
RapidMiner 4.2
User Guide

Operator Reference

Developer Tutorial

2

Rapid-I GmbH
Stockumer Str. 475
44227 Dortmund, Germany
http://www.rapidminer.com/

Copyright 2001-2008 by Rapid-I

July 14, 2008

Contents

1 Introduction 27

1.1 Modeling Knowledge Discovery Processes as Operator Trees . . 28

1.2 RapidMiner as a Data Mining Interpreter 28

1.3 Different Ways of Using RapidMiner 30

1.4 Multi-Layered Data View Concept 30

1.5 Transparent Data Handling . 31

1.6 Meta Data . 31

1.7 Large Number of Built-in Data Mining Operators 31

1.8 Extending RapidMiner . 32

1.9 Example Applications . 33

1.10 How this tutorial is organized 34

2 Installation and starting notes 35

2.1 Download . 35

2.2 Installation . 35

2.2.1 Installing the Windows executable 35

2.2.2 Installing the Java version (any platform) 36

2.3 Starting RapidMiner . 36

2.4 Memory Usage . 38

2.5 Plugins . 38

2.6 General settings . 38

2.7 External Programs . 39

2.8 Database Access . 39

3

4 CONTENTS

3 First steps 43

3.1 First example . 43

3.2 Process configuration files . 46

3.3 Parameter Macros . 47

3.4 File formats . 48

3.4.1 Data files and the attribute description file 49

3.4.2 Model files . 53

3.4.3 Attribute construction files 53

3.4.4 Parameter set files . 54

3.4.5 Attribute weight files 54

3.5 File format summary . 55

4 Advanced processes 57

4.1 Feature selection . 57

4.2 Splitting up Processes . 59

4.2.1 Learning a model . 59

4.2.2 Applying the model . 59

4.3 Parameter and performance analysis 61

4.4 Support and tips . 64

5 Operator reference 67

5.1 Basic operators . 68

5.1.1 ModelApplier . 68

5.1.2 ModelGrouper . 68

5.1.3 ModelUngrouper . 69

5.1.4 ModelUpdater . 70

5.1.5 OperatorChain . 70

5.2 Core operators . 72

5.2.1 CommandLineOperator 72

5.2.2 Experiment . 73

5.2.3 FileEcho . 73

July 14, 2008

CONTENTS 5

5.2.4 IOConsumer . 74

5.2.5 IOMultiplier . 75

5.2.6 IOSelector . 76

5.2.7 MacroDefinition . 76

5.2.8 MaterializeDataInMemory 78

5.2.9 MemoryCleanUp . 78

5.2.10 Process . 79

5.2.11 SingleMacroDefinition 80

5.3 Input/Output operators . 82

5.3.1 ArffExampleSetWriter 82

5.3.2 ArffExampleSource . 82

5.3.3 AttributeConstructionsLoader 85

5.3.4 AttributeConstructionsWriter 85

5.3.5 AttributeWeightsLoader 86

5.3.6 AttributeWeightsWriter 87

5.3.7 BibtexExampleSource 87

5.3.8 C45ExampleSource . 88

5.3.9 CSVExampleSetWriter 90

5.3.10 CSVExampleSource . 91

5.3.11 CachedDatabaseExampleSource 92

5.3.12 ChurnReductionExampleSetGenerator 95

5.3.13 ClusterModelReader . 95

5.3.14 ClusterModelWriter . 96

5.3.15 DBaseExampleSource 97

5.3.16 DatabaseExampleSetWriter 97

5.3.17 DatabaseExampleSource 98

5.3.18 DirectMailingExampleSetGenerator 101

5.3.19 ExampleSetGenerator 101

5.3.20 ExampleSetWriter . 102

5.3.21 ExampleSource . 104

The RapidMiner 4.2 Tutorial

6 CONTENTS

5.3.22 ExcelExampleSetWriter 106

5.3.23 ExcelExampleSource . 107

5.3.24 GnuplotWriter . 108

5.3.25 IOContainerReader . 109

5.3.26 IOContainerWriter . 109

5.3.27 IOObjectReader . 110

5.3.28 IOObjectWriter . 111

5.3.29 MassiveDataGenerator 111

5.3.30 ModelLoader . 112

5.3.31 ModelWriter . 113

5.3.32 MultipleLabelGenerator 114

5.3.33 NominalExampleSetGenerator 115

5.3.34 ParameterSetLoader . 115

5.3.35 ParameterSetWriter . 116

5.3.36 PerformanceLoader . 117

5.3.37 PerformanceWriter . 117

5.3.38 ResultWriter . 118

5.3.39 SPSSExampleSource 119

5.3.40 SimpleExampleSource 120

5.3.41 SparseFormatExampleSource 122

5.3.42 StataExampleSource 123

5.3.43 TeamProfitExampleSetGenerator 124

5.3.44 ThresholdLoader . 125

5.3.45 ThresholdWriter . 125

5.3.46 TransfersExampleSetGenerator 126

5.3.47 UpSellingExampleSetGenerator 127

5.3.48 WekaModelLoader . 127

5.3.49 XrffExampleSetWriter 128

5.3.50 XrffExampleSource . 129

5.4 Learning schemes . 132

July 14, 2008

CONTENTS 7

5.4.1 AdaBoost . 132

5.4.2 AdditiveRegression . 133

5.4.3 AgglomerativeClustering 134

5.4.4 AgglomerativeFlatClustering 134

5.4.5 AssociationRuleGenerator 135

5.4.6 AttributeBasedVote . 136

5.4.7 Bagging . 137

5.4.8 BasicRuleLearner . 138

5.4.9 BayesianBoosting . 139

5.4.10 BestRuleInduction . 141

5.4.11 Binary2MultiClassLearner 142

5.4.12 BregmanHardClustering 143

5.4.13 CHAID . 144

5.4.14 ClassificationByRegression 145

5.4.15 ClusterModel2ExampleSet 146

5.4.16 ClusterModel2Similarity 146

5.4.17 CostBasedThresholdLearner 147

5.4.18 DBScanClustering . 148

5.4.19 DecisionStump . 149

5.4.20 DecisionTree . 150

5.4.21 DefaultLearner . 151

5.4.22 EvoSVM . 152

5.4.23 ExampleSet2ClusterConstraintList 154

5.4.24 ExampleSet2ClusterModel 155

5.4.25 ExampleSet2Similarity 155

5.4.26 FPGrowth . 156

5.4.27 FlattenClusterModel . 157

5.4.28 GPLearner . 158

5.4.29 HyperHyper . 159

5.4.30 ID3 . 160

The RapidMiner 4.2 Tutorial

8 CONTENTS

5.4.31 ID3Numerical . 161

5.4.32 IteratingGSS . 162

5.4.33 JMySVMLearner . 163

5.4.34 KMeans . 165

5.4.35 KMedoids . 166

5.4.36 KernelKMeans . 167

5.4.37 KernelLogisticRegression 168

5.4.38 LibSVMLearner . 170

5.4.39 LinearRegression . 171

5.4.40 LogisticRegression . 172

5.4.41 MPCKMeans . 174

5.4.42 MetaCost . 175

5.4.43 MultiCriterionDecisionStump 176

5.4.44 MyKLRLearner . 177

5.4.45 NaiveBayes . 178

5.4.46 NearestNeighbors . 179

5.4.47 NeuralNet . 180

5.4.48 OneR . 181

5.4.49 Perceptron . 182

5.4.50 PsoSVM . 183

5.4.51 RVMLearner . 184

5.4.52 RandomFlatClustering 186

5.4.53 RandomForest . 187

5.4.54 RandomTree . 188

5.4.55 RelativeRegression . 189

5.4.56 RelevanceTree . 190

5.4.57 RuleLearner . 191

5.4.58 SimilarityComparator 192

5.4.59 Stacking . 193

5.4.60 SubgroupDiscovery . 193

July 14, 2008

CONTENTS 9

5.4.61 SupportVectorClustering 194

5.4.62 TopDownClustering . 196

5.4.63 TopDownRandomClustering 196

5.4.64 TransformedRegression 197

5.4.65 Tree2RuleConverter . 198

5.4.66 UPGMAClustering . 199

5.4.67 Vote . 200

5.4.68 W-ADTree . 201

5.4.69 W-AODE . 202

5.4.70 W-AODEsr . 203

5.4.71 W-AdaBoostM1 . 204

5.4.72 W-AdditiveRegression 205

5.4.73 W-Apriori . 206

5.4.74 W-BFTree . 207

5.4.75 W-BIFReader . 208

5.4.76 W-Bagging . 209

5.4.77 W-BayesNet . 210

5.4.78 W-BayesNetGenerator 211

5.4.79 W-BayesianLogisticRegression 212

5.4.80 W-CLOPE . 213

5.4.81 W-CitationKNN . 214

5.4.82 W-ClassBalancedND 215

5.4.83 W-ClassificationViaClustering 216

5.4.84 W-Cobweb . 217

5.4.85 W-ComplementNaiveBayes 218

5.4.86 W-ConjunctiveRule . 219

5.4.87 W-CostSensitiveClassifier 220

5.4.88 W-DMNBtext . 221

5.4.89 W-DTNB . 222

5.4.90 W-Dagging . 223

The RapidMiner 4.2 Tutorial

10 CONTENTS

5.4.91 W-DataNearBalancedND 224

5.4.92 W-DecisionStump . 225

5.4.93 W-DecisionTable . 226

5.4.94 W-Decorate . 227

5.4.95 W-EM . 228

5.4.96 W-END . 229

5.4.97 W-EditableBayesNet 230

5.4.98 W-EnsembleSelection 231

5.4.99 W-FLR . 233

5.4.100W-FT . 234

5.4.101W-FarthestFirst . 235

5.4.102W-GaussianProcesses 236

5.4.103W-GeneralizedSequentialPatterns 237

5.4.104W-Grading . 238

5.4.105W-GridSearch . 239

5.4.106W-HNB . 241

5.4.107W-HotSpot . 242

5.4.108W-HyperPipes . 243

5.4.109W-IB1 . 243

5.4.110W-IBk . 244

5.4.111W-Id3 . 245

5.4.112W-IsotonicRegression 246

5.4.113W-J48 . 247

5.4.114W-J48graft . 248

5.4.115W-JRip . 249

5.4.116W-JythonClassifier . 250

5.4.117W-KStar . 251

5.4.118W-LBR . 252

5.4.119W-LMT . 253

5.4.120W-LWL . 254

July 14, 2008

CONTENTS 11

5.4.121W-LeastMedSq . 255

5.4.122W-LinearRegression . 256

5.4.123W-Logistic . 257

5.4.124W-LogisticBase . 258

5.4.125W-LogitBoost . 259

5.4.126W-M5P . 260

5.4.127W-M5Rules . 261

5.4.128W-MDD . 262

5.4.129W-MIBoost . 263

5.4.130W-MIDD . 264

5.4.131W-MIEMDD . 265

5.4.132W-MILR . 266

5.4.133W-MINND . 266

5.4.134W-MIOptimalBall . 267

5.4.135W-MISMO . 268

5.4.136W-MIWrapper . 270

5.4.137W-MetaCost . 271

5.4.138W-MinMaxExtension 272

5.4.139W-MultiBoostAB . 273

5.4.140W-MultiClassClassifier 274

5.4.141W-MultiScheme . 275

5.4.142W-MultilayerPerceptron 276

5.4.143W-NBTree . 278

5.4.144W-ND . 279

5.4.145W-NNge . 280

5.4.146W-NaiveBayes . 281

5.4.147W-NaiveBayesMultinomial 281

5.4.148W-NaiveBayesMultinomialUpdateable 282

5.4.149W-NaiveBayesSimple 283

5.4.150W-NaiveBayesUpdateable 284

The RapidMiner 4.2 Tutorial

12 CONTENTS

5.4.151W-OLM . 285

5.4.152W-OSDL . 286

5.4.153W-OneR . 288

5.4.154W-OrdinalClassClassifier 289

5.4.155W-PART . 290

5.4.156W-PLSClassifier . 291

5.4.157W-PaceRegression . 291

5.4.158W-PredictiveApriori . 293

5.4.159W-Prism . 293

5.4.160W-RBFNetwork . 294

5.4.161W-REPTree . 295

5.4.162W-RacedIncrementalLogitBoost 296

5.4.163W-RandomCommittee 297

5.4.164W-RandomForest . 298

5.4.165W-RandomSubSpace 299

5.4.166W-RandomTree . 300

5.4.167W-RegressionByDiscretization 301

5.4.168W-Ridor . 302

5.4.169W-SMO . 303

5.4.170W-SMOreg . 305

5.4.171W-SVMreg . 306

5.4.172W-SerializedClassifier 307

5.4.173W-SimpleCart . 308

5.4.174W-SimpleKMeans . 309

5.4.175W-SimpleLinearRegression 310

5.4.176W-SimpleLogistic . 311

5.4.177W-SimpleMI . 312

5.4.178W-Stacking . 313

5.4.179W-StackingC . 314

5.4.180W-TLD . 315

July 14, 2008

CONTENTS 13

5.4.181W-TLDSimple . 316

5.4.182W-Tertius . 317

5.4.183W-ThresholdSelector 318

5.4.184W-VFI . 320

5.4.185W-Vote . 321

5.4.186W-VotedPerceptron . 322

5.4.187W-WAODE . 323

5.4.188W-Winnow . 324

5.4.189W-XMeans . 325

5.4.190W-ZeroR . 326

5.4.191W-sIB . 327

5.5 Meta optimization schemes . 329

5.5.1 AbsoluteSplitChain . 329

5.5.2 AverageBuilder . 330

5.5.3 BatchProcessing . 330

5.5.4 ClusterIteration . 331

5.5.5 EvolutionaryParameterOptimization 332

5.5.6 ExampleSetIterator . 333

5.5.7 ExperimentEmbedder 334

5.5.8 FeatureIterator . 335

5.5.9 FeatureSubsetIteration 336

5.5.10 GridParameterOptimization 337

5.5.11 IteratingOperatorChain 338

5.5.12 LearningCurve . 339

5.5.13 MultipleLabelIterator 340

5.5.14 OperatorEnabler . 341

5.5.15 OperatorSelector . 342

5.5.16 ParameterCloner . 342

5.5.17 ParameterIteration . 344

5.5.18 ParameterSetter . 345

The RapidMiner 4.2 Tutorial

14 CONTENTS

5.5.19 PartialExampleSetLearner 346

5.5.20 ProcessBranch . 347

5.5.21 ProcessEmbedder . 348

5.5.22 QuadraticParameterOptimization 348

5.5.23 RandomOptimizer . 350

5.5.24 RepeatUntilOperatorChain 350

5.5.25 SeriesPrediction . 351

5.5.26 SplitChain . 353

5.5.27 ValueSubgroupIterator 354

5.5.28 XVPrediction . 355

5.6 OLAP operators . 357

5.6.1 ANOVAMatrix . 357

5.6.2 Aggregation . 358

5.6.3 GroupedANOVA . 358

5.7 Postprocessing . 360

5.7.1 FrequentItemSetUnificator 360

5.7.2 PlattScaling . 360

5.7.3 ThresholdApplier . 361

5.7.4 ThresholdCreator . 362

5.7.5 ThresholdFinder . 362

5.7.6 UncertainPredictionsTransformation 363

5.8 Data preprocessing . 365

5.8.1 AGA . 365

5.8.2 AbsoluteSampling . 368

5.8.3 AbsoluteStratifiedSampling 369

5.8.4 AddNominalValue . 370

5.8.5 AttributeCopy . 370

5.8.6 AttributeFilter . 371

5.8.7 AttributeMerge . 372

5.8.8 AttributeSubsetPreprocessing 373

July 14, 2008

CONTENTS 15

5.8.9 AttributeValueMapper 374

5.8.10 AttributeValueSubstring 375

5.8.11 AttributeWeightSelection 376

5.8.12 AttributeWeightsApplier 377

5.8.13 Attributes2RealValues 378

5.8.14 BackwardWeighting . 379

5.8.15 BinDiscretization . 380

5.8.16 Bootstrapping . 381

5.8.17 BruteForce . 382

5.8.18 ChangeAttributeName 383

5.8.19 ChangeAttributeRole 384

5.8.20 ChangeAttributeType 385

5.8.21 ChiSquaredWeighting 386

5.8.22 CompleteFeatureGeneration 387

5.8.23 ComponentWeights . 388

5.8.24 CorpusBasedWeighting 389

5.8.25 Date2Nominal . 390

5.8.26 DeObfuscator . 393

5.8.27 DensityBasedOutlierDetection 394

5.8.28 DistanceBasedOutlierDetection 395

5.8.29 EqualLabelWeighting 396

5.8.30 EvolutionaryFeatureAggregation 397

5.8.31 EvolutionaryWeighting 398

5.8.32 ExampleFilter . 400

5.8.33 ExampleRangeFilter . 401

5.8.34 ExampleSet2AttributeWeights 402

5.8.35 ExampleSetCartesian 403

5.8.36 ExampleSetJoin . 403

5.8.37 ExampleSetMerge . 404

5.8.38 ExampleSetTranspose 405

The RapidMiner 4.2 Tutorial

16 CONTENTS

5.8.39 ExchangeAttributeRoles 406

5.8.40 FastICA . 407

5.8.41 FeatureBlockTypeFilter 408

5.8.42 FeatureGeneration . 408

5.8.43 FeatureNameFilter . 409

5.8.44 FeatureRangeRemoval 410

5.8.45 FeatureSelection . 411

5.8.46 FeatureValueTypeFilter 414

5.8.47 ForwardWeighting . 414

5.8.48 FourierTransform . 416

5.8.49 FrequencyDiscretization 416

5.8.50 FrequentItemSetAttributeCreator 417

5.8.51 GHA . 418

5.8.52 GeneratingForwardSelection 419

5.8.53 GeneratingGeneticAlgorithm 421

5.8.54 GeneticAlgorithm . 423

5.8.55 GiniIndexWeighting . 426

5.8.56 GroupBy . 427

5.8.57 GuessValueTypes . 428

5.8.58 IdTagging . 428

5.8.59 InfiniteValueReplenishment 429

5.8.60 InfoGainRatioWeighting 430

5.8.61 InfoGainWeighting . 431

5.8.62 InteractiveAttributeWeighting 431

5.8.63 IterativeWeightOptimization 432

5.8.64 KennardStoneSampling 433

5.8.65 KernelPCA . 433

5.8.66 LOFOutlierDetection 435

5.8.67 LabelTrend2Classification 436

5.8.68 LinearCombination . 437

July 14, 2008

CONTENTS 17

5.8.69 MergeNominalValues 437

5.8.70 MinimalEntropyPartitioning 438

5.8.71 MissingValueImputation 439

5.8.72 MissingValueReplenishment 440

5.8.73 MissingValueReplenishmentView 441

5.8.74 ModelBasedSampling 442

5.8.75 MultivariateSeries2WindowExamples 442

5.8.76 NameBasedWeighting 444

5.8.77 NoiseGenerator . 445

5.8.78 Nominal2Binary . 446

5.8.79 Nominal2Binominal . 447

5.8.80 Nominal2Date . 448

5.8.81 Nominal2Numeric . 451

5.8.82 NominalNumbers2Numerical 452

5.8.83 Normalization . 453

5.8.84 Numeric2Binary . 454

5.8.85 Numeric2Binominal . 454

5.8.86 Numeric2Polynominal 455

5.8.87 Obfuscator . 456

5.8.88 PCA . 457

5.8.89 PCAWeighting . 457

5.8.90 PSOWeighting . 458

5.8.91 Permutation . 460

5.8.92 PrincipalComponentsGenerator 460

5.8.93 RandomSelection . 461

5.8.94 Relief . 461

5.8.95 RemoveCorrelatedFeatures 462

5.8.96 RemoveUselessAttributes 463

5.8.97 SOMDimensionalityReduction 464

5.8.98 SVDReduction . 465

The RapidMiner 4.2 Tutorial

18 CONTENTS

5.8.99 SVMWeighting . 466

5.8.100Sampling . 467

5.8.101Series2WindowExamples 467

5.8.102Single2Series . 469

5.8.103SingleRuleWeighting 469

5.8.104Sorting . 470

5.8.105StandardDeviationWeighting 471

5.8.106StratifiedSampling . 471

5.8.107SymmetricalUncertaintyWeighting 472

5.8.108TFIDFFilter . 473

5.8.109UseRowAsAttributeNames 474

5.8.110UserBasedDiscretization 474

5.8.111W-ChiSquaredAttributeEval 475

5.8.112W-CostSensitiveAttributeEval 476

5.8.113W-FilteredAttributeEval 477

5.8.114W-GainRatioAttributeEval 478

5.8.115W-InfoGainAttributeEval 479

5.8.116W-LatentSemanticAnalysis 480

5.8.117W-OneRAttributeEval 481

5.8.118W-PrincipalComponents 482

5.8.119W-ReliefFAttributeEval 482

5.8.120W-SVMAttributeEval 484

5.8.121W-SymmetricalUncertAttributeEval 485

5.8.122WeightGuidedFeatureSelection 486

5.8.123WeightOptimization . 487

5.8.124WeightedBootstrapping 488

5.8.125YAGGA . 489

5.8.126YAGGA2 . 492

5.9 Performance Validation . 497

5.9.1 Anova . 497

July 14, 2008

CONTENTS 19

5.9.2 AttributeCounter . 498

5.9.3 BatchSlidingWindowValidation 498

5.9.4 BatchXValidation . 500

5.9.5 BinominalClassificationPerformance 501

5.9.6 BootstrappingValidation 504

5.9.7 CFSFeatureSetEvaluator 505

5.9.8 ClassificationPerformance 506

5.9.9 ClusterCentroidEvaluator 509

5.9.10 ClusterDensityEvaluator 510

5.9.11 ClusterModelFScore . 511

5.9.12 ClusterModelLabelComparator 512

5.9.13 ClusterNumberEvaluator 512

5.9.14 ConsistencyFeatureSetEvaluator 513

5.9.15 ConstraintClusterValidation 514

5.9.16 CostEvaluator . 514

5.9.17 FixedSplitValidation . 515

5.9.18 ItemDistributionEvaluator 516

5.9.19 IteratingPerformanceAverage 517

5.9.20 MinMaxWrapper . 518

5.9.21 Performance . 519

5.9.22 PerformanceEvaluator 520

5.9.23 RegressionPerformance 523

5.9.24 SimpleValidation . 526

5.9.25 SimpleWrapperValidation 527

5.9.26 SlidingWindowValidation 528

5.9.27 T-Test . 530

5.9.28 UserBasedPerformance 531

5.9.29 WeightedBootstrappingValidation 532

5.9.30 WeightedPerformanceCreator 534

5.9.31 WrapperXValidation . 534

The RapidMiner 4.2 Tutorial

20 CONTENTS

5.9.32 XValidation . 536

5.10 Visualization . 538

5.10.1 CorrelationMatrix . 538

5.10.2 CovarianceMatrix . 539

5.10.3 DataStatistics . 539

5.10.4 ExampleVisualizer . 540

5.10.5 ExperimentLog . 540

5.10.6 LiftChart . 542

5.10.7 ModelVisualizer . 542

5.10.8 ProcessLog . 543

5.10.9 ROCChart . 544

5.10.10ROCComparator . 545

5.10.11TransitionMatrix . 546

6 Extending RapidMiner 547

6.1 Project structure . 547

6.2 Operator skeleton . 548

6.3 Useful methods for operator design 551

6.3.1 Defining parameters . 551

6.3.2 Getting parameters . 552

6.3.3 Providing Values for logging 554

6.3.4 Input and output . 554

6.3.5 Generic Operators . 556

6.4 Example: Implementation of a simple operator 556

6.4.1 Iterating over an ExampleSet 559

6.4.2 Log messages and throw Exceptions 559

6.4.3 Operator exceptions and user errors 560

6.5 Building operator chains . 560

6.5.1 Using inner operators 561

6.5.2 Additional input . 561

6.5.3 Using output . 562

July 14, 2008

CONTENTS 21

6.6 Example 2: Implementation of an operator chain 562

6.7 Overview: the data core classes 563

6.8 Declaring your operators to RapidMiner 566

6.9 Packaging plugins . 568

6.10 Documentation . 569

6.11 Non-Operator classes . 570

6.12 Line Breaks . 570

6.13 GUI Programming . 570

7 Integrating RapidMiner into your application 571

7.1 Initializing RapidMiner . 571

7.2 Creating Operators . 572

7.3 Creating a complete process 572

7.4 Using single operators . 576

7.5 RapidMiner as a library . 576

7.6 Transform data for RapidMiner 578

8 Acknowledgements 581

A Regular expressions 583

A.1 Summary of regular-expression constructs 583

The RapidMiner 4.2 Tutorial

22 CONTENTS

July 14, 2008

List of Figures

1.1 Feature selection using a genetic algorithm 29

1.2 RapidMiner GUI screenshot 33

1.3 Parameter optimization process screenshot 34

2.1 Installation test . 37

3.1 Simple example configuration file 44

3.2 An example attribute set description file in XML syntax. 51

3.3 Configuration of a SparseFormatExampleSource 53

4.1 A feature selection process . 58

4.2 Training a model and writing it to a file 60

4.3 Applying the model to unlabeled data 61

4.4 Parameter and performance analysis 63

4.5 Plot of the performance of a SVM 65

6.1 Operator skeleton . 550

6.2 Adding a parameter . 552

6.3 Adding Values to your Operator 555

6.4 Changing the input handling behavior of your operator 556

6.5 Implementation of an example set writer 558

6.6 Creating and using an example iterator 559

6.7 In- and output of an inner operator 563

6.8 Example implementation of an operator chain. 564

23

24 LIST OF FIGURES

6.9 Main classes for data handling 565

6.10 Declaring operators to RapidMiner 567

7.1 Creation of new operators and process setup 573

7.2 Using a RapidMiner process from external programs 575

7.3 Using RapidMiner operators from external programs 577

7.4 The complete code for creating a memory based ExampleTable . 579

July 14, 2008

List of Tables

2.1 The RapidMiner directory structure. 37

2.2 The most important rapidminerrc options. 40

3.1 The most important file formats for RapidMiner. 56

6.1 Parameter types . 553

6.2 Methods for obtaining parameters from Operator 554

7.1 Operator factory methods of OperatorService 574

25

26 LIST OF TABLES

July 14, 2008

Chapter 1

Introduction

Real-world knowledge discovery processes typically consist of complex data pre-
processing, machine learning, evaluation, and visualization steps. Hence a data
mining platform should allow complex nested operator chains or trees, provide
transparent data handling, comfortable parameter handling and optimization,
be flexible, extendable and easy-to-use.

Depending on the task at hand, a user may want to interactively explore different
knowledge discovery chains and continuously inspect intermediate results, or he
may want to perform highly automated data mining processes off-line in batch
mode. Therefore an ideal data mining platform should offer both, interactive
and batch interfaces.

RapidMiner (formerly Yale) is an environment for machine learning and
data mining processes. A modular operator concept allows the design of com-
plex nested operator chains for a huge number of learning problems. The data
handling is transparent to the operators. They do not have to cope with the
actual data format or different data views - the RapidMiner core takes care
of the necessary transformations. Today, RapidMiner is the world-wide lead-
ing open-source data mining solution and is widely used by researchers and
companies.

RapidMiner introduces new concepts of transparent data handling and pro-
cess modelling which eases process configuration for end users. Additionally
clear interfaces and a sort of scripting language based on XML turns Rapid-
Miner into an integrated developer environment for data mining and machine
learning. Some of these aspects will be discussed in the next sections. Please
refer to [12, 16, 21] for further explanations. We highly appreciate if you cite
RapidMiner in your scientific work. Please do so by citing

Mierswa, I. and Wurst, M. and Klinkenberg, R. and Scholz, M.
and Euler, T., Yale (now: RapidMiner): Rapid Prototyping for

27

28 CHAPTER 1. INTRODUCTION

Complex Data Mining Tasks. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD 2006), 2006.

1.1 Modeling Knowledge Discovery Processes as Op-
erator Trees

Knowledge discovery (KD) processes are often viewed as sequential operator
chains. In many applications, flat linear operator chains are insufficient to model
the KD process and hence operator chains need to be nestable. For example a
complex KD process containing a learning step, whose parameters are optimized
using an inner cross-validation, and which as a whole is evaluated by an outer
cross-validation. Nested operator chains are basically trees of operators.

In RapidMiner, the leafs in the operator tree of a KD process correspond to
simple steps in the modeled process. Inner nodes of the tree correspond to more
complex or abstract steps in the process. The root of the tree hence corresponds
to the whole process.

Operators define their expected inputs and delivered outputs as well as their
obligatory and optional parameters, which enables RapidMiner to automati-
cally check the nesting of the operators, the types of the objects passed between
the operators, and the mandatory parameters. This eases the design of complex
data mining processes and enables RapidMiner to automatically check the
nesting of the operators, the types of the objects passed between the operators,
and the mandatory parameters.

Figure 1.1 shows a nested KD process for feature selection using a genetic
algorithm with an inner cross-validation for evaluating candidate feature sets
and an outer cross-validation for evaluating the genetic algorithm as a feature
selector.

1.2 RapidMiner as a Data Mining Interpreter

RapidMiner uses XML (eXtensible Markup Language), a widely used lan-
guage well suited for describing structured objects, to describe the operator
trees modeling KD processes. XML has become a standard format for data
exchange. Furthermore this format is easily readable by humans and machines.
All RapidMiner processes are described in an easy XML format. You can see
this XML description as a scripting language for data mining pocesses.

The graphical user interface and the XML based scripting language turn Rapid-
Miner into an IDE and interpreter for machine learning and data mining. Fur-

July 14, 2008

1.2. RAPIDMINER AS A DATA MINING INTERPRETER 29

Training Set i.j

Model

Model Test Set i.j

Evaluator

Classified
Test Set i.j

Evaluation

Set i
Training

Evaluation

Model

Training Set i

Model

Evaluator

Test Set i
Classified

Evaluation

Test Set i

Average
Evaluation

AttributeSet i

Attribute Set i

Attribute Set i

Attribute
Sets

Generated
Features

Feature Generation
Original
Data

Cross Validation (for Genetic Algorithm)

Genetic Algorithm Wrapper

SVMApplier

SVMLearner

SVMApplier

SVMLearner

Figure 1.1: Nested operator chain for feature selection using a genetic algorithm.

The RapidMiner 4.2 Tutorial

30 CHAPTER 1. INTRODUCTION

thermore, the XML process configuration files define a standardized interchange
format for data mining processes.

1.3 Different Ways of Using RapidMiner

RapidMiner can be started off-line, if the process configuration is provided
as XML file. Alternatively, the GUI of RapidMiner can be used to design
the XML description of the operator tree, to interactively control and inspect
running processes, and to continuously monitor the visualization of the process
results. Break points can be used to check intermediate results and the data
flow between operators. Of course you can also use RapidMiner from your
program. Clear interfaces define an easy way of applying single operators, op-
erator chains, or complete operator trees on you input data. A command line
version and a Java API allows invoking of RapidMiner from your programs
without using the GUI. Since RapidMiner is entirely written in Java, it runs
on any major platform/operating system.

1.4 Multi-Layered Data View Concept

RapidMiner’s most important characteristic is the ability to nest operator
chains and build complex operator trees. In order to support this characteristic
the RapidMiner data core acts like a data base management system and pro-
vides a multi-layered data view concept on a central data table which underlies
all views. For example, the first view can select a subset of examples and the
second view can select a subset of features. The result is a single view which
reflects both views. Other views can create new attributes or filter the data on
the fly. The number of layered views is not limited.

This multi-layered view concept is also an efficient way to store different views
on the same data table. This is especially important for automatic data prepro-
cessing tasks like feature generation or selection. For example, the population of
an evolutionary operator might consist of several data views - instead of several
copies of parts of the data set.

No matter whether a data set is stored in memory, in a file, or in a database,
RapidMiner internally uses a special type of data table to represent it. In
order not to unnecessarily copy the data set or subsets of it, RapidMiner
manages views on this table, so that only references to the relevant parts of the
table need to be copied or passed between operators. These views are nestable
as is for example required for nested cross-validations by maintaining a stack of
views. In case of an example set, views on the rows of the table correspond to
subsets of the example set, and views on the columns correspond to the selected

July 14, 2008

1.5. TRANSPARENT DATA HANDLING 31

features used to represent these examples.

1.5 Transparent Data Handling

RapidMiner supports flexible process (re)arrangements which allows the search
for the best learning scheme and preprocessing for the data and learning task at
hand. The simple adaptation and evaluation of different process designs allow
the comparison of different solutions.

RapidMiner achieves a transparent data handling by supporting several types
of data sources and hiding internal data transformations and partitioning from
the user. Due to the modular operator concept often only one operator has
to be replaced to evaluate its performance while the rest of the process design
remains the same. This is an important feature for both scientific research and
the optimization of real-world applications.

The input objects of an operator may be consumed or passed on to following
or enclosing operators. If the input objects are not required by this operator,
they are simply passed on, and may be used by later or outer operators. This
increases the flexibility of RapidMiner by easing the match of the interfaces
of consecutive operators and allowing to pass objects from one operator through
several other operators to the goal operator.

Objects typically passed between operators are example sets, prediction models,
evaluation vectors, etc. Operators may add information to input objects, e.g.
labels to previously unlabeled examples, or new features in a feature generation
operator, and deliver these extended objects.

1.6 Meta Data

To guide the transformation of the feature space or the automatical search
for the best preprocessing, the user can define additional meta data on the
data set at hand. Meta data include the type of attributes or their unit (SI).
This information is for example used by the feature generation / construction
algorithms provided by RapidMiner. The definition of meta information on
your data is optional and if it is omitted RapidMiner tries to guess the correct
data types.

1.7 Large Number of Built-in Data Mining Operators

RapidMiner provides more than 400 operators including:

The RapidMiner 4.2 Tutorial

32 CHAPTER 1. INTRODUCTION

Machine learning algorithms: a huge number of learning schemes for regres-
sion and classification tasks including support vector machines (SVM),
decision tree and rule learners, lazy learners, Bayesian learners, and Logis-
tic learners. Several algorithms for association rule mining and clustering
are also part of RapidMiner. Furthermore, we added several meta
learning schemes including Bayesian Boosting.

Weka operators: all Weka operations like learning schemes and attribute eval-
uators of the Weka learning environment are also available and can be used
like all other RapidMiner operators.

Data preprocessing operators: discretization, example and feature filtering,
missing and infinite value replenishment, normalization, removal of useless
features, sampling, dimensionality reduction, and more.

Feature operators: selection algorithms like forward selection, backward elim-
ination, and several genetic algorithms, operators for feature extraction
from time series, feature weighting, feature relevance, and generation of
new features.

Meta operators: optimization operators for process design, e.g. example set
iterations or several parameter optimization schemes.

Performance evaluation: cross-validation and other evaluation schemes, sev-
eral performance criteria for classification and regression, operators for
parameter optimization in enclosed operators or operator chains.

Visualization: operators for logging and presenting results. Create online 2D
and 3D plots of your data, learned models and other process results.

In- and output: flexible operators for data in- and output, support of several
file formats including arff, C4.5, csv, bibtex, dBase, and reading directly
from databases.

1.8 Extending RapidMiner

RapidMiner supports the implementation of user-defined operators. In order
to implement an operator, the user simply needs to define the expected inputs,
the delivered outputs, the mandatory and optional parameters, and the core
functionality of the operator. Everything else is done by RapidMiner. The
operator description in XML allows RapidMiner to automatically create corre-
sponding GUI elements. This is explained in detail in chapter 6. An easy-to-use
plugin mechanism is provided to add future operators or operators written by
the RapidMiner community into RapidMiner. Several plugins are already
provided in the download section of RapidMiner.

July 14, 2008

1.9. EXAMPLE APPLICATIONS 33

External programs can be integrated by implementing wrapper operators and
can then be transparently used in any RapidMiner process.

1.9 Example Applications

RapidMiner has already been applied for machine learning and knowledge
discovery tasks in a number of domains including feature generation and se-
lection [5, 10, 22, 23], concept drift handling [9, 8, 7, 11], and transduction
[2, 6]. In addition to the above-mentioned, current application domains of
RapidMiner also include the pre-processing of and learning from time series
[13, 17, 18], meta learning [19, 20], clustering, and text processing and classifi-
cation. There exist several plugins to provide operators for these special learning
tasks. Among these, there are some unusual plugins like GAStruct which can
be used to optimize the design layout for chemical plants [14, 15].

The Figures 1.2 and 1.3 show screenshots from two process definitions performed
with the GUI version of RapidMiner. Figure 1.2 depicts the process tree and
the panel for setting the parameters of one of its operators in a feature selection
process using backward elimination as feature selector. Figure 1.3 demonstrates
the continuous result display of a parameter optimization process.

Figure 1.2: RapidMiner screenshot of the process tree and the panel for
setting the parameters of a feature selection operator.

The RapidMiner 4.2 Tutorial

34 CHAPTER 1. INTRODUCTION

Figure 1.3: RapidMiner screenshot of the continuous result display of a pa-
rameter optimization process.

Use RapidMiner and explore your data! Simplify the construction of data
mining processes and the evaluation of different approaches. Try to find the
best combination of preprocessing and learning steps or let RapidMiner do
that automatically for you. Have fun!

1.10 How this tutorial is organized

First you should read this chapter in order to get an idea of the concepts of
RapidMiner. Thereafter, we suggest that you read the GUI manual of Rapid-
Miner and make the online tutorial. It will be much easier to understand the
details explained in the next chapters. Chapter 3 describes possible first steps
and the basics of RapidMiner. In Chapter 4 we discuss more advanced pro-
cesses. You should read at least these two chapters to create your own process
setups. Chapter 5 provides information about all RapidMiner core operators.
It is an operator reference, i.e. you can look up the details and description of
all operators. Chapter 6 can be omitted if you want to use RapidMiner on
your data or just want to perform some basic process definitions. In this chap-
ter we describe ways to extend RapidMiner by writing your own operators or
building own plugins.

July 14, 2008

Chapter 2

Installation and starting notes

2.1 Download

The latest version of RapidMiner is available on the RapidMiner homepage:

http://www.rapidminer.com/.

The RapidMiner homepage also contains this document, the RapidMiner
javadoc, example datasets, plugins, and example configuration files.

2.2 Installation

This section describes the installation of RapidMiner on your machine. You
may install RapidMiner for all users of your system or for your own account
locally.

Basically, there are two different ways of installing RapidMiner:

� Installation of a Windows executable

� Installation of a Java version (any platform)

Both ways are described below. More information about the installation of
RapidMiner can be found at http://www.rapidminer.com/.

2.2.1 Installing the Windows executable

Just perform a double click on the downloaded file

35

http://www.rapidminer.com/
http://www.rapidminer.com/

36 CHAPTER 2. INSTALLATION AND STARTING NOTES

rapidminer-XXX-install.exe

and follow the installation instructions. As a result, there will be a new menu
entry in the Windows startmenu. RapidMiner is started by clicking on this
entry.

2.2.2 Installing the Java version (any platform)

RapidMiner is completely written in Java, which makes it run on almost every
platform. Therefore it requires a Java Runtime Environment (JRE) version 5.0
(aka 1.5.0) or higher to be installed properly. The runtime environment JRE is
available at http://java.sun.com/. It must be installed before RapidMiner
can be installed.

In order to install RapidMiner, choose an installation directory and unzip the
downloaded archive using WinZIP or tar or similar programs:

> unzip rapidminer-XXX-bin.zip

for the binary version or

> unzip rapidminer-XXX-src.zip

for the version containing both the binaries and the sources. This will create
the RapidMiner home directory which contains the files listed in table 2.1.

2.3 Starting RapidMiner

If you have used the Windows installation executable, you can start Rapid-
Miner just as any other Windows program by selecting the corresponding
menu item from the start menu.

On some operating systems you can start RapidMiner by double-clicking
the file rapidminer.jar in the lib subdirectory of RapidMiner. If that
does not work, you can type java -jar rapidminer.jar on the command
prompt. You can also use the startscripts scripts/rapidminer (comman-
dline version) or scripts/RapidMinerGUI (graphical user interface version)
for Unix or scripts/rapidminer.bat and scripts/RapidMinerGUI.bat for
Windows.

If you intend to make frequent use of the commandline version of RapidMiner,
you might want to modify your local startup scripts adding the scripts di-
rectory to your PATH environment variable. If you decide to do so, you can

July 14, 2008

http://java.sun.com/

2.3. STARTING RAPIDMINER 37

etc/ Configuration files
lib/ Java libraries and jar files
lib/rapidminer.jar The core RapidMiner java archive
lib/plugins Plugin files (Java archives)
licenses/ The GPL for RapidMiner and library licenses
resources/ Resource files (source version only)
sample/ Some sample processes and data
scripts/ Executables
scripts/rapidminer The commandline Unix startscript
scripts/rapidminer.bat The commandline Windows startscript
scripts/RapidMinerGUI The GUI Unix startscript
scripts/RapidMinerGUI.bat The GUI Windows startscript
src/ Java source files (source version only)
INSTALL Installation notes
README Readme files for used libraries
CHANGES Changes from previous versions
LICENSE The GPL

Table 2.1: The RapidMiner directory structure.

start a process by typing rapidminer <processfile> from anywhere on your
system. If you intend to make frequent use of the GUI, you might want to
create a desktop link or a start menu item to scripts/RapidMinerGUI or
scripts/RapidMinerGUI.bat. Please refer to your window manager docu-
mentation on information about this. Usually it is sufficient to drag the icon
onto the desktop and choose ”‘Create link”’ or something similar.

Congratulations: RapidMiner is now installed. In order to check if Rapid-
Miner is correctly working, you can go to the sample subdirectory and test
your installation by invoking RapidMiner on the file Empty.xml which con-
tains the simplest process setup that can be conducted with RapidMiner. In
order to do so, type

cd sample
rapidminer Empty.xml

The contents of the file Empty.xml is shown in figure 2.1.

<operator name=”Root” class=”Process”>
</operator>

Figure 2.1: Installation test

Though this process does, as you might guess, nothing, you should see the

The RapidMiner 4.2 Tutorial

38 CHAPTER 2. INSTALLATION AND STARTING NOTES

message “Process finished successfully” after a few moments if everything goes
well. Otherwise the words ”Process not successful” or another error message
can be read. In this case something is wrong with the installation. Please refer
to the Installation section of our website http://www.rapidminer.com/ for
further installation details and for pictures describing the installation process.

2.4 Memory Usage

Since performing complex data mining tasks and machine learning methods on
huge data sets might need a lot of main memory, it might be that RapidMiner
stops a running process with a note that the size of the main memory was not
sufficient. In many cases, things are not as worse at this might sound at a first
glance. Java does not use the complete amount of available memory per default
and memory must be explicitely allowed to be used by Java.

On the installation page of our web site http://www.rapidminer.com/ you
can find a description how the amount of memory usable by RapidMiner can
be increased. This is, by the way, not necessary for the Windows executable of
RapidMiner since the amount of available memory is automatically calculated
and properly set in this case.

2.5 Plugins

In order to install RapidMiner plugins, it is sufficient to copy them to the
lib/plugins subdirectory of the RapidMiner installation directory. Rapid-
Miner scans all jar files in this directory. In case a plugin comes in an archive
containing more than a single jar file (maybe documentation or samples), please
only put the jar file into the lib/plugins directory and refer to the plugin
documentation about what to do with the other files. For an introduction of
how to create your own plugin, please refer to section 6.9 of this tutorial.

For Windows systems, there might also be an executable installer ending on
.exe which can be used to automatically install the plugin into the correct
directory. In both cases the plugin will become available after the next start of
RapidMiner.

2.6 General settings

During the start up process of RapidMiner you can see a list of configu-
ration files that are checked for settings. These are the files rapidminerrc

July 14, 2008

http://www.rapidminer.com/
http://www.rapidminer.com/

2.7. EXTERNAL PROGRAMS 39

and rapidminerrc.OS where OS is the name of your operating system, e.g.
“Linux” or “Windows 2000”. Four locations are scanned in the following order

1. The RapidMiner home directory (the directory in which it is installed.)

2. The directory .rapidminer in your home directory.

3. The current working directory.

4. Finally, the file specified by the java property rapidminer.rcfile is read.
Properties can be passed to java by using the -D option:

java -Drapidminer.rcfile=/my/rapidminer/rcfile -jar rapidminer.jar

Parameters in the home directory can override global parameters. The most im-
portant options are listed in table 2.2 and take the form key=value. Comments
start with a #. Users that are familiar with the Java language recognize this
file format as the Java property file format.

A convenient dialog for setting these properties is available in the file menu of
the GUI version of RapidMiner.

2.7 External Programs

The properties discussed in the last section are used to determine the behavior
of the RapidMiner core. Additionally to this, plugins can require names and
paths of executables used for special learning methods and external tools. These
paths are also defined as properties. The possibility of using external programs
such as machine learning methods is discussed in the operator reference (chapter
5). These programs must have been properly installed and must be executable
without RapidMiner, before they can be used in any RapidMiner process
setup. By making use of the rapidminerrc.OS file, paths can be set in a
platform dependent manner.

2.8 Database Access

It is very simple to access your data from a database management system like
Oracle, Microsoft SQL Server, PostgreSQL, or mySQL. RapidMiner supports
a wide range of systems without any additional effort. If your database manage-
ment system is not natively supported, you simply have to add the JDBC driver
for your system to the directory lib/jdbc or to your CLASSPATH variable.

The RapidMiner 4.2 Tutorial

40 CHAPTER 2. INSTALLATION AND STARTING NOTES

Key Description

rapidminer.general.capabilities.warn indicates if only a warning
should be shown if a learner
does not have sufficient
capabilities

rapidminer.general.randomseed the default random seed

rapidminer.tools.sendmail.command the sendmail command to use
for sending notification emails

rapidminer.tools.gnuplot.command the full path to the gnuplot
executable (for GUI only)

rapidminer.tools.editor external editor for Java
source code

rapidminer.gui.attributeeditor.rowlimit limit number of examples in
attribute editor (for
performance reasons)

rapidminer.gui.beep.success beeps on process success

rapidminer.gui.beep.error beeps on error

rapidminer.gui.beep.breakpoint beeps on reaching a
breakpoint

rapidminer.gui.processinfo.show indicates if some information
should be displayed after
process loading

rapidminer.gui.plaf the pluggable look and feel;
may be system,
cross platform, or
classname

rapidminer.gui.plotter.colors.classlimit limits the number of nominal
values for colorized plotters,
e.g. color histograms

rapidminer.gui.plotter.legend.classlimit limits the number of nominal
values for plotter legends

rapidminer.gui.plotter.matrixplot.size the pixel size of plotters used
in matrix plots

rapidminer.gui.plotter.rows.maximum limits the sample size of data
points used for plotting

rapidminer.gui.undolist.size limit for number of states in
the undo list

rapidminer.gui.update.check indicates if automatic update
checks should be performed

Table 2.2: The most important rapidminerrc options.

July 14, 2008

2.8. DATABASE ACCESS 41

If you want to ease the access to your database even further, you might think
of defining some basic properties and description in the file

resources/jdbc properties.xml

although this is not necessary to work on your databases and basically only
eases the usage of the database wizard for the convenient connection to your
database and query creation.

The RapidMiner 4.2 Tutorial

42 CHAPTER 2. INSTALLATION AND STARTING NOTES

July 14, 2008

Chapter 3

First steps

This chapter describes some basic concepts of RapidMiner. In the descrip-
tion, we assume that most of the processes are performed in batch mode (or
command line mode). Of course you can also use RapidMiner in the Graph-
ical User Interface mode which is more convenient and offers a large amount
of additional features. A short documentation of the GUI mode is separately
available in the download section of the RapidMiner website. RapidMiner
provides an online tutorial which also describes the usage of the GUI mode and
the basic concepts of machine learning with RapidMiner. Probably, you will
not need to read all sections of this tutorial after making the online tutorial and
reading the short GUI manual. However, you should at least read this section
to get a first idea about some of the RapidMiner concepts.

All examples described in this tutorial are part of the sample directories of
RapidMiner. Although only few of these examples are discussed here, you
should take a look at all of them since they will give you some helpful hints. We
suggest that you start approximately the first half of the process definitions in
each of the sample directories in the order the directories are named, i.e. first
the first half of directory 01 IO, then the first half of 02 Learner and so on.
After this round, you should again start with the first directory and perform the
second half of the process setups. This way the more complicated processes will
be performed after you had a look at almost all of the simple building blocks
and operators.

3.1 First example

Let us start with a simple example 03 XValidation Numerical.xml which
you can find in the 04 Validation subdirectory. This example process loads
an example set from a file, generates a model using a support vector machine

43

44 CHAPTER 3. FIRST STEPS

(SVM) and evaluates the performance of the SVM on this dataset by estimating
the expected absolute and squared error by means of a ten-fold cross-validation.
In the following we will describe what the parameters mean without going into
detail too much. We will describe the used operators later in this section.

<operator name=”Root” class=”Process”>
<parameter key=”logfile” value=”XValidation.log”/>
<operator name=”Input” class=”ExampleSource”>

<parameter key=”attributes” value=”../data/polynomial.aml”/>
</operator>
<operator name=”XVal” class=”XValidation”>

<operator name=”Training” class=”LibSVMLearner”>
<parameter key=”svm type” value=”epsilon−SVR”/>
<parameter key=”kernel type” value=”poly”/>
<parameter key=”C” value=”1000.0”/>

</operator>
<operator name=”ApplierChain” class=”OperatorChain”>

<operator name=”Test” class=”ModelApplier”>
</operator>
<operator name=”Evaluation” class=”PerformanceEvaluator”>

<parameter key=”squared error” value=”true”/>
</operator>

</operator>
</operator>

</operator>

Figure 3.1: Simple example configuration file. This is the
03 XValidation Numerical.xml sample process

But first of all let’s start the process. We assume that your current folder
contains the file 03 XValidation Numerical.xml (see figure 3.1). Now start
RapidMiner by typing

rapidminer 03_XValidation_Numerical.xml

or by opening that file with the GUI and pressing the start button. After a short
while you should read the words “Process finished successfully”. Congratula-
tions, you just made your first RapidMiner process. If you read “Process not
successful” instead, something went wrong. In either case you should get some
information messages on your console (using RapidMiner in batch mode) or
in the message viewer (GUI mode). In the latter case it should give you informa-
tion about what went wrong. All kinds of debug messages as well as information
messages and results like the calculated relative error are written to this output.
Have a look at it now.

The log message starts with the process tree and contains a lot of warnings,
because most of the parameters are not set. Don’t panic, reasonable default
values are used for all of them. At the end, you will find the process tree again.

July 14, 2008

3.1. FIRST EXAMPLE 45

The number in squared brackets following each operator gives the number of
times the operator was applied. It is one for the outer operators and ten within
the ten-fold cross-validation. Every time an operator is applied a message is
written to the log messages indicating its input objects (like example sets and
models). When the operator terminates its application it writes the output to
the log stream again. You can find the average performance estimated by the
cross-validation close to the end of the messages.

Taking a look at the process tree in the log messages once again, you will quickly
understand how the configuration file is structured. There is one operator tag
for each operator specifying its name and class. Names must be unique and
have the only purpose of distinguishing between instances of the same class.
Operator chains like the cross-validation chain may contain one or more inner
operators. Parameters can be specified in the form of key-value pairs using a
parameter tag.

We will now focus on the operators without going into detail too much. If
you are interested in the the operator classes, their input and output objects,
parameters, and possible inner operators you may consult the reference section
of this tutorial (chapter 5).

The outermost operator called ”Root” is a Process operator, a subclass of a
simple OperatorChain. An operator chain works in a very simple manner.
It applies its inner operators successively passing their respective output to the
next inner operator. The output of an operator chain is the output of the last
inner operator. While usual operator chains do not take any parameters, this
particular operator chain (being the outermost operator) has some parameters
that are important for the process as a whole, e.g. the name of the log file
(logfile) and the name of the directory for temporary files (temp dir).

The ExampleSource operator loads an example set from a file. An additional
file containing the attribute descriptions is specified (data/polynomial.xml).
References to the actual data files are specified in this file as well (see section
3.4 for a description of the files). Then the resulting example set is passed to
the cross-validation chain.

The XValidation evaluates the learning method by splitting the input ex-
ample set into ten subsets S1, . . . , S10. The inner operators are applied ten
times. In run number i the first inner operator, which is a LibSVMLearner,
generates a model using the training set

⋃
j 6=i Sj . The second inner operator,

an evaluation chain, evaluates this model by applying it to the remaining test
set Si. The ModelApplier predicts labels for the test set and the Perfor-
manceEvaluator compares them to the real labels. Afterwards the absolute
and squared errors are calculated. Finally the cross-validation chain returns the
average absolute and squared errors over the ten runs and their variances.

The processing of RapidMiner operator trees is similar to a depth first search

The RapidMiner 4.2 Tutorial

46 CHAPTER 3. FIRST STEPS

of normal trees. In contrast to this usual way of traversing a tree, RapidMiner
allows loops during the run (each learning child is used 10 times, the applier
chain is used 10 times, too). Additionally, inner nodes may perform some
operations before they pass the output of the first children to the next child.
The traversal through a RapidMiner operator tree containing leaf operators
and simple operator chains only is actually equivalent to the usual depth first
search traversal.

3.2 Process configuration files

Process configuration files are XML documents containing only four types of
tags (extension: .xml). If you use the GUI version of RapidMiner, you can
display the configuration file by clicking on the XML tab. Process files define
the process tree consisting of operators and the parameters for these operators.
Parameters are single values or lists of values. Descriptions can be used to
comment your operators.

<operator>

The operator tag represents one instance of an operator class. Exactly two
attributes must be present:

name: A unique name identifying this particular operator instance

class: The operator class. See the operator reference (chapter 5) for a list of
operators.

For instance, an operator tag for an operator that reads an example set from a
file might look like this:

<operator name=”MyExampleSource” class=”ExampleSource”>
</operator>

If class is a subclass of OperatorChain, then nested operators may be
contained within the opening and closing tag.

<parameter> and <list>

As discussed above, a parameter can have a single value or a set of values. For
single value parameters the <parameter> tag is used. The attributes of the
<parameter> tag are as follows:

July 14, 2008

3.3. PARAMETER MACROS 47

key: The unique name of the parameter.

value: The value of the parameter.

In order to specify a filename for the example above, there might be used the
following parameter:

<operator name=”MyExampleSource” class=”ExampleSource”>
<parameter key=”attributes” value=”myexamples.dat”/>

</operator>

If the parameter accepts a list of values, the <list> tag must be used. The
list must have a key attribute, just as the <parameter> tag. The elements of
the list are specified by nested <parameter> tags, e.g. in case of a Feature-
Generation operator (see section 5.8.42).

<list key=”functions”>
<parameter key=”sum” value=”+(a1,a2)”/>
<parameter key=”product” value=”*(a3,a4)”/>
<parameter key=”nested” value=”+(*(a1,a3),a4)”/>

</list>

<description>

All operators can have an inner tag named <description>. It has only one
attribute named text. This attribute contains a comment for the enclosing
operator. If the root operator of the process has an inner description tag, the
text is displayed after loading the process setup.

<operator name=”MyExampleSource” class=”ExampleSource”>
<description text=”Loads the data from file .” />

</operator>

3.3 Parameter Macros

All text based parameters might contain so called macrors which will be replaced
by RapidMiner during runtime. For example, you can write a learned model
into a file with the operator ModelWriter (see 5.3.31). If you want to do
this for each learned model in a cross validation run, each model would be
overwritten by the next one. How can this be prevented?

The RapidMiner 4.2 Tutorial

48 CHAPTER 3. FIRST STEPS

To save all models for each iteration in an own file, you need parameter macros.
In a parameter value, the character ’%’ has a special meaning. Parameter values
are expanded as follows:

%{a} is replaced by the number of times the operator was applied.

%{b} is replaced by the number of times the operator was applied plus one,
i.e. %a + 1. This is a shortcut for %p[1].

%{p[number }] is replaced by the number of times the operator was applied
plus the given number, i.e. %a + number.

%{t} is replaced by the system time.

%{n} is replaced by the name of the operator.

%{c} is replaced by the class of the operator.

%{%} becomes %.

%{process name} becomes the name of the process file (without path and
extension).

%{process file} becomes the name of the process file (with extension).

%{process path} becomes the path of the process file.

For example to enumerate your files with ascending numbers, please use the
following value for the key model-file:

<operator name=”ModelWriter” class=”ModelWriter”>
<parameter key=”model file” value=”model %{a}.mod”/>

</operator>

The macro %{a} will be replaced by the number of times the operator was
applied, in case of model write after the learner of a 10-fold cross validation it
will hence be replaced by the numbers 1 to 10.

You can also define own macros with help of the MacroDefinition operator
(see 5.2.7).

3.4 File formats

RapidMiner can read a number of input files. Apart from data files it can read
and write models, parameter sets and attribute sets. Generally, RapidMiner
is able to read all files it generates. Some of the file formats are less important

July 14, 2008

3.4. FILE FORMATS 49

for the user, since they are mainly used for intermediate results. The most
important file formats are those for “examples” or “instances”. These data sets
are provided by the user and almost all processes contain an operator that reads
them.

3.4.1 Data files and the attribute description file

If the data files are in the popular arff format (extension: .arff), which provides
some meta data, they can be read by the ArffExampleSource (see section
5.3.2). Other operators for special file formats are also available. Additionally,
data can be read from a data base using the DatabaseExampleSource (see
section 5.3.17). In that case, meta data is read from the data base as well.

The ExampleSource operator allows for a variety of other file formats in
which instances are separated by newline characters. It is the main data input
operator for RapidMiner. Comment characters can be specified arbitrarily
and attributes can be spread over several files. This is especially useful in cases
where attribute data and the label are kept in different files.

Sparse data files can be read using the SparseFormatExampleSource.
We call data sparse if almost all values are equal to a default, e.g. zero.

The ExampleSource (for dense data) and some sparse formats need an at-
tribute description file (extension: .aml) in order to retrieve meta data about
the instances. This file is a simple XML document defining the properties of
the attributes (like their name and range) and their source files. The data may
be spread over several files. Therefore, the actual data files do not have to be
specified as a parameter of the input operator.

The outer tag must be an <attributeset> tag. The only attribute of this tag
may be default source=filename. This file will be used as a default file if it
is not specified explicitly with the attribute.

The inner tags can be any number of <attribute> tags plus at most one
tag for each special attribute. The most frequently used special attributes are
<label>, <weight>, <id>, and <cluster>. Note that arbitrary names for
special attributes may be used. Though the set of special attributes used by the
core RapidMiner operators is limited to the ones mentioned above, plugins or
any other additional operators may use more special attributes. Please refer to
the operator documentation to learn more about the specific special attributes
used or generated by these operators.

The following XML attributes may be set to specify the properties of the Rapid-
Miner attribute declared by the corresponding XML tag (mandatory XML at-
tributes are set in italic font):

name: The unique name of the attribute.

The RapidMiner 4.2 Tutorial

50 CHAPTER 3. FIRST STEPS

sourcefile: The name of the file containing the data. If this name is not speci-
fied, the default file is used (specified for the parent attributeset tag).

sourcecol: The column within this file (numbering starts at 1). Can be omitted
for sparse data file formats.

sourcecol end: If this parameter is set, its value must be greater than the
value of sourcecol. In that case, sourcecol− sourcecol end attributes
are generated with the same properties. Their names are generated by ap-
pending numbers to the value of name. If the blocktype is value series,
then value series start and value series end respectively are used
for the first and last attribute blocktype in the series.

valuetype: One out of nominal, numeric, integer, real, ordered, binominal,
polynominal, and file path

blocktype: One out of single value, value series, value series start,
value series end, interval, interval start, and interval end.

Each nominal attribute, i.e. each attribute with a nominal (binominal, poly-
nominal) value type definition, should define the possible values with help of
inner tags

<value>nominal value 1</value>
<value>nominal value 2</value>

. . .

See figure 3.2 for an example attribute description file. For classification learners
that can handle only binary classifications (e.g. “yes” and “no”) the first defined
value in the list of nominal values is assumed to be the negative label. That
includes the classification “yes” is not necessarily the positive label (depending
on the order). This is important, for example, for the calculation of some
performance measurements like precision and recall.

Note: Omitting the inner value tags for nominal attributes will usually seem to
work (and indeed, in many cases no problems might occur) but since the internal
representation of nominal values depend on this definition it might happend that
the nominal values of learned models do not fit the given data set. Since this
might lead to drastically reduced prediction accuracies you should always define
the nominal values for nominal attributes.

Note: You do not need to specify a label attribute in cases where you only
want to predict a label with a learned model. Simply describe the attributes in
the same manner as in the learning process setup, the label attribute can be
omitted.

July 14, 2008

3.4. FILE FORMATS 51

<attributeset default source =”golf.dat”>
<attribute

name =”Outlook”
sourcecol =”1”
valuetype =”nominal”
blocktype =”single value”
classes =”rain overcast sunny”

/>
<attribute

name =”Temperature”
sourcecol =”2”
valuetype =”integer”
blocktype =”single value”

/>
<attribute

name =”Humidity”
sourcecol =”3”
valuetype =”integer”
blocktype =”single value”

/>
<attribute

name =”Wind”
sourcecol =”4”
valuetype =”nominal”
blocktype =”single value”
classes =”true false ”

/>
<label

name =”Play”
sourcecol =”5”
valuetype =”nominal”
blocktype =”single value”
classes =”yes no”

/>
</attributeset>

Figure 3.2: An example attribute set description file in XML syntax.

The RapidMiner 4.2 Tutorial

52 CHAPTER 3. FIRST STEPS

Dense data files

The data files are in a very simple format (extension: .dat). By default, com-
ments start with #. When a comment character is encountered, the rest of
the line is discarded. Empty lines – after comment removal – are ignored. If
the data is spread over several files, a non empty line is read from every file.
If the end of one of the files is reached, reading stops. The lines are split into
tokens that are whitespace separated by default, separated by a comma, or sep-
arated by semicolon. The number of the tokens are mapped to the sourcecol
attributes specified in the attribute description file. Additional or other sepa-
rators can be specified as a regular expression using the respective parameters
of the ExampleSource (see section 5.3.21). The same applies for comment
characters.

Sparse data files

If almost all of the entries in a data file are zero or have a default nominal
value, it may be well suitable to use a SparseFormatExampleSource (see
section 5.3.41). This operator can read an attribute description file as described
above. If the attribute description file parameter is supplied, the attribute de-
scriptions are read from this file and the default source is used as the single
data file. The sourcecol and sourcefile attributes are ignored. If the at-
tribute description file parameter is not supplied, the data is read from the
file data file and attributes are generated with default value types. Regular
attributes are supposed to be real numbers and the label is supposed to be
nominal. In that case, the dimension parameter, which specifies the number of
regular attributes, must be set.

Comments in the data file start with a ’#’-character, empty lines are ignored.
Lines are split into whitespace separated tokens of the form index:value where
value is the attribute value, i.e. a number or a string, and index is either an index
number referencing a regular attribute or a prefix for a special attribute defined
by the parameter list prefix map of the SparseFormatExampleSource.
Please note that index counting starts with 1.

The SparseFormatExampleSource parameter format specifies the way
labels are read.

xy The label is the last token in the line.

yx The label is the first token in the line.

prefix The label is treated like all other special attributes.

separate file The label is read from a separate file. In that case, parameter
label file must be set.

July 14, 2008

3.4. FILE FORMATS 53

no label The example set is unlabeled.

All attributes that are not found in a line are supposed to have default val-
ues. The default value for numerical data is 0, the default vallue for nominal
attributes is the first string specified by the classes attribute in the attribute
description file.

Example Suppose you have a sparse file which looks like this:

w:1.0 5:1 305:5 798:1 yes
w:0.2 305:2 562:1 yes
w:0.8 49:1 782:1 823:2 no
...

You may want each example to have a special attribute “weight”, a nominal
label taking the values “yes” and “no”, and 1 000 regular numerical attributes.
Most of them are 0. The best way to read this file, is to use a SparseFor-
matExampleSource and set the parameter value of format to xy (since the
label is the last token in each line) and use a prefix map that maps the prefix
“w” to the attribute “weight”. See figure 3.3 for a configuration file.

<operator name=”SparseFormatExampleSource” class=”SparseFormatExampleSource”>
<parameter key=”dimension” value=”1000”/>
<parameter key=”attribute file” value=”mydata.dat”/>
<parameter key=”format” value=”xy”/>
< list key=”prefix map”>

<parameter key=”w” value=”weight”/>
</list>

</operator>

Figure 3.3: Configuration of a SparseFormatExampleSource

3.4.2 Model files

Model files contain the models generated by learning operators in previous
RapidMiner runs (extension: .mod). Models can be written to a file by using
the operator ModelWriter. They can be read by using a ModelLoader
and applied by using a ModelApplier.

3.4.3 Attribute construction files

An AttributeConstructionsWriter writes an attribute set to a text file
(extension: .att). Later, this file can be used by an AttributeConstruc-

The RapidMiner 4.2 Tutorial

54 CHAPTER 3. FIRST STEPS

tionsLoader operator to generate the same set of attributes in another pro-
cess and/or for another set of data.

The attribute generation files can be generated by hand as well. Every line is
of the form

<attribute name=”attribute name” construction=”generation description”/>

The generation description is defined by functions, with prefix-order notation.
The functions can be nested as well. An example of a nested generation descrip-
tion might be: f(g(a), h(b), c). See page 5.8.42 for a reference of the available
functions.

Example of an attribute constructions file:

<constructions version=”4.0”>
<attribute name=”a2” construction=”a2”/>
<attribute name=”gensym8” construction=”*(*(a1, a2), a3)”/>
<attribute name=”gensym32” construction=”*(a2, a2)”/>
<attribute name=”gensym4” construction=”*(a1, a2)”/>
<attribute name=”gensym19” construction=”*(a2, *(*(a1, a2), a3))”/>

</constructions>

3.4.4 Parameter set files

For example, the GridParameterOptimization operator generates a set of
optimal parameters for a particular task (extension: .par). Since parameters
of several operators can be optimized at once, each line of the parameter set
files is of the form

OperatorName.parameter_name = value

These files can be generated by hand as well and can be read by a Parame-
terSetLoader and set by a ParameterSetter.

3.4.5 Attribute weight files

All operators for feature weighting and selection generate a set of feature weights
(extension: .wgt). Attribute selection is seen as attribute weighting which
allows more flexible operators. For each attribute the weight is stored, where a
weight of 0 means that the attribute was not used at all. For writing the files
to a file the operator AttributeWeightsWriter can be used. In such a
weights file each line is of the form

<weight name="attribute_name" value="weight"/>

July 14, 2008

3.5. FILE FORMAT SUMMARY 55

These files can be generated by hand as well and can be read by an At-
tributeWeightsLoader and used on example sets with the operator At-
tributeWeightsApplier. They can also be read and adapted with the In-
teractiveAttributeWeighting operator. Feature operators like forward
selection, genetic algorithms and the weighting operators can deliver an example
set with the selection / weighting already applied or the original example set
(optional). In the latter case the weights can adapted and changed before they
are applied.

Example of an attribute weight file:

<attributeweights version=”4.0”>
<weight name=”a1” value=”0.8”/>
<weight name=”a2” value=”1.0”/>
<weight name=”a3” value=”0.0”/>
<weight name=”a4” value=”0.5”/>
<weight name=”a5” value=”0.0”/>

</attributeweights>

3.5 File format summary

Table 3.1 summarizes all file formats and the corresponding file extensions.

The RapidMiner 4.2 Tutorial

56 CHAPTER 3. FIRST STEPS

Extension Description

.aml attribute description file (standard XML meta data format)

.arff attribute relation file format (known from Weka)

.att attribute set file

.bib BibTeX data file format

.clm cluster model file (clustering plugin)

.cms cluster model set file (clustering plugin)

.cri population criteria file

.csv comma separated values data file format

.dat (dense) data files

.ioc IOContainer file format

.log log file / process log file

.mat matrix file (clustering plugin)

.mod model file

.obf obfuscation map

.par parameter set file

.per performance file

.res results file

.sim similarity matrix file (clustering plugin)

.thr threshold file

.wgt attribute weight file

.wls word list file (word vector tool plugin)

.xrff extended attribute relation file format (known from Weka)

Table 3.1: The most important file formats for RapidMiner.

July 14, 2008

Chapter 4

Advanced processes

At this point, we assume that you are familiar with the simple example from
section 3.1. You should know how to read a dataset from a file, what a learner
and a model applier do, and how a cross-validation chain works. These operators
will be used frequently and without further explanation in this chapter. After
reading this chapter you should be able to understand most of the sample process
definitions provided in the sample directory of RapidMiner. You should have
a look at these examples and play around to get familiar with RapidMiner.

4.1 Feature selection

Let us assume that we have a dataset with numerous attributes. We would like
to test, whether all of these attributes are really relevant, or whether we can get
a better model by omitting some of the original attributes. This task is called
feature selection and the backward elimination algorithm is an approach that
can solve it for you.

Here is how backward elimination works within RapidMiner: Enclose the
cross-validation chain by a FeatureSelection operator. This operator re-
peatedly applies the cross-validation chain, which now is its inner operator, un-
til the specified stopping criterion is complied with. The backward elimination
approach iteratively removes the attribute whose removal yields the largest per-
formance improvement. The stopping criterion may be for example that there
has been no improvement for a certain number of steps. See section 5.8.45 for
a detailed description of the algorithm. Figure 4.1 shows the configuration file.

You should try some of the following things:

� Use forward selection instead of backward elimination by changing the
parameter value of selection direction from backward to forward. This

57

58 CHAPTER 4. ADVANCED PROCESSES

approach starts with an empty attribute set and iteratively adds the at-
tribute whose inclusion improves the performance the most.

� Use the GeneticAlgorithm operator for feature selection instead of
the FeatureSelection operator (see section 5.8.54).

� Replace the cross validation by a filter based evaluation. The sample pro-
cess FeatureSelectionFilter.xml uses such a fast feature set evalu-
ation.

� Compare the results of the three approaches above to the BruteForce
operator. The brute force approach tests all subsets of the original at-
tributes, i.e. all combinations of attributes, to select an optimal subset.
While this operator is prohibitively expensive for large attribute sets, it
can be used to find an optimal solution on small attribute sets in order to
estimate the quality of the results of other approaches.

<operator name=”Global” class=”Process”>
<parameter key=”logfile” value=”advanced1.log”/>

<operator name=”Input” class=”ExampleSource”>
<parameter key=”attributes” value=”data/polynomial.aml”/>

</operator>

<operator name=”BackwardElimination” class=”FeatureSelection”>
<parameter key=”selection direction” value=”backward”/>

<operator name=”XVal” class=”XValidation”>
<parameter key=”number of validations” value=”5”/>

<operator name=”Learner” class=”LibSVMLearner”>
<parameter key=”kernel type” value=”poly”/>
<parameter key=”C” value=”1000.0”/>
<parameter key=”svm type” value=”epsilon−SVR”/>

</operator>
<operator name=”ApplierChain” class=”OperatorChain”>

<operator name=”Applier” class=”ModelApplier”/>
<operator name=”Evaluator” class=”PerformanceEvaluator”>

<parameter key=”squared error” value=”true”/>
</operator>

</operator>
</operator>

</operator>
</operator>

Figure 4.1: A feature selection process

July 14, 2008

4.2. SPLITTING UP PROCESSES 59

4.2 Splitting up Processes

If you are not a computer scientist but a data mining user, you are probably
interested in a real-world application of RapidMiner. May be, you have a
small labeled dataset and would like to train a model with an optimal attribute
set. Later you would like to apply this model to your huge unlabeled database.
Actually you have two separate processes.

4.2.1 Learning a model

This phase is basically the same as described in the preceeding section. We
append two operators to the configuration file that write the results of the
process into files. First, we write the attribute set to the file selected attri-
butes.att using an AttributeSetWriter. Second, we once again train
a model, this time using the entire example set, and we write it to the file
model.mod with help of a ModelWriter. For the configuration file see
figure 4.2. Execute the process and take a look at the file attributes.att.
It should contain the selected subset of the originally used attributes, one per
line.

4.2.2 Applying the model

In order to apply this learned model to new unlabeled dataset, you first have
to load this example set as usual using an ExampleSource. You can now
load the trained model using a ModelLoader. Unfortunately, your unlabeled
data probably still uses the original attributes, which are incompatible with the
model learned on the reduced attribute set. Hence, we have to transform the
examples to a representation that only uses the selected attributes, which we
saved to the file attributes.att. The AttributeSetLoader loads this
file and generates (or rather selects) the attributes accordingly. Now we can
apply the model and finally write the labeled data to a file. See figure 4.3 for
the corresponding configuration file.

