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FOREWORD

If, like us, you find yourself hard-pressed to follow the fast-paced scrimmages
of anthropological genetics from the sidelines, this is the book you have been
waiting for. John Relethford, one of the world’s leading contributors to these
debates, has written it to engage all of us in this important and rapidly evolving
area of scientific inquiry. In Human Population Genetics, he leads us through classic
studies and current debates in an easy, clear, informal style that draws us in and
involves us in the action and arguments. Relethford’s passion for understanding
the genetics of human populations, and his low-stress approach to what can be a
difficult and esoteric topic, kindle a like passion in the reader and make this book
that rare thing among textbooks—a source of excitement and inspiration.

Population genetics and statistical theory were born as conjoined twins in the
monumental work of R. A. Fisher in the 1920s, which transformed evolutionary
biology into a full-fledged science capable of making and testing predictions
with numbers in them. But many people who are eager to learn about human
biology and evolution are turned off by the statistical foundations of evolutionary
theory. Almost everyone who teaches the fundamentals of our science has learned
to dread the dazed expressions that come over students’ faces the moment the
Hardy–Weinberg equation hits the screen. Relethford shows us, and them, how to
get around this stumbling block. Drawing the reader effortlessly in through plain
and simple examples beautifully chosen to clarify the mathematics of probability,
Relethford recruits his mastery of the subject and his skill as a teacher and
writer to present the math in a user-friendly way that displaces the hard work of
deriving formulas into adjacent appendices. His readers first master the essentials
and later reward themselves by seeing the mathematics underlying the simple
models they have just grasped. This process of orderly presentation leaves readers
self-confident and ready to take on ever more complex material.

Throughout this book, Relethford systematically preaches and teaches a scien-
tific approach to knowledge (‘‘Much of science consists of developing a simple model,
testing its fit in the real world, and then explaining why and how it fits and does not
fit’’) in a way that always solicits involvement by the reader (‘‘To see this, let
us try an example’’). In every topic he presents, he returns to the readers’ point
of view (‘‘What effect do you think selection has had on the allele frequencies?’’) and
includes them in the developing narrative. His readers will learn the concepts
that are crucial to all fields of population biology by studying examples of special
relevance to biological anthropology—how familiarity with genetic evidence can

vii



viii FOREWORD

inform us of our history (see the rich discussion on tracking the appearance of the
CCR5-�32 allele and subsequent resistance to the AIDS virus), how adaptation has
taken many different paths in human history (see the discussion on different high-
altitude adaptations in Tibetan and Andean people), and how cultural behavior
impacts genetic processes (see the discussion on agriculture and hemoglobin S).
‘‘Instead of cultural evolution negating genetic evolution,’’ he writes, ‘‘we are
finding evidence of how cultural change has accelerated genetic evolution.’’

That sentence, and the evidence behind it, would by itself make Human
Population Genetics worth having on your bookshelf. Every chapter of the book
sparkles with conclusions that are just as simple, straightforward, and far-reaching.
All of its readers can rely on John Relethford to lead them into some of the most
important and exciting scientific conversations of our day. If you are a student of
biological anthropology at any level, or a scientist or educator who teaches these
subjects, you will find his new book an invaluable source of novel insights and fresh
illumination of key ideas. We are proud and delighted to see Human Population
Genetics added to the Wiley–Blackwell series of textbooks on the foundations of
human biology.

Kaye Brown
Matt Cartmill



PREFACE

WHAT ARE WE DOING HERE?

This book is about the intersection of mathematics, biology, and anthropology. As
such, it has two basic goals. First, the book provides an introduction to the study of
population genetics, which provides the mathematical basis of evolutionary theory
by describing changes in the frequency of genetic variants from one generation
to the next. Second, this introduction has been designed for specific application
to human populations. Although population genetics is a field that applies to
all organisms, the focus throughout this book, particularly in case studies, is on
human populations. As an anthropologist, my interest is by definition primarily
on human populations and genetic diversity. Not that this book has no utility
outside of human populations—far from it. I have designed this book to provide
a simple introduction to population genetics with minimal mathematics that can
be used by advanced undergraduate and graduate students in a variety of fields,
including anthropology, biology, and ecology. If you are using this book in one
of those other disciplines, rest assured that the same basic principles presented
here are applicable to organisms, and your instructor will likely provide other,
nonhuman, case studies for clarification. You need not have a detailed background
in genetics, although this book is intended for students that have had some initial
grounding in genetics, such as one would obtain from an introductory course in
biological anthropology or biology.

FORMAT AND ORGANIZATION OF THE BOOK

A quick look through the pages of this book will reveal a number of formulas. This
may seem intimidating, but it is not. Although some elementary mathematics is
needed to understand population genetics, we do not have to use very advanced
math to learn the basics. Throughout this book, we will use only simple algebra
of the type that you likely learned in middle or senior high school and some basic
concepts of probability, which are developed in the text as we proceed. I also
use additional ways, beyond equations, to present the material. Although it is a
wonderful experience to glance at a mathematical formula and gain immediate
insight into what that formula says about reality, it is (at least for me) a rare

ix
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experience. I usually have to look at a graphic representation of the formula or
utilize an analogy to understand the underlying ideas. Thus, this text uses a lot of
graphs and analogies to make the basic points and help you relate the evolutionary
process to mathematical ideas.

As with any field, population genetics has its own set of terms. Anything
specific to genetics or population genetics is defined in the text, with an additional
glossary at the end of the book collecting all such terms. All glossary terms are
marked in boldface in the text the first time they appear. In-text citation is used
in this text, where specific citations are references by author(s) name(s) and year,
such as ‘‘Relethford (2004).’’

ACKNOWLEDGMENTS

I owe much thanks to Matt Cartmill and Kaye Brown, series editors of the Wiley-
Blackwell Foundation of Human Biology series, for inviting me to write this book,
and for their careful analysis and discussion of the book’s goals and structure. I am
also very grateful for the guidance and advice of my editor, Karen Chambers. She
was a delight to work with on this project. Thanks also to Anna Ehler, Editorial
Assistant, and Rosalyn Farkas, Production Editor, for all of their help and attention
to my constant questions.

I was first introduced to the study of population genetics in 1975 when I met
my graduate school advisor, Frances Lees. I owe Frank a lot for his guidance and
friendship over the years in addition to his patience at teaching me population
genetics. He got me started both in my profession and in this particular field. I
am also very grateful to his academic advisor, Michael Crawford, for helping me
learn even more about population genetics over the course of several decades of
friendship and collaboration on research projects.

I have worked with other colleagues on research in human population genetics.
Two of these colleagues stand out in particular—John Blangero and Henry
Harpending. My work with them has been a high point of my career.

Looking back, I can identify many friends and colleagues over the years with
whom I have shared discussions at some level or another on population genetics.
Some of these have been coauthors, and others have been colleagues with similar
interests who have shared one or many conversations or emails. They all have
contributed to my understanding of human population genetics. Needless to say,
my errors are mine and mine alone. This is the list (and my most sincere apologies
if I have missed anyone): Guido Barbujani, Deborah Bolnick, the late Ellen
Brennan, Ranajit Chakraborty, Ric Devor, Ravi Duggarali, Elise Eller, Alan Fix,
Jon Friedlaender, Rosalind Harding, Mike Hammer, John Hawks, Jeff Heilveil,
Keith Hunley, Cashell Jaquish, Lynn Jorde, Lyle Konigsberg, Tibor Koertvelyessy,
Ken Korey, the late Gabe Lasker, Paul Leslie, Jeff Long, Lorena Madrigal, Andrea
Manica, Yoshiro Matsuo, Jim Mielke, Andy Merriwether, John Mitchell, Kari
North, Carolyn Olsen, Esteban Parra, Alan Rogers, Charles Roseman, Dennis
O’Rourke, Lisa Sattenspiel, Michael Schillaci, Tad Schurr, Steve Sherry, Peter
Smouse, Bob Sokal, Dawnie Steadman, Anne Stone, Mark Stoneking, Alan
Swedlund, Alan Templeton, Forrest Tierson, John VandeBerg, Noreen von
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Cramon-Taubadel, Tim Weaver, Ken Weiss, Dick Wilkinson, Sarah Williams-
Blangero, Milford Wolpoff and Jim Wood. Special thanks to Alan Bittles for
providing me with references on inbreeding. I also acknowledge my debt to
three individuals whom I have never met, but have spent many hours studying
their insightful writings: Luca Cavalli-Sforza, Newton Morton, and the late
Sewall Wright.

Last, but certainly not least, I dedicate this book to the five people who mean
the most to me in the world—my wife, Hollie Jaffe; my sons, David, Ben, and
Zane; and my mother-in-law, Terry Adler. Thanks to all for putting up with me
and loving me.

John H. Relethford
State University of New York



C H A P T E R 1
GENETIC, MATHEMATICAL,
AND ANTHROPOLOGICAL
BACKGROUND

My interest in human population genetics started with my difficulty in picking a
major in college.

As is often the case, my interests as an undergraduate student were varied,
including fields as different as sociology, biology, geography, history, and math-
ematics. Each of these fields appealed to me in some ways initially, but none
sufficiently to take the 10 or more courses to complete an academic major. As I
shifted almost daily in my search for a major, I stumbled across anthropology, a
discipline that is characterized by academic breadth across the liberal arts. In the
United States, anthropology departments are most often constructed around the
four-field approach championed by the famous early twentieth-century anthro-
pologist, Franz Boas. Here, anthropology is divided into four subfields: (1) cultural
anthropology, which examines behaviors in current and recent human populations;
(2) archaeology, which reconstructs cultural behavior in prehistoric and historic
human societies; (3) linguistics, the study of language, a uniquely human form
of communicating culture; and (4) biological anthropology (also known as physical
anthropology), which focuses on the biological evolution and variation of the human
species.

With its focus on both cultural and biological aspects of humanity, and its
concern with natural science, social science, and the humanities, anthropology
proved to be the perfect liberal arts major for someone like me, who had a difficult
time picking any single major. Over time, however, I found myself gravitating
more toward the subfield of biological anthropology as I became fascinated
by the ways in which humanity had evolved. As I entered graduate school,
I wound up concentrating more and more on the nature of human biological
variation, and questions about our species’ biological diversity. How are human
populations similar to and different from each other biologically? How do these
differences relate to the process of evolution, and how do these processes relate
to human history, culture, and the environment? In one form or another, these

Human Population Genetics, First Edition. John H. Relethford.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.
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2 GENETIC, MATHEMATICAL, AND ANTHROPOLOGICAL BACKGROUND

questions have been at the root of many of the research topics I have focused
on during my career, ranging from the effect of historical invasions on genetic
diversity in Ireland, to changing patterns of marriage and migration in colonial
Massachusetts, to the effect of history and geography on cranial shape across the
world.

Underlying all of these questions is the subject of this book, human population
genetics, which is a field that has the same breadth of topics that guided my search
for a college major. Although this book focuses on human population genetics,
it is important to realize that population genetics is a subject that concerns all
organisms. Much of this book consists in explaining basic principles of population
genetics, applicable to many species, with further illustration describing case
studies from human populations. If you are reading this book in a course on
general population genetics, as is often taught in biology departments, for example,
you are likely to encounter further case studies on a variety of other species.

I. THE SCOPE OF POPULATION GENETICS

Before getting too far into the application of population genetics to the human
species, it is useful to answer the basic question ‘‘What is population genetics?’’
This question can be answered by considering the nature of the broader field
of genetics, the study of heredity in organisms. Genetics can be studied at
various levels. The study of molecular genetics deals with the biochemical nature
of heredity, specifically DNA and RNA. At this level, geneticists focus on the
biochemical nature of heredity, including the structure and function of genes and
other DNA sequences.

The study of Mendelian genetics, named after the Austrian monk, Gregor
Mendel (1822–1884), is concerned with the process and pattern of genetic inher-
itance from parents to offspring. Mendel’s work gave us a basic understanding
of how inheritance works, and how discrete units of inheritance combine to
produce genotypes and phenotypes. Whereas the focus of molecular genetics is
on the transmission of information from cell to cell, Mendelian genetics focuses on
the transmission of genetic information from one individual (a parent) to another
(the offspring). Mendelian genetics is in essence a statistical subject, dealing with
the probability of different genotypes and phenotypes in offspring. A classic
example concerns two parents, each of which carries one copy of a recessive
gene. The principles of probability show that the chance of any given offspring
having two copies of that gene, one from each parent, is 1

4 . These principles will
be reviewed later, but for now, you should just consider that the transmission of
genetic information is subject to the laws of probability.

Population genetics takes this concern with the probability of transmitting
genetic information from one generation to the next and extends it to the next
level, an entire population (or set of populations, or even an entire species). In
population genetics, we are concerned with the genetic composition of the entire
population, and how this composition can change over time. For example, consider
the classic example of the peppered moth in England. This species of moth comes
in two forms, a dark-colored form and a light-colored form. Centuries ago, most
moths were light-colored, and only about 1% were dark-colored. Dark-colored
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moths were rare because they would be more clearly visible against the light
color of the tree trunks, making it easier for birds to see them and eat them.
Over time, the environment changed, and the frequency of dark-colored moths
increased as the frequency of the light-colored moths decreased. Because the color
of the moths reflects genetic differences, this observed change is an example of the
genetic composition of a species changing over time. Population genetics deals
with explaining such changes. In this case, the initial origin of a different form is
due to mutation, and the change in moth color over time reflects natural selection,
because the environment had shifted following the Industrial Revolution, leading
to darker tree trunks, thus creating a situation where dark-colored moths were
less likely to be eaten by birds.

When the genetic makeup of a population changes over time, even in a single
generation, we have a case of evolution. Population genetics is the branch of
genetics that deals with evolutionary change in populations of organisms, and
provides the mathematical basis of evolutionary theory. Note that I am using the
word theory here in the context of the natural sciences, where a theory is a set of
hypotheses that have been tested and have withstood the test of time, as compared
with the popular use of the word theory as a simple hypothesis. When we speak
of evolutionary theory, we are not stating that evolution may or may not exist, but
instead are referring to a set of principles that explain the facts of evolution (in
other words, beware of the statement that ‘‘evolution is a theory and not a fact,’’
because it is actually both a fact and a theory).

Evolution can be viewed over different scales of time and units of analysis.
Population genetics deals with changes within a species over relatively short
intervals of time, typically on the order of a small number of generations. This
type of evolutionary change is also known as microevolution, and is contrasted
with macroevolution, which focuses on the evolution of species and higher levels
(genera, families, etc.), and typically deals with geological timescales, ranging from
thousands to millions of years. Although macroevolution and microevolution
are related in a theoretical sense, there is continued debate over the extent to
which long-term macroevolutionary events are a straightforward extrapolation of
microevolutionary trends (Simons 2002). The focus of this book is primarily on the
theory of microevolution.

Population genetics is concerned with changes in genetic variation over time,
that is, genetic differences and similarities. There are two ways of looking at
genetic variation: variation within populations and variation between populations.
The former refers to differences and similarities of individuals within a population;
the latter refers to average differences between two or more populations. Later
chapters will introduce quantitative measures of within-group and between-group
variation based on genetic traits, but for the moment, I will use a simple analogy
looking at adult human height. Picture yourself in a large classroom filled with
students, and imagine that we measured everyone’s height. We would use these
measurements to compute how much variation existed within the classroom. If,
for example, everyone in the class were of exactly the same height, there would
be no variation. If, however, there were differences in height, with everyone being
between 5 ft 8 in tall and 5 ft 10 in. tall, then variation would exist because not
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everyone would be the same. If everyone were between 5 and 6 ft tall, there would
be even more variation.

On the other hand, suppose that we want to compare the height in your
classroom with the height in the next classroom. An example would be if the
average height in your classroom were 5 ft 9 in. and the average height in the
other classroom were 5 ft 8 in. The difference in average height would be 1 in.
This difference would be an example of variation between groups. If the average
height of the two classes were the same, then there would be no variation between
groups. In evolutionary terms, we are interested in changes in genetic variation
that take place both within and between populations.

By studying genetic change over time and its effects on genetic variation within
and between populations, we are able to apply the theory of population genetics to
address a wide variety of questions about human variation and evolution. A small
sample of such questions (which will be addressed in later chapters) includes

• How much inbreeding occurs in human populations, and what is the effect
of this inbreeding?

• What does genetic variation tell us about our species’ history?
• Can genetics to be used to trace ancient human migrations?
• Where did the first Americans come from?
• Why do some human populations have high frequencies of the harmful

sickle cell allele?
• Are certain genes resistant to acquired immunodeficiency syndrome (AIDS)?
• Why do some small populations differ genetically from their neighbors to

such an extent?
• What impact does geography have on our choice of mates?

Even this short list shows that population genetics has relevance to many questions
about human biological variation and evolution. In addition, the general principles
of population genetics are used to address the same concerns—variation and
evolution—in all organisms. In short, population genetics is a key to understanding
life. Although this book focuses on human populations (because of my interests
and training), never forget that many of the general principles of population
genetics apply across the span of life itself.

As noted earlier, the study of human population genetics examines the
application of mathematical principles and models to the transmission of genetic
information from one generation to the next in human populations. Population
genetics can be regarded here as a field that combines genetics, mathematics
(especially probability), and anthropology. The remainder of this introductory
chapter provides a brief review of some basic principles of genetics and probability,
and concludes with a broader consideration of how population genetics applies in
an anthropological context.
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II. GENETICS BACKGROUND

Considering the nature of this book and its intended audience, one might assume
that you are a student in a course on population genetics or a related field.
Typically, such students have had some background in some basic concepts
of genetics, particularly Mendelian genetics, from high school as well as in an
introductory college course in biology or biological anthropology. As such, the
following information is not meant to be a detailed discussion of genetics, but
instead a brief review of some high points and terminology in order to dive
into population genetics as quickly as possible. More detail will be given as
needed throughout the text. If you find that the following brief review is a bit too
brief, I suggest getting more review and/or detail from comprehensive Internet
sources such as Wikipedia, browsing through some introductory genetics books,
and consulting with your professor.

Most discussions of genetics start with mention of deoxyribonucleic acid
(DNA), often referred to casually as ‘‘the genetic code.’’ Although we are learning
more every day about the nature of DNA and how it works, many of the basic
principles of population genetics were derived long before much was known
about DNA. Indeed, James Watson and Francis Crick discovered the biochemical
structure of DNA in 1953, whereas many ideas in population genetics were first
developed in the 1930s and 1940s. Although advances in molecular genetics have
certainly affected continued development of population genetics in terms of both
theory and methods (as will be described later), many of the basic concepts of
genetic transmission in populations were developed before we really knew the
structure and function of exactly what was being transmitted.

The DNA molecule is made up of two strands that consist of nucleotides,
molecules that contain a nitrogen base connected to sugar and phosphate groups.
There are four different bases in DNA: adenine (A), thymine (T), cytosine (C), and
guanine (G). The sequence of these four different bases make up the genetic ‘‘code,’’
and by analogy they can be considered ‘‘letters’’ in a four-letter DNA alphabet.
A related molecule, ribonucleic acid (RNA), is involved in the transcription of
proteins, expression of genes, and other vital biochemical functions. A critical
aspect of DNA is that the A and T bases pair up as do the C and G bases. As DNA
is double-stranded, this means that an A on one strand is paired with a T on the
other strand. Likewise, T is paired with A, C with G, and G with C. This property
of DNA allows it to make copies of itself, thus ensuring the transmission of genetic
information from cell to cell. The pairing of bases between the two stands is known
as a base pair (abbreviated bp), and the length of DNA sequences is measured by
the number of base pairs.

A. Mendel’s Laws

Much (though not all) of our DNA exists on long strands in the nuclei of our
cells, called chromosomes. Chromosomes come in pairs. Different species have
different numbers of chromosomes; humans have 23 pairs, whereas chimpanzees
(our closest living relative) have 24 pairs. During the replication of body cells
through mitosis, a single cell containing 23 pairs of chromosomes will duplicate,
giving rise to two identical cells, each with 23 pairs of chromosomes. However,
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this is not what happens during reproduction. Instead of passing along 23 pairs of
chromosomes to your offspring in a sex cell (sperm in males, egg in females), you
pass on one of each pair through the process of meiosis. The process of chromosome
pairs separating through meiosis is also known as Mendel’s law of segregation
(or, sometimes, as Mendel’s first law). You contribute 23 chromosomes (but not 23
pairs), and your mate contributes 23 chromosomes, resulting in your child having
23 + 23 = 23 chromosome pairs. Likewise, your genetic inheritance also resulted
from this process, as one of each chromosome pair came from your mother and
the other one came from your father.

As a bisexual organism (a species that has two distinct sexes, male and female),
half of your genetic inheritance comes from your mother and half from your father.
The same applies to any biological siblings. Apart from identical twins, why are
you not genetically identical to a sibling? If my brother and I both received 50% of
our DNA from our mother and 50% from our father, why are we not genetically
the same? The answer relates to basic probability; we do not inherit the same 50%.
For any given chromosome pair, there is a 50 : 50 chance of one being passed on to
an offspring, either the maternal chromosome (from your mother) or the paternal
chromosome (from your father). For example, imagine that I have passed along
my maternal chromosome for the first chromosome pair to a child. The next child
may or may not receive the same maternal chromosome; it is a 50 : 50 chance for
either the maternal or the paternal chromosome. The same probability applies to
each chromosome pair, as they are all independent such that whatever chromosome
you pass on from the first chromosome pair has no effect on the second pair, the
third, and so on.

We can illustrate this principle with a simple analogy using coins. Imagine an
organism with only three chromosome pairs, each represented by a penny with
two sides—heads and tails. If we flip the first coin, we have a 50 : 50 chance of
getting heads (H) or tails (T). We will use this as a model for a chromosome pair
consisting of one chromosome labeled H and one labeled T. If you flip heads for
the first coin (chromosome pair), what is the probability of flipping heads on the
second coin? It is still 50 : 50 because the coin flips are independent; the outcome of
one coin flip does not influence any other coin flips. In terms of the genetic analogy,
this hypothetical organism can produce eight different combinations of coin flips.
One of these eight combinations would be getting heads for the first coin, heads for
the second coin, and heads for the third coin. Another possibility would be heads
for the first coin, heads for the second coin, and tails for the third coin. If we follow
this pattern, we wind up with eight different combinations, each equally likely:

1. Heads–heads–heads
2. Heads–heads–tails
3. Heads–tails–heads
4. Heads–tails–tails
5. Tails–heads–heads
6. Tails–heads–tails
7. Tails–tails–heads
8. Tails–tails–tails
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Because of chance, this organism could produce eight different combinations
of chromosomes. This independent inheritance is known as Mendel’s law of
independent assortment (or Mendel’s second law).

In principle, we could simulate the same process for human beings by
using 23 different coins, but it take much too long to enumerate all possible
combinations of coin flips. Instead, we can figure out the number of possibilities
using the simple formula 2n, where n is the number of coins/chromosome pairs.
For humans, n = 23 chromosome pairs, giving 223 = 8, 333, 608 combinations!
Keep in mind that this is for one individual. The same rule applies to the
production of sex cells in the individual’s mate; they, too, can produce up to
8,388,608 combinations. A child could therefore have any of the first parent’s
combinations paired with any of the second parent’s combinations, giving a total
of 8, 388, 608 × 8, 388, 608 = 70, 368, 744, 177, 664 possible genetic combinations in
any given child! Given the number of possibilities, it is easy to see why it would
be virtually impossible for me to be genetically identical to my nontwin brother
for my entire genome.

As is typically the case when explaining basic models of reality, I have to point
out that all of the above is actually a bit of an oversimplification. The basic process
is further complicated by recombination, which involves the crossover of sections
of DNA of chromosome pairs during meiosis. Start with a pair of chromosomes,
with one chromosome from the mother and one from the father. During meiosis,
the pair does no segregate exactly, such that pieces of the mother’s DNA are
exchanged with pieces of the father’s DNA. Thus, any sex cell that you pass on to
an offspring is unlikely to follow the ideal Mendelian model of being either your
mother’s chromosome or your father’s chromosome, but instead reflects parts
of both. The process of recombination provides even more shuffling of genetic
combinations with each generation.

Through meiosis with recombination, a new generation can reflect different
combinations of what was present in the parental generation. However, in terms
of the overall genetic composition of the population (how many different genetic
forms exist), this reshuffling does not change anything. An analogy here would
be a deck of cards. Each time you shuffle the deck and deal out a five-card poker
hand, you are likely to get a different combination, such as a three of clubs, five
of spades, six of spades, ten of hearts, and a queen of diamonds. Return these
cards to the deck, shuffle, and deal again. You are most likely to have a completely
different hand (it is possible to get the same hand, but extremely unlikely, as
there are 2,598,960 possible different five-card poker hands using 52 cards and no
jokers). Each time you shuffle and deal, you can get a new combination, but the
basic composition of the deck has not changed—you still have four suits each
with 13 cards ranging from 2 through ace. Nothing new would happen unless
there were a mutation in the deck, say, resulting from changing a 10 of spades
to a brand new type of card, such as an 11 of spades. (Don’t try this in a real
game!) Population genetics involves understanding how the genetic composition
of a population can change through the operation of mutation and other forces of
evolution.
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B. Alleles, Genotypes, and Phenotypes

What is a gene? As with many core ideas and concepts (e.g., life, love, culture,
race), the actual definition of gene has changed over time and is often difficult to
pin down (Marks and Lyles 1994). The term gene was first used in a very general
way to refer to a unit of inheritance. With the growth of molecular genetics, it
has become more common to refer to a gene in a more specific sense, which is a
DNA sequence associated with a functional product, such as a protein. This more
restricted definition does not include noncoding sections of DNA. Although some
population geneticists use the more current restricted definition (e.g., Hamilton
2009), others use the more general definition for convenience (e.g., Hedrick 2005).
Here, I will use the more specific restricted definition to comply with your likely
background in genetics, and refer to the entire genome as consisting of genes and
other DNA sequences. The broader term genetic marker is often used to refer to
any gene or DNA sequence that has a known location on a specific chromosome.

When we study a genetic marker, we refer to its specific location on a particular
chromosome; this location is referred to as a locus (plural loci). A key concept in
population genetics is the allele, which refers to alternative forms of a gene or
DNA sequence at a given locus. Loci that have two or more alleles that are not rare
(typically defined as a frequency greater than 0.01) are called polymorphisms,
which literally translates as ‘‘many forms.’’

As an example of the concept of allele, consider the gene that affects lactase
production in humans. As mammals, humans rely on milk during infancy. We
produce an enzyme (lactase) in order to break down milk sugar (lactose). A specific
gene (LCT) is located on chromosome 2 and regulates the production of lactase.
There are several different forms (alleles) of this gene. One allele (R) causes enzyme
production to decrease during early childhood (an age by which humans have
been weaned), and another allele (P) allows continued high production of lactase
into adulthood, a condition known as lactase persistence. There is also a third rare
allele, but it will not be discussed in this example (Mielke et al. 2011).

For any trait in your nuclear DNA, including lactase activity, you inherit two
copies of the gene or DNA sequence, one from your mother and one from your
father, which collectively makes up your genotype. In the case of lactase activity,
there are two main alleles (R and P) in the human species, which means that there
are three possible genotypes. Some individuals will inherit two copies of the P
allele and will have the genotype PP, while others will inherit two copies of the
R allele and have the RR genotype. Both people with PP and RR genotypes are
homozygous for this trait, which means that they have inherited the same allele
from both mother and father. There is a third possibility, which is the genotype
PR, where the person has inherited a P allele from one parent and an R allele
from another parent (it does not matter which parent gave the P allele and which
gave the R allele). When someone inherits a different allele from each parent, that
person is heterozygous for that trait.

What are the different outcomes for these different genotypes? Each has
inherited genetic information regarding the restriction or persistence of lactase
production. The physical manifestation of a genotype is known as the phenotype.
In complex traits, such as height or skin color, the phenotype is a reflection
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of the genotypes of the different genes that affect the trait as well as environ-
mental effects, such as nutrition in the case of height, or solar exposure in the
case of skin color. In ‘‘simple’’ genetic traits, such as lactase activity, the pheno-
type is determined by the genotype and which, if any, alleles are dominant or
recessive. The effect of a dominant allele is noticeable even if only one copy is
present, whereas a recessive allele’s effect can be masked by a dominant allele.
In the case of lactase activity, the P allele (lactase persistence) is dominant and
the R allele (restriction) is recessive. This means that someone who inherits one or
two P alleles will show the lactase persistence phenotype, and those that inherit
two R alleles will show lactase restriction. In other words, lactase persistence can
result from either the PP or PR genotypes, and lactase restriction can result only
from having the RR genotype.

It is important to remember that dominant and recessive refer to the nature
of the alleles and have nothing to do with the actual frequency of an allele; that
is, a dominant allele is not necessarily more common than a recessive allele.
For example, in humans there is a condition resulting in extra fingers or toes
(polydactyly) that is caused by a dominant allele, yet it is very rare in occurrence
(Wolf and Myrianthopoulos 1973). Another example in humans is the ABO blood
group, where the most common allele in our species is the O allele, which is
recessive.

For any given locus, the alleles need not be either dominant or recessive.
For many loci, the alleles are codominant, meaning that the effect of both alleles
is expressed in the phenotype. An example in humans is the MN blood group
located on chromosome 4, which has two alleles, M and N, which produce
different molecules on the surface of our red blood cells; the M allele produces
type M molecules and the N allele produces type N molecules. Given these two
alleles, we have three possible genotypes: MM, MN, and NN. What about the
phenotypes? Logically, we can see that the homozygous genotype MM will result
in type M molecules because both alleles contain the same message—type M
blood. It is also clear that the genotype NN will produce type N molecules. What
of the genotype MN? The phenotype associated with a heterozygous genotype
depends on whether one allele was dominant. In this case, the M and N alleles
are codominant, which means that both the M allele and the N allele will manifest,
resulting in the production of both type M and type N molecules. In the case of
a codominant locus, each genotype has a distinct phenotype. As we will see in
Chapter 2, this makes it much easier to count alleles and determine their frequency
(a vital part of population genetics).

Before moving on, I want to point out some other complications. Although
most examples in this book use a simple model of a single locus with two alleles, in
reality there are actually many loci with more than two alleles, and some loci where
there are dozens of alleles. Basic concepts will be introduced using the simple
two-allele model where possible and bringing in this additional complication
where appropriate.

Another complication is the fact that some loci have dominant, recessive, and
codominant alleles. A good example for humans is the ABO blood group, located
on chromosome 9. There are three main alleles, A, B, and O, where the A allele
codes for type A molecules, the B allele codes for type B molecules, and the O allele
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codes for neither of these. In the ABO system, the O allele is recessive and the A
and B alleles are codominant. Given three possible alleles, there are six possible
genotypes: AA, BB, OO, AO, BO, and AB. What are the possible phenotypes?

The phenotypes of the three homozygous genotypes (AA, BB, and OO) are
easy to determine. Genotype AA produces type A blood, genotype BB produces
type B blood, and genotype OO produces type O blood. The phenotypes of
the three remaining genotypes can be determined by knowing which alleles are
dominant, recessive, or codominant. Because the O allele is recessive, those with
genotype AO will show only the effect of the dominant A allele, and hence will
have type A blood. Likewise, those with genotype BO will show only the effect
of the dominant B allele, and will have type B blood. The remaining genotype,
AB, has two codominant alleles, which means that both A and B molecules will
be produced, and people with this genotype therefore have what we call type AB
blood. For the ABO blood group, there are three alleles that can form six different
genotypes that correspond to four different phenotypes (ignoring for the moment
additional complications, such as the fact that there are actually two subtypes of
the A allele).

C. How Do We Assess Human Genetic Diversity?

As will be clear in later chapters, much of the core of population genetics theory
is abstract, dealing with hypothetical alleles at hypothetical loci in hypothetical
populations. Although hypothetical rumination is interesting in and of itself, the
ultimate test of a mathematical model of reality is to see how well it represents
reality, which means that at some point we need information about real alleles at
real loci in real populations! Although a variety of loci and traits will be provided
in case studies throughout this book, it is useful to look briefly at some of the
different ways anthropologists and geneticists use to assess genetic diversity.

Red Blood Cell Markers
For the first half of the twentieth century, most information on genetic diversity in
human populations came from the study of blood types based on red blood cell
groups, where phenotypes were based on the reaction of antigens present in the
blood with corresponding antibodies (Boyd 1950). In the ABO blood group system,
for example, this is based on reactions of A and B antigens with their respective
antibodies, anti-A and anti-B. Suppose that someone’s blood shows a reaction with
the anti-A antibody but not the anti-B antibody. This means that they have the
A antigen but not the B antigen, and therefore have blood type A, and therefore
either the AA or the AO genotype. There are many different red blood cell systems,
including ABO, Rhesus, MN, Kell, Diego, Duffy, and P (Crawford 1973).

By the 1960s and 1970s, technological advances such as electrophoresis had led
to a proliferation of other genetic markers of the blood. Electrophoresis involves
passing an electric current through a gel. Blood samples are placed at the negative
pole of the gel and, as current flows from negative to positive, molecules move
through the gel. Because different molecular structures move at different rates,
the process allows identification of different molecular structures associated with
different genotypes. Applied to blood samples from anthropological surveys, a vast
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amount of data were collected on numerous red blood cell protein and enzyme
loci (Crawford 1973; Roychoudhury and Nei 1988; Cavalli-Sforza et al. 1994).

DNA Markers
Genetic markers of the blood, including markers based on white blood cells,
are now labeled as classical genetic markers, contrasted with the newer DNA
markers. Although classical markers provide information on genetic variation,
DNA markers provide a closer window on genetic variation, moving beyond the
level of molecular variability to the underlying level of DNA variation.

One method of DNA analysis involves the identification of restriction frag-
ment length polymorphisms (RFLPs). Restriction enzymes that are produced
by different types of bacteria can bind to sections of a DNA sequence and cut
that sequence at a particular point. For example, the EcoRI bacterial enzyme will
bind to the 6-bp sequence GAATCC (which, by definition, corresponds to the
sequence CTTAGG on the other DNA strand). If this sequence is present in a DNA
sample, EcoRI will cut the sequence between the G and the first A, producing
two fragments, one with the base G and the other with the sequence AATCC.
If the DNA sample did not contain the sequence GAATCC, but instead had a
mutation resulting in GATTCC (where the second A mutated into T), then the
target sequence would not be recognized and the DNA sample would not be cut.
Depending on the presence or absence of certain DNA sequences, a DNA sample
might be cut into fragments of different lengths.

Another type of DNA variation widely studied in human populations consists
of repeated DNA sequences, such as CACACACACACACA, where the 2-bp
sequence is repeated 7 times. Because of mutation, the number of repeats can go
up or down, resulting in variation. Short tandem repeats (STRs), also known as
microsatellite DNA, are widely used in studies of human populations. STRs consist
of short repeated sequences consisting of 2–5 bp. Longer repeated sequences,
known as minisatellites, are also used.

Another form of DNA analysis looks for single-nucleotide polymorphisms
(SNPs), where DNA sequences differ by one base, such as having the base C on
one sequence versus the base T on another sequence:

Sequence 1: TATTCCGGA
Sequence 2: TACTCCGGA

In this case, the two sequences differ at the third position, and there are two alleles:
the first has the base T and the second has the base C. SNP variation is being
increasingly studied in human populations; as of 2007, over 3.1 million SNPs had
been identified (International HapMap Consortium 2007).

Haplotypes
Loci that are close together on the same chromosome tend to be inherited together
(linkage). A haplotype is a combination of alleles that are inherited as a single
unit. Haplotypes are sometimes defined as a set of linked loci, and can be based
on RFLPs, STRs, SNPs, or combinations of these. For example, Foster et al. (1998)
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conducted a genetic analysis on descendants of male relatives of the third US
president, Thomas Jefferson, to see if there was a genetic connection between this
family and the descendants of Eston Hemings, son of Sally Hemings, who was an
enslaved African-American woman. This study involved using a haplotype of the
Y chromosome that was unique to the Jefferson family. This haplotype consisted
of seven SNPs, 11 STRs, and 1 minisatellite.

Mitochondrial DNA and Y-Chromosome DNA
The discussion so far has dealt with nuclear DNA and inheritance from both
parents, the traditional way to present Mendelian genetics. These examples
refer to diploid inheritance (two copies). Although the majority of examples
presented in this text refer to diploid inheritance, some traits in humans are
haploid, and come from only one parent. One type of haploid inheritance
is mitochondrial DNA (abbreviated mtDNA). Although most of our DNA is
contained in the chromosomes, there is a small amount in the mitochondria,
which are the cell structures responsible for energy production. In humans,
mitochondrial DNA, the circular DNA molecule is typically 16,569 base pairs in
length, which is a very small fraction of the more than 3 billion base pairs of
nuclear DNA.

What makes mitochondrial DNA so fascinating and useful is the way it is
inherited. Unlike nuclear DNA, which is inherited from both parents, you inherit
mitochondrial DNA only from your mother. This pattern of inheritance results
from the way in which sperm and egg combine to form a zygote (fertilized
egg); the mitochondria in the zygote comes from the egg, and thus contains
only the mother’s genetic contribution. Transmission from one generation to the
next is through the female line. Although males inherit mitochondrial DNA from
their mothers, they cannot pass it on; transmission occurs only in the female
line.

This exclusive maternal inheritance simplifies genealogical analysis, figuring
out where certain alleles came from. With nuclear DNA, it is difficult to do this
because the number of potential ancestors doubles with each generation in the
past—you have two parents, four grandparents, eight great grandparents, and
so on. The number of potential ancestors and recombination every generation
make it difficult to tell if a particular allele came from any given ancestor. With
mitochondrial DNA, you have only one ancestor in any generation in the past.
One generation back, that ancestor would be your mother; two generations back
would be your mother’s mother, and so on into the past. Another advantage of
mitochondrial DNA is its use in ancient DNA analysis because the high number of
copies per cell means it that will be more likely to survive degradation compared
with nuclear DNA (O’Rourke 2007). Mitochondrial DNA is also used in ancestry
testing, a service available from a number of vendors. The problem here is that
such tests can tell you about ancestry in only one line. For example, you may have a
maximum of 16 great-great grandparents (see Chapter 3 for why this is a maximum
and how you can actually have fewer great-great grandparents). Mitochondrial
DNA analysis will tell you about only one of these 16 ancestors—your mother’s
mother’s mother’s mother—and not your mother’s mother’s mother’s father, your
mother’s mother’s father’s mother, or any of your other ancestors.
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Just as ancestry can be traced in the maternal line using mitochondrial DNA,
a similar pattern of ancestry is found in Y-chromosome DNA. Of our 23 pairs
of chromosomes, one pair is the sex chromosomes and the other 22 pairs are
referred to as autosomes. There are two types of sex chromosomes, X and Y,
which determine biological sex; females have two X chromosomes, whereas males
have one X chromosome and one Y chromosome. Males receive their X chro-
mosome from their mother and their Y chromosome from their father. When
sperm are produced, the sex chromosomes segregate and males pass on either
their X or their Y. Because there is very little recombination of the Y chromosome
with the X chromosome, this means that males pass on their Y chromosome
almost intact to their sons. Analysis of the nonrecombining part of the Y chro-
mosome provides the same insights as mitochondrial DNA, although in the
father’s line.

Quantitative Traits
Although the focus of this book is primarily on the application of population
genetics theory to a simple single-locus model, it is useful to point out that there
are also extensions to more complex traits, particularly those that involved the
effects of both genetics and the environment. Before the dawn of the twentieth
century, the only way to approximate genetic variation was through physical
traits, such as cranial and facial measurements. The study of quantitative genetics
deals with such traits. Many physical traits, such as height, head length, and skin
color, are examples of quantitative traits, whose phenotype varies continuously.
For example, if we consider height, and see one person with a height of 5 ft
6 in. and another person with a height of 5 ft 7 in., we know that it is possible
to find someone with any intermediate value, such as 5 ft 6.5 in., 5 ft, 6.6 in.,
and so on.

Quantitative traits are due to the joint influence of one or more loci and
environmental influences, where the latter can include a variety of influences
ranging from prenatal environment to climate to diet, among many others.
Often, quantitative traits are polygenic, meaning that two or more loci interact
to produce a genotype. In some cases, an equal and additive effects model
can be used to describe polygenic inheritance, where all of several loci con-
tribute equally to the same phenotype. In other cases, one locus may have a
more substantial effect, such as in a major gene model. In all cases, the phe-
notype (e.g., how tall you are, the color of your skin) reflects the joint effect
of these loci and environmental influences. Thus, two people could have the
same genotypic inheritance but grow to different heights because of exposure
to different environmental conditions. Likewise, two people may have differ-
ent genotypes but wind up with the same phenotype because of environmental
influences.

With the advent of biochemical and DNA markers, attention has moved away
from quantitative traits. This does not mean, however, that they are without value.
Although newer analytic methods have now allowed such traits to provide useful
measures of human population relationships and history (Relethford 2007; von
Cramon-Taubadel and Weaver 2009), they will only be referenced briefly in this
text, with the bulk of attention given to ‘‘simpler’’ genetic traits.
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III. PRINCIPLES OF PROBABILITY

Population genetics is mathematical in nature. The use of mathematics can be scary
to many students. Indeed, I find some of the more complex methods in the field
scary myself! However, the basic concepts of population genetics can be learned
with a minimum of mathematics. The level of math used in this text assumes some
previous background in the basic algebra learned in high school. I also use many
graphs to give a visual feel for the mathematical relationships that may not be
directly apparent from the raw equations. Some algebra will be used for proofs,
many of which are explained at the end of each chapter to avoid interference
with the flow of text. There will be one placed where additional explanation will
be appended for those who know a bit of calculus, but that is not necessary for
understanding the basic concepts.

Most of what we look at in population genetics to model the evolutionary
process consists in applying some basic concepts of probability. If you think
about it, a number of questions about reproduction and inheritance boil down to
questions about probability. For example, what is the probability that a parent
will pass on a given allele to a child? At the population level, similar questions
regarding the probability of genetic transmission apply. What is the probability
that a given locus will mutate within a generation? What is the probability that a
given allele will increase over time, decrease over time, or stay the same? What is
the probability that an allele will move from one population to another through
migration in a given generation? These and other questions boil down to questions
of probability.

A. Some Simple Rules of Probability

Many basic concepts of probability can be demonstrated using coins, dice, and/or a
deck of cards. Such everyday objects are useful in learning more abstract concepts
because the answers are often more intuitive. For example, consider the very
simple questions that can be generated using a single coin; for instance, what is the
probability of flipping the coin and getting heads? We all can answer this question
immediately—the probability is 1

2 . The same is true for the probability of flipping
the coin and getting tails (= 1

2 ). This is probably obvious, but where exactly did
we get this number? We simply divided the number of times that a specific event
(getting a head) could occur by the total number of events that could occur (getting
a head or a tail). Consider a different example. Roll a single die, a cube with six
numbered sides. What is the probability of rolling the die and getting the number
3? There is only one way to get the number 3, and there are six possible outcomes,
so the probability is 1

6 . The same is true of all the other numbers (1, 2, 4, 5, 6); each
has a 1

6 probability. The sum of the probabilities of all possible outcomes is equal
to 1. In the case of flipping a coin, there are only two possible outcomes (heads
and tails), each with a 1

2 probability, and the sum of all outcomes is 1
2 + 1

2 = 1. For
rolling a single die, there are six possible outcomes, each with 1

6 probability, and
they add up to 1.

Probabilities are expressed as proportions that can range from 0 to 1.
For example, 1

6 = 0.167. Sometimes we here probabilities also expressed as
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percentages, and all you have to remember is that a percentage is a propor-
tion multiplied by 100. For example, we can say that the probability of rolling
a single die and getting the number 3 is 1

6 = 0.167 (a proportion), and we could
express this as a percentage (16.7% of the time, we will get the number 3).

In population genetics, we often look at events that are independent of one
another, such as Mendel’s law of independent assortment. For example, what is
the probability of rolling a pair of dice and getting the number 3 on both dice?
Again, most of us will tend to solve such problems intuitively. We know the
probability of rolling a die and getting the number 3 is 1

6 , and we also know that
what comes up on one die in no way influences what comes up on the second die
(they are independent). Thus, the probability of getting the number 3 on both dice
is 1

6 × 1
6 = 1

36 = 0.028. What we have done here is use what is known as the AND
rule in probability. In general, we use the symbols P(A) to refer to the probability
that outcome A occurs and the symbol P(B) to refer to the probability that outcome
B occurs, such that the probability of both A AND B occurring is their product:

P(A and B) = P(A)P(B) (1.1)

In formal terms, the question above of rolling a pair of dice and getting two
3s is solved using the AND rule as P = 1

6 × 1
6 = 1

36 = 0.028. As an aside, you
might notice that this equation is numbered. All main equations in this text
are numbered, consisting of a chapter number (the first number), followed by a
period, and followed by a sequence number. Thus, equation (1.1) refers to the first
numbered equation in Chapter 1. Main equations are those that are referenced
elsewhere in the text.

We are also interested in situations where two outcomes are mutually exclu-
sive, and therefore both cannot be true at the same time. For example, what is the
probability of rolling a single die and getting a 3 OR a 4? The probability of rolling
a 3 is 1

6 , as is the probability of rolling a 4. These outcomes are mutually exclusive,
as you cannot roll a 3 and a 4 at the same time! What then is the probability of
A or B? The answer uses what is known as the OR rule, where the individual
probabilities are added:

P(A or B) = P(A) + P(B) (1.2)

Thus, the probability of rolling a die and getting a 3 or a 4 is 1
6 + 1

6 = 2
6 = 1

3 = 0.333.

Here are a few simple examples for reviewing the basic rules of probability:

1. Question: You roll a pair of dice. What is the probability of getting an even
number?
Answer: There are three possible even numbers (2, 4, and 6) out of six
possible outcomes. The probability is 3

6 = 1
2 = 0.5.

2. Question: You flip two coins at the same time. What is the probability of
having both of the coins come up heads?
Answer: This is a case that calls for the AND rule, as the answer is the
product of each coin coming up heads. The probability is 1

2 × 1
2 = 1

4 = 0.25.
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3. Question: This is the same problem as 2, but this time, flip three coins. What
is the probability of all three coming up heads?
Answer: You still use the AND rule but extend it to three outcomes by
multiplying the three probabilities as 1

2 × 1
2 × 1

2 = 1
8 = 0.125.

4. Question: You have thoroughly shuffled a standard 52-card deck of cards
(no jokers!). What is the probability of randomly selecting a card and getting
an ace or a face card?
Answer: You need to use the OR rule to compute the probability. Start with
the probability of getting an ace. There are four aces in the deck, so the
probability of drawing an ace is 4

52 . There are nine face cards in the deck
(three jacks, three queens, and three kings). The probability of getting a
face card is therefore 9

52 . Put these together using the OR rule, and the
probability of getting an ace or a face card is 4

52 + 9
52 = 13

52 = 1
4 = 0.25.

B. Genetics and Probability

Many problems in Mendelian genetics concern probability. A typical question asks
the student to describe the distribution of possible genotypes and phenotypes in
the offspring of a given mating. To illustrate this, consider a hypothetical locus
that has two alleles, A and a. With two alleles, there are three possible genotypes:
AA, Aa, and aa. What is the probability of two Aa parents having an offspring with
the genotype AA? To answer this, we have to connect the basic idea of inheritance
with probability. A child who has the AA genotype will have inherited the A allele
from both parents. The question can now be expressed more specifically: What
is the probability that both parents pass on an A allele? Both parents have the
genotype Aa, which means that each parent has a 1

2 chance of passing on the A
allele. Given this, we use the ‘and’ rule and give the answer as 1

2 × 1
2 = 1

4 = 0.25.
What about when the parents have different genotypes? The same principles

apply. For example, what is the probability of a man with genotype AA and a
woman with genotype Aa having a child with genotype Aa? The child must inherit
an A allele from one parent and an a allele from the other parent. In this case, the
father can pass on only the A allele because he has the AA genotype (and obviously
cannot pass on a different allele). Therefore, the mother must pass on the a allele.
What is the probability of the man passing on an A allele and the woman passing
on the a allele? Because the man only has A alleles, the probability that he will
pass on an A allele is 2

2 = 1. The woman has the Aa genotype, and therefore the
probability of her passing on the a allele is 1

2 . Using the AND rule, we get the
answer to the original question as 1 × 1

2 = 1
2 = 0.5. In other words, we expect that

half the time this couple will have a child with the Aa genotype.
It is often more useful to consider the distribution of all possible outcomes of

a given mating. A useful tool is the Punnett square, a simple method invented by
geneticist Reginald Punnett (1875–1967) and one that you may recall from high
school and/or college biology. In a Punnett square, we simply construct a 2 × 2
table that lists the possible contributions of each parent. For the above example,
where the father has the AA genotype and the mother has the Aa genotype, the
Punnett square is as follows:
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From the mother

A a

From the
father

A AA Aa

A AA Aa

This simple table shows us that the two possible contributions from the father are
both the A allele, whereas there are two different contributions from the mother;
she passes on either the A allele or the a allele. The table also shows that 2 in 4
times the child is expected to have the AA genotype, and 2 of 4 times, the child is
expected to have the Aa genotype. The probabilities for different genotypes among
the offspring are AA = 0.5, Aa = 0.5, and aa = 0.0.

As another example, what is the distribution of possible genotypes for the case
where both the man and the woman have the Aa genotype? The Punnett square in
this case is

From the mother

A a

From the
father

A AA Aa

a Aa aa

Note that the case where the father contributes an a allele and the mother an A
allele is the same as the case where the father contributes an A allele and the
mother an a allele. They both produce the same genotype: Aa. The probabilities of
getting different genotypes in the offspring are AA = 1

4 = 0.25, Aa = 2
4 = 1

2 = 0.50,
and aa = 1

4 = 0.25.
Keep in mind that these probabilities are just that—probabilities—and not

certainties. If this couple has four children, they will not necessarily have one
child with AA, two children with Aa, and one child with aa. With four children,
they might produce four children with Aa, or three with AA and one with aa, or a
number of other possible combinations. The genotype of each child is independent
of the others, and with a small number of actual outcomes, we are likely to see
considerable variation from the expected numbers. This is known as genetic drift,
and will be discussed in more detail in Chapter 5.

IV. THE ANTHROPOLOGICAL CONNECTION

When I describe the nature of my research (or the writing of this book), I focus on
the mixture of genetics, probability, and anthropology. Most people are familiar
with the basic ideas of Mendelian genetics, so the connection between genetics
and probability is clear. The connection between anthropology, genetics, and
probability may not be immediately clear, but on some reflection makes perfect
sense.
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A. What Is a Population?

What exactly is meant in population genetics by the term population? The term
can actually have a number of different meanings depending on context and on
intended use. One useful definition has been offered by Hedrick as a ‘‘group
of interbreeding individuals that exist together in time and space’’ (2005:62–63).
In this sense, we are focusing on what is sometimes referred to as the breeding
population, a group from within which mates are typically chosen.

The actual delineation of a population, particularly in humans, is often a bit
arbitrary. How much mating must take place within a set of boundaries in order
to qualify as a breeding population? Ninety percent? Seventy-five percent? Can
a small and culturally homogenous village on a remote island be considered a
population? Most certainly. What about a large and diverse city, such as London
or New York City? Probably not, because such cities actually encompass a number
of smaller subpopulations on the basis of ethnicity, social class, and so on.

In practice, geography is a usual starting point in defining a human population,
using geopolitical units such as towns and villages as our operational units of
analysis. Sometimes data may not be available with the use of such units, and we
might have to consider larger units of analysis, such as townships or territories.
If the local geographic units are not culturally homogeneous, we might want to
consider further subdividing the sample into smaller units that are more likely to
reflect actual mating behaviors. In humans, we might want to consider the impact
of a number of cultural factors on mating and, hence, population definition, such
as ethnicity, religion, social class, education, and linguistics.

Often, the purpose of the study and consideration of sample size will dictate
the definition of the population. In my own research in Ireland, for example,
I have used both broad and local geopolitical units for analysis. The island of
Ireland, made up today of the Republic of Ireland and Northern Ireland, is divided
into four large areas called provinces, each broken down into a number of local
governmental units known as counties. There are 26 counties in the Republic of
Ireland. Six counties in Northern Ireland are recognized geographically, but not
for administrative purposes. One of the datasets that I have worked with consisted
of a number of phenotypic measures of the head and body. For one study, where
the purpose was to identify very broad patterns of variation, I used the county for
the definition of the ‘‘population,’’ even though the patterns did not correspond
exactly to the concept as used in many population genetic models (Relethford
and Crawford 1995; Relethford et al. 1997). In another study, where the purpose
was to look at local patterns of variation, I used the town of residence of each
individual (Relethford 2008b). In this case, the unit of analysis corresponded more
closely to the idealized definition of population at the cost of reduced sample size.
Often there is a tradeoff between the number of populations and the sample size
per population, and the investigator may have to look at the data from several
different levels. The different definitions of population will be highlighted in a
number of the case studies presented in this book.
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B. Anthropology and Population Genetics

As will be discussed in detail later, the genetic composition of a population at any
point in time is a reflection of mating systems and the forces of evolution. In brief,
patterns of mating include mating with close relatives (inbreeding) and mate
preference on the basis of phenotypic preferences (assortative mating, such as
occurs when individuals choose mates who have similar characteristics). Patterns
of mating affect the distribution of different genotypes in a population, and it is
clear that human behavior allows for a variety of different effects due to inbreeding
and assortative mating depending on the specific culture.

Most of this book focuses on the four evolutionary forces, those mechanisms
that lead to a change in allele frequency over time (microevolution). The four
evolutionary forces, covered in much more detail in later chapters, are

1. Mutation. This is a random change in the actual genetic code, including
changes in single DNA bases, insertion or deletion of DNA sequences, and
other rearrangements of DNA sequences. Mutation provides the ultimate
source of all genetic variation, although generally in small amounts in
any given generation. The other three evolutionary forces act on mutation,
sometimes increasing its frequency and sometimes decreasing its frequency.

2. Genetic drift. As noted earlier, reproduction involves probability. Because
of change, two parents may not wind up with the expected distribution of
genotypes in their offspring. At the level of an entire population, this means
that each generation may not have the exact same set of allele frequencies as
the previous generation. Allele frequencies can ‘‘drift’’ up and down over
time, introducing a random element in microevolution.

3. Natural selection. This is Charles Darwin’s contribution to evolutionary
theory, referring to differential survival and reproduction. Natural selection
occurs when there are differences in fitness (the probability of surviving and
reproducing) for different genotypes, such that there is a change in allele
frequency over time. The example described earlier regarding changes in
the color of peppered moths in England is an example of natural selection.

4. Gene flow. This is the movement of genes from one population to another.
If you move to another population and have a child, your genes have
moved as well. Gene flow can introduce new alleles into a population from
elsewhere, and can cause populations to be more similar to each other
genetically.

The action and interaction of the evolutionary forces are affected by numerous
demographic and ecological factors, which are, in turn, affected by human cul-
tural behaviors. Some of the many factors to consider in microevolution include
population size, population distribution, the age structure of a population, sex
ratios, migration rates, birth rates, disease susceptibility, modes of subsistence,
predator–prey relations, and mate choice. Human cultural behavior is connected
to each of these factors and others. Although definitions of the term culture have
been debated by anthropologists for over a century or more, I find that a simple
definition applies well in many cases, including the study of human population
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genetics. Here, culture is shared and learned behavior. Culture consists of all of
those ideas, customs, and behaviors that an one acquires through the learning
process during one’s life. Although humans are not the only cultural species
(e.g., Whiten et al. 1999), it is clear that we have complex cultures that affect our
numbers, distribution, and survival on the planet, and hence affect the genetic
structure of our species.

To give only one example, consider population size. The size of a population
affects the number of mutations with each generation, and the rapid explosion of
our species’ numbers in recent historical times has meant that a huge number of
potential mutations are generated each generation (Hawks et al. 2007). This rapid
and unprecedented population explosion was the product of a number of factors
such as the improved agricultural capability of our species and lowered death
rates accompanying modernization. Without going into any detail, it is clear that
our species’ cultural adaptations have altered our population size and carrying
capacity, which, in turn, could affect the introduction of new mutations.

Population size is also the critical parameter of genetic drift. As will be
described in more detail in Chapter 5, smaller populations experience greater
levels of genetic drift. When we consider the limitations on population size of a
hunting–gathering lifestyle that all of our ancestors practiced until only 12,000
years or so ago, it is clear that the vast majority of human evolution occurred in a
time when genetic drift would have had a major impact on genetic variation both
within and between populations. As human populations have altered their way of
life through cultural adaptations (agriculture, civilization, industrialization), the
level of genetic drift also changed.

Population size is only one example of how culture affects the genetics
of human populations. Another (quick) example is adaptation. In evolutionary
terms, we generally consider genetic adaptation through natural selection as a
population adapts to a specific environment. As environments change, species
must also change or become extinct. Many studies of natural selection have
looked at how populations adapt to changing environments, such as the changes
in coloration of the peppered moth described earlier (e.g., Cook et al. 1999)
and studies of finches adapting to climatic and environmental fluctuations (e.g.,
Weiner 1994). When looking at human populations, we also have to deal with the
cultural dimension of adaptation, ranging from the technologies that we use to
live in varied climates, to modes of producing food, to our medical responses to
disease, among many others. Given the increasingly rapid rate of cultural change
in humanity, it is clear that cultural dynamics greatly influence on our genetic
variation. Case studies later in the book, ranging from the effect of early agriculture
on the spread of hemoglobin mutants to the rapid and independent spread of
mutant forms of the lactase gene, will be presented to illustrate this biocultural
aspect of anthropology.

C. A Short History of Human Population Genetics

The initial development of the field of population genetics took place well outside
the field of anthropology. Much of the core of population genetics can be traced
back to the work of three men in the early parts of the twentieth century, Ronald
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Fisher (1890–1962), JBS Haldane (1892–1964), and Sewall Wright (1889–1988).
Over time, their mathematical formulations were combined with observations
from laboratory experiments, field studies, and the fossil record to develop what
is often referred to as the synthetic theory of evolution, referring to the synthesis of
information from a variety of biological and geological fields (Provine 1971).

By the middle of the twentieth century, a number of studies in population
genetics had been undertaken on human populations as the number of available
genetic markers of the blood increased. Such studies soon realized the rich interplay
between cultural, demographic, geographic, historic, and genetic aspects of a
population. A classic example is the study of genetic drift in the Parma Valley, Italy
by Cavalli-Sforza and colleagues (Cavalli-Sforza 1969; Cavalli-Sforza et al. 2004).
At about this time, geneticist Derek Roberts, recognizing the utility of a connection
between anthropology and population genetics, coined the term anthropological
genetics, which has become widely used (including the name of an organization, the
American Association of Anthropological Genetics; http://www.anthgen.org/).

Since that time, several key books have been published that directly focus
on studies on human population genetics, including Methods and Theories of
Anthropological Genetics (Crawford and Workman 1973) and three volumes of
the series Current Developments in Anthropological Genetics (Mielke and Crawford
1980; Crawford and Mielke 1982; Crawford 1984). The late 1960s and early 1970s
also lead to two significant textbooks focusing on human population genetics,
Genetics of Human Populations by Cavalli-Sforza and Bodmer (1971), and Genetics,
Evolution, and Man, by Bodmer and Cavalli-Sforza (1976). Another influential
work that speaks to the status of human population genetics at that time is
Morton’s (1973) edited volume Genetic Structure of Populations. Although it does
not deal exclusively with human populations, many of the contributions in the
book use data from human populations contributed by the first generation of
anthropological geneticists. More recent works include Anthropological Genetics
(Crawford 2007) and Human Evolutionary Genetics (Jobling et al. 2004), both
of which offer comprehensive reviews of state-of-the-art methods. Although
numerous papers and monographs on human populations have been published in
recent decades, I mention the above to give examples of single collections that can
be used to get a comprehensive view of the status of the field at different points in
its history.

V. A CLOSING THOUGHT

The singular focus on a single species (and our close relatives) often seems strange,
given the millions of species on our planet today, although in our own defense,
I have to point out that anthropologists do not find this strange at all! Before
moving on to the next chapter, I want to reiterate that although my emphasis in
this book is on human population genetics (I am, after all, an anthropologist), the
basic principles of population genetics apply across a wide range of species. It
is true that certain methods are more or less applicable to humans than to other
species, but the basic mechanisms apply to other species as well.
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HARDY–WEINBERG
EQUILIBRIUM

An interesting question was raised following a lecture by Reginald Punnett on
February 28, 1908. Statistician Udny Yule (1871–1951) asked about the distribution
of brachydactyly, an inherited condition where the fingers or toes are very short.
Most types of brachydactyly result from a dominant allele, and Yule wondered
why, if the trait were dominant, it was not more common in our species. Yule
hypothesized that there should be three cases of brachydactyly to every one person
with the normal phenotype, which was clearly not the case (Stern 1965). This is an
interesting question, and one that I have been asked in my introductory biological
anthropology course following my standard review of dominant and recessive
alleles.

At first glance, it might seem to make sense that a dominant trait will become
more common in the population over time. The reason why it does not, and a
fundamental basis of microevolutionary theory, can be understood by looking at
what has become known as Hardy–Weinberg equilibrium or the Hardy–Weinberg
law. Following Yule’s question, Punnett turned for assistance to his colleague and
cricket-playing friend, mathematician Godfrey Hardy (1877–1947). Hardy was
apparently interested in pure mathematics, and as Punnett noted, ‘‘Knowing that
Hardy had not the slightest interest in genetics I put my problem to him as a math-
ematical one’’ (Stern 1965:220). Hardy quickly solved the problem mathematically,
and published his treatment of Mendelian proportions in populations in 1908,
where he commented that ‘‘I am reluctant to intrude in a discussion concerning
matters of which I have no expert knowledge, and I should have expected the
very simple point that I wish to make to have been familiar to biologists’’ (Hardy
1908:49).

Hardy was too humble, not realizing that his mathematical insight had solved
a basic dilemma in genetics. Recognizing the significance of Hardy’s insights
for the development of genetics, Punnett began referring to the principle as
Hardy’s law (Stern 1965). Later, it was found that a German physician, Wilhelm
Weinberg (1862–1937), had arrived independently at the same conclusion and had
presented it in a lecture in 1908. In order to recognize both men’s independent
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accomplishments, geneticist Curt Stern suggested that the basic principle be
henceforth known as the Hardy–Weinberg law (Stern 1943). As you undoubtedly
noted from the title of this chapter, Stern’s wish has become reality.

I. GENOTYPE AND ALLELE FREQUENCIES

Before getting into the definition, derivation, and application of Hardy–Weinberg
equilibrium, some basic ideas for measuring genetic variation in a population
need to be clarified, specifically the ideas of genotype frequencies and allele
frequencies.

A. Computing Genotype Frequencies

Once again, we use the standard model of a hypothetical locus with two alleles, A
and a. As covered in the previous chapter, when we have two alleles, we will have
three genotypes: AA, Aa, and aa. To make things easy, let us suppose that the two
alleles are codominant, so that we can tell the difference between people having
these three genotypes. Imagine that we visit a population and test the genotype of
150 people, and obtain the following numbers:

AA = 54

Aa = 72

aa = 24

The first thing we would want to do is to figure out the genotype frequencies,
which are the proportions of each genotype. To do this, we simply divide each
number by the total number of individuals. Thus, because 54 of 150 people have
the AA genotype, the genotype frequency is 54

150 = 0.36. We can do this for all three
genotypes:

AA = 54
150 = 0.36

Aa = 72
150 = 0.48

aa = 24
150 = 0.16

Although it might seem obvious, it will be important later to see that the sum
of the genotype frequencies adds up to 1 (0.36 + 0.48 + 0.16 = 1.0). Although
we use genotype frequencies in population genetics, note that we could also
express these proportions as percentages by multiplying each proportion by 100:
AA = 36%, Aa = 48% , and aa = 16% . Note that these add up to 100%.

At this point, it is useful to consider another characteristic of genotype
frequencies. Suppose that you were to return to this population and choose a
single person at random without knowing that individual’s genotype. What is the
probability that this person would have the genotype AA? The answer is 0.36,
which is the genotype frequency, because this number also represents the number
of times that a specific event occurs (54 people have genotype AA) divided by the
total number of events (there are 150 people).
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B. Computing Allele Frequencies

You can see that it is easy to estimate out the relative frequency of any genotype;
you simply divide the number by the total number of all genotypes. What about
the frequency of an allele? What are the number of A alleles and the number of a
alleles in the hypothetical population described above?

Two Alleles
The answer to these questions may not be immediately obvious. I have found
that many students understand better the concept of allele frequency using an
analogy. Imagine there are 150 people each wearing two socks (one on each foot).
For reasons unknown to us (you are welcome to make one up), some of the people
are wearing two black socks, some are wearing a black sock and a white sock, and
some are wearing two white socks. Suppose that you count them up and come up
with the following numbers:

Number of people wearing two black socks = 54
Number of people wearing one black sock and one white sock = 72
Number of people wearing two white socks = 24

Now, how many black socks are there in this group of people? If you rush in
answering this question, you might come up with 126 people by adding the 54
people, with two black socks and the 72 people with one black sock, but that is
actually the number of people having at least one black sock, which is not what
I asked. Instead, you have to count the actual number of black socks, keeping in
mind that some people are wearing two and some people are wearing only one.
In this example, we have 54 people, each with two black socks, and 72 people with
only one black sock. When we add these up, we get a total of

54(2) + 72(1) = 108 + 72 = 180

We can do the same thing for the number of white socks. We have 72 people with
one white sock and 24 people with two white socks, giving a total of

72(1) + 24(2) = 72 + 48 = 120

We have 180 black socks and 120 white socks, for a total of 300 socks, which makes
sense because we have a total of 150 people, each with 2 socks [= 150(2) = 300].
We could now figure out the relative frequency of black socks by dividing the
number of black socks by the total number of socks, which is 180

300 = 0.6. Likewise,
the relative frequency of white socks is 120

300 = 0.4.
You probably noticed that the numbers I used in the genotype frequency

example and the sock example are the same. This was done on purpose to enable
you to extend the sock analogy to the concept of allele frequencies. The computation
is the same, except that instead of counting socks you are counting alleles. Let us
return to the original question. Given the genotype numbers AA = 54, Aa = 72,
and aa = 24, what are the relative frequencies of the A and aalleles? Start by
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counting the number of A alleles, remembering to count the A allele twice for the
AA genotype and once for the Aa genotype. There are 54(2) + 72(1) = 180 A alleles.
We repeat this procedure for the number of a alleles, getting 72(1) + 24(2) = 120 a
alleles. Thus, this hypothetical population has 180 A alleles and 120 a alleles for
a total of 300 alleles (which works out since there are 150 people, each with two
alleles). Therefore, the relative frequency of the A allele is 180

300 = 0.6, and the relative
frequency of the a allele is 120

300 = 0.4. A simple way to keep all of these calculations
straight is to make a table that lists the number of A alleles and the number of a
alleles for each of the three genotypes, as shown in Example 2.1.

EXAMPLE 2.1 How to Compute Allele Frequencies. In this example, we use
the hypothetical example from the text of a single locus with two alleles, A and a.
The data are

Number of people with genotype AA = 54

Number of people with genotype Aa = 72

Number of people with genotype aa = 24

In the following table, we list the number of A and a alleles and the total number
of all alleles for each genotype, and then sum each column:

Number of Number of Number of Number of Number of
Genotype People A Alleles a Alleles all Alleles

AA 54 108 0 108
Aa 72 72 72 144
aa 24 0 48 48

Total 150 180 120 300

There are a total of 180 A alleles and 120 a alleles in this population, for a total
of 300 alleles (twice the number of people sampled, because each person has two
alleles).

Relative frequency of A allele = 180
300 = 0.6

Relative frequency of a allele = 120
300 = 0.4

As a check, the allele frequencies should add up to 1.0, which they do (0.6 + 0.4 =
1.0).

Because we use allele frequencies extensively in population genetics equations,
we use symbols to refer to the different allele frequencies. Although you can feel
free to create any symbol you wish, the conventional format is to use the symbol p
to refer to one allele and the symbol q to refer to the other allele. In Example 2.1,
p is the relative frequency of the A allele and q is the relative frequency of the a
allele. We will use this notation throughout the rest of the book.

Note that in the case of two alleles, there are only two allele frequencies,
and these numbers must add up to 1.0. In Example 2.1, this is seen because
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0.6 + 0.4 = 1.0. This property allows us a convenient check on our math; if the
two allele frequencies do not add up to 1.0 (or very close, in the case of irrational
numbers and roundoff), then an error was made in computing the allele frequency.
Beware—I have seen this error on homework assignments, so you should always
take time to check your answers thoroughly.

Mathematically, we can express the sum of the allele frequencies using the
following simple formula:

p + q = 1 (2.1)

Note that this relationship allows us to predict one allele frequency if we know
the other, because, using some simple algebra, we see that

p = 1 − q

q = 1 − p (2.2)

These relationships may be intuitively obvious, but as you will see, they allow us
to handle much of the mathematics of population genetics in an elegant manner.

As another example of computing allele frequencies, I will use a real-world
case. In the 1960s, anthropologist Jonathan Friedlaender collected data on a
number of genetic markers of the blood in 18 villages on the island of Bougainville
in Melanesia. One of the markers collected was the haptoglobin locus, a gene
located on chromosome 16. This locus has two alleles, HPA*1 and HPA*2. In
the village of Nupatoro, Friedlaender (1975) collected blood samples from 111
villagers, and found the following genotype numbers:

HPA∗1–HPA∗1 = 22

HPA∗1–HPA∗2 = 65

HPA∗2–HPA∗2 = 24

The genotype frequencies are obtained by dividing each number by the total
number:

HPA∗1–HPA∗1 = 22
111 = 0.198

HPA∗1–HPA∗2 = 65
111 = 0.586

HPA∗2–HPA∗2 = 24
111 = 0.216

We find that there are 109 HPA*1 alleles and 113 HPA*2 alleles, for a total of
222 alleles (twice the number of people sampled). This gives allele frequencies
for HPA*1 of 109

222 = 0.491 and for HPA*2 of 113
222 = 0.509. The full computation is

provided in Example 2.2 for review.

EXAMPLE 2.2 How to Compute Allele Frequencies. This example is based
on an actual study of human population genetics. Data on a number of genetic
markers were collected by Friedlaender (1975) on Bougainville Island in Melanesia.
One of these markers was the red blood cell protein haptoglobin protein, a locus
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with two alleles: HPA*1 and HPA*2. Genotype numbers and number of alleles are
shown below:

Number of Number of Number of Number of
Genotype People HPA*1 Alleles HPA*2 Alleles All Alleles

HPA*1–HPA*1 22 44 0 44
HPA*1–HPA*2 65 65 65 130
HPA*2–HPA*2 24 0 48 48

Total 111 109 113 222

Relative frequency of HPA∗1 allele = p = 109
222 = 0.491

Relative frequency of HPA∗2 allele = q = 113
222 = 0.509

More than Two Alleles
Much of population genetics theory builds on a simple model of a single locus
with two alleles. In the real world, however, there are many loci (particularly DNA
markers) with more than two alleles. How can we compute allele frequencies in
such cases? For loci where all the alleles are codominant, allowing identification of
each genotype, the answer is simple—we count the number of alleles in the same
manner. Example 2.3 shows computations for a locus with three alleles. When we
have three alleles, we typically label the allele frequencies as p, q, and r (when
there are more than three alleles, it is common to simply use the letter p with a
subscript to refer to different alleles).

