Heliponna Mepeska 1isi pO3Mi3HABAHHA PYKONMUCHUX HU(p»

Mera: HanucaTu KOMI'IOTEpHY nporpaMmy Ha MoBi Python, cTBoprorouy Ta
HaBYaJIbHY HEUPOHHY CUCTEMY JJIs PO3MI3HABAHHS PYKOMUCHUX HUP.
Buxinni nani:

* KinbkicTh mapiB HEHPOHHOT MEpEXKi: 3.

* BxinHi jaH1 300paskeHHs 1711 HEHPOHHOT Mepexi: po3MipoM 28 X 28 miKCeiB.
 nporpamyBanHs: Python 3.6 1 Bumie.

* BukopucroByBana 0i6mioreka: NumPy.

MeToauuHi BKa3iBKH 10 J1a00PATOPHOI po00OTH

1) Opramni3auisi cepe1oBHIIIA PO3POOKHU

Cucremy mporpamyBanHs Ha MoBi Python 3.6.4 mms Windows MokHa 3aBaHTaXHUTH 3

odiriiiroro caiity https://www.python.org/downloads/windows/ (pekoMeHIyeTcsl UCII0JIb30BaTh

Windows x86 executable installer). ITepeo ycmanoexoro neooxiono eubpamu nynkm «/looamu
Python 0o PATH».

B sxocti camoyuutens Ha ~ MoBi Python = MoXHa ~ BUKOPHUCTOBYBaTH Pecypc
https://pythonworld.ru/samouchitel-python.

1) BeranoJienHs 6i6iiorekn NumPy

1. 3amycrith gogaTok «KomaHnaHa cTpokay (A1 mboro BuOepith cmd y BiKHI MOMIYKY MaHE1
3aBJlaHb

Windows).

pip3 install numpy

1. 3amycTiTh KOMaHIy JUIsl BTAHOBJICHHS MAKETY:

2) BcraHoBJIeHHSI pO00Y0i NANIKH MPOEKTY

3) CtBopith katanor NeuralNetwork, y sskoMy Bu Oynere 30epiraTu BUXiJIHI TEKCTH
IpOorpaMH, CTBOPEHI IMiJl 4aCc BHUKOHAHHS MPAaKTUYHUX 3aBIaHb (HAMPUKIAI,
C:\NeuralNetwork). ¥V karano3i NeuralNetwork cTBopiTh minkaTtanor Networkl,
y IKOMY OyayTh 30epiraTucs BUXiIHI KO 3aBIaHHS

1.CTBOpeHHs HellpOHHOI Mepe:Ki

3amycTiTh CEpenoBUIE PO3pOOKM (st 3amycKy cepemoBuia po3podku IDLE,
BuOepiTh idle y BikHI manemi momyky 3agad Windows). CTBOpiTh HOBUH (aiin s
nporpamu (menro Paitn/Hoswuit daiin). 30epexits mei ¢aitn y karamo3i Networkl
mig iMmeHeM Mmepexi (mMenro File/Save). PosmmupenHs .py Oyae BCTaHOBJICHO 3a
YMOBYAHHSIM.

CkomniroiiTe y BikH1 mporpamu network.py HacTymH1 KOMaH/IM Ta BIMILIITH AaH1

http://www.python.org/downloads/windows/(рекомендуется

network.py

MonyJsib CTBOPEHHS Ta HaBUaHHS HEMPOHHOIL
Mepexi mojsa posniszHaBaHHSA PYKOMNMCHUX
undp 3 BUKOPMUCTAHHAM MeTOIny
IPamli€eHTHOTO CIYCKY.

