INFORMATION INTEGRATION FOR CONCURRENT
ENGINEERING (11 CE)
|IDEF4 OBJECT-ORIENTED DESIGN METHOD
REPORT

DRAFT - January 1995

KNOWLEDGE BASED SYSTEMS, INC.
ONE KBSI PLACE
1408 UNIVERSITY DRIVE EAST
COLLEGE STATION TX 77840-2335

HUMAN RESOURCESDIRECTORATE
LOGISTICSRESEARCH DIVISION

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573

INFORMATION INTEGRATION FOR CONCURRENT
ENGINEERING (11 CE)

IDEF4 OBJECT-ORIENTED DESIGN METHOD
REPORT

Version 2.0

DRAFT - January 1995

Knowledge Based Systems, Inc.
OneKBSI Place

1408 University Drive East
College Station TX 77840-2335

Prepared for:

Armstrong Laboratory
Human Resour ces Group
WPAFB OH 45433-6573

TABLE OF CONTENTS

TABLE OF CONTENTS. ..ottt sttt ste ettt st e st e s be e s beesbe et e s atesaeesbeesbeebeeabesasesaeesbeesbaebeesbeesbeensesasesaneereenbeenss i
LIST OF FIGURESottt ettt et ettt bt st e s b e s he e s b e e teeatssaeesbeeebeeabeeabesbeesbeesbeesbeesbeesteentssaesereenbeebenns Y,
LIST OF TABLESo oottt ettt ettt ettt st e bt e be et e e st e e atesbeesbeeebeebeeasesasesaeeebeabeebeeabesabesaeesbeesbeesbesnsesnnas iX
o AN O TSP X
FOREWORD.ccottittcte ettt ettt s e st e s te e te s te st e s ae e e beebeeabeeaseebeeabe e beenbesabesaeesaeesaeesseeebeebeenbesnbesatesanesanesreenseennes Xi
IMETHOD ANATOMYoovtitieteeteeeeeeteeetteeseaeeseeeesesesseaseeeseenseenseessesssessseessenssenssesssessessenssenssesseassesasenssenseeneeenseesseeseenseans xi
FAMILY OF METHODSoeoveitieteeteeeeeeueeeteeeteeeseeeseneseseeeseeesseseanssanseasssasseassessanssenssenesesseassessenseenseesseeseesseenseeneseneeenes xiii
EXECUTIVE SUMMARY ..ottt ettt ettt ettt e et e s tesstestesaeesbeesaeetssaesasesabesbeeatesasesbeesbessbesnseesssensssnsssresatesarenns 1
WHAT IS IDEFA? ...ttt ettt ettt ettt et e et e e at e e teeeteeeteeateeateeaeeeseeeteeteenseesseesseeaeesteeeseeseensesnsenns 1
IDEFZ LAYEIS.... ..o cueieteeeteeteete ettt st ettt et e eae e s bt et e e be e abe s aeeshe e she e aae 2 e e £ ae e eae e eRe 2 b e e m b e ea b e eaeesheeeheeseeeaReenneenneeananbeabeans 2
IDEFZ ArtifaCt SLALUS.......veiiceeiteeeitiecieecctee et e et e st e e eteeebeesbeeeabeesbeeeabeesabeeesseesabeaasseesabeessseesabeessseesaseessseesaseensseeses 3
IDEFZ DESIGN IMOOEIS. ...ttt ettt st b e bt e he b et et e se e b e s bt eb e eb e e st e mbess e beseeebe s bt eneeneeneaneeres 3
DESION FEALUMNES ...ttt ettt ettt st b e he b et e e et e se e besaeeh e e Rt eae e e e b e beeheehe e Rt es e e e e aeembens e beseeebeeneaneeneeneaneeres 3
WHY USE IDEFA? ...ttt ettt ettt e ettt et et e et e et e eteeeteeteeateetteeseeeteeteenseesseerseeseeeteeeseeseenseensens 3
HOW DOES IDEF4 WORK?......cciiiiieiiiiie ettt etite e ettt e eetteeestteeasstbeeesssaeeessssaaaassseeesssaesssssseeeassseesasssseesssssaesssssesesnsseens 5
PURPOSE AND ORGANIZATION OF THIS DOCUMENTccctiiiiiiiiieeiiiteeitteeesiteeeeeresessesaeeesssseesssssesessssseessssssesssssesssssseens 7
SUMMIARY ...tiiiitttieeitieeeetteeeettteeestteeestseeeessssaeessssaaaasesseeassseaasssssasassssssasssessssssseesssssesassssssssssssesssssssesssssessnnssseessssseennns 8
INTRODUCTION TO IDEFA......coe ettt ettt ettt et te s sttt s aesae e e beeebeeabesabesbeesbeesbeesbeeseensesanesreeaseerenns 9
IDEF4 OBJECT-ORIENTED CONCEPTSccuutiiiiittteeeitteeeeeteeeeeteeeeeetteseeeaeeeaeasseeeeaseseeessseeeesssseeesseeeeessseseasseseeesseseenseeens 9
DOMIAINS ...ttt ettt et et e e b e e te st este e sbeeebesabeeaeeebeeabe e beeabesaseshsesbeesbeebesasesaeeeaeaebeenbeenbeesbesasesaeesheesbeeneensesnsesreesseenbenns 9
Features, Artifacts, and ODJECES........cc.cieiirieii et e st ae e ae s e e e e teseesbesaeseenbesneeneeneenseneeseenees 10
L0 o=t 1 T = 0 RS 13
ClaASSES. ... te ettt ettt ettt et e et e st e s be et te e ebeebeeaeesaeeebe e beeabesabeeheesbeesbe e beeaseeheeaheeabe e beeabeeabeeabeaheesheesheeareeteenbeeaeeereeareens 14
S oot TS S o< o S 15
P TITIONS......ccueietieete ettt et e e st e st e sbeesbeebesaseebeeebe e beeabesabesaeesheesheeabeeabeeaseaaeeebeeabe e beenbeeabenabesaeesaeesreenreenreenns 16
ALIETDULES ...ttt ettt ettt e et e et e et e e besaaesheesbeeabeeaseeaseebeeebeenbeeabessbesheesbeesbeesbeenseansesaseebeeabeenbeenbennbesnnesanas 18
L0 o= ot RS = = RSS 19
Y11 oo RO 20
1 SS= T LoT= oo oY o o) TR o S 21
Y | SRS 22
L0 o= ot B I (= o == RS 23
(O TT= 4 17AS TRV = SO PRSPPSO 23
RelationShipS @NG ROIESoiiiecece sttt et e e b e e sees e se e tenteseentesneeneeneeneeeeneenns 24
Tl 0TS 1= g Vo TSROSO 25
Encapsulation and INformation HidiNg.........ccoovieirierieeie et sne e e nnenns 26
IDEF4 PROCEDUREuviiiiitiieeeitee e ettt e et e e et e e et e e eeaee e e eteeeeeetaeaeeeaseaeeeasaeeeesseaeeeaseeeeaassseeesseeeeessseeeansssesennseeeeanes 27
IDEF4 ORGANIZATIONooiutiiiiiitiieeeetteeeeeteeeeeetteeeeetteeeeeaeeeeeetaeeeeesseseeeassaeeassseeeasseaeeeaseseeassseeansseseeessseseasssesensseeeeaees 28
S = Lo 1Y, Lo To 1= OO PP 29
Y= T4 T o Y/ 1= S 29
7= 1Y Lo g\ (oo [= OO OSORPR 30
Design Rational© COMPONENL........ccucieiireieeteeeertes e stesteseeseese e e srestesseeseeeeseestesaeasesseesseseesesaeseentessesseeneensensessenses 30
(DTS Lo g AN v = To AR o 1= ot or= o) S 30
SUMMARY .oiittee ettt e et e e ettt e e ettt e e e ettt e e e eataeeeeeateeeeeateeeeesseeeeasseeesseeeeaasseeeeaaeeeatteseeestaeeeesseeeeatteeeeeaaeeeanateaeans 31
IDEFA MODEL ORGANIZATION ..ottt ettt ettt ettt s testte e steestsstssaesabesebe s beenbeenbesseesaessaeeseeesrsenteenes 33

THE STATIC IMODEL......ccccoiiiiittiiee e e e eeetee e e et ettt e e e e e eeeaaeeeeeeeeeetaaaeaeaeeeeeeessasaeaeeeeesasttsseaeeeeeaetaaseeeeeeeaesssssaeeeeeeennsnrees 34

[DEFZ SIUCEUNE DIAQIAITIS. ...ccuteititeiteeteeieeeeeeseeste e shesaesseeaeese e beseeebesaesaeeae e e eaeeseeabesaesheeseeneaneeseenbesbesbeeneenseseseentas 35
IDEF4 Class INNeritanCe DIAgIaM.coeiiieriiriere sttt e e et bbb e e eaee e e be s bt sbe e e sbesbe et e e e eeseennas 35
REIAtION DIAZIAIM......couiitiiiieiiiiiiiie ettt ettt ettt ettt b et et eb bttt e bt e bt sb e bt e s et esteaeebeebese et e e ennenteiene 36

LNK DIAGIAIMttt ettt et ettt b et b e st b e et eb bt e bt sh e bttt ekt at et be s a et et n e eieene 37
INStance Link DIAGIAMLcc.eouiiiiiiriitet ettt ettt ettt b ettt sttt et eb e et e bttt e b et et ebeeaeeaeebesae st et ennenteneene 37
BEHAVIOR MODEL......c.uttiiiiiiiiieiiiteeeiteeeeiteeestteeeestbeeeesssseseassstaeassssseasssssesssssasssssssesssssssessssssesassssssessssesssssssessssssessnnsns 38
27 T\ Lo gl T To =10 USRS 38
DYNAMIC IMODELciiiuttiiieiiiieeeeitee e ettt e estiteeestbeeaestreaeasssseeesssseaaassssseassssseesssaesassssesassssssssssssesassssssssssseesssssssessssseennnsns 39
ClIENt/SErVEN DIBGIAITIS. ... ciueiieitiste ettt e e st e tesbe ettt st e se e e e ssebesaeabesheeae e e e s eaeeseeabesaeeheeaeensanbeseeabesaeeaeentansenbesaens 39

S =Ll B To = [1/ U STRRO PR 40
DESIGN RATIONALE COMPONENTutttieiititteeitteeeetrteessaseeessseeeassssssassssesssssesssssssssessssssssssssssssssssesssssessssssssssssseesssnns 41
DESIGN ARTIFACT SPECIFICATIONuvvieieiteeeiotteeeeereeessssesessseseasssssesssssssssssssssssssssessssssssssssssssssssssssssesssssssssssssesssnnns 42
ORGANIZATION OF AN IDEF4 PROJECToiiiitiiieiiiiieeciieeesite e e et te e eitteeesivaeeesstveeessasaaeesssaeeaassseeeesssseesssssseessssessnssseens 42
SUMMARY ..otiiiiitttteeiitteesiteeestteeestteeeatsaeeesesteeaassseeeassaeeassssesaasssssaasssseaassssssansssssesssssesassssssanssssessssssesenssssesnsssssensssenenns 43
STATIC MODEL ..ttt st sttt et te e s te et e st e s beesbe e beeabeeaeeebeaebeesbeeabesatesbeesbeesbeenesebeeebeabeenbesntesnsennnesnnes 45
OBJECT CLASS IDENTIFICATIONuuutiieietteeeitteeeeetteeeeeaeeeeeueeeeeetseeeeessseeeesssseeeseeseeeassaeeasseseaasssseenssseeensseseeesseseasseens 45
Tangible or PhySICal OBJECLS.......ciiiireie et st e re e e et esae e seestesreeneenaeneeneennens 45
Objects Based 0N ROIE OF PEISPECHIVEccveriiieieitieteeeeiestes et s eseeseeste s e sresresseesaeseensesseseessesseesennnensensessens 46
Events and StUatioNS @S OhJECLSc..cvuiriieiereeee e stese st se e et e st s e reese e e etesaesbesaeeseeseeeesteseentesaesseeneeneeneeseenses 47

T 1= = o1 o a1 @] ox S 48
Soecification and ProCedUure ODJECES........ccciiiiriiii et e et eseese e tesaesre e e e e e e stesneeseenaenseneesnens 48
IDEF4 OBJECT NAMING CONVENTIONSooiiiiiuiiieeitteeeeitteeeeeteeeeeteeeeestseeeaeasseeeasseseeesssesasssseeatseeeeessseeeassssseansseeeannes 49
L0011 a1 g = o 21 ST 49
STATIC MODEL DIAGRAMSooiiiitiiieeeitie e eeteeeeette e e ettt e e eeaeeeeeaeeeeeeaaeeeeeaseeeeeaeeeeesaeeeaesseseeesssaeeenssseeesseseenssesseasseeeans 50
S Lo (L D= To T ' ST 51

Tl = g = g Tor T DT To T 0 S 53
REIATION DIAZIAIM......ctitiieieieiet ettt ettt s et et et et et et es e et e ea e et e e e s e en e esees e et e bt ebees e b e s ensemeeseebeebeabenbenseneeneeneeneane 55

51111 D Ve 13 s OO OSSOSO 56
INStANCE LINK DIAGIAM. ..ottt ettt b ettt e st et e e b e st e s e s e e st es e eeeebesb e s e s e eneemeeseebeebeabenbenseneeneeneeneane 57
OBJECT STRUCTURE SPECIFICATIONSuuvtiiiitteeeeiteeeeeeteeeeeteeeeeesaeeeeeaeeeeesseseeeesseseeesssaeeasseseeassseeeessseeeassesseesseseenssnens 58
ADVANCED FEATURES ..ottt iittee ettt e ettt e et e e e et e e e eetae e e eeaaeeeeeaaeeeeetseeeeeaseeeeenseseeeesteseeesseeseaseseeensseeseaees 62
Advanced FeatUres Of INNEITANCEc.occviieiciecte ettt ettt be e sae st e saeeebeesbeebeenbeeabesanesaeas 62
Specialization Based On EXternal PrOtOCOLS.c..iiiiuiiiieieiiieieet sttt sttt ettt st ens 63
Specialization Based on Internal IMplementation.ceeiiiririnierieieie ettt enes 63
Foecialization Based on SUBCIAss and SUD TYPE........ccviireeriere e e e neneeneesne s 63
Advanced FEAtUreS Of REIGLIONS.c.ioiiiiiieiece ettt et et e e be et e s aee s ae e saeesbeebeeabesbeesbeenbesnbesatesanesanes 65
CLASS FEALUIES........cueecteeteeie ettt e et e et st esbe e e be e be e besabesheesbeesbeebesasesaeesaeeabeenbeeabeeabesabesaeesaeesbeeseenteensesseesrentenns 66
ALTERNATE IDEF 1 X CARDINALITY SYNTAXutiiieiuiieieitteeeeiteeeeeteeeeeeteeeeeetaeeeeetseseeesssesaesssesasseseesssesseassseeansseseannes 67
BEHAVIOR MODEL ...coviictiite ettt et et ettt et e b e et e e atesaeesaeesaeestestesaesaaessbesabeenbeenbeenbesasesaeesaeesaeesseenteenes 73
BEHAVIOR DIAGRAMooiiiiiiiiieiiiteeeiiteeeeiteeestteeeetveeeesssseeassssaaaastsseeasssssesssssasssssssesasssssssssssseessssssessssseesssssssesssssesannsn 73
BEhaVi OF DIAgIam SYNEAX ... cccuerierierieitieteeeeee ettt sttt se e e eesbe bt sae e e e rs e besaesbesaeaheeae e s enbeseesbesaesbeeneeneeneeseentas 73
ClasseS ANA MELNOUS..........coooiiiiie ettt e s e e etee e s bb e e e aee e sabeeeaseesabeessseesabeesaseessabeessseesabeessseesabeessseesns 76
BEHAVIOR SPECTIFICATIONeceiuttteeirteeassteeessseeeaeseseassssesesosssesassssssassssesssssssssssssssassssssssssssesssssssssssssesssssssessssssessnnsns 76
DY NAMIC MODEL ...ttt sttt ettt et e bt e e be et e e besabesaeesaeesaeesbeeasesaesebeaebeenbeenbeenbesabesanesaeesaeesseensennns 79
OVERVIEW ...ttt ettt ettt e ettt e e e et e e e ettt e e e eetae e e eeaaeeeeeaaeseeesteeeeeeasseeeeaseseeenteeeeesssaeeasseseaenteseeeessseeeanseseeensseeeeansenas 79
ACHON/IMESSAQE ... eeeeueertesees e st et esaeeseeee s e s testesbesaeeseeseesseeeseesbesaeaseaseaseeseensesseseeatesaeeseeneenseneeasenteseenbesseeneenaensensennnns 79
Y | RS 80
AL TTANSITIONS.uvictieetieitieiteeiteiee st e st e ete ettt eaeeebe e be e besabesaaesbeesbeeabesasesaeesaeesseenbeeabeease et besasesaeesaeesseentesnsessnessentenns 80

L0 o= ot B I (= 1o - ST 81

L© o= ot o 4/010 10 11 7=1 1)1 S 81
CLIENT/SERVER DIAGRAM.........uutiiiiitiiieeiteee e ettee e et e e ettt e e e eaeeeeeetaeeeeeaaeeeeeateaeeetaeseeeassaeeasseseeeteeseessseeensseseeensseeeennneens 82

il

T g o L AN =T g Y= | USSP
Identify Compatible Components
Assemble COMPONENLSccceruirrerreieriinenenreterereeeesee e
Simulate Client/Server Modelcocooevvevirinininineneenncneneee
Develop State DIAGIam........cocuevuieiiriieiesieeieeetete sttt ettt sttt ettt beeneesbeentesbeeaeenseeneennes

Client/Server Encapsulation of Legacy and Commercial Systems

STATE DIAGRAMooiiiiiiiiiiiiiiieiccieietccteetcee s

Banking EXAMPIE ..o e
Step 1: Identify States........cccoeveevieerininienenieeiceeeeeseene
Step 2: Identify Internal Events....................
Step 3: Identify Kinds of External Events
Step 4: Identify Actions........cccceevvevereenee.
Step 5: Simulate State diagram...................
Step 6: Generate Codecouvrieriirienieierieeieeeeie e

OVEN EXAMPLE.......coiiiiiiiiiiiiiiitciteeiccteec e

Example of Client/Server Diagram: Oven SyStemcooeveerieeienenenennens
Step 1: Identify Compatible Components............ccccceerverueenene
Step 2: Assemble Components....................
Step 3: Simulate Client/Server Diagram.....
Step 4: Generate Codecovuveieriierienieniereeieeieiene

Example of State Diagram: Microwave System
SEEP 11 IACIIEIEY STAEScvitenteiiciieiceie ettt ettt ettt e b e sttt et e b e bt et b ettt be e bt sae bt n et eseeaeenes
Step 2: Identify Internal Events
Step 3: Identify Kinds of EXternal EVENLSccccciriiiriiiiiiiiiiinenc ettt st
StEP 4: TACNLITY ACHONS ...veeutitieieitieteettete ettt et et et e st e et e tesete bt eatebesstebeestasbeesbe bt ensaseestenseeneanseeseenseensanseentenseensanseensens
Step 5: Complete State Diagram
Step 6: SIMulate State dIAZIAIM.......c.cocirtiiiriiieiete ettt ettt ettt ettt st st ettt ebe bt b st e e e e eneae
SEEP 71 GENETALE COUEnvinieiieniietiete ettt ettt et ettt e bt et e b e s et et e eat et e ssee b e e st anbesstenseensenbesseenseeneenseseeenseeneensesneenseensanee

DESIGN RATIONALE COMPONENToociiirieiseseee et s e nne e 107

IMOTIVATIONuiteutetitenteteetestesessestesaesessesessassesessasseseasenseseasasseseasansessasansesesansessesensesesenseseesansessesesenseseesenseseasensenenns
NATURE OF DESIGN RATIONALEcvetiitiietteteieeeetestestetetessssesseseesessesessensesessansesessensesessessesessensesessensesessensesessensesenes
Design Rationale Phenomena....
Design Rationale Concepts........
Phasel: Describe Problem......
TACNEIEY PTODIEIIS ..ottt et b ettt s et b ke b et et e s es e eb e e st ebeeb e b e b et eneeneeneeseebeabenbenseneeneens
TA@NEIEY COMSIIAINES ...ttt ettt ettt ettt e bttt b e et e b e st e st e s e et e e bt st e b e s e es e emees e ebeeb e b e sensenteneeneeseebeabensenseneeneens
Identify Needs
Formulate Goals and REQUITEIMENTSc.eiuiiiiiiitiieieei ettt ettt s et sttt e e s e s et et eseeneeseebesbenbenseneeneens 113
Phase ll: Formulate SOlULION SITAtEgIES.ccueiirereriereeeeestesesee s seeeeeesee e seesressesseeseeseestesaesresseeseeneensensessens 114
RATIONALE DIAGRAMSuttiuietiteeietietestettetestestesesseseasessesessesseseasansessasassesessessessesensessesensessesensessesensessesensensesessensesens 115
RATIONALE SUPPORTceutteutteuteettesttenteenteeteesteeutesueesteenteenteesteastesseesbeeseenseemeesatesaeeaseenseen st anteesseeseesbeenbeenbeenbeenseenteans 118
FEALUINE TAXONOIMY .. .vieutieeeeeeeesteestees e eseeseesseesseasseeseenseeseesseesseesseesseenseeneesseeaseeseenseensennsessansseesanenseenseensesnsennenssenss 119

IDEF4 DESIGN DEVELOPMENT PROCEDUREcccciiiiiitiice s 121

DESIGN ROLES AND STRATEGIESceeiutteitttesiteeniteesiteeniteesuteesiteessseessseesaseessseessseessstessseessseesseessseesseessseessseessseesssessnne 121
D= T gl 0] L= ST USROS RPN 121
DS [0 g IS (= 1= o= TSSO SRURRTORN 121
StrategizZing the DEVEIOPEr FOCUScuiii ittt sttt et et eb et eese et e see b e saesae e e e sebeseeneas 122

IDEF4 DESIGN EVOLUTION PROCESSccuuttiiittiititeittesiteeetee st teeitee st e siteesabtesateesabeesaseesabaeesseesabaeenseesnbaeanseesnbeeenseeanne 123
Organization Of IDEF4 DESION LAYEI'S......coirieiiierieriesie ettt st e e et e b s st e e e e et saeeneesenbeseeneas 123
DESIGN ACTIVITIES.. ...ttt sttt ettt b e et b e et bt e bt e ae e st e e em b e eEeeE e e b e eaeeh e e Rt eneeaeeas e besheebesaeeneeneasenbesaens 124

Partition
CLaSSTEY/ SPECILY ..ottt et ettt ettt et e et e bt eat et e e at e bt e st e b e eat e bt e st e bt en s e bt entesbeen b e bt enteebeenbe et e enteeneentes 126
AASSCIMDIE ...ttt ettt b e ettt a e e b e e h e et e a e e b e e Rt en b e ea e e bt e Rt e bt en b e bt enteeheenbe ekt enteereenbeeseenteeneentes 126
Simulate
REAITANZE......eeeee ettt et h e et e s bt et eeat e et e e s aa e e bt e eut e enbeesas e e bt e eabeenbeeenbeeeabeebeeeateenaneenbeenaee 126
IDEFZ Phases Of DESIONceueeuieiiiiere ittt sttt sttt sttt st bt b e aesae et e se et e saeeb e s st eae e e e se e beseeebesaeaneeeasanbesaeas 127

il

Phase 0 Analyze SyStem REQUIFEMENLScoouiiirierieiteeeeiee sttt e e et e sbe s e s e e e e ssesbesaesbesaesaeeneensanseseens 128

Phase 1 SySLEITELEVE] DESIGN......cuiiuirieeiieieieie sttt ettt sttt bt e e e eeseesbesaesbesseeae e e e seebesaeebesaeeaeeneaneanbesaeas 128
Phase 2 AppliCatioN-LEVEl DESIGNco.eiiiiie ettt ettt b et eess e besaesbesaesae e e e neenbeseens 128
Phase 3 LOW-LEVE] DESIQN......ccuiiueiuirieeieieeiiesie sttt ettt ae e be s ae e ae e e e e e eesee s ke saesbeeseeme e e e seeabeseeebesaeeneeneensanbesaeas 128
USING OTHER IDEF METHODS IN ANALYSISuuiitiiiiiiiiiiiiie ittt sttt st s 128
Applying IDEF@ (Function Model) to Object-Oriented DESIGN.........ccvriererreiererieisesieee s 129
Applying IDEF1X (Data Model) to Object-Oriented DESIQN.......cccaerreeriereriene e seea 130
Applying IDEF3 (Process Model) to Object-Oriented DESION........cocuerererinireneeie et 132
REFERENGCE LIST ..ttt ettt nen e s n e renenenn e enas 133
ACRONY M S ...ttt e bt e beae s e b e bt sE s b e bt £ e b e b £ 1E £ eb e £ S b e b e e s £ e b e At s A e b et Ao e b e e b ek e e e b e beaeebebesesbe e et 135
TRADEMARK NOTICE ..ottt s e s st r e s et een e ne st nen e nne e nas 137
APPENDIX Az LINEAR SYNTAX Lttt sttt st sttt ss st st se b b s bebe st s e e bese st ebesesssbebesbebesesaesessanas 139
IDEF4 LABEL SYNTAX ..ttt ittt sttt st st sh sttt sa e sa b st saesa e e 139
Dynamic Model Diagram LADEIS ...ttt et s sae e e e e b sae s 140
Satic MOdE! DIiagram LADEISooiieieieeeeee ettt et bttt e e e et ae b e s et eae e e e naenbeseenaas 142
Behavior Model Diagram LADEIS. ..ottt s bt a e ae e e e b nne s 145
ARTIFACT SPECIFICATION SYNTAX ...c.utiuiiiiiiiiiiiiitiitieiiete sttt ettt st s et b e s et sae e b s e ne 146
APPENDIX B: IDEF4 GLOSSARY ..ottt sttt n e n e n e nen e snesenenes 150

v

LIST OF FIGURES

FIGURE 1 ANATOMY OF A METHOD.......oo et X1l
FIGURE 2 IDEF4 USED BETWEEN DOMAIN ANALYSISAND IMPLEMENTATION.....ccooiviiiiiineee 2
FIGURE 3 RISING COST OF CORRECTING SOFTWARE ERRORS.ccooiiriieeerceee e 5
FIGURE 4 DIMENSIONS OF IDEF4 DESIGN OBJECTScooioiiiieeeree et 6
FIGURE S IDEF4ADESIGN ACTIVITIES ...ttt 7
FIGURE 6 THE BANK OBUJIECT ..ottt sttt s et s n et sn e nenn 10
FIGURE 7 ABSTRACTION OF PASSENGER AIRCRAFT ..ottt 11
FIGURE 8 DESIGN ARTIFACT USED FOR DESIGN EVOLUTION ...t 13
FIGURE 9 IDEF4 OBJECT INSTANCES. ...ttt nneneas 13
FIGURE 10 IDEF4 OBJECT INSTANCES AND OBJECT CLASSEScoooiieee s 15
FIGURE 11 INHERITANCE RELATING SUBCLASS AND SUPERCLASS.......cooeoiereereeeeneeenre e 16
FIGURE 12 SEMICONDUCTOR CHIP ISMADE OF TRANSISTORS........ccooiiiriiineeeeeeeeeee s 17
FIGURE 13 THE PARTITIONS MANAGE DESIGN COMPLEXITY ...cciiiiiiiiereeneseeesreseere e 18
FIGURE 14 INFORMATION KEPT BY EMPLOYER ABOUT EMPLOYEE AND CARccccvviiiiiiies 19
FIGURE 15 STATESFOR HEATER ...ttt nneneas 20
FIGURE 16 THE ASSIGN AND CANCEL METHODS FOR AIRLINE FLIGHT RESERVATION. 20
FIGURE 17 COMMUNICATION BETWEEN CONDUCTOR AND ORCHESTRA ..o 21
FIGURE 18 THE BEHAVIOR DIAGRAM FOR METHODSIMPLEMENTING “LOUDER”c.cc..... 22
FIGURE 19 WATER HEATER OBJECT LIFE CYCLE. ... 23
FIGURE 20 OBJECTS COMMUNICATING WITH MESSAGES.........ccciitiieeiieeene e 23
FIGURE 21 EMPLOYEE/CAR RELATION ...ttt 24
FIGURE 22 TRUCK/CAR INHERITANCE FROM VEHICLEccoiiiiienceeeeeeeee e 25
FIGURE 23 LEVELS OF ENCAPSULATION IN IDEFA......ccooiiieiieeereeee e 26
FIGURE 24 HIGH INTERNAL OBJECT COHESION VERSUSLOW PARTITION COUPLING. 27
FIGURE 25 THE MODES OF IDEF OBJECT-ORIENTED DESIGN......ccccciiiniineneenereeesreseeeseesee e 28
FIGURE 26 ORGANIZATION OF THE IDEF4 PROJECT ..ottt 34