As you can see, you can easily use different dataset source files even in different
formats as long as you use consistent names for the attributes. You could also
split the process into three parts:

1. Find an optimal attribute set and train the model.

2. Generate or select these attributes for the unlabeled data and write them
to temporary files.

3. Apply the model from step one to the temporary files from step two and
write the labeled data to a result file.

The RapidMiner 4.2 Tutorial

60 CHAPTER 4. ADVANCED PROCESSES

<operator name=”Global” class=”Process”>
<parameter key=”logfile” value=”advanced2.log”/>

<operator name=”Input” class=”ExampleSource”>
<parameter key=”attributes” value=”data/polynomial.aml”/>

</operator>

<operator name=”BackwardElimination” class=”FeatureSelection”>
<parameter key=”selection direction” value=”backward”/>

<operator name=”XVal” class=”XValidation”>
<parameter key=”number of validations” value=”5”/>

<operator name=”Learner” class=”LibSVMLearner”>
<parameter key=”kernel type” value=”poly”/>
<parameter key=”C” value=”1000.0”/>
<parameter key=”svm type” value=”epsilon−SVR”/>

</operator>
<operator name=”ApplierChain” class=”OperatorChain”>

<operator name=”Applier” class=”ModelApplier”/>
<operator name=”Evaluator” class=”PerformanceEvaluator”>

<parameter key=”squared error” value=”true”/>
</operator>

</operator>
</operator>

</operator>

<operator name=”AttributeWeightsWriter” class=”AttributeWeightsWriter”>
<parameter key=”attribute weights file” value=” selected attributes .wgt”/>

</operator>
<operator name=”Learner” class=”LibSVMLearner”>

<parameter key=”kernel type” value=”poly”/>
<parameter key=”C” value=”1000.0”/>
<parameter key=”svm type” value=”epsilon−SVR”/>
<parameter key=”model file” value=”model.mod”/>

</operator>
<operator name=”ModelOutput” class=”ModelWriter”>

<parameter key=”model file” value=”model.mod”/>
</operator>

</operator>

Figure 4.2: Training a model and writing it to a file

July 14, 2008

4.3. PARAMETER AND PERFORMANCE ANALYSIS 61

Of course it is also possible to merge all process modules into one big process
definition.

<operator name=”Global” class=”Process”>
<parameter key=”logfile” value=”advanced3.log”/>

<operator name=”Input” class=”ExampleSource”>
<parameter key=”attributes” value=”polynomial unlabeled.aml”/>

</operator>

<operator name=”AttributeWeightsLoader” class=”AttributeWeightsLoader”>
<parameter key=”attribute weights file” value=” selected attributes .wgt”/>

</operator>

<operator name=”AttributeWeightSelection” class=”AttributeWeightSelection”>
<parameter key=”weight” value=”0.0”/>
<parameter key=”weight relation” value=”greater”/>

</operator>

<operator name=”ModelLoader” class=”ModelLoader”>
<parameter key=”model file” value=”model.mod”/>

</operator>

<operator name=”Applier” class=”ModelApplier”/>

<operator class=”ExampleSetWriter” name=”ExampleSetWriter”>
<parameter key=”example set file” value=”polynom.labelled.dat”/>

</operator>
</operator>

Figure 4.3: Applying the model to unlabeled data

4.3 Parameter and performance analysis

In this section we show how one can easily record performance values of an
operator or operator chain depending on parameter values. In order to achieve
this, the RapidMiner process setup described in this section makes use of two
new RapidMiner operators: GridParameterOptimization (see section
5.5.10) and ProcessLog (see section 5.10.8).

We will see how to analyze the performance of a support vector machine (SVM)
with a polynomial kernel depending on the two parameters degree d and ε.1

We start with the building block we should now be familiar with: a validation
chain containing a LibSVMLearner, a ModelApplier, and a Perfor-
manceEvaluator. Now we would like to vary the parameters.

1The performance of a polynomial SVM also depends on other parameters like e.g. C, but
this is not the focus of this process.

The RapidMiner 4.2 Tutorial

62 CHAPTER 4. ADVANCED PROCESSES

Since we want to optimize more than one parameter, we cannot pass this in-
formation to the GridParameterOptimization operator using the usual
<parameter> tag. As the latter is designed to take a single value, we must use
the <list> tag, which can take several parameters. Similar to the <parameter>
tag the <list> tag must have a key. In case of the GridParameterOpti-
mization this key is (slightly confusingly in this context) named parameters
(the list of parameters which should be optimized). Each parameter that might
be optimized, needs a <parameter> tag entry in the <list>. The key of
a <parameter> tag has the form OperatorName.parameter name and the
value is a comma separated list of values. In our case, the operator is named
”Training” and the parameters are degree and epsilon. This leads to the fol-
lowing xml fragment:

<list key=”parameters”>
<parameter key=”Training.degree” value=”1,2,3,4”/>
<parameter key=”Training.epsilon” value=”0.01,0.03,0.05,0.1”/>

</list>

Figure 4.4 shows the entire example process setup.

In GUI mode you do not have to bother about the XML code, just click on
the Edit List button next to the parameters parameter of the GridParame-
terOptimization operator and add the two parameters to the list.

If the value lists hold n1 and n2 values, respectively, the GridParameterOp-
timization will apply its inner operators n1 · n2 times. Finally the GridPa-
rameterOptimization operator returns an optimal parameter value combi-
nation and the best performance vector. If this is desired, the optimal parameter
set can be written to a file (for a specification see section 3.4.4) and reread from
another process using a ParameterSetLoader (see section 5.3.34) and set
using a ParameterSetter (see section 5.5.18).

In order to create a chart showing the absolute error over the parameters d and
ε, we use the ProcessLog operator. Each time this operator is applied, it
creates a record containing a set of data that we can specify. If the operator
is applied n times and we specify m parameters, we have a table with n rows
and m columns at the end of the process. Various plots and charts may be
generated from this table.

Similar to the optimization operator, the ProcessLog operator accepts a
<list> of parameters specifying the values that should be recorded. This list
has the key log. In our case, we are interested in three values: the values
of the parameters degree and epsilon and in the performance of the models
generated with these parameters. Therefore, we add one <parameter> tag to
the log parameter <list> for each value we are interested in. (Again, in GUI
mode, simply click on the Edit List button next to the log parameter of the

July 14, 2008

4.3. PARAMETER AND PERFORMANCE ANALYSIS 63

<operator name=”Global” class=”Process”>
<parameter key=”logfile” value=”advanced4.log”/>

<operator name=”Input” class=”ExampleSource”>
<parameter key=”attributes” value=”data/polynomial.aml”/>

</operator>

<operator name=”GridParameterOptimization” class=”ParameterOptimization”>

< list key=”parameters”>
<parameter key=”Learner.epsilon” value=”0.01,0.03,0.05,0.075,0.1”/>
<parameter key=”Learner.degree” value=”1,2,3,4”/>

</list>

<operator name=”Validation” class=”SimpleValidation”>
<parameter key=”split ratio” value=”0.5”/>

<operator name=”Learner” class=”LibSVMLearner”>
<parameter key=”kernel type” value=”poly”/>

</operator>
<operator name=”ApplierChain” class=”OperatorChain”>

<operator name=”Applier” class=”ModelApplier”/>
<operator name=”Evaluator” class=”PerformanceEvaluator”>

<parameter key=”absolute error” value=”true”/>
<parameter key=”main criterion” value=”absolute error”/>

</operator>
</operator>

</operator>

<operator name=”ProcessLog” class=”ProcessLog”>
<parameter key=”filename” value=”svm degree epsilon.log”/>

< list key=”log”>
<parameter key=”degree”

value=”operator.Learner.parameter.degree”/>
<parameter key=”epsilon”

value=”operator.Learner.parameter.epsilon”/>
<parameter key=”absolute”

value=”operator.Validation.value .performance”/>
</list>

</operator>
</operator>

</operator>

Figure 4.4: Parameter and performance analysis

The RapidMiner 4.2 Tutorial

64 CHAPTER 4. ADVANCED PROCESSES

ProcessLog operator.) The keys of the parameters nested in this list may
have arbitrary values. They are used as column names and labels in charts
only. We choose “degree”, “epsilon”, and “performance”. The value of the
parameters specifies, how to retrieve the values. They are of the form

operator.OperatorName.{parameter|value}.Name2

Two types of values can be recorded:

1. parameters that are specified by the process configuration or varied by the
GridParameterOptimization operator and

2. values that are generated or measured in the course of the process.

degree and epsilon are parameters of the operator named “Training”. The
performance is a value generated by the operator named “XValidation”. Hence,
our parameter list looks like this:

<list key=”log”>
<parameter key=”degree”

value=”operator.Training.parameter.degree”/>
<parameter key=”epsilon”

value=”operator.Training.parameter.epsilon”/>
<parameter key=”performance”

value=”operator.XValidation.value.performance”/>
</list>

For a list of values that are provided by the individual operators, please refer to
the operator reference (chapter 5).

Some plots may be generated online by using the GUI. This includes color and
3D plots like the one shown in figure 4.5.

4.4 Support and tips

RapidMiner is a complex data mining suite and provides a platform for a large
variety of process designs. We suggest that you work with some of the building
blocks described in this chapter and replace some operators and parameter
settings. You should have a look at the sample process definitions delivered
with RapidMiner and learn about other operators. However, the complexity

2If you wonder why this string starts with the constant prefix “operator”, this is because
it is planned to extend the ProcessLog operator by the possibility to log values taken from
an input object passed to the operator.

July 14, 2008

4.4. SUPPORT AND TIPS 65

Absolute error

2

3

4

0.01

0.02

0.04

0.08

0
10
20
30
40
50
60
70
80

Figure 4.5: The performance of a SVM (plot generated by gnuplot)

of RapidMiner might sometimes be very frustrating if you cannot manage to
design the data mining processes you want to. Please do not hesitate to use
the user forum and ask for help. You can also submit a support request. Both
user forum and support request tracker are available on our website

http://www.rapidminer.com/

Beside this, we also offer services like support and consulting for our professional
users. Please contact us if you are interested in this form of professional support.

We conclude this chapter with some tips:

� You should make use of the automatic process validation available in
the graphical user interface. This avoids a wrong process setup, missing
parameter values, etc.

� Work on a small subsample of your data during the process design and
switch to the complete dataset if you are sure the process will properly
run.

� You do not have to write the attribute description files (XML) by hand.
Just use the Attribute Editor of the GUI version or the configuration wizard
of the ExampleSource operator.

The RapidMiner 4.2 Tutorial

http://www.rapidminer.com/

66 CHAPTER 4. ADVANCED PROCESSES

� Make use of breakpoints in the design phase. This helps to understand
the data flow of RapidMiner and find potential problems, etc.

� Start with small process setups and known building blocks and check
if each new operator / operator chain performs in the way you have
expected.

July 14, 2008

Chapter 5

Operator reference

This chapter describes the built-in operators that come with RapidMiner.
Each operator section is subdivided into several parts:

1. The group and the icon of the operator.

2. An enumeration of the required input and the generated output objects.
The input objects are usually consumed by the operator and are not part
of the output. In some cases this behaviour can be changed by using a
parameter keep Operators may also receive more input objects than
required. In that case the unused input objects will be appended to the
output and can be used by the next operator.

3. The parameters that can be used to configure the operator. Ranges and
default values are specified. Required parameters are indicated by bullets
(�) and optional parameters are indicated by an open bullet (�)

4. A list of values that can be logged using the ProcessLog operator (see
page 543).

5. If the operator represents a learning scheme, the capabilities of the learner
are described. The learning capapabilities of most meta learning schemes
depend on the inner learner.

6. If the operator represents an operator chain a short description of the
required inner operators is given.

7. A short and a long textual description of the operator.

The reference is divided into sections according to the operator groups known
from the graphical user interface. Within each section operators are alphabeti-
cally listed.

67

68 CHAPTER 5. OPERATOR REFERENCE

5.1 Basic operators

5.1.1 ModelApplier

Required input:

� Model

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� keep model: Indicates if this input object should also be returned as out-
put. (boolean; default: false)

� application parameters: Model parameters for application (usually not
needed). (list)

� create view: Indicates that preprocessing models should only create a new
view on the data instead of actually changing the data itself. (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Applies a model to an example set. This might be a
prediction or another data transformation model.

Description: This operator applies a Model to an ExampleSet. All parameters
of the training process should be stored within the model. However, this operator
is able to take any parameters for the rare case that the model can use some
parameters during application. Models can be read from a file by using a
ModelLoader (see section 5.3.30).

5.1.2 ModelGrouper

Required input:

� Model

Generated output:

� Model

Values:

July 14, 2008

5.1. BASIC OPERATORS 69

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Groups the input models into a single combined model
which might be necessary for example for applying preprocessing models.

Description: This operator groups all input models together into a grouped
(combined) model. This model can be completely applied on new data or written
into a file as once. This might become useful in cases where preprocessing and
prediction models should be applied together on new and unseen data.

This operator replaces the automatic model grouping known from previous ver-
sions of RapidMiner. The explicit usage of this grouping operator gives the
user more control about the grouping procedure. A grouped model can be
ungrouped with the ModelUngrouper (see section 5.1.3) operator.

5.1.3 ModelUngrouper

Required input:

� Model

Generated output:

� Model

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Ungroups a previously grouped model into the single mod-
els which might then be handled on their own.

Description: This operator ungroups a previously grouped model (ModelGrouper
(see section 5.1.2)) and delivers the grouped input models.

This operator replaces the automatic model grouping known from previous ver-
sions of RapidMiner. The explicit usage of this ungrouping operator gives
the user more control about the ungrouping procedure. Single models can be
grouped with the ModelGrouper (see section 5.1.2) operator.

The RapidMiner 4.2 Tutorial

70 CHAPTER 5. OPERATOR REFERENCE

5.1.4 ModelUpdater

Required input:

� Model

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Updates a model according to an example set. Please
note that this operator can only be used for updatable models, otherwise an
error will be shown.

Description: This operator updates a Model with an ExampleSet. Please
note that the model must return true for Model in order to be usable with this
operator.

5.1.5 OperatorChain

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: A chain of operators that is subsequently applied.

July 14, 2008

5.1. BASIC OPERATORS 71

Description: A simple operator chain which can have an arbitrary number of
inner operators. The operators are subsequently applied and their output is used
as input for the succeeding operator. The input of the operator chain is used
as input for the first inner operator and the output of the last operator is used
as the output of the operator chain.

The RapidMiner 4.2 Tutorial

72 CHAPTER 5. OPERATOR REFERENCE

5.2 Core operators

The operators described in this section are basic operators in a sense that they
are used in many process definitions without being specific to a certain group
of operators.

5.2.1 CommandLineOperator

Group: Core

Parameters:

� command: Command to execute. (string)

� log stdout: If set to true, the stdout stream of the command is redirected
to the logfile. (boolean; default: true)

� log stderr: If set to true, the stderr stream of the command is redirected
to the logfile. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator simply executes a command in a shell of
the underlying operating system, basically any system command or external
program.

Description: This operator executes a system command. The command and
all its arguments are specified by the parameter command. The standard output
stream and the error stream of the process can be redirected to the logfile.

Please note also that the command is system dependent. Characters that have
special meaning on the shell like e.g. the pipe symbol or brackets and braces
do not have a special meaning to Java.

The method Runtime.exec(String) is used to execute the command. Please
note, that this (Java) method parses the string into tokens before it is executed.
These tokens are not interpreted by a shell (which?). If the desired command
involves piping, redirection or other shell features, it is best to create a small
shell script to handle this.

July 14, 2008

5.2. CORE OPERATORS 73

5.2.2 Experiment

Group: Core

Please use the operator ’Process’ instead.

Parameters:

� logverbosity: Log verbosity level.

� logfile: File to write logging information to. (filename)

� resultfile: File to write inputs of the ResultWriter operators to. (filename)

� random seed: Global random seed for random generators (-1 for initial-
ization by system time). (integer; -2147483648-+∞; default: 2001)

� notification email: Email address for the notification mail. (string)

� encoding: The encoding of the process XML description. (string; default:
’SYSTEM’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� memory: The current memory usage.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: The root operator chain, which needs to be the outer most
operator of any experiment.

Description: Each process must contain exactly one operator of this class and
it must be the root operator of the process. The only purpose of this operator
is to provide some parameters that have global relevance.

5.2.3 FileEcho

Group: Core

Parameters:

The RapidMiner 4.2 Tutorial

74 CHAPTER 5. OPERATOR REFERENCE

� file: The file into which this operator should write the specified text. (file-
name)

� text: The text which should be written into the file. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator simply writes the given text into the speci-
fied file (can be useful in combination with a process branch).

Description: This operator simply writed the specified text into the specified
file. This can be useful in combination with the ProcessBranch (see section
5.5.20) operator. For example, one could write the success or non-success of
a process into the same file depending on the condition specified by a process
branch.

5.2.4 IOConsumer

Group: Core

Parameters:

� io object: The class of the object(s) which should be removed.

� deletion type: Defines the type of deletion.

� delete which: Defines which input object should be deleted (only used for
deletion type ’delete one’). (integer; 1-+∞; default: 1)

� except: Defines which input object should not be deleted (only used for
deletion type ’delete one but number’). (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operators simply consumes some unused outputs.

July 14, 2008

5.2. CORE OPERATORS 75

Description: Most RapidMiner operators should define their desired input
and delivered output in a senseful way. In some cases operators can produce
additional output which is indicated with a boolean parameter. Other operators
are able to deliver their input as output instead of consuming it (parameter
keep ...). However, in some cases it might be usefull to delete unwanted output
to ensure that following operators use the correct input object. Furthermore,
some operators produce additional unneeded and therefore unconsumed output.
In an iterating operator chain this unneeded output will grow with each iteration.
Therefore, the IOConsumeOperator can be used to delete one (the n-th) object
of a given type (indicated by delete one), all input objects of a given type
(indicated by delete all), all input objects but those of a given type (indicated
by delete all but), or all input objects of the given type except for the n-th
object of the type.

5.2.5 IOMultiplier

Group: Core

Parameters:

� number of copies: The number of copies which should be created. (in-
teger; 1-+∞; default: 1)

� io object: The class of the object(s) which should be multiplied.

� multiply type: Defines the type of multiplying.

� multiply which: Defines which input object should be multiplied (only
used for deletion type ’multiply one’). (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operators simply multiplies selected input objects.

Description: In some cases you might want to apply different parts of the
process on the same input object. You can use this operator to create k copies
of the given input object.

The RapidMiner 4.2 Tutorial

76 CHAPTER 5. OPERATOR REFERENCE

5.2.6 IOSelector

Group: Core

Generated output:

� IOObject

Parameters:

� io object: The class of the object(s) which should be removed.

� select which: Defines which input object should be selected. (integer;
1-+∞; default: 1)

� delete others: Indicates if the other non-selected objects should be deleted.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operators simply selects one of the input objects of
the specified type and discards the rest.

Description: This operator allows to choose special IOObjects from the given
input. Bringing an IOObject to the front of the input queue allows the next
operator to directly perform its action on the selected object. Please note that
counting for the parameter value starts with one, but usually the IOObject which
was added at last gets the number one, the object added directly before get
number two and so on.

The user can specify with the parameter delete others what will happen to the
non-selected input objects of the specified type: if this parameter is set to
true, all other IOObjects of the specified type will be removed by this operator.
Otherwise (default), the objects will all be kept and the selected objects will
just be brought into front.

5.2.7 MacroDefinition

Group: Core

July 14, 2008

5.2. CORE OPERATORS 77

Parameters:

� macros: The list of macros defined by the user. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to define arbitrary macros which
can be used by

Description: (Re-)Define macros for the current process. Macros will be re-
placed in the value strings of parameters by the macro values defined in the
parameter list of this operator. Please note that this features is basically only
supported for string type parameter values (strings or files) and not for numerical
or list types.

In the parameter list of this operator, you have to define the macro name
(without the enclosing brackets) and the macro value. The defined macro can
then be used in all succeeding operators as parameter value for string type
parameters. A macro must then be enclosed by “% {“ and “}“.

There are several predefined macros:

� % {process name}: will be replaced by the name of the process (without
path and extension)

� % {process file}: will be replaced by the file name of the process (with
extension)

� % {process path}: will be replaced by the complete absolute path of the
process file

In addition to those the user might define arbitrary other macros which will be
replaced by arbitrary string during the process run. Please note also that several
other short macros exist, e.g. % {a} for the number of times the current opera-
tor was applied. Please refer to the section about macros in the RapidMiner
tutorial. Please note also that other operators like the FeatureIterator
(see section 5.5.8) also adds specific macros.

The RapidMiner 4.2 Tutorial

78 CHAPTER 5. OPERATOR REFERENCE

5.2.8 MaterializeDataInMemory

Group: Core

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� datamanagement: Determines, how the data is represented internally.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a fresh and clean copy of the data. Might be
useful after large preprocessing chains with a lot of views or even data copies,
especially in combination with a memory clean up operation followed afterwards.

Description: Creates a fresh and clean copy of the data in memory. Might
be very useful in combination with the MemoryCleanUp (see section 5.2.9)
operator after large preprocessing trees using lot of views or data copies.

5.2.9 MemoryCleanUp

Group: Core

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Frees unused memory. Might be useful after large prepro-
cessing chains with a lot of (now) unused views or even data copies. Can be
very useful after the data set was (again) materialized in memory.

July 14, 2008

5.2. CORE OPERATORS 79

Description: Cleans up unused memory resources. Might be very useful in
combination with the MaterializeDataInMemory (see section 5.2.8) oper-
ator after large preprocessing trees using lot of views or data copies. Internally,
this operator simply invokes a garbage collection from the underlying Java pro-
gramming language.

5.2.10 Process

Group: Core

Parameters:

� logverbosity: Log verbosity level.

� logfile: File to write logging information to. (filename)

� resultfile: File to write inputs of the ResultWriter operators to. (filename)

� random seed: Global random seed for random generators (-1 for initial-
ization by system time). (integer; -2147483648-+∞; default: 2001)

� notification email: Email address for the notification mail. (string)

� encoding: The encoding of the process XML description. (string; default:
’SYSTEM’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� memory: The current memory usage.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: The root operator chain, which needs to be the outer most
operator of any process.

Description: Each process must contain exactly one operator of this class and
it must be the root operator of the process. The only purpose of this operator
is to provide some parameters that have global relevance.

The RapidMiner 4.2 Tutorial

80 CHAPTER 5. OPERATOR REFERENCE

5.2.11 SingleMacroDefinition

Group: Core

Parameters:

� macro: The macro name defined by the user. (string)

� value: The macro value defined by the user. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to define a single arbitrary
macro which can be used by

Description: (Re-)Define macros for the current process. Macros will be re-
placed in the value strings of parameters by the macro values defined as a
parameter of this operator. Please note that this features is basically only sup-
ported for string type parameter values (strings or files) and not for numerical
or list types. In contrast to the usual MacroDefinitionOperator, this operator
only supports the definition of a single macro and can hence be used inside of
parameter iterations.

You have to define the macro name (without the enclosing brackets) and the
macro value. The defined macro can then be used in all succeeding operators
as parameter value for string type parameters. A macro must then be enclosed
by “% {“ and “}“.

There are several predefined macros:

� % {process name}: will be replaced by the name of the process (without
path and extension)

� % {process file}: will be replaced by the file name of the process (with
extension)

� % {process path}: will be replaced by the complete absolute path of the
process file

July 14, 2008

5.2. CORE OPERATORS 81

In addition to those the user might define arbitrary other macros which will
be replaced by arbitrary string during the process run. Please note also that
several other short macros exist, e.g. % {a} for the number of times the
current operator was applied. Please refer to the section about macros in the
RapidMiner tutorial.

The RapidMiner 4.2 Tutorial

82 CHAPTER 5. OPERATOR REFERENCE

5.3 Input/Output operators

The operators described in this section deal with input and output of all kinds
of results and in-between results. Models, example sets, attribute sets and
parameter sets can be read from and written to disc. Hence, it is possible to
split up process into, for instance, a training process setup and a evaluation or
application process setup.

5.3.1 ArffExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� example set file: File to save the example set to. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes the values of all examples into an ARFF-file.

Description: Writes values of all examples into an ARFF file which can be
used by the machine learning library Weka. The ARFF format is described in
the ArffExampleSource (see section 5.3.2) operator which is able to read
ARFF files to make them usable with RapidMiner.

5.3.2 ArffExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 83

Parameters:

� data file: The path to the data file. (filename)

� label attribute: The (case sensitive) name of the label attribute (string)

� id attribute: The (case sensitive) name of the id attribute (string)

� weight attribute: The (case sensitive) name of the weight attribute (string)

� datamanagement: Determines, how the data is represented internally.

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 =
use sample ratio; if not -1, sample ratio will not have any effect) (integer;
-1-+∞; default: -1)

� local random seed: Use the given random seed instead of global random
numbers (only for permutation, -1: use global). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read arff files.

Description: This operator can read ARFF files known from the machine
learning library Weka. An ARFF (Attribute-Relation File Format) file is an ASCII
text file that describes a list of instances sharing a set of attributes. ARFF files
were developed by the Machine Learning Project at the Department of Computer
Science of The University of Waikato for use with the Weka machine learning
software.

ARFF files have two distinct sections. The first section is the Header infor-
mation, which is followed the Data information. The Header of the ARFF file
contains the name of the relation (@RELATION, ignored by RapidMiner) and
a list of the attributes, each of which is defined by a starting @ATTRIBUTE
followed by its name and its type.

Attribute declarations take the form of an orderd sequence of @ATTRIBUTE
statements. Each attribute in the data set has its own @ATTRIBUTE statement

The RapidMiner 4.2 Tutorial

84 CHAPTER 5. OPERATOR REFERENCE

which uniquely defines the name of that attribute and it’s data type. The order
the attributes are declared indicates the column position in the data section of
the file. For example, if an attribute is the third one declared all that attributes
values will be found in the third comma delimited column.

The possible attribute types are:

� numeric

� integer

� real

� nominalValue1,nominalValue2,... for nominal attributes

� string for nominal attributes without distinct nominal values (it is how-
ever recommended to use the nominal definition above as often as possi-
ble)

� date [date-format] (currently not supported by RapidMiner)

Valid examples for attribute definitions are

@ATTRIBUTE petalwidth REAL

@ATTRIBUTE class Iris-setosa,Iris-versicolor,Iris-virginica

The ARFF Data section of the file contains the data declaration line @DATA
followed by the actual example data lines. Each example is represented on a
single line, with carriage returns denoting the end of the example. Attribute
values for each example are delimited by commas. They must appear in the
order that they were declared in the header section (i.e. the data corresponding
to the n-th @ATTRIBUTE declaration is always the n-th field of the example
line). Missing values are represented by a single question mark, as in:

4.4,?,1.5,?,Iris-setosa

A percent sign (names or example values containing spaces must be quoted
with single quotes (’). Please note that the sparse ARFF format is currently
only supported for numerical attributes. Please use one of the other options for
sparse data files provided by RapidMiner if you also need sparse data files for
nominal attributes.

Please have a look at the Iris example ARFF file provided in the data subdirectory
of the sample directory of RapidMiner to get an idea of the described data
format.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 85

5.3.3 AttributeConstructionsLoader

Group: IO.Attributes

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute constructions file: Filename for the attribute constructions file.
(filename)

� keep all: If set to true, all the original attributes are kept, otherwise they
are removed from the example set. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Loads all attributes of an example set from a file. Each
line holds the construction description of one attribute.

Description: Loads an attribute set from a file and constructs the desired
features. If keep all is false, original attributes are deleted before the new ones
are created. This also means that a feature selection is performed if only a
subset of the original features was given in the file.

5.3.4 AttributeConstructionsWriter

Group: IO.Attributes

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute constructions file: Filename for the attribute construction de-
scription file. (filename)

The RapidMiner 4.2 Tutorial

86 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes all attributes of an example set to a file. Each line
holds the construction description of one attribute.

Description: Writes all attributes of an example set to a file. Each line holds
the construction description of one attribute. This file can be read in another
process using the FeatureGeneration (see section 5.8.42) or Attribute-
ConstructionsLoader (see section 5.3.3).

5.3.5 AttributeWeightsLoader

Group: IO.Attributes

Generated output:

� AttributeWeights

Parameters:

� attribute weights file: Filename of the attribute weights file. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads the weights of all attributes of an example set from
a file. Each line must hold the name and the weight of one attribute.

Description: Reads the weights for all attributes of an example set from a
file and creates a new AttributeWeights IOObject. This object can be used for
scaling the values of an example set with help of the AttributeWeightsAp-
plier (see section 5.8.12) operator.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 87

5.3.6 AttributeWeightsWriter

Group: IO.Attributes

Required input:

� AttributeWeights

Generated output:

� AttributeWeights

Parameters:

� attribute weights file: Filename for the attribute weight file. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes the weights of all attributes of an example set to
a file. Each line holds the name and the weight of one attribute.

Description: Writes the weights of all attributes of an example set to a file.
Therefore a AttributeWeights object is needed in the input of this operator.
Each line holds the name of one attribute and its weight. This file can be read
in another process using the AttributeWeightsLoader (see section 5.3.5)
and the AttributeWeightsApplier (see section 5.8.12).

5.3.7 BibtexExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� label attribute: The (case sensitive) name of the label attribute (string)

� id attribute: The (case sensitive) name of the id attribute (string)

� weight attribute: The (case sensitive) name of the weight attribute (string)

The RapidMiner 4.2 Tutorial

88 CHAPTER 5. OPERATOR REFERENCE

� datamanagement: Determines, how the data is represented internally.

� data file: The file containing the data (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read BibTeX files.

Description: This operator can read BibTeX files. It uses Stefan Haustein’s
kdb tools.

5.3.8 C45ExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� c45 filestem: The path to either the C4.5 names file, the data file, or the
filestem (without extensions). Both files must be in the same directory.
(filename)

� datamanagement: Determines, how the data is represented internally.

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read data and meta given in C4.5 for-
mat.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 89

Description: Loads data given in C4.5 format (names and data file). Both
files must be in the same directory. You can specify one of the C4.5 files (either
the data or the names file) or only the filestem.

For a dataset named ”foo”, you will have two files: foo.data and foo.names.
The .names file describes the dataset, while the .data file contains the examples
which make up the dataset.

The files contain series of identifiers and numbers with some surrounding syntax.
A | (vertical bar) means that the remainder of the line should be ignored as a
comment. Each identifier consists of a string of characters that does not include
comma, question mark or colon. Embedded whitespce is also permitted but
multiple whitespace is replaced by a single space.

The .names file contains a series of entries that describe the classes, attributes
and values of the dataset. Each entry can be terminated with a period, but
the period can be omited if it would have been the last thing on a line. The
first entry in the file lists the names of the classes, separated by commas. Each
successive line then defines an attribute, in the order in which they will appear
in the .data file, with the following format:

attribute-name : attribute-type

The attribute-name is an identifier as above, followed by a colon, then the
attribute type which must be one of

� continuous If the attribute has a continuous value.

� discrete [n] The word ’discrete’ followed by an integer which indicates
how many values the attribute can take (not recommended, please use
the method depicted below for defining nominal attributes).

� [list of identifiers] This is a discrete, i.e. nominal, attribute with
the values enumerated (this is the prefered method for discrete attributes).
The identifiers should be separated by commas.

� ignore This means that the attribute should be ignored - it won’t be
used. This is not supported by RapidMiner, please use one of the
attribute selection operators after loading if you want to ignore attributes
and remove them from the loaded example set.

Here is an example .names file:

good, bad.

The RapidMiner 4.2 Tutorial

90 CHAPTER 5. OPERATOR REFERENCE

dur: continuous.
wage1: continuous.
wage2: continuous.
wage3: continuous.
cola: tc, none, tcf.
hours: continuous.
pension: empl_contr, ret_allw, none.
stby_pay: continuous.
shift_diff: continuous.
educ_allw: yes, no.
...

Foo.data contains the training examples in the following format: one exam-
ple per line, attribute values separated by commas, class last, missing values
represented by ”?”. For example:

2,5.0,4.0,?,none,37,?,?,5,no,11,below_average,yes,full,yes,full,good
3,2.0,2.5,?,?,35,none,?,?,?,10,average,?,?,yes,full,bad
3,4.5,4.5,5.0,none,40,?,?,?,no,11,average,?,half,?,?,good
3,3.0,2.0,2.5,tc,40,none,?,5,no,10,below_average,yes,half,yes,full,bad
...

5.3.9 CSVExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� csv file: The CSV file which should be written. (filename)

� column separator: The column separator. (string; default: ’;’)

� write attribute names: Indicates if the attribute names should be written
as first row. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 91

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can write csv files.

Description: This operator can be used to write data into CSV files (Comma
Separated Values). The values and columns are separated by “;“. Missing data
values are indicated by empty cells.

5.3.10 CSVExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� filename: Name of the file to read the data from. (filename)

� read attribute names: Read attribute names from file (assumes the at-
tribute names are in the first line of the file). (boolean; default: true)

� label name: Name of the label attribute (if empty, the column defined by
label column will be used) (string)

� label column: Column number of the label attribute (only used if la-
bel name is empty; 0 = none; negative values are counted from the last
column) (integer; -2147483648-+∞; default: 0)

� id name: Name of the id attribute (if empty, the column defined by id column
will be used) (string)

� id column: Column number of the id attribute (only used if id name is
empty; 0 = none; negative values are counted from the last column)
(integer; -2147483648-+∞; default: 0)

� weight name: Name of the weight attribute (if empty, the column defined
by weight column will be used) (string)

� weight column: Column number of the weight attribute (only used if
weight name is empty; 0 = none, negative values are counted from the
last column) (integer; -2147483648-+∞; default: 0)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

The RapidMiner 4.2 Tutorial

92 CHAPTER 5. OPERATOR REFERENCE

� sample size: The exact number of samples which should be read (-1 =
use sample ratio; if not -1, sample ratio will not have any effect) (integer;
-1-+∞; default: -1)

� datamanagement: Determines, how the data is represented internally.

� column separators: Column separators for data files (regular expression)
(string; default: ’,\s*|;\s*’)

� use comment characters: Indicates if qa comment character should be
used. (boolean; default: true)

� comment chars: Lines beginning with these characters are ignored. (string;
default: ’#’)

� use quotes: Indicates if quotes should be regarded (slower!). (boolean;
default: true)

� trim lines: Indicates if lines should be trimmed (empty spaces are removed
at the beginning and the end) before the column split is performed.
(boolean; default: false)

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read csv files.

Description: This operator can read csv files. All values must be separated
by “,“, by “;“, or by white space like tabs. The first line is used for attribute
names as default.

For other file formats or column separators you can use in almost all cases
the operator SimpleExampleSource (see section 5.3.40) or, if this is not
sufficient, the operator ExampleSource (see section 5.3.21).

5.3.11 CachedDatabaseExampleSource

Group: IO.Examples

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 93

Generated output:

� ExampleSet

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� database system: Indicates the used database system

� database url: The complete URL connection string for the database, e.g.
’jdbc:mysql://foo.bar:portnr/database’ (string)

� username: Database username. (string)

� password: Password for the database. (password)

� query: SQL query. If not set, the query is read from the file specified by
’query file’. (string)

� query file: File containing the query. Only evaluated if ’query’ is not set.
(filename)

� table name: Use this table if work on database is true or no other query
is specified. (string)

� label attribute: The (case sensitive) name of the label attribute (string)

� id attribute: The (case sensitive) name of the id attribute (string)

� weight attribute: The (case sensitive) name of the weight attribute (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator reads an example set from an SQL database
by incrementally caching it (recommended).

Description: This operator reads an ExampleSet from an SQL database. The
SQL query can be passed to RapidMiner via a parameter or, in case of long
SQL statements, in a separate file. Please note that column names are often
case sensitive. Databases may behave differently here.

The most convenient way of defining the necessary parameters is the configu-
ration wizard. The most important parameters (database URL and user name)

The RapidMiner 4.2 Tutorial

94 CHAPTER 5. OPERATOR REFERENCE

will be automatically determined by this wizard and it is also possible to define
the special attributes like labels or ids.

Please note that this operator supports two basic working modes:

1. reading the data from the database and creating an example table in main
memory

2. keeping the data in the database and directly working on the database
table

The latter possibility will be turned on by the parameter “work on database”.
Please note that this working mode is still regarded as experimental and errors
might occur. In order to ensure proper data changes the database working mode
is only allowed on a single table which must be defined with the parameter
“table name”. IMPORTANT: If you encounter problems during data updates
(e.g. messages that the result set is not updatable) you probably have to define
a primary key for your table.

If you are not directly working on the database, the data will be read with an
arbitrary SQL query statement (SELECT ... FROM ... WHERE ...) defined by
“query” or “query file”. The memory mode is the recommended way of using
this operator. This is especially important for following operators like learning
schemes which would often load (most of) the data into main memory during
the learning process. In these cases a direct working on the database is not
recommended anyway.

Warning As the java ResultSetMetaData interface does not provide infor-
mation about the possible values of nominal attributes, the internal indices the
nominal values are mapped to will depend on the ordering they appear in the
table. This may cause problems only when processes are split up into a train-
ing process and an application or testing process. For learning schemes which
are capable of handling nominal attributes, this is not a problem. If a learn-
ing scheme like a SVM is used with nominal data, RapidMiner pretends that
nominal attributes are numerical and uses indices for the nominal values as their
numerical value. A SVM may perform well if there are only two possible values.
If a test set is read in another process, the nominal values may be assigned dif-
ferent indices, and hence the SVM trained is useless. This is not a problem for
label attributes, since the classes can be specified using the classes parameter
and hence, all learning schemes intended to use with nominal data are safe to
use.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 95

5.3.12 ChurnReductionExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates data for testing purposes based on a churn
reduction data set.

Description: Generates a random example set for testing purposes. The data
represents a direct mailing example set.

5.3.13 ClusterModelReader

Group: IO.Clustering

Generated output:

� HierarchicalClusterModel

Parameters:

� cluster model file: the file from which the cluster model is read (filename)

� flat: load a flat model or flatten it (boolean; default: false)

The RapidMiner 4.2 Tutorial

96 CHAPTER 5. OPERATOR REFERENCE

� add ids: if true, new ids are generated for each cluster model, otherwise,
the ids in the file are used (boolean; default: false)

� convert labels: if true, all non-letter characters are replaced in cluster
descriptions (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a single cluster model from a file.

Description: Reads a single cluster model from a file.

5.3.14 ClusterModelWriter

Group: IO.Clustering

Required input:

� ClusterModel

Generated output:

� ClusterModel

Parameters:

� cluster model file: the file to which the cluster model is stored (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes a cluster model to a file.

Description: Write a single cluster model to a file.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 97

5.3.15 DBaseExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� label attribute: The (case sensitive) name of the label attribute (string)

� id attribute: The (case sensitive) name of the id attribute (string)

� weight attribute: The (case sensitive) name of the weight attribute (string)

� datamanagement: Determines, how the data is represented internally.

� data file: The file containing the data (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read dBase files.

Description: This operator can read dbase files. It uses Stefan Haustein’s kdb
tools.

5.3.16 DatabaseExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� database system: Indicates the used database system

The RapidMiner 4.2 Tutorial

98 CHAPTER 5. OPERATOR REFERENCE

� database url: The complete URL connection string for the database, e.g.
’jdbc:mysql://foo.bar:portnr/database’ (string)

� username: Database username. (string)

� password: Password for the database. (password)

� table name: Use this table if work on database is true or no other query
is specified. (string)

� overwrite mode: Indicates if an existing table should be overwritten or if
data should be appended.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes the values of all examples to a single table in a
database.

Description: This operator writes an ExampleSet into an SQL database. The
user can specify the database connection and a table name. Please note that
the table will be created during writing if it does not exist.

The most convenient way of defining the necessary parameters is the configu-
ration wizard. The most important parameters (database URL and user name)
will be automatically determined by this wizard. At the end, you only have to
define the table name and then you are ready.

This operator only supports the writing of the complete example set consisting of
all regular and special attributes and all examples. If this is not desired perform
some preprocessing operators like attribute or example filter before applying this
operator.

5.3.17 DatabaseExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 99

� configure operator: Configure this operator by means of a Wizard.

� work on database: (EXPERIMENTAL!) If set to true, the data read from
the database is NOT copied to main memory. All operations that change
data will modify the database. (boolean; default: false)

� database system: Indicates the used database system

� database url: The complete URL connection string for the database, e.g.
’jdbc:mysql://foo.bar:portnr/database’ (string)

� username: Database username. (string)

� password: Password for the database. (password)

� query: SQL query. If not set, the query is read from the file specified by
’query file’. (string)

� query file: File containing the query. Only evaluated if ’query’ is not set.
(filename)

� table name: Use this table if work on database is true or no other query
is specified. (string)

� label attribute: The (case sensitive) name of the label attribute (string)

� id attribute: The (case sensitive) name of the id attribute (string)

� weight attribute: The (case sensitive) name of the weight attribute (string)

� datamanagement: Determines, how the data is represented internally.

� classes: Whitespace separated list of possible class values of the label at-
tribute. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator reads an example set from an SQL database.

Description: This operator reads an ExampleSet from an SQL database. The
SQL query can be passed to RapidMiner via a parameter or, in case of long
SQL statements, in a separate file. Please note that column names are often
case sensitive. Databases may behave differently here.

The most convenient way of defining the necessary parameters is the configu-
ration wizard. The most important parameters (database URL and user name)

The RapidMiner 4.2 Tutorial

100 CHAPTER 5. OPERATOR REFERENCE

will be automatically determined by this wizard and it is also possible to define
the special attributes like labels or ids.

Please note that this operator supports two basic working modes:

1. reading the data from the database and creating an example table in main
memory

2. keeping the data in the database and directly working on the database
table

The latter possibility will be turned on by the parameter “work on database”.
Please note that this working mode is still regarded as experimental and errors
might occur. In order to ensure proper data changes the database working mode
is only allowed on a single table which must be defined with the parameter
“table name”. IMPORTANT: If you encounter problems during data updates
(e.g. messages that the result set is not updatable) you probably have to define
a primary key for your table.

If you are not directly working on the database, the data will be read with an
arbitrary SQL query statement (SELECT ... FROM ... WHERE ...) defined by
“query” or “query file”. The memory mode is the recommended way of using
this operator. This is especially important for following operators like learning
schemes which would often load (most of) the data into main memory during
the learning process. In these cases a direct working on the database is not
recommended anyway.

Warning As the java ResultSetMetaData interface does not provide infor-
mation about the possible values of nominal attributes, the internal indices the
nominal values are mapped to will depend on the ordering they appear in the
table. This may cause problems only when processes are split up into a train-
ing process and an application or testing process. For learning schemes which
are capable of handling nominal attributes, this is not a problem. If a learn-
ing scheme like a SVM is used with nominal data, RapidMiner pretends that
nominal attributes are numerical and uses indices for the nominal values as their
numerical value. A SVM may perform well if there are only two possible values.
If a test set is read in another process, the nominal values may be assigned dif-
ferent indices, and hence the SVM trained is useless. This is not a problem for
label attributes, since the classes can be specified using the classes parameter
and hence, all learning schemes intended to use with nominal data are safe to
use.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 101

5.3.18 DirectMailingExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates data for testing purposes based on a direct
mailing data set.

Description: Generates a random example set for testing purposes. The data
represents a direct mailing example set.

5.3.19 ExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� target function: Specifies the target function of this example set

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

The RapidMiner 4.2 Tutorial

102 CHAPTER 5. OPERATOR REFERENCE

� number of attributes: The number of attributes. (integer; 1-+∞; de-
fault: 5)

� attributes lower bound: The minimum value for the attributes. (real;
-∞-+∞)

� attributes upper bound: The maximum value for the attributes. (real;
-∞-+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� datamanagement: Determines, how the data is represented internally.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates an example set based on numerical attributes.

Description: Generates a random example set for testing purposes. Uses a
subclass of TargetFunction to create the examples from the attribute values.
Possible target functions are: random, sum (of all attributes), polynomial (of
the first three attributes, degree 3), non linear, sinus, sinus frequency (like sinus,
but with frequencies in the argument), random classification, sum classification
(like sum, but positive for positive sum and negative for negative sum), inter-
action classification (positive for negative x or positive y and negative z), sinus
classification (positive for positive sinus values).

5.3.20 ExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� example set file: File to save the example set to. (filename)

� attribute description file: File to save the attribute descriptions to. (file-
name)

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 103

� format: Format to use for output.

� special format: Format string to use for output. (string)

� fraction digits: The number of fraction digits in the output file (-1: all
possible digits). (integer; -1-+∞; default: -1)

� quote whitespace: Indicates if nominal values containing whitespace char-
acters should be quoted with double quotes. (boolean; default: true)

� zipped: Indicates if the data file content should be zipped. (boolean; de-
fault: false)

� append: Indicates if the data should be appended to an possible existing
data file. Otherwise the existing file will be overwritten. (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes the values of all examples to a file.

Description: Writes values of all examples in an ExampleSet to a file. Dense,
sparse, and user defined formats (specified by the parameter ’format’) can be
used. Attribute description files may be generated for dense and sparse format
as well. These formats can be read using the ExampleSource (see section
5.3.21) and SparseFormatExampleSource (see section 5.3.41) operators.

dense: Each line of the generated data file is of the form

regular attributes <special attributes>

For example, each line could have the form

value1 value2 ... valueN <id> <label> <prediction> ... <confidences>

Values in parenthesis are optional and are only printed if they are available.
The confidences are only given for nominal predictions. Other special
attributes might be the example weight or the cluster number.

The RapidMiner 4.2 Tutorial

104 CHAPTER 5. OPERATOR REFERENCE

sparse: Only non 0 values are written to the file, prefixed by a column index.
See the description of SparseFormatExampleSource (see section
5.3.41) for details.

special: Using the parameter ’special format’, the user can specify the exact
format. The $ sign has a special meaning and introduces a command
(the following character) Additional arguments to this command may be
supplied enclosing it in square brackets.

$a: All attributes separated by the default separator

$a[separator]: All attributes separated by separator

$s[separator][indexSeparator]: Sparse format. For all non zero attributes
the following strings are concatenated: the column index, the value
of indexSeparator, the attribute value. Attributes are separated by
separator.

$v[name]: The value of the attribute with the given name (both regular
and special attributes)

$k[index]: The value of the attribute with the given index

$l: The label

$p: The predicted label

$d: All prediction confidences for all classes in the form conf(class)=value

$d[class]: The prediction confidence for the defined class as a simple
number

$i: The id

$w: The weight

$b: The batch number

$n: The newline character

$t: The tabulator character

$$: The dollar sign

$[: The ’[’ character

$]: The ’]’ character

Make sure the format string ends with $n if you want examples to be
separated by newlines!

5.3.21 ExampleSource

Group: IO.Examples

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 105

Generated output:

� ExampleSet

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� attributes: Filename for the xml attribute description file. This file also
contains the names of the files to read the data from. (attribute filename)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 =
use sample ratio; if not -1, sample ratio will not have any effect) (integer;
-1-+∞; default: -1)

� datamanagement: Determines, how the data is represented internally.

� column separators: Column separators for data files (regular expression)
(string; default: ’,\s*|;\s*|\s+’)

� use comment characters: Indicates if qa comment character should be
used. (boolean; default: true)

� comment chars: Any content in a line after one of these characters will
be ignored. (string; default: ’#’)

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

� use quotes: Indicates if quotes should be regarded. (boolean; default:
true)

� trim lines: Indicates if lines should be trimmed (empty spaces are removed
at the beginning and the end) before the column split is performed.
(boolean; default: false)

� permutate: Indicates if the loaded data should be permutated. (boolean;
default: false)

� local random seed: Use the given random seed instead of global random
numbers (only for permutation, -1: use global). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

106 CHAPTER 5. OPERATOR REFERENCE

Short description: This operator reads an example set from file. The operator
can be configured to read almost all file formats.

Description: This operator reads an example set from (a) file(s). Probably
you can use the default parameter values for the most file formats (including the
format produced by the ExampleSetWriter, CSV, ...). Please refer to section
3.4 for details on the attribute description file set by the parameter attributes
used to specify attribute types.

This operator supports the reading of data from multiple source files. Each
attribute (including special attributes like labels, weights, ...) might be read
from another file. Please note that only the minimum number of lines of all
files will be read, i.e. if one of the data source files has less lines than the others,
only this number of examples will be read.

The split points can be defined with regular expressions (please refer to the
Java API). The default split parameter “,\s*|;\s*|\s+“ should work for most
file formats. This regular expression describes the following column separators

� the character “,“ followed by a whitespace of arbitrary length (also no
white space)

� the character “;“ followed by a whitespace of arbitrary length (also no
white space)

� a whitespace of arbitrary length (min. 1)

A logical XOR is defined by “|“. Other useful separators might be “\t” for
tabulars, “ “ for a single whitespace, and “\s” for any whitespace.

Quoting is also possible with “. However, since using quotes might slow down
the parsing it is therefore recommended to ensure that the split characters are
not included in the data columns and that quotes are not needed.

Additionally you can specify comment characters which can be used at arbitrary
locations of the data lines. Any content after the comment character will be
ignored. Unknown attribute values can be marked with empty strings (if this is
possible for your column separators) or by a question mark (recommended).

5.3.22 ExcelExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 107

Parameters:

� excel file: The Excel spreadsheet file which should be written. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator writes an example set to Excel spreadsheet
files.

Description: This operator can be used to write data into Microsoft Excel
spreadsheets. This operator creates Excel files readable by Excel 95, 97, 2000,
XP, 2003 and newer. Missing data values are indicated by empty cells.

5.3.23 ExcelExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� excel file: The Excel spreadsheet file which should be loaded. (filename)

� sheet number: The number of the sheet which should be imported. (in-
teger; 0-+∞; default: 0)

� first row as names: Indicates if the first row should be used for the at-
tribute names. (boolean; default: false)

� label column: Indicates which column should be used for the label at-
tribute (0: no label) (integer; 0-+∞; default: 0)

� id column: Indicates which column should be used for the Id attribute (0:
no id) (integer; 0-+∞; default: 0)

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

� datamanagement: Determines, how the data is represented internally.

The RapidMiner 4.2 Tutorial

108 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator reads an example set from Excel spreadsheet
files.

Description: This operator can be used to load data from Microsoft Excel
spreadsheets. This operator is able to reads data from Excel 95, 97, 2000, XP,
and 2003. The user has to define which of the spreadsheets in the workbook
should be used as data table. The table must have a format so that each line is
an example and each column represents an attribute. Please note that the first
line might be used for attribute names which can be indicated by a parameter.

The data table can be placed anywhere on the sheet and is allowed to contain
arbitrary formatting instructions, empty rows, and empty columns. Missing data
values are indicated by empty cells or by cells containing only “¿‘.

5.3.24 GnuplotWriter

Group: IO.Other

Parameters:

� output file: The gnuplot file. (filename)

� name: The name of the process log operator which produced the data
table. (string)

� title: The title of the plot. (string; default: ’Created by RapidMiner’)

� x axis: The values of the x-axis. (string)

� y axis: The values of the y-axis (for 3d plots). (string)

� values: A whitespace separated list of values which should be plotted.
(string)

� additional parameters: Additional parameters for the gnuplot header. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 109

Short description: Creates gnuplot files from the data generated by a process
log operator.

Description: Writes the data generated by a ProcessLogOperator to a file in
gnuplot format.

5.3.25 IOContainerReader

Group: IO.Other

Parameters:

� filename: Name of file to write the output to. (filename)

� method: Append or prepend the contents of the file to this operators input
or replace this operators input?

� logfile: Name of file to read log information from (optional). (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads an IOContainer from a file.

Description: Reads all elements of an IOContainer from a file. The file must
be written by an IOContainerWriter (see section 5.3.26).

The operator additionally supports to read text from a logfile, which will be given
to the RapidMiner LogService. Hence, if you add a IOContainerWriter to
the end of an process and set the logfile in the process root operator, the
output of applying the IOContainerReader will be quite similar to what the
original process displayed.

5.3.26 IOContainerWriter

Group: IO.Other

Parameters:

The RapidMiner 4.2 Tutorial

110 CHAPTER 5. OPERATOR REFERENCE

� filename: Name of file to write the output to. (filename)

� zipped: Indicates if the file content should be zipped. (boolean; default:
true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes all current IO objects to a file.

Description: Writes all elements of the current IOContainer, i.e. all objects
passed to this operator, to a file. Although this operator uses an XML serializa-
tion mechanism, the files produced for different RapidMiner versions might
not be compatible. At least different Java versions should not be a problem
anymore.

5.3.27 IOObjectReader

Group: IO.Other

Generated output:

� IOObject

Parameters:

� object file: Filename of the object file. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generic reader for all types of IOObjects.

Description: Generic reader for all types of IOObjects. Reads an IOObject
from a file.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 111

5.3.28 IOObjectWriter

Group: IO.Other

Parameters:

� object file: Filename of the object file. (filename)

� io object: The class of the object(s) which should be saved.

� write which: Defines which input object should be written. (integer; 1-
+∞; default: 1)

� output type: Indicates the type of the output

� continue on error: Defines behavior on errors (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generic writer for all types of IOObjects.

Description: Generic writer for all types of IOObjects. Writes one of the input
objects into a given file.

5.3.29 MassiveDataGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 0-+∞;
default: 10000)

� number attributes: The number of attributes. (integer; 0-+∞; default:
10000)

� sparse fraction: The fraction of default attributes. (real; 0.0-1.0)

The RapidMiner 4.2 Tutorial

112 CHAPTER 5. OPERATOR REFERENCE

� sparse representation: Indicates if the example should be internally rep-
resented in a sparse format. (boolean; default: true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates huge amounts of data for testing purposes.

Description: Generates huge amounts of data in either sparse or dense format.
This operator can be used to check if huge amounts of data can be handled by
RapidMiner for a given process setup without creating the correct format /
writing special purpose input operators.

5.3.30 ModelLoader

Group: IO.Models

Generated output:

� Model

Parameters:

� model file: Filename containing the model to load. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a model from a given file.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 113

Description: Reads a Model from a file that was generated by an operator like
Learner in a previous process. Once a model is generated, it can be applied sev-
eral times to newly acquired data using a model loader, an ExampleSource
(see section 5.3.21), and a ModelApplier (see section 5.1.1).

5.3.31 ModelWriter

Group: IO.Models

Required input:

� Model

Generated output:

� Model

Parameters:

� model file: Filename for the model file. (filename)

� overwrite existing file: Overwrite an existing file. If set to false then an
index is appended to the filename. (boolean; default: true)

� output type: Indicates the type of the output

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes a model to a given file.

Description: Writes the input model in the file specified by the corresponding
parameter. Since models are often written into files and loaded and applied
in other processes or applications, this operator offers three different writing
modes for models:

� XML: in this mode, the models are written as plain text XML files. The
file size is usually the biggest in this mode (might be several hundred mega
bytes so you should be cautious) but this model type has the advantage
that the user can inspect and change the files.

� XML Zipped (default): In this mode, the models are written as zipped
XML files. Users can simply unzip the files and read or change the con-
tents. The file sizes are smallest for most models. For these reasons, this

The RapidMiner 4.2 Tutorial

114 CHAPTER 5. OPERATOR REFERENCE

mode is the default writing mode for models although the loading times
are the longest due to the XML parsing and unzipping.

� Binary : In this mode, the models are written in an proprietary binary
format. The resulting model files cannot be inspected by the user and
the file sizes are usually slightly bigger then for the zipped XML files.
The loading time, however, is smallers than the time needed for the other
modes.

This operator is also able to keep old files if the overwriting flag is set to false.
However, this could also be achieved by using some of the parameter macros
provided by RapidMiner like

5.3.32 MultipleLabelGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� regression: Defines if multiple labels for regression tasks should be gener-
ated. (boolean; default: false)

� attributes lower bound: The minimum value for the attributes. (real;
-∞-+∞)

� attributes upper bound: The maximum value for the attributes. (real;
-∞-+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 115

Short description: Generates an example set based on numerical attributes
and with more than one label.

Description: Generates a random example set for testing purposes with more
than one label.

5.3.33 NominalExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� number of attributes: The number of attributes. (integer; 0-+∞; de-
fault: 5)

� number of values: The number of nominal values for each attribute. (in-
teger; 0-+∞; default: 5)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates an example set based on nominal attributes.

Description: Generates a random example set for testing purposes. All at-
tributes have only (random) nominal values and a classification label.

5.3.34 ParameterSetLoader

Group: IO.Other

The RapidMiner 4.2 Tutorial

116 CHAPTER 5. OPERATOR REFERENCE

Generated output:

� ParameterSet

Parameters:

� parameter file: A file containing a parameter set. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a parameter set from a file.

Description: Reads a set of parameters from a file that was written by a Pa-
rameterOptimizationOperator. It can then be applied to the operators
of the process using a ParameterSetter (see section 5.5.18).

5.3.35 ParameterSetWriter

Group: IO.Other

Required input:

� ParameterSet

Generated output:

� ParameterSet

Parameters:

� parameter file: A file containing a parameter set. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes a parameter set into a file.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 117

Description: Writes a parameter set into a file. This can be created by one of
the parameter optimization operators, e.g. GridParameterOptimization
(see section 5.5.10). It can then be applied to the operators of the process using
a ParameterSetter (see section 5.5.18).

5.3.36 PerformanceLoader

Group: IO.Results

Generated output:

� PerformanceVector

Parameters:

� performance file: Filename for the performance file. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to load a performance vector
from a file.

Description: Reads a performance vector from a given file. This performance
vector must have been written before with a PerformanceWriter (see
section 5.3.37).

5.3.37 PerformanceWriter

Group: IO.Results

Required input:

� PerformanceVector

Generated output:

� PerformanceVector

Parameters:

� performance file: Filename for the performance file. (filename)

The RapidMiner 4.2 Tutorial

118 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to write the input performance
into a file.

Description: Writes the input performance vector in a given file. You also
might want to use the ResultWriter (see section 5.3.38) operator which
writes all current results in the main result file.

5.3.38 ResultWriter

Group: IO.Results

Parameters:

� result file: Appends the descriptions of the input objects to this file. If
empty, use the general file defined in the process root operator. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used at each point in an operator
chain and and writes current results to the console or to a file.

Description: This operator can be used at each point in an operator chain.
It returns all input it receives without any modification. Every input object
which implements the ResultObject interface (which is the case for almost all
objects generated by the core RapidMiner operators) will write its results to
the file specified by the parameter result file. If the definition of this parameter
is ommited then the global result file parameter with the same name of the
ProcessRootOperator (the root of the process) will be used. If this file is also
not specified the results are simply written to the console (standard out).

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 119

5.3.39 SPSSExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� filename: Name of the file to read the data from. (filename)

� datamanagement: Determines, how the data is represented internally.

� attribute naming mode: Determines which SPSS variable properties should
be used for attribute naming.

� use value labels: Use SPSS value labels as values. (boolean; default:
true)

� recode user missings: Recode SPSS user missings to missing values. (boolean;
default: true)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 = all;
if not -1, sample ratio will not have any effect) (integer; -1-+∞; default:
-1)

� local random seed: Use the given random seed instead of global random
numbers (for sampling by ratio, -1: use global). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read SPSS data files.

Description: This operator can read spss files.

The RapidMiner 4.2 Tutorial

120 CHAPTER 5. OPERATOR REFERENCE

5.3.40 SimpleExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� filename: Name of the file to read the data from. (filename)

� read attribute names: Read attribute names from file (assumes the at-
tribute names are in the first line of the file). (boolean; default: false)

� label name: Name of the label attribute (if empty, the column defined by
label column will be used) (string)

� label column: Column number of the label attribute (only used if la-
bel name is empty; 0 = none; negative values are counted from the last
column) (integer; -2147483648-+∞; default: 0)

� id name: Name of the id attribute (if empty, the column defined by id column
will be used) (string)

� id column: Column number of the id attribute (only used if id name is
empty; 0 = none; negative values are counted from the last column)
(integer; -2147483648-+∞; default: 0)

� weight name: Name of the weight attribute (if empty, the column defined
by weight column will be used) (string)

� weight column: Column number of the weight attribute (only used if
weight name is empty; 0 = none, negative values are counted from the
last column) (integer; -2147483648-+∞; default: 0)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 =
use sample ratio; if not -1, sample ratio will not have any effect) (integer;
-1-+∞; default: -1)

� datamanagement: Determines, how the data is represented internally.

� column separators: Column separators for data files (regular expression)
(string; default: ’,\s*|;\s*|\s+’)

� use comment characters: Indicates if qa comment character should be
used. (boolean; default: true)

� comment chars: Lines beginning with these characters are ignored. (string;
default: ’#’)

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 121

� use quotes: Indicates if quotes should be regarded (slower!). (boolean;
default: false)

� trim lines: Indicates if lines should be trimmed (empty spaces are removed
at the beginning and the end) before the column split is performed.
(boolean; default: false)

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator reads an example set from file. It is a simpler
version of the ExampleSource operator.

Description: This operator reads an example set from (a) file(s). Probably
you can use the default parameter values for the most file formats (including
the format produced by the ExampleSetWriter, CSV, ...). In fact, in many
cases this operator is more appropriate for CSV based file formats than the
CSVExampleSource (see section 5.3.10) operator itself.

In contrast to the usual ExampleSource operator this operator is able to read
the attribute names from the first line of the data file. However, there is one
restriction: the data can only be read from one file instead of multiple files.
If you need a fully flexible operator for data loading you should use the more
powerful ExampleSource operator.

The column split points can be defined with regular expressions (please refer to
the Java API). The default split parameter “,\s*|;\s*|\s+“ should work for most
file formats. This regular expression describes the following column separators

� the character “,“ followed by a whitespace of arbitrary length (also no
white space)

� the character “;“ followed by a whitespace of arbitrary length (also no
white space)

� a whitespace of arbitrary length (min. 1)

A logical XOR is defined by “|“. Other useful separators might be “\t” for
tabulars, “ “ for a single whitespace, and “\s” for any whitespace.

The RapidMiner 4.2 Tutorial

122 CHAPTER 5. OPERATOR REFERENCE

Quoting is also possible with “. However, using quotes slows down parsing and is
therefore not recommended. The user should ensure that the split characters are
not included in the data columns and that quotes are not needed. Additionally
you can specify comment characters which can be used at arbitrary locations of
the data lines. Unknown attribute values can be marked with empty strings or
a question mark.

5.3.41 SparseFormatExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� format: Format of the sparse data file.

� attribute description file: Name of the attribute description file. (file-
name)

� data file: Name of the data file. Only necessary if not specified in the
attribute description file. (filename)

� label file: Name of the data file containing the labels. Only necessary if
format is ’format separate file’. (filename)

� dimension: Dimension of the example space. Only necessary if parameter
’attribute description file’ is not set. (integer; -1-+∞; default: -1)

� sample size: The maximum number of examples to read from the data
files (-1 = all) (integer; -1-+∞; default: -1)

� datamanagement: Determines, how the data is represented internally.

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

� prefix map: Maps prefixes to names of special attributes. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads an example file in sparse format.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 123

Description: Reads an example file in sparse format, i.e. lines have the form

label index:value index:value index:value...

Index may be an integer (starting with 1) for the regular attributes or one of
the prefixes specified by the parameter list prefix map. Four possible formats
are supported

format xy: The label is the last token in each line

format yx: The label is the first token in each line

format prefix: The label is prefixed by ’l:’

format separate file: The label is read from a separate file specified by label file

no label: The example set is unlabeled.

A detailed introduction to the sparse file format is given in section 3.4.1.

5.3.42 StataExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� filename: Name of the file to read the data from. (filename)

� datamanagement: Determines, how the data is represented internally.

� attribute naming mode: Determines which variable properties should be
used for attribute naming.

� handle value labels: Specifies how to handle attributes with value labels,
i.e. whether to ignore the labels or how to use them.

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 = all;
if not -1, sample ratio will not have any effect) (integer; -1-+∞; default:
-1)

The RapidMiner 4.2 Tutorial

124 CHAPTER 5. OPERATOR REFERENCE

� local random seed: Use the given random seed instead of global random
numbers (for sampling by ratio, -1: use global). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read Stata data files.

Description: This operator can read stata files. Currently only stata files of
version 113 or 114 are supported.

5.3.43 TeamProfitExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates data for testing purposes based on a team profit
data set.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 125

Description: Generates a random example set for testing purposes. The data
represents a team profit example set.

5.3.44 ThresholdLoader

Group: IO.Other

Generated output:

� Threshold

Parameters:

� threshold file: Filename for the threshold file. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Loads a threshold from a file (used for transforming soft
into crisp predictions).

Description: Reads a threshold from a file. The first line must hold the
threshold, the second the value of the first class, and the second the value
of the second class. This file can be written in another process using the
ThresholdWriter (see section 5.3.45).

5.3.45 ThresholdWriter

Group: IO.Other

Required input:

� Threshold

Generated output:

� Threshold

Parameters:

� threshold file: Filename for the threshold file. (filename)

The RapidMiner 4.2 Tutorial

126 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes a threshold to a file (used for transforming soft
into crisp predictions).

Description: Writes the given threshold into a file. The first line holds the
threshold, the second the value of the first class, and the second the value of
the second class. This file can be read in another process using the Thresh-
oldLoader (see section 5.3.44).

5.3.46 TransfersExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� create fraud label: Indicates if a label should be created for possible frauds.
(boolean; default: false)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates data for testing purposes based on a transfers
data set.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 127

Description: Generates a random example set for testing purposes. The data
represents a team profit example set.

5.3.47 UpSellingExampleSetGenerator

Group: IO.Generator

Generated output:

� ExampleSet

Parameters:

� number examples: The number of generated examples. (integer; 1-+∞;
default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates data for testing purposes based on an up-selling
data set.

Description: Generates a random example set for testing purposes. The data
represents an up-selling example set.

5.3.48 WekaModelLoader

Group: IO.Models

Generated output:

� Model

Parameters:

The RapidMiner 4.2 Tutorial

128 CHAPTER 5. OPERATOR REFERENCE

� model file: Filename containing the Weka model to load. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a Weka model from a given file.

Description: This operator reads in model files which were saved from the
Weka toolkit. For models learned within RapidMiner please use always the
ModelLoader (see section 5.3.30) operator even it the used learner was
originally a Weka learner.

5.3.49 XrffExampleSetWriter

Group: IO.Examples

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� example set file: File to save the example set to. (filename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Writes the values of all examples into an XRFF-file.

Description: Writes values of all examples into an XRFF file which can be
used by the machine learning library Weka. The XRFF format is described in
the XrffExampleSource (see section 5.3.50) operator which is able to read
XRFF files to make them usable with RapidMiner.

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 129

Please note that writing attribute weights is not supported, please use the other
RapidMiner operators for attribute weight loading and writing for this pur-
pose.

5.3.50 XrffExampleSource

Group: IO.Examples

Generated output:

� ExampleSet

Parameters:

� data file: The path to the data file. (filename)

� id attribute: The (case sensitive) name of the id attribute (string)

� datamanagement: Determines, how the data is represented internally.

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

� sample ratio: The fraction of the data set which should be read (1 = all;
only used if sample size = -1) (real; 0.0-1.0)

� sample size: The exact number of samples which should be read (-1 =
use sample ratio; if not -1, sample ratio will not have any effect) (integer;
-1-+∞; default: -1)

� local random seed: Use the given random seed instead of global random
numbers (only for permutation, -1: use global). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can read xrff files.

Description: This operator can read XRFF files known from Weka. The XRFF
(eXtensible attribute-Relation File Format) is an XML-based extension of the

The RapidMiner 4.2 Tutorial

130 CHAPTER 5. OPERATOR REFERENCE

ARFF format in some sense similar to the original RapidMiner file format for
attribute description files (.aml).

Here you get a small example for the IRIS dataset represented as XRFF file:

<?xml version="1.0" encoding="utf-8"?>
<dataset name="iris" version="3.5.3">
<header>

<attributes>
<attribute name="sepallength" type="numeric"/>
<attribute name="sepalwidth" type="numeric"/>
<attribute name="petallength" type="numeric"/>
<attribute name="petalwidth" type="numeric"/>
<attribute class="yes" name="class" type="nominal">

<labels>
<label>Iris-setosa</label>
<label>Iris-versicolor</label>
<label>Iris-virginica</label>

</labels>
</attribute>

</attributes>
</header>

<body>
<instances>

<instance>
<value>5.1</value>
<value>3.5</value>
<value>1.4</value>
<value>0.2</value>
<value>Iris-setosa</value>

</instance>
<instance>

<value>4.9</value>
<value>3</value>
<value>1.4</value>
<value>0.2</value>
<value>Iris-setosa</value>

</instance>
...

</instances>
</body>
</dataset>

July 14, 2008

5.3. INPUT/OUTPUT OPERATORS 131

Please note that the sparse XRFF format is currently not supported, please use
one of the other options for sparse data files provided by RapidMiner.

Since the XML representation takes up considerably more space since the data is
wrapped into XML tags, one can also compress the data via gzip. RapidMiner
automatically recognizes a file being gzip compressed, if the file’s extension is
.xrff.gz instead of .xrff.

Similar to the native RapidMiner data definition via .aml and almost arbi-
trary data files, the XRFF format contains some additional features. Via the
class=”yes” attribute in the attribute specification in the header, one can de-
fine which attribute should used as a prediction label attribute. Although the
RapidMiner terminus for such classes is “label” instead of “class” we support
the terminus class in order to not break compatibility with original XRFF files.

Please note that loading attribute weights is currently not supported, please use
the other RapidMiner operators for attribute weight loading and writing for
this purpose.

Instance weights can be defined via a weight XML attribute in each instance
tag. By default, the weight is 1. Here’s an example:

<instance weight="0.75">
<value>5.1</value>
<value>3.5</value>
<value>1.4</value>
<value>0.2</value>
<value>Iris-setosa</value>
</instance>

Since the XRFF format does not support id attributes one have to use one of
the RapidMiner operators in order to change on of the columns to the id
column if desired. This has to be done after loading the data.

The RapidMiner 4.2 Tutorial

132 CHAPTER 5. OPERATOR REFERENCE

5.4 Learning schemes

Acquiring knowledge is fundamental for the development of intelligent systems.
The operators described in this section were designed to automatically discover
hypotheses to be used for future decisions. They can learn models from the
given data and apply them to new data to predict a label for each observation
in an unpredicted example set. The ModelApplier can be used to apply
these models to unlabelled data.

Additionally to some learning schemes and meta learning schemes directly im-
plemented in RapidMiner, all learning operators provided by Weka are also
available as RapidMiner learning operators.

5.4.1 AdaBoost

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� iterations: The maximum number of iterations. (integer; 1-+∞; default:
10)

Values:

� applycount: The number of times the operator was applied.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The performance.

� time: The time elapsed since this operator started.

Learner capabilities: weighted examples

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

July 14, 2008

5.4. LEARNING SCHEMES 133

Short description: Boosting operator allowing all learners (not restricted to
Weka learners).

Description: This AdaBoost implementation can be used with all learners
available in RapidMiner, not only the ones which originally are part of the
Weka package.

5.4.2 AdditiveRegression

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� iterations: The number of iterations. (integer; 1-+∞; default: 10)

� shrinkage: Reducing this learning rate prevent overfitting but increases the
learning time. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Additive regression operator allowing all learners (not re-
stricted to Weka learners).

The RapidMiner 4.2 Tutorial

134 CHAPTER 5. OPERATOR REFERENCE

Description: This operator uses regression learner as a base learner. The
learner starts with a default model (mean or mode) as a first prediction model.
In each iteration it learns a new base model and applies it to the example set.
Then, the residuals of the labels are calculated and the next base model is
learned. The learned meta model predicts the label by adding all base model
predictions.

5.4.3 AgglomerativeClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� measure: similarity measure to apply

� mode: the cluster similarity criterion (class) to use

� min items: The minimal number of items in a cluster. Clusters with less
items are merged. (integer; 1-+∞; default: 2)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Agglomerative buttom-up clustering

Description: This operator performs generic agglomorative clustering based
on a set of ids and a similarity measure. The algorithm implemented here is
currently very simple and not very efficient (cubic).

5.4.4 AgglomerativeFlatClustering

Group: Learner.Unsupervised.Clustering

July 14, 2008

5.4. LEARNING SCHEMES 135

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� measure: similarity measure to apply

� mode: the cluster similarity criterion (class) to use

� k: the maximal number of clusters (integer; 2-+∞; default: 2)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Agglomerative buttom-up clustering producing a flat clus-
tering

Description: This operator performs generic agglomorative clustering based
on a set of ids and a similarity measure. Clusters are merged as long as their
number is lower than a given maximum number of clusters. The algorithm
implemented here is currently very simple and not very efficient (cubic).

5.4.5 AssociationRuleGenerator

Group: Learner.Unsupervised.Itemsets

Required input:

� FrequentItemSets

Generated output:

� FrequentItemSets

� AssociationRules

Parameters:

The RapidMiner 4.2 Tutorial

136 CHAPTER 5. OPERATOR REFERENCE

� keep frequent item sets: Indicates if this input object should also be re-
turned as output. (boolean; default: false)

� min confidence: The minimum confidence of the rules (real; 0.0-1.0)

� gain theta: The Parameter Theta in Gain calculation (real; -∞-+∞)

� laplace k: The Parameter k in LaPlace function calculation (real; 1.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator generated a set of association rules for a
given set of frequent item sets.

Description: This operator generates association rules from frequent item
sets. In RapidMiner, the process of frequent item set mining is divided into
two parts: first, the generation of frequent item sets and second, the generation
of association rules from these sets.

