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1. ВСТУП ДО АНАЛІЗУ 

 

1.1. Поняття та основні способи задання функції 

Певна величина у деякому процесі може набувати різних або однакових 

числових значень. У першому випадку величину називають змінною, у 

другому – сталою. Предметом математичного аналізу є дослідження змінних 

величин. Вивчаючи певне явище, дослідник здебільшого вивчає кілька змінних 

величин, які пов’язані між собою так, що зміна деяких з них приводить до 

зміни інших. Такий взаємозв’язок у математиці виражається за допомогою 

поняття функції, що ввів у практику наукових досліджень видатний математик 

Г.В. Лейбніц. 

Отже, поняття функції пов’язане з встановленням залежності між 

елементами двох множин. 

Якщо кожному числу x  з деякої числової множини X  за певним 

правилом поставлене у відповідність єдине число y , то кажуть, що y  є функція 

від x  і пишуть ( )y f x= , x X . 

Змінну x  називають незалежною змінною або аргументом, а змінну y  – 

залежною змінною або функцією. Під символом f  розуміють правило, за яким 

кожному значенню змінної x  ставиться у відповідність значення y , або 

операції, які потрібно виконати над аргументом x , щоб дістати відповідне 

значення функції y . Множину X  називають областю визначення функції. 

Множину Y  всіх чисел y , таких, що ( )y f x=  для кожного x X , називають 

множиною значень функції, тобто ( ) :Y y y f x x X= =   . Область 

визначення функції ( )y f x=  часто позначають ( )D y , або ( )D f , а множину 

значень функції – ( )E y , або ( )E f . 

Значення функції ( )y f x= , що відповідає значенню аргументу x a=  

позначають ( )f a . 

Приклад 1.1. Задано функцію ( )
1

1

x
y f x

x

+
= =

−
. Знайти ( )0f , ( )2f x , 

( )2 f x , ( )2
f x , ( )( )

2

f x , ( )1f x + , ( ) 1f x + . 

Розв’язання. ( )
0 1

0 1
0 1

f
+

= = −
−

, ( )
2 1

2
2 1

x
f x

x

+
=

−
, ( )

1 2 2
2 2

1 1

x x
f x

x x

+ +
=  =

− −
, 

( )
2

2

2

1

1

x
f x

x

+
=

−
, ( )( )

2 2
2

2

1 2 1

1 2 1

x x x
f x

x x x

+ + + 
= = 

− − + 
, ( )

( 1) 1 2
1

( 1) 1

x x
f x

x x

+ + +
+ = =

+ −
, 

( )
1 2

1 1
1 1

x x
f x

x x

+
+ = + =

− −
. 

Графіком функції ( )y f x=  називають множину всіх точок ( );x y  

координатної площини Oxy , для кожної з яких x  є значенням аргументу, а y  – 

відповідним значенням функції. 
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Наприклад, графіком функції 
2

y x=  є парабола з вершиною у початку 

координат, віссю симетрії Ox , гілки якої направлені вгору. Графік функції 
y x=  – це бісектриса першої та третьої чвертей координатної площини. 

Щоб задати функцію ( )y f x= , треба вказати її область визначення ( )D y , 

множину значень ( )E y  та правило f , за яким для довільного аргументу 

( )x D y  можна знайти відповідне йому значення функції ( )y E y . 

Найчастіше використовують три способи задання функції: аналітичний, 

табличний та графічний. 

При використанні аналітичного способу задання функції відповідність 

між аргументом та функцією задають у вигляді однієї або кількох формул 

(аналітичних виразів). Ці формули визначають, які дії потрібно виконати над 

значенням аргументу, щоб отримати відповідне значення функції. Якщо при 

цьому область визначення не вказується, то під нею розуміють область 

існування відповідного аналітичного виразу. Однією й тією ж формулою можна 

задавати різні функції, і, навпаки, одна й та сама функція на різних проміжках її 

області визначення може задаватися різними формулами. Так, функції 
2

y x= , 

 0;1x  та 
2

y x= ,  2; 4x  – це різні функції, бо вони мають різні області 

визначення. Функція 
2

3

2 1, 0;

2, 0

x x
y

x x

 + 
= 

+ 
 

визначена на всій числовій прямій, але для від’ємних та невід’ємних значень 

аргументу вона задається різними формулами. 

Областю існування функції можуть бути різноманітні множини: числова 

пряма, відрізок, відкритий інтервал, кілька відрізків або відкритих інтервалів, 

множина окремих точок тощо. 

Приклад 1.2. Знайти область визначення функції ( ) 41 3f x x x= − + − . 

Розв’язання. Оскільки у аналітичному виразі для функції ( )f x  присутні 

корені парної степені, то область його існування – це множина значень 

аргументу x , для якого підкореневі вирази є невід’ємними. Таким чином, 

отримуємо систему: 

 1 0, 1,
3 0. 3.
x x

x x
−  


−  

. 

Отже, ( )  1; 3D f = . 

Приклад 1.3. Знайти область визначення функції arcsin 1y x x= + − . 

Розв’язання. Оскільки arcsin x  визначений при  1;1x − , а 1x −  – при 

1x  , то аналітичний вираз arcsin 1x x+ −  визначений лише при значенні 

1x = , тобто ( )  1D y = . 
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Приклад 1.4. Залежність шляху s , пройденого тілом, що вільно падає з 

висоти H , від часу падіння t , 
2

2

gt
s =  є функцією ( )s s t= . Знайти область 

визначення цієї функції.  

Розв’язання. Оскільки змінна t  є часом, то 0t  . За умовою, шлях, 

пройдений тілом, дорівнює H . Розв’язуючи рівняння 
2

2

gt
H=  відносно змінної 

t , знаходимо, що час руху тіла 2HT
g

= . Отже, областю визначення функції 

( )s t  є відрізок  0;T , 2HT
g

= . Зауважимо, що аналітичний вираз 
2

2

gt
s = , 

який задає функцію ( )s s t= , є визначеним t R  . 

При графічному способі задання функції ( )y f x=  відповідність між 

змінними x  та y  задається за допомогою графіка. Графічним способом задання 

функції широко користуються при дослідженнях, пов’язаних з використанням 

таких самописних приладів, як барограф (для запису змін атмосферного тиску), 

осцилограф (для запису змін сили електричного струму або напруги), 

термограф (для запису змін температури повітря) тощо. Графіками широко 

користуються також для наочного геометричного зображення функцій, навіть 

якщо самі ці функції задані аналітичними виразами. 

Зауважимо, що в прямокутній системі координат Oxy  функцію визначає 

лише така крива, яку кожна пряма, що проходить через точку ( )x D y  

паралельно осі Oy , перетинає лише у одній точці. Це пояснюється тим, що при 

заданні функції кожному значенню x  з її області визначення відповідає єдине 

значення змінної y . 

Табличний спосіб задання функції полягає у тому, що відповідність між 

змінними x  та y  задається у вигляді таблиці. Він часто використовується при 

записі результатів експерименту, коли для певної сукупності значень аргументу 

1 2, ,..., nx x x  дослідним шляхом знаходять відповідні значення функції 

1 2, ,..., ny y y . 

Крім розглянутих, існують і інші способи задання функції. Так, функції, 

що є розв’язками складних математичних задач, можуть задаватися у вигляді 

комп’ютерних програм, що реалізують алгоритми розв’язання цих задач. 

Функцію можна задати також словесним описом залежності між змінними. 

Наприклад, функція Діріхле – це функція, що кожному раціональному значенню 

аргументу ставить у відповідність одиницю, а ірраціональному – нуль. 

Якщо функція задана рівнянням ( )y f x= , розв’язаним відносно залежної 

змінної y , то кажуть, що функція задана у явній формі або є явною. 

Під неявно заданою функцією розуміють функцію, задану у вигляді 

рівняння ( ), 0F x y = , не розв’язаного відносно залежної змінної. 
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Це рівняння задає функцію лише тоді, коли множина впорядкованих пар 

чисел ( ),x y , що є розв’язками даного рівняння, така, що будь-якому числу 
0x  у 

цій множині відповідає не більше однієї впорядкованої пари 
0 0( , )x y . Так, 

рівняння 4 3 2 0x y− + =  задає функцію, а рівняння 
2 2

16x y+ =  функцію не 

визначає, оскільки кожному значенню 
0x  відповідає дві впорядковані пари 

чисел: ( )2

0 0, 16x x−  та ( )2

0 0, 16x x− − . 

Довільну явно задану функцію ( )y f x=  можна записати як неявну 

рівнянням ( ) 0f x y− = , але неявну функцію не завжди можна записати у 

вигляді явної. Це пояснюється тим, що рівняння ( ), 0F x y =  не завжди можна 

розв’язати відносно y . 

Нехай задано дві функції ( ) ( ),x t y t = =  однієї незалежної змінної t , 

визначені на одному й тому ж числовому проміжку. Якщо функція ( )x t=  є 

строго монотонною, то вона має обернену функцію ( )t x=  . Тому змінну y  

можна розглядати як складену функцію змінної x : ( )( )y x=  . 

Функція задана у параметричній формі, якщо функціональна залежність 

між змінними x  та y  визначена у вигляді пари функцій ( ) ( ),x t y t = = . 

Допоміжну змінну t  називають при цьому параметром. 

Всяка функція, задана у параметричній формі, визначає на площині xOy  

деяку криву, проте не всяка крива на площині, задана у параметричній формі, 

визначає функцію. Наприклад, рівняння cosx t= , siny t= ,  0; 2t   

визначають на декартовій площині Oxy  коло з центром у початку координат та 

одиничним радіусом, проте вони не визначають функції, оскільки кожному 

значенню аргументу x  з відрізка  1;1−  на даному колі відповідають два 

значення змінної y . Відзначимо, що параметричні рівняння cosx t= , siny t= , 

 0;t  , що визначають на координатній площині верхнє півколо 
2 2

1x y+ = , 

0y  , визначають при цьому і функцію, задану у параметричній формі, 

оскільки тут кожному значенню x  відповідає єдине значення змінної y . 

Розглянемо функцію, областю визначення якої є множина натуральних 

чисел. Якщо кожному натуральному числу n  за яким-небудь правилом 

поставлено у відповідність певне дійсне число 
na , то говорять, що задано 

числову послідовність  na , або 
1 2, ,..., ,...na a a . Числа 

1 2, ,..., ,...na a a , з яких 

складається послідовність, називають членами послідовності, а вираз для 
na  – 

загальним членом послідовності. 
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Наприклад, послідовність з загальним членом 
1

na
n

=  має вигляд: 

1 1 1 1
1, , , ..., ,...

2 3n n

   
=   

   
. Якщо кожному натуральному числу n  поставити у 

відповідність його квадрат, то отримаємо послідовність  2
n , або 1, 4, 9, 16, …., 

2
n ,…. 

Отже, послідовність є функцією, визначеною на множині натуральних 

чисел. 

 

1.2. Елементарні функції 

 

До основних елементарних функцій відносяться наступні: 

1. Степенева функція y x


= . 

2. Показникова функція 
x

y a= , 0, 1a a  . 

3. Логарифмічна функція logay x= , 0, 1a a  . 

4. Тригонометричні функції siny x= , cosy x= , tgy x= , ctgy x= . 

5. Обернені тригонометричні функції arcsiny x= , arccosy x= , arctgy x= , 

arcctgy x= . 

Властивості вказаних основних елементарних функцій та їх графіки 

детально розглянуті у шкільному курсі алгебри та початків аналізу. 

Визначимо арифметичні операції над функціями. Нехай функція ( )y f x=  

визначена на множині A , а функція ( )y g x=  – на множині B  і при цьому 

переріз цих множин C A B=   . Тоді на множині C  можна визначити суму 

цих функцій ( ) ( )y f x g x= + , їх різницю ( ) ( )y f x g x= − , добуток 

( ) ( )y f x g x=  . За умови ( ) 0g x   x C   на множині C  визначено також 

частку функцій 
( )

( )

f x
y

g x
= . 

Над функціями виконують також операцію суперпозиції, або побудови 

складеної функції.  

Нехай функція ( )y f u=  визначена на множині A , а функція ( )u g x=  – 

на множині B , причому для кожного значення x B  відповідне значення 

( )u g x A=  . Тоді на множині B  визначена функція ( )( )y f g x= , яку 

називають складеною функцією змінної x , або суперпозицією функцій f  та g . 

Для складеної функції використовують позначення ( )( ) ( )( )y f g x f g x= = . 

Змінну ( )u g x=  функції ( )y f u=  називають проміжним аргументом або 

внутрішньою функцією, а змінну ( )y f u=  – зовнішньою функцією. 
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Наприклад, функція 
2

siny x=  є суперпозицією двох функцій – 

тригонометричної та степеневої. Тут зовнішня функція – siny u= , внутрішня 

функція – 
2

u x= . Складені функції можна утворювати за допомогою 

суперпозиції не лише двох, але й кількох функцій, наприклад, 

( )( )sin ln 2y x= + . 

Основні елементарні функції, а також функції, утворені шляхом 

виконання скінченого числа арифметичних операцій та утворення суперпозицій 

основних елементарних функцій, називають елементарними. 

Наприклад, функція ( )2

2
cos 4ln 3 2

x
y x e

x

 
= + + − 

 
 є елементарною. 

Функція Діріхле, описана у попередньому пункті, не є елементарною. Не є 

елементарними також функції 
1, 0;

sign x 0, 0;
1, 0.

x
y x

x


= = =

− 

.  

Елементарні функції поділяють на наступні класи. 

1. Функції виду ( ) 1

0 1 1...
n n

n nP x a x a x a x a
−

−= + + + + , де коефіцієнти 
0a , 

1a , …, 

na  є дійсними числами, називають цілими раціональними функціями, або 

многочленами (поліномами) степеня n . Многочлен першого степеня 

називають також лінійною функцією, а многочлен другого степеня – 

квадратичною функцією. 

2. Функції виду ( )
1

0 1 1

1

0 1 1

...

...

n n

n n

m m

m m

a x a x a x a
R x

b x b x b x b

−

−

−

−

+ + + +
=

+ + + +
, що є відношенням двох 

многочленів, називають дробовими раціональними функціями, або 

раціональними дробами. Сукупність многочленів та раціональних дробів 

утворює клас раціональних функцій. 

3. Функції, утворені за допомогою скінченного числа суперпозицій та 

арифметичних операцій над раціональними функціями і над степеневими 

функціями з дробовими показникам степеня, які не є раціональними, 

називають ірраціональними функціями. Наприклад, 3 5 2 1y x x= + + −  є 

ірраціональною функцією. Раціональні та ірраціональні функції називають 

алгебраїчними. 

4. Елементарні функції, які не є раціональними чи ірраціональними, називають 

трансцендентними функціями. Зокрема, до трансцендентних належать 

показникові, логарифмічні, тригонометричні та обернені тригонометричні 

функції. Наприклад, функції sin 2y x= , ( )2
ln 1y x= +  є трансцендентними. 

 

1.3. Основні характеристики функцій 

 

Функцію ( )y f x= , визначену на множині ( )D y , називають парною, 

якщо ( )x D y   ( )x D y−   та ( ) ( )f x f x− = . Функцію ( )y f x= , визначену на 
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множині ( )D y , називають непарною, якщо ( )x D y   ( )x D y−   та 

( ) ( )f x f x− = − . 

Наприклад, функції 
2

y x= , cosy x= , y x=  є парними, функції 
1

y
x

= , 

3
y x= , arcsiny x=  – непарними, а функції arccos y x= , lny x= , 

2
2y x x= −  є 

прикладами ні парних, ні непарних функцій. 

Графік парної функції є симетричним відносно осі Oy , а графік непарної 

функції симетричний відносно початку координат. 

Приклад 1.5. Дослідити на парність наступні функції: 1) ( ) cos
2

x
f x x= + ; 

2) ( )
1

ln
1

x
f x

x

+
=

−
; 3) ( ) 2

2 1

3

x
f x

x

+
=

+
. 

Розв’язання. Для дослідження функції на парність згідно означення 

необхідно спочатку перевірити умову симетричності області визначення 

функції відносно точки 0x = , а потім визначити ( )f x−  і порівняти його з 

( )f x . 

1) Функція ( ) cos
2

x
f x x= +  визначена на ( );− +  . Знайдемо ( )f x− : 

( ) ( )cos( ) cos
2 2

x x
f x x x f x

−
− = + − = + = . Оскільки ( ) ( )f x f x− = , функція є 

парною. 

2) Знайдемо область визначення функції ( )f x  з умови 
1

0
1

x

x

+


−
. 

Розв’язавши цю нерівність методом інтервалів, отримуємо ( ) ( )1;1D f = −  – 

інтервал, симетричний відносно початку координат.  

( ) ( )
1

1 1 1
ln ln ln

1 1 1

x x x
f x f x

x x x

−
− + + 

− = = = − = − 
+ − − 

. 

Отримана рівність свідчить, що ( )f x  є непарною функцією. 

3) Областю визначення ( )f x  є вся числова пряма. Знайдемо ( )f x− : 

( ) ( ) ( ) ( )2 2

2 ( ) 1 2 1
,

( ) 3 3

x x
f x f x f x f x

x x

 − + − +
− = =  − 

− + +
. 

Отримані нерівності свідчать, що ( )f x  – ні парна, ні непарна функція. 

Прикладом зростаючої на всій числовій прямій функції є ( ) 2 3f x x= + . 

Функція 
2

y x=  зростає на множині ( )1 0;D = +  , ця ж функція спадає на 

множині ( )2 ; 0D = − .  

Зростаючі, не зростаючі, спадні та неспадні на множині D  функції 

називають монотонними на цій множині. Зростаючі та спадні функції 

називають строго монотонними. 
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Функцію ( )y f x= , визначену на множині ( )D y , називають періодичною 

на цій множині, якщо існує таке число 0T  , що ( )x T D y+   і ( ) ( )f x T f x+ =  

( )x D y  . Це число називають періодом функції. 

Якщо число T  є періодом функції ( )y f x= , то її періодами є також числа 

виду kT , k Z . Далі під періодом функції розумітимемо найменший з її 

додатних періодів. Такий період називають основним.  

Прикладами періодичних функцій є тригонометричні функції siny x=  та 

cosy x= , період яких 2T = , tg y x=  та  ctg y x=  з періодом T = .  

Приклад 1.6. Нехай функція ( )y f x=  є періодичною з періодом T . 

Довести, що функція ( )y f ax b= + , 0a  , має період T
a

. 

Розв’язання. Оскільки T  є періодом функції ( )f x , то ( ) ( )f x T f x+ = . 

Знайдемо значення функції ( )y f ax b= +  при значенні аргументу 
T

x
a

+ : 

( ) ( )( ) ( )
T

f a x b f ax T b f ax b T f ax b
a

  
+ + = + + = + + = +  

  
. 

З останньої рівності випливає, що 
T

a
 є періодом функції ( )f ax b+ . 

З результату цього прикладу випливає, що для функцій ( )siny x = + , 

( )cosy x = +  період дорівнює 
2


, а для функцій ( )tgy x = +  та 

( )ctgy x = +  період дорівнює 



. 

 

1.4. Обернена функція 

 

Нехай задано функцію ( )y f x=  з областю визначення X  та множиною 

значень Y . Функція ( )f x  кожному значенню 
0x X  ставить у відповідність 

єдине значення 
0y Y . При цьому може виявитися, що різним значенням 

аргументу 
1x  і 

2x  відповідає одне й те ж значення функції 
1y . Будемо додатково 

вимагати, щоб функція ( )y f x=  різним значенням x  ставила у відповідність 

різні значення y . Тоді кожному значенню y Y  відповідатиме єдине значення 

x X , тобто можна визначити функцію ( )x y=  з областю визначення Y  і 

множиною значень X . 

Функція ( )x y=  є оберненою до функції ( )y f x= , якщо областю 

визначення функції   є множина значень функції f , множина значень функції 

  є областю визначення функції f , а кожному значенню змінної y Y  

відповідає єдине значення x X . 



10 

З цього означення випливає, що кожна з функцій ( )y f x=  і ( )x y=  

може бути названа прямою чи оберненою, тобто ці функції є взаємно 

оберненими. 

Щоб знайти функцію ( )x y= , обернену до функції ( )y f x= , достатньо 

розв’язати рівняння ( )y f x=  відносно змінної x  (якщо це можливо). Оскільки 

кожна точка ( );x y  кривої ( )y f x=  є одночасно точкою кривої ( )x y= , то 

графіки взаємно обернених функцій ( )y f x=  і ( )x y=  збігаються. Якщо у 

оберненій функції ( )x y=  незалежну змінну позначити через x , а залежну – 

через y , то замість функції ( )x y=  отримаємо функцію ( )y x= . Графіки 

взаємно обернених функцій ( )y f x=  та ( )y x=  є симетричними відносно 

прямої y x= . 

З означення оберненої функції випливає, що функція ( )y x= , x X , 

y Y , має обернену функцію тоді і тільки тоді, коли вона встановлює взаємно 

однозначну відповідність між множинами X  та Y , тобто кожному значенню 
x X  ставиться у відповідність єдине значення y Y , навпаки, кожному 

значенню y Y  відповідає єдине значення x X . Взаємно однозначну 

відповідність між областю визначення та множиною значень встановлюють 

строго монотонні функції. Так, для зростаючої на проміжку функції ( )y x  

( ) ( )1 2 1 2x x y x y x   , для функції, що строго спадає на деякому проміжку, 

( ) ( )1 2 1 2x x y x y x   . Таким чином, будь-яка строго монотонна на проміжку 

функція має на цьому проміжку обернену функцію. При цьому, якщо пряма 

функція строго зростає (спадає) на проміжку, то обернена їй функція також 

строго зростає (спадає) на цьому проміжку. 

Приклад 1.7. Знайти функцію, обернену до функції 3 5y x= + . 

Розв’язання. Функція 3 5y x= +  визначена та зростає на всій числовій 

прямій. Отже, обернена функція існує і також зростає на всій числовій прямій. 

Розв’язавши рівняння 3 5y x= +  відносно змінної x , отримуємо вираз для 

оберненої функції у вигляді 
5

3

y
x

−
= . Позначивши незалежну змінну через x , 

залежну – через y , отримаємо функцію 
5

3

x
y

−
= . 

 

1.5. Поняття границі функції 

 

Нехай функція ( )y f x=  визначена у деякому околі точки 
0x , можливо, 

окрім самої точки 
0x . Сформулюємо означення границі цієї функції у точці 

0x , 

вперше надане видатним французьким математиком О. Коші. 



11 

Число A  називають границею функції ( )f x  у точці 
0x  (при 

0x x→ ), якщо 

0   ( ) 0 :    00 x x  −     ( )f x A −  .  

Використовують запис: ( )
0

lim
x x

f x A
→

= . 

З означення випливає, що границею сталої величини є сама стала. Дійсно, 

якщо ( )f x C const= = , то ( ) 0f x C C C − = − =   0  . 

Приклад 1.8. Довести, що ( )
1

lim 3 5 2
x

x
→

− = − . 

Розв’язання. Візьмемо довільне 0  . Згідно з означенням границі 

функції ( )
1

lim 3 5 2
x

x
→

− = −  0   ( ) 0 :    0 1x  −     ( )3 5 2x − − −  . 

З нерівності ( )3 5 2 3 3x x − − −   −   випливає, що 1
3

x


−  . Вибравши 

( )
3


  = , отримаємо: : 0 1

3
x x


  −  =  виконується ( )3 5 2x − − −  , тобто, 

за означенням, ( )
1

lim 3 5 2
x

x
→

− = − . 

У означенні границі функції ( )
0

lim
x x

f x A
→

=  вважається, що 
0x x→  

довільним способом. Змінна x , прямуючи до 
0x , може залишатися весь час 

меншою за це число, більшою за 
0x , або коливатися навколо 

0x , набуваючи по 

черзі значень більших та менших за 
0x . Якщо існує ( )

0

lim
x x

f x A
→

= , то спосіб 

наближення змінної x  до 
0x  не має значення. Проте у деяких випадках 

значення границі функції залежить від способу наближення аргументу до 
0x , 

тому вводиться поняття односторонніх границь. 

Число 
1A  називають лівою границею функції ( )y f x=  у точці 

0x , якщо 

0   ( ) 0 :    ( )0 0;x x x −  ( ) 1f x A −  . Використовують 

позначення: ( )
0

1
0

lim
x x

f x A
→ −

=  або ( )0 10f x A− = . 

Аналогічно можна надати означення правої границі функції. Число 
2A  

називають правою границею функції ( )f x  у точці 
0x , якщо 0   ( ) 0 :    

( )0 0;x x x  +  ( ) 2f x A −  . Використовують запис: ( )
0

2
0

lim
x x

f x A
→ +

=  або 

( )0 20f x A+ = . 

Ліву та праву границі функції  ( )f x  у точці 
0x  називають 

односторонніми границями. 

Якщо існує ( )
0

lim
x x

f x A
→

= , то існують також ліва та права границі функції 

( )f x  у точці 
0x , причому вони співпадають та дорівнюють :A  

( ) ( )
0 00 0

lim lim
x x x x

f x f x A
→ − → +

= = . 
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Вірним є і обернене твердження: з існування та рівності односторонніх 

границь функції ( )f x  у точці 
0x  випливає існування ( )

0

lim
x x

f x A
→

= . 

Приклад 1.9. Знайти односторонні границі у точці 
0 0x =  функції  

( )
2

0, 0,

1, 0.

x
f x

x x


= 

+ 
 

Розв’язання. Знайдемо ліву границю ( )
0 0

lim
x

f x
→ −

. При 0x   маємо 

( )
0 0 0

lim lim0 0
x x

f x
→ − →

= = . Права границя ( ) ( )2

0
0 0

lim lim 1 1
x

x

f x x
→

→ +

= + = . 

Нехай функція ( )y f x=  визначена на всій числовій прямій. 

Число A  називають границею функції ( )y f x=  при x→, якщо 0   

( ) 0 :M    x M  ( )f x A −  . Використовують позначення ( )lim
x

f x A
→

= . 

З геометричної точки зору рівність ( )lim
x

f x A
→

=  означає, що для 

довільного додатного   існує додатне число M , таке, що при 

( ) ( ); ;x M M −  +  точки графіка функції ( )y f x=  знаходяться у смузі з 

шириною 2 : A y A −   + . 

Число 
1A  називають границею функції ( )y f x=  при x→+ , якщо 0   

( )1 0 :M    
1x M  ( ) 1f x A −  . 

Число 
2A  називають границею функції ( )y f x=  при x→− , якщо 

0   ( )2 0 :M    
2x M  ( ) 2f x A −  . 

Наприклад, lim arctg
2x

x


→+
= , lim arctg

2x
x



→−
= − .  

 

1.6. Нескінченно великі та нескінченно малі функції 

 

Функцію ( )y f x=  називають нескінченно великою при 
0x x→ , якщо 

0M   ( ) 0 :M   00 x x  −   ( )f x M . Використовують позначення: 

( )
0

lim
x x

f x
→

= , або ( )f x →  при 
0x x→ . 

Якщо ( )f x → , приймаючи лише додатні значення, то використовують 

позначення ( )
0

lim
x x

f x
→

= + , якщо ж ( )f x → , залишаючись весь час 

від’ємною, то ( )
0

lim
x x

f x
→

= − . 

Функцію ( )y f x=  називають нескінченно великою при x→, якщо 

0M   ( ) 0 :P M   x P  ( )f x M . Використовують позначення: 

( )lim
x

f x
→

=  , або ( )f x →  при x→.  



13 

Аналогічно випадку 
0x x→ , у залежності від знаку ( )f x  при x→, 

визначаються границі ( )lim
x

f x
→

= +  та ( )lim
x

f x
→

= − . 

Функцію ( )f x  називають нескінченно малою при 
0x x→  ( )x → , якщо 

( )
0

lim 0
x x

f x
→

=  ( )( )lim 0
x

f x
→

= .  

Умову  ( )
0

lim 0
x x

f x
→

=  можна записати у вигляді: 

( ) ( ) ( )
0

0lim 0 0 0 : 0
x x

f x x x f x    
→

=      −    . 

Використовуючи означення нескінченно малої величини, можна довести 

наступні основні властивості нескінченно малих величин. 

1. Сума скінченної кількості нескінченно малих величин є нескінченно 

малою. 

2. Добуток обмеженої функції на нескінченно малу є нескінченно малою. 

3. Добуток нескінченно малих величин є нескінченно малою. 

4. Частка від ділення нескінченно малої при 
0x x→  величини на функцію, 

що має границю, відмінну від нуля при 
0x x→ , є нескінченно малою. 

5. Якщо функція ( )x  є нескінченно малою, то обернена їй функція 
( )
1

x
 є 

нескінченно великою, і, навпаки, якщо ( )f x  є нескінченно великою, то 

( )
1

f x
 є нескінченно малою. 

Важливе значення при дослідженні властивостей границь функцій має 

наступна теорема.  

Теорема 1.1. Якщо функція ( )f x  при 
0x x→  має скінченну границю, що 

дорівнює A , то у деякому околі точки 
0x  її можна представити у вигляді суми 

числа A  та нескінченно малої при 
0x x→  функції, тобто 

( ) ( ) ( )
0

lim
x x

f x A f x A x
→

=  = + .  

Істинним є і обернене твердження. 

Теорема 1.2. Якщо функцію ( )f x  у деякому околі точки 
0x  можна 

представити у вигляді суми числа A  та нескінченно малої при 
0x x→  функції, 

то ( )
0

lim
x x

f x A
→

= . 

 

1.7. Основні властивості границь 

 

Використовуючи теорему 1.1 та властивості нескінченно малих функцій 

можна довести основні властивості границь. Наведемо ці властивості. 