EXAMPLE 2.3 How to Compute Allele Frequencies for a Locus with Three
Alleles. Salzano et al. (1985) collected data from 216 Pacaás Novos Indians of
Brazil on the group-specific component locus (GC, also known as the vitamin D
binding protein) on chromosome 4, which codes for a protein. A number of early
studies indentified two alleles, GC*1 and GC*2, but later work identified two
subtypes of the GC*1 allele, known as GC*1F and GC*1S. Salzano et al. collected
data on the six genotypes associated with the three alleles GC*1F, GC*1S, and GC*2:

Number of Number of Number
Number of GC*1F GC*1S GC*2 of All

Genotype People Alleles Alleles Alleles Alleles

GC*1F–GC*1F 43 86 0 0 86
GC*1F–GC*1S 75 75 75 0 150
GC*1S–GC*1S 32 0 64 0 64
GC*2–GC*1F 34 34 0 34 68
GC*2–GC*1S 21 0 21 21 42
GC*2–GC*2 11 0 0 22 22

Total 216 195 160 77 432
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By summing up the columns, we see that there are 195 GC*1F alleles, 160 GC*1S
alleles, and 77 GC*2 alleles for a total of 432 alleles.

Relative frequency of GC ∗ 1F allele = p = 195
432 = 0.451

Relative frequency of GC ∗ 1S allele = q = 160
432 = 0.370

Relative frequency of GC ∗ 2 allele = r = 77
432 = 0.178

Note that the sum of the three allele frequencies does not add up exactly to 1.0
(0.451 + 0.370 + 0.178 = 0.999). This is because of roundoff error; if you do all the
computations of the allele frequencies to four decimal places, you will see that
they do add up to 1.0 (0.4514 + 0.3704 + 0.1782 = 1.0).

An Alternative Method
The method used so far is often called the allele counting method because it relies
on counting the number of different alleles over all genotypes. Another method of
computing allele frequencies is based on the genotype frequencies. Returning to
the first example used in this chapter, we have a locus with two alleles, A and a,
in a hypothetical population of 150 people with the following genotypes: 54 AA,
72 Aa, and 24 aa. When we counted the alleles, we found 180 A alleles and 120 a
alleles, giving allele frequencies of p = 180

300 = 0.6 and q = 120
300 = 0.4.

Here is another way to calculate the allele frequencies. First, compute the
genotype frequencies as before by dividing the number in each genotype by the
total number of genotypes (= 150). We did these calculations earlier in this chapter
and obtained:

fAA = 54
150 = 0.36

fAa = 72
150 = 0.48

faa = 24
150 = 0.16

Note that I have assigned the symbol f to refer to genotype frequency and used
subscripts to refer to the different genotypes. Thus fAA refers to the frequency of
the AA genotype, fAa refers to the frequency of genotype Aa, and faa refers to the
frequency of genotype aa. We can now compute the frequency of the A allele by
adding the frequency of the AA genotype to half the frequency of the Aa genotype.
Likewise, we can compute the frequency of the a allele by adding the frequency of
half the Aa genotype to the frequency of the aa genotype. This is easier to express
mathematically than in words (which is why we use symbols):

p = fAA + fAa

2

q = fAa

2
+ faa (2.3)
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When we plug in the actual genotype frequencies in our example, we get the same
allele frequencies as with the allele counting method:

p = 0.36 + 0.48
2 = 0.36 + 0.24 = 0.6

q = 0.48
2 + 0.16 = 0.24 + 0.16 = 0.4

Note that this method may not give the exact same results as the allele counting
method if you did not compute the genotype frequencies using enough decimal
places to avoid roundoff problems. My rationale for introducing this alternative
method will be clear a little bit later.

Can you show why equation (2.3) works mathematically? The proof is shown
in Appendix 2.1 at the end of this chapter.

II. WHAT IS HARDY–WEINBERG EQUILIBRIUM?

What exactly is the Hardy–Weinberg law, and why is it so important? It is difficult
to explain Hardy–Weinberg equilibrium clearly and comprehensively in a short
definition, which is why I have devoted an entire chapter to it. At the most basic
level, Hardy–Weinberg is an mathematical expression describing the expected
genotype frequencies in a new generation. In the previous chapter, I reviewed
how Punnett squares are used to compute the expected genotype distribution
in offspring given the parent’s genotypes. Hardy–Weinberg provides a way of
extending this idea to an entire population. Imagine that we have a locus with two
alleles, A and a, where p is the frequency of the A allele and q is the frequency of
the a allele. Both Hardy and Weinberg independently showed that the expected
genotype frequencies in the next generation are

Expected frequency of genotype AA = p2

Expected frequency of genotype Aa = 2pq

Expected frequency of genotype aa = q2 (2.4)

These equations are often familiar to the introductory student in biological anthro-
pology and biology classes. Following the initial math fear experienced by some
students, just about everyone soon learns these simple equations. For example, if
we know that p = 0.7 and q = 0.3 in the parental gene pool, we can quickly figure
out the expected distribution of genotypes in the next generation as

Expected frequency of genotype AA = p2 = (0.7)2 = 0.49

Expected frequency of genotype Aa = 2pq = 2(0.7)(0.3) = 0.42

Expected frequency of genotype aa = q2 = (0.3)2 = 0.09

The utility of predicting outcomes in the next generation can be illustrated with
a more specific type of question. For example, let us imagine that the frequency
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of a harmful recessive allele is 0.01 and we want to know how many children
will be born having two recessives, and hence a genetic disease. In this case,
Hardy–Weinberg allows a quick answer: q2 = (0.01)2 = 0.0001, which is 1 in 10,000
offspring. Likewise, we could compute the expected proportion of heterozygotes
that would not get the disease but would be carriers: 2pq = 2(0.99)(0.01) = 0.0198,
which is 198 in 10,000 offspring.

Using the Hardy–Weinberg equations is straightforward. It is a second aspect
of the Hardy–Weinberg law that causes more confusion. Both Hardy and Weinberg
independently showed that, under certain conditions, the genotype and allele
frequencies would remain constant from one generation to the next. In other words,
Hardy–Weinberg equilibrium states that nothing changes (the very definition of
equilibrium). Another way of saying that nothing changes is saying that there
is no evolution! At this point in a typical lecture, everyone becomes rightfully
perplexed. It is obvious from lab experiments, field studies, and the fossil record
that organisms evolve all the time, which makes it difficult to understand why
valuable lecture time (and textbook space) is being taken up by something
that is clearly incorrect. The answer, which we then give in lecture, is that
Hardy–Weinberg equilibrium gives us a baseline; we start with the case where
nothing happens to show how something could happen! Although true, the
underlying nature and utility of Hardy–Weinberg equilibrium often gets lost in
the introductory course. Weiss and Kurland (2007:204) sum the confusing nature
of Hardy–Weinberg equilibrium quite nicely, noting, ‘‘As one student griped, ‘Let
me get this straight. When nothing happens . . . nothing changes? Duh.’’’

I think that a major problem with understanding Hardy–Weinberg equilib-
rium is that it is difficult to reduce the concept and its implications into a simple
but understandable definition. The idea instead takes more time and development,
which is the goal of the remainder of this chapter.

III. THE MATHEMATICS OF HARDY–WEINBERG EQUILIBRIUM

Given allele frequencies p and q, equation (2.4) allows us to predict the expected
genotype frequencies in the next generation. Where did equation (2.4) come from?
There are several ways to answer this, and Hardy and Weinberg each used a
somewhat different method to answer this question.

A. A Simple Proof

Here, I will start by demonstrating Hardy–Weinberg proportions [equation (2.4)]
using a simple model of probability that uses an analogy for allele frequencies.
Picture a cup filled with 100 small plastic beads, of which 60 are red and 40 are blue.
We can say that the relative frequency of red beads is 60

100 = 0.6 and the relative
frequency of blue beads is 40

100 = 0.4. Imagine that all of these beads are mixed
together and you pull one bead from the cup at random. What is the probability
of getting a red bead? It is 0.6 (and the probability of getting a blue bead is 0.4).
Now, imagine something a little more complicated. Pull out a bead, replace it in
the cup, mix then beads together, and then pull out another bead. What is the
probability of getting a red bead both times? We answer this using the and rule of
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probability from the previous chapter. The probability of getting two red beads is
the probability of getting a red bead (0.6) multiplied by the probability of getting a
red bead (0.6), which is 0.6 × 0.6 = 0.36. We can do the same type of computation
to answer the question of repeating the same experiment and getting two blue
beads. Here, the probability would be 0.4 × 0.4 = 0.16.

What about getting one red bead and one blue bead? This is a little more
complicated because there are two ways of getting a red bead and a blue bead.
The first way is to get a red bead on the first try and a blue bead on the second
try, and the second way is the reverse—getting a blue bead on the first try and a
red bead on the second try. We can solve this problem by breaking it down into
several steps. First, what is the probability of getting a red bead on the first try
and a blue bead on the second try? We use the and rule to figure this out and
multiply the probability of getting a red bead (0.6) by the probability of getting
a blue bead (0.4), which is 0.6 × 0.4 = 0.24. The second step is to determine the
probability of the reverse happening, where we get a blue bead on the first try and
a red bead on the second. Using the and rule, we get 0.4 × 0.6 = 0.24. Thus, we
have a probability of 0.24 of getting a red bead followed by a blue bead, and we
have a probability of 0.24 of getting a blue bead followed by a red bead. However,
my initial question was only about the overall probability of getting one red bead
and one blue bead, and the order does not matter. What is the probability of getting
a red bead and then a blue bead or a blue bead and then a red bead? Here, we use
the or rule and add the probabilities. The probability of getting one red bead and
one blue bead, regardless of the order, is therefore 0.24 + 0.24 = 0.48.

We can now summarize the probability distribution of taking a bead from the
cup at random, replacing it, and then taking a bead again at random:

Probability of getting two red beads = 0.36
Probability of getting one red bead and one blue bead = 0.48
Probability of getting two blue beads = 0.16

Note that the sum of these probabilities is 1 (0.36 + 0.48 + 0.16), because we have
listed all possible outcomes.

Going back to genetics, we can use the same principle. Instead of an experiment
where we take a bead at random from a cup of beads, picture the process of
reproduction of an allele that gets into the next generation as equivalent to taking
an allele at random from a gene pool. Given two alleles, A and a, the possible
genotypes in the next generation are AA, Aa, and aa. How do you get the AA
genotype? The answer is when each parent contributes an A allele. To put this
another way, what is the probability of a child getting an A allele from one parent
and an A allele from the other parent? Given that p represents the frequency of
the A allele, and is the probability of a given individual inheriting an A allele, the
expected frequency for genotype AA in the next generation is p times p, = p2.

How about the genotype Aa? This can happen in one of two ways. The father
can contribute an A allele and the mother can contribute an a allele, or the reverse
can occur, where the father contributes an a allele and the mother contributes
an A allele. The probability of the first situation occurring is p times q = pq. The
probability of the second situation occurring is q times p = qp, which by the
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commutative law of algebra is the same as pq. Thus, the probability of getting an A
allele from the father and an a allele from the mother or the reverse is pq + pq = 2pq.

The final genotype to consider is aa. The probability of obtaining this genotype
is computed as the probability of both parents contributing an a allele, which is q
times q = q2.

These proportions (AA = p2, Aa = 2pq, aa = q2) are the expected genotype fre-
quencies [shown in equation (2.4)] expected under Hardy–Weinberg equilibrium.
Table 2.1 summarizes the logic used here to demonstrate Hardy–Weinberg fre-
quencies. Another method of deriving Hardy–Weinberg frequencies is to consider
the genotypes for all possible offspring resulting from all possible random mating
of parental genotypes (e.g., AA × AA, AA × Aa). This derivation can be found in
most advanced population genetics texts (e.g., Hartl and Clark 2007).

Figure 2.1 shows the nonlinear relationship between allele frequencies and
genotypes frequencies. As p increases, the proportion of homozygous geno-
type AA increases geometrically, and the frequency of homozygous genotype aa
decreases geometrically. Note that the frequency of heterozygotes (Aa) increases

TABLE 2.1 Using Simple Probability to Derive Hardy–Weinberg Proportionsa

Genotype Allele from Allele from
of Child Father Mother Probability

AA A A p × p = p2

Aa A a p × q = pq
or

}
= pq + pq = 2pq

a A q × p = qp = pq

aa a a q × q = q2

a The data presented in this table are based on a single locus with two alleles, A and a, where p is
the frequency of the A allele in the parental population and q is the frequency of the a allele in the
parental population.
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FIGURE 2.1 Genotype frequencies under Hardy–Weinberg equilibrium for a single locus
with two alleles (A and a). The frequency of the A allele is p, and the frequency of the a allele
is q = 1 − p. The genotype frequencies are AA = p2, Aa = 2pq, and aa = q2.
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as p increases to reach a maximum at p = 0.5, after which the frequency of
heterozygotes decreases.

For Example 2.1, where p = 0.6 (frequency of the A allele) and q = 0.4 (fre-
quency of the a allele), the expected genotype frequencies in the next generation
are AA = p2 = 0.36, Aa = 2pq = 0.48, and aa = q2 = 0.16. One last thing. Just as the
allele frequencies must add up to 1.0 (p + q = 1), so must the genotype frequencies:

p2 + 2pq + q2 = 1 (2.5)

This may be intuitive, but we could also demonstrate this by noting that because
q = 1 − p, we can substitute this into equation (2.5). After doing all the algebra, the
answer is 1.

B. What Does Equilibrium Mean?

So far, we have started with a parental population with allele frequencies p and q
that we use to compute the expected genotype frequencies in the next generation.
What happens then? The next thing we need to know is the allele frequencies in
the offspring generation. Here we use the symbols p′ and q′ to refer to the allele
frequencies in the offspring, using the prime symbol (′) to differentiate these from
the parental allele frequencies (p and q). We can figure out the allele frequencies
of the offspring from their genotype frequencies using equation (2.3) with the
expected Hardy–Weinberg frequencies from equation (2.4); that is, to compute p′
we take the expected frequency of the AA genotype and add half the expected
frequency of the Aa genotype:

p′ = fAA + fAa

2
= p2 + 2pq

2

When we factor out the p in this equation and let the number 2 in the numerator
and denominator cancel out, we get p′ = p(p + q), and because p + q = 1 [equation
(2.1)], we obtain p′ = p. We could do the same thing to compute the frequency of
the a allele in the next generation and would get q′ = q. In other words, there has
been no change in the allele frequency. This is the equilibrium part of Hardy–Weinberg
equilibrium–equilibrium means no change.

We could continue the process even farther by using the allele frequencies
of the offspring to compute the expected genotype frequencies of their offspring.
Because the allele frequencies of the offspring are the same as those of the parents,
the expected genotype frequencies would also be the same as those of the parents:
p2, 2pq, and q2. This process would then continue to the next generation, also
resulting in allele frequencies of p and q and genotype frequencies of p2, 2pq,
and q2.

An important thing to remember is that even if the population is not initially
at Hardy–Weinberg equilibrium, it will reach an equilibrium state within a
single generation. To show this, take the case where we start with genotype
frequencies of AA = 0.33, Aa = 0.54, and aa = 0.13. Using equation (2.3), we obtain
allele frequencies of p = 0.6 and q = 0.4. The expected genotype frequencies are
p2 = 0.36, Aa = 2pq = 0.48, and aa = q2 = 0.16, which are different from what we



THE MATHEMATICS OF HARDY–WEINBERG EQUILIBRIUM 35

started with. This means that the initial population is not at Hardy–Weinberg
equilibrium. We then use equations (2.3) and (2.4) to compute the allele and
genotype frequencies for the next generation. From this point on, the expected
genotype frequencies will always be AA = 0.36, Aa = 0.48, and aa = 0.16, and the
allele frequencies will always be p = 0.6 and q = 0.4. (Try it!) In other words,
if a population does not begin in Hardy–Weinberg equilibrium, it will reach
Hardy–Weinberg equilibrium in a single generation.

If a population is in Hardy–Weinberg equilibrium, allele and genotype fre-
quencies will remain unchanged over time. The equilibrium of allele frequencies
is particularly interesting, because given that evolution can be defined as a
change in allele frequencies, Hardy–Weinberg equilibrium predicts that there is
no change, and therefore that evolution does not occur! However, we see evidence
of changing allele frequencies (microevolution) all the time in laboratory and
field studies, which means that Hardy–Weinberg is clearly incorrect across the
boards. Why, then, do we spend so much time (and an entire chapter) looking at
Hardy–Weinberg equilibrium? Of what possible use is it?

The main use of Hardy–Weinberg equilibrium is that it provides a baseline for
explaining change. Hardy–Weinberg gives us a prediction of what will happen
given certain assumptions. Returning to the question raised by Yule that was
discussed at the start of this chapter, Hardy–Weinberg equilibrium demonstrates
that, given certain assumptions, the proportion of people with brachydactyly will
not change even though the allele for brachydactyly is dominant. As long as the
assumptions of Hardy–Weinberg equilibrium are met, there will be no change
in genotype or allele frequencies. Therefore, when we do see change over time,
we know that one or more of the underlying assumptions of Hardy–Weinberg
equilibrium are not true. As such, we can use Hardy–Weinberg to model what-if
scenarios that provide us with clues about how evolution works. All of the basic
concepts of population genetics discussed in this book start with the assumption
of Hardy–Weinberg equilibrium and then ask what will happen under a different
set of conditions. The equilibrium model is a powerful tool for developing
evolutionary models.

C. Assumptions of Hardy–Weinberg Equilibrium

Anytime we use a mathematical model of reality, we will have to make a number
of assumptions, and Hardy–Weinberg equilibrium is no exception. In this case,
we assume that we are dealing with a sexually reproducing species (two sexes).
We also assume that each generation is discrete and does not overlap with any
other generation; in other words, no one from one generation mates with anyone
from another generation.

A key assumption of Hardy–Weinberg equilibrium is random mating. This
means that the probability of getting a given genotype is purely a function of the
allele frequencies and the application of the laws of probability described earlier.
In reality, the assumption of random mating can be violated in either of two
ways. One exception to random mating is inbreeding, the mating between closely
related individuals. Although everyone is inbred to some extent (see Chapter 3),
we are generally concerned with mating between close relatives, such as between



36 HARDY–WEINBERG EQUILIBRIUM

siblings, aunts and nephews, uncles and nieces, and close cousins. Under inbreed-
ing, the probability of someone being homozygous increases because of the
closer than random relationship of the parents. We expect a certain proportion
of homozygotes by chance under Hardy–Weinberg equilibrium (AA = p2 and
aa = q2). Under inbreeding, these proportions will be larger than expected by
chance, as will be shown in the next chapter.

Another way in which random mating is violated is when there is a prefer-
ence for choosing a mate according to someone’s genotype. In our hypothetical
example, this means that someone with genotype AA prefers a mate that has
the same genotype, such that AA × AA mating will occur more frequently than
expected by chance. Hardy–Weinberg equilibrium assumes that this is not the
case, and that the probability of a given mating is purely a function of proba-
bility. There is no preference for choosing a mate on the basis of their genotype.
This is true for many (but not all) traits. (Do you think that people are con-
cerned with their possible mate’s ABO blood type?) Sometimes people choose
mates according to on their phenotypic similarity (and, hence, some underlying
genetic similarity), which is known as positive assortative mating. Some examples
in humans include mate choice based on similar skin color, weight, and height.
As with inbreeding, positive assortative mating will increase the proportions of
homozygotes.

Deviations from random mating will lead to genotype frequencies that are
different from those expected under Hardy–Weinberg equilibrium. However,
these deviations will not change the actual allele frequencies (the reason for this
will be demonstrated in Chapter 3).

Violation of the other assumptions of Hardy–Weinberg equilibrium will cause
a change in allele frequencies. One of these assumptions is that there is no
mutation. In our simple example, we have a locus with two alleles, A and a, and
Hardy–Weinberg equilibrium assumes that these two alleles will be passed on
to the next generation, but that none of the A alleles will mutate into a, none of
the a alleles will mutate into A, and neither allele will mutate to a new allele.
If this assumption is violated, then there will be a change, albeit small, in the
allele frequencies. Suppose, for example, that a population has 60 A alleles and
40 a alleles, giving frequencies of 0.6 and 0.4. Imagine that one of the A alleles
mutates into a new form, which we will call B. We now have 59 A alleles,
40 a alleles, and 1 B allele. The frequency of the A allele is now 59

100 = 0.59.
Hardy–Weinberg equilibrium assumes that mutation does not happen, but in
the real world, there will always be a small fraction of alleles that mutate and
are passed on to the next generation. Although small, this is a change in allele
frequency. Details on the changes in allele frequency due to mutation are covered in
Chapter 4.

Another assumption of Hardy–Weinberg equilibrium is that there are no
chance deviations in allele frequency due to sampling error. This idea, which
was described briefly in the last chapter, is an extension of probability theory
that shows that a sample may not represent the statistical universe from which
it was taken. In population genetic terms, genetic drift is the change in allele
frequencies that occurs because of sampling error such that, by chance, the allele
frequencies in any generation are not likely to be the same as in the previous
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generation. Hardy–Weinberg equilibrium assumes that there is no genetic drift.
As will be shown in more detail in Chapter 5, the expected effect of genetic
drift depends on population size—the smaller the population, the greater the
likely effect of genetic drift. Hardy–Weinberg equilibrium assumes that there is
absolutely no genetic drift, and in essence assumes that the population is of infinite
size. Although this is clearly not possible, in practical terms this translates to the
population being very large, such that there is no perceptible impact of genetic
drift.

Hardy–Weinberg equilibrium also assumes that the chance of survival and
reproduction does not depend on someone’s genotype; in other words, someone
with genotype AA is not more or less likely to survive and reproduce than someone
with genotype Aa or aa. Hardy–Weinberg equilibrium assumes that there is no
natural selection. In reality, there are times when one genotype might have a
higher probability of surviving and reproducing than other genotypes. If one
genotype is represented in the next generation more frequently than expected
under Hardy–Weinberg equilibrium, then the allele frequencies will change. For
example, imagine that individuals with genotype AA are more likely to survive and
reproduce than the other genotypes. This selection will result in more individuals
with genotype AA than expected, and therefore more A alleles. Thus, the frequency
of A will increase, while the frequency of a will decrease. Chapter 6 presents the
outcomes of various different models of natural selection, showing examples
where an allele frequency will increase, decrease, or reach a balance. Chapter 7
builds on this theoretical foundation by discussing a number of case studies of
natural selection in human populations.

The last assumption of Hardy–Weinberg equilibrium discussed here is the
assumption that the population is closed and there are no migrants into the
population from another population. This assumption means that there is no
gene flow entering the population. What happens genetically in one population
does not affect what happens in any other population. The effect of gene flow
on populations (which has been major in human evolution) is discussed in more
detail in Chapter 8.

Note that last four assumptions (no mutation, no selection, no genetic drift,
and no gene flow) correspond to the four evolutionary forces introduced in the
previous chapter. All of these involve a change in allele frequencies. We use
Hardy–Weinberg equilibrium to establish the baseline, and then change one of
more of these assumptions to predict levels and direction of microevolution-
ary change. We also apply our knowledge of these assumptions to compare
observed reality with theoretical expectation to gain insight into how evolution
works.

IV. USING HARDY–WEINBERG EQUILIBRIUM

The major use of Hardy–Weinberg equilibrium in this text is the establishment of
a baseline condition—no changes in genotype or allele frequencies—that allows
us to model what will happen when one or more of the underlying assumptions
of Hardy–Weinberg equilibrium are not met. There are also some other uses of
Hardy–Weinberg equilibrium.
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A. Detecting Deviations from Hardy–Weinberg Equilibrium

In principle, we can compare observed and expected genotype numbers to explic-
itly test the hypothesis of equilibrium. Imagine that you visit a population of 80
people and find the following genotype numbers for the hypothetical locus that
we have been using:

AA = 40

Aa = 32

aa = 8

These are the observed genotype numbers. We can now compare these numbers
with the numbers expected under Hardy–Weinberg equilibrium. We do this by
computing the allele frequencies and then use Hardy–Weinberg equilibrium to
compute the expected genotype numbers.

In this example, we use the allele counting method and find that there
are 112 A alleles and 48 a alleles, for a total of 160 alleles. This gives allele
frequencies of p = 112

160 = 0.7 and q = 48
160 = 0.3. We now use Hardy–Weinberg

equilibrium to predict the genotype frequencies: AA = p2 = 0.49, Aa = 2pq = 0.42,
and aa = q2 = 0.09. Finally, we multiply these expected genotype frequencies by
the total number of people (= 80) to get the expected genotype numbers: AA =
0.49(80) = 39.2, Aa = 0.42(80) = 33.6, and aa = 0.09(80) = 7.2. Our comparison of
observed and expected numbers is summarized below:

Observed Expected
Genotype Number Number

AA 40 39.2
Aa 32 33.6
aa 8 7.2

Total 80 80

If the population is at Hardy–Weinberg equilibrium, then the observed genotype
numbers will be the same as the expected genotype numbers. Rounding off
(to deal with the mathematical possibility, but biological impossibility, of a
fractional person), we expect to see 39 AA, 34 A a, and 7 aa individuals. After
rounding off, we see one more person with genotype AA than expected, two
more with genotype Aa than expected, and one less with genotype aa than
expected.

Is the population at Hardy–Weinberg equilibrium? Although the observed
and expected numbers are not exactly the same, they are close. The issue of
Hardy–Weinberg equilibrium boils down to a statistical question—is the differ-
ence between observed and expected genotype numbers statistically significant?
How likely would we be to sample 80 individuals and get these small deviations
due to chance? This is similar to many questions in statistics. For example, if the
average height of male students in a large lecture class were 5 ft 9 in., then how
likely would it be for a sample of, say, 10 students to have this exact same average
height?
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Consider another example with observed genotype numbers in a popula-
tion of 130 individuals of AA = 90, Aa = 28, and aa = 12. Here, we obtain allele
frequencies of p = 0.8 and q = 0.2, and the following comparisons:

Observed Expected
Genotype Number Number

AA 90 83.2
Aa 28 41.6
aa 12 5.2
Total 130 130

Here, we get differences that are much larger than in the first example. The
question, however, is the same—how likely is it to get differences this large by
chance? If it is not statistically likely, then we can say that the population is not
at Hardy–Weinberg equilibrium. In statistical terms, we would use a chi-square
test to answer the question. Details of this test are presented in Appendix 2.2. As
shown there, it turns out that the first example presented above is not significantly
different from Hardy–Weinberg equilibrium, but the second one is.

Statistical tests for Hardy–Weinberg equilibrium are actually somewhat lim-
ited. Most actual applications of this test show Hardy–Weinberg equilibrium for
most loci. As pointed out by Weiss and Kurland (2007), this does not mean that
evolution is not occurring, but instead that the typical levels of allele frequency
changes that occur in a single generation are unlikely to be detected in typical
samples. Hardy–Weinberg equilibrium is not always that useful for detecting
microevolution, and its greatest value is in development of models explaining
microevolution, as will be outlined throughout this text.

B. Hardy–Weinberg Equilibrium and Dominant Alleles

Hardy–Weinberg equilibrium also has a practical application for computing allele
frequencies. The allele counting method for computing allele frequencies works
only when the alleles are codominant. If one allele is dominant and the other is
recessive, then the method cannot work. To see this, consider PTC tasting, a trait in
humans that involves the ability to taste the chemical phenylthiocarbamide. Some
people can taste this bitter chemical and others cannot. The genetics of PTC tasting
is approximated by a model with two alleles, a dominant tasting allele (T) and a
recessive nontasting allele (t). Using this model, the genotypes and phenotypes are

Genotype Phenotype

TT Taster
Tt Taster
tt Nontaster

There is no way to count the alleles in this case. If someone is a nontaster, we know
that person’s genotype is tt and that we would count two t alleles. However, if
someone is a taster, all we know is that this individual could have either genotype



40 HARDY–WEINBERG EQUILIBRIUM

TT or genotype Tt, and we therefore do not know whether to count one or two T
alleles.

We can solve this problem by assuming that this locus is at Hardy–Weinberg
equilibrium in the population we are studying. If we let p be the frequency of the
T allele and q be the frequency of the t allele, and then assume Hardy–Weinberg
equilibrium, we can write the phenotype frequencies as follows:

Frequency of tasters = frequency of TT + frequency of Tt = p2 + 2pq

Frequency of nontasters = frequency of tt = q2

Because the frequency of nontasters is q2, we can compute the frequency of q by
taking the square root of the frequency of nontasters. Once we have q, we can
compute p = 1 − q [from equation (2.2)].

Here is an example. Giles et al. (1968) collected data on PTC tasting for 1374
people in the town of Ticul, Yucatán, Mexico, finding 1257 tasters and 117 non-
tasters. The frequency of non-tasters is 117

1374 = 0.085. We take the square root of
this frequency to get the frequency of the t allele:

q =
√

q2 =
√

0.085 = 0.292

The frequency of the T allele is therefore

p = 1 − q = 1 − 0.292 = 0.708

We can compute allele frequencies when there is dominance and as long as we
assume Hardy–Weinberg equilibrium. Of course, if we make this assumption, we
cannot then test for equilibrium, and the observed and expected numbers will
always be the same! Methods that are more complex exist for situations where
there are more than two alleles and one of them is dominant.

V. EXTENSIONS OF HARDY–WEINBERG EQUILIBRIUM

There are several extensions of Hardy-Weinberg equilibrium. Three of these are
introduced briefly here.

A. Linkage Disequilibrium

So far, we have been dealing with a single locus. There are many useful methods
in population genetics that look at the association of two loci. Imagine that we
have two loci, each with two alleles, where the first locus has alleles A and a, and
the second locus has alleles B and b. To keep track of the allele frequencies, we
will use p and q with subscripts, where subscript 1 refers to the first locus and
subscript 2 refers to the second locus. The allele frequencies for these two loci are
thus labeled as follows:

p1 = frequency of allele A

q1 = frequency of allele a
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p2 = frequency of allele B

q2 = frequency of allele b

Different combinations (haplotypes) are possible. A given gamete (sex cell) could
have one of four combinations for the two loci: AB, Ab, aB, and ab. We use the
symbol X to represent the frequency of a given gamete, with subscripts to keep
track of which one is which: XAB, XAb, XaB, and Xab.

What is the probability of a random gamete being AB? Assuming that there is
a random association of the two loci, this is simply the probability of having the A
allele and having the B allele, which is obtained by multiplying the frequency of
the A allele by the frequency of the B allele, which is p1p2. Likewise, the expected
frequency of gamete Ab would be the probability of having the A allele and the b
allele, which is p1q2. Figure 2.2 shows all the expected frequencies for the two loci,
and also the expected haplotype frequencies under the assumption that there is a
random association between the alleles.

Figure 2.2 shows the equilibrium situation. Just as with Hardy–Weinberg
equilibrium for a single locus, nonrandom mating and the evolutionary forces
can lead to a deviation from the random expectation. When this occurs, the
loci are considered at a state of linkage disequilibrium (also known as gametic
disequilibrium). Some haplotypes occur more frequently than expected, and some
occur less frequently than expected. Linkage disequilibrium is measured by a
quantity known as D; the effects of linkage disequilibrium are shown in Figure 2.3,
where some haplotypes are increased by the quantity D and some are reduced.
Note that the equilibrium case is defined as D = 0. D can be estimated from any of
the boxes shown in Figure 2.3. For example, D = XAB − p1p2. Similar computation
can be made from any of the boxes in Figure 2.3 and they will all give the same
value of D. In actual research, there are various ways to test the null hypothesis of
D = 0.

Alleles for
locus 2

b

XAB = p1p2 XAb = p1q2

B b

A

XaB = p2q1 Xab = q1q2a

Alleles for
locus 1

FIGURE 2.2 Expected distribution of haplotype frequencies for two loci, each with two
alleles. X represents the haplotype frequencies under the assumption of a random association
of alleles. For example, XAb results when one gamete contains the A allele for the first locus
and the b allele from the second locus. For locus 1, p1 is the frequency of the A allele and q1

is the frequency of the a allele. For locus 2, p2 is the frequency of the B allele and q2 is the
frequency of the b allele.
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Alleles for
locus 2

XAB = p1p2 + D XAb = p1q2 – D

B b

A

XaB = p2q1 – D Xab = q1q2 + Da

Alleles for
locus 1

FIGURE 2.3 Expected distribution of haplotype frequencies for two loci, each with two
alleles. X represents the haplotype frequencies allowing for linkage disequilibrium, the
nonrandom association of alleles. D represents the amount of linkage disequilibrium. All other
symbols are as defined in Figure 2.1. Note that under equilibrium, D = 0 and the table reduces
to the form shown in Figure 2.2.

We saw earlier that if a population is not initially at Hardy–Weinberg equilib-
rium for a single locus, it will reach equilibrium within a single generation. This
is not the case for linkage disequilibrium. If the evolutionary force(s) that led to
linkage disequilibrium is (are) no longer in effect and there is random mating, then
recombination will eventually shuffle the haplotype frequencies and an equilib-
rium state (D = 0) will be reached. However, unlike the single-locus case, it will
take some time for this to happen. The amount of time is dependent on the rate
of recombination and the number of generations that have passed since the initial
state of linkage disequilibrium. The decay of linkage disequilibrium over time is
useful in a number of contexts to allow detection of evolutionary change.

B. More than Two Alleles

Although we have been using a simple model of a single locus with two alleles,
Hardy–Weinberg equilibrium can easily be extended to more than two alleles. For
example, imagine that we have three alleles (A, B, and C) with p as the frequency of
the A allele, q as the frequency of the B allele, and r as the frequency of the C allele.
Applying the rules of probability used earlier, we can figure out the expected
genotype frequencies under Hardy–Weinberg equilibrium as follows:

AA = p2

AB = 2pq

AC = 2pr

BB = q2

BC = 2qr

CC = r2

The same method can be used on any number of alleles at a single locus.
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C. X-Linked Genes

The examples used in this chapter all consider a bisexual species (two sexes).
To make the models easier to use, we have implicitly assumed that the allele
frequencies are the same in males and females. This assumption does not hold
true for all loci on the X chromosome of the sex chromosomes. Remember that
females have two X chromosomes whereas males have only one X chromosome
(the other one is the Y chromosome). Because the Y chromosome is smaller than
the X chromosome, this means that some sequences on the X chromosome have
no corresponding (homologous) sequence on the Y chromosome. As such, any
recessive genes on the X chromosome will be expressed in males with only one
copy of the X chromosome, whereas females will need two X chromosomes to
express the trait.

The Xg blood group system is used here to demonstrate the different patterns
of sex-linked inheritance. This locus is found on the X chromosome and has two
alleles, the dominant allele Xga, which codes for the Xg(a+) blood type, and the
recessive allele Xg, which codes for the Xg(a−) blood type (Sanger et al. 1971). In
females, who inherit two copies of the X chromosome, there are three genotypes
and two phenotypes:

Genotype Phenotype

XgaXga Xg(a+)
XgaXg Xg(a+)
XgXg Xg(a−)

This list is the typical correspondence of genotypes and phenotypes with one
dominant allele and one recessive allele. In males, however, the situation is
different because the male inherits only one copy, as there is no corresponding
gene on the Y chromosome. If the male inherits the Xga allele from his mother, he
will have Xg(a+) type blood, and if he inherits the Xg allele from his mother,
he will have Xg(a−) type blood. There are two genotypes and two phenotypes:

Genotype Phenotype

Xga Xg(a+)
Xg Xg(a−)

There are different Hardy–Weinberg equilibrium proportions for males and
females for an X-linked genetic marker. Given two alleles, A and a, with frequencies
p and q, respectively, the genotype frequencies for females are those expected under
Hardy–Weinberg equilibrium following the usual distribution: AA = p2, Aa =
2pq, aa = q2. For males, there are two genotypes, A and a, corresponding to the
allele that is on the X chromosome from the mother, as the Y chromosome from
the father does not contribute to the genotype. The Hardy–Weinberg equilibrium
frequencies are equal to the allele frequencies; the frequency of genotype A is p
and the frequency of genotype a is q. As an example, consider the allele frequencies
for the Xg blood group among northern Europeans: Xga = 0.659 and Xg = 0.341
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TABLE 2.2 Hardy–Weinberg Equilibrium Genotype and Phenotype Frequencies
for a Sex-Linked Genetic Marker, the Xg Blood Group Systema

Sex Genotype Frequency Phenotype Frequency

Females XgaXga p2 = 0.4343 Xg(a+) 0.8837
XgaXg 2pq = 0.4494 Xg(a+)
XgXg q2 = 0.1163 Xg(a−) 0.1163

Males Xga p = 0.6590 Xg(a+) 0.6590
Xg q = 0.3410 Xg(a−) 0.3410

a The data presented in this table are based on allele frequencies from northern Europe (Sanger et al.
1971) of Xga = 0.659 and Xg = 0.341.

(Sanger et al. 1971). The genotype frequencies under Hardy–Weinberg equilibrium
are presented in Table 2.2 for males and females. Note that the proportion of
individuals with Xg(a−) type blood is almost 3 times higher in males (0.341) than
in females (0.116). This sex difference is attributed to the fact that males need
only one copy of the Xg allele, whereas females need two, which is a much lower
probability: q2 rather than q.

VI. HARDY–WEINBERG EQUILIBRIUM AND EVOLUTION

Although this chapter has probably seemed rather abstract in many places,
and certainly more mathematical than anthropological, a consideration of
Hardy–Weinberg equilibrium is needed to get into the specifics of microevo-
lution. The rest of this book builds on the baseline model of Hardy–Weinberg
equilibrium.

A population might not be at Hardy–Weinberg equilibrium because of devia-
tions due to nonrandom mating (inbreeding, assortative mating) and/or action of
one or more of the evolutionary forces (mutation, natural selection, genetic drift,
gene flow). An importance difference is that nonrandom mating causes changes in
genotype frequencies but not allele frequencies, whereas the evolutionary forces
lead to changes in both genotype and allele frequencies. We start with a consider-
ation of the genotypic impact of inbreeding as a form of nonrandom mating in the
next chapter, and then move on to separate chapters on the different evolutionary
forces. These different factors will be discussed initially one at a time to get the
concept across, and then combined where appropriate.

Keep in mind that although this approach focuses on one factor at a time, in
reality all of these deviations from Hardy–Weinberg equilibrium can be operating
at the same time. As I often tell my students in my introductory class, the good
news is that there are only four evolutionary forces, making exam review easier.
However, the bad news as far as researchers are concerned is that these forces
(along with nonrandom mating) can interact in many, often very complex, ways.
It becomes a problem (or challenge, depending on how you look at it) to untangle
these effects, particularly when dealing with the culturally complex, highly mobile,
and rapidly changing human species.
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VII. SUMMARY

Genes and DNA sequences have different forms, known as alleles. When we
look at microevolution, we are interested in how the relative frequency of alle-
les can change over time. When the field of genetics was just beginning, some
researchers wondered why dominant alleles did not increase to completely replace
recessive alleles over time. This question led to a deeper understanding of the
mathematical application of Mendel’s ideas on a populational basis. In 1908,
mathematician Godfrey Hardy and physician Wilhelm Weinberg independently
derived a mathematical relationship between allele and genotype frequencies,
and further showed that, under certain conditions, the allele and genotype fre-
quencies would remain the same generation after generation. For a locus with
two alleles, A and a, with allele frequencies p and q, respectively, the genotype
frequencies in the next generation will be AA = p2, Aa = 2pq, and aa = q2. Under
certain conditions, the allele and genotype frequencies will remain the same
over time.

This principle, known as Hardy–Weinberg equilibrium, provides a baseline
for understanding evolutionary change. Because the equilibrium model makes
a number of assumptions, any actual change in genotype and allele frequen-
cies means that one or more of these assumptions are not met. By comparing
conditions in the real world to the theoretical assumptions of Hardy–Weinberg
equilibrium, we can develop insight into the evolutionary process. One assump-
tion of Hardy–Weinberg equilibrium is random mating. When this assumption
is not met, as will occur under inbreeding, the genotype frequencies are changed
although there is no change in allele frequency.

Consideration of the assumptions of Hardy–Weinberg equilibrium shows
that there are four forces of evolution, which lead to allele frequency change
(microevolution) over time: mutation, natural selection, genetic drift, and gene
flow. Mutation is a random change in the genetic code, resulting in the introduction
of new alleles into a population at low frequency. The other three evolutionary
forces act on mutations, causing the frequency to increase or decrease. Natural
selection occurs when individuals with different genotypes have different probabil-
ities of survival and/or reproduction. Individuals who are more likely to survive
and reproduce pass on their alleles to the next generation in greater numbers,
altering allele frequencies over time. Genetic drift is sampling variation, such that
allele frequencies will fluctuate randomly over time, sometimes increasing and
sometimes decreasing. The degree of expected genetic drift is dependent on pop-
ulation size; smaller populations show more drift. Gene flow is the movement of
alleles from one population to another accompanying migration of individuals.
Gene flow can introduce new alleles into a population, and acts to reduce genetic
differences between populations.

APPENDIX 2.1 PROOF SHOWING HOW ALLELE FREQUENCIES
CAN BE COMPUTED FROM GENOTYPE FREQUENCIES

Assume a locus with two alleles, A and a, and three genotypes: AA, Aa, and aa. Let
NAA, NAa, and Naa represent the numbers of individuals with genotypes AA, Aa,
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and aa, respectively. Let N be the total number of all genotypes:

N = NAA + NAa + Naa

The genotype frequencies are obtained by dividing the number of each genotype
by the total number of all genotypes, giving

fAA = NAA

N

fAa = NAa

N

faa = Naa

N
(A2.1)

Using the allele counting method, we find that the number of A alleles is equal to

2NAA + NAa

because we count the homozygote (AA) twice. We then divide this number by the
total number of alleles in the population, which is twice the number of people
because each person has two alleles. This gives

p = 2NAA + NAa

2N

We can express this quantity as the sum of two fractions as

p = 2NAA

2N
+ NAa

2N

which reduces to

p = NAA

N
+ NAa

2N

Using the formulas for genotype frequencies fAA and fAa from equation (A2.1)
gives

p = fAA + fAa

2

In similar manner, the frequency of the a allele is

q = NAa + 2Naa

2N

which gives

q = fAa

2
+ faa

The derivation for p and q above lead to equation (2.3) in the main (chapter) text.
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APPENDIX 2.2 USING THE CHI-SQUARE STATISTIC TO TEST FOR
HARDY–WEINBERG EQUILIBRIUM

As shown earlier in this chapter, we can compare observed genotype numbers
with the numbers expected under Hardy–Weinberg equilibrium. This allows us
to test the hypothesis that the population is at Hardy–Weinberg equilibrium (for
the specific locus). We use a chi-square test, a method that is used for comparing
observed and expected numbers in statistical research. The chi-square statistic,
denoted by the symbol χ2, is computed using the formula

χ2 = ∑ (O − E)2

E
(A2.2)

Here, O refers to the observed number for a given genotype and E refers to the
expected number for a given genotype. The difference between observed and
expected (O − E) is squared and divided by the expected number. The Greek letter
sigma (

∑
) is used in statistics as shorthand for summation; in this case, it means

performing the same operations on each genotype and then summing the results.
The computation of the chi-square statistic is presented below for one of

the examples presented in the text. The first three columns of the table show
the genotype, the observed number, and the expected number. The remaining
columns walk us through the computation of the chi-square statistic. As shown in
the main text, the allele frequencies p = 0.7 and q = 0.3 were computed from the
observed genotype numbers and used to compute the expected number (expected
under Hardy–Weinberg equilibrium):

Observed Expected
Genotype Number (O) Number (E) (O − E) (O − E)2 (O − E)2/E

AA 40 39.2 0.8 0.64 0.0163
Aa 32 33.6 −1.6 2.56 0.0762
aa 8 7.2 0.8 0.64 0.0889

The chi-square statistic is now computed using equation (A2.2), where the values
in the last column of the table are summed:

χ2 = 0.0163 + 0.0762 + 0.0889 = 0.1814

This value needs to be compared with a standard table of chi-square values
for a given probability value, which is the level of statistical significance that we
use for testing the hypothesis. A full discussion of this concept is beyond the scope
of this text, and you might want to consult a statistics text. We often tend to use a
level of 5% (0.05) to test hypotheses. The final thing we need to know is a statistic
known as the degrees of freedom, which represents the number of values that are
free to vary. For a chi-square test, the degree(s) of freedom, symbolized as df, is
computed as

df = n − k − 1 (A2.3)
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where n is the number of classes and k is the number of independent parameters.
We have three genotypes, so n = 3. The genotype frequencies are computed from
the allele frequencies, p and q, which are the parameters. However, if we know
either p or q, we can always compute the other one (because p + q = 1), so there
is only one independent parameter, and therefore k = 1. This means that for
the examples discussed in this chapter, equation (A2.3) gives df = 3 − 1 − 1 = 1.
A table of chi-square values, available in almost any statistics book or online,
shows that for a significance level of 0.05 and df = 1, the critical value of the
chi-square statistic is 3.841.

Now we can perform the hypothesis test. If the observed chi-square statistic is
less than the critical value, then we accept the null hypothesis that the population
is at Hardy–Weinberg equilibrium. On the other hand, if the observed chi-square
statistic is greater than or equal to the critical value, then we reject the hypothesis
of Hardy–Weinberg equilibrium. In the example above, the observed chi-square
value is 0.1814, which is less than the critical value of 3.841. Therefore, the slight
difference that we see between observed and expected genotype numbers is not
statistically significant and the population is at Hardy–Weinberg equilibrium.

Let us consider the second example used in this chapter. As shown in the main
text, the allele frequencies p = 0.8 and q = 0.2 were computed from the observed
genotype numbers and used to compute the expected number (expected under
Hardy–Weinberg equilibrium):

Observed Expected
Genotype Number (O) Number (E) (O − E) (O − E)2 (O − E)2/E

AA 90 83.2 6.8 46.24 0.5558
Aa 28 41.6 −13.6 184.96 4.4462
aa 12 5.2 6.8 46.24 8.8923

After performing the calculations in this table, we get a chi-square (χ2) statistic of

χ2 = 0.5558 + 4.4462 + 8.8923 = 13.8943

This value is much larger than the critical value of 3.841, so we reject the hypothesis
of Hardy–Weinberg equilibrium.

The chi-square test is most appropriate for large samples. For small samples,
other methods are often used to test for Hardy–Weinberg equilibrium (Mielke
et al. 2011).
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INBREEDING

Paradoxes can be fun and/or frustrating, but are also useful in illustrating
the illogical outcomes that sometimes follow invalid assumptions. Consider the
following paradox that arises from considering the process of genetic inheritance
extended into the past. As noted in Chapter 1, you have two ancestors one
generation in the past—your biological parents. Because each parent also has two
parents, this means that you have four grandparents. Extending this back means
that you had eight great-grandparents, 16 great-great grandparents, and so on.
In mathematical terms, we can express the number of ancestors as 2n (2 raised to
the nth power), where n is the number of generations in the past. The number
of ancestors thus increases exponentially into the past. After 5 generations, you
have 25 = 32 ancestors, and after 10 generations you have 210 = 1024 ancestors.
The number of ancestors increases rapidly thereafter; at 30 generations you have
over one billion ancestors (1,073,741,824), and at 40 generations you have over one
trillion ancestors (240 = 1, 099, 511, 627, 776)! This is not that long ago in the past;
given an average of 25 years per generation, 40 generations is only 1000 years ago.

This last number is preposterously large and illustrates the paradox—there
were not that many people living in the world 1000 years ago. Indeed, there were
only 6.9 billion people in the world as of mid-2010 (Population Reference Bureau
2010). Clearly, something is wrong with our simple model of each person having
two parents. The paradox is resolved by noting that the simple exponential model
(2n) assumes that each ancestor is unique. In reality, some ancestors are not unique,
but are shared by more than one line of descent, which is indicative of inbreeding.

Comparison of Figures 3.1 and 3.2 provides a simple illustration of inbreeding.
Figure 3.1 shows the genealogy of a hypothetical individual (Amy) going back
three generations (a genealogy is also known as a pedigree). In this example, Amy
has two parents, four grandparents, and eight great grandparents as expected from
the exponential model 2n. Each ancestor is unique. Figure 3.2 presents a different
genealogy of a hypothetical individual (Alice) for three generations, where there
are four unique grandparents but only seven unique great grandparents. In this
second case, one woman (Doris) has children with two different men (Davis
and Desmond). This means that Alice’s parents in Figure 3.2 (Boris and Barbara)
are related (they are half first cousins), and that Alice is inbred. Specifically,
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Amy’s great
grandparents

David Darla Daniel Diane Dawn Dean Denise Douglas

Amy’s
grandparents ChloeCynthiaClifford Charles

Amy’s
parents BettyBarney

Amy

FIGURE 3.1 Genealogy of a reference person (Amy) going back three generations. Squares
represent males; circles, females. Horizontal lines indicate matings, and vertical lines indicate
descent from these matings. Note that the number of Amy’s ancestors doubles with each
generation into the past.

Darrin Debbie Davis Doris Desmond Dana Dexter

Alice’s great
grandparents

Alice’s
grandparents ChristineCeliaCedric Connor

BarbaraBoris
Alice’s
parents

Alice

FIGURE 3.2 Genealogy of an inbred reference person (Alice) going back three generations.
Squares indicate males; circles, females. Horizontal lines indicate matings, and vertical lines
indicate descent from these matings. Note that in this example, Alice has only seven great
grandparents (compared with eight in Figure 3.1). Alice’s father’s mother’s mother is the
same as her mother’s father’s mother (Doris). This makes Alice’s parents (Boris and Barbara)
half first cousins, because they share one grandparent (Doris).
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Alice’s father’s mother’s mother and her mother’s father’s mother are the same
person (Doris). Ultimately, everyone is inbred to some extent, because of the
mathematical impossibility of having two unique ancestors for every person as
you trace a genealogy into the past. Instead, lines of descent combine multiple
times in the past.

As noted in the previous chapter, Hardy–Weinberg equilibrium assumes that
all mating is random and that two mates are completely unrelated; in other words,
no inbreeding. We can see that this will never be strictly true, as we are all related
and inbred to some extent. However, the genetic impact of inbreeding depends on
the closeness of the relationship of the parents. If two parents are seventh cousins,
then the degree of relationship is so small that for all practical purposes they are
unrelated. More significant deviations from the assumption of random mating are
associated with close degrees of relationship, such as mating between siblings,
uncles and nieces (or aunts and nephews), or first cousins.

In addition, as noted earlier, inbreeding does not directly change the frequency
of an allele, and is therefore not an evolutionary force. Instead, inbreeding changes
the genotype proportions from those expected under Hardy–Weinberg equilib-
rium, such that the frequency of homozygotes is increased, and the frequency of
heterozygotes is decreased. Although inbreeding by itself does not change allele
frequencies, it can interact with one of the evolutionary forces to change the rate of
allele frequency change. As an example (to be covered in more detail in Chapter
6), imagine a case where there is selection against a recessive homozygote. Under
inbreeding, there will be a greater number of these homozygotes with each gen-
eration such that a greater proportion of the population will be selected against,
and the speed of selection will therefore be greater than under Hardy–Weinberg
equilibrium. Again, the exact impact of inbreeding relative to random mating will
depend on the level of inbreeding.

This chapter begins with the concept of the inbreeding coefficient (a measure of
the level of inbreeding) and how inbreeding is determined from genealogical data.
This introduction is followed by an explanation of how inbreeding affects genotype
frequencies but not allele frequencies. This chapter concludes with discussion of
variation in rates of inbreeding in human populations as well as several case studies
of measurement and analysis of inbreeding in human populations. Inbreeding is
of particular interest in studies of human population genetics because different
cultures may have different rules and preferences for and against different levels
of inbreeding. The study of inbreeding in human populations thus provides an
opportunity to examine how human culture affects genetic variation.

I. QUANTIFYING INBREEDING

As noted earlier, inbreeding is the result of mating between relatives. However, as
was just discussed, it is clear that we are all inbred to some extent or another because
everyone’s ancestry becomes commingled with everyone else’s. Genetically, most
of our concern is with relatively close levels of inbreeding, which translates
practically into a concern with common ancestry within a handful of generations.
Questions about inbreeding are questions about common ancestry, and are best
explained by examining the genealogical relationship between individuals.
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A. Genealogies and Inbreeding

Genealogical diagrams provide the best way to understand common ancestry and
inbreeding. There are several different ways of drawing genealogies, with different
symbols used to designate males and females, and different arrangements of lines
to illustrate lines of descent. How would you draw your family tree back three
generations? One way of doing this has already been shown in Figures 3.1 and 3.2,
with horizontal lines indicating matings and vertical lines to indicate descent.
Another method is shown in Figure 3.3, depicting the same relationships as in
Figure 3.2 but eliminating the horizontal lines and using diagonal lines to indicate
descent. This method is used throughout this text because it is easier to see descent
and genetic relationships when discussing inbreeding.

Because our focus here is on genetic relationships, all of the hypothetical
genealogies used here refer to mating (a biological act) and not marriage (a culturally
defined relationship). Although anthropologists and geneticists will sometimes
use marriage records to reconstruct genealogies, we have to keep in mind the
possibility that some births result from extramarital relationships. Likewise, a
genealogy based on cultural definitions of family and kinship could include
relationships that were established through adoption or remarriage (stepparents),
which would not indicate an actual genetic relationship. Unless otherwise noted,
all discussions of inbreeding here refer to one’s biological relatives.

Figures 3.2 and 3.3 both show an inbred person whose parents are half first
cousins. The nature of inbreeding is very clear from Figure 3.3. In any genealogy,
a person is inbred if you can draw a line back through to a common ancestor and

Darrin Debbie Davis Doris Desmond Dana Dexter
Alice’s great
grandparents

ChristineCeliaCedric ConnorAlice’s
grandparents

BarbaraBorisAlice’s
parents

Alice

FIGURE 3.3 Genealogy of an inbred reference person (Alice) going back three generations.
Squares represent males; circles, females. This diagram shows the same inbreeding relationship
as in Figure 3.2, but diagonal lines are used to indicate descent from pairs of parents. Although
the system used in Figures 3.1. and 3.2 is often preferred in genealogical illustration, the
system of diagonal lines is used throughout the text, as it is easier to convey descent and
genetic inheritance.
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Doris

ConnorCelia

BarbaraBoris

Alice

FIGURE 3.4 Genealogy of an inbred person (Alice) showing only the lines of descent
that contribute to inbreeding (all other individuals are not shown). This figure is the same
as Figure 3.3 after eliminating all ancestors who are not involved in the inbreeding. As
shown here, the nature of inbreeding as a ‘‘loop’’ of ancestry is clear. The complete loop is
Alice–Boris–Celia–Doris–Connor–Barbara–Alice.

then back to the original person through a different line. In other words, a person
is inbred if you can draw a loop back through one or more common ancestors. This
loop is even clearer in Figure 3.4, which takes Figure 3.3 and eliminates those ances-
tors who are not part of the inbreeding loop. Figure 3.4 shows the loop as starting
with Alice and then going backward three generations to the common ancestor
(Doris). The complete loop is Alice–Boris–Celia–Doris–Connor–Barbara–Alice.

B. Types of Inbreeding

We can use this simplified form of genealogy, showing only ancestors in the chain
of inbreeding, to illustrate different types of inbreeding. Extremely close forms of
inbreeding occur with the offspring of parent–child mating, sib mating, and half-
sib mating, all of which are shown in Figure 3.5. Different types of cousin marriage
are shown in Figure 3.6. Cousins are referred to by number—first, second, third,
and so on—which refers to the depth of the relationship. First cousins share one
or more grandparents; the diagram in Figure 3.6 shows full first cousins, who share
two grandparents. Second cousins share great grandparents, and third cousins
share great-great grandparents.

There are also variations on the different types of cousin marriages. As shown
in Figure 3.7, ‘‘first cousins once removed’’ describes the relationship between
a person and the child of their first cousin. The ‘‘removed’’ term refers to the
number of generations apart the two cousins are separated; ‘‘once removed’’ is
one generation apart, ‘‘twice removed’’ refers to two generations apart, and so on.
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Parent-child
mating

Full sib mating Half sib mating

Uncle-niece
mating

Aunt-nephew
mating

FIGURE 3.5 Diagrams of five types of close inbreeding. As in previous figures, only ancestors
that are part of the loop through common ancestors are shown.

First cousin mating  Second cousin mating Third cousin mating

FIGURE 3.6 Diagrams of cousin mating. As in previous figures, only ancestors that are part
of the loop through common ancestors are shown. First cousins share a set of grandparents,
second cousins share a set of great grandparents, and third cousins share a set of great
grandparents.

It might be useful to think about your own family to understand the relationship
between various cousins. If you have a first cousin, think of that person and the
set of grandparents that you have in common with that cousin. If your cousin has
a child, that child is your first cousin once removed. If you also have a child, your
child and your first cousin’s child are second cousins. Likewise, if your second
cousin has a child, that child is your second cousin once removed. If that child
then has a child, your second cousin’s grandchild will be your second cousin twice
removed. Yes, it can get very complicated quickly!
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First cousins once
removed mating

Double first cousin matingHalf first cousin mating

FIGURE 3.7 Diagrams of variations of first cousin mating. As in previous figures, only
ancestors that are part of the loop through common ancestors are shown. Mating between
first cousins once removed is between a person and the child of their first cousin, thus
involving a mating between generations. First cousins share two grandparents, as shown in
Figure 3.6. In half first cousin mating, only one grandparent is shared. In double first cousin
mating, all four grandparents are shared. Note that half first cousin mating was already shown,
albeit in somewhat different form, in Figures 3.3 and 3.4.

Figure 3.7 shows two other variations on first cousin mating. Whereas first
cousins as shown in Figure 3.6 share two grandparents, half first cousins share only
one grandparent (as was shown earlier in Figures 3.2 and 3.3). The last example in
Figure 3.7 shows the mating between double first cousins. Two people are double
first cousins if they share all of their grandparents. As shown here, picture two
couples, each having a male child and a female child, and then having the brother
and sister in one family mating with the brother and sister in the other family,
producing double first cousins.

All of the matings shown in Figures 3.5–3.7 produce a child that is inbred,
because all of these diagrams show a loop back through one or more common
ancestors. Note that while it only takes one common ancestor to define a case of
inbreeding, some types of mating involve more than one common ancestor, and
thus we can draw more than one loop. For example, in Figure 3.6, full first cousin
mating involves two common ancestors, and we could draw two loops, one for
each grandparent. Half first cousin mating involves only one common ancestor,
and we can draw only one loop. Double first cousin mating has four common
ancestors (all of the grandparents), and we can therefore draw four loops (see
Figure 3.7).

C. The Inbreeding Coefficient

We will now use the concept of inbreeding as a genealogical loop through one or
more common ancestors to provide a quantitative measure of inbreeding known
as the inbreeding coefficient. As noted in Chapter 1, homozygosity refers to the case
where an individual has inherited the same allele from both parents. In the simple
example of a locus with two alleles, A and a, the homozygous genotypes are AA
and aa. Homozygosity is defined as the two alleles being identical, but there are
actually two reasons why this identity can occur—identity by descent and identity
by state. Identity by descent is when the two alleles are the same because they
were both inherited from a common ancestor. Identity by state occurs when the
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identical alleles do not come from a common ancestor. The inbreeding coefficient
(typically denoted by the symbol F) is the probability that an inbred individual
has two alleles at a given locus that are identical because of inheritance from a
common ancestor. F is thus the probability of identity by descent.

How to Compute the Inbreeding Coefficient
Figure 3.8 shows how this probability can be computed from the genealogy of an
inbred individual. In this case, we are using the case of a person whose parents

Doris

2
1

2
1

2
1

2
1

2
1

2
1

ConnorCelia

BarbaraBoris

Alice

FIGURE 3.8 Genealogy of an inbred person (Alice) showing only the lines of descent that
contribute to inbreeding (all other individuals are not shown). This is the same genealogy
as in Figure 3.4. The curved arrows indicate the path of genetic descent with the associated
probability of 1

2 from parent to child. These probabilities allow us to compute the probability
of Alice having a homozygous genotype (AA or aa) because of identity by descent. Imagine
that the common ancestor (Doris) has the genotype Aa. The probability of her passing on the
A allele to her daughter Celia is 1

2 . The probability of Celia passing that A allele on to Boris
is also 1

2 , as is the probability of Boris passing it on to Alice. Thus, the probability of the A
allele being passed on from Doris to Celia to Boris to Alice is computed using the AND rule as
1
2 × 1

2 × 1
2 = 1

8 . Now, for Alice to receive an A allele from the other line of descent from the
common ancestor Doris, the probability of the allele being passed from Doris to Connor AND
from Connor to Barbara AND from Barbara to Alice is also 1

2 × 1
2 × 1

2 = 1
8 . In order for Alice

to receive an A allele from both lines of descent from Doris is the probability of both events
occurring, which is 1

8 × 1
8 = 1

64 . We also have to consider the probability of Alice having the
other homozygous genotype (aa) because of identity by descent, which would occur when
Alice receives the a allele from both lines of descent from Doris. This probability would also be
1

64 . Because the probability of Alice having the AA genotype because of identity by descent
is 1

64 , and the probability that Alice will have the aa genotype because of identity by descent
is also 1

64 , the probability of her having either the AA or the aa homozygous genotype is
solved using the OR rule as 1

64 + 1
64 = 2

64 = 1
32 . Thus, F = 1

32 = 0.03125.
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were half first cousins as was shown previously in Figures 3.3 and 3.4. The curved
lines indicate the transmission of alleles from parent to child across the generations;
in each case, the probability of a parent passing on a given allele to a child is 1

2 .
As described in the legend to Figure 3.8, the probability of Alice getting the A
allele from both lines of descent from the common ancestor Doris is 1

64 , and the
probability of obtaining the a allele from both lines of descent is also 1

64 . For Alice
to have either homozygous genotype (AA or aa) is computed using the or rule,
giving F = 1

64 + 1
64 = 2

64 = 1
32 = 0.03125.

An easier shortcut can be used here:

F = ( 1
2 )i

where i is the number of individuals that lie in the loop up through the common
ancestor and then down again, not counting the inbred person. Referring to
Figure 3.8, we can identify the ancestors that lie on the loop from Alice to Doris
and back (not counting Alice) as Boris–Celia–Doris–Connor–Barbara. There are
five people in this loop, so i = 5 and F = ( 1

2 )5 = 1
32 = 0.03125. Thus, the probability

of Alice having a homozygous genotype (AA or aa) because of identity by descent
is 0.03125.

Computation of F gets a little bit more complicated when there is more than
one common ancestor, because we need to add up the probabilities over all possible
paths of descent. Consider the case of first cousin mating shown in Figure 3.9.
There are two common ancestors, numbered 6 and 7. We therefore need to consider
two inbreeding loops. One loop is through ancestor number 6: 1–2–4–6–5–3–1.
The other loop goes through common ancestor number 7: 1–2–4–7–5–3. We now
compute the inbreeding coefficient for each loop, and then add them together. The
method of dealing with more than one common ancestor can be summarized with
the following formula:

F = ∑( 1
2

)i
(3.1)

The symbol
∑

is the uppercase Greek letter sigma, which is used in mathematics
to sum whatever terms are to the right of the symbol. In this case, the summation
is over the number of common ancestors. In Figure 3.9, there are two common
ancestors—individuals 6 and 7. For ancestor 6, we have

( 1
2

)i = ( 1
2

)5
, because there

are five ancestors in the loop through this ancestor. For ancestor 7, the value
( 1

2

)i

is also
( 1

2

)5
because there are five ancestors in the loop through ancestor 7. Using

equation (3.1), the total inbreeding coefficient is therefore the sum of these, giving
1
32 + 1

32 = 1
16 = 0.0625.

Inbreeding Coefficients for Different Levels of Relationship
Table 3.1 presents inbreeding coefficients for various types of relationship ranging
from parent–child through third cousin matings; most of the matings in Table 3.1
are shown in Figures 3.5–3.7. To make sure that you understand how to compute
the inbreeding coefficient, you should try using equation (3.1) on the different
genealogies in Figures 3.5–3.7 to see if you get the same values.
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The genealogy of a first cousin mating
shown above is made up of loops through
two common ancestors—individuals 6
and 7, as shown on the right.

1

FIGURE 3.9 Computing the inbreeding coefficient of first cousin mating. The genealogy
on the left side represents the mating of first cousins (individuals 2 and 3). There are two
common ancestors, labeled here as individuals 6 and 7. In order to compute the inbreeding
coefficient for individual 1, we need to count the number of ancestors in each loop shown
on the right side of the figure. For common ancestor 6, the number of ancestors in the
loop (not counting individual 1) is i = 5. For common ancestor 7, the number of ancestors
is also i = 5. Using equation (3.1), the inbreeding coefficient for a first cousin mating is
F = ∑

( 1
2 )i = ( 1

2 )5 + ( 1
5 )5 = 1

32 + 1
32 = 2

32 = 1
16 = 0.0625.

Keep in mind that inbreeding can also be cumulative when a person’s parents
are related in more than one way. Figure 3.10 presents a genealogy where person 1
is inbred because her parents (individuals 2 and 3) are simultaneously first cousins
and second cousins. Listing all possible loops of common ancestry and using
equation (3.1), we compute the inbreeding coefficient of person 1 as F = 0.078125.

Dealing with an Inbred Common Ancestor
All of the examples given thus far have assumed that the common ancestors are
themselves not inbred. In reality, one or more common ancestors may be inbred,
which will act to increase the inbreeding coefficient of descendants. Figure 3.11
shows an example of a person (individual 1) whose parents are first cousins.
However, unlike previous examples of first cousin mating, this example shows
that one of the common ancestors (person 6) was also a child of a first cousin
mating. The computation of the inbreeding coefficient can be extended to handle
cases like this by using the formula

F = ∑( 1
2

)i
(1 + FA) (3.2)
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TABLE 3.1 Inbreeding Coefficients for Different Types of Mating

Mating Inbreeding Coefficient) (F)

Parent–child
1
4

= 0.25

Full sibs
1
4

= 0.25

Half sibs
1
8

= 0.125

Uncle–niece/aunt–nephew
1
8

= 0.125

Double first cousins
1
8

= 0.125

First cousins
1
16

= 0.0625

Half first cousins
1
32

= 0.03125

First cousins once removed
1
32

= 0.03125

Second cousins
1

64
= 0.015625

Second cousins once removed
1

128
= 0.0078125

Third cousins
1

256
= 0.00390625

where FA is the inbreeding coefficient of the common ancestor in any given path,
and these results are summed over all possible paths. An example of computation
is presented in the legend for Figure 3.11. When common ancestors are themselves
inbred, the inbreeding coefficient increases. When computing the inbreeding
coefficient from genealogical data, we often quickly run into a point back in time
beyond which we have no further information, and necessarily have to assume
that the common ancestors were not inbred. This means that we are likely to
underestimate the true value of F because of incomplete genealogies.

The cumulative effect of continued inbreeding over many generations can
sometimes be quite substantial. An example of this comes from Alvarez et al.’s
(2009) study of inbreeding in the Spanish Hapsburg (also known as Habsburg)
dynasty from 1516 to 1700. In order to maintain control of their line, many
marriages between close relatives occurred in this dynasty, including uncle–niece
and cousin marriages. In addition, their analysis showed a considerable amount of
accumulated inbreeding due to common ancestors being inbred. The inbreeding
coefficient of six Hapsburg kings ranged from 0.025 to 0.254 with an average value
of 0.129, an extremely high value for human populations! Close analysis of the
pedigrees shows that inbreeding levels in these kings increased greatly by the
impact of multiple remote ancestors.
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FIGURE 3.10 Example of a genealogy where the parents of an inbred person (individual
1) are both first and second cousins. As in previous figures, only ancestors directly in one or
more loops of inbreeding are shown. The parents (individuals 2 and 3) are simultaneously first
cousins (through ancestors 8 and 9) and second cousins (through ancestors 12 and 13). In
order to compute the inbreeding coefficient, we need to tally the number of ancestors (i) in
each possible loop through a common ancestor. The loops and number of ancestors in each
loop are as follows:

1 − 2 − 4 − 8 − 5 − 3 − 1(i = 5)

1 − 2 − 4 − 9 − 5 − 3 − 1(i = 5)

1 − 2 − 6 − 10 − 12 − 11 − 7 − 3 − 1(i = 7)

1 − 2 − 6 − 10 − 13 − 11 − 7 − 3 − 1(i = 7)

Using equation (3.1), we can now sum up the quantity ( 1
2 )i over all loops, giving

F = ( 1
2 )5 + ( 1

2 )5 + ( 1
2 )7 + ( 1

2 )7 = 0.078125.

Estimating Inbreeding from Marital Data
The examples given above all compute the inbreeding coefficient by looking at the
common ancestry of a child. In many studies of human populations, inbreeding
is computed using marital data, where we look at the genealogical relationship
of bride and groom and then compute what the inbreeding coefficient of their
children would be. In addition to the assumption that there are no extramarital
relationships, we also need to assume that the number of offspring is not related
to the level of inbreeding when we pool inbreeding coefficients for the entire
population.

D. Mean Inbreeding

The discussion of inbreeding so far has concentrated on individuals within a
population. Not all matings will be the same. Some matings in any human
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FIGURE 3.11 Example of a genealogy where one of the common ancestors is inbred. Person
1 is inbred because her parents (persons 2 and 3) are first cousins. The common ancestors
in this case are persons 6 and 7, who are the grandparents in common for persons 2 and 3.
Normally, we would use equation (3.1) to compute an inbreeding coefficient of F = 0.0625.
However, in this case we see that one of the common ancestors (person 6) is inbred,
specifically the product of a first cousin mating between persons 8 and 9. In cases where

we have one or more inbred common ancestors, we use equation (3.2), F = ∑( 1
2

)i
(1 + FA ),

where FA is the inbreeding coefficient of a common ancestor. For person 1, we have two paths,
each of length i = 5, tracing back to common ancestors 6 and 7. The inbreeding coefficient
of these common ancestors is FA = 0.0625 for person 6 (who is the child of a first cousin
mating) and FA = 0 for person 7 (whose parents, not shown, are unrelated). We now solve
for equation (3.2) as F = ∑

( 1
2 )i (1 + FA ) = [( 1

2 )5(1 + 0.0625)] + [( 1
2 )5(1 + 0)] = 0.064453125.

population will be between cousins or closer relatives, but the majority will be
between unrelated mates. The frequency of different types of matings varies across
human societies, and is influenced by cultural rules and preferences, as well as
demographic factors affecting the number of available mates. Some aspects of
these factors will be discussed later in this chapter.

