
Теоретичні відомості 

 

Розробка простої нейронної мережі на мові Python. 

 

Нейромережа, яка тренується через зворотне поширення 

(backpropagation) та намагається використовувати вхідні дані для 

передбачення вихідних. 

Дано: 

Вхідні дані В

ихідні 

дані 

0 0 1 0 

1 1 1 1 

1 0 1 1 

0 1 1 0 

 

Потрібно передбачити, як буде виглядати колонка «Вихідні дані» на 

основі вхідних даних.  

Завдання може бути вирішено, підрахувавши статистичну відповідність 

між ними. З вихідними даними на 100% корелює лівий стовпець. Для 

створення моделі, в найпростішому випадку, подібну статистику розраховує 

зворотне поширення. 

 

Приклад коду на Python №1. 

Код запускатися в ipython notebook. 

 

X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) 

y = np.array([[0,1,1,0]]).T 

syn0 = 2*np.random.random((3,4)) - 1 

syn1 = 2*np.random.random((4,1)) - 1 

for j in xrange(60000): 

    l1 = 1/(1+np.exp(-(np.dot(X,syn0)))) 

    l2 = 1/(1+np.exp(-(np.dot(l1,syn1)))) 

    l2_delta = (y - l2)*(l2*(1-l2)) 

    l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1)) 

    syn1 += l1.T.dot(l2_delta) 

    syn0 += X.T.dot(l1_delta) 

 

 

Нейромережа в два шари 
Змінні та їх опис. 

 

X - матриця вхідного набору даних; рядки - тренувальні приклади. 

y - матриця вихідного набору даних; рядки - тренувальні приклади. 

l0 - перший шар мережі, визначений вхідними даними. 



l1 - другий шар мережі, або прихований шар. 

syn0 - перший шар ваг, Synapse 0, об'єднує l0 з l1. 

"*" - поелементне множення - два вектори одного розміру 

перемножують відповідні значення, і на виході виходить вектор такого ж 

розміру. 

"-" - поелементне віднімання векторів. 

x.dot (y) - якщо x і y - це вектори, то на виході вийде скалярний 

добуток. Якщо це матриці, то вийде множення матриць. Якщо матриця та 

вектор - це множення вектора і матриці. 

 

Приклад коду на Python №2 нейромережа в два шари (рус. слоя). 

 

import numpy as np # библиотека линейной алгебры 

 

# Сигмоида  

def nonlin(x,deriv=False): 

    if(deriv==True): 

        return f(x)*(1-f(x)) 

    return 1/(1+np.exp(-x)) 

     

# набор входных данных 

X = np.array([  [0,0,1], 

                [0,1,1], 

                [1,0,1], 

                [1,1,1] ]) 

     

# выходные данные             

y = np.array([[0,0,1,1]]).T 

 

# сделаем случайные числа более определѐнными 

np.random.seed(1) 

 

# инициализируем веса случайным образом со средним 0 

syn0 = 2*np.random.random((3,1)) - 1 

 

for iter in xrange(10000): 

 

    # прямое распространение 

    l0 = X 

    l1 = nonlin(np.dot(l0,syn0)) 

 

    # насколько мы ошиблись? 

    l1_error = y - l1 

 

    # перемножим это с наклоном сигмоиды  



    # на основе значений в l1 

    l1_delta = l1_error * nonlin(l1,True) # !!! 

 

    # обновим веса 

    syn0 += np.dot(l0.T,l1_delta) # !!! 

 

print "Выходные данные после тренировки:" 

print l1 

 

 

Вихідні дані після тренування:  

[[ 0.00966449] 

 [ 0.00786506] 

 [ 0.99358898] 

 [ 0.99211957]] 

 

Нейромережа в три шари 
 

Вхідні дані В

ихідні 

дані 

0 0 1 0 

0 1 1 1 

1 0 1 1 

1 1 1 0 

 

Треба передбачити вихідні дані на основі трьох вхідних стовпців. 