T'pynna:<YkasaTM HOMeEp I'pynu>
OUO:<YkazaTu 11iod

R R R R R R R R R R R R R R R R R IR IR R IR TR R RIRIRT]
cTyoeHTa>
IR IR IR TRTRIRIRT]

import random # OubamoTexka OGYHKLMI IOJiS TeHepaluuM CJYyYaMlHBIX 3HaYEeHUN

CTopoHHMEe OUBIMOTEKM

import numpy as np # Oubimoreka QyHKUMM OJig PaBOTE C MaTpulaMu

"nn ———Paspgesi onmucaHum--- """
""" —-OnmumcaHme kJjacca Network--"""

class Network (object) : # wmcnombayeTcsa OJjisg ONMCAHUS HEWPOHHOM CeTu
def —init— (self, sizes): # KOHCTPYKTOP Kjlacca
self - ykaszaresnb Ha OOBLEKT KJjacca
sizes - CIOMCOK pasMepoOB CJIOEB HEWPOHHOM
ceTu
self.num layers = len(sizes) # BamaeM KOJIMUECTBO CJIOEB HEMPOHHOM
ceTu
self.sizes = sizes # 3amaeM CIOMCOK pas3MEpPOB CJIOEB HEMPOHHONM ceTu
self.biases = [np.random.randn(y, 1) for y in sizes[1l:]] # 3Bamaem
CIlyuyarHble HaudaJIbHBEIE CMeleHUS
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],
sizes([1:])] # samaem ciyualHbEe HauaJibHBEIE Beca CBA3eln

-—-Konen omnmcaHmsa kJjacca Network--

""" ——— KoHel paszzejyia onucaHmuy--- """

—-—-TeJjyio ODpoTrpaMMbBl———
net = Network([2, 3, 1]) # co3maeM HEMPOHHYI CETb M3 TPEX CJIOEB
""" ———-KoHel Tesia nporpamme—-—-- """

BelBO pe3yJibTaTa Ha DKpPaH:
print ('Cers net:')
print ('KommueTpo cjoer:', net.num layers)
for i in range(net.num layers):
print ('KosmuecTBO HelpoHOB B cjoe', 1i,':',net.sizes[i])
for i in range(net.num layers-1):
print ('W_',i+1,"':")
print (np.round (net.weights[i],2))
print('b_',i+1,"':")
print (np.round (net.biases[i],2))

30epexiTh (haiin network.py 1 Bukonaiite nporpamy network. [1{o6 3amyctutn
mporpamy BUKOHaHHS, BHOepiTh Run/Run Module (a6o wnatuchits F5). VY
pe3ynbrati Oyme CTBOpEeHO O00'ekT kiacy Mepexka, IO 3aJa€ TPbOXPIBHEBY
HEHPOHHY CeTh 3 OKpeMHUMH mMapameTpamu. [Ipu cTBopeHHI 00'€KTa Kilacy Mepexi
Beca 1 PO3MIIIECHHS 1HIIIATI3yIOThCS BUMAIKOBUM YMHOM. Jlms iHimiamizarii 1tiei
BEITMYMHN BUKOPUCTOBYeThbCA (yHKIA np.random.randn 3 6i6miotekn NumPy.
JlaHa ¢yHKIIL TeHepye Yucia 3 HOPMAaJbHUM PO3MOALIOM JJis MacHBY 3aJaHOi
PO3MIPHOCT!I.

BusnauenHs curmoinanbHO1 G yHKIIT
Y skocti (QyHKUIT akTUBalii JJIs MeEpeXi HEUpPOHIB BUKOPUCTOBYETHCS
curmoinHa (yHKI[iS, 110 BUYUCISE BUXIIHUN CHUTHAJ IITYy4HOro HelpoHa. Hipke

3
MpeCTaBICHUN KO/ JJisi BU3HaUeHHs1 PyHKiii. Jlogakte el koa y po3aul onucaHoi
porpamMmu
network.py.

def sigmoid(z): # onpemesieHue CUTMOUIAJILHOM GYHKLUUM aKTUBALUM
return 1.0/ (1.0+np.exp(-2z))

3BepHITH yBary, 1o Jjsl OMUCY CHTMOITanbHOT QYHKIIII aKTUBAIlil BUKOPUCTOBYETHCS (PYHKITis
JUIsl BUpAaXyBaHHsI €KCIIOHEHTIB 3 0i0miorekn NumPy, mo 103BoJisie€ epeaBaTi MacuB y SIKOCT1
BXIIHOTO TapameTrpa cUrMoimanbHOi (yHKII. Y 1pOMYy BHMAagKy (QYHKIIS EKCIIOHEHTIB

3aCTOCOBYETHCS IOEJIEMEHTHO, TOOTO € y BEKTOPU30BaH1il opMi.