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

FIGURE 38

FIGURE 39

FIGURE 40

FIGURE 41

FIGURE 42

FIGURE 43

FIGURE 44

FIGURE 45

FIGURE 46

FIGURE 47

FIGURE 48

FIGURE 49

FIGURE 50

FIGURE 51

FIGURE 52

FIGURE 53

INHERITANCE DIAGRAM ..ottt 35
IDEF4 CLASSBOX SHOWING LEVELS OF INFORMATION HIDINGccooviiiiiiiieeene 36
RELATION DIAGRAM ...ttt 36
LINK DIAGRADM L.ttt et sttt se e n e s e bt s nesnens 37
INSTANCE LINK DIAGRAM ..ottt s 38
BEHAVIOR DIAGRAM ..ottt st nn s 39
CLIENT/SERVER DIAGRAM ..ottt 40
EMPLOYEE STATE DIAGRAM ..ottt 40
DESIGN RATIONALE DIAGRAM ...ttt 41
IDEF4 DOCUMENT STRUCTURE.....ccoiiiiineee s 42
PHY SICAL OBJIECTS.....cc ettt 46
ROLE OBJIECTS....cce ettt s r et e r e bbb ne e ns 47
EVENT OBJIECTS ...ttt e e 47
INTERACTION OBJIECTS.... oottt s s nne s 48
SPECIFICATION AND PROCEDURE OBJECTS......ccoiiereeerereee et 49
KINDS OF IDEF4 RELATIONSHIPS ...t s 51
STRUCTURE DIAGRAM RELATION/LINK SYMBOLS........ceoiiieenreeeneeenes e 52
STRUCTURE DIAGRAM MULTIPLICITY CONSTRAINTS ..o 52
KINDS OF IDEF4 INHERITANCE RELATIONS......cco ot 54
INHERITANCE DIAGRAM FOR OVENS........o ot 55
RELATION DIAGRAM ...ttt et 56
LINK DIAGRADM L.ttt st r e et se e ne e bt e nesnens 57
INSTANCE LINK STRUCTURE DIAGRAM ..ottt 58
SUBTYPE/SUPERTYPE EXTERNAL INHERITANCE RELATIONSHIP......cccovviiiiiciiiens 63
SUBCLASS/SUPERCLASSINTERNAL INHERITANCE RELATIONSHIPccoovvviiiriricine, 63
SUBCLASS/SUPERCLASS INHERITANCE RELATIONSHIP ...cocviiiiiiieeeee e 64
INHERITANCE RELATIONSHIP OF COMPLEX AND REAL NUMBERS.........cccoooieiinenn. 64

Vi

FIGURE 54

FIGURE 55

FIGURE 56

FIGURE 57

FIGURE 58

FIGURE 59

FIGURE 60

FIGURE 61

FIGURE 62

FIGURE 63

FIGURE 64

FIGURE 65

FIGURE 66

FIGURE 67

FIGURE 68

FIGURE 69

FIGURE 70

FIGURE 71

FIGURE 72

FIGURE 73

FIGURE 74

FIGURE 75

FIGURE 76

FIGURE 77

FIGURE 78

FIGURE 79

FIGURE 80

TERNARY RELATION INVOLVING PERSON, DOG, AND LICENSEcccooviinineninnnn 65
SECONDARY RELATIONSHIPS ..ot e 66
RELATION INVOLVING OBJECTS.......oooiieeirieeeerreeee e 66
LINK DIAGRAM FOR PERSON/DOG/LICENSE RELATIONccceoiiieiriieenieeese e 66
REPRESENTATION FOR CLASS FEATURES. ...t 67
CROWSFEET AND IDEFLX SYNTAX ..ottt 68
IDEF1X CARDINALITY SYMBOLSUSED INIDEFA.......cooieiereeeee e 69
IDEF4 EQUIVALENT REPRESENTATIONSTO IDEF1X RELATION ..., 70
IDEF1X CATEGORIZATION AND EQUIVALENT IDEF4 INHERITANCE ..o 71
EXAMPLE OF BEHAVIOR DIAGRAM SYNTAX ..ot 74
BEHAVIOR DIAGRAM WITH A PARTITION ..o e 74
BEHAVIOR DIAGRAM INCLUDING EXTERNAL SPECIALIZATION.....cccocvviviiieieienenne, 75
BEHAVIOR DIAGRAM INCLUDING INTERNAL SPECIALIZATION.....ccccovireineenereens 75

STATE DIAGRAM FOR A BANK ACCOUNT ..ottt 80
EVENT/MESSAGE SYNTAX .ttt sbe s b 81
CLASSESINVOLVED IN FUNDS TRANSFERccoiiiriiiereeene et 81
INSTANCES INVOLVED IN FUNDS TRANSFERociiiiiic s 82
EVENT/MESSAGE COMMUNICATION BETWEEN OBJECTS ..o 83
TRACK RACE SCENARIO ...ttt s s nn 84
DESIGN FOR COTS CLIENT/SERVER SYSTEMccooiiirieirrcies e 86
OBJECT STATE COMMUNICATION......iiiiiiie ittt 86
STATE DIAGRAM FOR A BANK ACCOUNT ..ottt 88
STATE DIAGRAM FOR A BANK ACCOUNToiiiiieierr e 92
A MICROWAVE OVENWITH A SIMPLE INTERFACE ..o 95
IDEF4 DESIGN PARTITION FOR MICROWANVE ... 96
COMPONENTSIN MICROWAVE EXAMPLE ..o 96

vii

FIGURE 81

FIGURE 82

FIGURE 83

FIGURE 84

FIGURE 85

FIGURE 86

FIGURE 87

FIGURE 88

FIGURE 89

FIGURE 90

FIGURE 91

FIGURE 92

FIGURE 93

FIGURE 94

OVEN CONTROLLER CLIENT/SERVER DIAGRAM ...cooiiiiriinreeesesee e 97

OVEN WITH A SIMPLE INTERFACE ...t 99
OVEN CONTROLLER STATE DIAGRAM ..ottt 104
STATIC, DYNAMIC, AND REQUIREMENTSMODELSFOR SYSPARTITION 112
FUNCTIONS AND USE SCENARIOSMAPPING TO REQUIREMENTSAND GOALS...... 113
THE OBSERVATION/ACTION VIEW OF DESIGN RATIONALE ..ot 117
THE IDEF4 FEATURE TAXONOMY ..ottt 119
DEVELOPER FOCUSAT THE DESIGN LEVEL ..ot 123
IDEF4 DESIGN LAYERSRELATIVE TO MODEL AND STATUS. ..o 124
DIAGRAM BASED ON IDEF@.......ccciiiieiiiieiettsieesie sttt 130
IDEF4 EQUIVALENT REPRESENTATIONSTO IDEF1IX RELATION ..o 131
IDEF1X CATEGORIZATION AND EQUIVALENT IDEF4INHERITANCE.......ccoiiiiinnne 132
CLIENT/SERVER DIAGRAM SYNTAX ..ottt 141
STATE DIAGRAM SYNTAX ..ottt e sr e sn s 141

viii

LIST OF TABLES

TABLE 1. OBJECT SPECIFICATION FORMcooiiiiiiiieeneseeee et 58
TABLE 2. OBJECT SPECIFICATION FORM EXAMPLE. ... 59
TABLE 3. PARTITION SPECIFICATION FORM ..ottt 60
TABLE 4. RELATIONSHIP SPECIFICATION TABLE ..o 61
TABLE 5. RELATIONSHIP SPECIFICATION TABLE FOR WORKS FOR/MANAGES.........ccoovecinennas 62
TABLE 6. LINK SPECIFICATION TABLE EXAMPLE ... 62
TABLE 7. BEHAVIOR SPECIFICATION ..ottt e 77
TABLE 8. IDEF4 ACCOUNT STATE SPECIFICATION FORMociiiiiiiiniiieeeeeeee e 89
TABLE 9. INTERNAL EVENT SPECIFICATION FORM FOR ACCOUNTcccciietreneee s 90
TABLE 10. EXTERNAL EVENT SPECIFICATION FORM FOR ACCOUNTccoiniiiie e 91
TABLE 11. ACTION SPECIFICATION FORM FOR ACCOUNT ..ot 93
TABLE 12. OBJECT STATE TRANSITION MATRIX FOR ACCOUNTocoiiiriiiieee e 93
TABLE 13. OVEN CLIENT/SERVER COMMUNICATIONS MATRIX ...ociiirieiiiriireinenreeserresesrereesesneeenens 98
TABLE 14. IDEF4 CONTROLLER OBJECT STATE SPECIFICATION FORMccoooeiiiiiiciiineeceres 100
TABLE 15. INTERNAL EVENT SPECIFICATION FORM FOR CONTROLLER......ccccooiiieeieee 101
TABLE 16. INTERNAL EVENT SPECIFICATION FORM FOR CONTROLLER.......ccccooviiiiiiieiee 102
TABLE 17. ACTION SPECIFICATION FORM FOR CONTROLLERcoiciieireirerreeseeees s 103
TABLE 18. OBJECT STATE TRANSITION MATRIX FOR CONTROLLERcccciiiiiiriee 104
TABLE 19. DESIGN CONFIGURATION SPECIFICATION ..ottt 118
TABLE 20. RATIONALE SPECIFICATION ..ottt s e 118
TABLE 21. ADMINISTRATIVE AND TECHNICAL ROLES.......coo e 121

X

PREFACE

This document provides a method overview, practice and use description, and language
reference for version 2.0 of the IDEF4 Object-oriented Design Method developed under the
Information Integration for Concurrent Engineering (IICE) project, contract # F33615-90-C-
0012, funded by Armstrong Laboratory, Logistics Research Division, Wright-Patterson Air Force
Base, Ohio, under the technical direction of United States Air Force Captain JoAnn Sartor. The
prime contractor for IICE is Knowledge Based Systems, Inc. (KBSI), College Station, Texas. Dr.
Paula S. deWitte is IICE Project Manager at KBSI. Dr. Richard J. Mayer is Principal
Investigator.

KBSI acknowledges the technical input (Knowledge Based Systems Laboratory, 1991) to
this document made by previous work under the Integrated Information Systems Evolutionary
Environment (IISEE) project associated with the Knowledge Based Systems Laboratory,
Department of Industrial Engineering, Texas A&M University.

FOREWORD

The Department of Defense (DoD) has long recognized the opportunity for significant
technological, economic, and strategic benefits attainable through the effective capture, control,
and management of information and knowledge resources. Like manpower, materials, and
machines, information and knowledge assets are recognized as vital resources that can be
leveraged to achieve a competitive advantage. The Air Force Information Integration for
Concurrent Engineering (IICE) program, sponsored by the Armstrong Laboratory’s Logistic
Research Division, was established as part of a commitment to further the development of
technologies that will enable full utilization of these resources.

The IICE program was chartered with developing the theoretical foundations, methods,
and tools to successfully evolve toward an information-integrated enterprise. These technologies
are designed to leverage information and knowledge resources as the key enablers for high
quality systems that achieve better performance in terms of both life cycle cost and efficiency.
The subject of this report, the IDEF4 method, is one of a family of methods that collectively
constitute a technology for leveraging available information and knowledge assets. The name
IDEF originates from the Air Force program for Integrated Computer-Aided Manufacturing
(ICAM) from which the first ICAM Definition, or IDEF, methods emerged. It was in recognition
of this foundational work, and in support of an overall strategy to provide a family of mutually-
supportive methods for enterprise integration, that continued development of IDEF technology
was undertaken. More recently, with the expanded focus and use of IDEF methods as part of
Concurrent Engineering, Total Quality Management (TQM), and business re-engineering
initiatives, the IDEF acronym has been re-cast, referring now to an integrated family of
Integration Definition methods. Before discussing the development strategy for providing an
integrated family of IDEF methods, however, the following paragraphs will briefly describe what
constitutes a method.

Method Anatomy

A method is an organized, single-purpose discipline or practice (Coleman, 1989). A
method may have a formal theoretic foundation, although this is not a requirement. Generally,
methods evolve as a distillation of the best-practice experience in a particular domain of
cognitive or physical activity. The term methodology has at least two common usages. The first
usage is in reference to a class of similar methods. According to this usage, one may, for
example, hear reference to the function modeling methodol ogy when discussing methods such as
IDEF@! and LDFD.2 In the second common usage, the term methodology is used to refer to a
collection of methods and tools, the use of which is governed by a process superimposed on the
whole (Coleman, 1989). Thus, it is common to hear the criticism that a tool (or method) has no
underlying methodology when the tool (or method) has a graphical language but no underlying

1 ICAM Definition method for Function Modeling.
2 Logical Data Flow Diagramming method.

xi

procedure for the appropriate application of the language or use of the resulting models. The
term tool is used to refer to a software system designed to support the application of a method.

Although a method may be informally thought of as a procedure for performing a task
and, perhaps, a representational notation, it can be more formally described as consisting of three
components as illustrated in Figure 1. Each method has (1) a definition, (2) a discipline, and (3)
many uses. The definition specifies the basic intuitions and motivation behind the method, the
concepts involved, and the theory of its operation. The discipline includes the procedure by
which the method is applied and the method’s language, or syntax. The procedure associated
with the method discipline provides the practitioner with a reliable process for consistently
achieving good results. The method syntax eliminates ambiguity among those involved in the
development of complex engineering products. Many system analysis and engineering methods
use a graphical syntax to provide visualization of collected data in such a way that key
information can be easily extracted.? The third element of the method anatomy, the use
component, focuses on the context-specific application of the method.

3 Graphical facilities provided by a method language serve not only to document the analysis or design process
undertaken, but more importantly, to highlight important decisions or relationships that must be considered during
method application. The uniformities to which an expert has become, through experience, attuned are thus formally
encoded in visualizations that emulate expert sensitivities.

xii

Procedure

Data
Assimilation

In
System
Evolution
Process

/ Tnan

Formulation Stand-alone Integrated
A Validation Suites of -
N Methods .~
N s
Computer- ~\ CQJ s
interpretable \\ 7
Synt
_ \yn ax Q\Q %
Graphical\ & © Independent
Syntax Q ([Method of System

Lexicon Grammar

Concepts

/

/

Definition

/ Motivation |

Figur
Anatomy of a M ethod

Informal

Development

Formal
Semantics

Formal
Language

el

Ultimately, methods are designed to facilitate a scientific approach to problem solving.
This goal is accomplished by first helping one understand the important objects, relations, and
constraints that must be discovered, considered, or decided on. Second, scientific problem
solving occurs by guiding the method practitioner through a disciplined approach that is
consistent with good-practice experience and leads toward the desired result. Formal methods,
then, are specifically designed to raise the performance level (quality and productivity) of the
novice practitioner to a level comparable with that of an expert (Mayer, 1987).

Family of Methods

As Mr. John Zachman, in his seminal work on information systems architecture,

observed:

...there is not an architecture, but a set of architectural representations. One is not right
and another wrong. The architectures are different. They are additive, complementary.
There are reasons for electing to expend the resources for developing each architectural
representation. And, there are risks associated with not developing any one of the

architectural representations.

xiii

The consistent, reliable creation of correct architectural representations, whether they be artificial
approximations of a system (models) or purely descriptive representations, requires the use of a
guiding method. These observations underscore the need for many “architectural
representations,” and, correspondingly, many methods.

Methods, and their associated architectural representations, focus on a limited set of
system characteristics and explicitly ignore those that are not directly pertinent to the task at
hand. Methods were never intended to evaluate and represent every possible state or behavioral
characteristic of the system under study. If such a goal were achievable, the exercise would itself
constitute building the actual system, thus negating the benefits to be gained through method
application (e.g., problem simplification, low cost, rapid evaluation of anticipated performance,
etc.).

The search for a single method, or modeling language, to represent all relevant system life
cycle and behavioral characteristics, therefore, would necessitate skipping the design process
altogether. Similarly, the search for a single method to facilitate conceptualization, system
analysis, and design continues to frustrate those making the attempt.

The plethora of special-purpose methods which typically provide few, if any, explicit
mechanisms for integration with other methods is equally frustrating. The IDEF family of
methods is intended to strike a favorable balance between special-purpose methods whose
effective application is limited to specific problem types, and “super methods” which attempt to
include all that could ever be needed. This balance is maintained within the IDEF family of
methods by providing explicit mechanisms for integrating the results of individual method
applications.

Critical method needs identified through previous studies and research and development
activities* have given rise to renewed effort in IDEF method integration and development
activities, with an explicit mandate for compatibility among the family of IDEF methods.
Providing for known method needs with a family of IDEF methods was not, however, the
principal goal of the methods engineering activity within the IICE program. The primary
emphasis for these efforts was directed towards establishing the foundations for an engineering
discipline guiding the appropriate selection, use, extension, and creation of methods that support
integrated systems development in a cost-effective and reliable manner.

New methods development has struck out where known and obvious method voids
existed (rather than reinventing existing methods) with the explicit mission to forge integration
links among existing IDEF methods. When applied in a stand-alone fashion, IDEF methods
serve to embody knowledge of good practice for the targeted fact collection, analysis, design, or
fabrication activity. As with any good method, the IDEF methods are designed to raise the

40f particular note is the Knowledge-Based Integrated Information Systems Engineering (KBIISE) Project
conducted at the Massachusetts Institute of Technology (MIT) in 1987 where a collection of highly qualified experts
from academic and research organizations, government agencies, computer companies, and other corporations
identified method and tool needs for large-scale, heterogeneous, distributed systems integration. See Defense
Technical Information Center (DTIC) reports A195851 and A195857.

Xiv

performance level of novice practitioners by focusing attention on important decisions while
masking out irrelevant information and unneeded complexity. Viewed collectively as a toolbox
of complementary methods technology, the IDEF family is designed to promote integration of
effort in an environment in which global competitiveness has become increasingly dependent
upon the effective capture, management, and use of enterprise information and knowledge assets.

XV

EXECUTIVE SUMMARY

The success of corporations depends on their ability to use information and knowledge
assets effectively. To leverage these assets, corporations have invested heavily in information
technology. However, along with the advantages of using information technology have come
new challenges: spiraling maintenance costs, outdated and inflexible data systems, and software
development projects that fail to complete on time and under budget. When proper analysis and
planning is not performed and these challenges not addressed, corporations cannot get the full
value from their investment in information technology. They may also find they are trapped in a
cycle of constantly re-inventing a system because it doesn’t fulfill the users’ requirements, the
technology is obsolete by the time the system is delivered, Commercial Off The Shelf (COTS)
software is not capitalized, and system design is either poorly documented or not documented at
all.

An effective way to break this cycle is through the application of information-integrated
system analysis, design, implementation, and maintenance techniques (such as object-oriented
design) (Jacobson, 1994) to record and manage the life cycle of objects in a software system
development. This provides traceability’ from fielded software components to source code
objects, design objects,® requirements, and the objects in the application domain. Object-oriented
techniques also ensure that designers and implementors meet the needs of the system users
because they consider real-world objects and the usage of those objects in the system.

What is | DEF4?

IDEF4 is an object-oriented design method for developing component-based client/server
systems. It has been designed to support smooth transition from the application domain and
requirements analysis models to the design and to actual source code generation. It specifies
design objects with sufficient detail to enable source code generation. IDEF4 provides a bridge
between domain analysis and implementation (See Figure 2).

In the development of IDEF4, close attention has been paid to

o important features of successful object-oriented techniques and modeling
conventions,’

o legacy systems re-use through object-oriented encapsulation,
e provision of mechanisms for leveraging client/server technology,

o creation of reusable object-oriented designs and software components,

3 The ability to audit the design artifact’s origins and its evolution.

6 Elements being designed in an IDEF4 project.

7Booch, Rumbaugh’s OMT, Shlaer/Mellor, Wirths/Brock, Fusion, Coad and Yourdon, Odell and Martin, and
Jacobson (OOSE).

o inclusion of Commercial-Off-The-Shelf (COTS) technology in designs,

e reduction of design complexity through design stratification.

IDEF4
Design

Domain
Analysis

Object
Specificatio

Figure2
IDEF4 Used Between Domain Analysis and | mplementation

IDEF4 supports the design-level description of the external protocols of legacy systems
and COTS software. This facilitates the development of object-oriented designs that contain
legacy and COTS components, resulting in object-oriented implementations that reuse existing
executable software. An object-oriented design philosophy that stresses the separation of
external and internal aspects of the design of an object leads to greater design success because it
allows for the re-use of design components, concurrent design, design modularity, and deferred
decision making.

The IDEF4 method multi-dimensional approach to object-oriented software system
design consists of the following items:

. design layers (system-level, application-level, and low-level design),
. artifact design status (application domain, in transition, software domain),

o design models (static, dynamic, and behavior) and the design rationale
component, and

e design features ranging from general to specific enabling deferred decision
making.

IDEF4 Layers

IDEF4 users design in three distinct layers: (1) system design, (2) application design, and
(3) low-level design. This three layered organization reduces the complexity of the design. The
system design layer ensures connectivity to other systems in the design context. The application
layer depicts the interfaces between the components of the system being designed. These
components include commercial applications, previously designed and implemented
applications, and applications to be designed. The low-level design layer represents the
foundation objects of the system.

IDEFA4 Artifact Status

IDEF4 distinguishes between IDEF4 artifacts newly created from the application domain,
artifacts in transition to design specification, and artifacts that have been specified that can be
applied to create the design specification. Any design artifact in IDEF4 can be marked as
domain, transition, or complete. This allows practitioners and reviewers to track the progress of
the design toward completion.

IDEF4 Design Models

IDEF4 uses three design models and a design rationale component. The Static Model
(SM) defines time-invariant relations between objects (for example, inheritance). The Dynamic
Model (DM) specifies the communication between objects and the state transitions of objects.
The Behavior Model (BM) defines the relations between the respective behaviors of objects. The
design rationale component provides a top-down representation of the system, giving a broad
view that encompasses the three design models and documents the rationale for major design
evolutions.

Design Features

IDEF4 provides a broad range of design features — from generic to specific. This range
enables deferred decision making by allowing the designer to first capture design features in
general terms and later to refine them. This significantly reduces the burden on designers by
allowing them to immediately capture new design concepts with IDEF4 design features, even if
these design concepts have not yet been explored in detail.

Why Use | DEF4?

It is important to use an object-oriented design method to ensure consistency of object-
oriented designs. The method used should also ensure design quality by supporting the following
activities:

e promoting best practice,

e measuring performance of the individual designers,

e being scaleable across small and large projects,

e Dbeing easy to use,

e assessing the progress of the design during each stage,

e working with a broad range of object-oriented system types, and

e being compatible with methods and tools addressing other phases of the life
cycle development process.

IDEF4 lets designers solve problems using real-world concepts rather than computer
concepts so the resultant software is easier to understand, reuse, and maintain. Focusing on the
application domain also ensures that the needs of the system users are better met.

It is not enough to reuse software; most of the intellectual activity in object-oriented
development is in object-oriented design, and therefore it is imperative to ensure that design
artifacts are also understandable, reusable, and maintainable. Easily understandable, up to date
design artifacts that correspond to implementation software greatly improves software
maintenance, making it easier to extend systems.

The greatest potential leverage of intellectual investment is object-oriented reuse of
executable software. Legacy software can be rendered reusable through object encapsulation,
effectively extending its useful life span. The use of commercial software in new systems
leverages the intellectual investment of others. Design and implementation of object-oriented
software components allows rapid reuse by new systems.

IDEF4 object-oriented technology creates solutions based on real-world concepts and
creates system designs focused on quality and maintainability, which result in substantial savings
in maintenance costs (Taylor, 1990). Implementation costs must be placed in the perspective of
the overall software life cycle. Most of the software costs are incurred after implementation. In
fact, it has been estimated that as much as 70 percent to 80 percent of software life cycle costs
occur in maintenance. The cost of correcting system defects increases exponentially throughout
the software life cycle (Figure 3). IDEF4 designs result in quality software by focusing problem
solving on the application domain to satisfy the needs of the customer. The method is designed
to help users produce designs, by enforcing design artifact traceability to the application domain
and through the design rationale component, that result in low maintenance, extensible software.

Design flaws that surface during operation are extremely expensive to correct (Korson,
1986). Correcting defects in operational software is similar to recalling an entire line of
automobiles to correct a design flaw. But rather than having a few hundred or thousand copies to
deal with, there may be hundreds of thousands or millions of instances of the software in use.
Object-oriented design and development practice have demonstrated the ability to produce
software that exhibits desirable life cycle qualities such as modularity, maintainability, and
reusability. This is because object-oriented design focuses attention on the application domain,
allowing strategic design decisions to be based on user needs.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\

Requlrements Design Coding Integration Quality Operatlon
Assurance

Phase of Development

Figure3
Rising Cost of Correcting Software Errors

Further reductions in maintenance costs can be made by using pre-packaged software
components — because they are pre-tested, one need not perform a unit test on each component.
Use of component software shifts the emphasis of maintenance to component suppliers and
components can therefore be tested independently. The volume of new code needed to
implement component-based systems is reduced. Integrating client/server technologies in the
design phase results in highly flexible implementations that directly support the work flow
through core business processes. This results in increased process effectiveness and simplified
re-engineering of systems to support business practices. IDEF4’s object-oriented models
facilitate communication with customers, visualization of the problem, and reduction in
complexity.

How Does | DEF4 Work?

IDEF4 uses an object-oriented design method or procedure that is very similar to
Rumbaugh’s Object Method Technique (Rumbaugh, 1991) and Schlaer/Mellor’s Object-Oriented
Analysis and Design (OOA/OOD) technique (Schlaer, 1988, 1991). However, there are some
crucial differences: (1) IDEF4 is specifically designed to be compatible with other IDEF
methods, (2) IDEF4 allows one to track the status of design artifacts from domain object through
transition to design specification, and (3) IDEF4 includes a design rationale component. These
extra dimensions are shown in Figure 4; the edges of the box show the progression of the design
from start to finish elaborating each of these dimensions.

Application Domain

Design Specification

/ System Layer

Application Layer

/ Low-Level Layer
/ X%sign Rationale
/ Aehavior Model
\ / Aynamic Model
\ Atatic Model

Figure4
Dimensions of I DEF4 Design Objects

Start

\
R

o
.

In IDEF4, a design starts with the analysis of requirements and takes as input the domain
objects. These domain objects are encoded in their equivalent IDEF4 form and marked as
domain objects. As computational objects are developed for these objects, they are marked as
“transitional” and finally as “completed.” The level of completion of an IDEF4 design is
determined by setting measures based on the status, level, and model dimensions of individual
artifacts in the design.

The system-level design starts once the “raw material” (domain) objects have been
collected. This develops the design context, ensures connectivity to legacy systems, and
identifies the applications that must be built to satisfy the requirements. Static, dynamic,
behavioral, and rationale models are built for the objects at the system level. These
specifications become the requirements on the application level — the next level of design. The
application level design identifies and specifies all of the software components (partitions)
needed in the design. Static models, dynamic models, behavioral models, and the rationale
component are built for the objects at the application level. These specifications become the
requirements on the next level of design — the low-level design. Static Models, Dynamic
Models, Behavioral Models, and the Design Rationale component are built for the low-level
design objects. Sub-layers may be built within each layer to reduce complexity.

IDEF4 is a iterative procedure involving partitioning, classification/specification,
assembly, simulation, and re-partitioning activities (Figure 5). First the design is partitioned into
objects, each of which is either classified against existing objects or for which an external

specification is developed. The external specification enables the internal specification of the
object to be delegated and performed concurrently. After classification/specification, the
interfaces between the objects are specified in the assembly activity (i.e., static, dynamic, and
behavioral models detailing different aspects of the interaction between objects are developed).
While the models are developed, it is important to simulate use scenarios or cases (Jacobsen,
1994) between objects to uncover design flaws. Based on these flaws the designer can then re-
arrange the existing models and simulate them until the designer is satisfied.

O]
Classify/ 0o combl
Specify ssemble

Partition

Simulate

Re-Arrange

Figure5
IDEF4 Design Activities

Purpose and Organization of this Document

The purpose of this document is to provide information about the IDEF4 object-oriented
design method. The method report meets the following results:

(1) Describe the IDEF4 object-oriented method,

(2) Enable systems analysts/designers to understand the process of producing
object-oriented designs using IDEF4, and

(3) Enable software engineers to read and interpret IDEF4 designs.
The scope of this document encompasses the following items:

(1) An introduction to the IDEF4 method,

(2) An overview of the IDEF4 model structure and graphical syntax,

(3) A description of the IDEF4 object-oriented system-design development
procedure, and

4

Examples of the use of IDEF4 derived from its application on object-
oriented design case studies.

Within this scope, the IDEF4 Method Report is targeted for the following audience:

(M
)
3)
4
)

IT Managers,

Software system architects,
Project managers,

Systems analysts/designers, and

Implementors of object-oriented designs.

Summary

IDEF4 is a method that has been developed to (1) apply object-oriented design techniques
within the context of the IDEF family of methods, (2) separate an object’s external and internal
design specifications, (3) design systems which can interface to legacy systems and commercial
systems, (4) employ and update the design during system use and maintenance, (5) reuse design
objects in other designs, and (6) specify object-oriented, distributed computing environments.
Reuse of design artifacts, software objects, and executable components is facilitated by syntactic
support for encapsulating components. The maintainability of design and software components
is enhanced by emphasis on documentation and artifact traceability.

INTRODUCTION TO IDEF4

The IDEF4 method was developed to reduce the risk in object-oriented system
development by assuring understanding, reuse, and maintainability. Understanding of IDEF4 is
facilitated through the use of a clear, concise graphical syntax that supports reduction of design
complexity by supporting modular design. The design is divided into static, dynamic, and
behavioral models. Reuse of design and software components is enhanced by encapsulation
(Mayer, 1987) of design, implementation, and executable components. Maintainability of design
and software components is ensured by separation of internal and external object specifications,
emphasis on documentation, and traceability of artifacts using design rationale capture.

This chapter describes: (1) the object-oriented concepts used in IDEF4, (2) the IDEF4
procedures, and (3) the organization of IDEF4 designs.

| DEF4 Object-oriented Concepts

One of the greatest barriers to object technology is the specialized vocabulary that has
evolved around it (Taylor, 1993). Similarly, there is a great deal of confusion centered around
the use of different terminologies by different object-oriented languages. Because terminological
confusion leads to conceptual confusion and vice versa, it is imperative to define IDEF4’s object-
oriented terminology before proceeding.

Domains

IDEF4 projects are implemented in a domain. A domain can be seen as the scope of the
system being developed. During system design, the software is transitioned between three
domains: the application domain, the design domain, and the implementation domain.