From the perspective of population genetics, we need to look at the total
amount of inbreeding in a population, characterized by the mean (average)
inbreeding coefficient of the population. Consider the following example of a
study of inbreeding in the village of Shiiba in Japan. Schull (1972) presents data on
1246 couples; of these, 189 were first cousins, 47 were first cousins once removed,
64 were second cousins, and 946 were unrelated. To calculate the mean (average)
inbreeding level in this population, we simply multiply the number of marriages in
each category by the respective inbreeding coefficient, sum the results, and divide
by the total number of marriages. In mathematical terms, the mean inbreeding
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TABLE 3.2 Computation of the Mean Inbreeding Coefficient for the
Village of Shiiba, Japana

Type of Number of Inbreeding Product
Marriage Marriages (n) Coefficient (F) (=nF)

First cousin 189 0.0625 11.8125
First cousin once removed 47 0.03125 1.46875
Second cousin 64 0.015625 1.0
Unrelated 946 0.0 0.0

a In order to compute the mean inbreeding coefficient, we first multiply the number of marriages
in each category by the respective inbreeding coefficient for that type of relationship. For
example, there were n = 189 first cousin marriages. The inbreeding coefficient for children
born to a first cousin marriage is F = 0.0625. The product (nF) is 189(0.0625) = 11.8125. We
repeat this procedure for each type of marriage, and then sum the results:

∑
nF = 11.8125 +

1.46875 + 1.0 + 0.0 = 14.28125. We then divide this sum by the total number of marriages
(
∑

n = 189 + 47 + 64 + 946 = 1246) to get the mean inbreeding coefficient using equation (3.3):

(
∑

nF/
∑

n) = 14.28125
1246 = 0.0115.

Source: Data from Schull (1972).

coefficient of a population is
∑

nF
∑

n
(3.3)

This example is worked out in detail in Table 3.2. In this case, the mean inbreeding
coefficient is F = 0.0115, which is close to the value we would obtain if every
marriage were between second cousins (0.0156). The mean inbreeding coefficient
is what we need to consider when dealing with the genetic impact of inbreeding
on the population.

II. POPULATION GENETICS AND INBREEDING

Inbreeding increases the relative frequency of homozygotes and decreases the
relative frequency of heterozygotes compared with the frequencies expected
under Hardy–Weinberg equilibrium. By itself, however, inbreeding does not
change allele frequencies.

A. The Impact of Inbreeding on Genotype Frequencies

To show the genetic impact of inbreeding, we start with the standard model of a
locus with two alleles, A and a. The frequency of homozygotes (AA, aa) will be due
in part to identity by state and in part to identity by descent. It is convenient in this
context to think about the inbreeding coefficient F as representing the proportion
of the population that is inbred. This means that the proportion of the population
that is not inbred is 1 − F. The frequency of genotype AA for the noninbred part
of the population is what we expect under Hardy–Weinberg equilibrium, which
is p2. In order to determine the frequency of the AA homozygote that reflects



POPULATION GENETICS AND INBREEDING 63

identity by state (where the two A alleles do not come from a common ancestor),
we are asking about the probability of having the AA genotype in someone in
the noninbred part of the population. The probability of having the genotype AA
under random mating is p2. The probability of not being inbred is 1 − F. To get the
probability of having AA and not being inbred is the product of these probabilities,
which is p2(1 − F). This gives us the probability of identity by state.

In order to calculate the total frequency of AA genotypes, we also need to
know the frequency expected because of identity by descent. Under inbreeding,
which by definition means inheriting two copies of the same allele from a common
ancestor, the only genotypes possible are AA and aa. The probability of having
the AA genotype is simply the probability of having the A allele, because an
inbred person having a given allele by definition has two copies of that allele.
Thus, the frequency of genotype AA for those that are inbred is p (and, by
extension, the frequency of genotype aa for those that are inbred is q). If we want
to know the frequency of the genotype AA in the population because of identity
by descent, we need to multiply the probability of having genotype AA under
inbreeding (which is p) by the probability of being inbred (which is F), which
gives us pF.

We now can figure out the total frequency of the AA genotype by adding the
frequency expected under identity by state [p2(1 − F)] and the frequency expected
under identity by descent (pF), which gives p2(1 − F) + pF. This equation can be
simplified. First, we multiply out all terms to get p2 − p2F + pF, which, by factoring
pF from the last two terms, gives us p2 + pF(1 − p), and, as we saw in Chapter
2, (1 − p) = q, this means that the expected frequency of genotype AA under
inbreeding reduces to p2 + pqF.

The expected frequency of genotype aa could be derived in similar fashion,
which gives q2 + pqF. The expected frequency of the heterozygote is easier, because
it does not occur under inbreeding, and therefore is simply the probability of not
being inbred (1 − F) times the probability of being heterozygous (2pq), which
equals 2pq(1 − F).

Putting all of this together gives us the expected genotype frequencies under
inbreeding:

Expected frequency of genotype AA = p2 + pqF

Expected frequency of genotype Aa = 2pq(1 − F)

Expected frequency of genotype aa = q2 + pqF (3.4)

The different components (noninbred and inbred) of these values are summarized
in Table 3.3. There are two things to note from equation (3.4): (1) the sum of
all genotype frequencies still adds up to 1.0 (try it); and (2) when there is no
inbreeding (F = 0), then equation (3.4) reduces to Hardy–Weinberg equilibrium.

As an illustration of the effect that inbreeding has on genotype frequencies,
consider the example of a locus with two alleles, A and a, with allele frequencies
of p = 0.8 and q = 0.2, and a mean inbreeding of F = 0.0625 (i.e., a population
made up entirely of the offspring of first cousin matings). We use equation
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TABLE 3.3 Summary of Genotype Frequencies Expected under Inbreeding

Homozygotes

Identity by Identity by
Genotype State Descent Heterozygotes Total

AA (1 − F)p2 pF — (1 − F)p2 + pF = p2 + pqF
Aa — — 2pq(1 − F) 2pq(1 − F)
aa (1 − F)q2 qF — (1 − F)p2 + pF = p2 + pqF

(3.4) to compute these frequencies and compare them to those expected under
Hardy–Weinberg equilibrium:

Hardy–Weinberg
Genotype F = 0.0625 (F = 0)

AA 0.65 0.64
Aa 0.30 0.32
aa 0.05 0.04

At this level of inbreeding, the changes in the genotype frequencies are relatively
minor but do show the increase in frequency of homozygotes and the decrease in
frequency of heterozygotes relative to Hardy–Weinberg equilibrium.

B. Why Inbreeding Does Not Change Allele Frequencies

Inbreeding is not considered an evolutionary force because it does not directly
cause a change in allele frequencies. This is easy to see if we use equation (2.3)
to compute the allele frequency in the next generation (p′) from the genotype
frequencies expected under inbreeding [which we get from equation (3.4)], giving

p′ = fAA + fAa

2

= (p2 + pqF) + 2pq(1 − F)
2

which reduces to

p′ = (p2 + pqF) + pq(1 − F)

= p2 + pqF + pq − pqF

= p2 + pq

= p(p + q)

Finally, because (p + q) = 1, we get p′ = p; that is, the allele frequency does not
change. By itself, inbreeding does not cause evolution.
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C. The Medical Impact of Inbreeding

Inbreeding becomes significant in evolution because it can affect the rate of natural
selection. Consider that many genetic diseases stem from harmful recessive alleles.
In order to manifest such conditions, a person needs to be homozygous for the
recessive allele, which means inheritance of the recessive allele from both parents.
Because inbreeding increases the probability of homozygosity, populations with
higher levels of inbreeding will have a greater proportion of homozygotes to be
affected by natural selection. Examples of the interaction of inbreeding and natural
selection will be given in a later chapter. For now, we will focus on a short review
of the medical impact of inbreeding.

If a recessive allele is rare (of low frequency), then the expected frequency
of recessive homozygotes under Hardy–Weinberg equilibrium is very rare (q2).
Under inbreeding, this proportion can increase quite a bit, such that rare genetic dis-
orders become more prevalent. For example, if a recessive allele exists at frequency
q = 0.01, then the frequency of recessive homozygotes under Hardy–Weinberg
equilibrium is q2 = 0.0001. Under first cousin mating (F = 0.0625), from equation
(3.4) we obtain the quantity q2 + Fpq = 0.00072, which is over seven times as many
recessive homozygotes.

Numerous studies have found an association between consanguineous mar-
riages (marriage between kin) and a variety of health conditions, including
congenital defects and mental retardation (Bittles 2001), as well as links with some
complex diseases (Bittles and Black 2010). On the other hand, there is less evidence
for an effect of inbreeding on fetal loss (Bittles 2001). Overall, there is a clear link
between inbreeding and prereproductive mortality (dying before adulthood). In
a comparative analysis of inbreeding and prereproductive mortality in 69 human
populations in four continents, Bittles and Black (2010) found an average of 3.5%
excess mortality among children born to first cousins relative to unrelated couples.
Because of the complex interplay between cultural, demographic, and genetic
factors that affect health, more work needs to be done to understand better the
role of inbreeding on human fertility, mortality, and morbidity.

III. INBREEDING IN HUMAN POPULATIONS

In addition to the more general questions about the genetic impact of inbreeding,
anthropologists are interested how inbreeding affects genetic diversity in human
populations as well as the effect of culture on levels of inbreeding. The remainder
of this chapter examines variation in inbreeding in human populations, including
several case studies that illustrate different ways of assessing inbreeding in human
societies, including one method that is unique to human genetics.

A. Rates of Inbreeding in Human Populations

Total inbreeding levels in humans tend to range from close to zero to values of
roughly 0.05 (Reid 1973; Bittles 2001). Although low relative to some other species,
there is considerable variation both within and among human populations in
terms of the frequency of consanguineous marriage and inbreeding. This is not
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surprising, given the role of culture and demography on shaping human mate
choice. Some cultures have restrictions on consanguinity, whereas others have
preferences for certain types of consanguineous marriage. Demographically, small
populations (typical of much of human evolution) pose a problem in that one
can quickly run out of potential mates within a local population that are not
closely related.

Of course, variation in the rate of consanguineous matings depends on the
level of relatedness. It is important here to differentiate between inbreeding as a
general term and the more restricted term incest. Incest is defined here as the
mating between relatives that is closer than generally permitted in the society,
which for many human groups tends to be associated with a first-degree genetic
relationship; that is, between siblings or between parent and child. Such matings
are almost universally taboo, although there have been exceptions historically,
such as cases in some ancient Egyptian dynasties (Bittles 2004).

Apart from first-degree (incestuous) relationships, human cultures vary con-
siderably in their avoidance of or preference for other forms of inbreeding.
Consequently, there is considerable variation in the prevalence of consanguineous
marriages across the world. Bittles (2001) examined global variation in close con-
sanguineous marriages, defined as marriage between second cousins or closer. He
found that rates of consanguineous marriage tend to be low in North America,
Australia, and most of Europe. Parts of the Middle East, South and Central Asia,
and North Africa include many populations where between 20% and >50% of all
marriages are consanguineous.

Much of this variation is associated with religion. The Roman Catholic Church
prohibits marriages of first cousins or closer, and until 1917 had prohibited
marriages between second and third cousins. Various Protestant denominations
have no restriction on first cousin marriage, and neither do Buddhists. Some
Muslim populations are characterized by a preference for certain types of first
cousin marriage, such as a marriage between a man and his father’s brother’s
daughter, as compared with his mother’s brother’s daughter (Bittles 2004; Bittles
and Black 2010). Such examples show that cultural rules regarding inbreeding
are not always based on genetic principles; these two relationships are the same
genetically.

There is also variation in consanguineous marriages within societies, often
seen in differences in civil legislation associated with marriage. The United
States provides a good example of this type of variation when considering
laws against first cousin marriage. Although first cousin marriage is permit-
ted in 20 states, it is illegal in 22 other states, and a criminal offense in eight
other states. There are also variations within states. In Wisconsin, for example,
first cousin marriages are permitted if one of the individuals is sterile or if
the woman is over 55 years of age, and thus considered likely to be sterile
(Bittles 2010).

B. Examples of Inbreeding Studies Using Genealogical Data

Two brief case studies are presented here to give examples of how genealogical
data are used to compute and interpret inbreeding in human populations.
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The Romany of Wales
The Romany (often referred to as ‘‘gypsies’’) are a European ethnic group with
original roots in India. Williams and Harper (1977) studied a Romany group living
in South Wales, most of who were descended from the marriage of a Romany and
non-Romany Englishman early in the nineteenth century. This population was
of interest because of the high prevalence of phenylketonuria (a genetic disorder
characterized by an enzyme deficiency) and other recessive disorders. Analysis of
99 matings found 14 between first cousins and 22 between second cousins, and the
remaining 63 were unrelated. Using the inbreeding coefficients for first and second
cousins from Table 3.1 and equation (3.3), we can estimate the mean inbreeding
coefficient for the population as

∑
nF

∑
n

= 14(0.0625) + 22(0.015625) + 63(0)
99

= 0.012

This is a minimum estimate that assumes that the noncousin matings were
completely random (F = 0). Williams and Harper (1977) note that this is not likely
the case and adjust this figure upward to account for consanguinity among the
other matings between Romany, obtaining a value of F = 0.017. This is a relatively
high level of inbreeding compared with larger European populations, consistent
with some degree of endogamy (the tendency to choose mates within a group, as
opposed to exogamy, the tendency to choose mates outside the group). Williams
and Harper note that this group is not completely endogamous; 24 out of 99
matings were exogamous, between a Romany and a non-Romany.

A problem with a number of studies, such as the Welsh gypsy study just
mentioned, is that they essentially reflect a single point in time rather than the
ongoing evolution of a population. In many cases we are left unable to see how
‘‘current’’ estimates of inbreeding and exogamy fit into the overall history of a
population. Are such rates stable, or do they change over time? If they change, are
such changes essentially random fluctuations, or are they indicative of a trend? If
a trend is present, then what is its cause? To answer such questions, we need data
from more than one point in time.

The Ramah Navajo
Use of large genealogies can provide information about the impact on inbreeding
resulting from matings of remote ancestors even when close relatives, such as
first cousins, are avoided. Spuhler and Kluckhohn (1953) collected genealogies
on the Ramah Navajo, a group of several hundred Navajo Indians living near
Ramah in the westcentral part of New Mexico. The Ramah Navajo population
began about 1869 when the US Army released captive Navajo. Navajo culture
prohibits marriage within one’s own clan or one’s father’s clan, or with clans that
are linked to one’s clan or one’s father’s clan. These beliefs lead to clan exogamy,
which tends to reduce levels of inbreeding. In addition, first cousin marriages
are forbidden (although four were observed in the data). There was, however, a
number of other more remote forms of inbreeding that were detected from the
extensive time depth of the genealogies, ranging from first cousin once removed
to half fourth cousins. The initial analysis (Spuhler and Kluckhohn 1953) showed
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a low level of total inbreeding of F = 0.0066. Closer analysis showed that a large
amount of the total inbreeding coefficient resulted from the more remote forms
of consanguinity, such as second, third, and fourth cousins. Additional research
including the time period between 1950 and 1964 increased the estimate of overall
inbreeding to F = 0.0092 (Spuhler 1989). This value is still relatively low, showing
the effect of avoidance of close relatives as spouses, but does show how inbreeding
can be underestimated if we lack sufficient historical depth.

C. Surname Analysis

Studying inbreeding in human populations is facilitated greatly by the fact that
humans keep written records and other organisms do not! Another behavior of
humans that helps us in studying inbreeding is the tendency in many cultures to
inherit one’s surname (last name) from one’s father. Like the Y chromosome, a
person’s surname passes on from father to son in many societies. In 1875, George
Darwin, the son of Charles Darwin, attempted to estimate the frequency of cousin
marriages on the basis of marriages between people with the same surname (Lasker
1985). A more complete analysis and approach was later developed by Crow and
Mange (1965) which allowed estimation of the mean inbreeding coefficient of a
population from marriage records by noting how frequently the bride and groom
had the same last name. The term isonymy is used to denote marriages where the
surnames of bride and groom are the same (and where the bride’s surname is her
maiden name).

Computing F From Marital Isonymy
Crow and Mange noted that for many different forms of consanguinity, the
expected frequency of isonymy was 4 times that of the inbreeding coefficient of
two parents. For example, if a bride and groom are first cousins, they share a set
of grandparents. As shown in Figure 3.12, there are four different ways that first
cousins can be related:

1. When the groom’s father and the bride’s father are siblings (brothers). Here,
the groom and the bride will have the same last name.

2. When the groom’s father and bride’s mother are siblings (brother and
sister).

3. When the groom’s mother and bride’s father are siblings (sister and brother).
4. When the groom’s mother and the bride’s mother are siblings (sisters).

Because surnames are passed through the male line, only one-fourth of the first
cousin marriages will be isonymous—those cases where the groom’s father and
the bride’s father are brothers (Figure 3.12a).

Crow and Mange (1965) considered other types of relationships. For example,
among second cousin marriage, the probability of isonymy is 1 in 16. Their
great insight came from the realization that the expected frequency of isonymy
was directly proportional to the expected inbreeding coefficient for each type of
relationship. For first cousin marriage, the expected frequency of isonymy is 1

4
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FIGURE 3.12 Inheritance of surnames in first cousin marriages. First cousins share a set of
grandparents. There are four possible ways for the parents of first cousins to be related: (a)
the groom’s father and the bride’s father are brothers, (b) the groom’s father and the bride’s
mother are brother and sister, (c) the groom’s mother and the bride’s father are sister and
brother, and (d) the groom’s mother and the bride’s mother are sisters. Each diagram shows
the inheritance of the grandfather’s surname—individuals inheriting this surname are shown
by filled squares (males) and circles (females). Males inherit their father’s surname and pass it
on to their children. Females inherit their father’s surname (as their maiden name) but do not
pass it on. Only diagram (a) depicts isonymy, where both groom and bride have the same
surname. Among possible first cousin marriages, only one of four will be isonymous.

and the inbreeding coefficient of their children (see Table 3.1) is 1
16 . The ratio of

isonymy to inbreeding is 1
4/ 1

16 = 4. For second cousins, the expected frequency
of isonymy is 1

16 and the inbreeding coefficient of their children is 1
64 , giving

the same ratio: 1
16/ 1

64 = 4. Crow and Mange (1965) found the same ratio for a
number of different degrees of relationship. They astutely reasoned that if we
know the overall frequency of isonymy in a population, we could estimate the
mean inbreeding level for the population by using this ratio and a very simple
formula

F = P
4

(3.5)

where P is the relative frequency of isonymous marriages in a population. (Another
method of estimating F from isonymy is shown in the next section.)

The isonymy method is not perfect. For one thing, in some pedigrees the ratio
of isonymy to inbreeding is not equal to 4 (Crow and Mange 1965; Crow 1980).
Isonymy can sometimes underestimate F when common ancestors are inbred. On
the other hand, isonymy can sometimes overestimate F when there are multiple
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origins of the same surname. Some surnames, such as Smith or Taylor, derive
from occupation, and can be common in a population but not necessarily indicate
common ancestry. Another problem is the time depth of the estimates. Any
inbreeding estimate depends on a reference generation. With genealogical data,
this reference population is the oldest generation for which data are available. With
surname data, the reference population is a hypothetical founding group where
each male has a unique surname (A. Rogers 1991). Consequently, inbreeding
estimates from isonymy tend to be larger than those that are estimated from
pedigree data. Other potential problems include changes in spelling, adoptions,
and illegitimate births. Despite problems, there is agreement between isonymy
estimates and pedigree estimates in some cases depending on the composition
of the samples (L. Rogers 1987). Further, while the absolute estimates of F may
be overestimated, comparison of relative values, such as between populations or
time periods, can still be valuable.

Random and Nonrandom Components of Inbreeding
If we have an estimate of the level of inbreeding from a population, then what
exactly does this tell us about mating behavior? Does a relatively high value,
such as F = 0.05, tell us that there is a preference for consanguineous mating or
marriage in the population? Not necessarily. In small populations, a certain amount
of inbreeding might occur simply by chance because most individuals in a small
population might be related to begin with. If every potential mate is a cousin, then
even selecting a mate at random will result in inbreeding. Crow and Mange (1965)
showed how to partition these effects using surname data from marriage records,
and this method was later expanded upon by Crow (1980). They showed that the
total amount of inbreeding in a population (F) is made up of a random inbreeding
component (Fr) and a nonrandom inbreeding component (Fn). Random inbreeding
is the amount of inbreeding expected by chance because of finite population size
(i.e., the smaller the population, the fewer mates available that are not related to
you). Nonrandom inbreeding is the amount of inbreeding that is due to the net
effect of avoidances and preferences for consanguineous marriages.

The computation of these components is shown here using the Hutterite data
from Crow and Mange (1965). In order to compute these components, we need
the observed probability of isonymous marriages P and the expected probability
of isonymous marriages under random mating Pr. Among the Hutterites, 87 in
446 marriages were isonymous, giving P = 87

446 = 0.195. We then compute the
probability of random martial isonymy by pairing each male in the sample with
each female in the sample and counting the proportion of those pairs that have
the same last name. This sounds complicated, but is easy to do from a table of
surnames, as shown in Example 3.1, which gives random marital isonymy of
Pr = 0.178. The random and nonrandom components of inbreeding (Fr and Fn,
respectively) are then computed as

Fr = Pr

4

Fn = P − Pr

4(1 − Pr)
(3.6)
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and total inbreeding now becomes

F = Fn + (1 − Fn)Fr (3.7)

Total inbreeding in equation (3.7) is not simply the sum of nonrandom and random
components; since inbreeding can be either nonrandom or random, the random
component must be multiplied by the probability of nonrandom inbreeding
(1 − Fn).

EXAMPLE 3.1 Computing the Probability of Random Marital Isonymy. We
can compute the amount of random marital isonymy (marriages where the bride
and groom have the same surname) by pairing each male with each female and
then counting the number of times that they have the same last name. An easier
way to do this is to construct a table of all surnames in the population and count
the number of times males and females have a given surname.

The table below shows data on surnames from 446 marriage records of the
Hutterites as reported by Crow and Mange (1965). The column labeled m is the
proportion of males with a given abbreviated surname. For example, 7 of 446
males have the surname ‘‘De,’’ giving the proportion m = 7

446 = 0.016. The column
labeled f is the proportion for the females. The last column (mf ) is the product of
m and f (e.g., 0.016 times 0.020 = 0.00032).

Surname Males Females m f mf

De 7 9 0.016 0.020 0.000320
Gl 8 7 0.018 0.016 0.000288
Gr 36 27 0.081 0.061 0.004941
Ho 104 93 0.233 0.209 0.048697
Kl 25 27 0.056 0.061 0.003416
Ma 25 19 0.056 0.043 0.002408
St 17 15 0.038 0.034 0.001292
Ts 7 8 0.016 0.018 0.000288
Wd 134 153 0.300 0.343 0.102900
Wi 30 33 0.067 0.074 0.004958
Wo 41 38 0.092 0.085 0.007820
Wu 12 17 0.027 0.038 0.001026

Total 446 446 1.000 1.000 0.178

We now compute the total probability of random marital isonymy by summing all
the values in the last column, giving Pr = 0.178. We divide this number by 4 to get
the random component of inbreeding (Fr), which is the amount of inbreeding we
expect even when there is no preference or avoidance of consanguineous marriage.
In this case, Fr = 0.178

4 = 0.0445.

Although the random component of inbreeding will always be positive,
the nonrandom component can be positive or negative, depending on the bal-
ance between a preference for consanguineous marriage (making the component
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positive) and avoidance of consanguineous marriage (making the component
negative). For the Hutterite data, P = 0.195 and Pr = 0.178, giving a random
inbreeding component of Fr = 0.0445, a nonrandom inbreeding component of
Fn = 0.0052, and a total inbreeding value of F = 0.0494. This last value is higher
than what we would get using equation (3.5) because there are actually two dif-
ferent methods for estimating F from surnames—see Crow (1980) for a discussion
of which method should be used in different circumstances.

What do these numbers mean? The overall level of inbreeding (F = 0.0494) is
fairly high, which is consistent with the isolated and endogamous nature of the
Hutterite population. Most of this quantity is due to the high level of random
inbreeding (Fr = 0.0445), whereas the nonrandom component of inbreeding is
close to zero. These values show that high inbreeding in the Hutterite population
is not the result of any preference for consanguineous marriage, but instead is a
reflection of the small and isolated nature of the population, resulting in a situation
where most available mates are related.

Analysis and interpretation of inbreeding components can be complicated
and require careful attention to the demographic structure of a population. For
example, Devor et al. (1983) looked at marriage records from Ramea Island in
Newfoundland, Canada, a population that had been a small and isolated fishing
port until the early 1950s, after which time the building of a fish processing plant led
to large levels of immigration. Using data from 201 marriages, they found a small
random component (Fr = 0.004) but large levels of nonrandom (Fn = 0.0253) and
total (F = 0.0315) inbreeding. At first glance, these results suggest that the level of
inbreeding in this population was due primarily to a preference for consanguineous
marriages because the nonrandom component is large relative to total inbreeding
and is positive. However they found that this was not the case. Here, the large
nonrandom component was due in large part to the immigration of a large number
of isonymous marriages from small populations outside the island. As such, these
results tell us more about mating behavior of populations other than that of
Ramea Island.

Because isonymy methods can be used with historical data, we have the chance
to track changes in inbreeding components over time. Relethford and Jaquish (1988)
examined historical marriage records in five towns in northcentral Massachusetts.
Figure 3.13 shows the trends in inbreeding components averaged over these
towns for five decades from 1800 to 1849. This time period was characterized
by rapid population growth and increased migration. All inbreeding components
declined over time, reflecting the increase in population size and migration
rates, both of which act to reduce the proportion of consanguineous marriages.
Random inbreeding accounts for a greater amount of total inbreeding than
nonrandom inbreeding. Still, the values of nonrandom inbreeding are positive,
which might suggest some slight preference for consanguineous marriage. As
with the Devor group’s study of Ramea Island, the situation is actually more
complex and is affected greatly by a high rate of isonymous exogamous marriages
(where one or both spouses was a migrant into the community). Cousin marriage
was not prohibited, and there is some suggestion that there was a preference
for long-distance consanguineous marriage. Once the isonymous exogamous
marriages are removed from the analysis (see Figure 3.14), random inbreeding
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FIGURE 3.13 Components of inbreeding for five towns in westcentral Massachusetts,
1800–1849. [Source of data: Relethford and Jaquish (1988).]
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FIGURE 3.14 Components of inbreeding for five towns in westcentral Massachusetts,
1800–1849, excluding isonymous exogamous marriages. [Source of data: Relethford and
Jaquish (1988).]

accounts for most of the total inbreeding, offset to some extent by an avoidance
of consanguineous marriages within the populations (see the negative values for
nonrandom inbreeding in Figure 3.14).

D. Potential-Mates Analysis

A more precise way of looking at random and nonrandom components of inbreed-
ing is provided by potential-mates analysis, a set of methods that includes using
computer simulation to define characteristics of a pool of potential mates based
on pedigree and demographic data (Leslie 1985). Individuals can be paired up
at random with realistically defined potential mates, based on sex, age, and
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other relevant characteristics. In the case of inbreeding, the inbreeding coeffi-
cients of randomly chosen pairs of potential mates can be computed (the random
component) and then compared with the observed inbreeding coefficient of the
actual mates.

Brennan and Relethford (1983) used this method to look at random and non-
random inbreeding coefficients for the island of Sanday, located in the northern
part of the Orkney Islands, Scotland. Pedigree data were used to compute inbreed-
ing based on marital pairs for three time periods according to the year of birth
of the husband: 1855–1884, 1885–1924, and 1924–1964. Random inbreeding was
computed from all possible pairings of potential mates that met certain realistic
criteria for mating, such as the age of each potential spouse, the age difference
between the potential husband and wife, and excluding anyone from the same
nuclear family (no incest). Given the observed inbreeding coefficient and the
random inbreeding coefficient, Brennan and Relethford computed the nonrandom
component using equation (3.7).

The results are shown in Table 3.4. Over time, total observed inbreeding
declined, reaching zero in the last time period. Random inbreeding decreased
and then increased over time, while nonrandom inbreeding declined from a slight
amount of consanguinity preference (a positive nonrandom component) to consan-
guinity avoidance (a negative nonrandom component in the last time period). The
change in nonrandom inbreeding is related to cousin marriage because the choice
of potential mates ruled out closer, incestuous marriages. Brennan and Relethford
(1983) were able to relate these shifts in mating behavior to demographic trends
since the midnineteenth century. Over time, random inbreeding was offset by a
change in nonrandom inbreeding to a pattern of avoidance of cousin marriage; such
avoidance was made possible by an increase in the number of individuals seeking a
mate off-island as well as an increase in the geographic distance between on-island
spouses. A small number of local potential mates was thus countered by increased
mobility, allowing avoidance of cousin marriages, and resulting in a net inbreeding
value of zero in the last time period. Potential-mates analysis allows a more pre-
cise analysis and interpretation of the complex interplay between population size,
migration, cultural preferences, and inbreeding than can be obtained from surname
analysis.

TABLE 3.4 Components of Inbreeding from Potential-Mates Analysis of
Sanday, Orkney Islands, Scotland

Birth Year Total Random Nonrandom
of Husband Inbreeding Inbreeding Inbreeding

1855–1884 0.00212 0.00120 0.00092
1885–1924 0.00091 0.00074 0.00017
1925–1964 0.00000 0.00083 −0.00083

Source: Data from Brennan and Relethford (1983).
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IV. SUMMARY

Inbreeding is the mating of genetically related individuals. Simple mathematics
shows that we are all inbred to some extent, but in practice, the genetic and
medical significance of inbreeding is for individuals who are cousins or closer.
The inbreeding coefficient is a measure of the probability that an individual will
have identical alleles due to common ancestry (identity by descent). Inbreeding
coefficients are computed from genealogical information by counting the number
of ancestors along a path back to a common ancestor of both parents. First cousins,
for example, have a set of grandparents in common, whereas second cousins have
a set of great grandparents in common. On a populational level, mean inbreeding
can be derived as the average inbreeding coefficient over all matings.

Inbreeding increases the frequency of homozygotes in a population and
decreases the frequency of heterozygotes. Although inbreeding changes genotype
frequencies from those expected under Hardy–Weinberg equilibrium (which
assumes random mating, or F = 0), it does not change allele frequencies. Because
inbreeding increases homozygosity, this means that inbred individuals have a
greater chance of inheriting two copies of recessive alleles, which in many cases
can have significant medical consequences.

Mean inbreeding coefficients for human populations would be less than
expected if the entire population were made up of first cousin matings. Although
all human societies prohibit incest (extremely close inbreeding from parent–child
or sib–sib (intersibling) mating), there is a great deal of cultural variation regarding
cousin marriage. Some cultures discourage such marriages/matings, whereas
other cultures have a preference for cousin marriage. Because of the way in which
surnames are inherited in many societies, the frequency of marriages between
people with the same last name can give us an estimate of inbreeding.

Surname frequencies can also be used to partition the total level of inbreeding
into two components—random inbreeding, reflecting the marriages between
relatives expected by chance due to small population size, and nonrandom
inbreeding, which gives us an idea as to the net effect of avoidance of, or
preference for, mating between relatives.



C H A P T E R 4
MUTATION

Where do new genetic variants come from? What is the origin of variation? Darwin
recognized that variation existed, and that natural selection acted on this variation,
but the molecular nature of genetic change was unknown in his time. We now
know that mutations, changes in the genetic code, occur every generation. Without
mutation, there would be no evolution (and, consequently, no life). Mutation (and
mutants) is an important cornerstone in much of science fiction, including comic
books, such as the X-Men. Here, the focus on mutants is on their unique abilities
that set them apart from ‘‘normal’’ humans. A recurring theme in much of this
fiction is the evolutionary and social divide between mutants and normal people,
often portrayed in terms of the oppression and persecution of the mutants. While
the use of mutant status as a surrogate for social forms of discrimination is a
useful dramatic foil, in reality there would be no such divisions within our species
into mutants and ‘‘normals.’’ From a statistical viewpoint, we each carry mutant
alleles, and are all mutants. In the real world, it is important to remember that
mutation is not an unusual phenomenon, but something that occurs all of the time
and is vital to the evolution of life.

I. THE NATURE OF MUTATIONS

Mutations are random changes in genetic code. Returning to the idea that genetic
transmission is the transmission of information, from cell to cell and from gener-
ation to generation, a mutation is an error in the transmission. Any transmission
of information is subject to errors, whether this is static on a phone line or a
smudged fax transmission. I recall from grade school a game we played one day
that involved the transmission of information. The teacher started the game by
whispering a message to the first student in the first row of the classroom. This
student then whispered the message to the student immediately behind in the
second row, who in turn whispered the message to the next student in line. This
whispering sequence continued up and down the rows of the class until the last
student gave the message to the teacher, who then wrote both the original and last
messages on the board. I cannot recall what the message was, but I do remember
that it had changed somewhat because of accumulated errors in transmission from
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one student to the next. As a broad analogy, this was an example of a mutation.
In genetics, the same thing can happen when information is not replicated exactly
from one cell to the next. In our body cells, this can cause damage, including
cancer. If such a mutation occurs in a sex cell, then this information becomes evo-
lutionarily significant because it changes the transmission of genetic information
from one generation to the next.

A. Types of Mutation

Mutations are random changes in the genetic code that occur for a number of
reasons, including chemical exposure, ultraviolet radiation, viral infection, and
background radiation. Mutations can occur in a variety of ways, some of which
are reviewed here briefly.

Point Mutations
The simplest form of mutation is a point mutation, where there is a change from
one DNA base to another, such as from C to T, or from A to C. The four nucleotide
bases have different biochemical structures. Bases A and G are purines, which
are defined as having two carbon–nitrogen rings. Bases C and T are pyrimidines,
which are defined as possessing one carbon–nitrogen ring. When the mutation is
between two purines (A and G) or between two pyrimidines (C and T), it is called
a transition. When the mutation is between a purine and a pyrimidine (A and C,
A and T, G and C, or G and T), it is called a transversion. Transitions are much
more common than transversions.

Point mutations can have differing effects. If a point mutation occurs in a
noncoding part of the DNA, with no impact on the organism, then this mutation
can be considered neutral. For coding DNA, some point mutations can be neutral
if the mutation results in the same amino acid, which is known as a silent mutation
(see Table 4.1). An example is the genetic code for the amino acid glycine. There
are four different DNA sequences that code for glycine: CCA, CCT, CCC, and
CCG. If there is a DNA sequence of CCA and the last base pair changes from A to
G, giving the sequence CCG, the code is still for the same amino acid. Note that
we would be able to detect this mutation from a direct assessment of the DNA
sequence but not from analysis of amino acids—the change would be ‘‘silent’’
at this level. For other point mutations, there can be a more noticeable impact.
For example, a point mutation for the sixth amino acid in the beta chain of the
hemoglobin molecule results in a change from the amino acid glutamic acid to the
amino acid valine, which results in a variant form of hemoglobin known as sickle
cell hemoglobin. Individuals with two copies of this allele have the genetic disease
known as sickle cell anemia (see Chapter 7 for more information on the evolution of
the sickle cell allele).

Insertions and Deletions
In addition to changes due to substitution in the DNA, mutations can also produce
insertions and deletions of DNA sequences. The term indel is used to refer to
insertions and deletions collectively. A change in DNA sequence through the
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TABLE 4.1 DNA Triplets for Coding of Amino Acidsa

AAA phenylalanine AGA serine ATA tyrosine ACA cysteine
AAG phenylalanine AGG serine ATG tyrosine ACG cysteine
AAT leucine AGT serine ATT stop ACT stop
AAC leucine AGC serine ATC stop ACC tryptophan

GAA leucine GGA proline GTA histidine GCA arginine
GAG leucine GGG proline GTG histidine GCG arginine
GAT leucine GGT proline GTT glutamine GCT arginine
GAC leucine GGC proline GTC glutamine GCC arginine

TAA isoleucine TGA threonine TTA asparagine TCA serine
TAG isoleucine TGG threonine TTG asparagine TCG serine
TAT isoleucine TGT threonine TTT lysine TCT arginine
TAC methionine TGC threonine TTC lysine TCC arginine

CAA valine CGA alanine CTA aspartic acid CCA glycine
CAG valine CGG alanine CTG aspartic acid CCG glycine
CAT valine CGT alanine CTT glutamic acid CCT glycine
CAC valine CGC alanine CTC glutamic acid CCC glycine

a Triplets of DNA base pairs allow for the coding of 20 amino acids and a termination sequence (stop).
Because there are 64 possible DNA sequences, this means that some sequences code for the same amino
acid, allowing for silent mutations, such as a mutation from A to T in the triplet CCA, giving CCT. Both
CCA and CCT code for glycine, so this would be a silent mutation. Note that this table provides the codes
for the DNA triplets—to convert to messenger RNA codons, substitute U (uracil) for A, A for T, G for C,
and C for G.

insertion or deletion of base pairs can change the function of a gene. An example
is found in the CCR5 gene in humans, found on chromosome 21, which codes for
a receptor protein. One mutant allele is known as the CCR5-�32 allele (� is the
Greek letter delta, often used to denote difference). This mutation consists of a
32-bp deletion in the gene, which changes the biochemical properties of the CCR5
protein. One interesting consequence of this allele is that people who inherit two
copies (having the CCR5-�32–CCR5-�32 genotype) are resistant to infection from
HIV, the virus that causes AIDS (more information on this mutation is given in
Chapter 7).

Chromosomal Changes
Mutations can also affect large sections of entire chromosomes. Such changes
include inversions, where a section of a chromosome winds up in reverse order.
Mutation can also cause deletion of large chunks of a chromosome. Translocations
occur when sections of a chromosome move to another chromosome; some of these
involve an exchange of DNA between chromosomes, and some do not. Entire
chromosomes can also be replicated. Down syndrome, for example, is caused
when there is an extra twenty-first chromosome.

B. The Evolutionary Impact of Mutation

Three major points need to be kept in mind regarding mutation and evolution. First,
mutation is the ultimate source of all genetic variations. Whether this is diversity
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in blood types, single nucleotide polymorphisms (SNPs), or other genetic traits,
different alleles start out as mutations. The second major point, as noted earlier,
is that a mutation will have a direct evolutionary consequence only if it occurs in
a sex cell, because that is the only way that a mutation can be passed on to the
next generation. The third point to keep in mind is that mutation is random with
respect to its evolutionary significance. In other words mutations do not appear
because they would be useful for a population to possess at a given point in time.

Mutation is an evolutionary force because it leads to a change in allele
frequency over time. To illustrate this, imagine a locus with a single allele A in a
population of 2000 people. Because all 2000 people have two copies of the A allele
(genotype AA), there are 4000 A alleles in the population. Now, imagine that a
mutation occurs in one of the A alleles, leading to a new allele designated as a.
We now have 3999 A alleles and one a allele. The frequency of the A allele has
changed from p = 4000

4000 = 1.0 to 3999
4000 = 0.99975. The frequency of the a allele has

changed from q = 0
4000 to 1

4000 = 0.00025. Admittedly, this is a very small change,
but it is still a change. Remember that one of the assumptions of Hardy–Weinberg
equilibrium is that there are no mutations. When mutations do occur, the allele
frequencies change from those expected under Hardy–Weinberg equilibrium.

The major evolutionary significance of mutation is to introduce new alleles
into a population. By itself, mutation does not lead to major shifts in allele
frequency. As such, mutation is a necessary, but not sufficient, cause of evolution.
Mutation is the ultimate source of all genetic variation, and evolution would
not be possible without it. On the other hand, evolution is not simply the
accumulation of mutations. By itself, mutation can only introduce new genetic
variants into a population, but cannot lead to major changes in allele frequencies
over reasonable lengths of evolutionary time. The other evolutionary forces
(selection, drift, gene flow) act on new mutants as they arise in a population,
causing them to sometimes decrease, and sometimes increase, in frequency. Thus,
discussion of some of the population genetics of mutation is actually deferred until
later in this book when interactions of mutation with other evolutionary forces are
considered.

C. Rates of Mutation

Mutations can be regarded as relatively rare events when we consider the probabil-
ity of a mutation occurring in an individual at a given locus in a given generation.
Although generally low at this level, the exact rate of mutation varies across
different parts of the genome and among species. Rates also vary depending on
whether we are talking about a specific base pair, an entire locus, or the entire
genome. For example, in humans the average mutation rate for a single site is
about 2.3 × 10−8 (0.000000023) per base pair per generation. Of these, transitions
tend to occur more frequently than transversions, and some transitions have even
higher rates (‘‘hotspots’’ of mutation) (Jobling et al. 2004). Indel mutations have
lower mutation rates, averaging about 2.3 × 10−9. Repeated units of DNA, such as
short tandem repeats and minisatellites, have higher mutation rates (Rosenberg
et al. 2003b; Jobling et al. 2004). Mitochondrial DNA has higher mutation rates than
does nuclear DNA (Stoneking 1993). Regardless of this variation, the main point to
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remember is that even for rapidly mutating sections of our genome, mutation alone
cannot lead to major changes in allele frequency, even over long periods of time.

II. MODELS OF MUTATION

For the moment, several basic models of mutational change are shown in order
to give the reader a better feel for the evolutionary impact of mutation and serve
as a baseline for later consideration of other evolutionary forces. More complex
models that deal with the interaction of mutation with other evolutionary forces
will be presented in later chapters.

A. A Simple Mutation Model

We start with a very simple mutation model of a single locus starting with one
allele, (A) and allowing for the probability of an A allele mutating into another
allele (a) with each generation. We assume that this is the only form of mutation (in
other words, that there is only one mutant allele) and that mutation is irreversible
(i.e., that an a allele cannot mutate back into an A allele). Other than that, we keep
all of the other assumptions of Hardy–Weinberg equilibrium—no genetic drift,
no gene flow, and no selection for or against the mutant allele. The key parameter
here is the mutation rate, represented as μ, the Greek letter mu. Mutation is
random, so this rate represents the probability of mutation per locus per generation.
The actual number of mutations in any generation might be higher or lower, and
the mutation rate is an estimate of the average probability of mutation over long
periods of time.

Now that we are considering change in allele frequencies from one generation
to the next, we use allele frequencies with subscripts indicating the specific
generation. Here, pt refers to the frequency of allele A in generation t, and qt refers
to the frequency of allele a in generation t. As an example, the expression p3 refers
to allele frequency p in generation 3.

When using subscripts, we generally start at t = 0. Here, let us start with
allele frequencies p0 and q0 for the initial frequencies of the A and a alleles. Under
Hardy–Weinberg equilibrium, the next generation will have the same frequencies,
and so on into the future. Under our simple mutation model, things operate a bit
differently. We are using a model where some A alleles mutate into a alleles with
a probability of μ. In the next generation, some A alleles will have mutated but
most will remain A alleles. Given that μ is the probability of A mutating into a,
then (1 − μ) is the probability of an A allele not mutating but instead remaining an
A allele. We now ask the question: What is the expected frequency of the A allele
in generation t = 1? Another way of expressing this is to ask the probability of an
allele being A in the previous generation (which is p0) and not mutating (which is
1 − μ). The answer is simply the product of the two probabilities, which gives

p1 = p0(1 − μ) (4.1)

If, for example, we start with p0 = 1.0 with a mutation rate of μ = 1 × 10−6 =
0.000001, then p1 = 0.999999.
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We can now go further and consider what will happen in generation 2 after
an additional generation of mutation. Following the same logic as used to derive
equation (4.1), we can express the expected frequency of the A allele in generation
2 as a function of the expected frequency of the A allele in generation 1 and the
mutation rate

p2 = p1(1 − μ) (4.2)

which would give p2 = 0.999998. We could continue performing this calcula-
tion generation after generation, but this gets rather tiring. Instead, we can
take a shortcut by noting what happens when we substitute equation (4.1) into
equation (4.2):

p2 = p1(1 − μ) = P0(1 − μ)(1 − μ)

= p0(1 − μ)2

If we do this for another generation (t = 3), we get

p3 = p0(1 − μ)3

We can easily see now that these results can be extended to any number of
generations, and all we need to know is the initial value of p (p0), the mutation rate
(μ), and the number of generations (t):

pt = p0(1 − μ)t (4.3)

Because we have only two alleles, and because p + q = 1, the frequency of the a
allele in generation t is therefore

qt = 1 − pt (4.4)

For example, if we start with allele frequencies of p0 = 1 and q0 = 0 and a mutation
rate of μ = 1 × 10−6, then, after 10,000 generations, we will have p10,000 = 0.99005
and q10,000 = 0.00995.

The higher the mutation rate, the more change will result. Table 4.2 shows
frequencies of a mutant allele for different mutation rates at different numbers
of generations. For low mutation rates characteristic of most point mutations,
there is very little change even after 10,000 generations. For higher mutation
rates, there is a greater amount of change, but it is still relatively low for most
rates. Only when the mutation rate is very high (10−4) do we see more change,
and even then, the accumulation of mutation takes several thousand generations.
Eventually, the mutant allele would replace the other allele, but this would take
a very long time, even with high mutation rates. These slow rates of change due
to mutation are analogous to the slow pace with which a dripping tap will fill a
bathtub.
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TABLE 4.2 Allele Frequencies under Irreversible Mutationa

Mutation Rate (μ)

t 10−8 10−7 10−6 10−5 10−4

0 0.00000 0.00000 0.00000 0.00000 0.00000
1,000 0.00001 0.00010 0.00100 0.00995 0.09517
2,000 0.00002 0.00020 0.00200 0.01980 0.18128
3,000 0.00003 0.00030 0.00300 0.02955 0.25919
4,000 0.00004 0.00040 0.00399 0.03921 0.32969
5,000 0.00005 0.00050 0.00499 0.04877 0.39348
6,000 0.00006 0.00060 0.00598 0.05824 0.45120
7,000 0.00007 0.00070 0.00698 0.06761 0.50343
8,000 0.00008 0.00080 0.00797 0.07688 0.55069
9,000 0.00009 0.00090 0.00896 0.08607 0.59345

10,000 0.00010 0.00100 0.00995 0.09516 0.63214

a The data presented in this table show the frequency of the a allele (q) under a model where the A allele
can mutate into the a allele, but not in reverse. Values were computed for different mutation rates for
different numbers of generations (t) using equations (4.3) and (4.4) with starting values of p0 = 1 and
q0 = 0.

B. Reverse Mutation

Before looking at the evolutionary implications of the slow pace of the irreversible
mutation model, we should examine what happens when we relax the assumption
that mutations are irreversible. Under a model of reverse mutation, we will allow
mutation back from the a allele to the A allele as well as the mutation of A to
a. As before, we use the symbol μ to represent the probability that an A allele
will mutate into an a allele. We will also use the symbol ν, the Greek letter nu, to
represent the probability that an a allele will mutate back into an A allele. Let us
start with p0 as the initial frequency of the A allele. What will this frequency be
after a generation under the model of reversible mutation?

Under the model of reverse mutation there are two ways to obtain an A allele
in the next generation. First, a certain proportion of A alleles will not mutate. As
shown earlier, the probability of an A allele not mutating into an a allele is, from
equation (4.1), equal to p1 = p0(1 − μ). Because mutation is reversible, we can also
get an A allele that has mutated back from an a allele. The probability of this
happening is the product of the probability of having an a allele (= q = 1 − p) and
the probability of an a allele mutating (= ν), giving the probability (1 − p)ν. We
now have two different ways of obtaining an A allele, so we use the or rule to
figure out the probability of an A allele not mutating or an a allele mutating into
A. We add these probabilities, giving

p1 = P0(1 − μ) + (1 − p0)ν

We could then calculate the allele frequency in the next generation (p2) using
the same logic. In general, we can express the allele frequencies in any given
generation (t) in terms of the mutation rates and the allele frequencies in the
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previous generation (t − 1) as

pt = pt−1(1 − μ) + (1 − pt−1)ν (4.5)

and the frequency of the a allele as

qt = 1 − pt (4.6)

The impact of reverse mutation is shown in Figure 4.1, which tracks the
frequency of the a allele over 100,000 generations starting with an initial frequency
of q0 = 0, a mutation rate of μ = 5 × 10−5, and a reverse mutation rate of ν =
1 × 10−5. This case is contrasted with the case where there is no reversible
mutation (ν = 0). In both cases, the frequency of the mutant allele increases slowly
over time (the dripping tap analogy). Under reversible mutation, the increase
slows down over time and levels off to a value a bit higher than q = 0.8. This
happens because an equilibrium is approached between the addition of new a
alleles (mutating from A) and the subtraction of preexisting a alleles that mutate
back into A. In terms of the dripping tap analogy, consider a leaky faucet that is
slowly filling a bathtub, but there is an outlet drain about 80% of the height of the
tub. The water continues to enter the bathtub but does not overflow because the
incoming water is balanced by the loss of water through the drain.

We can also use this model to illustrate the principle of an equilibrium between
counteracting forces, something we will return to a number of times in the text. In
this case, we are interested in looking at the equilibrium between forward (A → a)
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FIGURE 4.1 The frequency of a mutant allele under reversible mutation. The solid line shows
changes in the frequency of the a allele (q) starting with an initial value of q0 = 0 with a
mutation rate (A → a) of μ = 5 × 10−5, and a reverse mutation rate (a → A) of ν = 1 × 10−5.
Values were computed using equations (4.5) and (4.6). Reverse mutation is contrasted with
the case of irreversible mutation (dashed line) with μ = 5 × 10−5 and ν = 0. Under reversible
mutation, the frequency of q approaches an equilibrium between new mutations and reverse
mutations, which is defined as μ/(μ + ν) = (5 × 10−5)/(5 × 10−5 + 1 × 10−5) = 0.8333 [see
equation (4.10) in text].
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and backward (a → A) mutation. We start by looking at the difference in allele
frequency between two successive generations. For the A allele, this difference,
labeled �p, is the difference between generation t and generation t − 1. Using
equation (4.5), we obtain

�p = pt − pt−1 = [pt−1(1 − μ) + (1 − pt−1)ν] − pt−1

When we expand all of the terms and cancel out similar terms, we get

�p = −pt−1μ + (1 − pt−1)ν (4.7)

This is the amount of change in the frequency of the A allele from generation t − 1
to generation t, reflecting the removal of A alleles that have mutated into a alleles
(−pt−1μ) and the addition of new A alleles resulting from backmutation of a alleles
[(1 − pt−1)ν]. When these two factors balance each other out, a state of equilibrium
has been reached (I am using the general term equilibrium here to refer to a state
where there is no further change, and not the more specific Hardy–Weinberg
equilibrium). We can do the same thing for the frequency of the a allele, defining
the change in q as �q = qt − qt−1, which, if we use equation (4.5) and substitute
(1 − q) for p, gives, after some algebraic manipulation, the following equation:

�q = μ(1 − qt−1) − qt−1ν (4.8)

Here, the addition of new a alleles [μ(1 − qt−1)] is balanced by the loss of a alleles
through backmutation.

We define equilibrium when there is no change between successive genera-
tions, such that �p = 0. This equilibrium is a theoretical construct in a mathematical
sense, as �p gets smaller and smaller but technically does not reach 0 (like a curve
approaching, but never reaching, an asymptote). As shown in Figure 4.1, for
all practical purposes �p is almost zero by 100,000 generations. We refer to the
theoretical equilibrium value, where �p = 0, as p∞, which can be solved by setting
equation (4.7) equal to zero, and solving for p, which gives

p∞ = ν

μ + ν
(4.9)

We can do the same thing for the equilibrium frequency for the a allele by setting
equation (4.8) equal to zero and solving for q, giving

q∞ = μ

μ + ν
(4.10)

Finally, we can use the equilibrium values to express the model of reverse
mutation in an easier and more precise computational form. Equation (4.5) starts
with generation zero and then proceeds to compute each successive generation,
one after the other. If, for example, we wanted to compute the allele frequencies
after 15,000 generations under the reverse mutation model, we would need to
start with generation 0, go to generation 1, and then proceed to generations 2,
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3, and so forth, all the way up to 15,000. Although this is easy to do with a
computer spreadsheet, there are times when it would be easier to have a formula
for plugging in the value of t = 15, 000. For reverse mutation, the formula is

pt = p∞ + (1 − μ − ν)t(p0 − p∞)

qt = 1 − pt (4.11)

where p0 is the initial frequency of the A allele in generation 0 and p∞ is the
equilibrium value defined in equation (4.9). For example, using the mutation rates
in Figure 4.1 of μ = 5 × 10−5 and ν = 1 × 10−5, the equilibrium values would
be p∞ = 0.16667 and q∞ = 0.83333. After 15,000 generations starting with allele
frequencies of p = 1.0 and q = 0.0, we get allele frequencies of p = 0.50547 and
q = 0.49453. The importance of this equation is not so much for enabling us to
predict allele frequencies for a particular generation but as an example of a more
general process of solving iterative equations such as equation (4.5) using what
is known as a recurrence relation. Details of this approach are outlined in the
Appendix 4.1.

C. The Number of New Mutants in a Generation

One thing is obvious from both the irreversible and reversible models of
mutation—even when mutation rates are relatively high, the actual amount
of change due to mutation alone is very small. Why, then, do we even bother
looking at mutation? The answer, of course, goes back to what was stated
earlier—mutation is a necessary, but not sufficient, cause of evolution. Evolution
is not just mutation, but mutation is essential for any evolutionary change because
it is the ultimate source of all genetic diversity. Given this distinction, we need
to focus not on how mutation changes allele frequencies from one generation to
the next (such changes are very, very small), but instead focus on how mutation
introduces new alleles into a population.

Still, it may appear that mutation could not do much even in terms of
introducing new alleles because of the low rate of mutation for any given base
pair per individual per generation (Hamilton 2009). To understand the importance
of mutation as a source of new variation in a population, we need to shift
our attention away from the probability of mutation for a given base pair in a
particular individual and instead consider the total number of mutations. The
human genome has 3.2 billion base pairs (3.2 × 10−9), and each individual has
two genomes (one from each parent). Given a mutation rate of 2.3 × 10−8 per
base pair (Jobling et al. 2004), this means that each person in any generation is
expected to have (2.3 × 10−8) × (3.2 × 10−9) × 2 = 147.2 bp mutations. Even if we
take a smaller estimate of the mutation rate in humans per base pair of 1.0 × 10−9,
we get 6.4 new mutations for each person in a population (Hamilton 2009). As
noted at the beginning of this chapter, statistically all of us carry mutant genes and
therefore all of us are mutants.

These numbers are even larger when we shift our focus from the individual to
the population. Given an estimate of six new mutants per individual, this means
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that there will be 6000 new mutations each generation in a population of 1000 peo-
ple. Using the larger estimate of 147 new mutations per person, there will be 147,000
new mutations in a population of 1000 people. At the level of our entire species,
this number is even more impressive. As of mid-2010, there were an estimated
6.9 billion people on the planet (Population Reference Bureau 2010). Of these,
roughly 3.6 billion were of reproductive age (15–54 years of age for males, 15–44
years of age for females) and form the current reproductive generation (US Cen-
sus Bureau web page, http://www.census.gov/ipc/www/idb/worldpop.php).
Using the two different mutation rates given above (6–147 mutations per person),
this translates to between about 22 billion and 529 billion new mutations each
generation! Regardless of the exact number, it is clear that the potential for new
genetic diversity is quite high in our species. In fact, it is interesting that the rapid
population growth of our species since the beginnings of agriculture some 12,000
years ago has produced a situation where the number of potential new mutations
has never been greater (Hawks et al. 2007).

D. The Fate of Mutant Alleles: An Introduction

Mutation introduces new alleles in a population or species. The other evolutionary
forces then affect what happens to these new mutations. The major focus here is
on the impact of selection and genetic drift. The interaction between these forces
and mutation will be covered in detail in later chapters but for the moment are
reviewed briefly here to give the reader a general feel for the broader evolutionary
significance of mutation.

The impact of natural selection on mutation depends on how a new mutation
affects the likelihood of an individual surviving and reproducing. If a new mutant
is harmful, then it will be reduced in frequency. As will be shown in Chapter 6,
the rate at which the allele is removed depends on a number of factors, including
the different probabilities of survival and reproduction of the different genotypes.
As a rule, selection against a mutation will keep the overall frequency of that
mutant very low. On the other hand, if a mutant allele is helpful in a given
environment, and increases the probability of surviving and reproducing, then
the frequency of that mutation will increase over time. A classic example is the
case of selection for dark coloration in the peppered moth that was described in
Chapter 1. When the dark allele led to a harmful effect (birds were originally more
likely to see, and hence eat, dark-colored moths), the frequency remained low. On
the other hand, when the environment changed, and dark coloration shifted to
being adaptive, then dark-colored moths were selected for, and the frequency of
the allele increased.

What happens when selection is not a factor, which will occur when a mutant
allele is neutral (i.e., it does not matter what allele you have)? An entire body of
literature known as the neutral theory of evolution describes how changes in the
frequency of a mutant allele are dependent on genetic drift. Various models of
neutral evolution will be covered in more detail in Chapter 5. For the moment, we
can look at the impact of genetic drift on a mutant allele in general terms. Genetic
drift is the random fluctuations of allele frequency with each generation, and has
a greater expected effect in small populations (although drift does occur in all
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populations, we expect a greater amount of drift when populations are small).
Drift continues until an allele frequency of 0 or 1 is reached, after which there is
only one allele in the population. Because any specific mutation (for a given base
pair or locus) is relatively rare, drift will usually (not always) result in loss of the
mutant allele. For example, imagine that we have a population of 100 people, each
with the genotype AA, such that we have 200 A alleles. If a mutation occurs from
A to a, we now have 199 A alleles and 1 a allele. We now have 99 people with the
AA genotype and one person with the Aa allele. Suppose that each person in the
population has two children. For the a allele to make it into the next generation,
the person with the Aa genotype must pass on the a allele to at least one of his
or her offspring. By chance, this person might pass on only the A allele, in which
case the mutant allele is lost. At the level of the population, the same thing occurs.
Most of the time, the fate of a new mutant allele is extinction.

However, ‘‘most of the time’’ is not the same as ‘‘always.’’ On occasion,
the frequency of a mutant allele will drift upward, so that the allele becomes
more common in the next generation. Of course, it could then drift down again,
perhaps leading to extinction, but some of the time the frequency of the mutant
will continue to drift upward, until the new mutation has spread throughout the
population, reaching a frequency of 100%! Overall, given enough time, genetic
drift will lead to one of two outcomes—the allele becomes extinct (frequency = 0)
or fixed (frequency = 1). Although the first outcome is more likely, it is important
to note that the second does occur.

III. MUTATIONAL HISTORY AND ANTHROPOLOGICAL QUESTIONS

Although more detail on mutation will be provided in later chapters, it is useful
to consider at this point two examples of how the history of mutations in a species
or population can inform us about evolutionary questions in anthropology.

A. The Relationship between African Apes and Humans

It has long been recognized that humans and the group of primates commonly
known as the ‘‘apes’’ are closely related. This recognition was based initially on
anatomical similarities and later confirmed on genetic grounds. Apes and humans
are all classified into the superfamily Hominoidea, often referred to simply as
hominoids. Both apes and humans are classified as hominoids because they share a
number of traits not found in other primates, indicating a shared ancestry. Such
traits include lack of a tail, a mobile shoulder joint, and presence of scapulae
(shoulder blades) on the back as opposed to more on the side of the body, as in
monkeys.

A long-standing traditional classification of hominoids recognizes three zoo-
logical families, known as the hylobatids (also known as the ‘‘lesser apes’’), the
pongids (also known as the ‘‘great apes’’), and the hominids (humans and their
ancestors). Figure 4.2 shows this traditional classification. The use of three different
families had been very useful for many years because this classification mirrored
some of the more obvious anatomical differences. The lesser apes, consisting
of gibbons, are small apes that are more monkeylike in some ways. The great
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FIGURE 4.2 Traditional classification of hominoids. On the basis of certain anatomical
features, hominoids have often been classified into three families: hylobatids (lesser apes),
pongids (great apes), and hominids (humans). This classification does not agree with evolu-
tionary relationships based on genetic analyses (e.g., Figure 4.3). Consequently, many have
argued for a reclassification of the hominoids that better reflects the genetic and evolutionary
reality, such as the classification shown in Figure 4.4.

apes are much larger, and consist of the Asian great ape, the orangutan, and the
three different types of African great apes—gorillas, chimpanzees, and bonobos
(a species that is very closely related to chimpanzees and was once thought to be
a subspecies of chimpanzee).

If we assume the traditional classification to be a reflection of evolutionary
relationships, we would conclude that the great apes are all more closely related to
each other than to humans. We might then infer that there was an evolutionary split
at some point in the past between humans and an ancestral great ape, followed
later by evolutionary splits between the various species of great apes. Genetic
analyses have shown this is not the case. Instead, we now know that African apes
and humans are actually more closely related to each other than either is to the
orangutan. In other words, there was first a split between the orangutan line and
the line leading to a common ancestor of African apes and humans. The closer than
expected affinity of African apes and humans was established by immunological
comparisons of proteins across different species (Goodman and Cronin 1982).
Reactions of proteins found in the serum of blood with antibodies from different
species were observed; more distantly related species show greater immunological
reaction. As genetic technology increased, other methods of genetic comparison
showed the same basic pattern of a closer relationship between African apes and
humans than between either and the orangutan. Today, we have the ability to
compare the DNA sequences of different primate species, and such comparisons
show the same thing. The comparison of DNA sequences further shows that we are
more closely related to two of the African apes, the chimpanzee and the bonobo,
than to the third African ape, the gorilla.

What does this have to do with mutation? After new species split and form
separate evolutionary lines, they no longer share genetic changes. Mutations
occur (and are fixed through genetic drift) in one species but not the other.
Over time, these mutations accumulate and the species become increasingly
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different genetically. When we compare immunological reactions, or the amino
acid makeup of blood proteins, or direct assessment of DNA sequences, we can
generally estimate the total amount of mutational change that has occurred in two
species since they shared a common ancestor. The more time that has elapsed
since two species have split from a common ancestor, the greater the number of
accumulated mutations. Looking at the history of mutations gives us a window
on the evolutionary history of different species.

When we describe the number of mutations that separate two species, we
are in essence describing the amount of time that has passed since they shared
a common ancestor, where time is measured in terms of mutational differences.
If we have this information and we have an estimate of how fast such mutations
accumulate per generation, we can then translate the number of mutations into a
direct estimate of time in generations. This is essentially a distance–rate–time type
of problem of the sort we encounter in math classes. You may recall, for example,
word problems such as ‘‘A car has gone 240 miles at 60 miles per hour. How long
has the car been driving?’’ The answer here is obviously 4 h, based on the simple
relationship that distance = rate × time, where in this case we know the distance
and the rate and solve for time.

The same principle can be applied to the analysis of mutational differences, a
method often known as molecular dating, based on the idea of a molecular clock. If
we are dealing with DNA sequences or the products of genes (such as proteins)
that are neutral, we can use various methods to measure the genetic distance
between species, and then estimate the number of generations and the number of
years since two species have shared a common ancestor. One way of doing this is
to use the fossil record to calibrate the genetic distances. For example, suppose that
we have three species (A, B, and C) with the following genetic distances between
them: A and B = 12, A and C = 12, and B and C = 4 (the numbers denote units
of genetic distance). We see that the distance between species B and C (=4) is
less than that between A and B (=12) or between A and C (=12). Thus we can
say that B and C are more closely related to each other than either is to species
A. Now, suppose that we know from the fossil record that species A split off 30
million years ago. If we assume that the rates of genetic change are the same across
all evolutionary lines, then the ratio of time to distance is the same for all species
comparisons. Given that species A split off 30 million years ago, and has a genetic
distance to other species of 12, we can solve for the time x that species B and C
split from each other, resulting in a genetic distance of 4 by assuming that the time
to distance ratio is the same, or

30, 000, 000
12

= x
4

We can now solve for x as 4(30,000,000)
12 = 10, 000, 000 = 10 million years ago. In

reality, the process and methods of estimation are more complex, and involve
tests for the accuracy of various assumptions. Nonetheless, this brief hypothetical
example gives us not only an example of how mutational history can be used to
describe the evolutionary relationship between species but also a rough date of
their divergence from common ancestors.
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The molecular clock idea was first applied to human evolution by Sarich and
Wilson (1967), who used immunological comparison of the albumin protein to
infer that humans and chimpanzees diverged from one another approximately 4–5
million years ago (Sarich and Wilson 1967; Sarich 1971). Numerous studies have
since been done, using improved calibration from the fossil record and more direct
measures of mutational differences from DNA sequences. A typical estimate of the
divergence of humans from the common ancestor of chimpanzees and bonobos
is now about 6 million years, with an earlier divergence of the gorilla at about
7 million years ago (see Figure 4.3).

A consequence of these genetic studies has been to call the traditional classi-
fication of Figure 4.2 into question because some members of the pongid family
are actually more similar to humans than to other pongids. Various revisions have
been suggested, including the one shown in Figure 4.4, based on the work of Wood
and Richmond (2000). Here, the hominid family is broadened to include great apes
and humans, and we (humans) are placed in a subfamily (hominines) with our
closest relatives, chimpanzees and bonobos, and given our own zoological tribe
(a subunit of subfamilies) known as hominins. This revised classification has the
advantage of showing clearly that African apes and humans are more similar to
each other than to the orangutan, and that humans are most closely related to chim-
panzees and bonobos. The study of accumulated mutations thus allows us to make
precise statements regarding evolutionary history. Keep in mind, however, that
although some favor this revised classification because it reflects evolutionary his-
tory, others prefer to use the more traditional classification that places humans in

HumanGorillaOrangutan BonoboChimpanzee

2.5 Ma

6 Ma

7 Ma

13 Ma

African great apesAsian great ape

FIGURE 4.3 The evolutionary relationships and estimated divergence dates for great apes
and humans based on DNA evidence. All divergence dates are based on nuclear and
mitochondrial DNA sequences (Glazko and Nei 2003) except for the split of chimpanzees and
bonobos, which is based on mitochondrial DNA (Gagneux et al. 1999). This tree shows that
humans and African apes are more closely related to each other than either is to the Asian
great ape, the orangutan. In addition, it is clear that humans are somewhat more closely
related to the chimpanzee and the bonobo than to the gorilla.
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FIGURE 4.4 Revised classification of hominoids based on genetic relationships. This clas-
sification differs from the traditional classification shown in Figure 4.2 in that it emphasizes
the genetic and evolutionary similarities of humans to the African apes, particularly the
chimpanzee and bonobo (Wood and Richmond 2000).

a separate family from the great apes (Figure 4.2) because it emphasizes adaptive
differences (e.g., Marks 2011). Choice of classification depends on the purpose of
the classification.

B. Mutations and Haplogroup Trees

The above example shows how mutational changes in different species can be
used to reconstruct the evolutionary history of those species. Here, a different
approach is illustrated that provides information on the mutational history within
a species. The examples used here focus on the human Y chromosome, most of
which is inherited solely from father to son without recombination. This means
that a man will pass his Y chromosome to his sons intact, who then pass it on
to their sons intact, and so on throughout time until a mutation occurs. When a
mutation in the Y chromosome occurs, a man with that mutation will then pass
it along to all of his male descendants. Over time, such mutations accumulate.
When we look at genetic variation among men today, we see the result of this
process over many past generations from an initial Y chromosome (the reason
why all males can trace their Y chromosome ultimately back to a single male is
explained in terms of coalescent theory, which will be described in Chapter 5; for
the moment, we are focusing here on what we can learn about the history of past
mutations by looking at contemporary genetic diversity).

The process of mutation is shown in Figure 4.5, which traces the genealogy
of a single male in generation 0. This male has two sons, each of which has two
sons, and so on until there are 16 males in the fourth generation. In order to show
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FIGURE 4.5 Tracking mutational changes over time. This hypothetical genealogy of males
is used to study changes at three loci in an imaginary Y chromosome, where there are two
alleles at each of the three loci: A and a for the first locus, B and b for the second locus,
and C and c for the third locus. The genealogy starts with a single male at generation 0
that has the haplotype ABC, who has two sons, each of which has two sons, and so on to
the fourth generation. Initially, each son inherits the initial haplotype ABC, but over time a
series of mutational changes occur (A → a, B → b, A → c). After each mutational change,
all subsequent males inherit that mutation. After four generations, mutation has given rise to
three new haplotypes: aBC, abC, and abc. Although the mutation rate here is unreasonably
high in order to illustrate several changes in a handful of generations, the principle also applies
in the real world where mutations occur less frequently.

the principles of mutational change, we consider a hypothetical situation of three
linked loci on the Y chromosome forming a haplotype. The initial male is assigned
haplotype ABC, which means that he has allele A for the first locus, allele B for
the second locus, and allele C for the third locus. He passes his haplotype, ABC, to
both of his sons. Without mutation, this process would continue forever, with all
males in all future generations having the same haplotype. Indeed, this does occur
in some of the branches of the genealogy; in fact, 8 in 16 great-great grandchildren
still have the ABC haplotype.

However, I introduced a mutation in the first locus, from allele A to allele
a in the other line, so that some males in generation 2 have the aBC haplotype.
This haplotype will then be passed along to all subsequent males until another
mutation occurs. Every time a mutation occurs, all subsequent males inherit that
mutation. In order to show how this works in Figure 4.5, I set the mutation
rate unreasonably high in order to show more mutations in a small amount
of time. Consequently, we see three new haplotypes by the fourth generation:
aBC, abC, and abc. These haplotypes are related. For example, haplotype aBC
represents one mutation (A → a), and haplotype abC represents two mutations
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Ancestral
haplotype

ABC

aBCabCabc

A→a

Haplotypes

ABC

B→b

C→c

FIGURE 4.6 A haplotype tree summarizing the history of mutations shown in the genealogy
in Figure 4.5. Starting with the initial ancestral haplotype of ABC, the first change occurs with
the mutation A → a, giving rise to the haplotype aBC. Further mutations occur later in time,
generating the haplotypes abC and abc.

(A → a and B → b). Both haplotypes share the mutation of A to a through descent
from a common ancestor, such that haplotype abC is descended from haplotype
aBC. These evolutionary relationships are much clearer when we take this basic
information and express it in the form of a haplotype tree, as shown in Figure 4.6.
Here, we see the evolutionary connections between the haplotypes, showing that
the first mutation was from A to a, producing haplotype aBC. There were then
further mutations that affected some of the individuals having this haplotype. The
second mutation, from B to b, produced a new haplotype: abC. The third mutation
occurred in a male with this haplotype, producing another haplotype: abc.

