжним рядом. А це, в свою 

чергу, означає збіжність нескінченного добутку  .1
1







n
nv  ■ 

 Зауваження 1.10. Якщо один із рядів 


1n
nv , 



1

2

n
nv  збігається, а інший ро-

збігається,  тоді нескінченний добуток  





1

1
n

nv  розбігається. Дійсно, ряд 

 





1

)1ln(
n

nn vv  поводиться однаково з рядом 


1

2

n
nv ,  а  

 













111

)1ln()1ln(
n

nn
n

n
n

n vvvv . 

 Отже, у будь-якому разі, ряд 





1

)1ln(
n

nv  є різницею розбіжного і збіжно-

го рядів, тобто цей ряд розбігається, а разом з ним розбігається і нескінченний 
добуток. 

Означення 1.8. Нескінченний добуток  





1

1
n

nv  називають абсолют-

но збіжним, якщо абсолютно збіжним є ряд 





1

)1ln(
n

nv . Якщо добуток збіга-

ється, але не абсолютно, він називається умовно збіжним. 

Теорема 1.30. Добуток  





1

1
n

nv  абсолютно збігається тоді і тільки тоді, 

коли ряд 


1n
nv абсолютно збігається. 

Доведення. За означенням 1.8, нескінченний добуток  





1

1
n

nv  абсолю-

тно збігається  ряд 
1

ln(1 )n
n

v




  збігається    

  

)(~)1ln(

формі) граничній в порівняння (ознака

,0lim






nvv

v

nn

n
n







1n
nv  збігається. ■ 

Приклад. 1.12.  

1. В нескінченному добутку 









 

1

1
1

k k
 маємо: 0

1


k
vk Nk . За тео- 
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 ремою 1.28,  добуток 









 

1

1
1

k k
 розбігається до + . 

2. Оскільки ряд 














1 1

1

k k
 розбігається до  , тоді (за теоремою 1.28) 

нескінченний добуток 














1 1
1

1
k k

 розбігається до 0. 

Аналогічно приходимо до висновків: 

3. Нескінченний добуток 



 




 

1

1
1

k k
 збігається, коли 1   і розбігається 

до  , коли 1  . 

4. Нескінченний добуток 
1

1
1

( 1)k k






 
  

  збігається, коли 1  і розбіга-

ється до 0, коли 1 . 
Мають місце наступні співвідношення, доведення яких виноситься на са-

мостійне опрацювання  [2, с.51]: 

















1
22

2

1sin
n n

x
xx  (  12 добуток збіжний), 

















1
22

2

)12(

4
1cos

n n

x
x , 

















1
22

2

1sh
n n

x
xx ,   
















1
22

2

)12(

4
1ch

n n

x
x . 

 

Зауваження 1.11. В формулі 















1
22

2

1sin
n n

x
xx  покладемо 

2


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
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


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



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



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
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
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
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 Отримана формула носить назву формули Валліса: 
22 21 2 ( !)

lim
2 2 1 (2 )!

n

n

n

n n

 
    

. 
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Розділ 1. ЧИСЛОВІ РЯДИ ТА НЕСКІНЧЕННІ ДОБУТКИ 

1.2 ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ 
 

§1 Числові ряди 
 

1. Числові ряди. Обчислення сум рядів 
Задача 1.1. Дослідити ряди на збіжність за означенням. У випадку їх збі-

жності знайти суму ряду. Обчислити часткову суму nS  для 10n . Знайти аб-
солютну похибку n  та відносну похибку n  наближеної рівності nSS  . 

а) ...
2

)1(
...

8

1

4

1

2

1
1

1

1




 



n

n

; 

б) ...
)13)(23(

1
...

107

1

74

1

41

1











 nn
 . 

Розв’язання. а) Знайдемо часткову суму ряду: 
1

1

2

)1(
...

4

1

2

1
1 




n

n

nS . 

Зрозуміло, що це сума n  перших членів спадної геометричної прогресії, тобто 

11

1

23

)1(

3

2

2

1
1

2

)1(
1

2

)1(
...

4

1

2

1
1 
















n

nn

n

n

n

nS . 

Очевидно, що ця послідовність збігається, тобто збіжним буде і ряд, при 

цьому його сума дорівнює 
3

2
lim n

n
S . 

Обчислимо часткову суму при 10n :  

.
1536

1023

5123

11024

23

1

3

2

23

)1(

3

2
99

10

10 











S  

Отже, абсолютна похибка наближення дорівнює 
1536

1

1536

1023

3

2
10  , а 

відносна похибка наближення: .00098,0
3072

3
3
2

:
1536

110
10 




S
 

б) Знайдемо часткову суму ряду: 
























13

1

23

1
...

10

1

7

1

7

1

4

1

4

1
1

3

1

)13)(23(

1
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1

41

1

nnnn
Sn  












13
1

1
3
1

n
.  

( Довести самостійно за допомогою принципу математичної індукції!) 
Послідовність часткових сум знову збігається, що означає збіжність ряду. 

Його сума дорівнює 
3

1
lim n

n
S . 

Обчислимо часткову суму при 10n : .
31
10

313
30

31
1

1
3
1

10 








 S  
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Отже, абсолютна похибка наближення дорівнює 
93
1

31
10

3
1

10  , а  

відносна похибка наближення: .03226,0
93

3

3

1
:

93

110
10 




S
   ■ 

Задача 1.2. Дослідити ряд ...
12

...
5
3

3
2

1 



n
n

 на збіжність.   

Розв’язання. Перевіримо виконання необхідної умови збіжності: 

0
2

1

12
limlim 




 n

n
a

n
n

n
. Оскільки ця умова не винонується, заданий ряд є 

розбіжним.    ■ 

2. Критерій Коші збіжності числового  ряду 

Задача 1.3. Дослідити ряди на збіжність, застосовуючи критерій Коші: 

а) ...
)1(

1
...

32

1

21

1








 nn
; 

б) ...
cos

...
2
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1
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2

2


n

xxx n

 . 

Розв’язання. а) Оцінимо суму 













 )1)((

1
...
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a
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nk
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



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





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Якщо 0n – довільне натуральне число, який би номер 0nn   не було виб-
рано, візьмемо np  . Тоді 

 


















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Отже, якщо вибрати 
3

1
 , тоді 



n

nk
ka

2

1

. Тобто умова критерію Коші 

не виконується і ряд є розбіжним.   ■ 
б) Оцінимо суму  
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Зафіксуємо довільне 0 . Зрозуміло, що нерівність 
n2

1
 виконується  

при  2logn .  Отже, якщо вибрати 
 








1,1

1,1log2
0n , умова 






pn

nk
ka

1

 буде виконуватися 0nn  , що означає збіжність ряду.   ■ 

 

§2 Знакопостійні ряди 
 

1. Ознаки збіжності знакопостійних  рядів (порівняння,   
Коші , Даламбера) 

Задача 1.4. Дослідити ряди на збіжність: 

а) 


1

!2

n
n

n

n

n
;  б)  



1 !3

!

n n

n
;  в)  















1

2

53

52

n

n

n

n
; г)  











 

1 2

1

n
n

n
n

n

n
; 

Розв’язання. а) Застосуємо для дослідження на збіжність ряду ознаку 
Д’Аламбера: 

;
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n

n

n
n

n
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
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
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

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
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Оскільки 
2

1q
e
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г)  Знакододатний ряд 
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n
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2. Ознаки збіжності знакопостійних  рядів (Раабе, Бертрана ,  
Гаусса , інтегральна ознака) 

Задача 1.5. Дослідити ряди на збіжність: 
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Отже, за ознакою порівняння в граничній формі ряди 
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розбігається, тому (за інтегральною ознакою Маклорена-Коші) розбігається ряд 


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в)  Знакододатний ряд 
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г)  Знакододатний ряд 
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д)   Застосуємо до ряду 
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
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2
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p
, заданий ряд буде збіжним 

при 2p  та розбіжним при 2p .   ■ 
 

§3 Знакозмінні ряди 
 

1. Ознаки збіжності знакозмінних  рядів. Абсолютна  та  умо-
вна  збіжність знакозмінних  рядів 
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г)  Ряд 
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

 1
2 )1(ln)1(

1

n nn
. 

Застосуємо інтегральну ознаку Маклорена-Коші. Для функції 

2

1
( )

( 1)ln ( 1)
f x

x x


 
 маємо, що N

)1(ln)1(

1
)(

2



 n

nn
nf , )(xf  монотон-

но спадає на );1[   (знаменник є монотонно зростаючою функцією) та  

 














 2ln

1

)1ln(

1

)1(ln

)1ln(

)1(ln)1(
)(

11
2

1
2

1
xx

xd

xx

dx
dxxf , 

тобто ряд 


 1
2 )1(ln)1(

1

n nn
збігається, що означає, що ряд 



 


1
2 )1(ln

)1(

n

n

nn
 збі-

гається абсолютно.   ■ 
 

е)  Ряд 
2

1

( 1)

ln( 1)

n

n n n






  збігається абсолютно, оскільки 

2 2

( 1) 1
1

ln( 1) ln 2

n

n
n n n


  


, 

а ряд 


1
2

1

n n
 збігається.   ■ 
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є)  Ряд 





1

2

)!2(

)!(
)1(

n

n

n

n
 збігається абсолютно, оскільки знакододатний ряд 




1

2

)!2(

)!(

n n

n
 збігається за ознакою Д’Аламбера: нехай nb

n

n


)!2(

)!( 2

, тоді 

 .1
4

1

)12)(12(

)1(
lim

)!(

)!2(

)!22(

))!1((
limlim

2

2

2
1 








 q
nn

n

n

n

n

n

b

b
nnn

n

n
   ■ 

ж)  Ряд 


 



1 4

1
sin)1(

n

n

n
n  абсолютно розбігається. Дійсно, 

nn
n

n
n n

n

1
1

~
4

1
sin)1(




 
, 

тобто ряд із модулів членів заданого ряду поводить себе як гармонічний ряд, 
який, як відомо, розбігається. 

Покажемо, що сам ряд збігається. Нехай 

0

;04;0
1

sinчверті І 

належить
1

 кут
2

;0]1;0(
1

4

1
sin










 







n
n

nn

n
ncn . 

 Тоді послідовність  nc  спадає, оскільки 1N  nnn   
1

11




nn
, а 

для кута, що належить І чверті, функція xsin зростає, тобто 
1

1
sin

1
sin




nn
. 

Крім того, 
5

1

4

1




 nn
, тобто 

1

1
sin

5

11
sin

4

1




 nnnn
 або 

N1   ncc nn .  

 Очевидно також, що 0
4

1
sin

limlim 



n

nc
n

n
n

.  Отже, за ознакою Лейбні-

ца, ряд 






 




11 4

1
sin)1(

)1(
n

n

n
n

n

n
nc  збігається. Оскільки цей ряд абсолютно ро-

збігається, то він збігається умовно.   ■ 
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з)  Ряд 


 


1
22 sin

)1(

n

n

nn
 збігається абсолютно, оскільки 

,N
1

sin

1

sin

)1(
22222








n
nnnnn

n

а ряд 


1
2

1

n n
 збігається як узагальнений 

гармонічний ряд з показником 2p .   ■ 

и)  Ряд 





1

1
tg)1(

n

n

n
 абсолютно розбігається, оскільки 

nn

n
n 1

~
1

tg)1(


 , а 

ряд 


1

1

n n
 розбігається. Покажемо, що сам ряд збігається.  

Оскільки 

0

;0
1

tgчверті І 

належить
1

 кут
2

;0]1;0(
1

1
tg 









 




n

nn
n

cn , 

ряд є знакопочережним. Застосуємо до нього ознаку Лейбница:  
        ;1N  nnn  

N

;
1

1
tg

1
tg

;зростаєsinфункція

чверті, І належитьщо

 кута,для

;
1

11

1 





















 ncc
nn

х

nn

nn

, 

тобто послідовність  nc  спадає та 0
1

tglimlim 
n

c
n

n
n

.  

 Отже, за ознакою Лейбніца, ряд 
1 1

1
( 1) ( 1) tgn n

n
n n

c
n

 

 

     збігається. Оскі-

льки цей ряд абсолютно розбігається, то він збігається умовно.    ■ 
 

і) Ряд 















1
3

1
1lncos

n n
n

3
1

1
( 1) ln 1n

n n





 
   

 
  збігається абсолютно, 

оскільки за ознакою порівняння в граничній формі ряд 















1
3

1
1ln

n n
 поводить 

себе як ряд 


1
3

1

n n
, оскільки 

2/33

1
~

1
1ln)1(

nn

n
n













 . А ряд 



1
3

1

n n
 збіга-

ється як узагальнений гармонічний з показником 
2

3
p .   ■ 
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к)  Ряд 






 





11 )47ln()13(
1

)47ln()13(
)1(

nn

n

nnnn
 розбігається. Це було 

доведено в задачі 2.4 (д). Отже, абсолютної збіжності немає. 
 Даний ряд є знакопочережним, оскільки його можна подати у вигляді 

1

( 1)n
n

n

c




 , де N0
)47ln()13(

1



 n

nn
cn . 

Застосуємо ознаку Лейбніца: 

1) 
)117ln()43(

1

)4)1(7ln()1)1(3(

1
1 




 nnnn
cn ; 

N
)117ln()43(

1
)47ln()13(

1
1 





  nc

nnnn
c nn ,  

тобто послідовність  nc  спадає. 

2) 0
)47ln()13(

1
limlim 




nn
c

n
n

n
. 

Отже, за ознакою Лейбніца ряд збігається. 
Оскільки ряд збігається, але не абсолютно, то він збігається умовно.   ■ 

л) Розглянемо ряд 


 1
3 5

)3/cos(

n n

n
. Для дослідження питання про його збіж-

ність застосуємо ознаку Діріхле. Нехай  

3 5

1
),3/cos(




n
anb nn . 

1) Для оцінки суми косинусів або синусів кратних дуг буде застосовано 
нерівності (1.10) або (1.11) відповідно: 

2
sin

1
cos

1 x
kx

n

k




; 

2
sin

1
sin

1 x
kx

n

k




 ( Z,2  mmx ). 

Перша із цих нерівностей для 
3

1
x  набуває вигляду: 

N

6
1

sin

1
)3/cos(

11

 


nkbB
n

k

n

k
kn . 

Звідси випливає, що  nB – обмежена послідовність. 

2) Оскільки N
6

1

5

1
313







  n
n

a
n

a nn , то послідовність 

}{ na спадає. 

3) 
3

1
lim lim 0

5
n

n n
a

n
 


. 
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Отже, за ознакою Діріхле  ряд 
3

1 1

cos( /3)
збігається

5
n n

n n

n
a b

n

 

 

 


  . 

Перевіримо тепер абсолютну збіжність заданого ряду. Має місце нерів-
ність 
















 








 1
3

1
3

1
3

2

1
3 5

)3/2cos(

2

1

5

1

2

1

5

)3/(cos

5

)3/cos(

nnnn n

n

nn

n

n

n
.  (1.15) 

 Ряд 


 1
3 5

1

n n
 розбігається, оскільки поводить себе як узагальнений гар-

монічний  ряд  з  показником  
3

1
p . До ряду   

3
1

cos(2 /3)

5n

n

n



 
  застосуємо   ознаку  

Діріхле: 

  



























;0lim)3;спадає}{2

обм.;

3

1
sin

1

3

2
cos)1

;
5

1
,

3

2
cos

11

3

n
n

n

n

n

k

n

k
kn

kk

aa

B
k

bB

k
a

k
b

3
1 1

cos(2 /3)
зб.

5
n n

n n

n
a b

n

 

 

 


   

Оскільки ряд 


 1
3 5

1

n n
 розбігається, а ряд 



 1
3 5

)3/2cos(

n n

n
 збігається, то із 

нерівності (1.15) випливає, що ряд 


 1
3 5

)3/cos(

n n

n
 абсолютно розбігається. В на-

слідок збіжності цього ряду матимемо його умовну збіжність.   ■ 

м) Ряд 
100

1

1

1

1
)1(

nn

n

n

n 







 абсолютно розбігається, оскільки  

100100

1
~

1

1

1
)1(

nnn

n n
n







 , 

а ряд 


1
100

1

n n
 розбігається як узагальнений гармонічний ряд з показником 

1
100

1
p . 

Для дослідження на збіжність ряду 
100

1

1
1
1

)1(
nn

n

n

n 







 застосуємо ознаку 

Абеля. Нехай  

1

1
,

)1(
100 







n

n
a

n
b n

n

n . 
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Оскільки N1
1

1
0 




 n
n

n
an , то послідовність   обмеженаna . По-

кажемо, що ряд 


1n
nb збігається за ознакою Лейбніца. Дійсно, це знакопочере-

жний ряд 






1
100

)1(

n

n

n
, в якому послідовність 









100

1

n
монотонно спадає та 

0
1

lim
100


nn

.  

Отже, ряд 
100

1 1

1 1
( 1) збігається

1
n

n n
n n

n
a b

n n

 

 


   

  . Внаслідок його не аб-

солютної збіжності матимемо висновок про умовну збіжність даного ряду.  ■ 

н) Розглянемо ряд 


 


1 2

1
)1(

n
n

n

n
. Оскільки 1

2

1
lim 

nn
, ,

1
~

2

1
)1(

nn n
n


  

то ряд поводить себе як розбіжний гармонічний ряд, тобто розбігається. 
 Для дослідження на збіжність застосуємо ознаку Абеля: 

nn

n

n b
n

a
2

1
,

)1(



 ; 

1) ряд 











11

)1(

n

n

n
n n

a  збігається за ознакою Лейбніца (див приклад 1.8); 

2) оскільки N
2

1

2

1
)1/(1

1

/1


















 nbb
n

n

n

n , то послідовність 

}{ nb спадає; 

3) оскільки N1
2

1
0

/1







 nb

n

n , то послідовність   обмеженаnb . 

Отже, ряд збігається
2

1
)1(

11




 






 n
n

n
n

n
n

n
ba . Внаслідок його абсолютної збі-

жності, матимемо висновок про умовну збіжність цього ряду.   ■ 
 

о) Подамо загальний член ряду 







1
1)1(

)1(

n
n

n

n
 у вигляді: 

n

nn n

n

n

n

11 )1(
1

1)1(

)1(

)1(
 








. 

Застосуємо розвинення за формулою Маклорена 

 tott  

2
1

1)1( 2/1  
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для 
n

t
n 1)1(  , отримаємо: 



































 

 nn
o

nnnn
o

nnn

nnn

n

n 1

2

1)1(1

2

)1(
1

)1(

)1(

)1( 1

1
; 


































1111
1

11

2

1)1(

)1(

)1(

nnn

n

n
n

n

nn
o

nnnn
. 

 Ряд 
1

( 1)n

n n





  збігається за ознакою Лейбница, оскільки послідовність 









n

1
 монотонно спадає до нуля. Але абсолютно цей ряд не збігається, оскіль-

ки це узагальнений гармонічний ряд 
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є умовно збіжним.   ■ 
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§4 Властивості числових рядів 
 

1. Асоціативна  та  комутативна властивості  числових  рядів 

Задача 1.7. Показати, що 2ln
)1(

1

1










n

n

n
, та знайти суми рядів, що утво-

рюються із даного в результаті переставлення його членів: 

а) ...
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1
1  ; 

б)  ...
4

1

7

1

5

1

2

1

3

1
1  . 

Розв’язання. 
Етап 1. Доведемо спочатку, що ряд  








1

1)1(

n

n

n
      (1.16) 

збігається до числа 2ln .  
Розглянемо формулу Маклорена для функції )1ln()( xxf   
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n
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



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
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із залишковим членом у формі Лагранжа 
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Оскільки  
n

n
n

x

n
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При 1x  
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r
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Звідси  

1
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)1(111

1
1


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




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
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Позначаючи через nS  n -у часткову суму ряду (1.16), ми можемо перепи-
сати останню нерівність у вигляді: 
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1
1

2ln



n

Sn .       (1.17) 

 Із (1.17) випливає, що  2lnnS  є нескінченно малою послідовністю. Це і 
доводить збіжність ряду (1.16) до числа ln 2 . 

Етап 2. Запишемо ряд (1.16) у вигляді 
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m -і часткові суми такого перегрупованого ряду відповідають m2 -им частковим 
сумам ряду (1.16) і 
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а) Доведемо, що ряд  
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1  ,    (1.18) 

отриманий в результаті переставлення членів ряду (1.16), збігається і має суму, 
вдвічі меншу, ніж ряд (1.16). Будемо позначати m -і часткові суми ряду (1.18) 
символом mS . Можемо записати: 
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Отже, 

mm SS 23 2
1 . 

Далі, очевидно, що 

m
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1
2
1

213   , 
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2
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m
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, 

можна дійти висновку, що ряд (1.18) збігається і має суму, яка дорівнює 2ln
2
1

. 

■ 
Задача 1.8. Довести наступне твердження: якщо члени ряду 










 111
1  переставити так, щоб групу p  послідовних додатних членів 
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змінювала група q  послідовних від’ємних членів, тоді сума нового ряду буде 

дорівнювати 
q

p
ln

2

1
2ln  . 

Розв’язання. Розглянемо допоміжний ряд 











 


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1
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n n

n

n
.     (1.19) 

Оскільки 
nnn

n 11
1ln

1
ln 






 

, цей ряд є знакододатним. Покажемо, що 

він збігається. Дійсно, застосовуючи формулу Маклорена, отримаємо загальний 
член ряду у наступному вигляді: 
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Це означає, що 
2

1
~

1
ln

1

nn

n

n


 , тобто ряд (1.19) поводить себе однаково 

з рядом 


1
2

1

n n
, який збігається.  

Знайдемо часткову суму ряду (1.19): 
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  ),1ln(ln)1ln(...3ln4ln2ln3ln2ln  nHnnH nn  
 

де 



n

k
n k

H
1

1
 – часткова сума гармонічного ряду. Оскільки ряд (1.19) збігається, 

його часткова сума має границю, тобто існує   CnHS n
n

n
n

 )1ln(limlim . 

Константа C  носить назву константи Ейлера. Це означає, що 
,)1ln( nn nСH   де  n  – деяка нескінченно мала послідовність. Пере-

пишемо останній вираз у іншому вигляді:  
 

nnnn nС
n

n
nСnnnСH 


 ln

1
lnlnln)1ln(ln , 

 

де nnn

n


1
ln  – нескінченно мала послідовність. 

Отже, має місце наступна формула: 
 

.ln nn nСH        (1.20) 
 

де C – константа Ейлера, а  n  – деяка нескінченно мала послідовність.  
З формули (1.20) отримаємо, що: 
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Переставимо члени ряду Лейбница так, як описано в умові, та для зруч-
ності об’єднаємо у групи члени одного знаку: 
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Знайдемо часткові суми цього ряду, які містять такі групи цілком: 
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 Очевидно, що 
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 Інші часткові суми переставленого ряду будуть розташовані між обчис-
леними вище сумами )( qpnS   та qnnpS )1(   за рахунок того, що в кожній групі 

(дужці) містяться доданки одного знаку: якщо Nn  
)()1( qpniqnnp  , тоді )()1( qpniqnnp SSS   ; якщо Nn  
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тобто сума переставленого ряду дорівнює 
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Задача 1.9. Члени збіжного ряду 
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 Цей ряд отримано із заданого ряду за допомогою такого переставлення: за 
трьома додатними членами стоїть один від’ємний.  
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У силу нерівності  
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маємо оцінку загального члена  ряду 
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 Оскільки ряд 
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 розбігається, то (за ознакою порівняння) розбі-
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то послідовність }{ nA  містить розбіжну підпослідовність, отже, є розбіжною. 
Отримане означає розбіжність ряду (1.21).   ■ 

Задача 1.10. Знайти суму ряду 
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2. Арифметичні операції над числовими рядами 

Задача 1.11. Довести, що 
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збігається абсолютно. Згідно з теоремою 1.24, для знаходження добутку двох 
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 Задача 1.12. Показати, що квадрат збіжного ряду 
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2. Нескінчені добутки. Дослідження добутків на  збіжність 

 Задача 1.14. Довести наступні рівності: 
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 Розв’язання.  
 а)  Обчислимо нескінченний добуток за означенням. Для цього знайдемо 
частковий добуток: 
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 Помножимо обидві частини цієї рівності на  21 x : 
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 Задача 1.15. 
 Довести збіжність та знайти значення наступних нескінченних добутків: 
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 Розв’язання. а)  Доведемо збіжність добутку за означенням. Для цього 
знайдемо частковий добуток: 
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( Довести за допомогою принципу математичної індукції за зразком на ст. 42) 

Оскільки послідовність   nP  є збіжною, заданий нескінченний добуток збіга-
ється та дорівнює 
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б)  Знову знайдемо частковий добуток: 
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 Це означає збіжність заданого нескінченного добутку до числа 2lna .   ■ 
 Задача 1.16. Дослідити нескінченні добутки на збіжність: 
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 Розв’язання.  
а) Перевіримо необхідну умову збіжності нескінченного добутку:  
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. Оскільки необхідна умова не виконується, заданий нескінченний 

добуток розбігається.   ■ 
  б) Зауважимо, що необхідна умова збіжності нескінченного добутку ви-

конується при будь-якому значенні p : 1
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 Зауважимо, що отриманий ряд є знаковід’ємним і його збіжність не зале-
жить від значення параметра p . Цей ряд, в свою чергу, збігається одночасно із 
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2
1ln

n n
p   p , тобто при 

всіх значеннях p  збігається нескінченний добуток .
1

1

2
2

2

















n

p
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   ■ 
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в) Застосуємо теорему 1.27 для дослідження добутку на збіжність, тобто 
дослідимо на збіжність числовий ряд  


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
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1
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1
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 Оскільки 
nn

1
~

2

1
1ln 









 , за ознакою порівняння в граничній формі, 

ряд 














0 2

1
1ln

2

1

n n
  поводить себе як гармонічний ряд 



1

1

n n
, тобто розбі-

гається до   . Отже, нескінченний добуток 


 


0 2

1

n n

n
 розбігається до нуля. ■ 

г) Спочатку перевіримо виконання необхідної умови збіжності: 

21
2

0
2

lim1
2

1lim 
















 x

xxx
n

n

nn

n

n
. Отже, будемо розглядати лише 

такі значення x . Згідно з теоремою 1.27, заданий добуток збігається одночасно 

з числовим рядом 





















1 2
1ln

n

n
x

. Покажемо, що цей ряд збігається абсолютно. 

Дійсно, 
nn xx


























2
~

2
1ln , а за умови 1

2


x
, ряд 













1 2n

n
x

збігається.  

 Отже, ряд 





















1 2
1ln

n

n
x

 збігається абсолютно при 2x , тобто заданий 

нескінченний добуток збігається при 2x .   ■ 
 

ґ) Знову застосуємо теорему 1.27 для дослідження добутку на збіжність, 
тобто дослідимо на збіжність числовий ряд  















 

11

.
1

1ln
11

1ln
nn

n
nnn

 

 Оскільки 
nn

1
~

1
1ln 






  , за ознакою порівняння в граничній формі, ряд 











 

1

1
1ln

1

n nn
  поводить себе як ряд 



1
2

1

n n
, тобто збігається. Отже, нескінчен-

ний добуток 





1

1
1

n

n
n

 також збігається.   ■ 

д) Оскільки 0lim 
n

x
n

 при всіх x , lim 1 1
x

n

n

x
e

n

    
 

, тобто необхідна 

умова збіжності виконується. Згідно з теоремою 1.27, заданий добуток збігаєть-
ся одночасно з числовим рядом 
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1 1 1

ln 1 ln 1 ln ln 1 .
x x

n n

n n n

x x x x
e e

n n n n

   

  

                                   
    

 Для застосування ознаки порівняння в граничній формі розкладемо зага-
льний член цього ряду за формулою Маклорена:  





















 

22

2
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2
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n
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n
o
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x
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n

x
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x
. 

Це розвинення дає можливість подати ряд у вигляді 

,
1

2
1ln

1
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2

1













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



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
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

 
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x
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x

n

x
 

що означає, що цей ряд поводить себе як 


1
2

1

n n
, тобто збігається при будь-

якому значенні x . Отже, нескінченний добуток n

x

n

e
n

x 








 

1

1  також збігається 

при всіх значеннях x .   ■ 
 

е) Для дослідження добутку на збіжність порівняємо його з числовим ря-
дом:   

3

3 4

1 1 1

2 2 2

2 3 2 3 2 3
1 1 1

1
sin sin

3!ln ln ln

1 1 1
ln 1 .

3! 6 6

p

n n n
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n n n n n n

  

  

  

  

                       
           

                               
          

  

  

 

 

Тут ми використовували розвинення за формулою Маклорена функцій xsin  та 

)1ln( x . Оскільки 
232

2 1
~

1

6 nn
o

n

x






  при всіх значеннях x , за ознакою порів-

няння в граничній формі, ряд 


 















1

sin
ln

n

p

n
x

n
x

поводить себе як ряд 


1
2

1

n n
, тобто 

збігається. Отже, заданий нескінченний добуток також збігається при всіх зна-
ченнях x  та p .   ■ 
 

є) Зрозуміло, що можна розглядати лише додатні x , інакше вираз, що сто-
їть під знаком кореня, буде від’ємним. Для дослідження добутку на збіжність 
порівняємо його з числовим рядом:   
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 Серед отриманих трьох рядів останні два збігаються: 


1
2

n n

x
 – узагальне-

ний гармонічний ряд з показником 2 , а для ряду 











1
2

1

n n
o  застосуємо ознаку 

порівняння: 
2200
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N

nn
onnn 






 . Оскільки ряд 



1
2

1

n n
 збігається та скі-

нченна кількість членів не впливає на збіжність ряду, то і ряд 











1
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1

n n
o  абсо-

лютно збігається.  

Покажемо, що перший ряд  





1

lnln
1

n

xn
n

 розбігається. Оскільки 

n
n

n
xn ln

~
lnln 

 при n , цей ряд поводить себе, як ряд 


1

ln

n n
n

.  Для дослі-

дження цього ряду застосуємо інтегральну ознаку Маклорена-Коші. Для функ-

ції 
t
t

tf
ln

)(   маємо, що 
n
n

nf
ln

)(   Nn , );3[наспадає)( tf ; оскільки 

0
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t
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розбігається, тому (за інтегральною ознакою Маклорена-Коші)  розбігається 

ряд 


1

ln

n n
n

. Отже, ряд  





1

lnln
1

n

xn
n

 також розбігається. А це означає, що й 

ряд  





1

ln)ln(ln
n

n nxn  є розбіжним при всіх значеннях 0x , тобто заданий 

нескінченний добуток також е розбіжним.   ■ 
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 Задача 1.17. Дослідити нескінченні добутки на абсолютну і умовну збіж-
ність: 

  а) ;
)1(

1
1

1












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n
     б) .

)1(1

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 n
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n
     

Розв’язання.  а) З теореми 1.28 випливає, що добуток 












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1)1(
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n
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n

n
 аб-

солютно збігається тоді та лише тоді, коли абсолютно збігається ряд 






1

1)1(

n
p

n

n
, 

тобто тоді та лише тоді, коли збігається ряд 


1

1

n
pn

. Оскільки це узагальнений 

гармонічний ряд, відомо, що він збігається при 1p  . 
 Вирішимо тепер питання про умовну збіжність нескінченного добутку. З 

теореми 1.29 відомо, що якщо збігаються ряди 






1

1)1(

n
p

n

n
 та 



1
2

1

n
pn

, тоді збіга-

ється заданий нескінченний добуток. Ці два ряди одночасно збігаються при 

12p  , тобто при 1p
2

1
  нескінченний добуток збігається умовно. 