The application domain is the domain the application is being designed for. This domain
deals with the end users. Design artifacts, which are any “things’ that will be used in the design,
are identified in this domain. Once the application domain has been defined, design techniques
are applied to transition to the design domain. The design domain is where the decision on how
the system will be implemented is made. For example, the design domain for a project using the
IDEF4 methodology is the IDEF4 method. All of the design artifacts will be depicted using
IDEF4 syntax. After the design technique has been decided, it is transitioned to the
implementation domain through code generation. The implementation domain is where the
implementation of software occurs based on the design artifacts defined in the design domain.
The actual software is implemented and fielded, causing it to transition back to the application
domain where end users’ evaluations, comments, and request for changes will start the system
development cycle over again. When making bug fixes in software, developers may sometimes
skip the design domain and go straight from the application domain to the implementation
domain. This makes the actual system design useless because changes have been made to the
software that are not captured. The software therefore cannot be reused. It is much more
efficient to develop software using all domains.

A domain contains objects and messages. These are the two most important object-
oriented concepts, and they are the building blocks of the IDEF4 methodology.

Features, Artifacts, and Objects

Since “object” is a special kind of feature in IDEF4, discussing features as an introduction
to the concept of objects will result in a clearer understanding of objects. Feature is a catch-all
category for concepts that the engineer wants to capture for the software design. These concepts
include physical objects, descriptions of physical objects, COTS software the engineer wants the
software being designed to interface with, and information about the required behavior of the
elements in the software. Once these features are documented, the designer can then begin
classifying them as objects, relations, links, methods, attributes, and events. Figure 6 shows a
Bank object with many of these kinds of features. In IDEF4, the symbols O, R, L, M, A, and E
are used to denote objects, relations, links, methods, attributes, and events, respectively. Users of
IDEF4 can use these feature types to defer more detailed design decisions until later in the
design. Feature types allow features to be initially characterized in general terms which can later,
as the design progresses, be revisited and evolved to a more specific definition. For example, a
designer might first specify Name, a characteristic of an object “Bank,” as a feature. As the
design evolves, the designer can specialize the definition of Name to be an attribute that
describes the object “Bank.”

Bank

Feature | {} Telephone
{O} Account

Objects {O} Employee
" {A} Name
Attributes (A} Address
{M} Open
Methods (M} Close

Event | {E} Robbery
Relation {R} Emp/Acc
Link | {L} Emp/Acc

Figure 6
The Bank Object

Again, our explanation of objects in terms of features is because objects are features; i.e.,
feature is a broad category and object is one of its specializations. Objects themselves can also
encapsulate features, some of which may be specialized to objects, which will result in objects
encapsulating objects, as is the case in the banking example shown in Figure 6.

10

In this example, “Bank” is referred to as an “object.” In IDEF4, the term object refers to
information which serves as a specification for the implementation. Objects have “behavior”
which describes how the object will act in the system, and “states” which describe the value of
object characteristics. Objects are identified in the application domain. They fall into five
categories:

(1) physical — a physical object such as a tree, a car, a plane, a person;

(2) role — an object with specific behavior that establishes its identity, such as a
nurse, fireman, or professor;

(3) event— an object representing an occurrence such as a meeting or a delivery;

(4) transaction/interaction — the capture as an object of an interaction between
objects such as the telephone wire between two telephones transmitting a
message; and

(5) specification procedure — an object that represents a set of instructions, such
as a car design.

Objects in a domain should be identified according to these categories and according to the order
of the previous list (i.e., looking for physical objects first and specification procedures last).

IDEF4 artifacts can exist in four distinct life cycle stages: application-domain artifacts,
design artifacts, specification artifacts, and software artifacts. The first three life cycle stages
reflect the state of the artifact in the design. An application domain artifact is any feature
existing in or abstracted directly from the application domain. For example, “passenger airplane”
becomes an object in the domain; but the actual element stored about the plane is its behavior in
relation to an airline reservation system: the number of seats, plane type, and flight destination
(Figure 7). Application domain artifacts are the “raw material” that is input into the design.

L—

Airplane: CZ138
Type: Boeing 737
Dest: DFW

Cap: 130

Physical Object Abstraction

Figure7
Abstraction of Passenger Aircraft

Once an application domain artifact is worked on in the design it becomes a design
artifact. Design artifacts evolve to specification artifacts that are used for generating software.
Design artifacts evolve in a design to satisfy a computational purpose. Design objects contain a

11

collection of related procedures and variables and may be an abstraction of a real-world object
(e.g., an aircraft object). Design artifacts can be viewed as “work in process” and are used in the
transformation from application domain objects to specification objects. Design artifacts
typically start as application domain artifacts and are gradually transformed to specification
artifacts which are the final design specification. Specification artifacts can be viewed as
“finished goods.”

The “software object” concept has its origins in the need to model real-world objects in
computer simulations. A software object is a software package that contains a collection of
related procedures and data. In the object-oriented vernacular, the procedures are referred to as
methods and the data elements are called attributes or variables.

IDEF4 uses the notation “®” to indicate that artifacts refer to the application domain, “A”
to indicate that the artifact is in transition (i.e., design artifact) and “©” to indicate a completed
design (i.e., a specification artifact).

To illustrate the concept of a design artifact, consider how one might represent an
airplane in a simulation. The airplane can exhibit a number of behaviors, such as flying from one
location to another and loading and unloading passengers. The computational representation
must model the airliner’s behavior, for example, its ability to fly at certain speeds, its ability to
seat passengers, and its ability to fly from location X to location Y. The state will also be
modeled (e.g., number of passengers, location, altitude, orientation, and velocity). In a design
object, you would describe the airplane’s behaviors as methods, and the airplane’s state as
attributes that would be effected by the methods. Figure 8 shows the process of abstracting a
passenger aircraft, encoding it as “raw material” for IDEF4, evolving it toward a computational
specification as “work in process,” marking it as a completed specification, and finally
implementing it in a program as an object that represents the airliner in the airline reservation
system.

12

Program Records
Information About -
Aircraft

Direct Abstraction

>

Encodein IDEF4

Evolve Design Artifacts

Passenger Airliner® [™| Passenger Airliner> [~ ™[Passenger Airliner©
Raw Material Work in Process Finished Goods
Figure8

Design Artifact Used For Design Evolution

Object Instance

Objects can be object instances, object classes, and object partitions. Object instances
are the individual things encountered in the application domain. For example, (Figure 9) the
employee named “Toonsie” and the car with Texas License “BYJ14T” are examples of object
instances.

f Employeg[Toonsie“ IDEF4 Object Instances

Hire (Car [BYJIAT]
Fire ®
Assign gurn q
Pay orwar

Reverse

Figure9
IDEF4 Object Instances

Figure 9 shows IDEF4 Object Instances for Toonsie and her car. These instances have distinct
behaviors that can be performed by the objects. For example, Toonsie is an employee and can be
hired, fired, assigned, and paid; the car can turn, go forward, reverse, and stop. Because groups

13

of object instances can be very similar, it is advantageous to define characteristics and behavior
for groups of similar object instances. Such a group is known as an Object Class.

Classes

Classes are generalizations about objects and are used to manage complexity by taking
advantage of similarities in object instances and grouping them under a class or category. It is
more efficient to attach common characteristics and behavioral information of object instances to
an object class, rather than to each individual object instance.

The examples shown so far involve only instances of particular kinds of objects. It is
much more common to need more than one object instance of each kind. For example, a
company will have many employees who have many cars. We call such a grouping of objects
with similar behavior an object class. The object class concept is a convenient way to solve the
problem of redundantly defining the same behavior for similar object instances. In software
systems, the object class acts as a template for the variables and methods that need to be included
in every object instance. Object instances contain only the particular values of their variables and
share the methods stored in the class object. A software object class can be viewed as a factory
for manufacturing software object instances.

Object classes are useful in application domains. For example, object instances John,
Susan, ”Bill, and Mary fall into the object class Employee because they are all people employed
by a company (Figure 10). An object class represents a set of object instances that have the same
features; i.c., they have the same characteristics and conform to the same rules, policies, and
procedures.

14

/—Employee Object Instances— Employee Object Class

ﬁ

[Bill] [Mary] [Susan] [John]) Employee
(Employee[Bill] \—\ Employee
e —— —Dloyee[Mary]
Name Bill Smith g ~\ {A} Name
Dept Purchasing | Mary Kay |oyee[Susan] {A} Dept
Salary $50000 QA Susan Smith|oyee[John] {A} Salary
ooty $35000 __/Finance {M} Assign
John Pen
\ Salary $55000 Jy;o e {M} Pay
IDEF4 Object Instances KSalAary $50000 {M} Fire
IDEF4 Object (la
Figure 10

IDEF4 Object Instances and Object Classes

The classes in an object-oriented system define the types of objects that exist within the
system. Each class contains a set of traits that define the characteristics and the rules,
procedures, and policies that instances of the class must abide by. The set of traits consists of
attributes, methods, embedded classes, and relationships. The attributes are used by the object
instances contained within a class to store their state. The methods characterize the behavior of
object instances in a class. The classes can also be organized into subclasses and superclasses.

Subclass/Superclass

The term subclass captures the concept of grouping particular instances of a class into an
even more specialized class. For example, a class may have object instances of employees.
Managers are employees that can delegate responsibilities to other employees. Not all employees
are managers and, therefore a manager is considered a special kind of employee (Figure 11). We
say that manager is a subclass of employee. The term superclass refers to the class from which a
subclass is derived; e.g., the object class Employee is a superclass of the object class Manager.

15

Employees SuperClass

N

Employee
Inheritance
Generalization/ __ $
Specialization
Relation

Manager

/

Managers SubClass

Figure 11
Inheritance Relating Subclass and Super class

Classes are the major syntactic construct in IDEF4, as in all object-oriented methods.
Partitions are another construct used in IDEF4, and they are similar to classes in that they group
objects.

Partitions

A partition object contains objects and relations.® A partition object is essentially a self-
contained IDEF4 object-oriented model that itself may contain submodels. Partitions are similar
to software modules, packages, components, files, or a collection of cooperating software
objects. In the application domain, partition objects contain objects that give the partition its
essential character; objects in a partition are only accessible through the partition object.

Semiconductor chips provide a good example of a partition object (Figure 12). The
external logic of the chip is specified by a very complex internal structure consisting of a network
of transistors and resistors. Users of the chip only need to know the external logic and are not
concerned with the individual components used to make up the chip. This is how partition
objects work; the substructure (compared to the internal logic of the chip) dictates how the
partition behaves. The partition object itself provides an external interface so the user does not
have to be concerned with the objects in the substructure.

8 The partition construct has its origins in the container objects of the DKMS program (Keen, 1991), packages in
CLOS, imbedded objects in C++, Domains in Schlaer/Mellor, and Use Cases in Jacobsen.

16

Chip Design Partition

Chip
{A} 1D

{A} Pins

{C} Transister

(" Chip[latch 321])
L
(A (L)
)) U
LAY
)) U
(AT [
Transitors \)\ /)

Figure 12
Semiconductor Chip ismade of Transistors

Partitions are also used for incorporating legacy and COTS software within a design
(encapsulation) by specifying an object-oriented external interface for the object that receives and
relays messages to and from the contained executable software. For example, a manufacturer has
software for controlling a numerical control milling machine. The software interprets a file
containing instructions that specify the tool path and issues commands to the mill. The
manufacturer can reuse this software in a new computer integrated manufacturing system by
wrapping code around the legacy software (encapsulating the legacy code) to perform the
necessary communications with the new system. This wrapping code would be specified using
an IDEF4 partition.

Partitions allow the designer to carve up the design into self-contained subdesigns that
may be worked on by many teams (Figure 13). The partition concept allows the designer to
partition the system hierarchically in terms of communicating objects of different levels of
abstraction.

17

S

N

it Z,.

(N

Y eiy 257

Figure 13
The Partitions Manage Design Complexity

Object classes and partitions provide a way to design a system with managed complexity.
Partitions group objects into a substructure that can be reused in other models. Object classes
group objects by their behavior so that the behavior information is only stored once; the behavior
information can then be referenced by the object instances. Object States are necessary for
describing object behavior. Attributes are an implementation choice for representing an object’s
state.

Attributes
Attributes are an implementation choice on how to represent an object’s state. Each

object instance has attributes or characteristics. For example, Mary is 5'8" tall, her social security
number is 555-77-4444, she owns a car and works at ACME (Figure 14).

18

Name Dept | Car |Salary

Mary Smith |Inv |BYJ14T|$45000

Model| Year |Owner | Tag
1993 |Mary |[BYJ14T

(Car [BYJ14T] A

(Employee[Mary]) Tag BYJI4T
v) Make DKW
Name Mary Smith Model Gnu
Dept Inv
Car BYJI4T Year 1993
Salary $45000 IDEF4 Object Instances
Figure 14

Information Kept By Employer about Employee and Car

The attributes hold information about the state of an object and are necessary for
implementing behavior. Object Instances know the rules, policies, and procedures of the domain
in which they exist; e.g., Mary knows that she must be at work at ACME before 7 a.m., she is
attuned to traffic laws that govern her drive to work, she knows that she must park her car in the
employee lot, and she is responsible for maintaining inventory levels at ACME. All of these
behaviors need to access and manipulate information about the state of the objects that they
pertain to. The ACME corporation needs to keep information about Mary as an employee. They
also need to keep information about her car to ensure that the employee parking lot is only used
by employees. Figure 14 shows how this object instance information is maintained in an IDEF4
model. The characteristics that have been recorded about Mary and her car are called attributes.
The attributes that uniquely identify an object instance are called identifier attributes. Identifying
attributes are shown underlined in IDEF4. Attributes that point to other objects, for example, the
attribute car in the object instance Mary are known as referential attributes. Attributes that
describe an object instance but do not uniquely identify it, such as height, weight, and eye color,
are known as descriptive attributes.

Object States

Object states represent situations or conditions of an object instance that are meaningful
in the design. For example, in one system it may be appropriate to recognize the states cold, hot,
and boiling for a pot of water, whereas in another system, the actual temperature might be more
appropriate. The water heater shown in Figure 15 has three states: (1) cold, (2) normal, and (3)
hot. When the water heater is in the cold state, the heater is turned to full, when the heater is in

19

the normal state, the heater is turned to half, and when it is in the hot state, the heater is switched
off.

Heater | 1:Cold [Heater | 2:Normal Heater 3:Hot
Temp < Cold Hot >Temp > Cold Temp > Hot
NG N J
Figure 15

States For Heater

The level of abstraction of object states is dependent on the representational needs of the system
in which they must exist.

Objects are multidimensional entities that store many different types of information. By
creating partitions and classes, and thereby simplifying the diagrams, IDEF4 has made the
management of objects more accessible. The designer can then look at objects at different levels
of complexity. The next section will discuss how the designer can define interaction between
these objects and between different levels of complexity.

Method

A method is an implementation of behavior (i.e., a set of instructions according to which
the object performs some operation). An object’s methods are a collection of procedures owned
by the object that give the object its essential character, dictating how the object will behave
within the system being designed. They can be thought of as verbal descriptions of the things an
object can do. For example a flight object used in a system design for airline reservations will
have procedures for assigning and canceling passengers on the flight (Figure 16). These
procedures are associated with the object instances of flight by defining them as methods in the
flight object class. The Reserve and Cancel methods accept four parameters: (1) the ID or handle
of an authorized travel agent, (2) a password, (3) the seat number, and (4) the passenger’s name.

Flight

{A}Flight No
{M} Assign
{M}Cancel

Figure 16
The Assign and Cancel Methodsfor Airline Flight Reservation

Behavior specifications (i.e., how the method must be implemented by a software engineer) are
part of the Behavior Model. Each method in IDEF4 must have a behavior specification
associated with it.

20

M essage and Polymor phism

Objects communicate by sending messages to each other. Methods, in turn, tell the object
how to implement a message. Each object should know how to implement the messages that are
sent to it. If the object can’t respond, it should signal an exception (error). A message consists
of the name of a method that the object knows how to execute and the object identifier or handle.
If the method needs more information to execute, then the message may also supply additional
parameters. An object can send a message to one object, many objects, and even to itself.
Communication between objects is depicted in IDEF4 by an arc with a chevron pointing in the
direction of the communication.’

A good example of messaging is an orchestra conductor. An orchestra conductor sends
messages to the members of the orchestra by using gestures (Figure 17). These gestures are
messages that tell the members of the orchestra to play louder, softer, faster, or slower. The
message Play_Louder is implemented differently by strings, brass, woodwinds, and percussion
players. This aspect of messaging is known as polymorphism; i.e., the same message is
implemented differently by different objects.

Trombonist
{M} Louder
M, :Louder
Conductor < Violinist
{M} Louder Ve {M} Louder
Cellist
{M} Louder
Figure17

Communication between Conductor and Orchestra

Figure 18 uses an orchestra to describe the relationship between messages, classes, and
methods. In an orchestra, the conductor sends the message “Louder” to musicians. Each kind of
musician employs a different method to effect the behavior intended by the message. Figure 18
shows the relationship between the message “Louder” and the methods implementing it in
different classes.

9 The chevron is used to depict a message or signal being sent. The symbol was derived from client/supplier link
used in IDEF4 revision 1.

21

Louder) —— Message

Musician —— Class

Louder Method + Signature
orchestra section /\E
(Louder) (Louder)

StringPlayer BrassPlayer

PressHarder Blow Harder
stringed instrument ; : i brass instrument X i
| | | |
Louder Louder 4 Louder N 4 Louder N

Violinist Cellist Trumpeter Trombonist

\ PressHarder / \ PressHarder / \Blow Harder / \Blow Harder /

Figure 18
The Behavior Diagram for methods I mplementing “L ouder”

The Method Specification contains the message, the applicable class, and the methods
employed. The specialization relationship between method boxes indicates whether the
relationship is based on external (e) or internal (i) specifications. The difference between the
way musicians play louder on brass instruments and stringed instruments is externally visible,
whereas within the family of stringed instruments, the differences are not externally observable,
so the differences are internal. These differences point to whether the external specification or
internal specification of the method is being specialized.

The sender does not have to know exactly how the message is implemented. Often the
only thing the sender needs to know is whether the message has caused a transaction to take
place or not. This is known as a synchronous message. In IDEF4, messages are synchronous by
default. If the sender does not need to know the effects of the message, it is known as an
asynchronous message. Asynchronous messages are typically initiated by an event.

Event

An event is a signal generated by a method in an object indicating some condition in the
object. An event being broadcast by one object does not necessarily mean that there will be any
action taken by other objects. For example, the beep of a smoke alarm indicates that smoke has
been detected. It does not indicate what action needs to be taken by any agent hearing the beep.
In order for the events generated by objects to be meaningful in any system, they need to be
associated with messages telling other objects to perform some action. For example, the

22

“disconnect battery” message is associated with the smoke alarm event, causing the object to
look up procedures for disconnecting the battery from the smoke alarm to turn the alarm off.10

Object Lifecycles

In any system, objects exhibit patterns of behavior as they cycle through different states.
An event or message will initiate a transition of an object from one state to another. These
events and messages are triggered by conditions within the object itself or within objects that
communicate with the object. For example, in a hot water system, the states cold, normal, and
hot are important. The diagram in Figure 19 describes how the system cycles between the three
states: (1) cold, (2) normal, and (3) hot. When the water heater is in the cold state, the heater is
turned to full, when the heater is in the normal state, the heater is turned to half, and when it is in
the hot state, the heater is switched off.

Half Off
Heater | 1:Cold '%Heater 2:Normal §>— Heater 3:Hot
Temp < Cold Hot >Temp > Cold Temp > Hot
\ <& <&\ y
Figure 19

Water Heater Object Life Cycle

Client/Server

An object plays the role of a client relative to a message if it is the sender of that message.
An object plays the role of a server relative to a message if it is the recipient of that message. If
an object normally plays the role of initiating contacts with other objects it is known as a client.
If it is generally responding to messages sent to it, then it is a server.

El:Mark -Positi

Sprint Event Starting Judge = 2 M1 Posttion Sprinter
{A} Race E2:Get Set O\ =~ M2:Set {A} Name
{A} Time {A} Name g {M} Run
{C} Judge {M} Start E3:Bang <O\ M3:Run {M} FalseStart
{C} Sprinter yid {M} Position

E4:BangBang{N M4:False Start | {M} Set

Z/
Figure 20

Objects Communicating With M essages

10 N.B. Although in this example the battery is taken out of the smoke alarm to turn it off, this is not an endorsed
means for handling this situation.

23

Figure 20 describes the communication between a starting judge communicating with
sprinters at the start position. The starting judge issues the commands “On Your Marks,” “Get
Set,” and then fires the starter pistol. If one of the sprinters starts running before the gun is fired,
then the judge fires the pistol twice, signaling a false start. The sprinters respond to these events
by positioning themselves at the starting line, moving to the set position, and running to the
finish line.

E1:Marks->M1:Position
E2:Get_Set->M2: Set
E3:Bang->M3:Run

E4:BangBang->M4:False_Sart

Relationships and Roles

Figure 21 shows objects connected together with arcs. These arcs are called relationships
and they show associations between objects.

Relationships exist between objects; for example, ACME monitors cars parked in the
employee lot. Most employees drive to work. Some employees own more than one car and in
the case of married employees, cars may be owned by more than one employee. Figure 21 shows
how this relationship is represented in IDEF4.

Roles

Employee Car
II;Iire Driver R1 Parked Car°<' Turn
ire b Forward
Assign Owns/Owned by Reverse
Pay Stop

Minimum

Maximum

Figure2l

Employee/Car Relation

24

The relationship is drawn as an arc connecting the Employee and Car classes. The notation on
each end of the relation arc denote the cardinality or multiplicity of the relation.!! This
relationship is read as an employee owns zero or more cars and a car parked in the employee lot
must be owned by one or more employees.

Relationships have roles which dictate how the objects participate in the relationships.
Note the roles taken on by employee and her car. The employee takes on the driver role with
respect to the car and car takes on the parked car role with respect to the employee. The behavior
of the employee and the car are governed by certain policies, procedures, and rules in these roles.
The employee must drive the car according to the rules and regulations set up by the Department
of Transportation. The car must be parked according to the rules for employee parking at
ACME.

Inheritance

A specific type of relationship used in object-oriented technology is inheritance.
Inheritance, in fact, is perhaps the most distinguishing characteristic of object-oriented
technology. Inheritance is a way of implementing generalization/specialization relationships
between object classes. A generalization/specialization relationship occurs when a subclass
inherits features from one or more superclass. An example (Figure 22) would be the superclass
Vehicle which contains the subclasses Car and Truck. The inheritance relationship is denoted by
a triangle!? on the arc between the subclass(es) and superclass pointing in the direction of the
superclass.

Vehicle
{A} Mass
{M} Drive
Truck Car
{M&} Drive {A} Seats
{A} Axles

Figure 22 - Truck/Car Inheritance From Vehicle

11 IDEF4 uses the same cardinality symbols used in Entity-relationship diagrams because they are easily understood
and have been in use for many years in conventional systems analysis. These symbols are also use in Martin and
Odell’s “Object Oriented Systems Analysis and Design” (Martin, 1992).

12 The triangle notation is the same as that used in the Object Method Technique (Rumbaugh, 1991).

25

Vehicle would store all the methods and attributes that are common to both trucks and
cars. If an instance of Car was queried to find out the car’s mass, Car would get the information
about mass from Vehicle, where it is stored. When subclass/superclass relationships are created,
the instances of the superclass are normally partitioned into mutually exclusive, totally

exhaustive sets denoted by a blank triangle. In the case of overlapping categories, the triangle is
filled in black.

From the real-world point of view, the inheritance phenomenon operates like a
specialization relation by dividing objects into more specialized groups. The inheriting class
(subclass) is a specialization of the class from which it inherits (superclass). The concept of
inheritance allows for the reuse of methods and class features within the inheritance hierarchy.
Once the methods and features have been defined in one class, they can be used, through the
subclass/superclass relationship, by any other object or class that is similar.

Encapsulation and Information Hiding

Encapsulation and information hiding are two object-oriented concepts that are most
easily understood when discussed in terms of interactions between objects.

In the orchestra conductor example, the conductor did not need to know how the
messages being sent to the orchestra were implemented by different members. This is known as
information hiding. Information hiding is used when it is unnecessary to expose implementation
details — it explicitly limits access to the internal structure of objects. IDEF4 provides explicit
support for information hiding by providing levels of information hiding in classes (Figure 23)
and internal and external specifications for all design artifacts. A class has private and public
levels of information hiding.

Encapsulation
Per son /
Levels of {A} Name ™~ Public Features:
:_?f((j)_rmanon {A} Telephone Number > Externally Advertised
iding
(M} Dial yd
Private Features:
{2} gglla\llry b Internal Implementation
1A} A Details
Figure 23

L evels of Encapsulation in IDEF4

Features in each level are protected according to the level information hiding. Private
features are intended for use by instances of the class only. Public features are documented,
advertised, and supported for external use. In Figure 23, the class person, intended to support
automated dialing, encapsulates name, telephone number, salary, social security number, and a

26

dial behavior. The person’s name, telephone number, and the capability to automatically dial the
person’s number are public features, whereas the salary and social security number are not.

Information hiding is made possible by encapsulation using objects. IDEF4 objects
encapsulate behavior, data, and objects. Encapsulation can be thought of as a container for
information about an object. This container keeps the information in one place, in effect
modularizing it. Information hiding is typically used on objects to expose their external interface
while hiding internal workings; information hiding controls how much of the inside of the
container is visible. For example, an object that needs to use the services of another object need
only know what an object does, not how it does it. A person that needs to know the time from
another person need not know how that person tells time.

Objects that encapsulate objects are known as partition objects in IDEF4. With partition
objects, it is important to have a high degree of cohesion (Yourden, 1979) between objects
encapsulated by partitions and a low degree of coupling between partition objects (Figure 24).
This maximizes the re-useability and maintainability of objects. In Figure 24, the partitions
Packagel, Package?, and Package3 are loosely coupled, while their embedded objects are tightly
coupled.

Package 2 Package 3

Figure24
High Internal Object Cohesion Versus L ow Partition Coupling

| DEF4 Procedure

IDEF4 is an Object-Oriented Design method providing a multimode approach to
transforming application domain information to design specifications (Figure 25). IDEF4 is
focused on the design process, relying on IDEF domain analysis methods or other methods to
supply models of the application domain. The IDEF4 process outputs design specifications to an

27

implementation process. The major activities in IDEF4 object-oriented design are (1)
requirements analysis, (2) system design, (3) application design, and (4) low-level design.

Japplication domain models

required objects, attributes,
AnaLize |behavior,& relations

REQMTS 1

PerFORM [top-level system specifications
SYSTEM
DEsIGN 1
PerrORM [application design objects
APPLICATION |
DEsIGN 1
PERFORM))
Low -LeveL | low-level design objects
DESIGN L
Figure25

The Modes of IDEF Object-Oriented Design

The requirements analysis activity processes information from domain models and
requirements documents in order to establish clear and concise requirements that will serve as a
base for the other activities. The requirements analysis activity provides initial objects and use
scenarios. The use scenarios map to requirements and are used to validate requirements
satisfaction in design and implementation!3. The system design activity establishes design
strategies, divides the design into top-level design partitions, and defines the interfaces with other
systems. The application design activity specifies the object-oriented design details in these
partitions. The low-level design activity generates language specific implementation
specifications.

| DEF4 Organization
IDEF4 design partitions are described in three models:
(1) Static Model (SM),
(2) Dynamic Model (DM), and

(3) Behavior Model (BM).

13 Use scenarios correspond to use cases and use case analysis in Jacobsen’s Object-Oriented Systems Engineering
(OOSE) (Jacobsen, 1994).

28

IDEF4 also includes the Design Rationale, which provides a top-down view of the system and
documents design changes.

Each model represents a different cross section of the design (i.e., the static object
structure, dynamic object interaction, and behavior). The three design models, accompanied by
the Design Rationale component, capture all the information represented in a design project.
Each model is supported by a graphical syntax that highlights the design decisions that must be
made and their impact on other perspectives of the design. In order to promote ease of use,
elements of the IDEF4 method are uniformly represented between models; e.g., a class is
depicted as a box in all models.

Static Mode

The Static Model specifies the static structure of the design objects (i.e. the design
schema). It includes information such as the objects that will be needed in the design and
instances of those objects, attributes describing the objects, classification of objects into sub- or
super-classes, and relationships and roles among the objects. Examples of the information
depicted in a static model could include the following items:

(1) subclass/superclass relationship of class objects; e.g., an employee is a
subclass of the superclass person,

(2) operations that can be performed on an object; e.g., a document can be
printed, a person can be hired, an employee can be assigned,

(3) two way relationships; e.g., employs/employed-by relationship between class
objects employee and employer, and

(4) attributes of the class object; e.g., the class object person may have attributes
of age, name, weight, and height.

The Static Model includes object specifications and structural connections between objects.
These connections include inheritance, subtyping, relationships, and links.

Dynamic M odel

The Dynamic Model specifies communication between objects and transitions between
states. It contains a graphical depiction of the messages that are relayed between objects, events
which cause the object to implement the message, and the resulting transition of the object from
one state to another as the object executes the message. Examples of communications that may
be specified include the following items:

(1) an object instance “switch” transitioning between the states “on” and “off,”

(2) the “open” event generated by clicking on a file icon and the “launch”
message sent to its corresponding application,

29

(3) the “door-open” event generated by a sensor software component and the
“sound-alarm” message sent to the security management component, and

(4) aconductor sending a “play louder” message to members of the orchestra.

The Dynamic Model is specified in client/server diagrams and state diagrams using objects or
object states linked by messages and/or events.

