

Java for
Web

Development

Create Full-Stack Java Applications
with Servlets, JSP Pages, MVC

Pattern and Database Connectivity

Sarika Agarwal

Vivek Gupta

www.bpbonline.com

http://www.bpbonline.com/

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-55511-430

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002
and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to

My beloved Son

Mr. Kushagra Agarwal

About the Authors

Sarika Agarwal is a professor with 16+ years of experience teaching
Java technology Python. She has imparted training on Java, Python, C,
C++ for more than 5000 students. Her interest area is Java, Android,
machine learning, Natural Language Processing.

She has cleared many certifications, including SCJP (Sun Certified
Java Programmer), OWCD (Oracle Web component Developer),
ACAD (Android Certified Application Developer), Android ATC
Certified Trainer, MTA certifications (Software Testing Fundamentals,
Operating System, Database Management System), IBM RAD
certification.

She has worked in NIIT as a Java Faculty and Engineering College
professor. She has published papers in Journals and Scopus Index
conferences. She is the author of the Book -Java in Depth.

Vivek Gupta has completed his B.Tech from Uttar Pradesh Technical
University in 2006 CDAC (Post Graduate Diploma in Computer
Science) in 2006. 15+ years of experience in Java Application support
and maintenance at all levels (L1, L2, and L3). Currently, working
with Ventiv Technology as Technical Lead. He has worked in HCL,
Cognizant Technology Solutions

About the Reviewer

With about six years of experience in teaching, Ms. Jyoti Kumari is an
Assistant Professor, an enthusiast in learning new technologies. She
currently works at Keshav Mahavidyalaya, University of Delhi. She is also
pursuing a Ph.D. in Information Technology at Amity University to carry
her interest in research work. She also mentors graduate students in their
project work such as creating android applications, web development, and
so on. She was also a member of the editorial board of the magazine of the
technical society of Computer Science department of the college.

Acknowledgement

There are a few people I want to thank for the continued and ongoing
support they have given me during the writing of this book. First and
foremost, I would like to thank my husband, Mr. Amit Kumar, for
continuous support and encouraging me to write the book — I could have
never completed this book without his support.

I am grateful to the excellent Java Community, from which I have learned
and continue to learn a great deal. I would like to thank the reviewers who
contributed many suggestions and improvements to my drafts. Thanks also
go to many others with whom I have had conversations or email discussions
over the course of writing the book. Any errors that remain are, of course,
to be laid at my door.

Special thanks to BPB Publications team, for the valuable support provided
throughout the entire process.

Finally, the writing of this book has been a great deal of work, and I could
not have done it without the constant support of my family. My son,
Kushagra Agarwal, has been very understanding, and I am looking forward
to spending lots more time with all of them.

Preface

Java, the only pure object-oriented language available today, is now used in
almost all applications, from simple home appliances control systems to
complex space control systems. It has also revolutionized applications from
Intranet to the Internet.

This book aims at imparting expertise in web application development
using servlets and JavaServer Pages. You will learn to create a servlet, JSP
pages, and connectivity with Database and deploy these applications on the
Tomcat Server. Some Interview Questions with answers are also included.
This book is meant for anyone who has an interest in Object-Oriented
Programming and is aspiring to become a Java Programmer.

The book covers all topics with basic examples and analogies. The book
covers all topics related to Servlets and JSP like building GUI applications,
reusing JavaBeans in JSP, and using custom tag libraries. This book is
written to serve as a textbook for GBTU and for those who want to learn
basic and advanced level web application development in java with their
efforts.

In each chapter, good worked Examples have been given. Chapter 1 aims to
learn the connectivity of the Java Program with the Database; Chapter 2
covers Internationalization, which customizes an application according to
specific languages and regions. Chapter 3 to 6 covers the Servlets, Inter
Servlet Communications Sessions, etc. Chapter 7 to 10 Covers topics
related to JSP pages, Custom tags, Directives, MVC architecture, and many
more At the end of each chapter, some interview questions with answers are
also given that may be useful to students of any discipline as MCA, B.Tech,
M.Tech, M.Sc.

I am sure that the students and the faculty will find this book very useful.

Critical evaluation and suggestions for improving the book will be highly
appreciated and gratefully acknowledged.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/0a0b7b

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Java-for-Web-Development. In case
there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at www.bpbonline.com and as a print book customer,

https://rebrand.ly/0a0b7b
https://github.com/bpbpublications/Java-for-Web-Development
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

you are entitled to a discount on the eBook copy. Get in touch with us
at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share
their insights with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!

For more information about BPB, please visit
www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. Database Connectivity

 Introduction

 Structure

 Objectives

 Database Management

 ODBC Application Programming Interface (API)

 JDBC-API
 Categories of JDBC Drivers

 JDBC-ODBC bridge + ODBC driver

 Native-API driver

 Network protocol driver

 Thin Driver

 Querying a database
 Connecting to a database

 The connection object

 Loading the Driver and establishing the connection

 The JDBC URL
 A Sample JDBC URL

 Processing querying in a database

 Conclusion

 Multiple Choice Questions
 Answers

 Fill in the blanks

 State True/False

 Questions

 Interview Questions

2. Internationalization (I18N)

 Introduction

 Structure

 Objective

 Localization (L10N)

 Locale
 Constructors of Locale Class

 Commonly used methods of Locale class

 Resource Bundle
 Constructor of ResourceBundle

 Methods of ResourceBundle Class

 Steps to develop the I18N-based application

 Internationalizing Date and Time (I18N with Date and Time)

 Methods of java.text.DateFormat

 Internationalizing with Numbers (I18N with Numbers)

 Conclusion

 Multiple Choice Questions

3. Introduction to Java Servlets

 Introduction

 Structure

 Objectives

 Webserver

 Introduction to Servlets
 Characteristics of Servlets

 Comparison between Servlets and Applets

 Comparison between Servlets and other server-side scripting
technologies

 CGI scripts
 Active Server Pages (ASP)

 Working of Servlets

 The GET and POST methods

 The Javax.servlet package
 Lifecycle of a Servlet

 Servlet Interface
 Creating a Servlet

 Creating the deployment descriptor (web.xml file)

 Conclusion

 Questions

4. HTTP Servlet

 Introduction

 Structure

 Objectives

 HTTP Servlet

 Need of HTTPServlet class

 HTTP Request and HTTP Response

 The GET and POST methods

 HttpServletRequest Interface
 Method of ServletRequest Interface

 Conclusion

 Questions

 Multiple Choice Questions

5. Working with Servlet Sessions

 Introduction

 Structure

 Objective

 Session tracking

 Techniques to keep track of sessions in servlets
 URL Rewriting

 Hidden Form Fields

 Using the HttpSession Interface

 Cookies

 The javax.servlet.http.Cookie class

 Conclusion

 Questions

6. Inter-Servlet Communication

 Introduction

 Structure

 The RequestDispatcher Interface

 Method of ServletContext Interface

 Method to get the object of RequestDispatcher

 Methods of RequestDispatcher interface

 Implementing Inter servlet communication via a problem statement
 Tasklist

 Client Interface

 index.xhtml

 Code of FirstServlet

 SendRedirect

 Difference between forward() and sendRedirect() method

 Conclusion

 Questions

7. Java Server Pages(JSP)

 Introduction

 Structure

 Objectives

 Need for JSP

 Difference between Servlet and JSP
 Advantages of JSP

 The JSP request-response cycle

 Lifecycle of JSP

 Structure of a JSP Page

 The directory structure of the JSP Page

 Conclusion

 Questions

8. Comment Tag and Scripting Element

 Structure

 Objectives

 JSP Elements
 Comment Tag

 Scripting Elements
 Scriptlet tag

 Expression Tag

 Declaration tag

 Implicit Objects

 Conclusion

 Questions

 Select the Correct Option

9. JSP Directives

 Structure

 Objective

 Types Of Directives

 JSP directives
 The page directive

 Implicit Objects
 contentType

 extends

 errorPage
 isErrorPage

 import= “package list”

 language= “scripting language.”

 Session=true/false

 info= “servlet information”

 Buffer
 isELIgnored= “true/false”

 isThreadSafe

 autoFlush

 The include directive

 The Taglib directive

 Conclusion

 Questions

10. JSP Action Element and Custom Tags

 Introduction

 Structure

 Objectives

 JSP Action Tags
 jsp:useBean action tag

 jsp:setProperty and jsp:getProperty action tags

 Jsp:forward action tag

 jsp:include action tag

 JSP custom tags
 Custom Tag Library

 Need of XML

 Custom Tags

 The structure of the TLD file

 The structure of the JSP File

 Expression Language(EL)

 Model View Controller (MVC) Architecture in JSP
 MVC Example in JSP

 Conclusion

 Questions

11. Introduction to Struts

 Introduction

 Structure

 Objective

 Features of Struts2

 Components of Struts2

 Architecture of Struts2

 Creating a Struts Application

 Conclusion

 Questions

Interview Questions

Index

CHAPTER 1
Database Connectivity

Introduction
Most web-based application programs need to interact with Database
Management Systems (DBMS). This DBMS is used to retrieve information
from the database repositories by applications. For example, the online
shopping mail needs to keep track of its customers and the items sold. A
search site like www.yahoo.com needs to keep track of the URLs of the
web pages visited by the user.

Structure
In this chapter, we will cover the following topics:

Techniques of database programming using Java

Types of drivers to connect the Java program with database

How databases are accessed using the JDBC-ODBC bridge and ODBC
drivers

Objectives
In this chapter, you will be able to establish the connection between the
database and Java program. You will be able to read and write the data from
the database with the full support of the stored procedure and cursor.

http://www.yahoo.com/

Database Management
A database is a collection of related information, and a DBMS is software
that provides you with a mechanism to retrieve, modify, and add the data to
the database. There are many DBMS/RDBMS products available, for
example, MS-Access, MS-SQL Server, Oracle, Sybase, Informix Progress,
and Ingress. Each of these Relational Database Management Systems
(RDBMS) stores the data in its form.

For example, MS-Access stores the data in the MDB file format, whereas
MS-SQL stores the data in the. DAT file format.

Imagine you have been assigned a task to develop an application for a
general store that allows a shop owner to maintain a record of the daily
transactions. You design the database, install an MS-SQL server/Oracle on
the shop owner's machine, and tell him to use it.

It will be a good idea for you to develop a customized front-end application
in which the client is given options to retrieve, add, and modify the data at
the touch of the key.

To accomplish this, you should have a mechanism of making the
application work with the file format of the database, that is. MDB or. DAT
files.

For your application to communicate with the database, it needs to have the
following information:

The location of the database

The name of the database

Figure 1.1 illustrates a database application architecture:

Figure 1.1: A database application architecture

This means that the application you create would be able to work with only
one kind of database and will be very difficult to code and port.

The preceding problems are solved by Microsoft's mechanism for efficient
communication with the databases called Open Database Connectivity
(ODBC).

ODBC Application Programming
Interface (API)
ODBC API is a set of library routines that enable your programs to access a
variety of databases. All you need to do is install a DBMS-specific ODBC
driver and write your program to interact with a specified ODBC driver.
Figure 1.2 shows that the application communicates with the ODBC Driver
Manager, which transfers the query to a database driver for whom the user
wants to communicate.

Later, if the database is upgraded to a newer version of RDBMS or ported
to a different RDBMS product, you will need to change only the ODBC

driver and not the program, as shown in Figure 1.2:

Figure 1.2: ODBC application architecture

JDBC-API
Java Database Connectivity (JDBC) provides a database programming
API for Java programs. Since the ODBC API is written in the C language
and makes use of the pointers and other constructs that Java does not
support, a Java program cannot directly communicate with an ODBC
driver.

Sun Microsystems created the JDBC-ODBC bridge driver that translates the
JDBC-API to the ODBC.API. It is used with the ODBC drivers available.

Categories of JDBC Drivers
There are several categories of the JDBC drivers available, which are as
follows:

JDBC-ODBC bridge + ODBC Driver

Native API – Partly a Java driver

JDBC – Net pure Java Drivers / N/W Protocol

Nature Protocol pure Java drivers / thin Driver

JDBC-ODBC bridge + ODBC driver
The JDBC-ODBC bridge driver uses the ODBC driver to connect to the
database. The JDBC-ODBC Bridge Driver converts the JDBC method
calls into the ODBC function calls. This is now discouraged because of the
thin Driver. Refer to Figure 1.3, which illustrates the JDBC application
architecture:

Figure 1.3: JDBC Application Architecture

JDBC Driver Manager
The JDBC Driver Manager is the backbone of the JDBC architecture. The
function of the JDBC driver manager is to connect a Java application to the
appropriate Driver specified in your Java Program.

JDBC-ODBC Bridge
As a part of JDBC, Sun Microsystems provides a driver to access the
ODBC data sources. This Driver is called the JDBC-ODBC bridge. The
JDBC-ODBC bridge is implemented as the JDBC ODBC class, and the
nature library is used to access the ODBC driver. In the Windows platform,
the native library is JdbcOdbc.dll

The following are the advantages:

Easy to use

It can be easily connected to any database

The following are the disadvantages:

Performance degraded because the JDBC method call is converted into
the ODBC function calls

The ODBC driver needs to be installed on the client machine

Native-API driver
The Native-API Driver uses the client-side libraries of the database. The
Driver converts the JDBC method calls into native calls of the database
API. It is not written entirely in Java.

The following is the advantage:

Performance upgraded, better than the JDBC-ODBC bridge driver

The following are the disadvantages:

The Native Driver needs to be installed on each client machine

The vendor-client library needs to be installed on the client machine

Network protocol driver
It uses middleware (application server) that converts the JDBC calls
directly or indirectly into the vendor-specific database protocol. It is fully
written in Java.

The following is the advantage:

No client-side library is required

The following are the disadvantages:

Network support is required

Requires database-specific coding to be done in the middle tier

Maintenance of Network Protocol becomes costly because it requires
database-specific coding

Thin Driver
The thin Driver converts the JDBC calls directly into the vendor-specific
database protocol. That is why it is known as the thin Driver. It is fully
written in the Java language.

The following are the advantages:

Better performance than all the other drivers

No software is required at the client-side or server-side

The following is the disadvantage:

Drivers depend on the database

Querying a database
Now that you have understood the JDBC architecture, you can write a Java
application that can work with a database. In this section, you will learn
about the packages and classes available in Java that allow you to send the
queries to a database and process the query results.

Connecting to a database
The java.sql package contains the classes that help in connecting to a
database, sending embedded SQL statements to the database, and
processing the query results.

The connection object
The connection object represents a connection with a database. You may
have several connection objects in an application that connects to one or
more databases.

Loading the Driver and establishing the
connection
To establish a connection with a database, complete the following steps:

 1. Register the ODBC JDBC/thin Driver by calling the forName() method
from the Class class.

 For example, Class.forName(“oracle.JDBC.driver.OracleDriver”);

 2. Call the getConnection(“JDBC URL”) method from the DriverManager class.

The getConnection() method of the Driver Manager class attempts to locate
the Driver that can connect to the database represented by the JDBC URL
passed to the getConnection() method.

The JDBC URL
The JDBC-URL is a string that provides a way of identifying a database. A
JDBC URL is divided into the following three parts:
<protocol>: <sub protocol> : <subname>

In this, <protocol> in a JDBC URL is always Jdbc<subprotocol>, which is the
name of the database connectivity mechanism. If the mechanism of
retrieving the data is ODBC-JDBC bridge, the subprotocol must be ODBC.
<Subname> is used to identify the database.

A Sample JDBC URL
The following is a sample JDBC URL:
String url = "jdbc:oracle:thin:@localhost:1521:xe";

// URL For thin Driver

//"jdbc:oracle:thin:@localhost:1521:xe"

Class.forName ("oracle.jdbc.driver.OracleDriver")

Connection con = DriverManager. getConnection (url,"system","password");

Processing querying in a database
Once a connection with the database is established, you can query the
database and process the result set. JDBC does not enforce any restriction
on the type of SQL statements that can be sent, but as a programmer, it is
your responsibility to ensure that the database can process the statements.

JDBC provides three classes for sending the SQL statements to a database,
which are as follows:

The Statement object: You can create the statement object by calling
the create statement () method from the connection object.

The Prepared Statement object: You can create the Prepared
statement object by calling the preparedStatement () method from the
connection object. The prepared statement object contains a set of
methods that can be used for sending queries with the INPUT
parameters.

The Callable Statement object: You can create the Callable
Statement object by calling the prepareCall() method from the
connection object. The CallableStatement object contains the
functionality for calling a stored procedure. You can handle both the
INPUT as well as the OUTPUT parameters using the Callable
Statement Object.

Using the Statement object
You can use the statement object to send simple queries to the database as
shown in the following sample Query-App program:

//Query App. java
import java.sql. *;

public class QueryApp {

 public static void main (String a [])

 {

 try {

 Class. forName("oracle.jdbc.driver.OracleDriver");

 Connection con = DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xe","system","sail_boat1");

 Statement stat = con.createStatement();

 stat.executeQuery ("select * from emp");

 }

 catch(Exception e)

 {System.out.print ("Error" + e);

 }

 }

 }

In the preceding Query App example, the following happens:

 1. The thin/Oracle driver is loaded.

 2. The connection object is initialized using the getConnection() method.

 3. The statement object is created using the createStatement() method.

 4. Finally, a simple query is executed using the executeQuery() method of
the statement object.

The Statement Object
The Statement object allows you to execute the simple queries. It has three
methods that can be used for the purpose of querying, which is as follows:

The executeQuery() method executes a simple select query and returns a
single ResultSet object.

The executeUpdate() method executes the SQL INSERT, UPDATE, and
DELETE statement.

The execute() method executes an SQL statement that may return
multiple results.

The ResultSet Object

The ResultSet object provides you with the methods to access the data from
the table. Executing a statement usually generates a ResultSet object. It
maintains a cursor pointing to its current row of data. Initially, the cursor is
positioned before the first row. The next() method moves the cursor to the
next row; you can access the data from the ResultSet rows by calling the
getxxx() method, where xxx is the data type of the parameter. The following
code queries the database and processes the ResultSet:
import java.sql. *;

public class QueryApp {

 public static void main (String a [])

 { ResultSet result;

 try {

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection con = DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xe","system","sail_boat1");

 Statement stat = con.createStatement();

 result=stat.executeQuery ("select * from emp");

 while(result.next())

 {

 System.out.println(result.getString(2));/* retrieving data from 2nd Col. of emp
table*/

 }

 }

 catch(Exception e)

 {System.out.println ("Error" + e);} }}

In the preceding Query App example, the following happens:

 1. The ResultSet object is returned by the executeQuery() method.

 2. All the rows in the ResultSet object are processed using the next()
method in a while loop.

 3. The values of the second column are retrieved using the getString()
method.

The output is as follows:
Suresh

Radhika

You can modify the same program to display the content of the table in a
window:
import java.awt.*;

import java.awt.event.*;

import java.sql. *;

public class QueryApp extends Frame implements ActionListener{

 TextField eid,ename;

 Button next;

 Panel p;

 static ResultSet result;

 static Connection con;

 static Statement stat;

 public QueryApp(){

 super("The Query Application");

 setLayout(new GridLayout(5,1));

 eid=new TextField();

 ename=new TextField();

 next=new Button("Next");

 setSize(500,500);

 p=new Panel();

 add(new Label("Employee ID"));

 add(eid);

 add(new Label ("Employee Name: "));

 add(ename);

 add(p);

 p.add(next);

 next.addActionListener(this);

 setVisible(true);

 }

 public static void main (String a [])

 {

 QueryApp ab=new QueryApp();

 try {

 Class. forName("oracle.jdbc.driver.OracleDriver");

 System.out.println("after Driver");

 con = DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xe","system","sail_boat1");

 stat = con.createStatement();

 System.out.println("after statement");

 result=stat.executeQuery("select * from emp");

 }

 catch(Exception e)

 {System.out.print ("Error in sql" + e);}}

 @Override

 public void actionPerformed(ActionEvent event) {

 if(event.getSource()==next)

 {

 try{

 while(result.next())

 {

 eid.setText(eid.getText()+" "+(result.getString(1)));

 ename.setText(ename.getText()+" "+(result.getString(2)));

 }

 }catch(Exception e){System.out.println(e);}

 }

 }

 }

In the preceding example, the following happens:

 1. The main() method creates an object of the QueryApp class.

 2. The constructor of the Query App class places the controls on the
window.

 3. The query is then executed.

 4. When the user clicks the Net button, the action Performed() method
moves the Resultset object to the next record and displays that record.

The output of the preceding program is shown in Figure 1.4:

Figure 1.4: Output of the preceding program

Prepared Statement Object
You have to develop an application that queries the database according to
the search criteria specified by a user. For example, the user supplies the
employee-ID-eid and wants to see the details of that employee.

Select * from employee where eid=? You do not know the id

To make it possible, you must prepare a query statement that receives an
appropriate value in the where clause at run time.

Using the Prepared Statement object
The Prepared Statement object allows you to execute the parameterized
queries. The Prepared Statement object is created using the
preparedStatement() method of the connection object, as follows:
PreparedStatement stat = con.preparedStatement("select * from emp where eid = ?");

The preparedStatement() method of the connection object takes an SQL
statement as a parameter. The SQL statement can contain the placeholders
that can be replaced by the INPUT parameters at runtime.

NOTE: The "?" Symbol is a placeholder that can be replaced by the INPUT parameters at
runtime.

Passing Input Parameters
Before executing a preparedStatement object, you must set the value of each?
parameter. This is done by calling a setxxx() method, where xxx is the
datatype of the parameter. Look at the following code example:
Stat. setString (1, eid.getText());

ResultSet result = stat. executeQuery ();

The following code makes use of the Prepared Statement Object:
import java.sql.*;

import java.awt.*;

import java.awt. event.*;

public class PreparedQuery extends Frame implements ActionListener

{

TextField eid, ename;

Button query;

Panel p;

/* These variables are declared as static because they have to be accessed in a
static method*/

static ResultSet result;

static Connection con;

static PreparedStatement stat;

/* The constructor of the Prepared Query App class */

public PreparedQuery()

{

 super("The Query Application");

 setLayout(new GridLayout(5,1));

 eid=new TextField();

 ename=new TextField();

 query=new Button("QUERY");

 setSize(500,500);

 p=new Panel();

 add(new Label("Employee ID"));

 add(eid);

 add(new Label ("Employee Name: "));

 add(ename);

 add(p);

 p.add(query);

 query.addActionListener(this);

 setVisible(true);

}

/* The main method creates an object of the class and displays the first record*/

public static void main (String a [])

{

 PreparedQuery obj = new PreparedQuery();

try {

 Class.forName("oracle.jdbc.driver.OracleDriver");

 con = DriverManager.getConnection
("jdbc:oracle:thin:@localhost:1521:xe","system","sail_boat1");

 stat = con.prepareStatement ("select * from emp where id= ?");

}

catch(Exception e)

{

System. out. print ("Error in sql" + e);

}

}

@Override

public void actionPerformed(ActionEvent event) {

 if(event.getSource()==query)

 {

 try{

 stat.setString(1,eid.getText());

 result=stat.executeQuery();

 while(result.next())

 {

 eid.setText(result.getString(1));

 ename.setText(result.getString(2));

 }

 }catch(Exception e){System.out.println(e);}

 }

 }

}

In the preceding example, the following happens:

 1. The PreparedStatement object is created using the prepared statement()
method.

 2. The parameters of the PreparedStatement object are initialized when the
user clicks on the Query button.

 3. The query is then executed using the execute Query() method and the
result is displayed in the corresponding controls, as shown in Figure
1.5:

Figure 1.5: The output of the preceding program

Adding Records
You can use the executeUpdate() method of the statement object to execute
simple INSERT statements, such as the following:
Stat.executeUpdate("insert <tablename> values ()");

The return value of the executeUpdate() method is the number of rows affected
by the query, as follows:

public void addRecord (){try

{

stat. executeUpdate (“Insert into publishers values (“1020”, “New Employee”);

} catch (Exception e) { }

Note: The PreparedStatement object can be used for sending the parameterized INSERT
statements to the database.