Теорема 1.3. Границя суми (різниці) двох функцій дорівнює сумі 

(різниці) їх границь, якщо ці границі існують: 
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( ) ( )( ) ( ) ( )
0 0 0

lim lim lim
x x x x x x

f x g x f x g x
→ → →

 =  . 

Теорема 1.4. Границя добутку двох функцій дорівнює добутку цих 

границь, якщо вони існують:  

( ) ( )( ) ( ) ( )
0 0 0

lim lim lim
x x x x x x

f x g x f x g x
→ → →

 =   . 

Наслідок 1. Сталий множник можна виносити за знак границі: 

( )( ) ( )
0 0

lim lim
x x x x

C f x C f x
→ →

 =   . 

Наслідок 2. Якщо існує ( )
0

lim
x x

f x A
→

= , то для довільного натурального n  

існує ( )( )
0

lim
n

x x
f x

→
, при цьому 

( )( )
0

lim
n n

x x
f x A

→
= . 

Теорема 1.5. Границя відношення двох функцій дорівнює відношенню 

границь цих функцій, якщо вони існують, а границя знаменника відмінна від 

нуля:  

( )
( )

( )

( )
0

0

0

lim
lim

lim

x x

x x

x x

f xf x

g x g x

→

→

→

= , ( )
0

lim 0
x x

g x
→

  . 

Приклад 1.10. Знайти границю ( )3

1
lim 5 2 3
x

x x
→

+ + . 

Розв’язання. Використовуючи теорему 1.3 та наслідки з теореми 1.4, 

маємо: 

( ) ( ) ( )3 3

1 1 1 1

3 3

1 1

lim 5 2 3 lim 5 lim 2 lim3

5lim 2lim 3 5 1 2 1 3 10.

x x x x

x x

x x x x

x x

→ → → →

→ →

+ + = + + =

= + + =  +  + =
 

Приклад 1.11. Обчислити 
2

22

14 32
lim

6 8x

x x

x x→

+ −

− +
. 

Розв’язання. Безпосередньо застосувати теорему 1.5 про границю частки 

функцій для розв’язання цього прикладу неможливо, оскільки при 2x →  

границя знаменника 
22 6 2 8 0−  + = , тобто 2x =  – корінь знаменника. 

Безпосередньою підстановкою можна впевнитися, що 2 є також коренем 

чисельника.   

Для знаходження заданої границі розкладемо на множники чисельник та 

знаменник дробу під знаком границі. Отримаємо: 

( )( )
( )( )

2

2

16 214 32 16

6 8 2 4 4

x xx x x

x x x x x

+ −+ − +
= =

− + − − −
. 

Скорочення дробу на 2x −  тут є допустимим, оскільки 2x → , причому 

2.x  Таким чином, 
2

22 2

14 32 16 18
lim lim 9

6 8 4 2x x

x x x

x x x→ →

+ − +
= = = −

− + − −
. 
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При обчисленні даної границі ми зустрілися з випадком, коли підстановка 

0x  у вираз під знаком границі приводить до виразу виду 
0

0

 
 
 

, який для 

обчислення границі потрібно перетворити. При обчисленні границь, коли 

0x x→ , підстановка замість змінної x  числа 
0x  досить часто приводить до 

виразів виду 
0

0

 
 
 

, 
 

 
 

, ( )0  , ( ) − , ( )1 , ( )
0

 , ( )00 . Такі вирази 

називають невизначеностями, а перетворення цих виразів, що дозволяють 

обчислити границю – розкриттям невизначеностей. Метод знаходження тієї 

чи іншої границі вибираємо у залежності від типу невизначеності у даному 

конкретному випадку.   

Приклад 1.12. Обчислити 
2

2

2 3 1
lim

4 2 5x

x x

x x→

+ +

+ +
. 

Розв’язання. Безпосереднє застосування теореми 1.5 тут неможливе, 

оскільки при x→ чисельник та знаменник дробу є нескінченно великими, 

тобто маємо невизначеність 
 

 
 

. Поділимо чисельник та знаменник на x  у 

найбільшому степені, що присутній у запису дробу, тобто на 
2x . Отримаємо: 

2 2

2

2

3 1
2

2 3 1
lim lim

2 54 2 5
4

x x

x x x x

x x

x x

→ →

+ +
+ +

=
+ +

+ +

. 

Застосувавши теореми 1.5 та 1.3 та враховуючи, що функція, обернена 

нескінченно великій, є нескінченно малою (
2 2

3 2 1 5
lim lim lim lim 0
x x x xx x x x→ → → →

= = = = ), 

знаходимо, що шукана границя  
2

2

2 3 1 2 1
lim

4 2 5 4 2x

x x

x x→

+ +
= =

+ +
. 

Теорема 1.6 (теорема про границю проміжної функції). Нехай у 

деякому околі точки 
0x , крім, можливо, самої точки 

0x , визначені функції 

( )x , ( )f x  та ( )x  і виконуються нерівності 

( ) ( ) ( )x f x x   . 

Тоді, якщо функції ( )x  та ( )x  при 
0x x→  мають одну й ту ж границю 

( ) ( )
0 0

lim lim
x x x x

x x A 
→ →

= = , 

то цю ж границю має й функція ( )f x . 

Теорема 1.7 (теорема про граничний перехід у нерівностях). Якщо у 

деякому околі точки 
0x , крім, можливо, самої точки 

0x , виконується нерівність 

( ) 0f x   і існує границя ( )
0

lim
x x

f x b
→

= , то 0b  . 
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Наслідок. Якщо у деякому околі точки 
0x , крім, можливо самої цієї 

точки, виконується нерівність ( ) ( )f x x  і існують границі ( )
0

lim
x x

f x
→

 та 

( )
0

lim
x x

x
→

, то ( ) ( )
0 0

lim lim
x x x x

f x x
→ →

 .  

Теорема 1.8 (теорема про границю монотонної функції). Якщо функція 

( )f x  монотонна і обмежена при 
0x x  (при 

0x x ), то існує її ліва границя 

( ) ( )
0

0
0

lim 0
x x

f x f x
→ −

= −  (права границя ( ) ( )
0

0
0

lim 0
x x

f x f x
→ +

= + ).  

 

1.8. Важливі границі 

 

 

При обчисленні границь, що містять тригонометричні функції та 

зводяться до невизначності виду 
0

0

 
 
 

, часто використовують першу важливу 

границю: 

0

sin
lim 1
x

x

x→
= . 

Розглянемо приклади на використання першої важливої границі. 

Приклад 1.13. Обчислити границю 
0

sin
lim
x

kx

x→
, 0k  . 

Розв’язання. Помножимо чисельник та знаменник дробу під знаком 

границі на число 0k  . Отримаємо: 

0 0 0

sin sin sin
lim lim lim
x x x

kx k kx kx
k

x kx kx→ → →
= = . 

Зробимо заміну змінної t kx= . При 0x →  0t → . Тому, з врахуванням 

першої важливої границі, отримуємо:  

0 0

sin sin
lim lim 1
x t

kx t
k k k

x t→ →
= =  = . 

Таким чином, отримано формулу: 
0

sin
lim
x

kx
k

x→
= . 

Приклад 1.14. Обчислити границі: 1) 
20

1 cos
lim
x

x

x→

−
; 2) 

1

cos
2lim

1x

x

x



→ −
. 

Розв’язання. 1) 

2

2 20 0

2sin
1 cos 2lim lim

x x

x
x

x x→ →

−
= . Запишемо останню границю у 

вигляді 

2

2

20 0

2sin sin
2 2lim 2lim

x x

x x

x x→ →

 
 

=  
 
 

. Маємо 

2 2

0 0

sin sin
2 2lim lim

x x

x x

x x→ →

   
   

=   
   
   

. Оскільки, 
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за формулою, отриманою у прикладі 1.13, границя 
0

sin
12lim
2x

x

x→
=  (

1

2
k = ), то 

маємо: 
2

2
2

20 0

2sin sin
1 12 2lim 2 lim 2
2 2x x

x x

x x→ →

 
   

= =  =   
  

 

. 

2) Підставивши у чисельник та знаменник дробу 
cos

2
1

x

x



−
 значення 1x = , 

отримаємо невизначеність виду 
0

0

 
 
 

. При цьому під знаком границі присутня 

тригонометрична функція, тому для обчислення заданої границі доцільно 

використати першу важливу границю. Для цього спочатку зробимо заміну 

змінної 1 x t− = . Тоді при 1x →  0t → . Оскільки 1x t= − , то 

cos cos sin
2 2 2 2

x t t    
= − = 

 
. Підставивши у задану границю ці вирази, 

отримуємо: 
1 0

cos sin
2 2lim lim

1x t

x t

x t

 

→ →
=

−
. За формулою, отриманою у прикладі 1.13, 

остання границя дорівнює 
2


. 

Формулу 

( )
1

0

1
lim 1 lim 1

x

t

x t
t e

x→ →

 
+ = + = 

 
, 

де 2,718281...e   – основа натурального логарифму, називають другою 

важливою границею. 

Цю формулу використовують, коли при обчисленні границі мають справу 

з невизначеністю виду ( )1 . При обчисленні границь, пов’язаних з другою 

важливою границею, часто застосовують наступне твердження: якщо існують 

границі ( )
0

lim
x x

f x
→

та ( )
0

lim
x x

x
→

, причому ( )
0

lim 0
x x

f x
→

 , то існує також границя 

( )
( )

0

lim
x

x x
f x



→
, яка обчислюється за формулою: 

( )
( )

( )( )
( )

0

0 0

lim

lim lim
x x

x
x

x x x x
f x f x


 →

→ →
= . 

Приклад 1.15. Обчислити границю lim 1

x

x

k

x→

 
+ 

 
. 
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Розв’язання. Оскільки при x→ 0
k

x
→ , то ( )lim 1 1

x

x

k

x



→

 
+ = 

 
, тому для 

обчислення заданої границі використаємо другу важливу границю. Маємо 

1 1
lim 1 lim 1 lim 1

k
x x

k
k kx

k

x x x

k
e

x xx
k k



→ → →

 
         + = + = + =  
         

 

. 

Приклад 1.16. Обчислити границю 

1 5
2 1

lim
2 3

x

x

x

x

−

→

− 
 

+ 
. 

Розв’язання. Маємо невизначеність виду ( )1 , оскільки 
2 1

lim 1
2 3x

x

x→

−
=

+
, 

( )lim 1 5
x

x
→

− =  . Тип невизначеності обумовлює використання для розв’язання 

задачі другої важливої границі. Представимо дріб 
2 1

2 3

x

x

−

+
 у вигляді суми 

одиниці та нескінченно малої функції: 

2 1 2 1 4
1 1 1

2 3 2 3 2 3

x x

x x x

− −   
= + − = + −   

+ + +   
. 

Отже,  

( )
2 3 4

1 5 1 51 5
4 2 32 1 4 4

lim lim 1 lim 1
2 3 2 3 2 3

x
x xx

x

x x x

x

x x x

+  
− − − −−   

+  

→ → →

−         
= + − = + −        

+ + +        
. 

Запишемо останню границю у вигляді: 

( )

( )4 1 5
lim

2 3 4 2 3 2 31 5
4 2 3 44 4

lim 1 lim 1
2 3 2 3

x

x

x x xx
x

x xx x

→

 −
− + +     + − − − −    

+    

→ →

 
       + − = + −       + +       

 

. 

Знайдемо границю у основі степеня. Для цього виконаємо заміну змінної 

4

2 3
t

x
= −

+
. При x→ 0t → . Маємо: ( )

2 3

14

0

4
lim 1 lim 1

2 3

x

t

x t
t e

x

+ 
− 
 

→ →

  
+ − = + =  

+  
. 

Враховуючи, що 
( )4 1 5 20

lim 10
2 3 2x

x

x→

− −
= =

+
, остаточно отримуємо: 

1 5

102 1
lim

2 3

x

x

x
e

x

−

→

− 
= 

+ 
. 

Приклад 1.17. Обчислити границю 
( )

0

ln 1
lim
x

x

x→

+
. 
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Розв’язання. Запишемо вираз під знаком границі у вигляді 

( )
( )

1ln 1
ln 1 x

x
x

x

+
= + . За основною логарифмічною тотожністю, ( ) ( )

11
ln 1

1
xx

xx e
+

+ = . 

Отже, маємо: 

( ) ( ) ( )
1

1

0

1 lim ln 1ln 1 1

0 0
lim 1 lim

x
x

x
xx

x

x x
x e e e e→

++

→ →
+ = = = = . 

Звідси отримуємо, що 
( )

0

ln 1
lim 1
x

x

x→

+
= . Таким чином, ми отримали 

важливу формулу: 

( )
0

ln 1
lim 1
x

x

x→

+
= . 

У цій формулі виконаємо заміну ( )ln 1 x t+ = . При 0x →  0t → . Тоді 

1tx e= − . Формула набуває вигляду: 

0 0

0

1 1
lim 1 lim

1 11
lim

t ttt t

t

t

e ee

t t

→ →

→

= = =
− −−

. 

Звідси знаходимо формулу, що часто використовується при обчисленні 

границь від виразів, що містять показникові функції: 

0

1
lim 1

x

x

e

x→

−
= . 

 

1.9. Порівняння нескінченно малих функцій 

 

У п. 1.6 надано означення та розглянуті властивості нескінченно малих 

функцій.  Розглянемо їх порівняння. Дві нескінченно малі функції порівнюють 

між собою за допомогою дослідження їх відношення. Нехай ( )x  та ( )x  – 

нескінченно малі функції при 
0x x→ , тобто виконуються рівності: 

( ) ( )
0 0

lim lim 0
x x x x

x x 
→ →

= = . 

Функції ( )x  та ( )x  називають нескінченно малими одного порядку при 

0x x→ , якщо 
( )
( )0

lim 0,
x x

x
C C

x



→
=   . 

Функцію ( )x  називають нескінченно малою вищого порядку, ніж ( )x  

при 
0x x→ , якщо 

( )
( )0

lim 0
x x

x

x



→
= . 

Функцію ( )x  називають нескінченно малою нижчого порядку, ніж ( )x  

при 
0x x→ , якщо 

( )
( )0

lim
x x

x

x



→
= . 
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Функцію ( )x  називають нескінченно малою k -го порядку відносно 

( )x  при 
0x x→ , якщо 

( )
( )0

lim 0,
kx x

x
C C

x



→
=   . 

Нескінченно малі функції ( )x  та ( )x  називають непорівняними при 

0x x→ , якщо у точці 
0x  не існує границі їх відношення. 

У наведених означеннях замість 
0x x→  може розглядатися x→ .  

Розглянемо приклади порівняння нескінченно малих функцій. 

Прикладом нескінченно малих функцій одного порядку при 0x →  є 

функції ( ) sin 2x x =  та ( ) 4x x = , оскільки 
0 0

sin 2 1 sin 2 2 1
lim lim

4 4 4 2x x

x x

x x→ →
= = = . 

Функція tg sinx x−  є нескінченно малою третього порядку відносно x , 

оскільки 
30

tg sin 1
lim 0

2x

x x
const

x→

−
= =  . Функція ( )x x =  та ( )

1
sinx x

x
 =  є 

непорівняними між собою при 0x → , оскільки 
0 0

1
sin

1
lim limsin
x x

x
x

x x→ →
=  не існує.  

Нехай ( )x  та ( )x  є нескінченно малими при 
0x x→ . Якщо у околі 

точки 
0x  виконується нерівність ( ) ( )x c x   , де додатна стала величина, то 

пишуть: ( ) ( )( )x O x =  (читається: ( )x  є «О велике» від ( )x ). ( )x  та 

( )x  є нескінченно малими одного порядку, якщо при 
0x x→  ( ) ( )( )x O x =  і 

( ) ( )( )x O x = . 

Якщо при 
0x x→  ( )x  є нескінченно малою вищого порядку, ніж ( )x , 

тобто 
( )
( )0

lim 0
x x

x

x



→
= , то використовують запис ( ) ( )( )x o x =  (читається: ( )x  

є «о мале» від ( )x ).  

Символи «O » та «o » називають символами Ландау. 

Серед нескінченно малих функцій одного порядку важливе значення для 

практичних застосувань мають еквівалентні нескінченно малі. 

Функції ( )x  та ( )x , що є нескінченно малими при 
0x x→ ,  називають 

еквівалентними нескінченно малими, якщо 
( )
( )0

lim 1
x x

x

x



→
= . 

Використовують позначення ( ) ( )x x   При обчисленні границь 

використовують наступну теорему про еквівалентні нескінченно малі функції. 

Теорема 1.9. Нехай ( ) ( )1 2x x  , ( ) ( )1 2x x   при 
0x x→ . Тоді, якщо 

існує границя 
( )
( )0

1

1

lim
x x

x

x



→
 , то існує і границя 

( )
( )0

2

2

lim
x x

x

x



→
, причому ці границі рівні 

між собою. 
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Ця теорема дає змогу при знаходженні границі відношення двох заданих 

нескінченно малих функцій замінювати нескінченно малу функцію на 

еквівалентну їй нескінченно малу. При розв’язуванні задач часто 

використовуються наступні еквівалентні нескінченно малі величини. 

 

1. sin  , 0 →  6. 1e − , 0 →  

2. tg  , 0 →  7. 1 lna a − , 0 →  

3.arcsin  , 0 →  8. ( )ln 1  + , 0 →  

4. arctg  , 0 →  
9. ( )log 1

ln
a

a


+ , 0 →  

5. 
2

1 cos
2


− , 0 →  

10. ( )1 1
k

k + − , 0 →   

 

Теорема 1.10. Сума скінченного числа нескінченно малих функцій різних 

порядків еквівалентна доданку нижчого порядку. 

Розглянемо приклади використання еквівалентних нескінченно малих для 

обчислення границь. 

Приклад 1.18. Обчислити наступні границі:  

1) 
( )0

sin 2
lim

ln 1 3x

x

x→ +
; 2) 

240

lncos
lim

1 1x

x

x→ + −
. 

Розв’язання. 1) При 0x →  sin 2 2x x , ( )ln 1 3 3x x+ , тому отримуємо: 

( )0 0

sin 2 2 2
lim lim

ln 1 3 3 3x x

x x

x x→ →
= =

+
. 

2) При 0x →  ln cos 0x → , 24 1 1 0x+ − → .  Замінимо ці функції 

еквівалентними нескінченно малими: ( )( )
2

lncos ln 1 cos 1 cos 1
2

x
x x x= + − − − , 

2
24 1 1

4

x
x+ − . Тоді 

2

2240 0

lncos 12lim lim 4 2
21 1

4
x x

x
x

xx→ →

−
= = −  = −

+ −
. 

 

1.10. Неперервність функції у точці. Точки розриву 

 

Нехай функція ( )y f x=  визначена у точці 
0x  і у деякому околі цієї точки.  

Функцію ( )y f x=  називають неперервною у точці 
0x , якщо границя 

функції ( )f x  у цій точці дорівнює значенню функції у ній: 

( ) ( )
0

0lim
x x

f x f x
→

= . 

З означення випливає, що для неперервності функції у точці 
0x  

необхідним та достатнім є виконання наступних умов: 

1) ( )f x  визначена у точці 
0x , тобто ( )0f x ; 
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2) ( )
0 0

lim
x x

f x
→ −

 ; 

3) ( )
0 0

lim
x x

f x
→ +

 ; 

4) ( ) ( ) ( )
0 0

0
0 0

lim lim
x x x x

f x f x f x
→ − → +

= = .  

Запишемо рівність ( ) ( )
0

0lim
x x

f x f x
→

=  у вигляді: ( ) ( )( )
0

0lim 0
x x

f x f x
→

− = . 

Позначимо 
0x x x = − , ( ) ( )0y f x f x = − . Величину x  називають приростом 

аргументу у точці 
0x , y  – приростом функції у цій точці. Умова 

( ) ( )
0

0lim
x x

f x f x
→

=  є рівносильною умові 
0

lim 0
x

y
 →

 = . З цієї рівності випливає 

інше означення неперервності функції у точці.  

Функцію ( )y f x=  називають неперервною у точці 
0x , якщо нескінченно 

малому приросту аргументу 
0x x x = −  у цій точці відповідає нескінченно 

малий приріст функції ( ) ( )0y f x f x = − , тобто 
0

lim 0
x

y
 →

 = . 

Приклад 1.19. Дослідити на неперервність функцію siny x= . 

Розв’язання. Функція siny x= визначена x  . Нехай 
0x  – довільна 

точка числової прямої. Покажемо, що у цій точці нескінченно малому приросту 

аргументу 
0x x x = −  відповідає нескінченно малий приріст функції y . 

Оскільки 
0x x x= +  , то цей приріст 

( ) ( ) ( ) ( )

( )

0 0

0 0 0sin sin 2sin cos .
2 2

y f x f x f x x f x

x x
x x x x

 = − = +  − =

  
= +  − = + 

 

  

Тут для перетворення виразу для приросту функції застосовано відому 

формулу різниці синусів: sin sin 2sin cos
2 2

   
 

− +
− = . 

Знайдемо 
0

lim
x

y
 →

 : 

0
0 0

0 0
0

lim lim 2sin cos
2 2

2 lim sin cos 2 0 cos 0.
2 2

x x

x

x x
y x

x x
x x

 →  →

 →

    
 = + =  

  

    
= + =   =  

  

 

Отже, нескінченно малому приросту функції siny x=  у довільній точці 

числової прямої 
0x x=  відповідає нескінченно малий приріст аргументу y , 

тобто, за означенням, дана функція є неперервною на всій числовій прямій. 

Можна довести, що всі основні елементарні функції є неперервними у 

своїх областях визначення. 

Для функції ( )y f x= , неперервної у точці 
0x , виконується рівність 

( ) ( )
0

0lim
x x

f x f x
→

= . Запишемо цю рівність у вигляді: 
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( ) ( ) ( )
0 0

0lim lim
x x x x

f x f x f x
→ →

= = . 

З цієї рівності випливає, що при знаходженні границі неперервної функції 

( )f x  можна перейти до границі під знаком функції, тобто у функції ( )f x  

замість аргументу x можна підставити його граничне значення 
0x .  

Приклад 1.20. Обчислити 
0

1
limsin

2

x

x

e

x



→

 −
 

 
. 

Розв’язання. Оскільки функція siny x=  є неперервною у кожній точці 

числової прямої, то ( )( ) ( )( )
0 0

lim sin sin lim
x x x x

g x g x
→ →

= , тому отримуємо: 

0 0

0

1 1
limsin sin lim

2 2

1
sin lim sin 1 sin 1.

2 2 2

x x

x x

x

x

e e

x x

e

x

 

  

→ →

→

    − −
 =  =    

    

  −  
=   =  = =    

   

 

Точки, у яких порушується неперервність функції, називають точками 

розриву цієї функції.  

Якщо 
0x x=  – точка розриву функції ( )y f x= , то у ній не виконується 

хоча б одна з умов 1) – 4), що випливають з означення неперервності функції у 

точці. У залежності від того, яка з цих умов не виконується, розрізняють 

наступні типи точок розриву. 

1. Якщо ( )
0

lim
x x

f x A const
→

 = = , проте ( )0A f x , або функція ( )f x  не 

визначена у точці 
0x , то точку 

0x  називають точкою усувного розриву. У цьому 

випадку досить довизначити функцію у цій точці, поклавши ( ) ( )0 0 0f x f x=  , 

щоб отримати функцію, неперервну у точці 
0x .   

2. ( )
0

1
0

lim
x x

f x A const
→ −

 = = , ( )
0

2
0

lim
x x

f x A const
→ +

 = = , проте 
1 2A A . У 

цьому випадку точку 
0x  називають точкою розриву першого роду або точкою 

розриву типу стрибка. При цьому величину 
2 1A A = −  називають стрибком 

функції ( )f x  у точці 
0x . 

3. Хоча б одна з границь: ( )
0 0

lim
x x

f x
→ −

 або ( )
0 0

lim
x x

f x
→ +

 не існує, або 

дорівнює  . Точка 
0x  у цьому випадку називається  точкою розриву другого 

роду. 

Приклад 1.21. Знайти точки розриву вказаних функцій та визначити їх 

тип: 1) ( )
2

1, 2;

, 2.

x x
f x

x x

− 
= 


  2) ( )

sin
, 0;

2, 0.

x
x

f x x

x




= 
 =

  3) ( )
1

2
f x

x
=

−
.  
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Розв’язання. 1) Знайдемо ліву та праву границі функції ( )f x  у точці 

2x = . ( ) ( )
2 0 2 0

lim lim 1 1
x x

f x x
→ − → −

= − = , ( ) 2

2 0 2
lim lim 4

x x
f x x

→ + →
= = . 

Односторонні границі функції ( )f x  у точці 2x =  існують, вони 

скінченні, але не співпадають, тому  2x =  – точка розриву першого роду (типу 

стрибка). При цьому стрибок функції у цій точці 4 1 3 = − = . 

2) Тут у точці 0x =  існує ( )
0 0

sin
lim lim 1
x x

x
f x

x→ →
= = , проте він не дорівнює 

значенню функції у цій точці ( )0 2f = . Точка 0x =  є точкою усувного розриву 

функції ( )f x .  

3) При 2x =  функція ( )
1

2
f x

x
=

−
 не визначена. При цьому односторонні 

границі функції у цій точці є нескінченними:
2 0

1
lim

2x x→ −
= −

−
, 

2 0

1
lim

2x x→ +
= +

−
. 

Отже, точка 2x =  є точкою розриву другого роду. 

 

Запитання та завдання для самоконтролю до теми 1 

1. Сформулюйте означення функції. Наведіть приклади функцій. 

2. Наведіть означення області визначення та множини значення функції. 

3. Охарактеризуйте основні способи задання функції. 

4. Вкажіть основні елементарні функції. 

5. Побудуйте графіки наступних функцій:  

1) y ax b= + ; 2) 
2y ax bx c= + + ; 3) 

1
y

x
= ; 4) 

2

1
y

x
= ; 5) y x= ; 6) 3y x= ; 

7) siny x= ; 8) cosy x= ; 9) tgy x= ; 10) ctgy x= ; 11) arcsiny x= ; 

12) arccosy x= ; 13) arctgy x= ; 14) arcctgy x= ; 15) xy e= ; 16) 
1

3

x

y
 

=  
 

; 

17) lny x= ; 18) 0,1logy x= ; 19) shy x= ; 20) chy x= . 

6. Наведіть приклади складених функцій. 

7. Як класифікують елементарні функції? 

8. Надайте означення зростаючої та спадної функцій. 

9. Наведіть приклади монотонних функцій. 

10. Сформулюйте означення парної та непарної функцій. Наведіть 

приклади. 

11. Дослідіть на парність наступні функції:  

1) ( )2ln 1y x= + ; 2) 
3

1

2
y

x x
=

+
; 3) 

2 cos2x xy −= ; 4) sin 4y x= ; 5) 
2 1

4 2

x
y

x

−
=

+
; 

6) 2y x= − ; 7) ch2y x= . 

12. Вкажіть умову, при якій для функції існує обернена функція. Наведіть 

приклади. 
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13. Знайдіть функцію, обернену до функції 
3 2

1

x
y

x

+
=

−
. 

14. Знайдіть область визначення функцій:  

1) 2 6 8y x x= − + ; 2) 
2 1

arcsin
3

x
y

+
= ; 3) 

2
ln

5

x
y

x

−
=

−
; 4) 5

2

2 8

4

x
y

x

−
=

−
. 

15. За допомогою елементарних перетворень графіків основних 

елементарних функцій побудуйте графіки наступних функцій: 

1) 2sin 2
3

y x
 

= − 
 

; 2) ( )ln 2 5 1y x= − + ; 3) 2arccos2y x= . 

16. Які нескінченно малі величини називають еквівалентними? 

17. Обчисліть наступні границі:  

1) 
3 2

3

3 5 1
lim

9 4 3x

x x

x x→

+ −

− +
; 2) 

5 4

3

2 3 2
lim

1x

x x x

x→

− − +

+
; 3) 

2 2

4 3

2 5 7
lim

12 3 3 2x

x x

x x x→

+ −

+ + −
; 

4) 
3

21

1
lim

9 8 1x

x

x x→

−

− −
; 5) 

2

23

7 12
lim

2 3x

x x

x x→

− +

− −
; 6) 

31

1
lim

1x

x

x→

−

−
; 

7) ( )2 2lim 1 1
x

x x
→

+ − − ; 8) 
24 1

lim
1x

x

x→

+

+
; 9) 

sin3
lim

tg2x

x

x→
; 10) 

2sin
lim

1 cosx

x

x→ +
; 

11) 
20

arcsin 4
lim

3x

x

x x→ +
; 12) 

5 1
3 1

lim
3 3

x

x

x

x

−

→

− 
 

+ 
; 13) 

2
2

2

1
lim

2

x

x

x

x→

 +
 

+ 
; 14) 

( )0

5 1
lim

ln 1 2

x

x x→

−

+
; 

15) 
4 2

0
lim

5

x x

x

e e

x→

−
; 16) 

( )2

30

log 1 sin 4
lim

1 1x

x

x→

+

+ −
. 

18. Надайте означення функції, неперервної у точці. Наведіть приклади. 

19. Наведіть приклади функцій, що мають: а) точки розриву першого роду; 

б) точки розриву другого роду. 

20. Наведіть приклад функції, що має точку усувного розриву. 

21. Дослідіть на неперервність функцію 
1

1

1 5 x

y =

+

. 

22. Сформулюйте означення неперервності функції у точці через прирости 

аргументу та функції. 
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2. ПОХІДНА ТА ДИФЕРЕНЦІАЛ ФУНКЦІЇ ОДНІЄЇ ЗМІННОЇ 

 

2.1. Поняття похідної, її фізичний та геометричний зміст 

 

Диференціальне числення – це розділ математичного аналізу, у якому 

розглядається дослідження функцій за допомогою похідних та диференціалів. 

