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About the Book
Do you want to learn how to communicate with computer systems using Natural 
Language Processing (NLP) techniques, or make a machine understand human 
sentiments? Do you want to build applications like Siri, Alexa, or chatbots, even if 
you've never done it before?  

With The Natural Language Processing Workshop, you can expect to make consistent 
progress as a beginner, and get up to speed in an interactive way, with the help of 
hands-on activities and fun exercises. 

The book starts with an introduction to NLP. You'll study different approaches to 
NLP tasks, and perform exercises in Python to understand the process of preparing 
datasets for NLP models. Next, you'll use advanced NLP algorithms and visualization 
techniques to collect datasets from open websites, and to summarize and generate 
random text from a document. In the final chapters, you'll use NLP to create a chatbot 
that detects positive or negative sentiment in text documents such as movie reviews.  

By the end of this book, you'll be equipped with the essential NLP tools 
and techniques you need to solve common business problems that involve 
processing text.

Audience

This book is for beginner to mid-level data scientists, machine learning developers, 
and NLP enthusiasts. A basic understanding of machine learning and NLP is required 
to help you grasp the topics in this workshop more quickly.

About the Chapters

Chapter 1, Introduction to Natural Language Processing, starts by defining natural 
language processing and the different types of natural language processing tasks, 
using practical examples for each type. This chapter also covers the process of 
structuring and implementing a natural language processing project.

Chapter 2, Feature Extraction Methods, covers basic feature extraction methods 
from unstructured text. These include tokenization, stemming, lemmatization, and 
stopword removal. We also discuss observations we might see from these extraction 
methods and introduce Zipf's Law. Finally, we discuss the Bag of Words model and 
Term Frequency-Inverse Document Frequency (TF-IDF).
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Chapter 3, Developing a Text Classifier, teaches you how to create a simple text 
classifier with feature extraction methods covered in the previous chapters.

Chapter 4, Collecting Text Data with Web Scraping and APIs, introduces you to web 
scraping and discusses various methods of collecting and processing text data from 
online sources, such as HTML and XML files and APIs.

Chapter 5, Topic Modeling, introduces topic modeling, an unsupervised natural 
language processing technique that groups documents according to topic. You will 
see how this is done using Latent Dirichlet Allocation (LDA), Latent Semantic Analysis 
(LSA), and Hierarchical Dirichlet Processes (HDP). 

Chapter 6, Vector Representation, discusses the importance of representing text as 
vectors, and various vector representations, such as Word2Vec and Doc2Vec.

Chapter 7, Text Generation and Summarization, teaches you two simple natural 
language processing tasks: creating text summaries and generating random text with 
statistical assumptions and algorithms.

Chapter 8, Sentiment Analysis, teaches you how to detect sentiment in text, using 
simple techniques. Sentiment analysis is the use of computer algorithms to detect 
whether the sentiment of text is positive or negative.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We find that the summary for the Wikipedia article is much more coherent than the 
short story. We can also see that the summary with a ratio of 0.20 is a subset of a 
summary with a ratio of 0.25."

Words that you see on the screen, for example, in menus or dialog boxes, also appear 
in the text like this: "On this page, click on Keys option to access the secret keys."

A block of code is set as follows:

text_after_twenty=text_after_twenty.replace('\n',' ')

text_after_twenty=re.sub(r"\s+"," ",text_after_twenty)

New terms and important words are shown like this: "A Markov chain consists of a 
state space and a specific type of successor function."
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Long code snippets are truncated and the corresponding names of the code files on 
GitHub are placed at the top of the truncated code. The permalinks to the entire code 
are placed below the code snippet. It should look as follows:

Exercise 7.01.ipynb

1  HANDLE = '@\w+\n'
2  LINK = 'https?://t\.co/\w+'
3  SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'
4  PARA='\n+'
5  def clean(text):
6      #text = re.sub(HANDLE, ' ', text)
7      text = re.sub(LINK, ' ', text)
8      text = re.sub(SPECIAL_CHARS, ' ', text)
9      text = re.sub(PARA, '\n', text)

The full code can be found at https://packt.live/2D7RPPZ.

Code Presentation

Lines of code that span multiple lines are split using a backslash ( \ ). When the code 
is executed, Python will ignore the backslash, and treat the code on the next line as a 
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

                    validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line 
comments are denoted using the # symbol, as follows:

# Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the 

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

https://packt.live/2D7RPPZ
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Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In 
the following section, we shall see how to do that.

Installation and Setup

Jupyter notebooks are available once you install Anaconda on your system. Anaconda 
can be installed for Windows systems using the steps available at https://docs.
anaconda.com/anaconda/install/windows/.

For other systems, navigate to the respective installation guide from https://docs.
anaconda.com/anaconda/install/.

These installations will be executed in the C drive of your system. You can choose to 
change the destination.

Installing the Required Libraries

Open Anaconda Prompt and follow the steps given here to get your system ready. 
We will create a new environment on Anaconda where we will install all the required 
libraries and run our code:

1. To create a new environment, run the following command:

conda create --name nlp

2. To activate the environment, type the following:

conda activate nlp

For this course, whenever you are asked to open a terminal, you need to open 
Anaconda Prompt, activate the environment, and then proceed.

3. To install all the libraries, download the environment file from  
https://packt.live/30qfL9V and run the following command:

pip install -f requirements.txt

4. Jupyter notebooks allow us to run code and experiment with code blocks. To 
start Jupyter Notebook, run the following inside the nlp environment:

jupyter notebook

A new browser window will open up with the Jupyter interface. You can now 
navigate to the project location and run Jupyter Notebook.

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://packt.live/30qfL9V
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Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your 
machine, all the required libraries can be installed using pip, for example, pip 
install numpy. Alternatively, you can install all the required libraries using pip 
install –r requirements.txt. You can find the requirements.txt file at 
https://packt.live/39RZuOh.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a 
Python library and can be installed in the same way as the other Python libraries – 
that is, with pip install jupyter, but fortunately, it comes pre-installed with 
Anaconda. To open a notebook, simply run the command jupyter notebook in 
the Terminal or Command Prompt.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/3fJ4qap. You can 
also run many activities and exercises directly in your web browser by using the 
interactive lab environment at https://packt.live/3gwk4WQ.

We've tried to support interactive versions of all activities and exercises, but we 
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us at 
workshops@packt.com.

https://packt.live/39RZuOh
https://packt.live/3fJ4qap
https://packt.live/3gwk4WQ






Overview

In this chapter, you will learn the difference between Natural Language 
Processing (NLP) and basic text analytics. You will implement various 
preprocessing tasks such as tokenization, lemmatization, stemming, stop 
word removal, and more. By the end of this chapter, you will have a deep 
understanding of the various phases of an NLP project, from data collection 
to model deployment.

Introduction to Natural 

Language Processing

1
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Introduction
Before we can get into NLP in any depth, we first need to understand what natural 
language is. To put it in simple terms, it is a means for us to express our thoughts 
and ideas. To define it more specifically, language is a mutually agreed upon set of 
protocols involving words/sounds that we use to communicate with each other.

In this era of digitization and computation, we are constantly interacting with 
machines around us through various means, such as voice commands and 
typing instructions in the form of words. Thus, it has become essential to develop 
mechanisms by which human language can be comprehended accurately by 
computers. NLP helps us do this. So, NLP can be defined as a field of computer 
science that is concerned with enabling computer algorithms to understand, analyze, 
and generate natural languages.

Let's look at an example. You have probably interacted with Siri or Alexa at some 
point. Ask Alexa for a cricket score, and it will reply with the current score. The 
technology behind this is NLP. Siri and Alexa use techniques such as Speech to Text 
with the help of a search engine to do this magic. As the name suggests, Speech to 
Text is an application of NLP in which computers are trained to understand verbally 
spoken words.

NLP works at different levels, which means that machines process and understand 
natural language at different levels. These levels are as follows:

• Morphological level: This level deals with understanding word structure and 
word information.