Modify Records
You can use the executeUpdate() method of the Statement object to execute
simple UPDATE statements, such as the following:
stat.executeUpdate ("update <tablename> set <Expr>");

The return value of the executeUpdate() method is the number of rows affected
by the Query, as follows:
public void modifyRecord (){

try {

stat.executeUpdate (“update Employee set EName=‘NewEmployee' Where eid= '1234'”),}

catch(Exception e)

{System.out.println("exception ”+e); }

}

NOTE: The Prepared Statement object can be used for sending the parameterized UPDATE
Statements to the database.

Deleting Records
You can use the executeUpdate() method of the statement object to execute
simple Delete statements, such as the following:
stat.executeUpdate ("delete <tablename> where <Expr>");

The return value of the executeUpdate() method is the number of rows affected
by the query, as follows:
public void deleteRecord()

{try

{

stat.executeUpdate(“delete Employee where Eid = '1234');

}catch (Exception e) {System.out.println("Exception”);}

}

NOTE: The Prepared Statement object can be used for sending the parameterized DELETE
Statements to the database.

Conclusion
The database is a repository of information used by the applications. ODBC
API is a set of library routines that enables your programs to access a
variety of databases. JDBC provides a database-programming API for Java
programs. The JDBC-ODBC bridge driver translates the JDBC API to the
ODBC API. 5. There are several categories of JDBC drivers available,
which are as follows:

JDBC-ODBC bridge + ODBC driver

Native API, partly Java driver

JDBC-Net, pure Java driver

Thin Driver

The java.sql package contains the classes that help in connecting to a
database, sending the embedded SQL statements to the database, and
processing the query results. The connection object represents a connection
to a database. The Prepared Statement object allows you to execute the
parameterized queries. The ResultSet object provides you with the methods
to access the data from a table.

Many people do not understand English and want messages, currencies, and
time in their languages. Internationalization helps to do the same. In the
next chapter, we will study Internationalization, which is the process of
customizing an application according to specific languages and regions.

Multiple Choice Questions
 1. The JDBC-ODBC bridge is which of the following?

 a. Single-Threaded

 b. Multi-Threaded

 c. None of these

 2. DriverManager is which of the following?

 a. Interface

 b. Class

 c. Method

 3. Commit is a method of which of the following?

 a. Connection

 b. ResultSet

 c. Statement

 4. Which of the following methods are needed for loading a
database driver in JDBC?

 a. Class.forName()

 b. RegisterDriver()

 c. None of these

 5. How many JDBC driver types does Sun define?

 a. One

 b. Four

 c. Three

Answers
 1. b

 2. b

 3. a

 4. a

 5. b

Fill in the blanks
 1. ________ is an open-source DBMS product that runs on UNIX,

Linux, and Windows.

 Ans: MYSQL

 2. __________________Statement can execute the parameterized
queries.

 Ans: Prepared Statement

 3. The_________ object is returned by the execute Query () method.

 Ans: ResultSet

 4. The __________Symbol is a placeholder that can be replaced by the
INPUT parameters at runtime.

 Ans: "?"

State True/False
 1. JDBC is an API to connect to relational-, object- and XML data

sources.

 Ans: False

 2. The JDBC-ODBC Bridge supports multiple concurrent open
statements per connection.

 Ans: True

 3. JDBC is an API to access the relational databases.

 Ans: False

 4. java.sql and javax.sql packages contain the JDBC Classes and
Interfaces.

 Ans: True

Questions
 1. What is database and database driver?

 2. How many types of drivers are available? Explain.

 3. Write the steps to connect with the database.

 4. What is ResultSet? What is the return type of ResultSet?

Interview Questions
 1. What are the main steps in Java to make the JDBC connectivity?

 2. What are the different types of Statements?

 3. What is JDBC?

 4. Which type of Statement can execute the parameterized queries?

 5. Does the JDBC-ODBC Bridge support multiple concurrent open
statements per connection?

CHAPTER 2
Internationalization (I18N)

Introduction
Many people do not understand English and want messages, currencies, and
time in their languages. Internationalization helps in doing the same.
Internationalization is the process of customizing an application according
to specific languages and regions. Internationalization has 18 characters in
it, which is why it is abbreviated as I18N.

Structure
In this chapter, we will cover the following topics:

Localization

Locale

Resource bundle

Steps to develop I18N-based application

Internationalization

Objective
After studying this chapter, you will be able to develop an application and
display the messages according to specific languages and regions.

Localization (L10N)
It is a mechanism to create an application in a specific language or region.
This can be done via the Locale object. An object of the Locale class
represents a geographical or cultural region. Locale class is used to get the
information about the country language, variant, and so on. A variant
represents operating system-specific information.

Locale
It is a class in the java.util package that provides information about the
country and the region.

Constructors of Locale Class
There are three constructors of the locale class, which are as follows:
 • Locale(String language)

 • Locale(String language, String country)

 • Locale(String language, String country, String variant)

Commonly used methods of Locale class
The following are the commonly used methods of the Locale class:

public static Locale getDefault(): It returns the instance of current Locale.

public static Locale[] getAvailableLocales(): It returns an array of available
locales.

public String getDisplayCountry(): It returns the country name of this
locale object.

public String getDisplayLanguage(): It returns the language name of this
locale object.

public String getDisplayVariant(): It returns the variant code of this locale
object.

public String getISO3Country(): It returns the three-letter abbreviation for
the current locale's country.

public String getISO3Language(): It returns the three-letter abbreviation for
the current locale's language.

The program to get the information of India is as follows:
import java.util.Locale;

public class LocaleTest {

 public static void main(String[] args) {

 Locale locale=new Locale("hi","IN");

 System.out.println(locale.getDisplayCountry());

 System.out.println(locale.getDisplayLanguage());

 System.out.println(locale.getDisplayName());

 System.out.println(locale.getISO3Country());

 System.out.println(locale.getISO3Language());

 System.out.println(locale.getLanguage());

 System.out.println(locale.getCountry());

}}

The output is as follows:
India

Hindi

Hindi (India)

IND

hin

hi

IN

Resource Bundle
It is a good practice if the messages or labels used inside the application are
visible in the user's language, that is, if the user belongs to India, then the
message is in Hindi, or if the users belong to the United States the messages
are in English. Resource Bundle stores the text and components that are
Locale sensitive and loads this information from the properties file that
contains the messages.

The java.util.ResourceBundle class is an abstract class; we cannot make the
object of the ResourceBundle class. Its method helps us manage locale-
sensitive resources.

Constructor of ResourceBundle
ResourceBundle(): This is the default constructor mainly designed for use
by the subclasses and the factory methods.

Methods of ResourceBundle Class
The following are the methods of the ResourceBundle class:

public static ResourceBundle getBundle(String basename): It loads the resource
bundle with the given name and returns the instance of the
ResourceBundle class.

public static ResourceBundle getBundle(String basename, Locale locale): It
loads the resource bundle with the given name and the specified locale
and returns the instance of the ResourceBundle class.

public String getString(String key): It returns the value for the
corresponding key from this resource bundle.

Locale getLocale(): It returns the Locale associated with the current
bundle.

static final clearCache(): It deletes all the resource bundles from the
cache that were loaded by the default class loader.

boolean containsKey(): It returns true if the passed string argument is a
key within the invoking resource bundle.

protected void setParent(): It sets the passed bundle as the parent of the
invoking bundle. In the case of a lookup, if the key is not found in the
invoking object, then it is looked up in the parent bundle.

final Object getObject(): It retrieves and returns the object associated
with the key passed as an argument, either from the current resource

bundle or the parent.

Note:

The name of the properties file should be filename_languagecode_country code, for
example, MyMessage_hi_IN.properties.

The properties file containing the Locale sensitive information is also called resource
bundle.

Steps to develop the I18N-based
application
The following are the steps to develop the I18N-based application:

 1. Identify the Locale's sensitive information for which you want to
customize the application.

 2. Create properties files for each Locale, and the name of the properties
files must be filename_languagecode_country code.

 3. Get the Resource Bundle instance.

 4. Read the message from the properties file with the help of the
ResourceBundle methods.

The following are the examples:

 1. Create MessageBundle_hi_IN.properties, as follows:
welcome=Namaskar,Kaisehaiaap?

 2. Create MessageBundle_en_US.properties, as follows:
welcome=Hello, How are you?

 3. Create a Java class to get the instance of ResourceBundle and read the
message from the properties file according to their Locale, as follows:

 import java.util.Locale;

 import java.util.ResourceBundle;

 public class I18NDemo {

 public static void main(String[] args) {

 //Default Locale is the US

 ResourceBundle bundle = ResourceBundle.getBundle("MessageBundle", Locale.US);

 System. out.println("Message in " + Locale.US + ": " +
bundle.getString("welcome"));

 // Now the default locale change to India

 Locale.setDefault(new Locale("hi", "IN"));

 bundle = ResourceBundle.getBundle("MessageBundle");

 System.out.println("Message in " + Locale.getDefault() + ": " +
bundle.getString("welcome"));

 }}

The output is as follows:
Message in en_US: Hello, How are you?

Message in hi_IN: Namaskar, Kaise hai aap?

Internationalizing Date and Time
(I18N with Date and Time)
Whenever Locale is changed, the format of the date and time is also
changed. This means that the format of the date and time is different from
region to region.

The java.text.DateFormat class has the following methods that help in
changing the date and time according to the region.

Methods of java.text.DateFormat
The following are the methods for java.text.DateFormat:

 1. public static DateFormat getDateInstance(int style, Locale locale): This
method returns the object of DateFormat based on the specified style
and the Locale.This object is used to format the date and not the time.

 2. public static DateFormat getTimeInstance(int style, Locale locale): This
method is used to format the time according to the specified style and
Locale.

 3. public String format(java.util.Date date): This method formats the date
into the date-time string.

NOTE: The DateFormat class has the following styles to display the date and time:

 • static final int SHORT

 • static final int LONG

 • static final int FULL

 • static final int MEDIUM

 • static final int DEFAULT

The following is an example:
import java.util.Locale;

import java.text.DateFormat;

public class DateFormatDemo {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 String lang="en";

 String country="US";

Locale l=new Locale(lang,country);

DateFormat df= DateFormat.getDateInstance(DateFormat.LONG,l);

String dt=df.format(new java.util.Date());

System.out.println(dt);

// Time

DateFormat df2= DateFormat.getTimeInstance(DateFormat.LONG,l);

String time=df2.format(new java.util.Date());

System.out.println(time);

 }}

The following is the output:
May 10, 2020

7:33:47 PM IST

Internationalizing with Numbers
(I18N with Numbers)
Whenever a Locale is changed, the format of the number also changes. The
format of the numbers is also different from region to region. The
java.text.NumberFormat class is used to format the number and the currency
percent according to the specific locale.

The following are the methods of the NumberFormat:

public static NumberFormat getNumberInstance(Locale locale): This returns the
NumberFormat object and is used to format the number according to
the locale.

public static NumberFormat getInstance(Locale locale): This returns a
general-purpose number format for the current default locale.

public static NumberFormat getPercentInstance(Locale l): This returns a
percentage format for the specified locale.

public static NumberFormat getCurrencyInstance(Locale l): This returns a
currency format for the current default locale.

The following is an example:
import java.text.NumberFormat;

import java.util.Locale;

public class FormatextDemo {

 public static void main(String[] args)

{

 Locale l=new Locale(args[0],args[1]);

 NumberFormat nf=NumberFormat.getNumberInstance(l);

 String num=nf.format(123456789.12345);

 System.out.println("Number for "+args[0] +" " +args[1]+" : "+ num);

 //Currency Format

 NumberFormat nf2=NumberFormat.getCurrencyInstance(l);

 String num2=nf2.format(123456789.12345);

 System.out.println("Currency of "+args[0] +" " +args[1]+" : "+ num2);

 //Percent Format

 NumberFormat nf3=NumberFormat.getPercentInstance(l);

 String num3=nf3.format(123456789.12345);

 System.out.println("Percent Format of "+args[0] +" " +args[1]+" : "+ num3);

 } }

The following is the output (for the US region):
Number for en US : 123,456,789.123

Currency of en US : $123,456,789.12

Percent Format of en US : 12,345,678,912%

The following is the output (for France):
Number for fr FR : 123 456 789,123

Currency of fr FR: 123 456 789,12 €

Percent Format of fr FR : 12 345 678 912 %

The following is the output (for Japan):
Number for ja JP : 123,456,789.123

Currency of ja JP : ?123,456,789

Percent Format of ja JP : 12,345,678,912%

Conclusion
 1. Localization: It is a mechanism to create an application in a specific

language or region. This can be done via the Locale object.

 2. Locale: It is a class in java.util package that provides information
about the country and the region.

 3. Resource Bundle stores the text and components that are Locale
sensitive and loads this information from the properties file that
contains the messages. The java.util.ResourceBundle class is an abstract
class. Properties file that contains the Locale sensitive information and
is also called resource Bundle.

 4. The name of the properties file should be the
filename_languagecode_country code, for example, MyMessage_hi_IN.properties.

 5. Whenever a Locale has changed, the format of the number also
changes. The format of the numbers also differs from region to

region. The java.text.NumberFormat class is used to format the following
according to the specific locale:

 • Format the number

 • Format the currency

 • Format the percent

Multiple Choice Questions
 1. Given:
 Date = new Date(); //line no 12

 df.setLocale(Locale.ITALY); //line no 13

 String s = df.format(date); // line no 14

 The variable df is an object of the type DateFormat that has been
initialized inline 11. What is the result if this code is run on
December 14, 2000?

 A. The value of s is 14-dec-2004.

 B. The value of s is Dec 14, 2000.

 C. An exception is thrown at runtime.

 D. Compilation fails because of an error in line 13.

 Answer: D

 2. Given:
 NumberFormat nf = NumberFormat.getInstance(); // line no 12

 nf.setMaximumFractionDigits(4); // line no 13

 nf.setMinimumFractionDigits(2); // line no 14

 String a = nf.format(3.1415926); // line no 15

 String b = nf.format(2); // line no 16

 Which two statements are true about the result if the default locale is
Locale.US? (Choose two.)

 A. The value of b is 2.

 B. The value of a is 3.14.

 C. The value of b is 2.00.

 D. The value of a is 3.141.

 E. The value of a is 3.1415.

 F. The value of a is 3.1416.

 G. The value of b is 2.0000.

 Answer: C, F

 3. Given:

 d is a valid, non-null Date object.

 df is a valid, non-null DateFormat object set to the current locale.

 What outputs the current locale's country name and the appropriate
version of d's date?

 A. Locale loc = Locale.getLocale();

 System.out.println(loc.getDisplayCountry()+ " " +
df.format(d));

 B. Locale loc = Locale.getDefault();

 System.out.println(loc.getDisplayCountry()+ " " +
df.format(d));

 C. Locale loc = Locale.getLocale();

 System.out.println(loc.getDisplayCountry()+ " " +
df.setDateFormat(d));

 D. Locale loc = Locale.getDefault();

 System.out.println(loc.getDisplayCountry()+ " " +
df.setDateFormat(d));

 Answer: B

 4. Given:
 import java.text.*;

 class DateOne {

 public static void main(String[] args) {

 Date d = new Date(1123631685981L);

 DateFormat df = new DateFormat();

 System.out.println(df.format(d));

 . }

 . }

 And given that 1123631685981L is the number of milliseconds
between Jan. 1, 1970, and sometime on Aug. 9, 2005, what is the
result? (Note: the time of day in option A may vary.)

 A. 8/9/05 5:54 PM

 B. 1123631685981L

 C. An exception is thrown at runtime.

 D. Compilation fails due to a single error in the code.

 E. Compilation fails due to multiple errors in the code.

Answer:

-> E is correct. The Date class is located in java.util package, so it needs an
import, and the DateFormat objects must be created using a static method such
as DateFormat.getInstance() or DateFormat.getDateInstance().

->A, B, C, and D are incorrect based on the above.

 5. Which of the following statements are true? (Choose all that apply.)

 A. The DateFormat.getDate() is used to convert a String to a Date
instance.

 B. Both the DateFormat and the NumberFormat objects can be
constructed to be Locale specific.

 C. Both the Currency and the NumberFormat objects must be
constructed using the static methods.

 D. If a NumberFormat instance's Locale is to be different from the
current Locale, it must be specified at the creation time.

 E. A single instance of the NumberFormat can be used to create the
number objects from the strings and create the formatted
numbers from the numbers.

 Answer:

 -> B , C, D, and E are correct.

 ->A is incorrect, DateFormat.parse() is used to convert a String to a
Date.

Questions

 1. How will you use a specific Locale in Java?

 2. Differentiate between Localization and internationalization?

 3. How do I go about internationalizing an existing program?

 4. What is ResourceBundle? How can one extract the strings to the
Resource Bundle files?

 5. Explain how Java application uses multiple locales?

CHAPTER 3
Introduction to Java Servlets

Introduction
Consider a situation where you would like to register yourself with a
website to get a free newsletter subscription. The information you are
required to provide is your first name, last name, and your organization's
name. In addition, you can choose an ID for yourself to log in to the
website. After entering the details and clicking on the Submit button, the
entered data is forwarded to the web server for processing. Processing in
this situation could consist of checking whether the ID you have entered is
already in use or checking for invalid values. If the ID is already in use, the
user is asked to choose a different ID. Validations such as checking for
blank fields and negative values could be done on the client's side itself to
reduce the overhead of the server. Small programs that are written for such
purposes are called client-side scripts. VB scripts and Java scripts are two
languages that can be used for client-side scripting. The programs that take
care of processing the web server's data are called server-side scripts. The
web applications also demand more functionality from the webserver. This
has triggered the development of tools that enable efficient server-side
programming, such as Servlets, Java Server Pages (JSP), Active Server
Pages (ASP), and so on.

Structure
In this chapter, we will cover the following topics:

Webserver

Servlets and their characteristics

Comparison between Servlet and Applet

Working of Servlet

Lifecycle of Servlet

Methods of Servlet

Deployment descriptor

Objectives
After studying this chapter, you will learn how to communicate with the
webserver with the help of Servlets. You will understand the lifecycle
methods of Servlets. You will also learn how the web container gets the
information about Servlets with the help of the deployment descriptors.

Webserver
A webserver takes the client request, finds the resource (HTML page,
picture, sound file, records), and returns something to the user. When the
server does not find a requested resource, it gives 404 “Not Found Error.”
The webserver is a combination of the hardware and the software.
Hardware can be any physical machine, and software is a web server
application.

Introduction to Servlets
Servlets are Java programs that can be deployed on a Java-enabled
webserver to enhance and extend the functionality of the webserver. For
example, you can write a Servlet to add a messenger service to the Earnest
Bank website. Servlets can also be used to add dynamic content to web
pages. For example, you can use a Servlet to retrieve the latest gift offers
provided by the Earnest Bank from an information database and display it
on the bank's home page.

Characteristics of Servlets
Servlets can be used to develop a variety of web-based applications. As
Servlets are written using Java, they can use the extensive power of the Java
API, such as networking and URL access, multithreading, database
connectivity, internationalization, remote method invocation (RMI), and
object serialization. The characteristics of Servlets that have gained them
widespread acceptance are as follows:

Servlets are efficient: The initialization code for a Servlet is executed
only when the Servlet is executed for the first time. Subsequently, the
Servlet's requests are processed by its service() method. This helps
increase the efficiency of the server by avoiding the creation of
unnecessary processes.

Servlets are robust: Servlets are based on Java; they provide all the
powerful features of Java, such as exception handling and garbage
collection, which make them robust.

Servlets are portable: Servlets are also portable because they are
developed in Java. This enables easy portability across the web
servers.

Servlets are persistent: Servlets increase the system's performance by
preventing frequent disk access. For example, if a customer logs on to
www.EarnestOnline.com, the customer can perform many activities,
such as checking for the balance, applying for a loan, and so on. In
every stage, the customer needs to be authenticated by checking for the
account number against the database; instead of checking for the
account number against the database every time, Servlets retain the
account number in the memory till the user logs out of the website.

Comparison between Servlets and
Applets
Applets are Java programs that are embedded in web pages. When a web
page containing an Applet is opened, the byte code of the applet is

http://www.earnestonline.com/

downloaded to the client’s computer. This process becomes time-consuming
as the size of the applet is too large. As the Servlets execute on the web
server, they help overcome problems with the download time faced while
using applets. Servlets do not require the browser to be Java enabled, unlike
the applets, because they execute on the webserver, and the results are sent
back to the client or the browser. The applet is a depreciated technology.

Comparison between Servlets and
other server-side scripting technologies
Common Gateway Interface (CGI) scripts, JSP, and ASP are alternatives
to Servlets and have their advantages and disadvantages.

CGI scripts
A CGI script is a program that is written in C, C++, or Perl. A CGI script
gets executed in a server when a server receives a request from the client
for processing the data. The server passes the request to the CGI script. The
CGI script processes the request and sends the output in the form of HTML
to the server. The server, in turn, passes the request to the client.

The disadvantages of using a CGI script are as follows:

Whenever a CGI script is invoked, the server creates a separate
process for it. The server has a limitation on the number of processes
that can be created simultaneously. If the number of requests is too
high, the server will not be able to accept the requests. In addition, the
creation of too many processes will also bring down the efficiency of
the server.

The most popular platform for writing a CGI script is Perl. Even
though Perl is a very powerful language for writing CGI applications,
the server needs to load the Perl interpreter for each request that it
receives. Thus, for an incoming request, the executable file of the CGI
script and the Perl interpreter is loaded, which brings down the
efficiency of the server.

Unlike the CGI scripts, the Servlet initialization code is executed only once.
In the case of Servlets, each request is handled by a separate thread in the
webserver more efficiently by preventing the creation of unnecessary
processes.