For the generation of frequent item sets, you can use for example the operator
FPGrowth (see section 5.4.26). The result will be a set of frequent item sets
which could be used as input for this operator.

5.4.6 AttributeBasedVote

Group: Learner.Supervised.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 137

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Short description: Actually no learning scheme since the prediction is the
average of all attribute values.

Description: AttributeBasedVotingLearner is very lazy. Actually it does not
learn at all but creates an AttributeBasedVotingModel. This model simply
calculates the average of the attributes as prediction (for regression) or the
mode of all attribute values (for classification). AttributeBasedVotingLearner
is especially useful if it is used on an example set created by a meta learning
scheme, e.g. by Vote (see section 5.4.67).

5.4.7 Bagging

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� sample ratio: Fraction of examples used for training. Must be greater
than 0 and should be lower than 1. (real; 0.0-1.0)

� iterations: The number of iterations (base models). (integer; 1-+∞; de-
fault: 10)

� average confidences: Specifies whether to average available prediction
confidences or not. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

138 CHAPTER 5. OPERATOR REFERENCE

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Bagging operator allowing all learners (not restricted to
Weka learners).

Description: This Bagging implementation can be used with all learners avail-
able in RapidMiner, not only the ones which originally are part of the Weka
package.

5.4.8 BasicRuleLearner

Group: Learner.Supervised.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� pureness: The desired pureness, i.e. the necessary amount of the major
class in a covered subset in order become pure. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns a set of rules minimizing the training error without
pruning.

July 14, 2008

5.4. LEARNING SCHEMES 139

Description: This operator builds an unpruned rule set of classification rules.
It is based on the paper Cendrowska, 1987: PRISM: An algorithm for inducing
modular rules.

5.4.9 BayesianBoosting

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� rescale label priors: Specifies whether the proportion of labels should be
equal by construction after first iteration . (boolean; default: false)

� use subset for training: Fraction of examples used for training, remaining
ones are used to estimate the confusion matrix. Set to 1 to turn off test
set. (real; 0.0-1.0)

� iterations: The maximum number of iterations. (integer; 1-+∞; default:
10)

� allow marginal skews: Allow to skew the marginal distribution (P(x))
during learning. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The performance.

� time: The time elapsed since this operator started.

Learner capabilities: weighted examples

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

The RapidMiner 4.2 Tutorial

140 CHAPTER 5. OPERATOR REFERENCE

Short description: Boosting operator based on Bayes’ theorem.

Description: This operator trains an ensemble of classifiers for boolean target
attributes. In each iteration the training set is reweighted, so that previously
discovered patterns and other kinds of prior knowledge are “sampled out” [25].
An inner classifier, typically a rule or decision tree induction algorithm, is se-
quentially applied several times, and the models are combined to a single global
model. The number of models to be trained maximally are specified by the
parameter iterations.

If the parameter rescale label priors is set, then the example set is reweighted,
so that all classes are equally probable (or frequent). For two-class problems this
turns the problem of fitting models to maximize weighted relative accuracy into
the more common task of classifier induction [24]. Applying a rule induction
algorithm as an inner learner allows to do subgroup discovery. This option is
also recommended for data sets with class skew, if a “very weak learner” like a
decision stump is used. If rescale label priors is not set, then the operator
performs boosting based on probability estimates.

The estimates used by this operator may either be computed using the same
set as for training, or in each iteration the training set may be split randomly,
so that a model is fitted based on the first subset, and the probabilities are
estimated based on the second. The first solution may be advantageous in
situations where data is rare. Set the parameter ratio internal bootstrap
to 1 to use the same set for training as for estimation. Set this parameter to a
value of lower than 1 to use the specified subset of data for training, and the
remaining examples for probability estimation.

If the parameter allow marginal skews is not set, then the support of each
subset defined in terms of common base model predictions does not change from
one iteration to the next. Analogously the class priors do not change. This is
the procedure originally described in [25] in the context of subgroup discovery.

Setting the allow marginal skews option to true leads to a procedure that
changes the marginal weights/probabilities of subsets, if this is beneficial in
a boosting context, and stratifies the two classes to be equally likely. As for
AdaBoost, the total weight upper-bounds the training error in this case. This
bound is reduced more quickly by the BayesianBoosting operator, however.

In sum, to reproduce the sequential sampling, or knowledge-based sampling,
from [25] for subgroup discovery, two of the default parameter settings of this
operator have to be changed: rescale label priors must be set to true,
and allow marginal skews must be set to false. In addition, a boolean
(binomial) label has to be used.

The operator requires an example set as its input. To sample out prior knowl-

July 14, 2008

5.4. LEARNING SCHEMES 141

edge of a different form it is possible to provide another model as an optional
additional input. The predictions of this model are used to weight produce an
initial weighting of the training set. The ouput of the operator is a classification
model applicable for estimating conditional class probabilities or for plain crisp
classification. It contains up to the specified number of inner base models. In
the case of an optional initial model, this model will also be stored in the output
model, in order to produce the same initial weighting during model application.

5.4.10 BestRuleInduction

Group: Learner.Supervised.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� max depth: An upper bound for the number of literals. (integer; 1-+∞;
default: 2)

� utility function: The function to be optimized by the rule.

� max cache: Bounds the number of rules considered per depth to avoid
high memory consumption, but leads to incomplete search. (integer; 1-
+∞; default: 10000)

� relative to predictions: Searches for rules with a maximum difference to
the predited label. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label, weighted examples

Short description: Returns a best conjunctive rule with respect to the WRAcc
metric for boolean prediction problems and polynomial attributes.

The RapidMiner 4.2 Tutorial

142 CHAPTER 5. OPERATOR REFERENCE

Description: This operator returns the best rule regarding WRAcc using ex-
haustive search. Features like the incorporation of other metrics and the search
for more than a single rule are prepared.

The search strategy is BFS, with save pruning whenever applicable. This oper-
ator can easily be extended to support other search strategies.

5.4.11 Binary2MultiClassLearner

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� classification strategies: What strategy should be used for multi class
classifications?

� random code multiplicator: A multiplicator regulating the codeword length
in random code modus. (real; 1.0-+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal label

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Builds a classification model for multiple classes based on
a binary learner.

July 14, 2008

5.4. LEARNING SCHEMES 143

Description: A metaclassifier for handling multi-class datasets with 2-class
classifiers. This class supports several strategies for multiclass classification
including procedures which are capable of using error-correcting output codes
for increased accuracy.

5.4.12 BregmanHardClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: The number of clusters which should be found. (integer; 2-+∞; default:
2)

� max runs: The maximal number of runs of this operator with random
initialization that are performed. (integer; 1-+∞; default: 5)

� max optimization steps: The maximal number of iterations performed
for one run of this operator. (integer; 1-+∞; default: 100)

� bregman divergence: The Bregman Divergence

� local random seed: The local random seed (-1: use global random seed)
(integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with Bregman Hard Clustering

The RapidMiner 4.2 Tutorial

144 CHAPTER 5. OPERATOR REFERENCE

Description: This operator represents an implementation of the Bregman
Hard Clustering.

5.4.13 CHAID

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

� maximal depth: The maximum tree depth (-1: no bound) (integer; -1-
+∞; default: 10)

� confidence: The confidence level used for the pessimistic error calculation
of pruning. (real; 1.0E-7-0.5)

� no pruning: Disables the pruning and delivers an unpruned tree. (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns a pruned decision tree based on a chi squared at-
tribute relevance test.

July 14, 2008

5.4. LEARNING SCHEMES 145

Description: The CHAID decision tree learner works like the DecisionTree
(see section 5.4.20) with one exception: it used a chi squared based criterion
instead of the information gain or gain ratio criteria.

5.4.14 ClassificationByRegression

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal label, binominal label, numerical label

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: This operator chain must contain a regression learner and
allows to learn classifications tasks with more than two classes.

Description: For a classified dataset (with possibly more than two classes)
builds a classifier using a regression method which is specified by the inner
operator. For each class i a regression model is trained after setting the label
to +1 if the label equals i and to −1 if it is not. Then the regression models
are combined into a classification model. In order to determine the prediction
for an unlabeled example, all models are applied and the class belonging to the
regression model which predicts the greatest value is chosen.

The RapidMiner 4.2 Tutorial

146 CHAPTER 5. OPERATOR REFERENCE

5.4.15 ClusterModel2ExampleSet

Group: Learner.Unsupervised.Clustering

Required input:

� ClusterModel

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� keep cluster model: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add label: should the cluster values be added as label as well (boolean;
default: false)

� delete unlabeled: delete the unlabelled examples (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Labels an example set with the cluster ids from a given
cluster model.

Description: Labels an example set with the cluster ids from a given cluster
model.

5.4.16 ClusterModel2Similarity

Group: Learner.Unsupervised.Clustering.Similarity

Required input:

� ClusterModel

Generated output:

� SimilarityMeasure

Parameters:

� keep cluster model: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 147

� measure: measure used to convert a cluster model into a similarity

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Calculates a similarity measure from given cluster models.

Description: This operator converts a (hierarchical) cluster model to a simi-
larity measure.

5.4.17 CostBasedThresholdLearner

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� class weights: The weights for all classes (first column: class names, sec-
ond column: weight), empty: using 1 for all classes. The costs for not
classifying at all are defined with class name ’?’. (list)

� predict unknown costs: Use this cost value for predicting an example as
unknown (-1: use same costs as for correct class). (real; -1.0-+∞)

� training ratio: Use this amount of input data for model learning and the
rest for threshold optimization. (real; 0.0-1.0)

� number of iterations: Defines the number of optimization iterations. (in-
teger; 1-+∞; default: 200)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

The RapidMiner 4.2 Tutorial

148 CHAPTER 5. OPERATOR REFERENCE

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Determines confidence thresholds based on misclassifica-
tion costs, also possible to define costs for the option non-classified.

Description: This operator uses a set of class weights and also allows a weight
for the fact that an example is not classified at all (marked as unknown). Based
on the predictions of the model of the inner learner this operator optimized a
set of thresholds regarding the defined weights.

This operator might be very useful in cases where it is better to not classify an
example then to classify it in a wrong way. This way, it is often possible to get
very high accuracies for the remaining examples (which are actually classified)
for the cost of having some examples which must still be manually classified.

5.4.18 DBScanClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� min pts: The minimal number of points in each cluster. (integer; 0-+∞;
default: 2)

� max distance: maximal distance (real; 0.0-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 149

� measure: similarity measure to apply

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with DBSCAN

Description: This operator represents a simple implementation of the DB-
SCAN algorithm. [4]).

5.4.19 DecisionStump

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
1)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

The RapidMiner 4.2 Tutorial

150 CHAPTER 5. OPERATOR REFERENCE

Short description: Learns only a root node of a decision tree. Can be very
efficient when boosted.

Description: This operator learns decision stumps, i.e. a small decision tree
with only one single split. This decision stump works on both numerical and
nominal attributes.

5.4.20 DecisionTree

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

� maximal depth: The maximum tree depth (-1: no bound) (integer; -1-
+∞; default: 10)

� confidence: The confidence level used for the pessimistic error calculation
of pruning. (real; 1.0E-7-0.5)

� no pruning: Disables the pruning and delivers an unpruned tree. (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

July 14, 2008

5.4. LEARNING SCHEMES 151

Short description: Learns a pruned decision tree which can handle both nu-
merical and nominal attributes.

Description: This operator learns decision trees from both nominal and nu-
merical data. Decision trees are powerful classification methods which often can
also easily be understood. This decision tree learner works similar to Quinlan’s
C4.5 or CART.

The actual type of the tree is determined by the criterion, e.g. using gain ratio
or Gini for CART / C4.5.

5.4.21 DefaultLearner

Group: Learner.Supervised.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� method: The method to compute the default.

� constant: Value returned when method = constant. (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Short description: Learns a default value.

Description: This learner creates a model, that will simply predict a default
value for all examples, i.e. the average or median of the true labels (or the mode
in case of classification) or a fixed specified value. This learner can be used to
compare the results of “real” learning schemes with guessing.

The RapidMiner 4.2 Tutorial

152 CHAPTER 5. OPERATOR REFERENCE

5.4.22 EvoSVM

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter gamma (RBF, anova). (real;
0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (Epanechnikov, Gaus-
sian Combination, Multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel degree: The SVM kernel parameter degree (polynomial, anova,
Epanechnikov). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (polynomial, Multiquadric).
(real; -∞-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

� C: The SVM complexity constant (0: calculates probably good value).
(real; 0.0-+∞)

� epsilon: The width of the regression tube loss function of the regression
SVM (real; 0.0-+∞)

� start population type: The type of start population initialization.

� max generations: Stop after this many evaluations (integer; 1-+∞; de-
fault: 10000)

� generations without improval: Stop after this number of generations with-
out improvement (-1: optimize until max iterations). (integer; -1-+∞;
default: 30)

� population size: The population size (-1: number of examples) (integer;
-1-+∞; default: 1)

July 14, 2008

5.4. LEARNING SCHEMES 153

� tournament fraction: The fraction of the population used for tournament
selection. (real; 0.0-+∞)

� keep best: Indicates if the best individual should survive (elititst selection).
(boolean; default: true)

� mutation type: The type of the mutation operator.

� selection type: The type of the selection operator.

� crossover prob: The probability for crossovers. (real; 0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� hold out set ratio: Uses this amount as a hold out set to estimate gener-
alization error after learning (currently only used for multi-objective clas-
sification). (real; 0.0-1.0)

� show convergence plot: Indicates if a dialog with a convergence plot
should be drawn. (boolean; default: false)

� return optimization performance: Indicates if final optimization fitness
should be returned as performance. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, numerical label,
weighted examples

Short description: EvoSVM uses an Evolutionary Strategy for optimization.

Description: This is a SVM implementation using an evolutionary algorithm
(ES) to solve the dual optimization problem of a SVM. It turns out that on
many datasets this simple implementation is as fast and accurate as the usual
SVM implementations. In addition, it is also capable of learning with Kernels
which are not positive semi-definite and can also be used for multi-objective
learning which makes the selection of C unecessary before learning.

Mierswa, Ingo. Evolutionary Learning with Kernels: A Generic Solution for
Large Margin Problems. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2006), 2006.

The RapidMiner 4.2 Tutorial

154 CHAPTER 5. OPERATOR REFERENCE

5.4.23 ExampleSet2ClusterConstraintList

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterConstraintList

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� type: the type of constraints to create

� link mode: the policy how to choose link constraints

� link max must: the maximal number of MUST LINK constraints to create
(integer; 0-+∞; default: 100)

� link max cannot: the maximal number of CANNOT LINK constraints to
create (integer; 0-+∞; default: 100)

� link weight: the global weight of the created link constraints (real; 0.0-
+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with constrained k-means

Description: Creates a ClusterConstraintList of the specified type from a
(possibly partially) labeled ExampleSet. For the type ’link’ you can choose, if
you want the LinkClusterConstraints to be created randomly or orderly, always
bounded by the maximal number of constraints to create. Choosing ’random
walk’ the Must-Link-constraints for each label will form a connected component.

July 14, 2008

5.4. LEARNING SCHEMES 155

5.4.24 ExampleSet2ClusterModel

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� cluster attribute: The name of the cluster attribute (the attribute along
which the clusters are build. (string; default: ’cluster’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering based on one nominal attribute.

Description: Operator that clusters items along one given nominal attribute.

5.4.25 ExampleSet2Similarity

Group: Learner.Unsupervised.Clustering.Similarity

Required input:

� ExampleSet

Generated output:

� SimilarityMeasure

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

The RapidMiner 4.2 Tutorial

156 CHAPTER 5. OPERATOR REFERENCE

� measure: similarity measure to apply

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Calculates a similarity measure from the given data (at-
tribute based).

Description: This class represents an operator that creates a similarity mea-
sure based on an ExampleSet.

5.4.26 FPGrowth

Group: Learner.Unsupervised.Itemsets

Required input:

� ExampleSet

Generated output:

� FrequentItemSets

Parameters:

� keep example set: indicates if example set is kept (boolean; default: false)

� find min number of itemsets: Indicates if the support should be decreased
until the specified minimum number of frequent item sets is found. Oth-
erwise, FPGrowth simply uses the defined support. (boolean; default:
true)

� min number of itemsets: Indicates the minimum number of itemsets which
should be determined if the corresponding parameter is activated. (inte-
ger; 0-+∞; default: 100)

� min support: The minimal support necessary in order to be a frequent
item (set). (real; 0.0-1.0)

� max items: The upper bound for the length of the item sets (-1: no upper
bound) (integer; -1-+∞; default: -1)

� must contain: The items any generated rule must contain as regular ex-
pression. Empty if none. (string)

Values:

July 14, 2008

5.4. LEARNING SCHEMES 157

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This learner efficiently calculates all frequent item sets
from the given data.

Description: This operator calculates all frequent items sets from a data set
by building a FPTree data structure on the transaction data base. This is a
very compressed copy of the data which in many cases fits into main memory
even for large data bases. From this FPTree all frequent item set are derived.
A major advantage of FPGrowth compared to Apriori is that it uses only 2 data
scans and is therefore often applicable even on large data sets.

Please note that the given data set is only allowed to contain binominal at-
tributes, i.e. nominal attributes with only two different values. Simply use the
provided preprocessing operators in order to transform your data set. The nec-
essary operators are the discretization operators for changing the value types of
numerical attributes to nominal and the operator Nominal2Binominal for trans-
forming nominal attributes into binominal / binary ones. The frequent item
sets are mined for the positive entries in your data base, i.e. for those nominal
values which are defined as positive in your data base. If you use an attribute
description file (.aml) for the ExampleSource (see section 5.3.21) operator
this corresponds to the second value which is defined via the classes attribute
or inner value tags.

This operator has two basic working modes: finding at least the specified number
of item sets with highest support without taking the min support into account
(default) or finding all item sets with a support large than min support.

5.4.27 FlattenClusterModel

Group: Learner.Unsupervised.Clustering

Required input:

� ClusterModel

Generated output:

� ClusterModel

Parameters:

� k: the maximal number of clusters (integer; 2-+∞; default: 2)

� performance: return the highest cluster similarity as performance (boolean;
default: false)

The RapidMiner 4.2 Tutorial

158 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a flat cluster model from a hierarchical one.

Description: Creates a flat cluster model from a hierarchical one by expanding
nodes in the order of their weight until the desired number of clusters is reached.

5.4.28 GPLearner

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� kernel type: The kind of kernel.

� kernel lengthscale: The lengthscale r for rbf kernel functions (exp-1.0 *
r-2 * ||x - bla||). (real; 0.0-+∞)

� kernel degree: The degree used in the poly kernel. (real; 0.0-+∞)

� kernel bias: The bias used in the poly kernel. (real; 0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (Epanechnikov, Gaus-
sian Combination, Multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (polynomial, Multiquadric).
(real; -∞-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 159

� max basis vectors: Maximum number of basis vectors to be used. (inte-
ger; 1-+∞; default: 100)

� epsilon tol: Tolerance for gamma induced projections (real; 0.0-+∞)

� geometrical tol: Tolerance for geometry induced projections (real; 0.0-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, numerical label

Short description: An implementation of Gaussian Processes.

Description: Gaussian Process (GP) Learner. The GP is a probabilistic method
both for classification and regression.

5.4.29 HyperHyper

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� local random seed: The local random seed (-1: use global random seed)
(integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

160 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: numerical attributes, binominal label, numerical label,
weighted examples

Short description: This is a minimal SVM implementation. The model is
built with only one positive and one negative example. Typically this operater
is used in combination with a boosting method.

Description: This is a minimal SVM implementation. The model is built with
only one positive and one negative example. Typically this operater is used in
combination with a boosting method.

5.4.30 ID3

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label, weighted examples

July 14, 2008

5.4. LEARNING SCHEMES 161

Short description: Learns an unpruned decision tree from nominal attributes
only.

Description: This operator learns decision trees without pruning using nom-
inal attributes only. Decision trees are powerful classification methods which
often can also easily be understood. This decision tree learner works similar to
Quinlan’s ID3.

5.4.31 ID3Numerical

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns an unpruned decision tree from nominal and nu-
merical data.

The RapidMiner 4.2 Tutorial

162 CHAPTER 5. OPERATOR REFERENCE

Description: This operator learns decision trees without pruning using both
nominal and numerical attributes. Decision trees are powerful classification
methods which often can also easily be understood. This decision tree learner
works similar to Quinlan’s ID3.

5.4.32 IteratingGSS

Group: Learner.Supervised.Rules

This operator will not be supported in future releases

Required input:

� ExampleSet

Generated output:

� Model

� IGSSResult

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� epsilon: approximation parameter (real; 0.01-1.0)

� delta: desired confidence (real; 0.01-1.0)

� min utility pruning: minimum utility used for pruning (real; -1.0-1.0)

� min utility useful: minimum utility for the usefulness of a rule (real; -1.0-
1.0)

� stepsize: the number of examples drawn before the next hypothesis update
(integer; 1-10000; default: 100)

� large: the number of examples a hypothesis must cover before normal
approximation is used (integer; 1-10000; default: 100)

� max complexity: the maximum complexity of hypothesis (integer; 1-10;
default: 1)

� min complexity: the minimum complexity of hypothesis (integer; 1-10;
default: 1)

� iterations: the number of iterations (integer; 1-50; default: 10)

� use binomial: Switch to binomial utility funtion before increasing com-
plexity (boolean; default: false)

� utility function: the utility function to be used

� use kbs: use kbs to reweight examples after each iteration (boolean; de-
fault: true)

July 14, 2008

5.4. LEARNING SCHEMES 163

� rejection sampling: use rejection sampling instead of weighted examples
(boolean; default: true)

� useful criterion: criterion to decide if the complexity is increased

� example factor: used by example criterion to determine usefulness of a
hypothesis (real; 1.0-5.0)

� force iterations: make all iterations even if termination criterion is met
(boolean; default: false)

� generate all hypothesis: generate h-¿Y+/Y- or h-¿Y+ only. (boolean;
default: false)

� reset weights: Set weights back to 1 when complexity is increased. (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: Combines Generic Sequential Sampling by Scheffer/Wro-
bel with Knowledge-Based Sampling by Scholz.

Description: This operator implements the IteratingGSS algorithmus presented
in the diploma thesis ’Effiziente Entdeckung unabhaengiger Subgruppen in grossen
Datenbanken’ at the Department of Computer Science, University of Dortmund.

5.4.33 JMySVMLearner

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

The RapidMiner 4.2 Tutorial

164 CHAPTER 5. OPERATOR REFERENCE

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter gamma (radial, anova). (real;
0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (epanechnikov, gaus-
sian combination, multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (gaussian combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (gaussian combina-
tion). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (multiquadric). (real; 0.0-
+∞)

� kernel degree: The SVM kernel parameter degree (polynomial, anova,
epanechnikov). (real; 0.0-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

� kernel cache: Size of the cache for kernel evaluations im MB (integer;
0-+∞; default: 200)

� C: The SVM complexity constant. Use -1 for different C values for positive
and negative. (real; -1.0-+∞)

� convergence epsilon: Precision on the KKT conditions (real; 0.0-+∞)

� max iterations: Stop after this many iterations (integer; 1-+∞; default:
100000)

� scale: Scale the example values and store the scaling parameters for test
set. (boolean; default: true)

� calculate weights: Indicates if attribute weights should be returned. (boolean;
default: false)

� return optimization performance: Indicates if final optimization fitness
should be returned as performance. (boolean; default: false)

� estimate performance: Indicates if this learner should also return a per-
formance estimation. (boolean; default: false)

� L pos: A factor for the SVM complexity constant for positive examples
(real; 0.0-+∞)

� L neg: A factor for the SVM complexity constant for negative examples
(real; 0.0-+∞)

� epsilon: Insensitivity constant. No loss if prediction lies this close to true
value (real; 0.0-+∞)

� epsilon plus: Epsilon for positive deviation only (real; 0.0-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 165

� epsilon minus: Epsilon for negative deviation only (real; 0.0-+∞)

� balance cost: Adapts Cpos and Cneg to the relative size of the classes
(boolean; default: false)

� quadratic loss pos: Use quadratic loss for positive deviation (boolean; de-
fault: false)

� quadratic loss neg: Use quadratic loss for negative deviation (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, numerical label,
weighted examples

Short description: JMySVMLearner provides an internal Java implementa-
tion of the mySVM by Stefan Rueping.

Description: This learner uses the Java implementation of the support vector
machine mySVM by Stefan Rüping. This learning method can be used for both
regression and classification and provides a fast algorithm and good results for
many learning tasks.

5.4.34 KMeans

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

The RapidMiner 4.2 Tutorial

166 CHAPTER 5. OPERATOR REFERENCE

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: The number of clusters which should be detected. (integer; 2-+∞;
default: 2)

� max runs: The maximal number of runs of k-Means with random initial-
ization that are performed. (integer; 1-+∞; default: 10)

� max optimization steps: The maximal number of iterations performed
for one run of k-Means. (integer; 1-+∞; default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with k-means

Description: This operator represents a simple implementation of k-means.

5.4.35 KMedoids

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: The number of clusters which should be found. (integer; 2-+∞; default:
2)

July 14, 2008

5.4. LEARNING SCHEMES 167

� max runs: The maximal number of runs of this operator with random
initialization that are performed. (integer; 1-+∞; default: 5)

� max optimization steps: The maximal number of iterations performed
for one run of this operator. (integer; 1-+∞; default: 100)

� measure: similarity measure to apply

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with k-medoids

Description: Simple implementation of k-medoids.

5.4.36 KernelKMeans

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: The number of clusters which should be found. (integer; 2-+∞; default:
2)

� max runs: The maximal number of runs of this operator with random
initialization that are performed. (integer; 1-+∞; default: 5)

The RapidMiner 4.2 Tutorial

168 CHAPTER 5. OPERATOR REFERENCE

� max optimization steps: The maximal number of iterations performed
for one run of this operator. (integer; 1-+∞; default: 100)

� scale: Indicates if the examples are scaled before clustering is applied.
(boolean; default: true)

� cache size mb: The size of the kernel cache. (integer; 0-+∞; default:
50)

� kernel type: The kernel type, i.e. the similarity measure which should be
applied.

� kernel gamma: The SVM kernel parameter gamma (radial). (real; 0.0-
+∞)

� kernel degree: The SVM kernel parameter degree (polynomial). (integer;
0-+∞; default: 2)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with kernel k-means

Description: Simple implementation of kernel k-means [3].

5.4.37 KernelLogisticRegression

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� kernel type: The kernel type

July 14, 2008

5.4. LEARNING SCHEMES 169

� kernel gamma: The kernel parameter gamma (RBF, anova). (real; 0.0-
+∞)

� kernel sigma1: The kernel parameter sigma1 (Epanechnikov, Gaussian
Combination, Multiquadric). (real; 0.0-+∞)

� kernel sigma2: The kernel parameter sigma2 (Gaussian Combination). (real;
0.0-+∞)

� kernel sigma3: The kernel parameter sigma3 (Gaussian Combination). (real;
0.0-+∞)

� kernel degree: The kernel parameter degree (polynomial, anova, Epanech-
nikov). (real; 0.0-+∞)

� kernel shift: The kernel parameter shift (polynomial, Multiquadric). (real;
-∞-+∞)

� kernel a: The kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The kernel parameter b (neural). (real; -∞-+∞)

� C: The complexity constant. (real; 1.0E-8-+∞)

� start population type: The type of start population initialization.

� max generations: Stop after this many evaluations (integer; 1-+∞; de-
fault: 10000)

� generations without improval: Stop after this number of generations with-
out improvement (-1: optimize until max iterations). (integer; -1-+∞;
default: 30)

� population size: The population size (-1: number of examples) (integer;
-1-+∞; default: 1)

� tournament fraction: The fraction of the population used for tournament
selection. (real; 0.0-+∞)

� keep best: Indicates if the best individual should survive (elititst selection).
(boolean; default: true)

� mutation type: The type of the mutation operator.

� selection type: The type of the selection operator.

� crossover prob: The probability for crossovers. (real; 0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show convergence plot: Indicates if a dialog with a convergence plot
should be drawn. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

The RapidMiner 4.2 Tutorial

170 CHAPTER 5. OPERATOR REFERENCE

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, weighted exam-
ples

Short description: A kernel logistic regression learner for binary classification
tasks.

Description: This operator determines a logistic regression model.

5.4.38 LibSVMLearner

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� svm type: SVM for classification (C-SVC, nu-SVC), regression (epsilon-
SVR, nu-SVR) and distribution estimation (one-class)

� kernel type: The type of the kernel functions

� degree: The degree for a polynomial kernel function. (integer; 1-+∞;
default: 3)

� gamma: The parameter gamma for polynomial, rbf, and sigmoid kernel
functions (0 means 1/#attributes). (real; 0.0-+∞)

� coef0: The parameter coef0 for polynomial and sigmoid kernel functions.
(real; -∞-+∞)

� C: The cost parameter C for c svc, epsilon svr, and nu svr. (real; 0.0-+∞)

� nu: The parameter nu for nu svc, one class, and nu svr. (real; 0.0-0.5)

� cache size: Cache size in Megabyte. (integer; 0-+∞; default: 80)

� epsilon: Tolerance of termination criterion. (real; -∞-+∞)

� p: Tolerance of loss function of epsilon-SVR. (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 171

� class weights: The weights w for all classes (first column: class name,
second column: weight), i.e. set the parameters C of each class w * C
(empty: using 1 for all classes where the weight was not defined). (list)

� shrinking: Whether to use the shrinking heuristics. (boolean; default:
true)

� calculate confidences: Indicates if proper confidence values should be cal-
culated. (boolean; default: false)

� confidence for multiclass: Indicates if the class with the highest confi-
dence should be selected in the multiclass setting. Uses binary majority
vote over all 1-vs-1 classifiers otherwise (selected class must not be the
one with highest confidence in that case). (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, numerical label

Short description: LibSVMLearner encapsulates the Java libsvm, an SVM
learner.

Description: Applies the libsvm1 learner by Chih-Chung Chang and Chih-Jen
Lin. The SVM is a powerful method for both classification and regression. This
operator supports the SVM types C-SVC and nu-SVC for classification tasks
and epsilon-SVR and nu-SVR for regression tasks. Supports also multiclass
learning and probability estimation based on Platt scaling for proper confidence
values after applying the learned model on a classification data set.

5.4.39 LinearRegression

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

1http://www.csie.ntu.edu.tw/~cjlin/libsvm

The RapidMiner 4.2 Tutorial

http://www.csie.ntu.edu.tw/~cjlin/libsvm

172 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� feature selection: The feature selection method used during regression.

� eliminate colinear features: Indicates if the algorithm should try to delete
colinear features during the regression. (boolean; default: true)

� min standardized coefficient: The minimum standardized coefficient for
the removal of colinear feature elimination. (real; 0.0-+∞)

� ridge: The ridge parameter used during ridge regression. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, numerical label, weighted exam-
ples

Short description: Linear regression.

Description: This operator calculates a linear regression model. It uses the
Akaike criterion for model selection.

5.4.40 LogisticRegression

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� add intercept: Determines whether to include an intercept. (boolean; de-
fault: true)

July 14, 2008

5.4. LEARNING SCHEMES 173

� return model performance: Determines whether to return the perfor-
mance. (boolean; default: false)

� start population type: The type of start population initialization.

� max generations: Stop after this many evaluations (integer; 1-+∞; de-
fault: 10000)

� generations without improval: Stop after this number of generations with-
out improvement (-1: optimize until max iterations). (integer; -1-+∞;
default: 300)

� population size: The population size (-1: number of examples) (integer;
-1-+∞; default: 3)

� tournament fraction: The fraction of the population used for tournament
selection. (real; 0.0-+∞)

� keep best: Indicates if the best individual should survive (elititst selection).
(boolean; default: true)

� mutation type: The type of the mutation operator.

� selection type: The type of the selection operator.

� crossover prob: The probability for crossovers. (real; 0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show convergence plot: Indicates if a dialog with a convergence plot
should be drawn. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, weighted exam-
ples

Short description: A logistic regression learner for binary classification tasks.

Description: This operator determines a logistic regression model.

The RapidMiner 4.2 Tutorial

174 CHAPTER 5. OPERATOR REFERENCE

5.4.41 MPCKMeans

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

� ClusterConstraintList

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: The number of clusters which should be found. (integer; 2-+∞; default:
2)

� max runs: The maximal number of runs of this operator with random
initialization that are performed. (integer; 1-+∞; default: 5)

� max optimization steps: The maximal number of iterations performed
for one run of this operator. (integer; 1-+∞; default: 100)

� k from labels: set k to the number of unique labels in the example set
(boolean; default: false)

� metric update: choose whether to learn diagonal or full or not to learn
metric matrices

� metric mode: use a single metric for all clusters or one metric for each
cluster

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with the constrained clusterer MPCKMeans

July 14, 2008

5.4. LEARNING SCHEMES 175

Description: This is an implementation of the ”Metric Pairwise Constraints
K-Means” algorithm (see ”Mikhail Bilenko, Sugato Basu, and Raymond J.
Mooney. Integrating constraints and metric learning in semi-supervised cluster-
ing. In Proceedings of the 21st International Conference on Machine Learning,
ICML, pages 8188, Banff, Canada, July 2004.”) that uses a list of LinkClus-
terConstraints created from a (possibly partially) labeled ExampleSet to learn a
parameterized euklidean distance metric.

5.4.42 MetaCost

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� cost matrix: The cost matrix in Matlab single line format (string)

� use subset for training: Fraction of examples used for training. Must be
greater than 0 and should be lower than 1. (real; 0.0-1.0)

� iterations: The number of iterations (base models). (integer; 1-+∞; de-
fault: 10)

� sampling with replacement: Use sampling with replacement (true) or
without (false) (boolean; default: true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

The RapidMiner 4.2 Tutorial

176 CHAPTER 5. OPERATOR REFERENCE

Short description: Builds a classification model using cost values from a given
matrix.

Description: This operator uses a given cost matrix to compute label pre-
dictions according to classification costs. The method used by this operator is
similar to MetaCost as described by Pedro Domingos.

5.4.43 MultiCriterionDecisionStump

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� utility function: The function to be optimized by the rule.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label, weighted examples

Short description: A quick DecisionStump clone that allows to specify dif-
ferent utility functions.

Description: A DecisionStump clone that allows to specify different utility
functions. It is quick for nominal attributes, but does not yet apply pruning for
continuos attributes. Currently it can only handle boolean class labels.

July 14, 2008

5.4. LEARNING SCHEMES 177

5.4.44 MyKLRLearner

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter gamma (radial, anova). (real;
0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (epanechnikov, gaus-
sian combination, multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (gaussian combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (gaussian combina-
tion). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (multiquadric). (real; 0.0-
+∞)

� kernel degree: The SVM kernel parameter degree (polynomial, anova,
epanechnikov). (real; 0.0-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

� kernel cache: Size of the cache for kernel evaluations im MB (integer;
0-+∞; default: 200)

� C: The SVM complexity constant. Use -1 for different C values for positive
and negative. (real; -1.0-+∞)

� convergence epsilon: Precision on the KKT conditions (real; 0.0-+∞)

� max iterations: Stop after this many iterations (integer; 1-+∞; default:
100000)

� scale: Scale the example values and store the scaling parameters for test
set. (boolean; default: true)

� calculate weights: Indicates if attribute weights should be returned. (boolean;
default: false)

The RapidMiner 4.2 Tutorial

178 CHAPTER 5. OPERATOR REFERENCE

� return optimization performance: Indicates if final optimization fitness
should be returned as performance. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label

Short description: MyKLRLearner provides an internal Java implementation
of the myKLR by Stefan Rueping.

Description: This is the Java implementation of myKLR by Stefan Rüping.
myKLR is a tool for large scale kernel logistic regression based on the algorithm
of Keerthi/etal/2003 and the code of mySVM.

5.4.45 NaiveBayes

Group: Learner.Supervised.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� laplace correction: Use Laplace correction to prevent high influence of
zero probabilities. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 179

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Returns classification model using estimated normal dis-
tributions.

Description: Naive Bayes learner.

5.4.46 NearestNeighbors

Group: Learner.Supervised.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� k: The used number of nearest neighbors. (integer; 1-+∞; default: 1)

� measure types: The measure type

� weighted vote: Indicates if the votes should be weighted by similarity.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: Classification with k-NN based on an explicit similarity
measure.

Description: A k nearest neighbor implementation.

The RapidMiner 4.2 Tutorial

180 CHAPTER 5. OPERATOR REFERENCE

5.4.47 NeuralNet

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� input layer type: The default layer type for the input layers.

� output layer type: The default layer type for the output layers.

� default number of hidden layers: The number of hidden layers. Only
used if no layers are defined by the list hidden layer types. (integer; 1-
+∞; default: 1)

� default hidden layer size: The default size of hidden layers. Only used if
no layers are defined by the list hidden layer types. -1 means size (number
of attributes + number of classes) / 2 (integer; -1-+∞; default: -1)

� default hidden layer type: The default layer type for the hidden layers.
Only used if the parameter list hidden layer types is not defined.

� hidden layer types: Describes the name, the size, and the type of all hid-
den layers (list)

� training cycles: The number of training cycles used for the neural network
training. (integer; 1-+∞; default: 200)

� learning rate: The learning rate determines by how much we change the
weights at each step. (real; 0.0-1.0)

� momentum: The momentum simply adds a fraction of the previous weight
update to the current one (prevent local maxima and smoothes optimiza-
tion directions). (real; 0.0-1.0)

� error epsilon: The optimization is stopped if the training error gets below
this epsilon value. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 181

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label, numerical label

Short description: Learns a neural net from the input data.

Description: This operator learns a model by means of a feed-forward neural
network. The learning is done via backpropagation. The user can define the
structure of the neural network with the parameter list “hidden layer types”.
Each list entry describes a new hidden layer. The key of each entry must
correspond to the layer type which must be one out of

� linear

� sigmoid (default)

� tanh

� sine

� logarithmic

� gaussian

The key of each entry must be a number defining the size of the hidden layer.
A size value of -1 or 0 indicates that the layer size should be calculated from
the number of attributes of the input example set. In this case, the layer size
will be set to (number of attributes + number of classes) / 2 + 1.

If the user does not specify any hidden layers, a default hidden layer with sigmoid
type and size (number of attributes + number of classes) / 2 + 1 will be created
and added to the net.

The type of the input nodes is sigmoid. The type of the output node is sig-
moid is the learning data describes a classification task and linear for numerical
regression tasks.

5.4.48 OneR

Group: Learner.Supervised.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

The RapidMiner 4.2 Tutorial

182 CHAPTER 5. OPERATOR REFERENCE

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns a single rule using only one attribute.

Description: This operator concentrates on one single attribute and deter-
mines the best splitting terms for minimizing the training error. The result will
be a single rule containing all these terms.

5.4.49 Perceptron

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� rounds: The number of datascans used to adapt the hyperplane. (integer;
0-+∞; default: 3)

� learning rate: The hyperplane will adapt with this rate to each example.
(real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 183

Learner capabilities: numerical attributes, binominal label, weighted exam-
ples

Short description: Single Perceptron finding seperating hyperplane if one
exists

Description: The perceptron is a type of artificial neural network invented in
1957 by Frank Rosenblatt. It can be seen as the simplest kind of feedforward
neural network: a linear classifier. Beside all biological analogies, the single
layer perceptron is simply a linear classifier which is efficiently trained by a
simple update rule: for all wrongly classified data points, the weight vector is
either increased or decreased by the corresponding example values.

5.4.50 PsoSVM

Group: Learner.Supervised.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� show convergence plot: Indicates if a dialog with a convergence plot
should be drawn. (boolean; default: false)

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter sigma (radial kernel). (real;
0.0-+∞)

� kernel degree: The SVM kernel parameter degree (polynomial). (real;
0.0-+∞)

� kernel shift: The SVM kernel parameter shift (polynomial). (real; -∞-
+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

� C: The SVM complexity constant (0: calculates probably good value).
(real; 0.0-+∞)

The RapidMiner 4.2 Tutorial

184 CHAPTER 5. OPERATOR REFERENCE

� max evaluations: Stop after this many evaluations (integer; 1-+∞; de-
fault: 500)

� generations without improval: Stop after this number of generations with-
out improvement (-1: optimize until max iterations). (integer; -1-+∞;
default: 10)

� population size: The population size (-1: number of examples) (integer;
-1-+∞; default: 10)

� inertia weight: The (initial) weight for the old weighting. (real; 0.0-+∞)

� local best weight: The weight for the individual’s best position during
run. (real; 0.0-+∞)

� global best weight: The weight for the population’s best position during
run. (real; 0.0-+∞)

� dynamic inertia weight: If set to true the inertia weight is improved dur-
ing run. (boolean; default: true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label

Short description: PsoSVM uses a Particle Swarm Optimization for optimiza-
tion.

Description: This is a SVM implementation using a particle swarm optimiza-
tion (PSO) approach to solve the dual optimization problem of a SVM. It turns
out that on many datasets this simple implementation is as fast and accurate
as the usual SVM implementations.

5.4.51 RVMLearner

Group: Learner.Supervised.Functions

July 14, 2008

5.4. LEARNING SCHEMES 185

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� rvm type: Regression RVM

� kernel type: The type of the kernel functions.

� max iteration: The maximum number of iterations used. (integer; 1-+∞;
default: 100)

� min delta log alpha: Abort iteration if largest log alpha change is smaller
than this (real; 0.0-+∞)

� alpha max: Prune basis function if its alpha is bigger than this (real; 0.0-
+∞)

� kernel lengthscale: The lengthscale used in all kernels. (real; 0.0-+∞)

� kernel degree: The degree used in the poly kernel. (real; 0.0-+∞)

� kernel bias: The bias used in the poly kernel. (real; 0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (Epanechnikov, Gaus-
sian Combination, Multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (polynomial, Multiquadric).
(real; -∞-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, binominal label, numerical label

The RapidMiner 4.2 Tutorial

186 CHAPTER 5. OPERATOR REFERENCE

Short description: An implementation of a relevance vector machine.

Description: Relevance Vector Machine (RVM) Learner. The RVM is a prob-
abilistic method both for classification and regression. The implementation
of the relevance vector machine is based on the original algorithm described
by Tipping/2001. The fast version of the marginal likelihood maximization
(Tipping/Faul/2003) is also available if the parameter “rvm type” is set to
“Constructive-Regression-RVM”.

5.4.52 RandomFlatClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� k: the maximal number of clusters (integer; 2-+∞; default: 2)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Flat random clustering

Description: Returns a random clustering. Note that this algorithm does not
garantuee that all clusters are non-empty.

July 14, 2008

5.4. LEARNING SCHEMES 187

5.4.53 RandomForest

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� number of trees: The number of learned random trees. (integer; 1-+∞;
default: 10)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

� maximal depth: The maximum tree depth (-1: no bound) (integer; -1-
+∞; default: 10)

� subset ratio: Ratio of randomly chosen attributes to test (-1: use log(m)
+ 1 features) (real; -1.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns a set of random trees, i.e. for each split only a
random subset of attributes is available. The resulting model is a voting model
of all trees.

The RapidMiner 4.2 Tutorial

188 CHAPTER 5. OPERATOR REFERENCE

Description: This operators learns a random forest. The resulting forest
model contains serveral single random tree models.

5.4.54 RandomTree

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� minimal gain: The minimal gain which must be achieved in order to pro-
duce a split. (real; 0.0-+∞)

� maximal depth: The maximum tree depth (-1: no bound) (integer; -1-
+∞; default: 10)

� confidence: The confidence level used for the pessimistic error calculation
of pruning. (real; 1.0E-7-0.5)

� no pruning: Disables the pruning and delivers an unpruned tree. (boolean;
default: false)

� subset ratio: Ratio of randomly chosen attributes to test (-1: use log(m)
+ 1 features) (real; -1.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

July 14, 2008

5.4. LEARNING SCHEMES 189

Short description: Learns a single decision tree. For each split only a random
subset of attributes is available.

Description: This operator learns decision trees from both nominal and nu-
merical data. Decision trees are powerful classification methods which often can
also easily be understood. The random tree learner works similar to Quinlan’s
C4.5 or CART but it selects a random subset of attributes before it is applied.
The size of the subset is defined by the parameter subset ratio.

5.4.55 RelativeRegression

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� relative attribute: Indicates which attribute should be used as a base for
the relative comparison (counting starts with 1 or -1; negative: counting
starts with the last; positive: counting starts with the first). (integer;
-∞-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Learns a regression model for predictions relative to an-
other attribute value.

The RapidMiner 4.2 Tutorial

190 CHAPTER 5. OPERATOR REFERENCE

Description: This meta regression learner transforms the label on-the-fly rel-
ative to the value of the specified attribute. This is done right before the inner
regression learner is applied. This can be useful in order to allow time series
predictions on data sets with large trends.

5.4.56 RelevanceTree

Group: Learner.Supervised.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� minimal leaf size: The minimal size of all leaves. (integer; 1-+∞; default:
2)

� maximal depth: The maximum tree depth (-1: no bound) (integer; -1-
+∞; default: 10)

� confidence: The confidence level used for pruning. (real; 1.0E-7-0.5)

� no pruning: Disables the pruning and delivers an unpruned tree. (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [AttributeWeights].

Short description: Learns a pruned decision tree based on an arbitrary feature
relevance test (attribute weighting scheme as inner operator).

July 14, 2008

5.4. LEARNING SCHEMES 191

Description: Learns a pruned decision tree based on arbitrary feature rele-
vance measurements defined by an inner operator (use for example InfoGain-
RatioWeighting (see section 5.8.60) for C4.5 and ChiSquaredWeight-
ing (see section 5.8.21) for CHAID. Works only for nominal attributes.

5.4.57 RuleLearner

Group: Learner.Supervised.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� criterion: Specifies the used criterion for selecting attributes and numerical
splits.

� sample ratio: The sample ratio of training data used for growing and prun-
ing. (real; 0.0-1.0)

� pureness: The desired pureness, i.e. the necessary amount of the major
class in a covered subset in order become pure. (real; 0.0-1.0)

� minimal prune benefit: The minimum amount of benefit which must be
exceeded over unpruned benefit in order to be pruned. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Learns a pruned set of rules with respect to the information
gain.

The RapidMiner 4.2 Tutorial

192 CHAPTER 5. OPERATOR REFERENCE

Description: This operator works similar to the propositional rule learner
named Repeated Incremental Pruning to Produce Error Reduction (RIPPER,
Cohen 1995). Starting with the less prevalent classes, the algorithm iteratively
grows and prunes rules until there are no positive examples left or the error rate
is greater than 50

In the growing phase, for each rule greedily conditions are added to the rule
until the rule is perfect (i.e. 100possible value of each attribute and selects the
condition with highest information gain.

In the prune phase, for each rule any final sequences of the antecedents is pruned
with the pruning metric p/(p+n).

5.4.58 SimilarityComparator

Group: Learner.Unsupervised.Clustering.Similarity

Required input:

� SimilarityMeasure

Generated output:

� PerformanceVector

Parameters:

� keep similarity measure: Indicates if this input object should also be re-
turned as output. (boolean; default: false)

� measure: similarity measure to apply

� sampling rate: the sampling rate used for comparision (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator compares two similarity measures using di-
verse metrics.

Description: Operator that compares two similarity measures using diverse
metrics.

July 14, 2008

5.4. LEARNING SCHEMES 193

5.4.59 Stacking

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� keep all attributes: Indicates if all attributes (including the original ones)
in order to learn the stacked model. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Uses the first inner learner to build a stacked model on
top of the predictions of the other inner learners.

Description: This class uses n+1 inner learners and generates n different mod-
els by using the last n learners. The predictions of these n models are taken to
create n new features for the example set, which is finally used to serve as an
input of the first inner learner.

5.4.60 SubgroupDiscovery

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

The RapidMiner 4.2 Tutorial

194 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� ratio internal bootstrap: Fraction of examples used for training (internal
bootstrapping). If activated (value ¡ 1) only the rest is used to estimate
the biases. (real; 0.0-1.0)

� iterations: The maximum number of iterations. (integer; 1-+∞; default:
10)

� ROC convex hull filter: A parameter whether to discard all rules not lying
on the convex hull in ROC space. (boolean; default: true)

� additive reweight: If enabled then resampling is done by additive reweight-
ing, otherwise by multiplicative reweighting. (boolean; default: true)

� gamma: Factor used for multiplicative reweighting. Has no effect in case
of additive reweighting. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The performance.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A Subgroup Discovery meta learning scheme

Description: Subgroup discovery learner.

5.4.61 SupportVectorClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 195

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� min pts: The minimal number of points in each cluster. (integer; 0-+∞;
default: 2)

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter gamma (radial). (real; 0.0-
+∞)

� kernel degree: The SVM kernel parameter degree (polynomial). (integer;
0-+∞; default: 2)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

� kernel cache: Size of the cache for kernel evaluations im MB (integer;
0-+∞; default: 200)

� convergence epsilon: Precision on the KKT conditions (real; 0.0-+∞)

� max iterations: Stop after this many iterations (integer; 1-+∞; default:
100000)

� p: The fraction of allowed outliers. (real; 0.0-1.0)

� r: Use this radius instead of the calculated one (-1 for calculated radius).
(real; -1.0-+∞)

� number sample points: The number of virtual sample points to check for
neighborship. (integer; 1-+∞; default: 20)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Clustering with support vectors

Description: An implementation of Support Vector Clustering based on [1].

The RapidMiner 4.2 Tutorial

196 CHAPTER 5. OPERATOR REFERENCE

5.4.62 TopDownClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� max leaf size: The maximal number of items in each cluster leaf (integer;
1-+∞; default: 1)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [ClusterModel].

Short description: Hierarchical clustering by applying an inner clusterer scheme
recursively

Description: A top-down generic clustering that can be used with any (flat)
clustering as inner operator. Note though, that the outer operator cannot set or
get the maximal number of clusters, the inner operator produces. These value
has to be set in the inner operator.

5.4.63 TopDownRandomClustering

Group: Learner.Unsupervised.Clustering

July 14, 2008

5.4. LEARNING SCHEMES 197

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� max leaf size: The maximal number of items in each cluster leaf (integer;
1-+∞; default: 1)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute (boolean; default: true)

� max k: the maximal number of clusters at each level (integer; 2-+∞;
default: 2)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: Random top down clustering

Description: Creates a random top down clustering. Used for testing pur-
poses.

5.4.64 TransformedRegression

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

The RapidMiner 4.2 Tutorial

198 CHAPTER 5. OPERATOR REFERENCE

� transformation method: Type of transformation to use on the labels (log,
exp, transform to mean 0 and variance 1, rank, or none).

� z scale: Scale transformed values to mean 0 and standard deviation 1?
(boolean; default: false)

� interpolate rank: Interpolate prediction if predicted rank is not an integer?
(boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: This learner performs regression by transforming the labels
and calling an inner regression learner.

Description: This meta learner applies a transformation on the label before
the inner regression learner is applied.

5.4.65 Tree2RuleConverter

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 199

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

Short description: Determines a set of rules from a given decision tree model.

Description: This meta learner uses an inner tree learner and creates a rule
model from the learned decision tree.

5.4.66 UPGMAClustering

Group: Learner.Unsupervised.Clustering

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� distance measure: Specifies the way the distance of two examples is cal-
culated.

� cluster distance measure: Specifies the way the distance of two clusters
is calculated.

� add cluster attribute: if true, a cluster id is generated as new special
attribute (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Efficient implementation of an agglomerative buttom up
hierarchical clusterer

The RapidMiner 4.2 Tutorial

200 CHAPTER 5. OPERATOR REFERENCE

Description: This operator generates a tree each node of which represents a
cluster. UPGMA stands for Unweighted Pair Group Method using Arithmetic
Means. Since the way cluster distances are calculated can be specified using
parameters, this name is slightly misleading. Unfortunately, the name of the
algorithm changes depending on the parameters used.

Starting with initial clusters of size 1, the algorithm unites two clusters with
minimal distance forming a new tree node. This is iterated until there is only
one cluster left which forms the root of the tree.

This operator does not generate a special cluster attribute and does not modify
the input example set at all, since it generates too many clusters. The tree
generated by this cluster is considered the interesting result of the algorithm.

5.4.67 Vote

Group: Learner.Supervised.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators:

� Each inner operator must be able to handle [ExampleSet] and must deliver
[Model].

July 14, 2008

5.4. LEARNING SCHEMES 201

Short description: Uses a majority vote (for classification) or the average (for
regression) on top of the predictions of the other inner learners.

Description: This class uses n+1 inner learners and generates n different mod-
els by using the last n learners. The predictions of these n models are taken to
create n new features for the example set, which is finally used to serve as an
input of the first inner learner.

5.4.68 W-ADTree

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Number of boosting iterations. (Default = 10) (real; -∞-+∞)

� E: Expand nodes: -3(all), -2(weight), -1(z pure), ¿=0 seed for random
walk (Default = -3) (real; -∞-+∞)

� D: Save the instance data with the model (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label, weighted examples

Short description: Class for generating an alternating decision tree.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

202 CHAPTER 5. OPERATOR REFERENCE

Further information: Freund, Y., Mason, L.: The alternating decision tree
learning algorithm. In: Proceeding of the Sixteenth International Conference on
Machine Learning, Bled, Slovenia, 124-133, 1999.

5.4.69 W-AODE

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Output debugging information (boolean; default: false)

� F: Impose a frequency limit for superParents (default is 1) (real; -∞-+∞)

� M: Use m-estimate instead of laplace correction (boolean; default: false)

� W: Specify a weight to use with m-estimate (default is 1) (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label, updatable, weighted examples

Short description: AODE achieves highly accurate classification by averaging
over all of a small space of alternative naive-Bayes-like models that have weaker
(and hence less detrimental) independence assumptions than naive Bayes.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: G. Webb, J. Boughton, Z. Wang (2005). Not So Naive
Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-
24.

July 14, 2008

5.4. LEARNING SCHEMES 203

5.4.70 W-AODEsr

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Output debugging information (boolean; default: false)

� C: Impose a critcal value for specialization-generalization relationship (de-
fault is 50) (real; -∞-+∞)

� F: Impose a frequency limit for superParents (default is 1) (real; -∞-+∞)

� L: Using Laplace estimation (default is m-esimation (m=1)) (string)

� M: Weight value for m-estimation (default is 1.0) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label, updatable, weighted examples

Short description: AODEsr augments AODE with Subsumption Resolution.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Fei Zheng, Geoffrey I. Webb: Efficient Lazy Elimination
for Averaged-One Dependence Estimators. In: Proceedings of the Twenty-third
International Conference on Machine Learning (ICML 2006), 1113-1120, 2006.

The RapidMiner 4.2 Tutorial

204 CHAPTER 5. OPERATOR REFERENCE

5.4.71 W-AdaBoostM1

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� P: Percentage of weight mass to base training on. (default 100, reduce to
around 90 speed up) (real; -∞-+∞)

� Q: Use resampling for boosting. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for boosting a nominal class classifier using the Ad-
aboost M1 method.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 205

Further information: Yoav Freund, Robert E. Schapire: Experiments with a
new boosting algorithm. In: Thirteenth International Conference on Machine
Learning, San Francisco, 148-156, 1996.

5.4.72 W-AdditiveRegression

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Specify shrinkage rate. (default = 1.0, ie. no shrinkage) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Meta classifier that enhances the performance of a regres-
sion base classifier.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

206 CHAPTER 5. OPERATOR REFERENCE

Further information: J.H. Friedman (1999). Stochastic Gradient Boosting.

5.4.73 W-Apriori

Group: Learner.Unsupervised.Itemsets.Weka

Required input:

� ExampleSet

Generated output:

� WekaAssociator

Parameters:

� N: The required number of rules. (default = 10) (real; -∞-+∞)

� T: The metric type by which to rank rules. (default = confidence) (real;
-∞-+∞)

� C: The minimum confidence of a rule. (default = 0.9) (real; -∞-+∞)

� D: The delta by which the minimum support is decreased in each iteration.
(default = 0.05) (real; -∞-+∞)

� U: Upper bound for minimum support. (default = 1.0) (real; -∞-+∞)

� M: The lower bound for the minimum support. (default = 0.1) (real;
-∞-+∞)

� S: If used, rules are tested for significance at the given level. Slower.
(default = no significance testing) (real; -∞-+∞)

� I: If set the itemsets found are also output. (default = no) (boolean;
default: false)

� R: Remove columns that contain all missing values (default = no) (boolean;
default: false)

� V: Report progress iteratively. (default = no) (boolean; default: false)

� A: If set class association rules are mined. (default = no) (boolean; default:
false)

� c: The class index. (default = last) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Class implementing an Apriori-type algorithm.

July 14, 2008

5.4. LEARNING SCHEMES 207

Description: Performs the Weka association rule learner with the same name.
The operator returns a result object containing the rules found by the association
learner. In contrast to models generated by normal learners, the association rules
cannot be applied to an example set. Hence, there is no way to evaluate the
performance of association rules yet. See the Weka javadoc for further operator
and parameter descriptions.

Further information: R. Agrawal, R. Srikant: Fast Algorithms for Mining
Association Rules in Large Databases. In: 20th International Conference on
Very Large Data Bases, 478-499, 1994.

Bing Liu, Wynne Hsu, Yiming Ma: Integrating Classification and Association
Rule Mining. In: Fourth International Conference on Knowledge Discovery and
Data Mining, 80-86, 1998.

5.4.74 W-BFTree

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� P: The pruning strategy. (default: POSTPRUNED) (string; default: ’POST-
PRUNED’)

� M: The minimal number of instances at the terminal nodes. (default 2)
(real; -∞-+∞)

� N: The number of folds used in the pruning. (default 5) (real; -∞-+∞)

� H: Don’t use heuristic search for nominal attributes in multi-class problem
(default yes). (boolean; default: false)

� G: Don’t use Gini index for splitting (default yes), if not information is
used. (boolean; default: false)

� R: Don’t use error rate in internal cross-validation (default yes), but root
mean squared error. (boolean; default: false)

The RapidMiner 4.2 Tutorial

208 CHAPTER 5. OPERATOR REFERENCE

� A: Use the 1 SE rule to make pruning decision. (default no). (boolean;
default: false)

� C: Percentage of training data size (0-1] (default 1). (string; default: ’1.0’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Class for building a best-first decision tree classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Haijian Shi (2007). Best-first decision tree learning.
Hamilton, NZ.

Jerome Friedman, Trevor Hastie, Robert Tibshirani (2000). Additive logistic
regression : A statistical view of boosting. Annals of statistics. 28(2):337-407.

5.4.75 W-BIFReader

Group: Learner.Supervised.Weka.Net

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Do not use ADTree data structure (string; default: ’-Q’)

� B: BIF file to compare with (string)

� Q: Search algorithm (string; default: ’weka.classifiers.bayes.net.search.local.K2’)

July 14, 2008

5.4. LEARNING SCHEMES 209

� E: Estimator algorithm (string; default: ’weka.classifiers.bayes.net.estimate.SimpleEstimator’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Builds a description of a Bayes Net classifier stored in
XML BIF 0.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998).
XML BIF version 0.3. URL http://www-2.cs.cmu.edu/ fgcozman/Research/In-
terchangeFormat/.

5.4.76 W-Bagging

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� P: Size of each bag, as a percentage of the training set size. (default 100)
(real; -∞-+∞)

� O: Calculate the out of bag error. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

210 CHAPTER 5. OPERATOR REFERENCE

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for bagging a classifier to reduce variance.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Leo Breiman (1996). Bagging predictors. Machine
Learning. 24(2):123-140.

5.4.77 W-BayesNet

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Do not use ADTree data structure (string; default: ’-Q’)

� B: BIF file to compare with (string)

July 14, 2008

5.4. LEARNING SCHEMES 211

� Q: Search algorithm (string; default: ’weka.classifiers.bayes.net.search.local.K2’)

� E: Estimator algorithm (string; default: ’weka.classifiers.bayes.net.estimate.SimpleEstimator’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Bayes Network learning using various search algorithms
and quality measures.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.78 W-BayesNetGenerator

Group: Learner.Supervised.Weka.Net

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Generate network (instead of instances) (boolean; default: false)

� N: Nr of nodes (real; -∞-+∞)

� A: Nr of arcs (real; -∞-+∞)

� M: Nr of instances (real; -∞-+∞)

� C: Cardinality of the variables (real; -∞-+∞)

� S: Seed for random number generator (real; -∞-+∞)

� F: The BIF file to obtain the structure from. (string)

The RapidMiner 4.2 Tutorial

212 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Bayes Network learning using various search algorithms
and quality measures.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.79 W-BayesianLogisticRegression

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Show Debugging Output (string; default: ’-Tl’)

� P: Distribution of the Prior (1=Gaussian, 2=Laplacian) (default: 1=Gaus-
sian) (real; -∞-+∞)

� H: Hyperparameter Selection Method (1=Norm-based, 2=CV-based, 3=spe-
cific value) (default: 1=Norm-based) (real; -∞-+∞)

� V: Specified Hyperparameter Value (use in conjunction with -H 3) (default:
0.27) (real; -∞-+∞)

� R: Hyperparameter Range (use in conjunction with -H 2) (format: R:start-
end,multiplier OR L:val(1), val(2), ..., val(n)) (default: R:0.01-316,3.16)
(string; default: ’R:0.01-316,3.16’)

� Tl: Tolerance Value (default: 0.0005) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 213

� S: Threshold Value (default: 0.5) (real; -∞-+∞)

� F: Number Of Folds (use in conjuction with -H 2) (default: 2) (real; -∞-
+∞)

� I: Max Number of Iterations (default: 100) (real; -∞-+∞)

� N: Normalize the data (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: binominal attributes, numerical attributes, binominal
label

Short description: Implements Bayesian Logistic Regression for both Gaus-
sian and Laplace Priors.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Alexander Genkin, David D. Lewis, David Madigan
(2004). Large-scale bayesian logistic regression for text categorization. URL
http://www.stat.rutgers.edu/ madigan/PAPERS/shortFat-v3a.pdf.

5.4.80 W-CLOPE

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

The RapidMiner 4.2 Tutorial

214 CHAPTER 5. OPERATOR REFERENCE

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� R: Repulsion (default 2.6) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Yiling Yang, Xudong Guan, Jinyuan You: CLOPE: a fast
and effective clustering algorithm for transactional data.

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

Further information: Yiling Yang, Xudong Guan, Jinyuan You: CLOPE: a
fast and effective clustering algorithm for transactional data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, 682-687, 2002.

5.4.81 W-CitationKNN

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� R: Number of Nearest References (default 1) (string; default: ’1’)

� C: Number of Nearest Citers (default 1) (string; default: ’1’)

� H: Rank of the Hausdorff Distance (default 1) (string; default: ’1’)

July 14, 2008

5.4. LEARNING SCHEMES 215

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Modified version of the Citation kNN multi instance clas-
sifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Jun Wang, Zucker, Jean-Daniel: Solving Multiple-Instance
Problem: A Lazy Learning Approach. In: 17th International Conference on Ma-
chine Learning, 1119-1125, 2000.

5.4.82 W-ClassBalancedND

Group: Learner.Supervised.Weka.Nesteddichotomies

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

216 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A meta classifier for handling multi-class datasets with
2-class classifiers by building a random class-balanced tree structure.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of
Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95,
2005.

Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class
problems. In: Twenty-first International Conference on Machine Learning, 2004.

5.4.83 W-ClassificationViaClustering

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 217

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A simple meta-classifier that uses a clusterer for classifi-
cation.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.84 W-Cobweb

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� A: Acuity. (default=1.0) (real; -∞-+∞)

� C: Cutoff. (default=0.002) (real; -∞-+∞)

� S: Random number seed. (default 42) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

218 CHAPTER 5. OPERATOR REFERENCE

Short description: Class implementing the Cobweb and Classit clustering al-
gorithms.

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

Further information: D. Fisher (1987). Knowledge acquisition via incremen-
tal conceptual clustering. Machine Learning. 2(2):139-172.

J. H. Gennari, P. Langley, D. Fisher (1990). Models of incremental concept
formation. Artificial Intelligence. 40:11-61.

5.4.85 W-ComplementNaiveBayes

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Normalize the word weights for each class (boolean; default: false)

� S: Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
(real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, weighted examples

July 14, 2008

5.4. LEARNING SCHEMES 219

Short description: Class for building and using a Complement class Naive
Bayes classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Jason D. Rennie, Lawrence Shih, Jaime Teevan, David
R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In:
ICML, 616-623, 2003.

5.4.86 W-ConjunctiveRule

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Set number of folds for REP One fold is used as pruning set. (default
3) (real; -∞-+∞)

� R: Set if NOT uses randomization (default:use randomization) (boolean;
default: false)

� E: Set whether consider the exclusive expressions for nominal attributes
(default false) (boolean; default: false)

� M: Set the minimal weights of instances within a split. (default 2.0) (real;
-∞-+∞)

� P: Set number of antecedents for pre-pruning if -1, then REP is used (de-
fault -1) (real; -∞-+∞)

� S: Set the seed of randomization (default 1) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

220 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: This class implements a single conjunctive rule learner
that can predict for numeric and nominal class labels.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.87 W-CostSensitiveClassifier

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� M: Minimize expected misclassification cost. Default is to reweight train-
ing instances according to costs per class (boolean; default: false)

� C: File name of a cost matrix to use. If this is not supplied, a cost matrix
will be loaded on demand. The name of the on-demand file is the relation
name of the training data plus ”.cost”, and the path to the on-demand
file is specified with the -N option. (string)

� N: Name of a directory to search for cost files when loading costs on de-
mand (default current directory). (string; default: ’/home/ingo/workspace/yale’)

� cost-matrix: The cost matrix in Matlab single line format. (string)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 221

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A metaclassifier that makes its base classifier cost-sensitive.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.88 W-DMNBtext

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, updatable, weighted examples

Short description: Class for building and using a Discriminative Multinomial
Naive Bayes classifier.

The RapidMiner 4.2 Tutorial

222 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin:
Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008’,
2008.

5.4.89 W-DTNB

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� X: Use cross validation to evaluate features. Use number of folds = 1 for
leave one out CV. (Default = leave one out CV) (real; -∞-+∞)

� E: Performance evaluation measure to use for selecting attributes. (Default
= accuracy for discrete class and rmse for numeric class) (string)

� I: Use nearest neighbour instead of global table majority. (boolean; default:
false)

� R: Display decision table rules. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for building and using a decision table/naive bayes
hybrid classifier.

July 14, 2008

5.4. LEARNING SCHEMES 223

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Mark Hall, Eibe Frank: Combining Naive Bayes and
Decision Tables. In: Proceedings of the 21st Florida Artificial Intelligence Soci-
ety Conference (FLAIRS), ???-???, 2008.

5.4.90 W-Dagging

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� F: The number of folds for splitting the training set into smaller chunks
for the base classifier. (default 10) (real; -∞-+∞)

� verbose: Whether to print some more information during building the clas-
sifier. (default is off) (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

The RapidMiner 4.2 Tutorial

224 CHAPTER 5. OPERATOR REFERENCE

Short description: This meta classifier creates a number of disjoint, stratified
folds out of the data and feeds each chunk of data to a copy of the supplied
base classifier.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Ting, K. M., Witten, I. H.: Stacking Bagged and
Dagged Models. In: Fourteenth international Conference on Machine Learn-
ing, San Francisco, CA, 367-375, 1997.

5.4.91 W-DataNearBalancedND

Group: Learner.Supervised.Weka.Nesteddichotomies

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

July 14, 2008

5.4. LEARNING SCHEMES 225

Short description: A meta classifier for handling multi-class datasets with
2-class classifiers by building a random data-balanced tree structure.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of
Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95,
2005.

Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class
problems. In: Twenty-first International Conference on Machine Learning, 2004.

5.4.92 W-DecisionStump

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: Class for building and using a decision stump.

The RapidMiner 4.2 Tutorial

226 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.93 W-DecisionTable

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Full class name of search method, followed by its options. eg: ”weka.attributeSelection.BestFirst
-D 1” (default weka.attributeSelection.BestFirst) (string; default: ’weka.attributeSelection.BestFirst
-D 1 -N 5’)

� X: Use cross validation to evaluate features. Use number of folds = 1 for
leave one out CV. (Default = leave one out CV) (real; -∞-+∞)

� E: Performance evaluation measure to use for selecting attributes. (Default
= accuracy for discrete class and rmse for numeric class) (string)

� I: Use nearest neighbour instead of global table majority. (boolean; default:
false)

� R: Display decision table rules. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: Class for building and using a simple decision table ma-
jority classifier.

July 14, 2008

5.4. LEARNING SCHEMES 227

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Ron Kohavi: The Power of Decision Tables. In: 8th
European Conference on Machine Learning, 174-189, 1995.

5.4.94 W-Decorate

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� E: Desired size of ensemble. (default 10) (real; -∞-+∞)

� R: Factor that determines number of artificial examples to generate. Spec-
ified proportional to training set size. (default 1.0) (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

The RapidMiner 4.2 Tutorial

228 CHAPTER 5. OPERATOR REFERENCE

Short description: DECORATE is a meta-learner for building diverse ensem-
bles of classifiers by using specially constructed artificial training examples.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: P. Melville, R. J. Mooney: Constructing Diverse Classi-
fier Ensembles Using Artificial Training Examples. In: Eighteenth International
Joint Conference on Artificial Intelligence, 505-510, 2003.

P. Melville, R. J. Mooney (2004). Creating Diversity in Ensembles Using Ar-
tificial Data. Information Fusion: Special Issue on Diversity in Multiclassifier
Systems..

5.4.95 W-EM

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� N: number of clusters. If omitted or -1 specified, then cross validation is
used to select the number of clusters. (real; -∞-+∞)

� I: max iterations. (default 100) (real; -∞-+∞)

� V: verbose. (boolean; default: false)

� M: minimum allowable standard deviation for normal density computation
(default 1e-6) (real; -∞-+∞)

� O: Display model in old format (good when there are many clusters)
(boolean; default: false)

� S: Random number seed. (default 100) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 229

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Simple EM (expectation maximisation) class.

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

5.4.96 W-END

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

The RapidMiner 4.2 Tutorial

230 CHAPTER 5. OPERATOR REFERENCE

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A meta classifier for handling multi-class datasets with
2-class classifiers by building an ensemble of nested dichotomies.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of
Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95,
2005.

Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class
problems. In: Twenty-first International Conference on Machine Learning, 2004.

5.4.97 W-EditableBayesNet

Group: Learner.Supervised.Weka.Net

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Do not use ADTree data structure (string; default: ’-Q’)

� B: BIF file to compare with (string)

� Q: Search algorithm (string; default: ’weka.classifiers.bayes.net.search.local.K2’)

� E: Estimator algorithm (string; default: ’weka.classifiers.bayes.net.estimate.SimpleEstimator’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 231

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Bayes Network learning using various search algorithms
and quality measures.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.98 W-EnsembleSelection

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� L: Specifies the Model Library File, continuing the list of all models. (string)

� B: Set the number of bags, i.e., number of iterations to run the ensemble
selection algorithm. (real; -∞-+∞)

� E: Set the ratio of library models that will be randomly chosen to populate
each bag of models. (real; -∞-+∞)

� V: Set the ratio of the training data set that will be reserved for validation.
(real; -∞-+∞)

� H: Set the number of hillclimbing iterations to be performed on each model
bag. (real; -∞-+∞)

� I: Set the the ratio of the ensemble library that the sort initialization algo-
rithm will be able to choose from while initializing the ensemble for each
model bag (real; -∞-+∞)

� X: Sets the number of cross-validation folds. (real; -∞-+∞)

� P: Specify the metric that will be used for model selection during the
hillclimbing algorithm. Valid metrics are: accuracy, rmse, roc, precision,
recall, fscore, all (string; default: ’rmse’)

The RapidMiner 4.2 Tutorial

232 CHAPTER 5. OPERATOR REFERENCE

� A: Specifies the algorithm to be used for ensemble selection. Valid al-
gorithms are: ”forward” (default) for forward selection. ”backward” for
backward elimination. ”both” for both forward and backward elimination.
”best” to simply print out top performer from the ensemble library ”li-
brary” to only train the models in the ensemble library (string; default:
’forward’)

� R: Flag whether or not models can be selected more than once for an
ensemble. (string; default: ’-G’)

� G: Whether sort initialization greedily stops adding models when perfor-
mance degrades. (string; default: ’-S’)

� O: Flag for verbose output. Prints out performance of all selected models.
(boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Combines several classifiers using the ensemble selection
method.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Rich Caruana, Alex Niculescu, Geoff Crew,, Alex Ksikes:
Ensemble Selection from Libraries of Models. In: 21st International Conference
on Machine Learning, 2004.