Of course, in the real world there are many more loci and mutations to
consider. When we analyze genetic variation in our species, we focus on sets
of related haplotypes known as haplogroups, which share common mutations.
In the example from Figures 4.5 and 4.6, we could, for example, consider all
haplotypes with the b mutation as part of a single haplogroup, which in this case
would include haplotypes abC and abc. The relationship between haplotype and
haplogroup can sometimes be confusing. Elsewhere (Relethford 2003), I use an
analogy of automobiles to understand the relationship between haplotype and
haplogroup, considering a car’s model as analogous to haplotype and a car’s make
as analogous to haplogroup. Car manufacturers produce a number of different
models. Often these models are ‘‘related’’ in the sense that they share certain
design features, such as the instrument panel or climate control systems, even
though they are different in other ways. In this case, the make of the car, such as
Toyota, is analogous to a haplogroup, and the individual models, such as Camry,
Corolla, and Matrix, are analogous to haplotypes within the same haplogroup.
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FIGURE 4.7 A haplogroup tree for the human Y chromosome. This tree represents 20
haplogroups, labeled A to T, and is a simplification of the information given by Karafet et al.
(2008). Definition of each haplogroup is based on of one or more mutations. For example,
haplogroup A is defined as having both the M91 and P97 mutations. This tree is a schematic
of major mutational changes in the Y chromosome but is not drawn to scale; the lengths
of the branches are not proportional to the ages of the mutational events or the number of
mutational events defining each lineage. Of particular interest is the fact that haplogroups A
and B are found almost entirely in African populations, suggesting that subsequent evolution
of the Y chromosome took place after an expansion out of Africa by modern humans.

In genetic analysis, we often trace the evolutionary relationship between
haplogroups. Figure 4.7 presents an example based on global variation in the
human Y chromosome. This figure shows the evolutionary relationships of 20
Y-chromosome haplogroups based on a complex type of analysis, known as
parsimony analysis, that finds the simplest ‘‘tree’’ connecting the haplogroups. The
oldest haplogroups are A and B, followed by the common ancestor of haplogroups
D and E. Other haplogroups are the result of more recent mutations.

We can learn a lot about past human evolution by examining the geographic
location in the world today of the different haplogroups, a method known as
phylogeography, which looks at the geographic distribution of genetic lineages.
Geographic analysis provides clues about the origin and distribution of mutations.
A region that has a high frequency of a particular mutation is likely to be the
region within which the mutation first appeared. As the mutation spreads through
gene flow, it can be found elsewhere, although typically at lower frequency.

In the case of the Y-chromosome tree, we find that haplogroups A and B are
almost entirely found only among Africans. Some other haplogroups tend to be
restricted to other geographic regions, such as haplogroup D in Asian populations.
Some of the other haplogroups are found in several different regions but with
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high frequencies in one region, such as haplogroup Q, which is found in high
frequency in Native American and Northeast Asian populations, but also found at
lower frequencies in Europe, the Middle East, and East Asia (Karafet et al. 2008).
The fact that the oldest Y-chromosome haplogroups (A and B) are found only in
Africa suggests strongly that modern humans arose first in Africa and then spread
out to the rest of the world, a finding in agreement with other genetic data and
with the fossil record for human evolution (Relethford 2008a). Another interesting
finding is the geographic distribution of haplogroup C, which has been found in a
number of Asian, Australian, and Pacific populations, but not in any sub-Saharan
African populations; this pattern suggests an Asian origin for this haplogroup
after the initial dispersion out of Africa. Details of the debate over modern human
origins will be discussed later in this book; for the moment, the Y-chromosome
data provide us with an example of the insights that can be generated through the
analysis of mutations.

IV. SUMMARY

Mutation is a random change in the genetic code. There are various types of
mutations ranging from mutations of a single base, to insertions and deletions
of larger DNA sequences, to changes in entire chromosomes. Mutations provide
the ultimate source of genetic variation, and these new alleles can increase or
decrease in frequency as a result of the other evolutionary forces. Mutation rates
per locus per individual per generation are very low, and simple modeling shows
that mutation alone cannot produce major changes in allele frequencies over even
very long periods of time. Although mutation is necessary for evolutionary change,
it is not a sufficient reason, and it requires interaction with other evolutionary
forces to produce any significant evolutionary change. Mutation acts to introduce
new genetic variation, and the other evolutionary forces act on this new variation
to increase or decrease the frequency of mutant alleles. From the perspective of
functioning to introduce new variation, the overall impact of mutation is quite
noticeable, particularly in large species such as humans today, where billions
of new mutations are introduced into our gene pool with each generation. The
fate of these mutations is, of course, subject to the impact of other evolutionary
forces.

Methods of comparing DNA sequences allow mutation to be used in answering
interesting evolutionary questions. One longstanding question in anthropology
is the relationship of humans and the great apes. When a species diverges from
another, the accumulation of random mutations over time provides us with
a genetic yardstick with which to reconstruct evolutionary history. Numerous
genetic studies have shown that humans and African great apes (gorilla, chim-
panzee, and bonobo) are more closely related to each other than either is to the
Asian great ape, the orangutan. This finding has led to the realization that tradi-
tional divisions of hominoids into ‘‘apes’’ and ‘‘humans’’ is not entirely accurate,
leading to a suggested revision in classification. In addition, genetic comparisons
allow us to estimate the date at which different evolutionary lineages split from
each other. For example, we estimate that humans split from the African ape lines
roughly 6–7 million years ago.
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Mutational history can also help us reconstruct the evolutionary history of a
species. Genetic comparison allows us to determine the sequence of mutations that
have taken place in different haplotypes or haplogroups, leading to an evolutionary
‘‘tree’’ that describes the history of mutation in a species. By examining this tree
and the geographic distributions of different haplotypes/haplogroups, we can
determine patterns of past migration. An example is the analysis of human
Y-chromosome DNA. Globally, there are 20 major haplogroups, of which the
two oldest are found exclusively in African populations. The Y-chromosome
haplogroup tree fits other genetic and fossil data, suggesting an African origin of
modern humans and subsequent dispersion into different geographic regions.

APPENDIX 4.1 USE OF A RECURRENCE RELATION TO SOLVE
ITERATIVE EQUATIONS

Many models in population genetics express an allele frequency in terms of the
allele frequency in the previous generation, such as equation (4.1) for irreversible
mutation and equation (4.11) for reversible mutation. Although sometimes you
might want to take derivation of models such as equation (4.11) as a given, it is
often useful to understand where they came from. In the case of reverse mutation,
equation (4.11) was derived using a recurrence relation, a general model that is
applicable to many problems in population genetics. Indeed, some equations in
later chapters will be derived (in the appendixes of those chapters) using this
relationship. The general principle is outlined here, using reversible mutation as
an example.

The following method, modified from Elseth and Baumgardner (1981), applies
when we can describe the change in a variable X from one point in time (t) to the
next (t − 1), �X = xt − xt−1, as a first-order linear equation of the form where

xt − xt−1 = axt−1 + b

By adding xt−1 to both sides of the equation, we get

xt = axt−1 + b + xt−1

xt = xt−1(a + 1) + b (A4.1)

We now add the quantity (b/a) to both sides, giving

xt + b
a

= xt−1(a + 1) + b + b
a

We then factor b out from the right-side of the equation and perform several
algebraic manipulations, giving

xt + b
a

= xt−1(a + 1) + b
(

1 + 1
a

)

xt + b
a

= xt−1(a + 1) + b(a + 1)
a

xt + b
a

= (a + 1)
(

xt−1 + b
a

)
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We now subtract (b/a) from both sides, giving

xt = (a + 1)
(

xt−1 + b
a

)
− b

a

When applied to successive time periods, this equation describes an iterative
process than can be simplified. Let us start by considering the value of x in
generation t = 1, starting with an initial value of x in generation t = 0 of x0:

x1 = (a + 1)
(

x0 + b
a

)
− b

a
(A4.2)

We now consider the next generation (t = 2), which gives

x2 = (a + 1)
(

x1 + b
a

)
− b

a
(A4.3)

If we substitute equation (A4.2) for x1 in equation (A4.3), we obtain

x2 = (a + 1)
(

(a + 1)
(

x0 + b
a

)
− b

a
+ b

a

)
− b

a

which simplifies to

x2 = (a + 1)2
(

x0 + b
a

)
− b

a
(A4.4)

which is the same form as equation (A4.2) but with the (a + 1) term squared. If we
extend this to the next generation (t = 3) as

x3 = (a + 1)
(

x2 + b
a

)
− b

a

and then substitute equation (A4.4) for the value of x2, we get

x3 = (a + 1)
(

(a + 1)2
(

x0 + b
a

)
− b

a
+ b

a

)
− b

a

which simplifies to

x3 = (a + 1)3
(

x0 + b
a

)
− b

a
(A4.5)

We see that equations (A4.2), (A4.4), and (A4.5) are all of the same form, allowing
us to generalize the equation for any value of t as

xt = (a + 1)t
(

x0 + b
a

)
− b

a
(A4.6)
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As a sidenote, mathematically oriented readers may be interested to note that the
equilibrium value of this iterative equation (where no further change occurs) is
equal to −(b/a).

Having outlined the general method, we can now turn to reversible mutation
as an example. Recall from equation (4.5) in the main text of this chapter that the
frequency of the A allele under reversible mutation is

pt = pt−1(1 − μ) + (1 − pt−1)ν

which expands to

pt = pt−1(1 − μ − ν) + ν

where μ is the rate of mutation from A to a and ν is the reverse mutation rate from
a to A. This model is a first-order linear equation as described above in equation
(A4.1) as

xt = xt−1(a + 1) + b

where

xt = pt

xt−1 = pt−1

a = −(u + ν)

b = ν

Substituting these values back into equation (A4.6) gives

pt = ν

u + ν
+ (1 − u − ν)t

(
p0 − ν

u + ν

)

As the quantity ν/(u + ν) is equal to the equilibrium value p∞ as shown in equation
(4.9), this simplifies to

pt = p∞ + (1 − u − ν)t(p0 − p∞)

which is equation (4.11) in the main (chapter) text.



C H A P T E R 5
GENETIC DRIFT

‘‘God does not play dice with the universe.’’ This statement is attributed to
the famous theoretical physicist Albert Einstein concerning the claim of quantum
mechanics that, at some level, nature is random and best described by probabilities
rather than certainty (Natarajan 2008). To many scientists and philosophers, the
view that natural processes can have a random component is difficult to accept.
In evolutionary biology, however, it has long been recognized that evolution has
both deterministic and random components (Mayr 2000).

In the previous chapter we have already seen an element of randomness in
the evolutionary process. The occurrence of mutations at a given locus in a given
individual in a given generation is a function of probability. Although we cannot
predict exactly when and where a mutation occurs, because it is a random process,
we can say something about the relative likelihood of a mutation occurring. This
is much like a flip of the coin—we do not know whether a given coin will come
up heads or tails, but we can state the probability of either event happening (= 1

2 ).
We can also use probability theory to make some general statements about the
likelihood of a set of events occurring. For example, if we flip 10 coins, how many
will come up heads? We might be very lucky and get 10 heads. We could also get 9
heads and 1 tail. The other possibilities are 8, 7, 6, 5, 4, 3, 2, 1, or 0 heads. Although
we cannot tell beforehand what the specific outcome of any given toss of 10 coins
will be, we can derive the probability of the occurrence of any of those outcomes.
For example, the probability of getting all heads from 10 coin flips is roughly one
in 1000 (0.000977), and the probability of getting 5 heads out of 10 coin flips is
0.246 (see any introductory statistics book for an explanation of how to do this).

Genetic drift is also a random process. Here, allele frequencies can fluctuate
from generation to generation because of chance. Under Hardy–Weinberg equi-
librium, we expect allele frequencies to remain constant from one generation to
the next in the absence of mutation, selection, or gene flow. As noted in Chapter 2,
an assumption of Hardy–Weinberg equilibrium is an infinite population size so
there is no sampling deviation. In the real world, there are sampling deviations,
and allele frequencies can increase or decrease by chance. As with coin flips, we
cannot predict beforehand exactly what will happen as a result of genetic drift,

Human Population Genetics, First Edition. John H. Relethford.
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but the principles of probability allow us to figure out the likelihood of different
events occurring.

I. WHAT IS GENETIC DRIFT?

Although it is easy to give the definition of genetic drift as a random fluctuation
in allele frequencies over time, it is more difficult to get a feel for what this
actually means in an evolutionary context. We will start by considering the effect
of sampling in a genetic context and then build to an example of genetic drift.

A. Genetic Sampling

Let us start with a simple example. Assume that there is a locus with two alleles, A
and a, and that you have the heterozygous genotype Aa. When you have a child,
you will pass along either the A allele or the a allele. Each event has a 50% chance
of happening. Therefore, you might expect to pass on the A allele half of the time
and the a allele half of the time. Now, suppose that you have four children. How
many children do you expect to receive the A allele? Although your expectation
would be to have two children with the A allele and two children with the a allele,
in reality you could, by chance, have any of the following combinations:

• All four children will have the A allele (none will have the a allele).
• Three children will have the A allele and one child will have the a allele.
• Two children will have the A allele and two children will have the a allele.
• One child will have the A allele and three children will have the a allele.
• Zero children will have the A allele (they will all have the a allele).

Although we do not know beforehand which of these possibilities will occur,
we can figure out the probability of any of these events happening. To start with,
let us consider the case where all four children will receive the A allele. There is
only one way for this to happen—the first child receives an A, the second child
receives an A, the third child receives an A, and the fourth child receives an A. The
probability that each child receives an A is 1

2 , which means that the probability
that all will receive the A allele is the probability of the first receiving an A and
the second receiving an A and the third receiving an A and the fourth receiving
an A. Using the and rule from Chapter 1, we multiply the probabilities to get the
probability that all four children receive the A allele as

1
2 × 1

2 × 1
2 × 1

2 = 1
16 = 0.0625

We now move to the case where three children receive an A allele and one
child receives an a allele. This is a little bit more complicated, because there are
four different ways that this could occur: (1) the fourth child could receive the a,
(2) the third child could receive the a, (3) the second child could receive the a, or (4)
the first child could receive the a. Because the probability of receiving an a allele is
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the same as receiving an A allele (= 1
2 ), the probability of any of these outcomes is

1
2 × 1

2 × 1
2 × 1

2 = 0.0625. These four possibilities and their probabilities are:

AAAa (probability = 0.0625)

AAaA (probability = 0.0625)

AaAA (probability = 0.0625)

aAAA (probability = 0.0625)

To get the overall probability of getting some combination where three children
receive the A allele and one child receives the a allele, we need to use the or
rule from Chapter 1 and add the probabilities, which gives the total probability of
getting 3 A alleles and 1 a allele as

0.0625 + 0.0625 + 0.0625 + 0.0625 = 4(0.0625) = 0.250

We now move to the case where two children receive an A allele and two
children receive an a allele. There are six different ways that can result in two A
alleles and two a alleles:

AAaa

AaAa

AaaA

aAAa

aAaA

aaAA

Because each of these possibilities has a probability of 1
2 × 1

2 × 1
2 × 1

2 = 0.0625, the
total probability of some any two children having an A allele is 6 × 0.0625 = 0.375.

The case where one child receives an A allele and three children receive an a
allele is the same probability as the case where three children receives an A allele
and one child receives an a allele. There are four ways for this to occur—Aaaa,
aAaa, aaAa, and aaaA—each with a probability of 0.0625, giving a total probability
of one A allele and three a alleles as 0.0625 × 4 = 0.25. Finally, the case where all
four children receive an a allele (aaaa) is the same as the probability of all four
children receiving an A allele, which is 0.0625. We now summarize the results in
the following table:

Number of A Alleles Probability

4 0.0625
3 0.2500
2 0.3750
1 0.2500
0 0.0625
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Note that the total of all probabilities adds up to 1.0. Also, note that there is a
lot of variation around the expected value of two A alleles. In fact, the majority of
outcomes in this case will not have two A alleles (probability = 1 − 0.375 = 0.625
of having some number other than two A alleles). A difference from the expected
outcome (two A alleles) is not unexpected if you think about it, because of the
nature of probability. Think about a coin flipping analogy; if you flip four coins,
you might get 4, 3, 2, 1, or 0 heads.

Deviations from expected values always result from sampling. The expected
value for two A alleles out of four children is 1

2 , but this expected value will
apply all the time only if we are talking about an infinite number of children!
(Yes, this seems strange to consider in a biological sense, but it makes perfect
sense mathematically.) In any real situation, we are sampling from an expected
distribution of equal numbers of A and a alleles. If you have a finite and small
number of children, then we will see different numbers of A alleles much of
the time.

This sampling effect means that you may not pass on your genetic makeup
exactly to your offspring. Now, consider this sampling effect happening in an
entire population. The result is that the allele frequency among offspring may
deviate from the allele frequency among the parents. This is genetic drift, or more
precisely random genetic drift, because the process is random—sometimes an A
allele is passed on, and sometimes an a allele is passed on.

B. A Simulation of Genetic Drift

In order to see how genetic drift works, we can perform a simple simulation
experiment using a set of random numbers (Cavalli-Sforza and Bodmer 1971). For
this experiment, we will start with our usual model of a locus with two alleles,
A and a, where the initial allele frequencies are p = 0.5 and q = 0.5, respectively.
Genetic drift will now be simulated for a population of five people. Because each
person has two alleles, this means, that we are dealing with 10 alleles. Given a
probability of 0.5 for any allele being an A allele, how many A alleles will we get
if we sample 10 alleles? This is analogous to flipping 10 coins to see how many
come up heads. Here, however, we are dealing with the probability that an allele
present in the parental generation will be passed on to the offspring generation.
The expected value (given an initial allele frequency of 0.5) is 5 in 10 A alleles. We
know, however, that sampling could result in any number from 0 to 10 A alleles.

Most often, we use computer programs to simulate the process of genetic drift,
which essentially involves a measure of ‘‘coin flipping’’ inside the computer. Here,
we will use a different method of simulation by employing a random-number
table. Such tables consist of randomly chosen digits (from 0 to 9) and are useful
in demonstrating random processes. Here, I used the table of random digits from
Rohlf and Sokal (1995), which is a table of 10,000 random digits produced by a
computer program. I randomly selected a starting point in the table and wrote out
the first 10 digits listed from left to right:

1060633735
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We now use these numbers by setting up a rule that matches these digits with the
probability of selecting an A or an a allele. Because the initial frequency for A is
0.5, we will use half of the digits (0–4) to represent the A allele and the other half
of the digits (5–9) to represent the a allele. An easy way to do this is to note which
of the 10 digits represents the A allele by setting those digits (0, 1, 2, 3, or 4) in
boldface. This gives us

1060633735

Because 6 of 10 digits are in the range from 0 to 4, this gives us a new allele
frequency in the offspring generation of p = 6

10 = 0.6. The allele frequency has
changed from 0.5 to 0.6 in a single generation because of genetic drift.

I continued the simulation to the next generation by drawing the next set of
10 random digits from the table:

4681296239

Because the allele frequency in the parental generation is now 0.6, we have to
adjust the coding scheme accordingly, letting the digits 0–5 represent the A allele
(which is because the range of these 6 of 10 possible digits corresponds to the new
probability of 0.6). We now indicate the digits corresponding to the A alleles in
boldface, giving

4681296239

There are now five A alleles out of 10, giving a new allele frequency of p = 5
10 = 0.5.

I then extended the analysis to the next generation by picking the next 10-digit
string of numbers:

2381536757

Because the parental allele frequency is again p = 0.5, we let the digits 0–4
represent the A allele. Setting these in boldface gives

2381536757

There are 4 out of 10 alleles that are A alleles, giving an allele frequency of p = 0.4.
In this case, the allele frequency did not change from one generation to the next.

I continued the simulation using additional random digits over a number of
generations. The results are graphed in Figure 5.1. Note that the allele frequency
fluctuates over time—sometimes it increases, sometimes it decreases, and some-
times it stays the same. Note that the simulation ends in generation 27 when the
allele frequency drifts up from 0.9 to 1.0. Because there are only A alleles in the
population, there will be no further change in allele frequency—it will remain at
1.0 unless the a allele is reintroduced through mutation or migration.
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FIGURE 5.1 Computer simulation of genetic drift. This simulation is based on a population
size of 5 individuals (10 alleles) and starts with an allele frequency of p = 0.5. Random
genetic drift is simulated using a table of random numbers as described in the text. Note that
the simulation ends at generation 27 when the allele frequency has drifted down to zero.
No further change is possible because there are only A alleles in the population. Fixation or
extinction of an allele is the eventual outcome of genetic drift.

C. The Outcome of Genetic Drift

It is important to remember that each time you simulate genetic drift you will see
some differences. If I were to start the above simulation at a different starting
point in the table of random numbers, the run would look different. We can see
the random nature of genetic drift by comparing several simulations that all start
with the same initial allele frequency and population size. Here, and throughout
the remainder of the chapter, the simulations are based on a computer program
written to simulate genetic drift. The logic of the program is the same as the
simulation above, but the computer is used to generate the random numbers and
tally the number of A alleles in each generation (which is much faster!).

In order to illustrate the random nature of genetic drift, I performed 100
simulations of drift over 100 generations, each starting with an initial allele
frequency of p = 0.5 for a population of N = 50 individuals (we will continue
using the symbol N to indicate population size throughout this text). I selected 3
of the 100 runs were selected to show different outcomes for genetic drift; these
are shown in Figures 5.2–5.4. Figure 5.2 shows a case where the allele frequency
fluctuates both up and down, and after 100 generations is essentially back to the
point where it started. Figure 5.3 also shows fluctuation over time, but eventually
drifts up to a frequency of p = 1.0 after 78 generations. When the allele frequency
reaches this value, it has reached a state of fixation; there will be no further change
because all of the alleles in the population are A alleles. The only way there
could be any more change would be if there were a mutation or if another allele
were introduced from another population (gene flow). Figure 5.4 shows a similar
outcome, where, after some fluctuation over time, the allele frequency eventually
drifts down to a value of p = 0 after 64 generations. Here, the A allele has reached
a state of extinction in that all of the A alleles are gone. No further change will
take place unless there is an A allele introduced through mutation or migration.



WHAT IS GENETIC DRIFT? 107

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

Generation

A
lle

le
 fr

eq
ue

nc
y 

(p
)

FIGURE 5.2 Computer simulation of genetic drift in a population of N = 50 individuals,
run 1. The initial allele frequency is p = 0.5. The large amount of random fluctuation of allele
frequency over time is characteristic of genetic drift in a small population. Compare this graph
with two other runs using the same starting parameters as in Figures 5.3 and 5.4.
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FIGURE 5.3 Computer simulation of genetic drift in a population of N = 50 individuals,
run 1. The initial allele frequency is p = 0.5. The large amount of random fluctuation of allele
frequency over time is characteristic of genetic drift in a small population. Note that there is
no further change in allele frequency after generation 78, at which point the allele has become
fixed in the population. Compare this graph with two other runs using the same starting
parameters as in Figures 5.2 and 5.4.

The above examples are meant only to give the reader a taste of some extreme
outcomes. In reality, any value between p = 0 and p = 1 is possible. This brings up an
interesting question—although we cannot predict the outcome of any specific case
of genetic drift, can we make any predictions about what outcomes are more likely?
Yes, such predictions can be made using advanced probability theory. Another
(and easier to visualize) way of seeing general trends in genetic drift is to use com-
puter simulation of drift over a large number of runs in order to get a visualization
of the range of outcomes. Such an example is shown in Figure 5.5, which simulates
100 generations of drift in a population of 50 reproductive adults. Note that
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FIGURE 5.4 Computer simulation of genetic drift in a population of N = 50 individuals,
run 1. The initial allele frequency is p = 0.5. The large amount of random fluctuation of allele
frequency over time is characteristic of genetic drift in a small population. Note that there is
no further change in allele frequency after generation 64, at which point the allele has become
extinct in the population. Compare this graph with two other runs using the same starting
parameters as in Figures 5.2 and 5.3.
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FIGURE 5.5 Computer simulation of genetic drift showing the results of 100 runs of 100
generations of drift in a population of N = 50 reproductive adults starting with an initial allele
frequency of p = 0.5 for each run. Note the tendency for genetic drift to cause the allele
frequency to become extinct (p = 0) or fixed (p = 1) than to have intermediate values. Given
enough time, genetic drift will always result in extinction or fixation.

the population size here refers only to the number of individuals that are actually
reproducing in any given generation (hence the term reproductive adults). The
distinction between different measures of population size is discussed in more
detail later in this chapter; for the moment, it is only necessary to remember that
we are counting only those individuals who are reproducing. In addition, we
are assuming that the population size stays the same each generation; in other
words, 50 adults have 50 offspring that survive to become the adults in the next
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generation, who then have 50 offspring, and so forth. Again, we will deal with
problems with this assumption later, but for now, we will concentrate only on the
overall impact of genetic drift.

Because each simulation run is different, we need to conduct a fairly large
number of runs to get an idea of average trends. For Figure 5.5, I had the computer
program run the analysis from scratch 100 times in order to generate a distribution
of outcomes of drift. What should be immediately clear from Figure 5.5 is that
many of the runs led to extinction (p = 0), similar to what you saw in Figure 5.4,
or fixation (p = 1), similar to what you saw in Figure 5.3. The rest of the allele
frequencies are more or less evenly distributed between the extreme values of p =
0 and p = 1.

So many of the runs resulted in allele extinction or fixation because genetic
drift tends toward extremes over time. In fact, probability theory shows that, given
enough time, genetic drift will always lead to extinction or fixation. The distribution
of allele frequencies after 100 generations shown in Figure 5.5 is well on the way
toward the expected end result of all runs showing extinction or fixation.

The distribution of allele frequencies changes over time. An example is shown
in Figure 5.6, which is based on 1000 simulations of genetic drift in a population of
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FIGURE 5.6 Computer simulation of genetic drift showing the results of 1000 runs of
genetic drift for different numbers of generations in a population of N = 20 reproductive
adults starting with an initial allele frequency of p = 0.5 for each run. The categories for the
histograms are those used in Figure 5.5; categories are for 0.1 increment between p > 0.0 and
p < 1.0, with separate categories for p = 0.0 (extinction) and p = 1.0 (fixation), shown on
the left and right sides of the horizontal axis (abscissa). The vertical axis (ordinate) measures
the number of runs.



110 GENETIC DRIFT

N = 20 reproductive adults. Each simulation starts with an initial allele frequency
of p = 0.5. Figure 5.6 shows the allele frequency distribution at different points
in time for the first 300 generations of genetic drift. The first graph (upper left
of the figure) shows the allele frequency distribution after a single generation of
genetic drift. The allele frequencies all cluster close to the mean (and expected)
allele frequency of 0.5, although some runs drifted as low as p = 0.3 or as high as
p = 0.775. By 5 generations, drift has led to a greater spreading of allele frequencies,
which increases further by 10 generations. By 20 generations, the distribution is
fairly flat, and by 50 generations there is a tendency for the majority of runs to
have resulted in either extinction (p = 0.0) or fixation (p = 1.0). This U-shaped
distribution is even more apparent by generation 100 and generation 200, where
only a small number of runs resulted in values other than p = 0.0 or p = 1.0. By 300
generations, all of the runs have resulted in either extinction of fixation. According
to probability theory, if we ran this simulation an infinite number of times (or
at least a very large number of times), half of the runs will result in extinction
and half in fixation. The actual numbers in Figure 5.6 are 484 runs that resulted
in extinction and 516 runs that resulted in extinction, which is indistinguishable
statistically from the expected 50 : 50 ratio.

In the above example, we expected that half of the runs would result in
extinction and half would result in fixation. The reason for this number (50 : 50) is
that the initial allele frequency was 0.5; that is, half the alleles were A alleles and half
were a alleles. Another way to envision this is to consider a starting point of p = 0.5
from which drift will sometimes move to the left of this mean (<0.5) and sometimes
will move to the right (>0.5). Each generation, drift will continue to move left or
right in a random fashion until the allele becomes extinct (p = 0.0) or fixed (p =
1.0). Because we started at p = 0.5, the distance to randomly drift down to p = 0.0
is equal to the distance to randomly drift up to p = 1.0. Thus, we expect (subject to
sampling error) an equal number of cases where extinction and fixation occur.

Given enough time, the ultimate fate of drift is either extinction or fixation, but
the relative number of times that each occurs depends on the initial starting value
of p. For example, what would we expect if we repeated the same experiment of
drift (1000 runs of drift over 300 generations based on a population of N = 20
reproductive adults) but started each run with an initial allele frequency of p = 0.2?
Because drift is a random process, we expect that allele frequencies will drift below
p = 0.2 and above p = 0.2, just as they did when we started with p = 0.5. In this case,
however, the distance to extinction (moving from p = 0.2 to p = 0.0) is much less
than the distance to fixation (where the allele frequency would have to move from
p = 0.2 to p = 1.0). Thus, even though we would eventually see all possible runs
result in either extinction or fixation, we also expect extinction to occur much more
often because the initial starting value in this case (p = 0.2) is closer to extinction
than fixation.

These expectations can be tested using computer simulation. Figure 5.7 shows
the results of 1000 runs of genetic drift over 300 generations in a population of
N = 20 reproductive adults where each run starts at an initial allele frequency
of p = 0.2. As with our earlier example, Figure 5.7 shows the distribution of
allele frequencies after different numbers of generations have passed. Note
that over time the allele frequency initially flattens out and then becomes a
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FIGURE 5.7 Computer simulation of genetic drift showing the results of 1000 runs of
genetic drift for different numbers of generations in a population of N = 20 reproductive
adults starting with an initial allele frequency of p = 0.2 for each run. The categories for the
histograms are those used in Figure 5.5; categories are for 0.1 increment between p > 0.0
and p < 1.0, with separate categories for p = 0.0 (extinction) and p = 1.0 (fixation), shown
on the left and right sides of the horizontal axis. The vertical axis measures the number of
runs.

distribution that has an increasing number of cases ending in allele extinction or
fixation. This is what also happened in Figure 5.6, but now there are many more
cases of extinction than fixation. After 300 generations have passed, all of the runs
have resulted in either extinction or fixation. Unlike the scenario in Figure 5.6,
where the number of extinctions and fixations was roughly equal, now there are
many more extinctions. Specifically, after 300 generations, we see in Figure 5.7
that 801 runs resulted in extinction and 199 runs resulted in fixation.

The major difference between the simulations shown in Figures 5.6 and 5.7
is that there are fewer cases of fixation in the second set of simulations. The
only parameter that was different about these two simulations is the initial allele
frequency. In the first set of simulations (Figure 5.6), the initial allele frequency
was p = 0.5. The relative frequency of fixation in this simulation was 516 runs out
of 1000 total runs, giving a rate of 516

1000 = 0.516. In the second set of simulations
(Figure 5.7), the initial allele frequency was p = 0.2 and the relative frequency of
fixation was 199 out of 1000 runs, giving a rate of 199

1000 = 0.199. You may note that
in both cases the observed frequency of fixation was almost identical to the initial
allele frequency (0.516 vs. 0.5 and 0.199 vs. 0.2). This is not a coincidence, but an
expected outcome. In terms of probability theory, the probability of fixation of
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an allele is equal to the initial frequency of the allele. The small, and statistically
insignificant, differences between the simulation experiments and the theoretical
expectations are due to sampling error. The expected probability of allele fixation
is based on an idealized mathematical model with an infinite number of runs. In
the real world, there will be some deviations because we are looking at a smaller
number of cases.

As will be described in detail below, the amount of genetic drift is dependent
on population size. The above simulation experiments used very small population
sizes (N = 20) in order to show a lot of drift over the course of 300 generations.
If we used a larger population size, it would likely take much longer than 300
generations to reach a state where each run resulted in allele extinction or fixation.
In general, the larger the population size, the longer this will take on average
(Kimura and Ohta 1969). In a mathematical sense, any finite population will
eventually drift to extinction or fixation. However, in a real-world setting, it could
easily take a very large (and unrealistic) number of generations to do so.

II. GENETIC DRIFT AND POPULATION SIZE

In all the above simulations of drift, we needed to consider the number of
reproductive adults in the population. The number of breeding individuals in a
population determines the extent of likely genetic drift. In short, drift is likely to
be greater in a single generation in a small population than in a larger population.
The smaller the population, the more likely drift will lead to a larger change in
allele frequency. For example, a change in allele frequency in one generation from
0.5 to 0.6 is much more likely for a population of 50 reproductive adults than a
population of 500 reproductive adults.

Before considering the impact of population size on drift, it is important to
consider exactly what we mean by population size. In the context of demography, the
size of a population is the total number of people alive at any given point in time.
In terms of genetic drift, however, we must only consider those individuals who
are actually contributing genetically to the next generation—that is, the number
of reproductive adults. We consider the entire population as being made up of
three nonoverlapping generations: a prereproductive generation, a reproductive
generation, and a postreproductive generation. Individuals that have already
reproduced belong to the last generation, and individuals who have not yet
reached reproductive age (children) belong to the next generation. If we want to
think about the potential for drift in any given generation, we have to focus on the
current number of reproductive adults.

Sometimes we contrast these two different views of population size by labeling
them census population size and breeding population size. The former refers
to everyone in the population, whereas the latter refers to only the reproductive
adults. This is an important distinction, because if we want to consider the amount
of drift possible in a village of, say, 100 people, we have to remember that the
actual breeding population size is much less than 100 after we exclude the younger
(prereproductive) and older (postreproductive) individuals. One commonly used
rule of thumb is to take breeding population size as one-third of census population
size, based on the assumption that a population can be divided into three broad
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age groups—prereproductive, reproductive, and postreproductive (Cavalli-Sforza
and Bodmer 1971).

Although useful for rough comparisons, this measure can be a bit crude as the
proportion of individuals of reproductive age in any given population can vary
depending on the age structure of the population. For example, among the Dobe
!Kung, a hunter–gatherer society of the Kalahari Desert in southern Africa, the
number of individuals of reproductive age (15–49 years) in 1968 was 282, out of
a total census size of 569, which is almost half (Howell 2000). It is also important
to consider cultural influences on age at reproduction. Among the !Kung, women
often start reproducing early in their lives—the average age of a mother at the birth
of her first child is 19 (Howell 2000). In other cultures, age at first reproduction may
be later. In nineteenth–twentieth-century Ireland, for example, it was common for
a number of men and women to marry late or to remain single and not reproduce
because of a complex interplay of social and economic factors (Kennedy 1973).
In addition, as will be described later, many other factors further influence the
degree of genetic drift seen in relation to population size. For the moment, we
will consider a simple model where we can clearly identify the exact number of
reproductive adults in the population (we are also making some other implicit
assumptions that will become clear later in this chapter).

A. How Does Population Size Affect Genetic Drift?

The easiest way to see how population size affects genetic drift is to compare a
number of runs for different values of population size. Figures 5.8–5.10 do just
that. Each of these figures shows the results of five independent runs of genetic
drift (to get an idea of the range of likely outcomes) for 100 generations, all starting
from an initial allele frequency of p = 0.5. The difference between the three figures
is the population size used in the simulations. Figure 5.8 uses a population size
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FIGURE 5.8 Five computer simulations of genetic drift for population size of N = 50 and
an initial allele frequency of p = 0.5. The five runs are indicated by different types of lines.
Note the wide range of fluctuation in allele frequency. Compare this graph with Figure 5.9
(population size N = 500) and Figure 5.10 (population size N = 5000).
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FIGURE 5.9 Five computer simulations of genetic drift for population size N = 500 and an
initial allele frequency of p = 0.5. The five runs are indicated by different types of lines. Note
that the range of fluctuation in allele frequency is less than that in Figure 5.8 (for N = 50) but
still more than Figure 5.10 (for N = 5000).
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FIGURE 5.10 Five computer simulations of genetic drift for population size of N = 5000
and an initial allele frequency of p = 0.5. The five runs are indicated by different types of lines.
Note that the range of fluctuation in allele frequency is less than in Figure 5.8 (for N = 50) and
Figure 5.9 (for N = 500).

of N = 50, Figure 5.9 uses a population size of N = 500, and Figure 5.10 uses a
population size of N = 5,000.

As shown in Figure 5.8, when population size is low (N = 50), the allele
frequency fluctuates quite a bit from generation to generation. By 100 generations,
two of the runs have resulted in allele extinction, one run is close to fixation (p =
0.9), and the other two runs have intermediate values (p = 0.34 and p = 0.48). These
results are consistent with the previous simulations (all using small values of N).
When we consider Figure 5.9, where the runs are based on a larger population
size of N = 500, we see that there is still a fair amount of fluctuation in allele
frequency over time, but less than was the case for N = 50. By 100 generations,
the allele frequency ranges from p = 0.26 to p = 0.70. Moving on to Figure 5.10,
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where the runs are based on a much larger population size of N = 5000, we see
that the amount of fluctuation is even more reduced. By 100 generations, the allele
frequencies range from p = 0.46 to p = 0.55.

These simulations show the basic principle of population size and genetic
drift—the smaller the population, the greater the amount of drift expected in a
generation. The reason for the correlation between population size and drift is
statistical sampling, as described in the coin flipping discussions earlier in this
chapter. If you flip 10 coins and get 7 or more heads, that is not that unusual. On
the other hand, if you flipped 10,000 coins, it would be much less likely to get 7000
or more heads. The more times an event occurs (in this case, the breeding size of a
population), the less likely that extreme events occur.

This does not mean that genetic drift occurs only in small populations. As
shown in Figure 5.10, there was some drift each generation even when the
population size was very large (N = 5000). As noted earlier, if we let any drift
simulations run long enough, then eventually the allele frequencies will become
either fixed or extinct (assuming, among other things, that other evolutionary
forces, such as mutation, are not operating). This means that, given enough time,
a population of 5000 will drift to fixation or extinction of an allele. However, the
larger the population, the longer, on average, this will take.

Because drift is a random process, an allele could go to fixation or extinction in
a very short time or after a very long time. The randomness means that we cannot
predict exactly when an allele becomes fixed (or extinct). However, probability
theory can give us an estimate of how long the process takes on average. Kimura
and Ohta (1969) showed that the average number of generations until fixation of
an allele (assuming that the allele does not become extinct) t1 is

t1 = −4N(1 − p) ln(1 − p)
p

(5.1)

where N is the breeding population size, p is the initial allele frequency, and
ln(1 − p) is the natural logarithm of the quantity (1 − p). They also show that the
average number of generations until extinction (assuming that the allele does not
become fixed) is

t0 = −4N ln(p)
1 − p

(5.2)

In the case of the simulations in Figures 5.8–5.10, the initial allele frequency is
p = 0.5. In this case, equations (5.1) and (5.2) are the same (because it is the same
distance from p = 0.5 to fixation or extinction), and reduce to t1 = t0 = 2.77N. This
means that the average time until fixation or extinction when N = 50 is 2.77(50)
= 139 generations. For N = 500, the average time is 2.77(500) = 1385 generations,
and for N = 5000, the average time is 13,850 generations. It is clear that fixation or
extinction of an allele is more likely in a small number of generations when the
population size is small.

If we think about genetic drift in our species, it may be tempting to con-
sider it irrelevant because our species is so numerous (currently about 7 billion
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people). This would be an incorrect conclusion because our species is not one big
population within which everyone has an equal chance of mating, but instead is
made up of thousands of smaller breeding populations. Our species is subdivided
by geography, ethnicity, language, and many other demographic and cultural
factors. In addition, the large species we have today is a recent development. Our
species size has increased rapidly in just a few centuries—there were less than
2 billion people only 100 years ago (Weeks 2005), and likely no more than about
6 million only 12,000 years ago (Weiss 1984). Given that our ancestors were all
hunters and gatherers before 12,000 years ago means that local breeding popu-
lations were likely small, perhaps tribes of 200 reproductive adults consisting of
a number of smaller bands (Eller et al. 2004). It seems quite clear that there was
ample opportunity for genetic drift throughout human evolution, which means
that much of our current patterns of genetic diversity likely reflect past genetic
drift to a large extent.

One of the most comprehensive studies of genetic drift in human populations
has been conducted by Cavalli-Sforza et al. (2004) on populations in the Parma
Valley in Italy. The parishes in the valley have a great deal of variation in
population size depending on their location, with populations in the mountain
regions having the lowest population density, populations in the hills having
higher density, and populations in the plains having the highest density. Data
were collected on various red blood types and used to measure the amount of
genetic variation between groups. They then compared the observed patterns of
genetic variation with those expected under a model of genetic drift (using a type
of computer simulation more complex than the ones used in this chapter), and
found that the majority of genetic variation could be explained by genetic drift,
and consequently differences in population size.

B. Effective Population Size

Estimating the effects of genetic drift gets more complicated once we remember
that the simulations used here rely on a simple definition of population size that
corresponds to the number of reproductive adults in the population. The model
of genetic drift underlying these simulations made a number of other implicit
assumptions:

1. We assume that the number of males and females is the same, so that when
we say that a population size is N = 20 adults, this actually means that
there are 10 males and 10 females.

2. We also assumed that population size remained the same from one gener-
ation to the next, so that 20 adults gave birth to 20 children who made up
the next generation. Furthermore, we also assume that there variation in
the number of offspring for each couple is random (that is, described by a
statistical distribution known as the Poisson distribution).

It is common when using mathematical models and simulations to make
a number of simplifying assumptions. The trick is to determine whether these
assumptions are critical and what happens to our basic model if, in the real world,
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these assumptions are violated. What happens, for example, to genetic drift when
population size changes over time? What happens if there are more females than
males? How can we deal with violation of our assumptions and investigate the
genetic impact of these violations?

Population geneticists have come up with a very ingenious way of dealing
with deviations from the simplifying assumptions of our simple model of genetic
drift. Instead of using breeding population size (N) directly, we can modify it to
incorporate various complexities, producing what we call an effective population
size (denoted Ne). Effective population size is the breeding population size
in an idealized population where a number of conditions, such as equal sex
ratio, constancy in population size, and random variation in fertility, apply.
An effective population size is an adjusted value of population size that takes
these assumptions, such as unequal numbers of males and females or changes in
population size over time, into account. Several examples are shown below. Other
factors affecting effective population size, as well as the derivations of the effective
population size formulas, can be found in a number of advanced texts, such as
Wright (1969) and Crow and Kimura (1970).

Changes in Population Size
A good example of the contrast between breeding population size and effective
population size is the case of changing population size. So far, we have assumed
that population size remains constant from one generation to the next. In the
real world, population size often changes, sometimes with minor fluctuations and
sometimes with major increases or decreases in population size. As an example,
consider a hypothetical population that starts with 200 adults and then declines
rapidly for a few generations and then recovers. Given values for six generation
of N = 200, 100, 50, 50, 100, 200, how much genetic drift should we expect to have
resulted over these six generations? Can we come up with a single value of N that
takes this fluctuation into account?

After thinking about this, you might conclude that a mean (average) value of
population size would be a good value to use. This answer is correct, but it turns
out that the usual type of average we are most familiar with (the arithmetic mean)
is not appropriate here. Instead, the effective population size used when there
are changes in population size is the harmonic mean, which is an average of the
reciprocals. The effective population size is computed as

Ne = t
∑(

1
N

) (5.3)

where the values of 1/N are summed (
∑

) over all generations and t is the number
of generations. For the hypothetical data above, equation (5.3) gives the effective
population size as

Ne = 6
1

200 + 1
100 + 1

50 + 1
50 + 1

100 + 1
200

= 6
0.07

= 85.7

which can be rounded off to Ne = 86. This means that the amount of genetic drift
expected from a population that has a constant effective population size of 86 is
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the same as a population that changes in size from 200 to 100 to 50 to 50 to 100
to 200. Thus, the changes in population size are accommodated with computa-
tion of the effective population size that is used in a model assuming constant
population size.

The above case is an example of a population that has experienced a bottleneck,
a dramatic reduction in population size. In this case, the population recovered
from the bottleneck, but the effective population size remained lower than the end
value of N = 200. The effective population size after a bottleneck will always be
closer to the minimum value (in this case, N = 50) than to the arithmetic average
(N = 117). Because of the increased effect of genetic drift during a bottleneck,
genetic diversity in a population can be reduced substantially. This effect is often
seen most dramatically when a small number of individuals find a new population;
this loss of genetic diversity is known as the founder effect.

A good example of bottlenecks in a human population comes from Roberts’
(1968) study of the island of Tristan da Cunha located in the southern Atlantic
Ocean settled by the United Kingdom in 1816. From small initial numbers, the
population began growing during the nineteenth century, but experienced two
severe bottlenecks. The first, occurring in the mid-1850s, resulted from a large
number of people leaving the island, and the population declined from 103 to 33.
Afterward, the population began to grow again, but a second bottleneck occurred
in 1885 when 15 men died in a boating accident. This second bottleneck left only
four adult men on the island. Using genealogical records, Roberts was able to trace
genetic contributions of initial founders to the ‘‘present-day’’ (then 1961) gene
pool of the island, and found that the two bottlenecks resulted in a loss of genetic
variability.

Variation in Fertility
One simplifying assumptions that we make with genetic drift is that variation in
the number of offspring is random. When this is not the case, and variation is more
than expected at random (predicted using what is known as a Poisson distribution),
then the effective population size will be less than the breeding population size.
There are several measures of effective population size when there is variation in
the number of offspring, including complex models that allow for different levels
of variation for male and female parents (for situations where males have children
with different women). Some measures also allow for populations to change in
size over time. Here, we will look briefly at one of the simpler measures just to get
a feel for the effect that variation in offspring number can have.

For cases with separate sexes (which includes humans) and a constant pop-
ulation size (where the mean number of offspring per couple is 2), the effective
population size is

Ne = 4N − 4
2 + V

(5.4)

where N is the breeding population size and V is the variance in offspring number
(Wright 1969). Variance is a statistical measure that estimates the average squared
deviation from a mean; a more detailed explanation of how variance is computed
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is given in any introductory statistics text. For the moment, we can interpret V as a
measure of how much variation exists in the number of offspring that each couple
has; if V is low, then most couples have a similar number of offspring, and if it
is high, then there is a greater range. When we use breeding population size to
estimate effects of drift, we are assuming that the variance is equal to the average
number of births. When V is larger, effective size is reduced.

For example, consider a population of N = 100 adults that is constant in size
with a variance of V = 3. Using equation (5.4), we see that the effective size is
Ne = [4(100) − 4]/(2 + 3) = 79. If V = 5, the effective population size is Ne = 57,
and if V = 10, then the effective size is Ne = 33. It is clear that when there is a high
level of variation in the number of offspring, then effective population size can be
much less than the breeding population size. In some human populations, such as
the Irish Travellers (an itinerant population in Ireland), variance in the number of
offspring can be quite high (Crawford and Gmelch 1974).

Sex Ratio
Our final example of factors affecting effective population size considers the
number of adult males and females in the breeding population. We have been
assuming that there are equal numbers of adult males and adult females. If there
are more of one sex than another, the effective population size will be less than the
breeding population size. Here, effective population size is

Ne = 4NMNF

NM + NF
(5.5)

where NM is the number of adult males and NF is the number of adult females.
In many cases, the effect of unequal sex ratio is minor in human populations. For
example, Salzano et al. (1967) reported 522 males and 547 females between ages
15 and 30 in a survey of the Caingang Indians of Brazil. Taking this age group
as an approximation of the breeding population gives a breeding population
size of 522+547 = 1069. Using equation (5.5) to adjust for the unequal sex ratio
gives Ne = [4(522)(547)]/(522 + 547) = 1068, which is essentially the same value.
As noted by Gillespie (2004), effective population size is not affected by unequal
sex ratio unless the sex ratio is extreme, which is not the case for humans.

Other primates, however, have different social structures, where the number
of males and females can be quite different. One example are baboons, Old
World monkeys whose social groups typically have many more adult females
than adult males. I was once involved in simulations of the genetic structure
of a baboon breeding colony in San Antonio, Texas (Relethford 1981). At that
time, there were approximately 30 adult male baboons and 300 adult females
in the breeding colony, giving a breeding population size of 330. The effective
size, as computed using equation (5.5), is Ne = 109, which is about a third of
the breeding effective size. The unequal sex ratio makes the effective size much
smaller.
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III. EFFECTS ON GENETIC VARIATION

Ultimately, genetic drift leads to the extinction or fixation of an allele (assuming no
mutations or alleles introduced from other populations). As such, the amount of
genetic variation within a population will decrease over time as a result of genetic
drift. At this point, it is useful to introduce a measure of genetic variation that will
be used several times throughout the book.

A. Measuring Genetic Variation

If there is only one allele at a locus, there is, by definition, no variation. If
there are two alleles in the population, there is more variation, and if there
are three alleles, there is even more variation. Variation also depends on the
frequency of the alleles; two alleles each having a frequency of 50% shows more
variation than if one allele had a frequency of 99% and the other had a frequency
of 1%. The reason for this is more apparent if we consider one widely used
measure of genetic variation—heterozygosity, which is simply the proportion of
heterozygotes in a population. For a locus with two alleles and frequencies of
p and q, respectively, heterozygosity is simply the proportion of heterozygotes
expected under Hardy–Weinberg equilibrium:

H = 2pq (5.6)

The maximum heterozygosity when there are only two alleles is H = 0.5, which
occurs when p = q = 0.5. If there are more than two alleles, heterozygosity is
derived as

H = 1 − ∑
p2

i

where the summation is over all alleles (each allele is denoted by the subscript i,
such that the first allele corresponds to i = 1, the second to i = 2, etc.). For example,
if there are three alleles in a population with frequencies of 0.6, 0.3, and 0.1, the
heterozygosity for this locus is

H = 1 − (0.62 + 0.32 + 0.12) = 1 − 0.46 = 0.54

The maximum heterozygosity increases as the number of alleles increases, and
approaches a maximum value of H = 1 (the limit if there were an infinite number
of alleles).

In a real-world analysis, heterozygosity would be computed using many
different loci, which involves taking the above measure and averaging it over
each locus. The important thing to remember is that heterozygosity is a measure
of variation, and the larger the number, the greater the genetic variation in the
population.
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FIGURE 5.11 Decay of homozygosity over time due to genetic drift. Heterozygosity in
each generation was derived using equation (5.7) by applying an initial heterozygosity in
generation t = 0 of H0 = 0.5 for different values of N. The decay over time is faster when
population size is smaller.

B. The Decay of Genetic Variation over Time

As noted above, genetic drift leads to extinction of fixation of alleles, which reduces
the level of genetic variation in the population. When there is only one allele (p = 1
or q = 1), then heterozygosity will equal 0. The expected loss of heterozygosity in
a population due to t generations of genetic drift is

Ht = H0

(
1 − 1

2N

)t

(5.7)

where H0 is the initial heterozygosity in generation t = 0. Derivation of this
equation is presented in Appendix 5.1.

This equation tells us two things: (1) as t increases, heterozygosity gets smaller,
approaching a limit of H = 0; and (2) the smaller the population size, the greater
the reduction in heterozygosity from one generation to the next. The effect of
population size on the rate of decrease in heterozygosity due to drift can be seen
in Figure 5.11, which shows this decline for three different values of population
size.

The loss of heterozygosity due to genetic drift is similar to the loss of
heterozygosity (and the increase in homozygosity) seen in inbreeding. Genetic
drift can be seen as a random form of inbreeding. Even if mating is at random in a
population, if a population is small, then there is a shortage of available unrelated
mates, so even a mate chosen at random is likely to be related. More details on this
correspondence are given in Appendix 5.1. Although both inbreeding and genetic
drift increase homozygosity, there is a difference in that genetic drift also leads to
a change in allele frequency, whereas inbreeding does not.

IV. MUTATION AND GENETIC DRIFT

We have so far discussed two evolutionary forces, mutation and genetic drift.
Although it has been convenient to discuss them separately, in the real world
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these two evolutionary forces occur at the same time. Mutation and drift have
opposite effects on variation within a population. Drift removes variation in a
population, while mutation increases variation by introducing new alleles into the
population. Two questions emerge:

1. What happens to a mutant allele under drift?
2. How do mutation and drift interact to affect genetic variation in a popula-

tion?

A. The Fate of a Mutant Allele

The simulations used in the first part of this chapter all began with an initial
allele frequency of p = 0.5, but the general method can be used for any initial
allele frequency. One example that is particularly revealing is to use simulation to
explore the fate of a mutant allele. Consider a population of N adults, each having
two copies of the A allele. Now, imagine that one of these alleles mutates into a
new allele, a. Since there are N adults, there are 2N total alleles, of which one is
a new mutant. This makes the initial allele frequency of a new mutant equal to
1/2N. What do you suppose will happen to this mutant allele under genetic drift?

Because 1/2N is a low value and pretty close to zero in most cases, we
would expect that most of the time genetic drift would act to remove the mutant
allele from the population. This is because there is a small difference between 0
(extinction) and the initial frequency of the mutant allele (1/2N). However, we
also know that sometimes drift will cause the mutant allele to increase in the next
generation. Here, too, the increase is often likely to be small and the new allele
could be lost quickly after another generation or so. In some cases, however, it
is possible that the mutant allele would increase enough by drift to eventually
reach fixation (p = 1.0). Given what we have already seen, we can predict the
likelihood of this happening. Remember that the probability that an allele will
eventually reach fixation is equal to the initial allele frequency, and the probability
of extinction is 1 minus this frequency. Thus, if the frequency of a mutant allele
in a population is 0.01, then there is a 1% chance that this mutant will eventually
become fixed, and a 99% chance that the mutant will eventually become extinct.
The fate of most mutant alleles is extinction, but not all.

We can use simulation to test these predictions. Here, I used a population of
N = 20 adults where one allele [out of 2N = 2(20) = 40 alleles] is a new mutant.
The initial allele frequency was set to 1

40 = 0.025. Given enough time to reach
fixation or extinction, we expect that the proportion of runs where the mutant
allele frequency reaches fixation will be 0.025 and the proportion of runs where
the mutant allele becomes extinct will be 1 − 0.025 = 0.975. I ran 1000 simulations
for 300 generations of drift using a population size of N = 20 and an initial allele
frequency of 0.025. As expected, most of the runs resulted in extinction of the
mutant allele (971 of 1000 runs = 97.1% of the time, statistically the same as the
expected value of 97.5% of the time). Most of the time extinction occurred in a small
number of generations. However, in 29 of 1000 runs, the mutant allele actually
drifted to reach fixation, a proportion not statistically different from the expected
25 in 1000 runs. Figure 5.12 shows 3 of the 29 runs that resulted in fixation of the



MUTATION AND GENETIC DRIFT 123

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250 300

Generation

A
lle

le
 fr

eq
ue

nc
y 

(p
)

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250 300

Generation

A
lle

le
 fr

eq
ue

nc
y 

(p
)

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250 300

Generation

A
lle

le
 fr

eq
ue

nc
y 

(p
)

Run # 12 Run # 630

Run # 944

FIGURE 5.12 Fixation of a mutant allele due to genetic drift. As described in the text,
computer simulation was used to examine the probability of extinction or fixation of a single
mutant allele. In total, 1000 simulations of 300 generations of genetic drift were performed
using a population size of N = 20. Given a single mutant allele to start with, the initial allele
frequency was set as p = 1

40 = 0.025 (because there are 2N = 40 alleles). In 971 runs, drift
led to the extinction of the mutant allele. In 29 runs, drift led to the fixation of the mutant
allele. This figure shows three of the runs in which fixation occurred.

mutant allele just to get a feel for how drift will sometimes result in a mutant allele
spreading through an entire population. Just by chance.

B. Equilibrium between Mutation and Genetic Drift

Mutation and genetic drift interact to affect the level of genetic variation in a pop-
ulation. As noted earlier, genetic drift acts to remove variation from a population.
Mutation, on the other hand, acts to increase variation in a population by adding
new alleles. The interaction between mutation and drift can be considered as a
balance between alleles being added to the population (mutation) and alleles being
lost from the population (drift). This balance can be visualized using a physical
analogy such as a paper cup (e.g., Relethford 2001). As shown in Figure 5.13, take
a paper cup and punch a small hole in the bottom (about 1

4 in. works well). Hold
the cup under a water faucet that has a small dribble of water. The water enters
the cup and then exits through the hole in the bottom. If you play with the rate of
water entering the cup, you will find a rate where the water begins to rise in the
cup to a certain level where the amount of water entering the cup is balanced by
the amount of water leaving the cup.

Mutation and genetic drift in a population can be regarded in the same way;
there is a level of genetic diversity in a population where the introduction of new
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FIGURE 5.13 Graphic analogy of the balance between mutation and drift. Water dribbles
slowly from a faucet into a paper cup that has a small hole in the bottom, through which
the water exits the cup. If you adjust the flow of water to just the right rate, you will get
a balance between the water entering the cup and that exiting the cup. This example is a
physical analogy of the balance between mutation and genetic drift.

genetic diversity through mutation is balanced by the loss of diversity due to drift.
This balance, or equilibrium, can be seen in mathematical terms. Here, we use
what is known as the infinite alleles model, a simplification that assumes that
each new mutation results in a brand new allele that does not already exist in the
population. For an effective population size of N and a mutation rate of μ, the
expected heterozygosity when an equilibrium is reached between mutation and
drift is approximately

H = 4Nμ

1 + 4Nμ
(5.8)

Derivation of this equation is presented in Appendix 5.2. The quantity 4Nμ

determines the relative influence of mutation and drift. When 4Nμ is very small
(close to 0), then the expected heterozygosity at equilibrium will be close to
0, typical of a very small population experiencing heavy genetic drift. When
4Nμ is very large (>5 or so), the effect of genetic drift is minimal and the
expected heterozygosity is high (>0.83). Under the infinite alleles model, the
maximum heterozygosity is H = 1.0. Intermediate values at or near 4Nμ = 1 show
an expected balance between mutation and drift (Hamilton 2009). The balance
between mutation and drift at equilibrium forms an important part of the neutral
theory of evolution that was introduced in the last chapter. The neutral theory sees
much of allele frequency change as genetic drift operating on neutral mutations
(those that do not affect survival or reproduction).
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The balance between mutation and drift has also been extended to molecular
data where we look at differences between the DNA sequences of individuals
using the infinite sites model. Here, we consider the probability of a mutation at
any particular nucleotide site to be low enough that each new mutation along a
DNA sequence will occur at a different location (i.e., the same nucleotide site is
unlikely to mutate more than once). If we look at sufficiently long sequences of
DNA, the probability of multiple mutations is low enough that we can consider
this very long sequence to be practically infinite. Variation in a sample of DNA
sequences occurs when there is a different nucleotide at the same position in
different DNA sequences. The average proportion of differences between all
sequences in a sample is known as nucleotide diversity, typically denoted by
the Greek letter π (pi). Appendix 5.3 contains more details on how this measure
is computed. The important thing to keep in mind for the moment is that the
expected level of nucleotide diversity at equilibrium between mutation and drift
is the same as equation (5.8), where the mutation rate is defined as the total
probability of mutation across the entire nucleotide sequence (Hartl and Clark
2007).

V. COALESCENT THEORY

Thus far, we have been considering genetic drift as a process that goes from the
past to the present, where we are concerned with the probability that a given
allele will be represented in future generations. On an individual level, consider
what could happen to an allele that you have for a given locus. Imagine that you
have two children. The possible outcomes are that you would pass on two, one,
or no copies of this allele (just as when flipping a coin twice in a row, you can get
two, one, or no heads). The simulations used so far in this chapter basically use
this idea extended to an entire population. Although standard population-genetic
models of drift use this ‘‘forward’’ approach from past to present, we can also look
at the process of drift in the opposite direction, from present back into the past.
Instead of considering the probability that a given allele will be represented in a
future generation, we instead consider the probability that any two alleles share
the same ancestor in a previous generation. This ‘‘backward’’ approach, from the
present back into the past, forms the basis of a powerful set of models known as
coalescent theory.

In order to show how coalescent theory works, we start with a graphic
representation of the standard forwards interpretation of genetic drift. Figure 5.14
shows genetic drift starting with five different alleles four generations in the past
(the five circles shown at the top of the figure labeled 4a, 4b, 4c, 4d, and 4e). Imagine
that each generation a given allele can give rise to two, one, or no descendants,
and the actual outcome is a matter of probability (determined, e.g., by flipping
coins). In Figure 5.12, the first three alleles (4a, 4b, and 4c) all give rise to a single
descendant allele each, while the fourth allele (4d) gives rise to two descendants
(3d and 3e). Finally, allele 4e (farthest to the right on the top row) leaves no
descendants—it has become extinct. We now follow the process over the course
of four more generations until we get to the present day (generation 0). Looking
over this simple simulation, we see that there are five alleles in each generation,
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FIGURE 5.14 Genealogy showing genetic drift and the extinction of alleles over time. We
start with five alleles four generations in the past. Circles represent alleles and lines indicate
descent. Each allele has been labeled with a number and letter (e.g., 0c, 3b) for reference,
where the number refers to the number of generations in the past. With each generation,
an allele can leave two, one, or no copies in the next generation. For example, from four
generations ago to three generations ago, alleles 4a, 4b, and 4c each left one descendant
allele in the next generation, whereas allele 4d left two descendant alleles and allele 4e left
none. When no alleles remain, the allele becomes extinct (alleles 4e, 3b, 3e, 2a, 2d, 1b, 1e).
The five alleles in the present day are all descended from a single allele (3c) three generations
earlier.

but along the way, some alleles are represented in subsequent generations, and
some alleles become extinct along the way.

If you look more closely at Figure 5.14, you will see that all five alleles in the
present day are descended from a single allele (3c) three generations earlier (you
can trace the lines of descent back from the present day to see this). In turn, this
common ancestral allele is descended from allele 4c in the previous generation.
Coalescent theory looks backward in time from the present day, and is concerned
only with those lines that trace back to a common ancestor; we do not consider
alleles that become extinct. In order to demonstrate this principle, Figure 5.15
duplicates Figure 5.14 but with an important exception—the alleles that lie in the
lines of descent back from the present day to common ancestors are represented
by filled circles, and lineages of extinct alleles are represented by open circles. If
we start at the present day and work backward, we can see two cases where two
alleles coalesce to a common ancestor in the previous generation—alleles 0b and
0c coalesce to allele 1c, and alleles 0d and 0e coalesce to allele 1d. For Figure 5.15,
each generation back in time from the present shows additional coalescent events.
By three generations in the past, the lineages leading backwards from the five
alleles in the present day have all coalesced to a single allele (3c). In coalescent
theory, we call this single allele the most recent common ancestor, which is often
abbreviated as MRCA. We refer to this ancestor as the ‘‘most recent’’ because this
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FIGURE 5.15 The process of coalescence. The genealogy used in Figure 5.14 is used, but
with filled circles representing alleles that trace their ancestry back four generations earlier,
and open circles representing lineages that became extinct. This version of Figure 5.14 shows
more clearly how all five alleles in the present day trace their ancestry back to a single allele
three generations in the past. Going back in time from the present day, we can see how lines
of ancestry coalesce into single alleles; for example, the second and third alleles in generation
0 (alleles 0b and 0c) coalesce into a single allele in the previous generation (1c). The process
of coalescence continues until the lines of ancestry for all five alleles have coalesced into a
single allele, marked on the diagram as the most recent common ancestor (MRCA), which is
allele 3c. Coalescent theory is used to make inferences about the MRCA, but cannot tell us
about the ancestor of the MRCA (4c, the ancestral allele in the top row).

is the first allele we find going back in time that is ancestral to all later alleles.
Note that the most recent common ancestor (3c) also has an ancestor (allele 4c).
However, in coalescent theory we can make evolutionary inferences back only as
far as the most recent common ancestor.

A. Average Time to Coalescence

Coalescent theory starts by looking at the probability that two alleles came from a
single allele in a previous generation. Coalescence theory extends these concepts
to more than two distinct alleles. For a population of k distinct alleles, there is
a point in the past where these k alleles coalesce into k − 1 alleles, and a point
earlier in time when these alleles in turn coalesce into k − 2 alleles, and so on. For
example, if we had a population in the present day with six distinct alleles, there
must be a point in the past when these six alleles coalesce into five alleles. In turn,
these alleles then coalesce into four, then three, then two, and then one allele (the
most recent common ancestor).

Coalescent theory is concerned with the probability of common ancestry. If we
examine two alleles in any given generation, what is the probability that they both
came from the same allele in the previous generation? If we assume a population
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of constant size 2N, the probability that an allele in a given generation will have
a specific allele in the previous generation is 1/2N. The probability that another
allele will also have this same ancestral allele is (1/2N)(1/2N), based on the and
rule. However, this probability applies only to common ancestry of a specific allele
in the previous population, and there are 2N alleles in the previous generation. In
order to figure out the probability of any allele in the previous generation being a
common ancestor, we have to use the or rule and consider the total probability
over all alleles, which gives

(1/2N)(1/2N)2N = 1/2N

It also follows that the probability of two alleles not having the same ancestral
allele in the previous generation is

1 − (1/2N)

This can be extended into the past. The probability that two alleles in the present
had a common ancestor t+1 generations ago is

1
2N

[1 − (1/2N)]t

(Hartl and Clark 2007:130).
An important quantity in coalescent theory is the average number of genera-

tions it takes until coalescence of two alleles. Probability theory allows an estimate
of the average time until coalescence [the derivations and other mathematical
background are beyond the scope of this text—see advanced texts such as Hartl
and Clark (2007) and Hamilton (2009)]. For a diploid population of size N and k
distinct alleles, the mean number of generations until coalescence is

4N
k(k − 1)

(5.9)

For example, if we start with k = 6 alleles, this means that the average number of
generations back until there is a coalescence of six alleles into five alleles is, from
equation 5.9, as

4N
k(k − 1)

= 4N
6(5)

= 4N
30

= 2N
15

generations

If N = 100, this means that the time back to the first coalescent event is 200
15 = 13.3

generations (as will be clear shortly, it is convenient to express generations in terms
of 2N). At this point we have k = 5 alleles, and the average number of generations
back until these five alleles coalesce into four alleles is given by equation (5.9) as

4N
k(k − 1)

= 4N
5(4)

= 4N
20

= 2N
10

generations

Equation (5.9) can be used for earlier coalescent events. Extending back to three
alleles would take 2N/6 generations on average. From there, it will take 2N/3
generations to coalesce into two alleles, and 2N generations for the final coalescence
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FIGURE 5.16 Expected times to coalescence. The average number of generations (t) needed
for coalescent events given six alleles (labeled a through f ) computed using equation (5.9).
The first coalescent event (alleles a and b) reduces the number of alleles from k = 6 to k =
5 and is expected to occur on average 2N/15 generations in the past. The next coalescent
event (alleles d and e) reduces the number of alleles from k = 5 to k = 4 and is expected
to occur 2N/10 generations in the past. The process continues until all lineages coalesce to a
single allele 2N generations in the past.

(which is why all of the above have been scaled by 2N). Thus, the time until
coalescence increases as we go back farther into the past, as shown in Figure 5.16.
Note that the first few coalescent events occur relatively quickly, but it takes much
longer for the last coalescent event where the number of alleles coalesces from k =
2 to k = 1.

The tree shown in Figure 5.16 reflects the genealogical relationship between
the six alleles in the present day. What about their genetic relationship? If the
ancestral allele at the top of the tree is passed on generation to generation without
change, then all six alleles in the present day will be the same. However, mutations
occur over time, such that any mutations that are unique to a particular line
in the tree will be passed on to all descendants along that line (as had been
shown in the example in Figure 4.6 in the previous chapter). Coalescent models
that incorporate mutation and genetic drift are very useful for analyzing genetic
variation. Observed levels of genetic variation can be compared to expectations
generated by using simulations based on various models of population history.
Methods of analysis based on coalescent theory allow estimation of the age of the
most recent common ancestor. Such methods are useful in estimating the initial
age of a mutation (several examples will be mentioned in Chapter 7) as well as
reconstructing the genetic history of our species (discussed further in Chapter 9).

Because genetic drift (and thus coalescence) is a random process, the coalescent
times shown in Figure 5.16 are expected averages, just as the expected outcome
of a coin flip is a ratio of 50 : 50 for heads and tails. In coalescent theory, there
is also a large amount of variation expected around this average, so that any
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FIGURE 5.17 Simulated coalescent trees for six alleles. All trees are drawn to the same scale.
Although the trees are all roughly similar, there are differences in the specific sequence of allele
coalescence and the time of coalescence because coalescence is a random process. These
trees were all produced using the TreeToy Java program (http://www.xmission.com/
∼wooding/TreeToy/) setting the theta parameter equal to 5—see the program docu-
mentation and Hamilton (2009:274) for details.

given coalescent tree will be different, in terms of which alleles coalesce as well as
when they coalesce. This random nature is depicted in Figure 5.17, which shows
three simulations of coalescence of six alleles under the assumption of constant
population size. Even with just three simulations, you can see that different alleles
coalesce at different times. If you would like to simulate more coalescent trees,
consult the references given in the figure legend to use a web-based coalescent
simulation program.

B. Coalescent Theory and Demographic History

Coalescent trees can be generated using a variety of different models and assump-
tions, which can provide us with considerable insight into possible evolutionary
outcomes. One particularly useful feature of coalescent theory is that we can exam-
ine different demographic histories. For example, what happens to a coalescent
tree if there is a major change in population size, such as rapid population growth?
As an example, Figure 5.18 shows three coalescent trees generated with the same

Past

Present

FIGURE 5.18 Simulated coalescent trees for six alleles under a demographic history of
rapid population growth. All trees are drawn to the same scale (and to the same scale
as in Figure 5.17). The simulation increased the size of the population 1000-fold halfway
along the scale from present to past to approximate rapid exponential growth (Rogers
and Harpending 1992). The shapes of these trees are different when compared to the
simulations in Figure 5.17, which were based on constant population size. The trees here
are characteristically star-shaped (or comb-shaped), with most coalescent events occurring
around the time of rapid population growth. These trees were all produced using the TreeToy
Java program (http://www.xmission.com/∼wooding/TreeToy/) setting the theta
parameter equal to 5, the growth value equal to 1000, and the tau parameter equal to
15–see the program documentation and Hamilton (2009:274) for details.
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parameters as in Figure 5.17 but with a different history of population size. Here,
the simulation program was set up to increase dramatically in size halfway from
the past to the present. The results (using the same scale as in Figure 5.17) show
a much different pattern. Under rapid population growth, most of the coalescent
events occur at about the same time, corresponding closely to the time of major
population growth. Coalescent trees such as those in Figure 5.18 are often referred
to as star-shaped because the different lineages are all of similar length radiating
from a common origin, much in the same way as light rays radiate out from a star.
The star analogy is seen more clearly if we arrange the lineages of each figure in a
circle around the last coalescent event; many prefer the term comb-shaped because
the schematic images resemble a hair comb.

The reason for this star (or comb) pattern) is clear when we look at population
size backward in time from the present to the past (i.e., retrospectively)—present-
day population size is large than in the past. In larger populations, the probability
of coalescence is less than in a small population. As we trace the tree backward in
time to the point of population expansion, we reach a point when population size
was smaller and coalescence was more likely. It is at this point that most of the
coalescing occurs.