Memoo feedforward

Honaiite meron feedforward B onmc xitacy Network.

def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot (w, a)+b)
return a

Le#t meron 3aiiicHIOE MiAPAXyHOK BUXITHUX CHUTHAJIIB HEHPOHHOT MEpeki MpU 3aJaHUX
BXigHUX curHanax. [lapamerp a € macuBom n X 1, 1e n — KUIBKICTh HEHPOHIB BXITHOTO IIIapy.
Oyukiis np.dot BUUYMCIAE TpOW3BEACHHE MATpuIll. [minmpaxyHKy BHXITHUX 3HA4YCHBb
HEUPOHHOI MepeXi HeoOXiMHO oAWH pa3 BUKIHMKATH Meroj feedforward, B pesymbrari 4oro
BUXIJIHI CUTHAJIM OyIyTh MTOCITIIOBHO BUPAXOBaH1 JIJIsl BCIX IIapiB HEUPOHHOT MEpExKI.

4) HapuaHHsI HelipOHHOI Mepe:xKi
Jlnst peamizariii MexaHI3My HaBYaHHsS CTBOPIOBAaHOI HEHPOHHOI MEpEeki OJAEMO METO]

SGD, sxuii peanizye CTOXaCTUYHUHN T'PalIEHTHUN CITyCK. MeTo1 Mae Taki mapaMeTpu:

«Training data» — HaBuYaJbHa BHMOIpKa, AKa CKIaJacThcs 3 map Buay (¥,y), ne X —
BEKTOP BXIJHMX CHTHAJIB, 4y — OYIKyEMHI BEKTOP BUXIJHUX CUTHAJIB;

«epochs» — KUIBKICTh €10X HaBYaHHS,

«mini batch size» - po3Mip MiABUOIPKH;

«etax» - HIBUAKICTH HABYAHHS,

«test data» - (HEOOOB'SI3KOBUI MapaMeTp); AKILO L€ apryMeHT He MyCTUH, TO IporpaMma

MICHST KOXHOI €MOXH HaBYaHHA 3IIMCHIOE OLIHKY pOOOTH Mepexi Ta IMOKa3ye NOCSITHYTUH

Iporpec.

Honaiite nporpamuHuii konx Meronxy SGD B po3nin omucy kimacy Mepexa:

4

def SGD(# CroxaCTMUECKMM I'PaIMEeHTHHII CIIYCK

self # ykasaresnbr Ha OOBEKT KJjacca
, training data # obyuammas BeOOPKA
, epochs # KOJIMYECTBO BNOX OOydYeHUs
, mini batch size # pasMep NoIBHOOPKM
, eta # ckxopocTb oOyueHMUS
, test data # TecTupyromas BEOOPKA

) :
test data = list(test data) # cospmaem cHmMcoxk OOBEKTOB TeCTHUPYOIEN
BEIODOPKU
n_test = len(test data) # BeMNUCIAeM IJMHY TecTHpyuel BEOOPKHU
training data = list(training data) # cospaem cnmMcox OOBEKTOB
oByuanmey BHOOPKM
n = len(training data) # BHuUMCIAeM pasMmep oOydaplel BHOOPKM
for j in range(epochs): # uwkJ no snoxam
random.shuffle (training data) # nepememmpaeM sJeMeHTH OOyudawlen
BEIODOPKMU
mini batches = [training datal[k:k+mini batch size] for k in
range (0, n, mini batch size)] # cospaem nomBelOOpPKU
for mini batch in mini batches: # umxn no nomeeGopkam
self.update mini batch(mini batch, eta) # omwn mar
TPaIMeHTHOTO CIyCKa
print ("Epoch {0}: {1} / {2}".format(j,
self.evaluate (test data), n_test)) # CcMOTPUMM TIpoTpecc B OByUYeHUM