Загальні методи диференціального числення розроблено І.Ньютоном та 

Г.Лейбніцем наприкінці сімнадцятого століття, але лише у дев’ятнадцятому 

столітті О.Коші обґрунтував ці методи на основі теорії границь. Центральне 

поняття диференціального числення – похідна – широко використовується при 

розв’язуванні багатьох задач математики, фізики та інших наук. Якщо перебіг 

деякого процесу описується певною функцією, то його дослідження зводиться 

до вивчення властивостей цієї функції та її похідної. 

Нехай на деякому проміжку ( );a b  задано функцію ( )y f x= . Візьмемо 

будь-яку точку ( );x a b  і надамо x  довільного приросту x  так, щоб точка 

x x+   також належала проміжку ( );a b . Приріст функції при переході від точки 

x  до точки x x+  має вигляд: ( ) ( )y f x x f x = +  − .  

Похідною функції ( )y f x=  у точці x  називають границю відношення 

приросту функції y  у цій точці до приросту аргументу x , коли приріст 

аргументу прямує до нуля.  

Похідна функції ( )y f x=  у точці x  позначається одним з символів: y , 

dy

dx
, 

df

dx
, 

xy , ( )f x . 

Таким чином, за означенням похідної маємо: 

( )
( ) ( )

0 0
lim lim
x x

f x x f xy
f x

x x →  →

+  −
 = =

 
.    (2.1) 

Якщо у деякій точці x  границя (2.1) дорівнює  , то похідну у цій точці 

називають нескінченною. Якщо ця границя у деякій точці x  не існує, то у цій 

точці не існує і похідної ( )f x . Далі під похідною будемо розуміти скінченну 

похідну. 

Значення похідної функції ( )y f x=  у точці 
0x x=  позначається одним з 

символів: ( )0f x , ( )
0x x

f x
=

 , 
0x x

y
=

 , ( )0y x , 
( )0df x

dx
. 

Операцію знаходження похідної від функції ( )f x  називають 

диференціюванням цієї функції. 

Приклад 2.1. Знайти похідну функції 
3y x=  у довільній точці x  та у 

точці 2x = . 

Розв’язання. Надамо значенню x  приріст x  і знайдемо відповідний 

приріст функції 
3y x= : 
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( ) ( )

( ) ( ) ( )

3 23 3 2

3 2 33 2

3 3

3 3 .

y x x x x x x x x

x x x x x x x

 = +  − = +  +  +

+  − =  +  + 
 

Знайдемо відношення 
y

x




: 

( ) ( )
( )

2 32
223 3

3 3
x x x x xy

x x x x
x x

 +  + 
= = +  + 

 
. 

Знаходимо похідну ( )3y x
 = : 

( )( )22 2

0 0
lim lim 3 3 3
x x

y
y x x x x x

x →  →


 = = +  +  =


. 

Підставивши у отриманий загальний вираз для похідної ( ) 23y x x =  

значення 2x = , отримаємо ( ) 22 3 2 12y =  = .  

Розглянемо поняття односторонньої похідної. Односторонні похідні 

визначаються за допомогою односторонніх границь.  

Нехай функція ( )f x  визначена у околі точки x . Границю відношення 

приросту функції ( ) ( )y f x x f x = +  −  до приросту аргументу x , якщо 

0x →  і при цьому 0x  , називають правою похідною від функції ( )f x  у 

точці x і позначають ( )f x+
 : 

( )
( ) ( )

0 0
lim
x

f x x f x
f x

x
+

 → +

+  −
 =


.     (2.2) 

Нехай функція ( )f x  визначена у околі точки x . Границю відношення 

приросту функції ( ) ( )y f x x f x = +  −  до приросту аргументу x , якщо 

0x →  і при цьому 0x  , називають лівою похідною від функції ( )f x  у точці 

x і позначають ( )f x−
 : 

( )
( ) ( )

0 0
lim
x

f x x f x
f x

x
−

 → −

+  −
 =


.     (2.3) 

Якщо функція ( )f x  задана на відрізку  ,a b , то під похідною у точці 

x a=  розуміють праву похідну, а у точці x b=  – ліву. 

З означення похідної випливає, що похідна ( )f x  у точці 
0x x=  існує тоді 

і тільки тоді, коли у цій точці існують ліва та права похідні і вони рівні між 

собою: ( ) ( ) ( )0 0 0f x f x f x− +
  = = . Якщо ж ( ) ( )0 0f x f x− +

  , то похідна у цій точці 

не існує. Не існує похідної і у точках розриву функції ( )f x . 

Приклад 2.2. Довести, що функція y x=  не має похідної у точці 0x = . 

Розв’язання. Приріст функції y x=  у точці 0x = , що відповідає 

приросту аргументу x , 0 0y x x = +  − =  . Складемо відношення 
xy

x x


=

 
. 
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Це відношення дорівнює 1−  при 0x   і дорівнює 1 при 0x  . Тому границя 

0
lim
x

y

x →




 залежить від знаку x : вона дорівнює 1 при 0x   і  –1 при 0x  . 

Таким чином, у точці 0x =  існують односторонні похідні ( )0 1f− = −  та 

( )0 1f+ = , але ( ) ( )0 0f f− +
  . Це означає, що у точці 0x =  похідна функції y x=  

не існує. 

Функцію ( )y f x=  називають диференційовною у точці 
0x , якщо у цій 

точці вона має похідну ( )0f x . 

Функцію ( )y f x=  називають диференційовною на проміжку , якщо вона 

є диференційовною у кожній точці цього проміжку. 

Зв’язок між неперервністю функції у точці та її диференційовністю у цій 

точці встановлює наступна теорема. 

Теорема 2.1. Якщо функція ( )y f x=  є диференційовною у точці 
0x , то 

вона є неперервною у цій точці. 

Розглянемо фізичний зміст похідної. Він випливає з її означення та 

визначається тим, що похідна ( )f x  виражає миттєву швидкість зміни функції 

( )f x . Зокрема, похідна від шляху ( )s t , пройденого тілом, що рухається 

прямолінійно, за час t , дорівнює його миттєвій швидкості у момент часу t , 

тобто швидкість ( ) ( )v t s t= . У цьому полягає механічний зміст похідної.  

Отже, фізичний зміст похідної полягає у тому, що, коли функція ( )y f x=  

описує деякий фізичний процес, то похідна ( )y f x =  є швидкістю зміни цього 

процесу. Яку б залежність не відображала функція ( )y f x= , відношення 
y

x




 

можна розглядати як середню швидкість зміни цієї функції відносно аргументу 

x , а похідну ( )y f x =  – як миттєву швидкість зміни функції. Так, лінійна 

густина неоднорідного стержня – це похідна від його маси ( )m x  за довжиною 

x : ( ) ( )x m x = ; сила струму – це похідна від кількості електрики ( )Q t  за 

часом t : ( ) ( )J t Q t= ; теплоємність – це похідна від кількості теплоти ( )   за 

температурою  : ( )c  = . 

Розглянемо геометричний зміст похідної. Розглянемо задачу про 

побудову дотичної до графіка функції ( )y f x=  у точці з абсцисою 
0x . 

Спочатку визначимо поняття дотичної.  

Нехай 
0P  – точка графіка з координатами ( )( )0 0;x f x , а P  – точка цього ж 

графіка з координатами ( )( )0 0;x x f x x+  +  . Пряму, проведену через точки 
0P  

та P , називають січною графіка функції ( )y f x= .  

Якщо при довільному наближенні точки P  за графіком функції ( )y f x=  

до точки 
0P  січна 

0P P  наближається до певного граничного положення, то це 
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граничне положення січної називають дотичною до графіка функції ( )y f x=  у 

точці 
0P . 

Нехай дотична до графіка ( )y f x=  у точці 
0P  існує. Позначимо ( )P  кут, 

який утворює січна з додатним напрямом осі Ox , 
0  – кут, що утворений 

дотичною до графіка у точці 
0P  з додатним напрямом Ox . Тоді  

( )( )
( ) ( )0 0tg 

f x x f x
P

x


+  −
=


. 

Якщо ( )
2

P


   , то з неперервності функції tg x  і припущення про 

існування дотичної у точці 
0P  випливає, що ( )( ) 0

0
lim tg tg 
x

P 
 →

 = , тобто 

тангенс нахилу кута дотичної до графіка функції ( )y f x=  у точці 
0P  

визначається за формулою: 

( ) ( )
( )0 0

0 0
0

tg lim
x

f x x f x
f x

x


 →

+  −
= =


. 

Таким чином, геометричний зміст похідної функції ( )y f x=  у точці 

0x x=  полягає у тому, що значення ( )0f x  дорівнює тангенсу кута нахилу 

дотичної до графіка цієї функції, проведеної у точці з абсцисою 
0x x= , до 

додатного напряму осі Ox , тобто кутовому коефіцієнту цієї дотичної. При 

цьому рівняння дотичної до графіка ( )y f x=  у точці  
0P ( )( )0 0;x f x  має вигляд: 

( ) ( )( )0 0 0y f x f x x x− = − .     (2.4) 

Якщо похідна ( )0f x  додатна, то дотична до графіка функції утворює 

гострий кут з додатним напрямом осі Ox , якщо ж ( )0 0f x  , то цей кут – 

тупий. Якщо у точці 
0x  похідна ( )0f x  є нескінченною, то дотична до графіка 

( )y f x=  у цій точці паралельна осі Oy . У цьому випадку рівняння дотичної 

має вигляд: 
0x x= . 

Нормаллю до кривої називають пряму, що проходить перпендикулярно 

дотичній до цієї кривої через точку дотику. 

Оскільки добуток кутових коефіцієнтів двох перпендикулярних прямих 

дорівнює –1, то кутовий коефіцієнт нормалі до графіка функції ( )y f x= , 

проведеної у точці 
0P ( )( )0 0;x f x  дорівнює 

( )0

1

f x

−


, а відповідно рівняння цієї 

нормалі має вигляд: 

( )
( )

( )0 0

0

1
y f x x x

f x
− = − −


.     (2.5) 

Приклад 2.3. Записати рівняння дотичної та нормалі до графіка функції 
3y x=  у точці з абсцисою 

0 2x = . 
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Розв’язання. Значення ( )0f x  при 
0 2x =  знайдено у прикладі 2.1: 

( )2 12f  = , ( ) 32 2 8f = = . Підставивши ці значення у рівняння дотичної, 

отримаємо: ( )8 12 2y x− = − , або 12 16y x= − . Використовуючи (2.5), 

отримуємо рівняння нормалі: ( )
1

8 2
12

y x− = − − , або 
1 49

12 6
y x= − + . 

 

2.2. Правила диференціювання. Таблиця похідних 

 

Теорема 2.2. Якщо функції ( )u u x= , ( )v v x=  диференційовні у точці x , 

то їх сума, різниця, добуток та частка (частка за умови, що дільник ( ) 0v x  ) 

також диференційовні у цій точці, причому виконуються рівності: 

( )u v u v   =  ,      (2.6) 

( )uv u v uv  = + ,      (2.7) 

2

u u v uv

v v

  − 
= 

 
.      (2.8) 

Теорема 2.3. Якщо ( )y f x C= = , де C  – стале число, то  

( ) ( ) 0f x C  = = .      (2.9) 

Теорема 2.4. Сталий множник можна виносити за знак похідної, тобто 

( )( ) ( )C u x C u x  =  .     (2.10) 

Використовуючи означення та властивості похідної, отримаємо формули 

для похідних основних елементарних функцій.  

Знайдемо формулу похідної степеневої функції. 

( )
( )

0 0

1

0

1 1

lim lim

lim .

k

k k

k k

x x

k
k k

x

x

x x x x
y x x

x x

x
k

xxx k k x
x x

 →  →

−

 →

 
+ − +  −   = = =  =

 




=  =  = 


 

Тут ми використали еквівалентність нескінченно малих: при 0 →  

( )1 1
k

k + −  . Таким чином, маємо формулу: 

( ) 1k kx k x −
=  .      (2.11) 

Аналогічним чином отримаємо формули для похідних тригонометричних 

функцій: 
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( )
( )

0 0

0 0

2sin cos
sin sin 2 2

sin lim lim

sin
12

2 lim lim cos 2 cos cos .
2 2

x x

x x

x x
x

x x x
x

x x

x

x
x x x

x

 →  →

 →  →

    
+   +  −     = = =

 

 
    =  + =   = 
  

 

( )
( )

0 0

0 0

2sin sin
cos cos 2 2

cos lim lim

sin
12

2 lim lim sin 2 sin sin .
2 2

x x

x x

x x
x

x x x
x

x x

x

x
x x x

x

 →  →

 →  →

    
− +   +  −     = = =

 

 
    = −  + = −   = − 
  

 

Отже, ми отримали формули: 

( )sin cosx x =       (2.12) 

( )cos sinx x = − .      (2.13)  

При знаходженні цих похідних ми використали формулу, що є наслідком 

з першої важливої границі: 
0

sin
lim

k
k





→
= . 

Знайдемо похідні від функцій tg y x=  та ctg y x= . Для цього 

використаємо формулу (2.8) похідної частки функцій. 

( )
( ) ( ) 2 2

2 2 2

sin cos sin cossin cos sin 1
tg .

cos cos cos cos

x x x xx x x
x

x x x x

   −  +  = = = = 
 

 

( )
( ) ( ) 2 2

2 2 2

cos sin cos sincos sin cos 1
ctg .

sin sin sin sin

x x x xx x x
x

x x x x

   −  − −  = = = = − 
 

 

Таким чином, справедливими є формули: 

( ) 2

1
tg ,

cos
x

x
 =       (2.14) 

( ) 2

1
ctg .

sin
x

x
 = −       (2.15) 

Знайдемо похідну показникової функції 
xy e= : 

( )
0 0

1
lim lim 1 .

x x x x
x x x x

x x

e e e
e e e e

x x

+ 

 →  →

− −
= = =  =

 
 

Маємо формулу: 

( )x xe e

= .      (2.16) 
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Для отримання формули (2.16), ми використали отриману при вивченні 

другої важливої границі формули 
0

1
lim 1
x

e

→

−
= . Отриманий результат свідчить, 

що функція xy e=  при диференціюванні не змінюється. 

Похідну показникової функції загального вигляду xy a=  знайдемо 

аналогічно формулі (2.16), для чого використаємо рівність 
0

1
lim ln
x

a
a



→

−
= : 

( )
0 0

1
lim lim ln .

x x x x
x x x

x x

a a a
a a a a

x x

+ 

 →  →

− −
= = = 

 
 

Таким чином, вірною є рівність: 

( ) lnx xa a a

=  .     (2.17) 

Знайдемо похідну логарифмічних функцій lny x=  та logay x= . 

( )
( )

0 0 0 0

ln ln 1
ln ln 1

ln lim lim lim lim .
x x x x

x x x
x

x x x x x xx
x x x x x →  →  →  →

+     
+    +  −     = = = = =

   
Тут ми використали еквівалентність нескінченно малих: при 0 →  

( )ln 1 k k + . 

Для отримання похідної від функції logay x=  перейдемо у ній до 

натуральних логарифмів: 
ln

log
ln

a

x
y x

a
= = . Тоді за теоремою 2.4, виносячи 

сталий множник 
1

ln a
 за знак похідної,  отримуємо: 

( )
1

log
ln

a x
x a

 =      (2.18) 

Знайдемо похідну від складеної функції ( )( )y f x= . 

Теорема 2.5 (теорема про похідну складеної функції). Якщо функція 

( )u x=  має похідну 
xu  у точці x , а функція ( )y f u=  має похідну 

uy  у 

відповідній точці u , то складена функція ( )( )y f x=  має похідну 
xy  у точці x  

і при цьому виконується рівність  

x u xy y u  =  .      (2.19) 

Згідно з формулою (2.19) маємо таке правило диференціювання складеної 

функції: похідна складеної функції дорівнює добутку похідної цієї функції за 

проміжним аргументом на похідну від проміжного аргументу за кінцевим 

аргументом. Це правило залишається справедливим, коли складена функція має 

кілька проміжних аргументів. Наприклад, якщо ( )y f u= , ( )u v= , ( )v x= , то 

x u v xy y u v   =   . 
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При диференціюванні складених функцій потрібно чітко уявляти собі, яка 

з дій, що призводить до значення складеної функції, є останньою. Та величина, 

над якою виконується остання дія, приймається за проміжний аргумент. 

Приклад 2.4. Знайти похідні функцій: 1) 5lny x= ; 2) ( )
3

sin 3 2y x= + ; 3) 

2
5

tg x
y = . 

Розв’язання. 1) Для функції 5lny x=  останньою є дія піднесення до 

п’ятого степеня, тому проміжним аргументом є lnu x=  і 5y u= . За формулою 

(2.19) маємо: 

( )
4

4 4 1 5ln
5 ln 5lnu x

x
y y u u x x

x x
  =  =  =  = . 

2) Для функції ( )
3

sin 3 2y x= +  останньою операцією є знаходження 

синуса, тому проміжний аргумент ( )
3

3 2u x= + . Функція u  теж є складеною, 

тому виділимо її проміжний аргумент 3 2v x= + . Функція ( )y x  має вигляд: 

siny u= , 
3u v= , 3 2v x= + . 

Для похідної 
xy  маємо: 

( ) ( ) ( )

( ) ( ) ( ) ( )

3

2 3 22 3

sin 3 2

cos 3 3 9cos 3 2 9cos 3 2 3 2 .

x u v x u xv
y y u v u v x

u v v x x x

    =   =   + =

=   =  + = +  +

 

На практиці проміжні аргументи не записують, але похідні від них 

позначають штрихом. 

3) Знайдемо похідну складеної функції 
tg 2

5
x

y = .  

( ) ( ) ( ) ( )
tg 2

tg 2 tg 2 tg 2

2

tg 2 tg 2

2 2

1 5 1
5 5 tg 2 5 tg 2 2

cos 22 tg 2 2 tg 2

5 2 5
.

2 tg 2 cos 2 tg 2 cos 2

x
x x x

x x

x x x
xx x

x x x x

   =  =   =   =


= =

 

 

Тут ми використали похідну від v : ( )
1 1

2 2
1 1

2 2v
v

v v v
v

−
 

= = = 
 

.  

При достатній підготовці похідну знаходять зразу, не вводячи 

допоміжних позначень для похідних від проміжних аргументів. 

У різноманітних науково-технічних дослідженнях часто використовують 

так звані гіперболічні функції. Гіперболічним синусом sh x , гіперболічним 

косинусом ch x , гіперболічним тангенсом th x  та гіперболічним котангенсом 
cthx  називають функції, що визначаються за такими формулами: 

sh 
2

x xe e
x

−−
= , ch 

2

x xe e
x

−+
= , 

sh 
th 

ch 

x x

x x

x e e
x

x e e

−

−

−
= =

+
, 

ch 
cth 

sh 

x x

x x

x e e
x

x e e

−

−

+
= =

−
. 
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Функції sh x , ch x , th x визначені на всій числовій прямій, а функція cth x  

визначена для всіх дійсних 0x  . 

Похідні гіперболічних функцій можна визначити, використовуючи їх 

означення, а також основні формули диференціювання: 

( )sh ch x x = , ( )ch sh x x = , ( ) 2

1
th 

ch
x

x
 = , ( ) 2

1
cth 

sh
x

x
 = − . (2.20) 

 

2.3. Похідна оберненої функції. Диференціювання обернених 

тригонометричних функцій 

 

Нехай ( )y f x=  та ( )x y=  – пара взаємно обернених функцій. 

Сформулюємо теорему про зв’язок між похідними цих функцій. 

Теорема 2.6 (теорема про похідну оберненої функції). Якщо функція 

( )y f x=  є строго монотонною на проміжку ( );a b і має у довільній точці x  

цього проміжку відмінну від нуля похідну ( )f x , то обернена їй функція 

( )x y=  також має похідну у відповідній точці ті при цьому похідна оберненої 

функції  

( )
( )
1

y
f x

 =


.     (2.21) 

Теорема 2.6 дає можливість отримати похідні обернених 

тригонометричних функцій. 

Отримаємо формулу для похідної функції arcsiny x= . Ця функція, 

визначена на відрізку  1;1− , є оберненою до функції sinx y= , ;
2 2

y
  

 − 
 

. 

Оскільки на інтервалі ;
2 2

  
− 
 

 функція sinx y=  монотонно зростає і її похідна 

( )sin cos 0y y
x y y = =   ;

2 2
y

  
  − 

 
, то всі умови теореми 2.6 виконуються і 

можна скористатися формулою (2.21) : 

2 2

1 1 1 1

cos 1 sin 1
x

y

y
x y y x

 = = = =
 − −

. 

Для отримання похідної функції arccosy x=  використаємо тотожність: 

arcsin arccos
2

x x


+ = . 

Диференціюючи цю тотожність, маємо: ( )arcsin arccos 0x x + = . Звідси 

випливає, що ( ) ( )
2

1
arccos arcsin

1
x x

x

 = − = −
−

. 
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Функція arctg y x=  є оберненою для функції tg x y= , де ;
2 2

y
  

 − 
 

. На 

цьому проміжку tg x y=  монотонно зростає і 
2

1
0

cos
yx

y
 =  , тобто умови 

теореми 2.6 виконані. Застосуємо цю теорему: 

2

2 2

1 1 1
cos

1 tg 1
x

y

y y
x y x

 = = = =
 + +

. 

Похідну функції arcctg y x=  знайдемо, використовуючи тотожність  

arctg arcctg 
2

x x


+ = . 

Знайдемо похідні від її обох частин. Маємо ( ) ( )arctg arcctg 0x x + = . 

Звідси знаходимо, що ( ) ( ) 2

1
arcctg arctg 

1
x x

x
 = − = −

+
. 

Таким чином, ми отримали формули для похідних обернених 

тригонометричних функцій: 

( )
2

1
arcsin

1
x

x

 =
−

,     (2.22) 

( )
2

1
arccos

1
x

x

 = −
−

,     (2.23) 

( ) 2

1
arctg 

1
x

x
 =

+
,      (2.24) 

( ) 2

1
arcctg 

1
x

x
 = −

+
.     (2.25) 

 

2.4. Таблиця похідних. Приклади застосування основних формул 

диференціювання 

 

У попередніх пунктах ми отримали формули, які дають змогу 

обчислювати похідні, не користуючись означенням похідної, тобто 

диференціювати довільні елементарні функції без застосування теорії границь. 

Для цього досить використання отриманих раніше формул для похідних суми, 

різниці, добутку та частки функцій, формул диференціювання складеної та 

оберненої функцій, а також похідних основних елементарних функцій. 

Наведемо таблицю цих похідних. Тут вважатимемо, що функції, які 

диференціюються, є складеними, тобто їх аргумент u  є проміжним: ( )u u x= . 

Таблиця похідних основних елементарних функцій 

1. 0, constC C = = . 

2. ( ) 1

2
u u

u


=  . 
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3. ( ) 1 ,k ku k u u k− =    . 

4. ( ) lnu ua a a u
 =   , 0, 1a a  . 

5. ( )u ue e u
 =  . 

6. ( )
1

log
ln

a u u
a u

 =  , 0, 1a a  . 

7. ( )
1

lnu u
u

 =  . 

8. ( )sin cosu u u =  . 

9. ( )cos sinu u u = −  . 

10. ( ) 2

1
tg 

cos
u u

u
 =  . 

11.( ) 2

1
ctg 

sin
u u

u
 = −  . 

12. ( )sh ch u u u =  . 

13. ( )ch sh u u u =  . 

14. ( ) 2

1
th 

ch
u u

u
 =  . 

15. ( ) 2

1
cth 

sh
u u

u
 = −  . 

16. ( )
2

1
arcsin

1
u u

u

 = 
−

. 

17. ( )
2

1
arccos

1
u u

u

 = − 
−

. 

18. ( ) 2

1
arctg 

1
u u

u
 = 

+
. 

19. ( ) 2

1
arcctg 

1
u u

u
 = − 

+
.  

 

Розглянемо приклади застосування основних правил диференціювання, а 

також наведеної таблиці похідних основних елементарних функцій. 

Приклад 2.5. Знайти похідні наступних функцій:  

1) 2cos 1y x= − ; 2)
2

3

ln x
y

x
= ; 3) arctg 2 arcsin2y x x= + − ; 

4)
sin 3 cos 22 x xy += ;  5) ( )

3
3 1 sh 5y x x= − . 

Розв’язання. 1) Знайдемо похідну складеної функції 2cos 1y x= − .  
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( ) ( )
1 2sin sin

2cos 1 2cos 1 .
2 2cos 1 2 2cos 1 2cos 1

x x
x x

x x x

 − =  − = − = −
− − −

 

2) Похідну функції 
2

3

ln x
y

x
=  знаходимо за формулою похідної 

частки:  

( ) ( )

( )

( ) ( )

3 2 2
2 3 2 32

23 63

2

6 4

1
2ln 3 lnln lnln

ln 2 3ln ln 2 3ln
.

x x x xx x x xx x

x xx

x x x x x

x x

    −  −  
= = = 

 

−  −
= =

 

3) Для обчислення похідної функції arctg 2 arcsin2y x x= + −  

застосуємо формули похідної різниці функцій та похідної складеної 

функції: 

( )
( )

( )

( )
( )

( )

2

2 2

1
arctg 2 arcsin 2 2

1 2

1 1 2
2 .

2 2 3 1 41 2

x x x
x

x
x x xx

 
+ − =  + −

+ +

−  = −
+  + −−

 

4) Обчислимо похідну складеної функції sin 3 cos 22 x xy += : 

( ) ( )

( )

sin3 cos 2 sin3 cos 2

sin3 cos 2

2 ln 2 2 sin3 cos2

ln 2 2 3cos3 2sin 2 .

x x x x

x x

x x

x x

+ +

+

 =   + =

=   −

 

5) Знайдемо похідну функції ( )
3

3 1 sh 5y x x= −  як похідну добутку 

функцій: 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

3 3 3

2 3 2

3 2

3 1 sh 5 3 1  sh5 3 1 sh 5

3 3 1 3 sh 5 3 1 5ch 5 9 3 1 sh 5

5 3 1 ch 5 3 1 9sh 5 5 3 1  ch5 .

x x x x x x

x x x x x x

x x x x x x

  − = −  + −  =

=  −   + −  = −  +

+ − = −  + −

 

 

2.5. Диференціювання функцій 

 

Отримаємо формулу для знаходження похідної функції ( )y y x= , заданої 

у параметричній формі, тобто у вигляді рівнянь ( )x x t= , ( )y y t=  при заданому 

проміжку зміни допоміжної змінної (параметра) t : t   . Будемо вважати, 

що функції ( )x t  та ( )y t  мають похідні 
tx та 

ty , причому функція ( )x t  має 
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обернену функцію ( )t x= . За правилом диференціювання оберненої функції 

1
x

t

t
x

 =

. 

Функцію ( )y y x= , задану параметричними рівняннями ( )x x t= , ( )y y t= , 

розглянемо як складену функцію ( )y y t= , де ( )t x= . Тоді, за правилом 

диференціювання складеної функції, отримаємо: 
1

x t x t

t

y y t y
x

   =  = 

. 

Таким чином, ми отримали формулу диференціювання функції, заданої у 

параметричній формі: 

t
x

t

y
y

x


 =


.      (2.26) 

Формула (2.26) дозволяє знаходити похідну 
xy , функції, заданої у 

параметричній формі, без безпосереднього знаходження залежності ( )y y x= . 

Приклад 2.6. Знайти похідну 
xy  функції 

cos ,

sin

x t

y t

=


=
 у точці, що відповідає  

значенню параметра 
4

t = . 

Розв’язання. Для застосування формули (2.26) знайдемо похідні 
tx та 

ty : 

sintx t = − , costy t = . Тоді, за формулою (2.26), 
cos

ctg 
sin

t
x

t

y t
y t

x t


 = = − = −


. При 

значенні параметра 
4

t =   ctg 1
4

xy


 = − = − .  

Альтернативний шлях отримання похідної 
xy  полягає у знаходженні 

залежності ( )y y x=  у явному вигляді та подальшому диференціюванні y  за 

змінною x . Щоб знайти залежність ( )y y x= , з параметричних рівнянь функції 

cosx t= , siny t=  виключимо параметр t : 

2 2 2 2 2cos sin 1 1x y t t y x+ = + =  =  − . 

Отже, задані параметричні рівняння визначають на площині коло з 

центром у початку координат одиничного радіуса. У околі значення  
4

t =  

0y  , тому параметричні рівняння тут визначають функцію 21y x= − . При 

4
t =  

2
cos

4 2
x


= = . ( )2

2
1

1
x

x
y x

x


 = − = −

−
. При значенні 

2

2
x =  

отримуємо 
2

2 2
2 2 2 1

12
2 21

2

xy
 
 = − = − = − 
   

−  
 

. 
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Нехай функція ( )y y x=  задана у неявній формі, тобто у вигляді рівняння 

( ), 0F x y = . Для знаходження похідної 
xy  немає необхідності виражати з цього 

рівняння змінну y  через x  у явному вигляді ( )y f x= . Достатньо про 

диференціювати рівняння ( ), 0F x y =  за змінною x , вважаючи при цьому 

змінну y  функцією x , і з отриманого рівняння знайти 
xy . При цьому похідна 

xy  виражатиметься через змінні x  та y . 

Приклад 2.7. Знайти похідну функції ( )y x , заданої у неявному вигляді 

рівнянням 5 4 2 33 1 0x y x y+ − + = . 

Розв’язання. Продиференціюємо задане рівняння за змінною x , 

вважаючи при цьому y функцією змінної x : 
4 3 3 2 25 4 6 9 0x y y xy x y y +  − −  =  

З цього рівняння знаходимо y : 
3 4

3 2 2

6 5

4 9

xy x
y

y x y

−
 =

−
. 