When we compare Figures 5.17 and 5.18, we see that different demographic
histories will result in different coalescent trees. We can then use these predictions
for comparison with various measures of genetic diversity to determine what
happened in the past [see Rogers and Harpending (1992) and Jobling et al. (2004)
for examples]. For example, star-shaped gene trees tell us that there has been a lot
of population growth in the past, such as a recovery from a bottleneck.

VI. SUMMARY

There is a certain amount of randomness in the universe, and the evolutionary
process is no exception. Whenever a parent has a child, only half of the parent’s
nuclear DNA is passed on to the child, and whatever gets passed on to one child
might differ from what gets passed on to the next child. If you have a heterozygous
genotype, such as Aa, you expect to pass on the A allele half the time and the a
allele half the time. These are average expectations, and if you have four children,
you might easily pass on the A allele to all four. Genetic drift can be considered
as the same process at the level of the entire population. Even if there are no
mutations or selection, it is unlikely that the allele frequencies in the offspring will
be identical to the parent population.

Genetic drift can lead the allele frequency in a population to increase, decrease,
or stay the same. Because drift is a random process, there is no inherent direction to
this change. Genetic drift will continue, generation after generation, until an allele
is either lost (extinction) or replaces all other alleles (fixation). The probability
of extinction or fixation depends on the initial allele frequency. A new mutant
allele will have a very low initial frequency and consequently will usually be lost
through genetic drift. However, in some small amount of the time, genetic drift
will actually wind up leading to fixation of the mutant allele.

Genetic drift occurs in all populations, but the smaller the population, the
greater its effect. Large fluctuations in allele frequency are more likely in small
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populations. Population size refers here to the breeding population size, the number
of adults of reproductive age in the population. In simple models of genetic drift,
we make a number of assumptions about the demography of the population that
are sometimes violated in the real world. In such cases, we refer to the concept
of an effective population size that is an adjustment to the breeding population
size to give an estimate of the actual genetic size of the population. For example,
if a population grew rapidly in size, the present-day population size would be an
overestimate (and thus an underestimate of drift). Instead, we use an adjustment
to get an average population size that would produce the same level of genetic
drift under a model of constant size that we would see when the population
changes in size. There are numerous different types of adjustment for effective
population size, some of which have little impact on human populations, and
some of which have greater significance. Of particular anthropological interest is
how demography and cultural variation can influence effective population size
and the level of genetic drift.

When we look at the process of genetic drift, we look forward from the past
to the present to see what happens to different alleles over time, including which
ones become extinct. A branch of population genetics known as coalescent theory
looks at drift in reverse, by tracking alleles back in time to see which ones have a
common ancestor in a previous generation. Over time, all alleles in the present day
coalesce into fewer and fewer ancestral alleles, until ultimately there is a single
ancestral allele. Coalescent theory allows many valuable inferences regarding this
most recent common ancestor (MRCA) as well as demographic history.

APPENDIX 5.1 DECAY OF HETEROZYGOSITY OVER TIME
DUE TO GENETIC DRIFT

To show how drift reduces genetic variation (heterozygosity) over time, we return
to the concept of identity by descent from Chapter 3. In a population of 2N alleles,
the probability that someone will have inherited any specific allele is 1/2N. The
probability of inheriting the same allele twice is (1/2N)(1/2N). This probability
applies to that specific allele. If we extend this to consider any of the 2N alleles, then
the probability of someone having the same allele because of common descent is
derived using the or rule over all possible alleles, giving

(1/2N)(1/2N)2N = 1/2N (A5.1)

Because this is the probability that two alleles are identical by descent, the
probability that two alleles are not inherited from a common ancestor in the
previous generation is 1 minus equation (A5.1):

(
1 − 1

2N

)
(A5.2)

For any generation t, these two equations refer to probabilities of identity by
descent in the previous generation, t − 1. If we are looking at the total probability
of two alleles being identical due to descent, equation (A5.1) does not suffice
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because there is a possibility that the proportion of the population represented by
equation (A5.2) might be identical by descent in a previous generation. If we define
this probability as ft−1, we can now deal with two ways in which two alleles can be
identical by descent in generation t. The first is equation (A5.1), which refers to the
previous generation. The second possibility is the probability that two alleles are
not identical by descent one generation earlier [probability = (1 − 1/2N)] and are
identical by descent from a previous generation (probability = ft−1). The overall
probability of this second case is determined by using the and rule, so these last
two terms are multiplied, giving

(
1 − 1

2N

)
ft−1 (A5.3)

We now have two different ways of ensuring that a pair of alleles can be
identical by descent, and we look at the total probability of one or the other
happening. Using the or rule, we add the two probabilities [equations (A5.1) and
(A5.3)] to obtain an overall probability of identity by descent in generation t as

ft = 1
2N

+
(

1 − 1
2N

)
ft−1 (A5.4)

Note that we use the lowercase symbol f to refer to the probability of descent due
to finite population size in order to distinguish it from the probability of descent
due to inbreeding, F, used in Chapter 3.

We can now relate equation (A5.4) to homozygosity by noting that the
probability of heterozygosity can be defined relative to homozygosity as H = 1 − f .
We can express equation (A5.4) in terms of heterozygosity by subtracting both
sides of equation (A5.4) from 1, giving

1 − ft = 1 −
[

1
2N

+
(

1 − 1
2N

)
ft−1

]

Expanding all the terms gives

1 − ft = 1 − 1
2N

−
(

1 − 1
2N

)
ft−1

which, in turn, gives

1 − ft =
(

1 − 1
2N

)
(1 − ft−1) (A5.5)

Because H = 1 − f , and keeping track of the generational subscripts, equation
(A5.5) can be rewritten as

Ht = Ht−1

(
1 − 1

2N

)
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If we start with an initial value of heterozygosity of H0 for generation t = 0,
the expected heterozygosity in generation t = 1 is

H1 = H0

(
1 − 1

2N

)

We can then give the expected heterozygosity in generation t = 2 as

H2 = H1

(
1 − 1

2N

)

and then substitute the expected value for H1, giving us

H2 = H0

(
1 − 1

2N

)(
1 − 1

2N

)
= H0

(
1 − 1

2N

)2

If we repeat the same process for generation t = 3, we get

H3 = H0

(
1 − 1

2N

)3

In general

Ht = H0

(
1 − 1

2N

)t

which is equation (5.7) in the text.

APPENDIX 5.2 EXPECTED HETEROZYGOSITY AT EQUILIBRIUM
IN THE INFINITE ALLELES MODEL

Here, we look at the interaction between mutation (which increases variation) and
genetic drift (which reduces variation) in a population. We start with equation
(A5.4), which predicts identity by descent as a function of genetic drift. Under
mutation, identity by descent will be possible only if a given allele has not
mutated. By definition, the mutation rate μ is the probability that an allele will
mutate, which means that the probability of an allele not mutating is (1 − μ).
Therefore, the probability of having two alleles, neither of which has mutated,
is (1 − μ)(1 − μ) = (1 − μ)2. We now modify equation (A5.4) to consider the
probability of identity by descent due to drift and neither allele mutating, we get
(using the and rule)

ft = (1 − μ)2
[

1
2N

+
(

1 − 1
2N

)
ft−1

]
(A5.6)

This equation can be difficult to work with, but population geneticists working
with equations with mutation frequently use approximations that are simpler,
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yet very accurate. For example, when we expand the term (1 − μ)2, we obtain
1 − 2μ + μ2. Because the mutation rate (μ) is very small, this means that μ2

will be very, very small, and for all practical purposes equal to zero. This also
means that the expression (1 − μ)2 is approximately equal to the much simpler
expression (1 − 2μ). If we substitute this approximation back into equation (A5.6)
and multiply out all of the terms, we get

ft ≈ 1 − 2μ

2N
+ (1 − 2μ)

(
1 − 1

2N

)
ft−1

ft ≈ 1
2N

− μ

N
+

(
1 − 1

2N
− 2μ + μ

N

)
ft−1

(where the symbol ≈ means ‘‘approximately equal to’’). At this point, we can
simplify things further by noting that the expression μ/N, which appears twice
in the above equation, is also essential equal to zero (because the mutation rate is
so small and population size is so much larger, the ratio is practically zero in all
cases). By setting μ/N = 0, we now obtain

ft ≈ 1
2N

+
(

1 − 1
2N

− 2μ

)
ft−1 (A5.7)

Over time, the variation that is lost as a result of genetic drift is offset by
variation added by mutation. Eventually, these two forces balance each other, as
in the flowing water analogy of Figure 5.13. When this equilibrium is reached,
there will be no further change in f , such that

f = ft = ft−1

We can solve for this equilibrium by setting ft and ft−1 in equation (A5.7) both
equal to f , giving

f ≈ 1
2N

+
(

1 − 1
2N

− 2μ

)
f

f −
(

1 − 1
2N

− 2μ

)
f ≈ 1

2N

f −
(

f − f
2N

− 2μf
)

≈ 1
2N

f − f + f
2N

+ 2μf ≈ 1
2N

f
2N

+ 2μf ≈ 1
2N

f
(

1
2N

+ 2μ

)
≈ 1

2N
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This equation can be further simplified by multiplying 2μ by (2N/2N) to obtain

f
(

1 + 4Nμ

2N

)
≈ 1

2N

which further simplifies to

f ≈ 1
1 + 4Nμ

(A5.8)

Recalling from equation (A5.1) that heterozygosity can be expressed as H = 1 − f ,
and applying this to equation (A5.8), gives

H = 1 − f ≈ 1 − 1
1 + 4Nμ

H ≈ 1 + 4Nμ

1 + 4Nμ
− 1

1 + 4Nμ

H ≈ 4Nμ

1 + 4Nμ

which is equation (5.8) in the text.

APPENDIX 5.3 COMPUTATION OF NUCLEOTIDE DIVERSITY

Genetic variation can be assessed at the molecular level with a number of different
measures, including looking at the proportion of nucleotide differences among a
set of DNA sequences. In order to illustrate this method, consider the following
set of four DNA sequences, each consisting of 10 sites (in reality, these numbers
are too small to be useful, but this example is for illustration so that this restriction
is not a problem):

Sequence 1: C C C A T T C A T C
Sequence 2: C C G A T T C A T C
Sequence 3: C C C A T T C T T C
Sequence 4: C C C A T T C T T C

We now want to compare each sequence to all other sequences looking for the
number of mismatches. For example, when comparing sequences 1 and 2, we see
that there is a mismatch in the third position in the sequences—sequence 1 has the
nucleotide C, and sequence 2 has the nucleotide G. Thus, we have one mismatch in
10 nucleotides, or 1

10 = 0.1 differences per site. We denote this average difference
d. We then compute d between all possible pairs of the four sequences, which gives
the following six values:

Sequences 1 and 2, d = 1
10 = 0.1

Sequences 1 and 3, d = 1
10 = 0.1
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Sequences 1 and 4, d = 1
10 = 0.1

Sequences 2 and 3, d = 2
10 = 0.2

Sequences 2 and 4, d = 2
10 = 0.2

Sequences 3 and 4, d = 0
10 = 0.0

We now compute the average value of d over these six comparisons, giving a
nucleotide diversity of π = (0.1 + 0.1 + 0.1 + 0.2 + 0.2 + 0.0)/6 = 0.7

6 = 0.1167.
In general terms, the computational formula is

π =
∑m

i<j dij

c

where dij refers to the proportion of nucleotide mismatches between sequences i
and j, and c is the total number of comparisons, c = m(m − 1)/2, where m is the
number of sequences (m = 4 in the above example, so c = 6) (Nei and Kumar 2000).
The notation below the summation sign (i < j) is an instruction to count i from 1 to
m and j from 1 to m, but only for those combinations where i < j (this prevents us
from comparing a sequence to itself, or comparing the same two sequences more
than once; for example, comparing sequences 2 and 1 is the same as comparing
sequences 1 and 2). In the above example, the values of i and j would be 1–2, 1–3,
1–4, 2–3, 2–4, and 3–4.



C H A P T E R 6
MODELS OF NATURAL
SELECTION

The phrase ‘‘survival of the fittest,’’ first coined by philosopher and sociologist
Herbert Spencer, was later used by Charles Darwin to refer to the process of
natural selection. In common usage, the phrase tends to convey a stilted view of
natural selection, whereby the ‘‘fittest’’ are often considered as those individuals
who are strongest, fastest, and smartest and thus win in a competitive battle with
others. The problem with this image is that we too often equate the evolutionary
concept of fitness with the more general attributes of physical fitness. Although
size and strength can increase one’s probability of survival in some cases, this is
not always the case, and there is no necessary connection between this image of
physical fitness and evolutionary fitness. In some environments, for example, it
might be more adaptive to be smaller because of the advantages of smaller body
size, such as the need for less food. What matters in natural selection is the net
advantage of a given trait or traits, which, in turn, can vary by environment. In
some cases, larger body size might have the net advantage, and other cases a
smaller body size might have this net advantage.

Another problem with confusing ‘‘survival of the fittest’’ with the general
process of natural selection is that the emphasis is on survival, which implies that
only the differential survival of individuals matters. In an evolutionary context,
what matters is the survival of an individual’s genes, which means that natural
selection must also take into consideration differences in fertility. Natural selection
involves differences in survival and reproduction. In order to contribute genetically
to the next generation, an individual must survive until reproduction and then
reproduce. Fitness must be regarded in this general way and not confined to any
narrow definition of ‘‘fitness.’’

This chapter begins with a mathematical consideration of fitness using basic
concepts of probability. A simple example is then used to show how differences in
fitness between genotypes lead to a change in allele frequencies. This example is
used to construct a general model of selection for a locus with two alleles, which is
then used to demonstrate several different forms of selection. Chapter 7 continues
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the discussion of natural selection by providing a number of case studies that
illustrate natural selection in human populations, past and present.

I. HOW DOES NATURAL SELECTION WORK?

A common approach to natural selection in biology classes is to simulate the
process using laboratory organisms such as fruit flies, whose short genera-
tion lengths make them amenable to observing evolution over short periods
of time. Natural selection can also be modeled using simple mathematics, an
approach that provides many insights into how natural selection can operate in
nature.

A. Absolute and Relative Fitness

As noted above, the term fitness goes beyond any simple equation with physical
fitness. When modeling natural selection, fitness simply refers to the probability of
survival and reproduction. Models of natural selection are based on each genotype
being associated with a specific fitness, which expresses the relative probability
of representation in the next generation. This might sound rather abstract, but a
simple example shows how this works.

We start with our standard model of a locus with two alleles, A and a, such
that we have three genotypes: AA, Aa, and aa. Imagine that we have the following
numbers of individuals in a population at birth: 500 individuals with genotype AA,
1000 with genotype Aa, and 500 with genotype aa, for a total of 2000 individuals.
Imagine that we examine this population later in time to see how many have
survived to reproductive age, and find that there are now 1575 individuals made
up of 450 with genotype AA, 900 with genotype Aa, and 225 with genotype aa.
We now compare the number of each genotype for the 2 times in the following
table:

AA Aa aa

At birth 500 1000 500
At adulthood 450 900 225

We can see that there has been some mortality; of the original 2000 individuals,
1575 survived to adulthood and 425 did not. However, if we look more closely,
we see that this mortality was not the same for each genotype. Our interest is in
the proportional change for each genotype, which is known as absolute fitness,
which can be computed for each genotype by taking the ratio of the numbers at
two points in time, which gives

AA Aa aa

450
500

= 0.9
900
1000

= 0.9
225
500

= 0.45
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We can now easily see that although some individuals from each genotype did
not survive, this mortality was not the same for all genotypes. Proportionally, far
more individuals died that had genotype aa than was the case for genotypes AA
or Aa. In this example, we considered only differential mortality, but we can also
consider similar effects from differential fertility, where there are differences in
the number of births by genotype.

Mathematically, it is easier to deal with a quantity known as relative fitness,
which expresses fitness relative to the most fit genotype. Relative fitness is typically
denoted by the letter w, with subscripts used to refer to the different genotypes.
Thus, the symbol wAA is used to refer to the relative fitness of genotype AA, wAa is
used to refer to the relative fitness of genotype Aa, and waa is used to refer to the
relative fitness of genotype aa. These values are easily computed by dividing each
absolute fitness value by the highest absolute fitness value, which sets the highest
relative fitness equal to 1 by definition. In terms of the example above, the highest
absolute fitness, shared by both genotypes AA and Aa, is 0.9, which means that the
relative fitness values are

AA Aa aa

wAA = 0.9
0.9

= 1.0 wAa = 0.9
0.9

= 1.0 waa = 0.45
0.9

= 0.5

In relative terms, these numbers mean that for every 100 individuals with genotype
AA (or Aa) that survive, only 50 with genotype aa survive. This type of variation in
fitness is typical of a recessive allele that is harmful when two copies are inherited
(the homozygous genotype aa), but not when only one copy is inherited (the
heterozygous genotype Aa).

If the absolute fitness of all three genotypes were the same, then all of the
relative fitness values would also be the same, and all would equal 1.0. In this case,
there would be no differential survival and/or reproduction by genotype, and
allele frequencies would remain at Hardy–Weinberg equilibrium. If at least one
fitness value differed among the three genotypes, then natural selection would
occur. Natural selection can sometimes cause an allele to increase in frequency,
sometimes decrease in frequency, and sometimes reach a balance. The specific
effect of natural selection depends on the fitness of each specific genotype. Several
examples of likely forms of natural selection will be described later in this
chapter.

B. A Simulation of Natural Selection

At this point, we will relate the concept of relative fitness to natural selection by
means of a simple mathematical simulation that uses some of the basic rules of
probability outlined in Chapter 1. This simulation will use the standard model of a
locus with two alleles, A and a. In order to simulate the process, we need the initial
allele frequencies (p and q) and the relative fitness of each genotype: wAA, wAa, and
waa. For this example, we will start with allele frequencies of p = 0.5 and q = 0.5
and relative fitness values of: wAA = 1.0, wAa = 1.0, and waa = 0.5.
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Step 1: Start with Genotype Frequencies under
Hardy–Weinberg Equilibrium
We start off by determining the expected genotype frequencies of the population
before selection by deriving the Hardy–Weinberg proportions. Given p = 0.5 and
q = 0.5, these are

AA Aa aa

p2 = 0.25 2pq = 0.50 q2 = 0.25

Step 2: Compute Change in Genotype Frequencies Due to Selection
If there were no selection, the proportions above would also be the expected
proportions in the next generation. Under selection, however, we need to model
differential fitness. First, we list the fitness values under their respective genotypes:

AA Aa aa

Before selection 0.25 0.50 0.25
Fitness wAA = 1.0 wAa = 1.0 waa = 0.5

Each row here represents probabilities associated with each genotype. The first
row (before selection) shows the probabilities of having a given genotype. The
second row (fitness) shows the probabilities that someone with a given genotype
will contribute genetically to the next generation. Therefore, the probability that
someone has a given genotype AND contributes genetically to the next generation
is solved using the AND rule, which entails multiplying these probabilities. The
expected genotype proportions after selection are therefore obtained as follows:

AA Aa aa

Before selection 0.25 0.50 0.25
Fitness 1.0 1.0 0.5
After selection 0.25 × 1.0 = 0.250 0.50 × 1.0 = 0.500 0.25 × 0.5 = 0.125

An important quantity is the sum of the genotype frequencies after selection:

w = 0.250 + 0.500 + 0.125 = 0.875

This number is the mean fitness across the three genotypes (denoted w). The
mean fitness is not simply the average of the three relative fitness values, which
would be = [(1 + 1 + 0.5)/3], but instead is a mean where each relative fitness
is weighted by the frequency of that genotype in the population after selection.
The mean fitness tells us how much selection has taken place relative to the case
where no selection has occurred (where the mean fitness under Hardy–Weinberg
equilibrium would be equal to 1.0). Here, the mean fitness of 0.875 means that
87.5% of the individuals survive, and therefore that 100 − 87.5 = 12.5% did not
survive.
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Step 3: Normalize Genotype Frequencies
What effect do you think selection has had on the allele frequencies? It may seem
intuitive that the frequency of the a allele will decrease because we are selecting
out half of those individuals with the aa genotype. This is correct, but to see the
exact effect, we need to compute the allele frequencies after selection. Although
we usually compute allele frequencies from genotype frequencies using equation
(2.3), where we add the frequency of one homozygote to half the frequency of
the heterozygote, we cannot do so in this case because the genotype frequencies
after selection do not add up to 1.0. Instead, they add up to the mean fitness.
To circumvent this problem, we need to express the genotype frequencies after
selection relative to the mean fitness, which is easily done by dividing each
genotype frequency by the mean fitness. This process is called normalization. After
doing this, our table has a new row and looks like this:

AA Aa aa

Before selection 0.25 0.50 0.25
Fitness 1.0 1.0 0.5
After selection 0.250 0.500 0.125

Normalized
genotype
frequencies

0.250
0.875

= 0.2857
0.500
0.875

= 0.5714
0.125
0.875

= 0.1429

Note that the sum of the normalized genotype frequencies now adds up to 1.0
(0.2857 + 0.5714 + 0.1429 = 1.0).

Step 4: Compute New Allele Frequencies
Given the normalized genotype frequencies after selection, we can now compute
the new allele frequencies using equation (2.3):

p = fAA + fAa

2
= 0.2857 + 0.5714

2
= 0.5714

q = fAa

2
+ faa = 0.5714

2
+ 0.1429 = 0.4286

We can easily see the impact of natural selection after a single generation. Here, the
frequency of the a allele has decreased as expected, from q = 0.5 to 0.4286. Because
the frequency of q decreases, the frequency of p increases, from 0.5 to 0.5714.

When we begin to track changes in allele frequencies due to selection over
many generations, it will be useful to keep track of the exact amount of change
from one generation to the next. If we refer to p and q as the allele frequencies
before selection and the symbols p′ and q′ as the allele frequencies after selection,
then the amount of change in a given generation (�) will be equal to

�p = p′ − p = 0.5714 − 0.5 = 0.0714

�q = q′ − q = 0.4286 − 0.5 = −0.0714
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The value for �p is positive because the A allele increased in frequency, and the
value for �q is negative because the a allele decreased in frequency.

Step 5: Extend the Results to the Next Generation
We can now repeat steps 1–4 by taking the new allele frequencies (p = 0.5714 and
q = 0.4286) and starting over and the assuming that the fitness values remain the
same. Filling in all the rows of the table that we built, we now obtain

AA Aa aa

Before selection 0.3265 0.4898 0.1837
Fitness 1.0 1.0 0.5
After selection 0.3265 0.4898 0.0919
Normalized genotype
frequencies

0.3595 0.5393 0.1012

Finally, after selection, the new values of p and q after the second generation of
selection are p = 0.6292 and q = 0.3708, respectively. The frequency of the a allele
has continued to decrease, and �q now equals 0.3708 − 0.4286 = −0.0578. The
mean fitness (the sum of the unnormalized genotype frequencies after selection)
has increased from 0.875 in the first generation to

w = 0.3265 + 0.4898 + 0.0919 = 0.9082

in the second generation. This increase is due to the reduction in individuals
susceptible to selection (those with genotype aa in this particular example).

The above process can be repeated generation after generation. Although the
computations could be done by hand, they would become rather tiresome quickly,
and it is much easier to use a spreadsheet program. Using such a program, I
simulated 100 generations of selection. The results are shown in Figures 6.1–6.3.
Figure 6.1 shows how the frequency of the a allele (q) decreases over time because
of selection against individuals with genotype aa. This decrease is rapid at first,
and then slows down because there are proportionately fewer individuals with
genotype aa to select against each generation.

Figure 6.2 shows the amount of allele frequency change per generation (�q).
The amount of change is negative from one generation to the next, because
the frequency of q decreases over time. However, the magnitude of this change
decreases over time as the impact of selection declines with fewer aa individuals.
Thus, �q approaches a value of zero, which is at equilibrium when q = 0 and there
will be no further change. In a mathematical sense, q will never reach 0 but will
approach it. In a practical sense, there will come a point where q is so low that it
becomes zero because of genetic drift.

Figure 6.3 shows how mean fitness increases over time to approach a theoretical
maximum where p = 1, q = 0, and the mean fitness = 1. This graph is important
in understanding natural selection, because it is a process that leads, generation
after generation, toward maximizing mean fitness.
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FIGURE 6.1 Allele frequency under selection against the recessive homozygote. Initial
allele frequencies are p = 0.5 and q = 0.5. Fitness values are wAA = 1.0, wAa = 1.0, and
waa = 0.5. The frequency of the a allele (q) decreases over time; the decrease is rapid at first
and then slows down. Over time, the frequency of q will approach zero.
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FIGURE 6.2 Allele frequency change per generation under selection against the recessive
homozygote. Initial allele frequencies are p = 0.5 and q = 0.5. Fitness values are wAA =
1.0, wAa = 1.0, and waa = 0.5. With each generation the amount of change is negative
because the allele frequency q is decreasing over time (see Figure 6.1). Over time, the amount
of change approaches zero.

II. A GENERAL MODEL OF NATURAL SELECTION

Now that we have seen an example of natural selection over time, we can apply
the methods used to simulate natural selection to develop a general mathematical
model of natural selection that can be used for any conceivable set of fitness
values. Thus, we will be able to understand easily not only selection against a
recessive allele but also selection against a dominant allele, selection against the
heterozygote, and selection for the heterozygote, among other possible scenarios.

In order to simulate any case of selection for a single locus with two alleles,
we need the initial allele frequencies and the relative fitness for each genotype. We
then can take the tables presented in the five-step example above and substitute the
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FIGURE 6.3 Mean fitness in each generation under selection against the recessive homozy-
gote. Initial allele frequencies are p = 0.5 and q = 0.5. Fitness values are wAA = 1.0, wAa =
1.0, and waa = 0.5. Mean fitness increases with each generation, rapidly at first and then
slowing down to approach a maximum value of 1.

TABLE 6.1 A General Model of Natural Selectiona

Genotype

Time Frame or Parameter AA Aa aa

Before selection p2 2pq q2

Fitness wAA wAa waa

After selection p2wAA 2pqwAa q2waa

Normalized genotype frequencies (p2wAA )/w (2pqwAa )/w (q2waa )/w

a This table presents the values used to simulate natural selection for a single-locus model with two
alleles, A and a. The model requires the initial allele frequencies p and q and the fitness values for
each genotype. The genotype frequencies before selection are the Hardy–Weinberg equilibrium values.
The genotype frequencies after selection are obtained by multiplying the frequencies before selection
by their respective fitness values. The normalized genotype frequencies are obtained by dividing the
frequencies after selection by the mean fitness, designated by the symbol w (the bar above the letter
is standard shorthand for the mean, which in this case is the mean value of w, which is fitness). Here,
w = p2wAA + 2pqwAa + q2waa .

appropriate mathematical variables for the specific values used in the example.
Table 6.1 shows the expected genotype frequencies before selection (obtained
from Hardy–Weinberg equilibrium), the genotype frequencies after selection, and
the normalized genotype frequencies after selection. The formulas presented in
Table 6.1 are used for deriving several quantities below. The derivations presented
in this chapter are taken from Ayala (1982).

The first quantity that we derive (and that is needed to compute the normalized
genotype frequencies) is the mean fitness, computed as the sum of the genotype
frequencies after selection:

w = p2wAA + 2pqwAa + q2waa (6.1)
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We now derive the allele frequencies after a single generation of selection,
labeled as p′ and q′, by using equation (2.3) on the appropriate normalized genotype
frequencies after selection from Table 6.1. For p′, this gives

p′ = fAA + fAa

2

from equation (2.3), which, when used with the values in Table 6.1, gives

p′ = p2wAA

w
+ 2pqwAa

2w
= p2wAA + pqwAa

w

We then factor out p to get

p′ = p(pwAA + qwAa)
w

(6.2)

We do the same thing for q′ to obtain

q′ = q(pwAa + qwaa)
w

(6.3)

(Note: To follow this, be sure to keep the subscripts for the fitness values straight!)
We could then solve for additional generations by setting the initial allele frequen-
cies equal to p′ and q′ and solving for the next generation (again, assuming that
the fitness values do not change).

We are also interested in the amount of change in allele frequencies: �p and
�q. Derivation of these values is a bit more involved algebraically, and is presented
in Appendix 6.1. These values are

�p = pq[p(wAA − wAa) + q(wAa + waa]
w

(6.4)

and

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

(6.5)

III. TYPES OF NATURAL SELECTION

Given the general model above, we will use equations (6.1)–(6.5) to explore several
common types of natural selection.

A. Selection against the Recessive Homozygote

The worked example of natural selection given earlier (Figures 6.1–6.3) involved
selection against the recessive homozygote. This type of selection is common with
a number of genetic disorders where having two copies of a harmful recessive
allele lowers an individual’s fitness. In the most extreme case, that of a lethal
recessive, the fitness is zero. The general model of natural selection can be used to
explore some general implications of selection against the recessive homozygote.
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Here, we use our standard model of a locus with two alleles, and let A represent
the dominant allele and a represent the recessive allele.

Models of natural selection are best understood by using a measure known as
the selection coefficient, which is the opposite of fitness. As fitness represents the
probability of survival and reproduction, the selection coefficient is the probability
of not surviving and reproducing. We use w to represent fitness and s to represent
the selection coefficient. The two measures are related as w + s = 1. As an example,
values of w = 0.8 and s = 0.2 mean that 80% survive and 20% are selected against.
The models for natural selection work out more easily mathematically if we
express the fitness in terms of the selection coefficient as w = 1 − s.

To consider the effect of selection against the recessive homozygote, we need
to assign a relative fitness for the aa genotype that is less than those for the other
genotypes (which are assigned a fitness of 1). In this case, we consider s as the
selection coefficient associated with the recessive homozygote. We thus set the
fitness values for this type of selection as

wAA = 1

wAa = 1

waa = 1 − s

In this case, the fitness of the recessive homozygote is reduced by the quantity
s relative to the other two genotypes. We now plug these values into equations
(6.1)–(6.5) to obtain equations that describe the effect of selection against recessive
homozygotes. The mean fitness, obtained from equation (6.1), is

w = p2wAA + 2pqwAa + q2waa

= p2(1) + 2pq(1) + q2(1 − s)

which gives

w = 1 − sq2 (6.6)

(see Appendix 6.2 for the complete derivation). We can see that the higher the
frequency of the a allele (q) and/or the higher the amount of selection against the
recessive homozygote (s), the lower the mean fitness. Mean fitness will be highest
when q = 0 (i.e., the harmful allele has been eliminated from the population).

We can see the impact of selection on the frequency of the a allele by plugging
in the fitness values above into equation (6.3), which gives

q′ = q(pwAa + qwaa)
w

= q[p(1) + q(1 − s)]
w

which, following some algebraic manipulation (see Appendix 6.2), gives

q′ = q − sq2

1 − sq2 (6.7)
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This formula can be used in a spreadsheet to calculate the frequency of the a allele
from one generation to the next by taking the value of q′ each generation and
plugging it back into equation (6.7) to get the value of q′ for the next generation.
For example, if s = 0.5 and the initial value of q is set to 0.5, we obtain

q′ = 0.5 − (0.5)(0.5)2

1 − (0.5)(0.5)2 = 0.5 − 0.125
1 − 0.125

= 0.4286

in the next generation. To extend this another generation, we would plug this new
value of q back into equation (6.7) and obtain

q′ = 0.4286 − (0.5)(0.4286)2

1 − (0.5)(0.4286)2 = 0.3368
1 − 0.0918

= 0.3708

This process could be repeated any number of times to compute the expected
value from natural selection after a given number of generations (as in Figure 6.1).

Another useful parameter is the amount of allele frequency change per
generation �q. Here, we take the fitness values from above (wAA = 1, wAa =
1, waa = 1 − s) and substitute them into equation (6.5), giving

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

= pq[p(1 − 1) + q(1 − s − 1)]
w

which gives (see Appendix 6.2)

�q = −spq2

1 − sq2 (6.8)

Much of the behavior of selection against the recessive homozygote can be
inferred directly from equation (6.8). For one thing, we can see that the term �q
will always be negative because of the negative sign in the numerator and the
fact that s, p, and q will always be nonnegative by definition. (After all, what is a
negative probability?) The negative nature of �q means that the frequency of the a
allele will decrease, generation after generation. In simpler terms, selection against
the recessive homozygote causes the recessive allele to decrease over time. It will
never increase in frequency (at least as a result of selection—it could increase
because of mutation and genetic drift).

We have already seen from Figure 6.1 that under selection against the recessive
homozygote, the frequency of the a allele will continue to approach a value of zero.
We can also see this by solving for the equilibrium value by setting equation(6.8)
equal to zero (which is the mathematical definition of equilibrium). In this case,
we solve the equation

�q = −spq2

1 − sq2 = 0
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FIGURE 6.4 Selection against the recessive homozygote for different values of the selection
coefficient. Initial allele frequencies are p = 0.5 and q = 0.5 in each case. Fitness values are
wAA = 1, wAa = 1, and waa = 1 − s. Allele frequencies were derived using equation (6.7) for
three different values of the selection coefficient: s = 0.2, s = 0.6, and s = 1.0.

which means that �q equals zero when the term −spq2 is equal to zero, which
could happen if s, p, or q were equal to zero. Because by definition s is not equal
to zero (otherwise there would be no selection), �q can be equal to zero only
if p or q is equal to zero. However, because selection against the homozygote
involves a decrease in the a allele (and an increase in the A allele), this means that
an equilibrium will be reached only when q is equal to zero. As noted above, the
mathematics of selection means that the frequency of a will approach—but not
actually reach—zero, but the reality of the situation is that selection against the
homozygote will eventually remove the a allele.

Equation (6.8) also shows the effect of the intensity of selection as measured
by the selection coefficient s. For any given value of q, higher values of s will
result in more allele frequency change, which means a faster approach to the
final equilibrium value. This is intuitive—the greater the intensity of selection, the
sooner it will occur. The effect of different values of s is shown in Figure 6.4. Higher
values of s (which indicates lower fitness of the recessive homozygote) results in
faster change over time. One of the curves in Figure 6.4 is particularly informative:
the case of complete selection against the recessive homozygote. This case (s = 0)
corresponds to a lethal recessive allele where any individual having two copies
of the recessive allele will not survive and reproduce. An example in humans is
Tay–Sachs disease, caused by a lethal recessive allele. Individuals that receive the
lethal recessive allele from both parents are homozygous and usually die in their
first few years of life. Since virtually none of the recessive homozygotes survive,
does this mean that the lethal allele will be eliminated in a single generation? As
seen in Figure 6.4, the answer is no, but this result might take a little bit of thought.
If all of the recessive homozygotes die before reproducing, then how can any of
the alleles continue? The answer, of course, is that heterozygotes carry one lethal
allele and can pass it on to the next generation. Even when a recessive allele is
lethal, it takes time to remove it from the population.
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B. Selection against Dominant Alleles

Now that we have seen the derivation of a general model of natural selection and
worked through an example in depth, we can consider different forms of natural
selection. For example, what happens if the situation discussed above is reversed
and we have selection against a dominant allele? In this scenario, the fitness of
both the dominant homozygote (AA) and the heterozygote (Aa) would be reduced
relative to the recessive homozygote (aa). We start by writing the fitness values for
each genotype to reflect these differences:

wAA = 1 − s

wAa = 1 − s

waa = 1

Mean fitness is derived by substituting these values into equation (6.1), giving

w = 1 − s + sq2 (6.9)

(see Appendix 6.3). This equation shows us that for any value of s, mean fitness
will increase as the frequency of the recessive allele (q) increases (and, therefore,
as the frequency of the dominant allele decreases).

Since we are interested in the frequency of the dominant allele, we use
equation (6.2) to express the allele frequency p′ in the next generation, and
substitute equation (6.9) for mean fitness, giving

p′ = p(1 − s)
1 − s + sq2 (6.10)

The amount of change in the dominant allele per generation is now obtained from
equation (6.4), giving

�p = −spq2

1 − s + sq2 (6.11)

(see Appendix 6.3 for derivations). This equation shows us two important facts
about selection against genotypes having the dominant allele: (1) �p will always
be negative (because of the negative sign in the numerator), and the frequency of p
will always decrease over time, which makes sense as it is being selected against in
this example; and (2) this decrease will continue until equilibrium, defined when
�p = 0. We see that this will occur when p = 0. Selection against the dominant
allele will eventually remove the allele from the population. In this case, removal
is complete as the dominant allele is expressed in the heterozygote, and therefore
cannot be retained indefinitely in the population (even in a mathematical sense).
As shown in Figure 6.5, higher values of s will remove the dominant allele more
quickly.

An interesting feature of selection against a dominant allele is that it is possible
to remove the dominant allele in a single generation. This will happen when the
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FIGURE 6.5 Selection against dominant alleles. Initial allele frequencies are p = 0.9 for
the dominant allele (A) and q = 0.1 for the recessive allele (a). Fitness values are wAA =
1 − s, wAa = 1 − s, and waa = 1. Allele frequencies were derived using equation (6.10) for
three different values of the selection coefficient: s = 0.2, s = 0.4, and s = 0.6.

dominant allele is lethal, such that anyone having either the AA or Aa genotype
will be eliminated in the first generation, and only those with the recessive
homozygote aa will survive. We can also see this effect mathematically by using
complete selection (s = 1) in equation (6.10), which shows that if we start with
allele frequency p, the frequency of the dominant allele in the next generation
will be

p′ = p(1 − s)
1 − s + sq2 = p(1 − 1)

1 − 1 + (1)q2 = 0

This is the only way that selection can remove an allele in a single generation.

C. Selection with Codominant Alleles

The examples presented thus far have involved a dominant allele and a recessive
allele. The next model considers that happens when the two alleles are codom-
inant and there is selection against one of the alleles. Under codominance, the
heterozygote Aa will show the effect of both alleles. One way to model selection
in this type of situation is consider selection for the A allele and selection against
the a allele. This is done by assigning the highest fitness to individuals with two A
alleles (genotype AA), the lowest fitness to someone with no A alleles (genotype
aa), and an intermediate fitness to those with one A allele (genotype Aa). The
fitness values in this case are

wAA = 1

wAa = 1 − s
2

waa = 1 − s
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Note that the fitness of the heterozygote is the average of the fitness values of the
two homozygotes, thus meeting our criterion that the fitness of the heterozygote
is intermediate:

wAA + waa

2
= (1) + (1 − s)

2
= 2 − s

2
= 1 − s

2

Mean fitness is derived by substituting these values into equation (6.1), giving

w = 1 − sq (6.12)

(see Appendix 6.4). This equation shows us that for any value of s, mean fitness
will increase as q decreases. Selection against the a allele will lead to its decline
even under codominance.

The frequency of the a allele in the next generation is specifically derived by
substituting the fitness values into equation (6.3), which gives

q′ = q − sq(1 + q)/2
1 − sq

(6.13)

The amount of change in the a allele per generation is now obtained from equation
(6.5), giving

�q = −spq/2
1 − sq

(6.14)

(see Appendix 6.4). This equation has a negative sign in the numerator, which
means that the frequency of the a allele decreases with each generation. This
decrease will continue until �q = 0, which will occur when q = 0. As with selection
against the recessive homozygote, this is a mathematical limit.

Figure 6.6 shows selection against the codominant allele a for three different
values of the selection coefficient. As with selection against the recessive homozy-
gote (Figure 6.4), the allele frequency decreases rapidly at first, approaching a value
of zero. Note, however, that the rate of change of the examples shown in Figure 6.6
is faster (i.e., descent of the curves is steeper) than those shown in Figure 6.4 for
the same selection coefficients. For example, under selection against the recessive
homozygote for s = 0.2, the allele frequency drops from q = 0.5 to about q = 0.2
(Figure 6.4) after 20 generations, whereas the frequency drops to q = 0.1 after 20
generations of selection against the codominant allele (Figure 6.6). The reason for
this is that the fitness of the heterozygote is lower for the case of selection against
the codominant allele. Under selection against the recessive homozygote, no het-
erozygotes are selected against (because fitness = 1), whereas some heterozygotes
are selected against under codominance (where fitness = 1 − s/2).
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FIGURE 6.6 Selection against the codominant allele a for different values of the selection
coefficient. Initial allele frequencies are p = 0.5 and q = 0.5 in each case. Fitness values are
wAA = 1, wAa = 1 − (s/2), and waa = 1 − s. Allele frequencies were derived using equation
(6.13) for three different values of the selection coefficient: s = 0.2, s = 0.6, and s = 1.0.
Compare the rates of change here with the case of selection against the recessive homozygote
shown in Figure 6.4.

D. Selection against the Heterozygote

The examples presented thus far have shown selection against one of the homozy-
gotes relative to other genotypes. The results have been intuitive; selection against
an allele causes it to decrease over time (and, from the perspective of the other
allele, selection for an allele causes it to increase over time). The case of selection
against the heterozygote is a bit different. In order to model this type of selection,
we assign the heterozygote a lower fitness than the two homozygotes. The simplest
model of this type uses fitness values of

wAA = 1

wAa = 1 − s

waa = 1

The mean fitness is determined by substituting these values into equation (6.1),
giving

w = 1 − 2spq (6.15)

(see Appendix 6.5 for derivation). The relationship between mean fitness and allele
frequency is more complicated than in the previous examples of natural selection,
where fitness increased (or decreased) with allele frequency. Here, the relationship
is parabolic, which is easily seen when substituting (p = 1 − q) into equation (6.15),
giving

w = 1 − 2sq + 2sq2



TYPES OF NATURAL SELECTION 155

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0

Allele frequency (q)

M
ea

n 
fit

ne
ss

 (
w

)

FIGURE 6.7 Mean fitness as a function of allele frequency under selection against the
heterozygote. Mean fitness was derived using equation (6.15) with a selection coefficient of
s = 0.2. Note that mean fitness reaches a maximum for two values of allele frequency, q = 0
and q = 1, and a minimum for q = 0.5.

The parabolic relationship is easily seen in Figure 6.7, which plots mean fitness as
a function of q for a given selection coefficient. It is clear that mean fitness is at a
maximum for two different allele frequencies: q = 0 and q = 1. Note also that the
minimum fitness is found at an allele frequency of q = 0.5.

The frequency of the a allele in the next generation is obtained using equation
(6.3), giving

q′ = q − spq
1 − 2spq

(6.16)

The amount of change in the a allele per generation is now obtained from equation
(6.5), giving

�q = spq(q − p)
1 − 2spq

(6.17)

(see Appendix 6.5 for derivations). Note that the sign (positive or negative) of this
equation is not clear, but depends on the exact value of the term (q − p), which, in
turn, depends on whether q is greater or less than p. If q is greater than p, then this
term is positive, and the frequency of q will increase in the next generation. On the
other hand, if q is less than p, then the term (q − p) is negative, and the frequency
of q will decrease in the next generation. Thus, the frequency of an allele could
increase or decrease, depending on the initial allele frequency!

To see this, let us try an example. Let the selection coefficient be s = 0.2 and
let q = 0.6 (which means that p = 0.4). Plugging these values into equation (6.17)
gives

�q = (0.2)(0.4)(0.6)(0.6 − 0.4)
1 − 2(0.2)(0.4)(0.6)

= 0.0096
0.904

= 0.0106
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FIGURE 6.8 Selection against the heterozygote for different staring values of q. Fitness values
are wAA = 1, wAa = 1 − s, and waa = 1. Allele frequencies were derived using equation (6.16)
for s = 0.2 and nine different initial values of q: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
Dotted lines show selection when the initial allele frequency is greater than 0.5, and dashed
lines show selection when the initial allele frequency is less than 0.5. The solid line shows the
case where the initial allele frequency is exactly q = 0.5.

which is a positive value, meaning that the frequency of q increases to 0.6 +
0.0106 = 0.6106. Now, let us look at the case where s is still equal to 0.2, but now
q = 0.4 and p = 0.6. Here, equation (6.17) gives

�q = (0.2)(0.6)(0.4)(0.4 − 0.6)
1 − 2(0.2)(0.6)(0.4)

= −0.0096
0.904

= −0.0106

which has a negative value, meaning that the frequency of q decreases from 0.4 to
0.4 − 0.0106 = 0.3894.

The effect of initial allele frequency is shown in Figure 6.8 for a number of
different starting values of q. This graph shows that when the initial allele frequency
is greater than 0.5, the effect of selection is to increase the allele frequency until
a value of q = 1.0 is reached. The graph also shows that when the initial allele
frequency is less than 0.5, selection acts to decrease the frequency allele until a
value of q = 0.0 is reached. The one exception is when the initial allele frequency
is exactly 0.5, in which case there will be no change!

Equation (6.17) shows how the equilibrium value of the alleles also depends
on the initial allele frequency. We determine the equilibrium values by setting
equation (6.17) equal to zero, which will be true when q = 0 or when p = 0 (which
means that q = 1). If q is less than 0.5, then �q will be negative and the allele
frequency will decrease until q = 0. If, however, q is greater than 0.5, then �q
will be positive and increase until q = 1. There is also a third equilibrium value.
Note that equation (6.17) will be equal to zero when the term (q − p) is equal
to zero, which means that p = q = 0.5. As we have seen in Figure 6.8, when the
initial allele frequency is equal to 0.5, there will be no further change. It would
be very rare, however, for such a condition to persist for long, as mutation, drift,
and/or gene flow would soon tip the allele frequency to slightly more (or less)
than 0.5, and the selection would continue to move the allele frequency toward
an equilibrium of q = 0 or q = 1.
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An intuitive way of seeing the effect of selection against the heterozygote is to
consider the following analogy. Assume that you are in a class with 40 students.
There is a table in the front of the room that contains 60 apples and 40 oranges.
Now, imagine that each student comes to the front of the class and takes one apple
and one orange (the two types of fruit chosen are analogous to a heterozygote
with two different alleles). After the first student takes an apple and an orange,
there will be 59 apples and 39 oranges remaining. After the second student takes
an apple and an orange, there will be 58 apples and 38 oranges. This will continue
until the last of the 40 students has taken an apple and an orange. There are now
20 apples and no oranges left on the table. In other words, we ran out of oranges
first because there were fewer oranges to start with. If we repeated this thought
experiment, but this time imagined 40 apples and 60 oranges, we would run out
of apples first because there are fewer apples to start with. The same process
occurs with selection against the heterozygote. Every time an individual with the
heterozygote does not survive and reproduce, both an A allele and an a allele are
removed from the population. The eventual fate depends on how many A and a
alleles there were to begin with. If there are more A alleles, then selection will lead
to only A alleles. If there are more a alleles, then selection will lead to only a alleles.

E. Selection for the Heterozygote

All of the previous examples have involved selection that has led to an increase in
allele frequency toward an equilibrium value of 1.0, or a decrease in allele frequency
toward an equilibrium value of 0.0. Ultimately, an allele either is eliminated from
the population or reaches fixation within the population. There are no intermediate
equilibrium values (other than the unrealistic case of p = q = 0.5 under selection
against the heterozygote). Selection for the heterozygote is different, because it
leads to an equilibrium value that lies somewhere between 0.0 and 1.0. Instead of
one allele being favored completely over the other, a balance in allele frequencies
is reached. In fact, selection for the heterozygote is often referred to as balancing
selection.

In this model, the heterozygote has the highest fitness and the homozygotes
are assigned lower fitness values. In order to show how different balances occur,
we assign different selection coefficients for the two homozygotes. Here, s is the
selection coefficient of the homozygous genotype AA and we use the letter t for
the selection coefficient of the homozygous genotype aa. The fitness values of the
three genotypes are

wAA = 1 − s

wAa = 1

waa = 1 − t

The mean fitness is determined by substituting these values into equation (6.1),
giving

w = 1 − sp2 − tq2 (6.18)
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FIGURE 6.9 Mean fitness as a function of allele frequency under selection for the heterozy-
gote. Mean fitness was derived using equation (6.18) for three sets of selection coefficients
s and t. In each case, the relationship between fitness and allele frequency is parabolic, and
fitness is at a maximum for an intermediate allele frequency and not for the extreme values of
q = 0 or q = 1.

(see Appendix 6.6). The relationship between fitness and allele frequencies is
parabolic, but the exact shape depends on the values of s and t. Figure 6.9 provides
an example of this relationship for three different sets of values of s and t. Each
curve is parabolic, but each reaches a maximum fitness at a different value of q.
Note that, unlike previous examples of selection, the maximum fitness values are
not found at the extreme values of q = 0 or q = 1.

The frequency of the a allele in the next generation is derived from equation
(6.3) to give

q′ = q − tq2

1 − sp2 − tq2 (6.19)

and the amount of allele frequency change per generation is obtained from
equation (6.5), giving

�q = pq[sp − tq]
1 − sp2 − tq2 (6.20)

(see Appendix 6.6 for derivations). Note that the sign of the numerator could
be positive or negative, indicating that in some cases the allele frequency will
increase, and in some cases it will decrease. If sp > tq, then the numerator is
positive and the allele frequency will increase. If sp < tq, then the numerator is
negative and the allele frequency will decrease. Equilibrium occurs when �q = 0,
which will happen when sp = tq. This relationship facilitates calculation of the
allele frequencies at equilibrium by substituting (1 − q) for p, which gives

sp = tq

s(1 − q) = tq
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Solving for q gives

q = s
s + t

(6.21)

Because p = 1 − q, this means that the equilibrium frequency of p will be

p = t
s + t

(6.22)

(Readers who know calculus may be interested in a calculus-based derivation of
the equilibrium allele frequency in Appendix 6.7.)

Let us consider an example where s = 0.2, t = 0.5, and the initial allele fre-
quency is q = 0.1. In this case, the fitness of genotype AA is (1 − 0.2) = 0.8, which
is lower than the fitness of the heterozygote (= 1, by definition), but higher than
the fitness of genotype aa, which is (1 − 0.5) = 0.5. Because the fitness of genotype
aa is the lowest, we might expect the frequency of the a allele to decrease because
a alleles are being removed from the population. However, because the heterozy-
gote has the highest fitness, a alleles are also being put back into the population.
Further, some A alleles are being removed by selection against genotype AA, but
are also being maintained in the population because of the higher fitness of the
heterozygote. In essence, both alleles are being selected for and against in this case.
You can see why this is called balancing selection!

If we use the hypothetical values of s = 0.2, t = 0.5, and an initial value of
q = 0.1 with equation (6.20), we see that the critical term [sp − tq] is equal to

[(0.2)(1 − 0.1) − (0.5)(0.1)] = 0.13

which is positive. This means that q will increase over time, and will reach the
equilibrium value from equation (6.21) of

q = s
s + t

= 0.2
0.2 + 0.5

= 0.286

Now, let’s use the same selection coefficients s = 0.2 and t = 0.5, but start
instead with an initial allele frequency of q = 0.9. The critical term [sp − tq] is now
equal to

[(0.2)(1 − 0.9) − (0.5)(0.9)] = −0.43

which is negative, which means that the allele frequency will decrease. However,
the equilibrium value from equation (6.21) is still the same. Thus, selection
will decrease the allele frequency until the equilibrium of q = 0.286 is reached.
Figure 6.10 shows both of these examples, the one starting with q = 0.1 and
the one starting with q = 0.9. Both converge to the same equilibrium. Thus, the
direction of allele frequency change depends on the initial allele frequencies, but
the equilibrium is the same and is determined by the selection coefficients.
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FIGURE 6.10 Selection for the heterozygote for two different starting values of q. Fitness
values are wAA = 1 − s, wAa = 1, and waa = 1 − t . Allele frequencies were derived using
equation (6.19) for s = 0.2 and t = 0.5. The solid line shows the pattern of allele frequency
change starting with an initial allele frequency of q = 0.1, and the dotted line shows the
pattern of allele frequency change starting with an initial allele frequency of q = 0.9.

IV. OTHER ASPECTS OF SELECTION

The remainder of this chapter extends the basic models of selection to deal with
other aspects of natural selection, including interaction with other evolutionary
forces (mutation, drift), interaction with inbreeding, and implications of selection
for the evolution of quantitative traits.

A. Selection and Mutation

Now that we have covered two evolutionary forces in detail, mutation and
selection, it is time to consider how they can interact. If we focus only on these
two forces at the moment, ignoring genetic drift and gene flow, we can picture
microevolution as a process where new mutations introduce genetic variation into
a population in small amounts and where natural selection determines the fate of
these new mutants.

Selection for a Mutation
Intuitively, a helpful mutant allele will increase in frequency. An example is shown
in Figure 6.11. This particular simulation starts with allele frequencies of p = 1.0
and q = 0.0. Each generation, some A alleles mutate into a alleles at a mutation rate
of μ = 0.00001. Genotype fitness values were set to show what happens when the
alleles are codominant where the mutant allele is favored. In this example, those
with two mutant alleles have the highest fitness (waa = 1.0), those with no mutant
alleles have the lowest fitness (wAA = 0.8), and those with one mutant allele have
an intermediate fitness (wAa = 0.9). The frequency of the mutant allele stays low
for a number of generations because the proportion of individuals with favored
genotypes is low. As the number of individuals with genotype Aa or aa increases,
the chance for selection increases, leading to an exponential increase after about
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FIGURE 6.11 Selection for an advantageous mutant allele. Initial allele frequencies are
p = 1 and q = 0. With each generation there is mutation from the A allele to the a allele with
mutation rate μ = 0.00001. Selection favors the mutant allele; those with two mutant alleles
(aa) have the highest fitness (= 1), those with one mutant allele (Aa) have the next highest
fitness (= 0.9), and those with no mutant alleles (AA) have the lowest fitness (= 0.8).

60 generations. Selection is particularly rapid after that, and the frequency of the
mutant allele is over 90% after 100 generations. The rate of selection would be
even higher if the mutant allele were dominant.

Selection against a Mutation
It might seem reasonable to assume that because allele frequency decreases when
there is selection against that allele, selection against a mutation will totally
remove the mutation in a population. Actually, this does not happen. Instead, an
equilibrium is reached between selection against the mutation (which removes the
allele) and mutation (which adds the allele). An example is shown in Figure 6.12
for mutation to a harmful recessive allele (A to a) with a mutation rate of μ = 0.0001
and a selection coefficient of s = 0.2 for the recessive homozygote. The frequency
of the mutation allele increases with time at first and then levels off to a value of
roughly q = 0.022. This increase would occur even if there were complete selection
against the recessive homozygote, as the heterozygotes would carry the mutant
allele without harm.

Why does this happen? When q is very low, there are few individuals with
the genotype aa to be selected against. Over time, the mutations accumulate in
the population due to continued mutation of A alleles into a alleles, until a point
is reached where there are enough individuals with genotype aa to be selected
against, which offsets the continued mutation, and an equilibrium is reached. As
an analogy, consider the example of the paper cup from Chapter 5. When you
place a paper cup with a small hole in the bottom under a water faucet set to a
slow drip, the water entering the cup will cause the water level to rise, whereas
the hole in the bottom of the cup will cause the water level to drop. If you do this
just right, you will be able to find the correct amount of water that allows a balance
between the water entering the cup and the water leaving the cup. The water
entering the cup is analogous to mutation, and the water leaving the cup through
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FIGURE 6.12 Balance between mutation to a recessive allele and selection against the
recessive homozygote. Mutation rate (for A → a) is μ = 0.0001, and the selection coefficient
for the recessive homozygote is s = 0.2.

the hole at the bottom is analogous to selection against the mutation. The water
level at equilibrium (where the water leaving balances the water entering the cup)
is analogous to the equilibrium allele frequency where mutation and selection are
balanced.

In the case of selection against the recessive homozygote, this balance is
approximately equal to q = √

μ/s, where μ is the mutation rate from A to a and
s is the selection coefficient for the recessive homozygote (see Appendix 6.8 for
derivation of this approximation). In Figure 6.12, the mutation rate is μ = 0.0001
and the selection coefficient is s = 0.2, giving an approximate equilibrium value

of q = √
μ/s =

√
0.0001

0.2 = √
0.0005 = 0.0224. The approximation formula shows us

that the lower the mutation rate and/or the higher the selection coefficient,
the lower the equilibrium frequency. For example, with a mutation rate of μ =
0.000001 and a selection coefficient of s = 0.5, the equilibrium frequency would be
approximately 0.0014. Although selection will keep the frequency of the mutation
low, it is not zero. Even when the mutation is lethal (s = 1), the equilibrium
frequency will not be zero, but instead will be

√
μ. Heterozygotes will continue to

carry the recessive lethal allele, allowing the frequency to build up to this low, but
nonzero, equilibrium.

What about a dominant mutation? An example is shown in Figure 6.13 for a
mutation to a harmful dominant allele (a into A) with a mutation rate of 0.0001
and a selection coefficient of s = 0.2 for the recessive homozygote. The frequency
of the mutant allele increases rapidly at first, but then levels off to an equilibrium
value after about 20 generations. The equilibrium is approximately p ≈ μ/s (see
Appendix 6.9 for derivation). This equilibrium frequency is smaller than for the
previous case of mutation and selection against the recessive allele, which makes
sense as there are more opportunities for selection against a dominant allele (both
genotypes AA and Aa are affected). For Figure 6.13, the approximate equilibrium
frequency is p ≈ μ/s = 0.0001

0.2 = 0.0005.
The equilibrium formula also shows that even if there is total selection against

the dominant allele (s = 1 for both genotype AA and genotype aa), the frequency
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FIGURE 6.13 Balance between mutation to a dominant allele and selection against the
dominant allele. Mutation rate (for a → A) is μ = 0.0001, and the selection coefficient for the
genotypes with the dominant allele (AA and Aa) is s = 0.2.

of the mutant allele is still p = μ. Thus, even though all individuals in any given
generation with a lethal dominant allele are selected out, the presence of new
mutations in any generation keeps the allele frequency above zero.

B. Selection and Genetic Drift

How do selection and drift interact? Which of these forces has the major effect on
allele frequency change, and under what conditions? Of particular interest is the
case where selection and drift act in opposition to each other. Can the frequency
of an allele that has been selected against increase because of genetic drift? The
obvious answer to this question is that the fate of an allele will depend on the
relative strength of selection and drift.

Computer simulation gives us an idea of different ways in which selection
and drift can interact. Here, I conducted three simulations, each using a small
population size of N = 20 but varying the fitness values of the genotypes. This
small population size means that there is a lot of potential for genetic drift, and
by varying the fitness values, we can get an idea of the ways in which drift and
selection interact. Each simulation was run 1000 times, all starting with an initial
frequency of the a allele of q = 0.5, and allowed to run for 100 generations. The
distribution of allele frequencies after 100 generations is shown in Figure 6.14 for
the three simulation experiments.

The first simulation of drift and selection used very minor differences in fitness
values: wAA = 1.0, wAa = 0.995, and waa = 0.9. Even with the very small differences
in fitness values, this type of selection slowly decreases the frequency of the a allele
over time. For example, if there were no drift, the frequency of the a allele would
be q = 0.377 after 100 generations. However, Figure 6.14a shows a distribution
characteristic of genetic drift with a high proportion of final values of q that have
reached extinction or fixation. Here, selection has practically no impact relative
to genetic drift, which is expected given the very small differences in fitness.
Figure 6.14b shows the opposite pattern. This simulation used large differences
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FIGURE 6.14 Distributions of allele frequencies under the simulation of selection and drift.
Each graph shows the distributions of the a allele after 100 generations from 1000 runs of nat-
ural selection and genetic drift in a population of N = 20 and an initial allele frequency of q =
0.5. The three distributions use different fitness values: (a) wAA = 1.0, wAa = 0.995, waa = 0.9;
(b) wAA = 1.0, wAa = 0.6, waa = 0.2; (c)wAA = 1.0, wAa = 0.95, waa = 0.9. In Figure 6.14a,
drift has dominated the final distribution of allele frequencies, whereas in Figure 6.14b, selec-
tion has led to the extinction of all a alleles. In Figure 6.14c, both selection and drift have had
an impact. Under drift, some runs led to the fixation of the a allele, but not as many as in
Figure 6.14a, where drift overrode the effects of selection.

in fitness values: wAA = 1.0, wAa = 0.6, and waa = 0.2. Here, all of the 1000 runs
wound up with a value of q = 0 by 100 generations. In this simulation, selection
clearly dominated allele frequency change and drift had no impact. Figure 6.14c
shows an intermediate case. The fitness values for the third simulation used larger
differences in fitness values than in the first simulation, but nowhere near as
large as in the second simulation: wAA = 1.0, wAa = 0.95, and waa = 0.9. The graph
shows that a large majority of the runs led to the loss of the a allele over time, as
expected (under selection alone, the expected frequency of the a allele after 100
generations is q = 0.0057). Some runs wound up with higher values of q, and a
substantial minority of the runs showed fixation of the a allele by 100 generations!
For some values of fitness and population size, it is possible for a disadvantageous
allele (one being selected against) to not only increase in size but also become fixed
through genetic drift.

The interaction between natural selection and genetic drift can be extended
further by also considering mutation. As was shown in Chapter 5, the neutral
theory of evolution shows that although many new mutations are lost because
of genetic drift, some new mutants will reach fixation. What happens if there is
selection against a new mutant? Can drift overcome the effects of selection when
the frequency of the new mutation is so close to zero to begin with? Geneticist
Tomoko Ohta had developed the nearly neutral theory of evolution that examines
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this possibility (Ohta 1992). If selection is weak (but not absent) and the population
size is small, then drift can have a major impact on allele frequency, causing
results that are similar to alleles that are completely neutral. The population size
is a critical parameter in the nearly neutral theory; weak selection can dominate
in large populations, whereas in small populations drift will have a greater
impact.

C. Selection and Inbreeding

Another type of interaction is natural selection under inbreeding. We know from
Chapter 3 that inbreeding does not directly change allele frequencies, but can have
an impact on the effect of the evolutionary forces. In the case of selection, inbreeding
can affect the rate of change in allele frequencies because inbreeding results
in proportionately more homozygotes and fewer heterozygotes. The general
model of natural selection developed in this chapter assumed that genotype
frequencies before selection were at Hardy–Weinberg equilibrium. We can relax
this assumption by using the genotype frequencies expected under inbreeding
from equation (3.4) in Chapter 3. Figure 6.15 illustrates the effect of inbreeding
on selection against the recessive homozygote by comparing the change in allele
frequency over time under three different levels of inbreeding: F = 0, where there
is no inbreeding; F = 0.015625, where everyone in the population mates with
a second cousin; and F = 0.0625, where everyone in the population mates with
a first cousin. It is clear from Figure 6.15 that the higher the level of average
inbreeding, then the quicker the reduction in the frequency of the recessive allele.
For example, starting from an allele frequency of q = 0.1, it takes 20 generations
under no inbreeding to reach a value of q = 0.05, but only 11 generations for
F = 0.0625. Nonetheless, given the relatively low levels of average inbreeding
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FIGURE 6.15 Selection against the recessive homozygote under different levels of inbreed-
ing. The initial allele frequency of the recessive allele is q = 0.1. Population inbreeding levels
of F = 0.015625 and F = 0.0625 are compared with no inbreeding (F = 0). These levels
correspond to the case where everyone in the population mates with their second cousin
(F = 0.015625) and the case where everyone mates with their first cousin (F = 0.0625).
Inbreeding increases the rate of selection against the recessive homozygote; at any given
generation, the higher the value of F, the lower the allele frequency.
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in most human populations (see Chapter 3), the actual impact of inbreeding on
selection is likely low.

D. Natural Selection and Quantitative Traits

Although the discussions so far have focused on simple models using a single
locus with two alleles, a number of extensions can be made for complex models,
including selection on quantitative traits, such as height and skin color. A detailed
account of the modeling of natural selection on quantitative genetics is beyond
the scope of this book, and interested readers are referred to short reviews by
Konigsberg (2000) and Mielke et al. (2011), and the classic, more specialized text
by Falconer and Mackay (1996). It is useful, however, to consider in a broad sense
the general types of selection on quantitative traits relevant to humans.

One type of selection is stabilizing selection, where those with more extreme
phenotypes are selected against, and selection is instead for those with intermediate
phenotypes. Because selection is against both extremes, the average phenotype is
maintained (stabilized) over time. An example of this type of selection in human
populations is for birth weight. Studies of birth weight have shown that babies
that are have either very low or very high birth weights have a lower probability of
surviving than do those with average birth weight (e.g., Karn and Penrose 1952).
The other major type of selection of interest in human populations is directional
selection, where one extreme of the range of phenotypes is selected for, producing
a shift in average value. On example from human evolution is the noticeable
increase in brain size over the past 2 million years. Another example, illustrated
in the next chapter, is the change to lighter skin color among humans whose
ancestors moved into northern latitudes.

E. Natural Selection: Theory and Reality

Models of natural selection are elegant descriptions to use in what-if scenarios
regarding the impact of mode of selection and variation in fitness rates. Such
models are very useful in providing a baseline understanding of how selection
could work under different sets of conditions. What about the real world? How
well do these models apply to actual case studies of selection, particularly in human
populations? Application to actual studies of selection in human populations is
the focus of the next chapter, but we need to raise a few questions and caveats at
this point before moving on to these case studies.

The case studies discussed in this chapter provide powerful examples of
how selection can produce major changes in the gene pool over time. Even small
differences in fitness can add up to major differences over a relatively small number
of generations (small by evolutionary standards—a few dozen generations is a
short period of time in evolution, although quite long in terms of our own
lifetime). In an idealized world, mutations occur with each generation and their
fate is ultimately determined by selection for or against the new mutants. From the
perspective of the average human lifespan, such changes occur at a glacial pace,
but quickly add up to produce significant change.
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Although this model is very useful, we have to keep in mind that the actual
situation with regard to selection might not always be that simple. For one thing,
the mathematical models that we have used in this chapter assume constancy of
fitness values over dozens of generations. In reality, fitness values can often change
over time, particularly when the environment changes. This does not invalidate
the use of simple mathematical models for understanding selection, but instead
means that we need to consider violation of basic assumptions in the real world.
Much of science consists in developing a simple model, testing its fit in the real
world, and then explaining why and how it does or does not fit.

The case of the peppered moth described in earlier chapters is an excellent
example. The difference between light-colored and dark-colored moths is due to a
single locus with two alleles—light and dark—where the light allele is recessive
and the dark allele is dominant. Initially, selection was against the dark-colored
moths because they stood out on the light-colored lichen of the trees, making
them more likely to be eaten by birds. This is selection against a dominant
allele, which leads ultimately to a balance between mutation and selection, and
a very low proportion of dark moths. Environmental conditions then changed;
industrial pollution led to lichen dying and exposing the dark tree trunks. Now,
light-colored moths stood out and were more likely to be eaten, and dark-colored
moths had the advantage. Therefore, the dark mutant allele was no longer selected
against. Selection for the dominant allele took place, leading quickly to the virtual
replacement by dark alleles.

The point here is that the environment changed, and so did the fitness
values. What might be harmful in one environment could be helpful in another
environment. If the environment changes, then so might fitness values, leading
to a different trajectory of evolution through natural selection. As will be shown
in examples in the next chapter, it is critical to keep in mind the possibility of
changes in fitness values in human populations because our rapid cultural change
alters how we interact with the environment very rapidly. This is very apparent
when considering some allele frequencies that have changed considerably in some
human populations even during the last 10,000 years (again, this seems like a very
long time to you and me, but it is a mere geologic instant). Humans have the
capability for rapid cultural and genetic change.

There is continuing debate over the relative impact of selection in terms of
evolutionary change. For example, Weiss and Buchanan (2009) argue that most
selection consists of weeding out harmful mutations rather than generating new
genetic combinations. In this sense, they suggest that it would make more sense to
describe natural selection as a process of ‘‘failure of the frail’’ rather than ‘‘survival
of the fittest.’’

V. SUMMARY

This chapter has focused on the underlying mathematics of natural selection
by using a simple simulation of selection to develop a general model of allele
frequency change under natural selection. This general model was used with
different fitness values to understand the general principles of several basic
models of natural selection, including selection against the recessive homozygote,
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selection against a dominant allele, selection against a codominant allele, selection
against the heterozygote, and selection for the heterozygote (balancing selection).
Apart from balancing selection, the other forms of selection lead to the elimination
of one allele over time, although this can take many generations (apart from
selection against a lethal dominant allele). Balancing selection, on the other hand,
will reach an equilibrium allele frequency that is not 0 or 1.

Mutation can interact with selection in one of two ways. An advantageous
allele will be selected for, increasing in frequency to reach either fixation or, in the
case of balancing selection, an intermediate equilibrium value. Selection against a
mutant allele will reduce the frequency of that allele, but not to zero, because new
mutations are likely to be introduced into the population with each generation.
An equilibrium between mutation and selection is expected here, leading to a very
low, but nonzero, allele frequency. Natural selection also interacts with selection,
with the relative impact of selection and drift depending on the intensity of
selection and the population size. In small populations with minor differences
in fitness between genotypes, the frequency of a disadvantageous allele can
increase and even reach fixation as a result of genetic drift. Inbreeding interacts
with selection by changing the speed of selection. For example, when selection
is against the recessive homozygote, the effect of selection increases with each
generation because of the increased number of homozygotes under inbreeding.
Consequently, the frequency of the recessive allele decreases over time at a faster
rate than expected under random mating.

This chapter has been theoretical by design. Although the models used in
this chapter are often simplistic, they do provide us with some general ideas of
how selection can operate. The next chapter moves from the theoretical to the real
by providing some selected examples of how natural selection is measured and
analyzed in human populations.

APPENDIX 6.1 DERIVATION OF THE AMOUNT OF CHANGE
IN ALLELE FREQUENCIES PER GENERATION (�p AND �q)
FOR A GENERAL MODEL OF NATURAL SELECTION

This derivation follows the presentation outlined by Ayala (1982), which I find
particularly clear. We will start with the case for p, the frequency of the A allele.
After one generation of natural selection, the mean fitness is, from equation (6.1)

w = p2wAA + 2pqwAa + q2waa

and the allele frequency is, from equation (6.2)

p′ = p(pwAA + qwAa)
w

The change in allele frequency is

�p = p′ − p



APPENDIX 6.1 DERIVATION OF CHANGE DUE TO SELECTION 169

which, after putting these two equations together, gives

�p = p(pwAA + qwAa)
w

− p

The second part of this equation (p) is multiplied by w/w to get a common
denominator, giving

�p = p(pwAA + qwAa) − pw
w

We substitute equation (6.1) for the mean fitness in the numerator, giving

�p = p(pwAA + qwAa) − p(p2wAA + 2pqwAa + q2waa)
w

After factoring p, this gives

�p = p[pwAA + qwAa − p2wAA − 2pqwAa − q2waa]
w

This equation is rearranged by collecting terms for the same fitness values (all
terms for wAA, all terms for wAa, and all terms for waa), which gives

�p = p[p(1 − p)wAA + q(1 − 2p)wAa − q2waa]
w

Note that because p + q = 1, the term (1 − 2p) can be rewritten as (p + q − 2p) =
(q − p). This relationship, along with the relationship (1 − p = q), allows us to
rewrite the equation as

�p = p[pqwAA + qwAa(q − p) − q2waa]
w

Factoring out q gives

�p = pq[pwAA + wAa(q − p) − qwaa]
w

which, when multiplied out, gives

�p = pq[pwAA + qwAa − pwAa − qwaa]
w

The final step is to collect terms for p and q, giving

�p = pq[p(wAA − wAa) + q(wAa − waa]
w
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which is equation (6.4) in the main (chapter) text. The same process can be used
to describe the change in q(�q = q′ − q) from one generation of natural selection,
which will give

�q = pq[p(wAa − wAA) + q(waa − wAa]
w

which is equation (6.5) in the text.

