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13.1. Інтеграли типу 1

Раціоналізація вказаного в 
заголовку інтеграла 
досягається за допомогою 
підстановки
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13.1. Інтеграли типу 1

Приклад 1.
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13.2. Інтеграли типу 2

Нехай m і n – раціональні числа. 

Інтеграл                        з допомогою 

підстановок               або             

зводиться до інтеграла від 

диференціального бінома.
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13.2. Інтеграли типу 2

Якщо обидва показники m і n

додатні і парні (або один з них нуль), 

то доцільно застосувати формули 

,
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13.2. Інтеграли типу 2

Приклад 2

 xdxx nm cossin
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13.3. Інтеграли типу 3

Вказані в заголовку пункту інтеграли 
безпосередньо обчислюються, якщо в них 
підінтегральні функції перетворити за 
формулами                                                    

.
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13.3. Інтеграли типу 3

Приклад 3

 xdxx nm cossin
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13.4. Інтегрування деяких 
ірраціональних функцій за допомогою 

тригонометричних підстановок

Метод перетворення інтеграла                                                 

до інтеграла типу

Які розглянуті в пункті 13.1

dxcbxaxxR ),( 2

 

 dzzzR )cos,(sin



13.4. Інтегрування деяких 
ірраціональних функцій за допомогою 

тригонометричних підстановок

Перетворення тричлена, який знаходиться під 

коренем

Зробимо заміну змінної, поклавши           ,

. Тоді                                     .
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13.4. Інтегрування деяких 
ірраціональних функцій за допомогою 

тригонометричних підстановок

Розглянемо всі можливі випадки

10. Нехай       , . Введемо        

позначення         , .

В цьому випадку матимемо                           .

20. Нехай       , , тоді          , .

Отже, .
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13.4. Інтегрування деяких 
ірраціональних функцій за допомогою 

тригонометричних підстановок

30. Нехай       , . Тоді         , .

Отже,                               .

40. Нехай       , . В цьому випадку  

є комплексним числом при будь-

якому значенні x.
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13.4. Інтегрування деяких 
ірраціональних функцій за допомогою 

тригонометричних підстановок

Таким чином інтеграл      
перетвориться до одного з наступних 
типів інтегралів.
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13.5. Інтегрування 
ірраціональних функцій

де  P і Q – многочлени від змінних

, а змінні           є функціями змінної

: називається раціональною функцією 

від функцій .
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13.5. Інтегрування 
ірраціональних функцій

Якщо змінні          є елементарними

тригонометричними функціями, то складна

функція, яка отримується, називається

раціональною відносно елементарних

тригонометричних функцій. 

Прикладом такої функції є:
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13.6. Інтеграли типу 4

Сталі             раціональні, і

(a, b, c, d – сталі). Нехай    - спільний 

знаменник чисел             :             ,    -
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13.6. Інтеграли типу 4

Приклад 4
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13.6. Інтеграли типу 4

Приклад 5
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13.7. Інтеграли типу 5
.

Підстановки Ейлера

Звідси випливає, що в цьому випадку або під 
коренем стоїть від’ємна при всіх значеннях   
величина, тобто цей корінь приймає тільки 
чисто уявні вирази (цей випадок має місце    
при         ); або при             після вказаного 
елементарного перетворення одержимо, що 
змінна      не входить під знак кореня, тобто під 
інтегралом стоїть просто раціональна функція 
від     .
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13.7. Інтеграли типу 5
.

Підстановки Ейлера

Приклад 6

dxcbxaxxR ),( 2
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Продовження до прикладу 6

dxcbxaxxR ),( 2
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13.7. Інтеграли типу 5
.

Підстановки Ейлера
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