Behavior M odd

The Behavior Model specifies the implementation of messages by methods in objects. It
contains behavior diagrams that show relationships between methods that implement a message
or behavior. The behavior diagram specifies the external behavior and internal implementation
of each method executing a message and also describes the relationships between method
specifications. For example, the message sound-alarmin a security system is implemented
differently within different software objects. On receiving a sound-alarm message, for example:

J an air horn software object will engage the circuit to the air horn,

e acommunications software object will send the name and address of the
facility to the police, and

J a spotlight software object will turn on spotlights.

Design Rationale Component

The Design Rationale Component contains diagrams that describe milestone
transformations of design artifacts throughout the design life cycle. The design rationale
component allows the designer to record the reasoning for changes made to the design.
Examples of the changes that may need to be documented in the design rationale component
might include the following items:

e ifthe designer re-partitions the object class person to the object classes
person and employee linked by a subclass/superclass relationship,

o if the designer refines the employs/employed by relation between the object
classes employee and company by using referential attribute pointers.

Design Artifact Specifications

Each IDEF4 Design Artifact has a specification associated with it. The specification
consists of external and internal specification components. The internal specification component
is used for defining the internal implementation of the design artifact. The software engineer
implements and maintains software with the internal specification. The external specification
component is a “black box” or encapsulated view defining the external behavior, protocols, and
responsibilities of the design artifact. The external specification is important to software

30

engineers using and reusing the design artifacts or resultant software components because it
defines the behavior of the design artifact without burdening the user with how the behavior is
implemented. The external specification is also used for encapsulating legacy software and
commercial “off the shelf” software components to make them usable in design specifications.

Summary

This chapter provided an introduction to the IDEF4 methodology and described (1) the
IDEF4 object-oriented concepts, (2) the IDEF4 Design Method Procedure, and (3) the
organization of a design in IDEF4.

The major focus of the chapter was on the use of object-oriented terminology as it applies
to the IDEF4 method. Terminology introduced included: object, method, message, class,
subclass, instance, inheritance, encapsulation, abstraction, event, state, and polymor phism.
With an understanding of these terms, the IDEF4 method can be easily mastered.

The section on IDEF4 Procedure discussed the design process and how the activities
involved in the design process are managed by the IDEF4 method and what the products of each
stage will be.

The last section on IDEF4 Organization explained what models will be created in an
IDEF4 design project and their purpose. An IDEF4 design project consists of three models: (1)
Static Model, (2) Dynamic Model, (3) Behavior Model, and a Design Rationale Component.

31

IDEF4 MODEL ORGANIZATION

In IDEF4, design artifacts are grouped into three models: the Static Model (SM), the
Dynamic Model (DM), and the Behavior Model (BM). The Static Model specifies the static
structure of the design. The Dynamic Model specifies the dynamic communication processes
between objects, classes, and systems. The Behavior Model specifies the implementation of
messages by methods and contains a method diagram for each message detailing the relation
between the method’s external behavior and implementation. The Design Rationale is an added
component that contains major transformations of design artifacts.

Each model represents a different cross section of the design. The three design models
capture all the information represented in a design project, and the design rationale documents
the reasoning behind the design. Each model is supported by a graphical syntax that highlights
the design decisions that must be made and their impact on other perspectives of the design. To
facilitate use, the graphical syntax is identical among the three models. For example, in all
models, “®” is used to indicate that the artifact is derived or abstracted directly from the domain
or real world, “A” is used to indicate that the artifact is in transition, and “©” is used to indicate
that the artifact has reached final design specification. In all models, boxes indicate classes,
round cornered boxes indicate instances, and arcs between boxes denote relations. No single
model shows all the information encompassed in a complete design, and overlap among models
ensures consistency. Each design artifact may also be associated with a formal specification of
its external behavior and internal construction. The following sections introduce each of the
models in more detail.

IDEF4 projects are organized into three design layers. Each design layer contains
partitions. Each partition contains the three models and the design rationale component. The
System layer represents the whole IDEF4 model. This is the actual product (i.e. the application.
The Application layer contains the application specific partitions or solution specific objects.
This may include actual code that has been generated and components that can be reused for
other projects. The final layer is the Foundation Layer, which contains low-level objects. These
could be buttons, forms, class libraries, and windows that constitute the software being designed.

At the System Layer, the software components are industry or domain specific (e.g.
software components related to the banking industry). As the design moves to the Application
Layer, the software components become specialized to objects supporting task specific designs.
At the Foundation Layer, the objects being used are software mechanisms common across a
number of industries (e.g. object libraries used by the medical industry, the banking industry, and
the retail industry).

33

?;ttie{inohs el Partitiong
Static Model (SM)

Dynamic Model (DM)

Behavior Model (BM,)
Application- Design Rationale (DR
Layer Partitions : Z S S _\

Partition, | Partition,| -+ | Partition,
Static Model | (SMy) (SMy) (SMy)

Dynamic Model (DM;) (DM,) (DM,)
Behavior Model | (BMy) (BM,) (BM,)
Design Rationale | (DR)) (DR,) (DR,)

Foundation Layer

-~

Partitions
Partition, 1 | Partition, - Partition;
Static Model | (SM2.1) (SM22) (SM2p)
Dynamic Model (DM3 1) (DM32) (DM)
Behavior Model | (BM2.1) (BM2) (BM2p)
Design Rationale (DRQ) (DRQ) (DR&Q)
Figure 26

Organization of the IDEF4 Proj ect

Each design partition must contain the three models and the design rationale component
to document the different stages and to track where the design is at all times during the project.
The models help transition the project through these three design partitions. Depending on the
design situation, a project can have more or less than three design layers.

The Static Modd

The first model created in any of the three design partitions is the Static Model. The
Static Model specifies individual IDEF4 objects, object features, and the static object
relationships. IDEF4 objects include instances, classes, and partitions.

The static model is made up of Structure Diagrams. The Structure Diagram depicts the
relationships between objects. Structure Diagrams can be specialized to show specific types of
relationships.

34

An inheritance diagram shows the class structure, specifying the inheritance relations
among classes, class features, and information hiding. An Inheritance Diagram must contain at
least one class. Figure 27 shows a class inheritance diagram that may be used by a company to
distinguish between different people entering the facility.

IDEF4 Structure Diagrams

A structure diagram contains objects related by inheritance, links, and relationships. A
structure diagram can be specialized to just include one type of relation structure. These
diagrams would then be labeled by the relation structure type (i.e. inheritance diagrams, relation
diagrams, link diagrams, and the instance link diagrams).

The specialized diagrams will be discussed in detail. The designer should keep in mind,
however, that a diagram can be created that encompasses all of the elements.

IDEF4 Class I nheritance Diagram.

The triangles depicted on the relations point from the subclass to the superclass. In this
diagram, the most general class is Person. The classes Consultant, Employee, and Client are
specializations of Person. The classes Hourly Employee and Salaried Employee are
specializations of Employee.

Person

{A} Name
{A} Phone

AN

Consultant Employee Client

{A} Company {A} Empoyee ID {A} Company
{M} Engage {M} Assign {M} Service

N

Hourly Employee Salaried Employee
{A} Hours {A} Vacation

Figure 27
Inheritance Diagram

Information hiding is portrayed in an Inheritance diagram by sectioning the class box
(Figure 28). The features listed below the first line in the class box are public; the features listed
below the public features are private features.

35

Per son ___—Class Name
Levelsof iA} Name ~~ Public Features:
Ln{;)_rmau on {A} Telephone Number Externally Advertised
iding
(M} Dial /
Private Features:
{ﬁ} gasllgry N Internal Implementation
{A} _} Detils
Figure 28

IDEF4 Class Box Showing L evels of Information Hiding

Figure 28 shows the class Person, which is being used in an automated telephone
directory system. The person’s name, telephone number, and the dial method are publicly
accessible, but the salary and social security number are private. If no public/private bar is
shown, then the features depicted are public by default. The public and private features of a class
need not be shown if they do not add information to specific diagrams.

Relation Diagram

A relation structure is a simple relation between two objects. They can show, for
example, a one-to-one or a one-to-many relationship. Figure 29 shows a relation diagram for the
Employed by/Employs relation between Person and Company.

R1:Employed by/
Employs
Person® [{1 q— Company®
Employee Employer

Figure 29
Relation Diagram

In this relationship, Person plays the role of employee and Company plays the role of
employer. A company may have one or more employees, and a person may be employed by zero
or 1 companies. This cardinality constraint is shown by the circle and fork (zero or more) on the

Person side of the relationship and the circle and line (zero or one) notation on the Company side
of the relationship.

Notice that the “r” noted after Person and Company represents an object that is from the

application domain. Once this object becomes modified in the design evolution, the notation will
change to “A.”

36

Link Diagram

As an object goes through design evolution, and the relationships should “disappear”
because the designer has implemented the relationship. The implementation will be done using
links, which are depicted in a Link Diagram. Figure 30 shows a Link Diagram containing a
design evolution of the Employed by/Employs relationship to a link (L1). The link is achieved by
imbedding the role names employee and employer as attributes in each class. The notation
L1(R1) indicates that the link was derived from relation R1. Links in IDEF4 may be
implemented by pointers, indices, or foreign keys. The imbedded attribute is known as a
referential attribute because it refers to other object instances. Notice that the link notation is
brought into the class box with a circle on the end to indicate that the relation has been
embedded.

2 2
Person L1(RY) Company
{AYEmployer o> 3 d——o {A}Employee
Figure 30
Link Diagram

The evolution from relation to link is tracked by the L1(R1) link label. There may be
other constraints on the relationship R1 that will constrain methods that create, reference, update,
and delete entities in the domain of the attributes defining the link. The IDEF4 method helps the
project team keep track of design evolutions like this.

Instance Link Diagram

The validity of the Link Diagram is tested using the Instance Link Diagram. Object
instances are run through the design describing real or possible object relationships. Figure 31
shows an instance link diagram with two instance of the class Person, [John] and [Mary] using
the Employed by/Employed relation link L1. [John] and [Mary] work for the [ABC] company.

37

(- Person[John]©) 4 Company[ABC]@W
® L1[1] ®
{A}Employer e {A}Employee J
- J -
4 Person[Mary]@\
°
{A}Employer e
- J L1[2]
Figure 31

Instance Link Diagram

Object instances are represented by rounded boxes with a black dot in the center. Link instances
are represented by connections with a black dot. The black dot serves as a visual cue for
instances and is used in the IDEF3 Process Method and the IDEF5 Ontology Method. The
Instance Link diagram is useful for challenging constraints in the design by exploring boundary
conditions.

Behavior M odel

The Behavior Model consists of method diagrams. Method diagrams show
polymorphism and are used to take advantage of behavioral similarity by reusing method
specifications.

Behavior Diagram

Figure 32 shows a method diagram highlighting the Pay method for employees.
Permanent Employees are paid benefits with every paycheck and temporary employees receive
pay with no benefits. This means that the method for calculating payment for permanent
employees is different from the method for calculating payment for temporary Employees. The
diagram highlights the difference between messages and the methods that implement the
messages. For example, the message Pay is implemented by the method BenefitPay for
permanent employees and by StraightPay for temporary employees.

38

(Pay)
Employee

Pay(currency)
- .

J

Kind ofPayment

(1 Pay N /Pay N
Perm Employee Temp Employee

BenefitPay(currency) StraightPay(currency)
- / - /

Figure 32
Behavior Diagram

The Behavior diagram provides a view of a class of behavior across all the classes. This
is useful for maintaining a consistent method signature (external protocols) or behavior across
classes. The triangle on the relationship line denotes a generalization/specialization relationship
which indicates that the behavior of Perm_Employee.Pay and Temp_Employee.Pay specializes
the behavior and implementation of Employee.Pay.

Dynamic M odel

The Dynamic Model has two kinds of diagrams, Client/Server Diagrams and State
Diagrams. Both diagrams use asynchronous and synchronous communications to depict dynamic
relations between objects. The dynamic relations are modeled using events and message passing.

Client/Server Diagrams

Client/Server diagrams illustrate the way objects use each other. IDEF4 uses
Client/Server diagrams as a common syntax for describing the usage relationships between
objects — from the system level of abstraction to low level objects. Figure 33 shows a
client/server diagram depicting the dynamic payment relationship between Calendar, Payroll,
PermEmployee, and TempEmployee.

39

PermEmployee

PayRoll

E> MI:Pay| BenefitPay

TempEmployee

E> M1:Pay StraightPay

: Calendar
‘El :MonthEnd

§> M4 PayWeekly
§>M3 :PayMonthly

Figure 33
Client/Server Diagram

The calendar generates events for month ends and week ends. Payment by Payroll is
initiated by MonthEnd and End of Week events generated by Calendar. Note that the dashed arc
indicates that the communication between Calendar and Payroll is asynchronous. The chevron
on each link points in the direction that the event or message is being sent. The chevrons are
shadowed to indicate that parameters are included. Payroll sends pay messages to permanent
employees and temporary employees. The Pay message is synchronous as depicted by the solid
line. The Pay message is implemented by the BenefitPay method in PermEmployee and by the
StraightPay method in TempEmployee.

State Diagrams

The state model documents a set of states of the object and the state transitions. A state
represents a situation or condition of the object during which certain constraints apply. The
constraints may be physical laws, rules, policies, etc. The transitions are modeled using events
and actions. Events are triggers which cause the object to initiate a transition from one state to
another. The action is initiated on entry into a state (Figure 34).

Emp |S,:Temp E : AcceptOffer SO\ M,:HirePerm | EmPp S,:Perm

— —
Figure 34

40

Employee State Diagram

The state diagram depicts the behavior of an object by showing the states an object can
exist in and how it transitions from state to state. Using the example from the Client/Server
diagram, an employee who is temporary may be hired on as a permanent employee. The
TempEmployee object would have the method “Hire Permanent.” The “accept” event generated
by a temporary employee is depicted on the relationship line. The message associated with this
event, “Hire Permanent,” is depicted on the other end of the relationship line.

Design Rationale Component

An aspect of IDEF4 that sets it apart from other object-oriented design methods is its
ability to explicitly distinguish between real-world objects, evolving design objects, and final
design objects and its ability to record the evolution between these objects. The design rationale
component of IDEF4 records major transitions in the evolution of an IDEF4 design. IDEF4
documents major design milestones as design states by recording the participating diagrams as a
design state, and then giving the rationale for transition to another design state. The rationale is
captured by describing the triggering observations and the resulting actions. Figure 35 shows
three design states. Observations are normally symptoms or concerns about the design.

f Design State 1) [Design State 2) A2Refine [Design State 3\

Al:Decomp
PC1 S I1 S EC2
yvd yvd
ECI 02:Relati
/ Ol:nonspecific \ / -nelation \
Design Rationale DS1 -> DS2 Design Rationale DS2 -> DS3
Observations Observations
Il;IonSpeci(fii%Link between Relation between Employee
Person/aén omnglg. mn and Company in EC1. We
erson/Company Object need to design implementation
Structure Relation Diagram for this constraint
PC1. '
Actions Actions
Decompose Person into Person Create referential attributes
and Employee Classes. Tighten employees on company and
cardinality constraint on R1 to employer on employee also
1'to 1 or more. Change Shows create methods to enforce
up in Employee/Company Object constraint. Change is shown in
Structure Diagram EC1 and EC2.
Inheritannce Diagram I1.

Figure 35
Design Rationale Diagram

41

Each design state lists the associated diagrams. The transition arc between design states
has a set of observation events from a design state and a set of actions that is applied to go into
the next design state. Thus rationale diagrams are actually specialized state diagrams.

Design Artifact Specification

Detailed specifications may be associated with any design artifact. There are two kinds of
design specifications: the External Design Specifications (ExSpec) and the Internal Design
Specifications (InSpec). The ExSpec defines the behavior of design features (Signature),
whereas InSpec defines how the design object is to achieve that behavior.

A designer reusing a design object follows the external specification; a software engineer
implementing the design follows the internal specification. IDEF4 promotes the view of
software engineers as software component builders or software component users. The ExSpec
enables the creation of component design libraries for design reuse.

Organization of an IDEF4 Proj ect

IDEF4 Projects are organized in a hierarchical structure using IDEF4 Partitions. Each
IDEF4 Partition is an independent model, having static, dynamic, and behavioral model
components. This hierarchical structure of partitions and subpartitions is analogous to major
sections, chapters, and subsections of a physical document and is suitable for the development of
a document. Figure 36 shows an example of this hierarchical structure.

Partition,,

Mo
BM,
DM,

Partition, Partition, Partitionp Class; Class,
SM SV SV
DM DM DM
BM BM BM
1
Partition; § | Partition; Partition,

SM SM SM
DM DM DM
BM BM BM

Figure 36 - IDEF4 Document Structure

Summary

IDEF4 has three models: (1) the Static Model (SM), (2) the Behavior Model (BM), and
(3) the Dynamic Model (DM). A Design Rationale Component (DR) is included for recording
the rational for major design evolutions. The SM specifies the static structure of the design, the
DM specifies the dynamic communication processes between objects, classes, and systems, and
the BM specifies the implementation of messages by methods and contains a method diagram for
each message detailing the relation between method external behavior and implementation. Each
design artifact may be associated with a design specification that specifies the external behavior
(Signature) and internal implementation of the artifact.

43

STATIC MODEL

The Static Model (SM) specifies the static structure of the IDEF4 Object-Oriented
Design. Each IDEF4 Design Partition must have a Static Model. The Static Model specifies
individual IDEF4 objects, object features, and the static object relationships and links.

The Static Model contains structure diagrams. A structure diagram contains objects
related by inheritance, links, and relationships. A structure diagram can be specialized to just
include one type of relation structure, and would then be labeled by relation structure type, such
as inheritance diagrams, relation diagrams, link diagrams and the instance link diagrams.

Creating the structure diagrams is the first step in an IDEF4 project. To create a structure
diagram, object instances are identified and divided into classes. The relationships between these
objects are identified. They may also be partitioned. Forms are then used to document
information about the objects, classes, partitions, and relationships.

This chapter discusses object identification, IDEF4 Object naming conventions, examples
of structure diagrams, and the forms used in the Static Model.

Object Class I dentification

The IDEF4 Method assumes that the domain objects have been identified through Object-
Oriented Domain Analysis. Methods such as IDEF1, IDEF5, IDEF3, SA/SD can be used to
perform domain analysis (Yourdon, 1979). However, IDEF4 practitioners should be aware of
how objects are identified, as the design process may reveal deficiencies in the Object-Oriented
Analysis.

The identification of objects starts by focusing on the problem from the application
domain and looking for the things in the problem. These things are likely to fall into five
categories (Schlaer, 1988) that provide a useful place to start looking for objects:

(1) physical or tangible objects,

(2) roles or perspectives,

(3) events and incidents,

(4) interactions, and

(5) specifications and procedures.
Tangible or Physical Objects

These objects are often called naive objects because they are easy to find. For a given
problem, it would be difficult to avoid recognizing automobile, taxi, airplane, train, dog, cat,
landmark, radio, cellular phone, and book as objects. Figure 37 shows a set of physical objects.

45

lhu/ [ru/

Figure 37
Physical Objects

Objects Based on Role or Per spective

Objects take on different roles in different situations or when seen from different frames
of reference. For example, it is possible for a person to take on many roles in different situations.
These roles may be the person’s permanent profession (e.g., lawyer, doctor, engineer, nurse,
broker, accountant, or employee).

The role may be related to other activities that the person engages in (e.g., a patient in a
hospital, a stockholder, a client, a trustee, a suspect in a burglary, or a tax payer). Frequently
objects have many roles. For example, a doctor in a hospital could also be a patient in the
hospital, a taxpayer, a licensed car driver, a credit card holder, a parent, and a pitcher on the local
softball team. Figure 38 shows the different role objects passenger, nurse, and construction
worker.

46

Passenger Construction Worker

Figure 38
Role Objects

Events and Situations as Objects

Events or incidents may also be considered objects. The following are event objects: a
horse race, a baseball game, a burglary, a car accident, a manufacturing defect, an earthquake, an
election, a repair, and an airplane flight. The identification of events as objects is highly
subjective, and will depend on the domain in which the software is to be used. Figure 39 shows

events that could be considered as objects.

o2

Delivery Seminar

Figure 39
Event Objects

47

Meeting

Interaction Objects

Interaction objects are the result of interactions or transactions between two or more
objects. For example, the marriage certificate issued to a couple getting married and the sales
receipt received by the customer from the sales person for an item purchased are transaction
objects. Interaction objects can also arise out of modeling geometric objects (e.g., the
intersection between two volumes, the edge between two faces, and the intersection point of two
lines). Figure 40 shows a transaction object (i.e., the receipt).

Figure 40
Interaction Objects

Interaction objects also arise in systems that involve flow (e.g., the piping in a water
system, the lines in a telephone network, and the bus in a computer).

Specification and Procedure Objects

Specifications and procedures are found in all enterprises. ISO 9000 compliant
manufacturers must have standard operating procedures (specifications for manufacture) for
making products, inventory departments have procedures for replenishing inventory, products are
built according to the specifications of the design department, and the sale of products are
governed by standard operating procedures. Our lives are governed by laws, policies, and
procedures. Specification objects describe the acceptable characteristics of objects instances.
Procedure objects refer to the way other object instances may interact.

A drawing for a part (Figure 41) is a specification object for parts that are to be
manufactured. A flow chart (Figure 41) is an example of a procedure object.

48

— =
;
{
l

EEE—

Figure4l
Specification and Procedure Objects

When searching for objects in a domain, the first objects that should be identified are
physical objects. Role objects should be identified next, and so on, until specification and
procedure objects have been identified. A domain may contain objects of all types or may just
contain one type.

| DEF4 Object Naming Conventions

Object names that are clear and concise contribute to the clarity and explicitness of the
models. It is preferable to name object classes with the common name used for object instances
(e.g. “Person” used as a class for John, Mary, and Toonsie). However, the following problems
may arise: (1) the name may be context sensitive (e.g., an account at a store and an account
[story] of an experience), (2) the name may refer to more than one object class (e.g., order may
refer to items being purchased by the company or items sold by the company), and (3) two or
more names may be used for the same object class (e.g., employee and worker). In some cases,
common names may not exist for certain object instances. In these cases, object class names
must be coined.

Coining Terms

When coining terms, common terms for objects are preferred. In all other cases, names
should be based on the essential nature of the object by concatenating common terms. For
example, an official at a manufacturing equipment exposition could be coined as exposition-
official or equipment-exposition-official. Often objects are named by a process or activity
associated with them. This form of name coining should be avoided in IDEF4 models. An
example of this is a restaurant which refers to customers by the food they order and their
location. A phrase such as “The cheeseburger at four,” means the customer who ordered the

49

cheeseburger at table four. This type of naming convention'# should not be used because it does
not describe the object.

In coining terms, one should also examine the common terms of related object classes
and ensure that the object class name “fits” with the related object classes. For example, if the
terms bedroom, bathroom, and living room are in common use in a domain, it does not make
sense to coin the term “storage environment” for a room that is used for storage purposes.

In IDEF4, the name of an object class can be used to uniquely identify it. For object
instances the name of the class and a unique attribute of the instance must be used to identify it.
Object instance names are constructed with the object class name followed by the value of the
unique attribute in angle brackets. For example, John, an object instance of object class Person,
is shown as Person[John] .

Objects that are scoped within partitions are referenced by Partition ID’>‘Object ID:.
For the partition class Neural Net, the Node class is referred to as Neural_Net>Node. The
instance Node[N23] in Neural _Net[NN2] is referred to as Neural Net] NN2] >Node[N23] .

Static M odel Diagrams

Diagrams in the Static Model show different kinds of static relations between different
kinds of objects. All of the relations can be depicted in one diagram, or specialized diagrams can
be created for each relationship type. It is beneficial to be able to look at just the sub and
superclass relations or just the inheritance, but it is often necessary to depict different kinds of
relationships on a single diagram to give the designer an idea of how everything fits together.
While a design is in transition, for example, it is necessary to depict relationships and links on a
single diagram, in the event that the designer may not have decided on how to implement all of
the relationships. A designer may also create a structure diagram that contains all the objects and
relationships, and then break this out into more specialized diagrams.

To understand why both specialized and general diagrams should be developed, the
developer should compare them to an assembly drawing. The actual assembly drawing gives a
detailed road map of how everything fits together (a general diagram). The assembly drawing
will also, however, have more detailed drawings of each section of the assembly which detail
tolerances, measurements, and specifications (specialized drawing). Specialized diagrams, such
as an Inheritance diagram, focus on one aspect of the design relationships. General diagrams let
the designer view these relationships in one place so that when the design is in flux there will be
just one diagram changing, as opposed to having several diagrams would then need to be
updated.

14Known as metonymy.

50

Structure Diagrams

DEF4 uses Structure Diagrams to define the structural relations between objects. Besides
the Inheritance diagram, there are three other kinds of Structure Diagrams, categorized by the
kind of object and kind of relation that is used: (1) Relation Diagrams (Figure 43), (2) Link
Diagrams (Figure 44), and (3) Instance Link Diagrams. The practitioner need not be aware of
these kinds of structure diagrams, as the type of diagram is directly implied by the kind of objects
and kind of relations used in the diagram. Figure 42 shows the kinds of IDEF4 relationships.

[RoleName] @ [RoleName] Bi nary Relation
[ID:]RelationLabel

[RoleName] E [RoleName] Relation Obj ects
[ID:]RelationLabel
[ID:]RelationLabel
[RoleName] ,E [RoleName] Ter nary Relation
[RoleName]
Figure 42

Kinds of IDEF4 Relationships

A relation consists of a line connecting two classes or two object instances with a smaller
box containing a unique identifier for the relationship. A rolename may be assigned to either end
of the link to indicate the way that the class participates in the relationship. If the relation box is
shadowed, it indicates that other auxiliary objects participate in the relationship. For example,
the relationship between the owner of a house and the house involves a title deed, which would
be an auxiliary object.

Each relation and link in a structure diagram has multiplicity or cardinality constraints on
both ends (Figure 42). Each constraint specifies the maximum and minimum cardinality of the
relation or link. For example, Figure 43 may be read as every instance of objectl is associated
with one and only one instance of object2, and every instance of object2 is associated with zero
or more instances of objectl.

51

Max .) .
n Relation/Link ID

M
Objectl >G R1 I I Object2

Figure 43
Structure Diagram Relation/Link Symbols

Figure 44 enumerates all combinations of cardinality constraints and shows examples of
each.

Unconditional Conditional Biconditional

8 FR)
[f—o—{ b a f—o— b a J—o—o b

One To One
One To Many a b—o—H b a po—o—H b a po—r—H b
=
AN
/] b
X __—
Many To Many a b—mo—Hd b a po——H b a po——og b

Figure 44
Structure Diagram Multiplicity Constraints

There are three forms of cardinality constraint: one-to-one, one-to-many, and many-to-
many. A one-to-one relationship exists if an instance of a class is associated with a single
instance of another. For example, in the class Social Security Card one instance of Social
Security Card would be associated with an instance from the class Person. A one-to-many
relationship exists if an instance of a class is associated with one or more instances of another,
and if each instance of the second class is associated with just one instance of the first. An
example of this would be the class Computer in which many instances of the class Person shared

52

the same computer. A many-to-many relationship exists when an instances of the first class are
associated with many instances of the second class and vice versa. This might occur if the class
Employee had many employee instances that could work on an instance of a project from the
class Project, and an instance of a project could have many employees working on it.

When all of the instances in two classes participate in associations, the relationships are
called unconditional. If some of the instances from one of the classes in a relationship do not
participate, then the relationship is called conditional. If some of the instances from both of the
classes in the relationship do not participate in the relationship, then it is called biconditional.

Cardinality is important to the designer because the implementation used for the system
should be decided by the relationship’s cardinality. For example, a one-to-one relationship
would not be implemented the same way a many-to-many relationship is implemented.
However, for each type of cardinality there are many different ways for a relationship to be
implemented.

Once the designer has a grasp of the concepts of relationships, rolenames, and cardinality,
a structure diagram can be built. The next sections discuss the specialized diagrams. The
Inheritance Diagram shows inheritance relations between class and partition objects. The
Structure Relation and the Link Diagrams show static relations and links between classes and
between instances.

Inheritance Diagrams

Inheritance diagrams show subclass/superclass relations among classes. The concept of
inheritance provides a means of organizing object instances into related sets (classes), which
allows for the reuse of methods and class features.

From the real-world perspective, the inheritance phenomenon operates like a
specialization relation. That is, the inheriting class (subclass) is a specialization of the class from
which it inherits (superclass). Figure 45 shows the IDEF4 inheritance relations.

53

Digjoint Subclasses
[SubClass] N [SuperClass]

Overlapping Subclasses

[SubClass] } [SuperClass]

Inheritance of Internal Specification

[SubClass] N [SuperClass]
V.
|

Inheritance of External Specification

[SubClass] N [SuperClass]

Ve

Figure 45
Kinds of IDEF4 | nheritance Relations

The open triangle indicates that subclasses are mutually exclusive (disjointed). An
example of this would be the subclasses Sar and Planet for the superclass Celestial Object.
Because of the different physical and chemical make up of these two subclasses, a planet will
never be a star and a star will never be a planet so these classifications are disjointed.

The filled triangle indicates that subclasses overlap. For example, car and boat are
subclasses of vehicle. An amphibious car is an instance of car and boat so the subclasses are
overlapping and not mutually exclusive because an instance of an object can belong to more than
one class.

IDEF4 also allows specialized notation to indicate whether an internal specification
(specification of internal implementation, i.e., code) or signature (implementation of external
behavior, i.e., a protocol) is being inherited. An “i” near the inheritance triangle indicates
inheritance of internal specification, whereas an “e” near the triangle indicates inheritance of
signature.