 

2.6. Логарифмічне диференціювання. Похідна показниково-

степеневої функції 

 

У багатьох випадках для знаходження похідної задану функцію доцільно 

спочатку прологарифмувати, а потім продиференціювати отриманий результат. 

Таку операцію називають логарифмічним диференціюванням.   

Якщо ( )y f x= , то ( )( )ln lny f x= . Тоді ( ) ( )( )( )ln lny f x
 = , тобто маємо: 

( )( )( )ln
y

f x
y

 
= . Звідси ( )( )( ) ( )( )( ) ( )ln lny f x y f x f x

 
 =  =  . Вираз 

y

y


 

називають логарифмічною похідною функції ( )y x . 

Приклад 2.8. Знайти похідну функції 
( ) ( )

( )

32 4

3

2 1

5

xx x e
y

x

+  − 
=

+
. 

Розв’язання. Знаходити похідну y  за формулою похідної частки тут 

недоцільно з-за складності аналітичного виразу для ( )y x . Знайдемо спочатку 

логарифмічну похідну функції ( )y x . Для цього прологарифмуємо задану 

функцію: 

( ) ( ) ( )2 3
ln ln 2 ln 1 3ln 5

4
y x x x x= + + − + − + . 

Диференціюючи за x  обидві частини цієї рівності, маємо: 

( )2

2 3 3
1

2 4 1 5

y x

y x x x


= + + −

+ − +
. 

Звідси знаходимо похідну y : 
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( )

( )

( ) ( )

( )

2

32 4

32

2 3 3
1

2 4 1 5

2 12 3 3
1 .

2 4 1 5 5

x

x
y y

x x x

x x ex

x x x x

 
 = + + −  = 

+ − + 

 +  −  
 = + + −  
 + − + + 
 

 

Функцію ( )( )
( )v x

y u x=  називають показниково-степеневою функцією.  

Для знаходження похідної цієї функції використовують логарифмічне 

диференціювання. Маємо: ( ) ( )( ) ( ) ( ) ( )( )( )ln ln , ln lny v x u x y v x u x
=  =  , 

y

y


= ln

v u
v u

u


 + . Звідси ln ln vv u v u

y v u y v u u
u u

     
  = +  = +    

   
. Останню 

формулу запишемо у вигляді: 
1ln v vy v u u v u u−  =   +   .    (2.27) 

З формули (2.27) випливає, що похідна показниково-степеневої функції 

дорівнює сумі її похідної як показникової та степеневої функцій. 

Приклад 2.9. Знайти похідну функції ( )
3 2

sin
x

y x
−

= . 

Розв’язання. Для знаходження похідної y  використаємо логарифмічне 

диференціювання. ( )3ln 2 lnsiny x x= − . Диференціюючи цю рівність, 

отримуємо: 

( ) ( )( )

( )( ) ( )
3

2 3 2 3

22 3

cos
3 lnsin 2 3 lnsin 2 ctg 

sin

3 lnsin 2 ctg sin .
x

y x
x x x y x x x x y

y x

x x x x x
−


=  + −   =  + −   =

=  + −  

 

 

2.7. Похідні вищих порядків 

 

Похідна функції ( )y f x=  ( )y f x = теж є функцією змінної x , тому 

можна розглядати задачу знаходження похідної цієї функції. Якщо функція 

( )y f x =  є диференційовною, то її похідну називають похідною другого 

порядку функції ( )y f x=  і позначають ( )y x  або 
2

2

d y

dx
. Отже, ( ) ( )( )y x y x  = . 

Похідну від похідної другого порядку функції ( )y f x=  називають її третьою 

похідною або похідною третього порядку та позначають ( )y x . Таким чином, 

( ) ( )( )y x y x  = . Аналогічно можна визначити похідну довільного n -го 
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порядку як похідну від похідної ( )1n − -го порядку. Для похідної n -го порядку 

використовують позначення 
( ) ( )n

y x  або 
n

n

d y

dx
. 

Похідною n -го порядку або n -ою похідною функції ( )y f x=  називають 

похідну від похідної ( )1n − -го порядку цієї функції, тобто 

( ) ( ) ( ) ( )( )1n n
y x y x

− 
= .     (2.28) 

Похідні порядків, вищих, ніж перший, називають похідними вищих 

порядків. 

Приклад 2.10. Знайти похідну третього порядку від функції 
5 23 2 7y x x= + + . 

Розв’язання. Послідовно диференціюючи задану функцію, знаходимо її 

першу, другу та третю похідні: 

( )5 2 43 2 7 15 4y x x x x
 = + + = + , ( ) ( )4 315 4 60 4y y x x x

 = = + = + , 

( ) ( )3 260 4 180y y x x
 = = + = . 

Наведемо формули для похідних n -го порядку деяких елементарних 

функцій. 

1. ( )
( )

( )( ) ( )1 2 ... 1
n

m m nx m m m m n x −= − −   − + .   (2.29) 

2. ( )
( )

ln
n

x x na a a=  .       (2.30) 

3. ( )
( )n

x xe e= .         (2.31)  

4. ( )
( )

sin sin
2

n n
x x

 
= + 

 
.      (2.32) 

5. ( )
( )

cos cos
2

n n
x x

 
= + 

 
.      (2.33) 

6. ( )
( ) ( ) ( )

1
1 1 !

ln

n

n

n

n
x

x

−
−  −

= .      (2.34) 

Для знаходження похідної n -го порядку добутку функцій ( )u x  та ( )v x  

використовують формулу Лейбніца: 

( )
( ) ( ) ( ) ( ) ( )1 21

...
2!

n n n nn n
u v u v nu v u v

− −−
  = + + +

 

( )( ) ( ) ( ) ( ) ( )1 2 ... 1
... .

!

n k k nn n n n k
u v uv

k

−− − − +
+ + +   (2.35) 

Приклад 2.12. Знайти похідну 
( )25

y  функції 
2 siny x x= . 
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Розв’язання. Застосуємо формулу Лейбніца (2.35). Для цього виберемо 

sinu x= , 2v x= . 2v x = , 2v = . При 2k   ( )
0

k
v = . Тому маємо: 

( )
( ) ( ) ( ) ( )25 25 24 2325 24

25
2!

uv u v u v u v


 = + + . 

Враховуючи, що за формулою (2.32) маємо похідні: 

( )
( )23 23 3

sin sin sin cos
2 2

x x x x
    

= + = + = −   
   

, 

( )
( )

( )
( )( ) ( )

24 23
sin sin cos sinx x x x

 = = − = ,  

( )
( )

( )
( )( ) ( )

25 24
sin sin sin cosx x x x

 = = = ,  

отримаємо ( )25 2cos 50sin 600cosy x x x x x=  +  − . 

Нехай функція ( )y y x=  задана у неявній формі у вигляді рівняння 

( ), 0F x y = . Диференціюючи це рівняння за x , знаходимо з отриманої рівності 

першу похідну ( )y x . Щоб знайти другу похідну, потрібно продиференціювати 

за x  першу похідну і у отримане співвідношення підставити знайдене перед 

цим значення ( )y x . Продовжуючи диференціювання, можна послідовно 

знайти похідні будь-якого порядку. Всі вони будуть виражені через незалежну 

змінну x  і функцію y . 

Приклад 2.13. Знайти ( )y x , якщо 3 4 0x y y+ − = . 

Розв’язання. Продиференціюємо рівняння 3 4 0x y y+ − =  за змінною x . 

Отримаємо: 
2 33 4 0x y y y +  − = . 

Звідси знаходимо 
2 2

3 3

3 3

4 1 1 4

x x
y

y y
 = − =

− −
. Диференціюючи отриманий 

вираз для y  за x , маємо: 

( ) ( )

( )

( )

( )

2
3 2 2 3 4 2

2 3
3 3

6 1 4 3 12 6 1 4 108

1 4 1 4

x y x y y x y x y
y

y y

− − −  − +
 = =

− −
. 

Нехай функція ( )y x  задана у параметричній формі рівняннями ( )x x t= , 

( )y y t= , де параметр  ;t   . Якщо функції ( )x t  та ( )y t  мають перші 

похідні, причому ( )  0, ;x t t     , а ( )x t  – строго монотонна функція, то 

першу похідну 
xy  знаходять за формулою t

x

t

y
y

x


 =


.  

Якщо функції ( )x t  та ( )y t  мають похідні другого порядку, то можна 

знайти другу похідну від y  за x : 
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( )

2

32

1 1
.t tt t t tt

t t t tt t

d y dy y y x y x

dx dx x x x x

       −  
=  =  =  

      
 

Аналогічно можна знайти похідну будь-якого порядку n , 2 :n   

1

1

1n n

n n

tt

d y d y

dx dx x

−

−

 
=  

 
.     (2.36) 

Приклад 2.14. Знайти ( )y x , якщо cosx t= , siny t= , 0;
2

t
 

 
 

. 

Розв’язання. У прикладі 2.6 знайдено, що 
cos

ctg
sin

t
x

t

y t
y t

x t


 = = − = −


. Другу 

похідну 
xxy  знайдемо за формулою (2.36): 

( )
( )

( )2 3

1 1 1

sin sin sin

x t
xx

t

y
y y x

x t t t


 = = =  = −

 −
. 

За цією ж формулою знайдемо і третю похідну: 

( )
( )

( ) ( ) ( )
( )

4

5

1 3cos
3 1 sin cos

sin sin

xx t

t

y t
y x t t

x t t

−


 = = −  −    = −
 −

. 

 

2.8. Диференціал та його властивості 

 

Нехай функція ( )y f x=  у точці x  має відмінну від нуля похідну 

( )
0

lim 0
x

y
f x

x →


= 


. Тоді у деякому околі точки x  відношення ( )

y
f x

x



= +


, де 

0 →  при 0x → . Тому приріст функції ( )y f x x x =  +  . При цьому 

величина x   є нескінченно малою більш високого порядку, ніж ( )f x x    і 

нескінченно мала ( )y f x x   , тому величину ( )f x x    називають головною 

частиною приросту функції y . 

Диференціалом dy  функції ( )y f x=  у точці x  називають головну, 

лінійну відносно x , частину її приросту y , що дорівнює добутку похідної 

функції у цій точці на приріст аргументу: 

( )dy f x x=   .     (2.37) 

Диференціал dy  називають також диференціалом першого порядку. 

Знайдемо диференціал незалежної змінної x , тобто диференціал функції 
y x= . Оскільки 1y = , то 1dy dx x x= =  =  , тобто диференціал незалежної 

змінної дорівнює її приросту: dx x=  , отже, формулу (2.37) можна записати у 

вигляді: 

( )dy f x dx= .     (2.38) 
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Таким чином, диференціал функції дорівнює добутку її похідної на 

диференціал незалежної змінної. 

З формули (2.38) випливає, що ( )
dy

f x
dx

 = , тобто позначення похідної 
dy

dx
 

можна розглядати як відношення диференціалів dy  та dx . 

Приклад 2.15. Знайти диференціал функції 3 sin3y x x= − . 

Розв’язання. Оскільки ( ) ( )2 23 3cos3 3 cos3y x x x x x = − = − , то 

диференціал ( )23 cos3dy x x dx= − . 

З геометричної точки зору диференціал функції ( )y f x=  у точці x  

дорівнює приросту ординати дотичної до графіка функції у цій точці, коли 

змінна x  отримує приріст x . 

З’ясуємо механічний зміст диференціала. Нехай матеріальна точка 

рухається за відомим законом ( )s s t= . Диференціал функції ( )s t  ( )ds s t t=   

при фіксованих значеннях t  і t  – це той шлях, який пройшла б матеріальна 

точка за час t , якби вона рухалася рівномірно і прямолінійно із сталою 

швидкістю ( )v s t= . Зрозуміло, що фактичний шлях s  у випадку 

нерівномірного руху матеріальної точки, на відміну від диференціала ds  не є 

лінійною функцією часу t  і тому відрізняється від шляху ds . Проте, якщо час 
t  є достатньо малим, то швидкість руху не встигає суттєво змінитись і тому 

рух точки на проміжку часу від t  до t t+   є майже рівномірним. 

Основні формули, пов’язані з диференціалами, можна отримати, 

використовуючи зв’язок між диференціалом функції та її похідною 

( ( )dy y x dx= ) та відповідні формули для похідних.  

Нехай ( )u x  та ( )v x  – диференційовні функції. Тоді виконуються 

наступні рівності: 

1. ( )d u v du dv+ = + . 

2. ( )d uv u dv v du=  +  . 

3. 
2

u v du u dv
d

v v

 −  
= 

 
. 

Теорема 2.7. Диференціал складеної функції дорівнює добутку похідної 

цієї функції за проміжним аргументом на диференціал цього проміжного 

аргументу. 

Таким чином, 
x udy f dx f du = = , тобто перший диференціал функції ( )y x  

визначається однією й тією ж формулою незалежно від того, чи є її аргумент 

незалежною змінною, чи функцією іншого аргументу. Цю властивість 

диференціала першого порядку називають інваріантністю (незмінністю) 

форми першого диференціала. 
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2.9. Застосування диференціала до наближених обчислень 

 

Як вже зазначалося, приріст y  функції ( )y f x=  у точці x  можна 

наближено замінити диференціалом dy  у цій точці: y dy  . Підставивши сюди 

значення y  і dy , отримаємо наближену формулу: 

( ) ( ) ( )f x x f x f x x+   +  .    (2.39) 

Абсолютна похибка величини y dy −  при 0x →  є нескінченно малою 

вищого порядку, ніж x , тому, що при ( ) 0f x   величини y  і dy  є 

еквівалентними нескінченно малими: 

( )
( )0 0

lim lim 1
x x

f x x xy

dy f x x



 →  →

  + 
= =

 
. 

Тут 0 →  при 0x → . 

Можна довести, що абсолютна похибка формули (2.39) не перевищує 

величини ( )
2

M x  , де M  – максимальне значення ( )f x  при  ;x x x x +  . 

Приклад 2.16. Обчислити наближено arctg1,01 . 

Розв’язання. Маємо: ( ) arctgf x x= , ( ) 2

1

1
f x

x
 =

+
. При 1x =  і 0,01x =  

за формулою (2.39) отримаємо: 

( ) 2

1
arctg 1 0,01 arctg1 0,01 0,005 0,79

1 1 4


+  +  = + 

+
. 

 

2.10. Диференціали вищих порядків 

 

Нехай ( )y f x=  – диференційовна функція незалежної змінної x . Тоді її 

диференціал ( )dy f x dx=  теж є функцією аргументу x  і можна знайти 

диференціал цієї функції. Диференціал диференціала функції ( )y f x=  

називають її другим диференціалом, або диференціалом другого порядку. Його 

позначають 2d y  або ( )2d f x . 

Знайдемо вираз для 
2d y . 

( ) ( )( ) ( )( ) ( )2 2d y d dy d f x dx f x dx dx f x dx  = = = = . 

Таким чином, отримали формулу: 

( )2 2d y f x dx= .     (2.40) 

Аналогічно можна визначити диференціал третього поряду як 

диференціал диференціала другого порядку:  

( ) ( )( ) ( )( ) ( )3 2 2 2 3d y d d y d f x dx f x dx dx f x dx
  = = = = . 

Диференціалом n -го порядку називають диференціал диференціала 

( )1n − -го порядку: 
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( ) ( ) ( )1 nn n nd y d d y f x dx−= = .     (2.41) 

З формули (2.41) випливає, що n -у похідну функції ( )y f x=  можна 

записати у вигляді відношення її диференціала n -го порядку до n -го степеня 

диференціала незалежної змінної: 
( ) ( )

n
n

n

d y
y x

dx
= . 

Наведені вище формули для диференціалів вищих порядків є вірними, 

якщо x  є незалежною змінною. Якщо ж змінна x  є функцією незалежної 

змінної t , тобто ( )x x t= , то  

( )( ) ( )( ) ( ) ( ) ( ) ( )2 2 2d y d f x dx d f x dx f x d dx f x dx f x d x    = = + = + . 

Таким чином, якщо у функції ( )y f x=  змінна x  є залежною змінною 

( ( )x x t= ), то ( )2 2d y f x dx . Ми бачимо, що диференціали вищих порядків не 

мають властивості інваріантності форми. 

Приклад 2.17. Знайти диференціал третього порядку функції 5xy e= , де 

x  – незалежна змінна. 

Розв’язання. Оскільки потрібно знайти диференціал третього порядку 

функції незалежної змінної, то можна використати формулу (2.41) при 3n = , 

тобто маємо: ( )3 3d y f x dx= . ( ) ( )5 5125x xf x e e
 = = . Звідси випливає, що 

3 5 3125 xd y e dx= . 

Приклад 2.18. Знайти 2d y , якщо 3y x=  і 
4 2x t t= + , t  – незалежна 

змінна. 

Розв’язання. Оскільки ( )y x  є складеною функцією ( x  – залежна змінна, 

( )x x t= ), тому використовувати формулу (2.41) не можна. Тут 

( )( ) ( ) ( )2 2 2d y d f x dx f x dx f x d x  = = + . Отже, для ( ) 3f x x= , ( ) 23f x x = , 

( ) 6f x x = , будемо мати, що ( )34 2tdx x dt t dt= = + , 
2 2 2 212ttd x x dt t dt= = . 

Підставивши ці вирази у вираз для другого диференціалу 
2d y , отримаємо: 

( )( )

( ) ( )( )

2
2 2 2 2 4 3 2

2
4 2 2 4 6 3 2

6 3 12 6 2 4 2

36 2 12 2 11 14 2 .

d y x dx x d x t t t dt

t t t dt t t t t dt

=  +  = + + +

+ + = + + +

 

Зауважимо, що аналогічний результат ми б отримали, записавши 

спочатку y  як функцію незалежної змінної t , тобто підставивши у вираз для 

( )y x  функцію 
4 2x t t= +  і далі використавши формулу (2.41) для отриманої 

функції незалежної змінної t . 

 

Запитання та завдання для самоконтролю до теми 2 

1. Наведіть означення похідної функції. 

2. Охарактеризуйте фізичний та геометричний зміст похідної. 
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3. Знайдіть похідну функції 
1

y
x

= , користуючись означенням похідної. 

4. Запишіть рівняння дотичної та нормалі дот графіка функції 
23 3 5y x x= + −  у точці з абсцисою 

0 1x = . 

5. Надайте означення правої та лівої похідної у точці. 

6. Надайте означення функції, диференційовної у точці. 

7. Як знаходять похідну складеної функції? 

8. Наведіть означення диференціала функції. 

9. Як визначається диференціал функції через її похідну? 

10. Знайдіть похідні наступних функцій:  

1) 
3 2

4

4 1

1

x x
y

x x

− −
=

+ +
; 2) 

2sin x
y

x
= ; 3) ( )32 2 cos4y x x x= − ; 4) ( )ln siny x= ; 

5) arcsin lny x x=  ; 6) 2 1xy x −= ; 7) 
2

1
ctgy

x

 
=  

 
; 8) 2sin 3cos 2x xy e −= ; 

9) 
2

arctg4

16 1

x
y

x
=

+
; 10) ( )4log 3arccosy x= . 

11. Знайдіть диференціал функції 
1 cos

arctg
1 cos

x
y

x

−
=

+
. 

12. Наведіть означення похідної n -го порядку. 

13. Знайдіть похідні другого порядку наступних функцій:  

1) arcsin 2y x= ; 2) ( )2ln 1y x= + ; 3) 
2 1

3 2

x
y

x

−
=

+
; 4) ( )3 1 lny x x= − ; 

5) ( )tg 3 2y x= − . 

14. Знайдіть 
dy

dx
 та 

2

2

d y

dx
, якщо 5cosx t= , 3siny t= . 

15. Знайдіть 
dy

dx
 та 

2

2

d y

dx
, якщо 

2 3 2 1 0x y y x− + − = . 

16. Точка рухається прямолінійно за законом 
3 22 4 6 2s t t t= − + − . Знайдіть 

її швидкість та прискорення у момент часу 3 секунди після початку 

руху. 

17. Точка рухається прямолінійно за законом 2sin 3
3

s t
 

= − 
 

. Знайдіть її 

прискорення у момент першої зупинки після початку руху. 

18. Наведіть формулу Лейбніца та знайдіть десяту похідну функції 

( )2 22 3 1 xy x x e= + + . 

19. Покажіть, що функція 
22x xy e e= +  задовольняє рівняння 

6 11 6 0y y y y − + − = . 
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3. ЗАСТОСУВАННЯ ДИФЕРЕНЦІАЛЬНОГО ЧИСЛЕННЯ ДО 

ДОСЛІДЖЕННЯ ФУНКЦІЙ 
 

3.1. Диференціальні теореми про середні значення 
 

Теорема 3.1 (теорема Ферма). Нехай функція ( )y f x=  є неперервною на 

інтервалі ( );a b  і набуває свого найбільшого або найменшого значення у деякій 

точці ( );x c a b=  . Тоді якщо у цій точці існує похідна ( )f c , то ( ) 0f c = . 

Теорема 3.2 (теорема Ролля). Якщо функція ( )y f x=  є неперервною на 

відрізку  ;a b , диференційовною на проміжку ( );a b  і на кінцях відрізка 

набуває однакових значень ( ) ( )f a f b= , то знайдеться хоча б одна точка 

( );c a b , у якій ( ) 0f c = . 

Доведення. Оскільки функція ( )f x  є неперервною на  ;a b , то вона 

досягає на цьому відрізку свого найменшого значення m  та найбільшого 

значення M . Якщо m M= , то на  ;a b  ( )f x const=  і ( ) 0f x =  у довільній 

точці цього проміжку. 

Нехай m M . Тоді хоча б одне із значень m  чи M досягається функцією 

у внутрішній точці відкритого інтервалу ( );a b , тому що ( ) ( )f a f b= . За 

теоремою Ферма похідна у цій точці дорівнюватиме нулю. Теорему доведено. 

Отже, теорема Ролля стверджує, що на графіку функції, яка задовольняє 

умовам цієї теореми, знайдеться хоча б одна точка, дотична у якій паралельна 

осі Ox . 

Якщо ( ) ( ) 0f a f b= = , то теорему Ролля можна сформулювати 

наступним чином: між двома коренями функції знаходиться хоча б один корінь 

її похідної. 

Приклад 3.1. Довести, що рівняння 
33 15 8 0x x+ − =  має лише один 

дійсний корінь. 

Розв’язання. Оскільки задане рівняння  – це рівняння третього степеня 

(непарного), то воно має хоча б один дійсний корінь. Доведемо, що дійсний 

корінь цього рівняння лише один. Допустимо, що існують два таких корені – 
1x  

та 
2x , де 

1 2x x . Тоді на відрізку  1 2;x x функція ( ) 33 15 8f x x x= + −  

задовольняє всім умовам теореми Ролля: вона неперервна на цьому відрізку, 

диференційовна у кожній його внутрішній точці та приймає на кінцях цього 

відрізка однакові значення (дорівнює нулю). Отже, у деякій точці 
1 2x c x   

( ) 0f c = . Проте ( ) 29 15 0f c x x = +    . Отримане протиріччя доводить, що 

задане рівняння має єдиний дійсний корінь. 

Теорема 3.3 (теорема Коші). Якщо функції ( )f x  та ( )x  неперервні на 

 ;a b , диференційовні у інтервалі ( );a b , причому ( )  0 ;x x a b    , то існує 

така точка ( );c a b , що  



( ) ( )
( ) ( )

( )
( )

f b f a f c

b a c  

−
=

−
.     (3.1) 

Теорема 3.4 (теорема Лагранжа). Якщо функція ( )f x є неперервною на 

 ;a b , диференційовною у ( );a b , то всередині цього інтервалу знайдеться хоча 

б одна точка ( );c a b , у якій виконується рівність: 

( ) ( ) ( )( )f b f a f c b a− = − .    (3.2) 

Формулу (3.2) називають формулою Лагранжа, або формулою скінченних 

приростів, оскільки вона виражає точне значення приросту функції 

( ) ( )y f b f a = −  через похідну у деякій проміжній точці ( );c a b  та скінченне 

значення приросту аргументу x b a = − . Відповідно, формулу (3.2) можна 

записати у вигляді: ( )y f c x =  . 

Розглянемо геометричний зміст теореми Лагранжа. Запишемо формулу 

(3.2) у вигляді: 

( ) ( )
( )

f b f a
f c

b a

−
=

−
. 

Ця рівність свідчить, що на графіку функції, яка задовольняє умовам 

теореми Лагранжа, знайдеться хоча б одна точка з абсцисою c , у якій дотична 

до графіка паралельна хорді, що сполучає точки ( )( );a f a  та ( )( );b f b . 

Теорема Лагранжа має також механічну інтерпретацію. Якщо ( )s s t= , 

 1 2;t t t  – закон руху матеріальної точки, то відношення 
( ) ( )2 1

2 1

s t s t

t t

−

−
 – це 

середня швидкість руху за проміжок часу  1 2;t t . Теорема Лагранжа стверджує, 

що в деякий момент часу ( )1 2;c t t миттєва швидкість матеріальної точки 

неодмінно співпаде з її середньою швидкістю: 
( ) ( )

( )2 1

2 1

s t s t
s c

t t

−
=

−
. 

З теореми Лагранжа випливають наступні наслідки. 

Наслідок 1. Якщо похідна функції дорівнює нулю на деякому проміжку, 

то ця функція є сталою на даному проміжку. 

Наслідок 2. Якщо похідні двох функцій співпадають на деякому 

проміжку, то ці функції відрізняються між собою на сталу величину. 

Теорему Лагранжа та її наслідки можна застосовувати при доведенні 

тотожностей та нерівностей. 

Приклад 3.2. Довести, що 
2

2

1
arccos 2arctg 

1

x
x

x

−
=

+
, 0x  . 

Розв’язання. Розглянемо функцію ( )
2

2

1
arccos 2arctg 

1

x
f x x

x

−
= −

+
. Ця 

функція визначена на всій числовій прямій, оскільки 
2

2

1
1

1

x

x

−


+
. Вона є також 



диференційовною у кожній точці своєї області визначення. Знайдемо похідну 

( )f x : 

( )
( ) ( )2 2 222 22

2

1 4 2 4 2
0.

1 12 111
1

1

x x
f x

x xx xxx

x

−
 = −  − = − =

+ +++ −
−  

+ 

 

Отже, ( ) 0f x =  0x  . Тому, за наслідком 1 з теореми Лагранжа, 

функція ( )f x  є сталою при 0x  .  

Знайдемо ( )1f . ( )1 arccos0 2arctg 1 2 0
2

f


= − = −  = .  

Таким чином, ( ) 0f x = , тому 
2

2

1
arccos 2arctg 

1

x
x

x

−
=

+
. 

Приклад 3.3. Довести нерівність arctg arctg    −  − ,   . 

Розв’язання. Функція ( ) arctg f x x=  є визначеною та диференційовною 

на всій числовій прямій, у тому числі на довільному проміжку ( );  , 

( ) 2

1

1
f x

x
 =

+
. Застосуємо до неї теорему Лагранжа. Згідно з цією теоремою, 

існує така точка ( );c   , що  

( )2

1
arctg arctg 

1 c
   − = −

+
. 

Оскільки 
2

1
0 1

1 c
 

+
 і 0 −  , то ( )2

1

1 c
   −  −

+
, тому 

виконується нерівність: 
arctg  arctg    −  − . 

 

3.2. Правила Лопіталя 

 

Розглянемо спосіб обчислення границь, які потребують розкриття 

невизначеностей виду 
0

0

 
 
 

 або 
 

 
 

, пов’язаний з застосуванням похідних. 

Теорема 3.5 (правило Лопіталя розкриття невизначеностей виду 

0

0

 
 
 

). Нехай функції ( )f x  та ( )g x  є неперервними та диференційованими у 

околі точки 
0x x=  і при цьому ( ) ( )0 0 0f x g x= = , а ( ) 0g x   у околі цієї точки. 

Якщо існує границя 
( )
( )0

lim
x x

f x
l

g x→


=


, то існує 

( )
( )0

lim
x x

f x

g x→
, причому  

( )
( )

( )
( )0 0

lim lim
x x x x

f x f x
l

g x g x→ →


= =


.     (3.3) 



Правило Лопіталя стверджує, що границя відношення двох нескінченно 

малих дорівнює границі відношення їх похідних, якщо ця границя існує. 

Зауважимо, що теорема 3.5 виконується і у тому випадку, коли функції 

( )f x  та ( )g x  невизначені при 
0x x= , але ( ) ( )

0 0

lim lim 0
x x x x

f x g x
→ →

= = . Ця теорема 

виконується також при x→. 

Приклад 3.4. Обчислити 
1

1
lim

lnx

x

x x→

−
. 

Розв’язання. При підстановці у чисельник та знаменник дробу під 

знаком границі значення 1x =  отримуємо невизначеність виду 
0

0

 
 
 

. Застосуємо 

до розкриття даної невизначеності правило Лопіталя: 

( )

( )
1 1 1

11 0 1 1
lim lim lim 1

ln 0 ln 1 1ln
x x x

xx

x x xx x
→ → →

−−  
= = = = = 

+ 
. 

Приклад 3.5. Обчислити 
20

1 cos6
lim

2x

x

x→

−
. 

Розв’язання.  

( )

( )

( )

( )

20 0 2

0 0 0

1 cos61 cos6 0
lim lim

2 0
2

6sin 66sin 6 0 36cos6 36
lim lim lim 9.

4 0 4 44

x x

x x x

xx

x
x

xx x

x x

→ →

→ → →

−−  
= = = 

 


 

= = = = = = 
 

 

Наведемо без доведення формулювання правила Лопіталя знаходження 

границь, що зводяться до розкриття невизначеності виду 
 

 
 

. 