Active Server Pages (ASP)
ASP is a server-side scripting language that has been developed by
Microsoft. ASP enables a developer to combine HTML and a Scripting
language on the same web page. JavaScript and VBScript are two scripting
languages that are supported by ASP. VBScript and JavaScript can also be
used for server-side scripting by using the run at (<script runat=server>) tag.
The limitation of ASP is that it is not compatible with all the web servers.
The other web servers need specific plug-ins to be installed to support ASP.
However, adding a plug-in can decrease the performance of the system.

Working of Servlets
The client or the browser passes the requests to the server using the GET or
the POST methods. For example, a Servlet could be invoked by clicking a
user-interface component, such as a button on a form or following a
hyperlink on a web page. After the Servlet processes the request, the output
is returned as an HTML page to the client.

The client request consists of the following components:

The protocol used for the communication between the server and the
client, such as HTTP.

The request type can be GET or POST.

The query string contains additional information such as login name,
password, and registration details.

The following is an example: GET
http://www EarnestBank.com/login.xhtml?username="sarika"&passwd="3445H"

The preceding URL is used to display a user's mailbox called "Sarika".

Table 3.1 describes the different components of the URL:

Component Description

HTTP It is the protocol that is used for communication between the server
and the client.

www.EarnestBank.com It is the name of the website.

login.xhtml It is the name of the form that is displayed to the user.

Username="sarika"
&passwd="3445H

These are the values that are passed to the server-side program.

Table 3.1: Different components of the URL

The GET and POST methods
When a client sends a request to the server, the client can also pass
additional information with the URL to describe what exactly is required as
the output from the server by using the GET method. The additional sequence
of characters appended to the URL is called a Query String. However, the
length of the query string is limited to 240 characters. Moreover, the query
string is visible on the browser and is called, therefore, a security risk.

To overcome these disadvantages, the POST method can be used. In the POST
method, a large amount of data can be sent through a separate socket
connection. The complete transaction is invisible to the client.

The disadvantage of this method is that it is slower than the GET method
because the data is sent to the server as separate packets.

The Javax.servlet package
Java supports the implementation of Servlets through the javax.servlet and
javax.servlet.http packages. The javax.servlet interface provides the general
framework for creating a Servlet. A Servlet can directly implement this

http://www.earnestbank.com/

interface or indirectly implement the same by extending the
javax.servlet.GenericServlet or the Javax.Servlet.http.HttpServlet classes.

The GenericServlet class of the javax.Servlet package is used to create Servlets
that can work with any protocol. The javax.Servlet.http package is used to
create the HTTP Servlets that provide the output in the form of HTML
pages. The class that is used to create the HTTP Servlets is called HttpServlet
and is derived from the GenericServlet class. Serialization is also made
possible in Servlet and is derived from the GenericServlet class through the
serializable interface. Serialization is the process of writing an object into a
persistent storage medium, such as a hard disk. The hierarchies of the
classes that are used to create a Servlet are shown in Figure 3.1:

Figure 3.1: The Servlet class Hierarchy

Table 3.2 describes the classes and interfaces used for the creation of
Servlets:

Class/Interface Name Description

HttpServlet class Provides an HTTP-specific implementation of the Servlet interface.
This class extends the GenericServlet class that provides a
framework for handling the other types of network and web
services.

HttpServletRequest
Interface

It extends the ServletRequest interface to provide the methods to
process the requests from the clients. For example, assume that the
client browser consists of a form with two fields. When the values
are submitted to the server for processing, they are extracted using
the methods in the HttpServletRequest interface.

HttpServletResponse
interface

It extends the ServletResponse interface to provide the methods to
send a response. For example, it has methods to access the HTTP
headers and cookies.

Table 3.2: Classes and Interface to create a Servlet

Lifecycle of a Servlet
The lifecycle of a Servlet gives the states of Servlet. There are three states
of Servlet – new, ready, and end. The states of the servlets change with the
help of the calling of servlets method.

Servlet Interface
The servlet interface provides a common functionality in all the Servlets.
The servlet interface defines the methods that all the Servlets must
implement. HttpServlet and GenericServlet implement servlet interface
directly or indirectly. The servlet interface provides three lifecycle methods
used to implement any Servlet.

A Servlet is loaded only once in the memory and is initialized in the init()
method. After the Servlet is initialized, it starts accepting a request from the
client and processes them through the service() method until it is shut down
by the destroy() method. The service() method is executed for every
incoming request. The lifecycle of a Servlet is depicted as follows:

 1. Servlet class is loaded.

 2. Servlet instance is created.

 3. The init method is invoked.

 4. The service method is invoked.

 5. The destroy method is invoked.

Refer to Figure 3.2, which illustrates the lifecycle of a Servlet:

Figure 3.2: Lifecycle of a Servlet

Table 3.3 describes the methods of the Servlet interface:

S.No Method name Description

1 public void init
(ServletConfig config)
throws Servlet
Exception

It contains all initialization codes for the Servlet and is
invoked when the Servlet is first loaded and created.

2 public void service
(ServletRequest
request, ServletResponse
response);

It receives all the requests from clients, identifies the type
of requests, and dispatches them to the doGet() or
doPost() methods for processing.

3 public void destroy() It executes once when the Servlet is removed from the
server. The cleanup code for the Servlet must be
provided in this method.

4 public ServletConfig
getServletConfig();

It returns the object of ServletConfig.

5 public String
getServletInfo()

It returns the information about the Servlet, such as
writer, copyright, version, and so on.

Table 3.3: Methods of Servlet Interface

Creating a Servlet
Along with three lifecycle methods(int(),service() and destroy()), two more
methods are also used to create a Servlet.

Table 3.4 also describes two methods that are used in creating a Servlet:

S.No Method name Description

1 ServletResponse.
getWriter ()

It returns a reference to a PrintWriter object. The
PrintWriter class is used to write the formatted objects
as a text-output stream onto the client.

2 ServletResponse.
setContentType (String
type)

It sets the type of content sent as a response to the client
browser. For example, SetContentType (“text/html”)
is used to set the response type as text.

Table 3.4: Methods that are used in creating a Servlet along with the life cycle method

The Servlet can be created in three of the following ways:

By implementing the Servlet interface

By inheriting GenericServlet class

By inheriting HttpServlet class

 1. The following is an example of a servlet created by implementing
the Servlet Interface:

 import java.io.*;

 import javax.Servlet.*;

 public class FirstServlet implements Servlet{

 ServletConfig config=null;

 public void init(ServletConfig config)

 {

 this.config=config;

 System.out.println("Servlet is initialized");

 }

 public void service(ServletRequest req,ServletResponse res)

 throws IOException,ServletException

 {

 res.setContentType("text/html");

 PrintWriter out=res.getWriter();

 out.print("<html><body>");

 out.print("This is First Servlet through Servlet Interface");

 out.print("</body></html>");

 }

 public void destroy()

 {

 System.out.println("Servlet is destroyed");

 }

 public ServletConfig getServletConfig()

 { return config;

 }

 public String getServletInfo()

 {

 return "Institute of Learning- Advance Java First Servlet via Servlet
interface";

 }

 }

Compile a Servlet
For compiling the Servlet, a JAR file is required to be loaded. Different
servers need different jar files.

Table 3.5 provides the list of different servers and JAR files:

Jar File Server

javaee.jar Glassfish/JBoss

weblogic.jar Weblogic

servlet-api.jar Apache Tomcat

Table 3.5: List of different servers and JAR files

Creating the deployment descriptor (web.xml file)
The deployment descriptor is an XML file, from which the web container
gets the information about the Servlet to be invoked. The web container
uses the parser to get the information from the web.xml file. There are many
XML parsers such as SAX, DOM, and Pull. For a Servlet or an HTML page
(that might contain a link to a Servlet) to be accessible from the client, it
has to first be deployed on the webserver.

NOTE: The load-on-startup element of Servlet in web.xml is used to load the Servlet at the
time of deploying the project or the server to start. This saves time for the response of the
first request. If you pass the positive value, the lower integer value Servlet will be loaded
before the higher integer value Servlet. In other words, the container loads the Servlets in
the ascending order of the integer values. The 0 value will be loaded first, then 1, 2, 3, and so
on.

The description of the basic element used in the web.xml file is as follows:

<web-app> represents the whole application.

<Servlet> is a sub-element of <web-app> and represents the Servlet.

<Servlet-name> is a sub-element of <Servlet> and represents the name of
the Servlet.

<Servlet-class> is a sub-element of <Servlet> and represents the class of
the Servlet.

<Servlet-mapping> is a sub-element of <web-app>. It is used to map the
Servlet.

<url-pattern> is a sub-element of <Servlet-mapping>. This pattern is used on
the client-side to invoke the Servlet.web.xml, as follows:

<load-on-startup>1</load-on-startup>. Servlet with less number
will be loaded first

Web.xml
<web-app>

 <Servlet>

 <Servlet-name>FirstServlet</Servlet-name>

 <Servlet-class>FirstServlet</Servlet-class>

 </Servlet>

 <Servlet-mapping>

 <Servlet-name>FirstServlet</Servlet-name>

 <url-pattern>/FirstServlet</url-pattern>

 </Servlet-mapping>

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

</web-app>

Now, start the server and run the Servlet.

The output of the Servlet is shown in Figure 3.3:

Figure 3.3: Output of the Servlet

 2. The following is an example of a servlet created by extending the
GenericServlet class

 GenericServlet class: It is an abstract class that implements Servlet,
ServletConfig, Serializable interface. It has given body of all the
methods of servlet interface except service() method. Therefore, a
programmer has to give the body of service() method. It is protocol-
independent.

Program:
import java.io.*;

import javax.Servlet.*;

public class FirstServlet implements Servlet

{

public void service(ServletRequest req,ServletResponse res)

throws IOException,ServletException

{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.print("<html><body>");

out.print("This is First Servlet through Servlet Interface");

out.print("</body></html>");

}

}

HttpServlet: HTTP is a web-specific protocol and has rules for the
conversation between the browser requests and the webserver responses. In
the next chapter, you will learn about HttpServlet

Conclusion
In this chapter, you learned that Servlets are server-side Java programs that
can be deployed on a web server. The Servlet interface provides the basic
framework for coding the Servlets. Servlets are portable, extensible,
persistent, and robust. The lifecycle of a Servlet is composed of the init(),
service(), and destroy() methods. Servlets can be deployed in Glassfish,
Weblogic, and Apache Tomcat.

In the next chapter, you will learn about HTTPServlet. HTTP is a web-specific
protocol and has rules for the conversation between the browser requests
and the webserver responses. HTTP adds the header information to the top

of whatever content is in the response sent by the server. The browser uses
that header information to help process the HTML page. HTTPServlet provides
a framework for handling the HTTP protocol, whereas GenericServlet is
protocol-independent.

Questions
 1. What is different between the web server and the application server?

 2. What are the advantages of Servlets over CGI?

 3. Which class is used by a Servlet to receive a request from the client?

 4. What is the difference between Applet and Servlet?

 5. How do we compile the Servlet?

 6. Where does the Servlet store, and where does it run?

 7. What are the life cycle methods for a Servlet?

 8. What is the use of URL-pattern in web-app.xml?

CHAPTER 4
HTTP Servlet

Introduction
This chapter focuses on the things related to what the HTTP servlets can do.
HyperText Transfer Protocol (HTTP) is a stateless protocol used to make
the communication between the browser and the webserver. For example,
when a user sends a request to open a specific page, the rules in the HTTP
protocol are to be followed. HTTPServlet has implemented all the rules of
the HTTP protocol.

Structure
In this chapter, we will cover the following topics:

HTTP Servlet

HTTP Request and Response

Methods of HTTP Servlet

GET and POST Methods

Objectives
After studying this chapter, you will learn about the HTTP Protocol. You
will also understand how HTTPServlet helps us communicate with the web
container and handle the HTTP protocols.

HTTP Servlet
It is an abstract class that extends the generic servlet and adds the
functionality of the HTTP protocol, as shown in Figure 4.1:

Figure 4.1: Hierarchy of HttpServlet class

Need of HTTPServlet class
A web server takes a client request and gives something back to the browser
in the HTML format to display it. When a web server sends an HTML page
to the client, it sends it using HyperText Transfer Protocol (HTTP).
HTTP is a web-specific protocol and has rules for conversation between
browser requests and web-server responses. HTTP adds the header
information to the top of whatever content is in the response sent by the
server. The browser uses that header information to help process the HTML

page. HTTPServlet provides a framework for handling the HTTP protocol,
whereas GenericServlet is protocol-independent.

HTTP Request and HTTP Response
The browser sends a client's request inside the HTTP Request, and the
server passes the data inside the HTTP Response, as shown in Figure 4.2:

Figure 4.2: HTTP Request and Response

HTTP Protocol has several methods. This method name tells the server the
kind of request being made. For example, the client sends an HTTP Get

request to the server asking to get the page from the specified resource.
When a user sends an HTTP Post request to the server, the user sends the data
to the server or updates a resource. HttpServlet provides various methods of
HTTP specific, which are as follows:

public void service(ServletRequest req, ServletResponse res): Dispatches the
request to the protected service method by converting the request and
response object into the HTTP type.

protected void service(HttpServletRequest req, HttpServletResponse res):
Receives the request from the service method and dispatches the
request to the doXXX() method depending on the incoming HTTP request
type.

protected void doGet(HttpServletRequest req, HttpServletResponse res):
Handles the GET request. The web container invokes it.

protected void doPost(HttpServletRequest req, HttpServletResponse res):
Handles the POST request. The web container invokes it.

protected void doHead(HttpServletRequest req, HttpServletResponse res):
Handles the HEAD request. The web container invokes it.

protected void doOptions(HttpServletRequest req, HttpServletResponse res):
Handles the OPTIONS request. It is invoked by the web container.

protected void doPut(HttpServletRequest req, HttpServletResponse res):
Handles the PUT request. It is invoked by the web container.

protected void doTrace(HttpServletRequest req, HttpServletResponse res):
Handles the TRACE request. It is invoked by the web container.

protected void doDelete(HttpServletRequest req, HttpServletResponse res):
Handles the DELETE request. It is invoked by the web container.

protected long getLastModified(HttpServletRequest req): Returns the time
when HttpServletRequest was last modified since midnight January 1,
1970 GMT.

The GET and POST methods
When a client sends a request to the server, the client can also pass
additional information with the URL to describe what exactly is required as
the output from the server by using the GET method. The additional sequence
of characters that are appended to the URL is called a query string.
However, the length of the query string is limited to 240 characters.
Moreover, the query string is visible on the browser and can therefore be a
security risk.

To overcome these disadvantages, the post method can be used. The POST
method sends the data as packets through a separate socket connection. The
complete transaction is invisible to the client. The disadvantage of this
method is that it is slower than the GET method because the data is sent to the
server as separate packets.

Table 4.1 shows the difference between the GET and POST methods:

Get Post

Data is limited to 240 characters A large amount of data can be sent.

Not Secured Secured.

Can be bookmarked Cannot be bookmarked.

Idempotent Non-Idempotent.

Efficient It is less efficient and slow.

Table 4.1: Difference between Get and Post Method

An example to develop an application to keep track of the number of users
visiting your web application or website is as follows:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

 /**Counter to keep track of the number of users visiting the web site */

public class HitCountServlet extends HttpServlet {

static int count;

 public void init(ServletConfig config) throws ServletException

 {

super.init(config);

 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 count++;

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet HitCountServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1> You are user Number"+String.valueOf(count)+"Visiting
our website</h1>");

 out.println("</body>");

 out.println("</html>");

 } }

 @Override

 public String getServletInfo() {

 return "Hit count servlet";}

}

The output for the preceding example is shown in Figure 4.3:

Figure 4.3: Result of the preceding program

In this example, the following methods are to be used:

The init() method needs to be coded in the HitCountServlet class to
initialize the hit counter to zero. This method gets invoked
automatically when the servlet is loaded into the memory. The servlet
gets automatically loaded on the web container either when the server
is started or installed manually using some administrative tools.

The doGet() method needs to be coded to increment the hit counter
whenever a client browser requests for the

http://localhost:8084/WebApplication1/HitCountServlet home
page.

NOTE: If the client does not explicitly specify the request type, then by default, the doGet()
method is invoked.

HttpServletRequest Interface
This interface extends the ServletRequest interface to provide the request
information for a servlet, such as content type, content length, parameter
names and values, header information, attributes, etc. It is in the
Javax.servlet.http package.

Method of ServletRequest Interface
Table 4.2 shows the methods of the ServletRequest interface:

http://localhost:8084/WebApplication1/HitCountServlet

Method Description

public String
getParameter(String name)

It is used to obtain the value of a parameter by name.

public String[]
getParameterValues(String name)

It returns an array of String containing all the values of
the given parameter name. It is mainly used to obtain the
values of a multi-select list box.

java.util.Enumeration
getParameterNames()

It returns an enumeration of all of the request parameter
names.

public int getContentLength() It returns the size of the request entity data or -1 if not
known.

public String
getCharacterEncoding()

It returns the character set encoding for the input of this
request.

public String getContentType() It returns the Internet Media Type of the request entity
data or null if not known.

public ServletInputStream
getInputStream() throws
IOException

It returns an input stream for reading binary data in the
request body.

public abstract String
getServerName()

It returns the host name of the server that received the
request.

public int getServerPort() It returns the port number on which this request was
received.

Table 4.2: Methods of ServletRequest Interface

With the help of the ServletRequest interface, the server can get the parameter
pass by the user, process it, and send the result back to the user.

This can be explained with the help of an example of the login form where
the user enters the user name and password. Servlet has used the getParameter
method that returns the value username and password and checks whether
the username and password are valid or not.

Example

index.xhtml:
<!DOCTYPE html>

<html>

<body>

<h1>The Login Form</h1>

<form method="post" action="/LoginForm/actionpage">

<label for="fname">User name:</label>

<input type="text" id="uname" name="Uname">

<label for="lname">Password:</label>

<input type="text" id="pwd" name="pwd">

<input type="submit" value="Submit">

</form>

</body>

</html>

Actionpage.java:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class Actionpage extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet Actionpage</title>");

 out.println("</head>");

 out.println("<body>");

 String name=request.getParameter("Uname");

 String pwd=request.getParameter("pwd");

 if(name.equals("Sarika") && pwd.equals("vivek"))

 out.println("<h1>You are successfully login </h1>");

 else

 out.println("<h1>User Name or Password is Incorrect </h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 @Override

 public String getServletInfo() {

 return "Login Form ";

 }}

Web.xml:
<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.1"

 <servlet>

 <servlet-name>Actionpage</servlet-name>

 <servlet-class>Actionpage</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Actionpage</servlet-name>

 <url-pattern>/actionpage</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>

 30

 </session-timeout>

 </session-config>

</web-app>

The following is the output of index.xhtml as shown in Figure 4.4:

Figure 4.4: Output of index.xhtml

The following is the output of the action page as shown in Figure 4.5 and
Figure 4.6:

ActionPage

Figure 4.5: Output of Action Page

Action Page: (If either user name or password is incorrect):

Figure 4.6: Output of Action Page

Conclusion
In this chapter, you learned that HTTP stands for HyperText Transfer
Protocol, and it is a network protocol used on the web. It runs on top of
TCP/IP. HTTPServlet is an abstract class that extends the generic servlet
and adds the functionality of the HTTP protocol. HTTP uses the
request/response model – the user makes a request, and the webserver gives

an HTTP response to the browser, and the browser displays it to the user. If
the response from the server is an HTML Page, the HTML is added to the
HTTP Response. HTTPServletRequest and HTTPServletResponse are two
interfaces used to exchange the information between the user and the
webserver. An HTTP request includes the request URL. The additional
sequence of characters that are appended to the URL is called a query
string. The GET request appends the query string at the end of the URL.
The POST method appends the query string or data in the body of the
request.

In the next chapter, you will learn about the sessions as HTTP cannot
remember the activity of the previous page. HTTP is a stateless protocol.
This means it does not have any information regarding the HTTP page. To
remember the state or send the information from one page to another, we
need to maintain the sessions.

Questions
 1. What is the difference between the Get and Post methods?

 2. What is the difference between GenericServlet and HttpServlet?

 3. How is PrintWriter different from ServletOutputStream?

 4. Which HTTP method is non-idempotent?

Multiple Choice Questions
 1. What type of servlets use these methods – doGet(),

doPost(),doHead, doDelete(), doTrace()?

 a. Generic Servlets

 b. HttpServlets

 c. All of the above

 d. None of the above

 Answer: HttpServlets

 2. Web server is used for loading the init() method of the servlet.

 a. True

 b. False

 Answer: True

 3. Which packages represent the interfaces and classes for servlet
API?

 a. javax.servlet

 b. javax.servlet.http

 c. Both A & B

 d. None of the above

 Answer: javax.servlet

 4. Which class can handle any type of request so that it is protocol-
independent?

 a. GenericServlet

 b. HttpServlet

 c. Both A & B

 d. None of the above

 Answer: Generic Servlet

 5. Which HTTP request method is non-idempotent?

 a. GET

 b. POST

 c. BOTH A & B

 d. None of the above

 Answer: POST

 6. Which object is created by the web container at the time of
deploying the project?

 a. ServletConfig

 b. ServletContext

 c. Both A & B

 d. None of the above

 Answer: Servlet Context

CHAPTER 5
Working with Servlet Sessions

Introduction
HTTP cannot remember the activity of the previous page. HyperText
Transfer Protocol (HTTP) is a stateless protocol. This means it does not
have any information regarding the HTTP page. To remember the state or
send the information from one page to another, we need to maintain the
sessions.

Structure
In this chapter, we will cover the following topics:

Session tracking

URL rewriting

Hidden form fields

Cookies

HTTPSession interface

Objective
After studying this chapter, you will understand how to make sessions and
remember each user preference.

Session tracking
A session is a group of activities performed by a user while accessing a
particular website. The process of keeping track of the settings across the
sessions is called session tracking. Consider the example of an online
shopping mall. The user can choose a product and add it to the shopping
cart. When the user moves to a different page, the details in the shopping
cart are still retained so that the user can check the items in the shopping
cart and then place the order.

Session tracking can also be used to keep track of the user's preferences.
For example, if the user selected the novels, then more novels are displayed
to the user.

Techniques to keep track of sessions in
servlets
By default, the data across the sessions cannot be stored by using HTTP
because it is a stateless protocol. However, certain techniques help store the
session data by using HTTP.

They are as follows:

URL Rewriting

Hidden form Fields

Cookies

HTTPSession interface

URL Rewriting
This is a technique by which the URL is modified to include the session ID
of a particular user and is sent back to the client. In any subsequent
transaction, the client is forced to use the session ID when it sends a request

to the server. If a session ID does not exist, then a session ID is created and
used in subsequent communication between the client and the server.

The following is an example:

Original URL:
http://<host address>:<port number >/servletcontext/ sampleservlet

We can send the parameter values and names with the original URL.