 У випадку 
2

1
p0   ряд 


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1

1)1(

n
p

n

n
 збігається, а ряд 



1
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1

n
pn

 розбігається, 

тобто, згідно з зауваженням 1.10, заданий нескінченний добуток розбігається. У 
випадку 0p    добуток також розбігається, тому що не виконується необхідна 
умова збіжності.   ■ 

б) Подамо нескінченний добуток у вигляді   
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 Для перевірки збіжності такого добутку потрібно досліджувати збіжність 

ряду 
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 Перший ряд в цій сумі – це знакопочережний ряд. Він збігається за озна-

кою Лейбница, оскільки послідовність 0
1


n

n
  при n  та є спадною (пе-

ревірити цей факт самостійно !), а ряд 


 2 1
1

n n
 розбігається як гармонічний 

ряд.   ■ 
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Розділ 1. ЧИСЛОВІ РЯДИ ТА НЕСКІНЧЕННІ ДОБУТКИ 

1.3 ЗАВДАННЯ ДЛЯ САМОСТІЙНОГО ВИКОНАННЯ 
 

Завдання 1.1 Користуючись означенням, знайти суму числового ряду 




1n
na . Обчислити часткову суму nS  для 10n , 100 . У кожному випадку знайти 

абсолютну похибку n  та відносну похибку n  наближеної рівності nSS  . 

1. 


 1
2 1544

8

n nn
 2. 



 1
2 5129

6

n nn
 3. 



 1
2 869

6

n nn
 

4. 


 1
2 8219

2

n nn
 5. 



 1
2 384

2

n nn
 6. 



 1
2 452849

14

n nn
 

7. 


 1
2 481449

14

n nn
 8. 



 1
2 52436

6

n nn
 9. 



 1
2 6525

5

n nn
 

10. 


 1
2 239

3

n nn
 11. 



 1
2 12749

7

n nn
 12. 



 1
2 7124

5

n nn
 

13. 


 1
2 344

4

n nn
 14. 



 1
2 584

3

n nn
 15. 



 1
2 869

2

n nn
 

16. 


 1
2 452849

18

n nn
 17. 



 1
2 273636

5

n nn
 18. 



 1
2 5124

7

n nn
 

19. 


 1
2 584

1

n nn
 20. 



 1
2 6525

6

n nn
 21. 



 1
2 344

5

n nn
 

22. 


 1
2 869

6

n nn
 23. 



 1
2 5129

6

n nn
 24. 



 1
2 14159

2

n nn
 

25. 


 1
2 344

4

n nn
 26. 



 1
2 102149

7

n nn
 27. 



 1
2 63549

7

n nn
 

28. 


 1
2 4618

3

n nn
 29. 



 1
2 241025

10

n nn
 30. 



 1
2 20249

12

n nn
 

31. 


 1
2 452849

14

n nn
 32. 



 1
2 688

5

n nn
 33. 



 1
2 15816

8

n nn
 

34. 


 1
2 23

6

n nn
 35. 



 1
2 14159

3

n nn
 36. 



 1
2 12749

9

n nn
 

37. 


 1
2 91212

10

n nn
 38. 



 1
2 6168

7

n nn
 39. 



 1
2 10168

3

n nn
 

40. 


 1
2 6525

15

n nn
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Завдання 1.2 Перевірити виконання необхідної умови збіжності. Зробити 
висновки. 

1. 


 


1
2

2

13

59

n n

nn
 2. 















1 23

13

n

n

n

n
 3. 












1 15

5
ln

n n

n
n  

4. 














1 3

1

n

n

n

n
 5. 



 


1

2

15n n

en
 6. 

 


 


1

2

23

5

n n

n
 

7. 











1
3

3 1
sin

n n
n  8. 

 


 


1
8

24

43

3

n n

nn
 9. 

 


 


1

23

3

1

n n

nn
 

10. 









 

1
2

1
3ln

n n
 11. 










 

1 2

1
1ln

n n
n  12. 



 


1
3 43

9

n n

nn
 

13. 














1
3 4

1
sin

n n
n  14. 















1
3 2

1
sin

n n
n  15. 














1

2
cos1

n n
n  

16. 











1
3

5 1
arctg

n n
n  17. 



















1

21
2 1

n

nen  18. 











1
3

1
arctg1

n n
n  

19.  


 


1 3cos

13

n
nn

n
 20.  



 


1 2sin

12

n
nn

n
 21.   
















1

2

52

2
ln

n nn

n
 

22. 


 


1 89

210

n
n

n

 23.  












1

2

922

2
ln

n nn

n
 24. 



 


1 65

34

n
n

n

 

25. 


1lnn n

n
 26. 












1

33 2
tg

n n
n  27. 












1

2 1
tg

n n
n  

28. 
 



 


1

33 1

n nn

n
 29. 
















1
4

4

2

5

n

n

n

n
 30. 

 


 


1

2

3

9

n nn

n
 

31. 















1
4

4

1
cos

n n

n
 32. 



1

0007,0
n

n  33. 















1 1

4
arctg

n n

n
 

34. 


















1

1

4

4

1

1

n

n

n

n

n
 35. 















1 1

2
cos

n n

n
 36. 










 

1
3

cos
n n

 

37. 






1
3

83

n

nn

n
 38. 

 


















1

3

3

3

n

nn

n

n
 39. 


















 

1
3

2

cos
n

n

n
 

40. 






1n
n n
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Завдання 1.3 Дослідити числові ряди на збіжність. 

1. а) 
 



 


1 !12

1

n
n n

n
;   б)  
















1

31
13

22

n

n

n
n

n
;   в) 

   


 1
2 12ln32

1

n nn
; 

 г) 






1
22

3

sin

2

n nn

n
;   д) 










 

1

24

4
arctg

n

n

n
n ;   е) 




 1

1 13

2

n
n n

. 

2. а) 
 



1

2

2
2

!

n
n

n
;   б) 















1

2

23

12

n

n

n

n
;   в) 

 


 1
2 12ln

1

n nn
; 

 г) 

 




 



1 2
4

13
arcsin

n
n

n

n
;   д) 















1

3
3

12

2

n

n

n

n
n ;   е) 



 1
251

5

n
n

n

. 

3. а) 
 

 









1

31

!1

12

n

n

n

n
;   б) 












1

4

53

2

n

n

n

n
n ;   в) 

   


 1
2 32ln12

1

n nn
; 

 г) 
 







1
22

13

n
n

n

;   д) 






1 2
sin!

n
n

n ;   е) 


 1 12

1

n
n

. 

4. а) 










 

1 4

11
1

2

n
n

n

n
;   б) 

   


 1
2 74ln53

1

n nn
;   в)  







1 !2

!210

n

n

n

n
; 

 г) 


 1
3 22 lnln

1

n nnn
;   д) 







1

2

5

3

n
n

nn
;   е) 



1
3

1
arctg

1

n nn
. 

5. а) 
 









1 2

1

53

!22

n
nn

n
;   б) 















1

2

13

1

n

n

n n

n
;   в) 

 


 1
2 13ln

1

n nn
; 

 г) 


 





 





1 3

2

2
sin2

3

n n
n

n
;   д) 












1

2

13n

n
n

n

n
n ;   е) 



 


1
3

3

n nn

nn
. 

6. а) 
 



 


1 !12

1

n
n n

n
;   б)  
















1

31
13

22

n

n

n
n

n
;   в)  



 1
22 ln3n nn

n
; 

 г) 


 1
2 3

ln

n n

nn
;   д) 

 







1 2

11
2

n
n

n

n

n
;   е) 



 


1
3

32

n nn

nn
. 
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7. а)  


1 !3

!

n n

n
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












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2
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 
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 1
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 
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 
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
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 
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 
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
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Розділ 2. ФУНКЦІОНАЛЬНІ І СТЕПЕНЕВІ РЯДИ 
 

2.1 ТЕОРЕТИЧНІ ВІДОМОСТІ 
 

§1 Поняття про функціональні послідовності і ряди, типи їх збіжностей 
 

1. Функціональні послідовності та  ряди. Область їх збіжності 
Рівномірна  збіжність функціональних  послідовностей та  рядів  

Означення 2.1 Якщо у відповідність до кожного натурального n  
ставиться деяка функція ( )nf x , визначена на множині{ }x , то множину 
занумерованих функцій 1 2( ), ( ),..,  ( ),...nf x f x f x  називають функціональною 
послідовністю. 

Множину { }x  на якій визначена кожна із функції ( )nf x  називають 
множиною визначення функціональної послідовності. 

Означення 2.2 Нехай функціональна послідовність { ( )}nu x  задана на 

{ }x . Формально утворену суму вигляду 1 2
1

( ) ( ) ... ( ) ... ( )n n
n

u x u x u x u x




      

називають функціональним рядом, а множину {x} – множиною визначення 
функціонального ряду. 
 Також будемо називати: 

 ( )nu x  – загальним членом функціонального ряду,  

  
1

( ) ( )
n

n k
k

S x u x


   – n -ою частковою сумою функціонального ряду. 

Означення 2.3 Функціональну послідовність (ряд) називають 
збіжною в точці 0 { }x x , якщо числова послідовність  0{ ( )}nf x  (числовий ряд 

0
1

( )n
n

u x



 ) збігається. Множину точок 0 { }x x , в яких функціональна 

послідовність (ряд) збігається, називають областю збіжності послідовності 
(ряду). 

Зрозуміло, що область збіжності X  є підмножиною множини визначення 
{ }x  функціональної послідовності (ряду), тобто { }X x . 

 
Означення 2.4 Якщо 0x X , де X  – область  збіжності послідовності 

(ряду), то їй можна поставити у відповідність єдине значення границі 

послідовності 0lim ( )n
n

f x


 (суми ряду 0
1

( )n
n

u x



 ). Таким чином утворюється 

функція, визначена на області збіжності X . Цю функцію називають граничною 
функцією (сумою) відповідної послідовності (ряду). А саме: 

( ) lim ( )
X

n
n

f x f x


   ( ( )
X

S x 
1

( )n
n

u x



 ). 
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Щоб підкреслити збіжність функціональної послідовності (ряду) в кожній 
окремій точці із множини X , цю функцію називають поточковою границею 
функціональної послідовності (поточковою сумою функціонального ряду). 
Застосовують також інше позначення: 

( ) ( )n X
f x f x   (

1

( )n
n

u x





.

( )
поточк

X
S x ), де     { }X x . 

На мові 0n   означення поточкової збіжності на множині A X  (тут 
X  – область її збіжності) можна записати так: 

0 0 0( ) ( ) 0 ( , ) : ( ) ( )
def

n nX
f x f x x A n n x n n f x f x             . (2.1) 

Приклад 2.1 Знайти область збіжності функціональної послідовності 

 ( ) n
nf x x . На цій множині знайти граничну функцію (поточкову границю). 

Розв’язання. Множина визначення цієї функціональної послідовності –  
{ }x   . Дослідимо послідовність на збіжність в кожній точці множини 
визначення: 

 1, то н.м..п. lim ( ) 0;n
n

n
x x f x


     

 1, то н.в..п. lim ( ) ;n
n

n
x x f x


     

1, то 1 lim ( ) 1;n
n

n
x x n f x


      

1, то ( 1) lim ( ).n n
n

n
x x n f x


        

Висновок: область збіжності функціональної послідовності  ( ) n
nf x x  – 

півінтервал ( 1;1] . Гранична функція (поточкова границя), визначена на цій 
множині, подається у вигляді: 

0, ( 1,1);( ) lim ( )
1, 1.n

n

xf x f x
x

     ■ 

 

Означення 2.5 Функціональну послідовність { ( )}nf x  називають 
рівномірно збіжною до функції ( )f x  на множині A X  (тут X  – область її 
збіжності) і позначають ( ) ( )n

A
f x f x , якщо  

0 0 00 ( ) ( ) ( ) .nn n n n x A f x f x                (2.2) 
Зверніть увагу на місце розташування виразу « x A  » в (2.1) і (2.2)! 

Поставимо запитання: чи завжди для будь-якого 0   можна знайти один, 
спільний для всіх значень x A , номер 0n , що залежить лише від  , починаючи 
з якого буде виконуватися нерівність ( ) ( )nf x f x   ? У випадку рівномірної 
збіжності послідовності відповідь на це запитання позитивна. 

Приклад 2.2 Дослідимо послідовність  ( ) n
nf x x  на рівномірну 

збіжність на відрізку [0,1]  до функції 0, [0,1);( )
1, 1,

xf x
x
   яка є поточковою її 

границею на цьому відрізку. 
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Рис. 2.1 

Розв’язання. На рис. 2.1 зображено 
графіки декількох членів-функцій даної 
послідовності на відрізку [0,1] . 

І спосіб. Потрібно перевірити, чи 
можливо для будь-якого 0   знайти один, 
спільний для всіх значень [0,1]x , номер 0n , 
що залежить лише від  , починаючи з якого 
буде виконуватися нерівність 

( ) ( )nf x f x   .  

Той факт, що для кожного фіксованого 
[0,1]x  можна знайти свій номер 0n , який 

залежить і від   і від x , випливає із означен- 
ня границі послідовності { ( )}nf x  при фіксованому x . Якщо знайти для кожного 
фіксованого [0,1]x  свій номер 0 0 ( , )n n x  , то спільним буде номер 

* *
0 0 0

[0,1]
( ) sup ( , )

x
n n n x


    . 

Доведемо, що для даної послідовності *
0n   . Це буде означати 

нерівномірну збіжність функціональної послідовності на відрізку [0,1] . 
Розглянемо нерівність ( ) ( )nf x f x   : для [0,1]x . Маємо:  

ln(1 / )
( ) ( ) 0

ln(1 / )
n n

nf x f x x x n
x


       ; 

1 0[0,1)

ln(1 / ) 1
sup ln(1 / ) lim

ln(1 / ) ln(1 / )xx x x 


     , 

що і доводить потрібне. 
ІІ спосіб. Розглянемо заперечення логічного висловлювання 

0 0 00 ( ) [0,1] ( ) ( )nn n n n x f x f x             . 

Одержимо: 

0 00 [0,1] ( ) ( )n nn n n x f x f x           . 

Розглянемо послідовність 
1

1 [0,1]nx
n

   . Для неї маємо: 

1 1
( ) ( ) 1 0

n

n n n n
f x f x

n e
      
 

. 

Звідки випливає, що,  

для 1

2e
  , 0 0

1
для , для 1 [0,1] вірно ( ) ( )n nn n n x f x f x

n
         . 

Отже, виконується заперечення рівномірної збіжності, тобто 
послідовність збігається нерівномірно на відрізку [0,1] . ■ 

Приклад 2.3 Дослідимо послідовність 
2 2

( )
1n

x
f x

n x



 на рівномірну 

збіжність на відрізку [0,1] . 
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Рис. 2.2 

Розв’язання. На рис. 2.2 
зображено графіки декілька членів-
функцій даної послідовності на 
відрізку [0,1] . 

Знайдемо поточкову границю: 

2 2
lim ( ) lim 0 [0,1]

1n
n n

x
f x x

n x
   


. 

Доведемо, що 
[0,1]

( ) ( ))nf x f x , тобто 

0 0 00 ( )n n n n         

[0,1] ( ) ( )nx f x f x     .

Розглянемо нерівність ( ) ( )nf x f x   . Для будь-якого [0,1]x  

отримаємо:  

2

2 2
2 2 2 2

2 2

(1 ) 0
1 2 1

( ) ( ) 1 2 1
1 2 1 22

1
1

n

nx
x nx

f x f x n x nx
n x n n x nnx

n x

  
            

 
 



. 

Остання нерівність виконується, починаючи з номера 0

1
1

2
n     

. 

Знайдено номер 0n , що залежить лише від  , однак від [0,1]x  не залежить. 
Тому дана послідовність рівномірно збігається на відрізку [0,1] . ■ 

Приклад 2.4 Дослідимо послідовність 
2 2

( )
1n

nx
f x

n x



 на рівномірну 

збіжність на відрізку [0,1] . 

Рис. 2.3. 

Розв’язання. На рис. 2.3 
зображено декілька членів даної 
послідовності на відрізку [0,1] . 

Аналогічно прикладу 2.3 
переконуємося у тому, що на цьому 
відрізку поточковою границею даної 
послідовності є функція ( ) 0f x  . 

Спробуємо оцінити функцію 
( ) ( )nf x f x  зверху для (0,1]x : 

2 2 2 2

1
( ) ( )

1n

n x n x
f x f x

n x n x n x
     


. 

Звідки 0

1
( , ) 1n x

x
  


. Це підтверджує той факт, що функція ( ) 0f x   є 

границею послідовності в кожній окремій точці відрізка. Однак, спільного 

номера серед 0 0 ( , )n n x   знайти не можна, оскільки 
[0,1]

1
sup
x x

 


.  
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Із зазначеної оцінки НЕ можна зробити висновків щодо нерівномірної 
збіжності на відрізку [0,1] . Для цього потрібно проводити оцінювання знизу: 

2 2 2 2
1

1
( ) ( ) ,

1 1 2n
x

n

nx nx
f x f x

n x n x 

   
 

 

тоді 

для 
1

2
  ,  0 0

1
для , для [0,1] вірно ( ) ( )n nn n n x f x f x

n
        . ■ 

 

Зауваження 2.1  ( ) ( )) lim sup ( ) ( ) 0n nnX X
f x f x f x f x


    . 

 

Сформульоване зауваження є наслідком означення рівномірної збіжності 
на множині.  

 

Зауваження 2.2 Перепишемо означення 2.5 рівномірної збіжності 
послідовності { ( )}nf x  до функції ( )f x  на множині A   

( ) ( )
def

n
A

f x f x    0 0 00 ( ) ( ) ( )nn n n n x A f x f x              

у  термінах  -околів. А саме: усі члени функціональної послідовності, почина- 

 
Рис. 2.4 

 

ючи з деякого номера, знаходяться в  -
околі функції ( )f x . При цьому вони у всіх 
точках x  множини A  задовольняють 
нерівність  

( ) ( ) ( )nf x f x f x      .    (2.3)
Графіки функцій ( )y f x    і 
( )y f x    можна отримати зсувом 

графіка функції ( )y f x  відповідно на   
вниз і вверх. Графіки функцій ( )ny f x , 
що  задовольнять   нерівність  (2.3),  знахо-

дяться поміж графіками функцій ( ) i ( )y f x y f x      . Кажуть, що вони 
лежать всередині « -труби» функції ( )f x  (див. рис. 2.4). 

Можна бачити, що у випадку прикладу 2.3 (див. рис. 2.5, а) функції із 
послідовності все ближче наближаються усіма точками до функції ( ) 0f x  , 
потрапляючи у її « -трубу». Цього не можна стверджувати для прикладів 2.2 

і 2.4, в яких незалежно від 
1

2
   поза межами « -труби» будуть завжди 

знаходитися деякі точки графіків усіх функцій-членів послідовності. Так, для 
прикладу 2.2 (рис. 2.5, б) це будуть точки графіків функцій-членів з абсцисами, 
близькими до 1, а для прикладу 2.4 (рис. 2.5, в) – ті точки графіків, ординати 

яких близькі до 
1

2
. 
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а б в 

 Рис. 2.5  

Означення 2.6 Функціональний ряд 
1

( )n
n

u x



  називають рівномірно 

збіжним до ( )S x  на множині A , якщо функціональна послідовність його 

часткових сум 
1

( ) ( )
n

n k
k

S x u x


  
 

  рівномірно збігається на A , тобто якщо 

1

( ) ( )n
An

u x S x




   
def


1

( ) ( )
n

n k
Xk

S x u x


   )(xS . 

Приклад 2.5 Довести, що ряд  
0 !

n

n

x

n




   на [-a,a] є рівномірно збіжним до 

( ) xS x e . 

Розв’язання. Розглянемо часткову суму даного ряду 
0

( )
!

kn

n
k

x
S x

k

 . Згідно 

з формулою Маклорена,  
( ) ( ) ( ),n nS x S x R x   

де )(xRn залишковий член в формулі Маклорена у . Оскільки  

( ) ( ) ( )n nS x S x R x  , 
( 1)

1 1( )
( )

( 1)! ( 1)!

n x
n n

n

f x e
R x x x

n n

 
 

   
 

, 

то  
1

[ , ]
0 sup ( ) ( )

( 1)!

n

a
n

a a

a
S x S x e

n




   


   

[ , ]
lim sup ( ) ( ) 0nn a a

S x S x
 

   . 

Отже,  

[ , ] [ , ]0

( ) ( )
!

n
x

n
a a a an

x
S x S x e

n



 

    . ■ 

 
§2 Достатні умови рівномірної збіжності 
 

1. Критерії  рівномірної збіжності 

Теорема 2.1 (критерій Коші рівномірної збіжності функціональної 
послідовності). Для того, щоб функціональна послідовність{ ( )}nf x  рівномірно 
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збігалась до функції ( )f x  на множині A  (тобто ( ) ( )n
A

f x f x ), необхідно і 

достатньо, щоб  

0 00 ( ) ( )n p nn n n p x A f x f x              . (2.4) 

Доведення. Необхідність. За означенням, 

0 0

( ) ( )

0 : ( ) ( ) / 2

n
A

n

f x f x

n n n x A f x f x

 

           




  

тим більше,   
( ) ( ) / 2n pp f x f x     . 

Звідки 

( ) ( )n p nf x f x  ( ) ( ) ( ) ( )
2 2n p nf x f x f x f x
 

        . 

Достатність. Нехай виконується твердження (2.4). Тоді у кожній 
фіксованій точці x A  числова послідовність { ( )}nf x  є фундаментальною. 
Тому, за критерієм Коші збіжності числової послідовності [1, c.115], числові 
послідовності { ( )}nf x  збігаються для кожного x A . Це дозволяє знайти 
поточкову граничну функцію ( )f x  функціональної послідовності { ( )}nf x  за 
правилом: 

: lim ( )nnA
f x f x . 

Здійснимо граничний перехід при p   в нерівності (2.4). Отримаємо: 

0n n x A     lim ( ) ( ) ( ) ( )n p n n
p

f x f x f x f x
     . 

Отже, 

0 00 ( ) ( )nn n n x A f x f x           . ■ 
 

Теорема 2.2 (критерій Коші рівномірної збіжності функціонального 

ряду). Для того, щоб функціональний ряд 
1

( )n
n

u x



  збігався рівномірно до 

функції ( )S x  на множині A  (тобто 
1

( ) ( )n
An

u x S x




  ), необхідно і достатньо, щоб 

0 0
1

0 : ( )
n p

k
k n

n n n p x A u x


 

             . 

 

Ця теорема є наслідком критерію Коші рівномірної збіжності 
функціональної послідовності і означення рівномірної збіжності 
функціонального ряду. 

Наслідок 2.1 Функціональний ряд 
1

( )n
n

u x



  збігається рівномірно на 

множині A  (тобто 
1

( )n
An

u x




  ) тоді і тільки тоді, коли послідовність його 
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залишків 
1

( ) ( )n k
k n

r x u x


 

 
 

 
  рівномірно збігається до нульової функції ( ) 0x   

на цій множині, тобто ( ) ( )n
A

r x x . 

Доведення цього наслідку здійснюється аналогічно випадку числових 
рядів. Провести доведення самостійно ! 

2. Ознаки  рівномірної збіжності функціональних  рядів 

Теорема 2.3 (ознака  Вейєрштрасса). Розглянемо функціональний ряд 

1

( )n
n

u x



 , заданий на множині A . Якщо існує числовий збіжний ряд 

1
n

n

c



  з 

невід’ємними членами, що мажорує функціональний ряд на множині A , тоді 
функціональний ряд рівномірно збігається на A . Тобто 

1) 
1

( )n
n

u x



 , заданий на множині A ; 

2) 
1

n
n

c




  збігається, 0nc n   ; 

3) ( )n nu x c x A   ; 








1

( )n
An

u x




   

Ряд  
1

n
n

c



   називають мажорантним  рядом. 

Доведення. Оскільки числовий ряд 
1

n
n

c



  збігається, то за критерієм Коші 

0 0
1

0
n p

k
k n

n n n p c


 

           . 

В наслідок нерівності трикутника і нерівностей 2) і 3), отримаємо 

0
1 1 1 1

( ) ( ) ( )
n p n p n p

k k k n
Ak n k n k n n

n n p u x u x c x X u x
   

      

                . ■ 

Приклад 2.6 Дослідити ряд на рівномірну збіжність на множині Х: 

2
1

sin
,

n

nx
X

n





  . 

Розв’язання. Застосуємо ознаку Вейєрштрасса: 

2 2

2 2. .
1 1

sin 1

sin 1
.

озн В
n n

nx
x

n n
nx

зб
n n

 

 


   

 


 





ряд 

2
1

sin

n

nx

n




  рівномірно збігається на  . 

У даному прикладі мажорантним виступає узагальнений гармонічний ряд 

2
1

1

n n




  із показником степеня знаменника 2, тому він збіжний. ■ 
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Зауваження 2.3 Не завжди ознаку Вейєрштрасса можна застосовувати. 
Може статися, що ряд рівномірно збігається на деякій множині, але його не 
можна мажорувати числовим збіжним рядом на цій множині. Наприклад, 
розглянемо ряд 

1 2 3 4

1

( 1)
..., [0,1]

2 3 4

n n

n

x x x x
x x

n






       . 

Оскільки 
1

[0,1] [0,1]

( 1) 1
sup sup

n n nx x

n n n


  , 

а ряд 
1

1

n n




  розбігається, то жодного висновку про рівномірну збіжність на 

відрізку [0,1]  зробити не можна. Тому ознаку Вейєрштрасса не можна  
застосовувати. 

Доведемо рівномірну збіжність на відрізку [0,1]  даного ряду в інший 
спосіб. Із формули Маклоренна випливає, що 

2 3 4 1( 1)
... ( ) ln(1 ), [0,1]

2 3 4

n n

n

x x x x
x R x x x

n


         . 

Позначимо 
1

1

( 1)
( )

k kn

n
k

x
S x

k






 , ( ) ln(1 )S x x  , тоді  

( ) ( ) ( )n nS x S x R x  . 
Для функції ( ) ln(1 )f x x   застосуємо форму Лагранжа залишкового члена 

( 1)
1( )

( ) , 0 1
( 1)!

n
n

n

f x
R x x

n




    


: Оскільки ( 1)
1

( 1) !
( )

(1 )

n
n

n

n
f x

x




 



, то 

1

1

( 1) !
( )

(1 ) ( 1)!

n n

n n

n x
R x

x n






 

  
. 

Оцінимо залишковий член 
11

1 1

( 1) ! 1
( ) [0,1]

(1 ) ( 1)! (1 ) ( 1) 1

nn n

n n n

xn x
R x x

x n x n n



 


     

      
. 

Отже,  

[0,1]

1
lim sup ( ) ( ) lim 0

1n
n nx

S x S x
n

  


. 

Це означає, що 
1

[0,1] [0,1]1

( 1)
( ) ( ) ( )

n n

n
n

x
S x S x S x

n






    . 

Висновок: однієї лише ознаки Вейєрштрасса не достатньо для 
дослідження рядів на рівномірну збіжність на деякій множині. 
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Пригадаємо перетворення Абеля і наступну лему (див. лему 1.1): 
1) 1{ }m

n i монотонна множина; 

2) 1{ }m
n i  така, що множина 

1 1

mn

n k
k n

B
 

 
   

 
  

обмежена зверху за модулем числом L>0, 






 1
1

2 .
m

i i m
i

L


        

Теорема 2.4 (ознака Абеля рівномірної збіжності функціонального ряду). 

1

1

1) ( ) ;

2) { ( )} поточково нестрого монотонна на ; ( )
3){ ( )} рівномірно обмежена на ,тобто

0 : ( ) ,

n
Xn

n n n
Xn

n

n

b x

a x Х a b x
a x Х

n x X a x








 

  
 

        










. 

Доведення. Оскільки 
1

( )n
Xn

b x




  , то за критерієм Коші збіжності 

числових рядів 

0 0
1

0 : ( )
n p

k
k n

n n n p x X b x


 

             . 

Застосуємо лему, яку наведено вище: 

 
1 1

1

,
( ),

( ) ( ) ( ) ( )
( ),

( ) 2 ( ) 3 .

n p p
i i n

k k n i n i
i i nk n i

n n p

m p
a x

a x b x a x b x
a x

L

a x a x




 
  

 


    
 

     

 
 

Отже, відповідно до критерію Коші рівномірної збіжності 

функціональних рядів, маємо 
1

( ) ( )n n
Xn

a x b x




  . ■ 

 

Теорема 2.5 (ознака Діріхле рівномірної збіжності функціонального ряду)  

1) { ( )}nb x  така, що 
1

( ) ( )
n

n k
k

B x b x


 
 

 
  – 

рівномірно обмежена на множині Х, тобто 
0 : ( )nn x X B x        , 

2) { ( )}na x  – поточково незростаюча на Х, 
3) ( ) ( )n

X
a x x   ( ( ) 0x  ),  










1

( ) ( )n n
Xn

a x b x




   .

Доведення. Оскільки ( ) ( )n
X

a x x , то за означенням 

0 00 : ( ) ( )nn n n x X a x x           , 
тим більше  

p   ( )n pa x   . 

Застосуємо лему, яку наведено вище: 
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 1 0
1

,
( ),

( ) ( ) ( ) 2 ( ) 3
( ),

n p
i i n

k k n n p
i i nk n

m p
a x

a x b x a x a x x X n n
a x

L




 
 


          


 . 

Отже, згідно з критерієм Коші 
1

( ) ( )n n
Xn

a x b x




  . ■ 

Зауваження 2.4 Іноді члени функціонального ряду можна подати як 
добуток членів деякої числової і деякої функціональної послідовностей (рядів). 
У цьому випадку числова послідовність (ряд) не потребує дослідження 
«рівномірних властивостей» як такі, що не залежать від .x  

 

Приклад 2.7 Розглянемо ряди 
1

sins
n

n

a nx



  і 

1

cosc
n

n

a nx



  на множині 

[ ,2 ]X       (тут 0  ) у припущенні, що    is c
n na a  незростаючі 

послідовності, які прямують до 0.. 
Розв’язання. Застосуємо ознаку Діріхле: 

1

1 1

1

1 1
sin ,

sinsin
22 sin i cos

1 1
cos ,

sinsin
22

n

k
n n

s c
n nn

k k

k

kx
x

B kx B kx
kx

x



 




  


         
    

 




 


 

 
 
 
– рівномірно 
обмежені. 
 

Послідовності    is c
n na a  заздалегідь задовольняють умовам ознаки 

Діріхле. Отже, ряди  
1

sins
n

n

a nx



  і 

1

cosc
n

n

a nx



  рівномірно збігаються на Х в 

зазначених припущеннях.  

Наприклад, ряди 
sin

p
n

nx

n  і 
cos

p
n

nx

n  при 0p   рівномірно збігаються на 

[ ,2 ]X      , де 0  . 
 