Теорема 3.6 (правило Лопіталя розкриття невизначеностей виду 

 
 
 

). Нехай функції ( )f x  та ( )g x  є неперервними та диференційовними у 

околі точки 
0x  (можливо, окрім самої цієї точки), і у цьому околі 

( ) ( )
0 0

lim lim
x x x x

f x g x
→ →

= =  , причому ( ) 0g x  . Тоді, якщо існує границя 

( )
( )0

lim
x x

f x
l

g x→


=


, то існує і границя 

( )
( )0

lim
x x

f x

g x→
, причому 

( )
( )

( )
( )0 0

lim lim
x x x x

f x f x
l

g x g x→ →


= =


.  

Приклад 3.5. Обчислити 

2

tg 3
lim

tg 5x

x

x
→

. 



Розв’язання. Оскільки 
0 0

2 2

lim tg 3 lim tg 5
x x

x x
 

→  → 

= =  , то дана границя 

зводиться до невизначеності виду 
 

 
 

, тому застосуємо правило Лопіталя: 

( )

( )

( )

( )

22

2

22 2 2 2

2 2 2

3
tg 3tg 3 3 cos 5 0cos 3lim lim lim lim

5tg 5 5 cos 3 0tg 5 cos 5

1 cos103 1 cos10 3 3 10sin10 0
lim lim lim

5 1 cos6 5 5 6sin6 01 cos6

3 5
lim

5 3

x x x x

x x x

x

xx xx

x xx x

xx x

x xx

   

  

→ → → →

→ → →

→

   
= = = = = =   

    

++ −  
= = = = = 

+ −  +

=  

2

10cos10 5
.

6cos6 3

x

x
=

 

До невизначеностей виду 
0

0

 
 
 

 або 
 

 
 

, для розкриття яких можна 

застосувати правило Лопіталя, зводяться невизначеності видів ( )0  , ( ) − , 

( )1 , ( )0 , ( )00 . Для цього застосовують тотожні перетворення та 

логарифмування. 

Приклад 3.6. Обчислити ( )
2

lim 2 tg
4x

x
x



→
−  . 

Розв’язання. Маємо невизначеність виду ( )0  . Зведемо її до 

невизначеності 
0

0

 
 
 

, після чого застосуємо правило Лопіталя: 

( )
2 2 2

2

2 0 1 4
lim 2 tg lim lim

14 0
ctg

4 4
sin

4

x x x

x x
x

x

x



  


→ → →

− − 
−  = = = = 

  − 

. 

Приклад 3.7. Обчислити ( )
2

lim tg sec
x

x x


→

− . 

Розв’язання. Оскільки 
1

sec
cos

x
x

= , то при підстановці у вираз під 

знаком границі замість x  значення 
2


, маємо невизначеність виду ( ) − .  

Зведемо її до невизначеності 
0

0

 
 
 

, після чого застосуємо правило Лопіталя. 

Отримуємо: 

( )
2 2 2

2

1 sin 1 0 cos 0
lim tg sec lim tg lim lim 0

cos cos 0 sin 1x x x

x

x x
x x x

x x x  


→ → →

→

−   
− = − = = = = =   

− −   
. 



Приклад 3.8. Обчислити границю 
0

lim lnn

x
x x

→
, 0n  . 

Розв’язання. Маємо невизначеність виду ( )0  . Для застосування 

правила Лопіталя перетворимо її до виду 
 

 
 

. Маємо: 

0 0 0 0
1

1
ln 1

lim ln lim lim lim 0n n

nx x x x
n

x xx x x
nx n

x

−→ → → →
−

 
= = = = − = 

 − 
. 

Приклад 3.9. Обчислити 

sin

0 0

1
lim

x

x x→ +

 
 
 

. 

Розв’язання. Обчислення границі приводить до необхідності розкриття 

невизначеності виду ( )0 . Позначимо 

sin
1

x

y
x

 
= 

 
. Тоді 

1
ln sin lny x

x
=  . 

Знаходимо границю цього виразу при 0 0x → + : 

( )
0 0 0 0 0 0

2

0 0 0 0 0 0 0
2

1 ln
lim ln lim sin ln 0 lim

1
sin

1
sin sin 1

lim lim lim limsin lim 1 0 1 0.
cos cos cos

sin

x x x

x x x x x

x
y x

x
x

x xx x
x x x x x

x

→ + → + → +

→ + → + → → →

 −     =  =  = = =   
     
 

 −
 = = =   =   =
 −
 

 

Оскільки логарифмічна функція є неперервною, то ( )
0 0 0 0

lim ln ln lim
x x

y y
→ + → +

= , 

тому 
0

0 0
lim 1

x
y e

→ +
= = . 

Приклад 3.10. Обчислити ( ) 2

1

0
lim cos2 x

x
x

→
. 

Розв’язання. Маємо невизначеність ( )1 . Нехай ( ) 2

1

cos2 xy x= , тоді  

( )
2

ln cos2
ln

x
y

x
= . Знаходимо границю 

( )
20 0 0

0 0

ln cos2 0 2sin 2
limln lim lim

0 2 cos2

sin 2 1
2lim lim 2 1 1 2.

2 cos2

x x x

x x

x x
y

x x x

x

x x

→ → →

→ →

− 
= = = = 

 

= −  = −   = −

 

Тоді 
2

0
lim
x

y e−
→

= . 

Приклад 3.11. Знайти границю ( )
tg3

0
lim sin 2

x

x
x

→
. 

Розв’язання. Тут маємо невизначеність виду ( )00 . Запишемо вираз під 

знаком границі у вигляді: ( ) ( ) ( )
tg3tg3 ln sin 2 tg3 ln sin 2

sin2
xx x x x

x e e


= = . Шукана границя 

набуває вигляду: 



( ) ( ) ( )
0

lim tg3 ln sin 2tg3 tg3 ln sin 2

0 0
lim sin 2 lim x

x xx x x

x x
x e e →



→ →
= = . 

Знайдемо границю у показнику експоненти. 

( ) ( )
( )

0 0 0

2

2 2

0 0

0

2cos2
ln sin 2 0 sin 2limtg 3 ln sin 2 0 lim lim

3ctg3 0

sin 3

2 cos2 sin 3 2 sin 3 2
lim limcos2 lim 1 0 0.

3 sin 2 3 sin 2 3

x x x

x x

x

x
x xx x

x

x

x x x
x

x x

→ → →

→ →

→

 
 =  = = = =  − 


− = −  = −   =

 

Тоді шукана границя ( )
tg3 0

0
lim sin 2 1

x

x
x e

→
= = . 

 

3.3. Знаходження асимптот графіка функції 

 

Асимптотою кривої називають пряму, відстань якої від точки, що лежить 

на кривій, прямує до нуля при необмеженому віддаленні цієї точки по кривій 

від початку координат. 

Асимптоти можуть бути вертикальними, горизонтальними та похилими.  

Пряма x a=  є вертикальною асимптотою графіка функції ( )y f x= , 

якщо ( )lim
x a

f x
→

=  , ( )
0

lim
x a

f x
→ +

=   або ( )
0

lim
x a

f x
→ −

=  . Для відшукання 

вертикальних асимптот потрібно знайти такі значення x , поблизу яких ( )f x  

необмежено зростає. Звичайно це точки розриву другого роду функції 

( )y f x= . Наприклад, крива 
4

3
y

x
=

−
 має вертикальну асимптоту – пряму 

3x = , оскільки 
3 0

4
lim

3x x→ −
= −

−
, 

3 0

4
lim

3x x→ +
= +

−
. 

Рівняння похилої асимптоти будемо шукати у вигляді y kx b= + . Нехай 

( ),M x y  – довільна точка кривої  ( )y f x= . За формулою відстані від точки до 

прямої отримаємо відстань точки M до прямої 0kx b y+ − = : 

2 1

kx b y
d

k

+ −
=

+
. 

При x→ точка M  необмежено віддаляється від початку координат, 

при цьому 0d → , якщо ( )lim 0
x

kx b y
→

+ − = . Тоді ( )y kx b x= + + , де ( ) 0x →  

при x→. Тоді границя відношення 
( )

lim lim
x x

xy b
k k

x x x



→ →

 
= + + = 

 
. Оскільки 

для точки M  ( )y f x= , то отримали формулу для знаходження кутового 

коефіцієнта k  похилої асимптоти у вигляді: 

( )
lim
x

f x
k

x→
= .     (3.4) 



Оскільки ( )lim 0
x

kx b y
→

+ − = , то ( )lim
x

b y kx
→

= − , або 

( )( )lim
x

b f x kx
→

= − .     (3.5) 

Таким чином, якщо графік функції ( )y f x=  має похилу асимптоту 

y kx b= + , то її коефіцієнти k  та b  знаходять за формулами (4.4) та (4.5). 

Приклад 3.12. Знайти похилі асимптоти графіка функції 
3

2

2 3

1

x x
y

x

+ +
=

+
. 

Розв’язання. За формулами (3.4) та (3.5) знаходимо коефіцієнти k  та b . 

Маємо: ( )
3

2

2 3

1

x x
f x

x

+ +
=

+
, 

( )

( )

3

2

2 3
lim lim 1

1x x

f x x x
k

x x x→ →

+ +
= = =

+
.  

Знайдемо коефіцієнт b : 

( )( )
3

2 2

2 3 3
lim lim lim 0

1 1x x x

x x x
b f x kx x

x x→ → →

 + + +
= − = − = = 

+ + 
. 

Таким чином, похила асимптота графіка функції 
3

2

2 3

1

x x
y

x

+ +
=

+
 – це 

пряма y x= .  

Якщо хоча б одна з границь (3.4) або (3.5) не існує або є нескінченною, то 

крива ( )y f x=  похилих асимптот не має. Якщо у рівнянні похилої асимптоти 

0k = , то воно набуває вигляду y b= , У цьому випадку  графік функції ( )y f x=  

може мати горизонтальну асимптоту y b= .  

Таким чином, рівняння горизонтальної асимптоти має вигляд y b= , де 

сталу b  знаходять за формулою  

( )lim
x

b f x
→

= .     (3.6) 

Наприклад, графік функції 
2

2

1

2 4

x x
y

x

+ −
=

+
 має горизонтальну асимптоту 

1

2
y = , оскільки 

2

2

1 1
lim

2 4 2x

x x

x→

+ −
=

+
.  

Якщо ( )lim
x

f x
→

=   або не існує, то горизонтальні асимптоти відсутні. 

Асимптоти графіка функції ( )y f x=  при x→+  та x→−  можуть бути 

різними, тому при використанні формул (3.4)-(3.6) потрібно окремо розглядати 

випадки, коли x→+  та x→− . 

Приклад 3.13. Знайти асимптоти графіка функції 
xy xe= . 

Розв’язання. Оскільки задана функція є неперервною на своїй області 

визначення – всій числовій прямій, то її графік вертикальних асимптот не має. 

Для виявлення похилих асимптот використаємо формули (3.4) та (3.5): 

( )
lim lim lim

x
x

x x x

f x xe
k e

x x→ → →
= = = . 



Остання границя дорівнює +  при x→+  та нулю при x→− . Отже, 

при x→+  похилі асимптоти графіка даної функції відсутні, при x→−  

можлива наявність горизонтальної асимптоти. Для визначення рівняння цієї 

асимптоти використаємо формулу (3.6), тобто знайдемо границю ( )lim
x

f x
→

: 

( )lim lim x

x x
f x xe

→ →
= . 

При x→+  маємо нескінченну границю, при x→−  маємо: 

1 1
lim lim lim 0x

t tx t t

t
xe x t

e e→− →+ →+

   
= = − = − = = − = =   

    
. 

Отже, за формулою (3.6) отримуємо значення 0b = , тобто при x→−  

графік функції xy xe=  має горизонтальну асимптоту – вісь Ox  ( 0y = ). 

 

3.4. Формула Тейлора 

 

Нехай функція ( )y f x=  у деякому околі точки x a=  має всі похідні до 

( )1n + -го порядку включно. Знайдемо многочлен ( )nP x , степінь якого не 

перевищує n , значення якого у точці x a=  дорівнює значенню функції ( )f x  у 

цій точці, а значення його похідних до n -го порядку у точці x a=  дорівнюють 

відповідним значенням похідних у цій точці: 

( ) ( )nP a f a= , ( ) ( )nP a f a = , ( ) ( )nP a f a = ,…, 
( ) ( ) ( ) ( )
n n

nP a f a= .       

(3.7) 

Будемо шукати цей многочлен у вигляді многочлена за степенями ( )x a−  

з невизначеними коефіцієнтами: 

( ) ( ) ( ) ( ) ( )
2

0 1 2

0

...
n

n k

n n k

k

P x c c x a c x a c x a c x a
=

= + − + − + + − = − . (3.8) 

Невизначені коефіцієнти 
0c , 

1c , 
2c , …, 

nc  знайдемо так, щоб 

виконувались умови (3.7). Для цього, диференціюючи (3.8), знайдемо похідні 

від ( )nP x . Отримуємо: 

( ) ( ) ( ) ( )
2 1

1 2 32 3 ...
n

n nP x c c x a c x a n c x a
− = +   − +   − +   − ; 

( ) ( ) ( ) ( )
2

2 32 3 2 ... 1
n

n nP x c c x a n n c x a
− =  +    − +  −   − ; 

……………………………………………………………….; 
( ) ( ) ( ) ( )1 2 .... 2 1
n

n nP x n n n c=  −  −     . 

Підставивши у ліві та праві частини останніх рівностей та рівності (3.8) 

замість x  значення a  та прирівнявши їх згідно з (3.7) до значень ( )f a , ( )f a , 

…, 
( ) ( )
n

f a , отримаємо рівності: ( ) 0f a c= , ( ) 1f a c = , ( ) 22 1f a c =   , 

( ) 33 2 1f a c =    , …., 
( ) ( ) !
n

nf a n c=  . Звідси знаходимо коефіцієнти шуканого 

многочлена: 



( ) ( )
, 0,1, 2,..., .

!

k

k

f a
c k n

k
= =     (3.9) 

Тут похідною нульового порядку вважають саму функцію. 

Таким чином, шуканий многочлен (3.8) має вигляд: 

( )
( ) ( )

( )
0 !

k
n

k

n

k

f a
P x x a

k=

= − .    (3.10) 

Нехай ( ) ( ) ( )n nR x f x P x= − . Звідси маємо  

( ) ( ) ( )
( ) ( )

( ) ( )
0 !

k
n

k

n n n

k

f a
f x P x R x x a R x

k=

= + = − + .  (3.11) 

Формулу (3.11) називають формулою Тейлора для функції ( )f x  у околі 

точки x a= , а многочлен ( )nP x , коефіцієнти якого визначаються за формулою 

(3.9) – многочленом Тейлора. Вираз ( ) ( ) ( )n nR x f x P x= −  називають 

залишковим членом формули Тейлора. Для значень x , при яких залишковий 

член є достатньо малим, многочлен ( )nP x  є наближенням функції ( )f x . Таким 

чином, формула (3.11) дає можливість замінити функцію ( )f x  многочленом 

Тейлора ( )nP x з точністю, що дорівнює значенню залишкового члена ( )nR x . 

Доведемо, що залишковий член формули Тейлора ( )nR x  можна 

представити у вигляді: 

( )
( ) ( )( )

( )

11

1 !

nn

n

f x a
R x

n


++

−
=

+
,      (3.12) 

де точка   знаходиться між точками x  та a . Зафіксуємо довільне 

значення x a  з околу точки a , де функція ( )f x  диференційовна 1n +  разів. 

Позначимо через t  величину, що змінюється на відрізку  0;x x , тобто 
0x t x  . 

Розглянемо функцію  

( ) ( )
( ) ( )

( )
( ) ( )

( )

1

1
0 !

nkn
k n

n
k

f t x t R x
F t f x x t

k x a

+

+
=

−
= − − −

−
 .   (3.13) 

Ця функція задовольняє всі умови теореми Ролля, тому знайдеться точка 

( );a x  , для якої ( ) 0F  = .  

Диференціюючи (3.13) за t , отримаємо: 

( )
( ) ( )

( )
( )( ) ( )

( )

1

1

1

!

nn
n n

n

f t n x t R x
F t x t

n x a

+

+

+ −
 = − − +

−
.   (3.14) 

Прийнявши у рівності (3.14) t = , з рівності ( ) 0F  =  отримуємо: 

( ) ( )
( )

( )( ) ( )

( )

1

1

1
0

!

nn
n n

n

f n x R x
x

n x a

 


+

+

+ −
− − + =

−
. 



Розв’язавши це рівняння відносно ( )nR x , отримаємо формулу (3.12). Цю 

формулу для залишкового члена формули Тейлора називають залишковим 

членом у формі Лагранжа.  

При x a→  ( )nR x  є нескінченно малою вищого порядку, ніж ( )
n

x a− , 

тому, використовуючи символи Ландау, ми можемо записати, що 

( ) ( )( )n

nR x o x a= − . Такий запис залишкового члена формули Тейлора 

називають залишковим членом у формі Пеано.  

Величина ( )nR x  дорівнює величині похибки при заміні функції ( )f x  її 

многочленом Тейлора. Формулу (3.12) можна використати для того, щоб 

оцінити величину такої похибки при фіксованих значеннях x , а також при 

n→. Многочлени Тейлора дають найкраще наближення функції ( )f x  по 

відношенню до всіх многочленів заданого степеня у околі точки a , тобто 

використання для наближення функції многочлена Тейлора дає найменшу 

абсолютну похибку ( )nR x . 

Формулу Тейлора (3.11) при 0a =  називають формулою Маклорена. 

Таким чином, формула Маклорена для функції ( )f x  має вигляд: 

( )
( ) ( )

( )
0

0

!

kn
k

n

k

f
f x x R x

k=

= + ,    (3.15) 

де ( )nR x  визначається за формулою: 

( )
( ) ( )
( )

1

1

1 !

n

n

n

f
R x x

n


+

+
=

+
 .     (3.16) 

У формулі (3.16) точка   знаходиться між точками 0  та x , тобто x = , 

де 0 1  . 

Формула (3.16) визначає залишковий член формули Маклорена у формі 

Лагранжа, цей залишковий член можна записати у формі Пеано:  

( ) ( )n

nR x o x= .      (3.17) 

Формула (3.17) означає, що при заміні функції ( )f x  многочленом 

Тейлора  у околі точки 0x =  похибка є нескінченно малою величиною більш 

високого порядку, ніж nx . 

Наведемо формулу Маклорена для наближення деяких основних 

елементарних функцій. 

( )
0

1.
!

kn
x n

k

x
e o x

k=

= + .        

 (3.18) 

( )
( )

( )
1 2 1

2

1

1
2. sin .

2 1 !

k kn
n

k

x
x o x

k

− −

=

−
= +

−
       

 (3.19) 



( )
( )

( )
2

2 1

0

1
3. cos .

2 !

k kn
n

k

x
x o x

k

+

=

−
= +       

 (3.20) 

( )
( ) ( )

( )
1

1 ... 1
4. 1 1 .

!

n
k n

k

k
x x o x

k

   

=

− − +
+ = + +    

 (3.21) 

( )
( )

( )
1

1

1
5. ln 1 .

k kn
n

k

x
x o x

k

−

=

−
+ = +       

 (3.22) 

Приклад 3.14. Записати наближення функції ( ) 21 cosf x x x= +  за 

формулою Маклорена, обмежившись членами до 
4x . 

Розв’язання. Використаємо формули (3.21) та (3.20). Запишемо функцію 

21 x+  за формулою (3.21), поклавши 
1

2
 =  та замінивши у формулі x  на 

2x : 

( )2 2 4 4

1 1
1

1 2 2
1 1

2 2
x x x o x

 
− 

 + = + + + . 

Замінивши cosx  за формулою (3.20), отримуємо: 

( ) ( )

( ) ( )

2 4
2 2 4 4 5

4 4 4 4 4 4

1 1
1

1 2 2
1 cos 1 1

2 2 2 24

1 1 1 1
1 1 .

4 8 24 3

x x
x x x x o x o x

x x x o x x o x

  
−      +  = + + +  − + + = 

   
 
 

= − − + + = − +

 

Формулу Тейлора можна застосовувати для обчислення границь. 

Приклад 3.15. Обчислити 
20

2
lim

x x

x

e e

x

−

→

+ −
. 

Розв’язання. Замінимо у виразі під знаком границі 
xe  та  

xe−
 за 

формулою (3.18) (вираз для 
xe−
 отримуємо, замінивши у (3.18) x  на x− ). 

Маємо: 

( ) ( )
2 2

2 2
2

2 2 20 0 0

1 1 2
2 2 2lim lim lim 1

x x

x x x

x x
x o x x o x

e e x

x x x

−

→ → →

+ + + + − + + −
+ −

= = = . 

При обчисленні цієї границі ми використали те, що сума нескінченно 

малих вищого порядку, ніж нескінченно мала ( )x  теж є нескінченно малою 

вищого порядку, ніж ( )x  ( ( ) ( ) ( )2 2 2o x o x o x+ = . Крім того, 
( )2

20
lim 0
x

o x

x→
=  за 

означенням ( )2o x .  



Розглянемо приклад оцінки похибки при наближенні функції за 

допомогою многочлена Тейлора. 

Приклад 3.16. Скільки потрібно взяти членів у формулі Маклорена для 

функції ( ) xf x e= , щоб отримати многочлен, який наближує цю функцію на 

 1;1−  з точністю до 0,001? 

Розв’язання. Запишемо для даної функції залишковий член формули 

Маклорена у формі Лагранжа за формулою (3.16), де x = , 0 1  :  

( ) ( ) ( )
( ) ( )

1 1
1

1 ! 1 !

n n
n x

n

x x
R x f x e

n n


+ +

+
=  = 

+ +
. 

Оскільки на 1;1−  
1xe e  , 1x  ,  то отримуємо нерівність  

( )
( ) ( ) ( )

1

3

1 ! 1 ! 1 !

n

x

n

x e
R x e

n n n



+

=   
+ + +

. 

Виберемо n  так, щоб 
( )

3
0,001

1 !n


+
. Звідси ( )1 ! 3000n +  , і 6n  . Отже, 

достатньо взяти 7 доданків у формулі Маклорена, щоб досягти заданої точності 

наближення. 

 

3.5. Застосування похідної до дослідження функцій на монотонність 

 

Установимо необхідні та достатні умови зростання та спадання функції. 

Теорема 3.7 (необхідна умова монотонності диференційовної функції). 

Якщо диференційовна на ( );a b  функція ( )f x  зростає (спадає) на цьому 

проміжку, то ( ) 0f x   ( ( ) 0f x  ) ( );x a b  . 

З геометричної точки зору теорема 3.7 означає, що дотичні до графіка 

зростаючої диференційовної функції утворюють гострий кут з додатним 

напрямом осі Ox  або ж у деяких точках вони паралельні цій осі. Для спадної 

функції цей кут є тупим, або дотична паралельна Ox . 

Теорема 3.8 (достатня умова монотонності диференційовної функції). 

Якщо функція ( )f x  диференційовна на проміжку ( );a b  і ( ) 0f x   ( ( ) 0f x  ) 

( );x a b  , то ця функція зростає (спадає) на ( );a b . 

Аналогічно можна довести, що у випадку, коли ( ) 0f x   ( );x a b  , то 

функція ( )f x  спадає на цьому проміжку.  

Точки, у яких похідна функції дорівнює нулю, називають її 

стаціонарними точками. Точки, у яких похідна функції дорівнює нулю або не 

існує, називають її критичними точками.  

Розглянуті теореми дозволяють досліджувати функції на монотонність. З 

них випливає, що інтервали монотонності можуть відділятися один від одного 

критичними точками. 

Щоб знайти інтервали монотонності функції ( )f x , треба: 

1) знайти область визначення функції; 



2) знайти похідну даної функції; 

3) з рівняння ( ) 0f x =  та з умови, що ( )f x  не існує, знайти критичні 

точки функції; 

4) розділити критичними точками область визначення на інтервали, і у 

кожному з них визначити знак похідної, на інтервалах, де похідна додатна, 

функція зростає, а де від’ємна – спадає. 

Приклад 3.17. Дослідити на монотонність функцію ( ) 3 3 4f x x x= − − . 

Розв’язання. Задана функція є визначеною та диференційовною на всій 

числовій прямій. Для визначення проміжків її зростання та спадання знайдемо 

( )f x : ( ) 23 3f x x = − . Ми бачимо, що похідна існує в усіх точках числової 

прямої. Критичні точки функції, якщо вони існують – це її стаціонарні точки. 

Для їх визначення знайдемо корені рівняння ( ) 0f x = , тобто 
23 3 0x − = . Це 

значення 1 , вони є критичними точками даної функції. Позначимо їх на 

числовій осі. Отримуємо інтервали ( ); 1− − , ( )1;1−  та ( )1; + . Визначимо знак 

( )f x  на цих інтервалах. Безпосередньою підстановкою чисел, взятих з цих 

інтервалів впевнюємося, що на ( ); 1− −  та ( )1; +  ( ) 0f x  , тому тут функція 

зростає. На ( )1;1−  ( ) 0f x  , на цьому проміжку ( )f x  є спадною. 

Приклад 3.18. Знайти інтервали монотонності функції ln 3y x x x= + . 

Розв’язання. Задана функція визначена на проміжку ( )0; + . Знаходимо 

її похідну: ln 4y x = + . Знаходимо критичні точки даної функції: 
4ln 4 0 ln 4x x x e−+ =  = −  = . Інших критичних точок функція не має, 

оскільки її похідна існує на всій області її визначення. Розбиваємо область 

визначення функції – промінь ( )0; +  точкою 
4x e−=  на інтервали ( )40; e−  та 

( )4;e− +  . Встановлюємо знак похідної на кожному з цих інтервалів, для чого 

визначаємо знак похідної у довільній внутрішній точці кожного інтервалу. 

Отримуємо, що ( )40;x e−   ( ) 0f x  , отже, тут функція спадає. На 

проміжку ( )4;e− +   ( ) 0f x  , тобто ( )4;e− +   – проміжок зростання функції. 

Приклад 3.19. Знайти інтервали монотонності функції ( ) 2 233f x x x= − . 

Розв’язання. Задана функція визначена та неперервна на всій числовій 

осі. Знайдемо її похідну: ( )
3

1
2f x x

x

 
 = − 

 
. Стаціонарні точки функції 

знаходимо з рівняння ( ) 0f x = . Отримуємо корені цього рівняння 1,2 1x =  . 

Крім того у точці 0x =  похідна є нескінченною (знаменник дробу дорівнює 

нулю). Отже, маємо три критичні точки: 
1 1x = − , 

2 0x = , 
3 1x = . Наносимо їх на 

числову пряму та отримуємо чотири інтервали: ( ); 1− − , ( )1; 0− , ( )0;1 , 

( )1; + . Похідна ( ) 0f x   на ( ); 1− −  та ( )0;1 , тут функція монотонно 



зростає. На інтервалах ( )1; 0−  та ( )1; +  ( ) 0f x   і, відповідно, функція ( )f x  

спадає на цих проміжках.   

 

3.6. Знаходження екстремумів функцій 

 

Точку 
0x  називають точкою локального максимуму (мінімуму) функції 

( )f x , якщо існує такий окіл 00 x x  −   точки 
0x , який належить області 

визначення функції ( )f x , що для всіх значень x  з цього околу виконана 

нерівність ( ) ( )0f x f x  ( ( ) ( )0f x f x ). 

Точки локального максимуму та локального мінімуму називають 

точками локального екстремуму. Значення функції ( )f x  у цих точках 

називають локальними екстремумами цієї функції (локальними мінімумами чи 

локальними максимумами). 

Найбільше значення функції у її області визначення називають 

абсолютним або глобальним максимумом, найменше значення – відповідно 

абсолютним або глобальним мінімумом. 

Якщо функція ( )f x  визначена на відрізку, то локальних екстремумів 

вона може досягати лише у внутрішніх точках цього відрізка, а абсолютний 

мінімум чи максимум може досягатися також на кінцях цього відрізка. 

Розглянемо умови існування локального мінімуму. 

Теорема 3.9 (необхідна умова локального екстремуму). Якщо функція 

( )f x  має у точці 
0x  локальний екстремум та диференційована у цій точці, то 

( )0 0f x = . 

Умова ( )0 0f x =  є необхідною, проте не достатньою для того, щоб 

диференційована у точці 
0x  функція мала у цій точці екстремум. Наприклад, 

для функції ( ) 3f x x=  похідна у точці 0x =  ( ) 20 3 0 0f  =  = , проте при 0x =  

екстремум відсутній. Крім того, існують функції, що не мають похідної у 

точках екстремуму. Наприклад, функція ( )f x x=  має мінімум у точці 0x = , 

проте не має похідної у цій точці. При цьому, не кожна точка, у якій функція не 

має похідної, є її точкою екстремуму. 

Можливими точками екстремуму є її критичні точки. Розглянемо 

критерії, що дають змогу з множини критичних точок вибрати точки 

максимуму та мінімуму. 

Теорема 3.10 (перша достатня умова локального екстремуму). Нехай 

0x  – критична точка функції ( )f x , неперервної у цій точці, і нехай існує окіл 

( )0 0;x x − +  точки 
0x , у якому функція має похідну ( )f x , можливо, крім 

самої точки 
0x , тоді: 

1) якщо у інтервалі ( )0 0;x x−  похідна ( ) 0f x  , а у інтервалі 

( )0 0;x x +  ( ) 0f x  , то 
0x  є точкою локального максимуму функції ( )f x ; 



2) якщо у інтервалі ( )0 0;x x−  похідна ( ) 0f x  , а у інтервалі 

( )0 0;x x +  ( ) 0f x  , то 
0x  є точкою локального мінімуму функції ( )f x ; 

3) якщо у обох інтервалах ( )0 0;x x−  і ( )0 0;x x +  похідна ( )f x  має той 

самий знак, то екстремум у точці 
0x  відсутній. 