[leit mporpamMHMii KOJA TMpallOo€ TAaKMUM 4YWHOM. Ha moyaTky KOXHOI €NOXH HaBYaHHSA
€JIEMEHTH HaBUYaJbHOT BUOOPKH MEPEMIMTYIOThCS (TIEPECTABIISIIOTHCSA Y BUIIAKOBOMY TOPSIIKY) 32
noniomororo (ynkmii shuffle() 13 BumagkoBoi 0i0MiOTEKH, MICHsI YOTO HaBYajdbHa BHOIpKa
MOCIIIOBHO PO30MBAETHCA Ha MIABUOOPKH MOBKHHH mini_batch size. [nst ko)kHOT MiABHOOPKH
BUKOHYETHCA OJMH KPOK TPAJIEHTHOTO CITyCKYy 3a JOMOMOTOr0 Meroay update mini batch (cwm.
Huxue). [licns Toro, sk BUKOHAHO OCTaHHIM KPOK I'PaJIEHTHOTO CIYCKY, T.€. BUKOHYETHCS METO]
update mini_batch mist ocTaHHBOT IABUOOPKH, HA €KPaHi IKOTO BUBOJUTHCS JOCATHYTHH TTPOTPEC
B HaBYaHH1 HEMPOHHOI MEPEeXki, 110 BUPAXOBYETHCS HA TECTOBOMY BHOOPI 32 JOMIOMOTOIO METOLY
evaluate (TuB. HUKYE).

Amnanizyrouu nporpamHuil ko mMetony update mini_batch, MmokHa MO6aYUTH, IO OCHOBHA
YacTHHA BUPAXOBYETHCS B pe3yibTaTi BUKIUKY MeToay backprop (muB. Himkue). Lleit meton kinacy
MEpeki peaizye alroOpuT™M 3BOPOTHOTO MOIIUPEHHS MOMUJIOK, SKHH € IIBHAKHM CIIOCOOOM
BHUpaxyBaHHS rpajieHTa cToiMkoBOi pyHKuii. Takum yrHOM, MeTon update mini_batch BupaxoBye
BCi TpajlieHTH Ui KOKHOTO MpeneaeHty (x°, y~) y MiABUOOPII, a TaKoX OHOBIIIOE Macy Ta
3MilleHHs1 HelipoHHOT Mepexi. Jlomaiite xkonx meroay update mini batch B po3ain omucy kiacy

Mepexa:

def update mini batch(llar IrpaAMeHTHOT'O CIIyCKa

#

self # ykasaTeJyib Ha OOBEeKT KJjlacca

, mini batch # nonmBubOpKa

, eta # cxopocTh OByuUYeHUs

)t
nabla b = [np.zeros(b.shape) for b in self.biases] # cnucok

rpagueHToB dC/db mia kaxImoro cJjod (IepBOHAUAJIBHO BalOJIHAKTCSH HYJISMM)

nabla w = [np.zeros(w.shape) for w in self.weights] # cnucox

rpanveHToB dC/dw Ojsg KaxOoTo CJIOs (IIepBOHAYAJILHO SBallOJIHANTCS HYJISMMU)
for x, y in mini batch:
delta nabla b, delta nabla w = self.backprop(x, y) # mociomso
BuunciisgeM rpaavenTn dC/db m dC/dw mia Tekymero npeueneHTa (X, V)
nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)] #
cymmmpyeMm rpanvenTel dC/db s pasiMuHEIX NPEeLeNeHTOB TeKylliel NOIBEHOOPKMU

nabla w = [nw+dnw for nw, dnw in zip(nabla w, delta nabla w)] #
cymmupyeM rpammeHTsl dC/dw IOJi9 pasIMUHBEIX [PElelNeHTOB TeKyllel MOIBLOOPKM/
self.weights = [w-(eta/len(mini batch)) *nw

for w, nw in zip(self.weights, nabla w)] #
ODHOBJIsIEM BCe BecCa W HEeMPOHHOM ceTu
self.biases = [b-(eta/len(mini batch)) *nb
for b, nb in zip(self.biases, nabla b)] # oBHOoBIgeM
BCE CMENEeHMS b HEeMpPOHHOM ceTu B