Syntax:
Original URL?name1=value1&name2=value2

The following is an example:
http://<host address>:<port number>/servletcontext/sampleservlet?
name=sarika&pwd=sailboat

The advantages of URL Rewriting are as follows:

It will always work whether a cookie is disabled or not (browser
independent).

No extra form is required.

The disadvantages of URL Rewriting are as follows:

Works with links.

Text information can only be sent.

The following is an example:
User Name is available on the next2 page by using URL rewriting.

Index.xhtml:
<!DOCTYPE html>

<html>

<body>

<h1>The Login Form</h1>

<form method="post" action="/Sessions/next">

<label >User name:</label>

<input type="text" id="uname" name="Uname">

<label for="lname">Password:</label>

<input type="password" id="pwd" name="pwd">

<input type="submit" value="Submit">

</form>

</body>

</html>

Next Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class URLRewritingExample extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet URLRewritingExample</title>");

 out.println("</head>");

 out.println("<body>hello ");

 String name=request.getParameter("Uname");

 String pwd=request.getParameter("pwd");

 if(name.equals("Sarika") && pwd.equals("vivek"))

 {

out.println("<h1>"+name+" are successfully login </h1>");

 out.print("visit");

}

 else

 out.println("<h1>User Name or Password is Incorrect </h1>");

 out.println("</body>");

 out.println("</html>");

 } }}

Next2Servlet:
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class NEXT2 extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NEXT2</title>");

 out.println("</head>");

 out.println("<body>");

 String n=request.getParameter("name");

 out.println("<h1>Hello "+n +"</h1>");

 out.println("</body>");

 out.println("</html>");

 } }}

The following is the result for index.xhtml, as shown in Figure 5.1:

Figure 5.1: Output of the preceding program (index.xhtml)

The following is the result for the next servlet, as shown in Figure 5.2:

Figure 5.2: Output of Next servlet

When you click on a visit, you receive the following output, as shown in
Figure 5.3:

Figure 5.3: Output of Next 2 Servlet

Hidden Form Fields
This is one of the techniques that can be used to keep track of the users by
placing the hidden fields in a form. The values that have been entered in
these fields are sent to the server when the user submits the form. As far as
the server is concerned, there is no difference between the hidden form
fields and the other fields in the form.

Let us consider the same example of a shopping mall. The items that the
user selects can be recorded by using the hidden form fields and submitted
to the server for processing the details.

The following is an example:

Hello.xhtml:
<HTML>

 <TITLE>A Form with Hidden Fields></TITLE>

 <BODY>

 <FORM>

 <INPUT TYPE = “HIDDEN” NAME= “text1”></FORM>

 </BODY>

</HTML>

In this program, we store the user's name in a hidden text field and get that
name from the second servlet, as shown as follows:

index.xhtml
<html>

<head>

<title>Hidden Form Field</title>

</head>

<body>

<form action="first">

 Name:

<input type="text" name="userName"/>

<input type="submit" value="submit"/>

</form>

</body></html>

First Servlet(ActionServlet1):
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class ActionServlet1 extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet ActionServlet1</title>");

 out.println("</head>");

 out.println("<body>");

 String name=request.getParameter("userName");

 out.print("Welcome "+name);

 out.print("<form action='second'>");

 out.print("<input type='hidden' name='uname' value='"+name+"'>");

 out.print("<input type='submit' value='Next'>");

 out.print("</form>");

 out.println("</body>");

 out.println("</html>");

 }}}

Second Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class Second extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet Second</title>");

 out.println("</head>");

 out.println("<body>");

 String name=request.getParameter("uname");

 out.print("Hello "+name);

 out.println("</body>");

 out.println("</html>"); }}}

The output for index.xhtml is shown in Figure 5.4:

Figure 5.4: Output of the above program

The First Servlet stores the name using the hidden form field, as shown in
Figure 5.5:

Figure 5.5: Output of ActionServlet1 (first) Servlet

The Second Servlet accesses the name from the hidden field, as shown in
Figure 5.6:

Figure 5.6: Output of the Second servlet

Using the HttpSession Interface
The Servlet API consists of a few classes and interfaces that help
implement session tracking in servlets. The Java Servlet API provides an
interface called HttpSession that can be used to keep track of the sessions in
the current servlet context.

Every user who logs onto a website is automatically associated with an
HttpSession object. The servlet can use this object to store the information
about the user's session. The HttpSession object enables the user to maintain
two types of data – state and application.

The state data is used to maintain and retrieve the details about the user's
connection. A user’s connection details could be the time at which the
session was created or last accessed. The application data is used to store
the details, such as the items that were added to the shopping basket by the
user. The application data can be manipulated by using the getValue() and the
putValue() methods of the HttpSession interface, as shown in Table 5.1:

Method name Functionality

getSession() This method is used to retrieve the current HTTP session
that is associated with the user. If a session does not exist,
then a session can be created by using
getSession(true).

Object getValue (String name) This function is used to retrieve the value in a session
object. For example, if you have a session object named
item selected, then you can retrieve the value in the
session object by using getValue(itemselected).

Void putValue (String name,
Object value)

This function is used to add an item to the session.

boolean isNew () This function returns a true value if a new session ID has
been created and has not been sent to the client.

String getlD () This function returns the session ID. If URL rewriting is
used, the session can be retrieved using this function and
padded onto the client.

long getCreationTime () This function returns the time in milliseconds when the
session was first created.

long getLastAccessedTime () This function returns the previous time a request was
made with the same session ID. The return value of this
function is used by the session manager to optimize the
activity of the server.

Table 5.1: Methods of HttpSession Interface

Program
In this program, the attribute was set in the first servlet's session scope and
got that value from the session scope by the second servlet. To set the
attribute in the session scope, we used the setAttribute() method of the
HttpSession interface, and to get the attribute, we used the getAttribute method,
as shown as follows:
<html>

<head>

<title>Http Session</title>

</head>

<body>

<form action="First">

 Name:

<input type="text" name="userName"/>

<input type="submit" value="submit"/>

</form>

</body>

</html>

First Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class First extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet First</title>");

 out.println("</head>");

 out.println("<body>");

 String name=request.getParameter("userName");

 out.print("Welcome "+name);

 HttpSession session=request.getSession();

 session.setAttribute("uname",name);

 out.print("
visit");

 out.println("</body>");

 out.println("</html>");

 }}}

Second Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class Second extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet Second</title>");

 out.println("</head>");

 out.println("<body>");

 HttpSession session=request.getSession(false);

 String n=(String)session.getAttribute("uname");

 out.print("Hello "+n);

 out.println("</body>");

 out.println("</html>");

 }}}

The following is the result for index.xhtml, as shown in Figure 5.7:

Figure 5.7: Output of the preceding Program (index.xhtml)

The following is the First Servlet output, as shown in Figure 5.8:

Figure 5.8: Output of First Servlet

The following is the Second Servlet output, as shown in Figure 5.9:

Figure 5.9: Output of Second Servlet

Cookies
Cookies are small text files used by a web server to keep track of the users.
A cookie has values in the form of key-value pairs. They are created by the
server and sent to the client with the HTTP response headers. The client
saves the cookies in the local hard disks and sends them along with the
HTTP request headers to the server. If a cookie with the same name already
exists, then the key is overwritten with the new value. A server can send
one or more cookies to the client. A web browser, which is the client
software, is expected to support 20 cookies per host, and the size of each
cookie can be a maximum of 4 bytes each.

The following are the characteristics of cookies:

Cookies are only sent back to the server that created them and not to
any other server. For example, if a cookie was created by the
webserver and sent to the client or the browser, the cookie can be sent
back to the same server only.

The server can use cookies to find out the computer name, IP address,
or any other details of the client computer.

The following are the advantages of Cookies:

Cookies are the simplest technique of maintaining the state.

Cookies are maintained at the client-side.

The following are the disadvantages of Cookies:

It will not work if the cookie is disabled from the browser.

Only textual information can be set in the Cookie object.

The javax.servlet.http.Cookie class
The Servlet API provides a class called Cookie, which is used to represent a
cookie. The Cookie class is used for implementing session tracking in
servlets. The values of the cookies are stored in the client computers. As
discussed earlier, a cookie has a name, which is referred to as a key, and the
data stored in the cookie is referred to as value.

A cookie is sent by the client through an HttpServletRequest object. The
servlet sends the cookie to the client through an HttpServletRequest object.

The constructor of the Cookie class

Cookie(): Constructs a new cookie.

Cookie(String name, String value): Constructs a cookie with a specified
name and value.

Table 5.2 lists some of the methods of javax.servlet.http.Cookie,
HttpServletResponse, and HttpServletRequest class that are used to implement the
concept of session tracking using cookies:

Method Name Functionality

Cookie.Cookie (String.String) The constructor of the Cookie is a class used to
create a cookie and assign a value to it.

Cookie.getValue (String name) Each cookie that gets created by a servlet is given a
name and value. This function returns the value
stored in the given cookie.

Cookie.setValue (string) This function is used to assign a value of a type
string to the given cookie.

Cookie.getName() This method is used to retrieve the name of a cookie.

Cookie.setMaxAge (int) This method is used to specify the maximum
amount of time for which the client browser retains
the cookie value.

Cookie.setName (String name) It changes the name of the cookie and sets the name
of the cookie.

HttpServletResponse. addcookie () Cookies are created by the server and passed onto
the client through an HttpServletResponse object.
The addCookie () method is used to add a cookie to
the response. This method can be called more than
once to add different cookies to the response that is
sent to the client.

HttpServletRequest. getCookie() The client sends the data to the server in the form of
a request received by the server in the form of an
HttpServletRequest object. This method is used to
retrieve the cookie values in the request.

public Cookie[] getCookies() It is a method of the HttpServletRequest interface
used to return all the cookies from the browser.

Table 5.2: Method of Cookie, HttpServletResponse, and HttpServletRequest class

The following is an example:

In this program, we store the user's name in the cookie object by the First
servlet and access it in the second servlet.

Index.xhtml:
<html>

<head>

<title> Cookie Demo</title>

</head>

<body>

<form action="First">

 Name:

<input type="text" name="userName"/>

<input type="submit" value="submit"/>

</form>

</body>

</html>

First Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class First extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse
response)throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet First</title>");

 out.println("</head>");

 out.println("<body>");

 String name=request.getParameter("userName");

 out.print("Welcome "+name+" in the Cookie Demo");

 Cookie ck=new Cookie("uname",name);//creating cookie object

 response.addCookie(ck);//adding cookie in the response

 out.print("<form action='Second'>");

 out.print("<input type='submit' value='next'></form>");

 out.println("</body>");

 out.println("</html>");}}}

Second Servlet:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class Second extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet Second</title>");

 out.println("</head>");

 out.println("<body>");

 Cookie ck[]=request.getCookies();

 out.print("Hello "+ck[0].getValue());

 out.println("</body>");

 out.println("</html>");

 }}}

The following is the result for index.xhtml, as shown in Figure 5.10:

Figure 5.10: Output of above program (index.xhtml)

The following is the First Servlet output, as shown in Figure 5.11:

Figure 5.11: Output of First Servlet

The following is the Second Servlet output, as shown in Figure 5.12:

Figure 5.12: Output of Second Servlet

Conclusion
A session is a group of transactions that happens between the server and
client over some time. Any of the following methods can implement session
tracking:

URL Rewriting

Hidden Form fields

Cookies

Using the HttpSession interface

In the next chapter, we will learn about Inter-servlet communication. It
means communication between servlets of a web application in the same

server. Servlets that are present on the same web server can communicate
and share resources, such as variables, amongst each other. For example,
when a user logs on to a website, the user authentication can be done by a
servlet.

Questions
 1. Explain Session and its importance?

 2. What is Session Tracking? What are the different types of Session
Tracking?

 3. Why do you use Session Tracking in HttpServlet?

 4. What is the advantage of Cookies over URL rewriting?

 5. What is the use of Cookie and Session? What is the difference
between them? How can you destroy the Session in Servlet? (Hint:
You can call invalidate() method on the session object to destroy the
Session. For example, session.invalidate();)

 6. How do you track a user session in Servlets?

CHAPTER 6
Inter-Servlet Communication

Introduction
Inter-servlet communication means communication between servlets of a
web application in the same server. Servlets on the same web server can
communicate and share resources, such as variables, amongst each other.
For example, when a user logs on to a website, user authentication can be
done by a servlet. A different servlet can perform information processing
after the user is authenticated. Dividing the tasks across the servlets also
helps in implementing a structured approach to implementing tasks.
Communication between servlets can be implemented by using the
RequestDispatcher interface.

Structure
In this chapter, we will cover the following topics:

RequestDispatcher

Servlet Context

Method to get the object of RequestDispatcher

Methods of RequestDispatcher interface

sendRedirect() method of HttpServletResponse interface

The RequestDispatcher Interface

The RequestDispatcher interface is used to forward or delegate a request from a
servlet to other resources, such as a servlet, an HTML file, or a JSP page. In
this case, the source servlet does some processing and delegates the request
to another servlet. Moreover, this task delegation happens within servlets in
the same servlet context.

A servlet context is a directory in which the servlets are deployed in the
webserver. Servlets that execute in the same server belong to the same
servlet context. However, few web servers also enable the creation of more
than one servlet context. You can get the reference of ServletContext with the
help of the method of the servletConfig interface.

Syntax: public ServletContext getServletContext();

This function getServletContext() method of the ServletConfig interface is used
to obtain a reference to the servlet context in which a servlet executes.

Method of ServletContext Interface
The following are the methods of the ServletContext interface:

 1. public abstract void setAttribute(String name, Object object): This function
is used to set a value to an attribute available in the servlet Context.
For example, setAttribute(“name,” “Ram”) is used to set the value of an
attribute called name. In addition, this function can also be used to
create an attribute that can be accessed by all the servlets in the same
servlet context.

 2. Public abstract Object getAttribute(String name): This function is used to
obtain the value of an attribute.

Method to get the object of
RequestDispatcher

The RequestDispatcher interface encapsulates the URL of a resource (a servlet,
a JSP page, or a .xhtml file) that exists in a particular servlet context. The
getRequestDispatcher() method of the ServletRequest interface returns the object
of RequestDispatcher.

Syntax: public RequestDispatcher getRequestDispatcher(String urlpath);

This method is used to get a reference to a servlet through a URL specified
as the parameter. The dispatcher that is returned is used to invoke the
servlet. If the dispatcher cannot be obtained for the URL specified, this
function returns null.

Methods of RequestDispatcher
interface
The following are the methods of the RequestDispatcher interface:

public abstract void forward(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException: This method is used
to delegate a task to the resource encapsulated by a particular interface
object. It forwards a request from one servlet to another. This method
must be used when the output is completely generated by the second
servlet or the servlet that is invoked. If the PrintWriter object is already
accessed by the first servlet, then this method throws an exception.

public abstract void includes (ServletRequest request, ServletResponse

response) throws ServletException, IOException: This function is also
used to invoke one servlet from another like the forward () function;
however, you can also include the output of the first servlet with the
current output. The first servlet can make use of the PrintWriter object
even after calling the include() method.

Note:

1. Servlet chaining is a technique by which multiple servlets are executed in a specific
sequence to complete a transaction. A servlet can invoke another servlet to perform
the next step in a transaction. The output of the previous servlet is sent back to the

browser or the client. This technique can be compared to the concept of pipes in
Linux, where the output of one command is redirected to the other.

2. In the process of Servlet Chaining: Firstly, we must create a RequestDispatcher for a
resource that has to be chained. Then, must set the attribute values for the request if
required. Next, we need to call the forward() method or the include() method on a
RequestDispatcher object.

Implementing Inter servlet
communication via a problem
statement
You need to deposit the money into your account. Create a servlet that
accepts and validates the account number and PIN of a user. The first
servlet is used to validate the account number and the PIN. If the values are
valid, an attribute called account number is created and assigned and the
account number is entered. Otherwise, an error message is displayed to the
user and includes the index.xhtml. If the account number and PIN are valid,
then it forwards the request to the second servlet and is invoked.

Tasklist
Write the client interface (index.xhtml): The HTML form accepts the
account number and PIN from the user.

Write the code of two servlets: After clicking on the submit button,
the servlet will be invoked, validating the account number and PIN,
and forwarding the request to the second servlet. Then, the second
servlet grants the permission to deposit or withdraw the amount.

Compile and deploy the servlets: Make the entry of the servlet in
deployment descriptor web.xml. Compile and run the program.

Verify the functionality of servlets: Verify whether the program
displays a valid result or not.

To solve the problem, we will use the RequestDispatcher interface. The
problem states that the first servlet needs to accept the account number and
the PIN from the user and validate them. If the account number is valid,
then the second servlet needs to be invoked.

Client Interface
The HTML form contains two textboxes for accepting the account number
and the PIN, respectively. Upon clicking on the submit button, the first
servlet is invoked.

index.xhtml
<html> <head>

 <title>Our Bank</title>

 </head>

 <body><div><CENTER>

 <H1>MY BANK </h1></CENTER>

 <FORM action="firstServlet">

 <table>

 <tr> <td> Enter the account Number </td>

 <td> <input type="text" name="accnum"> </td>

 </tr>

 <tr> <td> Enter the Pin Number </td>

 <td> <input type="password" name="pinnum"> </td>

 </tr> </table>

 <center> <input type=SUBMIT value="SUBMIT"></center>

 </div></body></html>

The following is the output, as shown in Figure 6.1:

Figure 6.1: Output of Index.xhtml (Client Interface)

Code of FirstServlet
The first servlet is used to validate the account number and the PIN. If the
values are valid, an attribute called account number is created, and the
assigned account number is entered. Otherwise, an error message is
displayed to the user. If the account number and PIN are valid, then it
forwards the request to the second servlet that is invoked, as shown as
follows:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class FirstServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try {

 PrintWriter out = response.getWriter();

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet FirstServlet</title>");

 out.println("</head>");

 out.println("<body>");

 String n=request.getParameter("accnum");

String p=request.getParameter("pinnum");

 if(p.equals("201306")&&n.equals("AJ123456789"))

{

 RequestDispatcher rd=request.getRequestDispatcher("servlet2");

 rd.forward(request, response);

 }

 else

{

 out.print("Sorry account Number or Password Error!");

 RequestDispatcher rd=request.getRequestDispatcher("/index.xhtml");

 rd.include(request, response);

}

 out.println("</body>");

 out.println("</html>");

 }catch(Exception e){System.out.println("Exception");}

}}

The following is the Second servlet code:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class SecondServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 try {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet SecondServlet</title>");

 out.println("</head>");

 out.println("<body >");

 String n=request.getParameter("accnum");

 out.print("Welcome "+n+"
<center>");

 out.print(" You can deposit/ withdraw the amount ");

 out.println("</body>");

 out.println("</html>");

 }catch(Exception e){System.out.println("Exception occured"+e);}

 }}

Output

The following is the output if the Account Number and PIN are valid, as
shown in Figure 6.2:

Figure 6.2: Output if the Account Number and PIN are valid

The following is the output if the Account Number and PIN are invalid, as
shown in Figure 6.3:

Figure 6.3: Output if the Account Number and PIN are invalid

SendRedirect
In the include() and forward() method of the RequestDispatcher class, the servlet
is not making a new request. It only includes the request in the same servlet
or forwards it into another servlet.

The client (browser) wants to create a new request to get to the resource by
using the sendRedirect() method; the user can see the new URL. It takes both
relative and absolute paths.

NOTE:
sendRedirect() works on the response object while the request dispatch works on the request
object. The sendRedirect is a method of the HttpServletResponse interface.

Syntax:
 public void sendRedirect(String URL)throws IOException;

Example

In this example, we are redirecting the request to the instituteoflearning
server, as shown as follows:

SendRedirectExample:
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class SendRedirectExample extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, 0

Exception {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 response.sendRedirect("http://instituteoflearning.in/");

 }

 finally {

 out.close();

 }

 }}

Difference between forward() and
sendRedirect() method
Table 6.1 shows the difference between forward() and sendRedirect()
methods:

forward() sendRedirect()

It is a method of the RequestDispatcher
interface.

It is a method of the HttpServletResponse
interface.

Works on server-side within the server. Works on the client-side both outside and
within the server.

Sends the same request and response to another
servlet.

Sends a new request to another servlet.

Table 6.1: Difference between forward() and sendRedirect() method

Conclusion
In this chapter, we learned that the RequestDispatcher interface could be
used to call one servlet from the other.

The forward() and the include() methods can invoke one servlet from the
other. The data common to the servlets can be accessed by using the
ServletContext interface.

Servlet chaining is a very simple process in which we give the output of one
servlet as an input for another servlet. sendRedirect is a method of the
HttpServletResponse interface, which creates a new request and sends it to
another servlet.

In the next chapter, we will study Java Server Pages (JSP). JSP technology
has facilitated the segregation of the work profiles of a web designer and a
web developer. A web designer can design and formulate the layout for the
web page by using HTML. On the other hand, a web developer, working
independently, can use the Java code and other JSP-specific tags to code for
the business logic.

Questions
 1. Which function must be used to add a cookie to the response that is

sent by the server to the client?

 2. What is a Request Dispatcher?

 3. What is sendRedirect? Differentiate between forward() and
sendRedirect() method.

 4. What is the process of servlet chaining?

 5. What is the process to get the object of Request Dispatcher?

CHAPTER 7
Java Server Pages (JSP)

Introduction
With the advent of the Internet, the monolithic application architecture
changed to a multi-tiered client-server architecture. The need for server-side
scripting gradually began to dominate the aspects of web programming.
Microsoft introduced Active Server Pages (ASP) to capture the market
demand for server-side scripting. Working on similar lines, Sun
Microsystems (now taken over by Oracle) released Java Server Pages (JSP)
to add the server-side programming functionality. It can be considered an
advancement of the Servlet, as it adds more functionality than Servlet, like
custom tags and expression language (these will be discussed in subsequent
chapters). We can write the HTML tags along with the JSP tags. But in
Servlet, we embed the HTML tag with the help of the out.println() method
of ServletResponse interface. JSP is platform-independent, whereas ASP is
not platform-independent.

Structure
In this chapter, we will cover the following topics:

Need and features of JSP

Difference between Servlet and JSP

The life cycle of JSP: Example of JSP

Directory Structure of JSP: Structure of Web.xml

Objectives
After studying this chapter, you will understand the life cycle methods of
JSP. After compilation, JSP is converted into Servlet and incorporates all
functionalities of Servlet. You will understand the differences between JSP
and Servlet and the advantages of JSP.

Need for JSP
A typical web application consists of the presentation logic representing the
static content used to design the web page structure in terms of the page
layout, color, and text. The business logic or the dynamic content involves
the application of business intelligence and diagnostics in terms of financial
and business calculations. When developing a web application, time is often
lost in situations where the developer is required to code for the static
content.