Жоден з вхідних стовпців не корелює на 100% з вихідним. Третій стовпець 

взагалі ні з чим не пов'язаний, оскільки в ньому всі одиниці. Однак, якщо в 

одному з двох перших стовпців (але не в обох відразу) міститься 1, то 

результат також буде дорівнювати 1. 

Це нелінійна схема, оскільки не існує прямої відповідності стовпців 

один до одного. Відповідність будується на комбінації стовпців 1 і 2 вхідних 

даних. Щоб її отримати потрібно додати ще один шар. Перший шар комбінує 

вхід, другий призначає відповідність виходу, використовуючи в якості 

вхідних даних вихідні дані першого шару (див. таблицю нижче). 

 

Вхід (l0)  Прихована вага (l1) Вихід (l2) 

0 0 1 0.1 0.2 0.5 0.2 0 

0 1 1 0.2 0.6 0.7 0.1 1 

1 0 1 0.3 0.2 0.3 0.9 1 

1 1 1 0.2 0.1 0.3 0.8 0 

 



Вага призначається випадковим чином, так отримуються приховані 

значення для шару №1. У другого стовбця прихованих ваг вже є невелика 

кореляція з виходом. І це теж є важливою частиною процесу тренування 

мережі. Тренування буде тільки посилювати цю кореляцію. Вона буде 

оновлювати syn1, щоб призначити її відповідність вихідним даним, і syn0, 

щоб краще отримувати дані з входу. 

 

Змінні та їх опис. 

 

X - матриця вхідного набору даних; рядки - тренувальні приклади. 

y - матриця вихідного набору даних; рядки - тренувальні приклади. 

l0 - перший шар мережі, визначений вхідними даними. 

l1 - другий шар мережі, або прихований шар. 

l2 - фінальний шар, прийнята гіпотеза. По мірі тренування повинен 

наближатися до правильної відповіді. 

syn0 - перший шар ваг, Synapse 0, об'єднує l0 з l1. 

syn1 - другий шар ваг, Synapse 1, об'єднує l1 з l2. 

l2_error - промах мережі в кількісному виразі. 

l2_delta - помилка мережі, в залежності від впевненості передбачення. 

Майже збігається з помилкою, за винятком упевнених прогнозів. 

l1_error - зважуючи l2_delta вагою з syn1, підраховується помилка в 

середньому/прихованому шарі. 

l1_delta - помилки мережі з l1, масштабовані за впевненістю прогнозів. 

Майже збігається з l1_error, за винятком впевнених прогнозів. 

"*" - поелементне множення - два вектори одного розміру 

перемножують відповідні значення, і на виході виходить вектор такого ж 

розміру. 

"-" - поелементне віднімання векторів. 

x.dot (y) - якщо x і y - це вектори, то на виході вийде скалярний 

добуток. Якщо це матриці, то вийде множення матриць. Якщо матриця та 

вектор - це множення вектора і матриці. 

 

Код - це просто попередня реалізація мережі, складена в два шари один 

над іншим. Вихід першого шару l1 - це вхід другого шару. Щось нове є лише 

в наступному рядку: 

 
l1_error = l2_delta.dot(syn1.T) 
 

Використовує помилки, зважені на впевненості передбачень з l2, щоб 

підрахувати помилку для l1. Отримує помилку, зважену за вкладами - 

підраховується, який внесок в помилки в l2 вносять значення в вузлах l1. Цей 

крок і називається зворотним поширенням помилок. Потім оновлюється syn0, 

використовуючи той же алгоритм, що і у варіанті з нейромережею з двох 

шарів. 