Figure 46 shows an inheritance diagram for different classes of oven. The Oven Class
has methods defined for switching on the oven, switching off the oven, and determining the
temperature of the oven. The ‘!’ in front of the “Switch On” and “Switch Off” methods indicate
that the method is redefined in the class. The Microwave Subclass specializes the behavior of
the Oven, by being able to set cooking time, and by having different methods for switching on
and off. These two methods are said to “shadow” the methods in Oven because they achieve the
same end result (turning the oven on and off) but it is done by a different means (i.e., method).

54

Oven

{M} Switch On
{M} Switch Off
{M} Temperature

SuperClass
SubClass
MicrowaveOven ElectricOven NaturalGasOven
{ M} Set Time {+M} Switch On {+M} Switch On

{IM} Switch On
{IM} Switch Off
A} Time

{+M} Switch Off
{ M} Open Door
M} Close Door

{+M} Switch Off
{ M} Open Door

M} Close Door

SuperClass
AN y
SubClass
EasyMicroWave ConvectionMicroWav

{ M} Open Door
{ M} Close Door
{IM} Set Time

{IM} Open Door
{IM} Close Door
{IM} Set Time

Figure 46
Inheritance Diagram for Ovens

The Electric Oven specializes Oven, but the methods for switching it on and off are the same as
for oven with some additional constraints. This is indicated by the ‘+’ in front of the Switch On
and Switch Off methods in Electric Oven.

The EasyMicrowave has a new specification for SetTime indicated by the !’ prefix, but
uses the same Switch On and Switch Off methods used by MicrowaveOven, its superclass.
ConvectionMicrowave inherits behavior from Electric Oven as well as MicrowaveOven. Open
Door and Close Door are redefined in ConvectionMicrowave, but it is not clear whether Switch
On and Switch Off are inherited from MicrowaveOven or ElectricOven. Name conflicts like
these must be resolved in the MicrowaveOven Class Specification.

Relation Diagram

The Relation Diagram shows relations between objects. Each relation has a relation
label, a unique identifier, a role label from each object attached to the relation, and the cardinality
of each object attached to the label. Each relation contains a small box to distinguish it from a
link. Figure 47 depicts the relationships R1, R2, and R3 between the objects desk lamp, base,
lamp shade, and light bulb. A desk lamp has one base (R3), one lampshade (R2), and one or
more light bulbs (R1). A base, light bulb, and lamp shade are associated with only one Desk
Lamp.

55

Base 2

R3:Asm/Sub {A} BaselD
- {A} Model#©
DeskLamp? {A} Color©
{A}LamplD
{A} Model#© R2:Asm/Sub LamoShade?
{A} Status © .—| L p
{M} Fix 2 - IT] 1A} ShadelD
{M} Break © {A} Model#©
{M} On© {A} Color©
{M} OFF ©
O
5
£ 0 LightBulb?
& {A}BulbID
{A} Status ©
{A} Model#
N {A} Power
{M} Fix 2
{M} Break ©
{M} On ©
{M} OFF ©

Figure 47
Relation Diagram

Link Diagram

A link is an implementation of a relation using referential attributes. The Link Diagram
shows the links between referential attributes. A link points from a referential attribute on an
object to the domain object of the attribute. If the link is bi-directional, then it links the attributes
on both attributes’ participating objects. Each link has a unique link identifier, an optional
reference to a relation, and the cardinality of the participating objects. The optional relation
reference is used to indicate the relation from which the link was derived. Figure 48 shows a link
diagram derived from the relation diagram shown in Figure 47. The Object Class DeskLamp has
referential attributes base, shade, and bulbs that point to instances of base, lamp shade, and light
bulb.

The relation reference is shown in parenthesis after the link identifier. The notation
L1(R1) indicates that the link was derived from relation R1. Links in IDEF4 may be
implemented by programmers as pointers, indices, or foreign keys. The attribute is known as a
referential attribute because it refers to other objects.

56

Base?
11(R3) (A BaselD
aSC
DeskLamp? [A} Modelo
{A} LampID {A} Color©
{A} Model#O
{A} Status ©
{A} Base ° 2(R2) LampShade?
{A} Shade . . H
{A'} Bulbs ° A} ShadelD
{M} Assign {A} Model#©
{M} Fix? {A} Color©
{M} Break ©
{M} On©
M} OFF © LightBulb?
{A} BulbID
L3R (A} Status ©
|'_‘|—|< (A} Model#
{A} Power
{M} Fix 2
{M} Break ©
M} On©
{M} OFF ©
Figure 48
Link Diagram

Notice that the link notation is brought into the class box to indicate that the relation has
been embedded. The evolution from relation to link is tracked by the L1(R1) notation because
there may be other constraints on the relationship R1 that will constrain methods that create,
reference, update, and delete entities in the domain of the attributes defining the link. The IDEF4
method helps the project team keep track of design evolutions like this.

Instance Link Diagram

It is often useful to validate the design by describing real or possible object relationships.
An Instance Link Diagram shows scenarios using actual instances of a class to validate
relationships. The designer can verify that the links created in a Link Diagram are correct using
instances or actual occurrences of an object.

Figure 49 shows an instance link diagram for the link diagram shown in Figure 48.
DeskLamp 23 points to Base 21, LampShade 33, and LightBulb 21 through referential attributes
base, shade, and bulbs respectively.

The Instance Link diagram is useful for challenging constraints in the design by exploring
boundary conditions.

57

(" Base[21])
11(R3) .
(A} Model#: Al J

{A} Color: Red

f DeskLamp[23] I

{A} Model#A12
{A}Base e 2(R2) LampShade([33
{A} Shade o (P . []\
{A} Bulbs e {A} Model#: A22

Y, t{A} Color: Tan J

BRD 7 LightBulb[21] ")

(A} Model# Al1
{A} Power: 60w

Figure 49
Instance Link Structure Diagram

Object Structure Specifications

After creating structure diagrams, the designer will have a good idea of which objects are
valid objects in the design. For each object identified in the design, IDEF4 requires an external
and internal class specification. The specification contains the object name, a description of the
object, the rationale for abstraction, and a list of its superclasses (Table 1). The external portion
of the object specification contains descriptions of the object’s public features. The internal
specification contains specifications for private features.

Table1l. Object Specification Form

Author |J. Smithe |[Project |IICE |Date | 6/1/94 |Revision |3
Object Specification |Name |Object Name | Partition(s) | Partition Names
Description A brief description of the object
Rationale Rationale for abstracting the object
Super Classes Alist of the object’ s superclasses
Diagrams Alist of the diagrams in which the object is used
External Features
Partition/Clasg/| nstance Event M essage
A list of embedded objects | Alist of events A list of messages

58

Attribute

Description

Role

Domain

Attribute Name | Short description of attribute Is the attribute | The attributes’
referential, domain
descriptive, or
identifying

Internal Features
Partition/Class/| nstance

Event M essage: M ethod

Alist of events

A list of embedded objects A list of messages

Attribute Description Role Domain

List of Attribute | List of corresponding attribute Isthe attribute | List of

Names descriptions referential, corresponding
descriptive, or | attribute
identifying domains

Table 2 shows an object specification form for the employee. An employee is a person
who works for a company. The employee class appears on inheritance diagram ID21, structure
diagram SD23, and link diagram LD22. Employees can generate events for strikes and injuries.
Employees can receive messages for work and travel that have been implemented by the methods
work and travel respectively. Employees have a name, employee identity number, and
department. Employees have a salary, but that is hidden from the general public.

Table 2. Object Specification Form Example

|Project [IICE |Date |6/1/94 |Revision |3
Name | Employee | Partition(s) | Company

Author |J. Smithe
Object Specification

Description An employee is a person that works for a company

Rationale Employees are *physical objects’ that appear in the company
partition

Super Classes Person

Diagrams ID21, SD23, LD22
External Features

Partition/Clasg/| nstance Event M essage
none strike, injury work: work

travel: travel

59

Attribute Description Role Domain

Name The name of the person descriptive String

ID Unique employee ID Identifier Integer

Dept Department that employee works | Referential Department
in

Internal Features

Partition/Clasg/| nstance Event M essage

None None reminder

Attribute Description Role Domain

Salary The monthly Salary of the Descriptive Currency
employees

The IDEF4 method also requires other elements of the diagrams to be documented as
well. If the object shown in Table 2 is a partition, then a Partition Specification Form (Table3)
must also be filled out. The Partition Specification Form includes information on the Static
Models, Dynamic Models, and Behavior Models of the partition. The Partition Specification
also contains lists of specifications for each of the three models.

Table 3. Partition Specification Form

Author [J.Smithe [Project |IICE |Date | 6/1/94 |Revision |3
Partition Specification Name | Company Partition(s) | Conglomerate
Physical Allocation Node N241 OS UNIX™
Static M odel Dynamic M odel Behavior Model

LD22 SD23, ID23 CX1, CS19, SM10, SM11 | BM20, BM21

Empl oyeeSpec, EmployeeHiringSpec wor kspec travelspec
DepartmentSoec

For each relationship specified in the design, IDEF4 requires a form containing the name,
description, roles, and cardinality of the relation. Table 4 shows the form for specifying
relations. If the partitions are tagged with network node designators, then the physical partitions
of the generated software are specified.

60

Table4. Relationship Specification Table

Author |J. Smithe [Project [IICE |Date | 6/1/94 |Revision |3
Relation Specification | Name | Relation Name [ID | UniquelD
Description Description of relation

Implementation | List of diagrams and specifications detailing relation
implementation

Object/Relation | Role Relation Cardinality

Object Name Role Name Relation Name | Cardinality Constraint
Object Name Role Name Relation Name | Cardinality Constraint
Object Name Role Name Relation Name | Cardinality Constraint

For each link specified in the design, IDEF4 requires a form containing the Link ID,
description, roles, cardinality of the link, and the relation from which the link was derived. Links
can be derived from relations by creating referential attributes from the relation’s role names.

The Works_for/Manages relation form shown in Table 5 shows the relationship between
employees and managers. The relationship is shown implemented as a link in link diagram LD24
and link specification in LS21. An employee acting as a worker works for a manager and a
manager acting as a supervisor manages one or more employees.

Table 6 shows the specification of the implementation of this relationship using a link.
The works for part of the works_for/manages relation has been implemented using a pointer from
employee to manager and using the manager referential attribute of employee.

61

Table5. Relationship Specification Tablefor Works_for/M anages

Author |J. Smithe |Project |IICE |Date |6/1/94 |Revision |3

Relation Specification | Name | Works For/Manages [ID |R21

Description An employee works for a manager a manager manages 1 or more
employees

Implementation |LD24, L1

Object/Relation | Role Relation Cardinality
Employee wor ker works for one and only one manager
Manager Supervisor manages one or more employees

Table6. Link Specification Table Example

Author |J.Smithe [Project |IICE |Date | 6/1/94 |Revision |3
Link Specification | Link Name | Works For ID [Lsx1

Description A pointer from employees to supervising manager

Relation RS21:Works for/manages

Object Attribute Cardinality
Employee Manager 1 manager

Object Name Referential Attribute Name | Cardinality Constraint

Advanced Features

This section discusses advanced features which relate to the different scenarios that occur
when using inheritance. These specializations are specialization based on (1) external protocol,
(2) internal implementation, and (3) sub- and super- type.

Advanced Features of | nheritance

Normally, when one class inherits features from another class, the external features and
internal features are inherited. In some situations, only the external signature of the class is
inherited or inheritance of external and internal features occur in opposite directions. IDEF4
allows additional notation on the inheritance relation to model these situations.

62

Specialization Based On External Protocols

Under this specialization, the subtype inherits its external specification from the
superclass (i.e., the subclass specializes the external protocol of the superclass through
inheritance). The inheritance diagram shown in Figure 50 shows that the classes Fluorescent
Bulb and Incandescent Bulb specialize the external signature of Light Bulb. The inheritance
symbol is labeled with an ‘e’ to denote external inheritance.

Light Bulb?

.

Flourescent Bulb? Incandescent Bulb?

Figure 50
Subtype/Supertype External Inheritance Relationship

Specialization Based on I nternal | mplementation

The subclass inherits internal specification from the superclass (i.e., the subclass uses the
implementation code of the superclass through inheritance). The inheritance diagram shown in
Figure 51 shows that the classes Fluorescent Bulb and Incandescent Bulb inherit external
signature. The inheritance diagram shown in Figure 51 shows that the classes Fluorescent Bulb
and Incandescent Bulb inherit and specialize the internal implementation of light bulb as well as
the external signature. The inheritance symbol is labeled with an ‘i’ to denote internal
inheritance

Light Bulb©

T

Flourescent Bulb© Incandescent Bulb©

Figure51
Subclass/Superclass Internal Inheritance Relationship

Specialization Based on Subclass and Sub Type

Normally inheritance of internal and external signature are in consonance; i.e., the
subclass specializes the internal implementation of the superclass, and the subclass specializes

63

the external signature of the superclass. This is default interpretation of the triangle inheritance
symbol (Figure 52).

Light Bulb©

)

Flourescent Bulb© Incandescent Bulb©

Figure 52
Subclass/Super class I nheritance Relationship

In rare cases, the external and internal specialization relations do not correspond: Real
Numbers are a subset (external specialization) of Complex numbers, yet in a design, for practical
implementation considerations, the internal specialization relation may be the reverse of
subtype/supertype. Complex numbers have a real and imaginary component, but real numbers do
not have an imaginary component (its value is zero). In terms of internal implementation, we
would model complex numbers as a subclass of real so that the complex number class could
inherit the real attribute from the real number class and specialize it by adding an attribute for the
imaginary component. However, from an external point of view, we would like all of the
arithmetic operations on real and complex numbers to work correctly so we would model real
number as a specialization of complex number when looking at the external signature. The
Inheritance diagram in Figure 53 models this situation. The triangle labeled ‘e’ and the triangle
labeled ‘i’ point to the superclass seen from an external and internal point of view, respectively.

Complex Number

{A} Imag: Float
Complex Numbers

<

Real Number
{A} Real: Float Real Numbers

Figure 53
Inheritance Relationship of Complex and Real Numbers

64

Advanced Features of Relations

Normally relationships are binary; i.e., they involve two objects. Relationships, however,
are not always binary: IDEF4 can describe relationships that involve more than two objects,
relationships that involve objects, and relationships that involve relationships. An example of
these relationships are: (1) the married relationship between husband and wife that involves a
marriage certificate; (2) the house owner relationship involving person, house, and title; and (3)
the assignment relationship between person, project, and skill.

Figure 54 depicts the ternary relationship between person, dog, and license. This
relationship involves the dog license object. A person may own dogs and a dog may be owned
by a person. To own a dog, a person must have a dog license. The relationship box is shown
shadowed to indicate that a relationship object is involved. N-ary relationships (relationships
involving more than two objects) do not occur frequently, but if they do, then they should be
resolved in terms of binary relationships, or relation objects, or the relationship should be
“objectified.” Cardinality cannot be specified on n-ary relationships.

Person Owner Pet | Dog

Proof

License

Figure 54
Ternary Relation Involving Person, Dog, and License

Figure 55 shows this relationship modeled as a binary relationship between Person and
Dog with a secondary relationship between License and the Owns/Owned By relationship. A
person may own a dog, and a dog may be owned by a person, and every Owned/Owned By
relationship may have one license. A license must be associated with an Owns/Owned By
relationship. The secondary relationship is often used to resolve many-to-many relationships.

65

R1:0wns/Owned By

Person HO I O< Dog

License R2(R1)

Figure 55
Secondary Relationships

The shadowed relationship box shown in Figure 56 denotes relationships that involve

objects. This relationship box may be used as an abbreviation in diagrams for the more explicit
form shown in Figure 55.

R1:0wns/Owned By

Person _|Q_D_O< Dog

Figure 56
Relation Involving Objects

Figure 57 shows a possible link diagram for the Person/Dog/License Relation. The link
diagram contains redundant links which may be used to increase efficiency.

Person Dog
{A} Name L1(R1) {A} Name
L3RD | (A} Pet —TI———°K {A} Owner
— {A} License H {A} License
License
L2(R1)
{A} No
— {A} Owner
(Al Pet TP
Figure 57

Link Diagram For Person/Dog/L icense Relation

Class Features

A class is a special kind of object that is known as a class object or metaobject.
Sometimes it is necessary to define features on the class object. These features are known as
classfeatures. A variable that counts the number of created instances of a class is a good

66

candidate for a class attribute. Methods that create instances are really class methods because
they belong to and operate on the class object, and because the class object has the information
necessary to instantiate objects. Class objects can also have links to its subclass and superclass
objects, but these links are typically private.

In IDEF4, class features have a box drawn around them to indicate that they do not apply
to instances of the class, but to the class object itself. Class attributes are useful for storing
information that is the same for all instances; for example, the attribute Sides is always three for
instances of triangle and the number of instances that have been created from a class should also
be common for all instances of the class. The number of instances of an object that have been
created by a class object is information that can be shared across all instances. Figure 58 shows a
triangle class with conventional area and vertex attributes. Triangle also has class attributes
sides for the number of sides of a triangle and instances which count the number of instances
created. All instances of triangle have access to this attribute.

Triangle

{A} Area Class Feature
{A} Sides | _—

/

{A} Instances

{A} Vertex1
{A} Vertex2
{A} Vertex3

Figure 58
Representation for Class Features

Alternate IDEF1X Cardinality Syntax

The choice of the “crows feet” cardinality notation in IDEF4 was intentionally designed
to appeal to the large commercial base of entity/relationship (ER) modelers who are familiar with
this notation. There is also a large base of modelers familiar with the “black dot” cardinality
notation of the IDEF1X semantic data modeling method. In recognition of this large base of
IDEF1X users, IDEF4 allows IDEF1X’s “black dot” cardinality notation to be substituted for the
“crows foot” notation. The two cardinality notations are illustrated in Figure 59 using the
Owns/Owned By relation between instances of the class Person and instances of the class Dog.
Both examples express the same relation: a person owns zero or more dogs and a dog is owned
by one and only one person.

67

Owns/Owned By

Person -|-|—|:|—()< Dog

Owner Pet
Owns/Owned By
IDEF1X
Person o Dog Cardinality
Owner Pet Syntax
Figure 59

Crows Feet and IDEF1X Syntax

There is a one to one mapping between the cardinality symbol sets, so anything that can be
expressed using the ER cardinality notation on the relations in an OOD can be expressed using
the IDEF1X cardinality notation on the relations in an OOD, and vice versa.

Users of the IDEF1X cardinality notation in IDEF4 should be careful of confusing the
semantics of object-oriented modeling with semantic data modeling. The IDEF1X concepts of
entity, primary key, foreign key, key attribute, and parent/child relationship do not map directly
to OOD. For example, objects do not need identifiers (primary key). Objects do not have
foreign keys. In IDEF4, the equivalent object concept for parent and child entity is not explicitly
supported, but may be derived from the cardinality constraints.

Figure 60 enumerates possible combinations of the IDEF1X cardinality symbol for one-
to-one, one-to-many, and many-to-many relations against unconditional, conditional, and
biconditional cases. Figure 44 shows the “crows feet” notation equivalents for the “black dot”
notation shown in Figure 59.

68

Unconditional Conditional Biconditional

L) FR) &
a —o—b a @—o— b a jo—o—e b |

One To One
One To Many Zl.p_u_b a|.—g—b a|o—n—;|z
ESSNESS
Z—X
Many To Many Z|."—u—3| b a |o—|:|—po| b a I'_D_'E

Figure 60
IDEF1X Cardinality Symbolsused in IDEF4

Use of the IDEF1X “black dot” notation will make it easier for IDEF1X modelers to
transition their models into OOD. IDEF1X models may be cast as object-oriented models in
IDEF4 by re-interpreting the semantics of entity to mean Class, relation to mean link,
categorization to mean inheritance, foreign key to mean referential attribute, and key attribute to
mean naming attribute. The ability to migrate from IDEF1X to IDEF4 could be useful for
organizations that have large inventories of IDEF1X models and would like to leverage this
investment in object-oriented design.

The IDEF1X method was developed for designing relational database schemas; therefore,
IDEF1X models exhibit a commitment to a certain style of implementation. Thus it may be
necessary to reverse engineer IDEF1X models to translate to an IDEF4 object model. Entities in
IDEF1X are identified on the basis of descriptive attributes (i.e., state), whereas in IDEF4,
objects are identified on the basis of their behavior, leaving the attributes as an implementation
decision. IDEF1X associative entities are identified to resolve many to many relations; therefore,
from an OOD perspective, they may appear contrived. IDEF1X relations represent an
implementation choice, that is why IDEF1X relations are equivalent to IDEF4 links. IDEF4
links are an implementation decision based on IDEF4 relations, thus IDEF 1x relations must be
reverse engineered to find the IDEF4 relation underlying the link. Figure 61 illustrates this point
by showing the IDEF1X Employs/Employed By relation with its equivalent IDEF4 link. Note the
referential attribute plays the same role as the foreign key in the Employee class. Because the
IDEF1X relation is one of many possible implementations, it is important to define the IDEF4
relation on which the IDEF4 link could be based. The IDEF4 relation is important in that it will
allow a common take-off point for investigating other implementation options.

69

Company/1 Employee/3
CAGE Employs/Employed B ’ SSN
mploys=mployed By 4 Employer. CAGE(F
| DEF1x Name i (
Address kSalary
Company LI(R1) P| Employee
, {A} Name L1 @ {A} Employer
{A} Office
Employs/Employed By
Company P Employee
IDEF4 Relation {A} Name R1 @ (A} Salary
{A} Address Employer Worker {A} Office

Figure 61

IDEF4 Equivalent Representationsto IDEF1X Relation

In IDEF1X, the foreign key is imbedded in the dependent entity because relational
databases rely on queries for joining data across tables. OOD queries are performed by
navigating across the network of links between objects, so that the placement of links using
referential attributes (attributes that refer to other objects) is strongly influenced by the intended
usage of the objects and are not necessarily imbedded in the dependent object as they would be in

IDEF1X.

The categorization relationships in IDEF1X can give the designer an idea of possible
subclass/superclass relationships. The categorization relationship also depicts which attributes
can be stored by the superclass and do not need to be included in the subclass. Figure 62 shows

the equivalent IDEF4 syntax for an IDEF1X categorization.

70

Person/1

SSN Person
Name {A} SSN.
Status {A}Name
{A}Status
g 2 Status %

Status

‘ [

Non Employee/2 Employee/3
(SSN(FK) \ (SSN(FK)) Employee NonEmployee
{A} Salary {A} Date
Date Salary {A} Office

Figure 62
IDEF1X Categorization and Equivalent IDEF4 Inheritance

In summary, use of the IDEF1X “black dot” cardinality symbol should lower the semantic
impediment to object-oriented design by experienced IDEF1X modelers, and should also serve to

encourage the use of the existing inventory of IDEF1X semantic data models.

71

BEHAVIOR MODEL

The Behavior model classifies methods by behavioral similarity. A behavior diagram
classifies a specific system behavior type according to the constraints placed on the methods
implementing a message. The arrows indicate additional constraints placed on the method sets.
The Behavior model consists of behavior diagrams. Each behavior diagram depicts instances of
a kind of behavior.

Strictly speaking, a method in an OOPL is described by its code; in IDEF4, a method is
described in a behavior specification which is like a contract for its implementation. The
behavior specification contains an external and internal component. The external behavior
specification is a declarative statement of the intended effect of the method. For a non-side-
effecting function, the specification would state the relationship between the function argument
list and the corresponding return values. For a procedure or a side-effecting function, the
specification would also define how the method changed the entire state of the world when given
an argument list and a prior state of the world. The method contract may in some situations
contain algorithmic restrictions such as, “The move method will execute an erase method
followed by a draw method.” A specification might also give other information about the
intended nature of the method (e.g., its time complexity). In addition, one would expect to find
statements of actions that should occur before a method is invoked and what actions should occur
after the method has performed its task. A behavior specification provides the constraints that
are specified to hold for all implementations of the method.

Behavior Diagram

The purpose of the Behavior Diagram is to describe relationships between internal and
external specifications of behavior patterns (families of behavior). The behavior family can be
either globally scoped or scoped within a partition.

The intent of behavior diagrams is to provide a separation of the method hierarchy from
the class hierarchy, to reuse method hierarchy and specifications for other classes and designs,
and to focus on behavior independence of object model (only at the end do we link methods to
classes).

Behavior Diagram Syntax

The behavior diagram consists of round-cornered boxes denoting behaviors and links
between these boxes that in turn denote generalization/specialization relations between
behaviors. The message name is entered at the top section of the box, the participating classes
are listed in the center section, and the method signature is specified at the bottom. The signature
of the method includes the method name, input parameter types, and return types (Figure 63).

73

Method Box

Message Name

\

[Behavior Class]*

[Method Signature]

Figure 63

Example

4 Wash)
Car
CarWash(location)

- J

Example of Behavior Diagram Syntax

Using a partition name implies that the method is not in the partition that owns this
behavior diagram, and that the method has been exported (i.e., is public) from the partition in

which it is defined (Figure 64).

Corresponding Class Syntax

Class_Entity

Static Method Label

Figure 64

Example

Car

{M} Wash [Wash Car]

Behavior Diagram with a Partition

IDEF4 reuses the inheritance diagram syntax, including the external and internal
specialization notation. To help differentiate behavior diagrams from inheritance diagrams, we
often draw behavior diagrams from left to right instead of from top to bottom (Figure 65).

74

4 Wash)
Car

_. WashCar /
4 Wash) e
__WashItem /
4 Wash)
Person
Shampoo
_ Wash Hair Y,
Figure 65

Behavior Diagram Including External Specialization

External specialization means refining the general behavior (i.e., the behavior of the external
interface).

/ Wash)
_Wash Short Hair /
4 Wash) i
_ Wash Hair /
/ Wash N
_Wash Long Hair /

Figure 66
Behavior Diagram Including I nternal Specialization

Internal specialization means refining implementations of the behavior (Figure 67).

75

(Wash \
Car
(Wash \
\. Wash Car /
(Wash \
e \ Wash Short Hair)
N
\ Wash Item), i
(Wash \
Person ﬁ /ﬁ
Shampoo Wash
\ Wash Hair),
\ Wash Long Hair /
Behavior: >Wash
Figure 67

Behavior Diagram Including I nternal and External Specializations

The name of the behavior diagram is the system or partition behavior that is being described (i.e.,
the behavior family, which is really the message name).

Classes and M ethods

If a method has no class(es) associated with it, it is not meant to be implemented — it is
used to capture a behavioral specification that will be further specified.

If a method has exactly one class associated with it, the method is considered to be owned
by the class and is part of the class’s encapsulation.

If a method has more than one class associated with it, the method is a multi-method. It
does not belong to any of the specified classes, although each class involved will have a feature
that references the method. It belongs to the partition in which it is specified (or globally if there
is no partition).

Behavior Specification

The behavior specification of a method is defined on a behavior specification form (Table
7). The behavior specification form contains the following elements:

Method name — unique name for the method (within the partition).

Behavior/M essage Name — name of the Behavior Diagram that this method
resides on. All methods reside on some Behavior Diagram.

76

Partition — the partition that the method is in; it could be the system (global)

partition.

Classes — list of classes that participates in the method. It can have zero, one, or

many.

Protocol — the input and output parameters and their types of the method; not to
be confused with the classes that specialize this method.

Specialization — the parent and child method specifications that inherit to or from
this method on the MTD.

Definition/Description — an overview of the method.

External Specification — a set of constraints that say what the outside world can
expect from this method (i.e., what and when).

Internal Specification — a set of constraints that say how the method’s internals
should work (i.e., how).

Table7. Behavior Specification

Author | J.Smith |Project |

IICE |Date | 6/1/94 |Revison | 3

Method Specification | Nam
e

Method Name

Behavior | Msg Name Partition | Partition Name

Description

Method Description

External Specification

Soecification of external behavior of
method

Input Parameters

Input parameter specification

Output Parameters

Output parameter specification

Parent Methods

Child Methods

List of parent methods

List of child methods

Internal Specification

Soecification of internal implementation
details of method

77

DYNAMIC MODEL

Objects and relationships change over time. In IDEF4, we first define the static structure
of the problem using the Static Model. The aspects of the IDEF4 design that are concerned with
time and change are defined in the Dynamic Model. Once the objects and structural relationships
have been identified, the time varying behavior must be defined. The Dynamic Model defines
the dynamics of interaction among objects and the state change dynamics of objects. The
Dynamic Model consists of a Client/Server diagram, for specifying inter-object communication,
and a State Model, for specifying the behavior of individual objects in terms of states and state
transitions.

Overview

IDEF4 uses events and messages to define communication between objects and to define
transitions between the states of those objects. These are depicted using a Client/Server diagram
to define the communication, and a state diagram to show the state transitions.

Terminology used to explain the Client/Server diagrams and state diagrams includes
action/message, event, object state, object life cycle, and object communication.

State

A state is an abstraction of the attribute values of an object. Sets of values are grouped
together in a state in accordance with properties that affect the behavior of an object. For
example, an account is either in the black or in the red, depending on whether the amount of
funds attributed to the account is positive or negative. In IDEF4, a state specifies the response to
events. The response of a state to an event may be an action or a change of state.

Action/M essage

Objects communicate by passing messages (and broadcasting events) to each other.
Upon receiving a message, an object takes an action. The action is specified in a method.
Normally the message name is the same as the method that is invoked. Actions are also
performed when an instance transitions into a state as a result of some condition (event) being
detected. For state models, the action is called out by a message which is associated with a
message that is sent to the object when the event is detected. For example, a bank account can
have the states of having a balance and being overdrawn (Figure 68) The labels before the
messages are an abbreviated way of referring to the messages. If an account detects an event
indicating that it has become negative (event), it should be marked as overdrawn (action). An
action will occur because the message associated with the event is sent to the object.