The JSP technology has facilitated the segregation of the work profiles of a
web designer and a web developer. A web designer can design and
formulate the layout for the web page by using HTML. On the other hand, a
web developer, working independently, can use the Java code and other
JSP-specific tags to code for the business logic. The simultaneous
construction of static and dynamic content facilitates the development of
quality applications with increased productivity.

A JSP page, after compilation, generates a servlet, and therefore,
incorporates all the servlet functionalities. Servlets and JSP, thus, share
common features such as the following:

They are platform-independent.

They create database-driven web applications.

Server-side programming capabilities.

JSP needs no recompilation.

In JSP, visual display and logic are separated.

Difference between Servlet and JSP
The following are the differences between Servlets and JSP:

1. Servlets tie-up files (an HTML file for the static content and a Java file
for the dynamic content) to handle the static presentation and dynamic
business logic independently. Due to this, a change made to any file
requires recompilation of the Servlet. On the other hand, JSP allows
Java to be embedded directly into an HTML page by using special
tags. The HTML content and the Java content can also be placed in
separate files. Any change made to the HTML content is automatically
compiled and loaded onto the server.

2. Servlet Programming involves extensive coding. Therefore, any
change made to the code requires identification of the static code
content (for the designer) and dynamic code content (for the
developer) to facilitate the incorporation of the changes. On the other
hand, a JSP page, by the separate placement of the static and dynamic
content, facilitates both the web developers and the web designers to
work independently.

Advantages of JSP
The following are the advantages of JSP:

Extension to Servlet: JSP is an extension to the Servlet. It supports
both scripting and dynamic content and allows the developers to create
custom tag libraries to satisfy the application-specific needs.

Compilation: JSP is always compiled before the server processes it.
There is no need to recompile and redeploy. If the JSP page is
modified, we don't need to recompile and redeploy the project.
Whereas the Servlet code needs to be updated and recompiled if we
have to change the look and feel of the application.

JSP is platform-independent.

There is no need to redeploy JSP.

The length of the JSP code is less than Servlet.

The JSP request-response cycle
The JSP files are stored on the webserver with an extension of JSP. When
the client/browser requests for a particular JSP page, the server, in turn,
sends a request to the JSP engine. Figure 7.1 represents the process of the
flow of events that occur after a client request:

Figure 7.1: The flow of events after client request

The request-response cycle essentially comprises of two phases, namely the
translation phase and the request-processing phase. The translation phase is
implemented by the JSP engine and involves the generation of a servlet.
Internally, these result in the creation of a class file for the JSP page that
implements the servlet interface. During the request-processing phase, the
response is generated according to the request specifications. The Servlet
then sends back a response corresponding to the request received. After the
Servlet is loaded for the first time, it remains active and processes all the
subsequent requests with responses, saving the time that would otherwise
be lost in reloading a servlet at each request.

Lifecycle of JSP
The JSP lifecycle is a process in which the JSP translates into servlets, and
then the servlet lifecycle plays its role.

The JSP page lifecycle completes the following steps:

 1. Translation of JSP Page: The JSP container translates the JSP page
into Servlet.

 2. Compilation: Like any other Java class, the generated Servlet is
compiled into byte code, and is ready to be loaded and executed. The
generated servlet has the method jspInit(), _jspService(), and
jspDestroy().

 3. Classloading: Once JSP is compiled as a servlet class, its lifecycle is
similar to Servlet and it gets loaded into memory.

 4. Instantiation: The object of the generated Servlet is created.

 5. Initialization: The web container invokes the jspInit() method. The
method is called once. After initialization, the ServletConfig and
ServletContext objects become accessible to the JSP class. Allow the
Servlet to initialize the instance variables when it's loaded Request
processing; the container invokes the _jspService() method.

 6. Destroy: The container invokes the jspDestroy() method. The
generated Servlet is unloaded from memory and the cleanup instance
variable from memory when it's shut down.

NOTE: jspInit(), _jspService(), and jspDestroy() are the lifecycle methods of JSP.

The JSP page lifecycle is illustrated in Figure 7.2:

Figure 7.2: Lifecycle of JSP Page

Structure of a JSP Page
A JSP page consists of the regular HTML tags representing the static
content and the code enclosed within the special tags representing the
dynamic content. These tags begin with a "<%" and end with a "%>" and
contain the scripting and directive elements. The scripting elements consist
of java code snippets, while the directives define the specifications for the
entire JSP page. The comment line entries that provide additional
information about the various sections of the code are enclosed within the "
<%--" and "--%>" tags. For example, the following JSP code displays the
server time on the browser. It contains the HTML content and the JSP
content placed separately within the respective tags.

The following is an example:

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ page language="java" %>

<!DOCTYPE html>

<html>

<head>

<title>JSP Example</title>

</head>

<body>

<h1>This is the code within the JSP tags to display the server time</h1>

<%--IThis is the JSP content that displays the server time by using the Date class
of the java.utilpackagel--%>

<% java.util.Date now=new java.util.Date(); %>

<H2><%= now %></H2>

</body>

</html>

The following is the output of index.jsp, as shown in Figure 7.3:

Figure 7.3: Output of index.jsp

The directory structure of the JSP Page
The JSP page is placed in the root folder. It should not be placed in the
WEB-INF directory as we won't be able to access it directly from the client,
as shown in Figure 7.4:

Figure 7.4: Directory Structure of the JSP page

Conclusion
JSP stands for Java Server Pages. It is a server-side technology used for
creating dynamic web applications. The features of JSP are segregation of
the presentation and business logic.

The changes made to the code consecutively are automatically updated and
recompiled once the Servlet is reloaded into the server.

In JSP, we can use many tags, such as action tags, Java Standard Tag
Library (JSTL), custom tags, and so on, that reduce the code difference
between Servlet and JSP.

During the lifecycle of JSP, the JSP page is converted into Servlet, the
Object of Servlet is created, and jspInit(), _jspService(), and jspDestroy()
are called to fulfil the request.

A JSP page is placed with a static resource, i.e., in the root folder.

JSP builds various elements and objects that allow the web designer to
write dynamic web applications with the help of the embedded JSP
elements and objects.

In the next chapter, we will study tags to be embedded in the JSP page.

Questions
 1. What is JSP, and why do we need it?

 2. What are the JSP lifecycle phases?

 3. What are the JSP lifecycle methods?

 4. Which of the JSP lifecycle methods can be overridden?

 5. What are the advantages of using JSP?

 6. What are the advantages of JSP over pure Servlets?

 7. What are the advantages of JSP over static HTML?

J

CHAPTER 8
Comment Tag and Scripting

Element

SP builds various elements and objects that allow the web designer to
write dynamic web applications with the help of embedded JSP elements

and objects. Scriptlet tag helps the programmers to write the Java codes in a
web application. The code automatically moves to the _jspservice() method
while converting JSP to Servlet.

Structure
In this chapter, we will cover the following topics:

Comment tag

Scripting Elements

Implicit Objects

Objectives
After studying this chapter, you will know how to embed a Java code in the
web application and learn how the embedded Java code is automatically
converted into a servlet.

JSP Elements

The JSP elements help the web developers to write the Java code within the
tag. The code within the tag automatically moves to the _jspService() method
while converting JSP into the servlet.

It consists of the following tags of elements.

Comment Tag
The comment tag provides additional information about the various sections
of the code that are enclosed within the <%-- and --%> tags. Comments are
used when the programmer wants to hide some text or statements from the
web container, as shown as follows:

Syntax: <% -- JSP Comments %>

Scripting Elements
The Scriptlet tag helps the programmers to write the Java code in a web
application. The code automatically moves to the _jspservice() method while
converting JSP to Servlet. The _jspservice method is invoked for each
request. There are three types of scripting elements, which are as follows:

Scriptlet tag

Expression tag

Declaration tag

Scriptlet tag
A JSP scriptlet tag consists of valid code snippets that are enclosed within
the <% and %> JSP tags. This tag allows the developer to write the Java code
within the scriptlet tag. This code moves to the _jspService() method. When
the user requests, the JSP service method is invoked, and the content which
is written inside the scriptlet tag gets executed.

Syntax: %// java code%>.

Example

The following code snippet contains the code to create a request session
object and retrieve the variable values using the getParameter() method. The
following code snippet accepts a name from the user and forwards the input
parameters to a JSP page:

index.xhtml:
<html>

<head>

<title>JSP Elements</title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

<body>

<h3> Scriptlet Example</h3>

<form action="test.jsp">

Your name :

<input type = "text" name="user_name" />

<input type = "submit" value="submit">

</form>

</body>

</html>

Test.jsp:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<h1>Welcome to JSP Page</h1>

<%

 String name=(String)request.getParameter("user_name");

 out.println(name);

 %>

</body></html>

The following is the output of index.xhtml, as shown in Figure 8.1:

Figure 8.1: Output of index.xhtml

After clicking on submit, we get the following output, as shown in Figure
8.2:

Figure 8.2: Output of test.jsp page

Expression Tag
It is used to insert the values directly into the output. You need not write the
out.println() statement to write the data.

Syntax:<%= msg%>

The following is an example:
html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<%= "value to be printed" %>

</body>

</html>

The following is the output:

Value to be printed

Declaration tag
It is used to declare the fields and methods. The code is written with the
help of this tag placed outside the service method and gets memory one
time, not at every request. The scriptlet tag can declare only variables, and
all the variables are local variables to the service method, whereas, in the
declaration tag, both the variables and methods can be declared outside the
service method.

Syntax:
<%! Variable or method declaration %>

NOTE: The JSP scriptlet tag can only declare the variables, and not the methods, whereas
the JSP declaration tag can declare both the variables and the methods.

Example:

In the following example, one variable data and method square is declared
using a declaration tag:
%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<html>

<body>

<%! int data=120;

int square(int n) {return n*n;}

%>

<%= "Value of the variable is:"+data %>

<%= "square of 4 is:"+square(4) %>

</body>

</html>

</body>

</html>

The following is the output:
Value of the variable is:120
square of 4 is:16

Implicit Objects
The objects in JSP can be created implicitly by using the directives,
explicitly by using the standard actions, or directly by declaring them
within the scriptlets. JSP implicit objects are certain predefined variables
that can be included in the JSP expressions and scriptlets. The implicit
objects of JSP are implemented from the servlet classes and interfaces.

There are nine implicit objects created by the web container and are
available in JSP; they are as follows:

 1. application: The application object defines a web application. Usually,
it is the application in the current web context or instance of
ServletContext. The instance of ServletContext is created only once by the
web container when the project is deployed on the server. It is used to
set or remove the attribute from the application scope.

 The application object can be used to get the initialization parameter
from the configuration file (web.xml). All the JSP pages can use this
initialization parameter.

 Example: The password is stored in context-param and can be
fetched with the help of the application object. Refer to the following
example code:

 <!DOCTYPE html>

 <html>

 <head>

 <title>Implicit Object</title>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

 <body>

 <form method="post" action="submit.jsp" >

 <input type="text" name="uname">

 <input type="submit" value="Submit">

 </form>

 </body>

 </html>

 <!DOCTYPE html>

 <html>

 <body>

 <%

 out.print("Welcome "+request.getParameter("uname"));

 String pwd=application.getInitParameter("pwd");

 out.print("Your Password is="+pwd);

 %>

 </body></html>

 Web.xml
 <?xml version="1.0" encoding="UTF-8"?>

 <web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <servlet>

 <servlet-name>NewServlet</servlet-name>

 <jsp-file>/submit.jsp</jsp-file>

 </servlet>

 <servlet-mapping>

 <servlet-name>NewServlet</servlet-name>

 <url-pattern>/submit</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>pwd</param-name>

 <param-value>SAILBOAT</param-value>

 </context-param>

 <session-config>

 <session-timeout>

 30

 </session-timeout>

 </session-config>

 </web-app>

 The following is the output for index.xhtml, as shown in Figure 8.3:

Figure 8.3: Output of the preceding program (index.xhtml)

 The following is the output of submit.jsp, as shown in Figure 8.4:

Figure 8.4: Output of the preceding program (submit.jsp)

 2. out: This represents a reference to a JspWriter used to write to the
output stream and subsequently sent back to the user client.

 The following is an example:
 <html>

 <body>

 <% out.print(“Today is” + java.util.Calender.getInstance(),getTime());%>

 </body>

 The following is the output:
 Today is: Sun Nov 14:19:08 IST 2021

 3. page: This represents the current instance of the JSP page that, in turn,
is used to refer to the current instance of the generated servlet. It is
written as follows:

 Object page =this;

 For using this Object, it must be cast to the servlet type. Refer to the
following example:

 <% (HttpServlet)page.log("message"); %>

 Since, it is of type Object, it is less used because you can use this
object directly in JSP.

 Refer to the following example:
 <% this.log("message"); %>

 4. request: This represents a request object of HttpServletRequest. It is used
to retrieve the data submitted along with a request. An example of the
request object is request.getParameter(), which is shown as follows:

 index.jsp

 <html>

 <body>

 This is my JSP page.

 <form method="post" action="next1.jsp" >

 First Name: <input type="text" name="uname">

 Last Name: <input type="text" name="lname">

 <input type="submit" value="Submit">

 </form>

 </body>

 </html>

 The following is the output of the preceding program, as shown in
Figure 8.5:

Figure 8.5: Output of the index.jsp

 After clicking on the Submit button, the following code (next1.jsp) will
run:

 next1.jsp

 <html>

 <body>

 <%

 String str1=request.getParameter("uname");

 String str2=request.getParameter("lname");

 out.println("First name is "+str1);

 out.println("
Last Name is"+str2);

 %>

 </body>

 </html>

 The following is the output:
 First name is sarika

Last Name is Agarwal

 Some methods that can be used with the HttpServletRequest interface are
listed as follows:

 • getCookies(): It is used to pass the cookie information along with the
request. Cookies are textual data that are sent from the server to a
browser. The data thus sent is retrievable in subsequent
transactions.

 • getSession(): It is used to get the current session associated with the
request object. If a session is not associated with the request, it
creates a new session.

 • getMethod(): It is used to return a String specifying the presence of
HTTP get, post, or put methods to the request.

 • getQueryString(): It is used to return the query passed along with the
request(GET).

 5. response: This represents a response object of HttpServletResponse that is
used to write an HTML output onto the browser using methods such
as response.getWriter().

 Some methods that can be used with the HttpServletResponse interface
are listed as follows:

 • addCookie(): It is used to add a cookie along with the response. The
maximum number of cookies accepted by the browser is 20.

 • sendRedirect(): It is used to specify a new URL to the browser. The
invocation of the method terminates the prior response and
redirects the browser contents to a new URL.

 6. session: This represents a session object of HttpSession that is used to
store the object between client requests.

 Example: The following codes use the request implicit object to
access the values of the user input; set the parameter in session and
access the same:

 index.xhtml:

 <!DOCTYPE html>

 <html>

 <head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

 <body>

 <form method="post" action="next.jsp" >

 First Name: <input type="text" name="uname">

 Last Name: <input type="text" name="lname">

 <input type="submit" value="Submit">

 </form>

 </body>

 </html>

 Bottom of Form:

 After clicking on the Submit button, the following code will run:
 <!DOCTYPE html>

 <html>

 <%

 String str1=request.getParameter("uname");

 String str2=request.getParameter("lname");

 HttpSession sess=request.getSession(true) ;

 sess.setAttribute("FName", str1);

 sess.setAttribute("LName", str2);

 %>

 <body>

 <% out.println("First name is "+session.getAttribute("FName"));

 out.println("
Last Name is"+session.getAttribute("LName"));

 %>

 </body></html>

 The following is the output of index.xhtml, as shown in Figure 8.6:

Figure 8.6: Output of the preceding program (index.xhtml)

 The following is the output of next.jsp, as shown in Figure 8.7:

Figure 8.7: Output of next.jsp (Retrieval from Session Object)

 7. Config: It is an implicit object of the ServletConfig class. The web
container creates this object. It is used to set or get the initialization
parameter for a JSP page.

 8. exception: It is an implicit object of the java.lang.Throwable class. It is
used to print the exception.

 9. pageContext: It is an implicit object of the PageContext class. It is used to
set, get, and remove the attribute from the page, request, session and
application scope. By default, JSP has a Page scope.

Conclusion
In this chapter, we learned that a JSP page consists of HTML and JSP tags.
The JSP tags include comments, scriptlets, expressions, and actions tags.

The JSP comment tag provides additional information about the various
sections of the code and are enclosed within the <%-- and the --%> tags.

Scriptlet tag consists of valid code snippets placed within the <% and the %>
tags.

JSP expressions are used to insert values into the output directly. There are
nine implicit objects in JSP.

In the next chapter, we will learn how to provide global information about a
particular JSP page and how to give information to a Web Container while
converting a JSP page to a corresponding servlet.

Questions
 1. What are JSP elements?

 2. What is the role of scriptlet tag?

 3. What is the difference between a JSP scriptlet tag and a JSP
declaration tag?

 4. How do we use comments within a JSP page?

 5. How many implicit objects are there in JSP?

 6. What is the use of implicit objects in JSP?

Select the Correct Option
 1. Which of the scripting of JSP does not put content into the

service method of the converted servlet?

 A. Scriptlets

 B. Declarations

 C. Expressions

 D. None of the above

 Answer: C

 2. Which of the following tags is used to execute the Java source
code in JSP?

 A. Scriptlets

 B. Declarations

 C. Expressions

 D. None of the above

 Answer: A

 3. Which of the following is the correct order of phases in the JSP
life cycle?

 A. Compilation, Initialization, Execution, Cleanup

 B. Cleanup, Compilation, Initialization, Execution

 C. Initialization, Cleanup, Compilation, Execution

 D. Initialization, Compilation, Cleanup, Execution

 Answer: A

 4. J2EE includes which of the following enterprise-specific APIs?

 A. Java Message Service (JMS)

 B. Enterprise JavaBeans (EJB)

 C. JavaServer Pages (JSP)

 D. All of the above

 Answer : All of the above

 5. A JSP page is transformed into_________________.

 A. Java Class

 B. Java Servlet

 C. Java Bean

 Answer : Java Servlet

 6. JSP pages provide a means to create a dynamic web page using
HTML and Java programming language.

 A. True

 B. False

 Answer: True

A

CHAPTER 9
JSP Directives

directive element in a JSP page provides global information about a
particular page. It gives information to a Web Container while

converting a JSP page into a corresponding servlet.

Structure
In this chapter, we will cover the following topics:

Page Directives

Exception Handling via error page

Include Directive

Taglib Directive

Objective
In this chapter, we will learn about the JSP Directives that are applied on a
JSP Page. JSP Directives are used to define the variables and methods on a
page.

JSP Directives are used to specify general information about a particular
page.

Types Of Directives
The following are the types of directives:

The page

include

taglib

JSP directives
JSP directives are used to give messages to a web container about how to
handle the client requests while converting a JSP page into servlet code.

The syntax for adding a directive in a JSP page is as follows:
<%@ directive type (attribute= “attribute value”) %>

The page directive
The page directive defines the attributes that notify the servlet engine about
the general settings of a JSP page. The page directive applies to the entire
JSP page. The page directive has many attributes separated by commas as
the key-value pairs. The attributes that can be specified for a page directive
are listed in Table 9.1:

S.No Attribute Used to Specify

1 contentType=”MIME type” This is the MIME type (Multipurpose Internal
Mail Extension type) of the response. The
default value for the attribute is text/HTML.

2 extends “packagename.class” This is the name of the parent class that the
generated servlet will extend from.

3 errorPage= “url” This is the URL of the error page that will be
used to handle exceptions.

4 isErrorPage= “False” If a particular JSP page can be used as an error
page for another JSP page. The default value
for this attribute is false.

5 import= “package list” These are the names of the packages available
for the particular JSP page.

6 Language= “scripting
language.”

This is the scripting language to be used when
compiling the JSP page. The language currently
available is Java.

7 Session= “true” It is used to specify the availability of the
session data for the particular JSP page. The
default value for this attribute is true.

8 Info It sets the information of the JSP page, which
can be retrieved by using the
getServletInfo() method of the Servlet
interface.

9 Buffer It sets the buffer size in kilobytes to handle the
output generated by the JSP page. The default
size of the buffer is 8KB.

10 isELIgnored We can ignore the Expression Language (EL)
in JSP by the ELIgnored attribute. By default,
its value is false, that is, Expression Language
is enabled by default.

11 isThreadSafe It serializes the JSP request.

12 Autoflush It specifies whether the buffered output should
be flushed automatically when the buffer is
filled or whether an exception should be raised
to indicate the buffer overflow.

13 PageEncoding The page encoding is the character encoding in

which the file is encoded.

Table 9.1: Implicit Objects

Implicit Objects

contentType
The contentType attribute defines the MIME type of the response. MIME is a
standard that specifies how the messages need to be formatted when
exchanged between the different systems. A MIME message can consume
different types of data like text, images, audio, and video.

The default value is "text/html.

The syntax is as follows:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

extends
The extends attribute extends the parent class in the JSP. The name of the
parent class that the generated servlet will extend from must be specified.

The syntax is as follows:
<%@ page extends = "package.ClassName" %>

errorPage
It is used to handle exceptions. The errorPage attribute is used to define the
error page; if the exception occurs on the current page, it will be redirected
to the error page.

The syntax is as follows:
<%@ page errorPage= “next.jsp” %>

isErrorPage

The isErrorPage attribute is used to declare that the current page is the error
page.

The syntax is as follows:
<%@ page isErrorPage=true %>

Example: In this example, index.jsp has the Exception as ‘s’ variable is
pointed to the null type. The exception is handled in error.jsp page.

Refer to the following example code:

Index.jsp:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<h1> Welcome to the is error page example %>

<%@ page errorPage="error.jsp" %>

<%

 String s=null;

char j=s.charAt(0);

out.println(j);

 %>

</body>

</html>

error.jsp:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<h1> Welcome to the error page </h1>

<%@ page isErrorPage="true" %>

<%= exception %>

</body>

</html>

The following is the output, as shown in Figure 9.1:

Figure 9.1: Output of the preceding program

import= “package list”
This attribute imports interface and class.

The syntax is as follows:
<%@ page import= “java.util.Date” %>

Example: This example import java.util.Date package and display the
current date:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1> import attribute</h1>

 <%@ page import="java.util.Date" %>

 Today is: <%= new Date() %>

 </body>

</html>

The following is the output, as shown in Figure 9.2:

Figure 9.2: Output of the preceding program

language= “scripting language.”
It specifies the scripting language to be used when compiling the JSP page.
The language currently available is Java.

The syntax is as follows:
<%@ page language= “java” %>

Session=true/false
It is used to specify the availability of the session data for the particular JSP
page. It indicates whether the JSP page uses the HTTP sessions or not. The
default value for this attribute is true. If the value is true, the JSP page has
access to a built-in session object. We can use the methods like
session.getCreationTime() or session.getLastAccessTime().