§3 Функціональні властивості сум рядів та граничних функцій 

функціональних послідовностей 
 
1. Теореми про  перехід до  границі в рядах . Неперервність 

суми функціонального  ряду   

Зауваження 2.5 Функціональна послідовність і ряд взаємопов’язані. 
Властивості, що далі будуть розглянуті, виконуються як для послідовностей, 
так і для рядів. Однак, для рядів застосовується частіше. Тому спочатку саме 
для рядів вивчимо їх  детально. 

Теорема 2.6 (про неперервність суми  функціонального ряду). 
Розглянемо функціональний ряд ( )n

n

u x  на множині X . 
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0

0

1

1) ( ) неперервна в точці ;
( ) неперервна в точці

2) ( ) ( ),

n

n
Xn

u x x X n
S x x

u x S x




      





 

Доведення. 
1)  0( ) неперервна в точціnu x x     

1

( ) ( )
n

n k
k

S x u x


 0неперервна в точці x   

0 00 0 : ( ) ( )
3n nx X x x S x S x


           ; (2.5) 

2)  
Наслідок1.1

1

( ) ( ) ( )n n
X Xn

u x r x x




       

00 n    0 ( )
3nn n x X r x


     .   (2.6) 

Зокрема, 

0 0( )
3nn n r x


   .                                         (2.7) 

3)  Знаючи, що  

0 0 0

( ) ( ) ( ),

( ) ( ) ( ),
n n

n n

S x S x r x

S x S x r x

 
 

 

застосуємо нерівності (2.5) – (2.7) і нерівність трикутника: 

0 0 0( ) ( ) ( ) ( ) ( ) ( )
3 3 3n n n nS x S x S x S x r x r x
  

           . 

Отже,  

0 00 0 : ( ) ( )x X x x S x S x            , 

тобто 0( ) неперервна в точціS x x . ■ 
Із теореми випливають необхідні умови рівномірної збіжності ряду з 

неперервними членами на відрізку, а саме, неперервність суми такого ряду на 
цьому відрізку.  

Наслідок 2.2 Якщо сума функціонального ряду з неперервними членами 
на множині X  не є неперервною в точці 0x X , тоді і функціональний ряд не 
буде рівномірно збігатися на відрізку [ , ]a b . 

Одночасно ця теорема дає достатні  умови неперервності суми 
функціонального ряду. Такими умовами є рівномірна збіжність цього ряду і 
неперервність його членів на множині X . 

Розглянемо випадок, коли  рівномірна збіжність є необхідною. 
Теорема 2.7 (теорема Діні). 

.

[ , ]
1

[ , ]

1) ( ) ( );

( ) ( )2) ( ) неперервна на [ , ] ;
3) ( ) неперервна на [ , ] ;

!!!4) ( ) 0 [ , ] ,

Поточ

n a b
n

n
a bn

n

n

u x S x

u x S xS x a b
u x a b n
u x x a b n






 

  
  
     


 




. 
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 Зауважимо, що умова 4 є обов’язковою. Саме завдяки їй стає можливим 
виконання цієї теореми. Однак, цю умову можна замінити на умову 

( ) 0 [ , ]nu x x a b n     . Тобто важливою умовою є знакопостійність 
функцій-членів ряду. 
 Окрім того, зазначимо, що відрізок a b[ , ]  рівномірної збіжності 
функціонального ряду можна замінити на обмежену замкнену множину X . 

Доведення.  
1)  Розглянемо послідовність залишків 

1

( ) ( ), ( ) 0 [ , ]n n n
k n

r x u x u x x a b


 

      

1 2( ) ( ) ... ( ) ...nr x r x r x     [ , ]x a b      

{ ( )} поточково на [ , ]nr x a b  . 

2) За умовою функціональний ряд ( )n
n

u x  поточково збігається на [ , ]a b . Тоді 

.

[ , ]
1

( ) ( )
Поточ

n a b
n

u x S x





.

[ , ]
lim ( ) ( )

Поточ

n
n a b

r x x


   . 

3)  Довести: 
[ , ] [ , ]

( ) ( ) ( ) ( )n n
a b a bn

u x S x r x x     .  

Тобто потрібно 0   знайти хоча б один номер 0n   такий, щоб 
виконувалась нерівність 

0
( ) [ , ]nr x x a b    . 

Одного номера 0n  достатньо, оскільки для  0n n  в наслідок незростання 
послідовності залишків будемо мати 

0 0( ) ( ) ( )n n nr x r x r x n n        . 

Припустимо супротивне: нехай послідовність  ( )nr x   збіжна, але 

нерівномірно на  ,a b . Для даної послідовності залишків, яка задовольняє 

зазначеним властивостям, це буде означати, що 
 0 , : ( )n n nn x a b r x        . 

(Зверніть увагу на взаємно протилежні твердження, підкреслені двома лініями!) 

Оскільки    ,nx a b , то за теоремою Больцано-Вейєрштрасса [1, c. 110] 

  : lim
k kn n

k
x x x  . Оскільки 

 
   

1

( ) неперервна на , ;
( ) ( ) ( ) неперервна на ,

( ) неперервна на , ,

n
n

n k
k

u x a b n
r x S x u x a b

S x a b 

  
    


, 

тоді 

 
*

*

( ) неперервна на , ,
lim ( ) ( )lim , k

k

m

m n m
kn

k

r x a b
r x r xx x

  


. 

Для будь-якого m  існує k , що km n . Тоді в силу незростання 
послідовності залишків ( ) ( ) [ . ]

km nr x r x x a b   . Зокрема, ( ) ( )
k k km n n nr x r x . За 
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побудовою послідовності {
knx } маємо ( )

k kn nr x   , тому ( )
km nr x   . Здійснимо 

граничний перехід: 
*lim ( ) ( )

km n m
k

r x r x m     . 

Отримане суперечить поточковій збіжності до нульової функції, зокрема 
в точці *x . ■ 

 
Розглянемо приклад ряду, з якого видно, що не завжди можливо робити 

почленний перехід до границі.  

Розглянемо ряд  1

0 0

(1 ) ( )n n n

n n

x x x x
 



 

     на відрізку [0,1] . Його члени 

( ) (1 )n
nu x x x   – неперервні на [0,1] . Знайдемо суму цього ряду: 

2 2 3 1 1( ) 1 ... 1n n n
nS x x x x x x x x x              

 1, 0, 1 ;( ) lim ( )
0, 1.nn

xS x S x
x

     
 

Функція ( )S x , що є сумою цього ряду, розривна. Тому за теоремою про 
неперервність суми функціонального ряду, цей ряд збігається нерівномірно на 
відрізку [0,1] . 

Здійснимо граничний перехід при 1 0x   : 

1) для суми ряду 1

1 0 1 0
0

lim ( ) lim ( ) 1n n

x x
n

x x S x




   


   , 

2) формальний по членний граничний перехід:  1

1 0
0 0

lim ( ) (1 1) 0n n

x
n n

x x
 



 
 

     . 

Отже, 

1 1

1 0 1 0
0 0

lim ( ) 0 1 lim ( )n n n n

x x
n n

x x x x
 

 

   
 

      . 

Висновок 1: причина отриманого результату про неможливість 
здійснення почленного граничного переходу в нерівномірній збіжності ряду на 
відрізку [0,1] . 

Розглянемо  0,  ,  0, 1 . Застосуємо теорему Діні: 
.

[0, ]
0 1

[0, ]0

( ) ( ),

( ) ( )( ) неперервна на [0, ],
( ) неперервна на [0, ] {0},
( ) 0 [0, ] {0},

Поточ

n
n n n

n
n

n

u x S x

x x S xS x
u x n
u x x n



  




 

    
   
      


 

 


. 

Розглянемо можливість граничного переходу в точці  0,  : 

1

0

1 1 2 2 3

0 0

lim ( ) lim ( ) ( ) 1,

lim( ) ( ) 1 ... 1,

n n

x x
n

n n n n

x
n n

x x S x S

x x




 


 
 


 


     

           




 
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    
1 1

1 0 0

lim( ) 1 lim ( )n n n n

x x
n n

x x x x
 

 

 
  

     . 

Висновок 2: граничний перехід у будь-якій точці відрізка  0,   

можливий, і має місце рівномірна збіжність ряду на  0,  . 
 

Теорема 2.8 (почленний граничний перехід під знаком суми 
функціонального ряду). 

1
1

1) ( ) ( ); I) ;
2) гранична точка множини ; II) lim ( ) .3) lim ( ) ,

n
X nn

n

x an n
x a

u x S x C C
a X S x Cu x C










        

 
 

Другий висновок теореми можна переписати в такий спосіб: 

1 1

lim ( ) lim ( )n nx a x a
n n

u x u x
 

 
 

  , 

що і означає почленний граничний перехід. 
Доведення.  

1) За умовою 
1

( ) ( )n
Xn

u x S x




  , тому за Критерієм Коші рівномірної збіжності 

функціонального ряду 

0 00 n n n p x X          
1

( )
3

n p

k
k n

u x


 


 , 

тобто 

1 2( ) ( ) . . . ( )
3n n n pu x u x u x  


      0n n p x X      .                (2.8) 

2) Під знаком нерівності (2.8) здійснимо граничний перехід при x a : 

1 2 . . .
3n n n pC C C  


      , 

тому числовий ряд n
n

C  збігається (критерій Коші збіжності числового ряду); 

значення границі позначимо через C  (висновок (І) підтверджено!). Тоді 

n nC C   , де  
1

n

n k
k

C C


 ,    
1

n k
k n

C


 

   .   (2.9) 

3) Оскільки 
1

( ) ( )n
Xn

u x S x




  , то )()()( xrxSxS nn  , і після граничного переходу в 

(2.8) при p   отримаємо 

1 2( ) ( ) . . . ( )
3n n nu x u x r x 


      0n n x X    .              (2.10) 

4) Граничний перехід при x a  в останній нерівності і (2.9) дозволяють 
отримати 

 
3n


   0n n  .     (2.11) 
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5) Оскільки   )(...)()( 1 xuxuxS nn  , то 

1lim ( ) . . .n n n
x a

S x C C C


    . 

За означенням границі функції в точці 

0 0: 0 ( )
6n nx X x a S x C


              .  (2.12) 

5) З урахуванням (2.10) – (2.12), має місце оцінка: 

( ) ( ) ( )
6 3 3n n n nS x C S x C r x
  

           . 

Висновок:  
0 0: 0 ( )x X x a S x C               . 

Це означає, що lim ( )
x a

S x C


  (висновок (ІІ)  підтверджено!). ■ 

2. Теореми про  почленне інтегрування та  диференціювання 
функціональних рядів  

Теорема 2.9 (почленне інтегрування функціональних рядів). 

 

[ , ]1

1) ( ) - неперервна на , ;

2) ( ) ( ),

n

n
a bn

u x a b n

u x S x




 
 




 1

1 1

I) ( ) ;

II) ( ) збігається;

III) ( ) ( )

b

a
b

n
n a

b b

n n
n na a

S x dx

u x dx

u x dx u x dx





 

 


 

 










  

 

Доведення. 

 

[ , ]1

( ) - неперервнi на   , ;

( ) ( ),

n

n
a bn

u x a b n

U x S x




 
 





( )S x  – неперервна на  ,a b    

[6, c. 83] інтегровна на  ,a b      ( )
b

a

S x dx  (висновок (І) підтверджено!). 

Почленно проінтегруємо рівність 1 2( ) ( ) ( ) . . . ( ) ( )n nS x u x u x u x r x     , 
отримуємо 

1( ) ( ) . . . ( ) ( ) ( )
b b b b

n n

a a a a

S x dx u x dx u x dx r x dx n         . 

Для того, щоб отримати останні два висновки теореми, потрібно довести:  

( ) 0
b

n
n

a

r x dx

 . Оскільки 

 0 0
[ , ] [ , ]1

( ) ( ) 0 0 : , ( )n n n
a b a bn

u x r x n n n x a b r x
b a






            

   , 

отже, за властивостями інтеграла, що виражаються нерівностями [6, c. 98-100] 
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  0( ) ( )
b b

n n

a a

r x dx r x dx b a n n
b a


       

  . 

Це означає справедливість висновків (ІІ) і (ІІІ) теореми. ■ 
Приклад 2.8 Перевірити можливість почленного інтегрування на відрізку 

[0,1]  під знаком суми ряду  2 2 2 22 2 ( 1)

1

2 2 ( 1)n x n x

n

xn e x n e


  



  . 

Розв’язання.  
1) Дослідимо цей ряд на рівномірну збіжність на відрізку [0,1]  за 

означенням. Для цього знайдемо його часткові суми: 

 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 ( 1)

1
2 2 2 3 2 2

2 2 ( 1) 2

( ) 2 2 ( 1)

2 2 2 2 2 3 2 2 ...

2 2 ( 1) 2 .

n
k x k x

n
k

x x x x x

n x n x n x

S x xk e x k e

xe x e xe x e x e

xn e x n e xn e

  


    

   

   

      

   


 

2) Тепер дослідимо на рівномірну збіжність послідовність  ( )nS x  на 

відрізку [0,1] .  
2.1) Спочатку знайдемо поточному границю  послідовності  ( )nS x : 

2 2

2 2

2
2 2

( ) lim2 lim 0n x

n xn n

xn
S x xn e

e


 
      ( [0,1]x fix  ). 

2.2) Далі перевіримо справедливість рівності 
?

[0,1]
lim sup ( ) ( ) 0n
n

S x S x


  . 

А) Знайдемо  2 22

[0,1]
sup 2 0n xxn e  . Супремум неперервної функції 

досягається або в критичних точках відрізка, або на його кінцях. Знайдемо 
критичні точки: 

 
2 2 2 2 2 2

2 2

2 2 2 2 2 2

' 2 2 2
2 2 2 2

2 2

2 (1 2 )
2 2 2 2 0

n x n x n x
n x

n x n x n x

x e x n xe e n x
xn e n n n

e e e
           

 
; 

2 2 1
1 2 0

2
x n x

n
    . 

Знайдемо значення функції 
2 222 n xxn e  в критичних точках і на кінцях відрізка: 

2 2

2 2 2

2

2
2 2 2

2

0
2

2 2

1
1

2 2 2
1

2

2 0;

2
2 2 ;

1 2
2 2 .

2

n x

x

n x n

nx

n
n x n

x
n

xn e

n
xn e n e

e
n

xn e n e
n e





 










 

 

 

Отже,  2 22

[0,1]

2
sup 2 0n x n

xn e
e

   . 

Б) Обчислюємо границю: 
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[0,1]

2
lim sup ( ) ( ) lim 0nn n

n
S x S x

e 
     . 

Висновок: ряд збігається нерівномірно на відрізку [0,1] . 
3) Бувають такі випадки, коли нерівномірно збіжний ряд на відрізку 

числової прямої можна почленно інтегрувати на цьому відрізку. Перевіримо, чи 
має даний ряд таку властивість.  

3.1) Здійснимо почленне інтегрування формально: 

 2 2 2 2 2 2 2 2
1 1 1

2 2 ( 1) 2 2 ( 1) 2 2

1 10 0 0

2 2 ( 1) ( ) ( ( 1) )n x n x n x n x

n n

xn e x n e dx e d n x e d x n
 

     

 

 
      

 
     

 2 2 2 2 2 21 1( 1) ( 1)

001 1

.n x n x n n

n n

e e e e
 

     

 

       
    

Знайдемо часткові суми nS  отриманого ряду та їх границю: 
2 21 0 4 1 ( 1). . . 1 1n n n

n
n

S e e e e e e e      


           . 

3.2) Оскільки раніше було знайдено ( ) 0S x  , то і цю функцію 
проінтегруємо:  

1 1

0 0

( ) 0 0S x dx dx   . 

3.3) Отже,  

 2 2 2 2
1 1

2 2 ( 1)

10 0

2 2 ( 1) ( ) 0n x n x

n

xn e x n e dx S x dx


  



 
      

   

 2 2 2 2
1

2 2 ( 1)

1 0

1 2 2 ( 1)n x n x

n

xn e x n e dx


  



    . 

Загальний висновок: в цьому випадку нерівномірно збіжний ряд не можна 
інтегрувати почленно. ■ 

Приклад 2.9 Ряд 
0

(1 )n

n

x x




  на [0,1]  нерівномірно збігається, але його 

можна почленно інтегрувати.  
Розв’язання. 1) Той факт, що ряд нерівномірно збігається доведено на 

початку пункту 2 цього параграфу. Там же отримано поточкову суму даного 
ряду на [0,1] : 

 1, 0, 1 ;( )
0, 1.

xS x
x

   
 

2) Із зазначеного випливає, що 
1 1

00 0

(1 ) ( ) 1n

n

x x dx S x dx




 
   

 
  . 

3) Формально почленно проінтегруємо цей ряд: 
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 
1

0 00

1 1
(1 )

1 2
1 1 1 1 1 1 1 1 1 1

1 ... ... lim 1 1.
2 2 3 3 4 1 1 2 2

n

n n

n

x x dx
n n

n n n n n

 

 



       
                    

 
 

Отже, 

 
1 1

0 00 0

(1 ) 1 (1 )n n

n n

x x dx x x dx
 

 

 
    

 
   . 

Висновок: У ЦЬОМУ КОНКРЕТНОМУ ПРИКЛАДІ нерівномірно 
збіжний ряд можна інтегрувати почленно. Звертаємо увагу, що у загальному 
випадку такий висновок є хибним! ■ 

Теорема 2.10 (узагальнена теорема про почленне  інтегрування). 

 

[ , ]1

1) ( )  інтегровнi на , ;

2) ( ) ( ),

n

n
a bn

u x a b n

u x S x




  

 







1 1

I) ( ) інтегровна на [ , ];

II) ( ) ( ( )) .
b b

n n
n na a

S x a b

u x dx u x dx
 

 



 


    

Доведення. 1) За умовою 
1

( ) ( )n
Xn

u x S x




  , тому 

0 00 n n n x X        ( ) ( )
2( )nS x S x

b a


 


. 

Оскільки  ( ) інтегровнi на   ,nu x a b n   , то 
0

0
1

( ) ( )
n

n k
k

S x u x


  – інте-

гровна на [ , ]a b . Оскільки  

( ) ( )
2( )nS x S x

b a


 


, 

то 

0 0
( ) ( ) ( )

2( ) 2( )n nS x S x S x
b a b a

 
   

 
   ( [ , ])x a b . 

2) Розглянемо [ , ] [ , ]a b   . Позначимо 
0 0[ , ][ , ]

sup ( ), inf ( )n nM S x m S x
  

  , 

тоді  

( )
2( ) 2( )

m S x M
b a b a

 
   

 
   ( [ , ])x   , 

а коливання ( )S x  на [ , ]   

02( ) 2( ) nS SM m M m
b a b a b a b a

   
          

   
. 

Звідки 

0 0

1 1 1

n n
N N N

S S

k k k k k k
k k k

x x x
b a  

             
   .                     (2.13)  

3) Із доведеного вище (пункт 1), функція 
0
( )nS x   інтегрована на [ , ]a b , 

тому 
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0 0

1 1

lim 0 0 0 : { }n n
N N

S S

k k k k kN
k k

x x d x


 

                 .        (2.14) 

Із (2.13) і (2.14) випливає, що 

0

1 1

0 0 : { } 2n

N N
S

k k k k k
k k

x d x x
 

                  . 

В наслідок критерію Дарбу інтегрованості функції [6, c. 80], функція ( )S x   
інтегровна  на [ , ]a b . 

Завершення доведення щодо другого висновку теореми здійснюється 
аналогічно попередній теоремі. ■ 

 

Теорема 2.11 (почленне диференціювання функціональних рядів). 
1) ( )nu x неперервно диференційовні 
на [ , ]a b  n  ; 

2) 
Поточ.

[0, ]
0

( ) ( )n
n

u x S x





 ; 

3) 
[ , ]1

( )n
a bn

u x




   ; 









I) ( )S x  на [ , ]a b ; 

1

1

II) ( ) ( )

( )

n
n

n
n

u x S x

u x









  

 
  
 




 

У позначенні Коші друге співвідношення можна записати в інший спосіб, 
якщо ввести позначення ( ) ( )Df x f x : 

1 1

( ) ( )n n
n n

D u x Du x
 

 

  . 

Доведення. Нехай *

[ , ]1

( ) ( )n
a bn

u x S x




   . Доведемо, що *( ) ( )S x S x .  

1) Оскільки *

[ , ]1

( ) ( )n
a bn

u x S x




    і ( )nu x неперервно диференційовні 

на [ , ]a b  n  , то 

2) *( )S x  – неперервна  на  [ , ]a b  (теорема про неперервність суми 
функціонального ряду); 

3) ряд 
1

( )n
n

u x




  можна почленно інтегрувати вздовж будь-якого відрізка, 

що лежить всередині [ , ]a b , а саме: 

*

1
//

(формула Ньютона-Лейбніца)
/ /

умова 2)
1 1 1

( ) ( ) ,

[ ( ) ( )] ( ) ( ) ( ) ( ) ( [ , ]).

x x

n
n a a

n n n n
n n n

u x dx S x dx

u x u a u x u a S x S a x a b





  

  

 

     

 

  

 

2) Тоді 

*( ) ( ) ( )
x

a

S x dx S x S a  . 
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3) Оскільки *( )S x  – неперервна  на [ , ]a b , то (за властивістю інтеграла із 

змінною верхньою межею [6, c.104]) функція *( ) ( )
x

a

S x S x dx   – диференційовна  

на [ , ]a b  (висновок (І) підтверджується), причому  

 * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( [ , ])
x

a

S x S x dx S x S a S x S x S x x a b
           

 
 . 

Отже,  

[ , ]1

( ) ( )n
a bn

u x S x




   , 

зокрема 

1 1

( ) ( ) ( )n n
n n

u x S x u x
 

 

     
 

     [ , ]x a b  .    

Таким чином, висновок (ІІ) підтверджується. ■ 

Приклад 2.10 Чи можна почленно диференціювати ряд 
2

2
1

cos

n

n x

n




 ?  

Розв’язання. Ряд 
2

2
1

cos

n

n x

n




  рівномірно збіжний на  , оскільки (за 

ознакою Вейєрштрасса) 

2

2 2
1 1

2

2 2

cos 1
.

.

cos 1

n n

n x
зб

n озн B n

n x

n n
 

 





 


. 

Формально даний ряд почленно продиференціюємо: 
2 2 2

2
2 2

1 1 1

cos sin
sin

n n n

n x n x n
n x

n n

  

  

   
   

 
   . 

Ряд 2

1

sin
n

n x



  розбігається в кожній точці x , оскільки не виконується 

необхідна умова збіжності ряду.  
Отже, даний ряд рівномірно збіжний на  , однак не є рівномірно 

збіжним ряд із його похідних, і даний ряд не можна диференціювати 
почленно. ■ 

 

Теорема 2.12 (узагальнена про почленне диференціювання). 
1)  ( )nu x  диференційовні на [ , ]a b   n  ; 

2)  ряд 
1

( )n
n

u x



  збігається хоча б в одній 

точці відрізку [ , ]a b ;   3)  
[ , ]1

( )n
a bn

u x




   ; 






[ , ]1

'

1

) ( );

) ( ) визначається

рівністю ( ) ( ).

n
a bn

n
n

I u S x

II S x

S x u x









 








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За бажанням розглянути доведення самостійно  [2, c. 90-93])! 
3. Функціональні властивості  граничних функцій функціональних 

послідовностей 
 

На початку пункту 2.3 зазначалося, що властивості, доведені для 
функціональних рядів у цьому пункті, справедливі й для функціональних 
послідовностей. Наведемо теореми, які доводяться аналогічно відповідним 
теоремам попереднього пункту. 

Теорема 2.13 (про неперервність границі функціональної 
послідідовності). 

 
0

0

1) ( ) неперервні в точці ; ( ) неперервна
2) ( ) ( ); в точці

n

n
X

f x x X n f x
f x f x x

     



  

Теорема 2.14 (теорема Діні). 
Поточково

[ , ]

[ , ]

1) lim ( ) ( );

2) ( ) неперервна на [ , ]; ( ) ( )
3) ( ) неперервна на [ , ] ;

!!!4) ( ) ( );

nn a b

n
a b

n

n

f x f x

f x a b f x f x
f x a b n
f x

 
  

   





 

. 

Теорема 2.15 (почленний граничний перехід). 
1) ( ) ( ); ) lim ;

) lim ( );2) гранична точка множини ;
3) lim ( ) ; ) lim ( ) .

n nnX

x a

n n
x a x a

f x f x І C C

ІІ f xa X
f x C ІІІ f x C



 

   
    

   


 

Другий і третій висновки теореми можна переписати в такий спосіб: 
limlim ( ) limlim ( )n n
x a n n x a

f x f x
 

 , 

що і означає почленний граничний перехід. 
Теорема 2.16 (почленне інтегрування функціональних послідовностей). 

 
[ , ]

1) ( ) - інтегровна 
на , ;

2) ( ) ( );

n

n
a b

n f x
a b

f x f x

  







) ( ) ; ) ( ) збігається;

) lim ( ) ( ) lim ( )

b b

n

a a
b b b

n nn n
a a a

І f x dx ІІ f x dx

ІІІ f x dx f x dx f x dx


 



  


 

  
. 

Теорема 2.17 (почленне диференціювання функціональних 
послідовностей). 

1) ( )nf x  диференційовані на 
[ , ]a b   n  ; 

2)  послід.  ( )nf x  збіжна хоча 
б в одній точці відрізка [ , ]a b ; 
3)  

[ , ]
( )n

a b

f x  ; 




 




[ , ]
) ( ) ( )n

a b
І f x f x ; 

ІІ) ( )f x - диференційовна на [ , ]a b ;

'
3) ( ) визначається
рівністю ( ) lim ( )n

n

f x
f x f x . 

В позначенні Коші третє співвідношення можна записати в інший спосіб: 

   lim ( ) lim ( )n n
n n

D f x D f x . 
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§4 Поняття степеневого ряду. Радіус збіжності, інтервал і область 
збіжності степеневого ряду 

 
1. Степеневі ряди. Радіус і область збіжності. Теорема  Коші-

Адамара 
Означення 2.7 Функціональний ряд вигляду 

2
0 1 2

0

... ...n n
n n

n

a x a a x a x a x




       

називають степеневим рядом, а числа 0 1 2, , , ..., ,...na a a a  – коефіцієнтами  
степеневого ряду. 

Очевидно, що кожен степеневий ряд збігається в точці х=0. Тому область 
збіжності D  степеневого ряду містить точку нуль, тобто  0D  . 

Приклад 2.11 Довести, що ряд 

2 3

0

! 1 2! 3! ... ! ...n n

n

n x x x x n x




        

має область збіжності {0}D  .  
Розв’язання. Включення  0D   виконується для всіх степеневих рядів. 

Оскільки  

 
!

lim , 1, 0;
lim ! 01/

, 1;

nn n

n

n
x x

n x x
x




       
  

, 

то необхідна умова не виконується 0x  . Висновок: {0}D  . ■ 
Приклад 2.12 Знайти область збіжності ряду 

2 3

0

1 ... ...
! 2! 3! !

n n

n

x x x x
x

n n





        

Розв’язання. Цей ряд було розглянуто в параграфі «Поняття числового 

ряду», де було доведано той факт, що x   
0 !

n
x

n

x
e

n





 . Висновок: D   . ■ 

Приклад 2.13 Знайти область збіжності ряду 
0

n

n

x

n




 .  

Розв’язання. Дослідимо його на абсолютну збіжність. Застосуємо ознаку 

порівняння для ряду 
0

n

n

x

n




 : 

 
n

n

x
u x

n
 ,  

1

1 1

n

n

x
u x

n



 


, 

 
 
1lim lim

1
n

n n
n

u x x n
x

u x n


 
 


. 

Висновок:  
1x    ряд абсолютно збігається, 
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1x    необхідна умова не виконується (за доведенням ознаки Даламбера у 

випадку 1q  ), 

1x     
0 1

n

n x

x

n



 


0

1

n n




  – розбігається, 

1x     
0 1

n

n x

x

n



 

  
0

1
n

n n





  – умовно збігається. 

Відповідь:  1, 1D    – область збіжності ряду 
0

n

n

x

n




 . ■ 

Теорема 2.18 (теорема Абеля). Якщо степеневий ряд 
0

n
n

n

a x



 збігається 

в точці 1x , тоді  

1
1

: n
n

n

x x x a x




   – збігається абсолютно в точці x . 

Доведення. Оскільки ряд  1
0

n

n
n

a x



  збігається, то для нього виконується 

необхідна умова збіжності, тому 

 1lim 0
n

n
n

a x


   послідовність   1

n

na x  – обмежена   

   10 : 0
n

nM n N a x M     . 

Дослідимо ряд  
0

k

k
k

a x




  на збіжність, якщо 1x x . Згідно з критерієм 

збіжності знакопостійних рядів, ряд 
0

k

k
k

a x




 збігається тоді і тільки тоді, коли 

послідовність його часткових сум 
0

n
k

n k
k

S a x


 
  

 
  є обмеженою. Отже, 

потрібно дослідити послідовність  nS  на обмеженість. Проведемо оцінювання: 

2 3

0 1 2 3 1
0

2
2

0 1 1 2 1 12
1 1 1

... / /

...

n
k n

n k n
k

n
n

n n

S a x a a x a x a x a x x x

x x x
a a x a x a x

x x x



            

           


 

2

1
1 1 1 1

1 ... 1
n

x x x x
M x x

x x x x

   
               

1

1
.

1

M const
x
x

 


 

Висновок: ряд 
0

n
n

n

a x



  збігається абсолютно 1x x  . ■ 
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Означення 2.8 Радіусом збіжності степеневого ряду 
0

n
n

n

a x



  

називають значення величини  
 sup :r x x D  , 

де D  - область збіжності степеневого ряду. 

Твердження 2.1 Якщо x r , тоді ряд 
0

n
n

n

a x



  в точці x  абсолютно 

збігається. Якщо x r , тоді ряд 
0

n
n

n

a x



  в точці x  розбігається. 

Доведення: 
1). Нехай  sup :x r x x D   , тоді 1 1:x D x x r    . Оскільки  

1x D , то  

1
0

n
n

n

a x



  збігається 

0

n
n

n

a x




  збігається абсолютно 1x x   (теорема Абеля), 

зокрема, ряд 
0

n
n

n

a x



  абсолютно збігається в точці x . 

2). Нехай  
0

sup : n
n

n

x r x x D x D a x




        розбігається. ■ 

Означення 2.9 Інтервал  ;r r  називають інтервалом збіжності 
степеневого ряду, де r – радіус збіжності степеневого ряду. 

На кінцях інтервалу збіжності, тобто в точках  r  і r , ряд може як 
збігатися, так і розбігатись. Збіжність у цих точках потрібно перевіряти окремо. 
Отже, можливі варіанти для області збіжності степеневого ряду: 

       0 , , ; , ; , ; .D D D r r D r r D r r         
Навести самостійно  приклади рядів, які мають область збіжності, що 

відповідає кожному із наведених випадків. 
Теорема 2.19 (теорема Коші-Адамара). Розглянемо степеневий ряд  

0

n
n

n

a x



 . Позначимо lim n

nn
a L


 , тоді 

І) L    ІІ) 0L L      ІІІ) 0L    
 

степеневий ряд 
розбігається при 

0x  ,  

1) 
1 1

;x
L L

    
 

 даний ряд 

абсолютно збігається, 

2) x 
1 1

; ;
L L

        
   

  даний 

ряд розбігається,

 

степеневий ряд 
збігається на  ,  

 

тобто  0D , 
 0r   – радіус 
збіжності; 

тобто 
1 1

;
L L

  
 

 – інтервал  збіжності, 

L
r

1
  – радіус збіжності; 

 

тобто ,D    
r    – радіус 
збіжності 
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Доведення. Випадок І.  Нехай lim n
n

n
a L


   , тоді 

 n
na  – необмежена послідовність   

 n n
n nx a x a    – необмежена послідовність   

: n

n

k
n kn k x a n       . 