79

(E3:Withdraw) Mj3:Debit

S

(EI:Open§>—)
M; :Create E5:Negative Ms:Overdraw

Account 3: Closed Account 1: Active :: > Account |2: Overdrawn

{A} Balance =0 7 {A} Balance [10 7 {A} Balance <0

A} Status= Closed A} Status= Acti A} Status= Overd

\{} atus ose N {A} Status = Active N {A} Status verrawn/

M»,:Deactivate (E~:Cl Mg :Activate Eg:Positivd
(E7:Remove) 2 (Ep:Close 6 6
§> M7:Delete
M4:Credit:§ (E4:Deposit) E4:Credit§ (E4:Deposit
Figure 68

State Diagram for a Bank Account

Event

An event is a signal that is broadcast by an object when a condition is detected condition
at a point in time (i.e., a door being opened, a button being pressed, the departure of a flight, or
an account transitioning into a negative balance). Objects are attuned to the event by associating
a message to be received with the event. Zero or more objects may respond to the event. Events
are often related. For example, the door opening event and the door closing event form a cycle.
Responding to an event may cause a state transition in an object.

State Transitions

State transitions define how objects move from state to state. The graphical syntax to
represent transitions in state is shown in Figure 69.

The chevron on the event/message relation indicates the direction of the communication.
Shadowed event/message chevrons denote parameters being passed between participating objects
and states. Dashed lines indicate asynchronous messages. Solid lines indicate synchronous
messages. For synchronous messages, the client object waits for a reply from the server object.
For asynchronous messages, the client object continues executing. As can be seen from Figure
69, the event is optional on the relationship. If the event is left out, then the message is issued
directly from the calling object.

80

Synchronous Asynchronous

Client N Client35>
[Event] £/ Message Server [Event] Message Server
Client/Server relation Client/Server relation

i : e T="e| NEEEEE 3 " .
Client [Event] £ / Message Server Client [Event] Message Server
Parameters Parameters
Figure 69
Event/M essage Syntax

Object Life Cycle

An object life cycle is the set of states and transitions defined by events and actions. For
example, bank accounts can exist in the states closed, overdrawn, or active. The events that are
meaningful include open, close, withdraw, deposit, (become) positive, and (become) negative.
The actions that are meaningful in these states are create, delete, debit, credit, deactivate, and
activate. The object life cycle defines allowable ways to enter and exit its states using
event/action pairs. Note that creation and deletion of objects involve start and end states.

Object Communications

Objects interact to perform the mission of a system. The transfer of funds from a savings
account to a checking account requires communication between an authorized user, a transaction
object, the checking account, and the savings account (Figure 70).

Agent Transfer Transaction AN Account
AN Withdrawe” Debit
{A} Name Aé/ {M} Transfer {A} Name
{A} Authorized Transfer T\ {A} Balance
{A} Status
[Deposit é/ Credit {M} Credit
{M} Debit

Figure 70
Classes I nvolved in Funds Transfer

An agent sends a “Transfer” message to a transaction object, which initiates a withdrawal
and then a deposit to the different accounts. The transaction object ensures that all parts of the
transaction complete; otherwise it rolls back. Savings account and checking account are
subclasses of account, so both of them inherit the debit and credit methods from account. The
transaction object waits for the withdrawal to complete before issuing the deposit. If the account
cannot process the request, it stops the transaction and signals an error. The transaction object

81

uses the information passed to it by the error event to rollback transactions so that the accounts
are returned to their original state.

The example in Figure 71 shows a simulation using instances. An authorized agent,
Agent “[D. Brown],” initiates a transfer event on a transaction object.

(Checking[9004] \ /" Savings[3234] \
Debit
{A} Name="J. Smith" {A} Name="J. Smith"
{A} Balance =110 §>— {A} Balance =10
{A} Status = Good {A} Status = Good
{M} Credit \{M} Debit
Withdraw
Credit
/ Transaction[1234] \ Transfer / Agent[D. Brown] \
(M} Transfer 7 {A} Name= "Brown"
{A} Authorized = True
Transfer
Deposit \ / \
Figure71

I nstances I nvolved in Funds Transfer

Communication between objects occurs using a message and events. The action
performed in response to a message is implemented by a method in an object. A method refers to
the behavior of an object, stating what actions the object can perform. A message can be sent to
other objects or it can be sent from an object to itself. An object life cycle is a set of states and
transitions for a particular object. With a basic understanding of these elements, the designer can
then begin creating Client/Server diagrams and state diagrams.

Client/Server Diagram

In IDEF4, the Client/Server diagrams are constructed first because they provide
requirements input to the state diagrams. The state diagrams provide detailed descriptions of the
behavior of each separate object in the system, whereas the Client/Server diagrams address the
dynamics of the system as a whole.

Client/Server diagrams define coordinated behavior between state diagrams by defining
the communication between objects in terms of event/message pairs. For example, in Figure 72,
when a door is opened, the event “open” is generated, causing the message/action “start alarm” to
be sent to an alarm system. If the event is left out of the diagram, then the message is issued
directly from client object to server object.

82

M essage Passing

Door Alarm

{A} Name E1:Open N\ {A} Name
{A} Location 4/ Mistart | {M} Start
{A} Status {M} Stop

When the Open event is generated by Door,
a Sart message is sent to Alarm.

Figure72
Event/M essage Communication Between Objects

Client/Server diagrams provide a graphical summary of event/message communication
between state diagrams of objects in the system, external systems, external devices, and
operators. An event that is generated by one state diagram and received and acted on by another
is represented by an arrow link pointing from the object generating the event to the object
receiving the event. The arrow is annotated with the event name and number, and the
action/message name and number. Events that are generated and received by the same state
diagram are omitted from the Client/Server diagram. If the partitions in the client server
diagrams are tagged with network node designators, then the physical partitioning of the
generated software is specified.

The designer will go through four steps to create a Client/Server diagram. These steps are
shown in the following list:

(1) Identify compatible components,

(2) Assemble components,

(3) Simulate Client/Server diagram, and
(4) Develop state diagram.

These steps will be discussed using the example of a track event.

Example: A Track Event
Track and field meetings provide a wealth of examples of the interplay between events

and actions in the real world. Figure 73 shows a sprint event partition that has the starting judge
and runner classes imbedded in it.

&3

El:Marks -Positi
Track Event Judge il » M Position I Runner
{ A} Race E2:Get Set <\ M2:Set
{A} Time yd
{C} Judge { A} Name E3:Bang O\ M3:Run gﬁ/[}} I\Rlir;le
{C} Runner {M} Start < {M} FalseStart
M4:False Start 7 E4:Early Start {M} Position
= {M} Set
ES:BangBang“ MS: Stop
Y4
E6:Disqualify<\ Mé6:Leave
yd

Figure73
Track Race Scenario

The starting judge issues commands and the runners respond to these commands in a
predetermined way. When the starting judge issues the “on your marks” command (shown in
Figure 73 as the Marks event), the runners respond by getting into position. The starter then
issues the “get set” command (the Get_Set event) and the runners respond by moving into the
crouched position ready to start. The starting judge then fires the starting pistol and the runners
start running. If a runner false starts, the starting judge fires the pistol a second time.

| dentify Compatible Components

The first step in the development of the Client/Server diagram is to identify the
components in the partition. The practitioner should try to select ready built design components
before identifying new components to be designed and built.

Assemble Components

The next step is to assemble the components by defining the communication relations
between objects. This defines the interfaces between the objects. For Server Database and End-
user Database partitions, this would involve defining all of the messages that would be sent
between the partitions.

Simulate Client/Server Model

In step three, the practitioner tests the Client/Server diagram by simulating event/action
occurrences. The state diagrams for all components must be available in order to perform the
simulation. Problems identified in the simulation of the Client/Server diagram will lead to
selection of different components, or altering the state diagram of existing components.

84

Develop State Diagram

In order to fully specify the Client/Server model, the state diagram will have to be defined
for each object. The track meet example gives the designer a very simple situation for building a
Client/Server diagram. The next section discusses the incorporation of COTS or legacy software
code into the Client/Server diagram.

Client/Server Encapsulation of L egacy and Commercial Systems

Often the design needs to use existing system components. Most commercial software
applications have programmer interfaces, messaging interfaces, or object-level interchanges to
allow the applications to be incorporated in system solutions. For example, it is common to use a
commercial database system to store data, a spreadsheet to analyze the data and generate charts,
and a word processor to print reports on the analysis. Protocols such as dynamic data exchange
(DDE™) for messaging, object linking and embedding (OLE™) for exchanging data , and open
database connectivity (ODBC™) for interfacing to databases make it possible to integrate
commercial off the shelf (COTS) software. These protocols form part of what is known as
middle ware — software that enables interapplication integration.

IDEF4 uses the partition to encapsulate the COTS software by defining the messages that
the software responds to and the events that the software can generate. There are three levels of
COTS software: (1) full-blown applications like spreadsheets and word processors, (2) applets or
mid-level applications like spell checkers, grammar checkers, and print pre-viewers, and (3)
executable software components such as buttons, input fields, and forms.

Figure 74 shows a Client/Server diagram for a partition containing a commercial word
processor and a custom application that generates a report using the word processor. The custom
application is a partition that maintains information about widgets and uses a form containing an
input field and a button that are commercial components. The designer is responsible for
designing the partition called My-Application which will use these components.

&5

High-Level Application Containing

Commercial Low Level Commercial
Component Components
WordProcessor My-Application
{M} Cut {P} Input Field
{M} Paste {P} Button
{M} Print {P} Form
{M} Open {C} Widget Low Leve!
{M} Close Commercial
{M} Save Components
Widget - Input Field

- Button

Form

[

Custom Component

Figure 74
Design For COTS Client/Server System

The example in Figure 74 shows how the IDEF4 notation deals with COTS seamlessly.
Only the external interface of the COTS product must be specified; the internals are the
responsibility of the software manufacturer. This approach reduces the amount of code that will
need to be maintained in the implemented system, and shifts the burden of maintenance from
code maintenance to component configuration management. For legacy systems, a partition is
used to encapsulate the legacy code so that wrappers can be designed to enable the software to
integrate with other design components. This encapsulation contains the actions and events that
other design components will need to interface with the legacy software.

State Diagram

Each object in the system has a state diagram which can be formalized as a set of states
and event/action transitions (Figure 75). A state represents a situation or condition of the object
during which certain constraints apply. The constraints may be physical laws, rules, and policies.
Events are triggers that cause the object to initiate a transition from one state to another. An
action occurs when the object enters the new state. The action is a message associated with a
method that the object executes on arrival in the state.

Object,State; Event, <\ Messageg Object,Statej
L

Figure 75
Object State Communication

86

IDEF4 uses a specialized representation for the situations when objects first come into
existence (creation) and when they cease to exist or cease to participate in dynamic behavior
(final). IDEF4 further distinguishes between events that are generated internally by the object in
the state diagram and objects communicating with the state diagram. In the state diagram,
external events are shown in parenthesis to indicate that they are place holders or variables
referencing events generated externally. De-referencing the external events in the state diagram
preserves encapsulation, while allowing the state diagram to reference external events without
defining them. This technique makes the design objects extremely re-usable.

The state diagram can be created using a process similar to the process for creating a
Client/Server diagram:

(1) Identify states,

(2) Identify internal events,

(3) Identify kinds of external events,
(4) Identify action, and

(5) Simulate state diagram.

The development of the state diagram will be discussed using a banking example which walks
through these five steps and culminates, in an additional step, with code generation.

Banking Example

A banking example illustrates the subtleties of the state diagram. One of the most
important objects in a banking system is the account. The state diagram for Account is shown in
Figure 76. The following paragraphs will detail the process for building this Account State
Diagram.

In creating the state diagram, it is important to acquire a detailed description of the
dynamics of the account and the requirements placed on the account. Interviews with the
customer and Client/Server diagrams using the account object provide input on required
behavior.

87

(E3:Withdraw) E M3:Debit

(Eq:Open)
M; :Create Es:Negative Ms:Overdraw

(3: Account, Closed\ /1 : Account, Active 2: Account, Overdrawm
{A} Balance =0 7 {A} Balance [J 0 {A} Balance <0
{A} Status = Closed ‘ {A} Status = Active {A} Status = Overdrawn
Mj:Deactivate (Ey:Close Mg:Activate Eg:Positive

§> M7 :Delete
M4:Credit§ (E4:Deposit) Ey:Credit :E (E4:Deposit)

N

(E7:Remove)

Figure 76
State Diagram For a Bank Account

Step 1: I dentify States

The required account behavior has been simplified for this example. An account can be
active, overdrawn, or closed. An account may be created with the client’s name and zero
balance. When the account is active, amounts may be debited on withdrawals and credited on
deposits until the balance goes negative, at which time it becomes overdrawn. When the account
is overdrawn, amounts may be credited on deposit until such time as the balance becomes
positive. When an overdrawn account becomes positive, it is activated. In the event that the
account is closed, the account is deactivated for a period, then deleted from the system.

A state diagram must be designed so that it unambiguously specifies the behavior of the
account. The first step in designing the account state diagram is to identify a set of suitable state
abstractions. Clearly, the account is either closed, active, or overdrawn. These situations can be
abstracted as three states plus the start and final states:

(Sp) start before account is created,

(S1) active normally operating account,

(S2) overdrawn account,

(S3) closed account, and

(S¢) final: account removed from system.

The object state box contains a state title consisting of the state ID, the classname, and the

state name. The body of the state box contains the attribute/value pairs that define the state. It is
often convenient to define the attribute value as a range using a constraint, (for example “balance

88

> (7). If the effect of each action on the attributes is defined, then code can automatically be
generated from the state diagram. The states can be defined as follows:

(S1) active {Status == Active},
(S2) overdrawn {Status == Overdrawn}, and
(S3) closed {Status == Closed}.

This information is shown in Table 8, the Account State Specification Form. The table contains
the state ID, name, description, condition, and action.

Table8. IDEF4 Account State Specification Form

State Specification Form | Class Name(s): Account

ID | Name Description Condition Entry Action
So Start No account instance exists. None None
St Active Normal operating mode off Account. Can | Status==Active Status:=Active

accept debits and credits.

Sy | Overdrawn| Restricted operating mode of Account. Status==Overdrawn | Status:=Overdrawn
Only credits may be applied to this
account.

S3 [Closed Account has been closed and balance paid | Status==Closed Status:=Closed
out, awaiting deletion.

Sgp | Final Account removed from system. None None

Step 2: 1dentify Internal Events

The next step is to identify the events that are triggered by the account. These events are
easily identified by examining situations that cause state changes. These situations are as
follows:

(Es) balance of active account becoming negative, and

(Eg) balance of an overdrawn account becoming positive.
The internally generated events can be defined as follows:

(Es) negative {Balance <0 };

(Eg) positive{Balance >0 };

&9

This information is shown in the Account State Specification Form (Table 9). The Table
contains the event ID, name, description, and condition.

Table9. Internal Event Specification Form for Account

Internal Event Specification Form Class Name: Account
ID [Name Description Condition

Es | negative Balance of active account becoming negative | S; and Balance <0

E¢ |positive Balance of an overdrawn account becoming | S, and Balance > 0
positive

Step 3: I dentify Kinds of External Events

Numerous kinds of events are generated by other objects that trigger state changes in state
diagrams. External events are added to the state diagram as referential attributes that can be
bound to external events when the state diagram is used, such as in a Client/Server diagram.

This ensures that encapsulation of the account object is not compromised, and can be reused in
different partitions. The references to external events are shown in parenthesis on the state
diagram (Figure 76) and are as follows:

(E1) (open) account triggered by an external object (e.g., a teller);
(E2) (close) account triggered by an external object (e.g., a teller),

(E3) (withdraw) triggered by an external object (e.g., a teller or automated teller
machine [ATM])),

(E4) (deposit) triggered by an external object (e.g., a teller or ATM), and
(E7) (remove) triggered by an external object (e.g., a system administrator).

This information is shown in the Account External Event Specification Form (Table 10). The
Table contains the external event ID, name, and description.

90

Table 10. External Event Specification Form for Account

External Event Specification Form Class Name: Account

ID | Name Description

E1 |open event for starting a new account by an external object (e.g., a teller)

Ep |close event for closing an account triggered by an external object (e.g., a
teller)

E3 |withdraw |event for withdrawing money from an account triggered by an
external object (e.g., a teller or ATM)

E4 |deposit event for depositing money into an account triggered by an external
object (e.g., a teller or ATM)

E7 |remove event for expunging records from the system triggered by an
external object (e.g., a system administrator)

Step 4: I dentify Actions

After the events are identified, the actions performed by the account must be identified.
The kinds of decisions that are being made here are as follows: “In state s, if event e is
generated, what state is entered, and what is the appropriate action?” If the balance becomes
negative when the account is active, the account is set to overdrawn and a $20 amount is debited
from the account. If the balance becomes positive when the account is overdrawn, the account is
made active. Through this exercise, the following actions are identified:

(M7) create new account,

(M») deactivate closed account,

(M3) debit amount from balance,

(My) credit amount to balance,

(M5) overdraw account,

(Mp) activate overdrawn account, and

(M7) delete closed account.

As one enumerates all possible connections between states using events generated and
appropriate responses, one soon realizes the need to use a state diagram to manage the
complexity of the problem. The state diagram contains object states linked by dynamic relations
defined by event/action pairs (Figure 77).

91

(E3:Withdraw) M3:Debit

o

(E1:Open)
M :Create E5:Negative Ms:Overdraw
Account 3: Closed Account 1: Active Account |2: Overdrawn

Z/
{A} Balance =0 7 {A} Balance [0 7 {A} Balance <0
\{A} Status= Closed ‘: {A} Status= Active ‘ {A} Status= Overdrawn/
(E:Remove) M, :Deactivate (E,:Close Mg:Activate Eg:Positivg
§> M7:Delete g g
My:Credit (E4:Deposit) E4:Credit (E4:Deposit

Figure 77
State Diagram for a Bank Account

The arrow on the dynamic relation indicates the causality of the event/action pair. Events and
actions can be abbreviated for easier reference.

The semantics of the actions performed by the account can be defined as follows:

(M) create (Name){Balance = 0; Owner = Name},
(M») deactivate () {debit (Balance)},

(M3) debit (Amount){Balance = Balance - Amount;},
(My) credit (Amount){Balance = Balance + Amount;},
(M5) overdraw (){Balance = Balance - Penalty;},
(Mp) activate(){}, and

(M7) delete (){Delete;}.

This information is shown in the Account Action Specification Form (Table 11). The table
contains the action ID, name, description, and action description.

92

Table 11. Action Specification Form for Account

Action Specification Form

Class Name: Account

ID [Name Description Specification
M, |create Start new account create (Name)

{Balance = 0; Owner = Name}
M, | deactivate Close account deactivate()

{debit (Balance)}
M3 | debit Subtract amount from balance debit (Amount)

{Balance = Balance - Amount;}
My | credit Add amount to balance credit (Amount)

{Balance = Balance + Amount; }
Mj |overdraw Flag account as overdrawn overdraw()

{Balance = Balance - Penalty;}
Mg | activate Reactivate overdrawn account activate (){}
M7 | delete Remove account from system delete (){Delete;}

After gathering information for the state diagram using the four step procedure, the designer
should complete the state diagram.

Table12. Object State Transition Matrix for Account

Object State Transition Matrix

Class Name: Account

Event E; E» E3 E4 Es Eq E7

State (Open) (Close) | (Withdraw | (Deposit) | Negative | Positive | (Delete)
)

So:Start 1:M; 0 %) %) %) %) 0]

S1:Active %) 3:M» 1:M3 1:My 2:M5 %] %

S>:Overdraw (%) 0 0] 2:My %) 1:Mg (%)

n

S3:Closed (%) (%) 0 0 %) 0 FM~

Sg:Final 0] 0] %) %) %) %) 0]

93

Table 12 shows the relations between states, events, and actions in a matrix form. The rows are
identified by states and the columns by events. Each cell in the matrix identifies the state to
transition to and the action initiated upon entry into that state.

Step 5: Simulate State diagram

In this step, the practitioner tests the state diagram by simulating event/action occurrences
against different states. Problems in the state diagram may lead to state diagram design changes
and ultimately to changes in the Client/Server diagram.

Step 6. Generate Code

Given the state diagram and the definitions of the states, internal events, and actions, the
source code for the state diagram can be generated automatically. For a state transition (Sy Sy)

defined by the event/action pair (E; M;), the code will take on the form:
If Sy and E; then do {Sy ;M;j)

Thus, when the account state transitions from active to overdrawn, the code fragment generated
would be:

If S1 and E5 then do {Sy; Ms;} which expands to:
If (status == active and balance < 0) then

do { status = overdrawn;
Balance = Balance - 20;

}

For (S1, S1)(S2, S2) (E4, My) the following pseudo code could be generated

void account::credit(real amount)

{
b

if (or S1 Sy) balance = (balance + amount);

Oven Example

The following example depicts the creation of a Client/Server diagram and state diagram
for a microwave oven with a simple control interface (Figure 78).

94

Microwave Oven

o o [

/ / \ . Door

Clear Button Add minute Opener
Button Button

Figure 78
A Microwave Oven with a Simple Interface

The oven has a door, an “Add Minute” button, a “Clear” button, and an “Open” button.
To operate the microwave, the door is opened by pressing the “Open” button, food is placed in
the microwave, the door is closed, then the “Add Minute” button is pressed repeatedly until the
desired amount of time in minutes is reached. The microwave begins cooking as soon as any
amount of time is entered, and stops cooking when the door is opened. The microwave resumes
cooking when the door is closed, if there is still time left. The “Clear” button can be used to reset
the microwave. The microwave has a software controller that ensures safe operation. The
controller uses a software clock to track the seconds.

Example of Client/Server Diagram: Oven System

All four of the steps involved in creating a Client/Server diagram will be used in this
example.

Step 1: I dentify Compatible Components

Only the external interfaces of the components of the microwave are visible to one
another. These components must be connected to each other using events and messages. For
example, the Power On and Power Off events should be connected to a device that cycles power
on and off. The AddOne message should be connected to an input device that allows users to
indicate cooking time. Figure 79 shows the IDEF4 design partition for the microwave. The
Door, AddButton, and ClearButton objects are real-world (®) objects that are public to the
partition because they are accessible to users of the microwave. The controller, timer, and power
switch objects are private because they are not accessible to users.

95

Oven?

{C} Door®
{C} AddButton®
{C} ClearButton®

{C} Controller?
{C} Timer?
{C} Relay®

Figure 79
IDEF4 Design Partition For Microwave

Figure 80 shows the IDEF4 components of the microwave. The software part of the
system consists of a controller and clock. The external interfaces consist of a power switch,
“Clear” button, “Add” button, and Door.

Oven Controller* | My:SetOpen @

Eq:Power_On
< g M3:SetClosed z

Ey:Power_Off
< g Mj:Decrement Z
E Mjs:Reset M;:AddMin <z

E{:Push

E1:Open

!

§> ClearButton®

E{:Push

Door®

!

Relay®

M;:On %
EZ:CI°S§> AddMinButton® |
M:Off %

E|:Tick

Clock?

!

Figure 80
Componentsin Microwave Example

For example, the controller generates Power On and Power Off events and performs actions
such as Add Minute, decrement counter, and reset. These components are assembled by linking
an event generated by one object to an action that another object may perform.

96

Step 2: Assemble Components

Figure 81 is an IDEF4 Client/Server diagram showing how the microwave components
communicate using events and messages. The ClearButton to Microwave Controller link may be
read as when the ClearButton is pressed, a push event is generated which causes the reset
message to be sent to the oven controller which performs the reset action.

Relay®

Mz:Off

=
e
=

E j:Power_On

Oven Controller?

7 Ey:Power_Off

E 1:Push

AN

<\ Ms5:Reset

{M} AddMin
{M} SetOpen
{M} SetClosed
{M} Decrement
{M} Reset

{E} Power On
{E} Power Off

y4

ClearButton®

Door®

o [}

2 2

Q Q

My:SetOpen ~ (o o
AN
M3:SetClosed S~
AN

Mj:Decrement — E |:Tick

{A} Door &
{A} Counter
{A} Power
{E} Time Out Clock?
/Z .
M[:AddMin X E:Push AddMinButton®

Figure 81

Oven Controller Client/Server Diagram

The methods, events, and attributes of the controller have been added to the controller
object. The door, counter, and power attributes of the controller are private so they cannot be
seen by the objects external to the controller. The Time Out event is also private because it is
only used internally by the controller. The oven Client/Server matrix (Table 13) summarizes the
Client/Server relations in a convenient tabular form.

97

Table 13. Oven Client/Server Communications Matrix

Client/Server Matrix | Partition Name: Microwave Oven
Server
Client Controller | PowerSwitch | ClearButton | AddMinButto Clock Door
n
Ei:My
Controller (%] E>:Mj (%] (%] (%) (%]
PowerSwitch (%) (%) (%) (%] (%) (%]
ClearButton E|;:M5 0] 0] 0 0] 0
AddMinButto E1:M; 1G] 1G] %] 1G] %]
n
Clock E1:M» 1G] 1G] %] 1G] %]
E1:My
Door E»:Mj3 (%) (4] %] (%) %]

Step 3: Simulate Client/Server Diagram

In step three, the practitioner tests the Client/Server diagram by simulating event/action
occurrences against the diagram. The state diagrams for all components must be available in
order to perform simulation. Problems identified in the simulation of the Client/Server diagram
indicate that different components should be chosen, or existing components in the Object State
Model should be altered.

Step 4. Generate Code

The interaction between the clock and controller objects can be used to illustrate code
generation at the system level. In the state diagrams for clock, there is a method called Wait that
pauses for a second, then generates the Tick event. The controller state diagram has a decrement
method that subtracts one unit from a counter. The methods could be specified as follows:

Wait() {Pause(1); event(Tick);}
Decrement() {counter = counter - 1; if counter = 0 then event (Time Out);}

The Tick/Decrement link between clock and controller causes the controller to perform a
decrement action every time the Tick event is generated.

Example of State Diagram: Microwave System

We continue the microwave example used to illustrate the Client/Server diagram to
illustrate the state diagram (Figure 82).

98

Microwave Oven

===

S N

Clear Button ~ Add minute Opener
Button Button

Figure 82
Oven with a Simple Interface

As explained previously, the microwave has a door, an “Add Minute” button, and an “Open”
button. To operate the microwave, the door is opened by pressing the “Open” button, food is
placed in the microwave, the door is closed, then the “Add Minute” button is pressed repeatedly
until the desired amount of time in minutes is reached. The microwave begins cooking as soon
as any amount of time is entered and stops cooking when the door is opened. The microwave
resumes cooking when the door is closed, if there is still time left. The following paragraphs
detail the process for building a state diagram of the microwave’s controller.

In creating the state diagram, it is important to acquire a detailed description of the
dynamics of the account and the requirements placed on the account. Interviews with the
customer and Client/Server diagrams using the controller object provide input on required
behavior.

Step 1: I dentify States

The first step in designing the controller’s state machine is to identify a set of suitable
state abstractions. Clearly, the controller must be aware of the door open or closed status, the
time on the clock, and the power on or off status. These situations can be abstracted as four
states:

(S1) the oven door is open, no time on the clock, and power Off,

(S2) the oven door is open, time on the clock, and power Off,

(S3) the oven door is closed, time on the clock, and power on, and

(S4) the oven door is closed, no time on the clock, and power Off.

The object state contains a state title consisting of classname and state name. The body of

the state box contains the attributes/value pairs that define the state. It is often convenient to
define the attribute value as a range using a constraint, for example “counter > 0.” If the effect of

99

each action on the attributes is defined, code can automatically be generated from the state
diagram

One internal event, (namely time out) is specified by the counter reaching zero when the
microwave is operating. The power, and counter attributes can be used to uniquely identify the
states of the controller:

(S1) (door == open and counter = 0),

(S2) (door == open and counter > 0),

(S3) (door == closed and counter > 0), and

(S4) (door == closed and counter = 0).

IDEF4 requires that each state identified should have: (1) an identifier that is uniquely
identifies it in the state diagram, (2) a descriptive name, (3) a textual description of the state, (4)
a condition for identifying the state in terms of attribute values, and (5) a set of actions that need
to be performed by all transitions into the state. This information is shown in the Controller

State Specification Form (Table 14). The table contains the state ID, name, description,
condition, and action.

Table 14. IDEF4 Controller Object State Specification Form

Object State Specification Form | Class Name(s): Controller

ID | Name Description Condition Entry Action

S1 Open No the oven door is open, hotime on the | (door == open and
Time Off clock, and power off counter = 0)

S> | Open Time the oven door is open, time on the (door == open and
Off clock, and power off counter > 0)

S3 | Closed time the oven door is closed, time on the (door == closed SetPowerOn
on clock , and power on and counter > 0)

S4 | Closed time the oven door is closed, no time on the | (door == closed SetPowerOff
off clock , and power Off and counter = 0)

Step 2: 1dentify Internal Events

The next step is to identify the events that are triggered by the controller. These events
are easily identified by examining a situation that causes controller state changes:

(E4) the time-out event generated by the controller’s counter reaching zero

The internally generated events can be defined as follows:

100

(E4) time-out {Counter = 0;}

IDEF4 requires that each object-internal event identified should have: (1) an identifier
that uniquely identifies it in the state diagram, (2) a descriptive name, (3) a textual description of
the event, and (4) a condition for triggering the event in terms of object attribute values. This
information is shown in the Controller State Specification Form (Table 15). The table contains
the event ID, name, description, and condition.

Table 15. Internal Event Specification Form for Controller

Internal Event Specification Form Class Name: Controller

ID [Name Description Condition

E4 | time-out the time-out event generated by the {Counter = 0;}
controller’s counter reaching zero

Step 3: Identify Kinds of External Events

The next step is to identify the kinds of external events that could trigger state changes in
the control system. These events are easily identified by looking at the external interface of the
oven:

(E1) the close event generated from the door closing (external),

(E2) the open event generated from the door opening (external),

(E3) the buttonpressed event generated by “AddMinute” (external),

(Es) the tick of the microwave clock (external), and

(Eg) the clear event generated by the clear button (external).

