
Теоретичні відомості

Розробка простої нейронної мережі на мові Python.

Нейромережа, яка тренується через зворотне поширення

(backpropagation) та намагається використовувати вхідні дані для

передбачення вихідних.

Дано:

Вхідні дані В

ихідні

дані

0 0 1 0

1 1 1 1

1 0 1 1

0 1 1 0

Потрібно передбачити, як буде виглядати колонка «Вихідні дані» на

основі вхідних даних.

Завдання може бути вирішено, підрахувавши статистичну відповідність

між ними. З вихідними даними на 100% корелює лівий стовпець. Для

створення моделі, в найпростішому випадку, подібну статистику розраховує

зворотне поширення.

Приклад коду на Python №1.

Код запускатися в ipython notebook.

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])

y = np.array([[0,1,1,0]]).T

syn0 = 2*np.random.random((3,4)) - 1

syn1 = 2*np.random.random((4,1)) - 1

for j in xrange(60000):

 l1 = 1/(1+np.exp(-(np.dot(X,syn0))))

 l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))

 l2_delta = (y - l2)*(l2*(1-l2))

 l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))

 syn1 += l1.T.dot(l2_delta)

 syn0 += X.T.dot(l1_delta)

Нейромережа в два шари
Змінні та їх опис.

X - матриця вхідного набору даних; рядки - тренувальні приклади.

y - матриця вихідного набору даних; рядки - тренувальні приклади.

l0 - перший шар мережі, визначений вхідними даними.

l1 - другий шар мережі, або прихований шар.

syn0 - перший шар ваг, Synapse 0, об'єднує l0 з l1.

"*" - поелементне множення - два вектори одного розміру

перемножують відповідні значення, і на виході виходить вектор такого ж

розміру.

"-" - поелементне віднімання векторів.

x.dot (y) - якщо x і y - це вектори, то на виході вийде скалярний

добуток. Якщо це матриці, то вийде множення матриць. Якщо матриця та

вектор - це множення вектора і матриці.

Приклад коду на Python №2 нейромережа в два шари (рус. слоя).

import numpy as np # библиотека линейной алгебры

Сигмоида

def nonlin(x,deriv=False):

 if(deriv==True):

 return f(x)*(1-f(x))

 return 1/(1+np.exp(-x))

набор входных данных

X = np.array([[0,0,1],

 [0,1,1],

 [1,0,1],

 [1,1,1]])

выходные данные

y = np.array([[0,0,1,1]]).T

сделаем случайные числа более определѐнными

np.random.seed(1)

инициализируем веса случайным образом со средним 0

syn0 = 2*np.random.random((3,1)) - 1

for iter in xrange(10000):

 # прямое распространение

 l0 = X

 l1 = nonlin(np.dot(l0,syn0))

 # насколько мы ошиблись?

 l1_error = y - l1

 # перемножим это с наклоном сигмоиды

 # на основе значений в l1

 l1_delta = l1_error * nonlin(l1,True) # !!!

 # обновим веса

 syn0 += np.dot(l0.T,l1_delta) # !!!

print "Выходные данные после тренировки:"

print l1

Вихідні дані після тренування:

[[0.00966449]

 [0.00786506]

 [0.99358898]

 [0.99211957]]

Нейромережа в три шари

Вхідні дані В

ихідні

дані

0 0 1 0

0 1 1 1

1 0 1 1

1 1 1 0

Треба передбачити вихідні дані на основі трьох вхідних стовпців.

Жоден з вхідних стовпців не корелює на 100% з вихідним. Третій стовпець

взагалі ні з чим не пов'язаний, оскільки в ньому всі одиниці. Однак, якщо в

одному з двох перших стовпців (але не в обох відразу) міститься 1, то

результат також буде дорівнювати 1.

Це нелінійна схема, оскільки не існує прямої відповідності стовпців

один до одного. Відповідність будується на комбінації стовпців 1 і 2 вхідних

даних. Щоб її отримати потрібно додати ще один шар. Перший шар комбінує

вхід, другий призначає відповідність виходу, використовуючи в якості

вхідних даних вихідні дані першого шару (див. таблицю нижче).

Вхід (l0) Прихована вага (l1) Вихід (l2)

0 0 1 0.1 0.2 0.5 0.2 0

0 1 1 0.2 0.6 0.7 0.1 1

1 0 1 0.3 0.2 0.3 0.9 1

1 1 1 0.2 0.1 0.3 0.8 0

Вага призначається випадковим чином, так отримуються приховані

значення для шару №1. У другого стовбця прихованих ваг вже є невелика

кореляція з виходом. І це теж є важливою частиною процесу тренування

мережі. Тренування буде тільки посилювати цю кореляцію. Вона буде

оновлювати syn1, щоб призначити її відповідність вихідним даним, і syn0,

щоб краще отримувати дані з входу.

Змінні та їх опис.

X - матриця вхідного набору даних; рядки - тренувальні приклади.

y - матриця вихідного набору даних; рядки - тренувальні приклади.

l0 - перший шар мережі, визначений вхідними даними.

l1 - другий шар мережі, або прихований шар.

l2 - фінальний шар, прийнята гіпотеза. По мірі тренування повинен

наближатися до правильної відповіді.

syn0 - перший шар ваг, Synapse 0, об'єднує l0 з l1.

syn1 - другий шар ваг, Synapse 1, об'єднує l1 з l2.

l2_error - промах мережі в кількісному виразі.

l2_delta - помилка мережі, в залежності від впевненості передбачення.