Звідки 1n n

n

k k
kx a n     n  , тому lim 0n

n

k

k
n

a x


    . Це означає, що 

0x   для ряду не виконується необхідна умова. Отже, 0x   ряд 
0

n
n

n

a x



  

розбігається. 

Випадок ІІ. Нехай lim n
n

n
a L


    і 0L  .  

1) Нехай спочатку 
1

x
L

 , тоді 
1

0 : x
L

  
 

. Оскільки lim n
n

n
a L


 , то 

із означення верхньої границі випливає, що 0   справа від L    лежить 

скінченна множина членів послідовності  n
na , а тому зліва – всі члени, 

починаючи з деякого номера, тобто 

0 00 :
2

n
nn n n a L


        . 

Маємо: 

0

1
,

,
2

n
n

x
L

n n a L

       


 2 1n
n

L
x a q

L


    

 
 

1
nn n

n na x x a q     . 

Тому за радикальною ознакою Коші (у загальному формулюванні) ряд 
0

n
n

n

a x



  

абсолютно збігається при 
1

x
L

 . 

2) Тепер розглянемо 
1

x
L

 , тоді 
1

0 : x
L

  
 

. Оскільки lim n
nn

a L


 , 

то за теоремою Больцано-Вейєрштрасса існує підпослідовність  k

k

n
na , яка 

збігається до L , тоді 

0 00 : k

k

n
nk k k a L        , 

звідки 

k

k

n
nL a L          0k k  .   

Отже, 
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01k
k k

k k

nn n
n n

L
a x x a k k

L

 
       

 
 

01k

k

n

na x k k    . 

Тоді послідовність  n
na x  не є нескінченно малою, тобто для ряду 

0

n
n

n

a x



  не 

виконується необхідна умова при 
1

x
L

 , і ряд є розбіжним. 

Випадок ІІІ. Нехай lim n
nn

a L


  =0 і 0x  . У наслідок того, що 

lim 0n
n

n
a


  і  0n

na n   , приходимо до висновку:  lim 0n
n

n
a


 . Оскільки 

0 0

lim 0,
1

1
0 0, 2

2

n
n

n
n

n

a
n n n a

x x
x



             


   

1

2
n

nx a      
1

2
nn

na x q  , 

то за радикальною ознакою Коші у загальному формулюванні, ряд 
0

n
n

n

a x



  

абсолютно збігається при 0x  . Оскільки степеневі ряди завжди збігаються при 
0x  , тому степеневий ряд збігається на  , то D   .  ■ 
Наслідок 2.3 Формула для обчислення радіуса збіжності степеневого 

ряду 
0

n
n

n

a x



 : 

1

lim n
n

n

r
a



 . 

Можна отримати іншу формулу за умови, що 0na n   : 

1

lim n

n
n

a
r

a


 . 

 
§5 Властивості степеневого ряду 

 
1. Неперервність суми степеневого  ряду. Почленне 

диференціювання  та  інтегрування степеневих  рядів 

Лема 2.1 Нехай r  – радіус збіжності степеневого ряду 
0

n
n

n

a x



 , тоді 

(0, )r  ряд 
0

n
n

n

a x



 рівномірно збігається на відрізку  ;  . 

Доведення. Нехай (0, )r  – фіксоване, тоді   1 ;x r   . В точці 1x  із 

інтервалу збіжності степеневий ряд збігається абсолютно, тобто числовий ряд 
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1
1

n

n
n

a x



  збігається. Цей ряд є мажорантним рядом для функціонального ряду 

0

n
n

n

a x



  на  ;  , а саме: 

1

nn
n na x a x   ;x    . 

Отже, за ознакою Вейєрштрасса, ряд 
0

n
n

n

a x



  рівномірно збігається на  ;  . ■ 

Теорема 2.20 (теорема про неперервність суми степеневого ряду). Сума 

степеневого ряду  
0

n
n

n

S x a x




  є неперервною функцією на інтервалі 

збіжності  ;r r , де r  - радіус збіжності степеневого ряду. 

Доведення. Нехай 1x  – довільна точка інтервалу збіжності  rr; . 

Доведемо, що  S x  – неперервна в точці 1x . 

Нехай   задовольняє нерівності 1x r   , тоді  1 ;x    . Маємо: 

1) за лемою 2.1, ряд  
0

n
n

n

a x



  рівномірно збігається на  ;   до  S x ,  

2) члени ряду   n
n nu x a x  – неперервні функції на  ;   

Тому  S x  неперервна в точці 1x  (за теоремою про неперервність суми 

функціонального ряду на  ;  ).  ■ 

 
Теорема 2.21 (теорема про інтегрування степеневих рядів). Степеневий 

ряд 
0

n
n

n

a x



  можна почленно інтегрувати на    0; ;x r r   ( r  – радіус 

збіжності), крім того, радіус збіжності отриманого почленним інтегруванням 
степеневого ряду буде той самий, що і у вихідного ряду, тобто r . 

Доведення. Нехай r  – радіус збіжності степеневого ряду 
0

n
n

n

a x



 . 

Розглянемо    0; ;x r r  , а    задовольняє нерівності 1x r   . Маємо: 

1) 
0

n
n

n

a x



 рівномірно збігається на  ;   (за лемою 2.1), 

2)   n
n nu x a x  неперервні на  ;   функції, 

Тому за теоремою про почленне інтегрування функціональних рядів, ряд 

0

n
n

n

a x



  можна почленно інтегрувати на будь-якому відрізку    0; ;x r r  , до 

того ж 
1

1

1 1 1 10 0 0
1 1

xx x n
n n nn

n n n
n n n n

x a
a x dx a x dx a x

n n

   


   

    
      . 
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Коефіцієнт отриманого степеневого ряду 
0

n
n

n

b x



  має вигляд 1n

n

a
b

n
 , 

тому радіус збіжності цього ряду дорівнює 

1

1

lim nn
n

r
a
n





 . 

Оскільки для вихідного ряду 
0

n
n

n

a x



   

1
1

1
limn

nn
a

r


 , 

то 

 
1

1 1
1

1
lim lim

nn
n nn

nnn n

a
a

rn


 

  , 

1

1 /
r r

r
   .     ■ 

 
Теорема 2.22 (теорема про диференціювання степеневих рядів). 

Степеневий ряд можна почленно диференціювати всередині інтервалу 
збіжності, при цьому, отриманий почленним диференціюванням ряд має той 
самий радіус збіжності, що й вихідний ряд.  

Доведення. Нехай  :x r r  , а    задовольняє нерівності 1x r   . 

Формально почленно продиференціюємо даний ряд: 

  1

0 0

n n
n n

n n

a x a n x
 



 

     . 

Коефіцієнт отриманого степеневого ряду 
0

n
n

n

b x



  має вигляд 

 1 1k nb a n   , тому радіус збіжності цього ряду дорівнює 

1

lim n
n

n

r
b

  ; 

  1
1 1

1 1
lim lim 1 lim 1nn n n

n n nn n n
b a n n a r r

r r


            . 

Оскільки 

1) 
0

n
n

n

b x



  рівномірно збігається на  ;  , тоді за лемою ряд  

0

n
n

n

a x




  

рівномірно збігається на  ;  , 

2)     n
n nu x a x  – неперервно диференційовна на  ;  , 

тобто (за теоремою про почленне диференціювання функціональних рядів) 
даний степеневий ряд можна було почленно диференціювати.  ■ 
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Наслідок 2.4 Степеневий ряд можна почленно диференціювати скільки 
завгодно разів. Всі ряди, отримані n -кратними диференціюваннями, будуть 
мати той самий  радіус збіжності, що й  вихідний ряд. 

2. Розвинення функцій в степеневі ряди. 

Означення 2.10 Кажуть, що функція  f x  на  ;r r  (на множині  x ) 

може бути розвиненою в степеневий ряд, якщо існує степеневий ряд 
0

n
n

n

a x



 , 

який поточково збігається до  f x  на  ;r r , тобто 

 
0

n
n

n

a x



 :  

0

n
n

n

a x



    f x    x   ;r r     (  x x ). 

В більш загальному випадку  

   0
0

n

n
n

a x x f x




     x   0 0;r x r x   . 

 

Твердження 2.2 (необхідна умова розвинення функції в степеневий ряд). 
Для того, щоб функцію  f x  можна було розвинути в степеневий ряд на 

 ;r r  (на множині  x ) необхідно, щоб функція  f x  мала на цьому інтервалі 

неперервні похідні будь-якого порядку. 
 

Зауваження 2.6. Якщо функція  xf  може бути розвинена на множині A  
в степеневий ряд, то вона є аналітичною. Зокрема, аналітична функція має 
неперервні похідні будь-якого порядку. 

Доведення твердження. Функція  xf  може бути розвинена в степеневий 

ряд на  ;r r  (на  x ), тоді існує степеневий ряд 
0

n
n

n

a x



 , який збігається до 

 f x , тобто 
0

n
n

n

a x



   f x  x   ;r r  (  x x )). Відповідно до наслідку 2.4, 

степеневий ряд можна почленно диференціювати скільки завгодно разів, при 
цьому будуть отримані степеневі ряди з тими самими радіусами збіжності, що і 
вихідний ряд: 

 

      ,
0 0

k kn n
n n k

n n

a x b x f x
 

 

    x   rr;   (  x x ). 

 

При цьому, за теоремою про неперервність суми степеневого ряду,  

    ,
0

k n
n k

n

f x b x




  являють собою неперервні функції на ;r r , як суми 

степеневих рядів всередині їх інтервалів збіжності. ■ 
 

Зауваження 2.7 Ця теорема дає лише необхідні умови можливості 
розвинення функції в степеневий ряд. Ці умови не є достатніми. 

Приклад 2.14 Розглянемо функцію 
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 
2

1

, 0;

0, 0.

xe xf x
x

  
 

.     (2.15) 

Ця функція має неперервні похідні будь-якого порядку на  ; 0r r r   , 

однак вона не може бути розвиненою в степеневий ряд. Пояснення наведемо 
після Твердження 2.3. 

Твердження 2.3 Функція  f x  може бути розвинена в степеневий ряд 

єдиним чином. 
Доведення. Якщо функція  f x  може бути розвинена в степеневий ряд 

на  ;r r  ( x ), то 

 
0

n
n

n

a x



   f x  на  ;r r , 

тоді 
  2 3

0 1 2 3 ... ...n
nf x a a x a x a x a x       ,          (2.16) 

звідки  
  00f a . 

Продиференціюємо (2.16) декілька разів і знайдемо значення похідних в 
точці нуль: 

  2 3 1
1 2 3 42 3 4 .... ...n

nf x a a x a x a x na x         ,    /
10f a , 

   2 2
2 3 42 3 2 4 3 2 ... 1 ...n

nf x a a x a x n n a x            ,   / /
20 2f a , 

     3
3 43 2 4 3 2 ... 1 2 ...n

nf x a a x n n n a x            ,    30 3!f a  , 

……………… 

    ( ) 1 2 ... 2 1 ...n
nf x n n n a        ,        0 !n

nf n a . 

Звідки 
   0

!

n

n

f
a

n
    {0}n  .    (2.17) 

Отримано формулу для обчислення коефіцієнтів степеневого ряду, за якою 
вони можуть бути обчисленими однозначно, отже, і степеневий ряд 
визначається однозначно.  ■ 
 

Означення 2.11 Степеневий ряд 
0

n
n

n

a x



 , коефіцієнти якого 

обчислюються за формулою (2.17), називають рядом Тейлора. 
 
Пояснення щодо прикладу 2.14. Доведемо спочатку неперервність функції 

 f x  на  . Розглянемо функцію   2

1

xg x e


 .  
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   
 

    2

1
неперервна на \ 0 ;

неперервна на ;t

t h t
g x h tx

t e

     
   




 – неперервна на 

 \ 0  як складена. Оскільки    
0

lim 0 0
x

f x e f


     , то функція  

неперервна в точці 0x  . Отже,  f x  неперервна на  . 

Функція   2

1

3

1xg x e
x


    – неперервна на  \ 0  як добуток функції 

  2

1

1
xg x e


  і  2 3

1
g x

x
 , неперервних на  \ 0 . Крім того, 

  2

2

33

10 0

1
1

lim lim lim 0
tx x t

x

txg x t
x e

e
  

      , 

оскільки знаменник швидше прямує до нескінченності за чисельник, 

      2

1

0 0

0 0 0
0 lim lim 0

x

x x

f x f e
f

x x




   

      
 

.   (2.18) 

Отже, похідна даної функції 

 
2

1

3

1
, 0;

0, 0

xe x
f x x

x


   

 

 

є неперервною функцією на  . Неперервність кожної похідної ( ) ( )nf x  
( 2,3,4,...)n  на   доводиться за допомогою принципу математичної індукції 
(довести самостійно !). 

Тепер пояснимо, чому цю функцію неможливо розвинути в степеневий 
ряд. Застосуємо формулу (2.17) для знаходження коефіцієнтів степеневого 
ряду, за якими ряд визначається однозначно. Із (2.15) і (2.18) випливає, що 

 0 0f  ,   0 0f   . 

За індукцією доводяться рівності: 

       0 0 ... 0 0nf f f n       . 

Звідки і із (2.17) отримаємо 
0na   {0}n  . 

Це означає, що 

   
0

n
n

n

a x x f x




   , 

тут   0x  .  

Отже, існування на інтервалі неперервних похідних у функції забезпечує 
лише необхідну умову розвинення функції в степеневий ряд. Таким чином, 
потрібно сформулювати ще й достатню умову можливості розвинення функції 
в степеневий ряд. 
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Теорема 2.23 (необхідна і достатня умови можливості розвинення 
функції в степеневий ряд). Для того, щоб функцію  xf  можна було розвинути в 
степеневий ряд на  ;r r , необхідно і достатньо, щоб залишковий член у 

формулі Тейлора, що відповідає цій функції, збігався до функції   0x   на 

 ;r r  поточково. 

Доведення. Розглянемо ряд Тейлора функції  f x : 

 f x 
       

0

0

!

n
n

n n
n

f
x S x R x

n





  , 

де  nS x  – часткова сума ряду Тейлора, яка також є сумою в розкладі за 

формулою Тейлора;  nR x  – залишковий член ряду Тейлора, який одночасно є 

залишковим членом у формулі Тейлора. 
Згідно з наслідком із критерію Коші збіжності числового ряду 

(наслідок 1.1) , в кожній точці 0x  інтервалу  ;r r  числовий ряд збігається 
   

0
0

0

!

n
n

n

f
x

n




  тоді і лише тоді, коли послідовність його залишків   0nR x  

прямує до нуля. Це означає, що      ;n r r
R x x , тобто залишковий член в 

формулі Тейлора поточково збігається до функції   0x   на  ;r r .  ■ 

3. Розвинення  деяких елементарних функцій в степеневі 
ряди. 

Пригадаємо, що нами на початку в параграфі «Поняття числового ряду» 
було отримано 

2

0

1 ... ...
2! ! !

n n
x

n

x x x
e x x

n n





          ,    (2.19) 

оскільки    nR x x x   . Навіть має місце рівномірна збіжність цього 

ряду на [ , ]L L , оскільки (див. Приклад 2.5) 

 
 

 
,

.
L L

nR x x L


    

В тій же темі було доведено, що мають місце розвинення 

 
 

 
 

1 12 1 2 13 5 7

1

1 1
sin ...

3! 5! 7! 2 1 ! 2 1 !

n nn n

n

x xx x x
x x x

n n

  



 
       

   , (2.20) 

 
 

 
 

2 22 4 6

0

1 1
cos 1 ...

2! 4! 5! 2 ! 2 !

n nn n

n

x xx x x
x x

n n





 
         .  (2.21) 

Знаючи розклад функції ln(1 )x  за формулою Маклорена, розглянемо 
ряд 

 
2 3 4 1

1

1

( 1)
ln 1 ... ( 1) ...

2 3 4

n n n
n

n

x x x x x
x x

n n







          . 
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У зауваженні 2.3 було доведено рівномірну збіжність 

 
 

0,1

1

1

( 1)
ln 1

n n

n

x
x

n







   

через обґрунтування рівномірної збіжності залишкового члена у формі 
Лагранжа до   0x   на відрізку [0,1] . Пригадаємо, як було проведено 

оцінювання, щоб зрозуміти чи можливо розширити ці оцінювання на 
інтервал ( 1;0) .  

Отже, залишковий член у формі Лагранжа має вигляд  

 
   
 

1
1

1 !

n
n

n

f x
R x x

n




 


,   0 1   . 

Оскільки    
 

1

1

( 1) !

1

n
n

n

n
f x

x





 

 
, то на  0,1  маємо 1 1x   , звідки  

 
        1 [0,1]1 1

! ! 1 1
0

11 1 !1 1 !

n n

n n n

n x n
R x

nnx n
  

 
   

  
. 

Якщо   1,0x  , то суму 1 x   знизу можна оцінити лише нулем, тобто 

1 0x   . Цю оцінку застосовувати в знаменнику не можна. Отже, форма 
Лагранжа не може бути застосована для дослідження на збіжності ряд на 
множині  1,0 .  Будемо застосовувати на  1,0 .  форму Коші залишкового 

члену: 

 
     

1
11

!

n
n n

n

f x
R x x

n




    ,   0 1   . 

Маємо: 

   
   

  

1

1

! 1 1

1 11 !

1 1 1 ,
, .1

1( , ) ,
1

nn n
n

n n

n n

n x x
R x x

x xx n

x x x x
q x x

xq x
x





              

      
       

 

 

Оскільки 0 1   ,  1,0x  , то 1 1 1 0x x         , тому  0 , 1q x   . 

Отже, для всіх  1,0x   

lim 0
n

n
x


 , 

  lim , 0
n

n
q x


   не залежно від (0;1) , 

не залежить від
1

x
n

x



. 

Звідки випливає, що  
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    0 ,
1

( 1;0)
0

n n

n

x
R x q x x

x

x

    


      

Таким чином, послідовність залишків поточково на інтервалі ( 1;0)  збігається 

до функції   0x  , тобто 

( 1;0)
( ) ( )nR x x . 

Приходимо до висновку: 

 
1

1

( 1)
ln 1 на [ 1;1]

n n

n

x
x

n






         (2.22) 

 
Самостійно розглянути доведення існування наступного розвинення [2, 

c 100]: 

      

   

2 31 1 2
1 1 ...

2! 3!
1 ... 1

... на [ 1;1]
!

n

x x x x

n
x

n

        
       

     
  

  (2.23) 

 
Зупинимося на окремих випадках останньої формули. Якщо 1 , то 

     2 3

0

1
1 ... 1 ... 1 на 1,1

1
n nn n

n

x x x x x
x





          
   (2.24) 

Розклад цієї функції простіше запам’ятати як суму нескінчнної спадної 
геометричної прогресії, де 

1 1,b q x   ,   1

1

b
S

q



. 

Якщо покласти 1 1,b q x  , то отримаємо 

 2 3

0

1
1 ... ... на 1,1

1
n n

n

x x x x x
x





        
     (2.25) 

 
Приклад 2.15 Отримати розклад функції   arctgf x x  у степеневий ряд. 

Вказати інтервал збіжності. 
Розв’язання. Отримаємо розклад похідної даної функції, застосовуючи 

розклад (2.24): 

       2
2

0

1
' 1 на 1,1 .

1

nn

n

f x x
x





   
   

Всередині інтервалу збіжності, тобто на  1;1 , степеневий ряд можна 

інтегрувати почленно, отже 
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   

   

     

2

00 0

2 1

0
0 0

2 1

0

' 1 ,

| 1 ,
2 1

0 1 ,
2 1

arctg0 0,

x x
n n

n
xn

nx

n
n

n

n

f x dx x dx

x
f x

n
x

f x f
n












 

 


  




 





 

звідси 

   
2 1

0

arctg 1 на 1,1
2 1

n
n

n

x
x

n





  
     (2.26) 

(при почленному інтегруванні інтервал збіжності зберігається). ■ 
Із розвинення (2.22) маємо: 

 

 

   

2 3 4
1

1

1
2 3

1

ln 1 ... ( 1) ...
2 3 4

( 1)
на 1,1 ,

ln 1 ... ... на 1,1 .
2 3

n
n

n n

n
n n

n

x x x x
x x

n
x

n
x x x x

x x
n n










         


 

          





 

Звідки 

   

 

3 5 2 1

2 1

1

1
ln ln 1 ln 1 2 ... ...

1 3 5 2 1

2 на 1,1 .
2 1

n

n

n

x x x x
x x x

x n
x

n







 
             

 


 (2.27) 

4. Формула  Стірлінга . 

В розкладі (2.27) покладемо  1
1,1

2 1
x

n
  


, одержимо: 

      3 5 2 1

1
1 2 2 12 1ln ln ln

1 21
2 1

1 1 1 1
2 ... ... .

2 1 3 2 1 5 2 1 2 1 2 1
k

n nn
n n

n

n n n k n


     



 

            

 

Тобто  

   2 4

1 2 1 1
ln 1 ...

2 1 3 2 1 5 2 1

n

n n n n

 
        

.   (2.28) 

Помножимо обидві частини останньої рівності на 
2 1 1

2 2

n
n


  , отримаємо: 
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   2 4

1 1 1 1
ln 1 ...

2 3 2 1 5 2 1

n
n

n n n

      
   

 

Проведемо оцінювання: 

   

 

 
 

2 4

2

2

2

1 1 1 1
1 ln 1 ...

2 3 2 1 3 2 1
1

2 11 1 1 1
1 1 1 ,

13 3 4 4 12 11
2 1

n
n

n n n

n

n n n n
n

        
   


       

 


 

тобто 

 
 

1

2

1 1
2 12 1

1 1
1 ln 1 1 ,

12 1

1 1
1 1 .

n

n
n n

n n n

e
n e






       

     
 

 

Розглянемо послідовність 1

2

! n

n
n

n e
a

n


   
  

. Оскільки 

1

2
1

1

n

n

n

a n
e

a n


     

, то 

справедливими є нерівності 

 
1 1
2 12 1

(1) (2)
1

1 1
1 1

n
n nn

n

a
e

a n e






      
 

, 

з яких випливає: 

  
 

  

1

1

12 1

1

,
(1 lim ;

0 обмежена знизу

(2 .

n
n n n nn

n n

n nn

n

a
a a a a a a

a a

a
e

a







 
          

 



 

Оскільки 
 

1 1 1

1 1n n n n
 

 
, то друга нерівність може набути вигляду: 

 

 

1 1
12 1 12

1 1
1 12 12 1

1

, 1.
n n n

n n

n n n n
n

a e a e

a
e a e

 

 
 




 



 

Із останньої нерівності випливає, що послідовність 
1

12n
na e

 
 

 
 зростає. Отже, 
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1

12

1 1

12 12

1

12

;

lim ; lim

lim 1;

n
n

n n
n n n

n n

n

n

a e

a a a e a a e a

e



 



 
  

        






. 

Зважаючи на те, що na a , в результаті отримаємо: 
1

12n
n na e a a


   . 

Отже,  

12(0;1) :
n

n
n na a e




    , 
тобто 

12
1

2

! nn
n

n

n e
a e

n







  . 

Таким чином, 
1

122!
nn n nn a n e e


        0 1n   .   (2.29) 
Знайдемо a , застосувавши формулу Валіса [6, c. 110], 

 
 

2
2 !!1

lim
2 1 2 1 !! 2n

n

n n

  
    

 

та отриману рівність (2.28); 

 
 

 
 

   

 

2

4 44

2 2

4 4 4 2 4 3

42 4 12

2 2

2 !! 2 !1 1
lim lim

2 2 1 2 12 ! 2 !

1 2
lim

2 1
2 2

lim .
2 1 2 4

n

n

n

n n

n n n n

n n n n

n

n n

n nn n

a n n e e

n
a n n e e

a n a

n

 









       
       

    
  


   


 

 

 

Тобто 
2

2 .
2 4

a
a


    . Підставляючи знайдене значення a  у рівність (2.29), 

отримаємо формулу Стірлінга1: 
 

  12! 2 , 0 1
n

nn n
nn n n e e


           (2.30) 

 
 

                                                 
1 Джеймс Стірлінг (англ. James Stirling; травень 1692— † 5 грудня 1770) —шотландський математик  
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§6 Застосування функціональних і степеневих рядів 
 
1. Обчислення значень функцій та  інтегралів за допомогою 

степеневих  рядів 

Припустимо, що функція )(xf  допускає розвинення у степеневий ряд 

0

( ) , ( , )n
n

n

f x a x x r r




   , 

де r  – його радіус збіжності. Нехай  0 ,x r r   (у випадку, коли кінець 

інтервалу збіжності є точкою збіжності степеневого ряду, то 0x  можна обрати 
рівним йому). Потрібно знайти 0( )f x . 

Оскільки в точці 0x  ряд збігається, то 

0 0 0 1 0 0
0 залишокчасткова сумма

( ) . . .

n

n n
n n n

n
S

f x a x a a x a x r





       . 

Будемо наближено замінювати 0( )f x  частковою сумою останнього ряду, тобто 

0( ) nf x S . Яка точність цієї наближеної рівності? Відповідь на це запитання 

дає оцінка залишку ряду nr . Мета: оцінити nr . Можливі такі два типи 

числового ряду 0
0

n
n

т

a x



 : 

1)  ряд знакопочережний, Лейбніцевого типу, 
2)  ряд іншого типу. 
У першому випадку, коли ряд є рядом Лейбніцевого типу, тобто рядом 

типу  ( 1) : 0n
n n nC C C    , тоді залишок цього ряду не перевищує 

модуля першого відкинутого члена, тобто 1
1 1 0

n
n n nr c a x 

   . 

У другому випадку потрібно застосувати штучний спосіб, як правило, 
оцінюючи сумою геометричної прогресії. 

Точність наближеного обчислення буде дорівнювати сумі похибок 
округлення кожного із членів ряду в частковій сумі і оцінки зверху залишку 
ряду. Тому, якщо обчислення ведуться до 210 , округлення членів ряду краще 
робити до значущого знаку з номером, більшим за 2. 

Приклад 2.16 Знайти наближене значення 0cos5  з точністю 410 . 
Розв’язання. 

 

2 2
0

1
0

0

( 1) 1
cos5 cos 1

36 2 ! 36 2 36
1 0,003808 0,99619

cos5 0,99619.

nn

n

r
n





               
   

   
 


 



Розділ 2. ФУНКЦІОНАЛЬНІ І СТЕПЕНЕВІ РЯДИ 

 132

Знайдемо точність наближеного значення. Оскільки 

 
1

, 0
2 ! 36

n

n nC C
n

       
   

 , то цей ряд Лейбницевого типу. Оцінимо його 

залишок, що відповідатиме оцінці точності: 

 

2 2 43
5

1

( 1) 1
10

2 2 ! 36 24 36
r


                

. 

Відповідь: 0 4cos5 0,9962 10  . ■ 
При наближеному обчисленні cos x  аргумент x  вважається малим, таким 

що 1x  . Якщо аргумент x  – великий, то потрібно застосувати формули 

зведення або інші тригонометричні формули. 
Наприклад, щоб знайти наближене значення, можна спочатку зробити 

такі перетворення 

   
0 0 0 0 0

наближенo обчислене аналогічно можна обчислити

2
cos 50 cos 45 5 cos 5 sin 5 ...

2

 
      
 
 

, 

а потім обчислити наближені значення 0cos5  і 0sin5  так, як одне з них було 
отримано в прикладі 2.16. 

При розв’язанні наступного прикладу корисною буде теорема. 
Теорема 2.24 (теорема Абеля) [13, c. 82]. Якщо дійсний степеневий ряд 

збігається в точці x r , 0r  , тоді його сума ( )S x  являє собою значення 
неперервної зліва функції в цій точці, тобто 

0
0

( ) lim ( ) n
nx r

n

S r S x a r


 


  . 

Аналогічне твердження є справедливим й для лівого кінця інтервалу збіжності. 
Приклад 2.17 Обчислити наближено значення числа   з точністю 0,01.  
Розв’язання. Застосовуємо формулу (2.26) розвинення в степеневий ряд 

функції ( ) arctgf x x : 
2 1

0

( ) arctg ( 1)
2 1

n
n

n

x
f x x

n





  
 , ( 1;1)x  . 

Цей ряд збігається в точці 0x =1, тобто в правому кінці інтервалу збіжності (за 
ознакою Лейбніца), функція ( )f x  неперервна (зліва) в цій точці. Звідки 
випливає (за теоремою 1ю24), що значення функції в точці 0x =1 буде збігатися 
із значенням суми степеневого ряду в цій точці. Отже, 

 


 
2

1

0 точно до 10

часткова сума

1 11 1 1
4 4 1 . . .

2 1 3 5 7 2 1

k n

k

n

k n







  
           




. 
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Тут  
0

1
1 , , 0

2 1
k

k k k
k

C C C
k





     
  . Цей ряд Лейбницевого типа. 

Знайдемо кількість n  доданків для досягнення зазначеної точності  0,01: 

  2

21 1 1
10

2 3 2 3 100

n

nr n n




   
 

 

2 3 100,
49.

n
n
 


 

Тобто, якщо взяти 49+1 доданків в частковій сумі, то отримаємо точність 0,01: 

2 21 1
4 1 . . . 10 3,14 10

5 99
          

 
. ■ 

Приклад 2.18 Виписати схему наближеного обчислення значення lg11. 
Розв’язання. Спочатку зробимо перетворення: 

1 1 1 1
lg11 lg(1 10) lg10 1 lg 10 lg 1 1 ln 1

10 10 ln 10 10
                    
     

. 

Для обчислення шуканого значення потрібно обчислити: 

1) 
1

ln 1
10

  
 

. 

2) ln10 , 
Для розв’язання першої із зазначених задач застосуємо розклад (2.22): 

   
1

n 1

1
ln(1 ) , 1,1

n

nx x x
n






    . 

Оскільки 
1

1
10

 , то 
  1

1

11 1
ln 1

10 10

n

n
n n





    
 

 . Цей ряд Лейбніцевого типу: 

 
0

1
1 , , 0

10
n

n n nn
n

C C C
n





     
  , 

тому наближена рівність 

2 3

1 1 1 1
ln 1 0,0953

10 10 2 10 3 10

              
 

має точність 

 5

1,1 4
3 4

1
10

4 10
r 

 


. 

Висновок 1: 
1

ln 1 0,0953 0,0001
10

    
 

 

Для реалізації другої задачі скористаємось наступною схемою 
обчислення ln n , n . Застосуємо формулу (2.28): 

 2 4 2

1 2 1 1 1 1 1 1
ln 1 . . . ...

2 1 3 5 (2 1) 2 1 (2 1)2 1
k

n

n n n k nn

 
              

. 
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Покладемо спочатку 1n  , тоді 

2 4 2

2 1 1 1 1 1 1
ln 2 1 . . .