З теорем 3.9 та 3.10 випливає наступне правило дослідження функції на 

екстремум. Щоб знайти локальні екстремуми функції ( )f x , треба: 

1) знайти критичні точки функції ( )f x ; 

2) відзначити їх у області визначення функції; 

3) дослідити знак похідної на кожному з інтервалів, на які розбивається 

область визначення критичними точками; 

4) за зміною знаку ( )f x  при переході через критичні точки зліва направо 

визначити точки максимумів та мінімумів і обчислити значення функції у цих 

точках. Результати дослідження доцільно звести у таблицю.  

Приклад 3.20. Дослідити на екстремум функцію 

( ) 4 3 23
9 7

4
f x x x x= − − + . 

Розв’язання. Задана функція визначена та диференційована на всій 

числовій прямій, тому її критичними точками є лише стаціонарні точки – корені 

похідної ( ) 3 23 3 18f x x x x = − − . З рівняння ( ) 3 23 3 18 0f x x x x = − − =  або 

( )23 6 0x x x− − =  знаходимо ці точки: 
1 2x = − , 

2 0x = , 
3 3x = . Нанесемо їх на 

числову пряму. Отримуємо інтервали ( ); 2− − , ( )2; 0− , ( )0; 3  та ( )3; +  . 

Визначимо знак похідної на кожному з цих інтервалів. Для цього виберемо 

всередині кожного з них довільним чином внутрішню точку і підставимо її у 

вираз для похідної. ( ) ( ) ( ) ( )
3 2

3 3 3 3 3 18 3 0f  − = − − − −  −  , отже на інтервалі  

( ); 2− −  ( ) 0f x  . ( ) ( ) ( ) ( )
3 2

1 3 1 3 1 18 1 0f  − = − − − −  −  , на ( )2; 0−  ( ) 0f x  . 

При 1x =  ( ) 3 21 3 1 3 1 18 1 0f  =  −  −   , на ( )0; 3 ( ) 0f x  . Якщо 4x = , то 

похідна ( ) 3 24 3 4 3 4 18 4 0f  =  −  −   , на  ( )3; +    ( ) 0f x  .  

При переході через критичну точку 
1 2x = −  похідна змінює свій знак з 

мінуса на плюс, тому це точка локального мінімуму, ( )2 9f − = − . Знак похідної 

змінюється з плюса на мінус при переході через точку 
2 0x = , це точка 

локального максимуму і ( )0 7f = . Точка 3x =  – це точка локального мінімуму, 

оскільки при переході через неї похідна змінює знак з мінуса на плюс, мінімум 

функції у цій точці ( )
161

3
4

f = − . Результати дослідження зведемо у таблицю.  

x  ( ); 2− −  –2 ( )2; 0−  0 ( )0; 3  3 ( )3; +   

( )f x  – 0 + 0 – 0 + 

( )f x   –9  7  161
4

−   



  min   max   min   

У цій таблиці символами  та  позначено зростання та спадання функції на 

відповідних інтервалах.  

Приклад 3.21. Знайти екстремуми функції ( ) ( ) ( )
2 2

3 31 1f x x x= − + + . 

Розв’язання. Задана функція визначена на всій числовій прямій. 

Знайдемо похідну ( )f x : 

( ) ( ) ( )
3 31 1

3 3
3 3 23

2 2 2 1 1 2 1 1
1 1

3 3 3 31 1 1

x x
f x x x

x x x

− − + + − 
 = − + + = + =  

− +  −
. 

У точках 1x =   похідна не існує. Коренем рівняння ( ) 0f x =  є 0x = . 

Отже, критичними точками функції ( )f x  є 
1 1x = − , 

2 0x = , 
3 1x = . Подальше 

дослідження представимо у вигляді таблиці. 

x  ( ); 1− −  –1 ( )1; 0−  0 ( )0;1  1 ( )1; +  

( )f x  – – + 0 – – + 

( )f x   3 4   2  3 4   

  min   max   min   

Отже, задана функція має точки локального мінімуму 1x =  , ( ) 31 4f  = . 

У цих точках похідна функції не існує. Стаціонарна точка 0x =  є точкою 

локального максимуму, ( )0 2f = . 

Приклад 3.22. Дослідити на екстремум функцію ( )
1

f x x
x

= + . 

Розв’язання. Функція визначене при всіх дійсних 0x  . Її похідна має 

вигляд: ( )
2

2 2

1 1
1

x
f x

x x

−
 = − = . Вона визначена на всій області визначення 

функції – множині ( ) ( ); 0 0;− + . Знайдемо стаціонарні точки: 

( ) 20 1 0 1f x x x =  − =  = . 

Нанесемо знайдені у стаціонарні точки на область визначення функції. 

Отримаємо проміжки ( ); 1− − , ( )1; 0− , ( )0;1  та ( )1; + . Результати 

подальшого дослідження представимо у наступній таблиці.  

x  ( ); 1− −  –1 ( )1; 0−  0 ( )0;1  1 ( )1; +  

( )f x  + 0 – – – - + 

( )f x   
–2 

 
 –  

2 

 
 

  max   –  min   

Отже, точка 1x = −  є точкою локального мінімуму, ( )1 2f − = − , у точці 

1x =  маємо локальний максимум, ( )1 2f = . 

У випадках, коли обчислення другої похідної функції є простішим, ніж 

дослідження знаків її першої похідної, для дослідження функції на екстремум 

доцільно використовувати другу достатню умову.   



Теорема 3.11 (друга достатня умова локального екстремуму). Нехай 

0x  є стаціонарною точкою функції ( )f x , тобто ( )0 0f x = , і у околі цієї точки 

існує неперервна друга похідна ( )f x , причому ( )0 0f x  . Якщо при цьому 

( )0 0f x  , точка 
0x  є точкою локального мінімуму, якщо ( )0 0f x  , то 

0x  – 

точка локального максимуму. 

Розглянемо приклад застосування цієї теореми. 

Приклад 3.23. Знайти точки екстремуму функції ( )
3

23
2 3

3 2

x
f x x x= − + − . 

Розв’язання. Областю визначення даної функції є вся числова пряма. 

Похідна ( ) 2 3 2f x x x = − +  має корені 
1 1x =  та 

2 2x = . Знайдемо другу похідну 

заданої функції: ( ) 2 3f x x = − . У точці 
1 1x =  ( )1 2 1 3 0f  =  −  , тому 1x =  – 

точка локального максимуму, оскільки ( )2 2 2 3 0f  =  −  , то точка 2x =  – 

точка локального мінімуму. 

Приклад 3.24. Дослідити на екстремум функцію ( ) 2sin cos2f x x x= + . 

Розв’язання. Функція ( )f x  визначена на всій числовій прямій та 

періодична з періодом 2 , тому при дослідженні обмежимось відрізком 

довжиною у період, наприклад,  0; 2 . Знайдемо першу похідну: 

( ) 2cos 2sin 2f x x x = − . 

Знайдемо стаціонарні точки, що належать проміжку 0; 2 : 

( )

( )

cos 0;

2cos 2sin 2 0 2cos 1 2sin 0 1
sin

2

1 , , .
2 6

k

x

x x x x
x

x n x k n Z k Z
 

 

=
− =   − =  
 =


 = +  = − +  

 

Коренями цього рівняння, що належать відрізку  0; 2 , є значення 

1
6

x


= , 2
2

x


= , 
3

5

6
x


= , 4

3

2
x


= . З’ясуємо характер знайдених стаціонарних 

точок. Для цього знайдемо ( )f x : ( ) 2sin 4cos2f x x x = − − . Значення другої 

похідної ( )f x  у стаціонарних точках дорівнюють: 

2sin 4cos 2 1 2 0
6 6 6

f
     

 = − −  = − −    
   

, 

2sin 4cos 2 2 4 0
2 2 2

f
     

 = − −  = − +    
   

, 

5 5 5
2sin 4cos 2 1 2 0

6 6 6
f

     
 = − −  = − −    
   

, 

3 3 3
2sin 4cos 2 2 4 0

2 2 2
f

     
 = − −  = +    
   

. 



Таким чином, на відрізку  0; 2  точками локального екстремуму є 

1
6

x


=  та 
3

5

6
x


=  – точки локального максимуму, 2

2
x


=  та 4

3

2
x


=  – точки 

локального мінімуму. Отже, точками екстремуму функції ( )f x  на числовій 

прямій з врахуванням періодичності функції є точки 
2

nx n


= + , n Z  – точки 

локального мінімуму, а точки ( )1 ,
6

k

kx k k Z


= − +  , є точками локального 

максимуму. 

Загалом дослідження функції на екстремум за другою достатньою 

умовою є простішим, ніж за першою, проте її не можна застосовувати у 

випадках, коли у критичних точках друга похідна не існує або дорівнює нулю. 

Узагальненням теореми 3.11 є третя достатня умова локального екстремуму, 

яку використовують для стаціонарних точок, у яких ( ) 0f x = . 

Теорема 3.12 (третя достатня умова локального екстремуму). Нехай у 

околі стаціонарної точки 
0x  існує неперервна похідна 

( ) ( )n
f x , причому 

( ) ( )0 0
n

f x  , а всі похідні до ( )1n − -го порядку включно дорівнюють нулю. 

Тоді: 

1) якщо n  – парне і 
( ) ( )0 0
n

f x  , то ( )f x  має у точці 
0x  локальний 

максимум; 

2) якщо n  – парне і 
( ) ( )0 0
n

f x  , то ( )f x  має у точці 
0x  локальний 

мінімум; 

3) якщо n  – непарне,  то ( )f x  у точці 
0x  екстремуму не має. 

Теорема 3.11 є окремим випадком теореми 3.12 при 2n = . 

Приклад 3.25. Дослідити на екстремум у точці 
0 0x =  функцію 

( ) 2cosx xf x e e x−= + + .  

Розв’язання. Точка 
0 0x =  є стаціонарною точкою заданої функції, 

оскільки ( ) 2sinx xf x e e x− = − − , ( )0 0f  = . Знайдемо похідні вищих порядків 

функції ( )f x  у точці 
0 0x = : 

( ) 2cosx xf x e e x− = + − , ( )0 0f  = , 

( ) 2sinx xf x e e x− = − + , ( )0 0f  = , 

( ) ( )4
2cosx xf x e e x−= + + , 

( ) ( )4
0 4 0f =  . 

Оскільки 4n =  – парне і 
( ) ( )4

0 0f  , то точка 
0 0x =  є точкою локального 

мінімуму і при цьому локальний мінімум функції ( )f x  у цій точці ( )0 4f = . 

 

3.7. Найбільше та найменше значення функції на відрізку 

 



Нехай функція ( )f x  є неперервною на відрізку  ;a b . Тоді вона повинна 

досягати на цьому відрізку своїх найбільшого та найменшого значень, тобто 

абсолютних екстремумів ( )f x  на цьому відрізку. Будемо позначати їх 

відповідно 
 

( )
;

max
a b

M f x=  та 
 

( )
;

min
a b

m f x= .  

Точки, у яких досягається найбільше та найменше значення функції на 

відрізку, можуть бути кінцями цього відрізка, або його внутрішніми точками. 

Якщо точка 
0x , у якій досягається абсолютний екстремум, належить ( );a b , то 

таку точку потрібно шукати серед критичних точок даної функції. 

Отже, щоб знайти найбільше та найменше значення функції ( )f x  на 

відрізку  ;a b , потрібно: 

1) знайти критичні точки цієї функції, що належать інтервалу ( );a b ; 

2) обчислити значення функції у знайдених критичних точках та на 

кінцях відрізка  – точках x a= та x b= ; 

3) вибрати серед них найбільше та найменше значення. 

Якщо функція неперервна у інтервалі ( );a b , то вона може й не мати 

абсолютних екстремумів у цьому інтервалі. Про їх наявність роблять висновок 

на основі дослідження поведінки функції на кінцях інтервалу (знаходження 

границь ( )
0

lim
x a

f x
→ +

 та ( )
0

lim
x b

f x
→ −

) та значень функції у критичних точках, що 

належать ( );a b . 

Приклад 3.26. Знайти найбільше та найменше значення функції 

( ) 4 28f x x x= −  на відрізку  1; 3− . 

Розв’язання. Знайдемо критичні точки даної функції. Її похідна 

( ) ( )3 24 16 4 4f x x x x x = − = −  має корені 
1 2x = − , 

2 0x =  та 
3 2x = . На інтервалі 

( )1; 3−  знаходяться критичні точки 0x =  та 2x = . Обчислимо значення функції 

у цих точках: ( )2 16f = − , ( )0 0f = . На кінцях відрізка  1; 3− маємо 

( )1 7f − = − , ( )3 9f = . Вибравши серед знайдених значень функції найбільше та 

найменше, остаточно визначаємо, що 
 

( ) ( )
1; 3

max 3 9M f x f
−

= = = , 

 
( ) ( )

1; 3
min 2 16m f x f
−

= = = − . 

 

3.8. Приклади розв’язання екстремальних задач геометричного та 

фізичного змісту 

 

Розглянемо приклади застосування методів диференціального числення 

до визначення екстремальних (найбільших та найменших) величин у задачах 

фізичного та геометричного змісту. 

Приклад 3.27. Посудина з вертикальною стінкою висотою h  стоїть на 

горизонтальній площині. На якій глибині потрібно розмістити отвір у цій 

посудині, щоб дальність витікання води з отвору була найбільшою (швидкість 



рідини, що витікає, за законом Торрічеллі дорівнює 2gx , де x  – глибина 

розміщення отвору, g  – прискорення вільного падіння)? 

Розв’язання. Позначимо через H  відстань між отвором у посудині та 

горизонтальною площиною, а через l  – дальність витікання води з отвору. Тоді 

2l gx t=  , де t  – час витікання води. Оскільки 
2

2

gt
H h x= − = , то для часу 

витікання води отримуємо 
( )2 h x

t
g

−
= . Останній вираз дає змогу записати 

дальність витікання води l  як функцію змінної x :  

( )
( )

( )
2

2 2
h x

l l x gx x h x
g

−
= =  = − , 0 x h  . 

Знайдемо найбільше значення цієї функції на проміжку ( )0; h . Для цього 

знайдемо похідну ( )l x : 

( )
( )

2h x
l x

x h x

−
 =

−
. 

На відкритому проміжку ( )0; h  ця похідна є неперервною функцією. 

Знаходимо критичні точки функції ( )l x , що належать( )0; h . З рівняння  

( ) 0l x =  знаходимо стаціонарну точку ( )0;
2

h
x h=  . Значення ( )l x  у цій точці 

2

h
l h
 

= 
 

. Оскільки ( ) ( )
0

lim lim 0
x x h

l x l x
→ →

= = , то у точці 
2

h
x =  функція ( )l x  досягає 

абсолютного максимуму на ( )0; h . 

Приклад 3.28. Пряма l  ділить площину на два середовища: I і II. У 

середовищі I точка рухається зі швидкістю 
1v , а у середовищі II – 

2v . По якому 

шляху має рухатися ця точка, що найшвидше дістатися з заданої точки A  

середовища I у задану точку B  середовища II?  

Розв’язання. Нехай 
1AA  та 

1BB  – перпендикуляри до прямої l , 
1AA a= , 

1BB b= , відстань між точками 
1A  та 

1B , розташованими на прямій l , 
1 1AB c= . У 

обох середовищах найкоротший шлях буде прямолінійним. Нехай він 

складається з відрізків AM  та MB , M l . За незалежну змінну x  виберемо 

абсцису точки M : 
1x AM= . Виразимо через цю змінну час t , за який рухома 

точка перейде з положення A  у положення B : 

( )
( )

222 2

1 2 1 2

b c xAM MB a x
t t x

v v v v

+ −+
= = + = + , ( );x − + . 

Знайдемо першу та другу похідні функції ( )t x : 

( )
( )

2 2 22
1 2

x c x
t x

v a x v b c x

−
 = −

+ + −
, 



( )
( ) ( )( )

2 2

3 3
2 2 22

1 2

a b
t x

v a x v b c x

 = +

+ + −

. 

Здійснимо дослідження рівняння ( ) 0t x = . Оскільки похідні ( )t x  та 

( )t x  існують при всіх дійсних значеннях x  і ( ) 0t x  , то похідна ( )t x  зростає 

на всій числовій прямій і не може мати більше одного кореня. Оскільки 

( )0 0t  , а ( ) 0t c  , то рівняння ( ) 0t x =  має єдиний корінь 
0x , розташований 

між точками 0x =  та x c= . Йому відповідає мінімум функції ( )t x , оскільки 

( )0 0t x  . Абсциси 0x =  та x c=  відповідають точкам 
1A  та 

1B , тому точка 

M розташована між цими точками. 

З’ясуємо геометричний зміст отриманого результату. Абсциса x точки 

M має задовольняти рівнянню ( ) 0t x =  або  

( )
2 2 22

1 2

x c x

v a x v b c x

−
=

+ + −
 . 

Це рівняння рівносильне умові  1 1

1 2

A M MB

v AM v MB
=

 
 або 1

2

sin

sin

v

v




= . Ми 

отримали відомий з фізики закон заломлення світла, згідно з яким заломлення 

світла відбувається так, наче промінь світла обирає найшвидший шлях з точок 

одного середовища у точки другого.  

Приклад 3.29. Нехай в результаті серії експериментів у зв’язку з 

наявністю похибок вимірювання отримали n  різних значень величини x : 

1 2, ,..., nx x x . Знайти значення величини 
0x , для якого сума квадратів відхилень 

від отриманих значень буде найменшою. 

Розв’язання. Сума квадратів вказаних відхилень виражається функцією 

( ) ( )
2

1

n

i

i

f x x x
=

= − . Вона визначена на всій числовій прямій. При цьому маємо: 

( ) ( )
1

2
n

i

i

f x x x
=

 = − , ( ) 2 0f x n =  . 

З останньої нерівності випливає, що стаціонарна точка функції ( )f x  є її 

точкою мінімуму. Знайдемо цю стаціонарну точку з рівняння ( ) 0f x = , з якого 

отримуємо, що 1
0

1

n

in
i

i

i

x

nx x x x
n

=

=

=  = =


 . Отже значення 
0x , для якого сума 

квадратів його відхилень від отриманих значень 
ix  є мінімальною, дорівнює 

середньому арифметичному отриманих результатів вимірювання. 

Приклад 3.30. На якій висоті від підлоги потрібно розмістити електричну 

лампочку, щоб у даній точці підлоги освітленість була найбільшою? 



Розв’язання. Будемо розглядати підлогу як горизонтальну площину. 

Нехай OB  – відстань від підлоги до лампочки, A  – задана точка підлоги, 
OA a= . 

Відомо, що освітленість I  визначається законом 
2

sin
I k

r


=  , де k  – 

коефіцієнт пропорційності, який залежить від сили світла лампочки, r BA=  – 

відстань від лампочки до точки A . Нехай шукана висота OB x= , тоді sin
x

r
 = , 

тому ( )
( )

3
2 2 2

kx
I f x

x a

= =

+

, де 0x  . Знаходимо ( )
( )

( )

2 2

5
2 2 2

2k a x
f x

x a

−
 =

+

. З рівності 

( ) 0f x =  знаходимо стаціонарні точки 
2

a
x =  . Оскільки 0x  , то 

2

a
x = . З 

фізичного змісту задачі випливає, що точка екстремуму у даній задачі єдина і 

це точка максимуму, тому 
2

a
OB = . 

Приклад 3.31. Завод A  потрібно з’єднати шосейною дорогою з 

криволінійною залізничною колією, на якій розташоване місто B . Відстань AC  

до залізничної колії дорівнює a , відстань CB  по залізничній колії дорівнює l . 

Вартість перевезень одиниці вантажу на одиницю відстані залізницею дорівнює 

 , шосе –  . Як прокласти шосе AM  до залізниці, щоб вартість перевезень від 

заводу до міста B  була найменшою? 

Розв’язання. Нехай CM x= . При довільному положенні точки M  

вартість y перевезень одиниці вантажу дорівнює 

( ) ( ) 2 2y y x l x x a = = − + + , 0 x l  . 

Маємо ( )
2 2 2 2

x x
y x

x a x a

 
 



 
 = − + = − 

+ + 
. Якщо   , то, 

враховуючи, що 
2 2

0 1
x

x a
 

+
 при 0 x l  , похідна ( )y x  завжди від’ємна. У 

цьому випадку функція ( )y x  спадає з зростанням x  від нуля до l . Вона 

набуває свого найменшого значення при x l= . У цьому випадку шосе потрібно 

прокладати безпосередньо від міста B , причому мінімальна вартість перевезень 

складатиме ( ) 2 2y l l a= + .  

Якщо   , то з рівняння ( ) 0y x =  знаходимо: 

2 2 2 2 2 2

2 2 2 2
0

x x
x x a

x a x a

 
   

 

 
− =  =  − = 

+ + 
. 

Звідси, з врахуванням того, що 0x  ,  випливає, що 
0 2 2

a
x x



 
= =

−
 є 

стаціонарною точкою функції ( )y x , яка за умови 
0x l  визначає положення 



точки M між точками B  та C , при якому витрати на перевезення  будуть 

найменшими: ( ) 2 2

min 0y y x l a  = = + − . 

Приклад 3.32. З круглої колоди діаметра d  потрібно вирізати стояк, який 

має прямокутний переріз і може сприймати найбільше навантаження. Якими 

повинні бути розміри стояка? 

Розв’язання. Оскільки стояк є елементом конструкції, що працює на 

стиск, то він витримуватиме найбільше навантаження тоді, коли площа його 

поперечного перерізу буде найбільшою. Задача зводиться до визначення 

прямокутника найбільшої площі, який можна вписати у круг діаметра d . Нехай 

x  – одна з сторін шуканого прямокутника, тоді друга сторона дорівнюватиме 
2 2d x− , а площа ( ) 2 2S x x d x= − , 0 x d  . Функція ( )S x  неперервна та 

диференційована на інтервалі ( )0; d . Знайдемо її стаціонарні точки, що 

належать цьому інтервалу. 

( )
2 2

2 2

2d x
S x

d x

−
 =

−
, ( )

( )

( )

2 2

3
2 2

2 3x x a
S x

d x

−
 =

−

. 

З рівняння ( ) 0S x =  знаходимо 
1,2

2

d
x =  . На проміжку ( )0; d маємо 

єдину критичну точку 
2

d
x = . Оскільки 0

2

d
S
 
  
 

, то функція ( )S x  досягає 

у цій точці максимуму. Отже, 
2

d
x = , 2 2

2

d
y d x x= − = = , переріз стояка 

повинен бути квадратом з стороною 
2

d
. 

Приклад 3.33. Визначити розміри консервної банки заданого об’єму V , 

при яких на її виготовлення піде найменше матеріалу. 

Розв’язання. Нехай банка має форму циліндра з радіусом основи r  і 

висотою h . Площа повної поверхні банки 
22 2S r rh = + . Оскільки об’єм  V  

банки відомий і 
2V r h= , то 

2

V
h

r
= . Тоді площу повної поверхні банки можна 

записати у вигляді функції радіуса її основи: 

( ) 2 2

2

2
2 2 2

V V
S r r r r

r r
  


= +  = + , 0r  ; 

( ) 2
2 2

V
S r r

r


 
 = − 

 
. ( ) 3

3
2

0 2
2 2

V V V
S r r r r

r


 
 =  =  =  = ; 

( ) 3

2
2 2 0

V
S r

r


 
 = +  

 
, 0r  . 

З останньої нерівності випливає, що знайдена критична точка 3

2

V
r


= є 

точкою мінімуму. Обчислимо для знайденого значення r  висоту банки: 



3
2

2 2
2

V V
h r

r 
= = = . Отже, щоб площа повної поверхні банки і, відповідно, 

витрати матеріалу на її виготовлення були мінімальними, потрібно, щоб її 

висота дорівнювала діаметру дна. 

Приклад 3.34. З круга радіуса R  потрібно вирізати сектор так, щоб з 

нього можна було виготовити конусоподібний фільтр з максимальним об’ємом. 

Розв’язання. Нехай x  – центральний кут вирізаного сектора, ( )V x  – 

об’єм фільтра. Оскільки об’єм фільтра – величина невід’ємна і при 0x →  або 

2x →  ( ) 0V x → , то існує таке значення x , при якому цей об’єм найбільший. 

При склеюванні сектора утворюється конус, твірна якого дорівнює R , 

довжина кола основи дорівнює R x , радіус основи 
2

R x
r




= , висота конуса 

2 2 2 24
2

R
h R r x


= − = − . Тоді об’єм конуса виражається через змінну x  

наступним чином: 

( )
3

2 2 2 2

2

1
4

3 24

R
V x r h x x 


= = − , 0 2x   . 

Знаходимо похідну отриманої функції ( )V x : 

( )
( )3 2 23 3

2 2

2 2 2 2 2 2

8 3
2 4

24 4 24 4

R x xR x
V x x x

x x




   

− 
 = − − = 

− − 
. 

З рівняння ( ) 0V x =  отримуємо три стаціонарні точки функції ( )V x : 

1 0x = , 2,3

2 2

3
x


=  . Проміжку ( )0; 2  належить лише одна з них – 

2 2

3
x


= . 

Оскільки на цьому проміжку функція ( )V x  досягає максимуму, то він 

досягається при центральному куті вирізаного сектора 
2 2

3
x


= . 

 

3.9. Опуклість графіка функції. Точки перегину 

 

Графік диференційованої на ( );a b  функції ( )y f x=  називають опуклим 

вниз на цьому інтервалі, якщо він розташований вище будь-якої дотичної до 

цього графіка на ( );a b . 

Графік диференційованої на ( );a b  функції ( )y f x=  називають опуклим 

вгору на цьому інтервалі, якщо він розташований нижче будь-якої дотичної до 

цього графіка на ( );a b . 

Точку на графіку функції ( )y f x= , що відокремлює його частини з 

різною випуклістю, називають точкою перегину. 



Інтервали, на яких графік функції випуклий вгору та випуклий вниз 

знаходять з допомогою наступної теореми. 

Теорема 3.13. Якщо для функції ( )y f x=  у всіх точках інтервалу ( );a b  

друга похідна ( ) 0f x  , то графік функції на цьому інтервалі випуклий вгору. 

Якщо ж  ( ) 0f x   на ( );a b , то графік функції опуклий вниз. 

Для знаходження точок перегину графіка функції використовують 

наступну теорему. 

Теорема 3.14 (достатня умова існування точок перегину). Нехай 
0x  – 

точка, у якій ( )f x  дорівнює нулю, або не існує. Якщо при переході через цю 

точку ( )f x  змінює свій знак, то точка графіка функції ( )y f x=  з абсцисою 
0x  

є точкою перегину. 

Приклад 3.35. Дослідити на опуклість та визначити точки перегину 

графіка функції 5 2y x x= − + . 

Розв’язання. Задана функція визначена на всій числовій прямій. 

Знайдемо її другу похідну. ( ) 45 1y x x = − , ( ) 320y x x = . Друга похідна існує у 

всіх точках числової прямої. З рівняння 0y =  знаходимо 0x = . При 0x   

0y  , тут графік функції опуклий вгору. При 0x   0y  , тому при 0x   

графік опуклий вниз. Точка з абсцисою 0x =  є точкою перегину, її ордината 

( )0 2y = . 

 

3.10. Загальна схема дослідження функції 

 

Розглянемо загальну схему дослідження функції ( )y f x=  та побудови її 

графіка. Вона складається з наступних етапів. 

1. Знайти область визначення функції. 

2. Якщо функція має точки розриву, то з’ясувати їх характер, а також 

дослідити поведінку функції на межах області визначення (скінченних чи 

нескінченних). Знайти асимптоти функції (вертикальні, горизонтальні, 

похилі). 

3. Дослідити функцію на парність. Якщо функція є парною або непарною, то 

подальше дослідження доцільно виконувати лише для невід’ємних значень 

аргументу. Побудувавши графік для цих значень аргументу, потім 

добудувати його для від’ємних значень аргументу симетрично осі Oy  для 

парної функції і симетрично відносно початку координат – для непарної 

функції. 

4. Дослідити функцію на періодичність. Якщо функція є періодичною, то 

достатньо провести її дослідження на будь-якому відрізку, довжина якого 

дорівнює періоду функції і, побудувавши графік на цьому відрізку, 

продовжити його на всю область визначення функції. 

5. Знайти нулі функції (корені рівняння ( ) 0f x = ) та інтервали знакосталості 

функції (інтервали, на яких функція зберігає знак: є додатною, або 



від’ємною). Область визначення розбивається на інтервали знакосталості 

нулями та точками розриву функції. 

6. Знайти локальні екстремуми та проміжки зростання та спадання функції. 

7. Знайти проміжки, на яких графік функції зберігає напрям опуклості, а 

також точки перегину графіка. 

8. За результатами виконаного дослідження побудувати графік функції. 

 

Запитання та завдання для самоконтролю до теми 3 

1. Сформулюйте теореми Ферма, Ролля, Лагранжа, Коші. 

2. Наведіть правила Лопіталя для розкриття невизначеностей 
0

0

 
 
 

 та 
 

 
 

. 

3. Використовуючи правила Лопіталя, знайти границі:  

1) 
20

1 cos4
lim
x

x

x→

−
; 2) ( )

1

ln

0
lim ctg x

x
x

→
; 3) 

2

lim

x

xx

xe

x e→ +
; 4) 2

20

1
lim ctg
x

x
x→

 
− 

 
; 

5) 
0

lim
x x

x

a b

x→

−
; 6) 

2

ln
lim
x

x

x→
; 7) 

1
ln

lim
1

ln
x

x

x

x

x

→

+ 
 
 

− 
 
 

; 8) 
2

20

sin
lim

3 2

x

xx

e x x

x e→

−

+
; 9) 

2

4
lim

xx

x

e→
; 

10) 
21

2 1
lim

1 1x x x→

 
− 

− − 
. 