IDEF4 requires that each kind of external event identified should have: (1) an identifier
that uniquely identifies it in the state diagram, (2) a descriptive name, and (3) a textual
description of the kind of event. This information is shown in the Controller External Event
Specification Form (Table 16). The table contains the external event ID, and name, and
description.

101

Table 16. Internal Event Specification Form for Controller

External Event Specification Form Class Name: Controller
ID | Name Description
E1 |close the close event generated from the door closing (external)
E2 |open the open event generated from the door opening (external)
E3 |buttonpressed | the buttonpressed event generated by “AddMinute” (external)
E5 |tick the tick of the microwave clock (external)
Ee¢ |clear the clear event generated by the clear button (external)
Step 4: Identify Actions

identified. The kinds of decisions that are being made here are as follows: “In state s1, if event e

After the events are identified, the actions the controller needs to respond with must be

is generated, what state is entered, and what is the appropriate action?” If the door is opened

when the microwave is operating, operation must be interrupted. If the door is opened when the
microwave is not operating, operation must be prevented from starting until the door is closed.
Whenever the “AddMinute” button is pressed, a minute must be added to the microwave’s timer.

Through this exercise, the following actions are identified:

(M) add minute to counter,

(M) subtract second from counter,

(M3) set open controller,

(My) set closed controller, and

(M5) reset the controller.

The semantics of the actions performed by the account can be defined as follows:

(M1) add_min{counter = counter + 60;}

(M») decrement {counter = counter -1;

if counter = 0 then event(time-out)}

(M3) set_open: door = open;

(My) set_closed: door = closed;

102

(M5s) reset: counter = 0;

(Mg) SetPower Off: power = off; event(Power Off)
(M7) SetPower On: power = on; event(Power On)
IDEF4 requires that each action identified should have: (1) an identifier that uniquely

identifies it in the state diagram, (2) a descriptive name, (3) a textual description of the event, and
(4) an action description. This information is shown in the Controller Action Specification Form

(Table 17). The table contains the action ID, name, description, and action description.

Table17. Action Specification Form for Controller

Action Specification Form Class Name: Controller
ID [Name Description Specification
. add_min()
decrement()
M, | decrement subtract second from counter {counter = counter -1;
if counter = 0 then
event(time-out)}
set_open()
M3 | set_open set open controller {door = open;}
set_closed()
My | set_closed set closed controller {door = closed; }
Mjy | reset reset the controller reset()
{ counter =0; }
Mg | SetPowerOff | Set the power attribute to off and SetPowerOff()
generate a power_off event. { power = off;
event(Power Off);}
M7 |SetPowerOn | Set the power attribute to on and SetPowerOn:()
generate a power_on event. { power = on;
event(Power On)}

Step 5: Complete State Diagram

As one enumerates all the possible connections between states using events generated and

appropriate responses, one soon realizes the need to use a state diagram to manage the

complexity of the problem. The state diagram contains object states linked by dynamic relations

defined by event/action pairs (Figure 83).

103

SN
yd

3
< R
cn =
S S
E3:Add) <\ MI:AddMi =
(l :Oven, Open No Time () - 2:0ven, Open Time >h E
y4
{A} Door=Open . . {A} Door= Open
{A} Counter=0 MS:Reset /7 (E6:Clean) {A} Counter>0
{A} Power = off J =\ \{A} Power = off J
~ =1 ~
g 2 E 2
Q S b S
Q — w2 —
z: 2 2 X
LY NV
= g g S
5] &) o Q
& 2 2 3
IS @ 2 e}
= = E3:Add AR i — >
(4:0ven, Closed Off (E3:Add) MI:AddMin 3:Oven, Operating I
MI1:AddMin
{A} Door =Closed [rs.q4, E4-Ti t {A} Door=Closed
{A} Counter =0 :Stop (< :TimeOu {A} Counter>0
{A} Power = off NN Q {A} Power =on
o = N
/7 D 2 5 (E3:Add)
= 4 =
N
: N\, 2
yd
Figure 83

Oven Controller State Diagram

The arrow on the dynamic relation indicates the causality of the event/action pair. Events and
actions can be abbreviated for easier reference.

Table 18 shows the relations between states, events, and actions in a matrix form. The
rows are identified by states and the columns by events. Each cell in the matrix identifies the
state to transition to and the action initiated upon entry into that state.

Table 18. Object State Transition Matrix for Controller

Object State Transition Matrix Class Name: Controller

Event Eq E2 E3 Eq Es E6
State (Close) (Open) (buttonpress) | time-out (tick) (clear)
St S4:M3 (%) So:Mj 1:My %] %]
Sy S3:M3 %) So:Mj 2:My %) S1:M;
S3 (%) S1:My S3:M; %] S3:M» S4:M5

104

S4 %) So:My S3:M;1 %) %] %)

Step 6: Simulate State diagram

In this step, the practitioner tests the state diagram by simulating event/action occurrences
against different states. Problems in the state diagram may lead to state diagram design changes
and ultimately to changes in the Client/Server diagram.

Step 7: Generate Code

Code can easily be generated from these specifications (i.e., the ticking of the external
clock causes the counter to decrement when the microwave is operating).

if S4 and E5 then do {S4; Mg} which expands to
if E5 and (door == closed and power == on) then decrement (Self);

Es has not been bound to any external events because we have not specified the object(s) that
generate events that are attached to this message.

105

DESIGN RATIONALE COMPONENT

The purpose of the design rationale component is to facilitate the acquisition,
representation, and manipulation of the design rationale utilized in the development of IDEF4
Designs. The term rationale is interpreted as the reason, justification, underlying motivation, or
excuse that moved the designer to select or adopt a particular strategy or design feature. More
simply, rationale is interpreted as the answer to the question “Why is this design being done in
this manner?” Most object-oriented design methods focus on the what the design is (i.e., on the
final product, rather than why the design is the way it is).

The scope of the rationale component covers all phases of the IDEF4 development
process, from initial conceptualization through both preliminary and detailed design activities.

Design rationale becomes important when there are options, that is, when a design
decision is not completely determined by the constraints of the situation. Thus, (1) decision
points must be identified, (2) the situations and constraints associated with those decision points
must be defined, and (3) if options exist, the rationale both for the chosen option and for the
reasoning for discarding other options (i.e., those design options not chosen) must be recorded

M otivation

Supporting the evolution of integrated information systems with life cycles that could
possibly extend over many career periods requires the explicit capture and storage of design
rationale. In addition, capture of design rationale is also important during the development phase
of large scale systems. In these situations, the logic (i.e., the chain of arguments or reasons)
behind the design is invaluable to the down-stream developers, testers, and integrators.

Computer-aided software engineering (CASE) environments attempt to bring automated
support to the design stage. In specific situations they have been demonstrated to accomplish the
purpose for which they were intended. Even so, existing CASE tools are inherently limited in at
least two important respects. CASE tools are intended to document various aspects of what a
design is, but they were never intended to document why a design exists, certainly not in any
methodical way.

Even when design rationale comments exist, they are just that — unstructured textual
comments. Often, the only coherent record of the design rationale for a software system is
distributed across many people, and at any one time, parts of it will have been forgotten or made
unavailable.

The loss of design rationale results in repeating past mistakes and making decisions
contrary to the original design assumptions. Furthermore, each problem that is corrected without
design rationale causes other problems elsewhere in the design.

One benefit of maintaining design rationale is to force a statement of goals, as well as
assumptions. Goals, like assumptions, are frequently not stated. Forcing their statement for the

107

purpose of rationale capture leads to a more focused, disciplined approach to design. Much of
design thinking appears to be abductive in nature, with experience-directed insights being
fashioned and rationalized in the context of the current task. This rationalization may be the only
basis for understanding why a system is the way it is. Without the capture of this chain of
reasoning or arguments, communication of the design becomes difficult and error prone.

Another motivation for rationale capture comes from the fact that the definition of
subsystems and subsystem boundaries is an experimentation process, in which each designer
discovers the boundaries he finally imposes. If the organization is to avoid costly errors, it must
have knowledge of the paths of inquiry that failed, the path to the final success, and the final
result.

Nature of Design Rationale

Considering the nature of design rationale (why and how), we need to contrast it with the
related notions of: (1) design specification (what), and (2) design history (steps taken). Design
specifications describe what (intent) should be realized in the final physical artifact. Design
rationale describes why the design specification is the way it is. This includes such information
as principles and philosophy of operation, models of correct behavior, and models of how the
artifact is intended to behave as it fails. The design process history records the steps that were
taken, the plans and expectations that led up to these steps, and the results of each step.

Design Rationale Phenomena

A general characterization of design rationale can be given as: “The beliefs and facts as
well as their organization that the human uses to make (or justify) design commitments and to
propagate those commitments.”

In our investigation into the nature of object-oriented design rationale, we have
characterized both “types” of design rationale and “mechanisms” for representation of these
types. Types of design rationale include arguments based on the following:

(1) The philosophy of a design, including:
(a) Process descriptions of intended system operation, and

(b) Design themes expressed in terms of particular object types
standing in some specific relation or exhibiting some specific
behavior.

(2) Design limitations expressed as:
(a) range restrictions on system parameters, and
(b) environmental factors.

(3) Factors considered in tradeoff decisions including:

108

(a) level of requirements matching,
(b) project budget or timing constraints,
(¢) general method of doing business in the organization,
(d) technology available to realize (implement) the design, and
(e) technology available to test the resulting product.
(4) Design goals expressed in terms of:
(a) Use or lack of use of particular components,
(b) Achievement of particular structural arrangements,
(c) Priorities on problems requirements,

(d) Product life cycle characteristics (e.g., disposable versus
maintainable, robustness, flexibility), and

(e) Design rules followed in problem or solution space partitioning,
test/model data interpretation, or system structuring.

(5) Precedence or historical proof of viability.

(6) Legislative, social, professional society, business, or personal evaluation
factors or constraints.

Possibly due to the commonness of routine design or the complexity of design rationale
expression, the most common rationale given for a design is that it was the design that worked in
a previous situation. Without making judgment on this phenomena, a minimum requirement for
a design knowledge management capability is that it must be able to record historical precedence,
as well as statements of beliefs and rationalizations for why a current design situation is identical
to the one the previous design serviced. This phenomena may be less common in software
design rationale. The malleability of object-oriented design gives rise to the belief that we can be
creative each time. Note that in software, as contrasted with hardware, creating a new model
based on last year’s doesn’t mean the same thing. In software, the reused parts are literally
copied whole, not rebuilt from the same plans, so you lose the opportunity to fix small design
flaws, and the interaction of the new parts with the old is likely to be much less well understood.

Another important rationale given for a design is that “it feels better,” or “it seems more
balanced, symmetric.” There is an important aesthetic side to software design.

Finally, software design rationale includes expectations about how the design will evolve
through the development process itself. For example, expectations might be had about how the
program structure will probably change—note such expectations do not appear to be as well
defined as similar expectations we have seen in mechanical hardware design.

109

The important general conclusion that can be made about the nature of design rationale is
that it takes the form of a trace of a reasoning process. This trace starts with the element of the
design that is being justified and provides a set of supporting arguments that ultimately “ground”
(terminate) to proven elements of the problem space or the design space. This chain of
arguments may also terminate in previously rationalized design elements.

Design Rationale Concepts

IDEF4’s approach to design rationale uses a strategy based on the relations between
design situations or states. The strategy is to cast rationale as the formation of involvement
relations between a designer in a particular decision making situation and one of a number of
different “constraining” situation types. These constraining situations can include:

(1) Convention Constraints (e.g., historical precedence, societal [both marketing
and professional]),

(2) Nomic Constraints (e.g., Laws of nature),
(3) Necessary Constraints (e.g., model based),

(4) Requirements Based Constraints (e.g., customer or contractual
requirements),

(5) Goal Based Constraints (e.g., customer, project team or personal design
goals), and

(6) Resource Constraints (e.g., time, skills, manpower, money).

The procedure followed in IDEF4’s rationale component uses two phases: Phase I
describes the problem and Phase II develops a solution strategy .

Phasel: Describe Problem

Problems with the current state of the design are normally identified during the simulation
activity of the design cycle. In the simulation activity, use scenarios are used to validate and
verify the design or implementation. In Phase I the designer describes problems that exist in the
current design state by: (1) identifying problems, (2) identifying violated constraints
(requirements, physical laws, norms, etc.), (3) identifying needs for problem solution, and (4)
formulating goals and requirements for the subsequent design iteration.

| dentify Problems

The designer identifies problems in the current design state by stepping through the use
cases in the requirements model to validate that the design satisfies requirements and to verify
that the design will function as intended. The designer records observations of problems which
are symptoms or concerns about the current design state. A problem is an area in the design

110

needing improvement as indicated by one or more related observations. A symptom is an
observation of an operational failure or undesirable condition in the existing design. A concern
is an observation of an anticipated failure or undesirable condition in the existing design.

The requirements model consists of a function!> model and several process!® models that
describe intended system usage. The function model constrains the scope of the partition and
what activities should be supported by the partition. The process models describe use scenarios
of how the activities occur. The activities in the function models call out!” process models.
These models map to requirements and goals. The function use model is used for validating and
verifying interfaces and activities, and the process use model is used for validating and verifying
process flow and logic.

Figure 84 depicts a design for a partition called Sys, showing its constituent static and
dynamic models as well as its associated requirements model. The requirements model contains
an IDEFQ function model whose activities call out IDEF3 process scenarios. The designer walks
the design through these use cases to detect situations that have not been adequately supported.

I5Function models may be expressed in IDEF@, but should not contain decompositions by type.
16process models may be expressed in IDEF3.
I"IDEF@ activities call IDEF3 process scenarios using call mechanism arrows.

111

Design Modd

' - T --...__ Reguirements Modd
' : Function
. Model

Use Scenarios

Figure 84
Static, Dynamic, and Requirements Modelsfor Sys Partition

| dentify Constraints

The designer then identifies the constraints that the problems violate or potentially
violate. These constraints include requirements, goals, physical laws, conventions, assumptions,
models, and resources. Because the activities and processes in the use case scenarios map to
requirements and goals, the failure of the design in any use case activity or process can be traced
directly to requirements statements and goal statements.

Figure 85 illustrates the mapping between the analysis model’s function and use scenarios
and the requirements and goal statements. When the design fails to adequately support activities
and use scenarios, the requirements model allows the designer to easily identify the requirements
constraints or goal statements that have been violated.

112

Requirements Modée

Function
Model

B R
——
)—
7 A—

Requirements

— Use Scenarios i - 7
Goals
3 /

.
—

\L ~——
~~N
—[Requirements

Requirements

Goals

Figure 85
Functions and Use Scenarios M apping to Requirements and Goals

| dentify Needs

The designer then identifies the necessary conditions or needs for solving the problems.
A need is a necessary condition that must be met if a particular problem or set of problems is to
be solved. It may be necessary in the needs statement to show the necessity for relaxing
requirements and goal constraints governing the design.

Formulate Goals and Requirements

Once the needs for the design transition have been identified, the designer formulates
requirements that the solution must satisfy and goals that the solution should attempt to satisfy.
A requirement is a constraint on either the functional, behavioral, physical, or method of

113

development aspects of a solution. A design goal is a stated aim that the design structure and
specifications are to support.

Phasell: Formulate Solution Strategies

Once the requirements and goals have been established, the design team formulates
alternative strategies for exploration in the next major transition in the design.

One important aspect that distinguishes good designers is the ability to choose between
making strategic design decisions and tactical design decisions. Strategic design decisions have
sweeping architectural implications (i.e., the decision to use an OODBMS, the separation of
responsibilities in client server architecture, the choice of mechanism for inter-process
communication). Tactical decisions represent the essential details that complete architectural
decisions (i.e., the schema of a database, the protocol of a class, and the signature of a member
function).

Design strategies can be considered as “meta-plans” for dealing with the complexities of
frequently occurring design situations. They can be viewed as methodizations or organizations
of the primitive design activities identified above. The three types of design strategies
considered within the IDEF4 rationale component include:

(1) External-constraint-driven design—Design carried out under situations
where the goals, intentions, and requirements are not even characterized well
much less defined. These situations often result when the designer is
brought into the product development process too early.

(2) Characteristic-driven design—Design in a closely controlled situation
where strict accountability and proof of adequacy are rigidly enforced.
These design situations often involve potentially life threatening situations.

(3) Carry-over-driven design—Sometimes referred to as “routine” design.
The following classes of knowledge are evident in the practice of system design:

(1) Knowledge of basic principles;

(2) Knowledge of the general design process in a domain;

(3) Knowledge of available components;

(4) Knowledge of previous solution approaches;

(5) Knowledge of available engineering performance models and workable
modeling approaches;

(6) Knowledge of test capabilities and results (e.g., what sorts of experimental
results and data can be affordably, reliably, or physically acquired);

114

(7) Knowledge of the human network (i.e., where is the knowledge and
information in the organization or in professional associations);

(8) Knowledge of the requirements, design goals, design decision/evaluation
process, and design environment of the current problem; and

(9) Knowledge of political or governmental constraints.

In summary, design as a cognitive endeavor has many characteristics in common with
other activities such as planning and diagnosis. It can be distinguished by the context in which it
is performed, the generic activities involved, the strategies employed, and the types of knowledge
applied. A major distinguishing characteristic is the focus of the design process on the creation
(refinement, analysis, etc.) of a specification of the end product.

Rationale Diagrams

The Design Rationale Model contains diagrams that describe milestone transformations
to design artifacts. Each design situation is represented by a round cornered box with the design
state name on the top and a list of diagrams defining the model situation. This strategy is
particularly effective as it allows the designer to choose the level of detail for recording design
rationale. The diagrams referenced in a design situation box may range from a single diagram
illustrating a narrow aspect of the model to all of the diagrams in a design model. If, for
example, the designer is making a tactical decision (i.e., a decision that impacts most of the
elements in a partition) then the design situation box could contain all diagrams in that partition.
The partition may be used in place of the diagrams if the situation contains all of the models in
the partition. Typically, the fewer diagrams contained in a design situation, the more detailed the
rationale.

For example, consider the following situation in which a designer is captures rationale at
a high level of detail. The designer captures the design rationale for the evolution of an
employs/employed by relation between person class and company class to a link from employee
to company. In this case, the “starting” design situation has a reference to the relation structure
diagram containing the employs/employed by relation, and the “ending” design situation has a
reference to the link diagram containing the employed by link.

Transitions from one design situation to another are represented by an arc with an arrow
pointing in the direction of the transformation. The transition arc lists the observations that
necessitated the design change and the changes to be made. For example, in the transition from
the design situation containing the employs/employed by relation to the situation containing the
employed by link, the observation will state that the employs/employed by relation is not directly
implementable and the action will state that the relation will be replaced by the employed by link
which can be implemented.

Figure 86 illustrates the concepts of design situation, transition and rationale. In this
example, an initial design situation (Design State 1) contains the objects person and company
and the employs/employed by relation between person and company. The use cases show that the

115

access rights of employees and non-employees are different. The designer also notes that the
relationship between person and company is conditional because not all people are employed,
and notes that it would be desirable to define this relationship between employee and company.
The designer partitions the object class person into employees and non-employees. This is
defined on an inheritance diagram using the subclass/superclass relationship. The designer then
redefines the employs/employed by relation to be between employee and company and changes
its cardinality. These changes result in Design State 2.

In Design State 2, the designer observes that the employs/employed by relation is not
directly implementable. There are several options for implementing a relation, including links,
arrays, and relation objects. The designer decides to refine the relation to a link. In order to
create the link, the designer embeds referential attributes to each class. The link name is written
as L1(R1) which denotes that link L1 was derived from relation R1.

116

Design Rationale Tr ace

IPeis on Company Diagram (PC1) Emp Company Diagram (EC1 Emp Company Diagram (EC2

- onpio yee e Inheritance Diagram (I1) () Employer Company ©
R1:Emp loyed — :yl‘Emp oved —T
Vot fo o LIRD)
—
Em ploy er 2
)\]
| Employee? ”NonEmgloxeeZI
(Design State 1) Al-Partition [Design State 2) A2:Refine /Design State 3\
PC1 :: > 11 :: > EC2
EC1
/ Ol:Reqmt 5.3.1 \ O2:Implement
Design Rationale DS1 ->D&? Design Rationale DS2 ->DS3
Observations Observations
Failure to satisfy requirement Rdation between Employee
5.3.1 employees and .
. and Company in ECI not
nonemployee access rights. implementable
NonSpecific Link between P ’
Person and Company in PC1.
Actions Actions
Pattition Personinto Employee Create referential attributes
and NonEmployee Classes. employees on company and
Redefine cardinality constraint on employer on employee also
Rlto 1 to'l ormore. Change create methods to enforce
shows up in Employee/ Company constraint. Change is shownin
Object Structure Diagram EC1 EC2.
and Inheritannce Diagram 1.
Figure 86

The Observation/Action View of Design Rationale

Design situations are defined on Design Configuration Forms (Table 19). The
configuration form allows the designer to name the situation, give a brief description of the
design situation, and list all of the diagrams that are important to that situation. The designer can
also identify the design situations from which (Entry Rationale) this design situation evolved as
well as the one to which it has led.

117

Table 19. Design Configuration Specification

Author | J.Smithe |[Project | IICE |Date | 6/1/94 | Revision 3
Design Situation | Situation Name | Situation Name |ID [ID

Description | Description of design situation

Diagrams Entry Rationale Exit Rationale

List of List of design entry pointsin List of design exit pointsin terms of
diagrams terms of Rationale Rationale Specifications

inactivein Soecifications

thisin

situation

Rationale forms record information on design transition, such as why a change was
needed and which actions are to be taken. Table 20 shows a sample Rationale Specification
Form. The form allows the designer to identify the current design situation, name the goal design
situation, record a list of observations that prompted the need for a design revision, and state the
actions that to be taken. The forms also record the name of the designer, project for which the
design is being built, and the date.

Table 20. Rationale Specification

Author | J.Smithe |Project | ICE |Date | 6/1/94 |Revision | 3
Rationale | From Design | | To Design
Observation Action
List of observations made on design List of corresponding actions taken in
configuration. response to observations made on design
configuration

Rationale Support

Many of the IDEF4 constructs were designed expressly for facilitating deferred decision
making. These include (1) the feature taxonomy, (2) relation/link evolution, and (3) the design
artifact status designators (®, A, and ©). These techniques allow the practitioner to define the
artifact with less detail at first and then to gradually evolve towards the more specific detail.
This technique also improves design rationale capture because the design transitions are
smoother. The feature taxonomy allows the designer to specify features first in general terms,
and then evolve towards specific feature definitions. The design artifact status designators allow
the designer to easily bring in objects from the domain and mark them as domain, transition, and
completed as they evolve toward a full design specification. Relations allow the designer to
specify static structure between objects without committing to implementation. Relations can
later be allocated for implementation as links, arrays, or relation objects.

118

Feature Taxonomy

The feature taxonomy allows features to be characterized in general terms initially, then
gradually evolve to a more specific definition as the design evolves. For instance, a designer
might first specify a characteristic of a class as a feature. For example, a person class would have
a feature called Name. As the design evolves, the designer can specialize the definition of Name
to an attribute and add create, delete, read, and write accessors for Name.

Figure 87 illustrates the feature taxonomy using IDEF4’s subclass/superclass relation.
The features become more specific from left to right. A feature can be an object, event, attribute,
link, relation, or method. An object can be a class or an instance, and a class with imbedded
objects is called a partition. An attribute can be referential, naming, or descriptive. A referential
attribute points to other objects. A naming attribute is an identifier for the object. A descriptive
attribute contains values that describe the object’s state.

{C} {P}

{0} 14-Class +I4-Partition
14-Object { {1}

I4-Instance

{E}
I14-Event
Referential ID/handle refer to objects
{} {A}
I4-Feature ‘ I4-Attribute ‘ Naming 1D
{L} Descriptive value
14-Link
{R
14-Relation Delete
Accessor
{ M} Create
Test
14-Method
Read
Transformation
Write
Event Generator|

Figure 87
The | DEF4 Feature Taxonomy

119

IDEF4 DESIGN DEVELOPMENT PROCEDURE

The design process is the predominant activity early in the software system development
life cycle. The design artifacts resulting from an IDEF4 design activity are important to both
implementation and the subsequent sustaining activities. The following sections discuss the
planning and implementation involved in system development and the role the IDEF4 method
plays in the design life cycle.

Design Rolesand Strategies

Design Roles

According to Tim Ramey’s System Development Methodology (SDM) there are two
developer roles in system development: technical and administrative (Table 21). Developers in
the technical role are concerned with technical excellence. They do not concern themselves with
resource constraints, such as time, money, etc. On the other hand, developers in the
administrative role are concerned about budget and scheduling constraints. There is a great deal
of tension between these role views.

Table21. Administrative and Technical Roles

Administrative Role Technical Role
Business Case Technical Excellence
Return on Investment (ROI) Technical Merit
Organizational Goals The Best Product
Standards Creativity

Life Cycle Random Life Pattern

The theory of design life cycle helps create an understanding of the basic design
processes, particularly for administrative purposes. The design process from such a view is
assumed to be cyclical, with steps beginning at some point, continuing through maturity, and
eventually ending.

Design Strategies

This view of design as a series of incremental and sequentially interdependent steps is an
attempt to order the steps of the process so each step becomes independent, except for its
occurrence relative to the other states that surround it. Design strategies can be considered
“meta-plans” for dealing with the complexities of frequently occurring design situations (i.e.,

121

methodizations or organizations of design activities). Three types of design strategies can be
considered:

(1) External-constraint-driven Design — Design for situations in which the
software goals, intentions, and requirements are not well-characterized,
much less defined. These situations often result when the designer is brought
into the product development process too early.

(2) Characteristic-driven Design — Software design in a closely controlled
situation for which strict accountability and proof of adequacy are rigidly
enforced. These design situations often involve potentially life-threatening
situations.

(3) Carry-over-driven Design (Routine Design) — Changes to existing,
implemented designs or designs that are well understood (e.g., sorting).

From an OOD point of view, the external-constraint-driven and carry-over-driven strategies are
the most common design situations. The design development procedure, outlined in the
following sections, is a distillation of the experience and insights gained in building several
IDEF4 designs on case studies representative of situations requiring these design strategies.

Strategizing the Developer Focus

The first step in a design strategy is deciding on the developer focus. The type of design
and the stage the design is in dictates how much emphasis is put on the designer as an
administrator or technical developer. The focus of the design on these roles should be decided
and implemented in the strategy to manage expectations and prevent differing goals for the
design.

From the administrative perspective, development is a business venture. It is a very
structured undertaking that takes place over a fixed period of time and within fixed resource
limitations. The system development process is characterized by line items and milestones. The
administrative developer deals with contractual requirements (schedules, budgets, delivery items)
and company goals and guidelines. Tradeoffs are made between the constraints of costs and
schedules and technical excellence.

The technical developer, on the other hand, works to discover the problem, develop a
solution, create a product, and implement a system. Constraints are viewed in terms of
development tools, not time and cost. A technical developer may revisit the discovery of the
problem and solution over and over without ever moving on to the creation of an actual product
(Figure 88).

122

Administrative Focus

S
<] System
Q‘? Design Level
é%\? Application
< Low-Level
Technical Focus
Figure 88

Developer Focus at the Design L evel

A design strategy should include administrative and technical viewpoints. If the software
is consumer-oriented, the administrative development characteristics are more applicable and
should be weighted heavier than the technical development characteristics. In a research and
development environment, the opposite is true. In the initial stages of design, the technical
development view also should be weighted more heavily. As the design solidifies and the
product becomes tangible, the focus should switch to the administrative characteristics.

IDEF4 Design Evolution Process

The development of an IDEF4 design is a process of specifying the structure and behavior
of an object-oriented program or system. The process involves the use of design layers
containing partitions which help manage the complexity of the design. The design layers address
the administrative role of a developer. A design layer has five design activities that evolve the
design from the initial stages to implementation. These five design activities address the
technical role of the developer.

Organization of IDEF4 Design Layers

The IDEF4 method uses a multi-dimensional approach to object-oriented software system
design (Figure 89). These dimensions are: (1) design layers (requirements analysis, system,
application, and low-level design), (2) artifact design status (application domain, in transition,
software domain), and (3) design models (static models, dynamic models, behavior models, and
rationale component)!8. The design models may be developed or they may be re-used from other
projects. The method has explicit syntactic support for these dimensions. The design procedure
is organized around the layers or levels of design.

18Setting criteria for completion of the design is important in the design process. This is particularly true of
modeling situations to prevent never-ending model development. It is not possible to give precise criteria for the
completion of design activities, but as the design approaches completion, the rate of change of the design will
decrease. This occurs because each new design constraint that is specified places more and more restrictive
requirements on the design. When this occurs, the model development should taper off.

123

Requirements

System

Application

Design Phases

Low-Level

Design Layers

Figure 89
IDEF4 Design Layers Relativeto Model and Status

Each layer (System, Application, and Low-Level) contains a Static Model, Dynamic
Model, Behavior Model, and Design Rationale. These layers can be viewed as steps in the
design process because they track the design from the highest level of abstraction (System-Level)
to the actual software components (Low-Level). The role of the developer will vary during the
different phases of design based on the type of design being created. Focus on an administrative
or technical view will also affect the products resulting from the design activities.

Design Activities

In general, when using IDEF4 to develop an object-oriented design, the following five
general design activities!® are applied iteratively?? to each layer:

19The sequence of the design activities is not implied by the order in which they appear.

20The term “iterative application” implies that the same process of specification is normally applied to each element
in the partitioning of the five design types as well as to the overall design development activity. This iteration
continues until the prototype classifications of the resulting elements can be clearly established.