3 3 3 5 3 2 1 3 kk
          

. 

Цей ряд не є знакопочережним, тому його залишок будемо мажорувати 
геометричною прогресією: 

2
2 2 2 4 2 2 2 4

2 2

2 1 1 1 1 2 1 1 1
. . . . . .

3 2 3 3 2 5 3 3 2 3 3 3
2 1 1 3

.
3 2 3 1 1 9

k k k k k

k

r
k k k

k

   



                    

  
 

 

При 8k   оцінка залишку набуде вигляду: 
18

2 9
8 10

2 1 1 3 2
10

3 19 1 1 9 10
r     


. 

Таким чином,  

9 9
2 4 16

2 1 1 1 1 1 1
ln 2 1 . . . 10 0,693147181 10

3 3 3 5 3 2 8 1 3
               

. (2.31) 

Підставляємо 2n   в (2.28): 

2

3 2 1 1
ln ln 3 ln 2 1 . . .

2 5 3 5
        
 

    
2

2 1 1
ln 3 ln 2 1 . . .

5 3 5
      
 

. 

Таким чином можна знайти значення ln3. Припустимо, що значення ln ( 1)N   
вже відоме, тоді в (2.28) підставляємо 1n N  , звідки 

 
 2

0

2 1 1
ln ln 1

2 1 2 1 2 1
k

k

N N
N k N





    
  

 .   (2.32) 

Це дасть можливість отримати значення ln N . Формула (2.32)є рекурентною 
формулою обчислення таких значень. Зокрема, для обчислення ln10  проведемо 
наступні викладки: 

 
(1.32)

2
0

(1.31)

2 4

2 1 1
ln10 ln 2 ln5 ln 2 ln 4

2 5 1 2 1 2 5 1

2 1 1 1 1
3 ln 2 1 3 0,693147 0,223143 2,302584;

9 3 9 5 9

k
k k





       
    

             
 


 

2 2
10

2 2 2 4

6
10 7
2

2 1 1 1 1 2 1 1 9
. . . ;

9 2 3 9 2 5 9 9 2 3 1 1 81
2 1 1 9

10 ;
9 9 1 1 81

k

k k k
r

k k k

r



 



             

   


 

5ln10 2,30258 10  . 

Отже, 
4

4
5

1 1 0,0953 10
lg11 lg(1 10) 1 ln 1 1 1,0414 10

ln 10 10 2,30258 10






             
. ■ 

Приклад 2.19 Описати схему наближеного обчислення lg5,1. 
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Розв’язання. Для обчислення значення lg5,1 робимо спочатку 
перетворення: 

 

    

0,1 ln 5 1
ln 5,1 lg(5 0,1) lg5 ln 1 ln 1 0,02

5 ln10 ln 10
ln 10 ln 2 1 1

ln 1 0,02 1 ln 1 0,02 ln 2 .
ln10 ln 10 ln10

           
 


       

. 

У попередньому прикладі було отримано наближені значення ln 2  і ln10 . 
Для наближеного обчислення  ln 1 0,02  потрібно застосувати (2.22), а 

точність наближення отримати оцінкою залишку ряду Лейбніцевого типу.   ■ 
 
Приклад 2.20 Наближено обчислити значення числа e . 

Розв’язання. В розкладі (2.19) 
0

,
!

n
x

n

x
e x

n





     обираємо 1x  : 

1

0

1 1 1 1 1
1 . . . ...

! 1! 2! 3! !n

e e
n n





         . 

Випишемо наближену рівність 
1 1 1

2 . . .
2! 3! !

e
n

     , 

знайдемо її точність: 

   2 3

1 1 1
. . .

( 1)! ( 2)! ( 3)!
1 1 1 1

1 . . .
( 1)! 2 ( 2)( 3) ( 2)( 3)( 4)

1 1 1 1
1 . . .

( 1)! 2 2 2

nr n n n

n n n n n n n

n n n n

    
  

 
              

 
           

 

 
 2

1 1 1 2 1 2 1 7 1
5 .

1( 1)! ( 1)! 1 ! 120 36 10011
2

n n
n

n n n n n
n

 
          

   


 

Маємо: 2 21 1 1 1
2 10 2,72 10

2! 3! 4! 5!
e           

 
. ■ 

 
Для обчислення такого інтеграла отримуємо розклад його 

підінтегральної функції ( )f x  в степеневий ряд 
0

n
n

n

c x



 . Припустимо, що такий 

ряд має інтервал збіжності, що містить в собі відрізок інтегрування, тобто 
   , ,a b r r  , де r  - радіус збіжності. Тоді (за теоремою про інтегрування 

степеневих рядів) на такому відрізку ряд можна проінтегрувати почленно. В 
результаті отримаємо певний числовий ряд:  
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1 1

0 0

( )
1

b b n n
n

n n
n na a

b a
f x dx c x dx c

n

  

 


 

   . 

Суму цього ряду наближено замінюємо частковою суму, а залишок 
оцінюємо так, як зазначено в попередньому пункті. 

 

Приклад 2.21 Наближено обчислити інтеграл 
2

1

0

xe dx  з точністю 0,001. 

Розв’язання. Цей інтеграл не береться в елементарних функціях. 
Застосовуємо до його обчислення зазначений алгоритм. 

Скористаємося розкладом (2.19) 
0

;
!

n
t

n

t
e t

n





    при 2t x . Оскільки 

2t x x     , то інтервалом збіжності є вся числова пряма   ; . 
Відрізок інтегрування лежить всередині інтервалу збіжності (  [0,1] ;   ), 

тому на відрізку [0,1]  степеневий ряд можна почленнно інтегрувати. Маємо: 

       2

121 1 2 1

0 0 0 00 0 0

1 1 1

! ! 2 1 !(2 1) !(2 1)
1 1 1 1

1 ...
3 2! 5 3! 7 4! 9

n n n kn n
x

n n n k

x x
e dx dx

n n n n n k k

  


   

   
     

  

     
  

    
 

Цей ряд задовольняє ознаці Лейбніца, тому 

  31
5 10

( 1)!(2 3)nr n
n n

   
 

. 

Висновок: 
2

1

0

1 1 1 1 1
1 0,747

3 2! 5 3! 7 4! 9 5! 11
xe dx       

     з точністю 0,001.   ■ 

2. Приклади неперервних  ніде недиференційованих  функцій 

Приклад Коші. Першість в наведенні такого прикладу належить Коші. Він 
розглянув функцію, що є сумою ряду 

 
0

( )

( ) cos , 0 1

n

n n

n
u x

f x a b x a




     
, 

тут b  – непарне натуральне число таке, що 231 ab . 

 
(озн. Вейєрштрасса)

теоремазбігається про непер. суми
функц. ряду

cos ;

( ) неперервнана .

( ) неперервна на ;

n

т

n n n

a

n

a b x a

f x

u x

 


   
  


 






 

Якщо неперервність функції Коші перевіряється нескладно, то її 
властивість ніде недиференційовность є нелегкою вправою. Полишимо цей 
приклад и розглянемо більш простий приклад ван-дер-Вардена. 
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Ідея прикладу ван-дер-Вардена полягає у наступному. В прикладі Коші 
членами ряду є тригонометричні функції, що коливаються. В цьому прикладі 
тригонометричні функції, що коливаються замінюються ламаними ( )nu x , що 
коливаються, а шукана неперервна, ніде недиференційована  функція є сумою 

ряду, що утворена з них: 
0

( ) ( )n
n

f x u x




 .  

 
Приклад ван-дер-Вардена. Розглянемо функцію  

      0 min ; 1u x x x x x    . 

Оскільки     1x x x   , то 0 ( )u x  – це відстань між x  і найближчим до нього 
цілим числом. Функція 0 ( )u x  має період 1. Її графік має вигляд ламаної. 

Нехай 0 (4 )
( )

4

n

n n

u x
u x


 , тоді ця функція  

1) періодична з найменшим періодом  
1

4n n
T  , 

2) лінійна на кожному з відрізків: 
1

, ,
2 4 2 4n n

s s
s

     
 , 

3) 
1

( )
2 4n n

u x x  


 , 

4) ( )nu x  - неперервна на  . 

Розглянемо функцію 
0

( ) ( )n
n

f x u x




 .  

(озн.Вейєрштрасса)

1
( ) ;

2 4
зб. ( )

( ) неперервна на ;

n n

n

u x

f x

u x

    
 







 

 
 
 
 

– неперервна на   (за теоремою про 
неперервність суми функціонального ряду). 

 
Рис. 2.6  Графік функції 0 ( )y u x  
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Рис. 2.7  Графік функції 1( )y u x  

 
Нехай 0x   – довільна фіксована точка. Знайдемо відрізок лінійності 

кожної функції ( )nu x , якому належить ця точка, тобто  

nn s     : 0

1
,

2 4 2 4
n n

n n

s s
x

    
. 

В кожному із знайдених відрізків 
1

,
2 4 2 4

n n
n n

s s  
   

 відшукаємо точку nx , віддалену 

від 0x  на половину довжини цього відрізка, тобто 

0 1

1 1
, :

2 4 2 4 4
n n

n nn n n

s s
x x x 

       
. 

Утворена послідовність { }nx  збігається до 0x .  
Розглянемо різницеве відношення 

   0 0

00 0

( ) ( )n k n k

kn n

f x f x u x u x

x x x x





 


  . 

Функція 1( )nu x  має період в 4 рази менший за період функції ( )nu x . Тому 
1

4k nk n
k n T T     . Отже, точки nx  і 0x  розташовуються так, що відстань 

між ними дорівнює періоду кожної з функцій ( )ku x  при k n , тому k n   
значення функцій ( )ku x  в точках nx  і 0x  збігаються, тобто 

 0( )k n ku x u x k n   . 

Звідки випливає, що всі члени ряду різницевого відношення дорівнюють нуль, 
починаючи з номера 1n  , і  

   0 0

0 00 0

( ) ( )n
k n k k n k

k kn n

u x u x u x u x

x x x x



 

 


   . 

Ланки ламаної, що відповідають графіку функції ( )nu x , мають кути 

нахилу або 045 , або 0135 , тому тангенси цих кутів дорівнюють 1 . Оскільки 

відношення 
 0

0

( )k n k

n

u x u x

x x




 характеризує тангенс кута нахилу тієї ланки 

ламаної функції ku , якому відповідають точки nx  і 0x , то 
 0

0

( )
1k n k

n

u x u x

x x


 


. 

Приходимо до висновку:  
   0

00

( )
1

n
n

n
kn

f x f x
z

x x 


  

  . 
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Отримана послідовність  nz  – це послідовність цілих чисел. Отже: 

якщо n  – парне, тоді nz  – непарне ціле число;  
якщо n  – непарне тоді nz  – парне.  

Такий висновок пояснюється тим, що для непарного n  маємо суму із парної 
кількості 1 , яка буде парним числом; аналогічно для парного n . 

Послідовність цілих чисел в чергуванні «парне-непарне» не може бути 
збіжною, тому що послідовність цілих чисел збігається тоді і лише тоді, коли 
вона є стаціонарною. 

Висновок: послідовність    0

0

( )n
n

n

f x f x
z

x x

 
   

 є розбіжною, а отже, 

функція ( )f x  в точці 0x  – недиференційовна. Таким чином, ( )f x  – 
недиференційовна в кожній точці дійсної осі, тому вона ніде недиференційовна, 
хоча неперервна скрізь. ■ 

3. Теорема Вейєрштрасса про рівномірне  наближення  
неперервної функції послідовністю многочленів 

Теорема 2.25 (теорема Вейєрштраса про рівномірне наближення 
неперервної функції послідовністю многочленів). 

( )f x   неперервна на    ; ( )na b P x   послідовність многочленів, яка 

рівномірно збігається до даної функції на відрізку [ ; ]a b , тобто 
 ,

( ) ( )n
a b

P x f x . 

Доведення. Етап I. 
 
а) Розглянемо :[0,1] [ , ]a b   – таку функцію, що переводить відрізок 

[0,1]  в відрізок [ , ]a b , наприклад, ( ) ( )x t a t b a     . Тоді складена функція 
( ( ))f t  задається на [0,1]  і неперервна на цьому відрізку як композиція 

неперервних функцій ( )f x  і ( )t . 
Висновок 1: без обмеження загальності міркувань (Б.О.З.М.) можна 

вважати, що ( )f x  задана і неперервна на відрізку [0,1] . 

 
б) Розглянемо ( ) ( ) (0) ( (1) (0))q x f x f x f f     , тоді  
    (1) (1) (0) 1 ( (1) (0)) 0q f f f f      , 
    (0) (0) (0) 0 0q f f    . 

Побудуємо послідовність многочленів  ( )nF x , яка рівномірно збігається 

на [0,1]  до ( )f x , тобто 
 0,1

( ) ( )nF x f x . Розглянемо послідовність  

 ( ) ( ) (0) [ (1) (0)]n nG x F x f x f f     . Оскільки  ( )nF x  – послідовність 

многочленів, а (0) [ (1) (0)]f x f f    – многочлен 1 степеня, то  ( )nG x  – 

послідовність многочленів. Окрім того,  

 0,1
( ) ( ) (0) [ (1) (0)] ( ) (0) [ (1) (0)] ( )n nG x F x f x f f f x f x f f q x           , 
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тобто 
 0,1

( ) ( )nG x q x . 

Висновок 2: Б.О.З.М. можна вважати, що (0) (1) 0f f  , причому це 
обмеження не впливає на рівномірну збіжність на [0,1]  послідовності 
многочленів до ( )f x . 

 
в) Продовжимо задану функцію на всю числову пряму: 

 
 

( ), 0,1 ;
( )

0, 0,1 .
f x x

f x
x

 
  

 

Така функція – неперервна на  . 
Висновок 3: Б.О.З.М. можна вважати, що ( )f x  задана і неперервна на  , 

а  зовні [0,1]  обертається в нуль. 
 
Етап II.  Розглянемо допоміжну послідовність многочленів степеня 2n : 

 2( ) 1
n

n nQ x C x  . 

По-перше, оцінимо  nC  зверху за умови, щоб 
1

1

( ) 1nQ x dx


 . 

а) Доведемо справедливість нерівності 

   2 21 1 1,1
n

x nx x      , 

яка еквівалентна нерівності  
 (1 ) 1 0,1nt nt t      

(де 2t x ). 
Для цього введемо функцію ( ) (1 ) 1nt t nt     , яку дослідимо на 

монотонність: 
1 1( ) (1 ) (1 (1 ) ) 0n nt n t n n t           0,1t  ,  

( )t    на [0,1] . 
Звідси маємо: 

(0) 0,
0,

( ) ,
t

t

   
 

   ( ) 0 0 1 1 0
n

t t nt             0,1t  . 

б) Оцінимо інтеграл 

     

 

11 1
2 2 2

1 0 0

11 3
2

0 0

1 2 1 2 1

1 4 1
2 1 2 2 .

3 3 3

n
n n n

nn

x dx x dx x dx

x n
nx dx x n

n n n n n



     

             
  

  


 

Висновок: якщо 
1

1

( ) 1nQ x dx


 , то 
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 
1 1

2

1 1

1
1 ( ) 1

n

n n nQ x dx C x dx C
n 

               nC n . 

По-друге, розглянемо    1; ;1x    , тобто 1x   , і дослідимо 

функціональну послідовність   2( ) 1
n

n nQ x C x   на рівномірну збіжність до 

( ) 0x  : 

       
   2 2

1; ;1 1; ;1
0 sup ( ) ( ) sup 1 1

0

n n

n n
x x

Q x x C x n

n
       

      

 
 

   

Висновок: 
   1; ;1

( ) ( ) 0nQ x x
  
  


. 

Етап III. Розглянемо 
1

1

( ) ( ) ( )n nP x f x t Q t dt


  . 

 

а) Доведемо, що ( )nP x  – многочлен степеня 2n . В наслідок висновків 
етапу І, співвідношення ( ) 0f x t   має місце, якщо [ ;1 ]t x x   , тому  

1

1

( ) ( ) ( )n nP x f x t Q t dt


    

1 1

0

1( ) ( ) ( ) ( )
0 1

x

n n

x

u x t t u x
t x xf x t Q t dt f u Q u x dudt du
u





   
        . 

Зовнішня змінна x  знаходиться під знаком многочлена nQ . Оскільки  
deg 2nQ n , то після інтегрування за змінною u , отримаємо многочлен ( )nP x  
степені 2n  відносно змінної x . Висновок: deg ( ) 2nP x n . 

 

б) Доведемо, що 
 0,1

( ) ( )nP x f x . Знаючи, що 
1

1

( ) 1nQ x dx


 , проведемо 

перетворення: 

1 1

1 1

1

( ) ( ) ( ) ( ) ( ) ( )n n nP x f x f x t Q t dt f x Q t dt
 



     


 

1 1

1 1

( ) ( ) ( ) .nf x t f x Q t dt
 

   

            (2.33) 

Для визначення   зауважимо, що 
( )f x  – неперервна на  1;1 ( )f x   – рівномірно неперервна на  1;1 :  

 0 0 : , 1,1x x          ( ) ( )
2

x x f x f x
        . (2.34) 
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Під знаком другого інтеграла (2.33) можна застосувати нерівність (2.34): 

 
,

, ( ) ( )
2| | ,

x x
x x t f x t f x
t

         
  

.     (2.35) 

Знайдемо діапазон зміни аргументів під знаком функції f  в першому і 
третьому інтегралах (2.33): [0,1], [ 1,1], [ 1,2]x t x t      . Це дозволяє 

застосувати висновок 3 етапу І. А саме: ( )f x  – неперервна на  1;2   

обмежена на  1;2   

 0 : 1;2A x       ( )f x A .    (2.36) 

Зафіксуємо знайдене   і на тій же множині    1; ;1    застосуємо висновок 

етапу ІІ: 

    0 0
1; ;1

( ) ( ) 0nQ x x n N n n
   
            

 ( ) [ 1; ] ;1
8nQ x x

A


       .            (2.37) 

 
Отже, для продовження оцінки в (2.33) застосуємо нерівності  

(2.35)–(2.37): 
 

1

1 /2 (1.35)

( ) ( ) ( ) ( ) ( )n nP x f x f x t f x Q t dt
  

    

            

1

1 2 (1.36) 2 (1.36)

( ) ( ) ( ) ( ) ( ) ( )n n

A A

f x t f x Q t dt f x t f x Q t dt


  

          

   
1

1

1

1 1(3) (3)
8 8

( ) 1

( ) 2 ( ) ( ) 2 1 .
2 2 4 2 2

n

n n n

A A
Q t dt

Q t dt A Q t dt Q t dt A
A



 

     

 

 
     

             
 
 



   


 

 
Та частина доведення, що підкреслена подвійною лінією, означає 

рівномірну збіжність побудованої послідовності многочленів на [0,1]  до ( )f x , 
тобто 

 0,1
( ) ( )nP x f x . ■ 

4. Формула  Ейлера. 

Мають місце розвинення (2.19) – (2.21) 
 

 
 

1 2 13 5 7 1
sin . . . . ,

3! 5! 7! 2 1 !

n nxx x x
x x x

n

 
       


 , 
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 
 

1 22 4 6 1
cos 1 . . . . ,

2! 4! 6! 2 !

n nxx x x
x x

n


        , 

2 3 4 5 6 7

1 . . . . ,
2! 3! 4! 5! 6 7! !

n
x x x x x x x x

e x x
n

            , 

 
Тоді для   
 

2 3 4 5 6 7

1 ... sin cos
2! 3! 4! 5! 6 7!

ie i i i i i      
             , 

2 3 4 5 6 7

1 ...
2! 3! 4! 5! 6 7!

ie i i i i       
         , 

 
де 2 1i   . Отже,  
 

cos sinie i      -  формула Ейлера.   (2.38) 
 

2 4 6

2 1 ... 2cos ,
2! 4! 6

i ie e      
         

 
 cos

2

i ie e  
  , (2.39) 

3 5 7

2 ... 2 sin ,
3! 5! 7!

i ie e i i i i i      
         

 
  sin

2

i ie e

i

  
  .   (2.40) 

 

Останні дві формули можна було вивести інакше, застосовуючи лише формулу 
Ейлера. Пропонуємо читачеві це зробити самостійно. 

5. Аналітичне означення тригонометричних функцій. 

В шкільному курсі математики давалося геометричне означення 
тригонометричних функцій. Тригонометричні функції ( ) sinS x x  і ( ) cosC x x  
аналітично можна визначити як такі функції, що є сумами рядів 

 
 

1 2 1

1

1
( )

2 1 !

n n

n

x
S x

n

 






 ,      
 

2

0

1

2 !

n n

n

x
C x

n






 . 

Із цього означення можна вивести властивості  S x  і  C x  через 

закономірності в добутках і сумах абсолютно збіжних рядів: 
( ) ( ) ( ) ( ) ( )C x y C x C y S x S y   , 
( ) ( ) ( ) ( ) ( )S x y S x C y C x S y   , 

( ) ( ), ( ) ( ),
(0) 1, (0) 0,

C x C x S x S x
C S

   
 

 

як наслідок, 2 2( ) ( ) 1S x C x  . 
Внаслідок теореми про неперервність суми степеневого ряду на інтервалі 

його збіжності, функція  C x  неперервна на  , зокрема, на відрізку [0;2]. 



Розділ 2. ФУНКЦІОНАЛЬНІ І СТЕПЕНЕВІ РЯДИ 

 144

Відповідно до теореми Коші про проходження неперервної функції через нуль 
при зміні знаків [1, c. 183], можна знайти нуль функції  C x : 

(0) 1,
(2) 0,

C
C

 
** **(0,2) : ( ) 0x C x   . 

Це число позначають як **

2
x


 , але поки що не пов’язуючи його із 

числом, яке дорівнює відношенню довжини кола до його діаметра. Потім 

можна довести, що 1
2

S
   

 
. 

Після обґрунтування періодичності введених функцій можна встановити 
зв’язок нуля косинуса з числом  . Тільки після цього можна вивести 
геометричний зміст функцій  S x  і  C x . 

Більш детально можна ознайомитися з цією темою в [3, c. 477]. 



2.3 ЗАВДАННЯ ДЛЯ САМОСТІЙНОГО ВИКОНАННЯ 

 186

Розділ 2. ФУНКЦІОНАЛЬНІ І СТЕПЕНЕВІ РЯДИ 

2.3 ЗАВДАННЯ ДЛЯ САМОСТІЙНОГО ВИКОНАННЯ 
 

Завдання 2.1 Визначити множини збіжності (абсолютної та умовної) 
функціональних рядів. 

 

1. а) 
 
















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n

nn

x

x

n
; б) 

 


 


1
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1

n

n

nx
. 2. а) 










 

1

2

2

32

n

n

x

x
n ; б) 

 






1n
n

n

n

xn
. 

3. а) 
 
 



 



1
2

1

n

n

nx
; б) 

 
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

 


1
2

2

14
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n
n

n

n

xx
. 4. а) 















3
2 12

2

4n
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n

n ; б) 
 


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1 2

1
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x
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5. а) 
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

1
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n

nx
; б) 

 


 1
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n

n
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. 6. а)  








1

2 64
3

1

n

n

n
xx

n
; б) 



1

1

n
xn
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7. а) 
 



 1 2 243

1

1n
n

xxn

n ;б)  


 1n
xenn

x . 8. а) 
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

 


1 2 683

1

1

2

n
n

n

xxn

n ; б) 


 1
2

n nx

x
. 

9. а) 














1 1
1

3
1

n

n

x
x

n
; б) 







1n
xxn

xn
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
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
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2

12
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n

xn ; б) 
 
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

 


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2

55
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n
n

n

n

xx . 

11. а) 


 


11

1

n
n

n

x

x
; б)  






1
12

3 2 1

1

n
x

nn
. 12. а) 

 


 1 2lnn
n x

n
; б) 



 1 23n
nx

x
. 

13.а)
 



 1 22

3

9103

1

2

2

n
n

n

xxn

n ; б)  


 


1
3

1

n

n

xn
. 14. а) 

 
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

 


1
5

1

n

n
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; б) 



1

cos

n nn

nx
. 

15. а) 


 1n
n

n

xn

x
; б) 

 


 1 4!

1

n
nxn

. 16. а) 
 










 

1n

n

n

nxx
; б) 

 


 1 7

1

n
nx

. 

17. а) 
 








1n
xn

n

n

nx
; б) 



1

sin

n
nxe

nx
. 18. а) 

 


 1
23

2

n
n

n

x

n
; б) 



0 2
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n
n

n x
x . 

19. а) 


 11n
n

n

x

x
; б)  



 1 1
sin

n nn
nx

. 20. а) 


 1
3

3

n xn

x
; б)   



 0

2

2232n

n

nn
x

. 

 
Завдання 2.2 Дослідити функціональні послідовності на рівномірну 

збіжність на вказаних множинах 1X , 2X . 
 

1.  
42

2

1 xn

nx
xfn


 ,  1;01 X ;   ;12X . 

2.  
x

n
xfn arctg ,  aX ;01  ;   ;02X , 0a . 

3.  
33

2

xn

nx
xfn


 ,  1;01 X ;   ;02X . 
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4.  
n

x

n

x
xfn ln ,  2;01 X ;   ;02X . 

5.   





 

n
xxfn

1
ln 2 ,   ;01X ;   ;2 aX , 0a . 

6.  
xn

nx
xfn 


21

2

,  2;01 X ;   ;12X . 

7.   2)( nx
n exf  ,  2;21 X ;   ;2X . 

8.  
xn

n
nxf

1
arctg ,  2;11 X ;   ;22X . 

9.  
xn

x
xfn 
 ,  aX ;01  ,  a0 ;   ;02X . 

10.    
nxnx

xn
xfn





22

2

,  2;01 X ;   ;22X . 

11.   





 

nx
nxfn

1
1ln ,  2;01 X ;   ;22X . 

12.  
nx

xfn
1

cos ,   ;01X ;   ;2X . 

13.  
n

n n
x

xf 





  1 ,  aaX ;1  , 0a ;   ;2X . 

14.   





 

n
xxfn

1
ln ,   ;01X ;   ;52X . 

15.  
x

n
xfn arctg , 






 


2

;01X ;   ;02X . 

16.  
nx

xfn
1

sin ,   ;01X ;   ;2X . 

17.  
2

arctg
n

x
xfn  ,  5;01 X ;   ;02X . 

18.   









2

2

1ln
n

x
xfn ,  1;01 X ;   ;12X . 

19.  
62 5

2

1 xn

nx
xfn


 ,  1;01 X ;   ;12X . 

20.  
22

3

nx

nx
xfn 
 ,  1;01 X ;   ;12X . 
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Завдання 2.3 Довести неперервність функції    





1n
n xuxS  на заданій 

множині X . 
 

1.  
 













1ln
1ln

2 nn

x
xun ,  2;0X . 2.  

n
n

n xxu
3

1
sin ,  2;2X . 

3.     xn
n nxu  1 ,   ;4X . 

4.    
3

1

nx
xu

n

n



 ,   ;0X . 

5.    
n

n

n
n

x
xu

9

1 2
 ,  3;1X . 6.    

n

n

n
n

xn
xu

3! 
 ,  1;5 X . 

7.   !n
n xxu  , 





2

1
;

2

1
X . 8.    

1

sin1 2





nn

nxx
xun ,  0;3X . 

9.    
 xn

x
xu

n

n

n
122

2




 ,  3;1X . 10.    
4 7

2

1

cos






n

nxx
xun ,   ;0X . 

11.    1

sin




nn

x
xu

n

n ,  1;0X . 12.  
nn

x
xu

n

n

n 2

1

ln3


 ,  3;3X . 

13.  
1

sin
2 


n

nxx
xun ,  10;0X . 14.   






 

nn

x
xun ln

1ln ,  4;0X . 

15.  
n

n
n xxu

7

3
sin ,  3;3X . 16    

3 4

1

nx
xu

n

n



 ,   ;0X . 

17.    
5

cos2
2

2





nn

nxx
xun ,  0;4X . 18.    

5 6

1

nx
xu

n

n



 ,   ;0X . 

19.    
n

n

n
n

x
xu

4

2 2
 ,  2;1X . 20.    

5 8

2

32

sin1






n

nxx
xun ,  1;0X . 

 
Завдання 2.4 Дослідити функціональний ряд на рівномірну збіжність на 

заданій множині X . 
 

1.  


 


1 65
1

n

n
n

n

x
,  1;0X . 1. 







1

2

n

nxex ,   ;0X . 

3.  


 


1 128
1

n

n
n

n

x
,  1;0X . 4.  



 


1 1
1

n

n
n

n

x
,  1;0X . 

5. 


1n
nxe

x
,   ;1X . 6.  



 


1

2

74
1

n

n
n

n

x
,  1;0X . 

7.  


 


1
3 3

2

128
1

n

n
n

n

x
,  1;0X . 8. 



 1
234n xn

x
,  2;0X . 
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9. 












1

3

3

2

1n nx

x
,   ;0X . 10. 



 1
33

3
arctg

1
sin

n nx

x

n
,   ;0X . 

11.  


 


1 137
1

n

n
n

n

x
,  1;0X . 12. 



 1
341n xn

x
,   ;0X . 

13. 


 1
32

arctg
n nx

x
,   ;X . 14.  



 


1
2 1

1
n

n
n

n

nx
,  1;0X . 

15. 


 1
32

2

1n xn

x
,  3;0X . 16.  







1

2

n

xne ,  1;0X . 

17.  


 


1
4 7 53

1
n

n
n

n

x
,  1;0X . 18.  



 


1 2
1

n

n
n

nn

x
,  1;0X . 

6.  


 


1 611
1

n

n
n

n

x
,  1;0X . 20.  



 1
2

3

21n nxn

x
,   ;X . 

 
Завдання 2.5 Розкласти функцію в ряд Тейлора за степенями x . Вказати 

область збіжності отриманого ряду. 
 

1.  
220

9

xx
xf


 . 2.  

x

x
xf

54

2


 . 

3.    261ln xxxf  . 4.   x
x

xxf 
2

cos2 2 . 

5.    
2

sh


x

2x
xf . 6.  

3 227 x

x
xf


 . 

7.   xxxf 5sin1)(  . 8.    
2

12ch

x

x
xf


 . 

9.  
228

6

xx
xf


 . 10.  

26

6

xx
xf


 . 

11.  
4 316

1

x
xf


 . 12.    9920ln 2  xxxf . 

13.   xxxf 3cos2)(  . 14.   x
x

xxf 
2

sin2 2 . 

15.  
276

3

xx
xf


 . 16.  

x

x
xf

72

4


 . 

17.    145ln 2  xxxf . 18.  
352

5
2 


xx

xf . 

19.  
5 29 x

x
xf


 . 20.  

7718

1
2 


xx

xf . 
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Завдання 2.6 Побудувати розклад функції в ряд Маклорена. Знайти 
радіус збіжності ряду. 

 

1. а)    2ln 2  xxxxf ;   б)  
2

2

26

43
arctg

x

x
xf




 . 

2. а)    9ln 63  xxxf ;   б)  
x

x
xf

21

2
arctg




 . 

3. а)    64ln 63  xxxf ;   б)  
6

32
arctg





x

x
xf . 

4. а)    9ln 42  xxxxf ;   б)  
2

2

2

2
arctg

x

x
xf




 . 