July 14, 2008

5.4. LEARNING SCHEMES 233

5.4.99 W-FLR

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� R: Set vigilance parameter rhoa. (a float in range [0,1]) (real; -∞-+∞)

� B: Set boundaries File Note: The boundaries file is a simple text file con-
taining a row with a Fuzzy Lattice defining the metric space. For example,
the boundaries file could contain the following the metric space for the
iris dataset: [4.3 7.9] [2.0 4.4] [1.0 6.9] [0.1 2.5] in Class: -1 This
lattice just contains the min and max value in each dimension. In other
kind of problems this may not be just a min-max operation, but it could
contain limits defined by the problem itself. Thus, this option should be
set by the user. If ommited, the metric space used contains the mins and
maxs of the training split. (string)

� Y: Show Rules (string; default: ”)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal label

Short description: Fuzzy Lattice Reasoning Classifier (FLR) v5.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

234 CHAPTER 5. OPERATOR REFERENCE

Further information: I. N. Athanasiadis, V. G. Kaburlasos, P. A. Mitkas,
V. Petridis: Applying Machine Learning Techniques on Air Quality Data for
Real-Time Decision Support. In: 1st Intl. NAISO Symposium on Information
Technologies in Environmental Engineering (ITEE-2003), Gdansk, Poland, 2003.

V. G. Kaburlasos, I. N. Athanasiadis, P. A. Mitkas, V. Petridis (2003). Fuzzy
Lattice Reasoning (FLR) Classifier and its Application on Improved Estimation
of Ambient Ozone Concentration.

5.4.100 W-FT

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Binary splits (convert nominal attributes to binary ones) (boolean; de-
fault: false)

� P: Use error on probabilities instead of misclassification error for stopping
criterion of LogitBoost. (boolean; default: false)

� I: Set fixed number of iterations for LogitBoost (instead of using cross-
validation) (real; -∞-+∞)

� F: Set Funtional Tree type to be generate: 0 for FT, 1 for FTLeaves and
2 for FTInner (real; -∞-+∞)

� M: Set minimum number of instances at which a node can be split (default
15) (real; -∞-+∞)

� W: Set beta for weight trimming for LogitBoost. Set to 0 (default) for no
weight trimming. (real; -∞-+∞)

� A: The AIC is used to choose the best iteration. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 235

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Classifier for building ’Functional trees’, which are clas-
sification trees that could have logistic regression functions at the inner nodes
and/or leaves.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Joao Gama (2004). Functional Trees.

Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees.

5.4.101 W-FarthestFirst

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� N: number of clusters. (default = 2). (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Cluster data using the FarthestFirst algorithm.

The RapidMiner 4.2 Tutorial

236 CHAPTER 5. OPERATOR REFERENCE

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

Further information: Hochbaum, Shmoys (1985). A best possible heuristic
for the k-center problem. Mathematics of Operations Research. 10(2):180-184.

Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th
Annual Conference on Computational Learning Theory, 351-363, 2002.

5.4.102 W-GaussianProcesses

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� L: Level of Gaussian Noise. (default: 1.0) (real; -∞-+∞)

� N: Whether to 0=normalize/1=standardize/2=neither. (default: 0=nor-
malize) (real; -∞-+∞)

� K: The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
(string; default: ’weka.classifiers.functions.supportVector.RBFKernel -C
250007 -G 1.0’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label

July 14, 2008

5.4. LEARNING SCHEMES 237

Short description: Implements Gaussian Processes for regression without hyperparameter-
tuning.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: David J.C. Mackay (1998). Introduction to Gaussian
Processes. Dept. of Physics, Cambridge University, UK.

5.4.103 W-GeneralizedSequentialPatterns

Group: Learner.Unsupervised.Itemsets.Weka

Required input:

� ExampleSet

Generated output:

� WekaAssociator

Parameters:

� D: If set, algorithm is run in debug mode and may output additional info
to the console (boolean; default: false)

� S: The miminum support threshold. (default: 0.9) (real; -∞-+∞)

� I: The attribute number representing the data sequence ID. (default: 0)
(real; -∞-+∞)

� F: The attribute numbers used for result filtering. (default: -1) (real; -∞-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Class implementing a GSP algorithm for discovering se-
quential patterns in a sequential data set.

The RapidMiner 4.2 Tutorial

238 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the Weka association rule learner with the same name.
The operator returns a result object containing the rules found by the association
learner. In contrast to models generated by normal learners, the association rules
cannot be applied to an example set. Hence, there is no way to evaluate the
performance of association rules yet. See the Weka javadoc for further operator
and parameter descriptions.

Further information: Ramakrishnan Srikant, Rakesh Agrawal (1996). Mining
Sequential Patterns: Generalizations and Performance Improvements.

5.4.104 W-Grading

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� M: Full name of meta classifier, followed by options. (default: ”weka.classifiers.rules.Zero”)
(string; default: ’weka.classifiers.rules.ZeroR ’)

� X: Sets the number of cross-validation folds. (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

July 14, 2008

5.4. LEARNING SCHEMES 239

Short description: Implements Grading.

Description: Performs the ensemble learning scheme of Weka with the same
name. An arbitrary number of other Weka learning schemes must be embedded
as inner operators. See the Weka javadoc for further classifier and parameter
descriptions.

Further information: A.K. Seewald, J. Fuernkranz: An Evaluation of Grad-
ing Classifiers. In: Advances in Intelligent Data Analysis: 4th International
Conference, Berlin/Heidelberg/New York/Tokyo, 115-124, 2001.

5.4.105 W-GridSearch

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� E: Determines the parameter used for evaluation: CC = Correlation coef-
ficient RMSE = Root mean squared error RRSE = Root relative squared
error MAE = Mean absolute error RAE = Root absolute error COMB
= Combined = (1-abs(CC)) + RRSE + RAE ACC = Accuracy (default:
CC) (string; default: ’CC’)

� y-property: The Y option to test (without leading dash). (default: classi-
fier.ridge) (string; default: ’classifier.ridge’)

� y-min: The minimum for Y. (default: -10) (real; -∞-+∞)

� y-max: The maximum for Y. (default: +5) (real; -∞-+∞)

� y-step: The step size for Y. (default: 1) (real; -∞-+∞)

� y-base: The base for Y. (default: 10) (real; -∞-+∞)

� y-expression: The expression for Y. Available parameters: BASE FROM
TO STEP I - the current iteration value (from ’FROM’ to ’TO’ with step-
size ’STEP’) (default: ’pow(BASE,I)’) (string; default: ’pow(BASE,I)’)

� filter: The filter to use (on X axis). Full classname of filter to include, fol-
lowed by scheme options. (default: weka.filters.supervised.attribute.PLSFilter)

The RapidMiner 4.2 Tutorial

240 CHAPTER 5. OPERATOR REFERENCE

(string; default: ’weka.filters.supervised.attribute.PLSFilter -C 20 -M -A
PLS1 -P center’)

� x-property: The X option to test (without leading dash). (default: fil-
ter.numComponents) (string; default: ’filter.numComponents’)

� x-min: The minimum for X. (default: +5) (real; -∞-+∞)

� x-max: The maximum for X. (default: +20) (real; -∞-+∞)

� x-step: The step size for X. (default: 1) (real; -∞-+∞)

� x-base: The base for X. (default: 10) (real; -∞-+∞)

� x-expression: The expression for the X value. Available parameters: BASE
MIN MAX STEP I - the current iteration value (from ’FROM’ to ’TO’
with stepsize ’STEP’) (default: ’pow(BASE,I)’) (string; default: ’I’)

� extend-grid: Whether the grid can be extended. (default: no) (boolean;
default: false)

� max-grid-extensions: The maximum number of grid extensions (-1 is un-
limited). (default: 3) (string)

� sample-size: The size (in percent) of the sample to search the inital grid
with. (default: 100) (real; -∞-+∞)

� traversal: The type of traversal for the grid. (default: COLUMN-WISE)
(string; default: ’COLUMN-WISE’)

� log-file: The log file to log the messages to. (default: none) (string; de-
fault: ’/home/ingo/workspace/yale’)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, numerical label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

July 14, 2008

5.4. LEARNING SCHEMES 241

Short description: Performs a grid search of parameter pairs for the a clas-
sifier (Y-axis, default is LinearRegression with the ”Ridge” parameter) and the
PLSFilter (X-axis, ”number of Components”) and chooses the best pair found
for the actual predicting.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.106 W-HNB

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: Contructs Hidden Naive Bayes classification model with
high classification accuracy and AUC.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

242 CHAPTER 5. OPERATOR REFERENCE

Further information: H. Zhang, L. Jiang, J. Su: Hidden Naive Bayes. In:
Twentieth National Conference on Artificial Intelligence, 919-924, 2005.

5.4.107 W-HotSpot

Group: Learner.Unsupervised.Itemsets.Weka

Required input:

� ExampleSet

Generated output:

� WekaAssociator

Parameters:

� c: The target index. (default = last) (string; default: ’last’)

� V: The target value (nominal target only, default = first) (string; default:
’first’)

� L: Minimize rather than maximize. (boolean; default: false)

� -S: Minimum value count (nominal target)/segment size (numeric target).
Values between 0 and 1 are interpreted as a percentage of the total pop-
ulation; values ¿ 1 are interpreted as an absolute number of instances
(default = 0.3) (string)

� -M: Maximum branching factor (default = 2) (string)

� -I: Minimum improvement in target value in order to add a new branch/test
(default = 0.01 (1

� -D: Output debugging info (duplicate rule lookup hash table stats) (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: HotSpot learns a set of rules (displayed in a tree-like struc-
ture) that maximize/minimize a target variable/value of interest.

Description: Performs the Weka association rule learner with the same name.
The operator returns a result object containing the rules found by the association
learner. In contrast to models generated by normal learners, the association rules

July 14, 2008

5.4. LEARNING SCHEMES 243

cannot be applied to an example set. Hence, there is no way to evaluate the
performance of association rules yet. See the Weka javadoc for further operator
and parameter descriptions.

5.4.108 W-HyperPipes

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Class implementing a HyperPipe classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.109 W-IB1

Group: Learner.Supervised.Weka.Lazy

Required input:

� ExampleSet

Generated output:

� Model

The RapidMiner 4.2 Tutorial

244 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, updatable

Short description: Nearest-neighbour classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: D. Aha, D. Kibler (1991). Instance-based learning al-
gorithms. Machine Learning. 6:37-66.

5.4.110 W-IBk

Group: Learner.Supervised.Weka.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� I: Weight neighbours by the inverse of their distance (use when k ¿ 1)
(boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 245

� F: Weight neighbours by 1 - their distance (use when k ¿ 1) (boolean;
default: false)

� K: Number of nearest neighbours (k) used in classification. (Default = 1)
(real; -∞-+∞)

� E: Minimise mean squared error rather than mean absolute error when
using -X option with numeric prediction. (boolean; default: false)

� W: Maximum number of training instances maintained. Training instances
are dropped FIFO. (Default = no window) (real; -∞-+∞)

� X: Select the number of nearest neighbours between 1 and the k value
specified using hold-one-out evaluation on the training data (use when k
¿ 1) (boolean; default: false)

� A: The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
(string; default: ’weka.core.neighboursearch.LinearNNSearch -A ”weka.core.EuclideanDistance
-R first-last”’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numeri-
cal attributes, polynominal label, binominal label, numerical label, updatable,
weighted examples

Short description: K-nearest neighbours classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: D. Aha, D. Kibler (1991). Instance-based learning al-
gorithms. Machine Learning. 6:37-66.

5.4.111 W-Id3

Group: Learner.Supervised.Weka.Trees

The RapidMiner 4.2 Tutorial

246 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: Class for constructing an unpruned decision tree based on
the ID3 algorithm.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: R. Quinlan (1986). Induction of decision trees. Ma-
chine Learning. 1(1):81-106.

5.4.112 W-IsotonicRegression

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 247

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, numerical label, weighted exam-
ples

Short description: Learns an isotonic regression model.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.113 W-J48

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� U: Use unpruned tree. (boolean; default: false)

� C: Set confidence threshold for pruning. (default 0.25) (real; -∞-+∞)

� M: Set minimum number of instances per leaf. (default 2) (real; -∞-+∞)

� R: Use reduced error pruning. (boolean; default: false)

� N: Set number of folds for reduced error pruning. One fold is used as
pruning set. (default 3) (string)

� B: Use binary splits only. (boolean; default: false)

The RapidMiner 4.2 Tutorial

248 CHAPTER 5. OPERATOR REFERENCE

� S: Don’t perform subtree raising. (boolean; default: false)

� L: Do not clean up after the tree has been built. (boolean; default: false)

� A: Laplace smoothing for predicted probabilities. (boolean; default: false)

� Q: Seed for random data shuffling (default 1). (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for generating a pruned or unpruned C4.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Ross Quinlan (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, San Mateo, CA.

5.4.114 W-J48graft

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� U: Use unpruned tree. (boolean; default: false)

� C: Set confidence threshold for pruning. (default 0.25) (real; -∞-+∞)

� M: Set minimum number of instances per leaf. (default 2) (real; -∞-+∞)

� B: Use binary splits only. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 249

� S: Don’t perform subtree raising. (boolean; default: false)

� L: Do not clean up after the tree has been built. (boolean; default: false)

� A: Laplace smoothing for predicted probabilities. (note: this option only
affects initial tree; grafting process always uses laplace). (boolean; default:
false)

� E: Relabel when grafting. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for generating a grafted (pruned or unpruned) C4.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Geoff Webb: Decision Tree Grafting From the All-
Tests-But-One Partition. In: , San Francisco, CA, 1999.

5.4.115 W-JRip

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� F: Set number of folds for REP One fold is used as pruning set. (default
3) (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

250 CHAPTER 5. OPERATOR REFERENCE

� N: Set the minimal weights of instances within a split. (default 2.0) (real;
-∞-+∞)

� O: Set the number of runs of optimizations. (Default: 2) (real; -∞-+∞)

� D: Set whether turn on the debug mode (Default: false) (boolean; default:
false)

� S: The seed of randomization (Default: 1) (real; -∞-+∞)

� E: Whether NOT check the error rate¿=0.5 in stopping criteria (default:
check) (boolean; default: false)

� P: Whether NOT use pruning (default: use pruning) (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: This class implements a propositional rule learner, Re-
peated Incremental Pruning to Produce Error Reduction (RIPPER), which was
proposed by William W.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: William W. Cohen: Fast Effective Rule Induction. In:
Twelfth International Conference on Machine Learning, 115-123, 1995.

5.4.116 W-JythonClassifier

Group: Learner.Supervised.Weka.Classifiers

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 251

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� J: The Jython module to load (full path) Options after ’–’ will be passed on
to the Jython module. (string; default: ’/home/ingo/workspace/yale’)

� P: The paths to add to ’sys.path’ (comma-separated list). (string)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: A wrapper class for Jython code.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.117 W-KStar

Group: Learner.Supervised.Weka.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Manual blend setting (default 20(real; -∞-+∞)

� E: Enable entropic auto-blend setting (symbolic class only) (boolean; de-
fault: false)

� M: Specify the missing value treatment mode (default a) Valid options are:
a(verage), d(elete), m(axdiff), n(ormal) (string; default: ’a’)

Values:

The RapidMiner 4.2 Tutorial

252 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, updatable

Short description: K* is an instance-based classifier, that is the class of a
test instance is based upon the class of those training instances similar to it, as
determined by some similarity function.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: John G. Cleary, Leonard E. Trigg: K*: An Instance-
based Learner Using an Entropic Distance Measure. In: 12th International
Conference on Machine Learning, 108-114, 1995.

5.4.118 W-LBR

Group: Learner.Supervised.Weka.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 253

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: Lazy Bayesian Rules Classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Zijian Zheng, G. Webb (2000). Lazy Learning of Bayesian
Rules. Machine Learning. 4(1):53-84.

5.4.119 W-LMT

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Binary splits (convert nominal attributes to binary ones) (boolean; de-
fault: false)

� R: Split on residuals instead of class values (boolean; default: false)

� C: Use cross-validation for boosting at all nodes (i.e., disable heuristic)
(boolean; default: false)

� P: Use error on probabilities instead of misclassification error for stopping
criterion of LogitBoost. (boolean; default: false)

� I: Set fixed number of iterations for LogitBoost (instead of using cross-
validation) (real; -∞-+∞)

� M: Set minimum number of instances at which a node can be split (default
15) (real; -∞-+∞)

� W: Set beta for weight trimming for LogitBoost. Set to 0 (default) for no
weight trimming. (real; -∞-+∞)

� A: The AIC is used to choose the best iteration. (boolean; default: false)

Values:

The RapidMiner 4.2 Tutorial

254 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Classifier for building ’logistic model trees’, which are clas-
sification trees with logistic regression functions at the leaves.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic
Model Trees. Machine Learning. 95(1-2):161-205.

Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induc-
tion. In: 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases, 675-683, 2005.

5.4.120 W-LWL

Group: Learner.Supervised.Weka.Lazy

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� A: The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
(string; default: ’weka.core.neighboursearch.LinearNNSearch -A ”weka.core.EuclideanDistance
-R first-last”’)

� K: Set the number of neighbours used to set the kernel bandwidth. (default
all) (real; -∞-+∞)

� U: Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
2=Tricube, 3=Inverse, 4=Gaussian. (default 0 = Linear) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 255

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� W: Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
(string; default: ’weka.classifiers.trees.DecisionStump’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numeri-
cal attributes, polynominal label, binominal label, numerical label, updatable,
weighted examples

Short description: Locally weighted learning.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally
Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelli-
gence, 249-256, 2003.

C. Atkeson, A. Moore, S. Schaal (1996). Locally weighted learning. AI Review..

5.4.121 W-LeastMedSq

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Set sample size (default: 4) (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

256 CHAPTER 5. OPERATOR REFERENCE

� G: Set the seed used to generate samples (default: 0) (string; default: ’0’)

� D: Produce debugging output (default no debugging output) (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label

Short description: Implements a least median sqaured linear regression util-
ising the existing weka LinearRegression class to form predictions.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Peter J. Rousseeuw, Annick M. Leroy (1987). Robust
regression and outlier detection. .

5.4.122 W-LinearRegression

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Produce debugging output. (default no debugging output) (boolean;
default: false)

� S: Set the attribute selection method to use. 1 = None, 2 = Greedy.
(default 0 = M5’ method) (real; -∞-+∞)

� C: Do not try to eliminate colinear attributes. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 257

� R: Set ridge parameter (default 1.0e-8). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label, weighted examples

Short description: Class for using linear regression for prediction.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.123 W-Logistic

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Turn on debugging output. (boolean; default: false)

� R: Set the ridge in the log-likelihood. (real; -∞-+∞)

� M: Set the maximum number of iterations (default -1, until convergence).
(real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

258 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for building and using a multinomial logistic regres-
sion model with a ridge estimator.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: le Cessie, S., van Houwelingen, J.C. (1992). Ridge
Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.

5.4.124 W-LogisticBase

Group: Learner.Supervised.Weka.Lmt

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: weighted examples

Short description: The weka learner W-LogisticBase

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 259

5.4.125 W-LogitBoost

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� Q: Use resampling instead of reweighting for boosting. (boolean; default:
false)

� P: Percentage of weight mass to base training on. (default 100, reduce to
around 90 speed up) (real; -∞-+∞)

� F: Number of folds for internal cross-validation. (default 0 – no cross-
validation) (real; -∞-+∞)

� R: Number of runs for internal cross-validation. (default 1) (real; -∞-+∞)

� L: Threshold on the improvement of the likelihood. (default -Double.MAX VALUE)
(real; -∞-+∞)

� H: Shrinkage parameter. (default 1) (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

The RapidMiner 4.2 Tutorial

260 CHAPTER 5. OPERATOR REFERENCE

Short description: Class for performing additive logistic regression.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: J. Friedman, T. Hastie, R. Tibshirani (1998). Additive
Logistic Regression: a Statistical View of Boosting. Stanford University.

5.4.126 W-M5P

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Use unpruned tree/rules (boolean; default: false)

� U: Use unsmoothed predictions (boolean; default: false)

� R: Build regression tree/rule rather than a model tree/rule (boolean; de-
fault: false)

� M: Set minimum number of instances per leaf (default 4) (real; -∞-+∞)

� L: Save instances at the nodes in the tree (for visualization purposes)
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label

Short description: The weka learner W-M5P

July 14, 2008

5.4. LEARNING SCHEMES 261

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Ross J. Quinlan: Learning with Continuous Classes. In:
5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348,
1992.

Y. Wang, I. H. Witten: Induction of model trees for predicting continuous
classes. In: Poster papers of the 9th European Conference on Machine Learning,
1997.

5.4.127 W-M5Rules

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Use unpruned tree/rules (boolean; default: false)

� U: Use unsmoothed predictions (boolean; default: false)

� R: Build regression tree/rule rather than a model tree/rule (boolean; de-
fault: false)

� M: Set minimum number of instances per leaf (default 4) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label

Short description: Generates a decision list for regression problems using
separate-and-conquer.

The RapidMiner 4.2 Tutorial

262 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Geoffrey Holmes, Mark Hall, Eibe Frank: Generating
Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Arti-
ficial Intelligence, 1-12, 1999.

Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint
Conference on Artificial Intelligence, Singapore, 343-348, 1992.

Y. Wang, I. H. Witten: Induction of model trees for predicting continuous
classes. In: Poster papers of the 9th European Conference on Machine Learning,
1997.

5.4.128 W-MDD

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Turn on debugging output. (boolean; default: false)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 1=stan-
dardize) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: Modified Diverse Density algorithm, with collective as-
sumption.

July 14, 2008

5.4. LEARNING SCHEMES 263

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Oded Maron (1998). Learning from ambiguity.

O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learn-
ing. Neural Information Processing Systems. 10.

5.4.129 W-MIBoost

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Turn on debugging output. (boolean; default: false)

� B: The number of bins in discretization (default 0, no discretization) (real;
-∞-+∞)

� R: Maximum number of boost iterations. (default 10) (real; -∞-+∞)

� W: Full name of classifier to boost. eg: weka.classifiers.bayes.NaiveBayes
(string; default: ’weka.classifiers.rules.ZeroR’)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label

Short description: MI AdaBoost method, considers the geometric mean of
posterior of instances inside a bag (arithmatic mean of log-posterior) and the
expectation for a bag is taken inside the loss function.

The RapidMiner 4.2 Tutorial

264 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Yoav Freund, Robert E. Schapire: Experiments with a
new boosting algorithm. In: Thirteenth International Conference on Machine
Learning, San Francisco, 148-156, 1996.

5.4.130 W-MIDD

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Turn on debugging output. (boolean; default: false)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 1=stan-
dardize) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: Re-implement the Diverse Density algorithm, changes the
testing procedure.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 265

Further information: Oded Maron (1998). Learning from ambiguity.

O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learn-
ing. Neural Information Processing Systems. 10.

5.4.131 W-MIEMDD

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 1=stan-
dardize) (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: EMDD model builds heavily upon Dietterich’s Diverse
Density (DD) algorithm.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Qi Zhang, Sally A. Goldman: EM-DD: An Improved
Multiple-Instance Learning Technique. In: Advances in Neural Information Pro-
cessing Systems 14, 1073-108, 2001.

The RapidMiner 4.2 Tutorial

266 CHAPTER 5. OPERATOR REFERENCE

5.4.132 W-MILR

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Turn on debugging output. (boolean; default: false)

� R: Set the ridge in the log-likelihood. (real; -∞-+∞)

� A: Defines the type of algorithm: 0. standard MI assumption 1. collective
MI assumption, arithmetic mean for posteriors 2. collective MI assump-
tion, geometric mean for posteriors (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: Uses either standard or collective multi-instance assump-
tion, but within linear regression.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.133 W-MINND

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

July 14, 2008

5.4. LEARNING SCHEMES 267

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� K: Set number of nearest neighbour for prediction (default 1) (real; -∞-
+∞)

� S: Set number of nearest neighbour for cleansing the training data (default
1) (real; -∞-+∞)

� E: Set number of nearest neighbour for cleansing the testing data (default
1) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: Multiple-Instance Nearest Neighbour with Distribution learner.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Xin Xu (2001). A nearest distribution approach to
multiple-instance learning. Hamilton, NZ.

5.4.134 W-MIOptimalBall

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

The RapidMiner 4.2 Tutorial

268 CHAPTER 5. OPERATOR REFERENCE

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 0=nor-
malize) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label, weighted examples

Short description: This classifier tries to find a suitable ball in the multiple-
instance space, with a certain data point in the instance space as a ball center.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Peter Auer, Ronald Ortner: A Boosting Approach to
Multiple Instance Learning. In: 15th European Conference on Machine Learn-
ing, 63-74, 2004.

5.4.135 W-MISMO

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 269

� no-checks: Turns off all checks - use with caution! Turning them off
assumes that data is purely numeric, doesn’t contain any missing values,
and has a nominal class. Turning them off also means that no header
information will be stored if the machine is linear. Finally, it also assumes
that no instance has a weight equal to 0. (default: checks on) (boolean;
default: false)

� C: The complexity constant C. (default 1) (real; -∞-+∞)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 0=nor-
malize) (real; -∞-+∞)

� I: Use MIminimax feature space. (boolean; default: false)

� L: The tolerance parameter. (default 1.0e-3) (real; -∞-+∞)

� P: The epsilon for round-off error. (default 1.0e-12) (real; -∞-+∞)

� M: Fit logistic models to SVM outputs. (boolean; default: false)

� V: The number of folds for the internal cross-validation. (default -1, use
training data) (real; -∞-+∞)

� W: The random number seed. (default 1) (real; -∞-+∞)

� K: The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
(string; default: ’weka.classifiers.mi.supportVector.MIPolyKernel -C 250007
-E 1.0’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Implements John Platt’s sequential minimal optimization
algorithm for training a support vector classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

270 CHAPTER 5. OPERATOR REFERENCE

Further information: J. Platt: Machines using Sequential Minimal Optimiza-
tion. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, 1998.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improve-
ments to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computa-
tion. 13(3):637-649.

5.4.136 W-MIWrapper

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� P: The method used in testing: 1.arithmetic average 2.geometric average
3.max probability of positive bag. (default: 1) (real; -∞-+∞)

� A: The type of weight setting for each single-instance: 0.keep the weight
to be the same as the original value; 1.weight = 1.0 2.weight = 1.0/Total
number of single-instance in the corresponding bag 3. weight = Total
number of single-instance / (Total number of bags * Total number of
single-instance in the corresponding bag). (default: 3) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� W: Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
(string; default: ’weka.classifiers.rules.ZeroR’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

July 14, 2008

5.4. LEARNING SCHEMES 271

Short description: A simple Wrapper method for applying standard proposi-
tional learners to multi-instance data.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: E. T. Frank, X. Xu (2003). Applying propositional
learning algorithms to multi-instance data. Department of Computer Science,
University of Waikato, Hamilton, NZ.

5.4.137 W-MetaCost

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� I: Number of bagging iterations. (default 10) (real; -∞-+∞)

� C: File name of a cost matrix to use. If this is not supplied, a cost matrix
will be loaded on demand. The name of the on-demand file is the relation
name of the training data plus ”.cost”, and the path to the on-demand
file is specified with the -N option. (string)

� N: Name of a directory to search for cost files when loading costs on de-
mand (default current directory). (string; default: ’/home/ingo/workspace/yale’)

� cost-matrix: The cost matrix in Matlab single line format. (string)

� P: Size of each bag, as a percentage of the training set size. (default 100)
(real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

The RapidMiner 4.2 Tutorial

272 CHAPTER 5. OPERATOR REFERENCE

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: This metaclassifier makes its base classifier cost-sensitive
using the method specified in

Pedro Domingos: MetaCost: A general method for making classifiers cost-
sensitive.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Pedro Domingos: MetaCost: A general method for
making classifiers cost-sensitive. In: Fifth International Conference on Knowl-
edge Discovery and Data Mining, 155-164, 1999.

5.4.138 W-MinMaxExtension

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� M: Use maximal extension (default: minimal extension) (boolean; default:
false)

July 14, 2008

5.4. LEARNING SCHEMES 273

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: This class is an implementation of the minimal and max-
imal extension.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: S. Lievens, B. De Baets, K. Cao-Van (2006). A Prob-
abilistic Framework for the Design of Instance-Based Supervised Ranking Algo-
rithms in an Ordinal Setting. Annals of Operations Research..

Kim Cao-Van (2003). Supervised ranking: from semantics to algorithms.

Stijn Lievens (2004). Studie en implementatie van instantie-gebaseerde algorit-
men voor gesuperviseerd rangschikken.

5.4.139 W-MultiBoostAB

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Number of sub-committees. (Default 3) (real; -∞-+∞)

� P: Percentage of weight mass to base training on. (default 100, reduce to
around 90 speed up) (real; -∞-+∞)

� Q: Use resampling for boosting. (boolean; default: false)

The RapidMiner 4.2 Tutorial

274 CHAPTER 5. OPERATOR REFERENCE

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for boosting a classifier using the MultiBoosting
method.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Geoffrey I. Webb (2000). MultiBoosting: A Technique
for Combining Boosting and Wagging. Machine Learning. Vol.40(No.2).

5.4.140 W-MultiClassClassifier

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 275

� M: Sets the method to use. Valid values are 0 (1-against-all), 1 (random
codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) (real; -∞-
+∞)

� R: Sets the multiplier when using random codes. (default 2.0) (real; -∞-
+∞)

� P: Use pairwise coupling (only has an effect for 1-against1) (boolean; de-
fault: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A metaclassifier for handling multi-class datasets with 2-
class classifiers.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.141 W-MultiScheme

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

The RapidMiner 4.2 Tutorial

276 CHAPTER 5. OPERATOR REFERENCE

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� X: Use cross validation for model selection using the given number of folds.
(default 0, is to use training error) (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for selecting a classifier from among several using
cross validation on the training data or the performance on the training data.

Description: Performs the ensemble learning scheme of Weka with the same
name. An arbitrary number of other Weka learning schemes must be embedded
as inner operators. See the Weka javadoc for further classifier and parameter
descriptions.

5.4.142 W-MultilayerPerceptron

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 277

� L: Learning Rate for the backpropagation algorithm. (Value should be
between 0 - 1, Default = 0.3). (real; -∞-+∞)

� M: Momentum Rate for the backpropagation algorithm. (Value should be
between 0 - 1, Default = 0.2). (real; -∞-+∞)

� N: Number of epochs to train through. (Default = 500). (real; -∞-+∞)

� V: Percentage size of validation set to use to terminate training (if this is
non zero it can pre-empt num of epochs. (Value should be between 0 -
100, Default = 0). (real; -∞-+∞)

� S: The value used to seed the random number generator (Value should be
¿= 0 and and a long, Default = 0). (real; -∞-+∞)

� E: The consequetive number of errors allowed for validation testing before
the netwrok terminates. (Value should be ¿ 0, Default = 20). (real;
-∞-+∞)

� G: GUI will be opened. (Use this to bring up a GUI). (boolean; default:
false)

� A: Autocreation of the network connections will NOT be done. (This will
be ignored if -G is NOT set) (boolean; default: false)

� B: A NominalToBinary filter will NOT automatically be used. (Set this to
not use a NominalToBinary filter). (boolean; default: false)

� H: The hidden layers to be created for the network. (Value should be
a list of comma separated Natural numbers or the letters ’a’ = (attribs
+ classes) / 2, ’i’ = attribs, ’o’ = classes, ’t’ = attribs .+ classes) for
wildcard values, Default = a). (string; default: ’a’)

� C: Normalizing a numeric class will NOT be done. (Set this to not nor-
malize the class if it’s numeric). (boolean; default: false)

� I: Normalizing the attributes will NOT be done. (Set this to not normalize
the attributes). (boolean; default: false)

� R: Reseting the network will NOT be allowed. (Set this to not allow the
network to reset). (boolean; default: false)

� D: Learning rate decay will occur. (Set this to cause the learning rate to
decay). (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

278 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: A Classifier that uses backpropagation to classify instances.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.143 W-NBTree

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for generating a decision tree with naive Bayes clas-
sifiers at the leaves.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 279

Further information: Ron Kohavi: Scaling Up the Accuracy of Naive-Bayes
Classifiers: A Decision-Tree Hybrid. In: Second International Conference on
Knoledge Discovery and Data Mining, 202-207, 1996.

5.4.144 W-ND

Group: Learner.Supervised.Weka.Nesteddichotomies

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A meta classifier for handling multi-class datasets with
2-class classifiers by building a random tree structure.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

280 CHAPTER 5. OPERATOR REFERENCE

Further information: Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of
Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95,
2005.

Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class
problems. In: Twenty-first International Conference on Machine Learning, 2004.

5.4.145 W-NNge

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� G: Number of attempts of generalisation. (real; -∞-+∞)

� I: Number of folder for computing the mutual information. (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, updatable

Short description: Nearest-neighbor-like algorithm using non-nested general-
ized exemplars (which are hyperrectangles that can be viewed as if-then rules).

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Brent Martin (1995). Instance-Based learning: Nearest
Neighbor With Generalization. Hamilton, New Zealand.

Sylvain Roy (2002). Nearest Neighbor With Generalization. Christchurch, New
Zealand.

July 14, 2008

5.4. LEARNING SCHEMES 281

5.4.146 W-NaiveBayes

Group: Learner.Supervised.Weka.Bayes

Deprecated: please use NaiveBayes instead.

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� N: Normalize the word weights for each class (boolean; default: false)

� S: Smoothing value to avoid zero WordGivenClass probabilities (default=1.0).
(real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, weighted examples

Short description: Class for a Naive Bayes classifier using estimator classes.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Jason D. Rennie, Lawrence Shih, Jaime Teevan, David
R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In:
ICML, 616-623, 2003.

5.4.147 W-NaiveBayesMultinomial

Group: Learner.Supervised.Weka.Bayes

The RapidMiner 4.2 Tutorial

282 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, weighted examples

Short description: Class for building and using a multinomial Naive Bayes
classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Andrew Mccallum, Kamal Nigam: A Comparison of
Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on
’Learning for Text Categorization’, 1998.

5.4.148 W-NaiveBayesMultinomialUpdateable

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 283

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, polynominal label, binominal la-
bel, updatable, weighted examples

Short description: Class for building and using a multinomial Naive Bayes
classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Andrew Mccallum, Kamal Nigam: A Comparison of
Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on
’Learning for Text Categorization’, 1998.

5.4.149 W-NaiveBayesSimple

Group: Learner.Supervised.Weka.Bayes

Deprecated: please use NaiveBayes instead.

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

The RapidMiner 4.2 Tutorial

284 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Class for building and using a simple Naive Bayes classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Richard Duda, Peter Hart (1973). Pattern Classifica-
tion and Scene Analysis. Wiley, New York.

5.4.150 W-NaiveBayesUpdateable

Group: Learner.Supervised.Weka.Bayes

Deprecated: please use NaiveBayes instead.

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� K: Use kernel density estimator rather than normal distribution for numeric
attributes (boolean; default: false)

� D: Use supervised discretization to process numeric attributes (boolean;
default: false)

� O: Display model in old format (good when there are many classes) (boolean;
default: false)

Values:

July 14, 2008

5.4. LEARNING SCHEMES 285

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, updatable, weighted examples

Short description: Class for a Naive Bayes classifier using estimator classes.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: George H. John, Pat Langley: Estimating Continuous
Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in
Artificial Intelligence, San Mateo, 338-345, 1995.

5.4.151 W-OLM

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� C: Sets the classification type to be used. (Default: REG) (string; default:
’REG’)

� A: Sets the averaging type used in phase 1 of the classifier. (Default:
MEAN) (string; default: ’MEAN’)

� N: If different from NONE, a nearest neighbour rule is fired when the rule
base doesn’t contain an example smaller than the instance to be classified
(Default: NONE). (string; default: ’EUCL’)

The RapidMiner 4.2 Tutorial

286 CHAPTER 5. OPERATOR REFERENCE

� E: Sets the extension type, i.e. the rule base to use. (Default: MIN)
(string; default: ’MIN’)

� sort: If set, the instances are also sorted within the same class before
building the rule bases (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: This class is an implementation of the Ordinal Learning
Method Further information regarding the algorithm and variants can be found
in:

Arie Ben-David (1992).

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Arie Ben-David (1992). Automatic Generation of Sym-
bolic Multiattribute Ordinal Knowledge-Based DSSs: methodology and Appli-
cations. Decision Sciences. 23:1357-1372.

Lievens, Stijn (2003-2004). Studie en implementatie van instantie-gebaseerde
algoritmen voor gesuperviseerd rangschikken..

5.4.152 W-OSDL

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 287

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� C: Sets the classification type to be used. (Default: MED) (string; default:
’MED’)

� B: Use the balanced version of the Ordinal Stochastic Dominance Learner
(string)

� W: Use the weighted version of the Ordinal Stochastic Dominance Learner
(string)

� S: Sets the value of the interpolation parameter (not with -W/T/P/L/U)
(default: 0.5). (real; -∞-+∞)

� T: Tune the interpolation parameter (not with -W/S) (default: off) (boolean;
default: false)

� L: Lower bound for the interpolation parameter (not with -W/S) (default:
0) (string)

� U: Upper bound for the interpolation parameter (not with -W/S) (default:
1) (string)

� P: Determines the step size for tuning the interpolation parameter, nl.
(U-L)/P (not with -W/S) (default: 10) (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: This class is an implementation of the Ordinal Stochastic
Dominance Learner.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

The RapidMiner 4.2 Tutorial

288 CHAPTER 5. OPERATOR REFERENCE

Further information: S. Lievens, B. De Baets, K. Cao-Van (2006). A Prob-
abilistic Framework for the Design of Instance-Based Supervised Ranking Algo-
rithms in an Ordinal Setting. Annals of Operations Research..

Kim Cao-Van (2003). Supervised ranking: from semantics to algorithms.

Stijn Lievens (2004). Studie en implementatie van instantie-gebaseerde algorit-
men voor gesuperviseerd rangschikken.

5.4.153 W-OneR

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: The minimum number of objects in a bucket (default: 6). (real; -∞-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Class for building and using a 1R classifier; in other words,
uses the minimum-error attribute for prediction, discretizing numeric attributes.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: R.C. Holte (1993). Very simple classification rules per-
form well on most commonly used datasets. Machine Learning. 11:63-91.

July 14, 2008

5.4. LEARNING SCHEMES 289

5.4.154 W-OrdinalClassClassifier

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Meta classifier that allows standard classification algo-
rithms to be applied to ordinal class problems.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Eibe Frank, Mark Hall: A Simple Approach to Ordinal
Classification. In: 12th European Conference on Machine Learning, 145-156,
2001.

The RapidMiner 4.2 Tutorial

290 CHAPTER 5. OPERATOR REFERENCE

5.4.155 W-PART

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Set confidence threshold for pruning. (default 0.25) (real; -∞-+∞)

� M: Set minimum number of objects per leaf. (default 2) (real; -∞-+∞)

� R: Use reduced error pruning. (boolean; default: false)

� N: Set number of folds for reduced error pruning. One fold is used as
pruning set. (default 3) (string)

� B: Use binary splits only. (boolean; default: false)

� U: Generate unpruned decision list. (boolean; default: false)

� Q: Seed for random data shuffling (default 1). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for generating a PART decision list.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Eibe Frank, Ian H. Witten: Generating Accurate Rule
Sets Without Global Optimization. In: Fifteenth International Conference on
Machine Learning, 144-151, 1998.

July 14, 2008

5.4. LEARNING SCHEMES 291

5.4.156 W-PLSClassifier

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� filter: The PLS filter to use. Full classname of filter to include, followed
by scheme options. (default: weka.filters.supervised.attribute.PLSFilter)
(string; default: ’weka.filters.supervised.attribute.PLSFilter -C 20 -M -A
PLS1 -P center’)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: numerical attributes, numerical label

Short description: A wrapper classifier for the PLSFilter, utilizing the PLS-
Filter’s ability to perform predictions.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.157 W-PaceRegression

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

The RapidMiner 4.2 Tutorial

292 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: Produce debugging output. (default no debugging output) (boolean;
default: false)

� E: The estimator can be one of the following: eb – Empirical Bayes estima-
tor for noraml mixture (default) nested – Optimal nested model selector
for normal mixture subset – Optimal subset selector for normal mixture
pace2 – PACE2 for Chi-square mixture pace4 – PACE4 for Chi-square
mixture pace6 – PACE6 for Chi-square mixture

ols – Ordinary least squares estimator aic – AIC estimator bic – BIC
estimator ric – RIC estimator olsc – Ordinary least squares subset selector
with a threshold (string; default: ’eb’)

� S: Threshold value for the OLSC estimator (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: binominal attributes, numerical attributes, numerical
label, weighted examples

Short description: Class for building pace regression linear models and using
them for prediction.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Wang, Y (2000). A new approach to fitting linear
models in high dimensional spaces. Hamilton, New Zealand.

Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Pro-
ceedings of the Nineteenth International Conference in Machine Learning, Syd-
ney, Australia, 650-657, 2002.

July 14, 2008

5.4. LEARNING SCHEMES 293

5.4.158 W-PredictiveApriori

Group: Learner.Unsupervised.Itemsets.Weka

Required input:

� ExampleSet

Generated output:

� WekaAssociator

Parameters:

� N: The required number of rules. (default = 2147483642) (real; -∞-+∞)

� A: If set class association rules are mined. (default = no) (boolean; default:
false)

� c: The class index. (default = last) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Class implementing the predictive apriori algorithm to
mine association rules.

Description: Performs the Weka association rule learner with the same name.
The operator returns a result object containing the rules found by the association
learner. In contrast to models generated by normal learners, the association rules
cannot be applied to an example set. Hence, there is no way to evaluate the
performance of association rules yet. See the Weka javadoc for further operator
and parameter descriptions.

Further information: Tobias Scheffer: Finding Association Rules That Trade
Support Optimally against Confidence. In: 5th European Conference on Prin-
ciples of Data Mining and Knowledge Discovery, 424-435, 2001.

5.4.159 W-Prism

Group: Learner.Supervised.Weka.Rules

The RapidMiner 4.2 Tutorial

294 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: Class for building and using a PRISM rule set for classifi-
cation.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: J. Cendrowska (1987). PRISM: An algorithm for induc-
ing modular rules. International Journal of Man-Machine Studies. 27(4):349-
370.

5.4.160 W-RBFNetwork

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 295

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Set the number of clusters (basis functions) to generate. (default = 2).
(real; -∞-+∞)

� S: Set the random seed to be used by K-means. (default = 1). (real;
-∞-+∞)

� R: Set the ridge value for the logistic or linear regression. (real; -∞-+∞)

� M: Set the maximum number of iterations for the logistic regression. (de-
fault -1, until convergence). (real; -∞-+∞)

� W: Set the minimum standard deviation for the clusters. (default 0.1).
(real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Short description: Class that implements a normalized Gaussian radial basis-
basis function network.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.161 W-REPTree

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

The RapidMiner 4.2 Tutorial

296 CHAPTER 5. OPERATOR REFERENCE

� M: Set minimum number of instances per leaf (default 2). (real; -∞-+∞)

� V: Set minimum numeric class variance proportion of train variance for
split (default 1e-3). (real; -∞-+∞)

� N: Number of folds for reduced error pruning (default 3). (real; -∞-+∞)

� S: Seed for random data shuffling (default 1). (real; -∞-+∞)

� P: No pruning. (boolean; default: false)

� L: Maximum tree depth (default -1, no maximum) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: Fast decision tree learner.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.162 W-RacedIncrementalLogitBoost

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Minimum size of chunks. (default 500) (real; -∞-+∞)

� M: Maximum size of chunks. (default 2000) (real; -∞-+∞)

� V: Size of validation set. (default 1000) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 297

� P: Committee pruning to perform. 0=none, 1=log likelihood (default)
(real; -∞-+∞)

� Q: Use resampling for boosting. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, updatable

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Classifier for incremental learning of large datasets by way
of racing logit-boosted committees.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.163 W-RandomCommittee

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

298 CHAPTER 5. OPERATOR REFERENCE

� I: Number of iterations. (default 10) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for building an ensemble of randomizable base clas-
sifiers.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.164 W-RandomForest

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� I: Number of trees to build. (real; -∞-+∞)

� K: Number of features to consider (¡1=int(logM+1)). (real; -∞-+∞)

� S: Seed for random number generator. (default 1) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 299

� depth: The maximum depth of the trees, 0 for unlimited. (default 0)
(string)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for constructing a forest of random trees.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Leo Breiman (2001). Random Forests. Machine Learn-
ing. 45(1):5-32.

5.4.165 W-RandomSubSpace

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� P: Size of each subspace: ¡ 1: percentage of the number of attributes ¿=1:
absolute number of attributes (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� I: Number of iterations. (default 10) (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

300 CHAPTER 5. OPERATOR REFERENCE

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: This method constructs a decision tree based classifier
that maintains highest accuracy on training data and improves on generalization
accuracy as it grows in complexity.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

Further information: Tin Kam Ho (1998). The Random Subspace Method
for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 20(8):832-844. URL http://citeseer.ist.psu.edu/ho98random.html.

5.4.166 W-RandomTree

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 301

� K: Number of attributes to randomly investigate (¡1 = int(log(#attributes)+1)).
(real; -∞-+∞)

� M: Set minimum number of instances per leaf. (real; -∞-+∞)

� S: Seed for random number generator. (default 1) (real; -∞-+∞)

� depth: The maximum depth of the tree, 0 for unlimited. (default 0)
(string)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Class for constructing a tree that considers K randomly
chosen attributes at each node.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.167 W-RegressionByDiscretization

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� B: Number of bins for equal-width discretization (default 10). (real; -∞-
+∞)

The RapidMiner 4.2 Tutorial

302 CHAPTER 5. OPERATOR REFERENCE

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A regression scheme that employs any classifier on a copy
of the data that has the class attribute (equal-width) discretized.

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.168 W-Ridor

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� F: Set number of folds for IREP One fold is used as pruning set. (default
3) (real; -∞-+∞)

� S: Set number of shuffles to randomize the data in order to get better rule.
(default 10) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 303

� A: Set flag of whether use the error rate of all the data to select the default
class in each step. If not set, the learner will only use the error rate in the
pruning data (boolean; default: false)

� M: Set flag of whether use the majority class as the default class in each
step instead of choosing default class based on the error rate (if the flag
is not set) (boolean; default: false)

� N: Set the minimal weights of instances within a split. (default 2.0) (real;
-∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: The implementation of a RIpple-DOwn Rule learner.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Brian R. Gaines, Paul Compton (1995). Induction of
Ripple-Down Rules Applied to Modeling Large Databases. J. Intell. Inf. Syst..
5(3):211-228.

5.4.169 W-SMO

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

The RapidMiner 4.2 Tutorial

304 CHAPTER 5. OPERATOR REFERENCE

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� no-checks: Turns off all checks - use with caution! Turning them off
assumes that data is purely numeric, doesn’t contain any missing values,
and has a nominal class. Turning them off also means that no header
information will be stored if the machine is linear. Finally, it also assumes
that no instance has a weight equal to 0. (default: checks on) (boolean;
default: false)

� C: The complexity constant C. (default 1) (real; -∞-+∞)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 0=nor-
malize) (real; -∞-+∞)

� L: The tolerance parameter. (default 1.0e-3) (real; -∞-+∞)

� P: The epsilon for round-off error. (default 1.0e-12) (real; -∞-+∞)

� M: Fit logistic models to SVM outputs. (boolean; default: false)

� V: The number of folds for the internal cross-validation. (default -1, use
training data) (real; -∞-+∞)

� W: The random number seed. (default 1) (real; -∞-+∞)

� K: The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
(string; default: ’weka.classifiers.functions.supportVector.PolyKernel -C
250007 -E 1.0’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Implements John Platt’s sequential minimal optimization
algorithm for training a support vector classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 305

Further information: J. Platt: Machines using Sequential Minimal Optimiza-
tion. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, 1998.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improve-
ments to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computa-
tion. 13(3):637-649.

Trevor Hastie, Robert Tibshirani: Classification by Pairwise Coupling. In: Ad-
vances in Neural Information Processing Systems, 1998.

5.4.170 W-SMOreg

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� no-checks: Turns off all checks - use with caution! Turning them off
assumes that data is purely numeric, doesn’t contain any missing values,
and has a nominal class. Turning them off also means that no header
information will be stored if the machine is linear. Finally, it also assumes
that no instance has a weight equal to 0. (default: checks on) (boolean;
default: false)

� S: The amount up to which deviations are tolerated (epsilon). (default
1e-3) (real; -∞-+∞)

� C: The complexity constant C. (default 1) (real; -∞-+∞)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 0=nor-
malize) (real; -∞-+∞)

� T: The tolerance parameter. (default 1.0e-3) (real; -∞-+∞)

� P: The epsilon for round-off error. (default 1.0e-12) (real; -∞-+∞)

� K: The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
(string; default: ’weka.classifiers.functions.supportVector.PolyKernel -C
250007 -E 1.0’)

The RapidMiner 4.2 Tutorial

306 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label, weighted examples

Short description: Implements Alex Smola and Bernhard Scholkopf’s sequen-
tial minimal optimization algorithm for training a support vector regression
model.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Alex J. Smola, Bernhard Schoelkopf: A Tutorial on
Support Vector Regression. In NeuroCOLT2 Technical Report Series, 1998.

S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy (1999). Im-
provements to SMO Algorithm for SVM Regression. Control Division Dept of
Mechanical and Production Engineering, National University of Singapore.

5.4.171 W-SVMreg

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: The complexity constant C. (default 1) (real; -∞-+∞)

� N: Whether to 0=normalize/1=standardize/2=neither. (default 0=nor-
malize) (real; -∞-+∞)

July 14, 2008

5.4. LEARNING SCHEMES 307

� I: Optimizer class used for solving quadratic optimization problem (de-
fault weka.classifiers.functions.supportVector.RegSMOImproved) (string;
default: ’weka.classifiers.functions.supportVector.RegSMOImproved -L 0.0010
-W 1 -P 1.0E-12 -T 0.0010 -V’)

� K: The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
(string; default: ’weka.classifiers.functions.supportVector.PolyKernel -C
250007 -E 1.0’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, numerical label, weighted examples

Short description: SVMreg implements the support vector machine for re-
gression.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K.
Murthy: Improvements to the SMO Algorithm for SVM Regression. In: IEEE
Transactions on Neural Networks, 1999.

A.J. Smola, B. Schoelkopf (1998). A tutorial on support vector regression.

5.4.172 W-SerializedClassifier

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

The RapidMiner 4.2 Tutorial

308 CHAPTER 5. OPERATOR REFERENCE

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� model: The file containing the serialized model. (required) (string; default:
’/home/ingo/workspace/yale’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: A wrapper around a serialized classifier model.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.173 W-SimpleCart

Group: Learner.Supervised.Weka.Trees

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� M: The minimal number of instances at the terminal nodes. (default 2)
(real; -∞-+∞)

� N: The number of folds used in the minimal cost-complexity pruning. (de-
fault 5) (real; -∞-+∞)

� U: Don’t use the minimal cost-complexity pruning. (default yes). (boolean;
default: false)

� H: Don’t use the heuristic method for binary split. (default true). (boolean;
default: false)

July 14, 2008

5.4. LEARNING SCHEMES 309

� A: Use 1 SE rule to make pruning decision. (default no). (boolean; default:
false)

� C: Percentage of training data size (0-1]. (default 1). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Class implementing minimal cost-complexity pruning.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
Charles J. Stone (1984). Classification and Regression Trees. Wadsworth Inter-
national Group, Belmont, California.

5.4.174 W-SimpleKMeans

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� N: number of clusters. (default 2). (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

310 CHAPTER 5. OPERATOR REFERENCE

� V: Display std. deviations for centroids. (boolean; default: false)

� M: Replace missing values with mean/mode. (boolean; default: false)

� S: Random number seed. (default 10) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: The weka clusterer W-SimpleKMeans

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

5.4.175 W-SimpleLinearRegression

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 311

Learner capabilities: numerical attributes, numerical label, weighted exam-
ples

Short description: Learns a simple linear regression model.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.176 W-SimpleLogistic

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� I: Set fixed number of iterations for LogitBoost (real; -∞-+∞)

� S: Use stopping criterion on training set (instead of cross-validation) (boolean;
default: false)

� P: Use error on probabilities (rmse) instead of misclassification error for
stopping criterion (boolean; default: false)

� M: Set maximum number of boosting iterations (real; -∞-+∞)

� H: Set parameter for heuristic for early stopping of LogitBoost. If enabled,
the minimum is selected greedily, stopping if the current minimum has
not changed for iter iterations. By default, heuristic is enabled with value
50. Set to zero to disable heuristic. (real; -∞-+∞)

� W: Set beta for weight trimming for LogitBoost. Set to 0 for no weight
trimming. (real; -∞-+∞)

� A: The AIC is used to choose the best iteration (instead of CV or training
error). (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

312 CHAPTER 5. OPERATOR REFERENCE

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Classifier for building linear logistic regression models.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic
Model Trees.

Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induc-
tion. In: 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases, 675-683, 2005.

5.4.177 W-SimpleMI

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� M: The method used in transformation: 1.arithmatic average; 2.geometric
centor; 3.using minimax combined features of a bag (default: 1)

Method 3: Define s to be the vector of the coordinate-wise maxima and
minima of X, ie., s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform
the exemplars into mono-instance which contains attributes s(X) (real;
-∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� W: Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
(string; default: ’weka.classifiers.rules.ZeroR’)

Values:

� applycount: The number of times the operator was applied.

July 14, 2008

5.4. LEARNING SCHEMES 313

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label

Short description: Reduces MI data into mono-instance data.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.178 W-Stacking

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� M: Full name of meta classifier, followed by options. (default: ”weka.classifiers.rules.Zero”)
(string; default: ’weka.classifiers.rules.ZeroR ’)

� X: Sets the number of cross-validation folds. (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

The RapidMiner 4.2 Tutorial

314 CHAPTER 5. OPERATOR REFERENCE

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Combines several classifiers using the stacking method.

Description: Performs the ensemble learning scheme of Weka with the same
name. An arbitrary number of other Weka learning schemes must be embedded
as inner operators. See the Weka javadoc for further classifier and parameter
descriptions.

Further information: David H. Wolpert (1992). Stacked generalization. Neu-
ral Networks. 5:241-259.

5.4.179 W-StackingC

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� M: Full name of meta classifier, followed by options. Must be a nu-
meric prediction scheme. Default: Linear Regression. (string; default:
’weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8’)

� X: Sets the number of cross-validation folds. (real; -∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.4. LEARNING SCHEMES 315

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Implements StackingC (more efficient version of stacking).

Description: Performs the ensemble learning scheme of Weka with the same
name. An arbitrary number of other Weka learning schemes must be embedded
as inner operators. See the Weka javadoc for further classifier and parameter
descriptions.

Further information: A.K. Seewald: How to Make Stacking Better and Faster
While Also Taking Care of an Unknown Weakness. In: Nineteenth International
Conference on Machine Learning, 554-561, 2002.

5.4.180 W-TLD

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Set whether or not use empirical log-odds cut-off instead of 0 (boolean;
default: false)

� R: Set the number of multiple runs needed for searching the MLE. (real;
-∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

The RapidMiner 4.2 Tutorial

316 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: Two-Level Distribution approach, changes the starting
value of the searching algorithm, supplement the cut-off modification and check
missing values.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Xin Xu (2003). Statistical learning in multiple instance
problem. Hamilton, NZ.

5.4.181 W-TLDSimple

Group: Learner.Supervised.Weka.Mi

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Set whether or not use empirical log-odds cut-off instead of 0 (boolean;
default: false)

� R: Set the number of multiple runs needed for searching the MLE. (real;
-∞-+∞)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

July 14, 2008

5.4. LEARNING SCHEMES 317

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label

Short description: The weka learner W-TLDSimple

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: Xin Xu (2003). Statistical learning in multiple instance
problem. Hamilton, NZ.

5.4.182 W-Tertius

Group: Learner.Unsupervised.Itemsets.Weka

Required input:

� ExampleSet

Generated output:

� WekaAssociator

Parameters:

� K: Set maximum number of confirmation values in the result. (default:
10) (real; -∞-+∞)

� F: Set frequency threshold for pruning. (default: 0) (real; -∞-+∞)

� C: Set confirmation threshold. (default: 0) (string)

� N: Set noise threshold : maximum frequency of counter-examples. 0 gives
only satisfied rules. (default: 1) (real; -∞-+∞)

� R: Allow attributes to be repeated in a same rule. (boolean; default: false)

� L: Set maximum number of literals in a rule. (default: 4) (real; -∞-+∞)

� G: Set the negations in the rule. (default: 0) (real; -∞-+∞)

� S: Consider only classification rules. (boolean; default: false)

� c: Set index of class attribute. (default: last). (real; -∞-+∞)

� H: Consider only horn clauses. (boolean; default: false)

The RapidMiner 4.2 Tutorial

318 CHAPTER 5. OPERATOR REFERENCE

� E: Keep equivalent rules. (boolean; default: false)

� M: Keep same clauses. (boolean; default: false)

� T: Keep subsumed rules. (boolean; default: false)

� I: Set the way to handle missing values. (default: 0) (real; -∞-+∞)

� O: Use ROC analysis. (boolean; default: false)

� p: Set the file containing the parts of the individual for individual-based
learning. (string; default: ”)

� P: Set output of current values. (default: 0) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Finds rules according to confirmation measure (Tertius-
type algorithm).

Description: Performs the Weka association rule learner with the same name.
The operator returns a result object containing the rules found by the association
learner. In contrast to models generated by normal learners, the association rules
cannot be applied to an example set. Hence, there is no way to evaluate the
performance of association rules yet. See the Weka javadoc for further operator
and parameter descriptions.

Further information: P. A. Flach, N. Lachiche (1999). Confirmation-Guided
Discovery of first-order rules with Tertius. Machine Learning. 42:61-95.

5.4.183 W-ThresholdSelector

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

July 14, 2008

5.4. LEARNING SCHEMES 319

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: The class for which threshold is determined. Valid values are: 1, 2
(for first and second classes, respectively), 3 (for whichever class is least
frequent), and 4 (for whichever class value is most frequent), and 5 (for
the first class named any of ”yes”,”pos(itive)” ”1”, or method 3 if no
matches). (default 5). (real; -∞-+∞)

� X: Number of folds used for cross validation. If just a hold-out set is used,
this determines the size of the hold-out set (default 3). (real; -∞-+∞)

� R: Sets whether confidence range correction is applied. This can be used to
ensure the confidences range from 0 to 1. Use 0 for no range correction, 1
for correction based on the min/max values seen during threshold selection
(default 0). (real; -∞-+∞)

� E: Sets the evaluation mode. Use 0 for evaluation using cross-validation,
1 for evaluation using hold-out set, and 2 for evaluation on the training
data (default 1). (real; -∞-+∞)

� M: Measure used for evaluation (default is FMEASURE). (string; default:
’FMEASURE’)

� manual: Set a manual threshold to use. This option overrides automatic
selection and options pertaining to automatic selection will be ignored.
(default -1, i.e. do not use a manual threshold). (string)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: A metaclassifier that selecting a mid-point threshold on
the probability output by a Classifier.

The RapidMiner 4.2 Tutorial

320 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the meta learning scheme of Weka with the same
name. Another non-meta learning scheme of Weka must be embedded as inner
operator. See the Weka javadoc for further classifier and parameter descriptions.

5.4.184 W-VFI

Group: Learner.Supervised.Weka.Misc

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� C: Don’t weight voting intervals by confidence (boolean; default: false)

� B: Set exponential bias towards confident intervals (default = 1.0) (real;
-∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, weighted examples

Short description: Classification by voting feature intervals.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: G. Demiroz, A. Guvenir: Classification by voting feature
intervals. In: 9th European Conference on Machine Learning, 85-92, 1997.

July 14, 2008

5.4. LEARNING SCHEMES 321

5.4.185 W-Vote

Group: Learner.Supervised.Weka.Meta

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� R: The combination rule to use (default: AVG) (string; default: ’AVG’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Class for combining classifiers.

Description: Performs the ensemble learning scheme of Weka with the same
name. An arbitrary number of other Weka learning schemes must be embedded
as inner operators. See the Weka javadoc for further classifier and parameter
descriptions.

The RapidMiner 4.2 Tutorial

322 CHAPTER 5. OPERATOR REFERENCE

Further information: Ludmila I. Kuncheva (2004). Combining Pattern Clas-
sifiers: Methods and Algorithms. John Wiley and Sons, Inc..

J. Kittler, M. Hatef, Robert P.W. Duin, J. Matas (1998). On combining
classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence.
20(3):226-239.

5.4.186 W-VotedPerceptron

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� I: The number of iterations to be performed. (default 1) (real; -∞-+∞)

� E: The exponent for the polynomial kernel. (default 1) (real; -∞-+∞)

� S: The seed for the random number generation. (default 1) (real; -∞-+∞)

� M: The maximum number of alterations allowed. (default 10000) (real;
-∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, binominal label

Short description: Implementation of the voted perceptron algorithm by Fre-
und and Schapire.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 323

Further information: Y. Freund, R. E. Schapire: Large margin classification
using the perceptron algorithm. In: 11th Annual Conference on Computational
Learning Theory, New York, NY, 209-217, 1998.

5.4.187 W-WAODE

Group: Learner.Supervised.Weka.Bayes

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

� I: Whether to print some more internals. (default: no) (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, polynom-
inal label, binominal label

Short description: WAODE contructs the model called Weightily Averaged
One-Dependence Estimators.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

Further information: L. Jiang, H. Zhang: Weightily Averaged One-Dependence
Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Con-
ference on Artificial Intelligence, PRICAI 2006, 970-974, 2006.

The RapidMiner 4.2 Tutorial

324 CHAPTER 5. OPERATOR REFERENCE

5.4.188 W-Winnow

Group: Learner.Supervised.Weka.Functions

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� L: Use the baLanced version (default false) (boolean; default: false)

� I: The number of iterations to be performed. (default 1) (real; -∞-+∞)

� A: Promotion coefficient alpha. (default 2.0) (real; -∞-+∞)

� B: Demotion coefficient beta. (default 0.5) (real; -∞-+∞)

� H: Prediction threshold. (default -1.0 == number of attributes) (real;
-∞-+∞)

� W: Starting weights. (default 2.0) (real; -∞-+∞)

� S: Default random seed. (default 1) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, binominal
label, updatable

Short description: Implements Winnow and Balanced Winnow algorithms by
Littlestone.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

July 14, 2008

5.4. LEARNING SCHEMES 325

Further information: N. Littlestone (1988). Learning quickly when irrelevant
attributes are abound: A new linear threshold algorithm. Machine Learning.
2:285-318.

N. Littlestone (1989). Mistake bounds and logarithmic linear-threshold learning
algorithms. University of California, Santa Cruz.

5.4.189 W-XMeans

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� I: maximum number of overall iterations (default 1). (real; -∞-+∞)

� M: maximum number of iterations in the kMeans loop in the Improve-
Parameter part (default 1000). (real; -∞-+∞)

� J: maximum number of iterations in the kMeans loop for the splitted cen-
troids in the Improve-Structure part (default 1000). (real; -∞-+∞)

� L: minimum number of clusters (default 2). (real; -∞-+∞)

� H: maximum number of clusters (default 4). (real; -∞-+∞)

� B: distance value for binary attributes (default 1.0). (real; -∞-+∞)

� use-kdtree: Uses the KDTree internally (default no). (boolean; default:
false)

� K: Full class name of KDTree class to use, followed by scheme options.
eg: ”weka.core.neighboursearch.kdtrees.KDTree -P” (default no KDTree
class used). (string)

� C: cutoff factor, takes the given percentage of the splitted centroids if none
of the children win (default 0.0). (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

326 CHAPTER 5. OPERATOR REFERENCE

� D: Full class name of Distance function class to use, followed by scheme op-
tions. (default weka.core.EuclideanDistance). (string; default: ’weka.core.EuclideanDistance
-R first-last’)

� N: file to read starting centers from (ARFF format). (string)

� O: file to write centers to (ARFF format). (string)

� U: The debug level. (default 0) (string)

� Y: The debug vectors file. (string)

� S: Random number seed. (default 10) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Cluster data using the X-means algorithm.

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

Further information: Dan Pelleg, Andrew W. Moore: X-means: Extending
K-means with Efficient Estimation of the Number of Clusters. In: Seventeenth
International Conference on Machine Learning, 727-734, 2000.

5.4.190 W-ZeroR

Group: Learner.Supervised.Weka.Rules

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.4. LEARNING SCHEMES 327

� D: If set, classifier is run in debug mode and may output additional info to
the console (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Learner capabilities: polynominal attributes, binominal attributes, numerical
attributes, polynominal label, binominal label, numerical label, weighted exam-
ples

Short description: Class for building and using a 0-R classifier.

Description: Performs the Weka learning scheme with the same name. See
the Weka javadoc for further classifier and parameter descriptions.

5.4.191 W-sIB

Group: Learner.Unsupervised.Clustering.Weka

Required input:

� ExampleSet

Generated output:

� ClusterModel

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� add cluster attribute: Indicates if a cluster id is generated as new special
attribute. (boolean; default: true)

� add characterization: Indicates if a characterization of each cluster is cre-
ated by a simple classification learner. (boolean; default: false)

� I: maximum number of iterations (default 100). (real; -∞-+∞)

� M: minimum number of changes in a single iteration (default 0). (real;
-∞-+∞)

� N: number of clusters. (default 2). (real; -∞-+∞)

The RapidMiner 4.2 Tutorial

328 CHAPTER 5. OPERATOR REFERENCE

� R: number of restarts. (default 5). (real; -∞-+∞)

� U: set not to normalize the data (default true). (boolean; default: false)

� V: set to output debug info (default false). (boolean; default: false)

� S: Random number seed. (default 1) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Cluster data using the sequential information bottleneck
algorithm.

Description: This operator performs the Weka clustering scheme with the
same name. The operator expects an example set containing ids and returns
a FlatClusterModel or directly annotates the examples with a cluster attribute.
Please note: Currently only clusterers that produce a partition of items are
supported.

Further information: Noam Slonim, Nir Friedman, Naftali Tishby: Unsuper-
vised document classification using sequential information maximization. In:
Proceedings of the 25th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 129-136, 2002.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 329

5.5 Meta optimization schemes

This group of operators iterate several times through an sub-process in order
to optimize some parameters with respect to target functions like performance
criteria.

5.5.1 AbsoluteSplitChain

Group: Meta.Control

Required input:

� ExampleSet

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� number training examples: Absolute size of the training set. -1 equal to
not defined (integer; -1-+∞; default: -1)

� number test examples: Absolute size of the test set. -1 equal to not
defined (integer; -1-+∞; default: -1)

� sampling type: Defines the sampling type of this operator.

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Operator 1 (First Part) must be able to handle [ExampleSet].

� Operator 2 (Second Part) must be able to handle [ExampleSet].

Short description: Splits an example set in two parts based on user defined
set sizes and uses the output of the first child and the second part as input for
the second child.

The RapidMiner 4.2 Tutorial

330 CHAPTER 5. OPERATOR REFERENCE

Description: An operator chain that split an ExampleSet into two disjunct
parts and applies the first child operator on the first part and applies the second
child on the second part and the result of the first child. The total result is the
result of the second operator.

The input example set will be splitted based on a user defined absolute numbers.

5.5.2 AverageBuilder

Group: Meta.Other

Required input:

� AverageVector

Generated output:

� AverageVector

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Builds the average of input average vectors (e.g. perfor-
mance) of the same type.

Description: Collects all average vectors (e.g. PerformanceVectors) from the
input and average those of the same type.

5.5.3 BatchProcessing

Group: Meta

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� batch size: This number of examples is processed batch-wise by the inner
operators of this operator. (integer; 1-+∞; default: 1000)

Values:

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 331

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet].

Short description: Creates batches from the input examples and performs its
inner operators on each of these batches which might be useful for applying
methods on very large data sets directly in databases.

Description: This operator groups the input examples into batches of the
specified size and performs the inner operators on all batches subsequently.
This might be useful for very large data sets which cannot be load into memory
but must be handled in a database. In these cases, preprocessing methods or
model applications and other tasks can be performed on each batch and the
result might be again written into a database table (by using the DatabaseEx-
ampleSetWriter in its append mode).

5.5.4 ClusterIteration

Group: Meta.Control

Required input:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: Applies all inner operators to all clusters.

The RapidMiner 4.2 Tutorial

332 CHAPTER 5. OPERATOR REFERENCE

Description: This operator splits up the input example set according to the
clusters and applies its inner operators number of clusters time. This requires
the example set to have a special cluster attribute which can be either created
by a Clusterer or might be declared in the attribute description file that was
used when the data was loaded.

5.5.5 EvolutionaryParameterOptimization

Group: Meta.Parameter

Generated output:

� ParameterSet

� PerformanceVector

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� parameters: The parameters. (list)

� max generations: Stop after this many evaluations (integer; 1-+∞; de-
fault: 50)

� generations without improval: Stop after this number of generations with-
out improvement (-1: optimize until max iterations). (integer; -1-+∞;
default: 1)

� population size: The population size (-1: number of examples) (integer;
-1-+∞; default: 5)

� tournament fraction: The fraction of the population used for tournament
selection. (real; 0.0-+∞)

� keep best: Indicates if the best individual should survive (elititst selection).
(boolean; default: true)

� mutation type: The type of the mutation operator.

� selection type: The type of the selection operator.

� crossover prob: The probability for crossover. (real; 0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show convergence plot: Indicates if a dialog with a convergence plot
should be drawn. (boolean; default: false)

Values:

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 333

� applycount: The number of times the operator was applied.

� best: best performance ever

� looptime: The time elapsed since the current loop started.

� performance: currently best performance

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: This operator finds the optimal values for parameters using
an evolutionary computation approach.

Description: This operator finds the optimal values for a set of parameters
using an evolutionary strategies approach which is often more appropriate than
a grid search or a greedy search like the quadratic programming approach and
leads to better results. The parameter parameters is a list of key value pairs
where the keys are of the form operator name.parameter name and the value
for each parameter must be a semicolon separated pair of a minimum and a
maximum value in squared parantheses, e.g. [10;100] for a range of 10 until
100.

The operator returns an optimal ParameterSet which can as well be written to
a file with a ParameterSetWriter (see section 5.3.35). This parameter set
can be read in another process using a ParameterSetLoader (see section
5.3.34).

The file format of the parameter set file is straightforward and can easily be
generated by external applications. Each line is of the form

operator name.parameter name = value

Please refer to section 4.3 for an example application.

5.5.6 ExampleSetIterator

Group: Meta.Control

Required input:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

334 CHAPTER 5. OPERATOR REFERENCE

� only best: Return only best result? (Requires a PerformanceVector in the
inner result). (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [].

Short description: Performs its inner operators for each example set found
in input.

Description: For each example set the ExampleSetIterator finds in its input,
the inner operators are applied as if it was an OperatorChain. This operator can
be used to conduct a process consecutively on a number of different data sets.

5.5.7 ExperimentEmbedder

Group: Meta

Please use the operator ’ProcessEmbedder’ instead (and note the change of the
parameter name!)

Parameters:

� process file: The process file which should be encapsulated by this oper-
ator (filename)

� use input: Indicates if the operator input should be used as input of the
process (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 335

Short description: This operator embeds a complete experiment previously
written into a file.

Description: This operator can be used to embed a complete process defini-
tion into the current process definition. The process must have been written
into a file before and will be loaded and executed when the current process
reaches this operator. Optionally, the input of this operator can be used as
input for the embedded process. In both cases, the output of the process will
be delivered as output of this operator. Please note that validation checks will
not work for process containing an operator of this type since the check cannot
be performed without actually loading the process.

5.5.8 FeatureIterator

Group: Meta.Control

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� filter: A regular expression which can be used to filter the features in this
loop, i.e. the inner operators are only applied to features which name
fulfills the filter expression. (string)

� type filter: Indicates if a value type filter should be applied for this loop.

� invert selection: Indicates if the filter settings should be inverted, i.e. the
loop will run over all features not fulfilling the specified criteria. (boolean;
default: false)

� iteration macro: The name of the macro which holds the name of the
current feature in each iteration. (string; default: ’loop feature’)

Values:

� applycount: The number of times the operator was applied.

� feature name: The number of the current feature.

� iteration: The number of the current iteration / loop.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

336 CHAPTER 5. OPERATOR REFERENCE

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [].

Short description: Iterates over the given features and applies the inner op-
erators for each feature where the inner operators can access the current feature
name by a macro.

Description: This operator takes an input data set and applies its inner op-
erators as often as the number of features of the input data is. Inner operators
can access the current feature name by a macro, whose name can be specified
via the parameter iteration macro.

The user can specify with a parameter if this loop should iterate over all features
or only over features with a specific value type, i.e. only over numerical or over
nominal features. A regular expression can also be specified which is used as a
filter, i.e. the inner operators are only applied for feature names fulfilling the
filter expression.

5.5.9 FeatureSubsetIteration

Group: Meta.Control

Parameters:

� min number of attributes: Determines the minimum number of features
used for the combinations. (integer; 1-+∞; default: 1)

� max number of attributes: Determines the maximum number of features
used for the combinations (-1: try all combinations up to possible maxi-
mum) (integer; -1-+∞; default: -1)

� exact number of attributes: Determines the exact number of features
used for the combinations (-1: use the feature range defined by min and
max). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� feature names: The names of the used features in the current iteration.

� feature number: The number of used features in the current iteration.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 337

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [].

Short description: Performs its inner operator for all specified feature subsets
(useful for brute force evaluations in combination with the ProcessLog operator).