APPENDIX 6.2 DERIVATION OF FORMULAS FOR SELECTION
AGAINST THE RECESSIVE HOMOZYGOTE

This section provides the derivation of equations (6.6)–(6.8).
In this model, the A allele is dominant and the a allele is recessive. Under

selection against the recessive homozygote, the fitness values for the three geno-
types are wAA = 1, wAa = 1, and waa = 1 − s. The mean fitness for a general model
of natural selection is, from equation (6.1)

w = p2wAA + 2pqwAa + q2waa

Substituting the fitness values for selection against the recessive homozygote gives

w = p2(1) + 2pq(1) + q2(1 − s)

When multiplied out, this gives

w = p2 + 2pq + q2 − sq2

Because the first three terms add up to 1 (p2 + 2pq + q2 = 1), the mean fitness is

w = 1 − sq2

which is equation (6.6) in the main text.
We now derive the formula for the allele frequency in the next generation (q′)

by substituting the fitness values into equation (6.3), which gives

q′ = q(pwAa + qwaa)
w

= q[p(1) + q(1 − s)]
w

Multiplying this out, and substituting the value for mean fitness from above, gives

q′ = q[p + q − sq]
1 − sq2
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Because by definition (p + q) = 1, this equation reduces to

q′ = q[1 − sq]
1 − sq2 = q − sq2

1 − sq2

which is equation (6.7) in the text.
The amount of allele frequency change per generation (�q = q′ − q) is now

derived using equation (6.5) and substituting the fitness values and the mean
fitness, giving

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

= pq[p(1 − 1) + q(1 − s − 1)]
1 − sq2

This gives

�q = pq[−sq]
1 − sq2 = −spq2

1 − sq2

which is equation (6.8) in the text.

APPENDIX 6.3 DERIVATION OF FORMULAS FOR SELECTION
AGAINST DOMINANT ALLELES

This section provides the derivation of equations (6.9)–(6.11).
In this model, the A allele is dominant and the a allele is recessive. Under

selection against a dominant allele, the fitness values for the three genotypes are
wAA = 1 − s, wAa = 1 − s, and waa = 1. The mean fitness for a general model of
natural selection is, from equation (6.1)

w = p2wAA + 2pqwAa + q2waa

Substituting the fitness values for selection against a dominant allele gives

w = p2(1 − s) + 2pq(1 − s) + q2(1)

When multiplied out, this gives

w = p2 + 2pq + q2 − sp2 − 2spq

Because the first three terms add up to 1(p2 + 2pq + q2 = 1), the mean fitness is

w = 1 − sp2 − 2spq

Making use of the fact that (p = 1 − q), this can be rewritten as

w = 1 − s(1 − q)2 − 2sq(1 − q)
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which, when multiplied out, gives

w = 1 − s(1 − 2q + q2) − 2sq + 2sq2

= 1 − s + 2sq − sq2 − 2sq + 2sq2

= 1 − s + sq2

which is equation (6.9) in the text.
We now derive the formula for the allele frequency in the next generation (q′)

by substituting the fitness values into equation (6.2), which gives

p′ = p(pwAA + qwAa)
w

= p[p(1 − s) + q(1 − s)]
w

Multiplying this out, and substituting the value for mean fitness from above, gives

p′ = p[(p + q)(1 − s)]
1 − s + sq2

Because by definition (p + q) = 1, this equation reduces to

p′ = p(1 − s)
1 − s + sq2

which is equation (6.10) in the text.
The amount of allele frequency change per generation (�p = p′ − p) is now

derived using equation (6.4) and substituting the fitness values and the mean
fitness, giving

�p = pq[p(wAA − wAa) + q(wAa − waa]
w

= pq[p[(1 − s) − (1 − s)] + q(1 − s − 1)]
1 − s + sq2

This gives

�p = pq[p(0) + q(−s)]
1 − s + sq2 = −spq2

1 − s + sq2

which is equation (6.11) in the text.

APPENDIX 6.4 DERIVATION OF FORMULAS FOR SELECTION
WITH CODOMINANT ALLELES

This section provides the derivation of equations (6.12)–(6.14).
In this model, the A and a alleles are codominant. Under selection against the

codominant allele a, the fitness of the homozygote AA is highest, the fitness of
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the aa homozygote is lowest, and the fitness of the heterozygote is intermediate:
wAA = 1, wAa = 1 − s/2, and waa = 1 − s. The mean fitness for a general model of
natural selection is, from equation (6.1), is

w = p2wAA + 2pqwAa + q2waa

Substituting the fitness values for selection against a dominant allele gives

w = p2(1) + 2pq
(

1 − s
2

)
+ q2(1 − s)

When multiplied out, this gives

w = p2 + 2pq + q2 − 2spq
2

− sq2

= p2 + 2pq + q2 − spq − sq2

Because the first three terms add up to 1 (p2 + 2pq + q2 = 1), the mean fitness is

w = 1 − spq − sq2

= 1 − sq(p + q)

Making use of the fact that (p + q = 1), we can rewrite this as w = 1 − sq, which is
equation (6.12) in the text.

We now derive the formula for the allele frequency in the next generation (p′)
by substituting the fitness values into equation (6.3), which gives

q′ = q[pwAa + qwaa]
w

=
q
[
p
(

1 − s
2

)
+ q(1 − s)

]
w

Multiplying this out, and substituting the value for mean fitness from above, gives

q′ =
q
[
p − sp

2
+ q − sq

]
1 − sq

=
q
[
p + q − s

(p
2

+ q
)]

1 − sq

=
q
[

p + q − s
(

p + 2q
2

)]

1 − sq

Because by definition (p + q) = 1, this equation reduces to

q′ =
q
[

1 − s
(

p + 2q
2

)]

1 − sq
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Now, since the term (p + 2q) can be rewritten as (p + q + q), which is equal to
(1 + q), the equation can be rewritten as

q′ =
q
[

1 − s
(

1 + q
2

)]

1 − sq

= q − sq(1 + q)/2
1 − sq

which is equation (6.13) in the text.
The amount of allele frequency change per generation (�q = q′ − q) is now

derived using equation (6.5) and substituting the fitness values and the mean
fitness, giving

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

=
pq

[
p
(

1 − s
2

− 1
)

+ q
(

1 − s −
(

1 − s
2

))]
1 − sq

This gives

�q =
pq

[
p
(
− s

2

)
+ q

(
−s + s

2

)]
1 − sq

=
pq

[
p
(
− s

2

)
+ q

(−2s + s
2

)]

1 − sq

=
pq

[
p
(
− s

2

)
+ q

(−s
2

)]

1 − sq

=
pq

[
− s

2
(p + q)

]
1 − sq

Because by definition (p + q) = 1, this equation reduces to

�q = −spq/2
1 − sq

which is equation (6.14) in the text.

APPENDIX 6.5 DERIVATION OF FORMULAS FOR SELECTION
AGAINST THE HETEROZYGOTE

This section provides the derivation of equations (6.15)–(6.17).
Under selection against the heterozygote, the fitness values of the three

genotypes are wAA = 1, wAa = 1 − s, and waa = 1. The mean fitness for a general
model of natural selection is, from equation (6.1)

w = p2wAA + 2pqwAa + q2waa
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Substituting the fitness values for selection against the heterozygote gives

w = p2(1) + 2pq(1 − s) + q2(1)

When multiplied out, this gives

w = p2 + 2pq + q2 − 2spq

Because the first three terms add up to 1 (p2 + 2pq + q2 = 1), the mean fitness is

w = 1 − 2spq

which is equation (6.15) in the text.
We now derive the formula for the allele frequency in the next generation (q′)

by substituting the fitness values into equation (6.3), which gives

q′ = q[pwAa + qwaa]
w

= q[p(1 − s) + q(1)]
w

Multiplying this out, and substituting the value for mean fitness from above, gives

q′ = q[p + q − sp]
1 − 2spq

Because by definition (p + q) = 1, this equation reduces to

q′ = q[1 − sp]
1 − 2spq

= q − spq
1 − 2spq

which is equation (6.16) in the text.
The amount of allele frequency change per generation (�q = q′ − q) is now

derived using equation (6.5) and substituting the fitness values and the mean
fitness, giving

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

= pq[p(1 − s − 1) + q(1 − (1 − s))]
1 − 2spq
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This gives

�q = pq[p(−s) + q(s)]
1 − 2spq

= pq[−sp + sq]
1 − 2spq

= spq[−p + q]
1 − 2spq

= spq[q − p]
1 − 2spq

which is equation (6.17) in the text.

APPENDIX 6.6 DERIVATION OF FORMULAS FOR SELECTION
FOR THE HETEROZYGOTE

This section provides the derivation of equations (6.18)–(6.20).
Under selection for the heterozygote, the fitness values of the three genotypes

are wAA = 1 − s, wAa = 1, and waa = 1 − t. The mean fitness for a general model of
natural selection is, from equation (6.1)

w = p2wAA + 2pqwAa + q2waa

Substituting the fitness values for selection against the heterozygote gives

w = p2(1 − s) + 2pq(1) + q2(1 − t)

When multiplied out, this gives

w = p2 + 2pq + q2 − sp2 − tq2

Because the first three terms add up to 1 (p2 + 2pq + q2 = 1), the mean fitness is

w = 1 − sp2 − tq2

which is equation (6.18) in the text.
We now derive the formula for the allele frequency in the next generation (q′)

by substituting the fitness values into equation (6.3), which gives

q′ = q[pwAa + qwaa]
w

= q[p(1) + q(1 − t)]
w
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Multiplying this out, and substituting the value for mean fitness from above, gives

q′ = q[p + q − tq]
1 − sp2 − tq2

Because by definition (p + q) = 1, this equation reduces to

q′ = q[1 − tq]
1 − sp2 − tq2

= q − tq2

1 − sp2 − tq2

which is equation (6.19) in the text.
The amount of allele frequency change per generation (�q = q′ − q) is now

derived using equation (6.5) and substituting the fitness values and the mean
fitness, giving

�q = pq[p(wAa − wAA) + q(waa − wAa)]
w

= pq[p(1 − (1 − s)) + q(1 − t − 1)]
1 − sp2 − tq2

This gives

�p = pq[p(s) + q(−t)]
1 − sp2 − tq2

= pq[sp − tq]
1 − sp2 − tq2

which is equation (6.20) in the text.

APPENDIX 6.7 CALCULUS-BASED DERIVATION
OF THE EQUILIBRIUM ALLELE FREQUENCY UNDER
SELECTION FOR THE HETEROZYGOTE

As shown throughout this chapter, we can think of natural selection in mathe-
matical terms as a process that maximizes the mean fitness (w) of the population.
If you know differential calculus, it may have occurred to you that this focus on
finding a maximum value of mean fitness lends itself easily to a calculus-based
approach. If you do not know calculus, do not read any further!

Under selection for the heterozygote, the fitness values of the three genotypes
are wAA = 1 − s, wAa = 1, and waa = 1 − t. As shown in equation (6.18), the mean
fitness under selection for the heterozygote is a function of the allele frequencies p
and q, and the selection coefficients s and t:

w = 1 − sp2 − tq2
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By substituting (1 − q) for p, we obtain

w = 1 − s(1 − q)2 − tq2

= 1 − s(1 − 2q + q2) − tq2

= 1 − s + 2sq − sq2 − tq2

= 1 − s + 2sq − q2(s + t)

We now have mean fitness written as a function of q. We then take the
derivative of w with respect to q, giving

dw
dq

= 2s − 2q(s + t)

We can solve for the value of q associated with a maximum or minimum by setting
this derivative equal to 0, which gives

q = s
s + t

Plotting w as a function of q shows that this value is a maximum.

APPENDIX 6.8 MUTATION–SELECTION EQUILIBRIUM
UNDER SELECTION AGAINST A RECESSIVE ALLELE

Here, we consider a mutation from allele A to a recessive allele a at a mutation rate
of μ. Under an equilibrium between mutation and selection, the change in allele
frequency due to mutation (denoted �qM) and the change in allele frequency due
to selection (denoted �qs) will cancel each other such that there is no net change,
which means that

�qM + �qs = 0 (A6.1)

The amount of change expected due to mutation is determined using the
model of irreversible mutation in Chapter 4 [equation (4.1)]:

�qM = q′ − q = (1 − p′) − q

= 1 − p(1 − μ) − q

= 1 − p + μp − q

Because 1 − p = q, this means that

�qM = q + μp − q

= μp
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The amount of change per generation due to selection against the recessive
homozygote (�qs) has already been given in equation (6.8) in the chapter text.
Substituting these values into equation (A6.1) gives

�qM + �qs = 0

μp − spq2

1 − sq2 = 0

which means that

μp = spq2

1 − sq2

Factoring out p from both sides gives

μ = sq2

1 − sq2

Now we can solve for q, which will give us the allele frequency of the mutant allele
under a balance between irreversible mutation and selection against the recessive
homozygote. Solving this equation gives

q2 = μ

s(1 + μ)

and, after taking the square root of both sides, gives

q =
√

μ

s(1 + μ)

Because the mutation rate μ is a very low value, this means that (1 + μ) is
approximately equal to 1, which, in turn, means that we can use the approximation

q ≈
√

μ

s

APPENDIX 6.9 MUTATION–SELECTION EQUILIBRIUM
UNDER SELECTION AGAINST A DOMINANT ALLELE

Here, we consider a mutation from allele a to a dominant allele A at mutation rate
μ. We focus here on the frequency of the dominant allele, p. Under an equilibrium
between mutation and selection, the change in allele frequency due to mutation
(denoted �pM) and the change in allele frequency due to selection (denoted �ps)
will cancel each other such that there is no net change, which means that

�pM + �ps = 0 (A6.2)
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Since we are looking at mutation of the a allele into the A allele, we modify
equation (4.1) from Chapter 4 to express change in the a allele as

q′ = q(1 − μ)

The amount of change expected due to mutation is then determined using the
model of irreversible mutation in Chapter 4 [equation (4.1)]:

�pM
= p′ − p = (1 − q′) − p

= 1 − q(1 − μ) − p

= 1 − q + μq − p

Because 1 − q = p, this means that

�pM
= p + μq − p

= μq

The amount of change per generation due to selection against the recessive
homozygote (�ps) has already been given in equation (6.11) in the chapter text.
Substituting these values into equation (A6.2) gives

�pM + �ps = 0

μq − spq2

1 − s + sq2 = 0

which means that

μq = spq2

1 − s + sq2

Solving for q is difficult here, but an approximation is easy to do after noting
that under this mutation model, the allele frequency q is close to 1. Using the
approximation q ≈ 1 reduces the equation to

μ = sp

or

p = μ

s



C H A P T E R 7
NATURAL SELECTION
IN HUMAN POPULATIONS

‘‘Are we still evolving?’’ This is a question I hear quite often when telling people
about my teaching and research interests in human evolution (not quite as often
as the ever-popular ‘‘Where do you dig?,’’ but still often enough). It is a good
question, and one that continues to be debated among scientists today (Balter
2005). Some argue that because humans are biological organisms that are part of
the natural world, we continue to be affected by the course of biological evolution.
Others note that human cultural evolution occurs so much more rapidly than
biological evolution that the latter has little effect on our future. For example,
medical advances have reduced or eliminated many infectious diseases. New
methods of agriculture have allowed more people to obtain more nutritious food.
Is it not true that these, and other, cultural changes allowed more people to survive,
thus countering or at least buffering natural selection to some extent? After all, life
expectancy of a newborn child in the United States increased from 47 in 1900 to 77
in the year 2000 (Arias 2007). Children in developed nations are taller and mature
earlier today than they did in the nineteenth century (Tanner 1990).

These rapid changes are clearly not the result of natural selection, but are
instead changes in environmental conditions (primarily shifts in infectious disease
and nutrition) that have allowed people to live longer and to reach their genetic
potential for growth. Changes due to cultural adaptation appear to be more
dramatic and rapid than through genetic adaptation. To some, such examples are
evidence that the pace of our cultural evolution has essentially meant that we no
longer evolve genetically in any significant way. On the other hand, it has also
been argued that this view is a bit too simplistic. For one thing, the types of cultural
changes leading to improvements in medicine and diet have not affected all human
populations equally. The unfortunate truth is that many humans continue to live
in impoverished environments without adequate healthcare or diet, and do not
share the cultural buffers enjoyed by those in other parts of society or the world.

This is a fascinating debate, because if natural selection continues to shape
human evolution, we will then want to know exactly how this occurs, and whether
any predictions can be made as to our future. The primary purpose of this chapter
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is to present several case studies of natural selection, particularly those that show
evidence of rapid evolutionary change in recent human evolution (i.e., the last
12,000 years since the initial beginnings of agriculture). These studies will provide
perspective before returning to our opening question regarding current human
evolution.

I. CASE STUDIES OF NATURAL SELECTION
IN HUMAN POPULATIONS

The following case studies are not meant to represent everything that we know
about natural selection in human populations, but instead are chosen to provide
illustrative examples of different types of selection, different methods of analysis,
and different lessons regarding natural selection.

A. Hemoglobin S and Malaria

The story of natural selection and the hemoglobin molecule is a classic in anthropol-
ogy, providing an excellent example of balancing selection, rapid genetic change,
and the effect of cultural and ecological influences on selection. Hemoglobin is a
protein of the blood that transports oxygen to tissues throughout the body. The
hemoglobin molecule of adults is made up of four protein chains. Two of these
are identical and are called the alpha chains. The other two protein chains are the
beta chains, and are identical to each other as well. The alpha chains are 141 amino
acids in length, and the gene is on chromosome 16. The beta chains are 146 amino
acids in length, and the gene is on chromosome 11 (Mielke et al. 2011). Our story
here deals with the beta chain.

The normal form of the beta hemoglobin gene is known as the A allele,
and people with the AA genotype have hemoglobin that functions normally for
transporting oxygen. A number of mutant alleles have been discovered, including
the S, C, and E alleles, among other rarer forms (Livingstone 1967). Our focus here
is on the S allele, also known as the sickle cell allele. This allele is due to a single
mutation that replaces the sixth amino acid of the beta chain, glutamic acid with
the amino acid valine. This small genetic chain has noticeable effect in individuals
who carry two copies of the mutant gene; that is, they have the genotype SS. Those
with the SS genotype have the genetic disease sickle cell anemia. In this case, low
levels of oxygen can cause the red blood cells to become distorted, and change
from their normal donut shape to the shape of a sickle (hence the name sickle
cell). The deformed blood cells do not carry oxygen effectively, causing serious
problems throughout the body’s tissues and organs, and typically leading to death
before adulthood without substantial medical intervention. Those who have the
heterozygous genotype AS typically do not show this effect, and are known as
carriers.

In terms of models of natural selection, we can assign those with the AA
genotype the highest relative fitness (w = 1). Heterozygotes have slightly lower
fitness, and those with sickle cell anemia (SS) have the lowest fitness. Given this
information, the models in Chapter 6 can be used to make some general predictions
about the evolution and variation of the hemoglobin alleles (here, we focus on the A
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and S alleles and ignore other alleles to make the points more clearly). Because the
S allele is harmful in the homozygous case, we would expect selection against this
allele. As S is a harmful mutant, we would expect its frequency to be very low, as
expected under mutation–selection balance. Data from many human populations
certainly fit this prediction. For example, the allele frequencies in a number of
populations throughout the world are A = 1 and S = 0. In some other cases, S is
not zero, but is very low, such as in Portugal (S = 0.0005), Libya (S = 0.002), and
the Bantu of South Africa (S = 0.0006) (Roychoudhury and Nei 1988).

Such frequencies are consistent with a model of selection against an allele,
and would simply be a good example of such selection if not for the fact that a
number of human populations do not fit this general model. Some populations in
the world have higher frequencies of the S allele that range from 0.01 to over 0.20
(Roychoudhury and Nei 1988). These frequencies are much higher than expected
under a model of selection against the S allele. How could the frequency of a
harmful allele be higher than expected? There are two possible answers. One
is genetic drift. By chance, the frequencies of harmful alleles can drift upward
given certain levels of population size and fitness values. The other explanation
is balancing selection. When there is selection for the heterozygote, we have a
situation where having only one copy of an allele actually confers higher fitness
than someone with two copies, or someone with only one copy.

Balancing Selection and Hemoglobin S
It turns out that the higher frequencies of the S allele in a number of human
populations can be explained by balancing selection. The clue to this effect is the
geographic distribution of populations with higher (>0.01) frequencies of the S
allele. Moderate to high frequencies of S are typically found in human populations
in parts of west Africa and South Africa, as well as parts of the Middle East and
India, among other regions. Further inspection shows that it is not a simple matter
of geographic location—some African populations have high values, for example,
while others have low values—but instead correlates with the distribution of
epidemic malaria. Populations that have a history of malaria epidemics tend to
have higher frequencies of the S allele.

Malaria is an infectious disease caused by a parasite, and is one of the
most harmful diseases recorded in human history. Current estimates suggest that
between 300 and 500 million cases of malaria occur each year, with between
1 million and 3 million deaths each year (Sachs and Malaney 2002). There are
four different forms of malaria, each caused by a different parasite. The form
of malaria relevant here is known as falciparum malaria, which is caused by the
parasite Plasmodium falciparum and is the most fatal of the malarias. You cannot
get malaria from someone else; the disease is transmitted by mosquitoes, a point
that will be important shortly.

Your genotype for beta hemoglobin affects your susceptibility to falciparum
malaria. Having an S allele renders red blood cells inhospitable to the malaria
parasite, thus protecting the individual from its effects. If you have the normal
hemoglobin genotype AA, you are more susceptible to malaria than someone
who has an S allele. However, if you have two S alleles (genotype SS), you have
sickle cell anemia, which is frequently fatal. On the other hand, if you have the
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heterozygous genotype AS, you do not have sickle cell anemia, and you are less
likely to contract malaria. Thus, in a malarial environment, the heterozygote AS
has the highest fitness followed by the AA genotype, and the SS genotype still has
the lowest fitness.

We can see these fitness differences with an example provided by Bodmer and
Cavalli-Sforza (1976 : 319) based on data from the Yoruba of Nigeria, a population
in a malarial environment. The observed genotype numbers in adults were

AA = 9, 365

AS = 2, 993

SS = 29

(for a total of 12,387 adults). We use the allele counting method from Chapter 2 to
see that there are 21,723 A alleles and 3,051 S alleles, for a total of 24,774 alleles.
The allele frequencies are A = 21,723

24,774 = 0.877 and S = 3,051
24,774 = 0.123. Note that if

this population were at Hardy–Weinberg equilibrium (and hence no selection),
the expected genotype numbers would be computed by multiplying the expected
Hardy–Weinberg proportions by the total number of adults (12,387), which would
give

AA = p2(12, 387) = (0.877)2(12, 387) = 9527.2

AS = 2pq(12, 387) = 2(0.877)(0.123)(12, 387) = 2672.4

SS = q2(12, 387) = (0.123)2(12, 387) = 187.4

Comparing the expected numbers to the observed numbers, we see that there
are fewer adults with genotype AA than expected, more with genotype AS than
expected, and far fewer SS than expected. This population is clearly not at
Hardy–Weinberg equilibrium. Because we know the biochemical relationship of
hemoglobin alleles with malaria, and because there is a surplus of heterozygotes
than expected, the evidence fits balancing selection.

Bodmer and Cavalli-Sforza (1976) derived the absolute fitness values for each
genotype by taking the ratio of observed to expected numbers. This gives absolute
fitness values of

AA = 9,365
9,527.2

= 0.983

AS = 2,993
2,672.4

= 1.120

SS = 29
187.4

= 0.155

We now transform the absolute fitness values into relative fitness values, which
can be used in our model of balancing selection from Chapter 6, by dividing
each fitness value by the highest fitness value. For balancing selection, this is the
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absolute fitness for the heterozygote, so we divide each absolute fitness value by
1.120, giving

AA = 0.983
1.120

= 0.878

AS = 1.120
1.120

= 1.000

SS = 0.155
1.120

= 0.138

These values mean that for every 100 people with genotype AS who survive to
adulthood, roughly 88 with genotype AA survive and 14 people with genotype SS
survive.

The selection coefficients for the homozygotes are obtained by subtracting the
relative fitness values of each from 1, giving

s = 1 − wAA = 1 − 0.878 = 0.122

t = 1 − wSS = 1 − 0.138 = 0.862

We can now derive the expected equilibrium frequencies using equations (6.21)
and (6.22) from Chapter 6 as

p = t
s + t

= 0.862
0.122 + 0.862

= 0.876

q = s
s + t

= 0.122
0.122 + 0.862

= 0.124

These values are almost identical with the observed allele frequencies, suggesting
that this population has reached an equilibrium under balancing selection.

Culture Change and the Evolution of Hemoglobin S
The case of hemoglobin S provides a classic example of balancing selection (perhaps
the classic example). It also provides a classic example of how culture affects genetic
evolution in human populations. In this case, a scenario can be created depicting
the frequency of S increasing in parts of Africa because of human populations
practicing agriculture (Livingstone 1958; Bodmer and Cavalli-Sforza 1976). Before
the introduction of agriculture, human populations living in heavily forested areas
of western Africa would have experienced little problem with malaria because the
mosquito species that spreads malaria do not thrive in such dense forest. Because
there would be no selective advantage for heterozygotes, any S mutants would
be selected against, and the frequency of S would be very low, as it is today in
populations where malaria is not a problem.

The situation changed when horticulture (simple agriculture using hand
tools) spread into the area. Forests were cleared for planting using slash-and-
burn horticulture. The clearing of trees and subsequent changes to soil chemistry
that reduced water absorption led to an increased in sunlit areas and pools of
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stagnant water, both of which are ideal conditions for spreading of mosquito
infestations. As the mosquito population grew, they fed on human blood, and
repeated bites allowed transmission of the malaria parasite. As malaria increased
in humans, the balance between mutation and selection changed. Now those with
the heterozygote had the highest fitness because they had resistance to malaria
but did not suffer from sickle cell anemia. As the heterozygotes were selected for,
the frequency of S would have increased. However, as the frequency of S(=q)
increases, so does the frequency of those with the SS homozygote (=q2), who are
then selected against, causing the increase in S to slow down and then stop to
reach an equilibrium.

The scenario described above was modeled as shown in Figure 7.1. A single
mutation (S) is introduced into a population of 1000 people, giving an initial
allele frequency for S of 0.0005 (=1 in 2000 alleles, because each person has two
alleles). The fitness values are those given above for the example from Bodmer and
Cavalli-Sforza: wAA = 0.878, wAS = 1.000, and wSS = 0.138. As shown in Figure 7.1,
there is little initial change in S, as there are few heterozygotes. As the frequency
of S continues to rise, a point is reached after about 20 generations where there are
sufficient numbers of heterozygotes and the frequency of S increases rapidly. By
around 60 generations, the higher frequency of S means that there are an increasing
number of deaths due to sickle cell anemia, and the curve levels off to reach an
equilibrium quickly. There is very little change after 60–70 generations. In terms of
an average of 20–25 years per generation, 60–70 generations translates to between
1200 and 1750 years, which is a very high rate of evolutionary change. Although
this model is somewhat simplistic, the results would be broadly consistent even
taking factors such as repeated mutation and fluctuations due to genetic drift into
account.

More recent research on the molecular genetics of the sickle cell mutation
suggest that it arose and spread through selection and gene flow more than once,
perhaps 5 times in different parts of Africa and Asia where malaria was common.
We also need to look at the age of different mutations; the coalescent models
described in Chapter 5 can be modified to estimate the time of an origin of a new
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FIGURE 7.1 Simulation of the evolution of hemoglobin S in a malarial environment. The initial
allele frequency of S was set at 0.0005 using fitness values of wAA = 0.878, wAS = 1.000,
and wSS = 0.138 (see text).
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mutation. The origin of the sickle cell mutations dates to roughly 2000 to 3000
years ago (Mielke et al. 2011). Such research combined with what we know about
fitness differences in hemoglobin genotypes shows that natural selection has taken
place very quickly and in very recent (evolutionary) history. The idea that we
stopped evolving when we reached the status of anatomically modern humans
200,000 years ago clearly does not apply to hemoglobin variants.

Another important lesson here is how cultural behavior (in this case, agricul-
ture) changed the fitness values. What was most fit in one environment is not
necessarily the most fit in another environment, something to remember given the
rapidity with which we humans change our relationship to the environment. In
the case of hemoglobin S, cultural change did not eliminate genetic change, but it
did change its nature and trajectory, from selection against a mutation to a case of
balancing selection. The situation could continue to change if efforts to eradicate
malaria in tropical environments ultimately prove successful. In that case, the
selective advantage for the heterozygote would disappear and selection against
the S allele would ultimately reduce the allele frequency close to zero. However, as
shown in Chapter 6, this could take a long time. For example, if we started with
the equilibrium frequency of 0.124 for the S allele under balancing selection and
changed the fitness values to wAA = 1.000, wAS = 1.000, and wSS = 0.138, the fre-
quency of S would still be 0.02 after 50 generations and 0.01 after 100 generations.
Previous genetic variation does not disappear immediately even when culture
changes the selective balance.

B. The Duffy Blood Group and Malaria

Given the intense effect of malaria on human mortality, it is not surprising that
a number of genetic traits show evidence of natural selection because of malaria,
including other hemoglobin alleles, genetic diseases known as thalassemias, and
the enzyme glucose-6-phosphate dehydrogenase (G6PD). One such trait is the
Duffy blood group, defined by the presence of different antigens on the surface
of red blood cells. The gene for the Duffy blood group is found on chromosome 1
and consists of three codominant alleles: Fya, which codes for the a antigen; Fyb,
which codes for the b antigen; and Fy0, which codes for the absence of any Duffy
antigen. The Fy0 allele, also known as the Duffy negative allele, is of particular
interest here. The Duffy blood group is a receptor site for entry of certain types of
malaria parasites into the body. Individuals who are homozygous for the Duffy
negative allele cannot be infected by the parasite Plasmodium vivax, which causes
vivax malaria (Chaudhuri et al. 1993). In populations that have experienced vivax
malaria, we expect that there would be selection for the Duffy negative allele,
ultimately leading to fixation of this allele.

The Duffy negative allele is found at highest frequencies in central and
southern Africa, reaching a value of 1.0 (100%) in a number of populations. It is
also found at moderate to high frequencies in northern Africa and the Middle East,
at low frequencies in parts of India, and at or close to zero in native populations
throughout the rest of the world (Roychoudhury and Nei 1988). This is the most
extreme variation possible in a species, where an allele ranges from 0 to 1 in
different populations, and such a range in values typically indicates selection
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across different environments. Because those homozygous for the Duffy negative
allele cannot be infected by vivax malaria, we might expect a close relationship
between the prevalence of vivax malaria and the frequency of the Duffy negative
allele; that is, the longer vivax malaria has been around, the higher the frequency
of the advantageous Duffy negative allele.

The actual geographic correspondence is almost exactly the opposite that we
initially expect from a model of selection for an advantageous allele. Populations
that have very high (or even fixed) frequencies of the Duffy negative allele tend to
have little, if any, vivax malaria (Livingstone 1984). This might seem paradoxical
at first, but keep in mind that when we survey genetic variation in the present
day, we are seeing the net effect of a variety of factors in the past, which means
that we need to consider time depth. For example, one possibility is that all of the
selection for the Duffy negative allele took place in the past. Under this model, in
populations experiencing vivax malaria, selection would favor those homozygous
for the Duffy negative allele. Over time, the frequency of Duffy negative would
increase, ultimately reaching a level at or near 100%. As this happened, however,
more and more people would be immune to vivax malaria, and at some point, the
disease would not be able to survive because of lack of susceptible individuals in
the population to perpetuate the spread of the disease. At the end of this selection
process, the human populations would have very high (or fixed) frequencies of
the Duffy negative allele and there would be no more vivax malaria in the region,
which is the situation we see today. An obvious lesson here is that we can see
different relationships with selection depending on when we are observing the
‘‘present.’’ Are we seeing the start, middle, or the end?

Further support for natural selection for the Duffy negative allele has come
from molecular studies that have examined DNA sequences at and near the
location of the Duffy blood group gene. Under natural selection, we expect that
DNA variation should be reduced for the gene under selection (because other
alleles are eliminated). Because of genetic linkage, where neighboring sections of
DNA tend to be inherited together, we should also see reduced variation in DNA
sequences near the gene, even if these neighboring sequences represent neutral
genetic variation. Under natural selection, these neutral sequences are swept along
in a process known as a selective sweep. Our ability to sequence sections of DNA
allows us to compare observed levels of variation with those expected under a
selective sweep and with those expected under neutral evolution (no selection).
For the Duffy blood group and neighboring DNA sequences, the evidence shows
reduced variation for those with the Duffy negative allele, confirming that selection
has taken place (Hamblin and Di Rienzo 2000; Hamblin et al. 2002).

However, does this mean that the selection initially resulted from adaptation
to vivax malaria? Not necessarily. Livingstone (1984) presents another hypothesis
that can also explain the negative correlation between Duffy negative allele
frequency and prevalence of vivax malaria. He suggests that there was already
a high frequency of the Duffy negative allele in some populations, perhaps
reflecting selection to some other disease. Consequently, these populations were
already resistant to vivax malaria when it spread into Africa, but because almost
everyone was immune, the disease never took hold. This alternative continues
to be a possibility, although estimates of the date of the initial Duffy negative
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mutation from coalescent analysis suggest that it arose fairly recently, at about the
same time as the origin of agriculture and the spread of malaria (Seixas et al. 2002).
If so, then vivax malaria, and not some other disease, was responsible for fixation
of the Duffy negative allele in Africa.

C. The CCR5-�32 Allele and Disease Resistance

The case study of the Duffy blood group raised the interesting possibility that
current adaptive value may not reflect past selection. In the case of the Duffy
blood group, the current adaptive value of the Duffy negative allele is that it
protects against infection by the vivax malaria parasite. However, as pointed out
by Livingstone (1984), that does not mean that this allele was due to adaptation to
vivax malaria in the past. As noted above, the current evidence does suggest that
vivax malaria was initially responsible for selection for the Duffy negative allele,
but this correspondence between initial and current selection might not apply to
other genes or traits. Evolutionary biologists have long argued this potential lack
of correspondence when trying to explain the origin of an evolutionary trait. For
example, the fact that birds use their wings to fly does not necessarily mean that
wings first evolved for flight. Instead, they may have evolved for some other
reason, such as thermoregulation or to reduce running speed, and only later were
coopted for another purpose. As another example, consider upright walking in
human evolution. Our ability to walk on two legs allows us to carry tools and
weapons, but this does not mean that upright walking was first selected for because
of this ability. Some other reasons may have been responsible at first, and only
later was the ability to carry tools a significant factor.

On a microevolutionary level, we can see the same thing when looking at
variation of the CCR5-�32 mutation. The CCR5 gene (short for C–C chemokine
receptor type 5) is located on chromosome 3. This gene is responsible for the CCR5
protein, which functions in resistance to certain infectious diseases. A mutation
of the CCR5 gene results in the deletion of a 32-bp section of the DNA sequence
of CCR5, and is known as the CCR5-�32 (delta 32) mutation. The �32 mutation
has a frequency of 0–14% in European populations, but is absent in the rest of
the world (Stephens et al. 1998). Statistical analysis of DNA sequences near this
locus provides strong support that the distribution of this allele has been shaped
by natural selection (Bamshad et al. 2002).

As noted in Chapter 4, what makes the CCR5-�32 allele interesting is the
link to susceptibility to HIV, the virus that causes AIDS. Heterozygotes with one
CCR5�32 allele show partial resistance to HIV, and homozygotes show almost
complete resistance to AIDS (Galvani and Slatkin 2003). However, AIDS has been
around for only a short time in human history and therefore could not have
been responsible for the initial elevation of this mutant allele in some European
populations. Instead, higher frequencies of CCR5-�32 most likely arose because of
selection related to some other disease. What disease could have been responsible?

Answering this question is in part dependent on when the mutation first
appeared in Europe. One coalescent analysis suggested a date of roughly 700
years ago (Stephens et al. 1998), which places the origin around the year 1300.
One possibility that has been suggested is the pandemic of bubonic plague known
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as the black death that ravaged Europe from 1346 to 1352. However, Galvani and
Slatkin (2003) modeled natural selection due to black death and found that even
in a case where the mutant allele was dominant, an epidemic of bubonic plague
would not have been strong enough to generate current levels of CCR5-�32 in
Europe. The period of potential selection due to bubonic plague was too short to
result in frequencies much above 0.01. On the other hand, they found that models
based on continuing epidemics of smallpox, another major historical disease, could
account for current levels of CCR5-�32. Under a model of a dominant resistance
allele, selection due to smallpox could have elevated the frequency of CCR5-�32
to about 0.10 in 680 years. Assuming incomplete dominance extends the amount
of time slightly, but still fits a relatively recent origin of the mutant allele.

Further insight into the evolution of the CCR5-�32 allele comes from analysis
of ancient DNA from human skeletal remains. Hummel et al. (2005) extracted
DNA sequences from 14 skeletons from a mass grave of black death victims in
Germany in 1350 and found that the allele frequency of CCR5-�32(= 0.142) was
not significantly different from a control group of famine victims from Germany
in 1316 that did not have the plague (allele frequency = 0.125). If individuals with
CCR5-�32 were less likely to be infected with bubonic plague, then the allele
frequency of CCR5-�32 in the black death mass grave should be significantly
lower than in the control group, which is not the case.

Hummel et al. (2005) also found evidence for the CCR5-�32 allele in 4 of 17
Bronze Age skeletons from Germany dating back 2900 years. These results show
that the mutant allele was common in Europe over 2000 years before the black
death. They conclude that bubonic plague was unlikely to have been a major factor
in the evolution of CCR5-�32, and that smallpox is a more likely causal factor. It
is possible, of course, that other infectious diseases might have also contributed
to changes in CCR5-�32 over time. In any event, this example shows again how
adaptive relationships that we see today (in this case, AIDS resistance) cannot be
used to explain the origin and evolution of a mutant allele.

D. Lactase Persistence and the Evolution of Human Diet

The case studies presented thus far have focused on disease. Adaptation to
disease through natural selection makes sense as disease directly affects one’s
probability of survival. As a change of pace, however, let us consider a different
sort of selection: in this case, evidence of adaptation to changing diet. As with
all mammalian species, human infants are nourished through breastfeeding. (The
fact that in recent historical times some humans have used infant formula as
an artificial substitute for mother’s milk does not negate the fact that we have
evolved, as have all mammalian species, to breastfeed.) Infant mammals produce
the enzyme lactase, which allows lactose (milk sugar) to be broken down and
digested. The typical pattern in mammals is for lactase production to shut down
after the infant is weaned. After this, a mammal can no longer easily digest lactose.

Many humans today are lactose-intolerant, which means that they cannot
produce the lactase enzyme after about 5 years of age. The physical effect of
lactose intolerance can vary, but can include flatulence, cramps, bloating, and
diarrhea. The interesting fact of human variation is that although many people
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are lactose intolerant, others have no trouble digesting lactose as they continue
to produce the lactase enzyme throughout their lifetimes. The gene that controls
lactase activity is on chromosome 2. Apart from some minor mutations that are
found in low frequencies, there are two lactase activity alleles: LCT*R, which
is the lactase restriction allele that codes for a shutoff of lactase production
after weaning; and LCT*P, which is the lactase persistence allele that codes
for continued lactase production. The lactase persistence allele is dominant, so
individuals with one persistence allele (genotype LCT*P/LCT*R) or two persistence
alleles (genotype LCT*P/LCT*P) can more easily digest lactose. The recessive
homozygotes (LCT*R/LCT*R) are lactose-intolerant (Mielke et al. 2011).

Lactase persistence has an interesting geographic distribution. It is highest
in northern Europe, and moderate in southern Europe and the Middle East. On
average, lactase persistence is very low in African and Asian populations, although
some African populations, such as the Fulani and the Tutsi, have moderate to high
frequencies (Leonard 2000; Tishkoff et al. 2007). Variation in Africa is particularly
revealing because some populations are found with high frequencies of lactase
persistence, and some are found with very low levels (and thus have a high
prevalence of people who are lactose-intolerant).

The critical factor that explains global variation in lactase persistence is
diet. Populations that have a history of dairy farming tend to have higher
frequencies of the lactase persistence allele. Natural selection has been proposed
as an explanation, where the lactase persistence allele was selected for in dairying
populations because of the nutritional advantage among those that were able
to digest milk (higher levels of fats, carbohydrates, and proteins, in addition to
extra water from the milk). Because the cattle are domesticated, there was likely
also selection for cattle that produced more milk and better nutritional content, a
good example of the process of coevolution of two species. A study of European
cattle revealed that the geographic distribution of six milk protein genes in cattle
was correlated with levels of lactase persistence in humans and the locations of
prehistoric sites associated with the early adoption of cattle farming (Beja-Pereira
et al. 2003). As humans adapted to a diet that included milk, they also selected
cattle that provided better quantity and quality milk.

The high frequency of the lactase persistence allele in Europe and in some
African populations poses an interesting problem in understanding the origin and
spread of the allele. Did it arise in Europe and spread to Africa, or arise in Africa
and then spread to Europe? On the other hand, did it evolve independently in both
Europe and in Africa? Molecular genetic analysis of the lactase persistence allele
shows that the third hypothesis is correct. The specific mutation responsible for
lactase persistence in Europeans is a change from the base C to the base T at base
pair position 13910 in the lactase persistence gene. However, this variant is rare or
absent in African populations, which instead undergo a change from G to C at base
pair position 14010. Thus, different mutations appeared in different places that
produced lactase persistence, and each mutation was selected for independently
when dairy farming arose and milk became an important part of the human diet
(Tishkoff et al. 2007).

The estimated age of lactase persistence mutations fits the archaeological
evidence for the origin of domestication of cattle. Cattle farming began in northern
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Africa and the Middle East between 7500 and 9,000 years ago, which fits with
the estimated age of 8000–9000 years for the T-13910 mutation in Europeans. A
somewhat earlier age estimate of 2700–6800 years for the C-14010 mutation in
Africa fits the younger age of 3300–4500 years ago for cattle domestication in
sub-Saharan Africa (Tishkoff et al. 2007).

It is clear from both the European and African evidence that the increase in
lactase persistence occurred in a very short time in an evolutionary sense. All of
these changes, genetic and cultural, took place only within the last 10,000 years,
which is a high degree of evolutionary change. Tishkoff et al. (2007) estimate
a selection coefficient associated with lactase restriction of between s = 0.035
and s = 0.097. We know from Chapter 6 that natural selection can be rapid for a
dominant allele. For example, selection for a dominant allele starting at a frequency
of 0.001 using a selection coefficient of s = 0.05 can result in an allele frequency of
0.13 after 100 generations, 0.71 after 200 generations, and 0.87 after 300 generations.
In terms of human lifetimes, 300 generations is about 7500 years using a length of
25 years for each generation. We can play with the numbers, but it is clear that a
lot of evolution is possible in 10,000 years!

E. Genetic Adaptation to High-Altitude Populations

The examples presented thus far have focused on adaption through natural
selection to disease and diet. There are also examples of how humans have
adapted to different physical environments as our ancestors expanded out of
Africa and spread across the world. One particular challenge has been dealing
with the physiologic stress of living in a high-altitude environment. Some humans
have adapted to living permanently at heights in excess of 2500 ms (∼8200 ft, or
1.6 mi) above sea level (Beall and Steegmann 2000). Some high-altitude populations
live as high as 5400 m above sea level (Beall 2007). The main stress of high-altitude
environments is hypoxia, which is a shortage of oxygen. As altitude increases,
barometric pressure decreases. Consequently, there is less oxygen available in
the blood, and arterial oxygen saturation drops, causing severe physiologic stress
(Frisancho 1993).

When a low-altitude native enters a high-altitude environment, the hypoxic
stress can be countered to some extent by a variety of physiologic mechanisms,
such as increased red blood cell production and increased respiration. Over time,
these stresses can often be quite serious. Some adaptation occurs in infants and
children who move to high altitude through a process known as developmental
acclimatization, where there are changes in the body during the growth process
when adapting to an environmental stress. For example, children born at low
altitudes who have moved to high altitude show an increase in aerobic capacity
compared with those that stay at low altitude. Further, the younger the child who
moves to high altitude, the greater the change (Frisancho 1993).

A number of studies have shown that children in high-altitude populations
around the world tend to have increased chest dimensions, indicating greater
lung volume relative to body size (Frisancho and Baker 1970; Frisancho 1993).
Much of this growth appears to be the result of developmental acclimatization,
as the growth response to high altitude is related to the age at which a child
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moves there; the earlier the age, the greater the response. However, there are
exceptions to this general trend, which suggest that the growth response is not
always solely developmental acclimatization, and there may be genetic differences
as well (Greksa 1996; Beall and Steegmann 2000).

If there are at least some genetic influences on high-altitude environment,
then some physiologic and biochemical traits may have been shaped by natural
selection. More recent genetic studies have provided evidence of natural selection
to high altitude, along with an interesting lesson about the nature of natural
selection itself, which is that different populations have adapted in different ways
to the hypoxic stress of high altitude (Beall 2007; Storz 2010). Comparisons of
two widely studied high-altitude populations have provided some interesting
contrasts. One group is the native inhabitants of the Andean Plateau in South
America, descended from human populations moving into the region about
11,000 years ago. The other group is the native inhabitants of the Tibetan Plateau,
who colonized the area about 25,000 years ago. Unlike low-altitude natives that
visit high altitudes and suffer from hypoxic stress, members of these high-altitude
populations have normal levels of oxygen consumption, although the physiologic
pathways are different among Tibetans and Andeans. For example, an elevation
in ventilation is a typical response of a low-altitude native to the stress of high
altitudes. This response is also seen in Tibetans, but not in Andeans, who have
lower resting ventilation levels. Other differences between Tibetans and Andeans
include the level of oxygen in the blood, the level of oxygen saturation in the blood,
and levels of hemoglobin concentration (Beall 2007). Work has begun to identify
genes that are responsible for high-altitude adaptations and how they have been
selected for in Tibetan populations (e.g., Beall et al. 2010; Simonson et al. 2010; Yi
et al. 2010).

Current (as of 2011) research suggests that both Andean and Tibetan pop-
ulations have evolved different genetic adaptations to high-altitude stress. This
suggests that the starting point for both populations, in terms of initial genetic
variation, was different, and that natural selection provided alternative means of
adapting. The important lesson here is that there may be different paths of selec-
tion that operate differently depending on the types of genetic variation available,
which, in turn, is influenced by variation in mutation and genetic drift.

Apart from the evidence for multiple adaptive solutions, studies of the
genetics of high-altitude adaptation provide yet another example of the rapid
pace of recent human evolution, because the high-altitude populations have
been in those environments only within recent evolutionary history (i.e., within
the past 11,000–25,000 years, which again is a short time ago in evolutionary
history).

F. The Evolution of Human Skin Color

The final example of natural selection in this chapter deals with another example
of human genetic adaptation to different environmental conditions. Human skin
color (pigmentation) is a quantitative trait that shows an immense amount of
variation between human groups around the world, ranging from some whose
average level of pigmentation is very dark to those who are extremely light in
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color. Further, there are no apparent breaks in this distribution. Humans do not
come in a set number of discrete shades; that is, humans are not made up of
‘‘black,’’ ‘‘brown,’’ and ‘‘white’’ people, but instead come in every shade along a
continuum from very dark to very light (Relethford 2009).

The wide range of variation in human skin color is one clue that it has been
affected in the past by natural selection, and the specific geographic distribution
of skin color is another. For native human populations (those who have not
recently migrated), skin color tends to be darkest at or near the equator, and
decreases with increasing distance from the equator, both north and south. This
relationship is shown clearly in Figure 7.2, which plots the relationship between
skin color (as typically measured as the percentage of light reflected off the skin at
a wavelength of 685 nm) and distance to the equator for 107 human populations in
the Old World (Africa, Europe, Asia, Australasia). Although there is some scatter,
in general indigenous human populations show a strong correlation of skin color
and distance from the equator. Such striking correspondence with the physical
environment is a clue for natural selection, an inference strengthened by the fact
that the amount of ultraviolet (UV) radiation received also varies by distance
from the equator. UV radiation is strongest at the equator and diminishes with
increasing distance away from the equator. Skin color, levels of UV radiation, and
distance from the equator are all highly correlated (Jablonski and Chaplin 2000).
The obvious conclusion is that the evolution of human skin color has been linked
to varying degrees of UV radiation. Because pigmented skin acts as a protective
barrier against UV radiation, dark skin color has evolved as a protection against
excessive UV radiation in areas at or near the equator. Farther away from the

0

20

40

60

0 10 20 30 40 50 60

Distance from the equator (degrees latitude)

S
ki

n 
re

fle
ct

an
ce

 (
%

)

Lighter

Darker

FIGURE 7.2 Geographic distribution of human skin color in the Old World. The dots
represent samples of 107 human populations in the Old World that were measured using an
E.E.L. reflectometer that measures the percentage of light at 685 nm reflected off of human
skin on the upper inner arm, which is relatively unexposed in many human societies. Because
skin color varies between the sexes, only male samples are included here as there are more
studies of male skin color than female skin color). Distance from the equator is taken as the
absolute value of the latitude for each population. Data sources for 102 samples are listed
in Relethford (1997) and supplemented with data on five Australian native samples listed in
Relethford (2000). The solid line is a linear regression showing the best fit of a straight line to
the data points.
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equator, where levels of UV radiation are lower, the problem is not excessive, but
insufficient, UV radiation, and lighter skin color likely evolved to allow more UV
radiation to affect human skin. Given these geographic relations, we can turn to
examining some possible selective forces that are related to UV radiation.

The evolution of human skin color can be examined in more detail by studying
the geographic distribution of skin color in the world today in conjunction with
evidence from the fossil and archaeological records. Given the evidence that our
ancestors evolved first in Africa and then spread elsewhere, we need to consider
two separate, but related, questions: (1) why dark skin evolved in populations at
or near the equator and (2) why did humans moving farther from the equator
evolved lighter skin.

The Evolution of Dark Skin
Human ancestors first evolved in Africa, and it was only 2 million years ago
that the species Homo erectus (a species ancestral to us) became the first hominin
species to disperse outside of Africa. The oldest evidence of this species is from
central eastern Africa, where it was adapted to living to the open grasslands of the
savanna environment. Anthropologists suspect that loss of hair and the evolution
of efficient sweat glands occurred in this environment, where exposure to solar
heat would have been a major stress, selecting for more and improved sweat
glands and the loss of hair, which increases the rate of heat convection (Bramble
and Lieberman 2004). Comparative studies of African apes indicate that our early
ancestors before this time probably had lightly pigmented skin (Jablonski and
Chaplin 2000). As they lost their protective fur through adapting to the heat, those
individuals with darker pigmentation would have been at a selective advantage
because darker skin protects from the damage caused by UV radiation. What
were the specific selective pressures? Some have suggested protection against
skin cancer (Robins 1991), but it is not clear how much of a selective force this
would have been given that most skin cancers affect older individuals who have
already reproduced, and thus these cancers would have minimal impact on fitness
(Jablonski and Chaplin 2000). Severe sunburn is a possible factor, as it could lead
to skin infection and can damage sweat glands, which would be hazardous in
a hot environment (Robins 1991). Jablonksi and Chaplin (2000) argue that one
of the more likely negative consequences of UV radiation damage would be
the photodestruction of folate, a needed nutrient. Low levels of folate affect the
development of the embryonic neural tube and can reduce sperm production,
both of which could affect fitness. Another hypothesis has been suggested by Elias
et al. (2010), who propose that darker skin evolved to resist infections, in line with
evidence of how skin functions as a barrier.

Of course, it is also possible that some combination (or all) of the above factors
contributed to lower fitness for those with light skin and higher fitness for those
with dark skin. The debate might be better expressed in terms of the relative
contribution of differences in adaptive value to overall fitness. In terms of the
models of selection for quantitative traits described in Chapter 6, the evolution
of dark skin in our ancestors is an example of directional selection; with each
generation, there would be a shift toward darker average skin color.
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Molecular genetic analysis gives us a clue when the initial selection for dark
skin began in our ancestors. Rogers et al. (2004) examined variation at the MC1R
(melanocortin 1 receptor) locus, a gene that influenced human skin color. They
examined patterns of diversity in this gene and compared it to levels of diversity
expected after a rapid selective sweep for dark skin in Africa and subsequent
accumulation of mutations after the sweep. The idea here is that when selection
takes place, genetic diversity at the locus affected is reduced to zero. Afterward,
mutations will accumulate, allowing us to estimate the time since selection (given
a number of assumptions about mutation rate and population size). Rogers et al.
conclude that the earliest possible date for selection at the MC1R gene took place
560,000 years ago, and the most reasonable estimate of population size suggests
a date of 1.2 million years ago. Placing the rapid selection of dark skin in Africa
at about a million years ago suggests that hair loss and subsequent selection for
dark skin occurred in the ancestral species Homo erectus, a species that anatomical
evidence suggests was the first to move about long distances on the African
savanna. In addition, the suggested timing of the loss of body hair agrees with
the anatomical evidence suggesting that characteristically human long-distance
endurance running appeared about 2 million years ago (Bramble and Lieberman
2004). It seems likely that the evolution of improved sweating and loss of body
hair, an adaptation to more frequent exposure to solar heat, was followed by a
rapid evolution of dark skin to replace the protective function of hair.

The Evolution of Light Skin
The fossil and archaeological evidence shows that populations of Homo erectus
left Africa and moved into Eurasia roughly 1.8–1.6 million years ago, reaching
Southeast Asia and the easternmost edge of Europe, and later as far north as China.
Later species, including Homo heidelbergensis and Homo sapiens, also occupied many
northern parts of Eurasia, where present-day populations show light skin. The
steady decline in pigmentation with latitude (Figure 7.2) is often considered
evidence of past selection for lighter skin color and against darker skin color.
Many suggestions for the specific nature of this selection focus on the fact that UV
radiation also declines with distance from the equator. Thus, the dangers from
excessive UV radiation exposure that selected for darker skin color in equatorial
human populations diminished as humans moved away from the equator. Our
ancestors no longer needed to have such dark skin.

However, there must be more to the explanation than a reduction in UV
radiation, because although our ancestors did not need to have dark skin, there
would be no reason why they could not have it. The distribution of human skin
color shows, however, that evolutionary change did occur, and to understand why,
we need to consider the possible evolutionary disadvantage of having dark skin
and/or the evolutionary advantage of having light skin farther from the equator.

One favored explanation for light skin in regions of reduced UV radiation
relates to vitamin D, an essential nutrient. Vitamin D deficiency can result in poor
bone growth and other medical problems such as immune system abnormalities
(Wagner et al. 2008). Although many of us receive vitamin D today from vitamin
supplements or milk (to which vitamin D has been added during processing),
both are relatively recent cultural developments. The primary source of vitamin
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D for our ancestors would have been the sun, because UV radiation stimulates a
biochemical synthesis of vitamin D where 7-dehydrocholesterol is converted into
the substance previtamin D, which is then converted into vitamin D. Pigmented
skin reduces the amount of vitamin D synthesis because it blocks UV radiation.
As humans moved into northern climates, the amount of UV radiation declined,
not only reducing the problems of UV damage but also increasing the problem
of insufficient vitamin D synthesis. Natural selection would then favor those with
lighter skin through directional selection. Once an optimal level of pigmentation
was reached, it would then be maintained through stabilizing selection. The
optimal level of pigmentation would depend on the relative influences of problems
associated with excessive or inadequate UV radiation. As humans moved north, it
would be necessary to compensate for reduced levels of UV radiation and vitamin
D synthesis by being lighter on average.

Not everyone has accepted the vitamin D hypothesis for the origin of light
skin. Robins (1991, 2009) argues that the bone disease rickets, one of the proposed
dangers from insufficient vitamin D synthesis, is a recent development associated
with pollution due to industrialization, and was not a risk factor in the more
distant past. Robins also argues that even though vitamin D synthesis would
be less in dark-skinned people in northern latitudes, it would still be sufficient
for most metabolic needs. Chaplin and Jablonski (2009) disagree with Robins’
interpretations of rickets and point out that there are other health problems
associated with insufficient vitamin D levels.

Some have argued that the critical environmental change was not the level of
vitamin D synthesis, but instead changes in temperature associated with changes
in latitude. This ‘‘cold injury hypothesis’’ rests on suggested evidence that darker
skin is more likely to suffer from frostbite, such that light skin would be favored in
northern latitudes that are colder than at the equator (Post et al. 1975; Robins 1991).
Beall and Steegmann (2000) argue that the evidence for increased cold injury in
those with dark skin is spurious, and they favor the vitamin D hypothesis.

Some have suggested an entirely different type of selection to explain the
evolution of light skin: sexual selection. This idea, first proposed by Darwin, is
an explanation for the evolution of traits through competition among members
of the same sex for mates or preferences for mating with those that have certain
characteristics, such as bright feathers in some species of birds. Either way, the
result would be selection for certain traits in the reproductive process. Aoki (2002)
has suggested that the evolution of light skin in humans is in part due to past sexual
selection, based on the assumption that most human males prefer to mate with
females with lighter skin color. If true, then the geographic distribution of human
skin color reflects the balance between selection for dark skin in populations
at or near the equator and the (presumed) universal preference for choosing
light-skinned mates. As humans moved further from the equator, the strength of
selection for dark skin diminished and the strength of selection for lighter skin
increased, leading to the lightest skin in northern latitudes. A major problem with
the sexual selection hypothesis is that the assumption of mating preference for light
skin existed in the past and is not a product of recent cultural change (Mielke et al.
2011). Another problem with the model is that, if it is correct, we would expect the
differences between male and female skin color to increase in populations farther
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from the equator as selection for darker skin diminishes. However, Madrigal and
Kelly (2007) tested this hypothesis using global data on skin color and found that
this was not the case.

The vitamin D hypothesis, the cold injury hypothesis, and the sexual selection
hypothesis all have one thing in common—they all agree that the evolution of
light skin was due to some type of natural selection! Not everyone agrees. Some
have suggested that the evolution of light skin might reflect the relaxation of selec-
tion for dark skin and neutral evolution (mutation and genetic drift). Although
some interpretations of the molecular evidence are consistent with this idea (e.g.,
Harding et al. 2000), others differ and provide evidence of past selection (e.g.,
Rogers et al. 2004; Norton et al. 2007). In fact, a study of patterns of variation in
six different pigmentation genes shows that different alleles have been selected
for in Europeans and East Asians (Norton et al. 2007). As with lactase persis-
tence, there might have been multiple paths of selection for light skin in human
populations.

Advances in the genetic technology for reconstruction of ancient DNA
sequences have also revealed some interesting findings regarding the Neander-
tals of Europe, a group of early humans who apparently interbred with modern
humans (see Chapter 9). Lalueza-Fox et al. (2007) sequenced fragments of one of the
human pigmentation genes from the fossil remains of two European Neandertals,
and found that their alleles indicated that they likely had pale skin and red hair.
Given the geographic location of the Neandertals, light skin is not unexpected.
However, these sequences revealed a different mutation in the skin color gene
than is found in living Europeans, suggesting the independent evolution of light
skin in Neandertals. This study provides further support for multiple pathways
for natural selection.

II. ARE HUMANS STILL EVOLVING?

Given the case studies of natural selection in human populations presented above,
we can now return to the questions about the recent, current, and future evolution
of humans. Many of the examples presented in this chapter have shown how
quickly natural selection can operate, and show that the variation we see in
the world today resulted from recent natural selection. Much of the variation
we see in genetic adaptations to malaria, such as the spread of hemoglobin S,
have arisen since the origin and spread of agriculture, which is a recent event
in human prehistory, beginning about 12,000 years ago and more recently in
different parts of the world. The spread of lactase persistence, linked with the
spread of dairy farming, is another example of an evolutionarily recent event
that took place roughly in the past 4000–9000 years. Genetic adaptations such
as the CCR5-�32 allele are also likely to date to the time since the origin of
agriculture, as epidemic infectious diseases were more of a problem in the larger,
sedentary agricultural populations than in the smaller populations that were
characteristic of our hunting–gathering past prior to the advent of agriculture.
Indeed, it is likely that the changing demographic, ecological, and dietary changes
that accompanied the origin and spread of agriculture increased the opportunity
for human genetic evolution. The idea that our species made the transition from
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hunting and gathering to agriculture with no genetic impact does not hold up
to the available evidence. There have certainly been major genetic changes at a
number of loci that date to selection in our recent past.

Although we have strong evidence for selection in the recent past, there
remains the question of how typical selection has been. As noted in Chapter 5,
many argue that a considerable part of our species’ genetic diversity reflects a
neutral process reflecting an equilibrium with genetic drift. For many years now,
there has been considerable debate over whether human genetic diversity can best
be explained by a ‘‘neutralist’’ perspective, a ‘‘selectionist’’ perspective, or some
combination of these. In the context of the case studies presented here, we have to
ask whether such examples of recent selection represent the exception or the rule.
What evidence exists for additional selection that either has occurred in the recent
past or continues today?

A. How Do We Detect Recent Selection?

It is, in fact, difficult to study natural selection in many populations, including
humans. Our best examples, such as hemoglobin S or skin color, involve major
differences in fitness of different genotypes and phenotypes. Smaller differences
in fitness, although evolutionarily relevant, would be more difficult to detect. In
addition, small differences in fitness might be swamped by other factors, such as
random genetic drift.

Because of technological advances, we are now collecting large amounts of
data from the entire human genome, which have allowed some new ways of
exploring the question of recent natural selection. A new field, sometimes referred
to as population genomics, has developed to formulate evolutionary tests and
inferences based on the entire human genome. Such studies consist of examining
statistical measures of population-genetic diversity across the entire genome
and comparing the distribution of these statistics to a theoretical distribution
derived under the assumption of no selection (a neutral model). Differences of the
observed distribution from the expected distribution can provide clues that natural
selection has occurred, although not necessarily any detail about the specific action
of selection.

Akey (2010) identifies three different types of studies that have relied on
genomewide data to look for evidence of recent natural selection. One method
looks at the site frequency spectrum, which is a plot of genetic variation (such
as allele frequencies) that shows how common different values are across the
genome, and compares these distributions with those expected under a neutral
model. When natural selection favors a particular allele, it becomes more common
in the population over time (as shown in Chapter 6). As noted earlier, neutral
sections of DNA that are close by on the same chromosome and are linked to
the allele that is selected for are caught up in a selective sweep and also become
more common (a process also known as ‘‘hitchhiking’’). Selection for a particular
allele leads to reduced diversity for that locus, because one allele is being favored
over others. Any neutral loci that are linked to the locus of selection will also
show this effect, and will show reduced variation relative to a neutral expectation.
Thus, when we compare an observed site frequency spectrum with the theoretical
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expectation under neutrality and see more low-frequency alleles than expected,
we have evidence for selection. Of course, this is not always easy, because similar
patterns can be mimicked by demographic changes, such as recent population
growth (something quite common in recent human evolution).

Another clue to possible selection uses measures that reflect the amount of
allele frequency differences between populations in different environments. Large
differences are typical of past natural selection as populations adapt to different
environments, such as the examples we have seen when comparing malarial and
nonmalarial environments (hemoglobin S) and northern and equatorial regions
(skin color). Under neutrality, we expect to see a distribution where most loci
show small differences and only a small number that have larger differences (by
chance). If we compare the observed distribution with the theoretical distribution,
and find more high-frequency differences than expected, then we have suggested
evidence for natural selection.

Linkage disequilibrium (LD) is also used to search for natural selection. Recall
from Chapter 2 that some haplotypes will occur more or less often than expected
when they are in linkage disequilibrium. Rapid evolution during a selective
sweep is one way that this can happen, when insufficient time has elapsed to
allow recombination to shuffle the newly selected mutant across other haplotypes.
Further, the amount of linkage disequilibrium under selection will depend on the
distance (along the chromosome) from the site of selection. A pattern of decay
in linkage disequilibrium with increasing genomic distance is a characteristic
sign of a recent selective sweep (Hawks et al. 2007). Each of these methods has
some problems (including the inability to distinguish selection from demographic
changes such as population growth) (Akey 2010).

More recently, a number of studies have used variants of the above tests on
large databases on human genetic diversity, mostly single-nucleotide polymor-
phisms (SNPs). Some examples include analyses of several million SNPs using
linkage disequilibrium (e.g., Wang et al. 2006; Hawks et al. 2007) and geographic
divergence measures (e.g., Coop et al. 2009). These studies suggest that natural
selection has been very important in recent human evolution. In particular, it
appears that the shift of humans from hunting and gathering to agriculture, which
started about 12,000 years ago, has been accompanied by a great deal of natural
selection. The demographic and biological consequences of the initial spread of
agriculture, including increased population size, sedentary lifestyle, epidemics of
infectious disease, and reduced dietary diversity, are well known from studies
of the skeletal biology of early agriculturists (e.g., Larsen 2000). Genomic stud-
ies have shown that this rapid cultural change has also had an impact on our
genetic evolution. Instead of cultural evolution negating genetic evolution, we are
finding evidence of how cultural change has accelerated genetic evolution. It is
noteworthy that the regions of DNA that show evidence of recent selection are
related to resistance to infectious disease and metabolism (Hawks et al. 2007; Akey
2010), because disease and diet were two aspects of human biology that were most
affected by the agricultural revolution.

Although such studies offer promise for finding examples of recent natural
selection, more work needs to be done to pinpoint the specific mechanisms of
selection for individual loci. Although a number of studies have found many
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regions of DNA that are statistically suggestive of recent selection, only a small
number of actual genes have been linked to selection (Gibbons 2010). Another
complication is the problem that demographic shifts, such as population growth,
can mimic in part the genetic patterns expected under a selective sweep, which
means that further work is needed to explore selection under a range of demo-
graphic models (Akey 2010). Further, some analyses show a complex pattern of
selection interacting with genetic drift and gene flow. For example, Coop et al
(2009) notes that there is little evidence of a selective sweep moving a mutant allele
to fixation, and that more selection has consisted of ‘‘partial sweeps’’ characterized
by varying selective pressures over time as well as fluctuations due to genetic drift.
Work is also underway to examine how selection for some traits might involve
more than one gene (Gibbons 2010). Further work is also needed to determine how
prevalent these kinds of positive selection have been compared with the typical
pattern of selection eliminating harmful mutations, or what Weiss and Buchanan
(2009) call ‘‘failure of the frail.’’

B. The Future?

Although the issue of how much selection has taken place in our recent evolu-
tionary history, and the strength of such selection, remains debated, it is clear that
there is evidence of natural selection in humans since the spread of agriculture.
Will natural selection continue in our species, and if so, what direction might it
take? There are some reasonable predictions regarding the first question, whereas
the second is more an exercise in speculative science fiction than making direct
inferences from population genetics theory. The last 12,000 years of human his-
tory have seen a shift from hunting and gathering to agriculture to civilization,
followed by the industrial revolution and a postindustrial world with a growing
global economy. Our population size has increased at a phenomenal rate. Prior
to the development of agriculture, the maximum number of people who could
survive by hunting and gathering is estimated to be about 6 million (Weiss 1984),
whereas the world population had reached 1 billion by 1850 (Weeks 2005), and
by 2010, roughly 7 billion (Population Reference Bureau 2010). All of these (and
other) demographic and cultural changes could influence the future direction of
natural selection.

The dramatic increase in size of the human species has been cited as a potential
influence on future natural selection. For one thing, the larger the population, the
greater the number of new mutations with each generation, as shown in Chapter 4.
The fate of new mutants is also affected by population size. In small populations,
many new mutations will be lost quickly because of genetic drift, as shown in
Chapter 5. This will occur even if the new mutation has the potential to be adaptive,
because in a small population the influence of drift generally has greater impact
than the selective advantage. For large populations, drift has less impact, and a
new mutant is less likely to become extinct quickly through drift, thus giving
an advantageous mutant a chance to reach a higher frequency. In addition, the
greater number of mutations in a larger population means that the same mutation
might soon occur again, and could be reintroduced in the next generation even if
it was initially lost through drift (Reed and Aquardo 2006).
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As pointed out by Hawks et al. (2007), the rapid cultural evolution in our
recent past, particularly the origin of agriculture, did not supplant genetic evolution
but instead created many new opportunities for new genetic evolution. As our
species continues to change culturally, we should expect this situation to continue.
However, the speed at which cultural evolution occurs is still faster than that of
genetic change; the minimum amount of time for genetic evolution is a generation,
whereas cultural change can occur instantaneously (consider, for example, the
rapid cultural, demographic, and economic shifts that you have seen within your
lifetime). In terms of possible natural selection, this means that in some cases
the type of assumptions we made in Chapter 6 about constancy of fitness values
over dozens of generations would no longer apply. Consider, for example, a
case of selection for an allele (A) where having two alleles is better than having
one, and where having one allele is better than having none. If we assign rather
dramatic differences in fitness to the genotypes (wAA = 1, wAa = 0.75, waa = 0.5)
and start with an initial allele frequency for A of 0.1, selection will cause the
allele frequency to increase to 0.42 after five generations [this was computed
using equation (6.13)]. This is indeed very rapid selection. If this locus affected
genetic susceptibility to a disease, would this mean that we would necessarily see
a rapid evolution of resistance to the disease? Perhaps, although five generations
is about 100–125 years of time, which is a very long time for cultural evolution
these days. Maybe a cure (or vaccine) for the disease would be found during
this time.

Although it seems clear that the potential for new genetic variations has
never been greater for the human species, it is also clear that the cultural and
environmental landscape is also changing very rapidly. An adaptive allele in the
present might soon become neutral, or the reverse, depending on the direction
of change within which human evolution takes place. Although we can discuss
some generalities, specific predictions of future human genetic evolution may not
be possible because of the rapid pace, and uncertain direction, of future cultural
change. For example, who can predict when a new cure will be discovered for
a disease, or the evolution of a new disease, under changing environmental
conditions? How can we predict new sources of food? To take the questions
further, what lies in the future of human evolution in terms of genetic engineering,
nanotechnology, space colonization, or any number of possible futures that are
now part of science fiction? Such ideas may seem bizarre, but history has a way of
showing yesterday’s science fiction becoming today’s fact. (For example, we used
to joke in graduate school about solving questions about Neandertals by getting
their DNA. What was science fiction then is established fact today.)