• Lexical level: This level deals with understanding the part of speech of the word.

• Syntactic level: This level deals with understanding the syntactic analysis of a 
sentence, or parsing a sentence.

• Semantic level: This level deals with understanding the actual meaning  
of a sentence.

• Discourse level: This level deals with understanding the meaning of a sentence 
beyond just the sentence level, that is, considering the context.

• Pragmatic level: This level deals with using real-world knowledge to understand 
the sentence.
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History of NLP
NLP is a field that has emerged from various other fields such as artificial intelligence, 
linguistics, and data science. With the advancement of computing technologies and 
the increased availability of data, NLP has undergone a huge change. Previously, 
a traditional rule-based system was used for computations, in which you had to 
explicitly write hardcoded rules. Today, computations on natural language are being 
done using machine learning and deep learning techniques.

Consider an example. Let's say we have to extract the names of some politicians from 
a set of political news articles. So, if we want to apply rule-based grammar, we must 
manually craft certain rules based on human understanding of language. Some of the 
rules for extracting a person's name can be that the word should be a proper noun, 
every word should start with a capital letter, and so on. As we can see, using a rule-
based system like this would not yield very accurate results.

Rule-based systems do work well in some cases, but the disadvantages far outweigh 
the advantages. One major disadvantage is that the same rule cannot be applicable 
in all cases, given the complex and nuanced nature of most language. These 
disadvantages can be overcome by using machine learning, where we write an 
algorithm that tries to learn a language using the text corpus (training data) rather 
than us explicitly programming it to do so.

Text Analytics and NLP
Text analytics is the method of extracting meaningful insights and answering 
questions from text data, such as those to do with the length of sentences, length of 
words, word count, and finding words from the text. Let's understand this with  
an example.

Suppose we are doing a survey using news articles. Let's say we have to find the top 
five countries that contributed the most in the field of space technology in the past 5 
years. So, we will collect all the space technology-related news from the past 5 years 
using the Google News API. Now, we must extract the names of countries in these 
news articles. We can perform this task using a file containing a list of all the countries 
in the world.
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Next, we will create a dictionary in which keys will be the country names and their 
values will be the number of times the country name is found in the news articles. To 
search for a country in the news articles, we can use a simple word regex. After we 
have completed searching all the news articles, we can sort the country names by the 
values associated with them. In this way, we will come up with the top five countries 
that contributed the most to space technology in the last 5 years.

This is a typical example of text analytics, in which we are generating insights from 
text without getting into the semantics of the language.

It is important here to note the difference between text analytics and NLP. The art of 
extracting useful insights from any given text data can be referred to as text analytics. 
NLP, on the other hand, helps us in understanding the semantics and the underlying 
meaning of text, such as the sentiment of a sentence, top keywords in text, and parts 
of speech for different words. It is not just restricted to text data; voice (speech) 
recognition and analysis also come under the domain of NLP. It can be broadly 
categorized into two types: Natural Language Understanding (NLU) and Natural 
Language Generation (NLG). A proper explanation of these terms is provided here:

• NLU: NLU refers to a process by which an inanimate object with computing 
power is able to comprehend spoken language. As mentioned earlier, Siri and 
Alexa use techniques such as Speech to Text to answer different questions, 
including inquiries about the weather, the latest news updates, live match 
scores, and more. 

• NLG: NLG refers to a process by which an inanimate object with computing 
power is able to communicate with humans in a language that they can 
understand or is able to generate human-understandable text from a dataset. 
Continuing with the example of Siri or Alexa, ask one of them about the chances 
of rainfall in your city. It will reply with something along the lines of, "Currently, 
there is no chance of rainfall in your city." It gets the answer to your query from 
different sources using a search engine and then summarizes the results. Then, 
it uses Text to Speech to relay the results in verbally spoken words.

So, when a human speaks to a machine, the machine interprets the language with 
the help of the NLU process. By using the NLG process, the machine generates an 
appropriate response and shares it with the human, thus making it easier for humans 
to understand the machine. These tasks, which are part of NLP, are not part of text 
analytics. Let's walk through the basics of text analytics and see how we can execute 
it in Python.
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Before going to the exercises, let's define some prerequisites for running the 
exercises. Whether you are using Windows, Mac or Linux, you need to run your 
Jupyter Notebook in a virtual environment. You will also need to ensure that  
you have installed the requirements as stated in the requirements.txt file on  
https://packt.live/3fJ4qap.

Exercise 1.01: Basic Text Analytics

In this exercise, we will perform some basic text analytics on some given text data, 
including searching for a particular word, finding the index of a word, and finding 
a word at a given position. Follow these steps to implement this exercise using the 
following sentence:

"The quick brown fox jumps over the lazy dog."

1. Open a Jupyter Notebook.

2. Assign a sentence variable the value 'The quick brown fox jumps 
over the lazy dog'. Insert a new cell and add the following code to 
implement this:

sentence = 'The quick brown fox jumps over the lazy dog'

sentence

3. Check whether the word 'quick' belongs to that text using the following code:

def find_word(word, sentence):

    return word in sentence

find_word('quick', sentence)

The preceding code will return the output 'True'.

4. Find out the index value of the word 'fox' using the following code:

def get_index(word, text):

    return text.index(word)

get_index('fox', sentence)

The code will return the output 16.

https://packt.live/3fJ4qap
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5. To find out the rank of the word 'lazy', use the following code:

get_index('lazy', sentence.split())

This code generates the output 7.

6. To print the third word of the given text, use the following code:

def get_word(text,rank):

    return text.split()[rank]

get_word(sentence,2)

This will return the output brown.

7. To print the third word of the given sentence in reverse order, use the  
following code:

get_word(sentence,2)[::-1]

This will return the output nworb.

8. To concatenate the first and last words of the given sentence, use the  
following code:

def concat_words(text):

    """

    This method will concat first and last 

    words of given text

    """

    words = text.split()

    first_word = words[0]

    last_word = words[len(words)-1]

    return first_word + last_word

concat_words(sentence)

Note

The triple-quotes ( """ ) shown in the code snippet above are used to 
denote the start and end points of a multi-line code comment. Comments 
are added into code to help explain specific bits of logic. 

The code will generate the output Thedog.
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9. To print words at even positions, use the following code:

def get_even_position_words(text):

    words = text.split()

    return [words[i] for i in range(len(words)) if i%2 == 0]

get_even_position_words(sentence)

This code generates the following output:

['The', 'brown', 'jumps', 'the', 'dog']

10. To print the last three letters of the text, use the following code:

def get_last_n_letters(text, n):

    return text[-n:]

get_last_n_letters(sentence,3)

This will generate the output dog.

11. To print the text in reverse order, use the following code:

def get_reverse(text):

    return text[::-1]

get_reverse(sentence)

This code generates the following output:

'god yzal eht revo spmuj xof nworb kciuq ehT'

12. To print each word of the given text in reverse order, maintaining their 
sequence, use the following code:

def get_word_reverse(text):

    words = text.split()

    return ' '.join([word[::-1] for word in words])

get_word_reverse(sentence)

This code generates the following output:

ehT kciuq nworb xof spmuj revo eht yzal god
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We are now well acquainted with basic text analytics techniques.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38Yrf77.

You can also run this example online at https://packt.live/2ZsCvpf.

In the next section, let's dive deeper into the various steps and subtasks in NLP.

Various Steps in NLP
We've talked about the types of computations that are done with natural language. 
Apart from these basic tasks, you can also design your own tasks as per your 
requirements. In the coming sections, we will discuss the various preprocessing tasks 
in detail and demonstrate each of them with an exercise. 

To perform these tasks, we will be using a Python library called NLTK (Natural 
Language Toolkit). NLTK is a powerful open source tool that provides a set of 
methods and algorithms to perform a wide range of NLP tasks, including tokenizing, 
parts-of-speech tagging, stemming, lemmatization, and more.