The syntax is as follows:
<%@ page session= “true” %>

The following is the example:
 <%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 session="false"%>

info= “servlet information”
It specifies the servlet description. It defines the servlet information in the
form of a string and can be accessed with the getServletInfo() method.

The syntax is as follows:
<%@ page info="servlet information" %>

The following is the example:
<%@ page info="page directive info explanation”%>

Buffer
Client response should be stored. By default, we have an 8 KB buffer size
to store the same. If we want to change the size, we can use this attribute.

The syntax is as follows:
<%@ page buffer="value" %>

The following is an example:
 <%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 buffer="16KB"%>

isELIgnored= “true/false”
This attribute is used to disable the Expression Language (EL) in JSP by
the isELIgnored attribute introduced in JSP 2.0. It is enabled by default. It
means that its value is set to false by default.

The syntax is as follows:
<%@ page is ELIgnored= “true” %>”

NOTE: Expression Language will be ignored in this syntax.

isThreadSafe
Both JSP and Servlets are multithreaded by default, that is, the value
isThreadSafe is true. If you want to serialize the client request, you have to
make it false. Web container will not accept any further client requests until
the previous serialized client request is fulfilled. In such a case, the web
container generates a servlet that implements the SingleThreadModel interface.

The syntax is as follows:
<%@ page isThreadSafe="false" %>

autoFlush
This attribute is used to specify whether the buffered output should be
flushed automatically or not. By default, the value is true, that is, it flushes
automatically when the buffer is full. If the value is set to false, the buffer
will not be flushed automatically, and if it is full, it will throw an exception.

The syntax is as follows:
<% @ page autoFlush="true/false" %>

NOTE: If the user sets autoflush = “none”, the output will not be buffered.

The include directive

The include directive is used to specify the names of the files (in the form of
their relative URLs) to be inserted during the compilation of the JSP page.
The contents of the files so included become part of the JSP page. The
include directive can also be used to insert a part of the code that is
common to multiple pages, to avoid using a bean for each of the code
instances separately. The included file can be an HTML file, a text file, or a
code written in the Java programming language.

For example, the code line to include a header fiile(Instituteoflearning.xhtml)
for a JSP page containing the name and logo of the institute can be written
as follows:
<%@ include=”Instituteoflearning.xhtml” %>

The following are the advantages:

Reusability of code, useful for including copyright information,
scripting language files, or anything you might want to reuse in the
other applications.

Inserts the contents of another file in the main JSP file, where the
directive is located.

The following is an example:
html>

<body>

 <%@ include file=”instituteoflearning.xhtml" %>

 <h6> Today Date and Time is </h6>

<%= java.util.Calendar.getInstance().getTime() %>

 </body>

</html>

The Taglib directive
The JSP taglib directive is used to define a tag library that defines many
tags. A tag library consists of a collection of functionality-related user-
defined XML tags called custom tags. Custom tags are described in further
chapters. We use the Tag Library Descriptor (TLD) file to define the tags.

The syntax is as follows:
<%@ taglib uri="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

Conclusion
The JSP directives are used to specify the general information about a
particular page. Page directive defines the attributes that apply to an entire
JSP page such as extend to import class, isThreadSafe to define if the JSP is
thread-safe, error page andisErrorPage to handle the exception, and session
to check if the session object is available or not.

The include directive inserts the contents of another file in the main JSP
file, where the directives are located. The Taglib directive is used to define
a tag library that defines many tags.

In the next chapter, we will learn about JSP actions such as useBean,
getProperty, setProperty, and forward to perform tasks such as inserting
files, reusing beans, forwarding a user to another page, and instantiating
objects. We will also learn about a custom tag library that provides a
mechanism by which the programmer can encapsulate recurring code or
tasks and reuse them in multiple applications.

Questions
 1. JSP handles the runtime errors using

_________________attribute in page directive.

 Answer: By errorPage and isErrorPage attributes

 2. What are the major attributes of page directives?

 Answer: buffer, ContentType, autoFlush, errorPage, is ErrorPage,
extends, isThreadSafe, language, Session, import, info, isElIgnored

 3. The JSP Page is extensible.

 A. True

 B. False

 Answer: True

 4. What is the page directive used for?

 A. To instruct the translator about assigning values within the JSP
page it is contained within.

 B. To instruct the translator about the characteristics of the JSP
page it is contained within.

 C. To instruct the translator about the files being used by this JSP
page.

 D. To instruct the translator about the modules being used by this
JSP page.

 Answer: A

 5. Where do we place a page directive within a JSP page?

 A. At the start

 B. In the middle

 C. At the end

 D. Anywhere

 Answer : D

 6. How many page directives are allowed within a JSP page?

 A. 1

 B. 2

 C. Multiple

 Answer: C

 7. How many page directive attributes are there?

 Answer: 3

 8. Using the page directive, what type of files can we include in a
JSP page?

 A. HTML

 B. JSP

 C. Neither

 D. Both

 Answer: D

 9. What are pages included using the page directive commonly
referred to as?

 A. Components

 B. Fragments

 C. Modules

 D. Parcels

 Answer: A

CHAPTER 10
JSP Action Element and Custom

Tags

Introduction
JSP actions are used to perform tasks such as inserting files, reusing beans,
forwarding a user to another page, and instantiating objects. The custom
tags provide a mechanism that the programmer can use to encapsulate the
complex recurring code or tasks.

Structure
In this chapter, we will cover the following topics:

JSP Action Elements

Custom Tags

Model view controller (MVC) Architecture

Objectives
After studying this chapter, you will learn about the use of action tags, and
also learn how to make your own tags, use them in your application, and
see how the Expression language simplifies the accessibility of the data
stored in the Java Bean component and other objects like request, session,
and application. In this chapter, you will also learn about the MVC
architecture that separates the business logic from presentation logic.

JSP Action Tags
JSP provides standard tags used to insert, remove, and reuse beans, forward
the users to another page and instantiate the objects.

The syntax of the JSP action tag is as follows:
<jsp:action_name attribute="attribute_value"/>

The various JSP actions are described in Table 10.1, as follows:

S.No JSP action Usage Attribute Description

1 <jsp: useBean> Used to find and load
an existing bean

id Uniquely identifies
the instances of the
bean

class Specifies the class
from which the bean
objects are to be
implemented

scope Specifies the bean's
life in terms of a page,
session, or application

beanName Specifies a referential
name for the bean.

2 <jsp: getProperty> Used to retrieve the
property to the
specified bean and
direct it as the output.
The retrieved value is
converted to a string
value before sending
it as an output.

name Specifies a name for
the bean

property Specifies the property
from which the values
are to be retrieved

3 <jsp: setProperty> Used to set the
property of the
specified bean; to set
the value of the bean
property, either an
explicit value is
specified, or the value
is obtained from a
request parameter.
Corresponding to the
specified request
property value, the set
method in the bean is
called with the
matching value.

name Specifies the name of
the bean

property Specifies the property
for which the values
are to be set. If set to
“*”, it specifies that
the set methods for all
the specified values
should be called.

value Specifies an explicit
value for the bean
property

param Specifies the name of
the request parameter
to be used to set the
value of the bean
property

4 <jsp: forward> Used to forward a page Specifies the relative

request to a different
page

URL of the target
page

5 <jsp:include> Used to insert a file
into a particular JSP
page. The file
inclusion takes place
at the time of the
request of the JSP
page.

page Specifies the relative
URL of the page to be
included

flush Specify if the buffer is
to be flushed. A
mandatory Boolean
attribute must be
included when
declaring the included
action.

6 <jsp: param> Used as a sub-
attribute with
jsp:include and
jsp:forward to pass
additional request
parameters

name Specifies the name of
the reference
parameter

value Specifies the value for
the reference
parameter

Table 10.1: The various JSP Action tags

There are many JSP action tags, and each of them has its uses and
characteristics.

jsp:useBean action tag
It is used to create a reference to specify the inclusion of a predefined bean
component in the JSP page. If the bean object of the Bean class is already
created, it doesn't create the bean depending on the scope. But if an object
of the bean is not created, it instantiates the bean.

Syntax:
<jsp:useBean id= "instanceName" scope= "page | request | session |
application" class= "packageName.className" type=
"packageName.className" beanName="packageName.className | <%= expression >"
> </jsp:useBean>

Example: <jsp:useBean id=”savAcc” scope= “application” class= “savAccount” />

The preceding code line specifies the inclusion of a bean referred to by the
name savAcc of the class savAccount. The class is the Java class that defines the
bean. A JavaBean class should follow the following conventions:

It should have a constructor with no argument.

It should be serializable.

It should provide methods to set and get the values of the properties,
known as the getter and setter methods.

Once instantiated, a bean can be reused using the same scope and ID.

The following are the attributes of the useBean tag:

id: This attribute uniquely identifies the instance of the bean.

Class: This attribute specifies the class from which the bean objects are
to be implemented.

Scope: This attribute specifies the life of the object and takes the
following values, as described in Table 10.2:

Scope Life of the object

page The availability of the object corresponds to the response of the
particular page to the current year’s request. The object is created with
the initiation of a user request and destroyed on its completion.

session The availability of the object corresponds to the existence of a particular
session.

application The availability of the object exists throughout the application.

request The availability of the object corresponds to the existence of the
HttpServletRequest object.

Table 10.2: Value of scope attributes

beanName: This attribute specifies a referential name for the bean.

type: This attribute provides the bean a data type if the bean already
exists in the scope. It is mainly used with the class or beanName

attributes. If you use it without class or beanName, no bean is instantiated.

 Example: In the following example, a bean has a method square
which is fetched with the help of the useBean tag:

 MyBean class:
 package IOL;

 public class MyBean

 {

 public int square(int n)

 {return n*n;}

 }

 index.jsp:
 <html>

 <body>

 <jsp:useBean id="obj" class="IOL.MyBean"/>

 <%

 int m=obj.square(5);

 out.print("squareof 5 is "+m);

 %>

 </body>

 </html>

The following is the output, as shown in Figure 10.1:

Figure 10.1: Output of index.jsp

jsp:setProperty and jsp:getProperty action tags
These tags are used to set and get the property value in the bean class. It is a
reusable component that represents the data.

The syntax of the setProperty action tag is as follows:
<jsp:setProperty name="instanceOfBean" property= "*" | property="propertyName"
param="parameterName" | property="propertyName" value="{ string | <%= expression %>

/>

Example:
<jsp:setProperty name=””savAcc” property=”*” />

The preceding code line sets all the values of the upcoming request in the
bean class.

The syntax of the jsp:getProperty action tag is as follows:

<jsp:getProperty name="instanceOfBean" property= propertyName/>

Example:
<jsp:setProperty name =”savAcc” name=”accountNo” />

The jsp:getProperty action tag returns the value of the property accountNo.

The following are the attributes of the setProperty tag:

name: Specifies a name for the bean.

property: Specifies the property for which values are to be set. If set to
“*”, it specifies that the set methods for all the specified values should
be called.

Value: Specifies an explicit value for the bean property.

Param: Specifies the name of the request parameter to be used to set the
value of the bean property.

The following are the attributes of the getProperty tag:

Name: Specifies the name of the bean.

Property: Specifies the property that needs to be retrieved.

Example: In the following example, we set and get the user name and
password from the bean class:

index.jsp:
<html>

<body>

 <form action="next.jsp" method="post">

 User Name:<input type="text" name="userName">

 Password:<input type="password" name="password">

 <input type="submit" />

 </form>

</body>

</html>

Bean class:
package IOL;

public class NewClass implements java.io.Serializable

{

 public String userName, password;

 public String getUserName()

 {

 return userName;

 }

 public void setUserName(String userName)

 {

this.userName = userName;

 }

 public String getPassword()

 {

 return password;

 }

 public void setPassword(String password)

 {

this.password = password;

 }

}

next.jsp:
<html>

<body>

 <jsp:useBean id="myBean" class="IOL.NewClass"></jsp:useBean>

 <jsp:setProperty property="*" name="myBean"/>

 Record:

 User name=<jsp:getProperty property="userName" name="myBean"/>

 password=<jsp:getProperty property="password" name="myBean"/>

</body>

</html>

The following is the output of index.jsp, as shown in Figure 10.2:

Figure 10.2: Output of index.jsp

The following is the output of next.jsp, as shown in Figure 10.3:

.

Figure 10.3: Output of next.jsp

Jsp:forward action tag
This tag is used to forward the request to another page.

Syntax:
<jsp:forward page="relativeURL | <%= expression %>">

<jsp:param name="parametername" value="parametervalue | <%=expression%>" />
</jsp:forward>

page is the attribute of the forward tag.

Example:

Index.xhtml:
<html>

<body>

<form action="Next.jsp" method="post">

 User Name:<input type="text" name="userName">

 Password:<input type="password" name="password">

<input type="submit" />

</form>

</body>

</html>

Next.jsp:

<html>

 <body>

 <jsp:forward page="next2.jsp">

 <jsp:param name="date" value=" 17 January 2022"/>

 </jsp:forward>

 </body>

</html>

Next2.jsp:

<html>

 <body>

<h1> Record

 User Name=<%= request.getParameter("userName") %>

 password = <%= request.getParameter("password") %>

 Date=<%= request.getParameter("date") %></h1>

 </body>

</html>

The following is the output of index.xhtml, as shown in Figure 10.4:

Figure 10.4: Output of index.xhtml

The following is the output of next2.jsp, as shown in Figure 10.5:

Figure 10.5: Output of Next2.jsp

jsp:include action tag
It is used to insert the content of the file into a particular JSP file. The file
may be JSP, HTML, or servlet. The file inclusion takes place at the time of
the request of the JSP page.

The following are the attributes:

page: It specifies the relative URL of the page to be included.

flush: It specifies if the buffer is to be flushed. A mandatory Boolean
attribute has to be included when declaring the include action.

Syntax:
<jsp:include page="relativeURL | <%= expression %>"> <jsp:param
name="parametername" value="parametervalue | <%=expression%>" /> </jsp:include>

Example:

printdate.jsp

<% out.print("Today is:"+java.util.Calendar.getInstance().getTime()); %>

Index.jsp

<html>

 <body>

 <h2>this is index page</h2>

 <jsp:include page="printdate.jsp" />

 <h2>end section of index page</h2>

 </body>

</html>

Example:

In the following example, the user enters the account number and password
on a JSP page. If the account number and password exist in the database,
then the user is validated, otherwise an error message will be generated, as
shown as follows:

Index.jsp

<html>

 <body>

 <form method="post" action="usebean.jsp">

 <table border="0" cellspacing="1" cellpadding="5">

 <tr>

 <td width="100"> </td>

 <td align="right">

 <h1>

 Welcome to Famous bank

 </h1>

 </td>

 </tr>

 <tr>

 <td width="100" align="right">

 User ID

 </td>

 <td align="left">

 <input type="text" name="userId" size="30">

 </td>

 </tr>

 <tr>

 <td width="100" align="right">

 Password

 </td>

 <td align="left">

 <input type="password" name="pwd" size="30">

 </td>

 </tr>

 <tr>

 <td width="100"> </td>

 <td align="right"></td>

 </tr>

 <tr>

 <td width="100" > </td>

 <td align="left">

 <input type="submit" value="submit" />

 </td>

 <tr>

 </table>

 </form>

 </body>

 </html>

Usebean.jsp
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

<jsp:useBean id="BA" scope="application" class="IOL.MyBank"/>

<jsp:setProperty name="BA" property="*"/>

<%

 String userid=BA.getUserId();

 String pwd=BA.getPwd();

boolean valid=BA.validate();

 if(valid == true)

out.println("The user is valid");

 else

out.println("The user is not valid");

 %>

</body>

</html>

MyBank.java
package IOL;

import java.sql.*;

public class MyBank

{

 private String userId,pwd;

 public Connection con;

 public String getUserId()

 {

 return userId;

 }

 public void setUserId(String userId)

 {

this.userId = userId;

 }

 public String getPwd()

{

 return pwd;

 }

 public void setPwd(String pwd)

 {

 this.pwd = pwd;

 }

 public MyBank()throws ClassNotFoundException,SQLException

{

Class.forName("com.mysql.cj.jdbc.Driver");

con=DriverManager.getConnection(

"jdbc:mysql://localhost:3306/MyBank","root","sailboat");

 }

 public boolean validate()

 {

String ppwd="";

boolean valid=false;

 try{

userId=getUserId();

pwd=getPwd();

 String strQuery="select * from login where userid='"+userId+"'";

 Statement stat=con.createStatement();

ResultSet result=stat.executeQuery(strQuery);

System.out.println(result.next());

 while(result.next())

 {

ppwd=result.getString(1);

System.out.println(ppwd);

 }

ppwd.trim();

pwd.trim();

 if(ppwd.equals(pwd))

 valid=true;

 }catch(Exception e){}

 return valid;

 }

}

The following is the output of index.jsp, as shown in Figure 10.6:

Figure 10.6: Output of index.jsp

The following is the output of usebean.jsp, as shown in Figure 10.7:

Figure 10.7: Output of usebean.jsp

JSP custom tags
Custom Tags are user-defined action tags and can encapsulate both
presentation and business logic.

Custom Tag Library
The contribution of JSP towards segregation of the presentation and
business logic has functionally detached the designers from the intricacies
of the programming constructs. However, a major part of the work involves
writing lengthy and complex business-intrinsic code. In many cases, the
structure of the code is such that some of its sections are repetitive and
require rewriting.

The custom tags of the tag library provide a mechanism that the
programmer can use to encapsulate the complex recurring code or tasks.
Once encapsulated, these codes can then be reused in a simpler form. A tag
library consists of a collection of functionally related, user-defined XML
tags called custom tags.

Just as the JSP action element useBean facilitates the reuse of the existing
beans, the tags in the custom library can be reused to decrease the cycle
time for the development of the application and improve productivity. JSP
1.0 does not support tag libraries. However, JSP 1.1 supports the
incorporation of the user-created custom tags in a JSP file. The structure of

the custom tags in JSP is similar to the XML tags. They are user-defined
and explicitly render information about the type of data. Therefore, before
we delve into the details about tag libraries, let us appreciate the need for
XML and the concept of tags in XML.

Need of XML
Extensible Markup Language or (XML) is used in Web applications to
create custom or user-defined tags. An XML tag is no different from an
HTML tag as it allows the interactions between the user and the browser.
What then was the need for a new markup language considering the
acceptance and support of HTML? Consider a simple HTML code for
displaying the data of an account holder in a bank. The code for displaying
this data in HTML would be as follows:
<HTML><BODY>

<TABLE align= “center”>

<TR>

<TD>Ms Anne Brown</TD>

</TR>

<TR>

<TD>9, Sunley House, Gunthorpe Street</TD>

</TR>

<TR>

<TD>London E1-7RW</TD>

</TR>

</TABLE>

</BODY></HTML>

The Presentation-Centric HTML Output of the code is as follows:
Ms Anne Brown

9, Sunley House, Gunthorpe Street

London E1-7RW

As displayed in the output of the HTML code is presentation-centric and
appears as any textual data. However, there is no differentiation in the data
presented for the account holder's first name and last name. In other words,
the information about the type of data is lost by using the predefined HTML
tags.

On the contrary, consider the same example written in XML using the
custom tags (user-defined), as follows:

XML
<CUSTOMERDETAILS>

<NAME>

<TITLE>Ms</TITLE>

<FIRSTNAME>Anne</FIRSTNAME>

<LASTNAME>Brown</LASTNAME>

</NAME>

<ADDRESS>

<APTNAME>9, Sunley House</APTNAME>

<STREETNAME>Gunthorpe Street</STREETNAME>

<COUNTRY>London</COUNTRY>

<ZIP>E1 – 7RW</ZIP>

</ADDRESS>

</CUSTOMERDETAILS>

The rewriting of the preceding code in XML is as follows:
-<xml>

-<CUSTOMERDETAILS>

 -<NAME>

 <TITLE>Ms</TITLE>

 <FIRSTNAME>Anne</FIRSTNAME>

 <LASTNAME>Brown</LASTNAME>

 </NAME>

 -<ADDRESS>

 <APTNAME>9, Sunley House</APTNAME>

 <STREETNAME>Gunthorpe Street</STREETNAME>

 <COUNTRY>London</COUNTRY>

 <ZIP>E1 – 7RW</ZIP>

 </ADDRESS>

</CUSTOMERDETAILS>

Needless to say, in the output of the XML code, the definition of the
account holder’s details is presented in a format with emphasis on the type
of data. This is achieved by the use of specific custom tags such as
Firstname, Lastname, street, and zip. The use of these tags makes it easier
to differentiate the data. For example, the text enclosed within the
<COUNTRY>AND</COUNTRY> tags define the country to which the

account holder belongs. Although the presentation of this data is similar to
that written in HTML, the code of XML is more data-centric.

The advantages of using XML are as follows:

Easy coding: Being similar to HTML, XML is easy to code, except
for the inclusion of custom tags.

Easy data interchange: Translating an XML document is easy due to
explicit custom tags. Therefore, the data can be exchanged at different
levels without decoding or interpreting its structure.

Easy business communication: The data can be exchanged between
organizations without the need to understand the intricacies of the
counterpart’s business, system organization, or structuring. However,
there needs to be a common understanding of the tags used in the data.

The detailed rules and specifications followed in the XML code are written
in the Document Type Definition (DTD). The DTD defines the tags, tag
structures, attributes, and values that are used in a particular document.

Custom Tags
JSP 1.1 supports the creation of custom tags that enable the segregation of
business complexities to form the content presentation. The structure of a
custom tag in JSP, like those in XML and HTML, contains the start tags,
end tags, and a body. The structure of a custom tag can thus be represented
as follows:

Syntax:
<start tag>

 Body

</end tag>

Depending upon the presence or absence of the tag body, the custom tags
can be categorized as body tags or empty tags. In addition to this, the
custom tags can also be nested or include attributes. A nested tag contains

tags of various levels. A tag with an attribute uses the attribute parameters
to customize the tag behavior.

The attributes of a custom tag are listed as follows:

name: It is used to specify the name used within the tag.

required: It is used to specify the tag requirement. The values accepted
by this attribute are true, false, yes, or no.

Advantages of using Custom Tags
Scriptlets and custom tags encapsulate the Java code snippets, and are
hence, functionally quite similar. However, by providing better packaging
functionalities, the custom tags productively contribute towards segregating
the work profiles of the Web designers and developers. The advantages of
using custom tags are as follows:

Reduction of scriptlets in the code: The attributes of a custom tag
can be used to accept the parameters. Therefore, the inclusion of the
declarations (to define the variables) and scriptlets (to set the
properties of the Java components) can be avoided or reduced.

Reusability: Contrary to scriptlets that are non-reusable Java code
snippets, the custom tags can be reused. This enables saving the time
spent in the development and deployment of codes.

Components of a Tag Library
A JSP file use custom tags that consists of the following:

Tag handler: Tag Handler is used to define custom tags. The tag
handler uses different methods and objects to define the behavior of
the tag

Tag Library Descriptor (TLD) file: The TLD file is an XML file that
contains a descriptive list of the custom tags.