Майже збігається з помилкою, за винятком упевнених прогнозів.

l1_error - зважуючи l2_delta вагою з syn1, підраховується помилка в

середньому/прихованому шарі.

l1_delta - помилки мережі з l1, масштабовані за впевненістю прогнозів.

Майже збігається з l1_error, за винятком впевнених прогнозів.

"*" - поелементне множення - два вектори одного розміру

перемножують відповідні значення, і на виході виходить вектор такого ж

розміру.

"-" - поелементне віднімання векторів.

x.dot (y) - якщо x і y - це вектори, то на виході вийде скалярний

добуток. Якщо це матриці, то вийде множення матриць. Якщо матриця та

вектор - це множення вектора і матриці.

Код - це просто попередня реалізація мережі, складена в два шари один

над іншим. Вихід першого шару l1 - це вхід другого шару. Щось нове є лише

в наступному рядку:

l1_error = l2_delta.dot(syn1.T)

Використовує помилки, зважені на впевненості передбачень з l2, щоб

підрахувати помилку для l1. Отримує помилку, зважену за вкладами -

підраховується, який внесок в помилки в l2 вносять значення в вузлах l1. Цей

крок і називається зворотним поширенням помилок. Потім оновлюється syn0,

використовуючи той же алгоритм, що і у варіанті з нейромережею з двох

шарів.

Приклад коду на Python №3 нейромережа в три шари

import numpy as np

def nonlin(x,deriv=False):

 if(deriv==True):

 return f(x)*(1-f(x))

 return 1/(1+np.exp(-x))

X = np.array([[0,0,1],

 [0,1,1],

 [1,0,1],

 [1,1,1]])

y = np.array([[0],

 [1],

 [1],

 [0]])

np.random.seed(1)

случайно инициализируем веса, в среднем - 0

syn0 = 2*np.random.random((3,4)) - 1

syn1 = 2*np.random.random((4,1)) - 1

for j in xrange(60000):

 # проходим вперѐд по слоям 0, 1 и 2

 l0 = X

 l1 = nonlin(np.dot(l0,syn0))

 l2 = nonlin(np.dot(l1,syn1))

 # как сильно мы ошиблись относительно нужной величины?

 l2_error = y - l2

 if (j% 10000) == 0:

 print "Error:" + str(np.mean(np.abs(l2_error)))

 # в какую сторону нужно двигаться?

 # если мы были уверены в предсказании, то сильно менять его

не надо

 l2_delta = l2_error*nonlin(l2,deriv=True)

 # как сильно значения l1 влияют на ошибки в l2?

 l1_error = l2_delta.dot(syn1.T)

 # в каком направлении нужно двигаться, чтобы прийти к l1?

 # если мы были уверены в предсказании, то сильно менять его

не надо

 l1_delta = l1_error * nonlin(l1,deriv=True)

 syn1 += l1.T.dot(l2_delta)

 syn0 += l0.T.dot(l1_delta)

Error:0.496410031903

Error:0.00858452565325

Error:0.00578945986251

Error:0.00462917677677

Error:0.00395876528027

Error:0.00351012256786

Корисні посилання

1. Нейросеть в 11 строчек на Python https://habr.com/ru/post/271563/

2. Инструкция: Создание нейронной сети без навыков программирования

https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-

navykov-programmirovaniya

3. Нейросеть на Python, часть 2: градиентный спуск

https://habr.com/ru/post/272679/

4. Как создать собственную нейронную сеть с нуля на языке Python

https://neurohive.io/ru/tutorial/kak-sozdat-nejronnuju-set-s-nulja-na-jazyke-

python/

5. Нейронные сети, или Как обучить искусственный интеллект

http://internetinside.ru/neyronnye-seti-ili-kak-obuchit-iskuss/

6. Bouchard, G.Accelerating Stochastic Gradient Descent via Online Learning

to Sample / Guillaume Bouchard, Theo Trouillon, Julien Perez, Adrien

Gaidon // https://arxiv.org/pdf/1506.09016v1.pdf

7. Sutskever, I. On the importance of initialization and momentum in deep

learning / Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton //

http://proceedings.mlr.press/v28/sutskever13.pdf

8. Алгоритм імітації відпалу

https://uk.wikipedia.org/wiki/Алгоритм_імітації_відпалу

9. Simulated annealing https://en.wikipedia.org/wiki/ Simulated_annealing

10. Rasdi Rere, L.M. Simulated Annealing Algorithm for Deep Learning / L.M.

Rasdi Rere, Mohamad IvanFananyAniati MurniArymurthy // Procedia

Computer Science Volume 72, 2015, P. 137-144

https://www.sciencedirect.com/science/article/pii/S1877050915035759

https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-navykov-programmirovaniya
https://vc.ru/selectel/41002-instrukciya-sozdanie-neyronnoy-seti-bez-navykov-programmirovaniya

11. Метод стохастичного градієнта https://uk.wikipedia.org/wiki/

Метод_стохастичного_градієнта

12. Broyden–Fletcher–Goldfarb–Shanno (BFGS)Алгоритм Бройдена —

Флетчера — Гольдфарба — Шанно

https://uk.wikipedia.org/wiki/Алгоритм_Бройдена_—_Флетчера_—

Гольдфарба—_Шанно

13. Limited-memory BFGS https://en.wikipedia.org/wiki/Limited-

memory_BFGS

14. ADADELTA: An Adaptive Learning Rate Method

https://arxiv.org/abs/1212.5701

15. Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