Description: This meta operator iterates through all possible feature subsets
within the specified range and applies the inner operators on the feature sub-
sets. This might be useful in combination with the ProcessLog operator and,
for example, a performance evaluation. In contrast to the BruteForce feature
selection, which performs a similar task, this iterative approach needs much less
memory and can be performed on larger data sets.

5.5.10 GridParameterOptimization

Group: Meta.Parameter

Generated output:

� ParameterSet

� PerformanceVector

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� parameters: The parameters. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� performance: currently best performance

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: This operator finds the optimal values for parameters.

The RapidMiner 4.2 Tutorial

338 CHAPTER 5. OPERATOR REFERENCE

Description: This operator finds the optimal values for a set of parameters
using a grid search. The parameter parameters is a list of key value pairs
where the keys are of the form operator name.parameter name and the value
is either a comma separated list of values (e.g. 10,15,20,25) or an interval
definition in the format [start;end;stepsize] (e.g. [10;25;5]). Alternatively a
value grid pattern may be used by [e.g. [start;end;no steps;scale], where scale
identifies the type of the pattern.

The operator returns an optimal ParameterSet which can as well be written to
a file with a ParameterSetWriter (see section 5.3.35). This parameter set
can be read in another process using a ParameterSetLoader (see section
5.3.34).

The file format of the parameter set file is straightforward and can easily be
generated by external applications. Each line is of the form

operator name.parameter name = value

Please refer to section 4.3 for an example application. Another parameter op-
timization schems like the EvolutionaryParameterOptimization (see
section 5.5.5) might also be useful if the best ranges and dependencies are not
known at all. Another operator which works similar to this parameter optimiza-
tion operator is the operator ParameterIteration (see section 5.5.17). In
contrast to the optimization operator, this operator simply iterates through all
parameter combinations. This might be especially useful for plotting purposes.

5.5.11 IteratingOperatorChain

Group: Meta.Control

Parameters:

� iterations: Number of iterations (integer; 0-+∞; default: 1)

� timeout: Timeout in minutes (-1: no timeout) (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� iteration: The iteration currently performed by this looping operator.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 339

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: Performs its inner operators k times.

Description: Performs its inner operators for the defined number of times.
The input of this operator will be the input of the first operator in the first
iteration. The output of each children operator is the input for the following
one, the output of the last inner operator will be the input for the first child in
the next iteration. The output of the last operator in the last iteration will be
the output of this operator.

5.5.12 LearningCurve

Group: Meta.Other

Required input:

� ExampleSet

Parameters:

� training ratio: The fraction of examples which shall be maximal used for
training (dynamically growing), the rest is used for testing (fixed) (real;
0.0-1.0)

� step fraction: The fraction of examples which would be additionally used
in each step. (real; 0.0-1.0)

� start fraction: Starts with this fraction of the training data and iteratively
add step fraction examples from the training data (-1: use step fraction).
(real; -1.0-1.0)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: The local random seed for random number generation
(-1: use global random generator). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� deviation: The variance of the last performance (main criterion).

The RapidMiner 4.2 Tutorial

340 CHAPTER 5. OPERATOR REFERENCE

� fraction: The used fraction of data.

� looptime: The time elapsed since the current loop started.

� performance: The last performance (main criterion).

� time: The time elapsed since this operator started.

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: Iterates its inner operator for an increasing number of
samples and collects the performances.

Description: This operator first divides the input example set into two parts,
a training set and a test set according to the parameter “training ratio”. It then
uses iteratively bigger subsets from the fixed training set for learning (the first
operator) and calculates the corresponding performance values on the fixed test
set (with the second operator).

5.5.13 MultipleLabelIterator

Group: Meta.Other

Required input:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 341

Short description: Performs its inner operators for each label found in input
example set.

Description: Performs the inner operator for all label attributes, i.e. special
attributes whose name starts with “label”. In each iteration one of the multiple
labels is used as label. The results of the inner operators are collected and
returned. The example set will be consumed during the iteration.

5.5.14 OperatorEnabler

Group: Meta.Control

Parameters:

� operator name: The name of the operator which should be disabled or
enabled (inner operator names)

� enable: Indicates if the operator should be enabled (true) or disabled (false)
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: This operator can be used to automatically enable or dis-
able inner operators.

Description: This operator can be used to enable and disable other operators.
The operator which should be enabled or disabled must be a child operator of
this one. Together with one of the parameter optimizing or iterating operators
this operator can be used to dynamically change the process setup which might
be useful in order to test different layouts, e.g. the gain by using different
preprocessing steps.

The RapidMiner 4.2 Tutorial

342 CHAPTER 5. OPERATOR REFERENCE

5.5.15 OperatorSelector

Group: Meta.Control

Parameters:

� select which: Indicates which inner operator should be currently employed
by this operator on the input objects. (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [] and must
deliver [].

Short description: This operator can be used to select a single inner operator
which should be performed, e.g. by means of parameter iteration or optimization
operators.

Description: This operator can be used to employ a single inner operator or
operator chain. Which operator should be used can be defined by the parameter
“select which”. Together with one of the parameter optimizing or iterating
operators this operator can be used to dynamically change the process setup
which might be useful in order to test different layouts, e.g. the gain by using
different preprocessing steps or chains or the quality of a certain learner.

5.5.16 ParameterCloner

Group: Meta.Parameter

Parameters:

� name map: A list mapping operator parameters from the set to other
operator parameters in the process setup. (list)

Values:

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 343

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Applies a set of parameters of a source operator on a
target operator.

Description: Sets a list of parameters using existing parameter values.

The operator is similar to ParameterSetter (see section 5.5.18), but differs
from that in not requiring a ParameterSet input. It simply reads a parameter
value from a source and uses it to set the parameter value of a target parameter.
Both, source and target, are given in the format ’operator’.’parameter’.

This operator is more general than ParameterSetter and could completely re-
place it. It is most useful, if you need a parameter which is optimized more than
once within the optimization loop - ParameterSetter cannot be used here.

These parameters can either be generated by a ParameterOptimization-
Operator or read by a ParameterSetLoader (see section 5.3.34). This
operator is useful, e.g. in the following scenario. If one wants to find the best
parameters for a certain learning scheme, one usually is also interested in the
model generated with this parameters. While the first is easily possible using a
ParameterOptimizationOperator, the latter is not possible because the
ParameterOptimizationOperator does not return the IOObjects pro-
duced within, but only a parameter set. This is, because the parameter opti-
mization operator knows nothing about models, but only about the performance
vectors produced within. Producing performance vectors does not necessarily
require a model.

To solve this problem, one can use a ParameterSetter. Usually, a process
definition with a ParameterSetter contains at least two operators of the same
type, typically a learner. One learner may be an inner operator of the Pa-
rameterOptimizationOperator and may be named “Learner”, whereas a
second learner of the same type named “OptimalLearner” follows the parameter
optimization and should use the optimal parameter set found by the optimiza-
tion. In order to make the ParameterSetter set the optimal parameters of
the right operator, one must specify its name. Therefore, the parameter list
name map was introduced. Each parameter in this list maps the name of an
operator that was used during optimization (in our case this is “Learner”) to an
operator that should now use these parameters (in our case this is “Optimal-
Learner”).

The RapidMiner 4.2 Tutorial

344 CHAPTER 5. OPERATOR REFERENCE

5.5.17 ParameterIteration

Group: Meta.Parameter

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� parameters: The parameters. (list)

� synchronize: Synchronize parameter iteration (boolean; default: false)

� keep output: Delivers the merged output of the last operator of all the
iterations, delivers the original input otherwise. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� iteration: The current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: This operator just iterates through all defined parameter
combinations.

Description: In contrast to the GridParameterOptimization (see sec-
tion 5.5.10) operator this operators simply uses the defined parameters and
perform the inner operators for all possible combinations. This can be espe-
cially usefull for plotting or logging purposes and sometimes also for simply
configuring the parameters for the inner operators as a sort of meta step (e.g.
learning curve generation).

This operator iterates through a set of parameters by using all possible parameter
combinations. The parameter parameters is a list of key value pairs where the
keys are of the form operator name.parameter name and the value is either
a comma separated list of values (e.g. 10,15,20,25) or an interval definition
in the format [start;end;stepsize] (e.g. [10;25;5]). Additionally, the format
[start;end;steps;scale] is allowed.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 345

Please note that this operator has two modes: synchronized and non-synchronized.
In the latter, all parameter combinations are generated and the inner operators
are applied for each combination. In the synchronized mode, no combinations
are generated but the set of all pairs of the increasing number of parameters are
used. For the iteration over a single parameter there is no difference between
both modes. Please note that the number of parameter possibilities must be
the same for all parameters in the synchronized mode.

5.5.18 ParameterSetter

Group: Meta.Parameter

Required input:

� ParameterSet

Parameters:

� name map: A list mapping operator names from the set to operator names
in the process setup. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Applies a set of parameters. Operator names may be
remapped.

Description: Sets a set of parameters. These parameters can either be gener-
ated by a ParameterOptimizationOperator or read by a Parameter-
SetLoader (see section 5.3.34). This operator is useful, e.g. in the following
scenario. If one wants to find the best parameters for a certain learning scheme,
one usually is also interested in the model generated with this parameters. While
the first is easily possible using a ParameterOptimizationOperator, the
latter is not possible because the ParameterOptimizationOperator does
not return the IOObjects produced within, but only a parameter set. This is,
because the parameter optimization operator knows nothing about models, but
only about the performance vectors produced within. Producing performance
vectors does not necessarily require a model.

The RapidMiner 4.2 Tutorial

346 CHAPTER 5. OPERATOR REFERENCE

To solve this problem, one can use a ParameterSetter. Usually, a process with
a ParameterSetter contains at least two operators of the same type, typically
a learner. One learner may be an inner operator of the ParameterOpti-
mizationOperator and may be named “Learner”, whereas a second learner
of the same type named “OptimalLearner” follows the parameter optimization
and should use the optimal parameter set found by the optimization. In order to
make the ParameterSetter set the optimal parameters of the right operator,
one must specify its name. Therefore, the parameter list name map was intro-
duced. Each parameter in this list maps the name of an operator that was used
during optimization (in our case this is “Learner”) to an operator that should
now use these parameters (in our case this is “OptimalLearner”).

5.5.19 PartialExampleSetLearner

Group: Meta.Other

Required input:

� ExampleSet

Generated output:

� Model

Parameters:

� fraction: The fraction of examples which shall be used. (real; 0.0-1.0)

� sampling type: Defines the sampling type (linear = consecutive subsets,
shuffled = random subsets, stratified = random subsets with class distri-
bution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Uses only a fraction of the data to apply the inner operator
on it.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 347

Description: This operator works similar to the LearningCurve (see sec-
tion 5.5.12). In contrast to this, it just splits the ExampleSet according to the
parameter ”fraction” and learns a model only on the subset. It can be used,
for example, in conjunction with GridParameterOptimization (see sec-
tion 5.5.10) which sets the fraction parameter to values between 0 and 1. The
advantage is, that this operator can then be used inside of a XValidation
(see section 5.9.32), which delivers more stable result estimations.

5.5.20 ProcessBranch

Group: Meta.Control

Parameters:

� condition type: The condition which is used for the condition check.

� condition value: A condition parameter which might be desired for some
condition checks. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: This operator provides a conditional execution of opera-
tors.

Description: This operator provides a conditional execution of parts of pro-
cesses. It has to have two OperatorChains as childs. The first chain is processed
if the specified condition is true, the second one is processed if it is false (if-then-
else). The second chain may be omitted (if-then). In this case, this operator
has only one inner operator.

If the condition “attribute value filter” is used, the same attribute value condi-
tions already known from the ExampleFilter (see section 5.8.32) operator
can be used. In addition to the known attribute value relation format (e.g.
“att1¿=0.7”), this operator expects an additional definition for the used exam-
ple which cam be added in “[“ and “]“ after the attribute value condition. The
following values are possible:

The RapidMiner 4.2 Tutorial

348 CHAPTER 5. OPERATOR REFERENCE

� a fixed number, e.g. “att1¿0.7 [7]“ meaning that the value for attribute
“att1” for the example 7 must be greater than 0.7

� the wildcard “*“ meaning that the attribute value condition must be
fulfilled for all examples, e.g. “att4¡=5 [*]“

� no example definition, meaning the same as the wildcard definition [*]

5.5.21 ProcessEmbedder

Group: Meta

Parameters:

� process file: The process file which should be encapsulated by this oper-
ator (filename)

� use input: Indicates if the operator input should be used as input of the
process (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator embeds a complete process previously writ-
ten into a file.

Description: This operator can be used to embed a complete process defini-
tion into the current process definition. The process must have been written
into a file before and will be loaded and executed when the current process
reaches this operator. Optionally, the input of this operator can be used as
input for the embedded process. In both cases, the output of the process will
be delivered as output of this operator. Please note that validation checks will
not work for process containing an operator of this type since the check cannot
be performed without actually loading the process.

5.5.22 QuadraticParameterOptimization

Group: Meta.Parameter

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 349

Generated output:

� ParameterSet

� PerformanceVector

Parameters:

� configure operator: Configure this operator by means of a Wizard.

� parameters: The parameters. (list)

� if exceeds region: What to do if range is exceeded.

� if exceeds range: What to do if range is exceeded.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� performance: currently best performance

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: This operator finds the optimal values for parameters using
a quadratic interaction model.

Description: This operator finds the optimal values for a set of parameters
using a quadratic interaction model. The parameter parameters is a list of key
value pairs where the keys are of the form OperatorName.parameter name
and the value is a comma separated list of values (as for the GridParameterOp-
timization operator).

The operator returns an optimal ParameterSet which can as well be written to
a file with a ParameterSetLoader (see section 5.3.34). This parameter set
can be read in another process using an ParameterSetLoader (see section
5.3.34).

The file format of the parameter set file is straightforward and can also easily
be generated by external applications. Each line is of the form

operator name.parameter name = value

.

The RapidMiner 4.2 Tutorial

350 CHAPTER 5. OPERATOR REFERENCE

5.5.23 RandomOptimizer

Group: Meta.Other

Parameters:

� iterations: The number of iterations to perform (integer; 1-+∞)

� timeout: Timeout in minutes (-1 = no timeout) (integer; 1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� avg performance: The average performance

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The current best performance

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: Performs its inner operators k times and returns the best
results.

Description: This operator iterates several times through the inner operators
and in each cycle evaluates a performance measure. The IOObjects that are
produced as output of the inner operators in the best cycle are then returned.
The target of this operator are methods that involve some non-deterministic
elements such that the performance in each cycle may vary. An example is
k-means with random intialization.

5.5.24 RepeatUntilOperatorChain

Group: Meta.Control

Parameters:

� min attributes: Minimal number of attributes in first example set (integer;
0-+∞; default: 0)

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 351

� max attributes: Maximal number of attributes in first example set (inte-
ger; 0-+∞; default: 0)

� min examples: Minimal number of examples in first example set (integer;
0-+∞; default: 0)

� max examples: Maximal number of examples in first example set (integer;
0-+∞; default: +∞)

� min criterion: Minimal main criterion in first performance vector (real;
-∞-+∞)

� max criterion: Maximal main criterion in first performance vector (real;
-∞-+∞)

� max iterations: Maximum number of iterations (integer; 0-+∞; default:
+∞)

� timeout: Timeout in minutes (-1 = no timeout) (integer; 1-+∞; default:
-1)

� performance change: Stop when performance of inner chain behaves like
this.

� condition before: Evaluate condition before inner chain is applied (true)
or after? (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: All inner operators must be able to handle the output of
their predecessor.

Short description: Performs its inner operators until some condition is met.

Description: Performs its inner operators until all given criteria are met or a
timeout occurs.

5.5.25 SeriesPrediction

Group: Meta.Other

The RapidMiner 4.2 Tutorial

352 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� window width: The number of values used as indicators for predicting the
target value. (integer; 1-+∞; default: 10)

� horizon: The gap size used between training windows and prediction value.
(integer; 1-+∞; default: 1)

� max training set size: The maximum number of examples (windows) used
for training the prediction model. (integer; 1-+∞; default: 10)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

Short description: Creates predictions for an ordered time series given as the
label attribute of an example set.

Description: This operator can be used for some basic series prediction oper-
ations. The given series must be univariate and must be encoded by examples,
i.e. each point of time is encoded by the values in one single example. The
values which should be predicted must be defined by the label attribute. Other
attributes will be ignored.

The operator creates time windows and learns a model from these windows to
predict the value of the label column after a certain amount of values (horizon).
After predicting a value, the window is moved with step size 1 and the next
value is predicted. All predictions are kept and can be compared afterwards to
the actual values in a series plot or with a performance evaluation operator.

If you want predictions for different horizons, you have to restart this operator
with different settings for horizon. This might be useful to get a prediction for
1 to horizon future time steps.

The inner learner must be able to work on numerical regression problems.

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 353

5.5.26 SplitChain

Group: Meta.Control

Required input:

� ExampleSet

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� split ratio: Relative size of the training set. (real; 0.0-1.0)

� sampling type: Defines the sampling type of this operator.

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Operator 1 (First Part) must be able to handle [ExampleSet].

� Operator 2 (Second Part) must be able to handle [ExampleSet].

Short description: Splits an example set in two parts based on a user defined
ratio and uses the output of the first child and the second part as input for the
second child.

Description: An operator chain that split an ExampleSet into two disjunct
parts and applies the first child operator on the first part and applies the second
child on the second part and the result of the first child. The total result is the
result of the second operator.

The input example set will be splitted based on a defined ratio between 0 and
1.

The RapidMiner 4.2 Tutorial

354 CHAPTER 5. OPERATOR REFERENCE

5.5.27 ValueSubgroupIterator

Group: Meta.Control

Required input:

� ExampleSet

Parameters:

� attributes: The attributes. (list)

� p: Threshold of value occurance. (real; 0.0-1.0)

� filter attribute: Filter subgroup defining attribute. (boolean; default: true)

� apply on complete set: Apply inner operators also on complete set. (boolean;
default: false)

� iteration macro: Name of macro which is set in each iteration. (string;
default: ’loop value’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [].

Short description: Iterates over the values of the specified attributes and
applies the inner operators on the subgroups which exhibit the current attribute
value.

Description: In each iteration step, this meta operator applies its inner op-
erators to a subset of the input example set. The subsets represent subgroups
which are defined by the values of the specified attributes. If an attribute is
specified which has ’male’ or ’female’ as possible values the first iteration sub-
set will consist of all males, the second of all females, respectively. Please note
that no attribute value combinations are supported and hence only subgroups
defined by exactly one attribute are considered at a time.

A subset is build (and an inner operator application is executed) for each possible
attribute value of the specified attributes if all is selected for the values

July 14, 2008

5.5. META OPTIMIZATION SCHEMES 355

parameter. If above p is selected, a subset is only build for that values which
exhibit an occurance ratio of at least p. This may be helpful, if only large
subgroups should be considered.

The parameter filter attribute specifies, if the subgroup defining attribute
should be filtered from the subsets.

The parameter apply on complete set specifies, if the inner operators should
be applied on the completed example set in addition to the subset iterations.

5.5.28 XVPrediction

Group: Meta.Control

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� number of validations: Number of subsets for the crossvalidation. (inte-
ger; 2-+∞; default: 10)

� leave one out: Set the number of validations to the number of examples.
If set to true, number of validations is ignored. (boolean; default: false)

� sampling type: Defines the sampling type of the cross validation.

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [ExampleSet].

The RapidMiner 4.2 Tutorial

356 CHAPTER 5. OPERATOR REFERENCE

Short description: Predicts the examples in a cross-validation-like fashion.

Description: Operator chain that splits an ExampleSet into a training and
test sets similar to XValidation, but returns the test set predictions instead of
a performance vector. The inner two operators must be a learner returning a
Model and an operator or operator chain that can apply this model (usually a
model applier)

July 14, 2008

5.6. OLAP OPERATORS 357

5.6 OLAP operators

OLAP (Online Analytical Processing) is an approach to quickly providing an-
swers to analytical queries that are multidimensional in nature. Usually, the
basics of OLAP is a set of SQL queries which will typically result in a matrix (or
pivot) format. The dimensions form the row and column of the matrix. Rapid-
Miner supports basic OLAP functionality like grouping and aggregations.

5.6.1 ANOVAMatrix

Group: OLAP

Required input:

� ExampleSet

Generated output:

� ANOVAMatrix

Parameters:

� significance level: The significance level for the ANOVA calculation. (real;
0.0-1.0)

� only distinct: Indicates if only rows with distinct values for the aggregation
attribute should be used for the calculation of the aggregation function.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs an ANOVA significance test for a all numerical
attribute based on the groups defined by all other nominal attributes.

Description: This operator calculates the significance of difference for the
values for all numerical attributes depending on the groups defined by all nominal
attributes. Please refer to the operator GroupedANOVA (see section 5.6.3)
for details of the calculation.

The RapidMiner 4.2 Tutorial

358 CHAPTER 5. OPERATOR REFERENCE

5.6.2 Aggregation

Group: OLAP

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: true)

� aggregation attributes: The attributes which should be aggregated. (list)

� group by attributes: Performs a grouping by the values of the attributes
whose names match the given regular expression. (string)

� only distinct: Indicates if only rows with distinct values for the aggregation
attribute should be used for the calculation of the aggregation function.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs one of the aggregation functions (count, sum...)
known from SQL (allows also grouping).

Description: This operator creates a new example set from the input example
set showing the results of arbitrary aggregation functions (as SUM, COUNT etc.
known from SQL). Before the values of different rows are aggregated into a new
row the rows might be grouped by the values of a multiple attributes (similar
to the group-by clause known from SQL). In this case a new line will be created
for each group.

Please note that the known HAVING clause from SQL can be simulated by an
additional ExampleFilter (see section 5.8.32) operator following this one.

5.6.3 GroupedANOVA

Group: OLAP

July 14, 2008

5.6. OLAP OPERATORS 359

Required input:

� ExampleSet

Generated output:

� SignificanceTestResult

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� anova attribute: Calculate the ANOVA for this attribute based on the
groups defines by group by attribute. (string)

� group by attribute: Performs a grouping by the values of the attribute
with this name. (string)

� significance level: The significance level for the ANOVA calculation. (real;
0.0-1.0)

� only distinct: Indicates if only rows with distinct values for the aggregation
attribute should be used for the calculation of the aggregation function.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs an ANOVA significance test for a single numer-
ical attribute based on the groups defined by another (nominal) attribute.

Description: This operator creates groups of the input example set based on
the defined grouping attribute. For each of the groups the mean and variance
of another attribute (the anova attribute) is calculated and an ANalysis Of
VAriance (ANOVA) is performed. The result will be a significance test result
for the specified significance level indicating if the values for the attribute are
significantly different between the groups defined by the grouping attribute.

The RapidMiner 4.2 Tutorial

360 CHAPTER 5. OPERATOR REFERENCE

5.7 Postprocessing

Postprocessing operators can usually be applied on models in order to per-
form some postprocessing steps like cost-sensitive threshold selection or scaling
schemes like Platt scaling.

5.7.1 FrequentItemSetUnificator

Group: Postprocessing

Required input:

� FrequentItemSets

� ExampleSet

Generated output:

� FrequentItemSets

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Compares sets of frequent item sets and removes common
not unique sets.

Description: This operator compares a number of FrequentItemSet sets and
removes every not unique FrequentItemSet.

5.7.2 PlattScaling

Group: Postprocessing

Required input:

� ExampleSet

� Model

Generated output:

� Model

Values:

� applycount: The number of times the operator was applied.

July 14, 2008

5.7. POSTPROCESSING 361

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Turns confidence scores of boolean classifiers into proba-
bility estimates.

Description: A scaling operator, applying the original algorithm by Platt
(1999) to turn confidence scores of boolean classifiers into probability estimates.

Unlike the original version this operator assumes that the confidence scores are
already in the interval of [0,1], as e.g. given for the RapidMiner boosting
operators. The crude estimates are then transformed into log odds, and scaled
by the original transformation of Platt.

The operator assumes a model and an example set for scaling. It outputs
a PlattScalingModel, that contains both, the supplied model and the scaling
step. If the example set contains a weight attribute, then this operator is able
to fit a model to the weighted examples.

5.7.3 ThresholdApplier

Group: Postprocessing

Required input:

� ExampleSet

� Threshold

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Applies a threshold on soft classified data.

Description: This operator applies the given threshold to an example set and
maps a soft prediction to crisp values. If the confidence for the second class
(usually positive for RapidMiner) is greater than the given threshold the
prediction is set to this class.

The RapidMiner 4.2 Tutorial

362 CHAPTER 5. OPERATOR REFERENCE

5.7.4 ThresholdCreator

Group: Postprocessing

Generated output:

� Threshold

Parameters:

� threshold: The confidence threshold to determine if the prediction should
be positive. (real; 0.0-1.0)

� first class: The class which should be considered as the first one (confi-
dence 0). (string)

� second class: The class which should be considered as the second one
(confidence 1). (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a user defined threshold for given prediction con-
fidences (soft predictions) in order to turn it into a crisp classifier.

Description: This operator creates a user defined threshold for crisp classify-
ing based on prediction confidences.

5.7.5 ThresholdFinder

Group: Postprocessing

Required input:

� ExampleSet

Generated output:

� ExampleSet

� Threshold

Parameters:

July 14, 2008

5.7. POSTPROCESSING 363

� misclassification costs first: The costs assigned when an example of the
first class is classified as one of the second. (real; 0.0-+∞)

� misclassification costs second: The costs assigned when an example of
the second class is classified as one of the first. (real; 0.0-+∞)

� show roc plot: Display a plot of the ROC curve. (boolean; default: false)

� use example weights: Indicates if example weights should be used. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Finds a threshold for given prediction confidences (soft
predictions) , costs and distributional information in order to turn it into a crisp
classification. The optimization step is based on ROC analysis.

Description: This operator finds the best threshold for crisp classifying based
on user defined costs.

5.7.6 UncertainPredictionsTransformation

Group: Postprocessing

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� min confidence: The minimal confidence necessary for not setting the
prediction to ’unknown’. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

364 CHAPTER 5. OPERATOR REFERENCE

Short description: Sets all predictions to ’unknown’ (missing value) if the
corresponding confidence is smaller than the specified value.

Description: This operator sets all predictions which do not have a higher
confidence than the specified one to “unknown” (missing value). This operator
is a quite simple version of the CostBasedThresholdLearner which might be
useful in simple binominal classification settings (although it does also work for
polynominal classifications).

July 14, 2008

5.8. DATA PREPROCESSING 365

5.8 Data preprocessing

Preprocessing operators can be used to generate new features by applying func-
tions on the existing features or by automatically cleaning up the data replacing
missing values by, for instance, average values of this attribute.

5.8.1 AGA

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

The RapidMiner 4.2 Tutorial

366 CHAPTER 5. OPERATOR REFERENCE

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� p initialize: Initial probability for an attribute to be switched on. (real;
0.0-1.0)

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

� use plus: Generate sums. (boolean; default: true)

� use diff: Generate differences. (boolean; default: false)

� use mult: Generate products. (boolean; default: true)

� use div: Generate quotients. (boolean; default: false)

� reciprocal value: Generate reciprocal values. (boolean; default: true)

� max number of new attributes: Max number of attributes to generate
for an individual in one generation. (integer; 0-+∞; default: 1)

� max total number of attributes: Max total number of attributes in all
generations (-1: no maximum). (integer; -1-+∞; default: -1)

� p generate: Probability for an individual to be selected for generation.
(real; 0.0-1.0)

� p mutation: Probability for an attribute to be changed (-1: 1 / numberO-
fAtts). (real; -1.0-1.0)

� use square roots: Generate square root values. (boolean; default: false)

� use power functions: Generate the power of one attribute and another.
(boolean; default: false)

July 14, 2008

5.8. DATA PREPROCESSING 367

� use sin: Generate sinus. (boolean; default: false)

� use cos: Generate cosinus. (boolean; default: false)

� use tan: Generate tangens. (boolean; default: false)

� use atan: Generate arc tangens. (boolean; default: false)

� use exp: Generate exponential functions. (boolean; default: false)

� use log: Generate logarithmic functions. (boolean; default: false)

� use absolute values: Generate absolute values. (boolean; default: false)

� use min: Generate minimum values. (boolean; default: false)

� use max: Generate maximum values. (boolean; default: false)

� use sgn: Generate signum values. (boolean; default: false)

� use floor ceil functions: Generate floor, ceil, and rounded values. (boolean;
default: false)

� restrictive selection: Use restrictive generator selection (faster). (boolean;
default: true)

� remove useless: Remove useless attributes. (boolean; default: true)

� remove equivalent: Remove equivalent attributes. (boolean; default: true)

� equivalence samples: Check this number of samples to prove equivalency.
(integer; 1-+∞; default: 5)

� equivalence epsilon: Consider two attributes equivalent if their difference
is not bigger than epsilon. (real; 0.0-+∞)

� equivalence use statistics: Recalculates attribute statistics before equiv-
alence check. (boolean; default: true)

� search fourier peaks: Use this number of highest frequency peaks for si-
nus generation. (integer; 0-+∞; default: 0)

� attributes per peak: Use this number of additional peaks for each found
peak. (integer; 1-+∞; default: 1)

� epsilon: Use this range for additional peaks for each found peak. (real;
0.0-+∞)

� adaption type: Use this adaption type for additional peaks.

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

The RapidMiner 4.2 Tutorial

368 CHAPTER 5. OPERATOR REFERENCE

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Another (improved) genetic algorithm for feature selection
and feature generation (AGA).

Description: Basically the same operator as the GeneratingGeneticAl-
gorithm (see section 5.8.53) operator. This version adds additional gener-
ators and improves the simple GGA approach by providing some basic intron
prevention techniques. In general, this operator seems to work better than the
original approach but frequently deliver inferior results compared to the operator
YAGGA2 (see section 5.8.126).

5.8.2 AbsoluteSampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� sample size: The number of examples which should be sampled (integer;
1-+∞; default: 100)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 369

Short description: Creates a sample from an example set by drawing an exact
number of examples.

Description: Absolute sampling operator. This operator takes a random sam-
ple with the given size. For example, if the sample size is set to 50, the result will
have exactly 50 examples randomly drawn from the complete data set. Please
note that this operator does not sample during a data scan but jumps to the
rows. It should therefore only be used in case of memory data management and
not, for example, for database or file management.

5.8.3 AbsoluteStratifiedSampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� sample size: The number of examples which should be sampled (integer;
1-+∞; default: 100)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a stratified sample from an example set by drawing
a given number of examples.

Description: Stratified sampling operator. This operator performs a random
sampling of a given size. In contrast to the simple sampling operator, this oper-
ator performs a stratified sampling for data sets with nominal label attributes,
i.e. the class distributions remains (almost) the same after sampling. Hence,
this operator cannot be applied on data sets without a label or with a numerical
label. In these cases a simple sampling without stratification is performed. In

The RapidMiner 4.2 Tutorial

370 CHAPTER 5. OPERATOR REFERENCE

some cases it might happen that not the exact desired number of examples is
sampled, e.g. if the desired number is 100 from three qually distributed classes
the resulting number will be 99 (33 of each class).

5.8.4 AddNominalValue

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute name: The name of the nominal attribute to which values should
be added. (string)

� new value: The value which should be added. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator adds an additional value to a specified nom-
inal attribute which is from then mapped to a specific index.

Description: Adds a value to a nominal attribute definition.

5.8.5 AttributeCopy

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute name: The name of the nominal attribute to which values should
be added. (string)

July 14, 2008

5.8. DATA PREPROCESSING 371

� new name: The name of the new (copied) attribute. If this parameter is
missing, simply the same name with an appended number is used. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Copies a single attribute (only the view on the data col-
umn, not the data itself).

Description: Adds a copy of a single attribute to the given example set.

5.8.6 AttributeFilter

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� condition class: Implementation of the condition.

� parameter string: Parameter string for the condition, e.g. ’attribute=value’
for the ValueFilter. (string)

� invert filter: Indicates if only attributes should be accepted which would
normally filtered. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator removes attributes which fulfill a specified
condition.

The RapidMiner 4.2 Tutorial

372 CHAPTER 5. OPERATOR REFERENCE

Description: This operator filters the attributes of an exampleSet. Therefore,
different conditions may be selected as parameter and only attributes fulfilling
this condition are kept. The rest will be removed from the exampleSet The
conditions may be inverted. The conditions are tested over all attributes and for
every attribute over all examples. For example the numeric value filter with the
parameter string “¿ 6” will keep all nominal attributes and all numeric attributes
having a value of greater 6 in every example. A combination of conditions is
possible: “¿ 6 ANDAND ¡ 11” or “¡= 5 || ¡ 0”. But ANDAND and || must not
be mixed. Please note that ANDAND has to be replaced by two ampers ands.

The attribute name filter keeps all attributes which names match the given
regular expression. The nominal value filter keeps all numeric attribute and all
nominal attributes containing at least one of specified nominal values. “rainy
ANDAND cloudy” would keep all attributes containing at least one time “rainy”
and one time “cloudy”. “rainy || sunny” would keep all attributes containing at
least one time “rainy” or one time “sunny”. ANDAND and || are not allowed
to be mixed. And again, ANDAND has to be replaced by two ampers ands.

5.8.7 AttributeMerge

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� first attribute: The first attribute of this merger. (string)

� second attribute: The second attribute of this merger. (string)

� separator: Indicated a string which is used as separation of both values.
(string; default: ’ ’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Merges two attributes into a single new attribute by con-
catenating the values.

July 14, 2008

5.8. DATA PREPROCESSING 373

Description: This operator merges two attributes by simply concatenating the
values and store those new values in a new attribute which will be nominal. If
the resulting values are actually numerical, you could simply change the value
type afterwards with the corresponding operators.

5.8.8 AttributeSubsetPreprocessing

Group: Preprocessing.Attributes

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� condition class: Implementation of the condition.

� parameter string: Parameter string for the condition, e.g. ’attribute=value’
for the nominal value filter. (string)

� attribute name regex: A regular expression which matches against all at-
tribute names (including special attributes). (string)

� invert selection: Indicates if the specified attribute selection should be
inverted. (boolean; default: false)

� process special attributes: Indicates if special attributes like labels etc.
should also be processed. (boolean; default: false)

� keep subset only: Indicates if the attributes which did not match the reg-
ular expression should be removed by this operator. (boolean; default:
false)

� deliver inner results: Indicates if the additional results (other than exam-
ple set) of the inner operator should also be returned. (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [ExampleSet].

The RapidMiner 4.2 Tutorial

374 CHAPTER 5. OPERATOR REFERENCE

Short description: Selects one attribute (or a subset) via a regular expression
and applies its inner operators to the resulting subset.

Description: This operator can be used to select one attribute (or a subset)
by defining a regular expression for the attribute name and applies its inner
operators to the resulting subset. Please note that this operator will also use
special attributes which makes it necessary for all preprocessing steps which
should be performed on special attributes (and are normally not performed on
special attributes).

This operator is also able to deliver the additional results of the inner operator
if desired.

Afterwards, the remaining original attributes are added to the resulting example
set if the parameter “keep subset only” is set to false (default).

Please note that this operator is very powerful and can be used to create new
preprocessing schemes by combinating it with other preprocessing operators.
Hoewever, there are two major restrictions (among some others): first, since
the inner result will be combined with the rest of the input example set, the
number of examples (data points) is not allowed to be changed inside of the
subset preprocessing. Second, attribute role changes will not be delivered to
the outside since internally all special attributes will be changed to regular for
the inner operators and role changes can afterwards not be delivered.

5.8.9 AttributeValueMapper

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attributes: Mapping of values will be applied to the attributes that match
the given regular expression. (string)

� apply to special features: Filter also special attributes (label, id...) (boolean;
default: false)

� replace what: All occurrences of this value will be replaced. (string)

� replace by: The new attribute value to use. (string)

Values:

July 14, 2008

5.8. DATA PREPROCESSING 375

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps certain values of an attribute to other values.

Description: This operator takes an ExampleSet as input and maps the val-
ues of certain attributes to other values. For example, it can replace all occur-
rences of the String ”unknown” in a nominal Attribute by a default String, for
all examples in the ExampleSet.

This operator can replace nominal values (e.g. replace the value “green” by the
value “green color”) as well as numerical values (e.g. replace the all values “3”
by “-1”).

This operator supports regular expressions for the attribute names, i.e. the
value mapping is applied on all attributes for which the name fulfills the pattern
defined by the name expression.

5.8.10 AttributeValueSubstring

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attributes: Substring creation of values will be applied to the attributes
that match the given regular expression. (string)

� apply to special features: Filter also special attributes (label, id...) (boolean;
default: false)

� first: The index of the first character of the substring which should be
kept (counting starts with 1, 0: start with beginning of value). (integer;
1-+∞; default: 1)

� last: The index of the last character of the substring which should be kept
(counting starts with 1, 0: end with end of value). (integer; 1-+∞;
default: +∞)

Values:

The RapidMiner 4.2 Tutorial

376 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates new attributes from nominal attributes which only
contain substrings of the original attributes.

Description: This operator creates new attributes from nominal attributes
where the new attributes contain only of substrings of the original values. Please
note that the counting starts with 1 and that the first and the last character will
be included in the resulting substring. For example, the value is “RapidMiner”
and the first index is set to 6 and the last index is set to 9 the result will be
“Mine”. If the last index is larger than the length of the word, the resulting
substrings will end with the last character.

5.8.11 AttributeWeightSelection

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

� AttributeWeights

Generated output:

� ExampleSet

Parameters:

� keep attribute weights: Indicates if this input object should also be re-
turned as output. (boolean; default: false)

� weight: Use this weight for the selection relation. (real; -∞-+∞)

� weight relation: Selects only weights which fulfill this relation.

� k: Number k of attributes to be selected for weight-relations ’top k’ or
’bottom k’. (integer; 1-+∞; default: 10)

� p: Percentage of attributes to be selected for weight-relations ’top p

� deselect unknown: Indicates if attributes which weight is unknown should
be deselected. (boolean; default: true)

� use absolute weights: Indicates if the absolute values of the weights should
be used for comparison. (boolean; default: true)

Values:

July 14, 2008

5.8. DATA PREPROCESSING 377

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Selects only attributes which weights fulfill a given relation
with respect to the input attribute weights.

Description: This operator selects all attributes which have a weight fulfilling
a given condition. For example, only attributes with a weight greater than
min weight should be selected. This operator is also able to select the k
attributes with the highest weight.

5.8.12 AttributeWeightsApplier

Group: Preprocessing.Attributes

Required input:

� ExampleSet

� AttributeWeights

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Deselects attributes with weight 0 and calculates new val-
ues for numeric attributes.

Description: This operator deselects attributes with a weight value of 0.0.
The values of the other numeric attributes will be recalculated based on the
weights delivered as AttributeWeights object in the input.

This operator can hardly be used to select a subset of features according to
weights determined by a former weighting scheme. For this purpose the operator
AttributeWeightSelection (see section 5.8.11) should be used which will
select only those attribute fulfilling a specified weight relation.

The RapidMiner 4.2 Tutorial

378 CHAPTER 5. OPERATOR REFERENCE

5.8.13 Attributes2RealValues

Group: Preprocessing.Attributes.Filter

Please use the operator Nominal2Numerical instead

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps all values to real values.

Description: This operator maps all non numeric attributes to real valued
attributes. Nothing is done for numeric attributes, binary attributes are mapped
to 0 and 1.

For nominal attributes one of the following calculations will be done:

� Dichotomization, i.e. one new attribute for each value of the nominal
attribute. The new attribute which corresponds to the actual nominal
value gets value 1 and all other attributes gets value 0.

� Alternatively the values of nominal attributes can be seen as equally
ranked, therefore the nominal attribute will simply be turned into a real
valued attribute, the old values results in equidistant real values.

At this moment the same applies for ordinal attributes, in a future release more
appropriate values based on the ranking between the ordinal values may be
included.

July 14, 2008

5.8. DATA PREPROCESSING 379

5.8.14 BackwardWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� keep best: Keep the best n individuals in each generation. (integer; 1-
+∞; default: 1)

� generations without improval: Stop after n generations without improval
of the performance. (integer; 1-+∞; default: 1)

� weights: Use these weights for the creation of individuals in each genera-
tion. (string)

Values:

The RapidMiner 4.2 Tutorial

380 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Assumes that features are independent and optimizes the
weights of the attributes with a linear search.

Description: Uses the backward selection idea for the weighting of features.

5.8.15 BinDiscretization

Group: Preprocessing.Data.Discretization

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� number of bins: Defines the number of bins which should be used for
each attribute. (integer; 2-+∞; default: 2)

� use long range names: Indicates if long range names including the limits
should be used. (boolean; default: true)

Values:

July 14, 2008

5.8. DATA PREPROCESSING 381

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Discretize numerical attributes into a user defined number
of bins.

Description: This operator discretizes all numeric attributes in the dataset
into nominal attributes. This discretization is performed by simple binning, i.e.
the specified number of equally sized bins is created and the numerical values
are simply sorted into those bins. Skips all special attributes including the label.

5.8.16 Bootstrapping

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� sample ratio: This ratio determines the size of the new example set. (real;
0.0-+∞)

� local random seed: Local random seed for this operator (-1: use global
random seed). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a bootstrapped sample by sampling with replace-
ment.

The RapidMiner 4.2 Tutorial

382 CHAPTER 5. OPERATOR REFERENCE

Description: This operator constructs a bootstrapped sample from the given
example set. That means that a sampling with replacement will be performed.
The usual sample size is the number of original examples. This operator also
offers the possibility to create the inverse example set, i.e. an example set
containing all examples which are not part of the bootstrapped example set.
This inverse example set might be used for a bootstrapped validation (together
with an IteratingPerformanceAverage (see section 5.9.19) operator.

5.8.17 BruteForce

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

July 14, 2008

5.8. DATA PREPROCESSING 383

� min number of attributes: Determines the minimum number of features
used for the combinations. (integer; 1-+∞; default: 1)

� max number of attributes: Determines the maximum number of features
used for the combinations (-1: try all combinations up to possible maxi-
mum) (integer; -1-+∞; default: -1)

� exact number of attributes: Determines the exact number of features
used for the combinations (-1: use the feature range defined by min and
max). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Selects the best features for an example set by trying all
possible combinations of attribute selections.

Description: This feature selection operator selects the best attribute set by
trying all possible combinations of attribute selections. It returns the example
set containing the subset of attributes which produced the best performance.
As this operator works on the powerset of the attributes set it has exponential
runtime.

5.8.18 ChangeAttributeName

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

The RapidMiner 4.2 Tutorial

384 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� old name: The old name of the attribute. (string)

� new name: The new name of the attribute. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to rename an attribute.

Description: This operator can be used to rename an attribute of the input
example set. If you want to change the attribute type (e.g. from regular to
id attribute or from label to regular etc.), you should use the ChangeAt-
tributeType (see section 5.8.20) operator.

5.8.19 ChangeAttributeRole

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� name: The name of the attribute of which the type should be changed.
(string)

� target role: The target role of the attribute (only changed if parameter
change attribute type is true).

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 385

Short description: This operator can be used to change the attribute type
(regular, special, label, id...).

Description: This operator can be used to change the attribute type of an
attribute of the input example set. If you want to change the attribute name
you should use the ChangeAttributeName (see section 5.8.18) operator.

The target type indicates if the attribute is a regular attribute (used by learning
operators) or a special attribute (e.g. a label or id attribute). The following
target attribute types are possible:

� regular: only regular attributes are used as input variables for learning
tasks

� id: the id attribute for the example set

� label: target attribute for learning

� prediction: predicted attribute, i.e. the predictions of a learning scheme

� cluster: indicates the memebership to a cluster

� weight: indicates the weight of the example

� batch: indicates the membership to an example batch

Users can also define own attribute types by simply using the desired name.

5.8.20 ChangeAttributeType

Group: Preprocessing.Attributes.Filter

Please use the operator ChangeAttributeRole instead

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� name: The name of the attribute of which the type should be changed.
(string)

� target type: The target type of the attribute (only changed if parameter
change attribute type is true).

The RapidMiner 4.2 Tutorial

386 CHAPTER 5. OPERATOR REFERENCE

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to change the attribute type
(regular, special, label, id...).

Description: This operator can be used to change the attribute type of an
attribute of the input example set. If you want to change the attribute name
you should use the ChangeAttributeName (see section 5.8.18) operator.

The target type indicates if the attribute is a regular attribute (used by learning
operators) or a special attribute (e.g. a label or id attribute). The following
target attribute types are possible:

� regular: only regular attributes are used as input variables for learning
tasks

� id: the id attribute for the example set

� label: target attribute for learning

� prediction: predicted attribute, i.e. the predictions of a learning scheme

� cluster: indicates the memebership to a cluster

� weight: indicates the weight of the example

� batch: indicates the membership to an example batch

Users can also define own attribute types by simply using the desired name.

5.8.21 ChiSquaredWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 387

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� number of bins: The number of bins used for discretization of numerical
attributes before the chi squared test can be performed. (integer; 2-+∞;
default: 10)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator calculates the relevance of a feature by
computing for each attribute of the input example set the value of the chi-
squared statistic with respect to the class attribute.

Description: This operator calculates the relevance of a feature by computing
for each attribute of the input example set the value of the chi-squared statistic
with respect to the class attribute.

5.8.22 CompleteFeatureGeneration

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� keep all: If set to true, all the original attributes are kept, otherwise they
are removed from the example set. (boolean; default: true)

� use plus: Generate sums. (boolean; default: false)

� use diff: Generate differences. (boolean; default: false)

� use mult: Generate products. (boolean; default: false)

� use div: Generate quotients. (boolean; default: false)

� use reciprocals: Generate reciprocal values. (boolean; default: false)

� use square roots: Generate square root values. (boolean; default: false)

The RapidMiner 4.2 Tutorial

388 CHAPTER 5. OPERATOR REFERENCE

� use power functions: Generate the power of one attribute and another.
(boolean; default: false)

� use sin: Generate sinus. (boolean; default: false)

� use cos: Generate cosinus. (boolean; default: false)

� use tan: Generate tangens. (boolean; default: false)

� use atan: Generate arc tangens. (boolean; default: false)

� use exp: Generate exponential functions. (boolean; default: false)

� use log: Generate logarithmic functions. (boolean; default: false)

� use absolute values: Generate absolute values. (boolean; default: false)

� use min: Generate minimum values. (boolean; default: false)

� use max: Generate maximum values. (boolean; default: false)

� use ceil: Generate ceil values. (boolean; default: false)

� use floor: Generate floor values. (boolean; default: false)

� use rounded: Generate rounded values. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: The feature generation operator generates new features
via applying a set of functions on all features.

Description: This operator applies a set of functions on all features of the
input example set. Applicable functions include +, -, *, /, norm, sin, cos, tan,
atan, exp, log, min, max, floor, ceil, round, sqrt, abs, and pow. Features with
two arguments will be applied on all pairs. Non commutative functions will also
be applied on all permutations.

5.8.23 ComponentWeights

Group: Preprocessing.Attributes.Weighting

Required input:

� Model

Generated output:

� Model

� AttributeWeights

July 14, 2008

5.8. DATA PREPROCESSING 389

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: false)

� component number: Create the weights of this component. (integer; 1-
+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates the AttributeWeights of models containing com-
ponents like PCA, GHA or FastICA.

Description: For models creating components like PCA, GHA and FastICA you
can create the AttributeWeights from a component.

5.8.24 CorpusBasedWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� class to characterize: The target class for which to find characteristic
feature weights. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

390 CHAPTER 5. OPERATOR REFERENCE

Short description: This operator uses a corpus of examples to characterize a
single class by setting feature weights.

Description: This operator uses a corpus of examples to characterize a single
class by setting feature weights. Characteristic features receive higher weights
than less characteristic features. The weight for a feature is determined by
calculating the average value of this feature for all examples of the target class.
This operator assumes that the feature values characterize the importance of
this feature for an example (e.g. TFIDF or others). Therefore, this operator
is mainly used on textual data based on TFIDF weighting schemes. To extract
such feature values from text collections you can use the Word Vector Tool
plugin.

5.8.25 Date2Nominal

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute name: The attribute which should be parsed. (string)

� date format: The output format of the date values, for example ”yyyy/M-
M/dd”. (string)

� locale: The used locale for date texts, for example ”Wed” (English) in
contrast to ”Mi” (German).

� keep old attribute: Indicates if the original date attribute should be kept.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Parses the date values for the specified date attribute with
respect to the given date format string and transforms the values into nominal
values.

July 14, 2008

5.8. DATA PREPROCESSING 391

Description: This operator transforms the specified date attribute and writes
a new nominal attribute in a user specified format. This might be useful for
time base OLAP to change the granularity of the time stamps from day to week
or month.

The date format can be specified by the date format parameter like described
in the following.

Date and Time Patterns Date and time formats are specified by date and
time pattern strings in the date format parameter. Within date and time pattern
strings, unquoted letters from ’A’ to ’Z’ and from ’a’ to ’z’ are interpreted
as pattern letters representing the components of a date or time string. Text
can be quoted using single quotes (’) to avoid interpretation. "’’" represents
a single quote. All other characters are not interpreted; they’re simply copied
into the output string during formatting or matched against the input string
during parsing.

The following pattern letters are defined (all other characters from ’A’ to ’Z’
and from ’a’ to ’z’ are reserved):

� G : era designator; Text; example: AD

� y : year; Year; example: 1996; 96

� M: month in year; Month; example: July; Jul; 07

� w : week in year; Number; example: 27

� W : week in month; Number; example: 2

� D: day in year; Number; example: 189

� d : day in month; Number; example: 10

� F : day of week in month; Number; example: 2

� E : day in week; Text; example: Tuesday; Tue

� a: am/pm marker; Text; example: PM

� H: hour in day (0-23); Number; example: 0

� k: hour in day (1-24); Number; example: 24

� K : hour in am / pm (0-11); Number; example: 0

� h: hour in am / pm (1-12); Number; example: 12

� m: minute in hour; Number; example: 30

The RapidMiner 4.2 Tutorial

392 CHAPTER 5. OPERATOR REFERENCE

� s: second in minute; Number; example: 55

� S : millisecond; Number; example: 978

� z : time zone; General Time Zone; example: Pacific Standard Time; PST;
GMT-08:00

� Z : time zone; RFC 822 Time Zone; example: -0800

Pattern letters are usually repeated, as their number determines the exact pre-
sentation:

� Text: For formatting, if the number of pattern letters is 4 or more, the full
form is used; otherwise a short or abbreviated form is used if available. For
parsing, both forms are accepted, independent of the number of pattern
letters.

� Number: For formatting, the number of pattern letters is the minimum
number of digits, and shorter numbers are zero-padded to this amount.
For parsing, the number of pattern letters is ignored unless it’s needed to
separate two adjacent fields.

� Year: If the underlying calendar is the Gregorian calendar, the following
rules are applied.

– For formatting, if the number of pattern letters is 2, the year is
truncated to 2 digits; otherwise it is interpreted as a number.

– For parsing, if the number of pattern letters is more than 2, the year
is interpreted literally, regardless of the number of digits. So using
the pattern ”MM/dd/yyyy”, ”01/11/12” parses to Jan 11, 12 A.D.

– For parsing with the abbreviated year pattern (”y” or ”yy”), this
operator must interpret the abbreviated year relative to some century.
It does this by adjusting dates to be within 80 years before and 20
years after the time the operator is created. For example, using a
pattern of ”MM/dd/yy” and the operator created on Jan 1, 1997,
the string “01/11/12” would be interpreted as Jan 11, 2012 while
the string “05/04/64” would be interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits will be parsed
into the default century. Any other numeric string, such as a one
digit string, a three or more digit string, or a two digit string that isn’t
all digits (for example, “-1”), is interpreted literally. So “01/02/3”
or “01/02/003” are parsed, using the same pattern, as Jan 2, 3 AD.
Likewise, “01/02/-3” is parsed as Jan 2, 4 BC.

July 14, 2008

5.8. DATA PREPROCESSING 393

Otherwise, calendar system specific forms are applied. If the number
of pattern letters is 4 or more, a calendar specific long form is used.
Otherwise, a calendar short or abbreviated form is used.

� Month: If the number of pattern letters is 3 or more, the month is inter-
preted as text; otherwise, it is interpreted as a number.

� General time zone: Time zones are interpreted as text if they have names.
It is possible to define time zones by representing a GMT offset value. RFC
822 time zones are also accepted.

� RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format
is used. General time zones are also accepted.

This operator also supports localized date and time pattern strings by defining
the locale parameter. In these strings, the pattern letters described above may
be replaced with other, locale dependent, pattern letters.

Examples The following examples show how date and time patterns are in-
terpreted in the U.S. locale. The given date and time are 2001-07-04 12:08:56
local time in the U.S. Pacific Time time zone.

� “yyyy.MM.dd G ’at’ HH:mm:ss z”: 2001.07.04 AD at 12:08:56 PDT

� “EEE, MMM d, ”yy”: Wed, Jul 4, ’01

� “h:mm a”: 12:08 PM

� “hh ’o”clock’ a, zzzz”: 12 o’clock PM, Pacific Daylight Time

� “K:mm a, z”: 0:08 PM, PDT

� “yyyyy.MMMMM.dd GGG hh:mm aaa”: 02001.July.04 AD 12:08 PM

� “EEE, d MMM yyyy HH:mm:ss Z”: Wed, 4 Jul 2001 12:08:56 -0700

� “yyMMddHHmmssZ”: 010704120856-0700

� “yyyy-MM-dd’T’HH:mm:ss.SSSZ”: 2001-07-04T12:08:56.235-0700

5.8.26 DeObfuscator

Group: Preprocessing.Other

The RapidMiner 4.2 Tutorial

394 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� obfuscation map file: File where the obfuscator map was written to. (file-
name)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces all obfuscated values and attribute names by the
ones given in a file.

Description: This operator takes an ExampleSet as input and maps all nom-
inal values to randomly created strings. The names and the construction de-
scriptions of all attributes will also replaced by random strings. This operator
can be used to anonymize your data. It is possible to save the obfuscating map
into a file which can be used to remap the old values and names. Please use the
operator Deobfuscator for this purpose. The new example set can be written
with an ExampleSetWriter.

5.8.27 DensityBasedOutlierDetection

Group: Preprocessing.Data.Outlier

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� distance: The distance for objects. (real; 0.0-+∞)

� proportion: The proportion of objects related to D. (real; 0.0-1.0)

� distance function: Indicates which distance function will be used for cal-
culating the distance between two objects

July 14, 2008

5.8. DATA PREPROCESSING 395

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Identifies outliers in the given ExampleSet based on the
data density.

Description: This operator is a DB outlier detection algorithm which calcu-
lates the DB(p,D)-outliers for an ExampleSet passed to the operator. DB(p,D)-
outliers are Distance based outliers according to Knorr and Ng. A DB(p,D)-
outlier is an object to which at least a proportion of p of all objects are farer
away than distance D. It implements a global homogenous outlier search.

Currently, the operator supports cosine, sine or squared distances in addition
to the usual euclidian distance which can be specified by the corresponding
parameter. The operator takes two other real-valued parameters p and D.
Depending on these parameters, search objects will be created from the examples
in the ExampleSet passed to the operator. These search objects will be added to
a search space which will perform the outlier search according to the DB(p,D)
scheme.

The Outlier status (boolean in its nature) is written to a new special attribute
“Outlier” and is passed on with the example set.

5.8.28 DistanceBasedOutlierDetection

Group: Preprocessing.Data.Outlier

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� number of neighbors: Specifies the k value for the k-th nearest neigh-
bours to be the analyzed.(default value is 10, minimum 1 and max is set
to 1 million) (integer; 1-+∞; default: 10)

� number of outliers: The number of top-n Outliers to be looked for.(default
value is 10, minimum 2 (internal reasons) and max is set to 1 million)
(integer; 1-+∞; default: 10)

The RapidMiner 4.2 Tutorial

396 CHAPTER 5. OPERATOR REFERENCE

� distance function: choose which distance function will be used for calcu-
lating the distance between two objects

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Identifies n outliers in the given ExampleSet based on the
distance to their k nearest neighbors.

Description: This operator performs a Dk n Outlier Search according to the
outlier detection approach recommended by Ramaswamy, Rastogi and Shim in
”Efficient Algorithms for Mining Outliers from Large Data Sets”. It is primarily
a statistical outlier search based on a distance measure similar to the DB(p,D)-
Outlier Search from Knorr and Ng. But it utilizes a distance search through the
k-th nearest neighbourhood, so it implements some sort of locality as well.

The method states, that those objects with the largest distance to their k-th
nearest neighbours are likely to be outliers respective to the data set, because it
can be assumed, that those objects have a more sparse neighbourhood than the
average objects. As this effectively provides a simple ranking over all the objects
in the data set according to the distance to their k-th nearest neighbours, the
user can specify a number of n objects to be the top-n outliers in the data set.

The operator supports cosine, sine or squared distances in addition to the eu-
clidian distance which can be specified by a distance parameter. The Operator
takes an example set and passes it on with an boolean top-n Dk outlier status
in a new boolean-valued special outlier attribute indicating true (outlier) and
false (no outlier).

5.8.29 EqualLabelWeighting

Group: Preprocessing.Data.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 397

� total weight: The total weight distributed over all examples. (real; -∞-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Distributes weight over examples, so that per label weights
sum up equally.

Description: This operator distributes example weights so that all example
weights of labels sum up equally.

5.8.30 EvolutionaryFeatureAggregation

Group: Preprocessing.Attributes.Aggregation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� PerformanceVector

Parameters:

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� aggregation function: The aggregation function which is used for feature
aggregations.

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 10)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 100)

� selection type: The type of selection.

� tournament fraction: The fraction of the population which will partici-
pate in each tournament. (real; 0.0-1.0)

� crossover type: The type of crossover.

The RapidMiner 4.2 Tutorial

398 CHAPTER 5. OPERATOR REFERENCE

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: A generating genetic algorithm for unsupervised learning
(experimental).

Description: Performs an evolutionary feature aggregation. Each base feature
is only allowed to be used as base feature, in one merged feature, or it may not
be used at all.

5.8.31 EvolutionaryWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

July 14, 2008

5.8. DATA PREPROCESSING 399

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� mutation variance: The (initial) variance for each mutation. (real; 0.0-
+∞)

� 1 5 rule: If set to true, the 1/5 rule for variance adaption is used. (boolean;
default: true)

� bounded mutation: If set to true, the weights are bounded between 0 and
1. (boolean; default: false)

The RapidMiner 4.2 Tutorial

400 CHAPTER 5. OPERATOR REFERENCE

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Weight the features with an evolutionary approach.

Description: This operator performs the weighting of features with an evo-
lutionary strategies approach. The variance of the gaussian additive mutation
can be adapted by a 1/5-rule.

5.8.32 ExampleFilter

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� condition class: Implementation of the condition.

� parameter string: Parameter string for the condition, e.g. ’attribute=value’
for the AttributeValueFilter. (string)

July 14, 2008

5.8. DATA PREPROCESSING 401

� invert filter: Indicates if only examples should be accepted which would
normally filtered. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator only allows examples which fulfill a specified
condition.

Description: This operator takes an ExampleSet as input and returns a new
ExampleSet including only the Examples that fulfill a condition.

By specifying an implementation of Condition and a parameter string, arbitrary
filters can be applied. Users can implement their own conditions by writing
a subclass of the above class and implementing a two argument constructor
taking an ExampleSet and a parameter string. This parameter string is specified
by the parameter parameter string. Instead of using one of the predefined
conditions users can define their own implementation with the fully qualified
class name.

For “attribute value condition” the parameter string must have the form attribute
op value, where attribute is a name of an attribute, value is a value the at-
tribute can take and op is one of the binary logical operators similar to the ones
known from Java, e.g. greater than or equals.

For “unknown attributes” the parameter string must be empty. This filter re-
moves all examples containing attributes that have missing or illegal values. For
“unknown label” the parameter string must also be empty. This filter removes
all examples with an unknown label value.

5.8.33 ExampleRangeFilter

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

402 CHAPTER 5. OPERATOR REFERENCE

� first example: The first example of the resulting example set. (integer;
1-+∞)

� last example: The last example of the resulting example set. (integer;
1-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This only allows examples in the specified index range.

Description: This operator keeps only the examples of a given range (includ-
ing the borders). The other examples will be removed from the input example
set.

5.8.34 ExampleSet2AttributeWeights

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator simply creates new attribute weights of 1
for each input attribute.

Description: This operator creates a new attribute weights IOObject from a
given example set. The result is a vector of attribute weights containing the
weight 1.0 for each of the input attributes.

July 14, 2008

5.8. DATA PREPROCESSING 403

5.8.35 ExampleSetCartesian

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� remove double attributes: Indicates if double attributes should be re-
moved or renamed (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Build the cartesian product of two example sets. In con-
trast to the ExampleSetJoin operator Id attributes are not needes.

Description: Build the cartesian product of two example sets. In contrast
to the ExampleSetJoin (see section 5.8.36) operator, this operator does
not depend on Id attributes. The result example set will consist of the union
set or the union list (depending on parameter setting double attributes will be
removed or renamed) of both feature sets. In case of removing double attribute
the attribute values must be the same for the examples of both example set,
otherwise an exception will be thrown.

Please note that this check for double attributes will only be applied for regular
attributes. Special attributes of the second input example set which do not
exist in the first example set will simply be added. If they already exist they are
simply skipped.

5.8.36 ExampleSetJoin

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

The RapidMiner 4.2 Tutorial

404 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� remove double attributes: Indicates if double attributes should be re-
moved or renamed (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Build the join of two example sets using the id attributes
of the sets in order to identify the same examples.

Description: Build the join of two example sets using the id attributes of the
sets, i.e. both example sets must have an id attribute where the same id indicate
the same examples. If examples are missing an exception will be thrown. The
result example set will consist of the same number of examples but the union
set or the union list (depending on parameter setting double attributes will be
removed or renamed) of both feature sets. In case of removing double attribute
the attribute values must be the same for the examples of both example set,
otherwise an exception will be thrown.

Please note that this check for double attributes will only be applied for regular
attributes. Special attributes of the second input example set which do not
exist in the first example set will simply be added. If they already exist they are
simply skipped.

5.8.37 ExampleSetMerge

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� datamanagement: Determines, how the data is represented internally.

Values:

July 14, 2008

5.8. DATA PREPROCESSING 405

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Build a merged example set from two or more compatible
example sets by adding all examples into a combined set.

Description: This operator merges two or more given example sets by adding
all examples in one example table containing all data rows. Please note that
the new example table is built in memory and this operator might therefore not
be applicable for merging huge data set tables from a database. In that case
other preprocessing tools should be used which aggregates, joins, and merges
tables into one table which is then used by RapidMiner.

All input example sets must provide the same attribute signature. That means
that all examples sets must have the same number of (special) attributes and
attribute names. If this is true this operator simply merges all example sets by
adding all examples of all table into a new set which is then returned.

5.8.38 ExampleSetTranspose

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Transposes the input example set similar to the matrix
operator transpose.

Description: This operator transposes an example set, i.e. the columns with
become the new rows and the old rows will become the columns. Hence, this
operator works very similar to the well know transpose operation for matrices.

The RapidMiner 4.2 Tutorial

406 CHAPTER 5. OPERATOR REFERENCE

If an Id attribute is part of the given example set, the ids will become the names
of the new attributes. The names of the old attributes will be transformed into
the id values of a new special Id attribute. Since no other “special” examples or
data rows exist, all other new attributes will be regular after the transformation.
You can use the ChangeAttributeType (see section 5.8.20) operator in
order to change one of these into a special type afterwards.

If all old attribute have the same value type, all new attributes will have this
value type. Otherwise, the new value types will all be “nominal” if at least
one nominal attribute was part of the given example set and “real” if the types
contained mixed numbers.

This operator produces a copy of the data in the main memory and it therefore
not suggested to use it on very large data sets.

5.8.39 ExchangeAttributeRoles

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� first attribute: The name of the first attribute for the attribute role ex-
change. (string)

� second attribute: The name of the first attribute for the attribute role
exchange. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator can be used to exchange the attribute roles
of two attributes (e.g. a label with a regular attribute).

Description: This operator changes the attribute roles of two input attributes.
This could for example be useful to exchange the roles of a label with a regular
attribute (and vice versa), or a label with a batch attribute, a label with a cluster
etc.

July 14, 2008

5.8. DATA PREPROCESSING 407

5.8.40 FastICA

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� Model

Parameters:

� number of components: Number components to be extracted (-1 num-
ber of attributes is used). (integer; -1-+∞; default: -1)

� algorithm type: If ’parallel’ the components are extracted simultaneously,
’deflation’ the components are extracted one at a time

� function: The functional form of the G function used in the approximation
to neg-entropy

� alpha: constant in range [1, 2] used in approximation to neg-entropy when
fun=”logcosh” (real; 1.0-2.0)

� row norm: Indicates whether rows of the data matrix should be standard-
ized beforehand. (boolean; default: false)

� max iteration: maximum number of iterations to perform (integer; 0-+∞;
default: 200)

� tolerance: A positive scalar giving the tolerance at which the un-mixing
matrix is considered to have converged. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs an independent component analysis (ICA).

Description: This operator performs the independent componente analysis
(ICA). Implementation of the FastICA-algorithm of Hyvaerinen und Oja. The
operator outputs a FastICAModel. With the ModelApplier you can transform
the features.

The RapidMiner 4.2 Tutorial

408 CHAPTER 5. OPERATOR REFERENCE

5.8.41 FeatureBlockTypeFilter

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� filter special features: Filter also special attributes (label, id...) (boolean;
default: false)

� skip features of type: All features of this type will be deselected off.

� except features of type: All features of this type will not be deselected.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator switches off those features whose block type
matches the given one.

Description: This operator switches off all features whose block type matches
the one given in the parameter skip features of type. This can be useful
e.g. for preprocessing operators that can handle only series attributes.

5.8.42 FeatureGeneration

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� filename: Create the attributes listed in this file (written by an Attribute-
ConstructionsWriter). (filename)

July 14, 2008

5.8. DATA PREPROCESSING 409

� functions: List of functions to generate. (list)

� keep all: If set to true, all the original attributes are kept, otherwise they
are removed from the example set. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: The feature generation operator generates new user de-
fined features.

Description: This operator generates new user specified features. The new
features are specified by their function names (prefix notation) and their argu-
ments using the names of existing features.

Legal function names include +, -, etc. and the functions norm, sin, cos, tan,
atan, exp, log, min, max, floor, ceil, round, sqrt, abs, and pow. Constant values
can be defined by “const[value]()“ where value is the desired value. Do not
forget the empty round brackets. Example: +(a1, -(a2, a3)) will calculate
the sum of the attribute a1 and the difference of the attributes a2 and a3.

Features are generated in the following order:

1. Features specified by the file referenced by the parameter “filename” are
generated

2. Features specified by the parameter list “functions” are generated

3. If “keep all” is false, all of the old attributes are removed now

The list of supported functions include +, -, etc. and the functions sin, cos,
tan, atan, exp, log, min, max, floor, ceil, round, sqrt, abs, sgn, pow.

5.8.43 FeatureNameFilter

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

410 CHAPTER 5. OPERATOR REFERENCE

� filter special features: Filter also special attributes (label, id...) (boolean;
default: false)

� skip features with name: Remove attributes with a matching name (ac-
cepts regular expressions) (string)

� except features with name: Does not remove attributes if their name
fulfills this matching criterion (accepts regular expressions) (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator switches off those features whose name
matches the given one (regular expressions are also allowed).

Description: This operator switches off all features whose name matches the
one given in the parameter skip features with name. The name can be
defined as a regular expression.

5.8.44 FeatureRangeRemoval

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� first attribute: The first attribute of the attribute range which should be
removed (integer; 1-+∞)

� last attribute: The last attribute of the attribute range which should be
removed (integer; 1-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 411

Short description: This operator removes a range of features.

Description: This operator removes the attributes of a given range. The first
and last attribute of the range will be removed, too. Counting starts with 1.

5.8.45 FeatureSelection

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� selection direction: Forward selection or backward elimination.

The RapidMiner 4.2 Tutorial

412 CHAPTER 5. OPERATOR REFERENCE

� keep best: Keep the best n individuals in each generation. (integer; 1-
+∞; default: 1)

� generations without improval: Stop after n generations without improval
of the performance (-1: stops if the maximum number of generations is
reached). (integer; -1-+∞; default: 1)

� maximum number of generations: Delivers the maximum amount of gen-
erations (-1: might use or deselect all features). (integer; -1-+∞; default:
-1)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: This operator realizes feature selection by forward selec-
tion and backward elimination, respectively.

Description: This operator realizes the two deterministic greedy feature selec-
tion algorithms forward selection and backward elimination. However, we added
some enhancements to the standard algorithms which are described below:

Forward Selection

1. Create an initial population with n individuals where n is the input example
set’s number of attributes. Each individual will use exactly one of the
features.

2. Evaluate the attribute sets and select only the best k.

July 14, 2008

5.8. DATA PREPROCESSING 413

3. For each of the k attribute sets do: If there are j unused attributes, make
j copies of the attribute set and add exactly one of the previously unused
attributes to the attribute set.

4. As long as the performance improved in the last p iterations go to 2

Backward Elimination

1. Start with an attribute set which uses all features.

2. Evaluate all attribute sets and select the best k.

3. For each of the k attribute sets do: If there are j attributes used, make j
copies of the attribute set and remove exactly one of the previously used
attributes from the attribute set.

4. As long as the performance improved in the last p iterations go to 2

The parameter k can be specified by the parameter keep best, the parameter
p can be specified by the parameter generations without improval. These
parameters have default values 1 which means that the standard selection al-
gorithms are used. Using other values increase the runtime but might help to
avoid local extrema in the search for the global optimum.

Another unusual parameter is maximum number of generations. This param-
eter bounds the number of iterations to this maximum of feature selections /
deselections. In combination with generations without improval this allows
several different selection schemes (which are described for forward selection,
backward elimination works analogous):

� maximum number of generations = m and generations without improval
= p: Selects maximal m features. The selection stops if not performance
improvement was measured in the last p generations.

� maximum number of generations =−1 and generations without improval
= p: Tries to selects new features until no performance improvement was
measured in the last p generations.

� maximum number of generations = m and generations without improval
= −1: Selects maximal m features. The selection stops is not stopped
until all combinations with maximal m were tried. However, the result
might contain less features than these.

� maximum number of generations =−1 and generations without improval
= −1: Test all combinations of attributes (brute force, this might take a
very long time and should only be applied to small attribute sets).

The RapidMiner 4.2 Tutorial

414 CHAPTER 5. OPERATOR REFERENCE

5.8.46 FeatureValueTypeFilter

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� filter special features: Filter also special attributes (label, id...) (boolean;
default: false)

� skip features of type: All features of this type will be deselected.

� except features of type: All features of this type will not be deselected.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator switches off those features whose value type
matches the given one.

Description: This operator switches off all features whose value type matches
the one given in the parameter skip features of type. This can be useful
e.g. for learning schemes that can handle only nominal attributes.

5.8.47 ForwardWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 415

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� keep best: Keep the best n individuals in each generation. (integer; 1-
+∞; default: 1)

� generations without improval: Stop after n generations without improval
of the performance. (integer; 1-+∞; default: 1)

� weights: Use these weights for the creation of individuals in each genera-
tion. (string)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

416 CHAPTER 5. OPERATOR REFERENCE

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Assumes that features are independent and optimizes the
weights of the attributes with a linear search.

Description: This operator performs the weighting under the naive assump-
tion that the features are independent from each other. Each attribute is
weighted with a linear search. This approach may deliver good results after
short time if the features indeed are not highly correlated.

5.8.48 FourierTransform

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Uses the label as function of each attribute and calculates
the fourier transformations as new attributes.

Description: Creates a new example set consisting of the result of a fourier
transformation for each attribute of the input example set.

5.8.49 FrequencyDiscretization

Group: Preprocessing.Data.Discretization

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 417

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� number of bins: Defines the number of bins which should be used for
each attribute. (integer; 2-+∞; default: 2)

� use sqrt of examples: If true, the number of bins is instead determined
by the square root of the number of non-missing values. (boolean; default:
false)

� use long range names: Indicates if long range names including the limits
should be used. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Discretize numerical attributes into a user defined number
of bins with equal frequency.

Description: This operator discretizes all numeric attributes in the dataset
into nominal attributes. This discretization is performed by equal frequency
binning, i.e. the thresholds of all bins is selected in a way that all bins contain
the same number of numerical values. The number of bins is specified by a
parameter, or, alternatively, is calculated as the square root of the number of
examples with non-missing values (calculated for every single attribute). Skips
all special attributes including the label.

5.8.50 FrequentItemSetAttributeCreator

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

� FrequentItemSets

Generated output:

� ExampleSet

Values:

The RapidMiner 4.2 Tutorial

418 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates attributes from frequent item sets.

Description: This operator takes all FrequentItemSet sets within IOObjects
and creates attributes for every frequent item set. This attributes indicate if
the examples contains all values of this frequent item set. The attributes will
contain values 0 or 1 and are numerical.