CkomiroiTe B pO3/iJ1 ONKC KJIacy

def backprop(# AnropmuTM OOPATHOTO pPaCHPOCTPaHEHUS

(
self # ykasaTesib Ha OOBEKT KJjlacca
, X # BEKTOP BXOIHBEIX CUIT'HAJIOB
y v # OXMOaeMblll BEKTOP BHXOIHHEIX CUI'HAJIOB
nabla b = [np.zeros(b.shape) for b in self.biases] # cnucox
rpagueHToB dC/db mia kaxImoro cjod (IepBOHAUAJIBHO BaloJIHAKNTCH HYJISMU)
nabla w = [np.zeros(w.shape) for w in self.weights] # cnucoxk

rpamveHToB dC/dw mjg Kaxmoro CJjog (MepBOHAYAJIBHO SBalOJIHANTCS HYJISMMA)

omnpemesieHMe NEepEeMEeHHHX

activation = x # BHXOIHHE CUTHAJE CJIOS (II€PBOHAYAJILHO COOTBETCTBYET
BEIXOOHEIM CUTHAJIaM 1-T0 CJIOS MM BXONOHBEIM CUI'HAJIAM CEeTM)

activations = [xX] # CHMCOK BEIXOIHHEIX CUI'HAJIOB I[IO BCEM CJIOSAM
(mepBOHAUYAJIBHO COIEPXUT TOJIBKO BEIXOIHBIE CUI'HAJBEL 1-T'O CJIOH)

zs = [] # CHMCOK aKTMBALMOHHEX I[NOTEHLMAJIOB IIO BCEM CJIOAM
(mepBOHaAYAJIBHO IIYyCT)

npsMoe pacnpocTpaHeHue
for b, w in zip(self.biases, self.weights):
z = np.dot (w, activation)+b # cumTaem akKTMUBALMOHHEE [1OTEHIIMAJIE
TeKymero cJosa
zs.append(z) # nmobaBjsgeM B3JIeMEHT (aKTUBALMOHHBIE [1OTEHLMAJIE
CJIOs) B KOHEl CIMCKa
activation = sigmoid(z) # cumTaeM BHIXOIHHE CUTHAJE TEKYyIeTo
CJIOS, TPVMEHSS CUIMOMOAJIbHYH OYHKUMIO aKTMBALMM K AKTUBALMOHHBIM I[IOTEHIIMAaJIaM
cJjosa
activations.append(activation) # noGaBisgeMm 3JIeMEHT (BBIXOIHLIE
CUTHAaJIEl CJIOS) B KOHEl CIMCKa

oBpaTHOEe pacnpoCcTpaHeHue

delta = self.cost derivative(activations[-1], y) *
sigmoid prime(zs[-1]) # cuMTaem Mepy BIMAHMA HEMPOHOB BHIXOOHOTO cjioa L Ha
BeMumHy oumdxku (BP1)

nabla b[-1] = delta # rpamveunr dC/db musg cmsos L (BP3)

nabla:w[—l] = np.dot (delta, activations[-2].transpose()) # TpamueHT
dC/dw pna cmnosa L (BP4)

for 1 in range (2, self.num layers):
z = zs[-1] # aKTMBAUMOHHEE [OTEHLMAJH 1-T0 CJOS (OBUTAEMCS IO
CIMCKY CIpaBa HaJIeBO)
sp = sigmoid prime(z) # cuMTaeM CUIMOMIOANBEHYKW OYHKLMUIO OT
AKTUMBALMOHHEIX [IOTEHLUMAJIOB 1-T0O CJIOS
delta = np.dot(self.weights[-1+1].transpose(), delta) * sp #
curTaeM Mepy BIMSAHMUS HEMPOHOB I[-TO CJIOS Ha BeJauuuHy oummbku (BP2)
nabla b[-1] = delta # rpamuent dC/db mms I-ro cijos (BP3)
nabla w[-1] = np.dot(delta, activations[-1-1].transpose())#
rpaguedT dC/dw mus I-ro ciosa (BP4)
return (nabla b, nabla w)