5. а)      22 2arcsin1 xxxf  ;   б)  

2

1
2

1

arctg





x

x
xf . 

6. а)    xxxf 2arccos2 ;   б)  
1

1
arctg





x

x
xf . 

7. а)    2121ln xxxf  ;   б)  
25

25
arctg





x

x
xf . 

8. а)    22 4ln xxxf  ;   б)  
6

6
arctg

2

2





x

x
xf . 

9. а)      xxxf 2arccos12  ;  б)  
3

3

1
2

2
arctg

x

x

xf



 . 

10. а)    16ln 42  xxxxf ;   б)  
1

3
3

1

arctg
2

2






x

x
xf . 

11. а)    7ln 2  xxxxf ;  б)  
2

2

26

43
arcctg

x

x
xf




 . 

12. а)      22 arcsin4 xxxf  ;   б)  
x

x
xf

21

2
arcctg




 . 

13. а)    4ln 84  xxxf ;   б)  
6

32
arcctg





x

x
xf . 

14. а)    4ln 63  xxxxf ;  б)  
2

2

2

2
arcctg

x

x
xf




 . 

15. а)      xxxf 4arccos82  ;   б)  

2

1
2

1

arcctg





x

x
xf . 
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16. а)    64ln 63  xxxf ;  б)  
1

1
arcctg





x

x
xf . 

17. а)    9ln 2  xxxxf ;   б)  
25

25
arcctg





x

x
xf . 

18. а)     







2
arccos22 x

xxf ;  б)  
6

6
arcctg

2

2





x

x
xf . 

19. а)    3ln 2  xxxxf ;   б)  
3

3

1
2

2
arcctg

x

x

xf



 . 

20. а)    16ln 84  xxxf ;  б)  
1

3
3

1

arcctg
2

2






x

x
xf . 

 
Завдання 2.7 Знайти радіус і область збіжності степеневого ряду. 
 

1. а) 


1
2

n

n

n

x
;   б) 












1

2
1

cos
n

n
n

x
n

n ;  в)  





1

22
14

n

nn x . 

2. а) 


1 !n

n

n

x
;   б) 



1

15

n
n

n

n

x
;    в)   






1

23 123
n

nn xn . 

3. а) 
 



1 2

2

n
n

nn

n

x
;   б) 

 






1
33

5

n
n

n

n

x
;   в) 







1

2
!

n

nn xen . 

4. а) n

n

nx3

1

5



;   б) 



1
5)!(n

n

n

x
;    в)  








1

33

3
1212

n

nx
n

nn
. 

5. а)  








1
2

1
23

12

n

nx
n

n
;  б) 

 
 



1

2

!2

!

n

nx
n

n
;   в) 

 


 





1 23

23
ln

1

1

n

n

n

n

n

x
. 

6. а) 
 
 



 


1
2 1ln

12

n

nn

nn

x
;  б) 

  n

n
n

x
n 5

1

2

3

1





;   в) 

 


 


1 1

35

n

n
nn

x
n

. 

7. а) 
2

1

23 n

n

xn



;   б)  









1
3

4

2
4

3

n

nx
nn

n
;  в) 

   









1

12
2 43

321

n

n
n

x
n

n
. 

8. а)  





1

2 1
n

nxn ;  б) 


1 !

!

n

n
n

x
n

n
;   в) 










 

1
3 3

11

n

n
x

n
. 

9. а)  





1

13
n

nn x ;  б) 











1

!
n

n

n
n

x
;   в) 



1
2

42

n

nn

n

x
. 

10. а) 














1 32

1

n

n
n

x
n

n
;  б) 
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Розділ 3. РЯДИ ФУР’Є 
 

3.1 ТЕОРЕТИЧНІ ВІДОМОСТІ 
 
§1 Деякі поняття евклідових просторів 
 
1. Евклідів простір кусково-неперервних на відрізку функцій. 

Ортогональні і ортонормовані системи. Тригонометрична система 

Повторити означення лінійного векторного простору (ЛВП) ! 
Означення 3.1 Евклідовим простором (ЕП) називають такий ЛВП над 

полем   разом з функцією :g X X  , яка задовольняє аксіомам 
1с. ( , ) ( , ) ,g x y g y x x y X   , 
2с. ( , ) ( , ) ,g x y g x y x y X      , 
3с. ( , ) ( , ) ( , ) , ,g x y z g x z g y z x y z X     , 
4с. ( , ) 0 ( ( , ) 0 0)g x x x X g x x x       . 

Функцію ( , )g x y  називають скалярним добутком. 
Приклад 3.1 Розглянемо множину кусково-неперервних функцій на [ , ]a b  

разом з функцією  

( , ) ( ) ( )
b

a

f g f x g x dx  , 

де ( )f x  і ( )g x – кусково-неперервні функції на [ , ]a b . Знайдемо умови, за яких 
ця множина буде утворювати евклідовий простір. 

Розв’язання. Нескладно довести, що ця  множина утворює ЛВП (доведіть 
!). Перевіримо задану функцію щодо виконання для неї аксіом скалярного 
добутку. За властивостями інтеграла Рімана аксіоми 1с,2с,3с виконуються. 
Зупинимося детальніше на аксіомі 4с.  

Нерівність 2( , ) [ ( )] 0
b

a

f f f x dx   за властивістю інтеграла Рімана є 

вірною для кожної кусково-неперервної функції, оскільки 2[ ( )] 0f x  . 
Розглянемо другу частину аксіоми 4с. З одного боку, 

  2[ , ] ( ) 0 , 0 0
b

a

x a b f x f f dx      . 

З іншого боку, 

2( , ) 0 [ ( )] 0
b

a

f f f x dx   , 

Причому підінтегральна функція невід’ємна на [ , ]a b , тобто 
2[ ( )] 0f x   [ , ]x a b  . Розглянемо точки розриву функції ( )f x : 

  0 1 20
{ ... ... )

n

k k nk
x a x x x x x b


         , тоді  
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   
1 11

2 22

0

0 [ ( )] ( ) ( ) 0 0, 1
k k

k k

x xb n

ka x x

f x dx f x dx f x dx k n
 



         . 

Функція ( )f x  неперервна на інтервалі  1,k kx x   і має скінченні граничні 

значення 1( 0) i ( 0)k kf x f x    на його кінцях, якими й перевизначимо цю 
функцію. В результаті, перевизначена функція буде неперервною на відрізку 

 1,k kx x  . Оскільки  
1

2
( ) 0

k

k

x

x

f x dx


 , підінтегральна функція неперервна і 

невід’ємна, то  1( ) 0 ,k kf x x x x     і 1( 0) ( 0) 0k kf x f x     . 

Отже, функція ( )f x  дорівнює 0 у всіх точках відрізка [ , ]a b , за винятком 

скінченної множини точок розриву  
0

n

k k
x


. Для того, щоб виконувалася аксіома 

4с, потрібно, щоб ( ) 0kf x k  . Для виконання цього, повинна виконуватися 
додаткова умова 

( 0) ( 0)
( ) 0

2
k k

k

f x f x
f x

  
   

в точках розриву kx , які є внутрішніми точками відрізка [ , ]a b , а на кінцях 
відрізка функція повинна бути неперервною. 

Означення 3.2 Точку c  розриву називають регулярною, якщо в ній 
виконується співвідношення 

( 0) ( 0)
( )

2

f c f c
f c

  
 , 

тобто значення функції дорівнює півсумі границь справа і зліва. 
Висновок: якщо на множині кусково-неперервних функції, усі точки 

розриву яких є регулярними, можна задати функцію  

 , ( ) ( )
b

a

f g f x g x dx  , 

то ця функція буде скалярним добутком, а цей простір – евклідовим. Цей 
простір будемо позначати 0[ , ]R a b .■ 
 

Деякі властивості евклідового простору. 
 
Властивість 1. Має місце нерівність Коші-Буняковського 

     , , ,x y x x y y   

Доведення. В силу 4с аксіоми  , 0x y x y     , тоді за аксіомами 1с і 2с 

       2, , , , 0x x y x x y y y       , 

а за аксіомою 3с – 
     2, 2 , , 0x x y x y y     . 

Знайдемо дискримінант квадратного тричлена. Щоб остання нерівність була 
вірною, потрібно, щоб завжди виконувалась умова: 
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     2
, , , 0

4

D
x y x x y y    , 

тобто 

     2
, , ,x y x x y y  . ■ 

Означення 3.3 ЛВП над полем  , на якому задана функція 
:P X  , що задовольняє аксіомам: 

1н.     0 0 0P x x X p x x       , 

2н. ( ) ( )P x P x x X       , 

3н. ( ) ( ) ( )P x y P x P y    ,x y X   – нерівність трикутника, 
називається нормованим простором, а функція ( )P x  називається нормою. 

Частіше норму позначають так: ( )P x x , читається «норма ікс».  

 
В такому позначенні аксіоми норми будуть записані наступним чином: 
1н.  0 0 0x x X x x       , 

2н. x x x X       , 

3н. ,x y x y x y X      – нерівність трикутника. 

 
Властивість 2. Має місце імплікація: 
 

ЕП – Евклідовий простірНП – нормований простір. 
 
Доведення можна провести, якщо в ЕП задати функцію  xxx ,  і 

довести, що ця функція визначає норму 

1.  , 0x x x   (4с);      , 0x x x   , 0x x x    (4с); 

2       
(2 ),(4 )

2, , ,
c c

x x x x x x x x          ; 

3           2
, , 2 , , нерівність К-Бx y x y x y x x x y y y         

 22 2 2 2
2 ( , ) ( , ) 2 .x x x y y y x x y y x y          ■ 

 
Нерівність Коші- Буняковського можна переписати в такий спосіб: 

 ,x y x y  . 

У просторі 0[ , ]R a b  норма буде визначатися формулою 

2[ ( )]
b

a

f f x dx  . 

Нерівність Коші- Буняковського в 0[ , ]R a b : 

2 2( ) ( ) [ ( )] [ ( )]
b b b

a a a

f x g x dx f x dx g x dx    , 
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Нерівність трикутника в 0[ , ]R a b : 

2 2 2[ ( ) ( )] [ ( )] [ ( )]
b b b

a a a

f x g x dx f x dx g x dx     . 

 
Означення 3.4 Функціональну послідовність   0( ) [ , ]nf x R a b  

називають збіжною в середньому, якщо lim 0n
n

f f  . Тобто 

  0( ) [ , ]nf x R a b   збігається в середньому  

0( ) [ , ]
def

f x R a b   : 2lim [ ( ) ( )] 0
b

nn
a

f x f x dx


  . 

 
Означення 3.5 Два елементи x  і y  в ЕП X  називають 

ортогональними, якщо  , 0x y  . 

Система  n X   – ортогональна,   , 0
def

n m n m      . 

Система  n X   – ортонормована,  
def

     1) ортогональна, 

2) 1n n N    . 

Останнє означення можна записати інакше:  

система  n X   – ортонормована,  
def

      , ,m
n m n n m     ,  

де 0, ,
1,

m
n

n m
n m
    – символ Кронекера. 

 
Твердження 3.1 Якщо система  n X   в ЕП X  є ортогональною, то 

система n
n

n

      
 є ортонормованою. 

Доведення.    
2

0, ;
,, , 1, .

n m
n nn m

n m
n

m n

n m

                 

 ■ 

 
Наведемо в просторі 0[ ; ]R    ортогональну (ортонормовану) систему. 

Розглянемо систему тригонометричних функцій 
 

1, cos , sin , cos2 , sin 2 , cos3 , sin3 ,. . .,cos , sin ,. . .,x x x x x x nx nx . (3.1) 
 

1) Дослідимо її на ортогональність: 

    1
1, cos 1 cos sin 0 0nx nx dx nx n

n





      , 
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   

 

cos , cos cos cos

1
cos ( ) cos ( ) 0

2

nx mx nx mx dx

n m x n m x dx n m








  

      




 

аналогічно  sin , sin 0nx mx n m   , 

   1
sin , cos . sin cos sin ( ) sin ( )

2
0 0 0 ,

nx mx nx mx dx n m x n m x dx

n m

 

 

      

    

   

    1 1
1,sin sin cos cos cos 0 .nx nxdx nx n n n

n n





             

Ортогональність доведено. 
2) Побудуємо тепер ортонормовану систему в цьому просторі. Для цього 

обчислимо норми елементів тригонометричної системи (3.1): 

1 1 1 1 2 2d




         , 

 2 2 1 1 1
cos cos 1 cos2 sin 2 ,

2 2 2
nx nxdx nx dx x nx

n

 

  

          
    

cos nx   , 

аналогічно 
sin nx   . 

Застосуємо твердження 3.1 до системи (3.1). Таким чином, ортонормована 
система тригонометричних функцій в 0[ ; ]R    має вигляд: 
 

1

1 cos sin
, ,

2 n

nx nx




 
 

   
.    (3.2) 
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1. Поняття ряду Фур’є 
Розглянемо тригонометричний ряд. Спочатку припустимо, що він 

рівномірно збігається до функції ( )f x : 

0

2

а
+

 ;1

( cos sin ) ( )n n
n

а nx b nx f x


 

   .       (3.3) 

Рівномірно збіжний ряд з неперервними членами можна почленно інтегрувати. 
Проінтегруємо почленно (3.3) на відрізку [ ; ]  : 

0

1

2 cos sin ( )
2 n n

n

a
a nxdx b nxdx f x dx

  

   

 
     

 
     0 ( )a f x dx





       



Розділ 3. РЯДИ ФУР’Є 

 198

0

1
( )a f x dx






  .      (3.4) 

 
Помножимо  обидві частини  (3.3) на coskx :  

 
0

;1

cos ( cos cos sin cos ) ? ( ) cos
2 n n

n

a
kx a nx kx b nx kx f x kx



 

       .    (3.5) 

Дослідимо останній ряд на рівномірну збіжність. Нехай ( )nS x   часткова 
сума ряду (3.3). За умовою відомо, що 

 ;
( ) ( )nS x f x

 
 . Доведемо, що 

функціональна послідовність  ( ) cosnS x kx  часткових сум ряду (3.5) 
рівномірно збігається: 

[ ; ] [ ; ]

[ ; ]

0 lim sup | ( ) cos ( ) cos | lim sup (| ( ) ( ) | | cos |)

lim sup | ( ) ( ) | 0.

n n
n nx x

n
n x

S x kx f x kx S x f x kx

S x f x
     

  

       

    

Отже, 
 ;

( ) cos ( ) cosnS x kx f x kx
 

   . 

Отриманий висновок про рівномірну збіжність ряду (3.5) дає змогу 
почленно його проінтегрувати: 

0

1

cos cos cos sin cos ( )cos
2 n n

n

a
kxdx a nx kxdx b nx kxdx f x kxdx

   

   

 
   

 
    ; 

1

0 ( )cosk
n n

n

a f x kxdx


 

    ; 

( )coska f x kxdx




    ; 

1
( )coska f x kxdx k





  
   .                                (3.6) 

Аналогічно, 

1
( )sinkb f x kxdx k





  
   .                                 (3.7) 

 
Означення 3.6 Рядом Фур’є функції ( )f x  називають ряд вигляду  
 

0

1

( ) ~ ( cos sin )
2 n n

n

a
f x a nx b nx





  ,                            (3.8) 

 
коефіцієнти якого визначаються формулами (3.4), (3.6), (3.7). 
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Символ «~» читається в записі (3.8) як «співставляється», тобто функції 
( )f x  співставляється ряд з коефіцієнтами (3.4), (3.6), (3.7), про який ми поки 

що не знаємо, збігається він до функції ( )f x  чи ні. При виведенні формул (3.4), 
(3.6), (3.7) ми навіть припускали рівномірну збіжність, про це ми тим більше не 
можемо поки нічого сказати. 

Подальша мета – перевірити збіжність ряду Фур’є до функції ( )f x . 

2. Попередні леми. 

Лема 3.1 Нехай функція ( )f x  кусково-неперервна на  , (тобто вона 
кусково-неперевна на будь-якому відрізку, що лежить в  ), крім того, ( )f x – 
має період Т, тоді  

a     
0

( ) ( )
a T T

a

f x dx f x dx


  . 

Тобто інтеграл на відрізку, довжина якого дорівнює періоду, дорівнює 
0

( )
T

f x dx . 

Доведення. Подамо даний інтеграл у вигляді: 
0

0

( ) ( ) ( ) ( )
a T T a T

a a T

f x dx f x dx f x dx f x dx
 

      .                 (3.9) 

Розглянемо третій інтеграл 
;

;( )
0;

a T

T

t x T
dt dxf x dx

x T t
x a T t a


 
   

   


0 0 0

( ) ( ) ( )
a a a

f t T dt f t dt f x dx      . 

Підставимо знайдене значення в (3.9), отримаємо: 
0

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
a T T a T a T a

a a T

f x dx f x dx f x dx f x dx f x dx f x dx f x dx
 

               

0

( )
T

f x dx  .  ■ 

 
Лема 3.2 Якщо функція ( )f x  кусково-неперервна на  , то 

lim ( )cos lim ( )sin 0
b b

p p
a a

f x pxdx f x pxdx
 

   . 

Доведення. Має місце оцінка: 

1 1 | sin | | sin | 2
cos sin (sin sin )|

b
b

a
a

pb pa
pxdx px pb pa

p p p p


     , 

тобто 

2
cos

b

a

pxdx
p

 .                                               (3.10) 
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Розглянемо розбиття 

0 1 2 1 1k k n na x x x x x x x b             
і домовимося, що точки розбиття містять усі точки розриву функції ( )f x  на 
[a,b]. Подамо даний інтеграл сумою 

1
1

( )cos ( )cos
k

k

xb n

ia x

f x pxdx f x pxdx




  . 

Перевизначимо функцію ( )f x  на кінцях відрізків  1,k kx x  значеннями 

1 1( ) ( 0), ( ) ( 0)k k k kf x f x f x f x     , відповідно. Тоді можна буде вважати, що 
ця функція на кожному відрізку розбиття буде неперервною, тому на цих 
відрізках можна застосувати другу теорему Вейєрштрасса  [1, c. 188]: 

   1 1, ,
inf ( ) min ( )

k k k k
k

x x x x x x
m f x f x

  
  , 

   11
,,

sup ( ) max ( )
k kk k

k
x x xx x x

M f x f x



  . 

Позначимо через k k kM m    коливання функції на k -му відрізку 
розбиття. Проведемо попередні оцінювання: 

1
1

( )cos ( )cos
k

k

xb n

ia x

f x pxdx f x pxdx




    

1 1
1

( ( )cos cos ) cos
k k

k k

x xn

k k
i x x

f x px m px dx m pxdx
 



       

1 1 1
1 1 1 1

1

2
(1.51)

2
cos ( ) cos

k k k

k k k
k

k

x x xn n n n

k k k k
i i k kx x x

x

p

px f x m dx m pxdx dx m
p

  
   

 




              


.  (3.11) 

Нехай    
1

множина точок розриву
N

i i
c f x


 , перенумерована у порядку 

зростання їх значень 

0 1 Na c c c b     . 

Розглянемо відрізок  1,i ic c . На початку доведення функція ( )f x  була 

довизначена до неперервної на  1,i ic c . Для кожного i  на відрізку  1,i ic c  

застосовуємо наслідок із теореми Кантора, згідно з яким [1, c. 194] 

     

    
1

1

1,

,

0 0 : розбиття відрізка , :

max .
2( )

i i

i i

i
i k i ic c

i
k i kc c k

P x c c

d P x k
b a





      


      


 

Таким чином, знайдено , ,i N  . Нехай  1min , , , ,i N      , тоді якщо 

розглянуте спочатку розбиття відрізка  ,a b  за допомогою точок { }kx , яке 



§2 Основна теорема теорії рядів Фур’є 

 201

включало в себе точки розриву  
1

N

i i
c


, має діаметр менший за  , тоді коливання 

функції на кожному із відрізків розбиття менше за 
2( )b a




. 

Оскільки кількість точок розбиття фіксована, то значення величини 

1

2 n

k
k

m
p 
  можна зробити як завгодно малим, тобто  

1

2
0

2

n

k
k

P p P m
p 


      . 

Отже, продовжимо оцінювання (3.11): 

1 1 1

2
( )cos

2( ) 2

b n n n

k k k k
k k ka

b a

f x pxdx x m x
p b a  

 

 
         

  


. 

Висновок: lim ( )cos 0
b

p
a

f x pxdx


 . Аналогічно lim ( )sin 0
b

p
a

f x pxdx


 .■ 

 
Наслідок 4.5 Коефіцієнти ряду Фур’є утворюють нескінченно малу 

послідовність, тобто 
lim lim 0n n
n n

a b
 

  . 

 
3. Подання часткових  сум ряду  Фур’є функції ( )f x . 

Проведемо попередні перетворення часткової сум ряду Фур’є, 
застосовуючи формули (3.4), (3.6), (3.7) для обчислення його коефіцієнтів і 
тригонометричні формули: 

 

0

1

1

( ) ( cos sin )
2

1 1 1
( ) cos ( )cos sin ( )sin

2

n

n k k
k

n

k

a
S x a kx b kx

f x dt kx f t kt dt kx f t kt dt


  

  

   

 
        



  

1

1 1

1 1
( ) ( )(cos cos sin sin )

2
1 1 1 1

( ) ( )cos ( ) ( ) cos ( ) .
2 2

n

k

n n

k k

f t dt f t kt kx kt kx dt

f t dt f t k t x dt f t k t x dt

 

 
  

   

     
 

 
          

 

   
 

 
Спростимо вираз в квадратних дужках: 
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1 1

1 1 1
cos cos sin

2 2 2 sin
2

1 1
sin cos sin cos2 sin cos sin

2 2 2 2 2sin
2

n n

k k

k k

n

 

 
          

               

 


 

1 1 1 1 3 1 3 5
sin sin sin sin sin

2 2 2 2 2 2 2 2 2sin
2

           
   

1 1 1 1 1 1
sin sin sin .

2 2 2 2 22sin
2

n n n
                         

 

 
Тоді часткова сума набуде вигляду: 

1 ,( )sin ( )
1 2 ,( )

,2 sin ,2
1

sin
1 2 ( ) .

2 sin
2

n

x

x

u t xf t n t x
du dtS x dt
t u xt x
t u x

n u
f u x du

u









             
    

  
  







 

Доведемо, що функція 

1
sin

2( )
sin

2

n u
g u

u

  
   має період 2 : 

11 1sin 2sin ( 2 ) sin
22 2( 2 ) ( )

2
sin sinsin

2 22

n u nn u n u
g u g u

u uu

                             
      

 

. 

Будемо припускати, що функція ( )f x  має період 2 , тоді підінтегральна 
функція за змінною u  має період  2 . Згідно з лемою 4.2, значення інтегралів 
на відрізках довжини періоду рівні (відрізок  ,x x     має довжину 2), 

отже, 
1

( )sin
1 2( )

2 sin
2

n

f u x n u
S x du

u





   
 

  . 
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Подамо останній інтеграл сумою 
0

0

 

 

    . Розглянемо другий із них: 

 
0 0

0

11 ( )sin ( )( )sin
22 ,

,
sin sin

2 2
1

( )sin
2 .

sin
2

f x t n tf u x n u
t udu dt
dt duu t

f x t n t
dt

t

 



                         
 

   
 

 



 

Отже, часткова сума ряду Фур’є подається у вигляді:  

 
0

1
sin

1 2( ) ( ) ( )
2 sin

2

n

n t
S x f x t f x t dt

t


  
    

  .               (3.12)  

4. Основна теорема Фур’є. Розвинення кусково-диференційовних 2π-
періодичних функцій з регулярними точками розриву 

Означення 3.7 Функцію ( )f x  називають кусково-диференційовною на 
відрізку [ ; ]a b , якщо цей відрізок можна розбити на скінченну кількість таких 
відрізків [ ; ]  , що функція ( )f x  диференційована на інтервалі ( ; )  , а на його 
кінцях ( 0)f    , ( 0)f   , ( 0)f    , ( 0)f   . 

 

Функцію ( )f x  називають кусково-диференційовною на  , якщо вона 
кусково-диференційовна на будь-якому відрізку із  . 

 

Tеорема 3.1 (основна теорема теорії рядів Фур’є) Якщо функція ( )f x   
1) кусково-диференційовна на  ,  
2) з регулярними точками розриву,  
3) 2-періодична,  

тоді ряд Фур’є цієї функції поточково збігається до цієї функції, тобто в будь-
якій точці 0x   

0 0
0 0

( 0) ( 0)
lim ( ) ( )

2nn

f x f x
S x f x



  
  . 

Доведення. Розглянемо ( ) 1g x  . Вона є розкладом самої себе в ряд 
Фур’є, тоді n  ( ) 1nS x  . Тоді із подання часткових сум ряду Фур’є матимемо: 

0

1
sin

1 21 2
2 sin

2

n t
dt

t


  
  

  .                                    (3.13) 
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Помножимо обидві частини (3.13) на 0 0
0

( 0) ( 0)

2

f x f x
S

  
 : 

   0 0 0

0

1
sin

1 2 0 0
2 sin

2

n t
S f x f x dt

t


  
          , 

а отриману рівність віднімемо із рівності (3.12): 

         0 0 0 0
0

0

( )

0 01 1
sin

2 2sin
2

n

t

f x t f x f x t f xt
S x S n tdt

t t t





                   



. 

Розглянемо функцію          0 0 0 00 0

sin
2

f x t f x f x t f xt
t

t t t

      
    

 
: 

1) якщо 0t  , то кожен дріб, що задає  t  є  таким, що утворює функцію 

0 0

чисельник кусково-неперервна
= =кусково-неперервна

знаменник неперервна 0
t t 


; 

2) якщо 0t  , то  

0
lim 2

sin
2

t

t
t
 , 

     0 0
0

0

0
lim 0
t

f x t f x
f x

t

  
  ,  

     0 0
0

0

0
lim 0
t

f x t f x
f x

t

  
  , 

звідки 

     0 0
0

lim 2 0 0
t

t f x f x


         , 

тобто в точці 0u   функція ( )u  має усувний розрив. 
Висновок: ( )u  – кусково-неперервна на  . Вимоги леми 4.3 

виконуються, тому 0x   

      0 0

0 0

1 1 1
lim sin lim sin 0 lim 0

2 2 2 nn p n
t n tdt t pt dt S x S

 

  

              .■ 

Наведемо деякі теореми, що мають місце, доведення яких пропонується 
розглянути самостійно  за бажанням. 

 
Теорема 3.2 (про збіжність в середньому ряду Фур’є) .  
Якщо ( )f x – кусково-неперервна на  ;  , тоді її ряд Фур’є збігається в 

середньому до ( )f x , тобто  

 22lim || || lim ( ) ( ) 0
b

n n
n n

a

S f S x f x dx
 

    , 
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тут ( )nS x – часткова сума ряду Фур’є. 
 

Теорема 3.3 (про почленне інтегрування ряду Фур’є).  
Якщо ( )f x  кусково-неперервна на  ;   , тоді її ряд Фур’є можна 

почленно інтегрувати.   
Теорема 3.4 (про рівномірну збіжність ряду Фур’є на  ;  ). 

Якщо функція ( )f x   

1) неперервна  на   ;  ,   

2) має кусково-неперервну похідну на  ;  ;  

3) ( ) ( )f f   , 

тоді  ряд Фур’є функції ( )f x  рівномірно збігається на  ;   до функції ( )f x . 

Теорема 3.5 (про рівномірну збіжність ряду Фур’є на  ).  
Якщо функція ( )f x  
1) неперервна на   , 
2) має кусково-неперервну похідну на  , 
3) ( )f x  – 2- періодична, 

тоді її ряд Фур’є рівномірно збігається на   до ( )f x . 
Теорема 3.6 (теорема про почленне диференціювання ряду Фур’є). Якщо  
1) ( 1) ( )nf x  кусково-неперервна на  ;  ; 

2) 0,1,.....,n   ( ) ( )kf x  – неперервні на  ;  ,  

3) 0,1,.....,n   ( ) ( )( ) ( )k kf f   , 
тоді ряд Фур’є функції ( )f x  можна почленно диференціювати n  разів у будь-

якій точці  0 ;x    . Утворений при цьому ряд буде збігатися до ( )
0( )nf x . 

 
§3. Розвинення функцій в ряд Фур’є 

 
1. Ряди Фурь'є неперіодичних  функцій, що  задані на   ;   

Випадок 1. Нехай функція ( )f x  задана на  ;  , причому 

 ( )f x  кусково-диференційовна на  ;  , 

 на інтервалі  ;   має регулярні точки розриву (якщо це не так, то їх 

потрібно регуляризувати). 
Ряд Фур’є такої функції ( )f x  буде поточково збігатися до 2-періодичної 

функції *( )f x , яка є періодичним продовженням функції ( )f x , тобто 

1) *( )f x  дорівнює функції ( )f x  на  ;   (окрім, можливо, точок розриву),  

2) на ділянках  2 ; 2 ,k k k        значення функції *( )f x  збігаються 

з відповідними значеннями функції ( )f x  на  ;  : 
*( ) ( 2 ),f x f x k x    2 ; 2 ,k k k       , 
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3) якщо функція-продовження в точках 2 k   , k , має розриви, її 
потрібно довизначити за регулярністю 

* *
* ( 2 0) ( 2 0) ( 0) ( 0)
( 2 )

2 2

f k f k f f
f k

             
     . 

На рис. 3.1 – 3.2 схематично зображено графік даної функції ( )f x  на 

інтервалі  ;   і графік функції *( )f x , яка є сумою ряду Фур’є функції ( )f x . 

 
Рис. 3.1 Графік кусково-диференційовної на  ;   функції ( )f x  з 

регулярними точками розриву на  ;   

 
Рис. 3.2 Графік функції *( )f x , що є періодичним продовженням функції ( )f x  з 

регуляризованими точками 2 k   , k  

2. Ряди Фурь'є парних  і непарних  функцій, функцій, що  
задані на  (0;π) 

Зауваження 4.8 Якщо деяка кусково-неперервна на відрізку [ ; ]a a  
функція ( )g x  є непарною, тоді  

0 0

0

, ,
( ) , ( ) ( )

0 0,

a

a a

t x dt dx
g x dx x a t a g t dt g t dt

x t

   
         

  
   , 

тому 
0

0

( ) ( ) ( ) 0
a a

a a

g x dx g x dx g x dx
 

     . 

Якщо ( )g x – парна, тоді  
0

0

( ) ( )
a

a

g x dx g t dt


  ,      
0

( ) 2 ( )
a a

a

g x dx g x dx


  . 

 
Випадок 2а.  Нехай ( )f x – парна, кусково-диференційована на  з 

регулярними точками розриву, 2-періодична.  Тоді  

0nb    1,2,...n    
0

2
( )cosna f x nxdx




    0,1,2,...n  ,      (3.14) 



§3. Розвинення функцій в ряд Фур’є 

 207

тобто парна функція розкладається в ряд Фур’є за косинусами кратних дуг: 

0

1

( ) cos
2 n

n

a
f x a nx





  .                                       (3.15) 

 
Випадок 2б. Нехай ( )f x – непарна, кусково-диференційована на  , з 

регулярними точками розриву, 2-періодична. Тоді коефіцієнти її ряду Фур’є 
будуть мати вигляд: 

1
( ) cos 0na f x nxdx





  
         0,1,2,...n  , 

0

1 2
( )sin ( )sinnb f x nxdx f x nxdx

 



 
       1,2,...n   

Висновок: ( )f x – непарна   

0na    0,1,2,...n  ,  
0

2
( )sinnb f x nxdx




     1,2,...n  ,       (3.16) 

тобто непарна функція  розкладається в ряд Фур’є за синусами кратних дуг: 

1

( ) sinn
n

f x b nx




 .                                           (3.17) 

 
Випадок 3. Функція ( )f x – задана на  0; , причому 

 ( )f x  кусково-диференційовна на  0; , 

 на інтервалі  0;  має регулярні точки розриву (якщо це не так, то їх 
потрібно регуляризувати). 