5.8.51 GHA

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� Model

Parameters:

� number of components: Number of components to compute. If ’-1’ nr
of attributes is taken.’ (integer; -1-+∞; default: -1)

� number of iterations: Number of Iterations to apply the update rule. (in-
teger; 0-+∞; default: 10)

� learning rate: The learning rate for GHA (small) (real; 0.0-+∞)

� local random seed: The local random seed for this operator, uses global
random number generator if -1. (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generalized Hebbian Algorithm (GHA). Performs an iter-
ative principal components analysis.

July 14, 2008

5.8. DATA PREPROCESSING 419

Description: Generalized Hebbian Algorithm (GHA) is an iterative method
to compute principal components. From a computational point of view, it can
be advantageous to solve the eigenvalue problem by iterative methods which
do not need to compute the covariance matrix directly. This is useful when
the ExampleSet contains many Attributes (hundreds, thousands). The operator
outputs a GHAModel. With the ModelApplier you can transform the features.

5.8.52 GeneratingForwardSelection

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� selection direction: Forward selection or backward elimination.

The RapidMiner 4.2 Tutorial

420 CHAPTER 5. OPERATOR REFERENCE

� keep best: Keep the best n individuals in each generation. (integer; 1-
+∞; default: 1)

� generations without improval: Stop after n generations without improval
of the performance (-1: stops if the maximum number of generations is
reached). (integer; -1-+∞; default: 1)

� maximum number of generations: Delivers the maximum amount of gen-
erations (-1: might use or deselect all features). (integer; -1-+∞; default:
-1)

� reciprocal value: Generate reciprocal values. (boolean; default: true)

� use plus: Generate sums. (boolean; default: true)

� use diff: Generate differences. (boolean; default: true)

� use mult: Generate products. (boolean; default: true)

� use div: Generate quotients. (boolean; default: true)

� use max: Generate maximum. (boolean; default: true)

� restrictive selection: Use restrictive generator selection (faster). (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

� turn: The number of the current turn.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: This operator is a kind of nested forward selection and
thus is (in contrast to a genetic algorithm) a directed search.

July 14, 2008

5.8. DATA PREPROCESSING 421

Description: This operator is a kind of nested forward selection and thus is
(in contrast to a genetic algorithm) a directed search.

1. use forward selection in order to determine the best attributes

2. Create a new attribute by multiplying any of the original attributes with
any of the attributes selected by the forward selection in the last turn

3. loop as long as performance increases

5.8.53 GeneratingGeneticAlgorithm

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

The RapidMiner 4.2 Tutorial

422 CHAPTER 5. OPERATOR REFERENCE

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� p initialize: Initial probability for an attribute to be switched on. (real;
0.0-1.0)

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

� use plus: Generate sums. (boolean; default: true)

� use diff: Generate differences. (boolean; default: false)

� use mult: Generate products. (boolean; default: true)

� use div: Generate quotients. (boolean; default: false)

� reciprocal value: Generate reciprocal values. (boolean; default: true)

� max number of new attributes: Max number of attributes to generate
for an individual in one generation. (integer; 0-+∞; default: 1)

� max total number of attributes: Max total number of attributes in all
generations (-1: no maximum). (integer; -1-+∞; default: -1)

� p generate: Probability for an individual to be selected for generation.
(real; 0.0-1.0)

� p mutation: Probability for an attribute to be changed (-1: 1 / numberO-
fAtts). (real; -1.0-1.0)

July 14, 2008

5.8. DATA PREPROCESSING 423

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: A genetic algorithm for feature selection and feature gen-
eration (GGA).

Description: In contrast to the class GeneticAlgorithm (see section 5.8.54),
the GeneratingGeneticAlgorithm (see section 5.8.53) generates new at-
tributes and thus can change the length of an individual. Therfore specialized
mutation and crossover operators are being applied. Generators are chosen at
random from a list of generators specified by boolean parameters.

Since this operator does not contain algorithms to extract features from value
series, it is restricted to example sets with only single attributes. For automatic
feature extraction from values series the value series plugin for RapidMiner
written by Ingo Mierswa should be used. It is available at http://rapid-i.com2

5.8.54 GeneticAlgorithm

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

2http://rapid-i.com

The RapidMiner 4.2 Tutorial

http://rapid-i.com

424 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

July 14, 2008

5.8. DATA PREPROCESSING 425

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� min number of attributes: Determines the minimum number of features
used for the combinations. (integer; 1-+∞; default: 1)

� max number of attributes: Determines the maximum number of features
used for the combinations (-1: try all combinations up to possible maxi-
mum) (integer; -1-+∞; default: -1)

� exact number of attributes: Determines the exact number of features
used for the combinations (-1: use the feature range defined by min and
max). (integer; -1-+∞; default: -1)

� p initialize: Initial probability for an attribute to be switched on. (real;
0.0-1.0)

� p mutation: Probability for an attribute to be changed (-1: 1 / numberO-
fAtt). (real; -1.0-1.0)

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: A genetic algorithm for feature selection.

The RapidMiner 4.2 Tutorial

426 CHAPTER 5. OPERATOR REFERENCE

Description: A genetic algorithm for feature selection (mutation=switch fea-
tures on and off, crossover=interchange used features). Selection is done by
roulette wheel. Genetic algorithms are general purpose optimization / search
algorithms that are suitable in case of no or little problem knowledge.

A genetic algorithm works as follows

1. Generate an initial population consisting of population size individuals.
Each attribute is switched on with probability p initialize

2. For all individuals in the population

� Perform mutation, i.e. set used attributes to unused with probability
p mutation and vice versa.

� Choose two individuals from the population and perform crossover
with probability p crossover. The type of crossover can be selected
by crossover type.

3. Perform selection, map all individuals to sections on a roulette wheel
whose size is proportional to the individual’s fitness and draw population size
individuals at random according to their probability.

4. As long as the fitness improves, go to 2

If the example set contains value series attributes with blocknumbers, the whole
block will be switched on and off.

5.8.55 GiniIndexWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

July 14, 2008

5.8. DATA PREPROCESSING 427

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator calculates the relevance of the attributes
based on the Gini impurity index.

Description: This operator calculates the relevance of a feature by computing
the Gini index of the class distribution, if the given example set would have been
splitted according to the feature.

5.8.56 GroupBy

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� SplittedExampleSet

Parameters:

� attribute name: Name of the attribute which is used to create partitions.
If no such attribute is found in the input-exampleset or the attribute is
not nominal or not an integer, execution will fail. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Partitions an example set according to the values of a
single nominal or integer attributes.

Description: This operator creates a SplittedExampleSet from an arbitrary
example set. The partitions of the resulting example set are created according
to the values of the specified attribute. This works similar to the GROUP BY
clause in SQL.

Please note that the resulting example set is simply a splitted example set where
no subset is selected. Following operators might decide to select one or several
of the subsets, e.g. one of the aggregation operators.

The RapidMiner 4.2 Tutorial

428 CHAPTER 5. OPERATOR REFERENCE

5.8.57 GuessValueTypes

Group: Preprocessing.Attributes

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: (Re-)guesses all value types and changes them accordingly.

Description: This operator can be used to (re-)guess the value types of all
attributes. This might be useful after some preprocessing transformations and
“purifying” some of the columns, especially if columns which were nominal
before can be handled as numerical columns. With this operator, the value
types of all attributes do not have to be transformed manually with operators
like NominalNumbers2Numerical (see section 5.8.82).

5.8.58 IdTagging

Group: Preprocessing

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� create nominal ids: True if nominal ids (instead of integer ids) should be
created (boolean; default: false)

July 14, 2008

5.8. DATA PREPROCESSING 429

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Adds a new id attribute to the example set, each example
is tagged with an incremented number.

Description: This operator adds an ID attribute to the given example set.
Each example is tagged with an incremental integer number. If the example set
already contains an id attribute, the old attribute will be removed before the
new one is added.

5.8.59 InfiniteValueReplenishment

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� default: Function to apply to all columns that are not explicitly specified
by parameter ’columns’.

� columns: List of replacement functions for each column. (list)

� replenishment value: This value is used for some of the replenishment
types. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces infinite values in examples.

The RapidMiner 4.2 Tutorial

430 CHAPTER 5. OPERATOR REFERENCE

Description: Replaces positive and negative infinite values in examples by
one of the functions “none”, “zero”, “max byte”, “max int”, “max double”,
and “missing”. “none” means, that the value is not replaced. The max xxx
functions replace plus infinity by the upper bound and minus infinity by the
lower bound of the range of the Java type xxx. “missing” means, that the
value is replaced by nan (not a number), which is internally used to represent
missing values. A MissingValueReplenishment (see section 5.8.72) oper-
ator can be used to replace missing values by average (or the mode for nominal
attributes), maximum, minimum etc. afterwards.

For each attribute, the function can be selected using the parameter list columns.
If an attribute’s name appears in this list as a key, the value is used as the func-
tion name. If the attribute’s name is not in the list, the function specified by
the default parameter is used.

5.8.60 InfoGainRatioWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator calculates the relevance of the attributes
based on the information gain ratio.

Description: This operator calculates the relevance of a feature by computing
the information gain ratio for the class distribution (if exampleSet would have
been splitted according to each of the given features).

July 14, 2008

5.8. DATA PREPROCESSING 431

5.8.61 InfoGainWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator calculates the relevance of the attributes
based on the information gain.

Description: This operator calculates the relevance of a feature by computing
the information gain in class distribution, if exampleSet would be splitted after
the feature.

5.8.62 InteractiveAttributeWeighting

Group: Preprocessing.Attributes.Weighting

Generated output:

� AttributeWeights

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

432 CHAPTER 5. OPERATOR REFERENCE

Short description: Shows a window with feature weights and allows users to
change them.

Description: This operator shows a window with the currently used attribute
weights and allows users to change the weight interactively.

5.8.63 IterativeWeightOptimization

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

� AttributeWeights

Generated output:

� AttributeWeights

� PerformanceVector

Parameters:

� parameter: The parameter to set the weight value (string)

� min diff: The minimum difference between two weights. (real; 0.0-+∞)

� iterations without improvement: Number iterations without performance
improvement. (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� best performance: best performance

� looptime: The time elapsed since the current loop started.

� performance: performance of the last evaluated weight

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector, At-
tributeWeights].

Short description: Feature selection (forward, backward) guided by weights.
Weights have to be updated after each iteration

Description: Performs an iterative feature selection guided by the AttributeWeights.
Its an backward feature elemination where the feature with the smallest weight
value is removed. After each iteration the weight values are updated (e.g. by a
learner like JMySVMLearner).

July 14, 2008

5.8. DATA PREPROCESSING 433

5.8.64 KennardStoneSampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� sample ratio: The fraction of examples which should be sampled (real;
0.0-1.0)

� absolute sample: If checked, the absolute number of examples will be
used. Otherwise the ratio. (boolean; default: false)

� sample size: The number of examples which should be sampled (integer;
1-+∞; default: 1000)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a sample from an example set using the Kennard-
Stone algorithm.

Description: This operator performs a Kennard-Stone Sampling. This sam-
pling Algorithm works as follows: First find the two points most separated in the
training set. For each candidate point, find the smallest distance to any object
already selected. Select that point for the training set which has the largest
of these smallest distances As described above, this algorithm always gives the
same result, due to the two starting points which are always the same. This
implementation reduces number of iterations by holding a list with candidates of
the largest smallest distances. The parameters controll the number of examples
in the sample

5.8.65 KernelPCA

Group: Preprocessing.Attributes.Transformation

The RapidMiner 4.2 Tutorial

434 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

� Model

Parameters:

� kernel type: The SVM kernel type

� kernel gamma: The SVM kernel parameter gamma (RBF, anova). (real;
0.0-+∞)

� kernel sigma1: The SVM kernel parameter sigma1 (Epanechnikov, Gaus-
sian Combination, Multiquadric). (real; 0.0-+∞)

� kernel sigma2: The SVM kernel parameter sigma2 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel sigma3: The SVM kernel parameter sigma3 (Gaussian Combina-
tion). (real; 0.0-+∞)

� kernel degree: The SVM kernel parameter degree (polynomial, anova,
Epanechnikov). (real; 0.0-+∞)

� kernel shift: The SVM kernel parameter shift (polynomial, Multiquadric).
(real; -∞-+∞)

� kernel a: The SVM kernel parameter a (neural). (real; -∞-+∞)

� kernel b: The SVM kernel parameter b (neural). (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a kernel principal component analysis (PCA).

Description: This operator performs a kernel-based principal components anal-
ysis (PCA). Hence, the result will be the set of data points in a non-linearly
transformed space. Please note that in contrast to the usual linear PCA the
kernel variant does also works for large numbers of attributes but will become
slow for large number of examples.

July 14, 2008

5.8. DATA PREPROCESSING 435

5.8.66 LOFOutlierDetection

Group: Preprocessing.Data.Outlier

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� minimal points lower bound: The lower bound for MinPts for the Outlier
test (default value is 10) (integer; 0-+∞; default: 10)

� minimal points upper bound: The upper bound for MinPts for the Out-
lier test (default value is 20) (integer; 0-+∞; default: 20)

� distance function: choose which distance function will be used for calcu-
lating the distance between two objects

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Identifies outliers in the given ExampleSet based on local
outlier factors.

Description: This operator performs a LOF outlier search. LOF outliers or
outliers with a local outlier factor per object are density based outliers according
to Breuning, Kriegel, et al.

The approach to find those outliers is based on measuring the density of objects
and its relation to each other (referred to as local reachability density). Based on
the average ratio of the local reachability density of an object and its k-nearest
neighbours (e.g. the objects in its k-distance neighbourhood), a local outlier
factor (LOF) is computed. The approach takes a parameter MinPts (actually
specifying the ”k”) and it uses the maximum LOFs for objects in a MinPts
range (lower bound and upper bound to MinPts).

Currently, the operator supports cosine, sine or squared distances in addition
to the usual euclidian distance which can be specified by the corresponding
parameter. In the first step, the objects are grouped into containers. For each
object, using a radius screening of all other objects, all the available distances

The RapidMiner 4.2 Tutorial

436 CHAPTER 5. OPERATOR REFERENCE

between that object and another object (or group of objects) on the (same)
radius given by the distance are associated with a container. That container
than has the distance information as well as the list of objects within that
distance (usually only a few) and the information, how many objects are in the
container.

In the second step, three things are done: (1) The containers for each object are
counted in acending order according to the cardinality of the object list within
the container (= that distance) to find the k-distances for each object and the
objects in that k-distance (all objects in all the subsequent containers with a
smaller distance). (2) Using this information, the local reachability densities
are computed by using the maximum of the actual distance and the k-distance
for each object pair (object and objects in k-distance) and averaging it by the
cardinality of the k-neighbourhood and than taking the reciprocal value. (3) The
LOF is computed for each MinPts value in the range (actually for all up to upper
bound) by averaging the ratio between the MinPts-local reachability-density of
all objects in the k-neighbourhood and the object itself. The maximum LOF in
the MinPts range is passed as final LOF to each object.

Afterwards LOFs are added as values for a special real-valued outlier attribute
in the example set which the operator will return.

5.8.67 LabelTrend2Classification

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator iterates over an example set with numeric
label and converts the label values to either the class ’up’ or the class ’down’
based on whether the change from the previous label is positive or negative.

Description: This operator iterates over an example set with numeric label
and converts the label values to either the class ’up’ or the class ’down’ based

July 14, 2008

5.8. DATA PREPROCESSING 437

on whether the change from the previous label is positive or negative. Please
note that this does not make sense on example sets where the examples are
not ordered in some sense (like, e.g. ordered according to time). This operator
might become useful in the context of a Series2WindowExamples operator.

5.8.68 LinearCombination

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� keep all: Indicates if the all old attributes should be kept. (boolean; de-
fault: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator created a new example set containing only
one feature: the linear combination of all input attributes.

Description: This operator applies a linear combination for each vector of the
input ExampleSet, i.e. it creates a new feature containing the sum of all values
of each row.

5.8.69 MergeNominalValues

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

438 CHAPTER 5. OPERATOR REFERENCE

� attribute name: The name of the nominal attribute which values should
be merged. (string)

� first value: The first value which should be merged. (string)

� second value: The second value which should be merged. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Merges two nominal values of a specified attribute.

Description: Merges two nominal values of a given attribute.

5.8.70 MinimalEntropyPartitioning

Group: Preprocessing.Data.Discretization

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� use long range names: Indicates if long range names including the limits
should be used. (boolean; default: true)

� remove useless: Indicates if useless attributes, i.e. those containing only
one single range, should be removed. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 439

Short description: Discretizes numerical attributes. Bin boundaries are cho-
sen as to minimize the entropy in the induced partitions.

Description: This operator discretizes all numeric attributes in the dataset
into nominal attributes. The discretization is performed by selecting a bin
boundary minimizing the entropy in the induced partitions. The method is then
applied recursively for both new partitions until the stopping criterion is reached.
For Details see a) Multi-interval discretization of continued-values attributes
for classification learning (Fayyad,Irani) and b) Supervised and Unsupervised
Discretization (Dougherty,Kohavi,Sahami). Skips all special attributes including
the label.

Please note that this operator automatically removes all attributes with only one
range (i.e. those attributes which are not actually discretized since the entropy
criterion is not fulfilled). This behavior can be controlled by the remove useless
parameter.

5.8.71 MissingValueImputation

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� order: Order of attributes in which missing values are estimated.

� sort: Sort direction which is used in order strategy.

� iterate: Impute missing values immediately after having learned the corre-
sponding concept and iterate. (boolean; default: true)

� filter learning set: Apply filter to learning set in addition to determination
which missing values should be substituted. (boolean; default: false)

� learn on complete cases: Learn concepts to impute missing values only
on the basis of complete cases (should be used in case learning approach
can not handle missing values). (boolean; default: true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

The RapidMiner 4.2 Tutorial

440 CHAPTER 5. OPERATOR REFERENCE

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators:

� Operator 1 (Filter) must be able to handle [ExampleSet] and must deliver
[ExampleSet].

� Operator 2 (Learner) must be able to handle [ExampleSet] and must
deliver [Model].

Short description: Replaces missing values in examples by applying a model
learned for missing values.

Description: The operator MissingValueImpution imputes missing values by
learning models for each attribute (except the label) and applying those models
to the data set. The learner which is to be applied has to be given as inner
operator. In order to specify a subset of the example set in which the missing
values should be imputed (e.g. to limit the imputation to only numerical at-
tributes) an arbitrary filter can be used as the first inner operator. In the case
that such a filter is used, the learner has to be the second inner operator.

Please be aware that depending on the ability of the inner operator to handle
missing values this operator might not be able to impute all missing values in
some cases. This behaviour leads to a warning. It might hence be useful to
combine this operator with a subsequent MissingValueReplenishment.

ATTENTION: This operator is currently under development and does not prop-
erly work in all cases. We do not recommend the usage of this operator in
production systems.

5.8.72 MissingValueReplenishment

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� default: Function to apply to all columns that are not explicitly specified
by parameter ’columns’.

July 14, 2008

5.8. DATA PREPROCESSING 441

� columns: List of replacement functions for each column. (list)

� replenishment value: This value is used for some of the replenishment
types. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces missing values in examples.

Description: Replaces missing values in examples. If a value is missing, it
is replaced by one of the functions “minimum”, “maximum”, “average”, and
“none”, which is applied to the non missing attribute values of the example set.
“none” means, that the value is not replaced. The function can be selected
using the parameter list columns. If an attribute’s name appears in this list as
a key, the value is used as the function name. If the attribute’s name is not in
the list, the function specified by the default parameter is used. For nominal
attributes the mode is used for the average, i.e. the nominal value which occurs
most often in the data. For nominal attributes and replacement type zero the
first nominal value defined for this attribute is used. The replenishment “value”
indicates that the user defined parameter should be used for the replacement.

5.8.73 MissingValueReplenishmentView

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces missing values in examples. In contrast to the
usual missing value replenishment, this operator does not change the underlying
data but replaces the missing values on the fly by using a new view on the data.

The RapidMiner 4.2 Tutorial

442 CHAPTER 5. OPERATOR REFERENCE

Description: This operator simply creates a new view on the input data with-
out changing the actual data or creating a new data table. The new view will
not contain any missing values for regular attributes but the mean value (or
mode) of the non-missing values instead.

5.8.74 ModelBasedSampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a sample from an example set. The sampling is
based on a model and is constructed to focus on examples not yet explained.

Description: Sampling based on a learned model.

5.8.75 MultivariateSeries2WindowExamples

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� series representation: This parameter defines how the series values will
be represented.

July 14, 2008

5.8. DATA PREPROCESSING 443

� horizon: The prediction horizon, i.e. the distance between the last window
value and the value to predict. (integer; 1-+∞; default: 1)

� window size: The width of the used windows. (integer; 1-+∞; default:
100)

� step size: The step size of the used windows, i.e. the distance between
the first values (integer; 1-+∞; default: 1)

� create single attributes: Indicates if the result example set should use
single attributes instead of series attributes. (boolean; default: true)

� label dimension: The dimension which should be used for creating the
label values (counting starts with 0). (integer; 0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates examples from a multivariate value series data by
windowing and using a label value with respect to a user defined prediction
horizon in one of the dimensions.

Description: This operator transforms a given example set containing series
data into a new example set containing single valued examples. For this purpose,
windows with a specified window and step size are moved across the series and
the attribute value lying horizon values after the window end is used as label
which should be predicted. In contrast to the Series2WindowExamples
operator, this operator can also handle multivariate series data. In order to
specify the dimension which should be predicted, one must use the parameter
“label dimension” (counting starts at 0). If you want to predict all dimensions of
your multivariate series you must setup several process definitions with different
label dimensions, one for each dimension.

The series data must be given as ExampleSet. The parameter “series representation”
defines how the series data is represented by the ExampleSet:

� encode series by examples: the series index variable (e.g. time) is en-
coded by the examples, i.e. there is a set of attributes (one for each
dimension of the multivariate series) and a set of examples. Each exam-
ple encodes the value vector for a new time point, each attribute value
represents another dimension of the multivariate series.

The RapidMiner 4.2 Tutorial

444 CHAPTER 5. OPERATOR REFERENCE

� encode series by attributes: the series index variable (e.g. time) is en-
coded by the attributes, i.e. there is a set of examples (one for each
dimension of the multivariate series) and a set of attributes. The set of
attribute values for all examples encodes the value vector for a new time
point, each example represents another dimension of the multivariate se-
ries.

Please note that the encoding as examples is usually more efficient with respect
to the memory usage.

5.8.76 NameBasedWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� name regex to weights: This list maps different regular expressions for
the feature names to the specified weights. (list)

� default weight: This default weight is used for all features not covered by
any of the regular expressions given in the list. (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator defines the weights for all features based on
a list of regular expressions for the feature names which can be used to set a
specified weight to features with a name fulfilling these expressions.

July 14, 2008

5.8. DATA PREPROCESSING 445

Description: This operator is able to create feature weights based on regular
expressions defined for the feature names. For example, the user can map all
features with a name starting with ”Att” to the weight 0.5 by using the regular
expression ”Att.*”. All other feature weights whose feature names are not
covered by one of the regular expressions are set to the default weight.

Please note that the weights defined in the regular expression list are set in
the order as they are defined in the list, i.e. weights can overwrite weights set
before.

5.8.77 NoiseGenerator

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� random attributes: Adds this number of random attributes. (integer; 0-
+∞; default: 0)

� label noise: Add this percentage of a numerical label range as a normal
distributed noise or probability for a nominal label change. (real; 0.0-+∞)

� default attribute noise: The standard deviation of the default attribute
noise. (real; 0.0-+∞)

� noise: List of noises for each attributes. (list)

� offset: Offset added to the values of each random attribute (real; -∞-+∞)

� linear factor: Linear factor multiplicated with the values of each random
attribute (real; 0.0-+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Adds noise to existing attributes or add random attributes.

The RapidMiner 4.2 Tutorial

446 CHAPTER 5. OPERATOR REFERENCE

Description: This operator adds random attributes and white noise to the
data. New random attributes are simply filled with random data which is not
correlated to the label at all. Additionally, this operator might add noise to the
label attribute or to the regular attributes. In case of a numerical label the given
label noise is the percentage of the label range which defines the standard
deviation of normal distributed noise which is added to the label attribute. For
nominal labels the parameter label noise defines the probability to randomly
change the nominal label value. In case of adding noise to regular attributes the
parameter default attribute noise simply defines the standard deviation of
normal distributed noise without using the attribute value range. Using the
parameter list it is possible to set different noise levels for different attributes.
However, it is not possible to add noise to nominal attributes.

5.8.78 Nominal2Binary

Group: Preprocessing.Attributes.Filter

Please use the operator ’Nominal2Binominal’ instead.

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� transform binominal: Indicates if attributes which are already binominal
should be transformed. (boolean; default: true)

� use underscore in name: Indicates if underscores should be used in the
new attribute names instead of empty spaces and ’=’. Although the
resulting names are harder to read for humans it might be more appro-
priate to use these if the data should be written into a database system.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 447

Short description: Maps all nominal values to binary attributes.

Description: This operator maps the values of all nominal values to binary
attributes. For example, if a nominal attribute with name “costs” and possible
nominal values “low”, “moderate”, and “high” is transformed, the result is a set
of three binominal attributes “costs = low”, “costs = moderate”, and “costs
= high”. Only one of the values of each attribute is true for a specific example,
the other values are false.

5.8.79 Nominal2Binominal

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� transform binominal: Indicates if attributes which are already binominal
should be transformed. (boolean; default: true)

� use underscore in name: Indicates if underscores should be used in the
new attribute names instead of empty spaces and ’=’. Although the
resulting names are harder to read for humans it might be more appro-
priate to use these if the data should be written into a database system.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps all nominal values to binominal (binary) attributes.

The RapidMiner 4.2 Tutorial

448 CHAPTER 5. OPERATOR REFERENCE

Description: This operator maps the values of all nominal values to binary
attributes. For example, if a nominal attribute with name “costs” and possible
nominal values “low”, “moderate”, and “high” is transformed, the result is a set
of three binominal attributes “costs = low”, “costs = moderate”, and “costs
= high”. Only one of the values of each attribute is true for a specific example,
the other values are false.

5.8.80 Nominal2Date

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute name: The attribute which should be parsed. (string)

� date type: The desired value type for the parsed attribute.

� date format: The parse format of the date values, for example ”yyyy/M-
M/dd”. (string)

� locale: The used locale for date texts, for example ”Wed” (English) in
contrast to ”Mi” (German).

� keep old attribute: Indicates if the original date attribute should be kept.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Parses the nominal values for the specified attribute with
respect to the given date format string and transforms the values into date
values.

Description: This operator parses given nominal attributes in order to cre-
ate date and / or time attributes. The date format can be specified by the
date format parameter. The old nominal attribute will be removed and replaced
by a new date attribute if the corresponding parameter is not set (default).

July 14, 2008

5.8. DATA PREPROCESSING 449

Date and Time Patterns Date and time formats are specified by date and
time pattern strings in the date format parameter. Within date and time pattern
strings, unquoted letters from ’A’ to ’Z’ and from ’a’ to ’z’ are interpreted
as pattern letters representing the components of a date or time string. Text
can be quoted using single quotes (’) to avoid interpretation. "’’" represents
a single quote. All other characters are not interpreted; they’re simply copied
into the output string during formatting or matched against the input string
during parsing.

The following pattern letters are defined (all other characters from ’A’ to ’Z’
and from ’a’ to ’z’ are reserved):

� G : era designator; Text; example: AD

� y : year; Year; example: 1996; 96

� M: month in year; Month; example: July; Jul; 07

� w : week in year; Number; example: 27

� W : week in month; Number; example: 2

� D: day in year; Number; example: 189

� d : day in month; Number; example: 10

� F : day of week in month; Number; example: 2

� E : day in week; Text; example: Tuesday; Tue

� a: am/pm marker; Text; example: PM

� H: hour in day (0-23); Number; example: 0

� k: hour in day (1-24); Number; example: 24

� K : hour in am / pm (0-11); Number; example: 0

� h: hour in am / pm (1-12); Number; example: 12

� m: minute in hour; Number; example: 30

� s: second in minute; Number; example: 55

� S : millisecond; Number; example: 978

� z : time zone; General Time Zone; example: Pacific Standard Time; PST;
GMT-08:00

� Z : time zone; RFC 822 Time Zone; example: -0800

The RapidMiner 4.2 Tutorial

450 CHAPTER 5. OPERATOR REFERENCE

Pattern letters are usually repeated, as their number determines the exact pre-
sentation:

� Text: For formatting, if the number of pattern letters is 4 or more, the full
form is used; otherwise a short or abbreviated form is used if available. For
parsing, both forms are accepted, independent of the number of pattern
letters.

� Number: For formatting, the number of pattern letters is the minimum
number of digits, and shorter numbers are zero-padded to this amount.
For parsing, the number of pattern letters is ignored unless it’s needed to
separate two adjacent fields.

� Year: If the underlying calendar is the Gregorian calendar, the following
rules are applied.

– For formatting, if the number of pattern letters is 2, the year is
truncated to 2 digits; otherwise it is interpreted as a number.

– For parsing, if the number of pattern letters is more than 2, the year
is interpreted literally, regardless of the number of digits. So using
the pattern ”MM/dd/yyyy”, ”01/11/12” parses to Jan 11, 12 A.D.

– For parsing with the abbreviated year pattern (”y” or ”yy”), this
operator must interpret the abbreviated year relative to some century.
It does this by adjusting dates to be within 80 years before and 20
years after the time the operator is created. For example, using a
pattern of ”MM/dd/yy” and the operator created on Jan 1, 1997,
the string “01/11/12” would be interpreted as Jan 11, 2012 while
the string “05/04/64” would be interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits will be parsed
into the default century. Any other numeric string, such as a one
digit string, a three or more digit string, or a two digit string that isn’t
all digits (for example, “-1”), is interpreted literally. So “01/02/3”
or “01/02/003” are parsed, using the same pattern, as Jan 2, 3 AD.
Likewise, “01/02/-3” is parsed as Jan 2, 4 BC.

Otherwise, calendar system specific forms are applied. If the number
of pattern letters is 4 or more, a calendar specific long form is used.
Otherwise, a calendar short or abbreviated form is used.

� Month: If the number of pattern letters is 3 or more, the month is inter-
preted as text; otherwise, it is interpreted as a number.

� General time zone: Time zones are interpreted as text if they have names.
It is possible to define time zones by representing a GMT offset value. RFC
822 time zones are also accepted.

July 14, 2008

5.8. DATA PREPROCESSING 451

� RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format
is used. General time zones are also accepted.

This operator also supports localized date and time pattern strings by defining
the locale parameter. In these strings, the pattern letters described above may
be replaced with other, locale dependent, pattern letters.

Examples The following examples show how date and time patterns are in-
terpreted in the U.S. locale. The given date and time are 2001-07-04 12:08:56
local time in the U.S. Pacific Time time zone.

� “yyyy.MM.dd G ’at’ HH:mm:ss z”: 2001.07.04 AD at 12:08:56 PDT

� “EEE, MMM d, ”yy”: Wed, Jul 4, ’01

� “h:mm a”: 12:08 PM

� “hh ’o”clock’ a, zzzz”: 12 o’clock PM, Pacific Daylight Time

� “K:mm a, z”: 0:08 PM, PDT

� “yyyyy.MMMMM.dd GGG hh:mm aaa”: 02001.July.04 AD 12:08 PM

� “EEE, d MMM yyyy HH:mm:ss Z”: Wed, 4 Jul 2001 12:08:56 -0700

� “yyMMddHHmmssZ”: 010704120856-0700

� “yyyy-MM-dd’T’HH:mm:ss.SSSZ”: 2001-07-04T12:08:56.235-0700

5.8.81 Nominal2Numeric

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

Values:

The RapidMiner 4.2 Tutorial

452 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps all values to real values (usually simply using the
internal indices).

Description: This operator maps all non numeric attributes to real valued
attributes. Nothing is done for numeric attributes, binary attributes are mapped
to 0 and 1.

For nominal attributes one of the following calculations will be done:

� Dichotomization, i.e. one new attribute for each value of the nominal
attribute. The new attribute which corresponds to the actual nominal
value gets value 1 and all other attributes gets value 0.

� Alternatively the values of nominal attributes can be seen as equally
ranked, therefore the nominal attribute will simply be turned into a real
valued attribute, the old values results in equidistant real values.

At this moment the same applies for ordinal attributes, in a future release more
appropriate values based on the ranking between the ordinal values may be
included.

5.8.82 NominalNumbers2Numerical

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� decimal point character: Character that is used as decimal point. (string;
default: ’.’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 453

Short description: Maps all nominal values to numerical values by parsing
the numbers if possible.

Description: This operator transforms nominal attributes into numerical ones.
In contrast to the NominalToNumeric operator, this operator directly parses
numbers from the wrongly as nominal values encoded values. Please note that
this operator will first check the stored nominal mappings for all attributes. If
(old) mappings are still stored which actually are nominal (without the corre-
sponding data being part of the example set), the attribute will not be converted.
Please use the operator GuessValueTypes (see section 5.8.57) in these cases.

5.8.83 Normalization

Group: Preprocessing

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� z transform: Determines whether to perform a z-transformation (mean 0
and standard deviation 1) or not; this scaling ignores min- and max-setings
(boolean; default: true)

� min: The minimum value after normalization (real; -∞-+∞)

� max: The maximum value after normalization (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Normalizes the attribute values for a specified range.

The RapidMiner 4.2 Tutorial

454 CHAPTER 5. OPERATOR REFERENCE

Description: This operator performs a normalization. This can be done be-
tween a user defined minimum and maximum value or by a z-transformation,
i.e. on mean 0 and variance 1.

5.8.84 Numeric2Binary

Group: Preprocessing.Attributes.Filter

Please use the operator Numeric2Binominal instead

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� min: The minimal value which is mapped to false (included). (real; -∞-
+∞)

� max: The maximal value which is mapped to false (included). (real; -∞-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps all numeric values to ’false’ if they are in the speci-
fied range (typical: equal 0.0) and to ’true’ otherwise.

Description: Converts all numerical attributes to binary ones. If the value of
an attribute is between the specified minimal and maximal value, it becomes
false, otherwise true. If the value is missing, the new value will be missing. The
default boundaries are both set to 0, thus only 0.0 is mapped to false and all
other values are mapped to true.

5.8.85 Numeric2Binominal

Group: Preprocessing.Attributes.Filter

July 14, 2008

5.8. DATA PREPROCESSING 455

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� min: The minimal value which is mapped to false (included). (real; -∞-
+∞)

� max: The maximal value which is mapped to false (included). (real; -∞-
+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Maps all numeric values to ’false’ if they are in the speci-
fied range (typical: equal 0.0) and to ’true’ otherwise.

Description: Converts all numerical attributes to binary ones. If the value of
an attribute is between the specified minimal and maximal value, it becomes
false, otherwise true. If the value is missing, the new value will be missing. The
default boundaries are both set to 0, thus only 0.0 is mapped to false and all
other values are mapped to true.

5.8.86 Numeric2Polynominal

Group: Preprocessing.Attributes.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

456 CHAPTER 5. OPERATOR REFERENCE

Short description: Maps all numeric values simply to the corresponding nom-
inal values. Please use one of the discretization operators if you need more
sophisticated nominalization methods.

Description: Converts all numerical attributes to nominal ones. Each numer-
ical value is simply used as nominal value of the new attribute. If the value is
missing, the new value will be missing. Please note that this operator might
drastically increase memory usage if many different numerical values are used.
Please use the available discretization operators then.

5.8.87 Obfuscator

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� obfuscation map file: File where the obfuscator map should be written
to. (filename)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces all nominal values and attribute names by ran-
dom strings.

Description: This operator takes an ExampleSet as input and maps all nom-
inal values to randomly created strings. The names and the construction de-
scriptions of all attributes will also replaced by random strings. This operator
can be used to anonymize your data. It is possible to save the obfuscating map
into a file which can be used to remap the old values and names. Please use the
operator Deobfuscator for this purpose. The new example set can be written
with an ExampleSetWriter.

July 14, 2008

5.8. DATA PREPROCESSING 457

5.8.88 PCA

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� Model

Parameters:

� variance threshold: Keep the all components with a cumulative variance
smaller than the given threshold. (real; 0.0-1.0)

� dimensionality reduction: Indicates which type of dimensionality reduc-
tion should be applied

� number of components: Keep this number of components. If ’-1’ then
keep all components.’ (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a principal component analysis (PCA) using the
covariance matrix.

Description: This operator performs a principal components analysis (PCA)
using the covariance matrix. The user can specify the amount of variance to
cover in the original data when retaining the best number of principal compo-
nents. The user can also specify manually the number of principal components.
The operator outputs a PCAModel. With the ModelApplier you can transform
the features.

5.8.89 PCAWeighting

Group: Preprocessing.Attributes.Weighting

The RapidMiner 4.2 Tutorial

458 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� component number: Indicates the number of the component from which
the weights should be calculated. (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator uses the factors of a PCA component (usu-
ally the first) as feature weights.

Description: Uses the factors of one of the principal components (default is
the first) as feature weights. Please note that the PCA weighting operator is
currently the only one which also works on data sets without a label, i.e. for
unsupervised learning.

5.8.90 PSOWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: false)

July 14, 2008

5.8. DATA PREPROCESSING 459

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� inertia weight: The (initial) weight for the old weighting. (real; 0.0-+∞)

� local best weight: The weight for the individual’s best position during
run. (real; 0.0-+∞)

� global best weight: The weight for the population’s best position during
run. (real; 0.0-+∞)

� dynamic inertia weight: If set to true the inertia weight is improved dur-
ing run. (boolean; default: true)

� min weight: The lower bound for the weights. (real; -∞-+∞)

� max weight: The upper bound for the weights. (real; -∞-+∞)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� best: The performance of the best individual ever (main criterion).

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Weight the features with a particle swarm optimization
approach.

Description: This operator performs the weighting of features with a particle
swarm approach.

The RapidMiner 4.2 Tutorial

460 CHAPTER 5. OPERATOR REFERENCE

5.8.91 Permutation

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Permutates the examples in the table. Caution: will in-
crease memory usage!

Description: This operator creates a new, shuffled ExampleSet by making a
new copy of the exampletable in main memory! Caution! System may run out
of memory, if exampletable is too large.

5.8.92 PrincipalComponentsGenerator

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� min variance coverage: The minimum variance to cover in the original
data to determine the number of principal components. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 461

Short description: Build the principal components of the given data.

Description: Builds the principal components of the given data. The user can
specify the amount of variance to cover in the original data when retaining the
best number of principal components. This operator makes use of the Weka
implementation PrincipalComponent.

5.8.93 RandomSelection

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� number of features: The number of features which should randomly se-
lected (-1: use a random number). (integer; -1-+∞; default: -1)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator simply selects a random or a predefined
number of random features.

Description: This operator selects a randomly chosen number of features ran-
domly from the input example set. This can be useful in combination with a
ParameterIteration operator or can be used as a baseline for significance test
comparisons for feature selection techniques.

5.8.94 Relief

Group: Preprocessing.Attributes.Weighting

The RapidMiner 4.2 Tutorial

462 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� number of neighbors: Number of nearest neigbors for relevance calcula-
tion. (integer; 1-+∞; default: 10)

� sample ratio: Number of examples used for determining the weights. (real;
0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Relief measures the relevance of features by sampling ex-
amples and comparing the value of the current feature for the nearest example
of the same and of a different class.

Description: Relief measures the relevance of features by sampling examples
and comparing the value of the current feature for the nearest example of the
same and of a different class. This version also works for multiple classes and
regression data sets. The resulting weights are normalized into the interval
between 0 and 1.

5.8.95 RemoveCorrelatedFeatures

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 463

� correlation: Use this correlation for the filter relation. (real; -1.0-1.0)

� filter relation: Removes one of two features if their correlation fulfill this
relation.

� attribute order: The algorithm takes this attribute order to calculate cor-
relation and filter.

� use absolute correlation: Indicates if the absolute value of the correla-
tions should be used for comparison. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� features removed: Number of removed features

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Removes correlated features.

Description: Removes (un-) correlated features due to the selected filter rela-
tion. The procedure is quadratic in number of attributes. In order to get more
stable results, the original, random, and reverse order of attributes is available.

Please note that this operator might fail in some cases when the attributes
should be filtered out, e.g. it might not be able to remove for example all
negative correlated features. The reason for this behaviour seems to be that for
the complete m x m - matrix of correlations (for m attributes) the correlations
will not be recalculated and hence not checked if one of the attributes of the
current pair was already marked for removal. That means for three attributes
a1, a2, and a3 that it might be that a2 was already ruled out by the negative
correlation with a1 and is now not able to rule out a3 any longer.

5.8.96 RemoveUselessAttributes

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

464 CHAPTER 5. OPERATOR REFERENCE

� numerical min deviation: Removes all numerical attributes with standard
deviation less or equal to this threshold. (real; 0.0-+∞)

� nominal single value upper: Removes all nominal attributes which pro-
vides more than the given amount of only one value. (real; 0.0-1.0)

� nominal single value lower: Removes all nominal attributes which pro-
vides less than the given amount of at least one value (-1: remove at-
tributes with values occuring only once). (real; -1.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Remove all useless attributes from an example set.

Description: Removes useless attribute from the example set. Useless at-
tributes are

� nominal attributes which has the same value for more than p percent of
all examples.

� numerical attributes which standard deviation is less or equal to a given
deviation threshold t.

5.8.97 SOMDimensionalityReduction

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� number of dimensions: Defines the number of dimensions, the data shall
be reduced. (integer; 1-+∞; default: 2)

July 14, 2008

5.8. DATA PREPROCESSING 465

� net size: Defines the size of the SOM net, by setting the length of every
edge of the net. (integer; 1-+∞; default: 30)

� training rounds: Defines the number of trainnig rounds (integer; 1-+∞;
default: 30)

� learning rate start: Defines the strength of an adaption in the first round.
The strength will decrease every round until it reaches the learning rate end
in the last round. (real; 0.0-+∞)

� learning rate end: Defines the strength of an adaption in the last round.
The strength will decrease to this value in last round, beginning with
learning rate start in the first round. (real; 0.0-+∞)

� adaption radius start: Defines the radius of the sphere around an stim-
ulus, within an adaption occoures. This radius decreases every round,
starting by adaption radius start in first round, to adaption radius end in
last round. (real; 0.0-+∞)

� adaption radius end: Defines the radius of the sphere around an stim-
ulus, within an adaption occoures. This radius decreases every round,
starting by adaption radius start in first round, to adaption radius end in
last round. (real; 0.0-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Trains a self-organizing map and applyes the examples on
the map. The resulting coordinates are used as new attributes.

Description: This operator performs a dimensionality reduction based on a
SOM (Self Organizing Map, aka Kohonen net).

5.8.98 SVDReduction

Group: Preprocessing.Attributes.Transformation

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

The RapidMiner 4.2 Tutorial

466 CHAPTER 5. OPERATOR REFERENCE

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� dimensions: the number of dimensions in the result representation (inte-
ger; 1-+∞; default: 2)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a dimensionality reduction based on Singular
Value Decomposition (SVD).

Description: A dimensionality reduction method based on Singular Value De-
composition. TODO: see super class

5.8.99 SVMWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� C: The SVM complexity weighting factor. (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 467

Short description: This operator uses the coefficients of a hyperplance cal-
culated by an SVM as feature weights.

Description: Uses the coefficients of the normal vector of a linear SVM as
feature weights. In contrast to most of the SVM based operators available in
RapidMiner, this one works for multiple classes, too.

5.8.100 Sampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� sample ratio: The fraction of examples which should be sampled (real;
0.0-1.0)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a sample from an example set by drawing a frac-
tion.

Description: Simple sampling operator. This operator performs a random
sampling of a given fraction. For example, if the input example set contains 5000
examples and the sample ratio is set to 0.1, the result will have approximately
500 examples.

5.8.101 Series2WindowExamples

Group: Preprocessing.Data.Filter

The RapidMiner 4.2 Tutorial

468 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� series representation: This parameter defines how the series values will
be represented.

� horizon: The prediction horizon, i.e. the distance between the last window
value and the value to predict. (integer; 1-+∞; default: 1)

� window size: The width of the used windows. (integer; 1-+∞; default:
100)

� step size: The step size of the used windows, i.e. the distance between
the first values (integer; 1-+∞; default: 1)

� create single attributes: Indicates if the result example set should use
single attributes instead of series attributes. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates examples from an univariate value series data by
windowing and using a label value with respect to a user defined prediction
horizon.

Description: This operator transforms a given example set containing series
data into a new example set containing single valued examples. For this pur-
pose, windows with a specified window and step size are moved across the series
and the series value lying horizon values after the window end is used as label
which should be predicted. This operator can only be used for univariate series
prediction. For the multivariate case, please use the operator Multivariate-
Series2WindowExamples (see section 5.8.75).

The series data must be given as ExampleSet. The parameter “series representation”
defines how the series data is represented by the ExampleSet:

� encode series by examples: the series index variable (e.g. time) is en-
coded by the examples, i.e. there is a single attribute and a set of exam-
ples. Each example encodes the value for a new time point.

July 14, 2008

5.8. DATA PREPROCESSING 469

� encode series by attributes: the series index variable (e.g. time) is en-
coded by the attributes, i.e. there is a (set of) examples and a set of
attributes. Each attribute value encodes the value for a new time point.
If there is more than one example, the windowing is performed for each
example independently and all resulting window examples are merged into
a complete example set.

Please note that the encoding as examples is usually more efficient with respect
to the memory usage. To ensure backward compatibility, the default represen-
tation is, however, set to time as attributes.

5.8.102 Single2Series

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Changes the value type of all single valued attributes and
forms a value series from all attributes.

Description: Transforms all regular attributes of a given example set into a
value series. All attributes must have the same value type. Attributes with
block type value series can be used by special feature extraction operators or by
the operators from the value series plugin.

5.8.103 SingleRuleWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

The RapidMiner 4.2 Tutorial

470 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator measures the relevance of features by con-
structing a single rule for each attribute and calculating the errors.

Description: This operator calculates the relevance of a feature by computing
the error rate of a OneR Model on the exampleSet without this feature.

5.8.104 Sorting

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� attribute name: Indicates the attribute which should be used for deter-
mining the sorting. (string)

� sorting direction: Indicates the direction of the sorting.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator sorts the given example set according to a
single attribute.

July 14, 2008

5.8. DATA PREPROCESSING 471

Description: This operator sorts the given example set according to a single
attribute. The example set is sorted according to the natural order of the values
of this attribute either in increasing or in decreasing direction.

5.8.105 StandardDeviationWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� normalize: Indicates if the standard deviation should be divided by the
minimum, maximum, or average of the attribute.

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Computes weights based on the (normalized) standard
deviation of the attributes.

Description: Creates weights from the standard deviations of all attributes.
The values can be normalized by the average, the minimum, or the maximum
of the attribute.

5.8.106 StratifiedSampling

Group: Preprocessing.Data.Sampling

Required input:

� ExampleSet

Generated output:

� ExampleSet

The RapidMiner 4.2 Tutorial

472 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� sample ratio: The fraction of examples which should be sampled (real;
0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a stratified sample from an example set by drawing
a fraction.

Description: Stratified sampling operator. This operator performs a random
sampling of a given fraction. In contrast to the simple sampling operator,
this operator performs a stratified sampling for data sets with nominal label
attributes, i.e. the class distributions remains (almost) the same after sampling.
Hence, this operator cannot be applied on data sets without a label or with
a numerical label. In these cases a simple sampling without stratification is
performed.

5.8.107 SymmetricalUncertaintyWeighting

Group: Preprocessing.Attributes.Weighting

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� number of bins: The number of bins used for discretization of numerical
attributes before the chi squared test can be performed. (integer; 2-+∞;
default: 10)

July 14, 2008

5.8. DATA PREPROCESSING 473

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator calculates the relevance of an attribute by
measuring the symmetrical uncertainty with respect to the class.

Description: This operator calculates the relevance of an attribute by mea-
suring the symmetrical uncertainty with respect to the class. The formulaization
for this is:

relevance = 2 * (P(Class) - P(Class | Attribute)) / P(Class) + P(Attribute)

5.8.108 TFIDFFilter

Group: Preprocessing.Data.Filter

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� calculate term frequencies: Indicates if term frequency values should be
generated (must be done if input data is given as simple occurence counts).
(boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a TF-IDF filtering to the input data set.

Description: This operator generates TF-IDF values from the input data. The
input example set must contain either simple counts, which will be normalized
during calculation of the term frequency TF, or it already contains the calculated
term frequency values (in this case no normalization will be done).

The RapidMiner 4.2 Tutorial

474 CHAPTER 5. OPERATOR REFERENCE

5.8.109 UseRowAsAttributeNames

Group: Preprocessing.Other

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� row number: Indicates which row should be used as attribute names.
Counting starts with 1. (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Uses the specified row as new attibute names and deletes
the row from the data set.

Description: This operators uses the values of the specified row of the data set
as new attribute names (including both regular and special columns). This might
be useful for example after a transpose operation. The row will be deleted from
the data set. Please note, however, that an internally used nominal mapping will
not be removed and following operators like NominalNumbers2Numerical
(see section 5.8.82) could possibly not work as expected. In order to correct the
value types and nominal value mappings, one could use the operator Guess-
ValueTypes (see section 5.8.57) after this operator.

5.8.110 UserBasedDiscretization

Group: Preprocessing.Data.Discretization

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

July 14, 2008

5.8. DATA PREPROCESSING 475

� return preprocessing model: Indicates if the preprocessing model should
also be returned (boolean; default: false)

� create view: Create View to apply preprocessing instead of changing the
data (boolean; default: false)

� attribute type: Attribute type of the discretized attribute.

� classes: Defines the classes and the upper limits of each class. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Discretize numerical attributes into user defined bins.

Description: This operator discretizes a numerical attribute to either a nom-
inal or an ordinal attribute. The numerical values are mapped to the classes
according to the thresholds specified by the user. The user can define the classes
by specifying the upper limits of each class. The lower limit of the next class
is automatically specified as the upper limit of the previous one. A parameter
defines to which adjacent class values that are equal to the given limits should
be mapped. If the upper limit in the last list entry is not equal to Infinity, an
additional class which is automatically named is added. If a ’?’ is given as
class value the according numerical values are mapped to unknown values in
the resulting attribute.

5.8.111 W-ChiSquaredAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

The RapidMiner 4.2 Tutorial

476 CHAPTER 5. OPERATOR REFERENCE

� M: treat missing values as a seperate value. (boolean; default: false)

� B: just binarize numeric attributes instead of properly discretizing them.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: ChiSquaredAttributeEval :

Evaluates the worth of an attribute by computing the value of the chi-squared
statistic with respect to the class.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.112 W-CostSensitiveAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� C: File name of a cost matrix to use. If this is not supplied, a cost matrix
will be loaded on demand. The name of the on-demand file is the relation
name of the training data plus ”.cost”, and the path to the on-demand
file is specified with the -N option. (string)

� N: Name of a directory to search for cost files when loading costs on de-
mand (default current directory). (string; default: ’/home/ingo/workspace/yale’)

July 14, 2008

5.8. DATA PREPROCESSING 477

� cost-matrix: The cost matrix in Matlab single line format. (string)

� S: The seed to use for random number generation. (real; -∞-+∞)

� W: Full name of base evaluator. Options after – are passed to the evalu-
ator. (default: weka.attributeSelection.ReliefFAttributeEval) (string; de-
fault: ’weka.attributeSelection.ReliefFAttributeEval’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: A meta subset evaluator that makes its base subset eval-
uator cost-sensitive.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.113 W-FilteredAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� W: Full name of base evaluator to use, followed by evaluator options.
eg: ”weka.attributeSelection.InfoGainAttributeEval -M” (string; default:
’weka.attributeSelection.InfoGainAttributeEval ’)

The RapidMiner 4.2 Tutorial

478 CHAPTER 5. OPERATOR REFERENCE

� F: Full class name of filter to use, followed by filter options. eg: ”weka.filters.supervised.instance.SpreadSubsample
-M 1” (string; default: ’weka.filters.supervised.instance.SpreadSubsample
-M 0.0 -X 0.0 -S 1’)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Class for running an arbitrary attribute evaluator on data
that has been passed through an arbitrary filter (note: filters that alter the order
or number of attributes are not allowed).

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.114 W-GainRatioAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� M: treat missing values as a seperate value. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.8. DATA PREPROCESSING 479

Short description: GainRatioAttributeEval :

Evaluates the worth of an attribute by measuring the gain ratio with respect to
the class.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.115 W-InfoGainAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� M: treat missing values as a seperate value. (boolean; default: false)

� B: just binarize numeric attributes instead of properly discretizing them.
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: InfoGainAttributeEval :

Evaluates the worth of an attribute by measuring the information gain with
respect to the class.

The RapidMiner 4.2 Tutorial

480 CHAPTER 5. OPERATOR REFERENCE

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.116 W-LatentSemanticAnalysis

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� N: Normalize input data. (boolean; default: false)

� R: Rank approximation used in LSA. May be actual number of LSA at-
tributes to include (if greater than 1) or a proportion of total singular
values to account for (if between 0 and 1). A value less than or equal to
zero means use all latent variables.(default = 0.95) (real; -∞-+∞)

� A: Maximum number of attributes to include in transformed attribute
names. (-1 = include all) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs latent semantic analysis and transformation of
the data.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators

July 14, 2008

5.8. DATA PREPROCESSING 481

which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.117 W-OneRAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� S: Random number seed for cross validation (default = 1) (real; -∞-+∞)

� F: Number of folds for cross validation (default = 10) (real; -∞-+∞)

� D: Use training data for evaluation rather than cross validaton (boolean;
default: false)

� B: Minimum number of objects in a bucket (passed on to OneR, default
= 6) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: OneRAttributeEval :

Evaluates the worth of an attribute by using the OneR classifier.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

The RapidMiner 4.2 Tutorial

482 CHAPTER 5. OPERATOR REFERENCE

5.8.118 W-PrincipalComponents

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� D: Don’t normalize input data. (boolean; default: false)

� R: Retain enough PC attributes to account for this proportion of variance
in the original data. (default = 0.95) (real; -∞-+∞)

� O: Transform through the PC space and back to the original space. (boolean;
default: false)

� A: Maximum number of attributes to include in transformed attribute
names. (-1 = include all) (real; -∞-+∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a principal components analysis and transforma-
tion of the data.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.119 W-ReliefFAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

July 14, 2008

5.8. DATA PREPROCESSING 483

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� M: Specify the number of instances to sample when estimating attributes.
If not specified, then all instances will be used. (real; -∞-+∞)

� D: Seed for randomly sampling instances. (Default = 1) (real; -∞-+∞)

� K: Number of nearest neighbours (k) used to estimate attribute relevances
(Default = 10). (real; -∞-+∞)

� W: Weight nearest neighbours by distance (boolean; default: false)

� A: Specify sigma value (used in an exp function to control how quickly
weights for more distant instances decrease. Use in conjunction with -
W. Sensible value=1/5 to 1/10 of the number of nearest neighbours.
(Default = 2) (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: ReliefFAttributeEval :

Evaluates the worth of an attribute by repeatedly sampling an instance and
considering the value of the given attribute for the nearest instance of the same
and different class.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

The RapidMiner 4.2 Tutorial

484 CHAPTER 5. OPERATOR REFERENCE

Further information: Kenji Kira, Larry A. Rendell: A Practical Approach
to Feature Selection. In: Ninth International Workshop on Machine Learning,
249-256, 1992.

Igor Kononenko: Estimating Attributes: Analysis and Extensions of RELIEF. In:
European Conference on Machine Learning, 171-182, 1994.

Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute
estimation in regression. In: Fourteenth International Conference on Machine
Learning, 296-304, 1997.

5.8.120 W-SVMAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� X: Specify the constant rate of attribute elimination per invocation of the
support vector machine. Default = 1. (real; -∞-+∞)

� Y: Specify the percentage rate of attributes to elimination per invocation
of the support vector machine. Trumps constant rate (above threshold).
Default = 0. (real; -∞-+∞)

� Z: Specify the threshold below which percentage attribute elimination re-
verts to the constant method. (real; -∞-+∞)

� P: Specify the value of P (epsilon parameter) to pass on to the support
vector machine. Default = 1.0e-25 (real; -∞-+∞)

� T: Specify the value of T (tolerance parameter) to pass on to the support
vector machine. Default = 1.0e-10 (real; -∞-+∞)

� C: Specify the value of C (complexity parameter) to pass on to the support
vector machine. Default = 1.0 (real; -∞-+∞)

� N: Whether the SVM should 0=normalize/1=standardize/2=neither. (de-
fault 0=normalize) (real; -∞-+∞)

Values:

July 14, 2008

5.8. DATA PREPROCESSING 485

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: SVMAttributeEval :

Evaluates the worth of an attribute by using an SVM classifier.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

Further information: I. Guyon, J. Weston, S. Barnhill, V. Vapnik (2002).
Gene selection for cancer classification using support vector machines. Machine
Learning. 46:389-422.

5.8.121 W-SymmetricalUncertAttributeEval

Group: Preprocessing.Attributes.Weighting.Weka

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

Parameters:

� normalize weights: Activates the normalization of all weights. (boolean;
default: true)

� M: treat missing values as a seperate value. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

486 CHAPTER 5. OPERATOR REFERENCE

Short description: SymmetricalUncertAttributeEval :

Evaluates the worth of an attribute by measuring the symmetrical uncertainty
with respect to the class.

Description: Performs the AttributeEvaluator of Weka with the same name
to determine a sort of attribute relevance. These relevance values build an
instance of AttributeWeights. Therefore, they can be used by other operators
which make use of such weights, like weight based selection or search heuristics
which use attribute weights to speed up the search. See the Weka javadoc for
further operator and parameter descriptions.

5.8.122 WeightGuidedFeatureSelection

Group: Preprocessing.Attributes.Selection

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

July 14, 2008

5.8. DATA PREPROCESSING 487

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� generations without improval: Stop after n generations without improval
of the performance (-1: stops if the number of features is reached). (in-
teger; -1-+∞; default: 1)

� use absolute weights: Indicates that the absolute values of the input
weights should be used to determine the feature adding order. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Adds iteratively features according to input attribute weights

Description: This operator uses input attribute weights to determine the order
of features added to the feature set starting with the feature set containing only
the feature with highest weight. The inner operators must provide a performance
vector to determine the fitness of the current feature set, e.g. a cross validation
of a learning scheme for a wrapper evaluation. Stops if adding the last k features
does not increase the performance or if all features were added. The value of k
can be set with the parameter generations without improval.

5.8.123 WeightOptimization

Group: Preprocessing.Attributes.Selection

The RapidMiner 4.2 Tutorial

488 CHAPTER 5. OPERATOR REFERENCE

Required input:

� ExampleSet

� AttributeWeights

Generated output:

� ParameterSet

� PerformanceVector

� AttributeWeights

Parameters:

� parameter: The parameter to set the weight value (string)

� selection direction: Forward selection or backward elimination.

� min diff: The minimum difference between two weights. (real; 0.0-+∞)

� iterations without improvement: Number iterations without performance
improvement. (integer; 1-+∞; default: 1)

Values:

� applycount: The number of times the operator was applied.

� best performance: best performance

� looptime: The time elapsed since the current loop started.

� performance: performance of the last evaluated weight

� time: The time elapsed since this operator started.

� weight: currently used weight

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: Feature selection (forward, backward) guided by weights.

Description: Performs a feature selection guided by the AttributeWeights.
Forward selection means that features with the highest weight-value are se-
lected first (starting with an empty selection). Backward elemination means
that features with the smallest weight value are eleminated first (starting with
the full feature set).

5.8.124 WeightedBootstrapping

Group: Preprocessing.Data.Sampling

July 14, 2008

5.8. DATA PREPROCESSING 489

Required input:

� ExampleSet

Generated output:

� ExampleSet

Parameters:

� sample ratio: This ratio determines the size of the new example set. (real;
0.0-+∞)

� local random seed: Local random seed for this operator (-1: use global
random seed). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a bootstrapped sample by weighted sampling with
replacement.

Description: This operator constructs a bootstrapped sample from the given
example set which must provide a weight attribute. If no weight attribute was
provided this operator will stop the process with an error message. See the
operator Bootstrapping (see section 5.8.16) for more information.

5.8.125 YAGGA

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

The RapidMiner 4.2 Tutorial

490 CHAPTER 5. OPERATOR REFERENCE

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� p initialize: Initial probability for an attribute to be switched on. (real;
0.0-1.0)

July 14, 2008

5.8. DATA PREPROCESSING 491

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

� use plus: Generate sums. (boolean; default: true)

� use diff: Generate differences. (boolean; default: false)

� use mult: Generate products. (boolean; default: true)

� use div: Generate quotients. (boolean; default: false)

� reciprocal value: Generate reciprocal values. (boolean; default: true)

� p mutation: Probability for mutation (-1: 1/n). (real; 0.0-1.0)

� max total number of attributes: Max total number of attributes in all
generations (-1: no maximum). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Yet Another GGA (Generating Geneting Algorithm). On
average individuals (= selected attribute sets) will keep their original length,
unless longer or shorther ones prove to have a better fitness.

Description: YAGGA is an acronym for Yet Another Generating Genetic Algo-
rithm. Its approach to generating new attributes differs from the original one.
The (generating) mutation can do one of the following things with different
probabilities:

� Probability p/4: Add a newly generated attribute to the feature vector

The RapidMiner 4.2 Tutorial

492 CHAPTER 5. OPERATOR REFERENCE

� Probability p/4: Add a randomly chosen original attribute to the feature
vector

� Probability p/2: Remove a randomly chosen attribute from the feature
vector

Thus it is guaranteed that the length of the feature vector can both grow and
shrink. On average it will keep its original length, unless longer or shorter
individuals prove to have a better fitness.

Since this operator does not contain algorithms to extract features from value
series, it is restricted to example sets with only single attributes. For (automatic)
feature extraction from values series the value series plugin for RapidMiner
written by Ingo Mierswa should be used. It is available at http://rapid-i.com3.

5.8.126 YAGGA2

Group: Preprocessing.Attributes.Generation

Required input:

� ExampleSet

Generated output:

� ExampleSet

� AttributeWeights

� PerformanceVector

Parameters:

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

� show stop dialog: Determines if a dialog with a button should be dis-
played which stops the run: the best individual is returned. (boolean;
default: false)

� user result individual selection: Determines if the user wants to select
the final result individual from the last population. (boolean; default:
false)

� show population plotter: Determines if the current population should be
displayed in performance space. (boolean; default: false)

� plot generations: Update the population plotter in these generations. (in-
teger; 1-+∞; default: 10)

3http://rapid-i.com

July 14, 2008

http://rapid-i.com

5.8. DATA PREPROCESSING 493

� constraint draw range: Determines if the draw range of the population
plotter should be constrained between 0 and 1. (boolean; default: false)

� draw dominated points: Determines if only points which are not Pareto
dominated should be painted. (boolean; default: true)

� population criteria data file: The path to the file in which the criteria
data of the final population should be saved. (filename)

� maximal fitness: The optimization will stop if the fitness reaches the de-
fined maximum. (real; 0.0-+∞)

� population size: Number of individuals per generation. (integer; 1-+∞;
default: 5)

� maximum number of generations: Number of generations after which
to terminate the algorithm. (integer; 1-+∞; default: 30)

� generations without improval: Stop criterion: Stop after n generations
without improval of the performance (-1: perform all generations). (inte-
ger; -1-+∞; default: -1)

� selection scheme: The selection scheme of this EA.

� tournament size: The fraction of the current population which should be
used as tournament members (only tournament selection). (real; 0.0-1.0)

� start temperature: The scaling temperature (only Boltzmann selection).
(real; 0.0-+∞)

� dynamic selection pressure: If set to true the selection pressure is in-
creased to maximum during the complete optimization run (only Boltz-
mann and tournament selection). (boolean; default: true)

� keep best individual: If set to true, the best individual of each generations
is guaranteed to be selected for the next generation (elitist selection).
(boolean; default: false)

� p initialize: Initial probability for an attribute to be switched on. (real;
0.0-1.0)

� p crossover: Probability for an individual to be selected for crossover.
(real; 0.0-1.0)

� crossover type: Type of the crossover.

� use plus: Generate sums. (boolean; default: true)

� use diff: Generate differences. (boolean; default: false)

� use mult: Generate products. (boolean; default: true)

� use div: Generate quotients. (boolean; default: false)

� reciprocal value: Generate reciprocal values. (boolean; default: true)

� p mutation: Probability for mutation (-1: 1/n). (real; 0.0-1.0)

The RapidMiner 4.2 Tutorial

494 CHAPTER 5. OPERATOR REFERENCE

� max total number of attributes: Max total number of attributes in all
generations (-1: no maximum). (integer; -1-+∞; default: -1)

� use square roots: Generate square root values. (boolean; default: false)

� use power functions: Generate the power of one attribute and another.
(boolean; default: true)

� use sin: Generate sinus. (boolean; default: true)

� use cos: Generate cosinus. (boolean; default: false)

� use tan: Generate tangens. (boolean; default: false)

� use atan: Generate arc tangens. (boolean; default: false)

� use exp: Generate exponential functions. (boolean; default: true)

� use log: Generate logarithmic functions. (boolean; default: false)

� use absolute values: Generate absolute values. (boolean; default: true)

� use min: Generate minimum values. (boolean; default: false)

� use max: Generate maximum values. (boolean; default: false)

� use sgn: Generate signum values. (boolean; default: false)

� use floor ceil functions: Generate floor, ceil, and rounded values. (boolean;
default: false)

� restrictive selection: Use restrictive generator selection (faster). (boolean;
default: true)

� remove useless: Remove useless attributes. (boolean; default: true)

� remove equivalent: Remove equivalent attributes. (boolean; default: true)

� equivalence samples: Check this number of samples to prove equivalency.
(integer; 1-+∞; default: 5)

� equivalence epsilon: Consider two attributes equivalent if their difference
is not bigger than epsilon. (real; 0.0-+∞)

� equivalence use statistics: Recalculates attribute statistics before equiv-
alence check. (boolean; default: true)

� max construction depth: The maximum depth for the argument attributes
used for attribute construction (-1: allow all depths). (integer; -1-+∞;
default: -1)

� unused functions: Space separated list of functions which are not allowed
in arguments for attribute construction. (string)

� constant generation prob: Generate random constant attributes with this
probability. (real; 0.0-1.0)

� associative attribute merging: Post processing after crossover (only pos-
sible for runs with only one generator). (boolean; default: false)

July 14, 2008

5.8. DATA PREPROCESSING 495

Values:

� applycount: The number of times the operator was applied.

� average length: The average number of attributes.

� best: The performance of the best individual ever (main criterion).

� best length: The number of attributes of the best example set.

� generation: The number of the current generation.

� looptime: The time elapsed since the current loop started.

� performance: The performance of the current generation (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [ExampleSet]
and must deliver [PerformanceVector].

Short description: Improved version of Yet Another GGA (Generating Genet-
ing Algorithm).

Description: YAGGA is an acronym for Yet Another Generating Genetic Algo-
rithm. Its approach to generating new attributes differs from the original one.
The (generating) mutation can do one of the following things with different
probabilities:

� Probability p/4: Add a newly generated attribute to the feature vector

� Probability p/4: Add a randomly chosen original attribute to the feature
vector

� Probability p/2: Remove a randomly chosen attribute from the feature
vector

Thus it is guaranteed that the length of the feature vector can both grow and
shrink. On average it will keep its original length, unless longer or shorter
individuals prove to have a better fitness.

In addition to the usual YAGGA operator, this operator allows more feature
generators and provides several techniques for intron prevention. This leads to
smaller example sets containing less redundant features.

Since this operator does not contain algorithms to extract features from value
series, it is restricted to example sets with only single attributes. For (automatic)

The RapidMiner 4.2 Tutorial

496 CHAPTER 5. OPERATOR REFERENCE

feature extraction from values series the value series plugin for RapidMiner
should be used.

For more information please refer to

Mierswa, Ingo (2007): RobustGP: Intron-Free Multi-Objective Feature Con-
struction (to appear)

July 14, 2008

5.9. PERFORMANCE VALIDATION 497

5.9 Performance Validation

When applying a model to a real-world problem, one usually wants to rely on
a statistically significant estimation of its performance. There are several ways
to measure this performance by comparing predicted label and true label. This
can of course only be done if the latter is known. The usual way to estimate
performance is therefore, to split the labelled dataset into a training set and
a test set, which can be used for performance estimation. The operators in
this section realise different ways of evaluating the performance of a model and
splitting the dataset into training and test set.

5.9.1 Anova

Group: Validation.Significance

Required input:

� PerformanceVector

Generated output:

� PerformanceVector

� SignificanceTestResult

Parameters:

� alpha: The probability threshold which determines if differences are con-
sidered as significant. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs ANalysis Of VAriances to determine the proba-
bility for the null hypothesis ’the actual means are the same’.

Description: Determines if the null hypothesis (all actual mean values are the
same) holds for the input performance vectors. This operator uses an ANaly-
sis Of VAriances approach to determine probability that the null hypothesis is
wrong.

The RapidMiner 4.2 Tutorial

498 CHAPTER 5. OPERATOR REFERENCE

5.9.2 AttributeCounter

Group: Validation.Performance

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� optimization direction: Indicates if the fitness should for maximal or min-
imal number of features.

Values:

� applycount: The number of times the operator was applied.

� attributes: The currently selected number of attributes.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: This operator created a performance vector containing the
number of features of the input example set.

Description: Returns a performance vector just counting the number of at-
tributes currently used for the given example set.

5.9.3 BatchSlidingWindowValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

July 14, 2008

5.9. PERFORMANCE VALIDATION 499

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� cumulative training: Indicates if each training batch should be added to
the old one or should replace the old one. (boolean; default: false)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors (boolean; default:
true)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: Performs a sliding window validation on predefined exam-
ple batches.

Description: The BatchSlidingWindowValidation is similar to the usual
SlidingWindowValidation (see section 5.9.26). This operator, however,
does not split the data itself in windows of predefined widths but uses the
partition defined by the special attribute “batch”. This can be an arbitrary
nominal or integer attribute where each possible value occurs at least once
(since many learning schemes depend on this minimum number of examples).

The RapidMiner 4.2 Tutorial

500 CHAPTER 5. OPERATOR REFERENCE

In each iteration, the next training batch is used for learning and the batch after
this for prediction. It is also possible to perform a cumulative batch creation
where each test batch will simply be added to the current training batch for the
training in the next generation.

The first inner operator must accept an ExampleSet while the second must
accept an ExampleSet and the output of the first (which is in most cases a
Model) and must produce a PerformanceVector.

5.9.4 BatchXValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors (boolean; default:
true)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

July 14, 2008

5.9. PERFORMANCE VALIDATION 501

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: A batched cross-validation in order to estimate the per-
formance of a learning operator according to predefined example batches.

Description: BatchXValidation encapsulates a cross-validation process. The
example set S is split up into number of validations subsets Si. The inner op-
erators are applied number of validations times using Si as the test set (input
of the second inner operator) and S\Si training set (input of the first inner
operator).

In contrast to the usual cross validation operator (see XValidation (see sec-
tion 5.9.32)) this operator does not (randomly) split the data itself but uses the
partition defined by the special attribute “batch”. This can be an arbitrary nom-
inal or integer attribute where each possible value occurs at least once (since
many learning schemes depend on this minimum number of examples).

The first inner operator must accept an ExampleSet while the second must
accept an ExampleSet and the output of the first (which is in most cases a
Model) and must produce a PerformanceVector.

5.9.5 BinominalClassificationPerformance

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� main criterion: The criterion used for comparing performance vectors.

� AUC: The area under a ROC curve. Given example weights are also con-
sidered. Please note that the second class is considered to be positive.
(boolean; default: false)

The RapidMiner 4.2 Tutorial

502 CHAPTER 5. OPERATOR REFERENCE

� precision: Relative number of correctly as positive classified examples among
all examples classified as positive (boolean; default: false)

� recall: Relative number of correctly as positive classified examples among
all positive examples (boolean; default: false)

� lift: The lift of the positive class (boolean; default: false)

� fallout: Relative number of incorrectly as positive classified examples among
all negative examples (boolean; default: false)

� f measure: Combination of precision and recall: f=2pr/(p+r) (boolean;
default: false)

� false positive: Absolute number of incorrectly as positive classified exam-
ples (boolean; default: false)

� false negative: Absolute number of incorrectly as negative classified ex-
amples (boolean; default: false)

� true positive: Absolute number of correctly as positive classified examples
(boolean; default: false)

� true negative: Absolute number of correctly as negative classified exam-
ples (boolean; default: false)

� skip undefined labels: If set to true, examples with undefined labels are
skipped. (boolean; default: true)

� comparator class: Fully qualified classname of the PerformanceCompara-
tor implementation. (string)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

Values:

� AUC: The area under a ROC curve. Given example weights are also con-
sidered. Please note that the second class is considered to be positive.

� applycount: The number of times the operator was applied.