Ckonupyiite B pazzaen onucanus k1acy NETWORK nporpamuuii ko1 METOy OLIIHKH, 110

JIEMOHCTpPYE NMPOTPeC B HABUAHHI:

def evaluate(self, test data): # OueHka mnporpecca B oOyuyeHuu
test results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test datal
return sum(int(x == y) for (x, y) in test results)

5) Po6ora 3 6a3zor0 ganux MNIST

Jlost HaBYaHHSI HEHPOHHOT Mepexi Oynemo BHUKOPHCTOBYBATH apxiB
http://deeplearning.net/data/mnist/mnist.pkl.gz wa caiiti JlJabopaTopii MalIHHHOIO HaBYAHHS

VYuiBepcutery Monpeans, chopmoBaHuii Ha ocHOBI 0a3u maHux MNIST, sxuit mictuts 70

000 300pakeHb pyKOTTUCHUX MHUGP, PO3AUICHUX HA TPU HAOOPH:

training data — HabGip 13 50 000 300pakeHb, NpU3HAUCHUIN 7SI HABYAHHS HEHPOHHHX

CeTeH;

validation data — HaOlp 13 10 000 300paskeHb, NpU3HAUEHUN AJIS MOTOYHOI OLIHKH
poOOTH anropuTMy HaBYaHHS Ta MIIOOpPY MapaMeTpiB HaBUaHHS (BHUKOPHCTOBYETHCS B

OCTaHHIX JJAOOPaTOPHUX pOOOTAX);

test data — HaOip 13 10 000 300pakeHb NpU3HAYEHUH Ul TIEPEBIPKU POOOTH HEHPOHHOT
Mepexi.

Kosxen Habip ckiagaeTbes 3 IBOX CIHUCKIB: CIHUCKY 300paxeHs (y Ipajallisax ceporo)
1 BIAMOBIAHOTO cnucKy nudp y aianazoni Big 0 10 9. 300pakeHHsI MPEJCTABICHO Y
BUTJISIZII OJTHOMEPHOI'O0 MacuBY numpy po3mipom 784 = 28 x 28 3navens Big 0 go 1,
ne 0 BiAMOBIa€ YOPHOMY KOJIBOPY Iikcena, a 1 — Outomy.
Oyukuii aig podotu 3 6a3or0 ganux MNIST nenecoodbpazHo BUHECTH B OKpPEMUA
daiin. CtBopiTh HOBHM (aitn mnist loader 1 30epexiTh HOro B JIUPEKTOPii
Networkl. CxomiroliTe y BikHI mporpamu mnist loader.py HacTymHi KOMaHIU Ta

http://deeplearning.net/data/mnist/mnist.pkl.gz

BIUIIITH
JTaHl;

CBOI1

win

mnist loader.py

MonyJsib OJiS MOOKJIIOUEHMS M MCIOJIb30BaHMA Oasbl OaHHeIx MNIST.