4. Запишіть формулу Тейлора для функції y x=  у точці 
0 4x =  при 3n = . 

5. Яку точку називають стаціонарною? 

6. Яку точку називають критичною? 

7. Як знаходять інтервали монотонності диференційовної функції. 

8. Знайдіть інтервали монотонності функцій: 1) ( )2ln 3y x= + ; 

2) 
2

2

1

x
y

x
=

+
. 

9. Надайте означення локального максимуму та локального мінімуму 

функції. 

10. Знайдіть локальні екстремуми функцій:  

1) 21y x x= − ; 2) 
( )( )

2

2 3x x
y

x

− −
= ; 3) 33y x x= − . 

11. Знайдіть асимптоти кривої 
2

2

x
y

x
=

−
. 

12. Дослідіть та побудуйте графіки функцій:  

1) 
2

2

4x
y

x

+
= ; 2) 

3 23 2y x x= − . 

 

 



4. ДИФЕРЕНЦІАЛЬНЕ ЧИСЛЕННЯ ФУНКЦІЙ КІЛЬКОХ ЗМІННИХ 

 

4.1. Поняття функції кількох змінних 

 

У математиці та її застосуваннях часто зустрічаються функції, 

значеннями яких є кілька дійсних аргументів. Прикладами таких функцій є 

об’єм кругового циліндра ( ) 2
,V r h r h= , що залежить від радіуса його основи 

r  та висоти h ; сила F , з якою притягуються дві матеріальні точки, залежить 

від їх мас M  та m , а також відстані r  між ними: ( ) 2
, ,

M m
V M m r

r



=  

( const = ). Найпростішими з таких функцій є функції двох змінних. 

Нехай задано множину D  впорядкованих пар дійсних чисел ( ),x y . 

Якщо кожній парі ( ),x y D  ставиться у відповідність за деяким 

правилом ( ),f x y  єдине дійсне число z , то на множині D  визначена функція 

двох змінних x  та y : ( ),z f x y= . Множину D  називають областю визначення 

цієї функції. 

Оскільки кожній впорядкованій парі чисел ( ),x y  на декартовій площині 

відповідає точка з координатами ( ),x y , і, навпаки, кожній точці декартової 

площини відповідає впорядкована пара ( ),x y , то можна стверджувати, що 

функція двох змінних ( ),z f x y=  визначається на деякій множині точок 

декартової площини. Функцію двох змінних ( ),z f x y=  зображують у 

тривимірному просторі з заданою декартовою системою координат Oxyz  у 

вигляді поверхні ( ),z f x y= , проекцією якої на площину Oxy  є область D . 

Наприклад, зображенням функції 
2 2

z x y= + , де x , y , є параболоїд 
2 2

z x y= + . 

Областю визначення функції двох змінних може бути вся координатна 

площина або її частина, обмежена деякими лініями. Лінію, що обмежує 

область, називають її межею. Точки області, що не лежать на її межі, 

називають внутрішніми точками цієї області. Область, що складається лише з 

внутрішніх точок, називають відкритою. Область з приєднаною до неї межею 

називають замкненою. Прикладом замкнутої області є круг 
2 2

1x y+  , до якого 

входить коло 
2 2

1x y+ = , що його обмежує. Круг 
2 2

1x y+   є прикладом 

відкритої області. 

Можна надати інше, більш строге означення поняття області та її межі. 

Для цього спочатку визначимо поняття околу точки на площині.  

Множину ( ),M x y  всіх точок площини, координати яких задовольняють 

нерівності ( ) ( )
2 2

0 0x x y y − + −  , називають  -околом точки ( )0 0 0,M x y .  



Таким чином,  -окіл точки 
0M  – це відкритий круг з центром у цій точці 

та радіусом  . 

Множину D  точок площини називають зв’язною, якщо будь-які дві її 

точки можна сполучити неперервною лінією, що цілком належить цій множині. 

Наприклад, круг є зв’язною множиною, а множина, що складається з двох 

кругів, що не мають спільних точок, не є зв’язною. 

Точку M  називають внутрішньою точкою множини D , якщо існує  -

окіл цієї точки, який цілком міститься у множині D .  

Множину D  називають відкритою, якщо кожна її точка є внутрішньою. 

Областю (відкритою областю) називають зв’язну відкриту множину 

точок. 

Точку M називають межовою точкою множини D , якщо будь-який її 

окіл містить як точки, що належать D , так і точки, що не належать цій 

множині.  

Множину всіх межових точок області називають її межею. Область разом 

з її межею називають замкненою. 

Область називають обмеженою, якщо існує круг скінченного радіуса, 

який цілком містить цю область. 

Побудова поверхні, що є геометричним образом функції двох змінних 

( ),z f x y= , часто пов’язана із значними труднощами, тому для зображення 

функцій двох змінних використовують метод перерізів. Він полягає у тому, що 

поверхню ( ),z f x y=  перетинають площинами z C const= = , паралельними 

координатній площині Oxy . При цьому отримують криві ( ),f x y C= , що 

називаються лініями рівня функції двох змінних ( ),z f x y= . Отже, лінія рівня 

на площині Oxy  – це проекція кривої, що утворюється при перетині поверхні 

( ),z f x y=  площиною z C= . Будуючи лінії рівня для різних значень C , можна 

дістати певне уявлення про поведінку функції ( ),z f x y= . 

Приклад 4.1 Знайти лінії рівня функції 
2 2

1
z

x y
=

+
. 

Розв’язання. Лінії рівня z C=  знайдемо з рівняння 
2 2

1
C

x y
=

+
. Звідси 

знаходимо: 2 2 1
x y

C
+ = , 0C  . Отже, рівняння ліній рівня заданої функції має 

вигляд: 2 2

2

1
x y

C
+ = . Це рівняння визначає кола з центром у початку координат 

і радіусом 
1

C
. 

Для функції трьох змінних ( ), ,u f x y z=  визначають поняття поверхні 

рівня. Поверхнею рівня називають множину всіх точок простору з області 

визначення функції ( ), ,u f x y z= , для яких ця функція набуває одне й те ж саме 



значення. Рівняння поверхонь рівня має вигляд ( ), , constf x y z c= = . 

Наприклад, поверхні рівня функції 
2

2 2

z
u

x y
=

+
 визначаються рівнянням 

2

2 2

z
c

x y
=

+
, або 

2
2 2 0

z
x y

c
+ − = . При 0c   це рівняння визначає множину 

конусів з вершиною у початку координат. 

Означення функції двох змінних можна узагальнити на випадок довільної 

скінченної кількості аргументів.  

Якщо кожній точці (впорядкованому набору n  чисел) ( )1 2, ,..., nx x x  з 

множини D  n -вимірного простору за певним законом ставиться у 

відповідність єдине число z , то кажуть, що на множині D  визначено функцію 

n  змінних: 
1x , 

2x , …, 
nx  ( )1 2, ,... nz f x x x= . 

 

4.2. Границя та неперервність функції двох змінних 

 

Для функції двох та більшого числа змінних вводяться поняття границі 

функції та її неперервності аналогічно випадку функції однієї змінної. Нехай 

функція ( ),z f x y=  визначена у деякому околі точки ( )0 0 0,M x y , можливо, 

окрім самої цієї точки. 

Число A  називають границею функції ( ),z f x y=  при 

( ) ( )0 0 0, ,M x y M x y→  (цей запис означає, що 
0 0,x x y y→ → ), якщо 0   

0  : ( ) ( )
2 2

0 00 x x y y  − + −  ( ),f x y A  −  . 

Для границі використовують позначення: ( ) ( )
0 0

0

lim , lim
x x M M
y y

A f x y f M
→ →
→

= = . 

З означення границі функції двох змінних випливає, що коли вона існує, 

то вона не залежить від шляху, по якому точка M  наближається до точки 
0M . 

Для функції двох змінних кількість таких шляхів нескінченна, на відміну від 

функції однієї змінної, де x  може наближатися до 
0x  двома шляхами: справа та 

зліва. 

Геометричний зміст границі функції двох змінних полягає у наступному. 

Яким би малим не було вибране число 0  , знайдеться такий  -окіл точки 

( )0 0 0,M x y , що у всіх його точках ( ),M x y , відмінних від 
0M , аплікати z  

відповідних точок поверхні ( ),z f x y=  відрізняються від числа A  за 

абсолютною величиною менше, ніж на  . 

Користуючись означенням границі функції двох змінних, можна 

перенести основні теореми про границі для функції однієї змінної на випадок 

функції двох змінних. Зокрема, має місце наступна теорема. 

Теорема 4.1. Нехай функції ( ),f x y  та ( ),g x y  визначені у деякому околі 

точки 
0M  та мають у цій точці границі B  та C . Тоді функції ( ) ( ), ,f x y g x y , 



( ) ( ), ,f x y g x y , 
( )
( )

,

,

f x y

g x y
 (для частки ( ), 0g x y  ), мають у точці 

0M  границі, 

які відповідно дорівнюють B C , B C , 
B

C
 (для частки 0C  ). 

Аналогічно випадку функції однієї змінної, можна сформулювати 

означення нескінченно малої функції двох змінних 

Функцію ( ),z f x y=  називають нескінченно малою у точці 
0M , якщо 

( )
0

lim 0
M M

f M
→

= .  

Введемо за допомогою поняття границі поняття неперервності функції 

двох змінних. Нехай функція ( )z f M=  визначена у області D  координатної 

площини Oxy , точка 
0M D  і є внутрішньою точкою цієї області. 

Функцію ( )z f M=  називають неперервною у точці 
0M , якщо 

( ) ( )
0

0lim
M M

f M f M
→

= . 

Точки, у яких функція неперервна, називають точками неперервності, а 

точки, у яких неперервність порушується – точками розриву цієї функції. 

Функцію ( ),f x y  називають неперервною на множині D , якщо вона є 

неперервною у кожній точці цієї множини. 

Сформулюємо основні властивості неперервних функцій двох змінних у 

замкненій обмеженій області. 

1. Якщо функція ( )z f M=  є неперервною у замкненій обмеженій області, 

то вона є обмеженою у цій області, тобто  0 :c   ( )f M c  для всіх точок цієї 

області. 

2. Якщо функція ( )z f M=  є неперервною у замкненій обмеженій області, 

то у цій області існують точки, у яких функція набуває найбільшого та 

найменшого значень. 

3. Якщо функція ( )z f M=  є неперервною у замкненій обмеженій області 

D  і ( ) ( )1 2f M c f M  , де 
1M D , 

2M D , то існує точка ( )0 0 0,M x y D , 

така, що ( )0f M c= . Зокрема, якщо ( )1 0f M  , ( )2 0f M  , то у області D  існує 

точка 
0M , у якій ( )0 0f M = . 

 

4.3. Частинні похідні 

 

Нехай функція ( ),z f x y=  визначена у деякому околі точки ( ),M x y . 

Надамо змінній x  приросту x , залишаючи значення y  незмінним, так, щоб 

точка ( )1 ,M x x y+   належала цьому околу. 



Величину ( ) ( ), ,xz f x x y f x y = +  −  називають частинним приростом 

функції ( ),f x y  за змінною x . Аналогічно вводиться частинний приріст yz  

цієї функції за змінною y : ( ) ( ), ,yz f x y y f x y = + − . 

Якщо існує границя 

( ) ( )
0 0

, ,
lim limx

x x

f x x y f x yz

x x →  →

+  −
=

 
,    (4.1) 

то вона називається частинною похідною функції ( ),f x y  у точці ( ),M x y  за 

змінною x і позначається одним з наступних символів: 
xz , xf  , 

z

x




, 

f

x




.  

Аналогічно частинна похідна функції ( ),f x y  за змінною y  визначається 

як границя 

( ) ( )
0 0

, ,
lim lim

y

y x

z f x y y f x y

y y →  →

 +  −
=

 
 .   (4.2) 

Вона позначається одним з символів: yz , 
yf  , 

z

y




, 

f

y




. 

Згідно з означенням, при знаходженні частинної похідної 
xz  обчислюють 

звичайну похідну функції однієї змінної x , вважаючи змінну y  сталою, а при 

знаходженні похідної yz  сталою вважається змінна x . Тому частинні похідні 

знаходять за формулами та правилами диференціювання функцій однієї 

змінної.  

Частинна похідна 
xz  характеризує швидкість зміни функції у напрямі осі 

Ox , yz  – у напрямі осі Oy . 

З’ясуємо геометричний зміст частинних похідних функції двох змінних. 

Геометричним образом (графіком) функції ( ),z f x y=  є деяка поверхня. 

Графіком функції ( )0,z f x y=  є лінія перетину цієї поверхні з площиною 

0y y= . Виходячи з геометричного змісту похідної для функції однієї змінної, 

отримуємо, що ( )0 0, tgxf x y  = , де   – кут між віссю Ox  і дотичною, 

проведеною до просторової кривої ( )0,z f x y=  у точці ( )( )0 0 0 0 0, , ,M x y f x y . 

Аналогічно, ( )0 0, tgyf x y  = , де   – кут між віссю Oy та дотичною, проведеною 

до просторової кривої ( )0 ,z f x y=  (лінії перетину поверхні ( ),z f x y=  з 

площиною 
0x x= ) у точці ( )( )0 0 0 0 0, , ,M x y f x y . 

Для функції n  змінних ( )1 2, ,..., nu f x x x=  можна знайти n  частинних 

похідних: 
1

,
u

x




 

2

,
u

x




…, 

n

u

x




.  

Тут 
0

lim i

i

x

x
i i

uu

x x →


=

 
, ( ) ( )1 1,..., ,... ,..., ,...

ix i i n i nu f x x x x f x x x = + − . 



Щоб знайти частинну похідну 
i

u

x




, треба взяти звичайну похідну функції 

( )1 2, ,..., nu f x x x=  по змінній 
ix , вважаючи решту змінних сталими. 

Приклад 4.2. Знайти частинні похідні за змінними x  та y  наступних 

функцій: 1) 
2

3
3 2 3 1

x
z x y x y

y
= − + − + ; 2) arcsin

y
z

x
= . 

Розв’язання. 1) Знайдемо частинну похідну 
xz . Для цього 

диференціюємо функцію по x , вважаючи y  сталою величиною: 

3

1
6 2xz xy

y
 = − + . Знаходимо yz  (диференціюємо ( ),f x y  по y , сталою 

вважається змінна x ): 
2

4

3
3 3y

x
z x

y
 = + − . 

2)  
22 4 2 2

2

1
;

1

x

y y
z

xy x x y

x

 
 =  − = − 

  −
−

 
2 2 2

2

1 1 1

1

yz
xy x y

x

 =  =
−

−

. 

Якщо функція ( ),z f x y=  задана у області D  і має частинні похідні 
xz  та 

yz  у всіх точках ( ),x y D , то ці похідні можна розглядати як нові функції, 

задані у області D . Тому можна розглядати задачу про знаходження частинних 

похідних від цих функцій по якій-небудь змінній у точці ( ),x y D . 

Якщо існує частинна похідна за x  від функції 
f

x




, то її називають 

частинною похідною другого порядку від функції ( ),f x y  за змінною x і 

позначають 
2

2

f

x




 або 

xxf  . Отже, за означенням 
2

2

f f

x x x

   
=  

   
. 

Якщо існує частинна похідна від функції 
f

x




 за змінною y , то цю похідну 

називають мішаною частинною похідною другого порядку від функції ( ),f x y  і 

позначають 
2 f

x y



 
 або xyf  . Отже, 

2 f f

x y y x

   
=  

    
. 

Для функції ( ),f x y  двох змінних розглядають чотири частинні похідні 

другого порядку: 
2

2

f

x




, 

2 f

x y



 
, 

2 f

y x



 
, 

2

2

f

y




. 

Якщо існують частинні похідні від частинних похідних другого порядку, 

то їх називають частинними похідними третього порядку. Таких похідних уже 

вісім: 
3

3

f

x




, 

3

2

f

x y



 
, 

3

2

f

y x



 
, 

3 f

x y x



  
, 

3 f

y x y



  
, 

3

2

f

y x



 
, 

3

2

f

x y



 
. 

3

3

f

y




. 



Відповідь на запитання, чи залежить величина мішаної похідної від 

порядку диференціювання, тобто чи рівні між собою , наприклад, 
2 f

x y



 
 та 

2 f

y x



 
, надає наступна теорема. 

Теорема 4.2. Якщо функція ( ),f x y  визначена разом із своїми похідними 

xf  , yf  , xyf  , yxf   у деякому околі точки ( )0 0 0,M x y , причому похідні xyf   та yxf   

неперервні в точці 
0M , то у цій точці xy yxf f = . 

Аналогічна теорема справедлива для будь-яких неперервних мішаних 

похідних, які відрізняються між собою лише порядком диференціювання. 

Приклад 4.3. Знайти всі частинні похідні другого порядку від функції 
3 2 2 33 2 3 2z x x y xy x y= − + − + . 

Розв’язання. Спочатку знайдемо частинні похідні 
xz  та yz .  

2 2 33 6 2 3xz x xy y = − + − , 2 26 6 2yz x y xy = − + + . 

Знайдемо 
xxz , xy yxz z = , yyz :

( ) 26 6x

xx

z
z x y

x


 = = −


, 

( ) 212 6x

xy

z
z xy y

y


 = = − +


, 

( ) 26 12
y

yy

z
z x xy

y


 = = − +


. 

Таким чином, знайдено всі частинні похідні другого порядку функції z . 

 

4.4. Диференційовність функцій двох змінних 

 

Нехай функція ( ),z f x y=  визначена у деякому околі точки ( ),M x y . 

Виберемо прирости x  і y  так, щоб точка ( )1 ,M x x y y+  +   також належала 

цьому околу і знайдемо повний приріст функції у точці ( ),M x y : 

( ) ( ), ,z f x x y y f x y = +  +  − . 

Функцію двох змінних ( ),f x y  називають диференційовною у точці 

( ),M x y , якщо її повний приріст у цій точці можна подати у вигляді:  

z A x B y x y  =  +  +  +  ,    (4.3) 

де A  та B  – числа, що не залежать від  x  та y , ( ),x y =    та 

( ),x y =    – нескінченно малі при 0x → , 0y →  функції. 

Відомо, що коли функція однієї змінної диференційовна у деякій точці, то 

вона є неперервною у цій точці і має у ній похідну. Ця властивість виконується 

і для функції двох змінних.  

Теорема 4.3. Якщо функція ( )z f M=  диференційовна у точці M , то 

вона неперервна у цій точці. 



Теорема 4.4. Якщо функція ( )z f M=  диференційовна у точці ( ),M x y , 

то вона має у цій точці частинні похідні ( ),xf x y  та ( ),yf x y  і при цьому 

x yz f x f y x y   =  +  +  +  . 

Твердження, обернені до теорем 4.3 та 4.4, у загальному випадку невірні, 

оскільки з неперервності функції у точці або існування її частинних похідних 

ще не випливає її диференційовність у цій точці. Достатня умова 

диференційованості функції двох змінних у певній точці визначається 

наступною теоремою. 

Теорема 4.5 (достатня умова диференційовності). Якщо функція 

( ),f x y  має частинні похідні у деякому околі точки M , неперервні у цій точці, 

то ( ),f x y  диференційовна у точці M . 

З теорем 4.4 та 4.5 випливає такий наслідок: щоб функція ( ),f x y  була 

диференційовною у точці M , необхідно і достатньо, щоб вона мала у цій точці 

неперервні частинні похідні.  

 

4.5. Повний диференціал  

 

Повний приріст z  функції ( ),z f x y= , диференційовної у точці ( ),M x y , 

можна записати за формулою (4.3). 

Повним диференціалом dz  диференційовної у точці ( ),M x y  функції 

( ),z f x y=  називають лінійну відносно x  та y  частину повного приросту 

цієї функції у точці M : 
dz A x B y=  +  .     (4.4) 

Диференціалами незалежних змінних x  та y  назвемо прирости цих 

змінних dx x=  , dy y=  . Тоді з урахуванням теореми 4.4 рівність (4.4) можна 

записати у наступному вигляді: 

z z
dz dx dy

x y

 
= +
 

.     (4.5) 

Аналогічна формула має місце і для диференційовної функції трьох 

змінних ( ), ,u f x y z= : 

u u u
du dx dy dz

x y z

  
= + +
  

.    (4.6) 

Приклад 4.4. Знайти повний диференціал функції 
3 2z x y= . 

Розв’язання. Обчислимо частинні похідні 
xz  та yz . Для заданої функції 

отримуємо 
2 23xz x y = , 

32yz x y = . Тоді повний диференціал dz  має вигляд:  

2 2 33 2dz x y dx x ydy= + . 



Приклад 4.5. Обчислити повний диференціал функції 
2x

z
y

=  у точці 

( )1,2M . 

Розв’язання. Частинні похідні заданої функції 
2

x

x
z

y
 = , 

2

2y

x
z

y
 = − . У точці 

M ( )
2 1

1,2 1
2

xz


 = = , ( )
2

2

1 1
1,2

2 4
yz = − = − . 

4
x y

dy
dz z dx z dy dx = + = − . 

Різниця z dz −  є нескінченно малою вищого порядку, ніж  . Тому 

повний диференціал називають також головною частиною повного приросту 

диференційовної функції. При цьому виконується наближена рівність z dz  . 

Її можна записати у вигляді:   

( ) ( )
( ) ( ), ,

, ,
f x y f x y

f x x y y f x y x y
x y

 
+  +   +  + 

 
.  (4.7) 

Ця рівність тим точніша, чим менша величина  . Рівність (4.7) широко 

використовується у наближених обчисленнях, оскільки у багатьох випадках 

диференціал функції обчислюється простіше, ніж її повний приріст. 

Розглянемо, як за допомогою диференціала можна оцінити похибку у 

обчисленнях. Нехай задана диференційована функція n  змінних 

( )1 2, ,..., nu f x x x= , аргументи якої виміряні з точністю 
1x , 

2x ,…,
nx . 

Потрібно знайти похибку обчислення u . 

Природно вважати, що ця похибка дорівнює величині  

( ) ( )1 1 2 2 1 2, ,..., , ,...,n n nu f x x x x x x f x x x = +  +  +  − . 

Для малих значень 
ix  маємо 

1 2

1 2

... n

n

f f f
u du x x x

x x x

  
  =  +  + + 

  
. 

Звідси отримуємо: 

1 2

11 2

...
n

n i

in i

f f f f
u x x x x

x x x x=

   
    +   + +   =  

   
 . 

Якщо через ix  позначити максимальну абсолютну похибку змінної 
ix , 

то вираз для максимальної абсолютної похибки u  функції u  можна записати 

у вигляді: 

1

n

i

i i

f
u x

x

 

=


 =  


 .    (4.8) 

Щоб оцінити максимальну відносну похибку функції u , поділимо обидві 

частини рівності (4.8) на величину ( )1 2, ,..., nu f x x x= : 

1

i

n
x

i

i

fu
u x

u f



 

=


= =   .     (4.9) 



Оскільки 
( )ln

ix

i

ff

f x

 
=


, то рівність (4.9) можна записати у вигляді:  

( )
1

lnn

i

i i

f
u x

x
  

=


=  


 .     (4.10) 

Цю рівність можна записати як lnu f  =  , тобто максимальна 

відносна похибка обчислення функції дорівнює максимальній абсолютній 

похибці обчислення її логарифма. 

Приклад 4.6. Період коливання маятника дорівнює 2
l

T
g

= , де l  – 

довжина маятника, g  – прискорення вільного падіння. Виразивши звідси g , 

знаходимо: 
2

2

4 l
g

T


= . Цією формулою користуються для обчислення 

прискорення вільного падіння у різних точках земної поверхні, для чого 

вимірюють величини l  і T .Нехай у результаті вимірювань отримали значення 

50 0,01l =  см, 1,4196 0,0001T =  с. Потрібно знайти прискорення вільного 

падіння g  та максимальні абсолютну та відносну похибки знайденого значення 

g , вважаючи 3,1416 0,0001 =  . 

Розв’язання. Використаємо формули (4.9) та (4.10). Логарифмуючи вираз 

для прискорення вільного падіння g , маємо: 

ln ln 4 2ln ln 2lng l T= + + + . 

Максимальні абсолютні похибки аргументів функції ( ), ,g T l   відповідно 

дорівнюють 0,0001T = , 0,01l = , 0,0001 = .  

Знайдемо наближене значення g : 

( )

( )

2

2

4 3,1416 50
979,5

1,4196
g

 
= = (см/с

2
). 

За формулами (4.9) та (4.10) знаходимо значення максимальних відносної 

та абсолютної похибки: 

2 2
ln

2 0,0001 0,01 2 0,0001
0,0004 0,04%.

3,1416 50 1,4196

l T
g g

l T






  

 
  

=  = + + =

 
= + +  =

 

0,0004 979,5 0,4g g g  =  =    (см/с). 

Отже, 979,5 0,4g   (см/с
2
). 

 

4.6. Диференціали вищих порядків функцій кількох змінних 

 



Нехай ( ),z f x y=  – функція незалежних змінних x  та y . Повний 

диференціал цієї функції, знайдений за формулою (4.5), називають ще 

диференціалом першого порядку. Диференціал другого порядку 2d z  визначають 

як диференціал від диференціала dz  першого порядку, тобто ( )2d z d dz= . Якщо 

функція ( ),z f x y=  має другі частинні похідні, то отримуємо: 

2

x y

z z z z z z
d z d dx dy dx dy dx dx dy dy

x y x y x y

           
= + = + + +     

          
. 

Тут при знаходженні частинних похідних по x  та y диференціали dx та 

dy – сталі величини. Після диференціювання отримуємо вираз для другого 

диференціалу (диференціалу другого порядку): 
2 2 2

2 2 2

2 2
2

z z z
d z dx dxdy dy

x x y y

  
= + +
   

.    (4.11) 

Символічно формулу (4.11) можна записати у вигляді: 
2

2d z dx dy z
x y

  
= + 

  
. 

Аналогічно можна отримати формулу для диференціала третього 

порядку: 

( )
3

3 2d z d d z dx dy z
x y

  
= = + 

  
. 

Застосувавши метод математичної індукції, можна довести, що вираз для 

диференціала n -го порядку має вигляд: 

( )1

n

n nd z d d z dx dy z
x y

−   
= = + 

  
.   (4.12) 

Ця формула є вірною лише у випадку, коли змінні x  та y  функції 

( ),z f x y=  є незалежними. 

Приклад 4.7. Знайти 
2d z , якщо 

2 2x yz e += . 

Розв’язання. Для знаходження диференціалу другого порядку заданої 

функції застосуємо формулу (4.11), для чого знайдемо всі її другі частинні 

похідні. Маємо: 
2 2

2 x y

xz xe + = , 
2 2

2 x y

yz ye + = , ( ) ( )
2 2 2 222 2 1 2x y x y

xx
x

z xe x e+ +
 = = + , 

( )
2 2 2 2

2 4x y x y

xy
y

z xe xye+ +
 = = , ( ) ( )

2 2 2 222 2 1 2x y x y

yy
y

z ye y e+ +
 = = + . 

Підставивши отримані другі частинні похідні у формулу (4.11), 

знаходимо другий диференціал заданої функції: 

( ) ( )
2 22 2 2 2 22 1 2 4 1 2x yd z e x dx xydxdy y dy+  = + + + +

 
. 

 



4.7. Похідна складеної функції 

 

Нехай ( ),z f x y=  є функцією змінних x  та y , кожна з яких, у свою чергу, 

є функцією незалежної змінної t , тобто ( )x x t= , ( )y y t= . Функція 

( ) ( )( ),f x t y t  є складеною функцією змінної t . Для таких функцій справедлива 

наступна теорема. 

Теорема 4.6. Якщо функції ( )x x t= , ( )y y t=  диференційовні у точці t , а 

функція ( ),z f x y=  диференційовна у точці ( ),M x y , то складена функція 

( ) ( )( ),z f x t y t=  також диференційована у точці t . Похідну цієї функції 

знаходять за формулою: 

dz z dx z dy

dt x dt y dt

 
=  + 
 

.    (4.13) 

Аналогічно знаходять похідну складеної функції, якщо кількість 

проміжних змінних більша двох. Для функції ( ) ( ) ( )( )1 2, ,..., nz f x t x t x t=  має 

місце рівність: 
1

n
i

i i

dz z dx

dt x dt=


= 


 .  

Зокрема, для функції трьох змінних ( ) ( ) ( )( ), ,u f x t y t z t=  маємо 

du u dx u dy u dz

dt x dt y dt z dt

  
=  +  + 
  

. Якщо у цьому випадку ( )y y x= , ( )z z x= , а x  – 

незалежна змінна, тобто ( ) ( )( ), ,u u x y x z x= , то виконується рівність 

du u u dy u dz

dx x y dx z dx

  
= +  + 
  

.     (4.14) 

Цю формулу називають формулою для обчислення повної похідної. 

Приклад 4.8. Знайти 
dz

dt
, якщо 3 2z x xy= − , 5x t= , 3 1y t= − . 

Розв’язання. Знайдемо похідні 
z

x




, 

z

y




, 

dx

dt
, 

dy

dt
. 23 2

z
x y

x


= −


, 2

z
x

y


= −


, 

5
dx

dt
= , 23

dy
t

dt
= . Підставивши ці вирази у формулу (4.13), отримаємо: 

( ) ( )

( )
2

2 2 2

3 3 2

3 2 5 2 3 15 25

10 1 6 5 40 375 10.

dz
x y x t t

dt

t t t t t

= −  + −  =  −

− − −   = − + +

 

Ми отримаємо такий же результат, якщо у вираз для функції z  

попередньо підставити замість x  та y  їх вирази через t , а потім знайти 

звичайну похідну по t  отриманої функції однієї змінної. 