In sum, advances in molecular genetics suggest that the case studies of natural
selection presented in this chapter are not exceptions, and there may be a great deal
of ‘‘recent’’ human genetic evolution. In addition, we are likely to continue to have
the potential for future genetic change, with more newly introduced mutations
being introduced each generation than at any other time in history. However,
while it is clear that cultural evolution has not halted genetic evolution, it is also
clear that cultural evolution also continues, and at a greater potential rate than
genetic evolution. Future human evolution will continue to be a complex interplay
of genetic and cultural change.
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III. SUMMARY

Studies of human genetic and morphological variation have allowed us to under-
stand a number of significant examples of natural selection in ‘‘recent’’ human
evolution, with many examples showing genetic adaptation within only the past
12,000 years or so. One of the classic examples of natural selection in human popu-
lations is the change in allele frequencies of hemoglobin S, which is selected for in
malarial environments. Here, the higher fitness of the heterozygote (AS) relative
to the AA genotype (susceptibility to malaria) and the SS genotype (presence of
has sickle cell anemia), is also a classic example of balancing selection.

Other genetic studies also show the importance of infectious disease in recent
natural selection. The fixation of the Duffy negative allele is a genetic adaptation
related to the spread of vivax malaria. The association of the �32 mutation of the
CCR5 gene with resistance to AIDS is interesting, but the evolutionary history of
this allele suggests an initial adaptation to a different disease, perhaps smallpox.

A number of examples of natural selection are related to other aspects of
human evolution, including changes in diet. The rapid increase in the lactase
persistence allele, allowing those possessing this allele to digest milk sugar even as
adults, occurred independently in different human populations as an adaptation
for increased nutrition available from dairy farming, a recent cultural innovation.
Other genetic changes reflect the propensity of our ancestors to adapt to different
environments in all corners of the world. For example, humans that have moved
to high-altitude environments have adapted genetically to the physiologic stress
of lowered amounts of oxygen, although in different ways. A striking example of
environmental adaptation is the wide distribution in human skin color, reflecting
different stresses associated with different levels of ultraviolet radiation.

More recent studies of the human genome suggest that such examples are not
rare, and that our DNA contains clues to a considerable amount of natural selection
within the past 12,000 years. The rapid demographic and cultural changes of the
human species also suggest different patterns of genetic diversity and potential
selection from those of our recent ancestors. Human evolution has not ceased, but
continues, both genetically and culturally, in a complex manner.
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GENE FLOW

In 1908, A Russian immigrant to the United States, Israel Zangwill, staged a play
entitled The Melting Pot that likened the assimilation of immigrants in American
culture to the melting of metal alloys in a large crucible (pot). Since then, the
term has been used and debated in the context of discussions of culture contact
and the extent to which cultures are assimilated. Contact between different
human populations has always existed, and can range from local contact between
neighboring groups to long-distance movements of groups. In the last 500 years
or so, the pace of human contact has further increased. Such contact, both small
and large in scale, and local and distant, has many social, political, economic,
demographic, and ecological implications. Contact between human groups also
has genetic implications, where the movement of genetic material from one
population to another (gene flow) can cause changes in allele frequencies. On a
broader level, gene flow can be seen as the evolutionary glue holding populations
in a species together, and reduction or elimination of gene flow is necessary to
initiate the process of speciation.

This chapter includes a brief review of the basic concept and simple models
of gene flow, applicable to a wide range of organisms. In addition, certain models
used to analyze human gene flow are given particular focus, because it is often
easier to assess gene flow in humans than in other organisms. I often see squirrels
outside from my office window, but it is not easy to determine what part of
campus they might have come from. Some probably live in the trees right across
the road, but for all I know some might be migrants from farther away on campus
or from someplace in the local neighborhood. How could I tell? In some studies of
animal migration, they capture animals, tag them, and then recapture them later.
Migration is much easier to assess in humans. Whereas we need to track squirrels,
we can actually ask humans where they and their parents originated.

Although we sometimes talk about migration and gene flow as synonymous, for
many contexts we may need to draw a distinction. In humans, we typically treat
migration as a change in residence as compared with a brief visit. For example,
if I take a vacation trip to the Caribbean, we would not regard that as an actual
migration, although if I moved to the Caribbean, that would constitute migration.
The line between the two can sometimes be complicated; for example, a college
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student might live away from home most of the year, but this might not be
considered a migration in many contexts. Gene flow, on the other hand, involves
the actual movement of genes (and DNA sequences) as the result of physically
moving, whether temporarily or permanently. In this context, we can consider
gene flow as what happens when an organism moves and reproduces in a different
location, regardless of whether it remains there. In some cases, we might treat
migration and gene flow as the same, but in other cases, the two terms may have
different meanings.

I. THE EVOLUTIONARY IMPACT OF GENE FLOW

One assumption of Hardy–Weinberg equilibrium is that the population remains
closed to other populations; that is, there is no gene flow. In fact, throughout our
discussions of mutation, drift, and selection, we have always focused on a single
population. In the real world, however, the existence of a single-population species
is very rare. For example, humans live in thousands of populations around the
world, which are all interconnected by varying levels of gene flow in the present
and the past. What is the evolutionary impact of gene flow?

A. Introducing New Alleles

Thus far, the only way that we have seen a new allele enter a population is
through mutation; drift and selection can increase or decrease the frequency of a
new mutation, but they cannot bring about a new allele. Although mutation is the
ultimate source of all new alleles, a new mutant allele can be introduced into a
different population through gene flow. Picture two populations, A and B, where
everyone has two copies of a specific allele. Now, imagine a mutation occurring in
population A. Although it is possible for the same mutation to occur in population
B, it is highly unlikely to happen in the same generation. On the other hand, if
someone from population A carries the mutant allele and moves to population B
and reproduces, the mutant allele is now established in population B through gene
flow. Gene flow allows the spread of new mutants throughout a species, subject
in each population to the further effects of drift and selection (we can see how
complex microevolution can get when considering all four evolutionary forces at
the same time).

B. Reducing Genetic Differences between Populations

The main impact of gene flow is to reduce genetic differences between populations.
Here, we can picture gene flow as analogous to mixing paint. Imagine starting
with two gallon cans of paint, one with red paint and one with white paint. Take
a cup of paint from the red can and mix it into the white can at the same time as
taking a cup of white paint and mixing it into the red can. After mixing, the can
of red paint is slightly lighter and the can of white paint is slightly pinker. If you
repeat the mixing, the color of the paint in the two cans will become increasingly
similar. After enough cups of paint have been swapped and mixed, you will have
two identical cans of pink paint.
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We can picture gene flow in an analogous manner where the alleles of two or
more populations are mixed together. Although alleles are not paint, and do not
actually merge together, the point here is that the mixing of gene pools can alter
the allele frequencies. As an example, imagine two populations (A and B), where
the frequency of a given allele is p = 1.0 in population A and p = 0.0 in population
B. Now, imagine that 5% of the individuals in population A move into population
B and reproduce there, while 5% of the individuals in population B move into
population A and reproduce there. In other words, the two populations exchange
5% of their genes. This means that 95% of the individuals in population A remain
in population A. The allele frequency in population A a generation later is made
up of the mixing of 95% from population A with an allele frequency of p = 1.0
and 5% from population B with an allele frequency of p = 0.0. This gives the new
allele frequency in population A of

(0.95)(1.0) + (0.05)(0.0) = 0.95

At the same time, we can figure out the allele frequency in population B a
generation later by noting that it will consist of 5% from population A with an
allele frequency of p = 1.0 and 95% from population B with an allele frequency of
p = 0.0, giving

(0.05)(1.0) + (0.95)(0.0) = 0.05

Because of gene flow, the allele frequencies in populations A and B have
changed from 1.0 and 0.0 to 0.95 and 0.05. They are still quite different, but closer
than they were initially. Over time, gene flow will make the two populations
increasingly similar. To figure out the allele frequencies in the next generation, we
use the same mixing proportions (95% and 5%) and use the new allele frequencies
for populations A and B (p = 0.95 and p = 0.05). Thus, the allele frequency in
population A after two generations of gene flow is

(0.95)(0.95) + (0.05)(0.05) = 0.905

and the allele frequency in population B is

(0.05)(0.95) + (0.95)(0.05) = 0.095

If we go to the third generation, we simply use these new allele frequencies with
the same amount of mixing to get allele frequencies of

(0.95)(0.905) + (0.05)(0.095) = 0.8645

for population A, and

(0.05)(0.905) + (0.95)(0.095) = 0.1355

for population B. We can repeat the same process many times from one generation
to the next to see the long-term effect of gene flow. Figure 8.1 shows the results
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FIGURE 8.1 Simulation of gene flow between two populations. Populations A and B start
with allele frequencies of p = 1.0 and q = 0.0, respectively. With each generation, 5% of
each population is exchanged with the other, leading to a reduction of the allele frequency
differences over time.

of gene flow for 50 generations. We see that gene flow quickly reduces the
difference between the two populations such that they are almost identical after
40 generations.

II. MODELS OF GENE FLOW

Now that we have seen the basic effect of gene flow to reduce genetic differences
between populations, we can examine several different models of gene flow in
more specific detail. As with previous treatment of evolutionary forces, we will
consider gene flow by itself to start with and then add complexity by examining
the interaction with other evolutionary forces.

A. The Island Model

The simplest place to start with understanding how gene flow works is to
examine the case of one-way migration as shown in the island model (or more
specifically, the continent–island model, as there are other types of island models
used in population genetics). Here, we imagine an island that receives a certain
amount of migration from the mainland, but this migration is strictly in one
direction—no migration occurs from the island to the mainland. In this way, we
can see what effect gene flow from the mainland has on the allele frequencies
of the island. We use the symbol m to illustrate the migration rate, which is the
proportion of alleles in the island that come from the mainland each generation.
Because m represents the genetic contribution from the mainland, this means that
the proportion (1 − m) of the island’s alleles comes from the island (because the
two proportions, one from the mainland and one from the island, have to add up
to 1). The dynamics of this model are shown in Figure 8.2.

In order to simulate the one-way gene flow under the island model, we need
to know the initial allele frequencies of the island and the mainland. Here, we
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Mainland

Island

1 − m
m

FIGURE 8.2 The island model. Gene flow is one-way from a large mainland population into
a smaller island, such that the allele frequency in the mainland affects the allele frequency in
the island, but not the other way around. m represents the migration rate each generation
and is the proportion of alleles in the island’s next generation that comes from the mainland.
The quantity (1 − m) represents the proportion of alleles in the island’s next generation that
comes from the island. For example, a value of m = 0.1 indicates that 10% of the alleles in
the island come from the mainland, and (1 − m) = 0.9 indicates that 90% of the alleles on the
island come from the island in the previous generation.

use p0 to represent the initial allele frequency (in generation 0) of the island. We
use the symbol P (uppercase p) to represent the allele frequency of the mainland.
Because our model only involves gene flow, and since there is no gene flow from
the island to the mainland, this means that the mainland allele frequency P stays
the same from one generation to the next. In order to calculate the allele frequency
on the island in the next generation, we multiply the proportions of alleles from
the island and the mainland by their allele frequencies, respectively. For the first
generation, this will be

p1 = (1 − m)p0 + mP

where m is the migration rate (i.e., the proportion of alleles from the mainland).
Because P (and hence mP) does not change, we can also predict the allele frequency
on the island after an additional generation of one-way gene flow by substituting
p1 for p0 in the above equation, giving

p2 = (1 − m)p1 + mP

Because this is an iterative equation of the type encountered in Chapter 4, we
can use the method in Appendix 4.1 to derive the allele frequency in any given
generation, pt as

pt = (1 − m)t(p0 − P) + P (8.1)

(see Appendix 8.1 for the derivation).
The effect of one-way gene flow in the island model is shown in Figure 8.3

using an initial allele frequency for the island of p0 = 0.8, a constant allele frequency
on the mainland of P = 0.2, and a per generation migration rate of m = 0.05. Over
time, the allele frequency on the island becomes increasingly similar to that on the
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FIGURE 8.3 Change in allele frequencies over time in the island model. The allele frequencies
in each generation are computed using equation (8.1). The initial allele frequency on the island
is p0 = 0.8. The allele frequency on the mainland, which is constant over time, is P = 0.2. The
amount of one-way gene flow per generation (the migration rate) is m = 0.05. Over time, the
island will become increasingly similar to the mainland.

mainland, showing that the genetic makeup of the island is eventually replaced
by that of the mainland.

B. Two-Way Gene Flow

The island model focuses on gene flow in one direction, and allele frequency
does not change in the source population (mainland). Although this model fits
some cases, a model that allows gene flow in two directions is more applicable to
many situations. Figure 8.4 shows a simple model of two-way gene flow where
the rate of migration is the same in both directions. Here, two populations, A
and B, exchange migrants and genes at a rate of m per generation. This number
represents the proportion of alleles in one population from the other population.
Each population receives a proportion (1 − m) of its alleles from itself.

m

m

1 − m 1 − mA B

FIGURE 8.4 Two-way gene flow. Two populations, A and B, each have a proportion m of
alleles from the other population and a proportion (1 − m) of alleles from themselves.
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We start with the rate of gene flow per generation m and allele frequencies
for population A and B in generation t, which we label as pAt

and pBt
(the first

subscript refers to the population and the second subscript, to the generation). We
can estimate the allele frequency in population A in the next generation (t + 1) by
multiplying the allele frequencies of each population by the proportion of alleles
provided to population A:

pAt+1
= (1 − m)pAt

+ mpBt
(8.2)

Likewise, the allele frequency in population B in the next generation is derived
using the same logic, such that

pBt+1
= mpAt

+ (1 − m)pBt
(8.3)

As an example, consider initial allele frequencies of pA0
= 1.0 and pB0

= 0.0
and a gene flow rate of m = 0.1 per generation. After one generation of gene
flow, the allele frequency is population A is computed using equation (8.2),
giving

pA1
= (1 − 0.1)(1.0) + (0.1)(0.0) = 0.9

and the allele frequency in population B is computed using equation (8.3), giving

pB1
= (0.1)(1.0) + (1 − 0.1)(0.0) = 0.1

Note that the allele frequencies in the two populations are closer than before.
We can then extend gene flow to subsequent generations by taking these new
allele frequencies and substituting them back into equations (8.2) and (8.3), giving
allele frequencies in the second generation of

pA2
= (1 − 0.1)(0.9) + (0.1)(0.1) = 0.82

and

pB2
= (0.1)(0.9) + (1 − 0.1)(0.1) = 0.18

This process can be extended to additional generations as shown in Figure 8.5,
which shows how the allele frequencies become increasingly similar to each other.
In fact, by about 20 generations, the allele frequencies are essentially the same.
Note that the curves resemble those seen in Figure 8.1, which was also modeled
using two-way gene flow. When you compare Figures 8.1 and 8.5, you will see
that convergence of the allele frequencies is faster in Figure 8.5. This is because the
rate of gene flow used to construct Figure 8.5 (m = 0.1) is greater than that used in
Figure 8.1 (m = 0.05).
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FIGURE 8.5 Two-way gene flow with initial allele frequencies of pA = 1.0 and pB = 0.0 and
a rate of gene flow of m = 0.1. Compare the speed at which the allele frequencies converge
with that of Figure 8.1, where a lower rate of gene flow (m = 0.05) was used.

C. Kin-Structured Migration

The examples using two-way gene flow show clearly that gene flow acts to
make populations more similar to each other over time, and that the higher
the rate of gene flow, the more rapidly this convergence occurs. Gene flow is
most often considered a homogenizing force that reduces the genetic difference
between populations. However, this is technically correct only if we make the
hitherto unstated assumption that the individuals that migrate and reproduce
are a random sample of the source population. This may not always be the case.
In some situations, the migrants may be related. One way that migrants can be
related occurs in some small-scale human societies when part of a population
splits off and then fuses with another population. There are other examples of
entire families moving into a new population. When the migrants are related, we
call this kin-structured migration.

Anthropologist Alan Fix has looked at the genetic effects of kin-structured
migration on genetic differences between populations (Fix 1978, 1999). Gene
flow usually acts to reduce differences between populations, and kin-structured
migration can slow this process down, or even reverse it in some cases, leading to
increased genetic differences between groups. Fix (1978) looked at kin-structured
migration among the Semai Senoi, a swidden (slash-and-burn) agricultural group
in the Malayan Peninsula in Malaysia. Over time, populations split and the
resulting groups of migrants were (and are still) typically kin. Using simulations
incorporating genetic drift and gene flow based on the demography of the
population, Fix found that although kin-structured migration flow would still
reduce genetic differences between Semai Senoi populations over time, the actual
reduction would be less than if the migrants were simply a random sample.
Although kin-structured migration is not universal, it has been found in other
human populations, including the Yanomama Indians of South America as well as
the founding populations of Tristan da Cunha and Plymouth in the United States
(Fix 1999).
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III. GENE FLOW AND GENETIC DRIFT

Of course, gene flow does not operate alone, and to get a better idea of the genetic
effects of gene flow, we need to consider how it interacts with genetic drift. To do
this, we need to consider in more detail the concept of between-group variation
introduced in the first chapter. In previous chapters, we have considered the effect
of microevolution on genetic variation (measured by heterozygosity or a similar
statistic) within a single population. This within-group variation refers to genetic
differences (variation) between individuals within a single population. Between-
group variation (also referred to as among-group variation) looks at differences
between the genetic compositions of two or more populations. For example, if
two populations each have allele frequencies of p = 0.6 and q = 0.4, there is no
genetic difference between these populations, although there is variation within
both populations.

On average, genetic drift increases genetic differences between populations.
The ultimate fate of genetic drift is the fixation or extinction of an allele. Because
this is a random process, over time different alleles will become fixed in different
populations, thus increasing the genetic variation between populations. On the
other hand, gene flow counters drift and reduces genetic differences between popu-
lations. Clearly, the two evolutionary forces act in opposition to each other, and we
need to see how and when they might reach an equilibrium between the amount of
between-group variation added by genetic drift and the amount lost by gene flow.

A. Measuring Genetic Variation between Populations

Before looking at the equilibrium between genetic drift and gene flow, we need
to consider briefly how we can measure between-group variation. In Chapter 5,
when we considered the balance between mutation and genetic drift, we looked
at heterozygosity (H) as a measure of the amount of genetic variation within a
population. Here, we consider another measure (FST) as a measure of genetic vari-
ation between populations. Picture a region made up of a number of populations.
Examples include a group of villages on a Pacific island, a group of rural towns
in the English countryside, or a group of different ethnic neighborhoods in a city,
among many other possible examples. Although we will consider real examples
from human populations later in this chapter, for the moment we will approach
this idea in a more abstract manner by considering a number of subpopulations
that make up the total population. Figure 8.6 shows a graphic illustration where
the total population (T) is made up of three subpopulations (S). This type of model
refers to a hierarchical population structure where the subpopulations are nested
inside the total population.

For our purpose here, we can look at genetic variation in three different ways:

1. The amount of genetic variation in the total population
2. The amount of genetic variation within the subpopulations
3. The amount of genetic variation between the subpopulations

Note that quantities 2 and 3 make up the total amount of variation:

Total variation = (variation within groups) + (variation between groups)
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FIGURE 8.6 Hierarchical population structure. The total population (T) is made up of three
subpopulations (S).

When we look at the effects of gene flow and drift (or other factors) on genetic
differences between groups, we are interested in what proportion of the total
variation is due to genetic variation. This proportion, denoted FST, is

FST = variation between groups
total variation

Because total variation is made up of the sum of within-group variation and
between-group variation, we can express the above equation in terms of total and
within-group variation as

FST = (total variation) − (variation within groups)
total variation

(8.4)

This measure looks at variation in the subpopulations (S) relative to the total (T)
population.

A simple example will help clarify these concepts. Imagine a single locus with
two alleles, A and a, with the following allele frequencies in three subpopulations
that have equal population sizes:

Subpopulation 1: p = 0.6, q = 0.4
Subpopulation 2: p = 0.52, q = 0.48
Subpopulation 3: p = 0.5, q = 0.5

We also need to know the allele frequencies in the total population, pooling
all three subpopulations into a single group. Because the three populations all
have equal population sizes, we can simply take the average allele frequencies,
designated as p and q, as

p = 0.6 + 0.52 + 0.5
3

= 0.54

q = 0.4 + 0.48 + 0.5
3

= 0.46
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If the subpopulations had different population sizes, then we would have com-
puted an average weighted by population size.

The first thing we are interested in looking at is the amount of genetic variation
within the total population. This quantity is the heterozygosity based on the allele
frequencies of the total population (p and q), and is computed as shown in
Chapter 5 for two alleles as

HT = 2p q = 2(0.54)(0.46) = 0.4968

Note that we use the subscript ‘T’ to designate that this refers to the total pop-
ulation. The next quantity of interest is the amount of genetic variation within
the subpopulations. Here, we simply take the heterozygosity for each subpop-
ulation and then average them. Using the formula for heterozygosity for two
alleles (H = 2pq), we obtain heterozygosity values of H = 0.48 for subpopulation
1, H = 0.4992 for subpopulation 2, and H = 0.5 for subpopulation 3. The average
of these three values gives us an amount of genetic variation within groups of

HW = 0.48 + 0.4992 + 0.5
3

= 0.4931

Here, we use the subscript W to designate variation within subpopulations.
We now return to equation (8.4) and see that we have measures for both total

variation (HT) and within-group variation (HW), and can derive FST as

FST = (total variation) − (variation within groups)
total variation

= HT − HW

HT
(8.5)

For our simple example, HT = 0.4968 and HW = 0.4931, giving an FST value of
0.0074. As this is a proportion, we can state that 0.74% of the total genetic variation
is due to variation between groups, leaving 99.26% of the total genetic variation
due to variation within groups.

The FST values in human populations frequently range from close to zero
to higher values between 0.05 and 0.10 (within 5–10%) (Jorde 1980). As will be
outlined in more detail below, genetic drift increases FST and gene flow decreases
FST. A population with a moderate FST is often characterized by relatively small
populations and/or low rates of gene flow. Large populations and/or high rates
of gene flow tend to produce smaller FST values.

B. Equilibrium between Gene Flow and Genetic Drift

You might be wondering where the symbol F in FST comes from. We have seen
other examples of F earlier in the book, including the concept of identity by descent
under inbreeding (Chapter 3) and the probability of identity by descent due to
genetic drift (Chapter 5). The use of the same letter is not accidental; all of these uses
refer to various types of a fixation index, which is a measure of the proportional
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reduction in heterozygosity relative to Hardy–Weinberg conditions. Equation
(8.5) shows the proportional reduction that occurs when a population is structured
into subpopulations (S) rather than consisting of one large population (T) within
which all individuals have an equal chance of mating. Whenever a population is
subdivided in this way, there will be some reduction in heterozygosity, and FST
provides an index of the degree of reduction.

Because we are dealing with the probability of identity by descent, we can
extend models developed earlier to the case of an interaction of gene flow and
genetic drift. Like mutation, gene flow acts to reduce the probability of identity by
descent—an allele introduced from outside a population means that there will be
no common ancestry within the population. When looking at gene flow, we define
m as the rate of gene flow per generation, which is interpreted as the probability
that an allele comes from outside the population. In practical terms, we typically
estimate m in human populations as the proportion of individuals in a population
that were born in another population. Identity by descent is possible only when
both alleles have not come into the population due to gene flow. In Chapter 5,
we dealt with a similar idea when considering the interaction between mutation
and drift, which means that the logic and derivation of the probability of identity
by descent under gene flow and drift can be derived by substituting the rate of
gene flow (m) for the rate of mutation (μ) in Appendix 5.2. Thus, equation (A5.6)
becomes

FSTt
= (1 − m)2

[
1

2N
+

(
1 − 1

2N

)
FSTt−1

]
(8.6)

Figure 8.7 shows values of FST over time for a population size of N = 100 and a
migration rate of m = 0.05. FST increases rapidly at first because of the cumulative
effects of genetic drift. Over time, gene flow moderates this increase, until an
equilibrium of between-group variation is reached. As before, N as used here
refers to the breeding population size in an idealized model, and in actual analysis
we would want to consider the effective population size.
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FIGURE 8.7 Change in FST over time for N = 100 and m = 0.05. The FST values were
computed using equation (8.6) starting with an initial value of FST = 0. Initially FST increases
rapidly as a result of genetic drift, but then levels off because of gene flow to approach an
equilibrium of roughly FST = 0.044.
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FIGURE 8.8 Change in FST over time for different values of migration rate. In each case,
the population size was set to N = 100. The FST values were computed using equation
(8.6) starting with an initial value of FST = 0. The larger the migration rate, the smaller the
equilibrium value of FST .

The eventual equilibrium between genetic drift and gene flow depends on
both population size and migration rate. Figure 8.8 shows three examples of
changes in FST over time where the population size is held constant at N = 100 but
the migration rate varies. The higher the migration rate, the lower the equilibrium
value of FST. Figure 8.9 shows three examples of change in FST over time where
the migration rate is held constant at m = 0.05 but the population size varies. The
larger the population size, the smaller the equilibrium value of FST.

An approximate estimate of the equilibrium value of FST can be obtained
using the same method as used for the equilibrium between mutation and genetic
drift shown in Appendix 5.2, but substituting migration rate for mutation rate in
equation (A5.8). Doing this gives an approximate equilibrium value for FST of

FST ≈ 1
1 + 4Nm

(8.7)

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50 60 70 80 90 100

Generation

F
S

T

N = 50

N = 100

N = 200

FIGURE 8.9 Change in FST over time for different values of population size. In each case,
the migration rate was set to m = 0.05. The FST values were computed using equation
(8.6) starting with an initial value of FST = 0. The larger the population size, the smaller the
equilibrium value of FST .
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Note what the term Nm in equation (8.7) actually means. It is the product of the
population size and the migration rate, which means that Nm is the number of
migrants each generation. Let M = Nm be the number of migrants into any of the
subpopulations for each generation, and equation (8.7) simplifies to

FST ≈ 1
1 + 4M

(8.8)

This means that the equilibrium rate of FST depends only on the number of migrants
For example, the case where N = 100 and m = 0.03 will have the same number of
migrants (M = 3) as will the case where N = 50 and m = 0.06, or the case where
N = 1000 and m = 0.003. In each case, the approximate FST at equilibrium is 0.0769.
Another important point is that very few migrants are needed to reduce FST to
the levels seen in most human populations. Figure 8.10 shows the relationship
between the number of migrants and the approximate equilibrium value of FST.
A change from only M = 1 to M = 2 changes the equilibrium value of FST from
0.2 to 0.11, and a further change to M = 3 changes the equilibrium value of FST
to 0.08. Many studies of human populations show FST values between 0.01 and
0.05, which translates to values of M ranging from about 25 to 5, assuming that
equilibrium has been reached. Note that these figures are approximations based
on an assumption of an infinite (or at least a very large) number of subpopulations;
more complex formulas are used to deal with a small number of populations
(Rogers and Harpending 1986).

Although the simple models presented above are useful for understanding
the dynamic between gene flow and genetic drift, they are often too simple to
apply to many organisms, especially humans. For example, the discussion above
focused on FST being at equilibrium. Can we make this assumption when trying to
interpret an FST value that has been estimated from genetic data? For example, if
we analyze genetic marker or DNA marker data from a set of human populations
and find an FST of 0.005, we can reasonably state that this is a low level of between-
group variation, roughly on par with an estimated 50 migrants each generation.
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FIGURE 8.10 Expected equilibrium value of FST for different numbers of migrants per
generation (M = Nm). Values for equilibrium FST were computed for values of M ranging
from 1 to 50 using equation (8.7).
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However, is the equilibrium assumption warranted? Perhaps we are sampling the
population early in its existence and equilibrium has not been reached. How valid
is the equilibrium assumption? The answer to that question depends on the nature
of the populations being studied, as time, population size, and migration rate will
all affect changes in FST over time.

Although it is useful to develop preliminary models based on a simple
set of assumptions where population size and migration rate remain constant
over time, there are many examples in human history where these demographic
parameters have changed rapidly, particularly in modern times. The population
of Ireland is a good example, where the population grew rapidly in the 1700s
because of the introduction of the potato as a viable crop in the island’s ecol-
ogy, but then declined rapidly in the nineteenth century following the failure
of the potato crop (the great Irish famine) (Connell 1950; Kennedy 1973). The
types of demographic changes we see in human populations render assumptions
of constancy questionable in many cases. Other models and methods, some of
which are presented below, allow more flexibility in analyzing the interaction
between gene flow and genetic drift. In addition to the theoretical aspects dis-
cussed here, more case studies from human populations will be discussed in
Chapter 9.

C. Isolation by Distance

An assumption underlying the models presented earlier is that the number of
migrants exchanged between subpopulations is the same. Although this can be a
useful assumption for developing baseline models, it may not be very useful for
applying to analyses of the real world where the numbers of migrants between
populations can very significantly. One key influence on migration in many
species, including humans, is geographic distance. Indeed, much of the genetic
variation in our species can be explained by the geographic distance between
populations (Relethford 2010) (see also Chapter 9).

Quite simply, you are more likely to choose a mate from close by than from
farther away. Consider the fact that throughout most of human history and
prehistory the amount one could travel in a day was often limited by how far/you
could walk in a day. One was more likely to meet a potential mate close to home
than from many miles away. This is still the case. Although we live in a world
where rapid and distance transportation is of a magnitude far beyond that of our
ancestors (you can cross the entire planet within a day!), we still tend for the most
part to choose mates from close by. We tend to spend much more time living and
working within a set geographic limit than crossing long distances. I illustrate this
idea in my large introductory biological anthropology class by asking for a show
of hands for the number of people whose parents were born in the same state. This
accounts for a large proportion of the class. I also tend to get a lot of responses
from those whose parents came from different but adjacent states. As I increase the
distance to cover marriages in nonadjacent states or in other countries, I get fewer
responses (but typically there are usually some long-distance marriages). Of course,
my quick and dirty survey is not a valid scientific survey, nor is it intended to be.
The purpose is to provide a personalized and participatory means of illustrating
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FIGURE 8.11 Marital distance distribution for north central Massachusetts, 1800–1849.
Marital distance is the geographic distance (in kilometers) between the premarital residences
of bride and groom, which gives us an idea of how far people move in search of mates.
(Source: Author’s unpublished data.)

the basic principle that geographic distance limits migration. A vast number of
studies have shown this relationship across the range of human societies.

An example of the effect of geographic distance on mate choice is shown
in Figure 8.11, which shows the geographic distance between the premarital
residences of bride and groom in 3592 marriages that took place in four towns in
north central Massachusetts from 1800 through 1849. These data are part of a study
in the historical demography of population growth and population structure of
the region (e.g., Relethford 1986, 1991). Half of the marriages took place between
brides and grooms who lived less than 5 km from each other. The percentage
of marriages declines quickly after that, with 13% of the marriages taking place
between 5 and 10 km, 11% between 10 and 15 km, and 3% between 15 and
20 km. This graph shows the characteristic exponential decline in marriages (and
therefore much of gene flow) over geographic distance. Note, however, that there
is some long-distance migration, also characteristic of most human populations.
Here, almost 10% of the marriages took place between spouses who were 50 km
or more apart. Some of the marriages took place over very large distances—12
occurred over 500 km apart, including two at distances over 2000 km. This long-
distance migration (and gene flow) helps keep populations from drifting apart too
far even given the local limiting effect of geographic distance.

Isolation by distance models have been proposed in population genetics to
examine the effect of geographic distance on genetic similarity between pairs of
populations. Such models look at the balance between genetic drift, gene flow
between local neighboring populations, and long-range gene flow on a measure
of genetic similarity. Many different measures of genetic similarity have been
proposed. Two measures that are used frequently in studies of human populations
are the R matrix measure and Nei’s genetic identity measure, described in more
detail in Appendixes 8.2 and 8.3 for those interested in seeing different methods
for computing genetic similarity.
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FIGURE 8.12 Isolation by distance. Isolation by distance models predict that genetic
similarity between pairs of populations will decrease as the geographic distance between
populations increases. This figure was obtained using the R matrix measure of genetic similarity
(see Appendix 8.2) and the isolation by distance model rij = (r0 − r∞)e−bd + r∞ (Relethford
2004), where rij is the genetic similarity between populations i and j, and d is the geographic
distance between populations i and j. The parameter r0 is the genetic similarity at distance
d = 0, r∞ is the genetic similarity at very large values of d, and b reflects the amount of
distance decay (Relethford 2004). For this graph, the parameters of the model are set to
r0 = 0.05, r∞ = −0.005, and b = 0.03.

A number of different theoretical models of isolation by distance have been
developed. They all share the basic idea that the genetic similarity between
populations decreases as the geographic distance between populations increases.
An example is shown in Figure 8.12. The greater the distance between two
populations, the less gene flow between them is expected, and the level of genetic
similarity will decline as a result of drift. Isolation by distance models typically
incorporate some small level of long-range gene flow that moderates the decline
in genetic similarity with distance. This causes the decrease in genetic similarity
to level off after a certain distance. For example, in Figure 8.12, there is little
change in genetic similarity after about 100 km. Genetic (and morphological) data
have been found to fit the isolation by distance model in human populations
around the world (Morton 1973; Jorde 1980; Relethford 2004). An example is
shown in Figure 8.13, which looks at the relationship between genetic distance
(based on red blood cell markers) and geographic distance between 10 Papago
Indian populations in the American Southwest. Although there is scatter, the
overall pattern of genetic similarity and geographic distance fits the isolation by
distance model. Genetic similarity declines quickly within the first 50 km, and
then continues to decrease at a slower rate at greater distances.

D. Migration Matrix Analysis

Another approach to examining the interaction of gene flow and genetic drift is to
use observed rates of migration and population size to predict patterns of genetic
variation that are expected when an equilibrium has been reached between these
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FIGURE 8.13 Isolation by distance among 10 Papago Indian populations based on red
blood cell polymorphisms. The 10 populations are political districts on the Papago Indian
reservation in Arizona. The black circles represent the genetic similarity and geographic
distance between pairs of populations. The circles at zero geographic distance represent the
genetic similarity within populations. The solid line is the fit of Relethford’s (2004) isolation
by distance model. Measures of genetic similarity were computed using the R matrix method
(see Appendix 8.2) based on 22 alleles for nine red blood cell genetic markers reported by
Workman et al. (1973). Geographic distances between districts were taken from Workman and
Niswander (1970). The estimated parameters of Relethford’s model [rij = (r0 − r∞)e−bd + r∞)]
are r0 = 0.032, r∞ = −0.013, and b = 0.027.

two evolutionary forces. This approach is known as migration matrix analysis. In
addition to providing some insight into the likely relative effects of gene flow and
genetic drift, this predictive approach allows comparison with observed genetic
data. For example, if we observe patterns of migration and population size in the
present, we would be interested in seeing how well observed genetic variation fits
that predicted by the migration matrix method. If observed and predicted patterns
of genetic variation are not similar, then the observed demography (migration
rates and population size) are likely to have changed in the past.

The heart of the method, the migration matrix, is defined as a matrix of
migration probabilities where rows refer to population of origin and columns
refer to population of residence. Each element of the matrix mij represents the
probability that an individual in population j came from population i. A common
source of such data is information on parent–offspring migration, where we would
look at the birthplaces of parents and their offspring, such that mij represents the
probability that a child born in population j had a parent born in population
i. When data on parents and offspring are not available, we can also look at
migration during an individual’s life, such as classifying reproduction-aged adults
by their population of origin and their population of residence. Here, mij refers
to the probability that someone living in population j came from population i.
In other cases, we can use data on migration at marriage to classify someone by
according to where she or he lived before and after marriage. Here, mij would
represent the probability that someone living in population j after marriage was
living in population i before marriage. One advantage of working with human
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populations is that it is often easy to find out from human subjects where they (or
their parents) lived.

Example 8.1 presents human migration data and computation of the migration
matrix based on migration data from the Bedik tribe of eastern Senegal in Arica
(Lanageny and Gomila 1973). The Bedik are a small ethnic group that lived apart
from other Sengalese groups, and are culturally and linguistically distinct from
many of their neighbors. As an example, while many neighboring tribes have
converted to Islam, the Bedik have retained animistic beliefs (Jacquard 1974).
Example 8.1 shows data on migration among six Bedik villages where each of 746
adults was classified according to village of origin (rows) and village of residence
(columns). In order to construct the migration matrix showing the probability of
an individual living in population j having been born in population i, each entry
in the matrix is divided by its corresponding column total. For example, there
were 30 individuals living in village 3 who came from village 4. The total number
of people living in village 4 for which data were available was 194 (the column
total). Therefore, the migration matrix entry m43 = 30

194 = 0.1546. This means that
the probability of someone living in village 3 having come from village 4 is 0.1546.
Also, note that a migration matrix is not necessarily symmetric; for example, the
probability of living in village 4 and originating from village 3 (m34 = 0.2581) is
greater than the probability of living in village 3 and originating from village 4
(m43 = 0.1546).

EXAMPLE 8.1 A Migration Matrix: The Bedik of Senegal. The following data
are for six villages among the Bedik of Senegal, Africa, where each adult has been
classified according to village of origin and village of residence as reported by
Langaney and Gomila (1973). Each element in the matrix below represents the
number of individuals in population j (columns) that came from population i
(rows):

Village of Village of Residence
Origin 1 2 3 4 5 6

1 47 10 1 0 6 0
2 1 105 2 0 1 3
3 4 5 144 40 23 3
4 1 1 30 100 1 12
5 5 16 12 2 38 1
6 1 3 5 13 1 109

Total 59 140 194 155 70 128

The elements of the migration matrix below (mij) represent the probability that
a person in population j came from population i. These elements are computed
by dividing each element in the matrix by the corresponding column totals. For
example, 4 individuals in village 1 came from village 3. There are a total number of
59 individuals from village 1. The migration matrix value here is m31 = 3

59 = 0.0678:
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Village of Village of Residence
Origin 1 2 3 4 5 6

1 0.7966 0.0714 0.0052 0.0000 0.0857 0.0000
2 0.0169 0.7500 0.0103 0.0000 0.0143 0.0234
3 0.0678 0.0357 0.7423 0.2581 0.3286 0.0234
4 0.0169 0.0071 0.1546 0.6452 0.0143 0.0938
5 0.0847 0.1143 0.0619 0.0129 0.5429 0.0078
6 0.0169 0.0214 0.0258 0.0839 0.0143 0.8516

The migration matrix provides information on local gene flow between the
populations of interest. We also need to factor in the effect of long-range gene
flow, which will act to help moderate the effect of drift. Here, long-range gene flow is
typically defined as the proportion of individuals who came from outside the area
used to construct the migration matrix. In the Bedik analysis, the 746 individuals
that were used to construct the migration matrix all originated from one of the six
villages in the study area. Langaney and Gomila (1973) also found 14 individuals
living in the six villages that originally came from outside these six villages (as
such, these 14 people do not appear in the migration matrix in Example 8.1
because the migration matrix only counts those whose residence and origin were
in the six villages). Thus, we have a total number of 746 + 14 = 760 people. The
long-range migration rate is 14

760 = 0.0184. The final piece of information needed
for a migration matrix analysis is the effective population sizes, which provides an
estimate of the effect of genetic drift (more drift is expected with smaller effective
population size). For the Bedik example, Langaney and Gomila (1973) computed
effective population size for the six villages, which ranged from 45 to 145 with an
average of 94.

Given data on local migration rates, long-range migration, and effective
population sizes, migration matrix analysis is a mathematical method that allows
prediction of genetic variation within and between populations over time. These
predictions are performed in successive generations until the estimates of genetic
variation reach an equilibrium between gene flow and genetic drift. Several
different models of migration matrix analysis have been proposed using different
measures of genetic variation and underlying assumptions (e.g., Bodmer and
Cavalli-Sforza 1968; Smith 1969). The model used here, developed by Rogers and
Harpending (1986), is a variation particularly well suited for application to human
populations and for comparison with observed patterns of genetic variation. The
actual mathematics are too involved for presentation here, but are presented in
detail by Rogers and Harpending (1986).

Figure 8.14 shows the changes in FST predicted from Rogers and Harpending’s
migration matrix model applied to the observed patterns of migration and popu-
lation size of the Bedik villages. The amount of between-group genetic variation
(FST) increases rapidly to approach an equilibrium value within a few generations.
After five generations there is little change in FST, with an equilibrium value
of FST = 0.0093. The speed of convergence to equilibrium in a migration matrix
analysis depends on the rates of local and long-range gene flow (Rogers and
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FIGURE 8.14 Predicted FST between Bedik villages based on a migration matrix analysis.
The Rogers–Harpending method of migration matrix analysis was applied to the migration
matrix presented in Example 8.1, and the estimate of long-range migration and effective
population sizes given by Langaney and Gomila (1973). The analysis starts with an initial
FST = 0, and the analysis is applied to successive generations until there is virtually no change
in FST from one generation to the next. As shown here, FST increases rapidly at first as a
result of genetic drift, and soon reaches a balance between drift and gene flow (local and
long-range). For this example, the convergence to an equilibrium between drift and gene flow
occurs within a few generations. As noted in the text, the speed of convergence is dependent
on the intensity of local and long-range gene flow.

Harpending 1986; the higher the levels of gene flow, the faster the convergence of
FST. This means that in cases of rapid convergence, there is a good chance that the
observed migration–population size data are representative of the recent evolu-
tionary past, and that the genetic predictions from the migration matrix analysis
are more accurate. This is an important point in many human populations because
demographic parameters such as population size and migration often change so
quickly (consider, for example, the rapid growth in many human populations over
the past century). In cases where convergence to equilibrium is slower, there is an
increased chance that ‘‘current’’ demographic data do not reflect the past. For the
Bedik example, I note that the predicted FST of 0.009 is close to the observed FST of
0.012 obtained from analysis of genetic markers (Rogers and Harpending 1986).

The most restrictive assumption of migration matrix analysis is that the
method assumes that equilibrium has been reached. In cases where patterns of
migration and population size have remained relatively stable and/or conver-
gence to equilibrium is relatively fast (as with the Bedik), then the assumption
of equilibrium is not too restrictive, and we would expect close correspondence
between migration and genetics. Rogers and Harpending (1986) found that the
correspondence between estimates of FST based on a migration matrix and genetic
markets was close for cases where convergence to equilibrium was rapid, which
were cases with higher rates of local and/or long-range migration. When con-
vergence is slower, as will happen with lower rates of migration, then there is
greater discrepancy between migration and genetic data. Therefore, the utility of
the migration matrix approach is variable from one case to the next. Sometimes it
is a useful approach, and sometimes it is not.
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IV. ESTIMATING ADMIXTURE IN HUMAN POPULATIONS

The treatment of gene flow so far has concentrated on local gene flow for the most
part, such as the genetic effects of gene flow from a continent to an island, or
between villages located close to each other. Gene flow also takes place over much
longer distances, as discussed briefly in the above sections on isolation by distance
and migration matrix analysis. In the history of our species, in some cases there
have been high levels of migration over very long distances, often between groups
that typically were not part of the local exchange of genes through short-range
gene flow. Many of these long-distance movements accompanied the geographic
expansion of human beings over the past 500 years following the European age of
exploration. As Europeans spread out from the Old World into the New World,
they met previously unknown native populations. Sometimes this contact was
violent, and sometimes it was peaceful, but in all cases it resulted in the mixing
of gene pools from geographically distant populations. One example is gene flow
from Europeans into the enslaved African-American population of colonial times.
Another example is gene flow from Europe, primarily Spain, into Native American
populations in Central America.

A. A Simple Admixture Model

Gene flow between previously separated (or partially separated) populations
is known as admixture. The dynamics of admixture allow us to examine the
genetic makeup of admixed populations and make inferences about the amount
of ancestry from two or more sources. The simplest example of admixture is to
consider two parental populations both contributing genes to a hybrid population.
This model is presented in Figure 8.15, which shows some proportion of ancestry
from population A and some from population B. If we label the proportion of

A B

H

M1 − M 

FIGURE 8.15 Admixture between two parental populations. The hybrid population (H) is
formed by gene flow from two parental populations, A and B. The proportion of ancestry
in population H from population B is symbolized by M, and the proportion of ancestry in
population H from population A is therefore 1 − M.
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ancestry from population B as M, this means that the proportion of ancestry from
population A must be 1 − M (because the total amount of ancestry must add up
to 1). This means that for any given allele, we can describe the allele frequency of
the hybrid (pH) in terms of the allele frequencies of parental population A (pA) and
parental population B (pB), each weighted by their contribution to ancestry:

pH = (1 − M)pA + MpB (8.9)

For example, if pA = 0.8 and pB = 0.6, and if the proportion of ancestry from
population B were M = 0.3, then the allele frequency in the hybrid population
would be

pH = (1 − 0.3)(0.8) + (0.3)(0.6) = 0.74

Equation (8.9) is very useful for studying ancestry, because if we have estimates
of the current allele frequencies for the hybrid populations and the two parental
populations, we can estimate the ancestral contributions. We do this by expanding
equation (8.9) to get

pH = pA − MpA + MpB

We then factor out M to obtain

pH = pA − M(pA − pB)

and then use some simple algebra to get

M = pA − pH

pA − pB
(8.10)

For example, if we have estimates of pH = 0.7 in the hybrid population and
pA = 0.9 and pB = 0.4 for the parental populations, we would estimate the amount
of ancestry in H from population B as

M = 0.9 − 0.7
0.9 − 0.4

= 0.4

Thus, 40% of the ancestry in the hybrid population came from population B,
which means that the remainder (60%) came from population A. In any actual
study, we would not want to rely on an estimate from a single allele, but instead
would average these estimates over a large number of alleles, or use an admixture
estimation method that is designed for multiple alleles and loci.

Keep in mind that M represents the accumulated admixture over past genera-
tions and is not the amount of admixture that occurs in a single generation. These
two views of ancestry are easily confused. The amount of admixture per genera-
tion, which we will denote by lowercase m, represents how much ancestry comes
from population B in a single generation. Accumulated admixture M represents
how much ancestry from population B has accumulated over past generations. The
difference between these two quantities is analogous to the amount of interest you
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would pay on average every year on a loan versus the total amount of interest
paid over the lifetime of a loan. Per generation admixture m and accumulated
admixture M are related as

M = 1 − (1 − m)t (8.11)

where t is the number of generations that have passed since admixture began
(and assuming that m is constant from one generation to the next). The derivation
of equation (8.11) is given in Appendix 8.4. As an example, if the per generation
admixture rate from population B were m = 0.01 and remained constant for t = 20
generations, the accumulated admixture from population B would be

1 − (1 − 0.01)20 = 0.18

(18%). Note that our estimates of admixture from genetic data are of accumulated
admixture M. However, if we have an idea of the number of generations that have
passed (say, from historical data), we can estimate the average per generation
admixture by rewriting equation (8.11) as

m = 1 − eln(1−M)/t

where ln is the natural logarithm and e is the base of natural logarithms (= 2.71828).
For example, if we had an estimate of M = 0.3 from genetic data and knew that
admixture had occurred over the previous 10 generations, our estimate of per
generation admixture would be m = 0.035. Like interest on a loan, total ancestry
can add up generation after generation (assuming that the rate of admixture
remains constant).

B. Assumptions of Admixture Estimation

As with any population-genetic model, the admixture estimation model makes
several assumptions (Reed 1969). The first assumption is that we have identified
the parental populations correctly. Calculation of the number and identity of
parental populations can be facilitated by cultural and historical information. For
example, history shows us that the major source of initial contact between native
populations and Europeans in Mexico following the European age of exploration
was Spain. It makes sense, therefore, to use data on Spanish allele frequencies to
represent the European source and not France or England. Likewise, if we are
investigating admixture in African-Americans, we need to choose African allele
frequencies from the geographic regions from which native peoples were captured
and enslaved, which would be west central Africa.

The second assumption listed by Reed (1969) is that no allele frequency change
has occurred in the parental population from the time of initial admixture until the
present. This assumption is necessary because we use the allele frequencies that we
observe in the present as a proxy for the allele frequencies in the past. If the parental
allele frequencies have changed, then our admixture estimates will be off. We are
assuming a stable equilibrium in the parental populations that has not been affected
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significantly by mutation, drift, selection, or gene flow from another population.
Our third assumption is that admixture is the only cause of allele frequency change
in the hybrid population. In other words, we assume that there has been no
significant mutation, selection, and/or drift in the hybrid population so that the
present-day allele frequency has been shaped only by the admixture process. The
fourth assumption given by Reed is that all of our present-day allele frequencies
are unbiased estimates and have not been affected significantly by sampling error
(which would happen if we estimated allele frequencies from small samples).

Although critical, these assumptions are not insurmountable. As noted above,
cultural and historical context can provide us with needed clues about the geo-
graphic and ethnic identity of ancestral populations, and competing models (e.g.,
whether there is a third parental population) can be tested to see which offers the
best fit to the data. Sampling error can be handled to some extent by choosing large
samples when possible and estimation over as many different alleles as possible.
Variation in admixture estimates due to sampling error and genetic drift can now
be estimated using more advanced methods of admixture analysis (Long 1991).

Another useful approach is to use genetic markers that are widely different
in the parental populations, known as ancestry-informative markers (AIMs). If
the allele frequencies in the parental populations are similar to each other to
begin with, then any source of variation other than admixture (such as drift) can
alter one or both parental allele frequencies enough to make accurate estimation
of admixture difficult. By using alleles with large differences between parental
populations, the researcher can minimize any changes in allele frequencies due to
other sources of variation. The recent and rapid development of huge numbers
of DNA markers, such as single-nucleotide polymorphisms (SNPs), has provided
numerous AIMs for detecting ancestry (e.g., Rosenberg et al. 2003a; Seldin and
Price 2008).

C. Extensions for Admixture Analysis

Although useful, estimation of admixture from equation (8.10) is somewhat lim-
ited. For one thing, the simple admixture model has only two parental populations,
and there have been cases in human history of three or more major sources of
ancestry. A number of admixture methods have been developed that allow for
three (or more) parental populations. An example is Devor and Crawford’s (1980)
analysis of admixture in Tlaxcaltecan Indian populations in Mexico. Although the
most significant sources of ancestry were from Native Americans and Spaniards,
several populations also showed significant ancestry from western Africa, pre-
sumably introduced through enslaved Africans who had been brought in to work
on local mines.

A number of different methods have been developed that allow estimation
of admixture proportions using data from multiple alleles and loci. One of the
most useful has been the method outlined by Long (1991) that factors in the
effect of sampling bias and variation introduced by genetic drift. His method also
provides a statistical test of variation across different loci, which can be useful
in detecting natural selection. Whereas gene flow and genetic drift affect all loci,
natural selection at one locus may not have any effect on other loci.
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Thus far, we have been looking at admixture estimation and proportions of
ancestry at the level of the local population. We need to keep in mind that these
proportions are averages, and not everyone in the population may have the same
levels of ancestry. Imagine, for example, a sample of five individuals in a hybrid
population formed from parental populations A and B, and we estimate that the
average amount of ancestry in the sample from B was M = 0.2, or 20%. Does this
mean that each of the five people have 20% ancestry from B? It is possible, but
another possibility might be two people with 0% ancestry from B, two people
with 30% ancestry from B, and one person with 40% ancestry from B. The average
here would also be 20%: (0 + 0 + 30 + 30 + 40)/5 = 20. A third case might be three
people with 0% ancestry from B and two people with 50% ancestry from B, which
also gives an average of 20%: (0 + 0 + 0 + 50 + 50)/5 = 20. The point here is that
the average genetic ancestry of a population does not necessarily apply equally to
all individuals within the population.

Several methods have been developed to allow estimation of individual ances-
try (e.g., Hanis et al. 1986). One of these has been devised by Pritchard and
colleagues and implemented in a computer program known as STRUCTURE
(Pritchard et al. 2000; Falush et al. 2003). Here, individuals are assigned to one or
more populations using a probability model based on their genotype. If they are
admixed, they can be assigned to two or more populations, allowing an estimation
of their ancestry. Examples of admixture studies looking at both group averages
and individual ancestry are presented in the next chapter.

V. SUMMARY

Gene flow can affect variation both within and between populations. Gene flow
can introduce new alleles into a population from elsewhere, thus increasing
genetic diversity within a population. Gene flow acts to reduce variation between
populations as it makes the allele frequencies in different populations more similar
over time. One of the simplest models of gene flow, the island model, shows how
the genetic makeup of a population can change under one-way gene flow, such that
the recipient population (the ‘‘island’’) will eventually have the allele frequencies
in the source population. For most studies of human populations, two-way gene
flow is more applicable. Here, allele frequencies in all populations change as a
result of sharing genes, and allele frequency differences become smaller over time.

Gene flow and genetic drift operate in opposition to each other. Genetic
drift acts to make populations more different, and gene flow acts to make them
more similar. Over time, an equilibrium is reached in terms of between-group
variation (FST). A number of models and methods have been developed to
investigate the balance between gene flow and genetic drift. The isolation by
distance model is based on the idea that geographic distance limits gene flow,
such that much of the gene flow into a population comes from nearby. As a
consequence, genetic similarity between populations declines as the geographic
distance between them increases. Migration matrix analysis is another way of
studying gene flow in human populations, where observed data on migration
are used to derive the probability that an individual living in one population
came from another population. Combined with data on long-range migration and
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effective population sizes, the migration matrix allows prediction of the expected
patterns of genetic variation hypothesized from an interaction of gene flow and
genetic drift given observed data.

Another type of analysis of gene flow is the study of admixture, the level
of gene flow into a hybrid population formed from the contact of two or more
previously distinct populations. Admixture analysis allows estimation of the
ancestry of samples and individuals, such as the amount of European ancestry in
the gene pool of African-Americans.

APPENDIX 8.1 CHANGES IN ALLELE FREQUENCY OVER TIME
IN AN ISLAND MODEL

The simplest formulation of the island model considers one-way gene flow. Here,
an island experiences gene flow from the mainland, but not the reverse. As shown
in the main (chapter) text, let p0 be the initial allele frequency of the island. Let
P be the allele frequency on the mainland, assumed to remain constant over time
(because in a model of one-way gene flow, the mainland affects the island, but
not the reverse). Each generation, let the island receive a proportion m of its
alleles from the mainland, and a proportion (1 − m) of its alleles from itself (see
Figure 8.1). Using a simple model of mixing, the allele frequency of the island in
the next generation (t = 1) is equal to

p1 = (1 − m)p0 + mP (A8.1)

This is an iterative equation of the form

xt = xt−1(a + 1) + b (A8.2)

seen in equation (A4.1). As shown in Appendix 4.1, an iterative equation of this
form can be expressed as a function of time t as

xt = (a + 1)t
(

x0 + b
a

)
− b

a
(A8.3)

Comparing equations (A8.1) and (A8.2) shows that b = mP and (a + 1) = (1 − m)
which, in turn, means that a = −m. Substituting these values into equation (A8.3)
and letting x0 = p0 and xt = pt gives

pt = (1 − m)t
(

p0 + mP
−m

)
− mP

−m

This simplifies to

pt = (1 − m)t(p0 − P) + P

which is equation (8.1). Note that as t increases, the quantity (1 − m)t gets smaller
and smaller, approaching zero. As this happens, the above equation shows that
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pt approaches P, which is the allele frequency of the mainland. In other words,
the genetic makeup of the island is eventually replaced by immigration from the
mainland.

APPENDIX 8.2 GENETIC SIMILARITY: THE R MATRIX

An R matrix provides a measure of genetic similarity between any pair of
populations in an analysis (including a population compared with itself). Let g be
the number of populations. The R matrix will have g rows and g columns. Each
element in the R matrix (rij) represents the genetic similarity between populations
i and j (referenced using the subscripts). For any given allele, the elements of the
R matrix are computed as

rij =
(pi − p)(pj − p)

p(1 − p)
(A8.4)

where pi is the allele frequency in population i, pj is the allele frequency in
population j, and p is the mean allele frequency computed using all of the
populations in the analysis (not just i and j). The numerator expresses how i
and j covary in their difference from the mean, and the denominator is a way of
standardizing (Harpending and Jenkins 1973). When i = j, the value of rij refers to
genetic similarity within a group, and when i �= j, the value of rij indicates genetic
similarity between groups. The R matrix is symmetric, which means that rij = rji.

Equation (A8.4) applies for any single allele. In any actual analysis, the R
matrix needs to be based on as many alleles and loci as possible, and the R matrix
is obtained by averaging equation (A8.4) over all alleles. Other computational
details are important in some cases. If population size is known to vary across
the populations, then the mean allele frequency p should be computed using a
weighted average. There are also methods of adjusting for bias due to sample size
[see Harpending and Jenkins (1973) and Workman et al. (1973) for more details
on R matrix computation]. In addition to use with allele/haplotype frequencies,
methods have been developed that allow estimation of R matrices from migration
data (Rogers and Harpending 1986), surname frequencies (Relethford 1988), and
quantitative traits (Williams-Blangero and Blangero 1989; Relethford and Blangero
1990; Relethford et al. 1997). These extensions make R matrix analysis very useful
for comparing patterns of genetic similarity from different types of data.

As R matrices express genetic similarity in terms of deviations from the mean
allele frequencies, the average value of all elements of an R matrix (weighted by
population size if needed) is equal to zero. Values of rij that are greater than zero
indicate a pair of populations that are more similar to each other than on average.
Values of rij that are less than zero indicate a pair of populations that are less similar
to each other than on average.

The diagonal elements of the R matrix (i = j) are a measure of genetic similarity
within populations, and will always be positive (and generally the largest values
in the R matrix) because individuals are more similar to each other within than
between populations. A handy feature of R matrices is that the average value of the
diagonal elements (weighted by population size if needed) is an estimate of FST.
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The properties of an R matrix are best illustrated with an example. Imagine
three populations with the following allele frequencies: p1 = 0.70, p2 = 0.72, and
p3 = 0.76. We will assume the three populations are the same size, so we can com-
pute the mean allele frequency as a simple average: p = (0.70 + 0.72 + 0.76)/3 =
0.7267. We can now compute the elements of the R matrix using equation (A8.4):

r11 = (0.70 − 0.7267)(0.70 − 0.7267)
0.7267(1 − 0.7267)

= 0.0036

r12 = (0.70 − 0.7267)(0.72 − 0.7267)
0.7267(1 − 0.7267)

= 0.0009

r13 = (0.70 − 0.7267)(0.76 − 0.7267)
0.7267(1 − 0.7267)

= −0.0045

r22 = (0.72 − 0.7267)(0.72 − 0.7267)
0.7267(1 − 0.7267)

= 0.0002

r23 = (0.72 − 0.7267)(0.76 − 0.7267)
0.7267(1 − 0.7267)

= −0.0011

r33 = (0.76 − 0.7267)(0.76 − 0.7267)
0.7267(1 − 0.7267)

= 0.0056

Because the matrix is symmetric, we can fill in the remaining values (e.g., r21 = r12).
The entire R matrix looks like this:

1 2 3

1 0.0036 0.0009 −0.0045
2 0.0009 0.0002 −0.0011
3 −0.0045 −0.0011 0.0056

As is the case with R matrices, the average value of any row or column, as well as
the entire matrix, is zero. The average of the diagonal elements gives an estimate
of FST of (0.0036 + 0.0002 + 0.0056)/3 = 0.0031. Several other observations apply
here:

1. Population 2 has the lowest rii value (0.0002), which means that it has the
allele frequency closest to the mean.

2. Population 3 has the highest rii value (0.0056), which means that it has the
allele frequency most different from the mean.

3. When we look at all of the off-diagonal values (which are comparisons
between populations), we see that the two lowest values (indicating less
genetic similarity) are associated with population 3, and the highest rij
value is between populations 1 and 2 (0.0009). These observations mean
that populations 1 and 2 are more similar genetically than is population 3.
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It may occur to you that all of these observations could more easily been made
just looking at the actual allele frequencies and that there was no need to go
through the entire analysis! This is true, but only because we were looking at a
single allele. If we had more alleles, then the situation could get complicated very
quickly, particularly if there is variation in results from one allele to the next.
R matrix analysis allows inferences to be made using all alleles in any analysis,
summarizing the average patterns of genetic similarity.

It is sometimes useful to consider the amount of genetic dissimilarity between
populations, referred to as a genetic distance. For any given allele, one common
measure of genetic distance between populations i and j can be computed as

D2
ij =

(pi − pj)
2

p(1 − p)

which is the standardized squared difference in allele frequencies. An overall
squared distance can be averaged over all alleles. The squared distances can also
be derived directly from the R matrix as

D2
ij = rii + rjj − 2rij

Note that when i = j, the squared distance is zero (which makes sense, as the
genetic distance of a population to itself must be zero). For some applications, it is
useful to look at the squared distance (D2), and in some cases it is useful to look at
the unsquared distance D =

√
D2.

APPENDIX 8.3 GENETIC SIMILARITY: NEI’S GENETIC IDENTITY

A widely used measure of genetic similarity within and between populations has
been proposed by geneticist Masatoshi Nei (1972, 1987). For any given locus and
allele, let x and y be the allele frequencies in populations X and Y. For any given
locus, a measure of genetic similarity is the probability that a random allele from
X will be identical to a random allele from Y, which is

jXY = ∑
xy

where summation is over all alleles at that locus. This measure is then averaged
over all loci to calculate the overall quantity JXY (the lowercase j is used to
refer to any given locus, and the uppercase J refers to the average over all loci).
When looking at variation within population X or population Y, the relevant
quantities are

jX = ∑
x2

and

jY = ∑
y2

which are then averaged over all loci to get JX and JY.
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Nei’s measure of genetic identity I (also known as the normalized identity of
genes) between populations X and Y is then computed as

Ixy =
Jxy√
JxJY

Nei shows that a genetic distance between populations X and Y can be computed as

Dxy = − ln(Jxy)

where ln denotes the natural logarithm.

APPENDIX 8.4 RELATIONSHIP BETWEEN PER GENERATION
ADMIXTURE (M) AND ACCUMULATED ADMIXTURE (M)

Equation (8.9) was derived considering the relationship between the allele frequen-
cies of the hybrid and parental populations in terms of accumulated admixture
(M) that occurred after some number of generations. If we look at the problem on a
generation-by-generation basis, we can model admixture using the island model.
Picture a founding population from parental population A with allele frequency
pA that forms the beginning of the hybrid population. Now, with each generation,
a proportion of the alleles in the hybrid population is from population B with
allele frequency pB at rate m. Assuming that the allele frequency for population
B does not change over time, we can calculate the allele frequency in the hybrid
population in any generation (pHt

) as a function of the hybrid allele frequency in
the previous generation (pHt−1

), the per generation admixture rate (m), and the
allele frequency in parental population B (pB) as

pHt
= (1 − m)pHt−1

+ mpB

Because this is an iterative equation, we can use the methods outlined in
Appendix 4.1. In the case of admixture, this equation is the same form as equation
(A8.1) in Appendix 8.1, and the solution is

pHt
= (1 − m)t(pH0

− pB) + pB

which expresses the allele frequency of the hybrid after t generations of admixture
in terms of the initial allele frequency of the hybrid pH0

. Now, remember that this
initial founding population came from parental population A, which means that
the initial allele frequency in the hybrid population is equal to the allele frequency
in parental population A, or pH0

= pA. We can now rewrite the above equation
completely in terms of the assumed unchanging allele frequencies of the parental
populations, A and B, as

pHt
= (1 − m)t(pA − pB) + pB
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which, in turn, we can rewrite as

(1 − m)t = pHt
− pB

pA − pB

We are now ready to rewrite this equation in terms of the observed allele
frequency of in the hybrid population after t generations of admixture (which we
have denoted pH), which gives

(1 − m)t = PH − PB

PA − PB
(A8.5)

Recall from equation (8.10) in the main chapter text that

M = pA − pH

pA − pB

If we subtract this value from 1, we get

1 − M = 1 −
(

pA − pH

pA − pB

)

1 − M =
(

pA − pB

pA − pB

)
−

(
pA − pH

pA − pB

)

= (pA − pB) − (pA − pB)
pA − pB

= pH − pB

pA − pB

Note that the right side of this equation is the same as the right side of equation
(A8.5), which means that

(1 − m)t = (1 − M)

which can be rewritten as

M = 1 − (1 − m)t

which is equation (8.11) in the main text.



C H A P T E R 9
HUMAN POPULATION
STRUCTURE AND HISTORY

I have always been interested in the question of origins and history, ranging from
my own family history to the evolution of our entire species. I believe it is common
for people to think about their past and how they fit into history, be it family
history, national/cultural history, or global history. We might think of history
in many terms, including economics, politics, and social change. I suspect that
not many people think about history in terms of the mathematical relationships
of microevolution that have been presented in this book. Our earliest training
in history in schools tends to focus on the past few thousand years in terms of
written history, yet to an anthropologist, history is much deeper than the timelines
covered in written records.

From the perspective of population genetics, history can be studied by looking
at the record of genetic diversity. Events in the past have in many cases left their
signature in our DNA, and we are often able to learn a lot about the structure
and history of our populations by interpreting genetic diversity in terms of
the evolutionary forces. For example, cultural and linguistic differences between
human groups, often studied in terms of the social and economic correlates of
culture contact, also affect rates of gene flow. Changes in population size due to
ecological and demographic changes will, in turn, affect levels of genetic drift.

This final chapter examines more closely the relationship of human population
structure and population history to patterns of genetic variation within and
between populations. Some aspects of history have already been covered in the
chapters on natural selection in terms of the history of specific genes or DNA
sequences. Here, the focus is instead on patterns of neutral variation as assessed
over many genes and haplotypes (and, in some cases, over the entire genome).
Our interest here is on how mutation, genetic drift, and gene flow reflect the past
structure and history of human populations. It is in these studies that the effect of
the anthropologist’s concern with how cultural behavior affects genetic variation
is clearest. This chapter examines population structure and history by focusing on
a set of case studies.

Human Population Genetics, First Edition. John H. Relethford.
© 2012 Wiley-Blackwell. Published 2012 by John Wiley & Sons, Inc.
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In broad terms, population structure refers to the impact of mate choice and
population composition on patterns of genetic variation within a population or
patterns of genetic differences between subdivisions of a population. Population
history is concerned more with the effect of historical events, such as population
movements and culture contact, on patterns of genetic variation between pop-
ulations. These two approaches to neutral genetic variation in humans overlap
considerably (Harpending and Jenkins 1973), but a distinction between them is
useful for organizing the case studies presented in this chapter.

I. CASE STUDIES OF HUMAN POPULATION STRUCTURE

The three case studies chosen here (out of hundreds, if not thousands, of pos-
sibilities) show how culture, environment, and geography have affected the
genetic structure of local populations in three parts of the world—New Guinea,
northwestern Europe, and South America.

A. The Gainj and Kalam of New Guinea

A number of studies have investigated the patterns of migration and genetic
diversity in the Gainj- and Kalam-speaking Melanesian populations that live in
the northern part of the central highlands of Papua New Guinea (e.g., Wood
et al. 1985; Long 1986; Long et al. 1987; Smouse and Long 1992). The Gainj and
Kalam are neighboring groups that speak different languages, but live in a similar
environment and are both tribal horticulturists. The Gainj and Kalam live in
small groups known as parishes that range in size from 20 to 200 individuals.
Migration and genetic data have been collected for 18 parishes. Geographically,
these parishes are arranged in a more or less straight line within river valleys,
with predominantly Gainj speakers at one end, predominately Kalam speakers at
the other end, and several parishes that have a mixture of languages in between.
People travel from one parish to the next along a narrow dirt trail. All parishes are
within 40 km walking distance of each other (Wood et al. 1985).

Studies of Gainj and Kalam population structures have concentrated on how
the overall magnitude of migration, how migration is affected by geographic
distance and language differences, and whether these factors have had an impact
on genetic variation. In terms of migration, Wood et al. (1985) found quite a
difference in rates of parent–offspring migration between males and females.
Among males, 84% were born in the same parish as their father, whereas among
females, only 33% were born in the same parish as their mother. This sex difference
is due to patrilocal postmarital residence, which means a married couple will tend
to take up residence in the husband’s parish of birth, so that women are more
likely to move. Even so, movement among both males and females tends to be
highly restricted by geography. Among the actual migrants, the average distance
from premarital to postmarital residence was about 8 km for males and 6 km for
females. Far fewer migrations took place over long distances.

Wood et al. (1985) also looked at migration using a model that factored in
geographic distance, linguistic differences (in terms of the percentage of Gainj and
Kalam speakers in a parish), and population size. All of these factors had some
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effect on the rate of migrations between pairs of parishes. For both males and
females, geographic distance and language differences had an effect, although in
different ways. For males, language differences were more important in restricting
migration than geographic distances, whereas for females the two factors had
an equal influence. Differences in population size influenced migration rates in
both sexes, with a tendency for individuals to move from larger populations to
smaller populations more often than the reverse. This pattern might be a form of
population size regulation in New Guinea, although this is not clear, as this effect
of population size has been seen in a variety of human populations of different
size and ecology (Relethford 1992).

Looking at genetic differences, Long (1986) found a value of FST = 0.0224 based
on genetic marker data from the Gainj and Kalam parishes. This is a moderate
level of genetic variation between groups given the fact that the parishes are not
that far apart geographically and there is a high rate of migration outside one’s
birth parish. Closer analysis suggested that the underlying population structure
is more complex, where each parish is actually made up of a number of smaller
breeding populations.

Long et al. (1987) and Smouse and Long (1992) focussed on the relationship of
genetic distances between populations based on genetic markers and geography,
language, and population size. They found that the smaller parishes were more
genetically divergent from other parishes, which is expected given genetic drift.
Geographic distance and language differences had little effect on genetic distances
between populations. Although geography and language did affect levels of migra-
tion, these effects were not seen in the actual genetic distances. Instead, the only
significant impact on the actual genetic distances was population size—smaller
populations showed greater genetic drift. Smouse and Long (1992) argue that the
relatively high rate of overall migration effectively ‘‘erases’’ previous population
structure and the observed genetic differences reflect only the most recent effects
of genetic drift. When we observe genetic differences between populations, we
see a record of past demographic history, but sometimes, as is the case here, that
history is relatively shallow.

An important thing to remember about studies of human population structure
is that they are not necessarily representative of an entire geographic region of
culture. Results can vary from one study to another depending on specifics of
geography and culture. On one hand, the relatively low correlation of geography
and language with genetics among the Gainj and Kalam have been found in other
populations of highland New Guinea, so it could be argued to be typical of that
region (Long et al. 1987). On the other hand, studies of villages on Bougainville
Island, elsewhere in Melanesia, showed higher correlations of geography and
language and genetics (Friedlaender 1975).

B. The Åland Islands

Another example of how migration and genetic data can be used to study human
population structure comes from across the world in the Åland Islands, which are
located between Sweden and Finland in northern Europe generations (Jorde et al.
1982; Mielke et al. 1976, 1982). The Åland Islands consist of over 6000 islands and
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skerries (rocky islands that are too small for inhabitation). Several centuries of
migration data have been collected from archival sources that allow investigation
of changes in expected population structure over a number of generations. In
addition, a large amount of genetic marker data were collected between 1958 and
1970 representing three recent generations.