Tokenization

Tokenization refers to the procedure of splitting a sentence into its constituent 
parts—the words and punctuation that it is made up of. It is different from simply 
splitting the sentence on whitespaces, and instead actually divides the sentence 
into constituent words, numbers (if any), and punctuation, which may not always 
be separated by whitespaces. For example, consider this sentence: "I am reading a 
book." Here, our task is to extract words/tokens from this sentence. After passing this 
sentence to a tokenization program, the extracted words/tokens would be "I," "am," 
"reading," "a," "book," and "." – this example extracts one token at a time. Such tokens 
are called unigrams. 

NLTK provides a method called word_tokenize(), which tokenizes given text into 
words. It actually separates the text into different words based on punctuation and 
spaces between words.

To get a better understanding of tokenization, let's solve an exercise based on it in 
the next section.

https://packt.live/38Yrf77
https://packt.live/2ZsCvpf


Various Steps in NLP | 9

Exercise 1.02: Tokenization of a Simple Sentence

In this exercise, we will tokenize the words in a given sentence with the help of the 
NLTK library. Follow these steps to implement this exercise using the sentence, "I am 
reading NLP Fundamentals."

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries 
and download the different types of NLTK data that we are going to use for 
different tasks in the following exercises:

from nltk import word_tokenize, download

download(['punkt','averaged_perceptron_tagger','stopwords'])

In the preceding code, we are using NLTK's download() method, which 
downloads the given data from NLTK. NLTK data contains different corpora 
and trained models. In the preceding example, we will be downloading the stop 
word list, 'punkt', and a perceptron tagger, which is used to implement parts 
of speech tagging using a structured algorithm. The data will be downloaded at 
nltk_data/corpora/ in the home directory of your computer. Then, it will 
be loaded from the same path in further steps.

3. The word_tokenize() method is used to split the sentence into words/
tokens. We need to add a sentence as input to the word_tokenize() method 
so that it performs its job. The result obtained will be a list, which we will store in 
a word variable. To implement this, insert a new cell and add the following code:

def get_tokens(sentence):

    words = word_tokenize(sentence)

    return words

4. In order to view the list of tokens generated, we need to view it using the 
print() function. Insert a new cell and add the following code to  
implement this:

print(get_tokens("I am reading NLP Fundamentals."))

This code generates the following output:

['I', 'am', 'reading', 'NLP', 'Fundamentals', '.']
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We can see the list of tokens generated with the help of the  
word_tokenize() method.

Note

To access the source code for this specific section, please refer  
to https://packt.live/30bGG85.

You can also run this example online at https://packt.live/30dK1mZ.

In the next section, we will see another pre-processing step:  
Parts-of-Speech (PoS) tagging.

PoS Tagging

In NLP, the term PoS refers to parts of speech. PoS tagging refers to the process 
of tagging words within sentences with their respective PoS. We extract the PoS of 
tokens constituting a sentence so that we can filter out the PoS that are of interest 
and analyze them. For example, if we look at the sentence, "The sky is blue," we get 
four tokens, namely "The," "sky," "is," and "blue", with the help of tokenization. Now, 
using a PoS tagger, we tag the PoS for each word/token. This will look as follows:

[('The', 'DT'), ('sky', 'NN'), ('is', 'VBZ'), ('blue', 'JJ')]

The preceding format is an output of the NLTK pos_tag()method. It is a list of 
tuples in which every tuple consists of the word followed by the PoS tag:

DT = Determiner

NN = Noun, common, singular or mass

VBZ = Verb, present tense, third-person singular

JJ = Adjective

For the complete list of PoS tags in NLTK, you can refer  
to https://pythonprogramming.net/natural-language-toolkit-nltk-part-speech-tagging/.

PoS tagging is performed using different techniques, one of which is a rule-based 
approach that builds a list to assign a possible tag for each word.

https://packt.live/30bGG85
https://packt.live/30dK1mZ
https://pythonprogramming.net/natural-language-toolkit-nltk-part-speech-tagging/
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PoS tagging finds application in many NLP tasks, including word sense 
disambiguation, classification, Named Entity Recognition (NER), and coreference 
resolution. For example, consider the usage of the word "planted" in these two 
sentences: "He planted the evidence for the case " and " He planted five trees in 
the garden. " We can see that the PoS tag of "planted" would clearly help us in 
differentiating between the different meanings of the sentences.

Let's perform a simple exercise to understand how PoS tagging is done in Python.

Exercise 1.03: PoS Tagging

In this exercise, we will find out the PoS for each word in the sentence, I am 
reading NLP Fundamentals. We first make use of tokenization in order to get 
the tokens. Later, we will use the pos_tag() method, which will help us find the PoS 
for each word/token. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import word_tokenize, pos_tag

3. To find the tokens in the sentence, we make use of the word_tokenize() 
method. Insert a new cell and add the following code to implement this:

def get_tokens(sentence):

    words = word_tokenize(sentence)

    return words

4. Print the tokens with the help of the print() function. To implement this,  
add a new cell and write the following code:

words  = get_tokens("I am reading NLP Fundamentals")

print(words)

This code generates the following output:

['I', 'am', 'reading', 'NLP', 'Fundamentals']
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5. We'll now use the pos_tag() method. Insert a new cell and add the  
following code:

def get_pos(words):

    return pos_tag(words)

get_pos(words)

This code generates the following output:

[('I', 'PRP'),

 ('am', 'VBP'),

 ('reading', 'VBG'),

 ('NLP', 'NNP'),

 ('Fundamentals', 'NNS')]

In the preceding output, we can see that for each token, a PoS has been allotted. 
Here, PRP stands for personal pronoun, VBP stands for verb present, VGB stands 
for verb gerund, NNP stands for proper noun singular, and NNS stands for  
noun plural.

Note

To access the source code for this specific section, please refer  
to https://packt.live/306WY24.

You can also run this example online at https://packt.live/38VLDpF.

We have learned about assigning appropriate PoS labels to tokens in a sentence.  
In the next section, we will learn about stop words in sentences and ways to deal 
with them.

Stop Word Removal

Stop words are the most frequently occurring words in any language and they are just 
used to support the construction of sentences and do not contribute anything to the 
semantics of a sentence. So, we can remove stop words from any text before an NLP 
process, as they occur very frequently and their presence doesn't have much impact 
on the sense of a sentence. Removing them will help us clean our data, making its 
analysis much more efficient. Examples of stop words include "a," "am," "and," "the," 
"in," "of," and more.

In the next exercise, we will look at the practical implementation of removing stop 
words from a given sentence.

https://packt.live/306WY24
https://packt.live/38VLDpF
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Exercise 1.04: Stop Word Removal

In this exercise, we will check the list of stop words provided by the nltk library. 
Based on this list, we will filter out the stop words included in our text:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('stopwords')

from nltk import word_tokenize

from nltk.corpus import stopwords

3. In order to check the list of stop words provided for English, we pass it as a 
parameter to the words() function. Insert a new cell and add the following 
code to implement this:

stop_words = stopwords.words('english')

4. In the code, the list of stop words provided by English is stored in the stop_
words variable. In order to view the list, we make use of the print() function. 
Insert a new cell and add the following code to view the list:

print(stop_words)

This code generates the following output:

Figure 1.1: List of stop words provided by English
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5. To remove the stop words from a sentence, we first assign a string to the 
sentence variable and tokenize it into words using the word_tokenize() 
method. Insert a new cell and add the following code to implement this: 

sentence = "I am learning Python. It is one of the "\

           "most popular programming languages"

sentence_words = word_tokenize(sentence)

Note 

The code snippet shown here uses a backslash ( \ ) to split the logic  
across multiple lines. When the code is executed, Python will ignore the 
backslash, and treat the code on the next line as a direct continuation of the 
current line.