The JSP file contains a tag along with the HTML code for the presentation
content. Considering this structure, it is evident that the developer is
responsible for coding the tag handler and the TLD file.

The web designer codes for the static display content of the web page and
the custom tag is then added to the JSP file. Thus, the custom tag feature of
JSP enhances the productivity of the quality web applications by separating
the work profiles of the web designer and developer.

The following are the steps to use tags in a JSP file:

Create a tag handler containing the Tag and BodyTag interfaces. The
tag handler file should define the tasks to be performed by the tags.

Map the tags and the tag handler file by using the TLD file. The TLD
file should define the inputs to the tag handler.

The JSP file should include the taglib directive specifying the use of tags
and the definition of the tag.

For creating any custom tag, we need to complete the following steps:

Create the Tag handler class and perform an action at the start or the
end of the tag.

Create the Tag Library Descriptor (TLD) file and define the tags.

Create the JSP file that uses the Custom tag defined in the TLD file.

The structure of Tag Handler
The Tag Handler is used to define the working of the custom tags. The class
file derives its methods from the javax.servlet.tagext package and
implements the TagSupport or the BodyTag Support interfaces. The
javax.servlet.jsp.tagext package contains classes and interfaces for the JSP
custom tag API. The JspTag is the root interface in the Custom Tag hierarchy.

Figure 10.8 shows the hierarchy of the JSP tag; the JSP Tag interface is a
marker interface, therefore, it does not have any method:

Figure 10.8: Hierarchy of JSP tag

The TagSupport interface is implemented for tags with an empty body, and the
BodyTagSupport interfaces are implemented for tags that use a body. The tag
handler definition can also include classes from other packages, such as
javax.servlet.jsp, and java.io. It is, therefore, essential to add the
corresponding import statements for the tag implementations.

The structure of the tag handler can be categorized as that for a basic tag, a
tag with attributes, and a tag with a body. Therefore, the methods to be
implemented in the tag handler will depend upon the structure of the tag, as
listed in Table 10.3:

Structure of the Tag Handler Methods to be implemented

Simple Tag with no body and no attributes doStartTag(), doEndTag(), and release

Tag with attributes doStartTag(), doEndTag(), and the respective
setAttribute() and getAttribute() methods
for each of the tags defined.

Table 10.3: Method to be implemented in the Tag Handler class

The functionality of the tag library is defined using the methods from the
abstract class tag. Some methods of the tag class and their return type are
listed in Table 10.4, Table 10.5, and Table 10.6:

S.No Method Description

1 public int doStartTag() Initializes the tag handler and establishes
connectivity with a database, if required.

2 public int doEndTag() Performs post-tag tasks such as writing the
output and closing the database connection.

3. public void release() Removes the instance of the tag handler.

4. public int doAfterBody() It is invoked after the completion of the
evaluation of the body tag.

5. public int doBeforeTag() It is invoked before the evaluation of the Body
Tag.

6 Public void setPageContext
(PageContext pc)

It sets the given PageContext object.

7 public Tag getParent() It sets the parent of the tag handler.

Table 10.4: Methods of the Tag Interface

S.No Field Description

1 public static int SKIP_BODY Used in empty tags to direct the JSP engine to
skip the body of the tag and subsequently
invoke the next method, doEndTag().

2 public static int
EVAL_BODY_INCLUDE

Used to direct the JSP engine to process the
body content of a Tag. This method is used
only if the interface is implemented as
javax.servlet.tagext.Tag.

3 public static int EVAL_BODY_TAG Used to direct the JSP engine to process the
body of a tag. This method is used only if the
interface implemented is javax. servlet.

tagext. BodyTagSupport.

Table 10.5: Return type of doStartTag() method

S.No Field Description

1 SKIP_PAGE Used to specify skipping or omission of the
evaluation of the rest of the JSP page.

2 EVAL_PAGE Used to specify the evaluation of the rest of the
JSP page.

Table 10.6: Return type of doEndTag() method

In addition to the preceding methods, the tag handler also includes the
following classes and methods:

The JspWriter() method has to be explicitly mentioned in the tag to
write the output to a JSP page.

The getAttribute() and setAttribute() methods are used to retrieve the
variable values from scriptlets. After processing the variable, its value
is then set by using the setAttribute() method. When using the
getAttribute() and setAttribute() methods, the details about the scripting
variables also need to be specified by using the TagExtraInfo class.

The TagExtraInfo class consists of methods such as getVariableInfo() to
return the information about the scripting values retrieved from
scriptlets, TagExtraInfo(), that is the default constructor for this class,

and the setTagInfo() and getTagInfo() methods to set and get the TagInfo
object for this class.

The execution cycle of a JSP file containing the Custom Tags is shown in
Figure 10.9:

Figure 10.9: Execution cycle of JSP file having Custom Tag

The sequence of the execution of a JSP file containing the custom tags is
listed as follows:

1. When the JSP engine identifies the taglib directive in the JSP page, it
recognizes the presence of a custom tag associated with the JSP file.
The Uniform Resource Identifier (URI) and the prefix for the tag act
as the referential data for specifying the unique URI and the name for
the tag.

2. The specified tag handler is initialized.

3. The get() and set() methods for each tag is executed.

4. The doStartTag() method is invoked and used to perform tasks such as
opening a connection to a database.

5. The tag body is evaluated next, but is skipped if the SKIP_BODY field
constant is specified.

6. The tag's output is stored in a special PrintWriter called the JSPWriter.
The pageContext.getOut() method is used to make the contents available
to the subsequent methods. The output is not forwarded to the client at
this stage.

7. Next, the doAfter() method is invoked to process the content generated
after the evaluation of the tag body. The SKIP_BODY and the EVAl_BODY_TAG
field constant can be returned to estimate the exact stage of the life
cycle.

8. The doEndTag() method is invoked next. All connections created earlier
are closed, and the output is directed to the browser.

The structure of the TLD file
The TLD file is an XML file that contains the tag library description. It
contains the list and description of all the custom tags in the library that are
used as a reference to validate the existence of the respective tags. The
components of the TLD file can be broadly classified into two groups. The
first group placed within the taglib tag contains the elements that are a part
of the tag element, written as <tag>.

The elements of the TLD file at the taglib level are listed in Table 10.7:

S.No Component Description

1 <tlib-version> The version of the tag library such as <tlib-

version>1.0</tlib-version>.

2 <jsp-version> The version of JSP that the tag library depends on, such
as <jsp-version>1.2</jsp-version>.

3 <short-name> The name for the tag library.

4 <uri> The universal resource identifier, an optional component
that is a unique ID for the tag library.

5 <info> The detailed information about the tag library.

Table 10.7: Elements of the TLD file at the Taglib level

The elements of the TLD file at the tag level are listed in Table 10.8:

S.No Component Description

1 <name> Defines a name for the tag.

2 <tagclass> Specifies the tag handler class. The format for this
specification is <tagclass> package.classname<

/tagclass>.

3 <info> Provides additional information about the tag and its
functionality.

4 <attribute> Specifies the attribute name and requirement specification
for the tag.

5 <bodycontent> Contains the definition of the body for the tag. Specify
empty if the tag is empty, specify JSP if the body content
is in JSP, and specify tag dependent if the tag itself
controls any part of the body content. The default value
for the body content is JSP.

Table 10.8: Elements of the TLD file at the tag level

The steps to create the TLD file for a tag named first in the example tag
library are listed as follows:

 1. In the Notepad, include the following definitions for the document
type and its definition (DTD) as a first line of the TLD file:

 <!DOCTYPE taglib PUBLIC “//Sun Microsystems, Inc.//DTD JSP Tag Library
1.2//EN” “http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd”>

 2. Add the tlibversion, jspversion, and uri, short-name along with their
relevant information within the <taglib> and </taglib> tags, as follows:

 <taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>simple</short-name>

 <uri>http://tomcat.apache.org/example-taglib</uri>

 3. Add the tag definitions separating each element within the <tag> and
</tag> tags, as follows:

 tag>

 <name>today</name>

 <tag-class>IOL.TagHandler</tag-class>

 </tag>

 4. Add the end tag for taglib, as follows:
 </taglib>

The structure of the JSP File
A JSP page using custom tags from the tag library specifies the tag usage
with the taglib directive. The following code snippet declares a tag library
usage:
<%@ taglib uri="WEB-INF/example.tld" prefix="example" %>

The two attributes for the taglib directive are uri and prefix which are used to
specify the unique identifier and a reference name for the particular tag
library. When the JSP engine encounters insertion of the taglib directive, it
uses uri to locate the descriptor file for the particular library. To specify the
inclusion of a new tag named first for the tag library example, the tag would
be written as follows:
<example:today>

Example:

Tag Handler
package IOL;

import java.util.Calendar;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.tagext.TagSupport;

public class TagHandlerBank extends TagSupport {

 private String Name=null;

 public String getBankName()

 {

 return Name;

 }

 public void setBankName(String Name)

 {

 this.Name = Name;

 }

 public int doStartTag() throws JspException

{

 JspWriter out=pageContext.getOut();//returns the instance of JspWriter

 try{

 out.print(Calendar.getInstance().getTime());/*printing date and time using
JspWriter*/

out.print("Your Bank Name is "+Name);

 }catch(Exception e){System.out.println(e);}

 return SKIP_BODY;//will not evaluate the body content of the tag

}

}

TLD File:
<?xml version="1.0" encoding="UTF-8"?>

<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd">

<tlib-version>1.0</tlib-version>

<jsp-version>1.0</jsp:version>

<uri>/WEB-INF/tlds/MYTLD</uri>

<tag>

<name>bank</name>

<tag-class>IOL.TagHandlerBank</tag-class>

<body-content>empty</body-content>

<attribute>

<name>Name</name>

<required>true</required>

<type>java.lang.String</type></attribute></tag>

</taglib>

JSP File
<html>

<body>

<%@ tagliburi="WEB-INF/tlds/MYTLD.tld" prefix="n" %>

<n:bank Name="My Bank"></n:bank>

</body>

</html>

Expression Language(EL)
The Expression Language (EL) simplifies the accessibility of the data
stored in the Java Bean component and other objects like request, session,

application, and so on. There are many implicit objects, operators, and
reserve words in EL. It is the newly added feature in the JSP technology
version 2.0.

Syntax:
${ expression }

Example: In the following example, El.jsp uses the param object to get the
request Parameter:

index.jsp:
<html>

<body>

<form action="El.jsp">

Enter Name :<input type="text" name="name" />

<input type="submit" value="submit"/>

</form>

</body>

</html>

el.jsp:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<body>

 Welcome, ${ param.name }

</html>

The following is the output of index.xhtml, as shown in Figure 10.10:

Figure 10.10: Output of index.xhtml

The following is the output of el.jsp, as shown in Figure 10.11:

Figure 10.11: Output of El.jsp

There are many implicit objects used by the Expression language. Some
implicit objects are listed in Table 10.9:

S.No Implicit Objects Usage

1 pageScope It maps the given attribute name with the value set in the
page scope.

2 requestScope It maps the given attribute name with the value set in the
request scope.

3 sessionScope It maps the given attribute name with the value set in the
session scope.

4 applicationScope It maps the given attribute name with the value set in the
application scope.

5 param It maps the request parameter to the single value.

6 paramValues It maps the request parameter to an array of values.

7 header It maps the request header name to the single value.

8 headerValues It maps the request header name to an array of values.

9 cookie It maps the given cookie name to the cookie value.

10 initParam It maps the initialization parameter.

11 pageContext It provides access to many objects request, session, and
so on.

Table 10.9: Implicit Objects

The following is an example of Session and Cookie:

index.jsp:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<body>

<%

session.setAttribute("user","Sarika");

Cookie ck=new Cookie("pwd","sailboat");

response.addCookie(ck);

%>

visit

</html>

Process.jsp:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>JSP Page</title>

</head>

<body>

 Name= ${ sessionScope.user }

 Your Password = ${cookie.pwd.value}

</body>

</html>

The following is the output of index.jsp, as shown in Figure 10.12:

Figure 10.12: Output of index.jsp

The following is the output of process.jsp, as shown in Figure 10.13:

Figure 10.13: Output of Process.jsp

Model View Controller (MVC)
Architecture in JSP
MVC is a software design pattern that separates presentation logic from
business logic and data. It has three interconnected elements, which are as
follows:

Model

View

Controller

The Model defines the business logic of the application. It is independent of
the user interface. The Controller manages the flow of the application. The

Controller fetches the data from the Model and gives it to the View. The
View defines the presentation layer of the application. The Model consists
of simple Java classes, the Controller consists of servlets, and the View
consists of the JSP pages.

The following are the characteristics of MVC Pattern:

It separates the presentation layer from the business layer.

The Controller invokes the Model and sends the data to View.

The Model is not even aware that it is used by some web application or
a desktop application.

Navigation control is centralized.

It is easy to maintain the large application.

Refer to Figure 10.14 that illustrates the MVC architecture:

Figure 10.14: MVC Architecture

MVC Example in JSP
In the preceding figure, we use a servlet as a controller, JSP as a view
component, and Java Bean class as a model.

In this example, we have created the following five pages:

index.xhtml: A page that gets the input from the user.

Controller.java: A servlet that acts as a controller.

login-success.jsp and login-error.jsp files: Acts as view components.

web.xml: File for mapping the servlet.

Example:

index.xhtml:
<html>

 <body>

 <form action="Controller" method="post">

 Name:<input type="text" name="name">

 Password:<input type="password" name="password">

 <input type="submit" value="login">

 </form>

 </body>

</html>

Controller.java:
package IOL;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class Controller extends HttpServlet

 {

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 String name=request.getParameter("name");

 String password=request.getParameter("password");

 LoginBean bean=new LoginBean();

 bean.setName(name);

 bean.setPassword(password);

 request.setAttribute("bean",bean);

 boolean status=bean.validate();

 if(status)

 {

 RequestDispatcher rd=request.getRequestDispatcher("logini-success.jsp");

 rd.forward(request, response);

 }

 else

 {

 RequestDispatcher rd=request.getRequestDispatcher("login-error.jsp");

 rd.forward(request, response);

 }

 }

 @Override

 public String getServletInfo() { return "MVC"; }

}

Login Bean.jsp:
package IOL;

public class LoginBean

{

 private String name,password;

 public String getName()

{

 return name;

}

public void setName(String name)

 {

 this.name = name;

}

public String getPassword()

{

 return password;

}

public void setPassword(String password)

 {

this.password = password;

}

public boolean validate()

{

 if(password.equals("admin"))

{

 return true;

 }

 else

{

 return false;

 }

}

}

Logini-success.jsp:

%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Successfully Login</title>

 </head>

 <body>

 <%@page import="IOL.LoginBean"%>

 <p>You are successfully logged in!</p>

 <%

 LoginBean bean=(LoginBean)request.getAttribute("bean");

 out.print("Welcome, "+bean.getName());

 %>

 </body>

</html>

Login-error.jsp:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Error Page</title>

 </head>

 <body>

 <p>Sorry! username or password error</p>

 <%@ include file="index.xhtml" %>

</body>

</html>

Web.xml:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

<servlet>

 <servlet-name>Controller</servlet-name>

 <servlet-class>IOL.Controller</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Controller</servlet-name>

 <url-pattern>/Controller</url-pattern>

</servlet-mapping>

<session-config>

 <session-timeout>

 30

 </session-timeout>

</session-config>

</web-app>

The following is the output of index.xhtml, as shown in Figure 10.15:

Figure 10.15: Output of index.xhtml

The following is the output of logini-success.jsp, as shown in Figure 10.16:

Figure 10.16: Output of logini-success.jsp

The following is the output of login-error.jsp, as shown in Figure 10.17:

Figure 10.17: Output of login-error.jsp

Conclusion
In this chapter, we learned that JSP actions such as useBean, getProperty,
setProperty, setProperty, and forward are used to perform tasks such as
inserting files, reusing beans, forwarding a user to another page, and
instantiating objects. The custom tag library provides a mechanism by using
which the programmer can encapsulate the recurring code or tasks and
reuse them in multiple applications. Custom tags like XML and HTML tags
contain the start and end tags and a body. Custom tags can be categorized as
simple tags, body tags, tags with attributes, or nested tags. Attributes
contain parameters that can be used to customize the behavior of the custom
tags.

The tag handler and TLD files are created to implement the functionality of
the custom tags in a JSP file. The tag handler is used to define the custom
tags and is derived from the javax.servlet.tagext package that implements the
tag or the TagBody interfaces. The tag handler consists of the doStartTag(),
doEndTag(), and release() methods.

The tag library definition (TLD) file is an XML file that contains the tag
library description and consists of the following tags:

taglib

tlibversion

jspversion

info

name

tagclass

bodycontent

The errors in JSP can be categorized as either translation time errors or
request time errors. The error page is a separate file used to trap the runtime
errors of a JSP page. A tag library can be deployed either by separate
placements of files or by packaging the files. The package files created to
contain the TLD file and the class files are jar and war files. Expression
Language simplifies the accessibility of the data stored in the Java Bean
component and other objects like request, session, application, and so on.
MVC architecture separates business logic from presentation logic.

In the next chapter, you will learn Structs Framework with a simple
example.

Questions

 1. Which JSP action tag is used to include the content of another
resource, be it JSP, HTML, or servlet?

 a. Jsp:include

 b. Jsp:forward

 c. Jsp:page

 d. Jsp: param

 Ans: a

 2. What is the requirement of a tag library?

 3. What is a JSP Expression?

 4. How do you include static files on a JSP page?

 5. How is Taglib Directive used in JSP?

 6. What are custom tags, how do you use them, and how do you create
them in JSP?.

 7. What is the difference between custom JSP tags and JavaBeans?

 8. What is EL?

 9. How does EL search for an attribute?

CHAPTER 11
Introduction to Struts

Introduction
Struts is a framework based on an MVC pattern to develop web
applications. The pattern is the way you can architect your application,
whereas Framework provides the foundation classes and libraries. The
Framework helps in the rapid development of common classes. It leverages
industry best practices. Craig McClanahan built the Struts Framework and
submitted it to the Apache Foundation in May 2000, and Struts 1.0 was
released in June 2001. Struts 2.5.22 is the most recent stable release, which
was released on November 19, 2019. There is some difference between
struts1 and struts2.

Table 11.1 provides the differences between Struts1 and Struts2:

No. Struts1 Struts2

1 Action class is not POJO. You need
to inherit the abstract class.

The action class is POJO. You don't need to
inherit any class or implement any interface.

2 Front controller is ActionServlet. Front Controller is
StrutsPrepareAndExecuteFilter.

3 It uses the concept of the
RequestProcessor class while
processing requests.

It uses the concept of Interceptors while
processing the request.

4 It has only JSP for the view
component.

For the view component, it has JSP,
Freemarker, Velocity, and so on.

5 The configuration file name can be
[anyname].xml, and it can be placed
inside the WEB-INF directory.

The configuration file must be struts.xml and
placed inside the classes directory.

6 Action and Model are separate. Action and Model are combined within the
action class.

Table 11.1: Difference between Struts1 and Struts2

Structure
In this chapter, we will cover the following topics:

Features of Struts

Architecture of Struts

Components of Struts

Create an application

Objective
In this chapter, you will learn about the struts framework that simplifies the
development and maintenance of web applications by providing predefined
functionality. The features and components of Struts2 will also be learned.
An application based on the framework will also be created to understand
the Strust2 framework.

Features of Struts2
The following are the main features of Struts2:

Configurable MVC components: In the struts2 framework, we
provide all the components' (view components and Action)
information in the struts.xml file. We may simply alter any information
in the XML file if we need to.

POJO-based actions: The action class in struts2 is a Plain Old Java
Object (POJO), which is a simple Java class. You are not required to
implement any interfaces or inherit any classes in this environment.

AJAX support: Struts2 has the support of Ajax technology. It's used
to make asynchronous requests, which means it doesn't keep the user
waiting. It just sends the needed field data to the server, not all of it. As
a result, the performance is quick.

Integration support: We can simply integrate the struts2 Application
with framework like hibernate, spring, tiles, and so on.

Various result types: We can use JSP, freemarker, velocity, etc
technologies as a result in struts2. Velocity and freemarker is a
templating engine based on Java. Both are a free and open-source web
framework that's meant to be used as a view component in the MVC
architecture.

Various tag supports: To make the struts2 applications easier, Struts2
includes many sorts of tags, such as UI tags, Data tags, Control tags,
and so on.

Theme and Template support: Struts2 supports three different types
of themes – XHTML, simple, and CSSXHTML. The default theme for
struts2 is XHTML. For a consistent appearance and feel, themes and
templates can be employed.

Components of Struts2

The Model-View-Controller pattern in Struts2 is implemented with the
following five core components:

Actions: . Action class is responsible for maintaining the state and
request processing. Action class is a Plain Java class which has a
getter, setter, and an execute method. It represents the MODEL part of
the MVC pattern

Controller: In struts2, a controller is responsible for identifying the
incoming requests, selecting the appropriate action classes for the
processing, and finally searching the JSP or HTML files to display the
response. Controller class (org.apache. struts2. dispatcher. FilterDispatcher)
is provided by the struts framework.

Interceptors: Interceptors are the helper component for the container
that contains the cross-cutting logic and can be extended in the
following two cases:

Before the execution of Action

After the execution of Action

 Therefore, an interceptor is an object invoked at the preprocessing
and postprocessing of a request. In Struts 2, Interceptor is used to
perform operations such as validation, exception handling,
internationalization, displaying intermediate results, and so on.

Value Stack: A Value Stack is simply a stack that contains the
application-specific objects such as action objects and other model
objects. Value stack fetches the object through the struts tag with the
help of an expression called OGNL (Object Graph Navigation
language). A value stack is a storage area where the data is stored for
processing the client requests.

Results/Result types: In struts2, the result component is responsible
for identifying the appropriate JSP or HTML to display the data to the
client. We can also customize this component according to the
requirement.

View technologies. It is an HTML or JSP file that is used to display
the information to the user.

Architecture of Struts2
Struts2 Architecture is different from the traditional MVC Pattern. Here,
Action is a Model, and the controller class is maintained by the struts2
Framework. In Struts 2, Servlet Filter (Filter Dispatcher) looks at the
request, and then as per the mapping of the URL, the request is forwarded
to the appropriate Action Class, as shown in Figure 11.1:

Figure 11.1: Architecture of Strut2

In Figure 11.1, Browser sends a request. The request passes to the
Controller. The Controller is implemented with a Struts2 dispatch servlet
filter and the interceptors. The Controller finds the appropriate action class,
sends the request, sets the parameters, and calls the execute() method. The
configured interceptor functionalities apply, such as validation, file upload,
and so on. Finally, the view prepares the result and returns it to the user.