Tpynna: [YkasaTb HOMep I'PYIIH]

OUO: [YkazaTe OMO cTymeHTa]

import gzip # OubnmoTexka nJsa CXaTus M PaclIakoBKM GamioB gzip u gunzip.
import pickle # OBubimoTexa IJjg COXPaHEHMS M BaTPy3KM CJIOXHEIX OOBEKTOB
Python.

import numpy as np # Oubimoreka myisg PaOOTH C MaTpHULLAMU

def load data():

f = gzip.open('mnist.pkl.gz', 'rb') # orxpriBaeMm cxaTell Qars gzip B
OBOUUYHOM PEXUME

training data, validation data, test data = pickle.load(f,
encoding="'latinl') # zarpyxam Tabauus U3 odaria

f.close () # 3axkpwoBaem odamnmi
return (training data, validation data, test data)

8
Jns BuxkopuctanHsi Oasu pganux MNIST B Hamiii mnporpami HeoOXiTHO
BiIKopuryBatu ¢opmaru HaOopiB training data, validation data 1 test data. lLle
pooutkest 'y ¢ynkuii load data wrapper. Ckomitodite y ¢aiin mnist loader
HACTYIIHUU NIPOrpaMHUM KOL.

def load data wrapper () :

tr d, va d, te d = load data() # mHMuManmM3auua HaOOPOB IaHHEX B QopmMmaTe
MNIST

training inputs = [np.reshape(x, (784, 1)) for x in tr d[0]] #
npeobpas3oBaHME MaCCHMBOB pasMepa 1 Ha 784 x MaccuBaM pas3Mepa 784 Ha 1

training results = [vectorized result(y) for y in tr d[1]] #
npencrapiyeHue uudp ot 0 mo 9 B BMIe MaccuBoB pasmepa 10 Ha 1

training data = zip(training inputs, training results) # dopmupyem
Habop obyuyamnuyMx OaHHEIX M3 HOap (x, y)

validation inputs = [np.reshape(x, (784, 1)) for x in va d[0]] #
npeobpaszoBaHME MaCCHMBOB pasMepa 1 Ha 784 k MaccuBaMm paszMmepa 784 Ha 1

validation data = zip(validation inputs, va d[l]) # dopmmupyem Habop
IOaHHEIX [POBEPKM M3 Hnap (x, y)

test inputs = [np.reshape(x, (784, 1)) for x in te d[0]] #
npeobpas’zoBaHMe MaCCHMBOB pasMepa 1 Ha 784 k mMaccuBaMm paszMmepa 784 Ha 1

test data = zip(test inputs, te d[1l]) # dopMmpyeM HabOpP TECTOBEIX IaHHHX
us map (%, y)

return (training data, validation data, test data)

Jlana yHkIis mepeTBoproe training data B cricok, 1mo Mictuth 50 000 map

(x, ¥), ne x € 784-MepHUM NUMPY-MACHBOM, 110 MICTUTh BXiJIHE 300paKeHHSI, a Y

— me 10-mipHHE numpy-MaccuB, IO MPEICTaBIsIE COOOK BEKTOpP, Y SKOTO
KOOPJIMHATU 3 TOPSIKOBUM HOMEpPOM, BIAMOBIIHOK IHU(PPO Ha 300pakeHHI,
BUPIBHIOETHCS OJIMHMIICIO, a 1HIIN KOOPJAWHATH HYJIHOBI. AHAJIOT1UHI MEPEeTBOPEHHS
BUKOHYIOThCS I HabopiB validation data i test data.

Jlns mepeTBopeHHsT uucen y Bekrop-cromoer (10-mipHuii MacuB numpy)
BUKOPUCTOBY€TbCA HacTtynmHa (yHkuisi vectorized result. Ckomitoiite i
IPOTrpaMHHUMA KO/ y daiin
mnist_loader.

def vectorized result (j):

e = np.zeros((10, 1))
e[j] = 1.0
return e

0 36epexiTh i 3akpuiite mnist_loader.py.