6. To print the list of tokens, insert a new cell and add the following code:

print(sentence_words)

This code generates the following output:

['I', 'am', 'learning', 'Python', '.', 'It', 'is', 'one', 'of', 
'the', 'most', 'popular', 'programming', 'languages']

7. To remove the stop words, we need to loop through each word in the sentence, 
check whether there are any stop words, and then finally combine them to  
form a complete sentence. To implement this, insert a new cell and add the 
following code:

def remove_stop_words(sentence_words, stop_words):

    return ' '.join([word for word in sentence_words if \

                     word not in stop_words])

8. To check whether the stop words are filtered out from our sentence, print the 
sentence_no_stops variable. Insert a new cell and add the following code  
to print:

print(remove_stop_words(sentence_words,stop_words))

This code generates the following output:

I learning Python. It one popular programming languages
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As you can see in the preceding code snippet, stop words such as "am," "is," "of," 
"the," and "most" are being filtered out and text without stop words is produced 
as output.

9. Add your own stop words to the stop word list:

stop_words.extend(['I','It', 'one'])

print(remove_stop_words(sentence_words,stop_words))

This code generates the following output:

learning Python . popular programming languages

As we can see from the output, now words such as "I," "It," and* "One" are removed 
as we have added them to our custom stop word list. We have learned how to 
remove stop words from given text.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3j4KBw7.

You can also run this example online at https://packt.live/3fyYSir.

In the next section, we will focus on normalizing text.

Text Normalization

There are some words that are spelled, pronounced, and represented differently—for 
example, words such as Mumbai and Bombay, and US and United States. Although 
they are different, they refer to the same thing. There are also different forms of 
words that need to be converted into base forms. For example, words such as "does" 
and "doing," when converted to their base form, become "do." Along these lines, text 
normalization is a process wherein different variations of text get converted into a 
standard form. We need to perform text normalization as there are some words that 
can mean the same thing as each other. There are various ways of normalizing text, 
such as spelling correction, stemming, and lemmatization, which will be covered later.

For a better understanding of this topic, we will look into a practical implementation 
of text normalization in the next section.

https://packt.live/3j4KBw7
https://packt.live/3fyYSir


16 | Introduction to Natural Language Processing

Exercise 1.05: Text Normalization

In this exercise, we will normalize some given text. Basically, we will be trying to 
replace select words with new words, using the replace() function, and finally 
produce the normalized text. replace() is a built-in Python function that works 
on strings and takes two arguments. It will return a copy of a string in which the 
occurrence of the first argument will be replaced by the second argument.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to assign a string to the  
sentence variable:

sentence = "I visited the US from the UK on 22-10-18"

3. We want to replace "US" with "United States", "UK" with "United 
Kingdom", and "18" with "2018". To do so, use the replace() function 
and store the updated output in the "normalized_sentence" variable. 
Insert a new cell and add the following code to implement this:

def normalize(text):

    return text.replace("US", "United States")\

               .replace("UK", "United Kingdom")\

               .replace("-18", "-2018")

4. To check whether the text has been normalized, insert a new cell and add the 
following code to print it:

normalized_sentence = normalize(sentence)

print(normalized_sentence)

The code generates the following output:

I visited the United States from the United Kingdom on 22-10-2018

5. Add the following code:

normalized_sentence = normalize('US and UK are two superpowers')

print(normalized_sentence)

The code generates following output:

United States and United Kingdom are two superpowers
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In the preceding code, we can see that our text has been normalized.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Wm49T8.

You can also run this example online at https://packt.live/2Wm4d5k.

Over the next sections, we will explore various other ways in which text can  
be normalized.

Spelling Correction

Spelling correction is one of the most important tasks in any NLP project.  
It can be time-consuming, but without it, there are high chances of losing  
out on important information.

Spelling correction is executed in two steps:

1. Identify the misspelled word, which can be done by a simple dictionary lookup.  
If there is no match found in the language dictionary, it is considered to  
be misspelled.

2. Replace it or suggest the correctly spelled word. There are a lot of algorithms for 
this task. One of them is the minimum edit distance algorithm, which chooses 
the nearest correctly spelled word for a misspelled word. The nearness is 
defined by the number of edits that need to be made to the misspelled word 
to reach the correctly spelled word. For example, let's say there is a misspelled 
word, "autocorect." Now, to make it "autocorrect," we need to add one "r," and to 
make it "auto," we need to delete 6 characters, which means that "autocorrect" is 
the correct spelling because it requires the fewest edits.

We make use of the autocorrect Python library to correct spellings. 

autocorrect is a Python library used to correct the spelling of misspelled words 
for different languages. It provides a method called spell(), which takes a word as 
input and returns the correct spelling of the word.

Let's look at the following exercise to get a better understanding of this.

https://packt.live/2Wm49T8
https://packt.live/2Wm4d5k
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Exercise 1.06: Spelling Correction of a Word and a Sentence

In this exercise, we will perform spelling correction on a word and a sentence, with 
the help of Python's autocorrect library. Follow these steps in order to complete 
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import word_tokenize

from autocorrect import Speller

3. In order to correct the spelling of a word, pass a wrongly spelled word as a 
parameter to the spell() function. Before that, you have to create a spell 
object of the Speller class using lang='en' to signify the English language. 
Insert a new cell and add the following code to implement this:

spell = Speller(lang='en')

spell('Natureal')

This code generates the following output:

'Natural'

4. To correct the spelling of a sentence, first tokenize it into tokens. After that, loop 
through each token in sentence, autocorrect the words, and finally combine 
the words. Insert a new cell and add the following code to implement this:

sentence = word_tokenize("Ntural Luanguage Processin deals with "\

                         "the art of extracting insightes from "\

                         "Natural Languaes")

5. Use the print() function to print all tokens. Insert a new cell and add the 
following code to print the tokens:

print(sentence)

This code generates the following output:

['Ntural', 'Luanguage', 'Processin', 'deals', 'with', 'the', 'art', 
'of', 'extracting', 'insightes', 'from', 'Natural', 'Languaes']
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6. Now that we have got the tokens, loop through each token in sentence, 
correct the tokens, and assign them to a new variable. Insert a new cell and add 
the following code to implement this:

def correct_spelling(tokens):

    sentence_corrected = ' '.join([spell(word) \

                                   for word in tokens])

    return sentence_corrected

7. To print the correct sentence, insert a new cell and add the following code:

print(correct_spelling(sentence))

This code generates the following output:

['Natural', 'Language', 'Procession', 'deals', 'with', 'the', 'art', 

 'of', 'extracting', 'insights', 'from', 'Natural', 'Languages']

In the preceding code snippet, we can see that most of the wrongly spelled words 
have been corrected. But the word "Processin" was wrongly converted into 
"Procession." It should have been "Processing." This happened because to 
change "Processin" to "Procession" or "Processing," an equal number of 
edits is required. To rectify this, we need to use other kinds of spelling correctors that 
are aware of context.

Note

To access the source code for this specific section, please refer  
to https://packt.live/38YVCKJ.

You can also run this example online at https://packt.live/3gVpbj4.

In the next section, we will look at stemming, which is another form of  
text normalization.

https://packt.live/38YVCKJ
https://packt.live/3gVpbj4
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Stemming

In most languages, words get transformed into various forms when being used in a 
sentence. For example, the word "product" might get transformed into "production" 
when referring to the process of making something or transformed into "products" in 
plural form. It is necessary to convert these words into their base forms, as they carry 
the same meaning in any case. Stemming is the process that helps us to do so. If we 
look at the following figure, we get a perfect idea of how words get transformed into 
their base forms:

Figure 1.2: Stemming of the word "product"

To get a better understanding of stemming, let's perform a simple exercise.

In this exercise, we will be using two algorithms, called the porter stemmer and the 
snowball stemmer, provided by the NLTK library. The porter stemmer is a rule-based 
algorithm that transforms words to their base form by removing suffixes from words. 
The snowball stemmer is an improvement over the porter stemmer and is a little bit 
faster and uses less memory. In NLTK, this is done by the stem() method provided 
by the PorterStemmer class.