Нехай ( ),z f x y= , ( ),x x u v= , ( ),y y u v= . Тоді ( ) ( )( ), , ,z f x u v y u v=  є 

складеною функцією незалежних змінних u і v , змінні x та y  є проміжними. 

Аналогічно попередній теоремі можна довести наступне твердження. 

Теорема 4.7. Якщо функції ( ),x u v  та ( ),y u v  диференційовні у точці 

( )1 ,M u v , а функція ( ),z f x y=  диференційовна у точці ( ) ( )( )2 , , ,M x u v y u v , то 

складена функція ( ) ( )( ), , ,z f x u v y u v=  диференційовна у точці ( )1 ,M u v  і її 

частинні похідні знаходяться за формулами:  

z z x z y

u x u y u

    
= +

    
, 

z z x z y

v x v y v

    
= +

    
.   (4.15) 

Формули (4.15) можна узагальнити на випадок більшого числа змінних. 

Приклад 4.9. Знайти 
uz  та 

vz , якщо 2 lnz x y= , 
u

x
v

= , y uv= . 

Розв’язання. За формулами (4.15) маємо: 

( )( )
2

2

1
2 ln 1 2lnu

x u
z x y v uv

v y v
 =  +  = + , 

( )( )
2 2

2 2
2 ln 1 2lnv

u x u
z x y u uv

v y v

 
 = − + = − 

 
. 

Знайдемо диференціал складеної функції. Скориставшись формулами 

(4.15), отримаємо: 

.

z z z x z y z x z y
dz du dv du dv

u v x u y u x v y v

z x x z y y z z
du dv du dv dx dy

x u v y u v x y

            
= + = + + + =   
            

          
= + + + = +   
          

 

Отже, диференціал функції ( ),z f x y= , де ( ),x x u v= , ( ),y y u v= , 

визначається формулою 
z z

dz dx dy
x y

 
= +
 

. Таким чином, повний диференціал 

функції ( ),z f x y=  має незмінну (інваріантну) форму незалежно від того, чи є 

x  та y незалежними змінними, чи диференційовними функціями змінних u  та 

v .  

Як і у випадку функцій однієї змінної, для функцій багатьох змінних 

диференціали вищих порядків властивості інваріантності не мають. Наприклад, 

якщо ( ),z f x y= , де ( ),x x u v= , ( ),y y u v= , то другий диференціал 
2d z  має 

вигляд: 

 



( )
2

2 2

2

2 2
2 2 2

2
2 .

z z z
d z d dz d dx dy dx

x y x

z z z z
dxdy dx d x d y

x y x x y

   
= = + = + 

   

   
+ + + +

    

 

 

4.8. Диференціювання неявних функцій 

 

При вивченні диференціального числення функцій однієї змінної ми 

розглянули питання про диференціювання функцій, заданих неявно. 

Розглянемо цю задачу з використанням поняття частинної похідної. 

Нехай задано рівняння ( ), 0F x y = . Раніше було сформульовано 

означення неявної функції, згідно з яким це рівняння визначає неявну функцію 

( )y x=  на множині D , коли кожному значенню x  з цієї множини відповідає 

єдине значення y , що разом з x  задовольняє рівняння ( ), 0F x y = .  

Умови, яким повинна задовольняти функція двох змінних ( ),F x y , щоб 

рівняння ( ), 0F x y =  визначало неявному функцію, сформульовані у наступній 

теоремі існування неявної функції. 

Теорема 4.8. Нехай функція ( ),F x y  та її частинні похідні 
xF  та yF   

визначені та неперервні у деякому околі точки ( )0 0,M x y  і ( )0 0, 0F x y = , 

причому ( )0 0, 0yF x y  . Тоді існує окіл точки M , у якому рівняння ( ), 0F x y =  

визначає єдину неявну функцію ( )y x= , неперервну та диференційовну у 

околі точки 
0x  і таку, що ( )0 0x y = .  

Знайдемо похідну неявної функції. Нехай ліва частина 

рівняння ( ), 0F x y =  задовольняє умови теореми 4.8. Тоді це рівняння визначає 

неявну функцію ( )y y x= , для якої на деякій множині точок x  виконується 

тотожність ( )( ), 0F x y x  . Оскільки похідна функції, тотожно рівної нулю, 

також тотожно дорівнює нулю, то повна похідна 0
dF

dx
 , тобто, за формулою 

(4.14), 0
F F dy

x y dx

 
+ 

 
.  

З останньої тотожності отримуємо: 

x

y

dy F

dx F


= −


.      (4.16) 

Формула (4.16) дозволяє знаходити похідну неявної функції однієї 

змінної. 

Розглянемо задачу диференціювання неявної функції двох змінних. Нехай 

задано рівняння 

( ), , 0F x y z = .     (4.17) 



Якщо кожній парі чисел ( ),x y  з деякої множини відповідає єдине 

значення z , яке разом з x  та y  задовольняє рівняння (4.17), то це рівняння 

визначає неявну функцію ( ),z x y= .  

Справедливою є наступна теорема існування неявної функції двох 

змінних. 

Теорема 4.9. Нехай функція ( ), ,F x y z  та її похідні ( ), ,xF x y z , ( ), ,yF x y z  і 

( ), ,zF x y z  визначені і неперервні у деякому околі точки ( )0 0 0 0, ,M x y z , причому 

( )0 0 0, , 0F x y z = , а ( )0 0 0, , 0zF x y z  . Тоді існує окіл точки M , у якому рівняння 

(4.17) визначає єдину функцію ( ),z x y= , неперервну і диференційовну у 

околі точки ( )0 0,x y , таку, що ( )0 0 0,x y z = . 

Знайдемо частинні похідні 
xz  та yz  неявної функції ( ),z x y , заданої 

рівнянням (4.17). Коли визначаємо частинні похідні 
xz  та yz , то вважаємо 

сталими відповідно змінні y  та x . Тому, використавши формулу (4.16), 

отримуємо:  

x
x

z

F
z

F


 = −


, 

y

y

z

F
z

F


 = −


.    (4.18) 

Аналогічно знаходять похідні неявної функції ( )1 2, ,..., ny y x x x= , яка 

задається рівнянням ( )1 2, ,..., , 0nF x x x y = : 

, 1,2,..., ; 0ix

y

i y

Fy
i n F

x F


= − = 


. 

Приклад 4.10. Знайти повний диференціал функції ( ),z z x y= , якщо 
2 1 0ze x y z− + + = . 

Розв’язання. За формулами (4.18) знайдемо частинні похідні 
xz  та yz . 

Маємо 2xF xy = − , 2

yF x = − , 1z

zF e = + . Тоді 
2

1
x z

xy
z

e
 =

+
, 

2

1
y z

x
z

e
 =

+
. Повний 

диференціал функції ( ),z z x y=  має вигляд: 

 
22

1z

xydx x dy
dz

e

+
=

+
 . 

 



4.9. Дотична площина та нормаль до поверхні 

 

Нехай задано поверхню ( ), , 0F x y z =  і точка ( )0 0 0 0, ,M x y z  належить цій 

поверхні. При цьому функція ( ), ,F x y z  диференційовна у точці 
0M , причому 

не всі частинні похідні у цій точці дорівнюють нулю. 

Розглянемо довільну криву L , що проходить через точку 
0M  та лежить на 

поверхні ( ), , 0F x y z = . Нехай рівняння цієї кривої мають вигляд ( )x x t= , 

( )y y t= , ( )z z t= , а точці 
0M  відповідає значення параметра 

0t . Оскільки дана 

крива лежить на поверхні, то координати її точок задовольняють рівнянню 

поверхні, тобто ( ) ( ) ( )( ), , 0F x t y t z t = . Диференціюючи цю рівність по 

параметру t , отримуємо: 

0
dF F dx F dy F dz

dt x dt y dt z dt

  
= + + =
  

.     (4.19) 

З рівності (4.19) випливає, що вектори  ( ) ( ) ( )( )0 0 0, ,x y zn F M F M F M  =  та 

( ) ( ) ( )( )0 0 0, ,s x t y t z t  =  є ортогональними (рівність (4.19) означає, що їх 

скалярний добуток дорівнює нулю). При цьому вектор s  є напрямним 

вектором дотичної до кривої L  у точці 
0M . З рівності (4.19) випливає також, 

що дотичні до всіх кривих, що проходять через точку 
0M  і лежать на поверхні  

( ), , 0F x y z = , є ортогональними до одного й того самого вектора n . Тоді всі ці 

дотичні лежать у одній і тій самій площині, яка називається дотичною 

площиною до поверхні у точці 
0M  .  

Знайдемо рівняння дотичної площини. Оскільки вона проходить через 

точку 
0M  перпендикулярно до вектора n , то її рівняння має вигляд: 

( )( ) ( )( ) ( )( )0 0 0 0 0 0 0x y zF M x x F M y y F M z z  − + − + − = . (4.20) 

Нормаллю до поверхні у точці 
0M  називають пряму, що проходить через 

0M  перпендикулярно до дотичної площини, проведеної у цій точці. Оскільки 

нормаль проходить через точку 
0M  і має напрямний вектор n , то канонічні 

рівняння цієї прямої мають вигляд: 

( ) ( ) ( )
0 0 0

0 0 0x y z

x x y y z z

F M F M F M

− − −
= =

  
.    (4.21) 

Якщо рівняння поверхні задано у явній формі, тобто має вигляд 

( ),z f x y= , то, поклавши ( ) ( ), , , 0F x y z f x y z= − = , отримаємо 

( ) ( )0 0 0,x xF M f x y = , ( ) ( )0 0 0,y yF M f x y = , ( )0 1zF M = − . Тоді рівняння (3.20) та 

(3.21) набудуть вигляду відповідно (3.22) та (3.23): 

( )( ) ( )( ) ( )0 0 0 0 0 0 0, , 0x yf x y x x f x y y y z z − + − − − = ,  (4.22) 

( ) ( )
0 0 0

0 0 0 0, , 1x y

x x y y z z

f x y f x y

− − −
= =

  −
.     (4.23) 



Ми розглянули випадок, коли функція ( ), ,F x y z , що визначає рівняння 

поверхні ( ), , 0F x y z = , є диференційовною у точці 
0M  і хоча б одна з 

частинних похідних 
xF , yF  , 

zF  не дорівнює нулю. Якщо ці умови не 

виконуються у деякій точці (таку точку називають особливою точкою 

поверхні), то дотична площина та нормаль у цій точці можуть не існувати. 

Приклад 4.11. Написати рівняння нормалі та дотичної площини до 

еліпсоїда 2 2 22 15x y z+ + =  у точці ( )0 1,2,3M . 

Розв’язання. Рівняння дотичної площини та нормалі запишемо, 

використавши рівняння (4.20) та (4.21). Маємо ( ) 2 2 2, , 2 15F x y z x y z= + + − . 

Частинні похідні цієї функції мають вигляд: 4xF x = , 2yF y = , 2zF z = . 

Знаходимо їх значення у точці  ( )0 1,2,3M : ( )0 4 1 4xF M =  = , ( )0 2 2 4yF M =  = , 

( )0 2 3 6zF M =  = .  

Підставивши ці значення у (4.20) разом з координатами точки 
0M , 

отримаємо рівняння дотичної площини: ( ) ( ) ( )4 1 4 2 6 3 0x y z− + − + − =  або 

2 2 3 15 0x y z+ + − = . 

Рівняння (4.21) нормалі до заданої поверхні набуває вигляду: 

1 2 3

4 4 6

x y z− − −
= = . 

 

4.10. Скалярне поле. Похідна за напрямом та градієнт 

 

Область простору, кожній точці M якої поставлено у відповідність 

значення деякої скалярної величини ( )u M  (тобто число ( )u M ), називають 

скалярним полем. 

Прикладами скалярних полів є поле температури даного тіла, поле 

густини даного неоднорідного середовища, поле атмосферного тиску тощо. 

Для того, щоб задати скалярне поле, достатньо задати скалярну функцію 

( )u M  та її область визначення. Якщо у просторі ввести прямокутну систему 

координат Oxyz , то точка M  у цій системі матиме певні координати ( ), ,x y z  і 

скалярне поле u  стане функцією цих координат: ( ) ( ), ,u u M u x y z= = . 

Якщо скалярна функція ( )u M  залежить тільки від двох змінних, 

наприклад x і y , то відповідне скалярне поле ( ),u x y  називають плоским, якщо 

ж ( ) ( ), ,u M u x y z= , то таке скалярне поле називають просторовим. 

Геометрично плоскі скалярні поля зображають за допомогою ліній рівня 

( ),u x y c= , просторові – за допомогою поверхонь рівня ( ), ,u x y z c= . 

Для характеристики швидкості зміни поля у заданому напрямі введемо 

поняття похідної за напрямом. 



Нехай задано скалярне поле ( ), ,u x y z . Візьмемо у ньому точку ( ), ,M x y z  

і проведемо з цієї точки вектор l  з напрямними косинусами cos , cos , cos . 

На векторі l  на відстані l від його початку візьмемо точку 

( )1 , ,M x x y y z z+  +  +  . Тоді ( ) ( ) ( )
2 2 2

1l MM x y z = =  +  +  . 

Обчислимо тепер приріст 
lu  функції ( ), ,u x y z  при переході від точки 

M до точки 
1M  в напрямі вектора l : ( ) ( )1lu u M u M = − . 

Якщо існує границя відношення lu

l




 при 0l → , то цю границю 

називають похідною функції ( ), ,u x y z  у точці ( ), ,M x y z  за напрямом вектора 

l  і позначають 
u

l




. 

Отже, 
0

lim l

l

u u

l l →

 
=

 
. 

Отримаємо формулу для обчислення похідної за напрямом. Припустимо, 

що функція ( ), ,u x y z  є диференційовною у точці M . Тоді її приріст у цій точці 

можна записати наступним чином: 

1 2 3l

u u u
u x y z x y z

x y z
  

  
 =  +  +  +  +  + 

  
, 

де 
1 , 

2 , 
3  – нескінченно малі функції при 0l → .  

Оскільки cosx l  =   , cosy l  =   , cosz l  =   , то відношення  lu

l




 

можна записати у вигляді: 

1 2 3cos cos cos cos cos coslu u u u

l x y z
        

   
= + + + + +

   
. 

Перейшовши до границі при 0l → , отримаємо формулу для обчислення 

похідної за напрямом: 

cos cos cos
u u u u

l x y z
  

   
= + +

   
.   (4.24) 

З цієї формули випливає, що частинні похідні є окремими випадками 

похідної за напрямом. Дійсно, коли l збігається з одним з ортів i , j , k , то 

похідна за напрямом збігається  відповідно з частинною похідною 
xu , yu , 

zu . 

Наприклад, якщо l i= , то 0 = , 
2


 = = , тому 

cos0 cos cos
2 2

u u u u u

l x y z x

     
= + + =

    
. 

Подібно до того, як частинні похідні 
xu , yu , 

zu  показують швидкість 

зміни функції u  у напрямку відповідних осей координат, так і похідна 
u

l




 



показує швидкість зміни скалярного поля  ( ), ,u x y z  в точці ( ), ,M x y z  за 

напрямом вектора l . Абсолютна величина похідної 
u

l




 відповідає значенню 

цієї швидкості, а знак похідної визначає характер зміни функції ( ), ,u x y z  у 

напрямі l . Якщо похідна за напрямком додатна, то функція у цьому напрямку 

зростає, якщо похідна від’ємна, то спадає. 

Якщо поле плоске, тобто задається функцією ( ),u x y , то напрям вектора l  

цілком визначається кутом   між цим вектором та віссю Ox , 
2


 = − . 

Оскільки cos cos sin
2


  

 
= − = 

 
, то для плоского поля ( ),u x y  формула 

(4.24) набуває вигляду  

cos sin
u u u

l x y
 

  
= +

  
.     (4.25) 

Приклад 4.12. Знайти похідну функції 2 22u x xz y= − +  у точці ( )1,2, 1A −  

за напрямом від точки A  до точки ( )2,4, 3B − . З’ясувати характер зміни поля у 

цьому напрямі. 

Розв’язання. Знайдемо вектор l AB=  та його напрямні косинуси.  

( )( ) ( )2 1,4 2, 3 1 1,2, 2AB = − − − − − = − , 

( )
22 21 2 2 3AB = + + − = , 

1
cos

3
 = , 

2
cos

3
 = , 

2
cos

3
 = − . 

Обчислимо значення частинних похідних у точці A .  2 2xu x z = − , 2yu y = , 

2zu x = − , ( ) ( )2 1 2 1 4xu A =  −  − = , ( ) 2 2 4yu A =  = , ( ) 2 1 2zu A = −  = − .  

За формулою (4.24) знаходимо 
u

l




: 

1 2 2 16
4 4 2

3 3 3 3

u

l

  
=  +  −  − = 

  
 . 

Оскільки 0
u

l





, то функція u  зростає у заданому напрямі. 

Нехай задано поле ( ), ,u u x y z=  і точку ( ), ,M x y z . Встановимо напрям l , 

у якому похідна 
u

l




 має найбільше значення. 

Вектор, координатами якого є значення частинних похідних функції 

( ), ,u u x y z=  у точці ( ), ,M x y z , називають градієнтом функції у цій точці і 

позначають grad u . Отже, 

grad 
u u u

u i j k
x y z

  
= + +
  

.    (4.26) 



Зв’язок між градієнтом і похідною у даній точці за напрямом l  

встановлює наступна теорема. 

Теорема 4.10. Похідна функції ( ), ,u x y z  у точці ( ), ,M x y z  за напрямом 

вектора l  дорівнює проекції градієнта функції у цій точці на вектор l . 

З теореми 4.10 випливає, що похідна за напрямом l  досягає свого 

найбільшого значення 
max

grad 
u

u
l

 
= 

 
, коли напрям вектора l збігається з 

напрямом градієнта. Отже, швидкість зростання скалярного поля у довільній 

точці є найбільшою у напрямку градієнта. У напрямі, протилежному до 

напряму градієнта, поле найшвидше зменшуватиметься. 

З теореми 4.10 випливає також, що похідна за напрямом вектора, 

перпендикулярного до градієнта, дорівнює нулю, тобто швидкість зміни 

скалярного поля у напрямі, перпендикулярному до градієнта, дорівнює нулю; у 

цьому напрямку поле залишається сталим. Дійсно, 0
u

l


=


 при 

2


 = . 

Градієнт у кожній точці поля ( ), ,u x y z  перпендикулярний до поверхні 

рівня, що проходить через цю точку. Це випливає з того, що напрямний вектор 

нормалі до поверхні рівня ( ) 0( )u M u M= , яка проходить через точку 
0M , має 

координати 

0M

u

x




, 

0M

u

y




, 

0M

u

z




, тобто його координати співпадають з 

координатами градієнта. 

Приклад 4.13. Знайти градієнт функції 
2 2 2 2u x y z xyz= + + −  у точці 

( )0 0,1,2M . 

Розв’язання. Знайдемо частинні похідні 
u

x




, 

u

y




, 

u

z




 у точці 

0M . Маємо: 

2 2
u

x yz
x


= −


, 2 2

u
y xz

y


= −


, 2 2

u
z xy

z


= −


.  

Обчислимо значення знайдених частинних похідних у точці ( )0 0,1,2M  : 

( )
0

2 0 1 2 4
M

u

x


= −  = −


, ( )

0

2 1 0 2 2
M

u

y


= −  =


, ( )

0

2 2 0 1 4
M

u

z


= −  =


. 

За формулою (4.26) визначаємо вектор – градієнт функції u : 

grad 4 2 4u i j k= − + + . 

Приклад 4.14. Знайти найбільшу швидкість зростання поля 
yu x z= −  у 

точці ( )0 1,2,3M . 

Розв’язання. Найбільша швидкість зростання поля у заданій точці 

досягається у напрямі градієнта поля у цій точці, а її величина дорівнює 

модулю градієнта. Знайдемо координати градієнта поля. Для цього знайдемо 

частинні похідні функції u . 



1y

xu y x − =  , lny

yu x x =  , 1zu = − , ( ) 1

0 2 1 2xu M =  = , ( ) 2

0 1 ln1 0yu M =  = , 

( )0 1zu M = − . Тоді отримуємо: 

( )grad 2 0 2,0, 1u i j k=  +  − = − , 

( )
22 2

max

grad 2 0 1 5
u

u
l

 
= = + + − = 

 
. 

 

4.11. Локальні екстремуми функції двох змінних 

 

Нехай функція ( ),z f x y=  визначена у області D , а точка ( )0 0 0,M x y D . 

Якщо існує окіл точки 
0M , що належить області D , і для всіх відмінних 

від 
0M  точок M цього околу виконується нерівність ( ) ( )0f M f M  

( ( ) ( )0f M f M , то точку 
0M  називають точкою локального максимуму 

(мінімуму) функції ( ),f x y , а число ( )0f M  – локальним максимумом 

(мінімумом) цієї функції. Точки локального максимуму та мінімуму функції 

називають точками її локального екстремуму. 

Це означення можна сформулювати іншим чином. Нехай 
0x x x= +  , 

0y y y= + . Тоді  

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , ,f x y f x y f x x y y f x y f x y− = +  +  − =  . 

Якщо приріст функції ( )0 0, 0f x y   ( ( )0 0, 0f x y  ) при всіх достатньо 

малих за абсолютною величиною приростах x  і y , то функція ( ),f x y  у 

точці ( )0 0 0,M x y  досягає локального максимуму (локального мінімуму).  

Таким чином, у околі точки екстремуму прирости функції мають один і 

той же знак. 

Теорема 4.11 (необхідна умова екстремуму). Якщо функція ( ),z f x y=  

має у точці ( )0 0 0,M x y  локальний екстремум, то у цій точці частинні похідні 

першого порядку цієї функції дорівнюють нулю або не існують. 

Аналогічна теорема справедлива для функцій n  змінних. 

Точки, у яких частинні похідні першого порядку функції ( ),f x y  

дорівнюють нулю, тобто 0x yf f = = , називають стаціонарними точками цієї 

функції. Стаціонарні точки функції ( ),f x y  та точки, у яких її частинні похідні 

не існують, називають критичними точками цієї функції.  

Таким чином, аналогічно функціям однієї змінної, якщо функція кількох 

змінних у якій-небудь точці досягає екстремуму, то це може статися лише у 

критичній точці, проте не всяка критична точка є точкою екстремуму. 

Наприклад, частинні похідні функції 
2 2z x y= −  дорівнюють нулю у точці 

( )0,0 , ( )0,0 0z = , проте у цій точці вказана функція екстремуму не має, тому 

що у досить малому околі точки ( )0,0 вона набуває як додатних (при x y ), 



так і від’ємних (при x y ) значень, тобто приріст функції у цій точці змінює 

знак. 

Приклад 4.15. Відкритий прямокутний басейн повинен мати об’єм V . 

Знайти розміри басейну, за яких на його облицювання піде найменша кількість 

матеріалу. 

Розв’язання. Нехай x  – довжина, y  – ширина, z  – глибина басейну. 

Оскільки V xyz= , то 
V

z
xy

= . 

Кількість матеріалу, необхідного для облицювання басейну, визначається 

формулою 2 2S xy yz xz= + +  або ( )
1 1

, 2S S x y xy V
x y

 
= = + + 

 
. Треба знайти 

мінімум функції ( ),S x y  при 0x  , 0y  . Знайдемо стаціонарні точки функції 

( ),S x y . Її частинні похідні 
2

2
x

V
S y

x
 = − , 

2

2
y

V
S x

y
 = − . Прирівнюючи їх до нуля, 

отримуємо систему: 

2

2

2
0,

2
0.

V
y

x

V
x

y


− =


 − =


 

Звідси знаходимо 3 2x y V= = . Отже, функція ( ),S x y  має стаціонарну 

точку ( )3 32 , 2V V . З умови задачі випливає наявність точки мінімуму, тому у 

стаціонарній точці ця функція досягає мінімуму. Глибина басейну 
3 2

2

V V
z

xy
= = . Таким чином, мінімальна кількість матеріалу буде витрачена 

при розмірах басейну  3 2x y V= = , 
3 2

2

V
z = . 

Теорема 4.12 (достатня умова екстремуму функції двох змінних). 

Нехай у стаціонарній точці  ( )0 0 0,M x y  і у деякому її околі функція ( ),f x y  має 

неперервні частинні похідні другого порядку. Нехай ( )0 0,xxA f x y= , 

( )0 0,xyB f x y= , ( )0 0,yyC f x y= . Тоді, якщо значення 
2 0AC B = −  , то у точці 

0M  функція ( ),f x y  має екстремум, причому він є максимумом, якщо 0A   і 

мінімумом – при 0A  . При 0   функція ( ),f x y  у точці 
0M  екстремуму не 

має. 

З теорем 4.11 та 4.12 випливає наступне правило дослідження 

диференційовних функцій двох змінних на екстремум. 

1. Знайти стаціонарні точки функції з системи рівнянь 
( )

( )

, 0,

, 0.

x

y

f x y

f x y

 =


 =

 



2. У кожній стаціонарній точці обчислити значення A , B , C ,  . Згідно з 

теоремою 4.12 зробити висновок про наявність та тип екстремуму у кожній 

стаціонарній точці. 

Приклад 4.16. Знайти екстремуми функції 

( ) 4 4 2 2, 2 4 2f x y x y x xy y= + − + − . 

Розв’язання. Знайдемо стаціонарні точки функції ( ),f x y , для чого 

складемо систему рівнянь 
( )

( )

, 0,

, 0.

x

y

f x y

f x y

 =


 =

 

Знайдемо частинні похідні. ( )34xf x x y = − + , ( )34yf y x y = + − . 

Прирівнявши ці частинні похідні до нуля, отримаємо:  
3

3

0;

0.

x x y

y x y

 − + =


+ − =
 

Додаючи рівняння цієї системи, знаходимо, що 3 3 0x y+ = , звідки y x= − . 

Підставляючи y x= −  у перше рівняння системи, знаходимо, що 
3 2 0x x− = , 

тобто ( )2 2 0x x − = . Звідси знаходимо стаціонарні точки: 
1 1 0x y= = , 

2 2x = , 

2 2 2y x= − = − , 
3 2x = − , 

3 3 2y x= − = . 

Отже, функція має три стаціонарні точки: ( )O 0,0 , ( )1 2, 2A − , 

( )2 2, 2A − . Для кожної з цих точок визначимо величину 
212 4xxA f x= = − , 

4xyB f = = , 212 4yyC f y= = − , 
2AC B = − . 

Для стаціонарної точки ( )O 0,0  маємо 4A C= − = , 4B = , 0 = . Оскільки 

0 = , то у точці O  теорему 4.12 застосувати не можна. Переконаємось, що у 

цій точці екстремум відсутній. Нехай 0y = . Тоді ( ) ( )4 2 2 2, 2 2f x y x x x x= − = − . 

У околі точки ( )O 0,0  ( ), 0f x y  . Тепер візьмемо y x= , ( ) 4, 2 0f x y x=  . 

Отримали, що ( )O 0f = , а у околі цієї точки функція має різні знаки, тому 

екстремум у точці O  відсутній. 

У точках ( )1 2, 2A −  та ( )2 2, 2A −  знаходимо значення коефіцієнтів 

12 2 4 20A =  − = , 4B = , 12 2 4 20C =  − = , 
220 20 4 384 0 =  − =  . У цих 

точках наявний екстремум. Оскільки для кожної з точок 
1A  та 

2A  коефіцієнт A  

додатний, то ці точки є точками мінімуму. При цьому ( ) ( )1 2 8minf f A f A= = = − . 

 

Запитання та завдання для самоконтролю до теми 4 

 

1. Надайте означення функції двох змінних. 

2. Наведіть означення області визначення функції однієї змінної. 

3. Надайте означення відкритої та замкнутої областей. 



4. Побудуйте лінії рівня наступних функцій: 1) 2 24 9z x y= + ; 2) 2 2z x y= − . 

5. Надайте означення функції n  змінних. 

6. Знайдіть область визначення функції ( )2 2 2 21 2ln 4z x y x y= + − + − − . 

7. Надайте означення частинної похідної функції двох змінних. 

8. Надайте означення повного диференціала функції двох змінних. 

9. Знайдіть частинні похідні 
z

x




 та 

z

y




 наступних функцій: 1) 2 27z x y xy= + − ; 

2) 
2 3

5

x y
z

x y

+
=

−
; 3) ( ) ( )2sin 2 3 arctgz x y x y= + − ; 4) arcsin

x
z

y
= . 

10. Знайдіть частинні похідні 
z

x




 та 

z

y




 функції 

2 3x
z x y

y
= +  у точці ( )2,1M . 

11. Доведіть, що функція ( )2 2lnz x y xy= + +  задовольняє рівняння 

2
z z

x y
x y

 
+ =

 
. 

12. Знайти всі частинні похідні другого порядку функції 
2 3 2

x
z x y x y

y
= + − − . 

13. Запишіть диференціал другого порядку функції 
3

5

x
z

y
= . 

14. Запишіть рівняння дотичної площини та нормалі до поверхні 2 24 6z x y= + , 

проведених у точці ( )1,0,4M . 

15. Надайте означення градієнта. 

16. Обчисліть градієнт функції 
4 1

x y
z

x y

+
=

+ +
 у точці ( )1,2M − . 

17. Вкажіть напрям найбільшого зростання функції 
y

z
x

=  у точці ( )2,1A . 

18. Обчисліть похідну функції 3 22 4 5z x y x y= + − +  у напрямі AB , де ( )1,2A − , 

( )0,1B . 

19. Знайдіть похідну функції ( )2 2lnz x y= +  за напрямом градієнта цієї функції у 

точці ( )1,2A . 

20. Сформулюйте достатню умову локального екстремуму функції двох 

змінних. 

21. Знайдіть екстремуми функції ( )3 2 1z x y x y= − − . 
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