7) 3anyck nporpamu
VY cepenosuii po3poodku IDLE nocnigoBHO BUKOHANWTE HACTYIHI KOMaH/IU JJIsl BCTAHOBIICHHS
obouoro karanory Ha npukianai C:\NeuralNetwork:

>>>import os

>>>0s.chdir ('C:\\NeuralNetwork\\Networkl"')

HactynHi KoMaH/I1 BUKOPUCTOBYIOTHCS JUTS MIAKIIOUEHHS MOAyst mnist loader Ta iHimiamizarii

HaOOpIB JaHUX JUTsl HABYAHHS HEHPOHHOT MEpexi:

>>>import mnist loader

>>>training data, validation data, test data =
mnist loader.load data wrapper ()

[Toaknrouure Moaysb network. py:

>>>import network

[Ipy 11bOMYy BHKOHYETHCS HamMCaHa B HBOMY IIporpama, IO BHUBOJIUTH IH(OPMAIi0 TPO
HEUPOHHY MEPEXKY.
CoznaiiTe HEHPOHHYIO CETh Ul paclO3HaBaHMsI PYKOIUCHBIX IIUGD:

>>>net = network.Network ([784, 30, 10])

[TapameTpu, Bka3aHi IpU BUKIMKY JaHOTO METOJy, BU3HA4YalOTh TOIMOJOTII0 CTBOPHOBAHOI
Mepexi. TakuM 4YMHOM, B pe3yiabTaTl BUKOHAHHA KOMaHAM Oyle CTBOpEHa CEeTh, IO
CKIIQZIAEThCS 3 TPHhOX IIApiB: BXIAHUN IMap MEPEXi CKIamaeTbes 3 784-X HEHWPOHIB;
BHYTpilIHii map 3 30 HelipoHiB 1 BUXiaAHMM map 3 10 HelpoHiB.

3anycTiTh NpOLEAYypY HaBUaHHS CTBOPEHOT HEHPOHHOT Mepexi, 10 BKItodae 30 poKiB:

>>>net.SGD (training data, 30, 10, 3.0, test data=test data)

[Tapamerpu, ykazani npu BUkauky metoay SGD: HaB4anbHa BHOIpKa, KUTBKICTh €MOXH HaBYaHHS,
pO3Mip MiIBUOOPKH, MBUAKICTH HABYAHHS, TECTyBaJIbHA BHOIpKA.

HapuanHs MOXKeT 3aHITh HECKOJIBKO MUHYT. B X011 HaBuaHHs Oyne BuaaBaTucs iHGOpMAITis po
npoiiieHi ernoxu (cM. puc. 2). JIJis KO’KHOI eroXu BUBOAUTHCS BITHOIICHHS KUTBKOCTI MPAaBHIIBHO
po3Mi3HaHKuX IKU(}p A0 3aranbHOI KiTbKOCTI ITMp y TecTtoBoMy Bubopi. Hanmpukian, 3anuc Epoch

6: 9374 / 10000 roBopuTh MpO TE, IO, B PE3yJbTATI €MOXW HABYAHHS 3

HOMEpOM 6 TOoCATHYyTa TOYHICTh po3mi3HaBaHHI 374 ~ (.94, mo cknagae 94%.
10000

File Edt Shell Debug Options Window Help
>»> mnist_loader ~
>>> training daza, validatien daca, test_daca = |\

mnist_lcader.lcad_dacta_wrapper()
>>> network
>>> net = nerwor

Nerwork([784, 30, 10})
g_data, 30, 10, 3.0, test data=test_data)

	Методичні вказівки до лабораторної роботи
	1) Встановлення бібілотеки NumPy
	2) Встановлення робочої папки проєкту
	3) Створіть каталог NeuralNetwork, у якому ви будете зберігати вихідні тексти програми, створені під час виконання практичних завдань (наприклад, C:\NeuralNetwork). У каталозі NeuralNetwork створіть підкаталог Network1, у якому будуть зберігатися вихі...
	1.Створення нейронної мережі
	Цей метод здійснює підрахунок вихідних сигналів нейронної мережі при заданих вхідних сигналах. Параметр 𝒂 є масивом 𝑛 × 1, де 𝑛 – кількість нейронів вхідного шару. Функція np.dot вичисляє произведение матриці. Для підрахунку вихідних значень нейрон...
	4) Навчання нейронної мережі
	5) Робота з базою даних MNIST
	7) Запуск програми