Exercise 1.07: Using Stemming

In this exercise, we will pass a few words through the stemming process so that they 
get converted into their base forms. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import stem
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3. Now pass the following words as parameters to the stem() method. To 
implement this, insert a new cell and add the following code:

def get_stems(word,stemmer):

    return stemmer.stem(word)

porterStem = stem.PorterStemmer()

get_stems("production",porterStem)

4. When the input is "production", the following output is generated:

'product'

5. Similarly, the following code would be used for the input "coming".

get_stems("coming",porterStem)

We get the following output:

'come'

6. Similarly, the following code would be used for the input "firing".

  get_stems("firing",porterStem)

When the input is "firing", the following output is generated:

'fire'

7. The following code would be used for the input "battling".

  get_stems("battling",porterStem)

If we give the input "battling", the following output is generated:

'battl'

8. The following code will also generate the same output as above, for the  
input "battling".

stemmer = stem.SnowballStemmer("english")

get_stems("battling",stemmer)

The output will be as follows:

'battl'
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As you have seen while using the snowball stemmer, we have to provide the language 
as "english". We can also use the stemmer for different languages such as 
Spanish, French, and many more. From the preceding code snippets, we can see that 
the entered words are converted into their base forms.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2DLzisD.

You can also run this example online at https://packt.live/30h147K.

In the next section, we will focus on lemmatization, which is another form of  
text normalization.

Lemmatization

Sometimes, the stemming process leads to incorrect results. For example, in the 
last exercise, the word battling was transformed to "battl", which is not a 
word. To overcome such problems with stemming, we make use of lemmatization. 
Lemmatization is the process of converting words to their base grammatical form, 
as in "battling" to "battle," rather than just randomly axing words. In this process, an 
additional check is made by looking through a dictionary to extract the base form 
of a word. Getting more accurate results requires some additional information; for 
example, PoS tags along with words will help in getting better results.

In the following exercise, we will be using WordNetLemmatizer, which is an 
NLTK interface of WordNet. WordNet is a freely available lexical English database 
that can be used to generate semantic relationships between words. NLTK's 
WordNetLemmatizer provides a method called lemmatize(), which returns  
the lemma (grammatical base form) of a given word using WordNet.

To put lemmatization into practice, let's perform an exercise where we'll use the 
lemmatize() function.

https://packt.live/2DLzisD
https://packt.live/30h147K
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Exercise 1.08: Extracting the Base Word Using Lemmatization

In this exercise, we will use the lemmatization process to produce the proper form of 
a given word. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('wordnet')

from nltk.stem.wordnet import WordNetLemmatizer

3. Create an object of the WordNetLemmatizer class. Insert a new cell and add 
the following code to implement this:

lemmatizer = WordNetLemmatizer()

4. Bring the word to its proper form by using the lemmatize() method of the 
WordNetLemmatizer class. Insert a new cell and add the following code to 
implement this:

def get_lemma(word):

    return lemmatizer.lemmatize(word)

get_lemma('products')

With the input products, the following output is generated:

'product'

5. Similarly, use the input as production now:

get_lemma('production')

With the input production, the following output is generated:

'production'

6. Similarly, use the input as coming now:

get_lemma('coming')

With the input coming, the following output is generated:

'coming'
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Hence, we have learned how to use the lemmatization process to transform a 
given word into its base form.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3903ETS.

You can also run this example online at https://packt.live/2Wlqu33.

In the next section, we will look at another preprocessing step in NLP: named entity 
recognition (NER).

Named Entity Recognition (NER)

NER is the process of extracting important entities, such as person names, place 
names, and organization names, from some given text. These are usually not present 
in dictionaries. So, we need to treat them differently. The main objective of this 
process is to identify the named entities (such as proper nouns) and map them to 
categories, which are already defined. For example, categories might include names 
of people, places, and so on.

NER has found use in many NLP tasks, including assigning tags to news articles, 
search algorithms, and more. NER can analyze a news article and extract the major 
people, organizations, and places discussed in it and assign them as tags for  
new articles. 

In the case of search algorithms, let's suppose we have to create a search engine, 
meant specifically for books. If we were to submit a given query for all the words, 
the search would take a lot of time. Instead, if we extract the top entities from all the 
books using NER and run a search query on the entities rather than all the content, 
the speed of the system would increase dramatically.

To get a better understanding of this process, we'll perform an exercise. Before 
moving on to the exercise, let me introduce you to chunking, which we are going to 
use in the following exercise. Chunking is the process of grouping words together into 
chunks, which can be further used to find noun groups and verb groups, or can also 
be used for sentence partitioning.

https://packt.live/3903ETS
https://packt.live/2Wlqu33
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Exercise 1.09: Treating Named Entities

In this exercise, we will find the named entities in a given sentence. Follow these steps 
to implement this exercise using the following sentence:

"We are reading a book published by Packt which is based out of Birmingham."

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

from nltk import pos_tag

from nltk import ne_chunk

from nltk import word_tokenize

download('maxent_ne_chunker')

download('words')

3. Declare the sentence variable and assign it a string. Insert a new cell and add 
the following code to implement this:

sentence = "We are reading a book published by Packt "\

           "which is based out of Birmingham."

4. To find the named entities from the preceding text, insert a new cell and add the 
following code:

def get_ner(text):

    i = ne_chunk(pos_tag(word_tokenize(text)), binary=True)

    return [a for a in i if len(a)==1]

get_ner(sentence)

This code generates the following output:

[Tree('NE', [('Packt', 'NNP')]), Tree('NE', [('Birmingham', 'NNP')])]
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In the preceding code, we can see that the code identifies the named  
entities "Packt" and "Birmingham" and maps them to an already-defined 
category, "NNP." 

Note

To access the source code for this specific section, please refer  
to https://packt.live/3ezeukC.

You can also run this example online at https://packt.live/32rsOJs.

In the next section, we will focus on word sense disambiguation, which helps us to 
identify the right sense of any word.

Word Sense Disambiguation
There's a popular saying: "A man is known by the company he keeps.'' Similarly, a 
word's meaning depends on its association with other words in a sentence. This 
means two or more words with the same spelling may have different meanings 
in different contexts. This often leads to ambiguity. Word sense disambiguation 
is the process of mapping a word to the sense that it should carry. We need to 
disambiguate words based on the sense they carry so that they can be treated 
as different entities when being analyzed. The following figure displays a perfect 
example of how ambiguity is caused due to the usage of the same word in  
different sentences:

Figure 1.3: Word sense disambiguation

One of the algorithms to solve word sense disambiguation is the Lesk algorithm. 
It has a huge corpus in the background (generally WordNet is used) that contains 
definitions of all the possible synonyms of all the possible words in a language. Then 
it takes a word and the context as input and finds a match between the context and 
all the definitions of the word. The meaning with the highest number of matches with 
the context of the word will be returned. 

https://packt.live/3ezeukC
https://packt.live/32rsOJs
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For example, suppose we have a sentence such as "We play only soccer" in a given 
text. Now, we need to find the meaning of the word "play" in this sentence. In the 
Lesk algorithm, each word with ambiguous meaning is saved in background synsets. 
In this case, the word "play" will be saved with all possible definitions. Let's say we 
have two definitions of the word "play":

1. Play: Participating in a sport or game

2. Play: Using a musical instrument

Then, we will find the similarity between the context of the word "play" in the text 
and both of the preceding definitions using text similarity techniques. The definition 
best suited to the context of "play" in the sentence will be considered the meaning 
or definition of the word. In this case, we will find that our first definition fits best in 
context, as the words "sport" and "game" are present in the preceding sentences.

In the next exercise, we will be using the Lesk module from NLTK. It takes a sentence 
and the word as input, and returns the meaning or definition of the word. The output 
of the Lesk method is synset, which contains the ID of the matched definition. 
These IDs can be matched with their definitions using the definition() method 
of wsd.synset('word').

To get a better understanding of this process, let's look at an exercise.