� f measure: Combination of precision and recall: f=2pr/(p+r)

� fallout: Relative number of incorrectly as positive classified examples among
all negative examples

� false negative: Absolute number of incorrectly as negative classified ex-
amples

� false positive: Absolute number of incorrectly as positive classified exam-
ples

� lift: The lift of the positive class

� looptime: The time elapsed since the current loop started.

July 14, 2008

5.9. PERFORMANCE VALIDATION 503

� performance: The last performance (main criterion).

� precision: Relative number of correctly as positive classified examples among
all examples classified as positive

� recall: Relative number of correctly as positive classified examples among
all positive examples

� time: The time elapsed since this operator started.

� true negative: Absolute number of correctly as negative classified exam-
ples

� true positive: Absolute number of correctly as positive classified examples

Short description: This operator delivers as output a list of performance
values according to a list of selected performance criteria (for binominal classi-
fication tasks).

Description: This performance evaluator operator should be used for classifi-
cation tasks, i.e. in cases where the label attribute has a binominal value type.
Other polynominal classification tasks, i.e. tasks with more than two classes
can be handled by the ClassificationPerformance (see section 5.9.8) op-
erator. This operator expects a test ExampleSet as input, whose elements have
both true and predicted labels, and delivers as output a list of performance
values according to a list of performance criteria that it calculates. If an input
performance vector was already given, this is used for keeping the performance
values.

All of the performance criteria can be switched on using boolean parameters.
Their values can be queried by a ProcessLogOperator using the same names.
The main criterion is used for comparisons and need to be specified only for
processes where performance vectors are compared, e.g. feature selection or
other meta optimization process setups. If no other main criterion was selected,
the first criterion in the resulting performance vector will be assumed to be the
main criterion.

The resulting performance vectors are usually compared with a standard per-
formance comparator which only compares the fitness values of the main cri-
terion. Other implementations than this simple comparator can be specified
using the parameter comparator class. This may for instance be useful if you
want to compare performance vectors according to the weighted sum of the
individual criteria. In order to implement your own comparator, simply subclass
PerformanceComparator. Please note that for true multi-objective optimiza-
tion usually another selection scheme is used instead of simply replacing the
performance comparator.

The RapidMiner 4.2 Tutorial

504 CHAPTER 5. OPERATOR REFERENCE

5.9.6 BootstrappingValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� number of validations: Number of subsets for the crossvalidation. (inte-
ger; 2-+∞; default: 10)

� sample ratio: This ratio of examples will be sampled (with replacement)
in each iteration. (real; 0.0-+∞)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors. (boolean; default:
true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

July 14, 2008

5.9. PERFORMANCE VALIDATION 505

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: This operator encapsulates an iterated bootstrapping sam-
pling with performance evaluation on the remaining examples.

Description: This validation operator performs several bootstrapped sam-
plings (sampling with replacement) on the input set and trains a model on
these samples. The remaining samples, i.e. those which were not sampled,
build a test set on which the model is evaluated. This process is repeated
for the specified number of iterations after which the average performance is
calculated.

The basic setup is the same as for the usual cross validation operator. The
first inner operator must provide a model and the second a performance vector.
Please note that this operator does not regard example weights, i.e. weights
specified in a weight column.

5.9.7 CFSFeatureSetEvaluator

Group: Validation.Performance

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

506 CHAPTER 5. OPERATOR REFERENCE

Short description: Calculates a performance measure based on the Correla-
tion (filter evaluation).

Description: CFS attribute subset evaluator. For more information see:

Hall, M. A. (1998). Correlation-based Feature Subset Selection for Machine
Learning. Thesis submitted in partial fulfilment of the requirements of the
degree of Doctor of Philosophy at the University of Waikato.

This operator creates a filter based performance measure for a feature subset.
It evaluates the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of redundancy between
them. Subsets of features that are highly correlated with the class while having
low intercorrelation are preferred.

This operator can be applied on both numerical and nominal data sets.

5.9.8 ClassificationPerformance

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� main criterion: The criterion used for comparing performance vectors.

� accuracy: Relative number of correctly classified examples (boolean; de-
fault: false)

� classification error: Relative number of misclassified examples (boolean;
default: false)

� kappa: The kappa statistics for the classification (boolean; default: false)

� weighted mean recall: The weighted mean of all per class recall mea-
surements. (boolean; default: false)

� weighted mean precision: The weighted mean of all per class precision
measurements. (boolean; default: false)

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho. (boolean; default: false)

July 14, 2008

5.9. PERFORMANCE VALIDATION 507

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b. (boolean; default: false)

� absolute error: Average absolute deviation of the prediction from the ac-
tual value (boolean; default: false)

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value) (boolean; default:
false)

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted. (boolean; default: false)

� root mean squared error: Averaged root-mean-squared error (boolean;
default: false)

� root relative squared error: Averaged root-relative-squared error (boolean;
default: false)

� squared error: Averaged squared error (boolean; default: false)

� correlation: Returns the correlation coefficient between the label and pre-
dicted label. (boolean; default: false)

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label. (boolean; default: false)

� cross-entropy: The cross-entropy of a classifier, defined as the sum over
the logarithms of the true label’s confidences divided by the number of
examples (boolean; default: false)

� margin: The margin of a classifier, defined as the minimal confidence for
the correct label. (boolean; default: false)

� soft margin loss: The average soft margin loss of a classifier, defined as
the average of all 1 - confidences for the correct label. (boolean; default:
false)

� logistic loss: The logistic loss of a classifier, defined as the average of ln(1
+ exp(- [confidence of the correct class])) (boolean; default: false)

� skip undefined labels: If set to true, examples with undefined labels are
skipped. (boolean; default: true)

� comparator class: Fully qualified classname of the PerformanceCompara-
tor implementation. (string)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

� class weights: The weights for all classes (first column: class name, sec-
ond column: weight), empty: using 1 for all classes. (list)

Values:

The RapidMiner 4.2 Tutorial

508 CHAPTER 5. OPERATOR REFERENCE

� absolute error: Average absolute deviation of the prediction from the ac-
tual value

� accuracy: Relative number of correctly classified examples

� applycount: The number of times the operator was applied.

� classification error: Relative number of misclassified examples

� correlation: Returns the correlation coefficient between the label and pre-
dicted label.

� cross-entropy: The cross-entropy of a classifier, defined as the sum over
the logarithms of the true label’s confidences divided by the number of
examples

� kappa: The kappa statistics for the classification

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b.

� logistic loss: The logistic loss of a classifier, defined as the average of ln(1
+ exp(- [confidence of the correct class]))

� looptime: The time elapsed since the current loop started.

� margin: The margin of a classifier, defined as the minimal confidence for
the correct label.

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted.

� performance: The last performance (main criterion).

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value)

� root mean squared error: Averaged root-mean-squared error

� root relative squared error: Averaged root-relative-squared error

� soft margin loss: The average soft margin loss of a classifier, defined as
the average of all 1 - confidences for the correct label.

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho.

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label.

� squared error: Averaged squared error

� time: The time elapsed since this operator started.

� weighted mean precision: The weighted mean of all per class precision
measurements.

� weighted mean recall: The weighted mean of all per class recall mea-
surements.

July 14, 2008

5.9. PERFORMANCE VALIDATION 509

Short description: This operator delivers as output a list of performance
values according to a list of selected performance criteria (for all classification
tasks).

Description: This performance evaluator operator should be used for classifi-
cation tasks, i.e. in cases where the label attribute has a (poly-)nominal value
type. The operator expects a test ExampleSet as input, whose elements have
both true and predicted labels, and delivers as output a list of performance
values according to a list of performance criteria that it calculates. If an input
performance vector was already given, this is used for keeping the performance
values.

All of the performance criteria can be switched on using boolean parameters.
Their values can be queried by a ProcessLogOperator using the same names.
The main criterion is used for comparisons and need to be specified only for
processes where performance vectors are compared, e.g. feature selection or
other meta optimization process setups. If no other main criterion was selected,
the first criterion in the resulting performance vector will be assumed to be the
main criterion.

The resulting performance vectors are usually compared with a standard per-
formance comparator which only compares the fitness values of the main cri-
terion. Other implementations than this simple comparator can be specified
using the parameter comparator class. This may for instance be useful if you
want to compare performance vectors according to the weighted sum of the
individual criteria. In order to implement your own comparator, simply subclass
PerformanceComparator. Please note that for true multi-objective optimiza-
tion usually another selection scheme is used instead of simply replacing the
performance comparator.

5.9.9 ClusterCentroidEvaluator

Group: Validation.Performance.Clustering

Required input:

� ExampleSet

� ClusterModel

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

The RapidMiner 4.2 Tutorial

510 CHAPTER 5. OPERATOR REFERENCE

� keep cluster model: Indicates if this input object should also be returned
as output. (boolean; default: false)

� main criterion: The main criterion to use

� main criterion only: return the main criterion only (boolean; default: false)

� normalize: divide the criterion by the number of features (boolean; default:
false)

� maximize: do not multiply the result by minus one (boolean; default:
false)

Values:

� AVD: avg within distance

� DB: DaviesBouldin

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Delivers a performance based on cluster centroids.

Description: An evaluator for centroid based clustering methods.

5.9.10 ClusterDensityEvaluator

Group: Validation.Performance.Clustering

Required input:

� ClusterModel

� SimilarityMeasure

Generated output:

� PerformanceVector

Parameters:

� keep cluster model: Indicates if this input object should also be returned
as output. (boolean; default: false)

� keep similarity measure: Indicates if this input object should also be re-
turned as output. (boolean; default: false)

Values:

July 14, 2008

5.9. PERFORMANCE VALIDATION 511

� applycount: The number of times the operator was applied.

� clusterdensity: Avg. within cluster similarity/distance

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Delivers a performance based on cluster densities.

Description: This operator is used to evaluate a flat cluster model based
on diverse density measures. Currently, only the avg. within cluster similari-
ty/distance (depending on the type of SimilarityMeasure input object used) is
supported.

5.9.11 ClusterModelFScore

Group: Validation.Performance.Clustering

Required input:

� HierarchicalClusterModel

Generated output:

� PerformanceVector

Parameters:

� weight clusters: should the result clusters be weighted by the fraction of
items they contain (boolean; default: true)

� switch: switch the both cluster models (boolean; default: false)

� symmetric: build the average of a two-way comparison (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Compares a result cluster model to a reference model by
averaging the f-measures of the best matching concepts.

Description: Compares two cluster models by searching for each concept a
best matching one in the compared cluster model in terms of f-measure. The
average f-measure of the best matches is then the overall cluster model similarity.

The RapidMiner 4.2 Tutorial

512 CHAPTER 5. OPERATOR REFERENCE

5.9.12 ClusterModelLabelComparator

Group: Validation.Performance.Clustering

Required input:

� ClusterModel

Generated output:

� PerformanceVector

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Determines the performance by comparing the labels in
hierarchical cluster models.

Description: Compares two hierarchical clustering models according to the
label of their root node. If this label is equal, 1 is returned, 0 otherwise.

5.9.13 ClusterNumberEvaluator

Group: Validation.Performance.Clustering

Required input:

� FlatClusterModel

Generated output:

� PerformanceVector

Parameters:

� keep flat cluster model: Indicates if this input object should also be re-
turned as output. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� clusternumber: The number of clusters.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.9. PERFORMANCE VALIDATION 513

Short description: Delivers a performance based on the number of clusters.

Description: This operator does actually not compute a performance criterion
but simply provides the number of cluster as a value.

5.9.14 ConsistencyFeatureSetEvaluator

Group: Validation.Performance

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Calculates a performance measure based on the consis-
tency (filter evaluation).

Description: Consistency attribute subset evaluator. For more information
see:

Liu, H., and Setiono, R., (1996). A probabilistic approach to feature selec-
tion - A filter solution. In 13th International Conference on Machine Learning
(ICML’96), July 1996, pp. 319-327. Bari, Italy.

This operator evaluates the worth of a subset of attributes by the level of
consistency in the class values when the training instances are projected onto
the subset of attributes. Consistency of any subset can never be lower than
that of the full set of attributes, hence the usual practice is to use this subset
evaluator in conjunction with a Random or Exhaustive search which looks for
the smallest subset with consistency equal to that of the full set of attributes.

This operator can only be applied for classification data sets, i.e. where the
label attribute is nominal.

The RapidMiner 4.2 Tutorial

514 CHAPTER 5. OPERATOR REFERENCE

5.9.15 ConstraintClusterValidation

Group: Validation.Performance.Clustering

Required input:

� ClusterConstraintList

� ClusterModel

Generated output:

� PerformanceVector

Parameters:

� keep cluster constraint list: Indicates if this input object should also be
returned as output. (boolean; default: false)

� keep cluster model: Indicates if this input object should also be returned
as output. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Validate constrained k-means

Description: Evaluates a ClusterModel with regard to a given ClusterCon-
straintList and takes the weight of the violated constraints as performance value.

5.9.16 CostEvaluator

Group: Validation.Performance

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep exampleSet: Indicates if the example set should be kept. (boolean;
default: false)

� cost matrix: The cost matrix in Matlab single line format (string)

July 14, 2008

5.9. PERFORMANCE VALIDATION 515

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: A cost evaluator delivers as output the costs for given
classification results.

Description: This operator provides the ability to evaluate classification costs.
Therefore a cost matrix might be specified, denoting the costs for every possible
classification outcome: predicted label x real label. Costs will be minimized
during optimization.

5.9.17 FixedSplitValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� training set size: Absolute size required for the training set (-1: use rest
for training) (integer; -1-+∞; default: 100)

� test set size: Absolute size required for the test set (-1: use rest for test-
ing) (integer; -1-+∞; default: -1)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

The RapidMiner 4.2 Tutorial

516 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: A FixedSplitValidation splits up the example set at a fixed
point into a training and test set and evaluates the model.

Description: A FixedSplitValidationChain splits up the example set at a fixed
point into a training and test set and evaluates the model (linear sampling). For
non-linear sampling methods, i.e. the data is shuffled, the specified amounts of
data are used as training and test set. The sum of both must be smaller than
the input example set size.

At least either the training set size must be specified (rest is used for testing)
or the test set size must be specified (rest is used for training). If both are
specified, the rest is not used at all.

The first inner operator must accept an ExampleSet while the second must
accept an ExampleSet and the output of the first (which in most cases is a
Model) and must produce a PerformanceVector.

5.9.18 ItemDistributionEvaluator

Group: Validation.Performance.Clustering

July 14, 2008

5.9. PERFORMANCE VALIDATION 517

Required input:

� FlatClusterModel

Generated output:

� PerformanceVector

Parameters:

� keep flat cluster model: Indicates if this input object should also be re-
turned as output. (boolean; default: true)

� measure: the item distribution measure to apply

Values:

� applycount: The number of times the operator was applied.

� item distribution: The distribution of items over clusters.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Delivers a performance of a cluster model based on the
distribution of items.

Description: Evaluates flat cluster models on how well the items are dis-
tributed over the clusters.

5.9.19 IteratingPerformanceAverage

Group: Validation.Other

Generated output:

� PerformanceVector

Parameters:

� iterations: The number of iterations. (integer; 1-+∞; default: 10)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors. (boolean; default:
true)

Values:

� applycount: The number of times the operator was applied.

The RapidMiner 4.2 Tutorial

518 CHAPTER 5. OPERATOR REFERENCE

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� time: The time elapsed since this operator started.

Inner operators: The inner operators must deliver [PerformanceVector].

Short description: Iterates the inner operators and builds the average of the
results.

Description: This operator chain performs the inner operators the given num-
ber of times. The inner operators must provide a PerformanceVector. These
are averaged and returned as result.

5.9.20 MinMaxWrapper

Group: Validation.Performance

Required input:

� PerformanceVector

Generated output:

� PerformanceVector

Parameters:

� minimum weight: Defines the weight for the minimum fitness agains the
average fitness (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Puts all input criteria into a min-max criterion which de-
livers the minimum instead of the average or arbitrary weighted combinations.

Description: Wraps a MinMaxCriterion around each performance criterion of
type MeasuredPerformance. This criterion uses the minimum fitness achieved
instead of the average fitness or arbitrary weightings of both. Please note that
the average values stay the same and only the fitness values change.

July 14, 2008

5.9. PERFORMANCE VALIDATION 519

5.9.21 Performance

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� performance: The last performance (main criterion).

� time: The time elapsed since this operator started.

Short description: This operator delivers as output a list of performance
values automatically determined in order to fit the learning task type.

Description: In contrast to the other performance evaluation methods, this
performance evaluator operator can be used for all types of learning tasks. It will
automatically determine the learning task type and will calculate the most com-
mon criteria for this type. For more sophisticated performance calculations, you
should check the operators RegressionPerformance (see section 5.9.23),
ClassificationPerformance (see section 5.9.8), or BinominalClassi-
ficationPerformance (see section 5.9.5). You can even simply write your
own performance measure and calculate it with the operator UserBasedPer-
formance (see section 5.9.28).

The operator expects a test ExampleSet as input, whose elements have both
true and predicted labels, and delivers as output a list of most commmon per-
formance values for the provided learning task type (regression of (binominal)
classification. If an input performance vector was already given, this is used for
keeping the performance values.

The RapidMiner 4.2 Tutorial

520 CHAPTER 5. OPERATOR REFERENCE

5.9.22 PerformanceEvaluator

Group: Validation.Performance

Please use the operators BasicPerformance, RegressionPerformance, Classifica-
tionPerformance, or BinominalClassificationPerformance instead.

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� main criterion: The criterion used for comparing performance vectors.

� root mean squared error: Averaged root-mean-squared error (boolean;
default: false)

� absolute error: Average absolute deviation of the prediction from the ac-
tual value (boolean; default: false)

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value) (boolean; default:
false)

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted. (boolean; default: false)

� root relative squared error: Averaged root-relative-squared error (boolean;
default: false)

� squared error: Averaged squared error (boolean; default: false)

� correlation: Returns the correlation coefficient between the label and pre-
dicted label. (boolean; default: false)

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label. (boolean; default: false)

� prediction average: This is not a real performance measure, but merely
the average of the predicted labels. (boolean; default: false)

� prediction trend accuracy: Measures the average of times a regression
prediction was able to correctly predict the trend of the regression. (boolean;
default: false)

� AUC: The area under a ROC curve. Given example weights are also con-
sidered. Please note that the second class is considered to be positive.
(boolean; default: false)

July 14, 2008

5.9. PERFORMANCE VALIDATION 521

� cross-entropy: The cross-entropy of a classifier, defined as the sum over
the logarithms of the true label’s confidences divided by the number of
examples (boolean; default: false)

� margin: The margin of a classifier, defined as the minimal confidence for
the correct label. (boolean; default: false)

� soft margin loss: The average soft margin loss of a classifier, defined as
the average of all 1 - confidences for the correct label. (boolean; default:
false)

� logistic loss: The logistic loss of a classifier, defined as the average of ln(1
+ exp(- [confidence of the correct class])) (boolean; default: false)

� accuracy: Relative number of correctly classified examples (boolean; de-
fault: false)

� classification error: Relative number of misclassified examples (boolean;
default: false)

� kappa: The kappa statistics for the classification (boolean; default: false)

� weighted mean recall: The weighted mean of all per class recall mea-
surements. (boolean; default: false)

� weighted mean precision: The weighted mean of all per class precision
measurements. (boolean; default: false)

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho. (boolean; default: false)

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b. (boolean; default: false)

� skip undefined labels: If set to true, examples with undefined labels are
skipped. (boolean; default: true)

� comparator class: Fully qualified classname of the PerformanceCompara-
tor implementation. (string)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

� class weights: The weights for all classes (first column: class name, sec-
ond column: weight), empty: using 1 for all classes. (list)

Values:

� AUC: The area under a ROC curve. Given example weights are also con-
sidered. Please note that the second class is considered to be positive.

� absolute error: Average absolute deviation of the prediction from the ac-
tual value

� accuracy: Relative number of correctly classified examples

The RapidMiner 4.2 Tutorial

522 CHAPTER 5. OPERATOR REFERENCE

� applycount: The number of times the operator was applied.

� classification error: Relative number of misclassified examples

� correlation: Returns the correlation coefficient between the label and pre-
dicted label.

� cross-entropy: The cross-entropy of a classifier, defined as the sum over
the logarithms of the true label’s confidences divided by the number of
examples

� kappa: The kappa statistics for the classification

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b.

� logistic loss: The logistic loss of a classifier, defined as the average of ln(1
+ exp(- [confidence of the correct class]))

� looptime: The time elapsed since the current loop started.

� margin: The margin of a classifier, defined as the minimal confidence for
the correct label.

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted.

� performance: The last performance (main criterion).

� prediction average: This is not a real performance measure, but merely
the average of the predicted labels.

� prediction trend accuracy: Measures the average of times a regression
prediction was able to correctly predict the trend of the regression.

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value)

� root mean squared error: Averaged root-mean-squared error

� root relative squared error: Averaged root-relative-squared error

� soft margin loss: The average soft margin loss of a classifier, defined as
the average of all 1 - confidences for the correct label.

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho.

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label.

� squared error: Averaged squared error

� time: The time elapsed since this operator started.

� weighted mean precision: The weighted mean of all per class precision
measurements.

� weighted mean recall: The weighted mean of all per class recall mea-
surements.

July 14, 2008

5.9. PERFORMANCE VALIDATION 523

Short description: A performance evaluator delivers as output a list of per-
formance values according to a list of performance criteria.

Description: A performance evaluator is an operator that expects a test Ex-
ampleSet as input, whose elements have both true and predicted labels, and
delivers as output a list of performance values according to a list of perfor-
mance criteria that it calculates. If an input performance vector was already
given, this is used for keeping the performance values.

All of the performance criteria can be switched on using boolean parameters.
Their values can be queried by a ProcessLogOperator using the same names.
The main criterion is used for comparisons and need to be specified only for
processes where performance vectors are compared, e.g. feature selection pro-
cesses. If no other main criterion was selected the first criterion in the resulting
performance vector will be assumed to be the main criterion.

The resulting performance vectors are usually compared with a standard per-
formance comparator which only compares the fitness values of the main cri-
terion. Other implementations than this simple comparator can be specified
using the parameter comparator class. This may for instance be useful if you
want to compare performance vectors according to the weighted sum of the
individual criteria. In order to implement your own comparator, simply subclass
PerformanceComparator. Please note that for true multi-objective optimiza-
tion usually another selection scheme is used instead of simply replacing the
performance comparator.

Additional user-defined implementations of PerformanceCriterion can be speci-
fied by using the parameter list additional performance criteria. Each key/value
pair in this list must specify a fully qualified classname (as the key), and a
string parameter (as value) that is passed to the constructor. Please make sure
that the class files are in the classpath (this is the case if the implementations
are supplied by a plugin) and that they implement a one-argument constructor
taking a string parameter. It must also be ensured that these classes extend
MeasuredPerformance since the PerformanceEvaluator operator will only sup-
port these criteria. Please note that only the first three user defined criteria can
be used as logging value with names “user1”, ... , “user3”.

5.9.23 RegressionPerformance

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

The RapidMiner 4.2 Tutorial

524 CHAPTER 5. OPERATOR REFERENCE

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� main criterion: The criterion used for comparing performance vectors.

� root mean squared error: Averaged root-mean-squared error (boolean;
default: false)

� absolute error: Average absolute deviation of the prediction from the ac-
tual value (boolean; default: false)

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value) (boolean; default:
false)

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted. (boolean; default: false)

� root relative squared error: Averaged root-relative-squared error (boolean;
default: false)

� squared error: Averaged squared error (boolean; default: false)

� correlation: Returns the correlation coefficient between the label and pre-
dicted label. (boolean; default: false)

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label. (boolean; default: false)

� prediction average: This is not a real performance measure, but merely
the average of the predicted labels. (boolean; default: false)

� prediction trend accuracy: Measures the average of times a regression
prediction was able to correctly predict the trend of the regression. (boolean;
default: false)

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho. (boolean; default: false)

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b. (boolean; default: false)

� skip undefined labels: If set to true, examples with undefined labels are
skipped. (boolean; default: true)

� comparator class: Fully qualified classname of the PerformanceCompara-
tor implementation. (string)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

Values:

July 14, 2008

5.9. PERFORMANCE VALIDATION 525

� absolute error: Average absolute deviation of the prediction from the ac-
tual value

� applycount: The number of times the operator was applied.

� correlation: Returns the correlation coefficient between the label and pre-
dicted label.

� kendall tau: The rank correlation between the actual and predicted labels,
using Kendall’s tau-b.

� looptime: The time elapsed since the current loop started.

� normalized absolute error: The absolute error divided by the error made
if the average would have been predicted.

� performance: The last performance (main criterion).

� prediction average: This is not a real performance measure, but merely
the average of the predicted labels.

� prediction trend accuracy: Measures the average of times a regression
prediction was able to correctly predict the trend of the regression.

� relative error: Average relative error (average of absolute deviation of the
prediction from the actual value divided by actual value)

� root mean squared error: Averaged root-mean-squared error

� root relative squared error: Averaged root-relative-squared error

� spearman rho: The rank correlation between the actual and predicted la-
bels, using Spearman’s rho.

� squared correlation: Returns the squared correlation coefficient between
the label and predicted label.

� squared error: Averaged squared error

� time: The time elapsed since this operator started.

Short description: This operator delivers as output a list of performance
values according to a list of selected performance criteria (for regression tasks).

Description: This performance evaluator operator should be used for regres-
sion tasks, i.e. in cases where the label attribute has a numerical value type.
The operator expects a test ExampleSet as input, whose elements have both
true and predicted labels, and delivers as output a list of performance values
according to a list of performance criteria that it calculates. If an input per-
formance vector was already given, this is used for keeping the performance
values.

All of the performance criteria can be switched on using boolean parameters.
Their values can be queried by a ProcessLogOperator using the same names.

The RapidMiner 4.2 Tutorial

526 CHAPTER 5. OPERATOR REFERENCE

The main criterion is used for comparisons and need to be specified only for
processes where performance vectors are compared, e.g. feature selection or
other meta optimization process setups. If no other main criterion was selected,
the first criterion in the resulting performance vector will be assumed to be the
main criterion.

The resulting performance vectors are usually compared with a standard per-
formance comparator which only compares the fitness values of the main cri-
terion. Other implementations than this simple comparator can be specified
using the parameter comparator class. This may for instance be useful if you
want to compare performance vectors according to the weighted sum of the
individual criteria. In order to implement your own comparator, simply subclass
PerformanceComparator. Please note that for true multi-objective optimiza-
tion usually another selection scheme is used instead of simply replacing the
performance comparator.

5.9.24 SimpleValidation

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� split ratio: Relative size of the training set (real; 0.0-1.0)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� looptime: The time elapsed since the current loop started.

July 14, 2008

5.9. PERFORMANCE VALIDATION 527

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: A SimpleValidation randomly splits up the example set
into a training and test set and evaluates the model.

Description: A RandomSplitValidationChain splits up the example set
into a training and test set and evaluates the model. The first inner opera-
tor must accept an ExampleSet while the second must accept an ExampleSet
and the output of the first (which is in most cases a Model) and must produce
a PerformanceVector.

5.9.25 SimpleWrapperValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

� AttributeWeights

Parameters:

� split ratio: Relative size of the training set (real; 0.0-1.0)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

The RapidMiner 4.2 Tutorial

528 CHAPTER 5. OPERATOR REFERENCE

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� performance: The last performance (main criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Wrapper) must be able to handle [ExampleSet] and must
deliver [AttributeWeights].

� Operator 2 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 3 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: A simple validation method to check the performance of
a feature weighting or selection wrapper.

Description: This operator evaluates the performance of feature weighting
algorithms including feature selection. The first inner operator is the weighting
algorithm to be evaluated itself. It must return an attribute weights vector which
is applied on the data. Then a new model is created using the second inner
operator and a performance is retrieved using the third inner operator. This
performance vector serves as a performance indicator for the actual algorithm.

This implementation is described for the SimpleValidation (see section 5.9.24).

5.9.26 SlidingWindowValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

July 14, 2008

5.9. PERFORMANCE VALIDATION 529

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� training window width: Number of examples in the window which is used
for training (integer; 1-+∞; default: 100)

� training window step size: Number of examples the window is moved
after each iteration (-1: same as test window width) (integer; -1-+∞;
default: -1)

� test window width: Number of examples which are used for testing (fol-
lowing after ’horizon’ examples after the training window end) (integer;
1-+∞; default: 100)

� horizon: Increment from last training to first testing example (1 = next
example). (integer; 1-+∞; default: 1)

� cumulative training: Indicates if each training window should be added
to the old one or should replace the old one. (boolean; default: false)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors (boolean; default:
true)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

The RapidMiner 4.2 Tutorial

530 CHAPTER 5. OPERATOR REFERENCE

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: SlidingWindoValidation encapsulates sliding windows of
training and tests in order to estimate the performance of a prediction operator.

Description: This is a special validation chain which can only be used for
series predictions where the time points are encoded as examples. It uses a
certain window of examples for training and uses another window (after horizon
examples, i.e. time points) for testing. The window is moved across the example
set and all performance measurements are averaged afterwards. The parameter
“cumulative training” indicates if all former examples should be used for training
(instead of only the current window).

5.9.27 T-Test

Group: Validation.Significance

Required input:

� PerformanceVector

Generated output:

� PerformanceVector

� SignificanceTestResult

Parameters:

� alpha: The probability threshold which determines if differences are con-
sidered as significant. (real; 0.0-1.0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Performs a t-test to determine the probability for the null
hypothesis ’the actual means are the same’.

Description: Determines if the null hypothesis (all actual mean values are the
same) holds for the input performance vectors. This operator uses a simple

July 14, 2008

5.9. PERFORMANCE VALIDATION 531

(pairwise) t-test to determine the probability that the null hypothesis is wrong.
Since a t-test can only be applied on two performance vectors this test will
be applied to all possible pairs. The result is a significance matrix. However,
pairwise t-test may introduce a larger type I error. It is recommended to apply
an additional ANOVA test to determine if the null hypothesis is wrong at all.

5.9.28 UserBasedPerformance

Group: Validation.Performance

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� skip undefined labels: If set to true, examples with undefined labels are
skipped. (boolean; default: true)

� comparator class: Fully qualified classname of the PerformanceCompara-
tor implementation. (string)

� use example weights: Indicated if example weights should be used for
performance calculations if possible. (boolean; default: true)

� main criterion: The criterion used for comparing performance vectors.

� additional performance criteria: List of classes that implement com.rapidminer..operator.performance.PerformanceCriterion.
(list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� performance: The last performance (main criterion).

� time: The time elapsed since this operator started.

� user1: The user defined performance criterion 0

� user2: The user defined performance criterion 1

� user3: The user defined performance criterion 2

Short description: This operator delivers as output a list of performance
values according to a list of user defined performance criteria.

The RapidMiner 4.2 Tutorial

532 CHAPTER 5. OPERATOR REFERENCE

Description: This performance evaluator operator should be used for regres-
sion tasks, i.e. in cases where the label attribute has a numerical value type.
The operator expects a test ExampleSet as input, whose elements have both
true and predicted labels, and delivers as output a list of performance values
according to a list of performance criteria that it calculates. If an input per-
formance vector was already given, this is used for keeping the performance
values.

Additional user-defined implementations of PerformanceCriterion can be speci-
fied by using the parameter list additional performance criteria. Each key/value
pair in this list must specify a fully qualified classname (as the key), and a
string parameter (as value) that is passed to the constructor. Please make sure
that the class files are in the classpath (this is the case if the implementations
are supplied by a plugin) and that they implement a one-argument constructor
taking a string parameter. It must also be ensured that these classes extend
MeasuredPerformance since the PerformanceEvaluator operator will only sup-
port these criteria. Please note that only the first three user defined criteria can
be used as logging value with names “user1”, ... , “user3”.

The resulting performance vectors are usually compared with a standard per-
formance comparator which only compares the fitness values of the main cri-
terion. Other implementations than this simple comparator can be specified
using the parameter comparator class. This may for instance be useful if you
want to compare performance vectors according to the weighted sum of the
individual criteria. In order to implement your own comparator, simply subclass
PerformanceComparator. Please note that for true multi-objective optimiza-
tion usually another selection scheme is used instead of simply replacing the
performance comparator.

5.9.29 WeightedBootstrappingValidation

Group: Validation.Other

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

July 14, 2008

5.9. PERFORMANCE VALIDATION 533

� number of validations: Number of subsets for the crossvalidation. (inte-
ger; 2-+∞; default: 10)

� sample ratio: This ratio of examples will be sampled (with replacement)
in each iteration. (real; 0.0-+∞)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors. (boolean; default:
true)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global). (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: This operator encapsulates an iterated weighted boot-
strapping sampling with performance evaluation on the remaining examples.

Description: This validation operator performs several bootstrapped sam-
plings (sampling with replacement) on the input set and trains a model on
these samples. The remaining samples, i.e. those which were not sampled,
build a test set on which the model is evaluated. This process is repeated

The RapidMiner 4.2 Tutorial

534 CHAPTER 5. OPERATOR REFERENCE

for the specified number of iterations after which the average performance is
calculated.

The basic setup is the same as for the usual cross validation operator. The
first inner operator must provide a model and the second a performance vector.
Please note that this operator does not regard example weights, i.e. weights
specified in a weight column.

5.9.30 WeightedPerformanceCreator

Group: Validation.Performance

Required input:

� PerformanceVector

Generated output:

� PerformanceVector

Parameters:

� default weight: The default weight for all criteria not specified in the list
’criteria weights’. (real; 0.0-+∞)

� criteria weights: The weights for several performance criteria. Criteria
weights not defined in this list are set to ’default weight’. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Returns a performance vector containing the weighted
fitness value of the input criteria.

Description: Returns a performance vector containing the weighted fitness
value of the input criteria.

5.9.31 WrapperXValidation

Group: Validation

July 14, 2008

5.9. PERFORMANCE VALIDATION 535

Required input:

� ExampleSet

Generated output:

� PerformanceVector

� AttributeWeights

Parameters:

� number of validations: Number of subsets for the crossvalidation (inte-
ger; 2-+∞; default: 10)

� leave one out: Set the number of validations to the number of examples.
If set to true, number of validations is ignored (boolean; default: false)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance (main criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Wrapper) must be able to handle [ExampleSet] and must
deliver [AttributeWeights].

� Operator 2 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 3 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: Encapsulates a cross-validation to evaluate a feature weight-
ing or selection method (wrapper).

The RapidMiner 4.2 Tutorial

536 CHAPTER 5. OPERATOR REFERENCE

Description: This operator evaluates the performance of feature weighting
and selection algorithms. The first inner operator is the algorithm to be eval-
uated itself. It must return an attribute weights vector which is applied on
the test data. This fold is used to create a new model using the second in-
ner operator and retrieve a performance vector using the third inner operator.
This performance vector serves as a performance indicator for the actual algo-
rithm. This implementation of a MethodValidationChain works similar to the
XValidation (see section 5.9.32).

5.9.32 XValidation

Group: Validation

Required input:

� ExampleSet

Generated output:

� PerformanceVector

Parameters:

� keep example set: Indicates if this input object should also be returned
as output. (boolean; default: false)

� create complete model: Indicates if a model of the complete data set
should be additionally build after estimation. (boolean; default: false)

� average performances only: Indicates if only performance vectors should
be averaged or all types of averagable result vectors (boolean; default:
true)

� leave one out: Set the number of validations to the number of examples.
If set to true, number of validations is ignored (boolean; default: false)

� number of validations: Number of subsets for the crossvalidation. (inte-
ger; 2-+∞; default: 10)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� deviation: The standard deviation of the last performance (main criterion).

July 14, 2008

5.9. PERFORMANCE VALIDATION 537

� iteration: The number of the current iteration.

� looptime: The time elapsed since the current loop started.

� performance: The last performance average (main criterion).

� performance1: The last performance average (first criterion).

� performance2: The last performance average (second criterion).

� performance3: The last performance average (third criterion).

� time: The time elapsed since this operator started.

� variance: The variance of the last performance (main criterion).

Inner operators:

� Operator 1 (Training) must be able to handle [ExampleSet] and must
deliver [Model].

� Operator 2 (Testing) must be able to handle [ExampleSet, Model] and
must deliver [PerformanceVector].

Short description: XValidation encapsulates a cross-validation in order to
estimate the performance of a learning operator.

Description: XValidation encapsulates a cross-validation process. The ex-
ample set S is split up into number of validations subsets Si. The inner op-
erators are applied number of validations times using Si as the test set (input
of the second inner operator) and S\Si training set (input of the first inner
operator).

The first inner operator must accept an ExampleSet while the second must
accept an ExampleSet and the output of the first (which is in most cases a
Model) and must produce a PerformanceVector.

Like other validation schemes the RapidMiner cross validation can use several
types of sampling for building the subsets. Linear sampling simply divides the
example set into partitions without changing the order of the examples. Shuffled
sampling build random subsets from the data. Stratifed sampling builds random
subsets and ensures that the class distribution in the subsets is the same as in
the whole example set.

The RapidMiner 4.2 Tutorial

538 CHAPTER 5. OPERATOR REFERENCE

5.10 Visualization

These operators provide visualization techniques for data and other Rapid-
Miner objects. Visualization is probably the most important tool for getting
insight in your data and the nature of underlying patterns.

5.10.1 CorrelationMatrix

Group: Visualization

Required input:

� ExampleSet

Generated output:

� ExampleSet

� SymmetricalMatrix

Parameters:

� create weights: Indicates if attribute weights based on correlation should
be calculated or if the complete matrix should be returned. (boolean;
default: false)

� normalize weights: Indicates if the attributes weights should be normal-
ized. (boolean; default: true)

� squared correlation: Indicates if the squared correlation should be calcu-
lated. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Determines the correlation between all attributes and can
produce a weight vector based on correlations.

Description: This operator calculates the correlation matrix between all at-
tributes of the input example set. Furthermore, attribute weights based on the
correlations can be returned. This allows the deselection of highly correlated
attributes with the help of an AttributeWeightSelection (see section
5.8.11) operator. If no weights should be created, this operator produces sim-
ply a correlation matrix which up to now cannot be used by other operators but
can be displayed to the user in the result tab.

July 14, 2008

5.10. VISUALIZATION 539

Please note that this simple implementation performs a data scan for each
attribute combination and might therefore take some time for non-memory ex-
ample tables.

5.10.2 CovarianceMatrix

Group: Visualization

Required input:

� ExampleSet

Generated output:

� ExampleSet

� SymmetricalMatrix

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Determines the covariance between all attributes.

Description: This operator calculates the covariances between all attributes
of the input example set and returns a covariance matrix object which can be
visualized.

5.10.3 DataStatistics

Group: Visualization

Required input:

� ExampleSet

Generated output:

� ExampleSet

� DataStatistics

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The RapidMiner 4.2 Tutorial

540 CHAPTER 5. OPERATOR REFERENCE

Short description: Calculates some simple data statistics usually displayed by
the GUI (only necessary for command line processes).

Description: This operators calculates some very simple statistics about the
given example set. These are the ranges of the attributes and the average or
mode values for numerical or nominal attributes respectively. These informations
are automatically calculated and displayed by the graphical user interface of
RapidMiner. Since they cannot be displayed with the command line version
of RapidMiner this operator can be used as a workaround in cases where the
graphical user interface cannot be used.

5.10.4 ExampleVisualizer

Group: Visualization

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Allows the visualization of examples (attribute values) in
the plot view of an example set (double click on data point).

Description: Remembers the given example set and uses the ids provided by
this set for the query for the corresponding example and the creation of a generic
example visualizer. This visualizer simply displays the attribute values of the
example. Adding this operator is often necessary to enable the visualization of
single examples in the provided plotter components.

5.10.5 ExperimentLog

Group: Visualization

Please use the operator ’ProcessLog’ instead.

Parameters:

July 14, 2008

5.10. VISUALIZATION 541

� filename: File to save the data to. (filename)

� log: List of key value pairs where the key is the column name and the value
specifies the process value to log. (list)

� persistent: Indicates if results should be written to file immediately (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Saves almost arbitrary data to a log file and create statis-
tics for online plotting of values/parameters provided by operators.

Description: This operator records almost arbitrary data. It can written to
a file which can be read e.g. by gnuplot. Alternatively, the collected data can
be plotted by the GUI. This is even possible during process runtime (i.e. online
plotting).

Parameters in the list log are interpreted as follows: The key gives the name
for the column name (e.g. for use in the plotter). The value specifies where to
retrieve the value from. This is best explained by an example:

� If the value is operator.Evaluator.value.absolute, the ProcessL-
ogOperator looks up the operator with the name Evaluator. If this
operator is a PerformanceEvaluator (see section 5.9.22), it has a
value named absolute which gives the absolute error of the last evaluation.
This value is queried by the ProcessLogOperator

� If the value is operator.SVMLearner.parameter.C, the ProcessLogOp-
erator looks up the parameter C of the operator named SVMLearner.

Each time the ProcessLogOperator is applied, all the values and parameters
specified by the list log are collected and stored in a data row. When the process
finishes, the operator writes the collected data rows to a file (if specified). In
GUI mode, 2D or 3D plots are automatically generated and displayed in the
result viewer.

Please refer to section 4.3 for an example application.

The RapidMiner 4.2 Tutorial

542 CHAPTER 5. OPERATOR REFERENCE

5.10.6 LiftChart

Group: Visualization

Required input:

� ExampleSet

� Model

Generated output:

� ExampleSet

� Model

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates a lift chart for the given binominal model and
input data set.

Description: This operator creates a Lift chart for the given example set and
model. The model will be applied on the example set and a lift chart will be
produced afterwards.

Please note that a predicted label of the given example set will be removed
during the application of this operator.

5.10.7 ModelVisualizer

Group: Visualization

Required input:

� ExampleSet

� Model

Generated output:

� ExampleSet

� Model

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 14, 2008

5.10. VISUALIZATION 543

Short description: Generates a SOM plot (transforming arbitrary number of
dimensions to two) of the given data set and colorizes the landscape with the
predictions of the given model.

Description: This class provides an operator for the visualization of arbitrary
models with help of the dimensionality reduction via a SOM of both the data
set and the given model.

5.10.8 ProcessLog

Group: Visualization

Parameters:

� filename: File to save the data to. (filename)

� log: List of key value pairs where the key is the column name and the value
specifies the process value to log. (list)

� persistent: Indicates if results should be written to file immediately (boolean;
default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Saves almost arbitrary data to a log file and create statis-
tics for online plotting of values/parameters provided by operators.

Description: This operator records almost arbitrary data. It can written to
a file which can be read e.g. by gnuplot. Alternatively, the collected data can
be plotted by the GUI. This is even possible during process runtime (i.e. online
plotting).

Parameters in the list log are interpreted as follows: The key gives the name
for the column name (e.g. for use in the plotter). The value specifies where to
retrieve the value from. This is best explained by an example:

� If the value is operator.Evaluator.value.absolute, the ProcessL-
ogOperator looks up the operator with the name Evaluator. If this

The RapidMiner 4.2 Tutorial

544 CHAPTER 5. OPERATOR REFERENCE

operator is a PerformanceEvaluator (see section 5.9.22), it has a
value named absolute which gives the absolute error of the last evaluation.
This value is queried by the ProcessLogOperator

� If the value is operator.SVMLearner.parameter.C, the ProcessLogOp-
erator looks up the parameter C of the operator named SVMLearner.

Each time the ProcessLogOperator is applied, all the values and parameters
specified by the list log are collected and stored in a data row. When the process
finishes, the operator writes the collected data rows to a file (if specified). In
GUI mode, 2D or 3D plots are automatically generated and displayed in the
result viewer.

Please refer to section 4.3 for an example application.

5.10.9 ROCChart

Group: Visualization

Required input:

� ExampleSet

� Model

Generated output:

� ExampleSet

� Model

Parameters:

� use example weights: Indicates if example weights should be used for
calculations (use 1 as weights for each example otherwise). (boolean;
default: true)

� use model: If checked a given model will be applied for generating ROC-
Chart. If not the examples set must have a predicted label. (boolean;
default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Generates a ROC chart for the given binominal model and
input data set.

July 14, 2008

5.10. VISUALIZATION 545

Description: This operator creates a ROC chart for the given example set
and model. The model will be applied on the example set and a ROC chart will
be produced afterwards. If you are interested in finding an optimal threshold,
the operator ThresholdFinder (see section 5.7.5) should be used. If you
are interested in the performance criterion Area-Under-Curve (AUC) the usual
PerformanceEvaluator (see section 5.9.22) can be used. This operator
just presents a ROC plot for a given model and data set.

Please note that a predicted label of the given example set will be removed
during the application of this operator.

5.10.10 ROCComparator

Group: Visualization

Required input:

� ExampleSet

Generated output:

� ExampleSet

� ROCComparison

Parameters:

� number of folds: The number of folds used for a cross validation evalua-
tion (-1: use simple split ratio). (integer; -1-+∞; default: 10)

� split ratio: Relative size of the training set (real; 0.0-1.0)

� sampling type: Defines the sampling type of the cross validation (linear
= consecutive subsets, shuffled = random subsets, stratified = random
subsets with class distribution kept constant)

� local random seed: Use the given random seed instead of global random
numbers (-1: use global) (integer; -1-+∞; default: -1)

� use example weights: Indicates if example weights should be regarded
(use weight 1 for each example otherwise). (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: Each inner operator must be able to handle [ExampleSet]
and must deliver [Model].

The RapidMiner 4.2 Tutorial

546 CHAPTER 5. OPERATOR REFERENCE

Short description: Generates a ROC chart for the models created by each of
the inner learners and plot all charts in the same plotter.

Description: This operator uses its inner operators (each of those must pro-
duce a model) and calculates the ROC curve for each of them. All ROC curves
together are plotted in the same plotter. The comparison is based on the aver-
age values of a k-fold cross validation. Alternatively, this operator can use an
internal split into a test and a training set from the given data set.

Please note that a former predicted label of the given example set will be re-
moved during the application of this operator.

5.10.11 TransitionMatrix

Group: Visualization

Required input:

� ExampleSet

Generated output:

� Matrix

Parameters:

� attribute: the name of a nominal attribute for which the transition matrix
should be created. (string)

� group attribute: provides a groups for examples, transitions between groups
are not considered. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates a transition matrix for nominal values.

Description: Creates a transition matrix for a given nominal attribute. An
entry v(x,y) in the matrix denotes the conditional probability that value y occurs,
after value x occurred.

July 14, 2008

Chapter 6

Extending RapidMiner

The core RapidMiner operators provide solutions for a large amount of usual
data mining applications. However, it is quite simple to write your own operators
in order to extend RapidMiner. The platform provides the data management,
the nesting of operators, and the handling of optional and mandatory parame-
ters.

This chapter describes how to implement your own RapidMiner operator in
Java. At least you should know the basic concepts of this language to understand
what we are doing here. All necessary information about the RapidMiner
classes can be found in the RapidMiner API documentation which should be
available on the RapidMiner homepage http://www.rapidminer.com/.

6.1 Project structure

In order to compile your own operators against RapidMiner, you must add the
file rapidminer.jar and eventually some other jar files in the lib directory
of RapidMiner to your CLASSPATH. If you downloaded the source version of
RapidMiner, you should add the build directory (instead of rapidminer.jar)
to the CLASSPATH.

Using the source version of RapidMiner has the advantage that you can use
the ant buildfile. ant is a make-like open source build tool for Java you can
download from http://ant.apache.org. The buildfile defines several useful
targets, among which is build which, as one may easily guess, compiles all
sources.

An Emacs JDE project file is also part of the source distribution. JDE is the Java
Development Environment for Emacs and turns Emacs into a Java IDE. It can
be downloaded from http://jdee.sunsite.dk. On Unix platforms, Emacs is
a widespread editor but it also runs on Windows. It can be downloaded from

547

http://www.rapidminer.com/
http://ant.apache.org
http://jdee.sunsite.dk

548 CHAPTER 6. EXTENDING RAPIDMINER

http://www.gnu.org/software/emacs.

There are also project files for Eclipse in the project folders. Eclipse is a powerful
open-source IDE for Java which can be downloaded at http://www.eclipse.
org. It is also very easy to integrate the latest CVS version into Eclipse which
is described in detail at our web page1.

6.2 Operator skeleton

The first step to do when implementing a new operator is to decide which class
must be extended. If your operator simply performs some action on its input
and delivers some output it should extend the class

com.rapidminer.operator.Operator.

If the operator shall be able to contain inner operators, it must inherit from

com.rapidminer.operator.OperatorChain,

which itself extends Operator. Please refer to the API documentation if there
is a more specific subclass of Operator which may serve your purpose. If your
operator shall be a learning scheme it might be useful to implement

com.rapidminer.operator.learner.Learner

or extend

com.rapidminer.operator.learner.AbstractLearner

though it does not need to. Similar interfaces and abstract operator classes
exists for other purposes too.

Now, there are some important things to specify about your operator. These
specifications will automatically be used for sanity checks, parameter value
checks, creation of GUI elements, and documentation. The following methods
must or should be overridden (if the operator does not inherit from Operator
directly, this may not be necessary):

1. One argument constructor: this constructor gets an object of the class
OperatorDescription which must be passed to the superclass by in-
voking super(description).

1http://www.rapidminer.com/

July 14, 2008

http://www.gnu.org/software/emacs
http://www.eclipse.org
http://www.eclipse.org
http://www.rapidminer.com/

6.2. OPERATOR SKELETON 549

2. Class[] getInputClasses(): Specifies the number and type of ob-
jects that are expected as input classes. Only classes that implement
com.rapidminer.operator.IOObject may be passed between opera-
tors. Typical objects passed between operators include example sets,
models, and performance vectors (see section 6.3.4).

3. Class[] getOutputClasses(): Specifies the number and type of ob-
jects that are generated by this operator as output classes.

4. List<ParameterType> getParameterTypes(): Specifies the names and
types of parameters that may be queried by this operator. Please make
sure to add the parameter types to a java.util.List retrieved by
a call to super.getParameterTypes(). The usage of subclasses of
ParameterType for this purpose is described in sections 6.3.1 and the
retrieval of parameter values is described in section 6.3.2.

5. IOObject[] apply(): This is the main method that is invoked whenever
the operator should perform its work. This method can query parameter
values, input objects, and maybe call the apply methods of inner opera-
tors (in case of an operator chain). It returns an array of IOObjects as
a result. Please note that this method might throw an exception of type
OperatorException.

If your operator extends OperatorChain is must additionally implement the
following methods:

1. int getMaxNumberOfInnerOperators() and getMinNumberOfInner-
Operators(): these methods specify the maximum and minimum num-
ber of inner operators allowed for the operator chain. Return 0 and
Integer.MAX VALUE, respectively for an unlimited number of inner oper-
ators.

2. InnerOperatorCondition getInnerOperatorCondition(): Operator
chains have to implement this method. The delivered condition is used
to perform checks if all inner operators can handle their input and deliver
the necessary output. Several implementations for InnerOperatorCondi-
tion are available, please refer to the API documentation for details.

Please have a look at the simple operator skeleton showed in figure 6.1. As
described above, the operator skeleton extends the class Operator.

The methods getInputClasses() and getInputClasses() do not declare
any input and output objects yet and so does the method getParameterTypes(),
which simply returns the parameters declared by its superclass. According to
these declarations, the apply() method does nothing, but quietly returns an

The RapidMiner 4.2 Tutorial

550 CHAPTER 6. EXTENDING RAPIDMINER

package my.new.operators;

import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription ;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.IOObject;
import com.rapidminer.parameter.ParameterType;

import java. util . List ;

public class OperatorSkeleton extends Operator {

/** Must pass the given object to the superclass . */
public OperatorSkeleton(OperatorDescription description) {

super(description);
}

/** Perform the operators action here . */
public IOObject[] apply() throws OperatorException {

// describe the core function of this operator
return new IOObject[0];

}

/** Add your parameters to the list . */
public List<ParameterType> getParameterTypes() {

List<ParameterType> types = super.getParameterTypes();
// add your parameter types here
return types ;

}

/** Return the required input classes . */
public Class [] getInputClasses () { return new Class [0]; }

/** Return the delivered output classes . */
public Class [] getOutputClasses() { return new Class [0]; }

}

Figure 6.1: Operator skeleton

July 14, 2008

6.3. USEFUL METHODS FOR OPERATOR DESIGN 551

empty array. The following sections describe, how you can fill these methods
with code.

Note: Since version 3.0 of RapidMiner each operator must have an one-
argument constructor which must at least pass the given operator description
object to the superclass constructor. Please note that during operator con-
struction the method getParameterTypes() will be invoked and must be fully
functional, i. e. not depending on uninitialized fields of the operator.

Finally, if your operator is implemented and you want to use it from Rapid-
Miner, you must declare the new operator class by adding a short entry to an
XML file. This is described in section 6.8.

6.3 Useful methods for operator design

Before we discuss an easy example for a self-written operator, the required
methods are described in detail. These methods enable you to declare a pa-
rameter, query a parameter value, adding a Value which can be plotted by the
PocessLog operator and handling the in- and output of your operator.

6.3.1 Defining parameters

As we have seen above, the method getParameterTypes() can be used to add
parameters to your operator. Each parameter is described by a ParameterType
object, i.e. an object which contains the name, a small description, and in case
of a numerical parameter the range and default value of this parameter. A new
parameter type has to extend the class

com.rapidminer.parameter.ParameterType

In RapidMiner, for each simple data type a parameter type is provided, e.g. for
boolean values the type ParameterTypeBoolean or ParameterTypeInteger
for integers. Table 6.1 shows all possible parameter types. Please refer to the
API documentation for details on constructing the different parameter types.

Since the method getParameterTypes() returns a list of ParameterTypes,
your operator should first invoke super.getParameterTypes() and add its
parameter types to the list which is returned by this method. In this way it is
ensured that the parameters of super classes can also be set by the user. Figure
6.2 shows how a new integer parameter is added.

As you can see you create a new ParameterTypeInteger and add it to the
list. The first argument of the constructor is the name of the parameter which
will be used in the XML description files or in the GUI parameter table. The

The RapidMiner 4.2 Tutorial

552 CHAPTER 6. EXTENDING RAPIDMINER

public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
types .add(new ParameterTypeInteger(”number”,

”This is important.”,
1, 10, 5));

return types ;
}

Figure 6.2: Adding a parameter

second argument is a short description. This is used as tool tip text when
the mouse pointer stays on the parameter in the GUI for some seconds. For
numerical parameter types a range can be specified. The first number defines
the minimum value of this parameter, the second the maximum value. The last
number is the default value which is used when the user do not change this
parameter in the process setup.

Not every operator needs parameters. This is the reason why the method
getParameterTypes() is not abstract in Operator. You can simply ommit the
implementation of this method if your operator does not use any parameters.
However, you should notice that the method getParameterTypes() is invoked
by the super-constructor. You should therefore not use global variables which
are not initialized yet.

6.3.2 Getting parameters

Now you can add different parameter types to your operator. For each type

ParameterTypeXXX

a method getParameterAsXXX() is provided by the superclass Operator un-
less another method is described in table 6.1. All these methods return an
appropriate Java type, e.g. double for getParameterAsDouble(). Table 6.2
shows the parameter getter methods of the class Operator in detail.

The methods getParameterAsXXX() will throw an UndefinedParameterError
if the user has not defined a value for a non-optional parameter without default
value. Since this Error extends UserError which extends OperatorException you
should just throw these error out of your apply method. A proper GUI message
will be automatically created.

The List returned by getParameterList(String) contains Object arrays of
length 2. The first object is a key (String) and the second the parameter value
object, e.g. a Double for ParameterTypeDouble.

July 14, 2008

6.3. USEFUL METHODS FOR OPERATOR DESIGN 553

Type Description

ParameterTypeBoolean A boolean parameter. The defined
value can be queried by
getParameterAsBoolean(key).

ParameterTypeCategory A category parameter which allows
defined strings. The index of the chosen
string can be queried by
getParameterAsInt(key).

ParameterTypeColor A parameter for colors. This is currently
only used for user interface settings.
The specified color can be queried by
getParameterAsColor(key).

ParameterTypeDirectory A directory. The path to the chosen
directory can be queried by
getParameterAsString(key).

ParameterTypeDouble A real valued parameter. The defined
value can be queried by
getParameterAsDouble(key).

ParameterTypeFile A file. The path to the chosen file can
be queried by
getParameterAsString(key).

ParameterTypeInt A integer parameter. The defined value
can be queried by
getParameterAsInt(key).

ParameterTypeList A list of parameters of another
parameter type. The defined list can be
queried by getParameterList(key).

ParameterTypePassword A password parameter. Passwords are
masked with * in the GUI and queried
by the system if the user has not
specified the password in the process
setup. The defined string can be
queried by
getParameterAsString(key).

ParameterTypeString A simple string parameter. The defined
value can be queried by
getParameterAsString(key).

ParameterTypeStringCategory A category parameter which allows
defined strings. Additionally the user
can specify another string. The chosen
string can be queried by
getParameterAsString(key).

Table 6.1: These parameter types can be added to your operator. Please refer
to the API documentation for details on creation.

The RapidMiner 4.2 Tutorial

554 CHAPTER 6. EXTENDING RAPIDMINER

Method Description

getParameterAsBoolean(String
key)

Returns a parameter and casts it to
boolean.

getParameterAsColor(String key) Returns a parameter and casts it to
Java Color.

getParameterAsDouble(String
key)

Returns a parameter and casts it to
double.

getParameterAsFile(String key) Returns a parameter and casts it to a
Java File.

getParameterAsInt(String key) Returns a parameter and casts it to int.

getParameterAsString(String
key)

Returns a parameter and casts it to
String.

getParameterList(String key) Returns a parameter and casts it to a
Java List.

Table 6.2: Methods for obtaining parameters from Operator

6.3.3 Providing Values for logging

As you can see, the operator skeleton contains a one-argument constructor
which must pass the given description object to the super-constructor. This is
necessary for the automatic operator creation with help of factory methods (see
section 7). These constructors can also be used to declare Values which can
be queried by an ProcessLog operator (see 5.10.8). Each value you want to
add must extend

com.rapidminer.operator.Value

and override the abstract method getValue(). Figure 6.3 shows how you can
add some values in the constructor of your operator. Note that usually non-
static inner classes are used to extend Value. These classes have access to
private fields of the operator and may, e.g. return the number of the current
run, the current performance or similar values.

Note: Please make sure that the only purpose of an operator’s constructor
should be to add values and not querying parameters or perform other actions.
Since the operator description and parameters will be initialized after opera-
tor construction these type of actions will probably not work and might cause
exceptions.

6.3.4 Input and output

As default, operators consume their input by using it. This is often a useful
behavior, especially in complex process definitions. For example, a learning

July 14, 2008

6.3. USEFUL METHODS FOR OPERATOR DESIGN 555

public MyOperator(OperatorDescription description) {
// invoke super−constructor
super(description);
// add values for process logging
addValue(new Value(”number”, ”The current number.”) {

public double getValue() {
return currentNumber;

}
});

addValue(new Value(”performance”, ”The best performance.”) {
public double getValue() {

return bestPerformance;
}

});
}

Figure 6.3: Adding Values to your Operator which can be queried by Pro-
cessLog.

operator consumes an example set to produce a model and so does a cross
validation to produce a performance value of the learning method. To receive
the input IOObject of a certain class simply use

<T extends IOObject> T getInput(Class<T> class)

This method delivers the first object of the desired class which is in the input of
this operator. By using generics it is already ensured that the delivered object
has the correct type and no cast is necessary. The delivered object is consumed
afterwards and thus is removed from input. If the operator alters this object, it
should return the altered object as output again. Therefore, you have to add
the object to the output array which is delivered by the apply() method of
the operator. You also have to declare it in getOutputClasses(). All input
objects which are not used by your operator will be automatically passed to the
next operators.

Note: In versions before 3.4 it was necessary to cast the delivered object to the
correct type. This cast is no longer necessary.

In some cases it would be useful if the user can define if the input object
should be consumed or not. For example, a validation chain like cross vali-
dation should estimate the performance but should also be able to return the
example set which is then used to learn the overall model. Operators can
change the default behavior for input consumation and a parameter will be au-
tomatically defined and queried. The default behavior is defined in the method
getInputDescription(Class cls) of operator and should be overriden in
these cases. Please note that input objects with a changed input description
must not be defined in getOutputClasses() and must not be returned at the

The RapidMiner 4.2 Tutorial

556 CHAPTER 6. EXTENDING RAPIDMINER

end of apply. Both is automatically done with respect to the value of the auto-
matically created parameter. Figure 6.4 shows how this could be done. Please
refer to the Javadoc comments of this method for further explanations.

import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator. InputDescription ;

...

/** Change the default behavior for input handling . */
public InputDescription getInputDescription (Class cls) {

// returns a changed input description for example sets
if (ExampleSet.class. isAssignableFrom(cls)) {

// consume default: false , create parameter: true
return new InputDescription(cls , false , true);

} else {
// other input types should be handled by super class
return super. getInputDescription (cls);

}
}

...

Figure 6.4: Changing the input handling behavior of your operator. In this
case, example sets should be consumed per default but a parameter named
keep example set will be automatically defined.

6.3.5 Generic Operators

Sometimes a generic operator class should be implemented which should provide
more than one operator. In this case several operators can be declared to
RapidMiner (see section 6.8) with the same class but different names. The
subtype or name of an operator can be requested by getOperatorClassName()
which is a method of operator. Although this is very similar to define the
operator type with help of a parameter, subtypes can be used in more subtile
way: they can already be used to define the parameters and therefore each
subtype of an operator class may have other parameters. This feature is used
to provide a normal RapidMiner operator with different parameter types for
each Weka operator with the help of only one (short) class. Please check the
source code of the Weka learners for an example of a generic operator.

6.4 Example: Implementation of a simple operator

After these technical preliminary remarks we set an example which performs a
very elementary task: It should write all examples of an ExampleSet into a file.

July 14, 2008

6.4. EXAMPLE: IMPLEMENTATION OF A SIMPLE OPERATOR 557

First we consider that all we need as input for this operator is an example set.
Since we will not manipulate it, we deliver the same example set as output.
Therefore the methods getInputClasses() and getOutputClasses() will
only contain one class: com.rapidminer.example.ExampleSet. If Example-
Set is not contained in the output of the former operator, your operator can
not work and RapidMiner will terminate at the beginning of the process.

Your operator uses one parameter: A file where it should store the examples.
Therefore a ParameterTypeFile is added to the parameter list. The third
argument in the constructor indicates that this parameter is mandatory. Let
us presume that your own operators are in the package my.new.operators.
Please have a look at the operator in figure 6.5, then we will explain the apply()
function in detail.

The first line in apply() fetches the name of the file to write the example set
to. This method returns the value of the parameter “example set file”, if it
is declared in the operator section of the process configuration file. Since this
parameter is mandatory the process ends immediately with an error message if
this parameter is not given.

We need the input example set to iterate through the examples and write them
to a file. We simply use the getInput(ExampleSet.class) method in order
to get the desired input object (the example set).

Note: Please note that a cast to ExampleSet is not necessary. For Rapid-
Miner versions before 3.4 a cast to the actual type has to be performed.

Then a stream to the specified file is opened and an iterator over the examples
is created. With this Iterator<Example> you can pass through the examples
of an example set like the way you do with a List iterator. For each example
the values are written into the file and afterwards the stream to the file is closed.
Each operator can throw an OperatorException to the calling operator, which
would be done if any exception occurred during writing the file. In this case the
thrown exception is an UserError which is used because writing presumably
fails because the file is not writable. We will discuss the error handling in section
6.4.2.

Note: In versions before 3.4 the iterator was called ExampleReader. Chang-
ing to the generic Iterator<Example> also allows for the nice new for-loop
introduced in Java 5.0: for (Example e : exampleSet)

The last thing to do is creating a new array of IOObjects which contains only
the used ExampleSet since no additional output was produced. The next section
describes the iterating through an example set in detail, then the exception
concept will be explained.

The RapidMiner 4.2 Tutorial

558 CHAPTER 6. EXTENDING RAPIDMINER

package my.new.operators;

import com.rapidminer.example.*;
import com.rapidminer.operator .*;
import com.rapidminer.parameter.*;
import java. io .*;
import java. util . List ;

public class ExampleSetWriter extends Operator {

public ExampleSetWriter(OperatorDescription description) {
super(description);

}

public IOObject[] apply() throws OperatorException {
File file = getParameterAsFile(” example set file ”);
ExampleSet eSet = getInput(ExampleSet.class);
try {

PrintWriter out = new PrintWriter(new FileWriter(file));
for (Example example : eSet) {

out. println (example);
}
out. close ();

} catch (IOException e) {
throw new UserError(this, 303, file , e.getMessage());

}
return new IOObject[] { eSet };

}

public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
types .add(new ParameterTypeFile(”example set file”,

”The file for the examples.”,
”txt”, // default file extension
false)); // non−optional

return types ;
}

public Class [] getInputClasses () {
return new Class[] { ExampleSet.class };

}

public Class [] getOutputClasses() {
return new Class[] { ExampleSet.class };

}
}

Figure 6.5: Implementation of an example set writer

July 14, 2008

6.4. EXAMPLE: IMPLEMENTATION OF A SIMPLE OPERATOR 559

6.4.1 Iterating over an ExampleSet

RapidMiner is about data mining and one of the most frequent applications
of data mining operators is to iterate over a set of examples. This can be done
for preprocessing purposes, for learning, for applying a model to predict labels
of examples, and for many other tasks. We have seen the mechanism in our
example above and we will describe it below.

The way you iterate over an example set is very similar to the concept of
iterators, e.g. in terms of Lists. The methods which are provided have the
same signature as the methods of a Java Iterator. The first thing you have
to do is to create such an iterator. The following code snippet will show you
how:

Iterator <Example> reader = exampleSet.iterator();
while (reader .hasNext()) {

Example example = reader.next();
// ... do something with the example ...

}

Figure 6.6: Creating and using an example iterator

Assume exampleSet is a set of examples which we get from the input of the
operator. First of all, an iterator is created and then we traverse through the
examples in a loop. These iterators are backed up by different implementations
of the interface ExampleReader. The classes ExampleSet, ExampleReader, and
Example are provided within the package com.rapidminer.example. Please
check the RapidMiner API documentation to see what else can be done with
example sets and examples.

6.4.2 Log messages and throw Exceptions

If you write your operator, you should make some logging messages so that
users can understand what your operator is currently doing. It is especially
reasonable to log error messages as soon as possible. RapidMiner provides
some methods to log the messages of an operator. We distinguish between log
messages and results. Of course you can write your results into the normal log
file specified in the process configuration file. But the intended way to announce
results of the process is to use a ResultWriter (see section 5.3.38) which
writes each currently available result residing in his input. For this purpose two
classes exist, a class LogService and a class ResultService. The latter can
be used by invoking the static method

logResult(String result)

The RapidMiner 4.2 Tutorial

560 CHAPTER 6. EXTENDING RAPIDMINER

or by simply using a ResultWriter as described above.

The class com.rapidminer.tools.LogService provides the static method

logMessage(String message, int verbosityLevel)

to log text messages. Possible verbosity levels are MINIMUM, IO, STATUS, INIT,
WARNING, EXCEPTION, ERROR, FATAL, and MAXIMUM which are all public constant
static fields of LogService. The verbosity levels IO and INIT should not
be used by operator developers. Normal log messages should be logged with
verbosity level STATUS.

6.4.3 Operator exceptions and user errors

The best way to abort the process because of an error is throwing an OperatorException.
If the error occurred due to an unforseen situation, an instance of OperatorException
should be thrown. To ease bug tracking, it is useful to pass RuntimeExceptions
to the OperatorException constructor as the cause parameter. If the error was
caused by wrong usage of the operator, e.g. missing files, or wrong parameter
values, an instance of UserError should be thrown. An error code referenc-
ing an error message in the file resources/UserErrorMessages.properties
must be passed to the constructor of a UserError. These messages are for-
matted using an instance of MessageFormat. Index numbers in curly braces
are replaced by the arguments passed to the UserError constructor. Please
refer to the API documentation for construction details.

6.5 Building operator chains

Now you can extend RapidMiner by writing operators which perform tasks
on a given input and deliver the input or additional output to a surrounding
operator. We have discussed the specifications to create the operator in such a
way that it can be nested into other operators. But what we have not seen is the
possibility to write your own operator chain, i.e. operators which contain inner
operators to which input will be given and whose output is used by your operator.
What transmutes a simple operator to an operator chain is the possibility to
contain other inner operators.

The way you create an operator chain is straightforward: First your operator
does not directly extend Operator any longer, but OperatorChain instead.
Since OperatorChain extends Operator itself you still have to implement the
methods discussed above.

The second thing you have to do is to declare how many inner operators your

July 14, 2008

6.5. BUILDING OPERATOR CHAINS 561

operator can cope with. Therefore every operator chain has to overwrite two
abstract methods from OperatorChain:

int getMinNumberOfInnerOperators()

and

int getMaxNumberOfInnerOperators()

which returns the minimum and maximum number of inner operators. If these
numbers are equal, your operator chain must include exactly this number of
inner operators or RapidMiner will terminate at the beginning of an process.

There is another method which you have to implement:

InnerOperatorCondition getInnerOperatorCondition()

This method delivers a condition about the inner operators. This condition
should ensure that the current process setup is appropriate and all inner opera-
tors can be executed. Several implementations of InnerOperatorCondition
are available, please check the API for further details. We will explain both
methods in detail when we discuss the example in section 6.6.

6.5.1 Using inner operators

You can simply use inner operators via the method

getOperator(int index)

which delivers the inner operator with the given index. You can invoke the
apply() method of this operator yourself. The apply() method of the super-
class automatically performs the actions of the inner operators. RapidMiner
takes care of the sequential execution.

6.5.2 Additional input

But what if you want to add additional IOObjects to the input of an inner
operator? A cross-validation operator for example, divides an example set into
subsets and adds certain subsets to the input of a learning operator and others to
the input of an operator chain which includes a model applier and a performance
evaluator. In this case your operator has to consume the original IOObject and
add others to the input of the inner operators.

The RapidMiner 4.2 Tutorial

562 CHAPTER 6. EXTENDING RAPIDMINER

In section 6.3.4 we have seen how an operator can get the input. This is
consumed per default. If your operator should add a certain IOObject to the
input of an inner operator it simply has to call the apply() method of the inner
operator in a way like

apply(getInput().append(new IOObject[] { additionalIO }))

or

apply(new InputContainer(new IOObject[] { additionalIO })).

The method getInput() delivers the RapidMiner container which provides
the input and output objects of the operators2. You can add an array of addi-
tional IOObjects using the append() method. The latter variant ignores the
input for the current operator chain and produces a new input container for the
child operators.

You should also use this method if you want to use the same IOObject as input
for an inner operator several times, e.g. in a loop, or if you want to add more
than one IOObject to the input of an inner operator.

6.5.3 Using output

Inner operators can produce output which your surrounding operator must han-
dle. The call of the apply(IOContainer) method of an inner operator delivers
a container like the one described above. You can get the IOObjects out of
this container with some getter-methods provided by this class. Figure 6.7
shows the methods to append additional input for the inner operator and get-
ting specified output from the result of the apply() method. The example set
is split before into training and test set.

Mostly you do not need to do anything about adding additional input or getting
the output and RapidMiner will manage the in- and output for your operator.
Pay attention to the fact that you do not need to care about the learned model:
RapidMiner copes with the learned model for your model applier.

6.6 Example 2: Implementation of an operator chain

The following example does not make much sense for data mining purposes,
but it demonstrates the implementation of an operator chain. Figure 6.8 shows
the complete code.

2com.rapidminer.operator.IOContainer

July 14, 2008

6.7. OVERVIEW: THE DATA CORE CLASSES 563

[...]
// use first inner operator for learning on training set
Learner learner = (Learner)getOperator(0);
IOContainer container =

learner .apply(getInput (). append(new IOObject[] {trainingSet}));

// apply model on test set
ModelApplier applier = (ModelApplier)getOperator(1);
container =

applier .apply(container .append(new IOObject[] {testSet}));

// retrieve the example set with predictions
ExampleSet withPredictions =

container .get(ExampleSet.class);
[...]

Figure 6.7: In- and output of an inner operator

All methods inherited of Operator are implemented as described above. Since
this operator chain uses no parameters, the method getParameterTypes()
is not overwritten. This operator chain must have at least one inner oper-
ator, the maximum number of inner operators is the biggest integer which
Java can handle. The method which returns the estimated number of steps of
this operator chain makes use of a method of the superclass OperatorChain:
getNumberOfChildrenSteps() returns the sum of all children’s steps.

The purpose of this operator chain is described in the apply() method. This
operator expects an example set as input and clones it before it uses the clone
as input for each of the inner operators. The inner operators must produce a
performance vector. These vectors are averaged and then returned.

The desired in- and output behaviours of inner operators must be described with
a condition object returned by the method getInnerOperatorCondition().
In this example each inner operator should be able to handle an example set
and deliver a performance vector.

6.7 Overview: the data core classes

It will be sufficient for many data mining purposes to iterate through the exam-
ple set. However, in some cases one must perform some more complex changes
of data or meta data. RapidMiner tries to hide the internal data transfor-
mations for typical data mining purposes. It uses a view mechanism to make a
trade-off between efficient data mining data transformations and the usage of
memory. In this section we discuss some basic concepts of the data handling in
RapidMiner to support users who want to write more complex operators.