 
Випадок 3а. Потрібно розвинути таку функцію в ряд Фур’є за 

косинусами кратних дуг. 
Після обчислення коефіцієнтів ряду Фур’є за формулами (3.14) ряд Фур’є 

(3.15) функції ( )f x  буде поточково збігатися до 2-періодичної функції ( )cf x , 
яка є парним періодичним продовженням функції ( )f x , тобто 

1) ( )cf x  дорівнює функції ( )f x  на  0;  (окрім, можливо, точок розриву),  

2) на  ;0  функція 1( )f x  є парним продовженням функції ( )f x , тобто 

 1( ) ( ), ;0f x f x x    , 
графік функції 1( )f x  симетричний відносно осі ординат, 

3) на ділянках  2 ; 2 ,k k k        функція ( )cf x  є 2-періодичним 
продовженням функції 1( )f x  і значення функції ( )cf x  на ділянках 

 2 ; 2 ,k k k        збігаються з відповідними значеннями функції 1( )f x  

на  ;  : 

1( ) ( 2 ),cf x f x k x    2 ; 2 ,k k k       , 
4) якщо функція-продовження в точках k , k , має розриви, її потрібно 

довизначити за регулярністю 



Розділ 3. РЯДИ ФУР’Є 

 208

( 2 0) ( 2 0) ( 0) ( 0)
( 2 )

2 2
( 0) ( 0)

( 0);
2

c c c c
c

f k f k f f
f k

f f
f

             
     

    
   

. 

(2 0) (2 0) ( 0) ( 0) ( 0) ( 0)
(2 ) ( 0).

2 2 2
c c c c

c

f k f k f f f f
f k f

          
       

Отже, функція ( )cf x  в точках k , k  є неперервною. 
На рис. 3.3 – 3.5 схематично зображено графік деякої функції ( )f x  на 

інтервалі  0; , її парного продовження 1( )f x  на інтервал  ;0  і продовження 

( )cf x  за періодом 2  на всю числову пряму. Тобто графік функції ( )cf x  є 
сумою ряду Фур’є функції ( )f x  за косинусами кратних дуг. 

  
Рис. 3.3 Графік кусково-диференційовної 
на  0;  функції ( )f x  з регулярними 

точками розриву на  0;  

Рис. 3.4 Графік функції 1( )f x , 
що продовжена парним чином 

на  : 0  

 
Рис. 3.5 Графік функції ( )cf x , що є періодичним продовженням функції 1( )f x  

( )f x  з регуляризованими точками k , k  

Випадок 3б. Потрібно розвинути таку функцію в ряд Фур’є за синусами 
кратних дуг. 

Після обчислення коефіцієнтів ряду Фур’є за формулами (3.16) ряд Фур’є 
(3.17) функції ( )f x  буде поточково збігатися до 2-періодичної функції ( )sf x .  
є непарним періодичним продовженням функції ( )f x , тобто 

1) ( )sf x  дорівнює функції ( )f x  на  0;  (окрім, можливо, точок розриву),  

2) на  ;0  функція 2 ( )f x  є непарним продовженням функції ( )f x , тобто 

 2 ( ) ( ), ;0f x f x x     , 

3) на ділянках  2 ; 2 ,k k k        значення функції ( )sf x  збігаються 

з відповідними значеннями функції 2 ( )f x  на  ;  : 
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2( ) ( 2 ),sf x f x k x    2 ; 2 ,k k k       , 

4) якщо функція-продовження в точках k , k , має розриви, її потрібно 
довизначити за регулярністю 

( 2 0) ( 2 0) ( 0) ( 0)
( 2 )

2 2
( 0) ( 0)

0;
2

c c c c
c

f k f k f f
f k

f f

             
     

     
 

. 

(2 0) (2 0) ( 0) ( 0) ( 0) ( 0)
(2 ) 0.

2 2 2
c c c c

c

f k f k f f f f
f k

          
      

Отже, значення функція ( )sf x  в точках k , k  дорівнює 0. 
На рис. 3.6 – 3.8 схематично зображено графік деякої функції ( )f x  на 

інтервалі  0; , її непарного і 2-періодичного продовжень спочатку на 
інтервал  ;0 , а потім на всю числову пряму. Тобто графік функції ( )sf x  є 
сумою ряду Фур’є функції ( )f x  за синусами кратних дуг. 

 
Рис. 3.6 Графік функції ( )f x , що задана на  0; , кусково-диференційовна 

на  0; , з регулярними точками розриву на  0;  

 
Рис. 3.7 Графік функції 2 ( )f x , що продовжена непарним чином на  : 0  
 

 
Рис. 3.8 Графік функції ( )sf x , що є періодичним продовженням функції 2 ( )f x  з 

регуляризованими точками k , k  
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2. Ряди Фурь'є неперіодичних  функцій, що  задані на   ;l l , 

на  (0;l) , на  (a ,b) 

Випадок 4. Функція ( )f x  – кусково-диференційовна на  ;l l , з 
регулярними точками розриву. Сумою відповідного ряду Фур’є буде функція 

*( ) 2f x l - періодична.  

Заміна ,
ly x

x y
l


 


 призведе до функції * *( )
ly

f g y    
, а якщо 

( , )x l l  , то  ;y   . Тому задачу зведено до випадку 1: 

 * 0

1

( ) cos sin
2 n n

n

a
g y a ny b ny





   , 

*1
( )cos ,n

ly
a g y nydy x dy dx

l






    
 

1
( )cos

l

l

n x
f x dx

l l


 . 

Висновок:  
1

( )cos
l

n

l

n x
a f x dx

l l


       ( 0,1,2,...n  ),                        (3.18) 

аналогічно  
1

( )sin
l

n

l

n x
b f x dx

l l


        ( n ),                            (3.19) 

при цьому, враховуючи заміну 
x

y
l


 ,  ряд Фур’є функції ( )f x  матиме вигляд: 

 * 0

1

cos sin
2 n n

n

a n x n x
f x a b

l l





     
 

 .                    (3.20) 

Зауваження 4.9 Аналогічні часткові випадки можна розглядати для 
функцій, що задані на  0;l , розкладаючи її за косинусами або синусами 
кратних дуг. Також можна розглядати функції )(xf , які початково 
визначаються на довільних інтервалах  ,a b , розглядаючи як півперіод 

( ) / 2T b a l   .  
 
§4. Підсумовування рядів Фур’є 

 
1. Підсумовування тригонометричних рядів за допомогою 

аналітичних функцій комплексної змінної. 
 

Мета: підсумувати, тобто подати елементарними функціями, наступні 
ряди 

0

1

cos
2 n

n

q
q nx





 .                                              (С) 

1

sinn
n

q nx




 .                                                  (S) 
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Ейлер і Лагранж застосовували для цього аналітичні функції комплексної 
змінної (АФКЗ). 
 

Припущення:  
ряди (С) і (S) на відрізку  0,2  збігаються у всіх точках окрім, можливо, 

скінченої кількості. 
 
 Розглянемо довільний ряд комплексної змінної 

0

12
n

n
n

q
q z





  , де z .     (3.21) 

Нехай 1z  , тоді cos sinn inxz e nx i nx   . Із припущення робимо висновок, що 

степеневий ряд комплексної змінної  
 

0

12
n

n
n

q
q z





  0

1

cos
2 n

n

q
q nx





 
1

sinn
n

i q nx




   

 
збігається у всіх точках одиничного кола комплексної площини, окрім 

скінченої кількості. Тоді за теоремою Абеля степеневий ряд 0

12
n

n
n

q
q z





  

абсолютно збігається у всіх точках z  комплексної площини, для яких 1z  . 

Позначимо суму ряду (3.21) через ( )f z  у всіх точках кола 1z  , окрім 

скінченої кількості, тоді  
 

     
       

0

1 1

cos sin ,
2

Re , Im .

n n
nn n

q
f z q nx i q nx x i x

x f z x f z

 

 

      

   

   

 

Приклад 3.2 Підсумувати ряди 
1

cos

n

nx

n




  і 

1

sin

n

nx

n




 . 

Розв’язання. Перевіримо припущення: 
 

1

cos

n

nx

n




  збігається на  0,2  за ознакою Діріхле, 

1

sin

n

nx

n




  збігається на    0,2 \ 0,2   за ознакою Діріхле. 







 Доведіть 
самостійно !

 
Отже, підсумовувати ці ряди можна за допомогою АФКЗ. 

Порівнюючи (С) і (S ) з даними рядами, приходимо до висновку, що 
1

nq
n

 ,  0 0q  . Отже, ряд (3.21) набуде вигляду 
1

n

n

z

n




 . Знаючи, що 
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   

     

1

1
1

1 1

1
ln 1 ,

1 1
ln 1 ,

n n

n
n n n n

n n

z
z

n
z z

z
n n




 

 


 

 
   



 
 

Приходимо до висновку: 

 
1

ln 1
n

n

z
z

n





   . 

Виділимо дійсну і уявну частину цієї функції: 

 

2

2

1 1 cos sin 2sin 2sin cos 2sin sin cos
2 2 2 2 2 2

2sin cos sin 2sin cos sin
2 2 2 2 2 2 2 2 2 2

2sin ,
2

ln 1 ln 2sin , Re ln
2 2

x
i

x x x x x x
z x i x i i

x x x x x x
i i

x
e

x x
z i



            
 

                                            

 

     
 

     1 ln 2sin , Im ln 1 .
2 2

x x
z z

      
 

 

Звідки приходимо до висновку: 

1 1

cos sin
ln 2sin ;

2 2n n

nx x nx x

n n

 

 

     
 

  .  ■ 

 

Приклад 3.3 Підсумувати наступні ряди: 
1 1

cos sin
1 ,

! !n n

nx nx

n n

 

 

  . 

Розв’язання. Перевіримо припущення, застосовуючи ознаку порівняння: 
cos 1

! !

nx

n n
зб зб




    

sin 1

! !

nx

n n
зб зб




 

Отже, обидва ряди збігаються абсолютно на  0,2 . Підсумуємо степеневий ряд 

    cos sin cos sin cos

0

cos sin sin .
!

n
z i x x i x x

т

z
e e e e e x i x

n






       

Висновок:        cos coscos sin , sin sin .x xx e x x e x        ■ 

2. Комплексна форма рядів Фур’є. 

Нехай ( )f x  – кусково-диференційована на   з регулярними точками 
розриву; 2-періодична, тоді її ряд Фур’є має вигляд 

   0

1

cos sin
2 n n

n

a
f x a nx b nx





   . 

За формулами Ейлера  

 cos , sin
2 2 2

inz inz inz inz
inz inze e e e i

nx x e e
i

 
 

     , 
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звідки 

     0

1

0

1

1

2 2 2

.
2 2 2

inz inz inz inz
n n

n

inz inzn n n n

n

a i
f x a e e b e e

a a ib a ib
e e


 








         
 

     
 




 

Отриманий ряд дозволяє запис у вигляді 

   0
1

inx inx
n n

n

f x C C e C e







    

або  

  inx
n

n

f x C e




   – комплексна форма ряду Фур’є. 

За означенням, ряд збігається lim
ndef

inx ikx
n kn

n k n

C e C e



 

  .  

Зокрема, нескладно довести, що із збіжності рядів 
1

inx
n

n

C e



  і 

1

inx
т

т

С e






  

випливає збіжність ряду .inx
т

т

С e



  Зворотне твердження не справджується. 

Обчислимо коефіцієнти комплексної форми ряду Фур’є. Нехай n , 
тоді 

   

         

 

 

1 1 1
cos sin

2 2

1 1
cos sin cos sin

2 2
1

;
2

1
.

2 2

n n
n

inx

inxn n
nn

a ib
C f x nxdx i f x nxdx

f x nx i nx dx f x nx i nx dx

f x e dx

a ib
C C f x e dx

 

 
 

 










 
      

      
 





  



 

 





 

    00
0

1 1

2 2 2
i xa

C f x dx f x e dx
 



 

  
    

Отже, формула для коефіцієнту  1

2
inx

nC f x e dx







   справедлива для всіх 

n  
Висновок: 

  inx
n

n

f x C e




  , де  1
( )

2
inx

nC f x e dx n






 
   .           (3.22) 
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3.2 ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ 
 
§1 Основна теорема теорії рядів Фур’є 

 
1. Розвинення кусково-диференційовних 2π-періодичних функцій з 

регулярними точками розриву. Ряди Фурь'є неперіодичних функцій, що 
задані на (-π;π), на (-l;l) 

Задача 3.1 (№Д2937). Яким буде ряд Фур’є для тригонометричного 
многочлена 

 
0

( ) cos sin
n

n k n
k

P x a kx b kx


  ? 

Розв’язання. Ряд Фур’є – це розвинення функції в тригонометричний ряд 
за косинусами та синусами кратних дуг. Тригонометричний многочлен є 
скінченною лінійною комбінацією таких функцій. Таким чином, рядом Фур’є 
даної функції є ( )nP x .   ■ 

 
Задача 3.2  Побудувати розклад функції в ряд Фур’є функції ( )f x , 

указати проміжки, в яких сума ряду дорівнює функції ( )f x , побудувати 
графіки 6-ої часткової суми ряду, функції, що є сумою ряду Фур’є, і знайти 
суму ряду у вказаній точці 0x , якщо 

а) 0

3, 0;
( ) 0

2, 0 ;

x
f x x

x

    
    

;  б) 0

2 , 1 0;
( ) 1

3 , 0 1;

x x
f x x

x x

  
   

. 

Для розв’язання цього прикладу корисними можуть бути розклади, наведені в 
Додатку В. 

Розв’язання. а) Обчислимо коефіцієнти ряду Фур’є за формулами (3.4), 
(3.6) і (3.7): 

 
0

0

0

1 1 1
( ) ( 3) 2 3 2 1a f x dx dx dx

 

 

 
              

   ; 

0

0

1 1
( ) cos ( 3) cos 2 cosna f x nx dx nx dx nx dx

 

 

 
        

    

0

0

1 3 2
sin sin 0;nx nx

n n





 
       

 

0

0

1 1
( ) sin ( 3) sin 2 sinnb f x nx dx nx dx nx dx

 

 

 
        

    

 
0

0

1 3 2 1 5 5 5
cos cos cos 1 ( 1)nnx nx n

n n n n n





                   
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10
, 2 1;

(2 1) ,

0, 2 ;

n k
k n k

n k

    
 

  

Підставимо знайдені коефіцієнти до розкладу (3.8). Функцію, що є сумою ряду 
Фур’є, позначимо *( )f x , отримаємо: 

* 0

1

( ) cos sin
2 n n

n

a
f x a nx b nx





     

 
1 1

1 5 1 10
0 cos 1 ( 1) sin sin(2 1) .

2 2 (2 1)
n

n k

nx nx k x
n k

 

 

                 
    (3.23) 

Згідно з основною теоремою теорії рядів Фур’є, функція *( )f x  збігається з 
функцією ( )f x  у точках її неперервності, тобто в точках ( ;0) (0; )x   . 

Функція *( )f x  є 2-періодичним подовженням функції ( )f x . Вона має 
регулярні точки розриву, тобто значення в точках розриву дорівнює 

* * * *
* ( 0) ( 0) ( 0) ( 0) 2 ( 3) 1
( ) ,

2 2 2 2

f n f n f f
f n n

           
       , 

зокрема, в точці 0 0x   маємо * 1
(1)

2
f   . Перевіримо справедливість рівності 

* 1
(0)

2
f   , підставляючи значення 0 0x   в ряд Фур’є (3.23): 

*

1

1 10 1
(0) 0 .

2 (2 1) 2k

f
k





     
   

Таким чином, 

*

3, 2 2 ;

2, 2 2 ;
( ) .

1
, ,

2

m x m

m x m
f x m

x m

       
       
  

  

Графік 6-ої часткової суми одержаного ряду Фур’є  
6

6
1

1 10
( ) sin(2 1)

2 (2 1)k

S x k x
k

    
   

побудовано на рис. 3.9. Графік функції *( )y f x  зображено на рис. 3.10. 

 
Рис. 3.9 
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■ 
Рис. 3.10 

б) Обчислимо коефіцієнти ряду Фур’є функції 

0

2 , 1 0;
( ) 0

3 , 0 1;

x x
f x x

x x

  
   

 за формулами (3.18) і (3.19), поклавши 1l   із 

застосуванням формули інтегрування частинами: 
0 1

0

1 0

1 5
2 ( 3 )

1 2
a x dx x dx



 
     

 
  ; 

0 1

1 0

, ,
1

2 cos ( 3 ) cos 1
1 1 1 cos , sin ,n

u x du dx
nx nx

a x dx x dx
dv nx dx v nx

n

   
     

     
   

0 10 1

1 01 0

1 1
2 sin sin 3 sin sin

x x
nx nx dx nx nx dx

n n n n 

   
                    

   

    2 2

2 2 2 2

10
5 ( 1) 1 , 2 1;5

(2 1)cos sin 1

0, 2 ;

n n k
kn n n

n n
n k

                 

 

 
0 1

2 2
1 0

1 1 ( 1)
2 sin ( 3 ) sin sin cos

1 1 1

n

n

nx nx
b x dx x dx n n n

n n

   
             

  ; 

,n k . 
Підставимо знайдені коефіцієнти до розкладу (3.20), отримаємо: 

 *
2 2

1

5 ( 1) 15 ( 1)
( ) cos sin

4

n n

n

f x nx nx
n n





             
   

  

2 2
1 1

5 10 ( 1)
cos (2 1) sin .

4 (2 1)

n

k n

k x nx
k n

 

 


        

                 (3.24) 

Згідно з основною теоремою теорії рядів Фур’є, функція *( )f x  збігається з 
функцією ( )f x  у точках її неперервності, тобто в точках ( 1;0) (0;1)x   . 

Функція *( )f x  є 2 -періодичним подовженням функції ( )f x . Вона має 
регулярні точки розриву, тобто значення в точках розриву дорівнює 

* * * *
* (1 2 0) (1 2 0) ( 1 0) (1 0)
(1 2 )

2 2

f n f n f f
f n

        
     

2 ( 1) ( 3) 1 5
;

2 2

    
    
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* * * *
* (2 0) (2 0) ( 0) ( 0) ( 3) 0 2 0
(2 ) 0;

2 2 2

f n f n f f
f n n

         
     , 

зокрема, в точці 0 1x   маємо * 5
(1)

2
f   . Перевіримо справедливість 

останньої рівності, підставляючи значення 0 1x   в ряд Фур’є (3.24): 


*

2 2 2 2
1 1 101

5 10 ( 1) 5 10 1
(1) cos (2 1) sin

4 (2 1) 4 (2 1)

n

k n k

f k n
k n k

  

  


           

       . 

Потрібне значення суми числового ряду можна знайти в доданку В, а саме: 
2

2
1

1

(2 1) 8k k








 . Звідки одержимо: 

2
*

2

5 10 5
(1)

4 8 2
f


     


. 

Таким чином, 

*

2( 2 ), 1 2 2 ;

3( 2 ), 2 1 2 ;
( ) .

5
, 1 2 ;

2

x m m x m

x m m x m
f x m

x m

    
     
   

  

Графік 6-ої часткової суми одержаного ряду Фур’є (3.24) 
6 3

6 2 2
1 1

1 ( 1) 10
( ) sin cos (2 1)

2 (2 1)

n

n k

S x nx k x
n k 


       

     

побудовано на рис. 3.11. Графік функції *( )y f x  зображено на рис. 3.12. 
 

 
Рис. 3.11 

 

 ■ 
Рис. 3.12 
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Задача 3.3  Розвинути  в ряд Фур’є функцію, що задана графічно. 

а) 

 
Рис. 3.13 

б) 

 
Рис. 3.14 

Розв’язання. а) Функція, графік якої зображено на рис. 3.13, має період 3, 
Тобто, у формулах (3.18) – (3.20) потрібно покласти 3 2l  , а за відрізок 
інтегрування обирати будь-який відрізок, довжина якого дорівнює періоду, 
наприклад, відрізок [ 2;1] . Запишемо дану функцію в явному вигляді: 

3( 3 ), 3 1 3 ;

0, 2 3 3 ;
( ) .

3
, 1 3 ;

2

x m m x m

m x m
f x m

x m

   
     
  

  

Зокрема, на відрізку [ 2;1]  функція подається у вигляді 
3 , 0 1;

( ) 0, 2 0;

3 2, 1.

x x

f x x

x

 
   
 

 

Отже, за формулами (3.18) і (3.19) і формулою інтегрування частинами 
обчислюємо коефіцієнти ряду Фур’є: 

1 0 1

0

0 2 0

2 2
( ) 0 3 1

3 3
a f x dx dx x dx



 
    

 
   ; 

1 1

2 0

2 2 2 2
( ) cos 3 cos

3 3 3 3n

nx nx
a f x dx x dx



 
    2 2

2 2
3 3cos 2 sin3 3 3

2

n n
n

n

    
 


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2 2

2 2

0, 3 ;

3 9 2 3 (3 2)
, 3 2;

4 (3 1)

3 9 2 3 (3 1)
, 3 1;

4 (3 2)

n k

k
n k

k

k
n k

k




        
      
  

 

1 1

2 2
2 0

2 2
3sin 2 cos2 2 2 2 3 3 3( ) sin 3 sin

3 3 3 3 2n

n n
nnx nx

b f x dx x dx
n

 
   

     
   

2 2

2 2

1
, 3 ;

3 3 3 2 (3 2)
, 3 2; , ,

4 (3 2)

3 3 3 2 (3 1)
, 3 1;

4 (3 1)

n k
k

k
n k n k

k

k
n k

k

   
        

   
   

 

  

а за формулою (3.20) – розклад в ряд Фур’є даної функції: 

2 2
1

1 3 1 2 2 2
( ) 3 3cos 2 sin sin

2 2 3 3 3n

n n nx
f x n

n





               
   

2 2 2
3sin 2 cos cos

3 3 3

n n nx
n

             
 

2 2 2 2
1

3 9 2 3 (3 2) 2 (3 2) 3 9 2 3 (3 1) 2 (3 1)
1 cos cos

4 (3 2) 3 4 (3 1) 3k

k k x k k x

k k





           
     

   
  

2 2 2 2

1 3 3 3 2 (3 2) 2 (3 2) 3 3 3 2 (3 1) 2 (3 1)
sin3 sin sin .

4 (3 2) 3 4 (3 1) 3

k k x k k x
kx

k k k

         
      
     

 

Згідно з основною теоремою теорії рядів Фур’є , сума отриманого ряду 
дорівнює функції, графік якої зображено на рис. 3.13. Саме тому ми не вводили 
нового позначення функції через *( )f x  ■ 

 
б) Функція, графік якої зображено на рис. 3.14, має період 4. Це означає, 

що, 2l  . Запишемо дану функцію в явному вигляді: 
2 4 , 1 4 3 4 ;

( ) .
1, 1 4 1 4 ;

x m m x m
f x m

m x m

      
 

    
  

Зокрема, на відрізку [0;2] функція подається у вигляді 

2 , 1 2;
( )

1, 1 1.

x x
f x

x

  
    

 

З урахуванням того, що дана функція є парною, за формулами (3.18), 
(3.19) і формулою інтегрування частинами обчислюємо коефіцієнти ряду 
Фур’є: 
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2 1 2

0

0 0 0 1

2 2 1
( ) ( ) 1 ( 2)

2 2

l

a f x dx f x dx dx x dx
l

         ; 

2 1 2

0 0 0 1

2 2
( ) cos ( ) cos cos ( 2)cos

2 2 2 2

l

n

nx nx nx nx
a f x dx f x dx dx x dx

l l

   
          

 

 

2 2

2 2
2 2

2 2

0, 4 ;

4 1 (4 3)
, 4 3;

(4 3)2 2cos sin 2cos2sin
2 22 2

, 4 2;
(2 1)

4 1 (4 1)
, 4 1;

(4 1)

n k

k
n kn nn kn n

n kn n
k

k
n k

k


                          

  
    

 

0nb  ;  ,n k . 
Підставляючи їх в розклад (3.20), отримаємо ряд Фур’є даної функції: 

2 2
1

2 2cos sin 2cos2sin1 2 22( ) cos
4 2n

n nn n n
nx

f x
n n





                 
  

 
 

  

 
2 2 2 2

1

4 1 (4 3)1 (4 3) 2
cos cos (2 1)

4 (4 3) 2 (2 1)k

k k x
k x

k k





     
         

  

 
2 2

4 1 (4 1) (4 1)
cos .

(4 1) 2

k k x

k

    
   

 

Згідно з основною теоремою теорії рядів Фур’є , сума отриманого ряду 
дорівнює функції, графік якої зображено на рис. 3.14. ■ 
 

§2 Розвинення функцій в ряд Фур’є 
 

1. Ряди Фурь'є парних і непарних функцій, функцій, що задані на  
(-π;π), на (0;π), на  (a ,b) 

Задача 3.4 (№Д2961) Побудувати розклад функції  2( )f x x  в ряд Фур’є  
а) в інтегралі ( ; )   за косинусами  кратних дуг;  
б) в інтервалі (0; )  за синусами кратних дуг;  
в) в інтервалі (0;2 ) . 

Побудувати графік функції і графік суми рядів Фур’є для випадків а), б), в). 
Застосовуючи ці розклади, знайти суми числових рядів  

1

2 2 2
1 1 1

1 ( 1) 1
, ,

(2 1)

n

n n nn n n

  

  


   . 
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Розв’язання. На рис. 3.15 зображено графіки функції 2( )f x x  на 
інтервалі ( ; )   (рис. 3.15 а), на інтервалі (0; )  (рис. 3.15 б), на інтервалі 
(0;2 )  (рис. 3.15 в). 

 ■ 
а) Оскільки функція 2( )f x x  на інтервалі ( ; )   є парною, то її ряд 

Фур’є являє собою розклад за косинусами кратних дуг. За формулами (3.14) 
обчислимо 

2 2
0

0 0

2 2 2
( )

3
a f x dx x dx

 

   
   ; 

2

2

0 0

, 2 ,
2 2

( ) cos cos 1
cos , sin ,

n

u x du x dx
a f x nx dx x nx dx

dv nx dx v nx
n

   
   
      


2 2

00 0 0

2 1 2 2 1 2
sin sin sin 0 sinx nx x nx dx n x nx dx

n n n n

  



    
                 

   

0

, ,
4

sin 1
sin , cos ,

u x du dx
x nx dx

n dv nx dx v nx
n

  
   

     

 2 2 2
0 00

4 1 1 4 4 1 4( 1)
cos cos cos 0 sin

n

x nx nx dx n nx
n n n n n n n

   
              

 ; 

0nb  ;  n . 
Підставляючи їх в розклад (3.18), отримаємо ряд Фур’є даної функції: 

2

2
1

( 1)
( ) 4 cos

3

n

c
n

f x nx
n





 
   .    (3.25) 

         
а             б       в 

Рис. 3.15 

2 2

24
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Будуючи графік функції ( )cy f x  
1) Спочатку подовжуємо її за періодом 2 . 
2) Помічаємо, що подовжена функція в точках 2 ,n n     має рівні 

односторонні границі 2( 2 0) ( 2 0) ,c cf n f n n            , тому значення 

в регуляризованих точках розриву 2 ,n n     будуть дорівнювати 2 .  
3) У результаті отримаємо графік функції ( )cy f x , зображений на рис. 3.16.  

  
 

Аналітичне подання функції, що є сумою ряду Фур’є (3.25): 

 2( ) ( 2 ) , 2 2 ,cf x x m m x m m             .   ■ 

 
б) Щоб розвинути дану функцію в інтервалі (0; )  за синусами кратних 

дуг, потрібно застосувати формули (3.16): 

0 0; 0;na a   

2

0 0

2 2
( ) sin sinnb f x nx dx x nx dx

 

  
  

2 , 2 ,

1
sin , cos ,

u x du x dx

dv nx dx v nx
n

 


  
 

 2 2

0 0 0

2 1 2 2 1 2
cos cos cos 0 cosx nx x nx dx n x nx dx

n n n n

     
                 

   

0

, ,
2 4

( 1) cos 1
cos , sin ,

n

u x du dx
x nx dx

n n dv nx dx v nx
n

  


     
    

0 0

2 4 1 1
( 1) sin sinn x nx nx dx

n n n n

  
         

  3

2 4
( 1) ( 1) 1n n

n n


     


;   n . 

Підставимо ці коефіцієнти до розкладу (3.17), отримаємо ряд Фур’є даної 
функції за синусами кратних дуг: 

 
1

3
1

( 1) 4
( ) 2 ( 1) 1 sin

n
n

s
n

f x nx
n n





 
         
 . 

1

3
1 1

( 1) 8 1
2 sin sin(2 1)

(2 1)

n

n k

nx k x
n k

 

 


     

   .  (3.26) 

Рис. 3.16 

2

( )cy f x  

(3.25) 
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Будуємо графік функції ( )sy f x . 
1) Спочатку подовжуємо графік даної функції (рис. 3.15б) за непарністю, 

тобто симетрично відносно точки О(0,0) (рис. 3.17). 
2)  Потім подовжуємо за періодом 2 . 
3)  Регуляризуємо точки розриву ,n n  : 

 1
(2 0) (2 0) 0 (2 ) (2 0) (2 0) 0

2s s s s sf n f n f n f n f n               ; 

 2 2 2 21
( 2 0) , ( 2 0) ( 2 ) 0,

2s s sf n f n f n n                     , 

4) У результаті отримаємо графік, зображений на рис. 3.18.  

 
Аналітичне подання функції (3.26): 

2

2

( 2 ) , 2 2 ;

( ) .( 2 ) , 2 2 ;

0, ;
s

x m m x m

f x mx m m x m

x m

        
         
  

 .   ■ 

 
в) Якщо функція задана на інтервалі (0;2 ) , то можна вважати її 

півперіод рівним l   , а в формулах (3.18) і (3.19) або в формулах (3.4), (3.6), 
(3.7) інтегрування здійснювати вздовж відрізка [0;2 ]  за допомогою формули 
інтегрування частинами: 

2 2
2 2

0

0 0

1 1 8
( )

3
a f x dx x dx

 

   
   ; 

2 2
2

2
0 0

1 1 4
( ) cos cosna f x nx dx x nx dx

n

 

  
   ; 

2 2
2

0 0

1 1 4
( ) sin sinnb f x nx dx x nx dx

n

  
   
   ;  n . 

Підставимо ці коефіцієнти до розкладу (3.18) або (3.8), отримаємо ряд Фур’є 
даної функції: 

       
                Рис. 3.17      Рис. 3.18 

2  2

( )sy f x
(3.26) 
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2
*

2
1

4 1 sin
( ) 4 cos

3 n

nx
f x nx

n n





       
 

 .   (3.28) 

Графік функції *( )y f x  будуємо поетапно. Спочатку подовжуємо графік 
даної функції за періодом 2 , а потім регуляризуємо точки розриву: 

* * * * 2
* 2(2 0) (2 0) ( 0) (2 0) 0 4
(2 ) 2

2 2 2

f n f n f f
f n

          
      .  