The overall picture seen in the Åland Island studies is one of change associated
with the breakdown of isolation following cultural changes. These trends are clear
on examination of migration data based on marriage records from 15 parishes. For
example, Relethford and Mielke (1994) found that the average level of exogamy
among the 15 parishes remained relatively stable from the mideighteenth century
(9.0%) to the end of the nineteenth century (7.1%). During the most recent time
period (1900–1949), however, the average exogamy rate increased dramatically to
14.7%. This change is likely related to a number of demographic and economic
changes affecting availability of potential mates as well as improved transportation
opportunities in the early twentieth century, such as the introduction of steamboat
routes and an increase in privately owned motorboats.

Analysis of the marriage records from 1750 to 1949 showed that both geo-
graphic distance and population size had an effect on levels of migration between
Åland Island parishes. As is typically the case for human populations (and many
other species), migration rates declined with geographic distance; more individ-
uals choose mates closer to home than from more distant parishes. Although
geographic distance affected migration rates for all time periods studied, the rate
of decline in migration with distance changed over time, such that more migration
took place over longer distances in the twentieth century than in earlier times
(Mielke et al. 1994). This change also reflects the changes resulting in greater
mobility that took place in the early twentieth century. As people became more
mobile and travelled farther, the exponential decline of migration with geographic
distance became less acute, and the slope of distance decay leveled off.

The availability of data on martial migration patterns allowed Mielke et al.
(1976, 1982) to use a migration matrix approach for predicting how gene flow and
genetic drift might have changed over time. As expected, the predicted values
of genetic similarity within and between populations fit the isolation by distance
model, as expected given the effect of geographic distance on migration. The
increase in migration over time, as well as an increase in population size, suggests
that genetic drift declined and gene flow increased, resulting in reduced levels of
genetic similarity between populations. Similar results were found using data on
parent-offspring migration (Jorde et al. 1982).

Of course, the migration matrix approach can only tell us what we will expect
to see at equilibrium between gene flow and genetic drift based on observed
patterns of migration and population size. As noted in Chapter 8, the actual
patterns of genetic variation might be different. For the Åland Islands, genetic
marker data were available to examine how well the predictions from migration
matrix analysis fit reality. Jorde et al. (1982) took data collected between 1958 and
1970 and collated it by each person’s year of birth, allowing them to sample three
generations: (1) those born before 1900, (2) those born between 1900 and 1929,
and (3) those born after 1929. They also examined genetic variation separately
for the parishes on the main island as well as between parishes located in the
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more isolated outer islands. This strategy allowed Jorde and colleagues to look at
changes in genetic variation over both time and space.

Using genetic markers, Jorde and colleagues found that FST was greater in the
outer islands than on the main island, as expected given their greater isolation
and smaller effective population size. However, there was little change in FST over
time, unlike the expectations from migration matrix analysis. The same difference
between migration and genetic data was found using isolation by distance analysis;
the migration data showed a clear reduction in isolation over time, but this trend
was less clear in the genetic data. The assumption of equilibrium used in migration
matrix analysis may not appropriate, given the rapid demographic changes that
took place in the Åland Islands during the twentieth century. Even so, further
analysis showed that genetic variation was related to both population size and
migration on attempts to separate the two effects (important because migration
matrix analysis looks at both drift and gene flow at the same time). Here, Jorde
et al. (1982) looked at the correlations between genetic distance and distances on
the basis of a simple expectation of drift (based on population size differences)
and a simple expectation of gene flow (based on migration rate differences). They
found that drift had a greater effect in the earliest time period, but declined over
time, and gene flow had a greater impact on genetic variation in the most recent
time period. Again, this change is consistent with the observations of increasing
migration rates (increasing the effect of gene flow) and increasing population size
(reducing the effect of genetic drift).

The Åland Island studies comparing genetic and demographic data are impor-
tant because they show us that some population genetic models, such as the
migration matrix and isolation by distance models, may sometimes make assump-
tions that do not match up with the reality of rapid demographic and cultural
change in human populations, particularly in more recent times. Still, careful
examination of results can show us that genetic variation is shaped by gene flow
and genetic drift, and the relative impact of these forces can change as well.

C. Altitude and Population Structure in Jujay, Argentina

A major (perhaps the major) influence on human population structure is geographic
distance (e.g., Jorde 1980). As shown in the examples above and in Chapter 8, this
makes sense, given the limiting effect that geographic distance has on migration.
While this simple model is appealing, in many cases it may be too simple, as it
ignores other influences on gene flow and population structure. The developing
field of landscape genetics considers other ecological influences on gene flow and
genetic variation, such as rivers and mountains (Storfer et al. 2007).

An example of an environmental influence on population structure is given
here from a study of altitude and population structure in the Province of Jujay in
northwestern Argentina (Gómez-Pérez et al. 2011). This study examined variation
in a type of DNA marker known as an Alu insertion, which is a short section of DNA
that replicates and moves to different locations on other chromosomes. Alleles are
defined by the presence or absence of different insertion markers. Alu insertions
are useful in tracking ancestry because the ancestral condition is the absence of an
insertion, and any two individuals sharing the same Alu insertion marker would
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have inherited it from a common ancestor. Gómez-Pérez and colleagues looked at
eight different Alu insertion markers in five regions of Jujay, sampling a wide range
of altitude ranging from about 1200 meters (3937 ft) to over 3300 m (10,827 ft). The
purpose of this study was to examine the impact of altitude on genetic diversity
and genetic distance.

Gómez-Pérez et al. (2011) found that heterozygosity was lower in the
high-altitude regions than in those at lower altitudes. Population density is
lower in the high-altitude populations, contributing to increased genetic drift.
In addition, the high-altitude populations have lower levels of exogamy, which
means that there is less gene flow into the populations. The combined effect
of increased genetic drift and decreased gene flow has resulted in lower levels
of heterozygosity. In addition, the sources of gene flow also varied by altitude.
The genetics of Jujay reflects a mix of Native American, European, and African
ancestors, where European settlers and enslaved Africans entered the gene pool
between the sixteenth and nineteenth centuries. Using the Alu insertion markers,
Gómez-Pérez and colleagues found that Native American ancestry increased with
altitude. Populations at the highest altitude had 100% Native American ancestry,
whereas the lower-altitude populations showed less Native American ancestry but
had significant European and African ancestry. Isolation by altitude appears to
have affected levels of gene flow that entered the native populations over historic
times. Immigrants tended to settle at lower altitudes, leading to more admixture.

Gómez-Pérez et al. (2011) also looked at the influence of altitude on genetic
distances between the populations. They found a moderate and significant cor-
relation between genetic distance and altitude difference; the farther apart two
groups in terms of altitude, the greater the genetic distance between them. They
also found a significant correlation with geographic distance, which was much
stronger than the correlation with altitude. They conclude that the spatial distribu-
tion of Alu insertion markers in Jujay was best explained in terms of the isolation
by distance model, further affected by differences in altitude. As with the studies
of the Gainj/Kalam and the Åland Islands, the Jujay study shows the importance
of using information on unique environmental, demographic, and cultural aspects
of population structure to understand genetic variation.

II. THE ORIGIN OF MODERN HUMANS

The remaining case studies in this chapter focus on an examination of how the
particular history of a population is reflected in patterns of genetic variation.
A common aspect of the case studies is the use of genetic data to provide us with
an understanding of population origins. Several different levels of analysis will
be presented, starting with the most inclusive—the genetic history of our entire
species. Additional case studies look at the origins of different populations around
the world.

When most people think about the long-term evolution of our species from
earlier human ancestors, they typically think of the fossil record. Although the
fossil and archaeological records are an important source of information on human
evolution, the last several decades have seen increasing attention to the role that
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genetic variation can play in understanding human origins. When we study the
genetic variation within and between human populations in the world today, we
can detect the genetic signature of many past events in our evolutionary history.
Further, advances in technology have now allowed direct estimates of past genetic
variation through the analysis of ancient DNA extracted from fossil remains tens
of thousands of years old. The use of genetics in analyzing evolutionary events
was described briefly in Chapter 4 in terms of the split between the African ape
and human lines. Here, the topic of how genetics informs us about the origin of
modern humans will be reviewed briefly.

A brief review of the major stages of human evolution is needed to focus on
the origin of modern humans. Bipedal ancestors arose in Africa approximately
6 million years ago. Around 2 million years ago, some evolved into the genus
Homo, characterized by an increase in brain size, a reduction in the size of the
face and teeth, and an increased reliance on stone tool technology. One species,
Homo erectus, was the first human ancestor to spread beyond Africa, migrating
into parts of Southeast and East Asia, and to the easternmost fringes of Europe.
Between 800,000 and 200,000 years ago, some populations of early humans
evolved a brain size that was almost the same size as modern humans, but still
had a relatively large face and a differently shaped skull. Many anthropologists
place these finds in the species Homo heidelbergensis, which occupied parts of
Europe, Africa, and perhaps Asia. Homo heidelbergensis appears to give rise to a
group of early humans known as the Neandertals in parts of Europe and the
Middle East.

Anatomically modern humans, with a large brain, rounded skull, reduced
face, and a distinct chin, appear over the past 200,000 years. The distribution of
fossils that can be classified as modern humans shows that they appeared first
in Africa, with representative fossils found at 160,000 years ago (White et al.
2003) and 200,000 years ago (McDougall et al. 2005), well before the appearance
of modern humans elsewhere. There appears to have been a brief expansion of
modern humans into the Middle East at about 90,000 years ago, followed by a
major dispersion around 60,000–70,000 years ago, with modern humans spreading
into Australia, East Asia, and Europe.

These time frames indicate that modern humans appear first in Africa and, as
they spread out throughout the rest of the world, they would have encountered
earlier humans (such as the Neandertals) that were already there. This raises the
question of possible gene flow between modern and other human populations.
Anthropologists have proposed two models that focus on this initial African
origin and the issue of gene flow outside of Africa. The first is the African
replacement model, which proposes that modern humans completely replaced
earlier humans without any interbreeding. Under this model, other humans such
as the Neandertals became extinct without contributing anything to our ancestry.
An alternative view, the assimilation model, proposes that modern humans
interbred with other human populations outside of Africa. Here, groups such as
the Neandertals would have contributed something to our ancestry even though
as a distinct population they have become extinct (Smith et al. 2005; Relethford
2008a).
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A. Genetic Consequences of an African Origin

For the moment, we will put aside the question of possible interbreeding and
focus on the African origin of modern humans. From a genetic perspective, we
are interested in seeing to what extent data on genetic variation in living humans
are consistent with the African origin that we see from the fossil record, and
how an African origin explains certain features of genetic variation in our species.
Numerous studies of coalescent trees based on different DNA markers have
shown that most (but not all) gene trees have roots in Africa, consistent with our
African origin (Garrigan and Hammer 2006). In addition, Relethford (2011) lists
five characteristics of genetic variation in living humans that relates in whole or in
part to our African origin:

1. Low levels of genetic variation relative to other species
2. Higher levels of genetic variation in Africa
3. Genetic diversity declines with distance out of Africa
4. Low levels of genetic differentiation between geographic regions
5. A strong global correlation between genetics and geography

Comparative studies of DNA variation show that the human species has less
genetic diversity than in chimpanzees, gorillas, and orangutans (Garrigan and
Hammer 2006; Hawks 2009), even though we are spread out over the entire planet,
whereas the great apes have smaller, more restricted populations. Our lower
levels of diversity today, despite our large current population size, suggest that
the human species underwent an evolutionary bottleneck in the past, leading to
increased genetic drift and loss of genetic diversity. One reason for a bottleneck
could have been a small founding group of modern humans that first expanded
out of Africa (Garrigan and Hammer 2006).

An African origin also ties in with the observation that diversity in DNA
markers is higher in Africa than in other geographic regions, such as Asia or
Europe (Relethford 2008a). One possibility for higher levels of African diversity is
a model where modern humans existed in Africa for a long time before a small
founding population expanded out of Africa. Mutations accumulate over time,
leading to higher levels of genetic diversity in Africa. When populations expanded
out of Africa, some of this diversity would be lost as a result of the founder effect.
This scenario also fits the observation that DNA diversity outside of Africa is often
a subset of the diversity seen within Africa in terms of number and frequency of
different alleles (Tishkoff and Gonder 2007). It is also possible that higher levels
of genetic diversity in Africa reflects to some extent larger population size over
much of the past (Relethford and Jorde 1999), resulting in less genetic drift.

The hypothesis that the expansion out of Africa led to a reduction in genetic
diversity also receives support from the observation that genetic diversity declines
with increasing geographic distance away from Africa (e.g., Ramachandran et al.
2005). The best way to explain this geographic pattern is by focusing on a series of
founding events. Here, we imagine a small founding population leaving Africa,
resulting in an initial reduction in genetic variation because of genetic drift. If this
population then increases in size until another small founding group splits off,
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then the founder effect would lead to a further reduction in genetic variation. Over
time, the continued repetition of founding, growth, and further founding would
cause the geographic decline in genetic diversity from the original source (Africa)
that we see today.

The fourth observation regarding our species’ genetic variation is the fact that
the level of genetic differentiation (FST) among geographic regions is relatively
low. Numerous studies have shown that FST between geographic regions, such
as sub-Saharan Africa, Europe, and East Asia, is around 0.10 (Madrigal and
Barbujani 2007). This relatively low level of differentiation is consistent with a
relatively recent origin of modern humans (so that equilibrium of FST has not been
reached), and/or high rates of long-distance migration in recent human evolution.
FST is an aggregate measure that reflects a number of possible causes, but the
various possibilities are consistent with the evidence of an African origin.

Finally, numerous studies have shown a strong global correlation between
genetic and geographic distances (Cavalli-Sforza et al. 1994; Relethford 2004;
Ramachandran et al. 2005). Human populations are typically the most genetically
similar to their neighbors. The greater the distance between populations, the
greater the genetic difference. Furthermore, the correlation between genetics and
geography applies to geographic distances that factor in the likely routes of
population dispersion and migration. For example, when we look at likely travel
routes between East Asia and the New World, we do not measure the straight-line
distance across the Pacific Ocean, but we instead measure the distance along the
known route from East Asia up to Siberia and then down into the Americas (this
will be discussed in a case study later in this chapter). The correlation between of
genetics and geography may reflect in part the series of founding events associated
with the spread of modern humans across the planet. Populations geographically
close to one another tend to share common ancestry and history. Of course,
migration between neighboring populations (isolation by distance) could also
have some impact.

The review above demonstrates that patterns of genetic variation in living
humans agree with the evidence from the fossil record of an initial African
origin of modern humans. What is less clear, however, is whether there was
any interbreeding with preexisting human populations outside of Africa. There
is some genetic evidence for interbreeding outside of Africa, as some gene trees
have non-African roots (Templeton 2005; Garrigan and Hammer 2006). Some of
the clearest evidence of this possibility comes from new research on ancient DNA
of earlier human populations, such as the Neandertals.

B. The Fate of the Neandertals

The question of interbreeding is most apparent when looking at the Neandertals
of Europe and the Middle East. The Neandertals were a population that arose
approximately 150,000 years ago and persisted in parts of western Europe
until 28,000 years ago. Physically, the Neandertals were similar to modern
humans in having a large brain, but had a differently shaped skull that was long
and low, with large brow ridges and a large nose and midfacial dimensions.
Anthropologists have long debated the question of the relationship of the
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Neandertals to modern humans, wondering whether they were a subspecies of
Homo sapiens or a separate species, and if the latter, whether they were capable of
interbreeding with modern humans. It is clear that the Neandertals and modern
humans lived at the same time in Europe, although the length of this coexistence
is still debated. Genetically, the question is whether any gene flow took place
between Neandertal and modern human populations—was there replacement or
assimilation? Stated another way, we are asking whether Neandertals contributed
anything to the ancestry of modern humans.

Fossil evidence has suggested at least some interbreeding, as a number
of physical traits specific to the Neandertals have been found in the earliest
post-Neandertal modern human populations in Europe, and decline afterward,
suggesting a pattern of assimilation into a large gene pool rather than a complete
and immediate replacement (e.g., Smith et al. 2005; Trinkaus 2007). Others have
suggested alternatives and argue that there was little, if any, interbreeding (e.g.,
Tattersall 2008).

When I was in graduate school, we used to joke that the Neandertal issue
could be solved if we only had DNA. At the time, the idea of extracting DNA
from fossil remains was something that existed only in science fiction stories. As is
often the case, however, yesterday’s science fiction is today’s science. Advances in
genetic methods led to the successful extraction of a small piece of mitochondrial
DNA from a Neandertal fossil in 1997 (Krings et al. 1997). As noted in Chapter
1, mitochondrial DNA is a small section of about DNA over 16,000 base pairs
in length that is found in the mitochondria of cells and is passed on through
the mother. Although the fragment of mitochondrial DNA recovered from the
Neandertal fossil was small (379 base pairs in length), it was enough to show
some interesting differences from living humans. This finding was not a fluke;
since then, small sections of mitochondrial DNA have been recovered on over a
dozen other Neandertal fossils (Hodgson and Disotell 2008). In addition, the entire
mitochondrial DNA genome has been recovered in one Neandertal fossil (Green
et al. 2008). These studies show that certain distinctive features of the Neandertal
mitochondrial genome have never been found in living humans (Hodgson and
Disotell 2008). This finding by itself suggests that Neandertals did not contribute
to the ancestry of living humans—there was no interbreeding.

However, the situation was not entirely clear when we considered only the
mitochondrial DNA. Because of its haploid inheritance with no recombination,
mitochondrial DNA essentially functions as a single locus. As such, there is much
random variation associated with sampling error that makes resolution difficult.
A consensus has been that the mitochondrial DNA evidence suggested either
zero interbreeding or a small amount of interbreeding. The case for Neandertal
interbreeding became stronger with another example of science fiction becoming
science fact—the sequencing of a large proportion of the complete nuclear genome
of Neandertals (Green et al. 2010). Comparison of this sequence with the genomes
of a chimpanzee and five humans from around the world has produced some
interesting results. Although very similar, genomic analysis suggests that the
Neandertal and modern human lineages diverged from a common ancestor about
270,000–440,000 years ago. Under a replacement model where there was no
interbreeding after this split, we should see equal differences between Neandertal
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DNA and living human DNA across the world (because the dispersion out of
Africa occurred after the initial split). Instead, the genomic comparisons show
that Neandertal DNA is actually more similar to living Europeans and Asians
than to living Africans. This suggests that some interbreeding occurred after the
dispersion of modern humans out of Africa but before subsequent dispersions
throughout Eurasia, perhaps due to overlap of modern humans and Neandertal
in the Middle East. Additional genome comparisons suggest that the gene flow
took place from the Neandertals into modern humans, such that between 1%
and 4% of the ancestry of living Eurasians came from the Neandertals. The DNA
evidence shows clearly that there was not complete replacement. The Neandertals
as a population have disappeared, but some of their DNA lives on in nontrivial
amounts in our species today.

The survival of Neandertal DNA may not be an unusual feature of recent
human evolution. Genomic analysis has also been performed on a human finger
bone dating to about 30,000–50,000 years ago from Denisova Cave in southern
Siberia (Reich et al. 2010). These analyses show yet another unique genome related
to both the Neandertals and modern humans. This population, referred to as the
Denisovans, appears to be an archaic group that diverged from the line leading to
the Neandertals 640,000 years ago. Comparison of the Denisovan genome with
the Neandertal genome and genomes of living humans suggests gene flow from
the Denisovan population into living Melanesians, but not into other human
populations. Further, Reich et al. (2010) estimated that 4–6% of the ancestry
of Melanesians came from the Denisovans. To add to the mystery, we do not
have much information on exactly what the Denisovans looked like, as the fossil
evidence from the cave is only a finger bone and a tooth.

It may seem very strange at first to think of a scenario where an archaic
human population lived in Siberia but contributed genetically to Melanesians,
who are far apart! It is possible that the Denisovans were part of a geographically
widespread population across parts of Asia that is now extinct, but that some
of these populations contributed genes to the East Asian populations that later
spread into Melanesia. We are beginning to see glimpses of a complex picture
of recent human evolution where dispersion out of Africa was accompanied by
limited interbreeding in different times and places with populations that are now
extinct (Bustamante and Henn 2010). In some parts of the world, there may have
been less gene flow from archaic populations, and in other parts, there might have
been more. In Melanesia, it appears that there has been gene flow from both the
Neandertal line and the Denisovans, such that over 7% of the ancestry of modern
Melanesians ultimately derives from archaic gene pools.

III. CASE STUDIES OF POPULATION ORIGINS

The remaining case studies on population origins focus on regional and local
studies of population origins and histories in several different parts of the world.

A. The Peopling of the New World

In 1492, the first of Columbus’s voyages led to the ‘‘discovery’’ of the New
World by Europeans. Columbus’ plan was to circumnavigate the world in order
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to find a quicker route to parts of Asia then referred to as the ‘‘Indies.’’ [Note:
The idea that Columbus was trying to prove the earth was round turns out to
be a myth—people in his time and earlier had already deduced that the earth
was round (Gould 1999).] Columbus made the mistake that he had arrived in the
Indies, and because of this, the local people in the New World became known
as ‘‘Indians.’’ Ever since, scholars and laypeople have wondered about the initial
origin of the native peoples of the Americas. Some of these suggestions included
ideas that Native Americans were a lost tribe of Israel, voyagers from ancient
Egypt, or survivors from Atlantis (Crawford 1998). A number of people early on
recognized that northeastern Asia made the most sense as a point of origin, as the
Asian and North American continents are close together in the arctic, separated
by only the Bering Strait.

The traditional explanation of migration, long favored by archaeologists, is
that humans in Siberia were able to move across the Bering Strait during glacial
times; during an ‘‘ice age,’’ the sea level drops, exposing the land that connects the
two continents. Human hunters following animal herds would have then crossed
over this ‘‘land bridge’’ (a bit of a misnomer, as this ‘‘bridge’’ was actually about
1000 miles wide, and this migration was more of an expansion into new territory
over time, rather than a march across a bridge). After entering the Americas, these
nomads would have been stopped by massive glaciers, except for times during
which two glaciers had receded enough for humans to move southward into the
rest of the Americas by passing through an ice-free corridor. This traditional model
was based on the hypothesis that humans entered the New World during a time
when the land bridge and the ice-free corridor were open, roughly 12,000 years
ago. Evidence of earlier occupation has led to this view being questioned, and
some archaeologists have suggested that some early migrants used boats to move
into the New World (Nemecek 2000), and some may have travelled southward
along the western coast of North America (Dalton 2003). The increasing evidence
for early occupation has increased, with a number of sites suggesting dates as far
back as 15,000 years (Goebel et al. 2008; Waters et al. 2011).

Regardless of the timing or routes of migration, the fact that the first Americans
came from northeastern Asia is incontrovertible. Close genetic similarity is seen
in a variety of physical and genetic measures. Analysis of genetic distances based
on red and white blood cell markers shows that Native American populations are
more genetically similar to East Asian populations than to populations elsewhere
in the world, such as Europe, Africa, or Australia. Furthermore, the closest levels
of genetic distance to Native American populations are with northeastern arctic
populations, such as Siberians (Cavalli-Sforza et al. 1994; Crawford 1998).

The genetic connection between northeastern Asians and Native Americans
is even clearer when we examine combinations of DNA markers, specifically
mitochondrial DNA haplogroups. Recall from Chapter 4 that haplogroups are
sets of related haplotypes that share some common mutations. Early studies of
mitochondrial DNA in our species revealed over two dozen different haplogroups,
many of which have relatively restricted geographic distribution (Jobling et al.
2004). Among Native Americans, there are four major haplogroups, labeled A, B, C,
and D. These haplogroups are not found in Africa, Europe, or South Asia—instead,
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they are found only in East Asia. The simplest explanation for this distribution is
that the first Americans came originally from East Asia.

Among North American Indians, a fifth haplogroup, X, has been found, and
this haplogroup is also found in parts of Europe. Could the presence of haplogroup
X indicate recent European admixture, or perhaps some earlier contact with
Europeans before Columbus’ time? Although the initial lack of haplogroup X in
East Asian samples was suggestive of European contact, later studies confirmed
that this haplogroup does exist in Siberian populations (Derenko et al. 2001).

The few examples above are given simply to illustrate the type of genetic
information that has been used to confirm the East Asian origin of Native
Americans, and are not exhaustive of the full extent of genetic data. Continuing
questions about Native American origins deal with the question of the number
of migrations into the New World (many genetic studies favor a single migration
event, but this has not been accepted universally) and the timing of entry into the
New World.

B. Genetics and the Spread of Agriculture

Humans began domesticating plants and animals about 12,000 years ago in the
Middle East. Over time, agriculture independently developed in other parts of the
world, including Africa, East Asia, and the Americas. An exception to the general
rule of an independent origin of agriculture was Europe, where archaeological
evidence shows that agriculture there came out of the Middle East. The spread
of agriculture into Europe began about 9000 years ago in Iraq and Turkey, and
moved in a northwest direction over the next 3000 years (which works out to about
1 km per year). The process of a new behavior spreading from one population
to another is known as diffusion. There have been two schools of thought about
exactly how the diffusion of agriculture into Europe took place. One model, known
as cultural diffusion, states that agricultural methods spread from group to group
as part of the cultural contact between neighbors. An alternative model, known
as demic diffusion, proposes that groups of farmers physically moved out of the
Middle East into Europe, bringing this new behavior with them (Ammerman and
Cavalli-Sforza 1984).

The difference between these models is whether the farmers actually moved.
Under cultural diffusion, no people actually moved, and the spread of agriculture
represented the spread of an idea, passed from group to group. Under demic
diffusion, the farmers are expanding into Europe, bringing this new technology
with them, and interbreeding with the existing populations in Europe. Elsewhere
(Relethford 2003), I use a simple analogy to contrast these models. Consider
football players spread out every 10 yd (yards) across a football field, with the
player on one end of the field having the football. There are two ways that the
football can cross the field. Analogous to cultural diffusion, each player can pass
the football to the next person 10 yd away. This process continues from player
to player until the ball has moved across the entire field but the players have
remained in place. Another way of moving the ball, analogous to demic diffusion,
is for the person with the ball to walk across the entire field while carrying the ball.
According to both models, the football moves across the field, but under the first
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model the players remain where they are, and in the second model, they move.
In terms of the diffusion of agriculture, the cultural diffusion model argues that
farming methods diffused, but not the farmers. Under the demic diffusion model,
the farmers move, taking farming methods with them.

It would seem that either model produces the same result—agriculture
spreading into and across Europe. How can we distinguish between these models
and figure out whether the farmers moved? One way that this problem has been
examined is with genetic data. A key difference between the two diffusion models
is that the demic diffusion model predicts that the actual populations move across
space, and would interbreed with the populations that they encountered. If this
happened, then there would be a gradient in allele frequencies, known as a cline,
in the same direction as the spread of agriculture. Here, the allele frequency
would increase (or decrease—the direction is irrelevant) from the Middle East in
a northwest direction into Europe. On the other hand, if the spread of agriculture
was through cultural diffusion, then the farmers did not move into Europe and
there would be no cline.

Cavalli-Sforza and colleagues tested these hypotheses by looking at the spatial
distribution of alleles from a large number of genetic markers (Menozzi et al.
1978; Cavalli-Sforza et al. 1993, 1994). The approach used was to map allele
frequencies to see if there was a southeast to northwest direction coinciding
with the spread of farmers out of the Middle East into Europe. Such maps are
very similar to the temperature maps that you see in newspapers, where the
clines correspond to different temperatures. Rather than looking at dozens of
individual allele frequency maps, Cavalli-Sforza and colleagues developed a way
of looking at common directions in sets of allele frequencies using a statistical
method known as principal components analysis. This method produces a small
number of components that represent common and unique patterns of variation
in dozens of allele frequencies. They found that the first principal component
(which accounts for the majority of spatial variation in allele frequencies) showed
a definite correspondence with the spread of agriculture in Europe. This cline
shows that a large number of alleles have distributions shaped by farmers moving
across Europe, which supports the demic diffusion model.

An interesting sidenote is that the other principal components showed evi-
dence of other past population movements, such as an expansion from eastern to
western Eurasia, corresponding to the spread of peoples that had domesticated
horses in Russia and then moved east. Other components showed evidence of
other prehistoric movements. We have to remember that the current state of
genetic variation has been shaped by multiple events. The spread of farmers out
of the Middle East was an important migration event, but it was not the only one.

Although classical genetic marker studies have supported the demic diffusion
model, implying a major genetic input from the Middle East, results from DNA
marker analysis have not been as clear. Reviewing studies of both mitochondrial
DNA and Y-chromosome DNA markers, Richards (2003) suggested that the total
genetic contribution from incoming farmers was likely less than 25%, and that
the genetic consequences of the spread of agriculture was minor. Pinhasi and von
Cramon-Taubadel (2009) noted that different sets of data have produced different
results. In general, demic diffusion has been supported by analyses of nuclear
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DNA markers and cranial measurements, while mitochondrial DNA markers
suggest less of an effect, and Y-chromosome DNA markers give mixed results.
However, ancient DNA analysis from skeletons of a prehistoric farming society
in Germany roughly 7000 years ago shows clear genetic affinity with Middle
Eastern populations, supporting the demic diffusion model and a significant
genetic component of ancestry from the Middle East (Haak et al. 2010). Although
the population dynamics shown in all of these studies are more complicated than
a simple model, the overall results support demic diffusion.

C. The Colonization of Polynesia

Humans have a long history of traveling over short distances of water. As noted
earlier in this chapter, some of the first Americans may have traveled via boats
into the New World. We also know that the first humans to reach Australia some
40,000–60,000 years ago must have been able to cross some water to get there. The
most extensive early sea voyages, however, took place with the colonization of
islands in the Pacific Ocean by early Polynesians. The name ‘‘Polynesia’’ literally
translates as ‘‘many islands,’’ and refers broadly to a large triangular area of the
Pacific Island whose vertices are New Zealand in the south, Hawaii to the north,
and Easter Island to the east. Polynesia is one of three geographic and culture areas
of the Pacific Ocean; the other two are Melanesia (meaning ‘‘dark islands’’ after
the dark skin color of the native populations) and Micronesia (meaning ‘‘small
islands’’).

Archaeological and genetic evidence shows that the first Polynesians arose
in southern or southeastern Asia and then expanded from west to east across
the Pacific. This expansion has been traced through the archaeological remains
of a population known as the Lapita culture, named after a particular type of
pottery. The Lapita were farmers who also relied heavily on fishing for their
subsistence. The dates for Lapita pottery show a clear west–east expansion out of
South/Southeast Asia; remains have been found showing colonization near New
Guinea about 3600 years ago, at Samoa about 2200 years ago, at New Zealand
about 1000 years ago, and at Hawaii and Easter Islands about 1500 years ago. The
first Polynesians crossed over the ocean in outrigger canoes, designed to maintain
balance on the ocean’s waves (Diamond 1997).

Analysis of classical red blood cell and white blood cell markers shows that
Polynesians today are most similar to South and Southeastern Asian populations,
and more distant from populations elsewhere in the world (Cavalli-Sforza et al.
1994; Relethford 2003). The affinity with South/Southeastern Asia is consistent
with the archaeological evidence. An alternative view had been proposed many
years ago by the Norwegian explorer Thor Heyerdahl, who suggested that the
inhabitants of Easter Islands actually came from South America rather than
Asia. The genetic data refute this theory, as Polynesians are more similar to
South/Southeastern Asian populations than to Native American populations
(Relethford 2003).

Although the ancestors of Polynesians were the first people to move into
the far areas of the Pacific Ocean, they did have to pass near occupied parts of
Melanesia, where humans had been living for 35,000 years, on their way eastward
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from Asia. The obvious question is whether there was any interbreeding between
the first Polynesians and Melanesians. Do living Polynesians have any Melanesian
ancestry? Two primary models have been used to explain the west–east expansion
into Polynesia, and each has its own genetic implications. The ‘‘express train’’
model, suggested by Diamond (1988, 1997) is aptly named, as he argues that
expansion out of Asia took place very quickly, moving eastward past Melanesia
like an express train with no stops. Genetically, this would mean that little, if any,
interbreeding took place, and there should be little or no evidence of Melanesian
ancestry in living Polynesians. An alternative model, dubbed the ‘‘slow boat’’
model by Kayser et al. (2000), suggests slower movement through Melanesia and
consequently more gene flow into the Polynesian population.

Studies of genetic distance based on red and white blood cell markers sug-
gest little Melanesian ancestry (e.g., Cavalli-Sforza et al. 1994), but resolution of
ancestry is difficult for this region. Haploid DNA markers give different results for
mitochondrial DNA and Y-chromosome DNA. The frequency of mitochondrial
DNA haplotypes shows a clear geographic pattern that correlates with an expan-
sion out of South/Southeast Asia into the Pacific as predicted by the express train
model. Here, there is no evidence of Melanesian admixture (e.g., Redd et al. 1995;
Sykes et al. 1995). However, analysis of Y-chromosome DNA markers has shown a
different picture. Here, some haplotypes have been found in both Polynesian and
Melanesian populations suggesting appreciable Melanesian admixture and sup-
port for the slow boat model (Kayser et al. 2000). Other studies of Y-chromosome
DNA have also provided support for Melanesian ancestry (e.g., Capelli et al. 2001;
Underhill et al. 2001).

Conflicting results from mitochondrial DNA and Y-chromosome DNA could
reflect sex differences in ancestry (different ancestry through the maternal and
paternal lines). Of course, one problem with these haploid markers is that they
are inherited as a single unit and act as a single locus, which introduces a lot of
sampling error. In addition, these markers have lower effective population sizes
(because they are haploid), which increases genetic drift, making determination
of ancestry more difficult. Studies of a larger number of nuclear DNA markers
have provided resolution for the debate over Polynesian ancestry. Friedlaender
et al. (2008) examined a very large number of DNA markers (687 STR loci
and 203 insertion/deletion loci) from 41 Pacific populations and found that
Polynesian populations clustered with East Asians and South Asians but not with
Melanesians. They conclude that the first Polynesians moved relatively quickly
through Melanesia with only a small amount of admixture. In another study,
Wollstein et al. (2010) examined roughly 1 million (!) SNP loci and came up with
similar conclusions. Their analysis suggested that roughly 87% of the ancestry of
the first Polynesians came from East Asia. In both cases, these studies support the
express train origin model.

D. The Origin of the Irish Travelers

There are a small number of nomadic groups living in Europe, including the
Roma (often referred to as ‘‘gypsies’’) of central and eastern Europe. One of these
itinerant groups are the Irish Travelers (formerly known as ‘‘Tinkers’’), who make
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up a very small percentage (<1) of the population of Ireland. The Travelers are
a social group that moves around the countryside performing odd jobs, seasonal
labor, and scavenging scrap metal, among other activities (Gmelch 1977). There
have been several ideas about the ancestral origin of the Irish Travelers. Some of
these hypotheses focus on the idea that the Travelers are the descendants of Irish
who were displaced from their land, becoming an isolated social group over time.
Another idea is that they represent a mixture of Irish and Romany gypsies. The
difference between these two sets of ideas can be tested using genetic data.

Crawford and Gmelch (1974) computed genetic distances between a sample
of Irish Travelers and a number of European and Asian populations based on red
blood cell genetic markers. They found that the Travelers were most similar to other
Irish populations, and more different from other populations, including several
gypsy samples. They concluded that the genetic data supports the hypothesis
of an Irish origin for the Irish Travelers. Other analyses of the same data using
different comparative samples find the same result (Croke et al. 2000; North et al.
2000). The cultural similarity to some aspects of gypsy lifestyle is coincidental and
does not reflect ancestry. As is often the case with human populations, culture is
independent of genetics.

It is likely that genetic drift has had an important effect on genetic variation
in the Traveler population. The small size of the Traveler population and the
high variance in fertility (Crawford and Gmelch 1974) suggest a relatively low
effective population size, which would increase the likelihood of drift. Drift is
also suggested from studies of a metabolic disorder known as transferase-deficient
galactosemia that show much higher frequencies among the Irish Travelers than
among other Irish (Murphy et al. 1999). DNA analysis showed that all of the
cases among the Travelers were due to a specific mutation known as Q188R,
which also accounted for 89% of the mutant alleles for the cases among the
non-Travelers. Screening of the overall population shows that the allele frequency
of the Q188R mutation is much higher among the Travelers (0.046) than among
the non-Travelers (0.005). It appears likely that this mutation arose in Ireland and
attained an elevated frequency among the Travelers because of genetic drift. Some
of this difference might be due to initial founder effect, and some due to continued
genetic drift in subsequent generations.

E. Admixture in African-Americans

During Colonial times, hundreds of thousands of Africans were enslaved and
brought forcibly to the United States as part of the slave trade. Most came from
western Africa and western central Africa. Starting in 1619, the slave trade grew
and the importation of enslaved Africans was widespread, peaking at the end
of the eighteenth century and the beginning of the nineteenth century (Parra
et al. 1998). Over the centuries, there has been gene flow from those of European
ancestry into the gene pool of African Americans. Some of this gene flow occurred
before the prohibition of slavery, generally when European men would mate
with enslaved African-American women. More recently, there has been gene flow
from matings between European-Americans and African-Americans following the
relaxation of social barriers to interracial marriage.
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European gene flow into African American populations is an example of the
process of admixture as described in Chapter 8, and genetic marker data can be
used to estimate the accumulated European ancestry in African-Americans. Some
studies have used the simple model of two parental populations (Europe, Africa)
described in Chapter 8, and some have looked at more complex models that
take into account possible admixture from Native American sources. The earliest
studies soon found that the amount of European admixture varied geographically
(Chakraborty 1986), such that there is no single or simple answer to the question
of how much European ancestry exists in African Americans. Genetic history is
not the same in all populations.

The variation in European ancestry is shown clearly by a comprehensive study
of African-American genetics conducted by Esteban Parra and colleagues (Parra
et al. 1998). Here, they examined genetic markers from nine loci that exhibited
large differences between Europeans and Africans, and estimated admixture
proportions in 10 different African-American populations in the United States.
They found that the amount of accumulated European ancestry ranged from 12%
in Charleston, South Carolina to 23% in New Orleans, Louisiana.

These estimates were based on autosomal genetic markers. Parra et al. (1998)
also examined admixture estimates based on mitochondrial and Y-chromosome
DNA markers, which allow us to look at the different evolutionary histories of
the female and male lines. The mitochondrial DNA analysis showed European
ancestry ranging from 0% in Detroit, Michigan to 15% in Baltimore, Maryland.
The estimates from Y-chromosome DNA markers ranged from 9% in Houston,
Texas to 47% in New Orleans. More revealing is the fact that in each of the nine
populations studied (Y-chromosome DNA was not available in Charleston) the
amount of European ancestry was greater in the male line than in the female
line. These results suggest that over the past few centuries there have been
more European genes coming from the mating of European-American males with
African-American females than from the mating of European-American females
with African-American males. As noted above, in preslavery times the majority
of interracial matings were probably between a male of European descent and
an enslaved female of African descent. This pattern appears to be reflected in
the mitochondrial and Y-chromosome DNA analyses. In the last 40 years, there
have been more marriages between a black husband and a white wife than
between a white husband and a black wife, with a ratio of about 2:1 in the
1990s (US Census web page, http://www.census.gov/population/socdemo/
race/interractab1.txt). This recent demographic shift will result in an increase
in the maternal component of European ancestry in African-Americans, but it has
not yet had a noticeable effect on the genetic history of past events.

Keep in mind that all of these estimates are based on the genetic makeup of
an entire population, and the admixture proportions of a population do not nec-
essarily apply to every person in that population. Each person has his or her own,
often unique, genetic history, and our population estimates are simply statistical
aggregates of these histories. An estimate of 15% European ancestry for a sample
does not mean that every person in that population has 15% European ancestry. As
with population estimates, individual estimates of ancestry can vary considerably.



SUMMARY 255

A good example of individual variation in ancestry is Parra et al.’s (2001) study
of European ancestry in several African-American populations in South Carolina.
Here, they estimated admixture for individuals as well as for the entire population.
The estimate for Columbia as a whole was 18% European ancestry, but there was
considerable variation in individual ancestry; the majority of the individuals had
less than 10% European ancestry, while roughly 7% had more than 50% European
ancestry. However, among the more culturally isolated Gullah people of South
Carolina, over 80% of them have less than 10% European ancestry, and no one has
more than 50% European ancestry.

Ancestry varies from population to population, and from individual to indi-
vidual. Any attempt to characterize the genetic history of all African-Americans
(or any human population, for that matter) by a single number is futile. The
genetic studies of Parra and colleagues also shows how we need to keep a dis-
tinction between one’s genetic ancestry and their cultural identity. Some of the
individuals in the Columbia study actually have more European ancestry than
African ancestry, yet all are self-defined as African-American or ‘‘black.’’ The
difference is that the admixture estimate deals with genetic ancestry and the self-
definition refers to cultural identity. Another example to consider is the case of
current (2011) US President Barack Obama. His mother was of European descent
and his father of African descent. From the perspective of genetic ancestry, he
can be described as ‘‘half-black’’ and ‘‘half-white.’’ Yet, from a cultural perspec-
tive of how he describes himself and how others describe him, he is labeled
African-American or black. As noted by Marks (1994), such individuals can simul-
taneously be described as ‘‘half-black’’ and ‘‘black.’’ How can you be something
and half of something at the same time? This apparent conflict is easily resolved by
noting that ‘‘half-black’’ is a statement of genetic ancestry and ‘‘black’’ is a state-
ment of cultural identity. As always, when we study human population genetics,
we need to take an anthropological perspective that encompasses both biology
and culture.

IV. SUMMARY

Studies of neutral genetic variation consider the interaction between and effects
of mutation, genetic drift, and gene flow on patterns of variation both within and
between populations. Anthropologists and human geneticists have long studied
both the genetic structure of populations and the genetic history of populations
using neutral genetic markers. Studies of human population structure focus on
patterns of mate choice and how geographic, environmental, and cultural factors
influence the genetic makeup of individuals within populations and the pattern
of genetic similarity between populations. This chapter has considered several
case studies of human population structure in New Guinea, northern Europe, and
Argentina. These studies illustrate some (but not all) of the ways in which genetic
variation is structured in human populations.

Studies of the genetic history form an important part of human population
genetics research, ranging from the history of our entire species to the history of
large geographic/cultural units to the history of local populations. A continuing
focus of population history studies is the origin and dispersion of modern humans.
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The African origin of modern humans (Homo sapiens) some 200,000 years ago is
clear from the fossil record, as well as the dispersal of modern human populations
across the world. This African origin has left a noticeable imprint on our species’
genetic diversity. Additional case studies in this chapter also outline examples of
regional and local genetic history.



GLOSSARY

absolute fitness A measurement of fitness comparing the actual number of
individuals by genotype at two different times, such as generation to generation,
or birth and adulthood.

admixture Gene flow between distant and previously separated populations.

allele An alternative form of a gene or DNA sequence. For example, the gene
that determines human blood type ABO has three alleles (different forms): A,
B, and O.

allele frequency The proportion of a given allele among all alleles. For example,
if a population has 35 A alleles and 15 a alleles in the gene pool, the frequency
of the A allele is 35

50 = 0.7.

among-group variation Genetic differences between individuals within the same
population.

ancestry-informative markers (AIMs) Genetic markers used in admixture anal-
ysis whose allele frequencies in parental populations are very different, thus
increasing the accuracy of admixture estimation.

assortative mating Mating choice based on phenotypic similarity. Typically,
humans practice positive assortative mating, which is a preference for mat-
ing with someone who is phenotypically similar (negative assortative mating
would be a preference for mating with someone who is phenotypically
different).

autosomes A chromosome in the nucleus that is not a sex chromosome. Humans
have 23 pairs of chromosomes. One of these contains the sex chromosomes, and
the other 22 pairs are referred to as autosome pairs.

balancing selection Selection for the heterozygote, which leads to an equilibrium
allele frequency >0.0 and <1.0. Instead of one allele reaching a frequency of 1.0
or 0.0, a balance is achieved.

base pair (bp) A nucleotide on a strand of DNA or RNA that is paired with its
complement on the other strand (the chemical base A pairs with T, and the base
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C pairs with the base G). The length of DNA/RNA sequences is measured in
base pairs. For example, the total length of the human genome, including all 23
chromosome pairs, is over 3 billion base pairs in length.

between-group variation Genetic differences between populations.

bottleneck A dramatic reduction in population size that results in an increase
in genetic drift.

bp An abbreviation of base pair.

breeding population size The number of individuals in a population that are
capable of reproducing, typically defined as those of reproductive age.

census population size The total number of individuals in a population, which
includes people of reproductive age as well as those that are too young or too
old to reproduce.

chi-square test A statistical test that can be used to compare observed and
expected frequencies. In Appendix 2.2, a chi-square test is used to determine
whether there is significant deviations of observed genotype numbers from
those expected under Hardy–Weinberg equilibrium.

chromosome A long strand of DNA. Chromosomes come in pairs; humans have
23 pairs of chromosomes.

cline A gradient in allele frequencies, typically associated with gene flow.

coalescent theory Population genetic models that focus on the probability that
members of a population share a common ancestor in the past. Unlike classical
models of population genetics that examine genetic changes forward in time,
coalescent models track ancestry backward into the past. Coalescent theory
shows how any two copies of an allele share a common ancestor in the past;
that is, they coalesce to a common ancestor.

codominant Term describing arrangement in which alleles in a heterozygote
both affect the phenotype. Neither allele is dominant or recessive.

consanguineous marriage Marriages where bride and groom are closely related,
such as a marriage between cousins.

culture At the most basic level, this is shared, learned behavior. Studies of
human population genetics find that culture often plays an important role in
human microevolution, and must always be considered when looking at human
genetic diversity.

deletion A mutation resulting in the deletion of base pairs.

diploid Term referring to the presence of two copies of an allele, inherited from
two parents, at a given locus. The vast majority of human genotypes represent
diploid inheritance.

directional selection Selection of a quantitative trait where one extreme pheno-
typic value is selected for and the other extreme phenotypic value is selected
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against. This type of selection moves the average phenotypic value over time in
one direction or the other (larger or smaller, depending on the direction of the
selection).

dominant Term referring to an allele that always shows its effect, even if only
one copy is inherited. Dominant alleles are dominant over recessive alleles.

effective population size The breeding population size in an idealized popu-
lation where a number of conditions, such as equal sex ratio and constancy in
population size, apply. Formulas for effective population size allow deviations
from these assumptions to be taken into account in estimating the true breeding
size of the population.

endogamy When a mate is chosen from within a group, as contrasted with
exogamy.

electrophoresis A method of laboratory analysis that uses electricity to separate
proteins or strands of DNA in order to indentify different genotypes.

equal and additive effects model A model of the polygenic inheritance of a
quantitative trait, where each locus contributes equally to the phenotype.

evolutionary forces The four mechanisms that can cause a change in allele
frequency from one generation to the next: mutation, natural selection, genetic
drift, and gene flow.

exogamy When a mate is chosen from outside a group, as contrasted with
endogamy.

extinction In the context of genetic drift, when an allele is lost (reaches a
frequency of p = 0.0).

fitness The probability of and individual with a given genotype surviving and
reproducing.

fixation In the context of genetic drift, when an allele reaches a frequency of
p = 1.0.

fixation index A measure of the proportional reduction in heterozygosity relative
to the amount expected under Hardy–Weinberg equilibrium. Fixation indices
can be used to study effects of inbreeding and genetic drift.

founder effect A reduction in genetic diversity due to genetic drift when a new
population is made up of a small number of founders.

gamete A sex cell.

gene In strict usage, a DNA sequence that codes for a functional product, such
as a protein. In broader usage, gene is sometimes used to refer to any identifiable
section of DNA, regardless of whether it has functional significance (= genetic
marker).
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gene flow A change in allele frequency caused by the movement of genes
from one population into another. Gene flow is not always synonymous with
migration.

genetic drift A random change in allele frequency from one generation to the
next due to sampling; by chance, the next generation may not have the exact
same allele frequency. The expected effect of drift is greater when population
size is small.

genetic marker A DNA sequence that has a known location on a specific
chromosome and can be identified.

genome The total amount of DNA of an individual.

genotype The genetic makeup of an individual at a given locus defined by what
has been inherited from both parents.

genotype frequency The proportion of individuals that have a given genotype.
For example, if there are 18 individuals with genotype AA out of a total of 50
individuals, the frequency of the AA genotype is 18

50 = 0.36.

haplogroup A set or related haplotypes that share common mutations.

haploid Where there is one copy of an allele present at a given locus. One
example is in sex cells, which contain only one chromosome from each pair.
Mitochondrial DNA is an example of haploid inheritance; you received only
mitochondrial DNA from your mother.

haplotype A combination of alleles that are inherited as a single unit.

Hardy–Weinberg equilibrium The mathematical relationship between allele
frequencies and the expected genotype frequencies in the next generation given
the assumptions of random mating, no mutation, no selection, no drift, and
no gene flow. Under Hardy–Weinberg equilibrium, allele frequencies and
genotype frequencies remain constant over time, thus providing a baseline
condition for predicting evolutionary change.

heterozygosity The proportion of heterozygotes in a population. When there
are only two alleles, the heterozygosity is H = 2pq.

heterozygous Term used to describe a genotype where the two alleles are
different.

hierarchical population structure A model of genetic variation where the total
population (T) is made up of a number of subpopulations (S) that are connected
by gene flow. The measure FST is used to estimate the proportion of genetic
variation between subpopulations relative to the amount of genetic variation in
the total population.

homozygous Term used to describe a genotype where both alleles are the same.

identity by descent When two alleles are identical because they were both
inherited from a common ancestor. Identity by descent contrasts with identity
by state.
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identity by state When two alleles are identical but did not come from a common
ancestor. Identity by state contrasts with identity by descent.

inbreeding Mating between close biological relatives, usually cousin marriage
or closer.

inbreeding coefficient The probability that an inbred individual has two alleles
at a given locus that are identical because of inheritance from a common ancestor
(i.e., identity by descent).

incest Mating between very close relatives that is most often prohibited by
society, such as parent–child and brother–sister mating.

indel The name for a class of mutations that result in insertion or deletion of
base pairs.

infinite alleles model A model where each new mutation is unique, creating a
new allele, and not the same as any previous mutation.

infinite sites model A model where a mutation at any given nucleotide site is
considered unique, and happens only once. Because the genome is so large, the
fact that the probability of a mutation at any given site is very low means that
we can treat the total genome as infinite in length.

insertion A mutation resulting in the insertion of base pairs.

inversion A mutation resulting in an entire section of a chromosome ending in
reverse order.

island model A simple model of gene flow that describes the effect of one-way
gene flow from a ‘‘continent’’ into an island, and how the allele frequency of
the island becomes more similar to that of the continent over time.

isolation by distance A model of the interaction between gene flow and genetic
drift that predicts that genetic similarity between pairs of populations decreases
as the geographic distance between pairs of populations increases.

isonymy Marriages between a man and woman who have the same last name.
The frequency of isonymous marriage is typically 4 times that of the mean
inbreeding coefficient in a population.

kin-structured migration When migrants are related rather than being a random
sample of the source population. Kin-structured migration can reduce the
typical homogenizing effect of gene flow to some extent.

linkage When alleles on the same chromosome are inherited together because
they are in close proximity to each other.

linkage disequilibrium When two alleles are found together in a gamete more
or less frequently than expected under Hardy–Weinberg equilibrium. (Also
known as gametic disequilibrium.)

loci The plural form of locus.
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locus A specific location of a gene or other DNA sequence on a chromosome.
For example, the gene responsible for human ABO blood type is referred to as
the ABO locus (and is found on chromosome number 9).

macroevolution Long-term evolutionary change, typically over many
millennia, and focusing on large-scale changes, such as the origin of
species.

major gene model A model of polygenic inheritance where one locus has a
major effect on a phenotype relative to the other loci.

mean fitness The average fitness of all genotypes, computed as the weighted
average fitness, where weighting is by genotype frequency after selection.

meiosis The formation of sex cells, where each sex cell contains one of each chro-
mosome pair. In bisexual organisms such as humans, each parent contributes
one of each chromosome pair. Thus, you pass on only half of your genome.

Mendel’s law of independent assortment Also known as Mendel’s second
law, this law states that chromosome pairs segregate independently of each
other.

Mendel’s law of segregation Also known as Mendel’s first law, this law states
that chromosome pairs segregate during meiosis such that a sex cell contains
only one allele from any chromosome pair.

microevolution Evolutionary change over a relatively short number of gen-
erations, typically studied by focusing on allele frequency change from one
generation to the next.

migration matrix analysis A mathematical method that uses information on
migration rates between populations and on population size to predict pat-
terns of genetic similarity within and between populations under a model of
equilibrium between gene flow and genetic drift.

mismatch The case in which corresponding nucleotides on two different DNA
sequences are not the same.

mitochondrial DNA (mtDNA) A small amount of DNA (16,569 bp in length
in humans) located in the mitochondria of the cell. Mitochondrial DNA is
inherited only through the mother, and is an example of haploid inheritance.

mitosis The replication of chromosomes in body cells, where each cell produces
two identical cells.

most recent common ancestor (MRCA) In coalescent theory, all alleles coalesce
in the past, ultimately coalescing to a single allele. The ancestor that has this
allele is known as the most recent common ancestor.

mutation A random change in the genetic code. Mutations introduce new alleles
into a population and are the ultimate source of all genetic variation. Mutations
must occur in sex cells to have an evolutionary impact.
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natural selection A change in allele frequency that occurs when there is differ-
ential survival and/or reproduction among genotypes.

nearly neutral theory of evolution An extension of the neutral model that
allows for some weak selection rather than complete neutrality. Under weak
selection in a small population, genetic drift will have the major impact on the
distribution of allele frequencies. In large populations, selection has a greater
impact.

neutral theory of evolution A model that predicts evolutionary change based
on genetic drift operating on neutral mutations (those that do not affect fitness).

nucleotide diversity A measure of genetic variation computed from DNA
sequence data, which is the average proportion of differences between all DNA
sequences in a sample.

phenotype The physical manifestation of a genotype. For simple traits, the phe-
notype depends on whether the genotype is homozygous or heterozygous, and
whether the latter whether the alleles are codominant or dominant/recessive.
For more complex traits, the phenotype reflects what has been inherited (geno-
type) and the influences of the environment, broadly defined as everything other
than genetic inheritance.

phylogeography Methods of analysis that look at the geographic distribution of
genetic lineages, useful in determining the origin and geographic dispersion of
a species.

point mutation The simplest form of a mutation, which involves a change in a
single base, such as from C to T.

polygenic Term describing inheritance where the genotype reflects two or more
loci.

polymorphism Literally translated as ‘‘many forms,’’ a genetic polymorphism
is a locus where there is at least two alleles, and both have frequencies greater
than 0.01.

population A group of individuals from which most mates are chosen.

population genomics The term sometimes used to refer to new advances in
population genetics that rely on comparison of entire genomes.

population history The study of how historical events have affected patterns of
genetic variation within and between populations.

population structure The study of how patterns of mate choice and population
composition affect patterns of genetic variation within populations and between
subdivisions of a population. Some areas of interest in human population
structure include the effects of geographic, religious, and linguistic subdivision
on genetic variation.

potential-mates analysis Methods that study cultural and demographic influ-
ences on mate choice by using computer simulation to define likely mates and
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then compare characteristics with observed data to determine random and
nonrandom patterns of mating.

Punnett square A method that uses a simple table to predict the possible
genotypes of offspring resulting from parents whose genotypes are known.

quantitative genetics The subfield of genetics that looks at quantitative traits,
such as height, cranial shape, and skin color.

quantitative traits Complex physical traits whose phenotype varies continu-
ously, rather than falling into a small number of discrete categories. Quantitative
traits are affected by both genetic and environmental factors.

recessive An allele whose effects are masked by a dominant allele, such that
two copies of a recessive allele are needed to show its effects.

recombination During meiosis, sections of DNA can cross over from one chro-
mosome to the other chromosome in a pair of chromosomes. As a result, a given
chromosome could contain parts of both maternal and paternal chromosomes.

relative fitness A measurement of fitness one the genotype is assigned a value
of 1.0 and the fitness values of other genotypes are defined relative to that
genotype. Often, but not always, the genotype with the highest absolute fitness
is assigned the relative fitness of 1.0.

restriction fragment length polymorphisms (RFLPs) Identification of different
alleles based on the length of DNA strands that are cut into fragments by
restriction enzymes that are targeted to specific DNA sequences.

selection coefficient The probability that an individual does not survive and
reproduce. The selection coefficient for a genotype (s) is the opposite of the
relative fitness of that genotype (w): s = 1 − w.

selective sweep When natural selection reduces genetic variation at a locus,
there is also a reduction in molecular variation in neighboring DNA sequences,
even when they are neutral, because they are ‘‘swept along.’’ This process is
also known as ‘‘hitchhiking.’’

sexual selection The hypothesis that some traits have evolved because of
competition between members of the same sex for mates.

short tandem repeats (STRs) Short repeated sequences of DNA typically ranging
in size from two to six base pairs (2–6 bp). Different alleles are identified by the
number of repeats.

silent mutation A point mutation in coding DNA that results in the same amino
acid. For example, if the DNA sequence that codes for the amino acid glycine
changes from CCA to CCG, the same amino acid is produced, such that the
mutation has no impact and is ‘‘silent.’’

single-nucleotide polymorphisms (SNPs) Genetic markers defined by different
bases (A, C, G, or T) at any given position in a DNA sequence.
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site frequency spectrum A method used to detect natural selection that looks at
the relative occurrence of loci that have different allele frequencies.

stabilizing selection Selection on a quantitative trait that selects against extreme
phenotypic values (too small or too large) and selects for the intermediate values.
Under this type of selection, the average phenotypic value is stabilized over
time.

transition A specific type of point mutation. The four nucleotide bases include
two that are purines (A and G), that have two carbon–nitrogen rings, and
two pyrimidines (C and T), that have one carbon–nitrogen ring. Transitions
are point mutations between one purine and the other (A to G, or G to A) or
between one pyrimidine and the other (C to T, or T to C).

translocation A mutation where an entire section of a chromosome moves to
another chromosome. Sometimes the DNA sequences are exchanged between
chromosomes, and sometimes they are not.

transversion A specific type of point mutation. The four nucleotide bases include
two that are purines (A and G), that have two carbon–nitrogen rings, and two
pyrimidines (C and T), that have one carbon–nitrogen ring. Transversions are
point mutations between a purine and a pyrimidine.

Y-Chromosome DNA The DNA on the Y chromosome, which is one form of a
sex chromosome, and the other form is the X chromosome. Females have two
X chromosomes (XX) and males have an X chromosome and a Y chromosome
(XY). Most of the Y chromosome does not recombine, and is passed along from
father to son intact.
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structure of the Åland Islands, Finland. In Current Developments in Anthropological
Genetics, vol. 2, Ecology and Population Structure, Crawford MH, Mielke JH, eds. New
York: Plenum Press, pp. 255–332.

Mielke JH, Konigsberg LW, Relethford JH (2011) Human Biological Variation, 2nd edition.
New York: Oxford University Press.

Mielke JH, Relethford JH, Eriksson AW (1994) Temporal trends in migration in the Åland
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of Human Biology 21:13–21.

Richards M (2003) The Neolithic invasion of Europe. Annual Review of Anthropology
32:135–162.

Roberts DF (1968) Genetic effects of population size reduction. Nature 220:1084–1088.
Robins AH (1991) Biological Perspectives on Human Pigmentation. Cambridge: Cambridge

University Press.
Robins AH (2009) The evolution of light skin color: Role of vitamin D disputed. American

Journal of Physical Anthropology 139:447–450.
Rogers A (1991) Doubts about isonymy. Human Biology 63:663–668.
Rogers AR, Harpending HC (1986) Migration and genetic drift in human populations.

Evolution 40:1312–1327.
Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of

pairwise genetic differences. Molecular Biology and Evolution 9:552–569.
Rogers AR, Iltis D, Wooding S (2004) Genetic variation at the MC1R locus and the time

since loss of human body hair. Current Anthropology 45:105–108.



276 REFERENCES

Rogers L (1987) Concordance in isonymy and pedigree measures of inbreeding: The effects
of sample composition. Human Biology 59:753–767.

Rohlf FJ, Sokal RR (1995) Statistical Tables. Third edition. New York: Freeman.
Rosenberg NA, Li LM, Ward R, Pritchard JK (2003a) Informativeness of genetic markers for

inference of ancestry. American Journal of Human Genetics 73:1402–1422.
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman

MW (2003b) Response to comment on ‘‘Genetic structure of human populations.’’ Science
300:1877c.

Roychoudhury AK, Nei M (1988) Human Polymorphic Genes: World Distribution. New York:
Oxford University Press.

Sachs J, Malaney P (2002) The economic and social burden of malaria. Nature 415:680–685.
Salzano FM, Neel JV, Maybury-Lewis D (1967) Further studies on the Xavante Indians I.

Demographic data on two additional villages: Genetic structure of the tribe. American
Journal of Human Genetics 19:463–489.

Salzano FM, Weimer TA, Franco MHLP, Mestriner MA, Simões AL, Constans J, De Melo e
Freitas MJ (1985) Population structure and blood genetics of the Pacaás Novos Indians
of Brazil. Annals of Human Biology 12:241–249.

Sanger R, Tippett P, Gavin J (1971) The X-linked blood group system Xg: Tests on unrelated
people and families of Northern European ancestry. Journal of Medical Genetics 8:427–433.

Sarich VM (1971) A molecular approach to the question of human origins. In Background
for Man: Readings in Physical Anthropology, Dohlinow P, Sarich VM, eds. Boston: Little,
Brown, pp. 60–81.

Sarich V, Wilson A (1967) Immunological time scale for hominoid evolution. Science
158:1200–1203.

Schull WJ (1972) Genetic implications of population breeding structure. In The Structure of
Human Populations, Harrison GA, Boyce AJ, eds. Oxford: Clarendon Press, pp. 146–164.

Seixas S, Ferrand N, Rocha J (2002) Microsatellite variation and evolution of the human
Duffy blood group polymorphism. Molecular Biology and Evolution 19:1802–1806.

Seldin MF, Price AL (2008) Application of ancestry informative markers to asso-
ciation studies in European Americans. PLoS Genetics 4(1):e5 (doi:10,1371/
journal.pgen.0040005).

Simons AM (2002) The continuity of microevolution and macroevolution. Journal of Evolu-
tionary Biology 15:688–701.

Simonson TS, Tang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J,
Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet.
Science 329:72–75.

Smith CAB (1969) Local fluctuations in gene frequencies. Annals of Human Genetics
32:251–260.
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Åland Islands case study, 239–241
Albumin, in analyzing ape–human

relationship, 91
Allele counting method, 29–30, 45–46, 184
Allele frequencies, 131–132, 168, 203, 257

changes over in time in, 45
chi-square statistic and, 47–48
computing, 25–30
deviations from random mating and, 36,

38–39, 44
Hardy–Weinberg equilibrium and,

24–40, 45–48
in impact of inbreeding on genotype

frequencies, 63

279



280 INDEX

inbreeding and, 51, 64, 75
in linkage disequilibrium, 40–42
among more than two alleles, 42
with X-linked genes, 43–44

Alleles, 45, 131, 168, 257
codominant, 9–10
defined, 8
dominant and recessive, 9–10
in genetics, 8–10
in haplotypes, 11–12
harmful recessive, 161–162

Amino acids
in analyzing ape–human relationship,

89–90
DNA sequences for coding, 79
in hemoglobin molecule, 182
mutations and, 78

Among-group variation, 213, 257
Ancestors

inbreeding among descendants of, 49–51
mitochondrial DNA and, 12–13

Ancestry-informative markers (AIMs), 257
in admixture estimating model, 229
and rule, 15–16

Anthropological genetics, 21
Anthropology

human population structure and history
in, 237–238, 255–256

inbreeding of human populations in, 65
population genetics and, 19–21

Antibodies
in analyzing ape–human relationship, 89
red blood cell markers and, 10

Antigens
with Duffy blood group, 187
red blood cell markers and, 10

Apes
classification of, 88–89
evolution of, 88–92, 96
traits shared with humans, 88

Archaeology, 1
in history of modern humans, 242–243

Asia
in colonization of Polynesia, 251–252
hemoglobin S allele in, 186–187
human African origins and, 245
human evolution in, 243
human skin color in, 194, 198
lactase persistence allele in, 191
in Native American origins, 248–249
origins of agriculture in, 249

Asian great ape, 89, 91, 96

Asians
Neandertals vs, 247
Y chromosome haplogroups among,

95–96
Assimilation model, of human evolution,

243
Assortative mating, 19, 257

Hardy–Weinberg equilibrium and, 36, 44
Assortment, Mendel’s law of independent,

7, 15
Aunt–nephew mating, inbreeding due to,

54, 59
Australasia, human skin color in, 194
Australia, in colonization of Polynesia, 251
Australians, Y chromosome haplogroups

among, 96
Autosomes, 257

in assessing human genetic diversity, 13
Average genetic similarity, in R matrix, 234
Average population size, 117

Balancing selection, 157–160, 162–163, 168,
257

in evolutionary theory vs. reality, 167
of hemoglobin molecule, 182–185
hemoglobin S and, 183–185

Base pairs (bps), 5, 257–258
Bases, in DNA, 5, 19, 78
Bedik tribe, migration matrix analysis of,

223–225
Bering Strait, in Native American origins,

248
Between-group variation, 3–4, 213, 258

measuring, 213–215
in R matrix, 233–234

Biological anthropology, 1
Biological evolution, cultural evolution vs.,

181–182
Biological relatives, 52
Black death, CCR5-�32 allele and, 190
Blood

genetic markers in, 27–28, 253
hemoglobin in, 182

Blood cell production, in low- vs.
high-altitude populations, 192

Bonobos, relationship to other apes and to
humans, 89, 91–92, 96

Bottlenecks, 258
demographic history and coalescent

theory and, 131
in populations, 118

Bougainville Island study, 27–28, 239



INDEX 281

Brain size
in human evolution, 243
selection for increased, 166

Breastfeeding, evolution of, 190
Breeding population, 18
Breeding population size, 132, 258

effective population size vs., 117–118
fertility variation and, 118–119
genetic drift and, 112–113
sex ratio and, 119

Caingang Indians, sex ratio and, 119
Calculus, 14. See also Mathematics

formulas for selection for heterozygotes,
177–178

Card decks, probability and, 14, 16
Carriers, sickle cell, 182
Cattle farming, lactase persistence allele

and, 191
Cavalli-Sforza, Luigi Luca, 21
CCR5-�32 allele, disease resistance and,

189–190
CCR5 (C–C chemokine receptor type 5)

gene, 79, 189, 203
Census population size, 258
Central America, European gene flow into,

226
Chest dimensions, in low- vs. high-altitude

populations, 192
Chimpanzees, relationship to other apes

and to humans, 89, 91–92, 96
Chi-square (χ2) statistic, 258

testing for Hardy–Weinberg equilibrium
via, 39, 47–48

Chromosomal changes, 79
Chromosomes, 5, 258. See also

Y-chromosome DNA
in detecting recent selection, 199–200
dominant and recessive alleles and, 9
effect of mutations on, 79
genetic markers on, 8
inheritance and, 6–7
Mendel’s laws and, 5–7
mutations of, 96
in recombination, 7

Classical genetic markers, 11
Cline, 258
Coalescence, average time to, 127–130
Coalescent theory, 125–132, 258
Coalescent trees, 130–131
Codominant alleles, 9–10, 168, 258

in computing genotype frequencies, 24,
28

selection with, 152–154
Cold injury hypothesis, skin color and,

197–198
Colonization, of Polynesia, 251–252
Common ancestry

of apes and humans, 91–92
in average time to coalescence, 127–130,

132
in coalescent theory, 126–127
computing inbreeding coefficient and, 57
dating of divergence from, 90
in inbreeding, 75
inbreeding and close, 51–54

Congenital defects, inbreeding and, 65
Consanguineous marriages, 258

among Romany of Wales, 67
computing random and nonrandom

inbreeding components and, 70–73
demography of, 66
genetic diseases and, 65
in human populations, 65–66
in potential-mates analysis, 74

Continent–island model, 208
Cousin marriages

inbreeding due to, 53–55, 57–61, 75
marital isonymy and, 68–70
among Navajo, 67–68
in potential-mates analysis, 74
selection and inbreeding and, 165
in surname analysis, 68

Crick, Frances, 5
Cultural anthropology, 1
Cultural diffusion, in origins of agriculture,

249–250
Culture, 19–20, 258
Culture change, 200

hemoglobin S evolution and, 185–187

Dairy farming, 198
lactase persistence allele and, 191

Dark skin
in colonization of Polynesia, 251
evolution in human populations,

195–196
Darwin, Charles, 19, 68, 139, 197
Darwin, George, 68
Degrees of freedom, chi-square statistic

and, 47–48



282 INDEX

Deletions, 78–79, 96, 258
Demic diffusion, in origins of agriculture,

249–251
Demographic history, coalescent theory

and, 130–132
Demography, 132
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in Åland Islands case study, 241
genetic drift and gene flow in, 219–222
human African origins and, 245

Isonymous marriage. See Marital isonymy
Isonymy, 68, 261
Iterative equations, using recurrence

relation to solve, 97–99

Jujay, Argentina case study, 241–242



INDEX 289

Kalam tribe, in New Guinea case study,
238–239

Kin-structured migration, 212, 261
Kung, average reproductive age among,

113

Lactase, evolution of, 190–191
Lactase activity alleles, 191
Lactase persistence, 8–9, 198

human dietary evolution and, 190–192
Lactose intolerance, development of,

190–191
Language. See also Linguistics

history and, 237
in New Guinea case study, 238–239

Lapita culture, in colonization of Polynesia,
251

Latitude, skin color and, 196–198
Lesser apes, 88–89
Lethal dominant alleles, 151–152
Lethal recessive alleles, 150
Light skin, evolution in human

populations, 196–198
Linkage, 261

of alleles, 11–12
Linkage disequilibrium (LD), 41, 261

in detecting recent selection, 200
Hardy–Weinberg equilibrium and,

40–42
Locus (loci), 45, 261–262

of genes, 8–10
of haplotypes, 11–12
linkages between, 40–42
with more than two alleles, 28–29, 42
rates of mutation at, 80

Long-range gene flow, migration matrix
analysis and, 224–225

Long-range migration, 230–231
Lung volume, in low- vs. high-altitude

populations, 192

Macroevolution, 262
defined, 3

Mainland population, in island model,
208–210

Major gene model, 13, 262
Malaria, 198, 203

agriculture and spread of, 185–186
Duffy blood group and, 187–189
hemoglobin S and, 182–187
natural selection due to, 187

Marital data, estimating inbreeding
coefficient from, 60

Marital isonymy
computing inbreeding coefficient from,

68–70
computing random and nonrandom

inbreeding components and, 70
Marriage
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