Creating a Struts Application

The following are the steps to create a Struts Application:

 1. Create the index.xhtml.

 2. Create the action class Login.java.

 3. Create the view Welcome.jsp and Invalid.jsp.

 4. Add the Struts configuration in struts.xml.

 5. Add the filter in web.xml.

 6. Build the WAR file and run the application.

Refer to the following code example:

index.xhtml

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <form action="login.action">

 User Name<input type="text" name="uname"/>

 <input type="submit" value="submit"/>

 </form>

 </body>

</html>

Action class-Login.java:
package p1;

public class Login

{

 private String uname;

 public String execute()

 {

 if(uname.equals("Sarika"))

 return("Success");

 else

 return("Invalid");

 }

 public String getUname()

 {

 return uname;

 }

 public void setUname(String uname)

{

 this.uname = uname;

 }

}

View – Welcome.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>welcome</h1>

 <%@ taglib uri="/struts-tags" prefix="s" %>

 <h1><s:property value="uname"/>
</h1>

 </body>

</html>

View--Invalid.jsp

 <%@page contentType="text/html" pageEncoding="UTF-8"%>

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>invalid</h1>

 </body>

</html>

Struts.xml

<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"

"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <package name="default" extends="struts-default">

 <action class="p1.Login" name="login">

 <result name="Success">/welcome.jsp</result>

 <result name="Invalid">/invalid.jsp</result>

 </action>

 </package>

</struts>

Web.xml:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

 <filter>

 <filter-name>struts2</filter-name>

 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-
class>

 </filter>

 <filter-mapping>

 <filter-name>struts2</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

OUTPUT:

The following is the output of index.jsp, as shown in Figure 11.2:

Figure 11.2: Output of index.jsp

The following is the output of welcome.jsp, as shown in Figure 11.3:

Figure 11.3: Output of Welcome.jsp

The following is the output of index.xhtml, as shown in Figure 11.4:

Figure 11.4: Output of index.xhtml

The following is the output of invalid.jsp, as shown in Figure 11.5:

Figure 11.5: Output of Invalid.jsp

Conclusion
The struts2 framework is used to develop an MVC-based web application.
Struts is an open-source framework that extends the Java Servlet API and
employs a Model-View-Controller (MVC) architecture. It enables you to
create maintainable, extensible, and flexible web applications based on
standard technologies, such as JSP pages, JavaBeans, resource bundles, and
XML.

The components of struts are Controller, Action, ValueStack, View, and
ResultType. Struts.xml is used to specify the configuration about the
various components of the application, that is, the type of result, Interceptor,
information about JSP, and so on.

Web.xml must have the entry of the filter class.

Questions
 1. What is Struts?

 2. What is the difference between struts1 and struts2?

 3. What are the features of Struts?

 4. Define Interceptors, ValueStack, and OGNL?

 5. How does FrontController help in maintaining the MVC pattern in
struts2?

Interview Questions

 1. What are server-side includes?

 Ans: A server-side enables you to embed a Java Servlet in an HTML
document. The file that contains a server-side include must be saved
with a .shtml extension to inform the server that the file contains a
server-side include.

 2. What are thread-safe servlets?

 Ans: In a typical environment, the webserver creates only a single
instance of a servlet. The service() method of the Servlet acts as a
dispatcher of the requests. If the service method is processing a
request and, at the same time, receiving a different request, the
webserver can create a different thread and execute the service()
method in the newly created thread. In the process of execution, the
threads need to be in synchronization and, thus, make the servlets
thread-safe. Servlets can make use of the Java API to implement
thread synchronization.

 3. Can the address of the client that is sending a request be tracked
in the Servlet?

 Ans: Yes, the address of the remote client can be tracked in the
Servlet by using the getRemoteAddr() and getRemoteHost() functions of
HttpServletRequest.

 4. How can the client be intimated about the size of a file that is
being sent by the server?

 Ans: The content-length attribute of the HTTP header can be used to
set the file size and sent to the length.

 5. Can I read cookies with a specific key?

 Ans: No. All the cookies need to be retrieved, and then the key name
and value should be checked individually.

 6. What are persistent cookies?

 Ans: Few cookies can get deleted after a session is over. To make the
cookies persistent, you can set an expiry time for the cookies. These
types of cookies are known as persistent cookies.

 7. How do we get the absolute URL of a servlet at runtime?

 Ans: You can use the getRequestURL() method of the HttpServletRequest
interface to obtain the URL of the request, excluding the query string.
The getQueryString() function of the HttpServletRequest interface can be
used to obtain the query string that was part of the request. In
addition, you can also use the getServerName() and the getServerPort()
methods of the ServletRequest interface to obtain the name of the server
which received the request and the port number through which the
Servlet receives the request.

 8. What is the use of the getScheme() method?

 Ans: The getScheme() method is used to obtain the scheme based on
which the URL is constructed and sent to the Servlet. The scheme can
be ftp, http, or https.

 9. What is the life cycle of a session?

 Ans: There are three stages in the life of a session, which are as
follows:

 a. New: Until the Session is being established with the client.

 b. Joins: The Session will always be new if the client does not join
a session.

 c. Destroyed: The Session is invalidated or the session timeout
period expires.

 10. How is PrintWriter different from ServletOutputStream?

 Ans: PrintWriter is a character-stream class, whereas
ServletOutputStream is a byte-stream class. The PrintWriter class can be
used to write only character-based information, whereas the
ServletOutputStream class can be used to write primitive values and
character-based information.

 11. Can a JSP be called using a Servlet?

 Ans: Yes, Servlet can call a JSP using the RequestDispatcher
interface.

 The following is an example:
 RequestDispatcher reqdis=request.getRequestDispatcher("log.jsp");

 reqdis.forward(request,response);

 12. What is load-on-startup in Servlet?

 Ans: The load-on-startup element of Servlet in web.xml is used to load
the Servlet at the time of deploying the project or the server to start.
This saves time for the response of the first request.

 13. Can you refresh the Servlet in client and server-side
automatically?

 Ans: Yes, there are a couple of primary ways that a servlet can be
automatically refreshed. One way is to add a “Refresh” response
header containing the number of seconds after which a refresh
should occur.

 The following is an example:

 response.addHeader("Refresh", "5");

 14. Can you send an Authentication error from a Servlet?

 Ans: Yes, we can use the setStatus(statuscode) method of
HttpServletResponse to send an authentication error. All we have to do
is set an error code and a valid reason along with the error code.

 The following is an example:
 response.sendError(404, "Page not Found!!!");

 15. Why doesn’t a Servlet include main()? How does it work?

 Ans: Servlets don’t have a main() method, because servlets are
executed using the web containers. When a client places a request
for a servlet, the server hands the requests to the web container
where the Servlet is deployed.

 16. What is the difference between Context Parameter and Context
Attribute?

 Ans: The main difference is that the Context Parameter is a value
stored in the deployment descriptor, which is the web.xml and is
loaded during the deployment process. On the other hand, Context
Attribute is the value that is set dynamically and can be used
throughout the application.

 17. What is servlet mapping?

 Ans: Servlet mapping is the process of defining an association
between a URL pattern and a servlet. The mapping is used to map
the requests to Servlets.

 18. Which are the annotations that are used in Servlet?

 Ans: The three important annotations used in the servlets are as
follows:

 a. @WebServlet: For servlet class.

 b. @WebListener: For listener class.

 c. @WebFilter: For filter class.

 19. What is the difference between a Generic Servlet and an HTTP
Servlet?

 Ans: The similarity between Generic Servlet and HTTP Servlet is
that both are Abstract Classes. However, the differences between
them are as follows:

Generic Servlet HTTP Servlet

Protocol Independent. Protocol Specific.

Belongs to javax.servlet package. Belongs to javax.servlet.http package.

Supports only service() method. Supports doGet(), doPost(), doHead()
methods.

 20. How can you get the server information in a servlet?

 Ans: We can retrieve the information of a server in a servlet. We can
use the following code snippet to get the servlet information in a
servlet through the servlet context object: getServletContext()
.getServerInfo();

 21. What is the JSP technology?

 Ans: JSP technology or JavaServerPages technology is an extension
of the Java programming technology. JSP includes a scripting
language that is Java based. A JSP page upon compilation generates
a servlet. Web applications that are developed by using JSP
demonstrate the platform and web server independence.

 22. How can you eliminate the task of reloading a JSP file?

 Ans: A good approach to eliminate the task of having to reload a
JSP file is to separately place the static content. Create a separate
JSP file for the static content and use directives such as include to
attach the contents of the file.

 23. How does JSP add functionality to an application in the
presence of the servlet technology?

 Ans: The basic importance of using JSP is the auto-generation of
servlets. This feature simplifies a part of the coding phase. The
positive implementation of JSP is also brought out when the
response output contains both template and business-specific data.

 24. How do you correlate JSP and XML?

 Ans: The HTML content representing the static content can also be
coded by using XML. In addition to this, the JSP content or the
scriptlets can also be represented within the XML tags <jsp:scriplet>
and </jsp:scriplet>.

 25. Is the Java platform API used with JSP?

 Ans: Since the compilation of JSP results in the generation of a
servlet, JSP needs JVM support that fulfils the standard followed by
the Java Servlets.

 26. How do you define a JSP tag library?

 Ans: The JSP tag libraries contain user-defined custom tags that are
used to write the XML-based codes containing the JavaBean
components. Tag libraries essentially aim at segregating the static
and dynamic code content of a JSP file.

 27. What are the advantages of using tag libraries?

 Ans: The features of a tag library are as follows:

 a. Tags created for the JSP pages are portable and can be easily
used across projects. Once packaged as a jar or a war file, they
can be reused.

 b. Tag libraries are maintainable. This is because the dynamic code
is placed in the tag handler and the JavaBean component. Any
changes that need to be made to the code can thus be simply
updated in the corresponding files.

 The reusability factor also explains the shortening of the debugging
time and thus reduces the time taken to deploy a JSP application that
uses tag libraries.

 28. How can you restrict the page errors displayed on a JSP page?

 Ans: The errors can be stopped from getting displayed by setting up
an ErrorPage attribute of the PAGE directory to the name of the error
page in the JSP page, and then in the error JSP page, setting
isErrorpage=” TRUE.

 29. How can a thread safe JSP page be implemented?

 Ans: It can be done by having them implemented by the
SingleThreadModel Interface. Add <%@page isThreadSafe=”false” %> directive
in the JSP page.

 30. How can the output of the JSP or servlet page be prevented
from being cached by the browser?

 Ans: Using appropriate HTTP header attributes can help prevent the
dynamic content output by a JSP page from being cached by the
browser.

 31. How can you disable scripting?

 Ans: Scripting can be easily disabled by setting the scripting-invalid
element of the deployment descriptor as true. It is a sub-element of
the property group. It can be false as well.

 32. Is the JSP technology extensible?

 Ans: Yes, JSP is easily extensible by the use and modification of
tags, or custom actions, encapsulated in the tag libraries.

Index

A
action 175
Active Server Pages (ASP) 41
Applets
 versus Servlets 39
application data 72
autoFlush attribute 127

B
buffer
 about 126
 autoFlush attribute 127
 isELIgnored attribute 126
 isThreadSafe attribute 127

C
Callable Statement object 8
CGI script
 about 40
 disadvantages 40
comment tag 104
Common Gateway Interface (CGI) 40
contentType attribute 122
controller 175
cookie class
 constructor 77
cookies
 about 76
 advantages 76
 characteristics 76
 disadvantages 76

 example 78, 80
custom tag
 about 128, 150
 advantages 151
 attributes 151
 components 151
 in JSP file 152
 JSP file execution 155, 156
custom tag library 147

D
database
 connecting to 7
 connection, establishing 7
 connection object 7
 driver, loading 7
 querying 7
 query, processing 8
Database Management 2, 3
declaration tag 107
deployment descriptor
 creating 47, 48
directives
 types 120
Document Type Definition (DTD) 150
doGet() method 56

E
errorPage attribute
 about 122
 isErrorPage attribute 122-124
 package list 124, 125
 scripting language 125
 servlet information 126
 true/false 125
execute() method 10
executeQuery() method 10
executeUpdate() method 10
Expression Language (EL)

 about 121, 160-163
 implicit objects 161, 162
expression tag 106
extends attribute 122
Extensible Markup Language (XML)
 about 148
 advantages 150
 need for 148-150

F
forward action tag
 about 141
 attribute 140
forward() method
 versus sendRedirect() method 92

G
GenericServlet class 49
getAttribute() method 155
getConnection() method 7
GET method
 about 42, 54
 versus POST method 54
getProperty tag
 attributes 137

H
hidden form fields
 about 68
 example 68-71
HTTP Request 52
HTTP Response 52
HttpServlet
 about 43, 49
 HTTP methods 53, 54
HTTP Servlet 52
HTTPServlet class
 need for 52
HttpServletRequest interface 56

 getCookies() 113
 getMethod() 113
 getQueryString() 113
 getSession() 113
HttpServletResponse interface
 addCookie() 113
 sendRedirect() 113
HttpSession 72
HttpSession interface
 methods 72, 73
 program 73, 75
 using 71
HttpSession object
 about 72
 types 72
HyperText Transfer Protocol (HTTP) 52

I
I18N-based application
 developing 27
 examples 27
implicit objects
 about 108
 application 108-110
 config 116
 contentType attribute 122
 exception 116
 extends attribute 122
 out 111
 page 111
 pageContext 116
 request 112
 response 113
 session 114, 115
include action tag
 about 146
 attribute 142
 example 142
include directive

 about 127
 advantages 128
init() method 56
Input Parameters
 passing 15, 17
interceptor 176
Internationalizing with Date and Time 28
Internationalizing with Numbers 30, 31
Inter-Servlet communication
 client interface 87
 first servlet code 88, 90
 implementing, via problem statement 86
 index.xhtml 87
 SendRedirect 91
 tasklist 86
isELIgnored attribute 126
isErrorPage attribute 122-124
isThreadSafe attribute 127

J
Java Database Connectivity (JDBC) 4
Java Server Pages (JSP)
 advantages 97
 directory structure 101
 features 96
 lifecycle 98, 99
 MVC architecture 164
 need for 96
 request-response cycle 98
 structure 99, 100
 versus Servlet 97
java.text.DateFormat
 methods 28
javax.servlet.http.Cookie class
 about 76
 methods 77, 78
Javax.servlet package 42, 43
JDBC-API 4
JDBC classes

 Callable Statement object 8
 Prepared Statement object 8
 Statement object 8
JDBC Driver Manager 5
JDBC drivers
 about 4
 JDBC Driver Manager 5
 JDBC-ODBC bridge 5
 JDBC-ODBC bridge driver 5
 Native-API driver 5
 network protocol driver 6
 ODBC driver 5
 thin driver 6
JDBC-ODBC bridge
 about 5
 advantages 5
 disadvantages 5
JDBC-ODBC bridge driver 5
JDBC URL
 about 7, 8
 example 8
JSP action tag
 about 132-134
 jsp:forward action tag 140
 jsp:getProperty action tags 136
 jsp:include action tag 142
 jsp:setProperty action tags 136
 jsp:useBean action tag 134
 syntax 132
JSP custom tags 147
JSP directives 120
JSP elements
 about 104
 comment tag 104
JSP file
 structure 158
jsp:forward action tag 140
jsp:getProperty action tags 136
jsp:include action tag 142

jsp:setProperty action tags 136
jsp:useBean action tag 134
jspWriter() method 154

L
Locale class
 about 24
 constructors 24
 methods 24, 25
Localization (L10N) 24

M
Model View Controller (MVC)
 about 164
 example, in JSP 165, 169, 170
MVC architecture
 in JSP 164
MVC pattern
 characteristics 164

N
Native-API driver
 about 5
 advantages 6
 disadvantages 6
network protocol driver
 about 6
 advantages 6
 disadvantages 6
NumberFormat
 methods 30

O
ODBC API 3, 4
ODBC driver 5
Open Database Connectivity (ODBC) 3

P

package list 124, 125
page directive
 about 120
 attributes 120, 121
Plain Old Java Object (POJO) 175
POST method
 about 42, 54
 versus GET method 54
Prepared Statement object
 about 8, 14
 using 14

Q
query string 42, 54

R
Records
 adding 18
 deleting 18, 19
 modifying 18
Relational Database Management Systems (RDBMS) 2
remote method invocation (RMI) 39
RequestDispatcher interface
 about 84
 methods 85
 object method, obtaining 84, 85
resource bundle 27
Resource Bundle
 about 25
 constructor 26
 methods 26
ResultSet object 10-13
result type 176

S
scripting elements
 about 104
 declaration tag 107
 expression tag 106

 scriptlet tag 104-106
scripting language 125
scriptlet tag 104-106
SendRedirect
 about 91
 example 91
sendRedirect() method
 about 91
 versus forward() method 92
server-side scripting technologies
 versus Servlets 40
Servlet
 about 38
 characteristics 39
 classes and interfaces 43
 client request components 41
 compiling 47
 creating 45, 46
 lifecycle 44
 session techniques 64
 versus Applets 39
 versus Java
 Server Pages
 (JSP) 97
 versus server-side scripting technologies 40
 working 41
servlet chaining 85
ServletContext interface
 methods 84
servlet information 126
Servlet interface
 about 44
 methods 45
ServletRequest interface
 method 57, 60
session techniques
 hidden form fields 68
 HttpSession interface, using 71
 in Servlet 64

 URL Rewriting 64, 67, 68
session tracking 64
setAttribute() method 155
setProperty tag
 attributes 137
state data 72
Statement object
 about 8, 10
 using 9
Statement object, methods
 execute() method 10
 executeQuery() method 10
 executeUpdate() method 10
Struts2
 features 174, 175
Struts2 architecture 176, 177
Struts2 components
 about 175
 action 175
 controller 175
 interceptor 176
 result 176
 result type 176
 Value Stack 176
 view technologies 176
Struts application
 creating 177, 180, 181

T
TagExtraInfo() method 155
tag handler
 about 152
 structure 152, 153
tag handler, methods
 getAttribute() method 155
 jspWriter() method 154
 setAttribute() method 155
 TagExtraInfo() method 155
taglib directive 128

tag library
 methods 153
Tag Library Descriptor (TLD) file
 about 128
 creating 157, 158
 elements, at tag level 157
 elements, at taglib level 156
 structure 156
thin driver
 about 6
 advantages 6
 disadvantages 6

U
Uniform Resource Identifier (URI) 155
URL Rewriting
 about 64, 67, 68
 advantages 65
 disadvantages 65
 example 65
useBean tag
 attributes 135
 example 135, 136

V
Value Stack 176
view technologies 176

W
webserver 38
web.xml file
 about 47
 elements 48

	Title Page
	Copyright Page
	Dedication page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Database Connectivity
	Introduction
	Structure
	Objectives
	Database Management
	ODBC Application Programming Interface (API)
	JDBC-API
	Categories of JDBC Drivers
	JDBC-ODBC bridge + ODBC driver
	Native-API driver
	Network protocol driver
	Thin Driver

	Querying a database
	Connecting to a database
	The connection object
	Loading the Driver and establishing the connection

	The JDBC URL
	A Sample JDBC URL
	Processing querying in a database

	Conclusion
	Multiple Choice Questions
	Answers

	Fill in the blanks
	State True/False
	Questions
	Interview Questions

	2. Internationalization (I18N)
	Introduction
	Structure
	Objective
	Localization (L10N)
	Locale
	Constructors of Locale Class
	Commonly used methods of Locale class

	Resource Bundle
	Constructor of ResourceBundle
	Methods of ResourceBundle Class

	Steps to develop the I18N-based application
	Internationalizing Date and Time (I18N with Date and Time)
	Methods of java.text.DateFormat
	Internationalizing with Numbers (I18N with Numbers)
	Conclusion
	Multiple Choice Questions

	3. Introduction to Java Servlets
	Introduction
	Structure
	Objectives
	Webserver
	Introduction to Servlets
	Characteristics of Servlets

	Comparison between Servlets and Applets
	Comparison between Servlets and other server-side scripting technologies
	CGI scripts
	Active Server Pages (ASP)

	Working of Servlets
	The GET and POST methods
	The Javax.servlet package
	Lifecycle of a Servlet

	Servlet Interface
	Creating a Servlet
	Creating the deployment descriptor (web.xml file)

	Conclusion
	Questions

	4. HTTP Servlet
	Introduction
	Structure
	Objectives
	HTTP Servlet
	Need of HTTPServlet class
	HTTP Request and HTTP Response
	The GET and POST methods
	HttpServletRequest Interface
	Method of ServletRequest Interface

	Conclusion
	Questions
	Multiple Choice Questions

	5. Working with Servlet Sessions
	Introduction
	Structure
	Objective
	Session tracking
	Techniques to keep track of sessions in servlets
	URL Rewriting
	Hidden Form Fields
	Using the HttpSession Interface
	Cookies
	The javax.servlet.http.Cookie class

	Conclusion
	Questions

	6. Inter-Servlet Communication
	Introduction
	Structure
	The RequestDispatcher Interface
	Method of ServletContext Interface
	Method to get the object of RequestDispatcher
	Methods of RequestDispatcher interface
	Implementing Inter servlet communication via a problem statement
	Tasklist
	Client Interface
	index.xhtml
	Code of FirstServlet
	SendRedirect

	Difference between forward() and sendRedirect() method
	Conclusion
	Questions

	7. Java Server Pages(JSP)
	Introduction
	Structure
	Objectives
	Need for JSP
	Difference between Servlet and JSP
	Advantages of JSP
	The JSP request-response cycle
	Lifecycle of JSP
	Structure of a JSP Page
	The directory structure of the JSP Page

	Conclusion
	Questions

	8. Comment Tag and Scripting Element
	Structure
	Objectives
	JSP Elements
	Comment Tag

	Scripting Elements
	Scriptlet tag
	Expression Tag
	Declaration tag

	Implicit Objects
	Conclusion
	Questions
	Select the Correct Option

	9. JSP Directives
	Structure
	Objective
	Types Of Directives
	JSP directives
	The page directive

	Implicit Objects
	contentType
	extends

	errorPage
	isErrorPage
	import= “package list”
	language= “scripting language.”
	Session=true/false
	info= “servlet information”

	Buffer
	isELIgnored= “true/false”
	isThreadSafe
	autoFlush

	The include directive
	The Taglib directive
	Conclusion
	Questions

	10. JSP Action Element and Custom Tags
	Introduction
	Structure
	Objectives
	JSP Action Tags
	jsp:useBean action tag
	jsp:setProperty and jsp:getProperty action tags
	Jsp:forward action tag
	jsp:include action tag

	JSP custom tags
	Custom Tag Library
	Need of XML
	Custom Tags
	The structure of the TLD file
	The structure of the JSP File

	Expression Language(EL)
	Model View Controller (MVC) Architecture in JSP
	MVC Example in JSP

	Conclusion
	Questions

	11. Introduction to Struts
	Introduction
	Structure
	Objective
	Features of Struts2
	Components of Struts2
	Architecture of Struts2
	Creating a Struts Application
	Conclusion
	Questions

	Interview Questions
	Index