Exercise 1.10: Word Sense Disambiguation

In this exercise, we will find the sense of the word "bank" in two different sentences. 
Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import nltk

nltk.download('wordnet')

from nltk.wsd import lesk

from nltk import word_tokenize

3. Declare two variables, sentence1 and sentence2, and assign them with 
appropriate strings. Insert a new cell and the following code to implement this:

sentence1 = "Keep your savings in the bank"

sentence2 = "It's so risky to drive over the banks of the road"
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4. To find the sense of the word "bank" in the preceding two sentences, use the 
Lesk algorithm provided by the nltk.wsd library. Insert a new cell and add the 
following code to implement this:

def get_synset(sentence, word):

    return lesk(word_tokenize(sentence), word)

get_synset(sentence1,'bank')

This code generates the following output:

Synset('savings_bank.n.02')

5. Here, savings_bank.n.02 refers to a container for keeping money safely at 
home. To check the other sense of the word "bank," write the following code:

get_synset(sentence2,'bank')

This code generates the following output:

Synset('bank.v.07')

Here, bank.v.07 refers to a slope in the turn of a road.

Thus, with the help of the Lesk algorithm, we were able to identify the sense of a 
word in whatever context. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/399JCq5.

You can also run this example online at https://packt.live/30haCQ6.

In the next section, we will focus on sentence boundary detection, which helps 
detect the start and end points of sentences.

Sentence Boundary Detection
Sentence boundary detection is the method of detecting where one sentence ends 
and another begins. If you are thinking that this sounds pretty easy, as a period (.) 
or a question mark (?) denotes the end of a sentence and the beginning of another 
sentence, then you are wrong. There can also be instances where the letters of 
acronyms are separated by full stops, for instance. Various analyses need to be 
performed at a sentence level; detecting the boundaries of sentences is essential.

https://packt.live/399JCq5
https://packt.live/30haCQ6
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An exercise will provide us with a better understanding of this process.

Exercise 1.11: Sentence Boundary Detection

In this exercise, we will extract sentences from a paragraph. To do so, we'll be using 
the sent_tokenize() method, which is used to detect sentence boundaries. The 
following steps need to be performed:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import nltk

from nltk.tokenize import sent_tokenize

3. Use the sent_tokenize() method to detect sentences in some given text. 
Insert a new cell and add the following code to implement this:

def get_sentences(text):

    return sent_tokenize(text)

get_sentences("We are reading a book. Do you know who is "\

              "the publisher? It is Packt. Packt is based "\

              "out of Birmingham.")

This code generates the following output:

['We are reading a book.'

 'Do you know who is the publisher?'

 'It is Packt.',

 'Packt is based out of Birmingham.']

4. Use the sent_tokenize() method for text that contains periods (.) other 
than those found at the ends of sentences:

get_sentences("Mr. Donald John Trump is the current "\

              "president of the USA. Before joining "\

              "politics, he was a businessman.")

The code will generate the following output:

['Mr. Donald John Trump is the current president of the USA.',

 'Before joining politics, he was a businessman.']
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As you can see in the code, the sent_tokenize method is able to differentiate 
between the period (.) after "Mr" and the one used to end the sentence. We have 
covered all the preprocessing steps that are involved in NLP. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/2ZseU86.

You can also run this example online at https://packt.live/2CC8Ukp.

Now, using the knowledge we've gained, let's perform an activity.

Activity 1.01: Preprocessing of Raw Text

We have a text corpus that is in an improper format. In this activity, we will perform 
all the preprocessing steps that were discussed earlier to get some meaning out of 
the text.

Note

The text corpus, file.txt, can be found at this location:  
https://packt.live/30cu54z

After downloading the file, place it in the same directory as the notebook.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Load the text corpus to a variable.

3. Apply the tokenization process to the text corpus and print the first 20 tokens.

4. Apply spelling correction on each token and print the initial 20 corrected tokens 
as well as the corrected text corpus.

5. Apply PoS tags to each of the corrected tokens and print them.

6. Remove stop words from the corrected token list and print the initial 20 tokens.

7. Apply stemming and lemmatization to the corrected token list and then print the 
initial 20 tokens.

https://packt.live/2ZseU86
https://packt.live/2CC8Ukp
https://packt.live/30cu54z
https://packt.live/30cu54z 
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8. Detect the sentence boundaries in the given text corpus and print the total 
number of sentences. 

Note

The solution to this activity can be found on page 366.

We have learned about and achieved the preprocessing of given data. By now, you 
should be familiar with what NLP is and what basic preprocessing steps are needed 
to carry out any NLP project. In the next section, we will focus on the different phases 
of an NLP project.

Kick Starting an NLP Project
We can divide an NLP project into several sub-projects or phases. These phases are 
completed in a particular sequence. This tends to increase the overall efficiency of the 
process, as memory usage changes from one phase to the next. An NLP project has 
to go through six major phases, which are outlined in the following figure:

Figure 1.4: Phases of an NLP project
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Suppose you are working on a project in which you need to classify emails as 
important and unimportant. We will explain how this is carried out by discussing each 
phase in detail.

Data Collection

This is the initial phase of any NLP project. Our sole purpose is to collect data as per 
our requirements. For this, we may either use existing data, collect data from various 
online repositories, or create our own dataset by crawling the web. In our case, we 
will collect different email data. We can even get this data from our personal emails 
as well, to start with.

Data Preprocessing

Once the data is collected, we need to clean it. For the process of cleaning, we will 
make use of the different preprocessing steps that we have learned about in this 
chapter. It is necessary to clean the collected data to ensure effectiveness and 
accuracy. In our case, we will follow these preprocessing steps:

1. Converting all the text data to lowercase

2. Stop word removal

3. Text normalization, which will include replacing all numbers with some common 
term and replacing punctuation with empty strings

4. Stemming and lemmatization

Feature Extraction

Computers understand only binary digits: 0 and 1. As such, every instruction we 
feed into a computer gets transformed into binary digits. Similarly, machine learning 
models tend to understand only numeric data. Therefore, it becomes necessary to 
convert text data into its equivalent numerical form. 

To convert every email into its equivalent numerical form, we will create a dictionary 
of all the unique words in our data and assign a unique index to each word. Then, we 
will represent every email with a list having a length equal to the number of unique 
words in the data. The list will have 1 at the indices of words that are present in the 
email and 0 at the other indices. This is called one-hot encoding. We will learn more 
about this in coming chapters.
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Model Development

Once the feature set is ready, we need to develop a suitable model that can be 
trained to gain knowledge from the data. These models are generally statistical, 
machine learning-based, deep learning-based, or reinforcement learning-based. In 
our case, we will build a model that is capable of differentiating between important 
and unimportant emails.

Model Assessment

After developing a model, it is essential to benchmark it. This process of 
benchmarking is known as model assessment. In this step, we will evaluate the 
performance of our model by comparing it to others. This can be done by using 
different parameters or metrics. These parameters include precision, recall, and 
accuracy. In our case, we will evaluate the newly created model by seeing how well it 
performs at classifying emails as important and unimportant.

Model Deployment

This is the final stage for most industrial NLP projects. In this stage, the models 
are put into production. They are either integrated into an existing system or new 
products are created by keeping this model as a base. In our case, we will deploy our 
model to production, so that it can classify emails as important and unimportant in 
real time.

Summary
In this chapter, we learned about the basics of NLP and how it differs from text 
analytics. We covered the various preprocessing steps that are included in NLP, such 
as tokenization, PoS tagging, stemming, lemmatization, and more. We also looked 
at the different phases an NLP project has to pass through, from data collection to 
model deployment. 

In the next chapter, you will learn about the different methods of extracting features 
from unstructured text, such as TF-IDF and bag of words. You will also learn about 
NLP tasks such as tokenization, lemmatization, and stemming in more detail. 
Furthermore, text visualization techniques such as word clouds will be introduced.





Overview

In this chapter, you will be able to categorize data based on its content 
and structure. You will be able to describe preprocessing steps in detail 
and implement them to clean up text data. You will learn about feature 
engineering and calculate the similarity between texts. Once you 
understand these concepts, you will be able to use word clouds and  
some other techniques to visualize text.