 



Приклад коду на Python №3 нейромережа в три шари 

 

import numpy as np 

 

def nonlin(x,deriv=False): 

 if(deriv==True): 

           return f(x)*(1-f(x)) 

 

 return 1/(1+np.exp(-x)) 

     

X = np.array([[0,0,1], 

            [0,1,1], 

            [1,0,1], 

            [1,1,1]]) 

                 

y = np.array([[0], 

   [1], 

   [1], 

   [0]]) 

 

np.random.seed(1) 

 

# случайно инициализируем веса, в среднем - 0 

syn0 = 2*np.random.random((3,4)) - 1 

syn1 = 2*np.random.random((4,1)) - 1 

 

for j in xrange(60000): 

 

 # проходим вперѐд по слоям 0, 1 и 2 

    l0 = X 

    l1 = nonlin(np.dot(l0,syn0)) 

    l2 = nonlin(np.dot(l1,syn1)) 

 

    # как сильно мы ошиблись относительно нужной величины? 

    l2_error = y - l2 

     

    if (j% 10000) == 0: 

        print "Error:" + str(np.mean(np.abs(l2_error))) 

         

    # в какую сторону нужно двигаться? 

    # если мы были уверены в предсказании, то сильно менять его 

не надо 

    l2_delta = l2_error*nonlin(l2,deriv=True) 

 

    # как сильно значения l1 влияют на ошибки в l2? 



    l1_error = l2_delta.dot(syn1.T) 

     

    # в каком направлении нужно двигаться, чтобы прийти к l1? 

    # если мы были уверены в предсказании, то сильно менять его 

не надо 

    l1_delta = l1_error * nonlin(l1,deriv=True) 

 

    syn1 += l1.T.dot(l2_delta) 

    syn0 += l0.T.dot(l1_delta) 

 

Error:0.496410031903 

Error:0.00858452565325 

Error:0.00578945986251 

Error:0.00462917677677 

Error:0.00395876528027 

Error:0.00351012256786 

 

 

 

Корисні посилання 

1. Нейросеть в 11 строчек на Python https://habr.com/ru/post/271563/ 

2. Инструкция: Создание нейронной сети без навыков программирования 

https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-

navykov-programmirovaniya 

3. Нейросеть на Python, часть 2: градиентный спуск 

https://habr.com/ru/post/272679/ 

4. Как создать собственную нейронную сеть с нуля на языке Python 

https://neurohive.io/ru/tutorial/kak-sozdat-nejronnuju-set-s-nulja-na-jazyke-

python/ 

5. Нейронные сети, или Как обучить искусственный интеллект 

http://internetinside.ru/neyronnye-seti-ili-kak-obuchit-iskuss/ 

6. Bouchard, G.Accelerating Stochastic Gradient Descent via Online Learning 

to Sample / Guillaume Bouchard, Theo Trouillon, Julien Perez, Adrien 

Gaidon // https://arxiv.org/pdf/1506.09016v1.pdf 

7. Sutskever, I. On the importance of initialization and momentum in deep 

learning / Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton // 

http://proceedings.mlr.press/v28/sutskever13.pdf 

8. Алгоритм імітації відпалу 

https://uk.wikipedia.org/wiki/Алгоритм_імітації_відпалу 

9. Simulated annealing https://en.wikipedia.org/wiki/ Simulated_annealing 

10. Rasdi Rere, L.M. Simulated Annealing Algorithm for Deep Learning / L.M. 

Rasdi Rere, Mohamad IvanFananyAniati MurniArymurthy // Procedia 

Computer Science Volume 72, 2015, P. 137-144 

https://www.sciencedirect.com/science/article/pii/S1877050915035759 

https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-navykov-programmirovaniya
https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-navykov-programmirovaniya


11. Метод стохастичного градієнта https://uk.wikipedia.org/wiki/ 

Метод_стохастичного_градієнта 

12. Broyden–Fletcher–Goldfarb–Shanno (BFGS)Алгоритм Бройдена — 

Флетчера — Гольдфарба — Шанно 

https://uk.wikipedia.org/wiki/Алгоритм_Бройдена_—_Флетчера_—

_Гольдфарба_—_Шанно 

13. Limited-memory BFGS https://en.wikipedia.org/wiki/Limited-

memory_BFGS 

14. ADADELTA: An Adaptive Learning Rate Method 

https://arxiv.org/abs/1212.5701 

15. Adam: A Method for Stochastic Optimization 

https://arxiv.org/abs/1412.6980 

 