124

(1) Partition — Partition the evolving design into smaller, more manageable
pieces by like behavior. This is where objects are identified.

(2) Classify/Specify — Classify the design against existing definitions or specify
a new design object. This is where object behavior (methods, state) is
defined or where objects are compared and contrasted against existing
objects.

(3) Assemble — Incorporate design objects into existing structures. This is
where relations, links, and dynamic interactions between objects are
identified.

(4) Simulate — Validate and verify the models by exercising them against use
scenarios in the requirements model. This is where problems with the
current design are identified and described.

(5) Rearrange — Rearrange existing structures to take advantage of newly
introduced design objects. This may result in an adjustment in the design
partitioning which would cause another iteration in the design recursion.

Partition

IDEF4, as an OOD method, focuses on the identification of the objects and the behavior
required of a system. The focus on behavior to be exhibited by the objects provides an
appropriate means of partitioning systems into small, easily understood pieces. When objects are
partitioned by behavior, a more modular design is provided for; this results in implementations
that have the desirable life cycle characteristics for which object-oriented implementations are
known.

The identification of objects starts by focusing on the problem from the application
domain and looking for the things in the problem that behave similarly. These things are likely
to fall into five categories (Schlaer, 1988) :

(1) physical or tangible objects,
(2) roles or perspectives,

(3) events and incidents,

(4) interactions, and

(5) specifications and procedures.

Objects may be partitioned several times; for example the instances of person can be
partitioned into employed or unemployed, male or female, or resident or alien. The way the
objects are partitioned depends on the purpose of the system to be built.

125

Classify/Specify

In the classification/specification activity, behaviors and objects identified through
partitioning are matched against existing models to classify them. If an object cannot be
classified, a specification must be designed. For example, if the objects employed and
unemployed have been identified, then they should be classified against the class person. Thus
the specifications for employed and unemployed will be of the form: “employed is the same as
person except . . .” or “unemployed is the same as person.”

Model specification will become more and more complete as this generic activity is
revisited throughout the design cycle. Specifications in each cycle may be viewed as additional
requirements in the next design cycle.

Assemble

Design artifacts that have been classified or specified must be assembled into IDEF4
organizational structures. Newly classified/specified objects must be assembled into new or
existing models. When designing large systems, assembly activity may occur in joint meetings
between individuals responsible for different aspects of the design. If unemployed and employed
are “the same as person except . . .”, then they should appear as subclasses in the inheritance
diagram containing person.

Simulate

Design artifacts that have been assembled into models must be run against use scenarios
to reveal possible design flaws. In IDEF4, the use cases are contained in a requirements model
which is built using IDEF@ and IDEF3. Simulation validates and verifies current design model.
This activity should primarily uncover flaws in the Dynamic and Behavior models of IDEF4.
Flaws discovered in these models may, however, motivate changes to the structure of the Static
model. The reason for this is that the object model stabilizes fairly quickly as the design evolves.

Rearrange

The rearrange activity is similar to applying annealing to the models. Introduction of new
model elements over time causes “brittleness” to build up in the models, so that it becomes
increasingly difficult to extend the models. Rearrangement simplifies the models and makes
them more flexible.

In the rearrange activity, designers look for similarities in artifact structure to uncover
opportunities for reuse. Rearrangement may necessitate alterations to the specifications of
classes, methods, and their associated organizing structure. Designers may, for example,
combine behavior models and examine the specifications associated with each to identify
possible refinements. These refinements generally involve moving constraints up and down the
taxonomies while being careful to ensure there are no changes to the behavior of the
superstructure or the substructure and no conflicts with any evolving system requirements.

126

The five design activities described above will be applied iteratively to each design layer.
The design layers are viewed as design phases which move the project from the initial stages to
the final product while simplifying the management of the design.

| DEF4 Phases of Design
IDEF4 has four phases to reduce the complexity of the system design:
. Phase 0 — Analysis Requirements
. Phase 1 — System Design Layer
. Phase 2 — Application Layer
. Phase 3 — Low-Level Design Layer

An IDEF4 design starts with the analysis of requirements (Phase 0) which results in a
requirements model2!. The requirements model consists of a function model (IDEFQ) used for
scoping, and use scenarios (IDEF3)22. Elements in these models are mapped back to
requirements so that they can be used to validate the models. Domain objects identified during
the requirements analysis phase are input to the IDEF4 design. They are encoded in IDEF4 form
and marked as domain. As computational objects are developed, they are marked as transitional,
and as the design solidifies, they become completed objects. The level of completion of an
IDEF4 design is determined by the status of individual artifacts in the design (i.e., as the objects
in the design stabilize, the design itself stabilizes).

The other three distinct design phases are (1) the system layer, (2) the application layer,
and (3) the low-level layer. These design layers reduce the complexity of the design. The system
layer (Phase 1) ensures connectivity to other systems in the design context. The application
layer (Phase 2) models the interfaces between the components of the system. These components
include commercial applications, previously designed and implemented applications, and
applications to be designed. The low-level design layer (Phase 3) is responsible for the
foundation objects of the system.

In each of these phases, IDEF4 follows an iterative procedure in which the design is
partitioned into objects and the external specification for each object is developed so that the
internal specification of the object may be done concurrently. After partitioning, the objects are
assembled; that is, static, dynamic, and behavioral models detailing different aspects of the
interaction between objects are developed. After the models are developed, it is possible to
simulate interaction scenarios between objects to uncover design flaws. The existing models are
then rearranged and simulated until the designer is satisfied.

21The requirements model is explained in more detail in Chapter 7.
22For a full description of the IDEF@ and IDEF3 methods, readers should refer to (Mayer, 1990) and (Mayer, 1992).

127

Phase 0 Analyze System Requirements

The responsibility of this phase is to develop the system requirements and domain models
into a set of objects, relations, and use scenarios that can be used as a starting point for design.
These objects will be included in the system, application, and low-level phases of design as
starting objects. An important part of analyzing requirements is building use scenarios, also
known as use cases. Use scenarios are models of the system users’ processes. The set of use
scenarios should cover and the functional requirements of the system in order to provide a set of
test scenarios for validating the design and verifying the implementation. If the design or
implementation fails to adequately support a use case, then the associated requirements may
easily be identified.

Phase 1 System-L evel Design

The system-level design starts once the domain (raw material) objects have been
collected. This develops the design context, ensures connectivity to the legacy system, and
identifies the applications that must to be built to satisfy the requirements. Static models,
dynamic models, behavioral models, and the design rationale are built for the objects at the
system level. These specifications become the requirements on the next level of design, namely
the application-level design.

Phase 2 Application-Level Design

The application-level design identifies and specifies all the software components
(partitions) needed in the design. Static models, dynamic models, behavioral models, and the
design rationale are built for the objects at the application level. These specifications become the
requirements on the next level of design, namely the low-level design. This level lays out the
top-level objects of the software being designed. These top-level objects can include mid-level
commercial components (e.g., a communications program, an image viewer, or a fax modem
program).

Phase 3 Low-L evel Design

Static models, dynamic models, behavior models, and the design rationale components
are built for the objects at the low-level design. Sublayers may be built within each layer to
reduce complexity. The low-level design may use low-level commercial technology (e.g.,
buttons, sliders, windows, forms, and input fields). It is responsible for the foundation classes of
the design. A great deal of design object reuse should occur at this level because the designers
use foundation objects from other designs.

Using Other IDEF Methodsin Analysis

Clearly stated system requirements are a valuable source of assistance to the analyst in
understanding customers’ expectations of the system. However, because the customer can not
always be expected to have full knowledge of the true nature of the problem involved, designers
should not limit themselves to the requirements document alone. Quick and accurate

128

identification of the initial classes and methods is critical to both the successful completion of the
design and a full understanding of the nature of the problem; therefore, it is often advantageous
to look to other sources of information on the proposed system and its environment. These
sources may include function, process, and information models as well as existing object-
oriented designs (OODs). The IDEF family includes methods for constructing each of these
types of models.

For function modeling, IDEF@ can be used to assist designers in identifying concepts and
activities that should be addressed by the system. IDEF1X can be used by designers to develop
an understanding of the information the organization uses. IDEF3 provides for process flow and
object state descriptions that will assist designers to organize the concepts of the existing system,
the proposed system, user interaction with the system, and the state changes objects undergo in
the system.

Applying IDEF@ (Function Model) to Object-Oriented Design

IDEFQ is a method for capturing a static view of the functions performed by an
organization. It also captures classification mechanisms for describing the roles objects play
relative to those functions. IDEF@ supports analysis of an organization or system from a
functional perspective. As an analysis method, IDEFO can be particularly useful in domain
analysis, an activity which precedes design. It is not particularly well-suited for object-oriented
design, however. Use of IDEF@ in the role of an object-oriented design method should be
avoided. Although the functions that the projected system must perform are important, too much
emphasis on the system functions can produce system designs that are functionally-oriented
rather than object-oriented. A system organized around functional decomposition tends to
consist of tightly coupled modules that are difficult and costly to maintain, thus eliminating a
major advantage of the object-oriented paradigm. Minor changes can mean major system
rewrites.

Although IDEFO should not be seen as a vital component to the development of object-
oriented systems, the information captured in a function model can aid the designer in the early
stages of the project, particularly during requirements analysis. IDEF@ can provide valuable
insights into initial classes and routines that the system requires. It can also assist the designer in
scoping the system to see what should be included in the project. This will give the project a
more tangible start and finish point so that the system transitions from the development phase to
actual implementation. IDEF@ helps the designer understand the business of the end user, giving
the designer information on the business the system will be supporting. This is helpful when
making decisions on execution.

Since IDEF@ modeling generally involves extensive use of function decomposition, it is
advisable to limit the depth of decomposition to two or three levels. Functions from the model
may represent methods. The concepts should be examined as classes or object instances (Figure
90). Reading the definitions and text included with the model may also give the designer some
insight into what information will be needed in the system.

129

In the diagram shown in Figure 90, the Create, Reference, Update, and Delete activities
may correspond to Create, Reference, Update, and Delete methods in the OOD. If this particular
diagram is decomposed any further, then the decomposition would be by type. It is possible that
the Object concept may consist of a bundle of different kinds of objects which would be useful
for defining the inheritance lattice in an OOD. The Authorization concept with subtypes Read
Authorization and Write Authorization could also be used in the OOD inheritance lattice. The
Object input to Update and the Updated Object output is indicative of a state change and could
be used in an OOD state model. The concepts Pointer, Object, User, Command, and
Authorization could also be objects in the resulting OOD. Figure 90 illustrates how useful an
IDEF® model could be in an OOD, but these models are most useful when used to validate
designs and verify implementations, because they define what activities the system must support.

Authorization

¥ g 5
Command Cr_ Object < & o &
»| CREATE g .2 R
Al - -
3 5 =
< <
Pointer
—REFERENCE >
Ref "
> A2
Updated Object
Und > UPDATE >
P > A3
Ok
> DELETE |——>
Del N Ad
User
Figure 90

Diagram Based on IDEFQZ

Applying IDEF1X (Data Model) to Object-Oriented Design

The IDEF1X method for data modeling provides input in the area of class identification
and links between classes. By re-interpreting the semantics of entity to mean class, relation to
mean link, categorization to mean inheritance, foreign key to mean referential attribute, key
attribute to mean naming attribute, it is not difficult to directly transliterate IDEF1X models to
static models in IDEF4. This could be useful for organizations that have large inventories of
IDEF1X models.

However, the IDEF1X method was developed for designing relational database schemas.
Herein lies the problem: IDEF1X models exhibit a commitment to a certain style of

130

implementation, so models translated from IDEF1X to IDEF4 need to be reverse engineered to a
certain extent to uncover the object model. The entities in IDEF1X are identified on the basis of
descriptive attributes, such as state; in IDEF4, objects are identified on the basis of their
behavior, leaving the attributes as an implementation decision on how to represent the object’s
state. IDEF1X associative entities are identified to resolve many-to-many relations, so from an
OOD perspective they may appear contrived. IDEF1X relations represent an implementation
choice; that is why IDEF1X relations are equivalent to IDEF4 links. IDEF4 links are an
implementation decision based on IDEF4 relations, thus IDEF1X relations must be reverse
engineered to find the IDEF4 relation underlying the link. Figure 91 illustrates this point by
showing the IDEF1X Employs’Employed By relation with its equivalent IDEF4 link. Note the
referential attribute is playing the same role as the foreign key in the Employee class. Because
the IDEF1X relation is one of many possible implementations, it is important to state the IDEF4
relation on which the IDEF4 link could be based. The IDEF4 relation is important in that it will
allow a common take-off point for investigating other implementations.

Company/1 Employee/3
CAGE P ssN
Employs/Employed By Employer.CAGE(FK)
| DEF1x Name
Address KSalary J
Company LI(R1) Employee
1 .
- {A} Name L1 K {A} Employer
IDEF4Link | 0 s L {A} Salary
{A} Office
Employs/Employed B
Company pIoYSTEmMpTOyEe By Employee
IDEF4 Relation [(A} Name H R1 d (A} Salary
{A} Address Employer Worker {A} Office
Figure9l

IDEF4 Equivalent Representationsto IDEF1X Relation

IDEF1X models translate to IDEF4 static models; there is no information on the object
dynamics. In IDEF1X the foreign key is imbedded in the dependent entity because relational
databases rely on queries for joining data across tables. In OOD the referential attributes are
placed on the independent and/or independent class as object-oriented systems rely on navigation
across the network of links between objects.

The categorization relationships in IDEF1X can give the designer an idea of possible
subclass/superclass relationships. The categorization relationship also depicts which attributes
can be stored by the superclass and do not need to be included in the subclass. Other
relationships depicted in IDEF1X can be used as well. Figure 92 shows the equivalent IDEF4
syntax for an IDEF1X categorization.

131

Person/1

SSN Person
Name {A} SSN.
Status {A}Name

{A}Status
g 2 Status
‘'7 Status

Non Employee/2 Employee/3

(SSN(FK) \ (SSN(FK)\ Employee NonEmployee
{A} Salary {A} Date
Date Salary {A} Office
Figure 92

IDEF1X Categorization and Equivalent IDEF4 Inheritance

Different views created in IDEF1X may give the designer an idea of where partitions can
be used around objects. Definitions for the entities and attributes in an IDEF1X model may
contain information about objects, classes, methods, and events. An IDEF1X model will give the
designer information pertinent to the static model. However, as with the IDEFQ method, the
modeler should use his/her best judgment when doing this because the semantics of the original
model elements are not exactly the same as IDEF4.

Applying IDEF3 (Process Model) to Object-Oriented Design

Perhaps the most useful IDEF method for the object-oriented designer is IDEF3. IDEF3
provides the designer with a method for developing requirements models containing use
scenarios. Each use scenario contains process flow descriptions detailing the required or
intended use of a particular design partition. Because IDEF3 models describe how objects
participate in processes, it provides useful information for developing the Client/Server models.

Interaction between the user and the system must be considered in design to ensure that
the system meets user requirements. Object-oriented system designers must consider the man-
machine interface. Modern graphical user interfaces are event driven, so user processes are not
explicitly enforced. This style of interface is very flexible as it allows many different work-flow
scenarios.

Another useful element of the IDEF3 method is the object state transition network
(OSTN) diagram. The OSTN helps identify the behavior that will exist in the system. It also
assists the designer in determining pre- and post-conditions for methods, design of transactions,
and state changes in the system objects.

132

REFERENCE LIST

Booch, G., (1991). Object-Oriented Design With Applications. Redwood City, CA: The
Benjamin/Cummings Publishing Company.

Coad, P. and Yourdon, E. (1991) Object-Oriented Design. Englewood Cliffs, NJ: Yourdon
Press.

Coleman, D., et al. (1994) Object-Oriented Development: The Fusion Method. Englewood
Cliffs, NJ: Prentice Hall.

Jacobsen, I. (1994) Object-Oriented Software Engineering: A Use Case Driven Approach.
Reading, MA: Addison-Wesley.

Keen, A.A., Mayer, R.J., Approaches to design object management, Society of
Manufacturing Engineers, AutoFact '91, Chicago, IL, November 10 - 14, 1991.

Knowledge Based Systems Laboratory. (1991). IDEF4 technical report (KBSL-89-1004).
College Station, TX: Department of Industrial Engineering, Texas A&M University.

Korson, T. D. and Vaishnava, V. K. (1986). An empirical study of the effects of modularity
on program modifiability. E. Soloway & S. Iyengar, (Eds.), Empirical studies of programmers.
Ablex Publishers.

Martin, J. and Odell, J. (1992) Object-Oriented Analysis and Design. Englewood Cliffs,
NIJ: Prentice Hall.

Mayer, R. J., et al. (1987). Knowledge-based integrated information systems development
methodologies plan (Vol. 2) (DTIC-A195851).

Mayer, R. J. (1991). Framework foundations research report [Final Report]. Wright-
Patterson Air Force Base, OH: AFHRL/LRA

Mayer, R. J., Menzel, C. P., and deWitte, P. S D. (1991). IDEF3 technical report. WPAFB,
OH: AL/HRGA.

Meyer, B. (1987). “Reusability: The case for object -oriented design.” IEEE Software, 4(2),
50-64.

Rumbaugh, J. (1991) Object-Oriented Modeling and Design. Englewood Cliffs, NJ:
Prentice Hall.

Shlaer, S. and Mellor, S. (1992) Object Lifecycles: Modeling The World in States.
Englewood Cliffs, NJ: Yourdon Press.

Shlaer, S. and Mellor, S. (1988) Object-Oriented Systems Analysis: Modeling The Real
World in Data. Englewood Cliffs, NJ: Prentice Hall.

133

Taylor, D., (1990) Object-Oriented Technology: A Manager’s Guide. Reading, MA:
Addison-Wesley.

Udell, J. (1994) Componentware. Byte, May 1994, 46-56.

Yourdon, E., and Constantine, L. L. (1979). Structured design: Fundamentals of a discipline
of computer program and systems design. Englewood Cliffs, NJ: Prentice-Hall.

Zachman, J. (1987). A framework for information systems architecture, IBM Systems
Journal, 26(3), 276-292.

134

CLOS
COTS
DDE
DoD
DM
DRM
DTIC
ExSpec
FORTRAN
ICAM
ID
IDEF
ICE
InSpec
IISEE
ISO

IT
KBSI
LDFD
LISP
MIT
BM

ODBC

ACRONYMS
Common Lisp Object System
Commercial Off-the-Shelf Technology
Dynamic Data Exchange
Department of Defense
Dynamic Model
Design Rationale Model
Defense Technical Information Center
External Specification
Formula Translator
Integrated Computer-Aided Manufacturing
Identifier
Integrated Definition
Information Integration for Concurrent Engineering
Internal Specification
Integrated Information Systems Evolutionary Environment
International Organization for Standardization
Information Technology
Knowledge Based Systems, Inc.
Logical Data Flow Diagramming
List Processing
Massachusetts Institute of Technology
Behavior Model

Open Database Connectivity

135

ODBMS
OLE
OO0A
OOD
OOPL
OSTN
ROI

SM
TQM

UOB

Object DataBase Management System
Object Linking and Embedding
Object-Oriented Analysis
Object-Oriented Design

Object-Oriented Programming Language
Object-State Transition Network

Return on Investment

Static Model

Total Quality Management

Unit of Behavior

136

TRADEMARK NOTICE
DDE™ js a trademark of MicroSoft, Inc.
OLE™ js a trademark of MicroSoft, Inc.

ODBC™ s a trademark of MicroSoft, Inc.

137

APPENDIX A: LINEAR SYNTAX

The linear syntax of IDEF4 has two parts: 1) the syntax used for labeling design artifacts
on diagrams, and 2) the syntax for specifying design artifacts. The label syntax describes the
valid form of a class label and attributes in a class box on a diagram, whereas the artifact syntax
defines a valid form for describing the class artifact.

IDEF4 Label Syntax

The label syntax provides the syntax for labeling design artifacts on IDEF4 diagrams and
for referencing design artifacts from diagrams.

Names

Artifact name => String

Partition name => Artifact name

Class_name => Artifact name

Instance name => Artifact name

Variable ID => “?’Variable_Name

Instance ID => {Instance_Name | Variable ID}
Design_Status => {®|A]| O}

Paths

Partition_Path => [{>*] <‘+}][Partition_Name ‘>]*
Simple Partition => [Partition_Path] Partition_Name
Aliased Partition => Simple Partition

Simple Class => [Partition Path] Class Name
Aliased Class => Simple_Class

Design entities

Partition => Simple Partition [‘(* Aliased Partition ‘)’]
Class => Simple Class [‘(‘ Aliased Class)’]
Instance => Class ‘[Instance ID ‘]’

139

Instance State => Instance State Label

Attribute => [{Class | Partition | Instance} °.’] Attribute_Name

Behavior => [Partition °:’] Message Name
Method => [{Class | Partition} ‘.’] Message Name [‘[* Method_Name ‘]’]
Types

Basic Type => {integer | real | string | boolean |}

Attribute_Type => {Basic_Type | Class}

Parameter Type => Attribute Type

Entity Labels

Partition_Entity =>
Class_Entity =>
Instance_Entity =>
Instance_State_Entity =>
Attribute_Entity =>
Behavior_Entity =>

Method Entity =>

Partition [Design_Status]
Class [Design_Status]

Instance [Design_Status]

Instance_State [Design_Status]

Attribute [Design_Status]
Behavior [Design_Status]

Method [Design_Status]

Dynamic M odel Diagram L abels
Dynamic_Event => [‘E’ Event_Number :’] [{Partition | Class} ‘.”] Event_Name
Dynamic Message => [‘M” Message _Number ‘:’] Method
Dynamic_Event Label => Dynamic_Event [Design Status]

Dynamic Message Label=> Dynamic Message [Design Status]

140

Client/Server Diagram Syntax

Dynamic Event Label

SN
yd

Dynamic_Message Label

Example

Timer) Alarm
El:Done MI:Ring

SN
yd

Figure 93
Client/Server Diagram Syntax

I nstance State Diagram Syntax

(Instance State) Dynamic_Event Label /Instance_State w
SN
[Attribute Value]* 4 [Attribute Value]*
) Dynamic_Message Label _
Example
(Lamp[?x] Off\ /Lamp[?x] Onw
E1:Turn On M1:0n
>
Switch = Off Switch = On
4

AN
M2:0ff E2:Turn Off

Figure 94
State Diagram Syntax

141

Static Model Diagram L abels

Supporting Syntax

Relation List => ‘(“ Static_Relation [‘,” Static Relation]* ‘)’

Static_Relation => [‘R’ Relation_Number “:’] [Partition ‘.”] [Relation_Name] [Relation_List]
Static_Link => [‘L’ Link_Number ‘:’] [Partition ‘.”] [Link_Name] [Relation_List]

Return Parameter => Parameter_Name [*:* Feature Type]

Specialized Class_Parameter => {‘(‘ Parameter_Name Class ‘)’ | Class}

Class_Parameter List => ‘> Specialized Class_Parameter Specialized Class Parameter+
Static_Feature => “{}” Feature_Name

Static_Object => “{O}” Object_Name

Static_Attribute => “{A}” Attribute_Name [*:” Attribute Type]

Static_Single Method => “{M}” Message Name [‘[* Method_Name ‘]’]

[“\n” Return_Parameter]*
Static Multi Method => “{MM}” Message_Name
[“\n” ‘[* Method_Name [Class_Parameter List] ‘]’]

[“\n” Return_Parameter]*

Static_Class => “{C}”Class_Name [‘(‘ Aliased Class)’]

Static Instance => “{I}” Instance

Static_Partition => “{P}” Partition_Name [‘(Aliased_Partition ‘)]
Static_Event => “{E}” [‘E’ Event_Number ‘:’] Event_Name

Diagram L abels

Static_Relation Label => Static Relation [Design_Status]

Static_Link Label => Static_Link [Design_Status]

Static_Feature Label => Static_Feature [Design_Status]

Static_Attribute Label => Static_Attribute [Design_Status]

Static Method Label => {Static_Single Method | Static Multi Method} [Design Status]
Static_Class_Label => Static_Class [Design_Status]

142

Static_Instance Label => Static_Instance [Design_Status]

Static Partition Label => Static Partition [Design_Status]

Static_Object Label => Static_Object [Design_Status]

Static Event Label => Static_Event [Design_Status]
Classbox_Static Label => {Static Feature Label | Static Attribute Label |

Static Method Label | Static Class_Label |

Static_Instance Label | Static Partition Label |

Static Object Label |Static Event Label}

Static Class Box Syntax

Class_Entity

[Classbox_Static Label]*

[Classbox_Static Label]*

or (everything is public)

Class_Entity

[Classbox_Static Label]*

143

Example

Soda Vending Machine

{M} Give Soda
Choice : Soda

{M} Return Change
Change : Coin

{M} Accept Change

{A} Is Empty : Boolean
{A} Money Entered : Coin
{E} Add Coin

{E} Push Button

{E} Push Coin Return

{E} Give Last Soda

{C} Change Machine

Static Partition Box Syntax Example

Partition Entity

Corporation

[Classbox_Static_Label]*

{A} Name : String
{P} Marketing : Dept
{P} Accounting : Dept

[Classbox_Static Label]*

or (everything is public)

{P} Research : Dept
{P} Development : Dept
{P} Executive : Dept
{MM} Release Product
[Corporate Release :
Marketing
Development

Partition Entity

Executive]

[Classbox_Static Label]*

Static Relation Syntax

Static_Relation Label

Person

Example

R1:Ownership Dog

144

Static Link Syntax

{Static_Attribute Label |

Static_Link Label

Return Parameter} ©

Example

Owner Dog
L1:Ownership(R1
{A} Pet o p(R1)
Behavior Model Diagram L abels
Behavior Method => [Partition_Path] Method_Name [Design_Status]
Behavior Class => Class [Design_Status]
Method Box Syntax Example
4) 4 I
Behavior Method Wash Car
[Behavior Class |* Car
- / - J

145

Artifact Specification Syntax

Method Specification

{

Name: Method Name
Behavior: Behavior
Author: Author

Date: Date

Specialization Classes

{

[Class “:* Variable Name]*

}

Input Parameters

{

[Parameter Type ‘:” Variable Name]*

}

Output Parameters

{

[Parameter Type ‘:” Variable Name]*

146

Parent M ethods

{

[Method Name[‘:* Class*]]

}

Child Methods

{

[Method Name[‘:’ Class*]]

}

Definition/Description

{

[Textual _Description]

}

External Specification

{

[External _Constraint]*

}

Internal Specification

{

[Internal_Constraint]*

*

*

147

Class Specification

{

Name: Class Name
Partition: Partition name
Author: Author

Date: Date

Super Classes

{

[Class]*

}

ClassFeatures

{
ClassAttributes{[Attribute Specification]}
ClassM ethods{[Method Specification]}

}

I nstanceFeatures

{
Attributes {[Attribute Specification]}
M ethods{[Method Specification]}
Objects{}
I nstances{}

Classes{}

148

Partitions{}
Events{}

}

PartitionFeatures

{
MultiMethods{}
Relations{}
Links{}

}

Definition/Description

{

[Textual _Description]

}

External Specification

{

[External_Constraint]*

}

Internal Specification

{

[Internal_Constraint]*

149

APPENDI X B: IDEF4 GLOSSARY

Application Domain

The domain the application is being designed for (i.e., the
end users).

Attribute

An implementation choice on how to represent an
object’s state.

Behavior Diagram

Defines relations between similar behavior.

Behavior M odel

Defines the relations between the similar behaviors of
objects.

Behavior Specification

Specification for the signature and internal
implementation of a method.

Class

A description of a group of objects with common
behavior, relationships, and semantics.

Client/Server Relationship

The dynamic relationship between an object that sends a
message (client) and an object that receives it (server) and
acts on it.

Design Artifact

Items used in the design.

Design Domain

The domain in which the design is performed.

Design Method

A heuristic guide to thinking that applies a certain
philosophy of design (Design Methodology).

Design M ethodology

A philosophy of design (see also Design Method).

Design Rationale

Provides a top-down representation of the system, giving

Component a broad view that encompasses the three design models
and documents the rationale for major design evolutions.
Domain Scope of the system being developed.

Dynamic M odel

Specifies the communication between objects and the
state transitions of objects.

Encapsulation

The act of imbedding features in objects.

150

Event A signal generated by a method in an object indicating
some condition in the object.

Feature A catch-all category for concepts that the engineer wants
to capture in the software design.

Function An operation that returns a value and has no side effects.

Implementation Domain

The environment and language in which the design is
implemented and the environment in which the
implementation executes.

Inheritance

An object-oriented mechanism for sharing attributes and
methods between objects.

Inheritance Diagram

IMustrates the subclass/superclass relation between
classes.

Instance An object described by a class.

Link The association formed by a referential attribute
imbedded in one class whose domain is another class.

Link Diagram A diagram depicting links between objects.

Link Instance

The association formed by a referential attribute of one
instance pointing to another instance.

M essage A token sent from one object to another to requesting an
action.

Method An implementation of behavior, such as a set of
instructions for the object to perform some operation, or a
procedure contained in an object.

Object Class A description of a group of objects with common

behavior, relationships, and semantics.

Object Instance

An object described by a class.

Object Life Cycles

The pattern of behavior that an object exhibits from
creation to deletion.

Partitions

A partition object contains objects and relations.

151

Polymor phism

The property of an operation to behave differently on
different objects.

Procedure

An operation that returns no value and has side effects.

Relation

An association between objects.

Relation Diagram

A diagram depicting relations between objects.

State

The values of the attributes of an object at a particular
time.

State Diagram

A diagram depicting transitions between states.

Static M odel Defines time-invariant relations between objects, such as
ownership and inheritance. The static model is described
using inheritance, relation, and link diagrams.

SubClass Grouping particular instances of a class into an even more
specialized class.

SuperClass The class from which a subclass is derived.

152