Feature Extraction Methods

2
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Introduction
In the previous chapter, we learned about the concepts of Natural Language 
Processing (NLP) and text analytics. We also took a quick look at various 
preprocessing steps. In this chapter, we will learn how to make text understandable 
to machine learning algorithms.

As we know, to use a machine learning algorithm on textual data, we need a 
numerical or vector representation of text data since most of these algorithms are 
unable to work directly with plain text or strings. But before converting the text data 
into numerical form, we will need to pass it through some preprocessing steps such 
as tokenization, stemming, lemmatization, and stop-word removal.

So, in this chapter, we will learn a little bit more about these preprocessing steps and 
how to extract features from the preprocessed text and convert them into vectors. 
We will also explore two popular methods for feature extraction (Bag of Words and 
Term Frequency-Inverse Document Frequency), as well as various methods for finding 
similarity between different texts. By the end of this chapter, you will have gained an 
in-depth understanding of how text data can be visualized.

Types of Data
To deal with data effectively, we need to understand the various forms in which it 
exists. First, let's explore the types of data that exist. There are two main ways to 
categorize data (by structure and by content), as explained in the upcoming sections.
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Categorizing Data Based on Structure

Data can be divided on the basis of structure into three categories, namely, 
structured, semi-structured, and unstructured data, as shown in the  
following diagram:

Figure 2.1: Categorization based on content

These three categories are as follows:

• Structured data: This is the most organized form of data. It is represented in 
tabular formats such as Excel files and Comma-Separated Value (CSV) files. The 
following image shows what structured data usually looks like:

Figure 2.2: Structured data

The preceding table contains information about five people, with each row 
representing a person and each column representing one of their attributes.
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• Semi-structured data: This type of data is not presented in a tabular structure, 
but it can be transformed into a table. Here, information is usually stored 
between tags following a definite pattern. XML and HTML files can be referred to 
as semi-structured data. The following screenshot shows how semi-structured 
data can appear:

Figure 2.3: Semi-structured data
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The format shown in the preceding screenshot is called markup language 
format. Here, the data is stored between tags, hierarchically. It is a universally 
accepted format, and there are a lot of parsers available that can convert this 
data into structured data.

• Unstructured data: This type of data is the most difficult to deal with. Machine 
learning algorithms would find it difficult to comprehend unstructured data 
without any loss of information. Text corpora and images are examples of 
unstructured data. The following image shows what unstructured data looks like:

Figure 2.4: Unstructured data

This is called unstructured data because if we want to get employee details from 
the preceding text snippet with our program, we will not be able to do so by simple 
parsing. We have to make our algorithm understand the semantics of the language to 
make it able to extract information from this.

Categorizing Data Based on Content

Data can be divided into four categories based on content, as shown in the  
following diagram:

Figure 2.5: Categorizing data based on structure
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Let's look at each category here:

• Text data: This refers to text corpora consisting of written sentences. This type 
of data can only be read. An example would be the text corpus of a book.

• Image data: This refers to pictures that are used to communicate messages. 
This type of data can only be seen.

• Audio data: This refers to voice recordings, music, and so on. This type of data 
can only be heard.

• Video data: A continuous series of images coupled with audio forms a video. 
This type of data can be seen as well as heard.

With that, we have learned about the different types of data and their categorization 
on the basis of structure and content. When dealing with unstructured data, it 
is necessary to clean it first. In the next section, we will look into some of the 
preprocessing steps for cleaning data.

Cleaning Text Data
The text data that we are going to discuss here is unstructured text data, which 
consists of written sentences. Most of the time, this text data cannot be used as it is 
for analysis because it contains some noisy elements, that is, elements that do not 
really contribute much to the meaning of the sentence at all. These noisy elements 
need to be removed because they do not contribute to the meaning and semantics 
of the text. If they're not removed, they can not only waste system memory and 
processing time, but also negatively impact the accuracy of the results. Data cleaning 
is the art of extracting meaningful portions from data by eliminating unnecessary 
details. Consider the sentence, "He tweeted, 'Live coverage of General Elections 
available at this.tv/show/ge2019. _/\_ Please tune in :) '. "

In this example, to perform NLP tasks on the sentence, we will need to remove the 
emojis, punctuation, and stop words, and then change the words into their base 
grammatical form.
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To achieve this, methods such as stopword removal, tokenization, and stemming are 
used. We will explore them in detail in the upcoming sections. Before we do so, let's 
get acquainted with some basic NLP libraries that we will be using here:

• Re: This is a standard Python library that's used for string searching and string 
manipulation. It contains methods such as match(), search(), findall(), 
split(), and sub(), which are used for basic string matching, searching, 
replacing, and more, using regular expressions. A regular expression is nothing 
but a set of characters in a specific order that represents a pattern. This pattern 
is searched for in the texts.

• textblob: This is an open source Python library that provides different 
methods for performing various NLP tasks such as tokenization and PoS tagging. 
It is similar to nltk, which was introduced in Chapter 1, Introduction to Natural 
Language Processing. It is built on the top of nltk and is much simpler as it has 
an easier to use interface and excellent documentation. In projects that don't 
involve a lot of complexity, it should be preferable to nltk.

• keras: This is an open source, high-level neural network library that's was 
developed on top of another neural network library called TensorFlow. In 
addition to neural network functionality, it also provides methods for basic text 
processing and NLP tasks.

Tokenization

Tokenization and word tokenizers were briefly described in Chapter 1, Introduction to 
Natural Language Processing. Tokenization is the process of splitting sentences into 
their constituents; that is, words and punctuation. Let's perform a simple exercise to 
see how this can be done using various packages.
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Exercise 2.01: Text Cleaning and Tokenization

In this exercise, we will clean some text and extract the tokens from it. Follow these 
steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the re package:

import re

3. Create a method called clean_text() that will delete all characters other 
than digits, alphabetical characters, and whitespaces from the text and split 
the text into tokens. For this, we will use the text which matches with all 
non-alphanumeric characters, and we will replace all of them with an  
empty string:

def clean_text(sentence):

    return re.sub(r'([^\s\w]|_)+', ' ', sentence).split()

4. Store the sentence to be cleaned in a variable named sentence and pass it 
through the preceding function. Add the following code to this: implement

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

            "of India from Rajpath, New Delhi. "\

            "Mesmerizing performance by Indian Army! "\

            "Awesome airshow! @india_official "\

            "@indian_army #India #70thRepublic_Day. "\

            "For more photos ping me sunil@photoking.com :)"'

clean_text(sentence)
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The preceding command fragments the string wherever any blank space is 
present. The output should be as follows:

Figure 2.6: Fragmented string
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With that, we have learned how to extract tokens from text. Often, extracting each 
token separately does not help. For instance, consider the sentence, "I don't hate 
you, but your behavior." Here, if we process each of the tokens, such as "hate" 
and "behavior," separately, then the true meaning of the sentence would not be 
comprehended. In this case, the context in which these tokens are present becomes 
essential. Thus, we consider n consecutive tokens at a time. n-grams refers to the 
grouping of n consecutive tokens together.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2CQikt7.

You can also run this example online at https://packt.live/33cn0nF.

Next, we will look at an exercise where n-grams can be extracted from a given text.