The RapidMiner 4.2 Tutorial

564 CHAPTER 6. EXTENDING RAPIDMINER

package my.new.operators;

import com.rapidminer.operator .*;
import com.rapidminer.operator.performance.*;
import com.rapidminer.example.*;

public class MyOperatorChain extends OperatorChain {

public MyOperatorChain(OperatorDescription description) {
super(description);

}

public IOObject[] apply() throws OperatorException {
ExampleSet exampleSet = getInput(ExampleSet.class);
ExampleSet clone = null;
PerformanceVector result = new PerformanceVector();
for (int i = 0; i < getNumberOfOperators(); i++) {

clone = (ExampleSet)exampleSet.clone();
IOContainer input = getInput().append(new IOObject[] { clone });
IOContainer applyResult = getOperator(i). apply(input);
PerformanceVector vector =

applyResult . getInput(PerformanceVector.class);
result . buildAverages(vector);

}
return new IOObject[] { result };

}

public Class [] getInputClasses () {
return new Class[] { ExampleSet.class };

}

public Class [] getOutputClasses() {
return new Class[] { PerformanceVector.class };

}

public InnerOperatorCondition getInnerOperatorCondition() {
return new AllInnerOperatorCondition(new Class[] { ExampleSet.class},

new Class[] { PerformanceVector.class});
}

public int getMinNumberOfInnerOperators() { return 1; }
public int getMaxNumberOfInnerOperators() { return Integer.MAX VALUE; }
public int getNumberOfSteps() { return super.getNumberOfChildrensSteps(); }

}

Figure 6.8: Example implementation of an operator chain.

July 14, 2008

6.7. OVERVIEW: THE DATA CORE CLASSES 565

Example Table

att1

0

att2

1

att3

2

label

3

gensym

4

0.7	 1.8	 1.0	 pos	 1.5
.	
.	
.	
.	
.	
.	

.	

attributes

data

Names

Index

data row

Attribute

meta information,

getAverage(),

getVariance(),

...

Example Set

set of attributes,

partition,

iterator(),

getAttribute(int),

getNumberOfAtts(),

...

Example
getValue(Attribute)

setValue(Attribute,v),

...

view on

data row

view on table

view on

column

header

Example Reader

like iterator

Partition

set of rows

Figure 6.9: The main classes used for data handling in RapidMiner. The
central class is ExampleTable which keeps all data loaded and generated during
processes. However, it is almost never directly used by operators.

Figure 6.9 shows the main classes and interfaces which are used for data handling
in RapidMiner. The class ExampleTable keeps all data which is loaded or
generated during processes and stores it in one table. The columns are defined
by Attributes, which are used for two purposes: managing meta data about
table columns and referring to columns when one asks for the data in one cell.
One might say, that Attribute is a view on the header of a column in the data
table. Each row of the table is given by a DataRow. Although the table is the
central class for data management, RapidMiner developers almost never use
it directly. The other classes shown in Figure 6.9 are used to encapsulate the
functionality and provide more convenient and secure ways to alter your data.

Since RapidMiner is a data mining environment we often work on data. This
data is, as you know, given as ExampleSets. Example sets consist of a set of
attributes and a partition. It is important to understand, that example sets not
keeps the data itself. That means that you can copy an example set without
copying the data. An example set is merely a view on the example table3.

An important method of example sets is the creation of an example reader to
iterate over the data. Depending whether the example set is splitted with a
partition, a particular instance of an example reader is returned by the method
iterator(). If only a partition of examples is used, the returned example reader

3This is the reason why the index of an attribute in the example set is not in general equal
to the index in the example table. To ask for the value of an attribute the Attribute object
should always be used instead of the index.

The RapidMiner 4.2 Tutorial

566 CHAPTER 6. EXTENDING RAPIDMINER

skips the deselected examples. Applying weights for attributes also requires
a particular example reader, which construct examples based on the weights.
RapidMiner provides interfaces and an adaptor concept for example sets to
ensure the nestability of the operators and the used example sets and readers.

The last important class in the data management of RapidMiner is Example
which is a view on a data row. Examples are constructed on the fly by the
current example reader of the used example set. The current data row from
the example table is used to back up the example and weights are applied if
a weighting or selection should be applied. Since the indices of attributes in
example sets and tables must not be equal, the query for an attribute’s value
of an example should always be performed with help of the attribute and not of
it’s index.

Several subclasses exist for example set, example table, and example reader.
These subclasses provide different forms of data management (main memory,
database,. . .) and views on your data. This concept ensures data transparency
for all operators and the nesting of operators. In addition, new classes can be
easily written to extend RapidMiner for special purposes.

6.8 Declaring your operators to RapidMiner

At this point you know all the tricks to write your own operators and the tool
kit which is provided by RapidMiner for this purpose. The last thing you
have to do is to declare your operator to RapidMiner. Every operator must
comply with the following terms:

name A meaningful name to specify the operator in a process configuration file
is required. The name must be unique.

class The fully classified classname of your operator (must be in your java
CLASSPATH variable).

description A short description of your operator and its task.

deprecation A short description why your operator is deprecated and a short
description of a workaround.

group A name of a group. This may be your own group or one of the predefined
RapidMiner group names.

icon This is also optional but can be used to ease identification of the operator.

The definition of deprecation and icon are optional. If deprecation is omitted,
the operator is simply not regarded as deprecated - which is pretty much the

July 14, 2008

6.8. DECLARING YOUR OPERATORS TO RAPIDMINER 567

default. If icon is missing, the default icon for the operator group is used. To link
these description parts to one another you have to specify them in a operator
description file. Every entry holds for one operator and they are written like the
ones in figure 6.10. We assume that you save these descriptions in a file named
’operators.xml’.

<operators>

<!−− Your own operator factory −−>
<factory class = ”my.new.operators.OperatorFactory” />

<!−− Your own Operators −−>
<operator

name = ”MyExampleSetWriter”
class = ”my.new.operators.ExampleSetWriter”
description = ”Writes example set into file .”
group = ”MyOps”/>

<operator
name = ”MyPreprocessing”
class = ”my.new.operators.GenericPreprocessing”
description = ”Best preprocessing for my purpose.”
deprecation = ”Please use the default preprocessing instead .”
group = ”MyOps”/>

</operators>

Figure 6.10: Declaring operators to RapidMiner

Additionally to simple operator entries you can specify one or more operator
factory classes which must implement the interface

com.rapidminer.tools.GenericOperatorFactory.

This is especially useful if you want to provide more than one operator for each
class by working with operator subtypes. This is the preferred way to add generic
operators with one class but more than subtype or operator name.

In order to use your operators with RapidMiner you have to add them to your
CLASSPATH variable. Then you can start RapidMiner with the option

-Drapidminer.operators.additional=path/to/your/operators.xml

Please edit your start scripts and add the parameter to the line which starts
RapidMiner or start RapidMiner manually with a call like

java
-cp $RAPIDMINER HOME/lib/rapidminer.jar:your/class/path

The RapidMiner 4.2 Tutorial

568 CHAPTER 6. EXTENDING RAPIDMINER

-Drapidminer.home=$RAPIDMINER HOME
-Drapidminer.operators.additional=path/to/your/operators.xml
com.rapidminer.gui.RapidMinerGUI

Your new operators should be available now and can be chosen in the GUI. More
than one additional operator description file can be specified by making use of
the system dependent path separator, for unix systems for example with

-Drapidminer.operators.additional=my operators.xml:other ops.xml

6.9 Packaging plugins

If you want to make your operators available for download, you can easily create
plugins.

1. Compile your Java sources.

2. Create a file named operators.xml as described above

3. Create a jar archive using the jar command that comes with the JDK. The
archive must contain your operator class files and all classes they depend
on. The file operators.xml must go into the META-INF directory of the
archive.

4. If desired, create a file named ABOUT.NFO and add it to the META-INF
directory of the jar file.

5. If you use a Manifest file, the entries Implementation-Title, Implementation-
Version, Implementation-Vendor, Implementation-URL, RapidMiner-Version,
and Plugin-Dependencies will be evaluated by RapidMiner. Rapid-
Miner-Version defines the minimum RapidMiner version which is needed
for this plugin. Plugin-Dependencies must have the form
plugin name1 [plugin version1] # . . .# plugin nameM [plugin versionM]

6. You can include GUI icons for your operators within the jar file. If you
set the icon attribute of the <operator> tag in the operators.xml
file to “foo”, RapidMiner will look for a file named op foo.gif in
the directory com/rapidminer/resources/icons/groups/24 or in the
directory com/rapidminer/resources/icons/operators/24 of the jar
file.

7. Copy the archive into lib/plugins directory. If you like, also put it on
your website or send it to us. Since RapidMiner is licensed under the
GNU General Public License you have to develop your plugins as open-
source software and you have to make it available for the RapidMiner

July 14, 2008

6.10. DOCUMENTATION 569

community. If this is not possible for any reasons, e.g. because the de-
velopment of the plugin was done for commercial purposes, you should
contact us for a special commercial version of RapidMiner.

Hint: If your plugin depends on external libraries, you do not have to package
these into one archive. You can reference the libraries using a Class-Path entry
in your jar Manifest file. For information on installation of plugins, please refer
to section 2.5.

6.10 Documentation

The operator reference chapter of the LATEX RapidMiner tutorial is generated
using the Javadoc class comments of the operator source code. Therefore some
additional Javadoc tags can be used.

@rapidminer.xmlclass The classname given in the operators.xml if different
from the classname.

@rapidminer.index For LATEXoutput generate an index entry for the tutorial
referring to the description of this operator.

@rapidminer.reference A BibTeX key that will be used to generate a HTML
bibliography entry. Ignored for LATEX output.

@rapidminer.cite Inline tag. For LATEX output generate a citation. For HTML
output, simply print the key.

@rapidminer.ref Inline tag. For LATEX output generate a reference to a tutorial
section, for HTML simply print the reference name.

@rapidminer.xmlinput The text of this tag must consist of three strings sep-
arated by a pipe symbol (”|”). The first string must be a filename, the
second must be a label, and the third must be a caption for a figure. The
file specified will be input both in HTML and LATEX documentation.

Please refer to the API documentation of the class

com.rapidminer.docs.DocumentationGenerator

to learn how the documentation for your operators can automatically created
from your Java source code and Javadoc comments.

The RapidMiner 4.2 Tutorial

570 CHAPTER 6. EXTENDING RAPIDMINER

6.11 Non-Operator classes

Some operators, like PerformanceEvaluator and the ExampleFilter,
have parameters that let you specify implementations of certain interfaces that
will solve simple subtasks, e.g. determining which of two performance vectors
is preferable, or which examples to remove from an example set. Those classes
must be specified with the fully qualified classname. If you want to implement
such an interface, you simply have to add the implementation to your class-
path and declare it to the operator. Of course it is also possible to add these
implementations to your plugin.

6.12 Line Breaks

In order to ensure platform compatibility you should never use \n in your code.
Line breaks should always be created with help of the methods

com.rapidminer.tools.Tools.getLineSeparator()

for a single line break and

com.rapidminer.tools.Tools.getLineSeparators(int)

for multiple line breaks.

6.13 GUI Programming

If you want to create visualizations of models or other output types of your
operators you might be interested to stick to the RapidMiner look and feel
guidelines. There are several things which should be considered for GUI pro-
gramming:

� Use ExtendedJTable instead of JTable

� Use ExtendedJScrollBar instead of JScrollBar

� Use only the colors defined as constants in SwingTools

July 14, 2008

Chapter 7

Integrating RapidMiner into
your application

RapidMiner can easily be invoked from other Java applications. You can both
read process configurations from xml Files or Readers, or you can construct
Processes by starting with an empty process and adding Operators to the
created Process in a tree-like manner. Of course you can also create single
operators and apply them to some input objects, e.g. learning a model or
performing a single preprocessing step. However, the creation of processes
allows RapidMiner to handle the data management and process traversal. If
the operators are created without beeing part of an process, the developer must
ensure the correct usage of the single operators himself.

7.1 Initializing RapidMiner

Before RapidMiner can be used (especially before any operator can be cre-
ated), RapidMiner has to be properly initialized. The method

RapidMiner.init()

must be invoked before the OperatorService can be used to create operators.
Several other initialization methods for RapidMiner exist, please make sure
that you invoke at least one of these. If you want to configure the initialization
of RapidMiner you might want to use the method

RapidMiner.init(InputStream operatorsXMLStream,
File pluginDir,
boolean addWekaOperators,
boolean searchJDBCInLibDir,

571

572
CHAPTER 7. INTEGRATING RAPIDMINER INTO YOUR

APPLICATION

boolean searchJDBCInClasspath,
boolean addPlugins)

Setting some of the properties to false (e.g. the loading of database drivers
or of the Weka operators might drastically improve the needed runtime during
start-up. If you even want to use only a subset of all available operators you
can provide a stream to a reduced operator description (operators.xml). If
the parameter operatorsXMLStream is null, just all core operators are used.
Please refer to the API documentation for more details on the initialization of
RapidMiner.

You can also use the simple method RapidMiner.init() and configure the
settings via this list of environment variables:

� rapidminer.init.operators (file name)

� rapidminer.init.plugins.location (directory name)

� rapidminer.init.weka (boolean)

� rapidminer.init.jdbc.lib (boolean)

� rapidminer.init.jdbc.classpath (boolean)

� rapidminer.init.plugins (boolean)

7.2 Creating Operators

It is important that operators are created using one of the createOperator(...)
methods of

com.rapidminer.tools.OperatorService

Table 7.1 shows the different factory methods for operators which are provided
by OperatorService. Please note that few operators have to be added to a
process in order to properly work. Please refer to section 7.4 for more details
on using single operators and adding them to a process.

7.3 Creating a complete process

Figure 7.1 shows a detailed example for the RapidMiner API to create oper-
ators and setting its parameters.

July 14, 2008

7.3. CREATING A COMPLETE PROCESS 573

import com.rapidminer.tools .OperatorService ;
import com.rapidminer.RapidMiner;
import com.rapidminer.Process;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorException;
import java. io .IOException;

public class ProcessCreator {

public static Process createProcess () {
try {
// invoke init before using the OperatorService

RapidMiner. init ();
} catch (IOException e) { e. printStackTrace (); }

// create process
Process process = new Process();
try {

// create operator
Operator inputOperator =

OperatorService .createOperator(ExampleSetGenerator.class);

// set parameters
inputOperator.setParameter(” target function ”, ”sum classification ”);

// add operator to process
process .getRootOperator().addOperator(inputOperator);

// add other operators and set parameters
// [...]

} catch (Exception e) { e. printStackTrace (); }
return process ;

}

public static void main(String [] argv) {
// create process
Process process = createProcess ();
// print process setup
System.out. println (process .getRootOperator().createProcessTree (0));

try {
// perform process
process .run ();
// to run the process with input created by your application use

// process .run(new IOContainer(new IOObject[] { ... your objects ... });
} catch (OperatorException e) { e. printStackTrace (); }

}
}

Figure 7.1: Creation of new operators and setting up an process from your
application

The RapidMiner 4.2 Tutorial

574
CHAPTER 7. INTEGRATING RAPIDMINER INTO YOUR

APPLICATION

Method Description

createOperator(String name) Use this method for the creation of an
operator from its name. The name is
the name which is defined in the
operators.xml file and displayed in
the GUI.

createOperator(Operator-
Description
description)

Use this method for the creation of an
operator whose OperatorDescription is
already known. Please refer to the
RapidMiner API.

createOperator(Class clazz) Use this method for the creation of an
operator whose Class is known. This is
the recommended method for the
creation of operators since it can be
ensured during compile time that
everything is correct. However, some
operators exist which do not depend on
a particular class (e.g. the learners
derivced from the Weka library) and in
these cases one of the other methods
must be used.

Table 7.1: These methods should be used to create operators. In this way it is
ensured that the operators can be added to processes and properly used.

We can simply create a new process setup via new Process() and add opera-
tors to the created process. The root of the process’ operator tree is queried by
process.getRootOperator(). Operators are added like children to a parent
tree. For each operator you have to

1. create the operator with help of the OperatorService,

2. set the necessary parameters,

3. add the operator at the correct position of the operator tree of the process.

After the process was created you can start the process via

process.run().

If you want to provide some initial input you can also use the method

process.run(IOContainer).

If you want to use a log file you should set the parameter logfile of the process
root operator like this

July 14, 2008

7.3. CREATING A COMPLETE PROCESS 575

process.getRootOperator().setParameter(
ProcessRootOperator.PARAMETER LOGFILE, filename)

before the run method is invoked. If you want also to keep the global logging
messages in a file, i.e. those logging messages which are not associated to a
single process, you should also invoke the method

LogService.initGlobalLogging(OutputStream out, int
logVerbosity)

before the run method is invoked.

If you have already defined a process configuration file, for example with help
of the graphical user interface, another very simple way of creating a process
setup exists. Figure 7.2 shows how a process can be read from a process con-
figuration file. Just creating a process from a file (or stream) is a very simple
way to perform processes which were created with the graphical user interface
beforehand.

public static IOContainer createInput () {
// create a wrapper that implements the ExampleSet interface and
// encapsulates your data
// ...
return new IOContainer(IOObject[] { myExampleSet });

}

public static void main(String [] argv) throws Exception {
// MUST BE INVOKED BEFORE ANYTHING ELSE !!!
RapidMiner. init ();

// create the process from the command line argument file
Process process = new Process(new File(argv[0]));

// create some input from your application , e.g. an example set
IOContainer input = createInput ();

// run the process on the input
process .run(input);

}

Figure 7.2: Using complete RapidMiner processes from external programs

As it was said before, please ensure that RapidMiner was properly initialized
by one of the init methods presented above.

The RapidMiner 4.2 Tutorial

576
CHAPTER 7. INTEGRATING RAPIDMINER INTO YOUR

APPLICATION

7.4 Using single operators

The creation of a Process object is the intended way of performing a complete
data mining process within your application. For small processes like a single
learning or preprocessing step, the creation of a complete process object might
include a lot of overhead. In these cases you can easily manage the data flow
yourself and create and use single operators.

The data flow is managed via the class IOContainer (see section 6.5.2). Just
create the operators you want to use, set necessary parameters and invoke the
method apply(IOContainer). The result is again an IOContainer which can
deliver the desired output object. Figure 7.3 shows a small programm which
loads some training data, learns a model, and applies it to an unseen data set.

Please note that using an operator without an surrounding process is only sup-
ported for operators not directly depending on others in an process configura-
tion. This is true for almost all operators available in RapidMiner. There
are, however, some exceptions: some of the meta optimization operators (e.g.
the parameter optimization operators) and the ProcessLog operator only work if
they are part of the same process of which the operators should be optimized or
logged respectively. The same applies for the MacroDefinition operator which
also can only be properly used if it is embedded in a Process. Hence, those
operators cannot be used without a Process and an error will occur.

Please note also that the method

RapidMiner.init()

or any other init() taking some parameters must be invoked before the
OperatorService can be used to create operators (see above).

7.5 RapidMiner as a library

If RapidMiner is separately installed and your program uses the RapidMiner
classes you can just adapt the examples given above. However, you might also
want to integrate RapidMiner into your application so that users do not
have to download and install RapidMiner themself. In that case you have to
consider that

1. RapidMiner needs a rapidminerrc file in rapidminer.home/etc di-
rectory

2. RapidMiner might search for some library files located in the directory
rapidminer.home/lib.

July 14, 2008

7.5. RAPIDMINER AS A LIBRARY 577

public static void main(String [] args) {
try {

RapidMiner. init ();

// learn
Operator exampleSource =

OperatorService .createOperator(ExampleSource.class);
exampleSource.setParameter(” attributes ”,

”/path/to/your/training data .xml”);
IOContainer container = exampleSource.apply(new IOContainer());
ExampleSet exampleSet = container.get(ExampleSet.class);

// here the string based creation must be used since the J48 operator
// do not have an own class (derived from the Weka library).

Learner learner = (Learner)OperatorService .createOperator(”J48”);
Model model = learner. learn (exampleSet);

// loading the test set (plus adding the model to result container)
Operator testSource =

OperatorService .createOperator(ExampleSource.class);
testSource .setParameter(” attributes ”, ”/path/to/your/test data.xml”);
container = testSource.apply(new IOContainer());
container = container.append(model);

// applying the model
Operator modelApp =

OperatorService .createOperator(ModelApplier.class);
container = modelApp.apply(container);

// print results
ExampleSet resultSet = container.get(ExampleSet.class);
Attribute predictedLabel = resultSet . getPredictedLabel ();
ExampleReader reader = resultSet.getExampleReader();
while (reader .hasNext()) {

System.out. println (reader .next (). getValueAsString(predictedLabel));
}

} catch (IOException e) {
System.err . println (”Cannot initialize RapidMiner:” + e.getMessage());

} catch (OperatorCreationException e) {
System.err . println (”Cannot create operator:” + e.getMessage());

} catch (OperatorException e) {
System.err . println (”Cannot create model: ” + e.getMessage());

}
}

Figure 7.3: Using single RapidMiner operators from external programs

The RapidMiner 4.2 Tutorial

578
CHAPTER 7. INTEGRATING RAPIDMINER INTO YOUR

APPLICATION

For the Weka jar file, you can define a system property named rapidminer.weka.jar
which defines where the Weka jar file is located. This is especially useful if your
application already contains Weka. However, you can also just omit all of the
library jar files, if you do not need their functionality in your application. Rapid-
Miner will then just work without this additional functionality, for example, it
simply does not provide the Weka learners if the weka.jar library was omitted.

7.6 Transform data for RapidMiner

Often it is the case that you already have some data in your application on
which some operators should be applied. In this case, it would be very annoying
to write your data into a file, load it into RapidMiner with an ExampleSource
operator and apply other operators to the resulting ExampleSet. It would there-
fore be a nice feature if it would be possible to directly use your own application
data as input. This section describes the basic ideas for this approach.

As we have seen in Section 6.7, all data is stored in a central data table (called
ExampleTable) and one or more views on this table (called ExampleSets) can
be created and will be used by operators. Figure 7.4 shows how this central
ExampleTable can be created.

First of all, a list containing all attributes must be created. Each Attribute
represents a column in the final example table. We assume that the method
getMyNumOfAttributes() returns the number of regular attributes. We also
assume that all regular attribute have numerical type. We create all attributes
with help of the class AttributeFactory and add them to the attribute list.

For example tables, it does not matter if a specific column (attribute) is a special
attribute like a classification label or just a regular attribute which is used for
learning. We therefore just create a nominal classification label and add it to
the attribute list, too.

After all attributes were added, the example table can be created. In this
example we create a MemoryExampleTable which will keep all data in the main
memory. The attribute list is given to the constructor of the example table.
One can think of this list as a description of the column meta data or column
headers. At this point of time, the complete table is empty, i.e. it does not
contain any data rows.

The next step will be to fill the created table with data. Therefore, we create
a DataRow object for each of the getMyNumOfRows() data rows and add it to
the table. We create a simple double array and fill it with the values from your
application. In this example, we assume that the method getMyValue(d,a)
will deliver the value for the a-th attribute of the d-th data row. Please note
that the order of values and the order of attributes added to the attribute list

July 14, 2008

7.6. TRANSFORM DATA FOR RAPIDMINER 579

import com.rapidminer.example.*;
import com.rapidminer.example.table .*;
import com.rapidminer.example.set .*;
import com.rapidminer.tools .Ontology;
import java. util .*;

public class CreatingExampleTables {

public static void main(String [] argv) {
// create attribute list
List<Attribute> attributes = new LinkedList<Attribute>();
for (int a = 0; a < getMyNumOfAttributes(); a++) {

attributes .add(AttributeFactory . createAttribute (”att” + a,
Ontology.REAL));

}
Attribute label = AttributeFactory . createAttribute (” label”,

Ontology.NOMINAL));
attributes .add(label);

// create table
MemoryExampleTable table = new MemoryExampleTable(attributes);

// fill table (here : only real values)
for (int d = 0; d < getMyNumOfDataRows(); d++) {

double[] data = new double[attributes. size ()];
for (int a = 0; a < getMyNumOfAttributes(); a++) {

// fill with proper data here
data[a] = getMyValue(d, a);

}

// maps the nominal classification to a double value
data[data. length − 1] =

label .getMapping().mapString(getMyClassification(d));

// add data row
table .addDataRow(new DoubleArrayDataRow(data));

}

// create example set
ExampleSet exampleSet = table.createExampleSet(label);

}
}

Figure 7.4: The complete code for creating a memory based ExampleTable

The RapidMiner 4.2 Tutorial

580
CHAPTER 7. INTEGRATING RAPIDMINER INTO YOUR

APPLICATION

must be the same!

For the label attribute, which is a nominal classification value, we have to
map the String delivered by getMyClassification(d) to a proper double
value. This is done with the method mapString(String) of Attribute. This
method will ensure that following mappings will always produce the same double
indices for equal strings.

The last thing in the loop is to add a newly created DoubleArrayDataRow
to the example table. Please note that only MemoryExampleTable provide a
method addDataRow(DataRow), other example tables might have to initialized
in other ways.

The last thing which must be done is to produce a view on this example table.
Such views are called ExampleSet in RapidMiner. The creation of these views
is done by the method createCompleteExampleSet(label, null, null,
null). The resulting example set can be encapsulated in a IOContainer and
given to operators.

Remark: Since Attribute, DataRow, ExampleTable, and ExampleSet are all in-
terfaces, you can of course implement one or several of these interfaces in order
to directly support RapidMiner with data even without creating a Memo-
ryExampleTable.

July 14, 2008

Chapter 8

Acknowledgements

We thank SourceForge1 for providing a great platform for open-source develop-
ment.

We are grateful to the developers of Eclipse2, Ant3, and JUnit4 for making these
great open-source development environments available.

We highly appreciate the operators and extensions written by several external
contributors. Please check our website for a complete list of authors.

We thank the Weka5 developers for providing an open source Java archive with
lots of great machine learning operators.

We are grateful to Stefan Rüping for providing his implementation of a support
vector machine6.

We thank Chih-Chung Chang and Chih-Jen Lin for their SVM implementation
LibSVM7.

We would like to thank Stefan Haustein for providing his library kdb8, which we
use for several input formats like dBase and BibTeX.

Thanks to the users of RapidMiner. Your comments help to improve Rapid-
Miner for both end users and data mining developers.

1http://sourceforge.net/
2http://www.eclipse.org
3http://ant.apache.org
4http://www.junit.org
5http://www.cs.waikato.ac.nz/ml/weka/
6http://www-ai.informatik.uni-dortmund.de/SOFTWARE/MYSVM/
7http://www.csie.ntu.edu.tw/cjlin/libsvm/
8http://www.me.objectweb.org/

581

http://sourceforge.net/
http://www.eclipse.org
http://ant.apache.org
http://www.junit.org
http://www.cs.waikato.ac.nz/ml/weka/
http://www-ai.informatik.uni-dortmund.de/SOFTWARE/MYSVM/
http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.me.objectweb.org/

582 CHAPTER 8. ACKNOWLEDGEMENTS

July 14, 2008

Appendix A

Regular expressions

Regular expressions are a way to describe a set of strings based on common
characteristics shared by each string in the set. They can be used as a tool to
search, edit or manipulate text or data. Regular expressions range from being
simple to quite complex, but once you understand the basics of how they’re
constructed, you’ll be able to understand any regular expression.

In RapidMiner several parameters use regular expressions, e.g. for the defini-
tion of the column separators for the ExampleSource operator or for the feature
names of the FeatureNameFilter. This chapter gives an overview of all regular
expression constructs available in RapidMiner. These are the same as the
usual regular expressions available in Java. Further information can be found at

http://java.sun.com/docs/books/tutorial/extra/regex/index.html.

A.1 Summary of regular-expression constructs

Construct Matches

Characters
x The character x
\\ The backslash character
\0n The character with octal value 0n (0 <= n <= 7)
\0nn The character with octal value 0nn (0 <= n <=

7)
\0mnn The character with octal value 0mnn (0 <= m <=

3, 0 <= n <= 7)

583

http://java.sun.com/docs/books/tutorial/extra/regex/index.html

584 APPENDIX A. REGULAR EXPRESSIONS

Construct Matches

\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\t The tab character (’\u0009’)
\n The newline (line feed) character (’\u000A’)
\r The carriage-return character (’\u000D’)
\f The form-feed character (’\u000C’)
\a The alert (bell) character (’\u0007’)
\e The escape character (’\u001B’)
\cx The control character corresponding to x

Character classes
[abc] a, b, or c (simple class)
[ˆabc] Any character except a, b, or c (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[ˆbc]] a through z, except for b and c: [ad-z] (subtrac-

tion)
[a-z&&[ˆm-p]] a through z, and not m through p: [a-lq-

z](subtraction)

Predefined character classes
. Any character (may or may not match line termi-

nators)
\d A digit: [0-9]
\D A non-digit: [ˆ0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [ˆ\s]
\w A word character: [a-zA-Z 0-9]
\W A non-word character: [ˆ\w]

POSIX character classes (US-ASCII only)
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character: [A-Z]
\p{ASCII} All ASCII: [\x00-\x7F]
\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !”#$%&’()*+,-

./:;<=>?@[\]ˆ {̀—}∼

July 14, 2008

A.1. SUMMARY OF REGULAR-EXPRESSION CONSTRUCTS 585

Construct Matches

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]
\p{Print} A printable character: [\p{Graph}]
\p{Blank} A space or a tab: [\t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]

Classes for Unicode blocks and categories
\p{InGreek} A character in the Greek block (simple block)
\p{Lu} An uppercase letter (simple category)
\p{Sc} A currency symbol
\P{InGreek} Any character except one in the Greek block (nega-

tion)
[\p{L}&&[ˆ\p{Lu}]]Any letter except an uppercase letter (subtraction)

Boundary matchers
ˆ The beginning of a line
$ The end of a line
\b A word boundary
\B A non-word boundary
\A The beginning of the input
\G The end of the previous match
\Z The end of the input but for the final terminator,

if any
\z The end of the input

Greedy quantifiers
X? X, once or not at all
X* X, zero or more times
X+ X, one or more times
X{n} X, exactly n times
X{n,} X, at least n times
X{n,m} X, at least n but not more than m times

Reluctant quantifiers
X?? X, once or not at all
X*? X, zero or more times
X+? X, one or more times
X{n}? X, exactly n times
X{n,}? X, at least n times

The RapidMiner 4.2 Tutorial

586 APPENDIX A. REGULAR EXPRESSIONS

Construct Matches

X{n,m}? X, at least n but not more than m times

Logical operators
XY X followed by Y
X—Y Either X or Y
(X) X, as a capturing group

Back references
\n Whatever the n-th capturing group matched

Quotation
\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
\E Nothing, but ends quoting started by \Q

Special constructs (non-capturing)
(?:X) X, as a non-capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-
idmsux:X)

X, as a non-capturing group with the given flags
on - off

(?=X) X, via zero-width positive lookahead
(?!X) X, via zero-width negative lookahead
(?<=X) X, via zero-width positive lookbehind
(?<!X) X, via zero-width negative lookbehind
(?>X) X, as an independent, non-capturing group

July 14, 2008

Bibliography

[1] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik.
Support vector clustering. Journal of Machine Learning Research, 2001.

[2] G. Daniel, J. Dienstuhl, S. Engell, S. Felske, K. Goser, R. Klinkenberg,
K. Morik, O. Ritthoff, and H. Schmidt-Traub. Advances in Computational
Intelligence – Theory and Practice, chapter Novel Learning Tasks, Opti-
mization, and Their Application, pages 245–318. Springer, 2002.

[3] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spec-
tral clustering and normalized cuts. In Proceedings of the KDD 2004,
2004.

[4] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of the KDD 1996, 1996.

[5] Sven Felske, Oliver Ritthoff, and Ralf Klinkenberg. Bestimmung von
isothermenparametern mit hilfe des maschinellen lernens. Technical Report
CI-149/03, Collaborative Research Center 531, University of Dortmund,
2003.

[6] Ralf Klinkenberg. Using labeled and unlabeled data to learn drifting con-
cepts. In Workshop notes of the IJCAI-01 Workshop on Learning from
Temporal and Spatial Data, pages 16–24, 2001.

[7] Ralf Klinkenberg. Predicting phases in business cycles under concept drift.
In Proc. of LLWA 2003, pages 3–10, 2003.

[8] Ralf Klinkenberg. Learning drifting concepts: Example selection vs. exam-
ple weighting. Intelligent Data Analysis (IDA), Special Issue on Incremental
Learning Systems Capable of Dealing with Concept Drift, 8(3), 2004.

[9] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with
support vector machines. In Pat Langley, editor, Proceedings of the Seven-
teenth International Conference on Machine Learning (ICML), pages 487–
494, San Francisco, CA, USA, 2000. Morgan Kaufmann.

587

588 BIBLIOGRAPHY

[10] Ralf Klinkenberg, Oliver Ritthoff, and Katharina Morik. Novel learning
tasks from practical applications. In Proceedings of the workshop of the
special interest groups Machine Learning (FGML), pages 46–59, 2002.

[11] Ralf Klinkenberg and Stefan Rüping. Concept drift and the importance of
examples. In Jürgen Franke, Gholamreza Nakhaeizadeh, and Ingrid Renz,
editors, Text Mining – Theoretical Aspects and Applications, pages 55–77.
Physica-Verlag, Heidelberg, Germany, 2003.

[12] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE:
Rapid prototyping for complex data mining tasks. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), 2006.

[13] Ingo Mierswa. Automatic feature extraction from large time series. In
Proc. of LWA 2004, 2004.

[14] Ingo Mierswa. Incorporating fuzzy knowledge into fitness: Multiobjective
evolutionary 3d design of process plants. In Proc. of the Genetic and
Evolutionary Computation Conference GECCO 2005, 2005.

[15] Ingo Mierswa and Thorsten Geisbe. Multikriterielle evolutionre aufstel-
lungsoptimierung von chemieanlagen unter beachtung gewichteter design-
regeln. Technical Report CI-188/04, Collaborative Research Center 531,
University of Dortmund, 2004.

[16] Ingo Mierswa, Ralf Klinkberg, Simon Fischer, and Oliver Ritthoff. A flexible
platform for knowledge discovery experiments: Yale – yet another learning
environment. In Proc. of LLWA 2003, 2003.

[17] Ingo Mierswa and Katharina Morik. Automatic feature extraction for clas-
sifying audio data. Machine Learning Journal, 58:127–149, 2005.

[18] Ingo Mierswa and Katharina Morik. Method trees: Building blocks for
self-organizable representations of value series. In Proc. of the Genetic
and Evolutionary Computation Conference GECCO 2005, Workshop on
Self-Organization In Representations For Evolutionary Algorithms: Build-
ing complexity from simplicity, 2005.

[19] Ingo Mierswa and Michael Wurst. Efficient case based feature construction
for heterogeneous learning tasks. Technical Report CI-194/05, Collabora-
tive Research Center 531, University of Dortmund, 2005.

[20] Ingo Mierswa and Michael Wurst. Efficient feature construction by meta
learning – guiding the search in meta hypothesis space. In Proc. of the
Internation Conference on Machine Learning, Workshop on Meta Learning,
2005.

July 14, 2008

BIBLIOGRAPHY 589

[21] O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske. Yale:
Yet Another Machine Learning Environment. In Proc. of LLWA 01, pages
84–92. Department of Computer Science, University of Dortmund, 2001.

[22] Oliver Ritthoff and Ralf Klinkenberg. Evolutionary feature space trans-
formation using type-restricted generators. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO 2003), pages 1606–1607,
2003.

[23] Oliver Ritthoff, Ralf Klinkenberg, Simon Fischer, and Ingo Mierswa. A
hybrid approach to feature selection and generation using an evolution-
ary algorithm. In Proc. of the 2002 U.K. Workshop on Computational
Intelligence (UKCI-02), pages 147–154, 2002.

[24] Martin Scholz. Knowledge-Based Sampling for Subgroup Discovery. In
Katharina Morik, Jean-Francois Boulicaut, and Arno Siebes, editors, Proc.
of the Workshop on Detecting Local Patterns, Lecture Notes in Computer
Science. Springer, 2005. To appear.

[25] Martin Scholz. Sampling-Based Sequential Subgroup Mining. In Proc. of
the 11th ACM SIGKDD International Conference on Knowledge Discovery
in Databases (KDD’05), 2005. Accepted for publication.

The RapidMiner 4.2 Tutorial

Index

AbsoluteSampling, 368
AbsoluteSplitChain, 329
AbsoluteStratifiedSampling, 369
AdaBoost, 132
AdditiveRegression, 133
AddNominalValue, 370
AGA, 365
AgglomerativeClustering, 134
AgglomerativeFlatClustering,

134
Aggregation, 358
analysis, 61
Anova, 497
ANOVAMatrix, 357
arff, 82
ArffExampleSetWriter, 82
ArffExampleSource, 82
AssociationRuleGenerator, 135
attribute set description file, 52, 53, 59
AttributeBasedVote, 136
AttributeConstructionsLoader,

85
AttributeConstructionsWriter,

85
AttributeCopy, 370
AttributeCounter, 498
AttributeFilter, 371
AttributeMerge, 372
Attributes2RealValues, 378
AttributeSubsetPreprocessing,

373
AttributeValueMapper, 374
AttributeValueSubstring, 375
AttributeWeightsApplier, 377
AttributeWeightSelection, 376
AttributeWeightsLoader, 86

AttributeWeightsWriter, 87
AverageBuilder, 330

BackwardWeighting, 379
Bagging, 137
BasicRuleLearner, 138
BatchProcessing, 330
BatchSlidingWindowValidation,

498
BatchXValidation, 500
BayesianBoosting, 139
BestRuleInduction, 141
bibtex, 87
BibtexExampleSource, 87
Binary2MultiClassLearner, 142
BinDiscretization, 380
BinominalClassificationPerformance,

501
Bootstrapping, 381
BootstrappingValidation, 504
BregmanHardClustering, 143
BruteForce, 382

C4.5, 150
C45ExampleSource, 88
CachedDatabaseExampleSource,

92
CART, 150
CFSFeatureSetEvaluator, 505
CHAID, 144
ChangeAttributeName, 383
ChangeAttributeRole, 384
ChangeAttributeType, 385
ChiSquaredWeighting, 386
ChurnReductionExampleSetGenerator,

95

590

INDEX 591

ClassificationByRegression, 145

ClassificationPerformance, 506

ClusterCentroidEvaluator, 509

ClusterDensityEvaluator, 510

ClusterIteration, 331

ClusterModel2ExampleSet, 146

ClusterModel2Similarity, 146

ClusterModelFScore, 511

ClusterModelLabelComparator,
512

ClusterModelReader, 95

ClusterModelWriter, 96

ClusterNumberEvaluator, 512

CommandLineOperator, 72

CompleteFeatureGeneration, 387

ComponentWeights, 388

configuration file, 46

ConsistencyFeatureSetEvaluator,
513

ConstraintClusterValidation, 514

CorpusBasedWeighting, 389

CorrelationMatrix, 538

CostBasedThresholdLearner, 147

CostEvaluator, 514

CovarianceMatrix, 539

cross-validation, 500, 536

csv, 91, 120

CSVExampleSetWriter, 90

CSVExampleSource, 91

DatabaseExampleSetWriter, 97

DatabaseExampleSource, 98

DataStatistics, 539

Date2Nominal, 390

dbase, 97

DBaseExampleSource, 97

DBScanClustering, 148

DecisionStump, 149

DecisionTree, 150

DefaultLearner, 151

DensityBasedOutlierDetection,
394

DeObfuscator, 393

DirectMailingExampleSetGenerator,
101

DistanceBasedOutlierDetection,
395

EqualLabelWeighting, 396
EvolutionaryFeatureAggregation,

397
EvolutionaryParameterOptimization,

332
EvolutionaryWeighting, 398
EvoSVM, 152
Example, 559
example processes

advanced, 57
simple, 43

ExampleFilter, 400
ExampleRangeFilter, 401
ExampleReader, 559
ExampleSet, 559
ExampleSet2AttributeWeights,

402
ExampleSet2ClusterConstraintList,

154
ExampleSet2ClusterModel, 155
ExampleSet2Similarity, 155
ExampleSetCartesian, 403
ExampleSetGenerator, 101
ExampleSetIterator, 333
ExampleSetJoin, 403
ExampleSetMerge, 404
ExampleSetTranspose, 405
ExampleSetWriter, 102
ExampleSource, 104
ExampleVisualizer, 540
ExcelExampleSetWriter, 106
ExcelExampleSource, 107
ExchangeAttributeRoles, 406
Experiment, 73
ExperimentEmbedder, 334
ExperimentLog, 540

FastICA, 407
feature selection, 57

The RapidMiner 4.2 Tutorial

592 INDEX

FeatureBlockTypeFilter, 408
FeatureGeneration, 408
FeatureIterator, 335
FeatureNameFilter, 409
FeatureRangeRemoval, 410
FeatureSelection, 411
FeatureSubsetIteration, 336
FeatureValueTypeFilter, 414
FileEcho, 73
FixedSplitValidation, 515
FlattenClusterModel, 157
ForwardWeighting, 414
FourierTransform, 416
FPGrowth, 156
FrequencyDiscretization, 416
FrequentItemSetAttributeCreator,

417
FrequentItemSetUnificator, 360

GeneratingForwardSelection, 419
GeneratingGeneticAlgorithm, 421
GeneticAlgorithm, 423
GHA, 418
GiniIndexWeighting, 426
GnuplotWriter, 108
GP, 158
GPLearner, 158
GridParameterOptimization, 337
GroupBy, 427
GroupedANOVA, 358
GuessValueTypes, 428

homepage, 35
HyperHyper, 159

ID3, 160
ID3Numerical, 161
IdTagging, 428
InfiniteValueReplenishment, 429
InfoGainRatioWeighting, 430
InfoGainWeighting, 431
installation, 35
InteractiveAttributeWeighting,

431
IOConsumer, 74

IOContainer, 562
IOContainerReader, 109
IOContainerWriter, 109
IOMultiplier, 75
IOObjectReader, 110
IOObjectWriter, 111
IOSelector, 76
ItemDistributionEvaluator, 516
IteratingGSS, 162
IteratingOperatorChain, 338
IteratingPerformanceAverage,

517
IterativeWeightOptimization, 432

jdbc, 39
JMySVMLearner, 163

KennardStoneSampling, 433
KernelKMeans, 167
KernelLogisticRegression, 168
KernelPCA, 433
KLR, 177
KMeans, 165
KMedoids, 166

LabelTrend2Classification, 436
LearningCurve, 339
LibSVMLearner, 170
LiftChart, 542
LinearCombination, 437
LinearRegression, 171
LOFOutlierDetection, 435
logging, 559
LogisticRegression, 172
LogService, 559

MacroDefinition, 76
MassiveDataGenerator, 111
MaterializeDataInMemory, 78
memory, 38
MemoryCleanUp, 78
MergeNominalValues, 437
messages, 559
MetaCost, 175
MinimalEntropyPartitioning, 438

July 14, 2008

INDEX 593

MinMaxWrapper, 518
MissingValueImputation, 439
MissingValueReplenishment, 440
MissingValueReplenishmentView,

441
model file, 53, 59
ModelApplier, 68
ModelBasedSampling, 442
ModelGrouper, 68
ModelLoader, 112
ModelUngrouper, 69
ModelUpdater, 70
ModelVisualizer, 542
ModelWriter, 113
MPCKMeans, 174
MultiCriterionDecisionStump, 176
MultipleLabelGenerator, 114
MultipleLabelIterator, 340
MultivariateSeries2WindowExamples,

442
MyKLRLearner, 177

NaiveBayes, 178
NameBasedWeighting, 444
NearestNeighbors, 179
Neural Net, 180
NeuralNet, 180
NoiseGenerator, 445
Nominal2Binary, 446
Nominal2Binominal, 447
Nominal2Date, 448
Nominal2Numeric, 451
NominalExampleSetGenerator,

115
NominalNumbers2Numerical, 452
Normalization, 453
Numeric2Binary, 454
Numeric2Binominal, 454
Numeric2Polynominal, 455

Obfuscator, 456
OneR, 181
Operator, 547

declaring, 566

inner, 561
input, 561
output, 562
performing action, 549
skeleton, 549

OperatorChain, 560
OperatorChain, 70
OperatorEnabler, 341
OperatorSelector, 342

parameter, 552
ParameterCloner, 342
ParameterIteration, 344
ParameterSetLoader, 115
ParameterSetter, 345
ParameterSetWriter, 116
PartialExampleSetLearner, 346
PCA, 457
PCAWeighting, 457
Perceptron, 182
Performance, 519
PerformanceEvaluator, 520
PerformanceLoader, 117
PerformanceWriter, 117
Permutation, 460
PlattScaling, 360
plugins

authoring, 568
installing, 38

PrincipalComponentsGenerator,
460

Process, 79
ProcessBranch, 347
ProcessEmbedder, 348
ProcessLog, 543
PsoSVM, 183
PSOWeighting, 458

QuadraticParameterOptimization,
348

RandomFlatClustering, 186
RandomForest, 187
RandomOptimizer, 350
RandomSelection, 461

The RapidMiner 4.2 Tutorial

594 INDEX

RandomTree, 188
RegressionPerformance, 523
RelativeRegression, 189
RelevanceTree, 190
Relief, 461
RemoveCorrelatedFeatures, 462
RemoveUselessAttributes, 463
RepeatUntilOperatorChain, 350
results, 559
ResultService, 559
ResultWriter, 559
ResultWriter, 118
ROCChart, 544
ROCComparator, 545
RuleLearner, 191
RVM, 185
RVMLearner, 184

Sampling, 467
Series2WindowExamples, 467
SeriesPrediction, 351
settings, 38, 39
SimilarityComparator, 192
SimpleExampleSource, 120
SimpleValidation, 526
SimpleWrapperValidation, 527
Single2Series, 469
SingleMacroDefinition, 80
SingleRuleWeighting, 469
SlidingWindowValidation, 528
SOMDimensionalityReduction, 464
Sorting, 470
SparseFormatExampleSource, 122
SplitChain, 353
spss, 119
SPSSExampleSource, 119
Stacking, 193
StandardDeviationWeighting, 471
stata, 123
StataExampleSource, 123
StratifiedSampling, 471
SubgroupDiscovery, 193
SupportVectorClustering, 194
SVDReduction, 465

SVM, 152, 163, 170, 183
SVMWeighting, 466
SymmetricalUncertaintyWeighting,

472

T-Test, 530
TeamProfitExampleSetGenerator,

124
TFIDFFilter, 473
ThresholdApplier, 361
ThresholdCreator, 362
ThresholdFinder, 362
ThresholdLoader, 125
ThresholdWriter, 125
TopDownClustering, 196
TopDownRandomClustering, 196
TransfersExampleSetGenerator,

126
TransformedRegression, 197
TransitionMatrix, 546
Tree2RuleConverter, 198

UncertainPredictionsTransformation,
363

UPGMAClustering, 199
UpSellingExampleSetGenerator,

127
URL, 35
UserBasedDiscretization, 474
UserBasedPerformance, 531
UseRowAsAttributeNames, 474

values
providing, 554

ValueSubgroupIterator, 354
Vote, 200

W-AdaBoostM1, 204
W-AdditiveRegression, 205
W-ADTree, 201
W-AODE, 202
W-AODEsr, 203
W-Apriori, 206
W-Bagging, 209

July 14, 2008

INDEX 595

W-BayesianLogisticRegression,
212

W-BayesNet, 210
W-BayesNetGenerator, 211
W-BFTree, 207
W-BIFReader, 208
W-ChiSquaredAttributeEval, 475
W-CitationKNN, 214
W-ClassBalancedND, 215
W-ClassificationViaClustering,

216
W-CLOPE, 213
W-Cobweb, 217
W-ComplementNaiveBayes, 218
W-ConjunctiveRule, 219
W-CostSensitiveAttributeEval,

476
W-CostSensitiveClassifier, 220
W-Dagging, 223
W-DataNearBalancedND, 224
W-DecisionStump, 225
W-DecisionTable, 226
W-Decorate, 227
W-DMNBtext, 221
W-DTNB, 222
W-EditableBayesNet, 230
W-EM, 228
W-END, 229
W-EnsembleSelection, 231
W-FarthestFirst, 235
W-FilteredAttributeEval, 477
W-FLR, 233
W-FT, 234
W-GainRatioAttributeEval, 478
W-GaussianProcesses, 236
W-GeneralizedSequentialPatterns,

237
W-Grading, 238
W-GridSearch, 239
W-HNB, 241
W-HotSpot, 242
W-HyperPipes, 243
W-IB1, 243
W-IBk, 244

W-Id3, 245
W-InfoGainAttributeEval, 479
W-IsotonicRegression, 246
W-J48, 247
W-J48graft, 248
W-JRip, 249
W-JythonClassifier, 250
W-KStar, 251
W-LatentSemanticAnalysis, 480
W-LBR, 252
W-LeastMedSq, 255
W-LinearRegression, 256
W-LMT, 253
W-Logistic, 257
W-LogisticBase, 258
W-LogitBoost, 259
W-LWL, 254
W-M5P, 260
W-M5Rules, 261
W-MDD, 262
W-MetaCost, 271
W-MIBoost, 263
W-MIDD, 264
W-MIEMDD, 265
W-MILR, 266
W-MinMaxExtension, 272
W-MINND, 266
W-MIOptimalBall, 267
W-MISMO, 268
W-MIWrapper, 270
W-MultiBoostAB, 273
W-MultiClassClassifier, 274
W-MultilayerPerceptron, 276
W-MultiScheme, 275
W-NaiveBayes, 281
W-NaiveBayesMultinomial, 281
W-NaiveBayesMultinomialUpdateable,

282
W-NaiveBayesSimple, 283
W-NaiveBayesUpdateable, 284
W-NBTree, 278
W-ND, 279
W-NNge, 280
W-OLM, 285

The RapidMiner 4.2 Tutorial

596 INDEX

W-OneR, 288
W-OneRAttributeEval, 481
W-OrdinalClassClassifier, 289
W-OSDL, 286
W-PaceRegression, 291
W-PART, 290
W-PLSClassifier, 291
W-PredictiveApriori, 293
W-PrincipalComponents, 482
W-Prism, 293
W-RacedIncrementalLogitBoost,

296
W-RandomCommittee, 297
W-RandomForest, 298
W-RandomSubSpace, 299
W-RandomTree, 300
W-RBFNetwork, 294
W-RegressionByDiscretization,

301
W-ReliefFAttributeEval, 482
W-REPTree, 295
W-Ridor, 302
W-SerializedClassifier, 307
W-sIB, 327
W-SimpleCart, 308
W-SimpleKMeans, 309
W-SimpleLinearRegression, 310
W-SimpleLogistic, 311
W-SimpleMI, 312
W-SMO, 303
W-SMOreg, 305
W-Stacking, 313
W-StackingC, 314
W-SVMAttributeEval, 484
W-SVMreg, 306
W-SymmetricalUncertAttributeEval,

485
W-Tertius, 317
W-ThresholdSelector, 318
W-TLD, 315
W-TLDSimple, 316
W-VFI, 320
W-Vote, 321
W-VotedPerceptron, 322

W-WAODE, 323
W-Winnow, 324
W-XMeans, 325
W-ZeroR, 326
WeightedBootstrapping, 488
WeightedBootstrappingValidation,

532
WeightedPerformanceCreator,

534
WeightGuidedFeatureSelection,

486
WeightOptimization, 487
WekaModelLoader, 127
WrapperXValidation, 534

xrff, 128, 129
XrffExampleSetWriter, 128
XrffExampleSource, 129
XValidation, 536
XVPrediction, 355

YAGGA, 489
YAGGA2, 492

July 14, 2008

	1 Introduction
	1.1 Modeling Knowledge Discovery Processes as Operator Trees
	1.2 RapidMiner as a Data Mining Interpreter
	1.3 Different Ways of Using RapidMiner
	1.4 Multi-Layered Data View Concept
	1.5 Transparent Data Handling
	1.6 Meta Data
	1.7 Large Number of Built-in Data Mining Operators
	1.8 Extending RapidMiner
	1.9 Example Applications
	1.10 How this tutorial is organized

	2 Installation and starting notes
	2.1 Download
	2.2 Installation
	2.2.1 Installing the Windows executable
	2.2.2 Installing the Java version (any platform)

	2.3 Starting RapidMiner
	2.4 Memory Usage
	2.5 Plugins
	2.6 General settings
	2.7 External Programs
	2.8 Database Access

	3 First steps
	3.1 First example
	3.2 Process configuration files
	3.3 Parameter Macros
	3.4 File formats
	3.4.1 Data files and the attribute description file
	3.4.2 Model files
	3.4.3 Attribute construction files
	3.4.4 Parameter set files
	3.4.5 Attribute weight files

	3.5 File format summary

	4 Advanced processes
	4.1 Feature selection
	4.2 Splitting up Processes
	4.2.1 Learning a model
	4.2.2 Applying the model

	4.3 Parameter and performance analysis
	4.4 Support and tips

	5 Operator reference
	5.1 Basic operators
	5.1.1 ModelApplier
	5.1.2 ModelGrouper
	5.1.3 ModelUngrouper
	5.1.4 ModelUpdater
	5.1.5 OperatorChain

	5.2 Core operators
	5.2.1 CommandLineOperator
	5.2.2 Experiment
	5.2.3 FileEcho
	5.2.4 IOConsumer
	5.2.5 IOMultiplier
	5.2.6 IOSelector
	5.2.7 MacroDefinition
	5.2.8 MaterializeDataInMemory
	5.2.9 MemoryCleanUp
	5.2.10 Process
	5.2.11 SingleMacroDefinition

	5.3 Input/Output operators
	5.3.1 ArffExampleSetWriter
	5.3.2 ArffExampleSource
	5.3.3 AttributeConstructionsLoader
	5.3.4 AttributeConstructionsWriter
	5.3.5 AttributeWeightsLoader
	5.3.6 AttributeWeightsWriter
	5.3.7 BibtexExampleSource
	5.3.8 C45ExampleSource
	5.3.9 CSVExampleSetWriter
	5.3.10 CSVExampleSource
	5.3.11 CachedDatabaseExampleSource
	5.3.12 ChurnReductionExampleSetGenerator
	5.3.13 ClusterModelReader
	5.3.14 ClusterModelWriter
	5.3.15 DBaseExampleSource
	5.3.16 DatabaseExampleSetWriter
	5.3.17 DatabaseExampleSource
	5.3.18 DirectMailingExampleSetGenerator
	5.3.19 ExampleSetGenerator
	5.3.20 ExampleSetWriter
	5.3.21 ExampleSource
	5.3.22 ExcelExampleSetWriter
	5.3.23 ExcelExampleSource
	5.3.24 GnuplotWriter
	5.3.25 IOContainerReader
	5.3.26 IOContainerWriter
	5.3.27 IOObjectReader
	5.3.28 IOObjectWriter
	5.3.29 MassiveDataGenerator
	5.3.30 ModelLoader
	5.3.31 ModelWriter
	5.3.32 MultipleLabelGenerator
	5.3.33 NominalExampleSetGenerator
	5.3.34 ParameterSetLoader
	5.3.35 ParameterSetWriter
	5.3.36 PerformanceLoader
	5.3.37 PerformanceWriter
	5.3.38 ResultWriter
	5.3.39 SPSSExampleSource
	5.3.40 SimpleExampleSource
	5.3.41 SparseFormatExampleSource
	5.3.42 StataExampleSource
	5.3.43 TeamProfitExampleSetGenerator
	5.3.44 ThresholdLoader
	5.3.45 ThresholdWriter
	5.3.46 TransfersExampleSetGenerator
	5.3.47 UpSellingExampleSetGenerator
	5.3.48 WekaModelLoader
	5.3.49 XrffExampleSetWriter
	5.3.50 XrffExampleSource

	5.4 Learning schemes
	5.4.1 AdaBoost
	5.4.2 AdditiveRegression
	5.4.3 AgglomerativeClustering
	5.4.4 AgglomerativeFlatClustering
	5.4.5 AssociationRuleGenerator
	5.4.6 AttributeBasedVote
	5.4.7 Bagging
	5.4.8 BasicRuleLearner
	5.4.9 BayesianBoosting
	5.4.10 BestRuleInduction
	5.4.11 Binary2MultiClassLearner
	5.4.12 BregmanHardClustering
	5.4.13 CHAID
	5.4.14 ClassificationByRegression
	5.4.15 ClusterModel2ExampleSet
	5.4.16 ClusterModel2Similarity
	5.4.17 CostBasedThresholdLearner
	5.4.18 DBScanClustering
	5.4.19 DecisionStump
	5.4.20 DecisionTree
	5.4.21 DefaultLearner
	5.4.22 EvoSVM
	5.4.23 ExampleSet2ClusterConstraintList
	5.4.24 ExampleSet2ClusterModel
	5.4.25 ExampleSet2Similarity
	5.4.26 FPGrowth
	5.4.27 FlattenClusterModel
	5.4.28 GPLearner
	5.4.29 HyperHyper
	5.4.30 ID3
	5.4.31 ID3Numerical
	5.4.32 IteratingGSS
	5.4.33 JMySVMLearner
	5.4.34 KMeans
	5.4.35 KMedoids
	5.4.36 KernelKMeans
	5.4.37 KernelLogisticRegression
	5.4.38 LibSVMLearner
	5.4.39 LinearRegression
	5.4.40 LogisticRegression
	5.4.41 MPCKMeans
	5.4.42 MetaCost
	5.4.43 MultiCriterionDecisionStump
	5.4.44 MyKLRLearner
	5.4.45 NaiveBayes
	5.4.46 NearestNeighbors
	5.4.47 NeuralNet
	5.4.48 OneR
	5.4.49 Perceptron
	5.4.50 PsoSVM
	5.4.51 RVMLearner
	5.4.52 RandomFlatClustering
	5.4.53 RandomForest
	5.4.54 RandomTree
	5.4.55 RelativeRegression
	5.4.56 RelevanceTree
	5.4.57 RuleLearner
	5.4.58 SimilarityComparator
	5.4.59 Stacking
	5.4.60 SubgroupDiscovery
	5.4.61 SupportVectorClustering
	5.4.62 TopDownClustering
	5.4.63 TopDownRandomClustering
	5.4.64 TransformedRegression
	5.4.65 Tree2RuleConverter
	5.4.66 UPGMAClustering
	5.4.67 Vote
	5.4.68 W-ADTree
	5.4.69 W-AODE
	5.4.70 W-AODEsr
	5.4.71 W-AdaBoostM1
	5.4.72 W-AdditiveRegression
	5.4.73 W-Apriori
	5.4.74 W-BFTree
	5.4.75 W-BIFReader
	5.4.76 W-Bagging
	5.4.77 W-BayesNet
	5.4.78 W-BayesNetGenerator
	5.4.79 W-BayesianLogisticRegression
	5.4.80 W-CLOPE
	5.4.81 W-CitationKNN
	5.4.82 W-ClassBalancedND
	5.4.83 W-ClassificationViaClustering
	5.4.84 W-Cobweb
	5.4.85 W-ComplementNaiveBayes
	5.4.86 W-ConjunctiveRule
	5.4.87 W-CostSensitiveClassifier
	5.4.88 W-DMNBtext
	5.4.89 W-DTNB
	5.4.90 W-Dagging
	5.4.91 W-DataNearBalancedND
	5.4.92 W-DecisionStump
	5.4.93 W-DecisionTable
	5.4.94 W-Decorate
	5.4.95 W-EM
	5.4.96 W-END
	5.4.97 W-EditableBayesNet
	5.4.98 W-EnsembleSelection
	5.4.99 W-FLR
	5.4.100 W-FT
	5.4.101 W-FarthestFirst
	5.4.102 W-GaussianProcesses
	5.4.103 W-GeneralizedSequentialPatterns
	5.4.104 W-Grading
	5.4.105 W-GridSearch
	5.4.106 W-HNB
	5.4.107 W-HotSpot
	5.4.108 W-HyperPipes
	5.4.109 W-IB1
	5.4.110 W-IBk
	5.4.111 W-Id3
	5.4.112 W-IsotonicRegression
	5.4.113 W-J48
	5.4.114 W-J48graft
	5.4.115 W-JRip
	5.4.116 W-JythonClassifier
	5.4.117 W-KStar
	5.4.118 W-LBR
	5.4.119 W-LMT
	5.4.120 W-LWL
	5.4.121 W-LeastMedSq
	5.4.122 W-LinearRegression
	5.4.123 W-Logistic
	5.4.124 W-LogisticBase
	5.4.125 W-LogitBoost
	5.4.126 W-M5P
	5.4.127 W-M5Rules
	5.4.128 W-MDD
	5.4.129 W-MIBoost
	5.4.130 W-MIDD
	5.4.131 W-MIEMDD
	5.4.132 W-MILR
	5.4.133 W-MINND
	5.4.134 W-MIOptimalBall
	5.4.135 W-MISMO
	5.4.136 W-MIWrapper
	5.4.137 W-MetaCost
	5.4.138 W-MinMaxExtension
	5.4.139 W-MultiBoostAB
	5.4.140 W-MultiClassClassifier
	5.4.141 W-MultiScheme
	5.4.142 W-MultilayerPerceptron
	5.4.143 W-NBTree
	5.4.144 W-ND
	5.4.145 W-NNge
	5.4.146 W-NaiveBayes
	5.4.147 W-NaiveBayesMultinomial
	5.4.148 W-NaiveBayesMultinomialUpdateable
	5.4.149 W-NaiveBayesSimple
	5.4.150 W-NaiveBayesUpdateable
	5.4.151 W-OLM
	5.4.152 W-OSDL
	5.4.153 W-OneR
	5.4.154 W-OrdinalClassClassifier
	5.4.155 W-PART
	5.4.156 W-PLSClassifier
	5.4.157 W-PaceRegression
	5.4.158 W-PredictiveApriori
	5.4.159 W-Prism
	5.4.160 W-RBFNetwork
	5.4.161 W-REPTree
	5.4.162 W-RacedIncrementalLogitBoost
	5.4.163 W-RandomCommittee
	5.4.164 W-RandomForest
	5.4.165 W-RandomSubSpace
	5.4.166 W-RandomTree
	5.4.167 W-RegressionByDiscretization
	5.4.168 W-Ridor
	5.4.169 W-SMO
	5.4.170 W-SMOreg
	5.4.171 W-SVMreg
	5.4.172 W-SerializedClassifier
	5.4.173 W-SimpleCart
	5.4.174 W-SimpleKMeans
	5.4.175 W-SimpleLinearRegression
	5.4.176 W-SimpleLogistic
	5.4.177 W-SimpleMI
	5.4.178 W-Stacking
	5.4.179 W-StackingC
	5.4.180 W-TLD
	5.4.181 W-TLDSimple
	5.4.182 W-Tertius
	5.4.183 W-ThresholdSelector
	5.4.184 W-VFI
	5.4.185 W-Vote
	5.4.186 W-VotedPerceptron
	5.4.187 W-WAODE
	5.4.188 W-Winnow
	5.4.189 W-XMeans
	5.4.190 W-ZeroR
	5.4.191 W-sIB

	5.5 Meta optimization schemes
	5.5.1 AbsoluteSplitChain
	5.5.2 AverageBuilder
	5.5.3 BatchProcessing
	5.5.4 ClusterIteration
	5.5.5 EvolutionaryParameterOptimization
	5.5.6 ExampleSetIterator
	5.5.7 ExperimentEmbedder
	5.5.8 FeatureIterator
	5.5.9 FeatureSubsetIteration
	5.5.10 GridParameterOptimization
	5.5.11 IteratingOperatorChain
	5.5.12 LearningCurve
	5.5.13 MultipleLabelIterator
	5.5.14 OperatorEnabler
	5.5.15 OperatorSelector
	5.5.16 ParameterCloner
	5.5.17 ParameterIteration
	5.5.18 ParameterSetter
	5.5.19 PartialExampleSetLearner
	5.5.20 ProcessBranch
	5.5.21 ProcessEmbedder
	5.5.22 QuadraticParameterOptimization
	5.5.23 RandomOptimizer
	5.5.24 RepeatUntilOperatorChain
	5.5.25 SeriesPrediction
	5.5.26 SplitChain
	5.5.27 ValueSubgroupIterator
	5.5.28 XVPrediction

	5.6 OLAP operators
	5.6.1 ANOVAMatrix
	5.6.2 Aggregation
	5.6.3 GroupedANOVA

	5.7 Postprocessing
	5.7.1 FrequentItemSetUnificator
	5.7.2 PlattScaling
	5.7.3 ThresholdApplier
	5.7.4 ThresholdCreator
	5.7.5 ThresholdFinder
	5.7.6 UncertainPredictionsTransformation

	5.8 Data preprocessing
	5.8.1 AGA
	5.8.2 AbsoluteSampling
	5.8.3 AbsoluteStratifiedSampling
	5.8.4 AddNominalValue
	5.8.5 AttributeCopy
	5.8.6 AttributeFilter
	5.8.7 AttributeMerge
	5.8.8 AttributeSubsetPreprocessing
	5.8.9 AttributeValueMapper
	5.8.10 AttributeValueSubstring
	5.8.11 AttributeWeightSelection
	5.8.12 AttributeWeightsApplier
	5.8.13 Attributes2RealValues
	5.8.14 BackwardWeighting
	5.8.15 BinDiscretization
	5.8.16 Bootstrapping
	5.8.17 BruteForce
	5.8.18 ChangeAttributeName
	5.8.19 ChangeAttributeRole
	5.8.20 ChangeAttributeType
	5.8.21 ChiSquaredWeighting
	5.8.22 CompleteFeatureGeneration
	5.8.23 ComponentWeights
	5.8.24 CorpusBasedWeighting
	5.8.25 Date2Nominal
	5.8.26 DeObfuscator
	5.8.27 DensityBasedOutlierDetection
	5.8.28 DistanceBasedOutlierDetection
	5.8.29 EqualLabelWeighting
	5.8.30 EvolutionaryFeatureAggregation
	5.8.31 EvolutionaryWeighting
	5.8.32 ExampleFilter
	5.8.33 ExampleRangeFilter
	5.8.34 ExampleSet2AttributeWeights
	5.8.35 ExampleSetCartesian
	5.8.36 ExampleSetJoin
	5.8.37 ExampleSetMerge
	5.8.38 ExampleSetTranspose
	5.8.39 ExchangeAttributeRoles
	5.8.40 FastICA
	5.8.41 FeatureBlockTypeFilter
	5.8.42 FeatureGeneration
	5.8.43 FeatureNameFilter
	5.8.44 FeatureRangeRemoval
	5.8.45 FeatureSelection
	5.8.46 FeatureValueTypeFilter
	5.8.47 ForwardWeighting
	5.8.48 FourierTransform
	5.8.49 FrequencyDiscretization
	5.8.50 FrequentItemSetAttributeCreator
	5.8.51 GHA
	5.8.52 GeneratingForwardSelection
	5.8.53 GeneratingGeneticAlgorithm
	5.8.54 GeneticAlgorithm
	5.8.55 GiniIndexWeighting
	5.8.56 GroupBy
	5.8.57 GuessValueTypes
	5.8.58 IdTagging
	5.8.59 InfiniteValueReplenishment
	5.8.60 InfoGainRatioWeighting
	5.8.61 InfoGainWeighting
	5.8.62 InteractiveAttributeWeighting
	5.8.63 IterativeWeightOptimization
	5.8.64 KennardStoneSampling
	5.8.65 KernelPCA
	5.8.66 LOFOutlierDetection
	5.8.67 LabelTrend2Classification
	5.8.68 LinearCombination
	5.8.69 MergeNominalValues
	5.8.70 MinimalEntropyPartitioning
	5.8.71 MissingValueImputation
	5.8.72 MissingValueReplenishment
	5.8.73 MissingValueReplenishmentView
	5.8.74 ModelBasedSampling
	5.8.75 MultivariateSeries2WindowExamples
	5.8.76 NameBasedWeighting
	5.8.77 NoiseGenerator
	5.8.78 Nominal2Binary
	5.8.79 Nominal2Binominal
	5.8.80 Nominal2Date
	5.8.81 Nominal2Numeric
	5.8.82 NominalNumbers2Numerical
	5.8.83 Normalization
	5.8.84 Numeric2Binary
	5.8.85 Numeric2Binominal
	5.8.86 Numeric2Polynominal
	5.8.87 Obfuscator
	5.8.88 PCA
	5.8.89 PCAWeighting
	5.8.90 PSOWeighting
	5.8.91 Permutation
	5.8.92 PrincipalComponentsGenerator
	5.8.93 RandomSelection
	5.8.94 Relief
	5.8.95 RemoveCorrelatedFeatures
	5.8.96 RemoveUselessAttributes
	5.8.97 SOMDimensionalityReduction
	5.8.98 SVDReduction
	5.8.99 SVMWeighting
	5.8.100 Sampling
	5.8.101 Series2WindowExamples
	5.8.102 Single2Series
	5.8.103 SingleRuleWeighting
	5.8.104 Sorting
	5.8.105 StandardDeviationWeighting
	5.8.106 StratifiedSampling
	5.8.107 SymmetricalUncertaintyWeighting
	5.8.108 TFIDFFilter
	5.8.109 UseRowAsAttributeNames
	5.8.110 UserBasedDiscretization
	5.8.111 W-ChiSquaredAttributeEval
	5.8.112 W-CostSensitiveAttributeEval
	5.8.113 W-FilteredAttributeEval
	5.8.114 W-GainRatioAttributeEval
	5.8.115 W-InfoGainAttributeEval
	5.8.116 W-LatentSemanticAnalysis
	5.8.117 W-OneRAttributeEval
	5.8.118 W-PrincipalComponents
	5.8.119 W-ReliefFAttributeEval
	5.8.120 W-SVMAttributeEval
	5.8.121 W-SymmetricalUncertAttributeEval
	5.8.122 WeightGuidedFeatureSelection
	5.8.123 WeightOptimization
	5.8.124 WeightedBootstrapping
	5.8.125 YAGGA
	5.8.126 YAGGA2

	5.9 Performance Validation
	5.9.1 Anova
	5.9.2 AttributeCounter
	5.9.3 BatchSlidingWindowValidation
	5.9.4 BatchXValidation
	5.9.5 BinominalClassificationPerformance
	5.9.6 BootstrappingValidation
	5.9.7 CFSFeatureSetEvaluator
	5.9.8 ClassificationPerformance
	5.9.9 ClusterCentroidEvaluator
	5.9.10 ClusterDensityEvaluator
	5.9.11 ClusterModelFScore
	5.9.12 ClusterModelLabelComparator
	5.9.13 ClusterNumberEvaluator
	5.9.14 ConsistencyFeatureSetEvaluator
	5.9.15 ConstraintClusterValidation
	5.9.16 CostEvaluator
	5.9.17 FixedSplitValidation
	5.9.18 ItemDistributionEvaluator
	5.9.19 IteratingPerformanceAverage
	5.9.20 MinMaxWrapper
	5.9.21 Performance
	5.9.22 PerformanceEvaluator
	5.9.23 RegressionPerformance
	5.9.24 SimpleValidation
	5.9.25 SimpleWrapperValidation
	5.9.26 SlidingWindowValidation
	5.9.27 T-Test
	5.9.28 UserBasedPerformance
	5.9.29 WeightedBootstrappingValidation
	5.9.30 WeightedPerformanceCreator
	5.9.31 WrapperXValidation
	5.9.32 XValidation

	5.10 Visualization
	5.10.1 CorrelationMatrix
	5.10.2 CovarianceMatrix
	5.10.3 DataStatistics
	5.10.4 ExampleVisualizer
	5.10.5 ExperimentLog
	5.10.6 LiftChart
	5.10.7 ModelVisualizer
	5.10.8 ProcessLog
	5.10.9 ROCChart
	5.10.10 ROCComparator
	5.10.11 TransitionMatrix

	6 Extending RapidMiner
	6.1 Project structure
	6.2 Operator skeleton
	6.3 Useful methods for operator design
	6.3.1 Defining parameters
	6.3.2 Getting parameters
	6.3.3 Providing Values for logging
	6.3.4 Input and output
	6.3.5 Generic Operators

	6.4 Example: Implementation of a simple operator
	6.4.1 Iterating over an ExampleSet
	6.4.2 Log messages and throw Exceptions
	6.4.3 Operator exceptions and user errors

	6.5 Building operator chains
	6.5.1 Using inner operators
	6.5.2 Additional input
	6.5.3 Using output

	6.6 Example 2: Implementation of an operator chain
	6.7 Overview: the data core classes
	6.8 Declaring your operators to RapidMiner
	6.9 Packaging plugins
	6.10 Documentation
	6.11 Non-Operator classes
	6.12 Line Breaks
	6.13 GUI Programming

	7 Integrating RapidMiner into your application
	7.1 Initializing RapidMiner
	7.2 Creating Operators
	7.3 Creating a complete process
	7.4 Using single operators
	7.5 RapidMiner as a library
	7.6 Transform data for RapidMiner

	8 Acknowledgements
	A Regular expressions
	A.1 Summary of regular-expression constructs