Результат наведено на рис. 3.19. 

 
Аналітичне подання функції (3.28): 

2
*

2

( 2 ) , 2 2 2 ;
( ) .

2 , 2 ;

x m m x m
f x m

x m

        
 

  
 .   ■ 

Тепер знайдемо значення сум рядів, що вимагаються умовою.  

Суму ряду 
2

1

1

n n




  можна знайти, наприклад, із розкладу (3.28). Покладемо 

в ньому 0x  : 
2 2

*
2 2

1 1

4 1 sin 0 4 1
(0) 4 cos0 4

3 3n n

f
n n n

 

 

         
 

  . 

Оскільки * 2(0) 2f    (див. рис. 3.19), то 
2 2

2
2 2

1 1

4 1 1
2 4

3 6n nn n

 

 

 
      . 

Суму ряду 
1

2
1

( 1)n

n n





  можна знайти із розкладу (3.25). Нехай 0x  , тоді 

2

2
1

( 1)
(0) 4

3

n

c
n

f
n





 
   . 

Оскільки (0) 0cf   (див. рис. 3.16), то 
2 2 1 2

2 2 2
1 1 1

( 1) ( 1) ( 1)
0 4

3 12 12

n n n

n n nn n n

  

  

     
         . 

Рис. 3.19 

24

22

*( )y f x
(3.28) 
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Суму ряду 
2

1

1

(2 1)n n



   знайдемо, застосовуючи отриманий результат: 

2

2
1

1

6n n






 . Маємо: 

2 2

2 2 2 2 2 2
1 1 1 1 1 1

1 1 1 1 1 1 1
;

6 (2 ) (2 1) 4 (2 1) 24 (2 1)n k k k k kn k k k k k

     

     

 
      

         

2 2 2

2
1

1

(2 1) 6 24 8k k





  
  

 . 

Отримані значення сум числових рядів відповідають формулам, наведеним у 
додатку В. ■ 

2. Ряди Фурь'є парних  і непарних  функцій, функцій, що  
задані на  (0;l)  

Задача 3.5. Побудувати розклад функції  в ряд Фур’є за синусами і за 
косинусами на вказаних проміжках: 

а)  ( ) sgn( 1) 2f x x x     на (0;2) ;    б) 
sin , 0 2;

( )
0, 2 4;

x x
f x

x

  
   

  на (0;4) . 

Розв’язання. а) Дану функцію можна подати у вигляді 
2 , 0 1;

( )
2, 1 2.

x x
f x

x x

  
    

. 

Довжина півперіоду у цьому випадку дорівнює 2l  . 
Для розвинення функції в ряд Фур’є за косинусами кратних дуг 

застосуємо формули (3.14), (3.15): 
2 1 2

0

0 0 0 1

2 2
( ) ( ) (2 ) ( 2) 1

2

l

a f x dx f x dx x dx x dx
l

          ; 

1 2

0 0 1

2 2
2 2

2
( ) cos (2 ) cos ( 2)cos

2 2

0, 4 ;

4
, 4 1;

(4 1)4 1 sin 2cos cos
2 2

4
, 4 2;

(2 1)

4
, 4 3;

(4 3)

l

n

nx nx nx
a f x dx x dx x dx

l l

n k

n kn n kn n

n kn
k

n k
k

  
     



                   
    

  

 

0nb  ;  ,n k . 
Розклад набуде вигляду: 

2 2
1

4 1 sin 2cos cos
1 2 2

( ) cos
2 2c

n

n n
n n

nx
f x

n





           
  
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2 2
1

1 4 (4 1) 4 4 (4 3)
cos cos (2 1) cos .

2 (4 1) 2 (2 1) (4 3) 2n

k x k x
k x

k k k





    
             

  

(3.29) 
Щоб побудувати графік функції ( )cy f x , потрібно  

1) спочатку побудувати графік даної функції ( )y f x  (рис. 3.20 а), 
2) подовжити його парним чином на інтервал ( 2;0) , тобто симетрично 

відносно осі ординат (рис. 3.20  б),  
3) подовжити отриманий на попередньому кроці графік за періодом 

довжиною 4 і регуляризувати усі точки розриву (рис. 3.20  в).  
 

    
а                             б 

 
в 

Рис. 3.20 
 

Аналітичний запис функції, що є сумою ряду Фур’є (3.29): 
2 ( 4 ), 4 1 4 ;

( 4 ) 2, 1 4 2 4 ;

2 ( 4 ), 1 4 4 ;
( ) .

( 4 ) 2, 4 4 3 4 ;

0, 2 4 , 1 2 ;

2, 4 ;

c

x m m x m

x m m x m

x m m x m
f x m

x m m x m

x m x m

x m

    
      
      

         
    




 .   ■ 

 
Для отримання коефіцієнтів розвинення функції в ряд Фур’є за синусами 

кратних дуг застосуємо формули (3.16): 
1 2

0 0 1

2
( ) sin (2 ) sin ( 2)sin

2 2

l

n

nx nx nx
b f x dx x dx x dx

l l

  
         
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2 2

2 2

2 2

0, 4 ;

4(2 (4 1))
, 4 1;

(4 1)4 2 sin cos
2 2

4
, 4 2;

(2 1)

4( 2 (4 3))
, 4 3;

(4 3)

n k

k
n kn n kn n

n kn
k

k
n k

k


                      


       

 

0 0; 0;na a     ,n k . 
Підставимо ці коефіцієнти до розкладу (3.17), отримаємо ряд Фур’є даної 
функції за синусами кратних дуг: 

2 2
1

4 1
( ) 2 sin cos sin

2 2 2s
n

n n nx
f x n n

n





            
 2 2

1

4(2 (4 1)) (4 1)
sin

(4 1) 2n

k k x

k





     
  

  

2 2

4 4( 2 (4 3)) (4 3)
sin (2 1) sin

(2 1) (4 3) 2

k k x
k x

k k

     
        

.  (3.30) 

Щоб побудувати графік функції ( )sy f x , потрібно  
1) спочатку побудувати графік даної функції ( )y f x  (рис. 3.21 а), 
2) подовжити його парним чином на інтервал ( 2;0) , тобто симетрично 

відносно точки О(0,0) (рис. 3.21 б),  
3) подовжити отриманий на попередньому кроці графік за періодом 

довжиною 4 і регуляризувати усі точки розриву (рис. 3.21 в).  
 

    
а                             б 

 

 
в 

Рис. 3.21 
 

Аналітичний запис функції, що є сумою ряду Фур’є (3.30): 



Розділ 3. РЯДИ ФУР’Є 

 228

2 ( 4 ), 4 1 4 ;

( 4 ) 2, 1 4 2 4 ;

( ) .2 ( 4 ), 1 4 4 ;

( 4 ) 2, 4 4 3 4 ;

0, ;

s

x m m x m

x m m x m

f x mx m m x m

x m m x m

x m

    
             
        



 .   ■ 

б) Побудуємо спочатку розклад функції 
sin , 0 2;

( )
0, 2 4;

x x
f x

x

  
   

  на (0;4)  

в ряд Фур’є за косинусами кратних дуг. У даному випадку довжина півперіоду 
дорівнює 4l  . Коефіцієнти ряду обчислимо за формулами (3.14): 
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Відповідно до формули  (3.15), розклад за косинусами кратних дуг набуде 
вигляду: 
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Будуємо графік функції ( )cy f x . 
1) Будуємо графік даної функції ( )y f x  (рис. 3.22 а), 
2) Подовжуємо його парним чином на інтервал ( 4;0) , тобто симетрично 

відносно осі ординат (рис. 3.22 б),  
3) Отриманий графік подовжуємо за періодом довжиною 8 і регуляризуємо 

усі точки розриву (рис. 3.22 в).  

      
а           б 
 

 
в 

Рис. 3.22 
 

Аналітичний запис функції, що є сумою отриманого ряду Фур’є: 
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 .   ■ 

Коефіцієнтів розвинення функції в ряд Фур’є за синусами кратних дуг 
обчислюємо за формулою (3.16): 
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Підставимо ці коефіцієнти до розкладу (3.17), отримаємо ряд Фур’є даної 
функції за синусами кратних дуг: 
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22
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. 

Будуємо графік функції ( )sy f x . 
1) Будуємо графік даної функції ( )y f x  (рис. 3.23 а), 
2) Подовжуємо його парним чином на інтервал ( 4;0) , тобто симетрично 

відносно точки О(0,0) (рис. 3.23 б),  
3) Отриманий графік подовжуємо за періодом довжиною 8 і регуляризуємо 

усі точки розриву (рис. 3.23 в).   
 

    
а                             б 

 

 
в 

Рис. 3.23 
 

Згідно з основною теоремою теорії рядів Фур’є (теорема 3.1), функцію, що є 
сумою отриманого ряду Фур’є, можна подати формулою 
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§3 Підсумовування рядів Фур’є 
 

1. Підсумовування рядів Фурь’є за  допомогою аналітичних  
функцій комплексної змінної 

Приклад 3.4 Підсумувати ряд 
 1

cos
1

1n

nx

n n






 . 

Розв’язання. Перевіримо припущення: 

  2 2

cos 1 1

1
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n n n n n
зб зб

 
 


 (показник степеня знаменника 2>1). 
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Отже, ряд збігаються абсолютно на  0,2 . Розглянемо 
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т
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Оскільки 
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Отже,  
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Виділимо дійсну і уявну частину отриманої функції. У прикладі 3.2 було 
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x
ix

z e



  , тому  ln 1 ln 2sin

2 2

x x
z i

 
   . Крім того, 

 

   1 1
cos sin cos sinix

ix
e x i x x i x

z e
        . 

 

Таким чином,  
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Отже, для даного ряду маємо: 
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3.3 ЗАВДАННЯ ДЛЯ САМОСТІЙНОГО ВИКОНАННЯ 
 
 

Завдання 3.1 Розвинути функцію  xf  в ряд Фур’є й визначити точки, у 
яких він збігається до відповідного значення функції  xf . Зобразити графіки 
функцій. 
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Завдання 3.2 Розвинути функцію в ряд Фур’є: а) за синусами; б) за 
косинусами; в) з періодом 4T . Зобразити графіки функцій. 
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x

x

x
xf  

13.    
 










.4;2

;2;0

,26

,

x

x

x

x
xf  14.    

 







.4;2

;2;0

,2

,22

x

xx
xf  

15.    
 








.4;2

;2;0

,2

,4

x

xx
xf  16.    

 










.4;2

;2;0

,28

,2

x

x

x

x
xf  

17.    
 











.4;2

;2;0

,2

,24

x

x

x

x
xf  18.    

 










.4;2

;2;0

,2

,2

x

x

x

x
xf  

19.    
 








.4;2

;2;0

,0

,2

x

xx
xf  20.    

 










.4;2

;2;0

,2

,2

x

x

x

x
xf  
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Додатки 

Означення А.1. Числовий ряд 
1

n
n

a



  називають збіжним, якщо збігається числова 

послідовність його часткових сум 
1

n

n k
k

S a


 . Число lim n
n

S S  називають сумою ряду (у 

випадку існування границі); позначення: 
1

n
n

a S




 .  

 

Означення А.2. Числовий ряд 
1

n
n

a



  називають абсолютно збіжним, якщо 

збігається ряд  
1

n
n

a



 .  

 
Означення А.3. Числовий ряд називають умовно збіжним, якщо він збігається, але 

не абсолютно. 
 

Теорема А.1 (необхідна умова збіжності ряду). Якщо ряд 
1

n
n

a



  збігається, тоді 

lim 0nn
a  . 

 
А.1. Ознаки збіжності знакопостійних рядів  
 

Загальна ознака порівняння. Якщо члени двох рядів 
1

n
n

a



  ( 0na n   ) і 

1
n

n

b



  

( 0nb n   ) задовольняють співвідношення n na b n   , то із збіжності другого ряду 
випливає збіжність першого , а з розбіжності першого – розбіжність другого. Тобто 

1 1
1 1

, ,
I. зб.; II. розб.

зб., розб.,

n n n n

n n
n nn n

n n

a b n a b n
a b

b a

 
 

 
 

              
  

 
  зб. зб.
розб. розб.

n na b n  




 

 

Ознака порівняння в граничній формі (ОПГФ). Якщо члени рядів 
1

n
n

a



  і 

1
n

n

b



  з 

додатними членами задовольняють співвідношення lim const 0n

n n

a
b

  , то обидва ряди 

збігаються або розбігаються одночасно. 
 

Ознака Д’Аламбера. Розглянемо ряд 
1

n
n

a



  ( 0na n   ). 

 1lim n

n n

a
q

a
   (скінченна або 

нескінченна)  






 

при 1q   ряд збігається,  
при 1q   розбігається,  
при 1q   про збіжність ряду нічого не можна 
сказати (сумнівний випадок). 
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Ознака Коші (радикальна): Розглянемо ряд 
1

n
n

a



  ( 0na n   ). 

 lim n
n

n
a q  (скінченна 

або нескінченна)  




 
при 1q   ряд збігається,  
при 1q   розбігається,  
при 1q   – сумнівний  випадок. 

Ознака Коші-Маклорена (інтегральна). Якщо для членів ряду 
1

n
n

a



  ( 0na n   ) 

існує така функція ( )f x , що  

1) ( ) nf n a  для всіх натуральних 

0n n ,  

2) ( )f x   (нестрого) на 0[ ; )n  ,  




ряд 
1

n
n

a



  збігається або розбігається 

одночасно з невласним інтегралом ( )
on

f x dx


 . 

 
Наслідок із інтегральної ознаки Коші-Маклорена . 

Узагальнений гармонічний ряд 
1

1
p

n n




   

збігається при 1p  ,  
розбігається при 1p  . 

 
Ознака Раабе . 

1

1

, 0 ,

lim 1 ,

n n
n

n

n
n

a a n

a
n r

a








        

  

 
 

1

1

1) 1 розбігається,

2) 1 збігається,

3) 1 ??? (сумнівний випадок).

n
n

n
n

r a

r a

r








   

   


 




  

Ознака Гаусса. 

 

 
1 1

2
11

, 0 , 1) 1 1 1 бігається,

, 0 1, 2) 1 1 1 розбігається.

n n n
n n

n n
n n n

nn

a a n a з

a
q a

a n n

 

 




                                
 

 




 

 
А.2. Ознаки збіжності знакозмінних рядів  

 
Ознака Лейбніца. Розглянемо знакопочережний ряд  

1 1
1 2 3 4

1

( 1) ... ( 1) ...n n
n n

n

c c c c c c


 



          ,   0nc n   . 

 1) (нестрого),

2) lim 0,
n

nn

c

с

 


1

1

( 1)n
n

n

c






   збігається. 

 

Ознака Діріхле. 
 

1
1

1) , обмежена,
збіг.

2){ } , 3) lim 0,

n

n k n
k n n

n
n nn

B b B
a b

a a







   

 

 


 

 

Ознака Абеля.  
   

1

1) збігається,

2) монотонна, 3) обм.,

n
n

n n

a

b b






 

  


1

збіг.n n
n

a b




  
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Область збіжності функціональної послідовності  ( ) n
nf x x  – півінтервал ( 1;1] . 

Гранична функція (поточкова границя), визначена на цій множині, подається у вигляді: 

0, ( 1,1);( ) lim ( )
1, 1.n

n

xf x f x
x

     

 

Критерій Коші рівномірної збіжності функціонального ряду.  

1

( ) ( )n
An

u x S x




               0 0
1

0 : ( )
n p

k
k n

n n n p x A u x


 

             . 

 

Ознака  Вейєрштрасса рівномірної збіжності функціонального ряду. 

1) 
1

( )n
n

u x



 , заданий на множині A ; 

2) 
1

n
n

c




  збігається, 0nc n   ; 

3) ( )n nu x c x A   ; 






1

( )n
An

u x




   

 

Ознака Абеля рівномірної збіжності функціонального ряду 

1

1

1) ( ) ;

2) { ( )} поточково нестрого монотонна на ; ( )
3) { ( )} рівномірно обмежена на , тобто

0 : ( ) ,

n
Xn

n n n
Xn

n

n

b x

a x Х a b x
a x Х

n x X a x








 

  
 

        










 

 

 Ознака Діріхле рівномірної збіжності функціонального ряду: 

1) { ( )}nb x  така, що 
1

( ) ( )
n

n k
k

B x b x


  
 

  – рівномірно обмежена 

на множині Х, тобто 0 : ( )nn x X B x        , 

2) { ( )}na x  – поточково не зростаюча на Х, 

3) ( ) ( )n
X

a x x   ( ( ) 0x  ),  









1

( ) ( )n n
Xn

a x b x




   . 

 

Теорема про неперервність суми  функціонального ряду. 
Розглянемо функціональний ряд ( )n

n

u x  на множині X . 

0

0

1

1) ( ) неперервна в точці ;
( ) неперервна в точці

2) ( ) ( ),

n

n
Xn

u x x X n
S x x

u x S x




      





 

 

Почленний граничний перехід під знаком суми функціонального ряду. 

1 1

1 1

1) ( ) ( ); I) ;

2) гранична точка множини ;
II) lim ( ) , тобто lim ( ) lim ( )3) lim ( ) ,

n n
Xn n

n n
x a x a x an n n nx a

u x S x C C

a X
S x C u x u xu x C

 

 
 

  
 

           

 

 


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Почленне інтегрування функціональних рядів. 

 

[ , ]1

1) ( ) - неперервна на , ;

2) ( ) ( ) ,

n

n
a bn

u x a b n

u x S x




 
 





1

1 1

I) ( ) ; II) ( ) збігається;

III) ( ) ( ) .

b b

n
na a

b b

n n
n na a

S x dx u x dx

u x dx u x dx




 

 


 


 


 

  
 

 

Почленне диференціювання функціональних рядів. 
1) ( )nu x  неперервно диференційовні на 

[ , ]a b  n  ; 

2) 
Поточ.

[0, ]
0

( ) ( )n
n

u x S x





 ;  3) 
[ , ]1

( )n
a bn

u x




   ; 






I) ( )S x  на [ , ]a b ; 

1 1

II) ( ) ( ) ( )n n
n n

u x S x u x
 

 

     
 

   

 

Означення Б.1 Функціональний ряд вигляду 

2
0 1 2

0

... ...n n
n n

n

a x a a x a x a x




       

називають степеневим рядом, а числа 0 1 2, , , ..., ,...na a a a  – коефіцієнтами  степеневого ряду. 
 

Формули для обчислення радіуса збіжності степеневого ряду 
0

n
n

n

a x



 : 

формула 1: 
1

lim n
nn

r
a



 ;  формула 2:
1

lim n

n
n

a
r

a


  за умови, що 0na n    

 

Теорема про неперервність суми степеневого ряду. Сума степеневого ряду 

 
0

n
n

n

S x a x




  є неперервною функцією на інтервалі збіжності  ;r r , де r  - радіус 

збіжності степеневого ряду. 
 

Теорема про інтегрування степеневих рядів. Степеневий ряд 
0

n
n

n

a x



  можна 

почленно інтегрувати на    rrx ;;0   ( r  - радіус збіжності), крім того, радіус збіжності 
отриманого почленним інтегруванням степеневого ряду буде той самий, що і у вихідного 
ряду, тобто r . 

 

Теорема про диференціювання степеневих рядів. Степеневий ряд можна почленно 
диференціювати всередині інтервалу збіжності, при цьому, отриманий почленним 
диференціюванням ряд має той самий радіус збіжності, що й вихідний ряд. 

 

Розвинення деяких елементарних функцій в степеневі ряди: 
2

0

1 ... ...
2! ! !

n n
x

n

x x x
e x

n n





         на  , 

 
 

 
 

1 12 1 2 13 5 7

1

1 1
sin ...

3! 5! 7! 2 1 ! 2 1 !

n nn n

n

x xx x x
x x

n n

  



 
     

   на  , 

 
 

 
 

2 22 4 6

0

1 1
cos 1 ...

2! 4! 5! 2 ! 2 !

n nn n

n

x xx x x
x

n n





 
          на  , 

 
2 3 4 1

1

1

( 1)
ln 1 ... ( 1) ...

2 3 4

n n n
n

n

x x x x x
x x

n n







           на  1,1 , 
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      2 31 1 2
1 1 ...

2! 3!
x x x x

        
      

   1 ... 1
...

!
nn

x
n

     
  на ( 1;1) , 

     2 3

0

1
1 ... 1 ... 1 на 1,1

1
n nn n

n

x x x x x
x





          
  , 

 2 3

0

1
1 ... ... на 1,1

1
n n

n

x x x x x
x





        
  , 

0 0

1 ( 1) (2 1)!! ( 1) (2 1)!!

2 ! (2 )!1

n n
n n

n
n n

n n
x x

n nx

 

 

     
   


   на ( 1;1) , 

   
2 1

0

arctg 1 на 1,1
2 1

n
n

n

x
x

n





  
 ,      

 2 1

0

(2 1)!!
arcsin на 1,1

(2 )!(2 1)
n

n

n
x x

n n







 

 , 

   2 2 1

0

( 1) (2 1)!!
ln 1 на 1,1

(2 )! (2 1)

n
n

n

n
x x x

n n






  
   

 . 

 

Формула Стірлінга:  

  12! 2 , 0 1.
n

nn n
nn n n e e


         

 

Теорема Вейерштраса про рівномірне наближення неперервної функції 
послідовністю многочленів.  

( )f x   неперервна на відрізку  ;a b   ( )nP x   послідовність многочленів:  
 ,

( ) ( )n
a b

P x f x . 

 

0 [ , ]R a b  евклідів простір кусково-неперервних функції, усі точки розриву яких є 

регулярними, зі скалярним добутком  , ( ) ( )
b

a

f g f x g x dx  , 

 

Ортогональна система тригонометричних функцій в просторі  0[ ; ]R   :  

1, cos , sin , cos 2 , sin 2 , cos3 , sin 3 ,. . ., cos , sin ,. . .,x x x x x x nx nx . 
 

Означення Б.2 Рядом Фур’є функції ( )f x  називають ряд вигляду 

0

1

( ) ~ ( cos sin )
2 n n

n

a
f x a nx b nx





  , коефіцієнти якого визначаються формулами  

1
( )cos 0,1,2,3,...ka f x kxdx k





  
  ,   . 

1
( )sin 1,2,3,...kb f x kxdx k





  
  . 

 

Основна теорема теорії рядів Фур’є. Якщо функція ( )f x   

1) кусково-диференційовна на  ,  
2) з регулярними точками розриву,  
3) 2 -періодична,  

тоді ряд Фур’є цієї функції поточково збігається до цієї функції, тобто в будь-якій точці 

0x   має місце гранична рівність: 

0 0
0 0

( 0) ( 0)
lim ( ) ( )

2n
n

f x f x
S x f x



  
   
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Додаток В СУМИ ДЕЯКИХ ЧИСЛОВИХ РЯДІВ 
 
Виписані нижче розвинення наведено у довіднику: 
Цыпкин А. Г., Цыпкин Г. Г. Математические формулы. Ал-гебра. Геометрия. 
Математический анализ: Справочник. Москва: Наука. Гл. ред. физ.-мат. лит- ры, 1985. 128 с. 
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ПРЕДМЕТНИЙ ПОКАЖЧИК 
 
 
Границя функціональної послідовності 
  – поточкова, 93, 170 
 
Добуток рядів, 39, 69 
Добуток скалярний, 190 
Добуток 
  – абсолютно збіжний, 47, 75 
  – нескінченний, 41, 69 
  – умовно збіжний, 47, 75 
  – частковий, 41, 69 
 
Загальний член  
  – – функціонального ряду, 93 
  – – числового ряду, 6 
 
 –труба, 97 
 
Інтервал збіжності степеневого ряду, 116, 
163 
 
Критерій збіжності числового ряду з 
невід’ємними членами, 12 
Критерій Коші  
  – – збіжності числового ряду, 9, 50 
  – – рівномірної збіжності функціональної  
         послідовності, 98, 155 
  – – рівномірної збіжності  
        функціонального ряду, 99 
 
Необхідна умова збіжності нескінченного 
добутку, 42, 71 
  – – – числового ряду, 11, 50 
  – – розвинення функцій в степеневі ряди,  
         122 
Нерівність Коші–Буняковського, 194, 195 
– трикутника, 195 
Область збіжності  
  – – степеневого ряду, 113, 163 
  – – функціональної послідовності, 93 
  – – функціонального ряду, 93, 145 
  – – – –, абсолютної, 147 
  – – – –, умовної, 147 
 
Обчислення за допомогою степеневих 
рядів  
– – – – – значень функцій, 131 
– – – – – визначених інтегралів, 135 
Ознака збіжності числового ряду 
  – Абеля, 31, 60 

  – Бертрана, 23 
  – Гаусса, 23, 54 
  – Д’Аламбера, 21, 51 
  – Діріхле, 31, 59 
  – загальна порівняння, 12, 53 
  – інтегральна Маклорена–Коші, 16, 52 
  – Коші в граничній формі, 15, 51 
  – Кумера, 20 
  – Кумера в граничній формі, 21 
  – Лейбница, 32, 57 
  - порівняння в граничній формі, 13, 52 
  – Раабе, 22, 53 
  – радікальна Коші, 14, 51 
Ознака рівномірної збіжності функціональ-
ного ряду на множині 
  – Абеля, 102, 158, 160 
  – Вейєрштрасса, 100, 153 
  – Діріхле, 100, 154 
 
Переставлення множини, 36 
Перетворення Абеля, 30 
Послідовність  
  – функціональна, 93, 150 
  – – в середньому збіжна,  193 
  – – поточково збіжна на множині, 93 
  – – рівномірно збіжна на множині, 94, 150 
  – – нерівномірно збіжна на множині, 95,  
         151 
Приклади неперервних ніде 
недиференційовних функцій 
  – – – – –, Коші, 136 
  – – – – – ван-дер-Вардена, 136 
Простір 
  – евклідів, 190 
  – нормований, 192 
 
Радіус збіжності степеневого ряду, 116,  
       162 
 
Розвинення  
  – елементарних функцій в степеневі ряди,  
      125 
  – функцій в степеневі ряди, 122, 169 
  – – – – –, необхідна умова, 122 
  – – – – –, необхідна і достатня умов1, 125 
  – функцій в ряд Фкр’є, 205 
  – – – – –, заданних на  ,a b , 210 

  – – – – –, заданних на  ;l l , 209, 217 
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  – – – – –, заданних на  ;  , 205, 215,  

                     222 
  – – – – –, заданних на  0; , за косинуса-  

                  ми кратних дуг, 207 
  – – – – –, заданних на  0; , за синусами 

                  кратних дуг, 208, 223, 226 
  – – – – – заданних на ,, за косинусами  
                  кратних дуг, 206, 224, 226 
  – – – – –, заданних на , за синусами  
                  кратних дуг, 207 
  – – – – –, заданних на , непарних, 207 
  – – – – –, заданних на , парних, 206, 229 
 
Ряд  
  – степеневий, 115, 162 
  – – рівномірно збіжний на відрізку, 119 
  – узагальнений степеневий, 167 
  – функціональний, 93, 145 
  – – поточкові збіжний на множині, 97,  
        105, 154 
  – – нерівномірно збіжний на множині, 95,  
        155 
  – – рівномірно збіжний на множині, 98,  
        153 
  – Тейлора, 123, 169 
Ряд числовий, 6, 49 
  – – абсолютно збіжний, 28, 55 
  – – гармонічний, 11, 53 
  – – збіжний, 6, 49 
  – – знакозмінний, 29, 54 
  – – знакопочережний, 29, 58 
  – – знакосталий, 28 
  – – Лейбницевого типу, 32, 131, 156 
  – – розбіжний, 6, 50 
  – – узагальнений гармонічний, 19, 53 
  – – умовно збіжний, 28, 57 
Рд Фур’є, 197 
  – – в середньому збіжний, 204 
  – – коефіцієнти, 198, 215 
  – –, комплексна форма, 212 
  – – основна теорема, 203 
  – – поточково збіжний, 203 
  – – , часткові суми, 201, 215 
  – –рівномірно збіжний, 205 
 
Система 
  – ортогональна, 196 
  – ортонормована, 196 
  – тригонометричних функцій, 196 
Сума  
  – степеневого ряду, 179 

  – тригонометричного ряду, 210 
  – функціонального ряду, 93, 159, 160 
  – числового ряду, 6, 49 
Теорема 
  – Абеля, 116 
  – Вейєрштрасса про рівномірне набли-
ження неперервної функції послідовністю 
многочленів, 139 
  – Діні, 104, 114 
  – Коші-Адамара, 117 
  – Мертенса, 40 
  – основна, теорії ряди Фур’є, 203 
  – про неперервність границі 
функціональної послідовності, 114 
  – – – суми  функціонального ряду, 103,  
           159 
  – – – суми степеневого ряду, 120 
  – про почленне диференціювання степе- 
     невого ряду, 121, 179 
  – – – – рядів Фур’є, 205 
  – – – – функціональних рядів, 112, 113,  
              162 
  – – – – функціональних послідовностей,  
              114 
  – про почленне інтегрування степеневого  
     ряду, 120, 174 
  – – – – рядів Фур’є, 205 
  – – – – функціональних послідовностей,  
               114 
  – – – – функціональних рядів, 108, 111 
  – про почленний граничний перехід під 
знаком суми функціонального ряду, 107 
  – – – – – – –  границі функціональної 
послідовності, 107 
  –  Рімана, 37 
Точка розриву регулярна, 194 
 
Формула Валліса, 48 
  – Ейлера, 142 
  – обчислення радіуса збіжності 
степеневого ряду, 119 
  – Стірлінга, 128 
 
Часткова сума  
  – – функціонального ряду, 93 
  – – числового ряду, 6, 49 
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СПИСОК УМОВНИХ ПОЗНАЧЕНЬ 
 

 
def

  – позначення, яке слід читати так: «якщо за означенням…» або 
«називається за означенням…». 
def

  – рівність за означенням; величина, що визначається, стоїть у лівій частині 
рівності 
 – повторити 
 – означення 
■ – завершення доведення твердження чи розв’язання прикладу 
 – виконати завдання самостійно 
 – квантор існування 
  – квантор загальності 
  – логічна операція, кон’юнкція 
  – логічна операція, диз’юнкція 

, 
 

 – логічна імплікація  

  – логічна еквівалентність (рівносильність) 
  – множинна операція, об’єднання 
  – множинна операція, перетин  
 – символ належності елемента деякій множині 
  – порожня множина 
  – множина дійсних чисел 
  – множина цілих чисел 
  – множина раціональних чисел 
  – множина натуральних чисел 
  – зростаюча функція (послідовність) 
  – спадна функція (послідовність) 

nx a  – послідовність  nx  прямує (збігається) до a  

lim n
n

x a


  – границя послідовності  nx  дорівнює a  




1n
nx  – ряд із елементів nx  

зб. або збіг. – читається так: «ряд збігається» 
розб. – читається так: «ряд розбігається» 
абс. – читається так: «абсолютно» 
обм. – читається так: «обмежений(-а)» 
 



 

 244

Навчальне видання 
(українською мовою) 
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