Exercise 2.02: Extracting n-grams

In this exercise, we will extract n-grams using three different methods. First, we will 
use custom-defined functions, and then the nltk and textblob libraries. Follow 
these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the re package and create a custom-defined function, which we can use 
to extract n-grams. Add the following code to do this:

import re

def n_gram_extractor(sentence, n):

    tokens = re.sub(r'([^\s\w]|_)+', ' ', sentence).split()

    for i in range(len(tokens)-n+1):

        print(tokens[i:i+n])

In the preceding function, we are splitting the sentence into tokens using regex, 
then looping over the tokens, taking n consecutive tokens at a time.

https://packt.live/2CQikt7
https://packt.live/33cn0nF


Cleaning Text Data | 45

3. If n is 2, two consecutive tokens will be taken, resulting in bigrams. To check the 
bigrams, we pass the function the text and with n=2. Add the following code to 
do this:

n_gram_extractor('The cute little boy is playing with the kitten.', \

                 2)

The preceding code generates the following output:

['The', 'cute']

['cute', 'little']

['little', 'boy']

['boy', 'is']

['is', 'playing']

['playing', 'with']

['with', 'the']

['the', 'kitten']

4. To check the trigrams, we pass the function with the text and with n=3. Add the 
following code to do this:

n_gram_extractor('The cute little boy is playing with the kitten.', \

                 3)

The preceding code generates the following output:

['The', 'cute', 'little']

['cute', 'little', 'boy']

['little', 'boy', 'is']

['boy', 'is', 'playing']

['is', 'playing', 'with']

['playing', 'with', 'the']

['with', 'the', 'kitten']

5. To check the bigrams using the nltk library, add the following code:

from nltk import ngrams

list(ngrams('The cute little boy is playing with the kitten.'\

            .split(), 2))
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The preceding code generates the following output:

[('The', 'cute'),

 ('cute', 'little'),

 ('little', 'boy'),

 ('boy', 'is'),

 ('is', 'playing'),

 ('playing', 'with'),

 ('with', 'the'),

 ('the', 'kitten')]

6. To check the trigrams using the nltk library, add the following code:

list(ngrams('The cute little boy is playing with the 
kitten.'.split(), 3))

The preceding code generates the following output:

[('The', 'cute', 'little'),

 ('cute', 'little', 'boy'),

 ('little', 'boy', 'is'),

 ('boy', 'is', 'playing'),

 ('playing', 'with', 'the'),

 ('with', 'the', 'kitten.')]

7. To check the bigrams using the textblob library, add the following code:

!pip install -U textblob

from textblob import TextBlob

blob = TextBlob("The cute little boy is playing with the kitten.")

blob.ngrams(n=2)

The preceding code generates the following output:

[WordList(['The', 'cute']),

 WordList(['cute', 'little']),

 WordList(['little', 'boy']),

 WordList(['boy', 'is']),

 WordList(['is', 'playing']),

 WordList(['playing', 'with']),

 WordList(['with', 'the']),

 WordList(['the', 'kitten'])]
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8. To check the trigrams using the textblob library, add the following code:

blob.ngrams(n=3)

The preceding code generates the following output:

[WordList(['The', 'cute', 'little']),

 WordList(['cute', 'little', 'boy']),

 WordList(['little', 'boy', 'is']),

 WordList(['boy', 'is' 'playing']),

 WordList(['is', 'playing' 'with']),

 WordList(['playing', 'with' 'the']),

 WordList(['with', 'the' 'kitten'])]

In this exercise, we learned how to generate n-grams using various methods.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2PabHUK.

You can also run this example online at https://packt.live/2XbjFRX.

Exercise 2.03: Tokenizing Text with Keras and TextBlob

In this exercise, we will use keras and textblob to tokenize texts. Follow these 
steps to complete this exercise:

1. Open a Jupyter Notebook and insert a new cell.

2. Import the keras and textblob libraries and declare a variable named 
sentence, as follows.

from keras.preprocessing.text import text_to_word_sequence

from textblob import TextBlob

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

            "of India from Rajpath, New Delhi. "\

            "Mesmerizing performance by Indian Army! "\

            "Awesome airshow! @india_official "\

            "@indian_army #India #70thRepublic_Day. "\

            "For more photos ping me sunil@photoking.com :)"'

https://packt.live/2PabHUK
https://packt.live/2XbjFRX
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3. To tokenize using the keras library, add the following code:

def get_keras_tokens(text):

    return text_to_word_sequence(text)

get_keras_tokens(sentence)

The preceding code generates the following output:

Figure 2.7: Tokenization using Keras



Cleaning Text Data | 49

4. To tokenize using the textblob library, add the following code:

def get_textblob_tokens(text):

    blob = TextBlob(text)

    return blob.words

get_textblob_tokens(sentence)

The preceding code generates the following output:

Figure 2.8: Tokenization using textblob

With that, we have learned how to tokenize texts using the keras and  
textblob libraries.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3393hFi.

You can also run this example online at https://packt.live/39Dtu09.

In the next section, we will discuss the different types of tokenizers.

https://packt.live/3393hFi
https://packt.live/39Dtu09


50 | Feature Extraction Methods

Types of Tokenizers 

There are different types of tokenizers that come in handy for specific tasks. Let's look 
at the ones provided by nltk one by one:

• Whitespace tokenizer: This is the simplest type of tokenizer. It splits a string 
wherever a space, tab, or newline character is present. 

• Tweet tokenizer: This is specifically designed for tokenizing tweets. It takes care 
of all the special characters and emojis used in tweets and returns clean tokens.

• MWE tokenizer: MWE stands for Multi-Word Expression. Here, certain groups 
of multiple words are treated as one entity during tokenization, such as "United 
States of America," "People's Republic of China," "not only," and "but also." These 
predefined groups are added at the beginning with mwe() methods.

• Regular expression tokenizer: These tokenizers are developed using regular 
expressions. Sentences are split based on the occurrence of a specific pattern (a 
regular expression).

• WordPunctTokenizer: This splits a piece of text into a list of alphabetical and 
non-alphabetical characters. It actually splits text into tokens using a fixed 
regex, that is, '\w+|[^\w\s]+'.

Now that we have learned about the different types of tokenizers, in the next section, 
we will carry out an exercise to get a better understanding of them.
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Exercise 2.04: Tokenizing Text Using Various Tokenizers

In this exercise, we will use different tokenizers to tokenize text. Perform the following 
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and the following code to import all the tokenizers and declare 
a variable sentence:

from nltk.tokenize import TweetTokenizer

from nltk.tokenize import MWETokenizer

from nltk.tokenize import RegexpTokenizer

from nltk.tokenize import WhitespaceTokenizer

from nltk.tokenize import WordPunctTokenizer

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

            "of India from Rajpath, New Delhi. "\

            "Mesmerizing performance by Indian Army! "\

            "Awesome airshow! @india_official "\

            "@indian_army #India #70thRepublic_Day. "\

            "For more photos ping me sunil@photoking.com :)"'

3. To tokenize the text using TweetTokenizer, add the following code:

def tokenize_with_tweet_tokenizer(text):

    # Here will create an object of tweetTokenizer

    tweet_tokenizer = TweetTokenizer() 

    """

    Then we will call the tokenize method of 

    tweetTokenizer which will return token list of sentences.

    """

    return tweet_tokenizer.tokenize(text) 

tokenize_with_tweet_tokenizer(sentence)

Note

The # symbol in the code snippet above denotes a code comment. 
Comments are added into code to help explain specific bits of logic. 
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The preceding code generates the following output:

Figure 2.9: Tokenization using TweetTokenizer

As you can see, the hashtags, emojis, websites, and Twitter IDs are extracted as 
single tokens. If we had used the white space tokenizer, we would have got hash, 
dots, and the @ symbol as separate tokens.
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4. To tokenize the text using MWETokenizer, add the following code:

def tokenize_with_mwe(text):

    mwe_tokenizer = MWETokenizer([('Republic', 'Day')])

    mwe_tokenizer.add_mwe(('Indian', 'Army'))

    return mwe_tokenizer.tokenize(text.split())

tokenize_with_mwe(sentence)

The preceding code generates the following output:

Figure 2.10: Tokenization using the MWE tokenizer
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In the preceding screenshot, the words "Indian" and "Army!", which should 
have been treated as a single identity, were treated separately. This is because 
"Army!" (not "Army") is treated as a token. Let's see how this can be fixed in the 
next step.

5. Add the following code to fix the issues in the previous step:

tokenize_with_mwe(sentence.replace('!',''))

The preceding code generates the following output:

Figure 2.11: Tokenization using the MWE tokenizer after removing the "!" sign

Here, we can see that instead of being treated as separate tokens, "Indian" and 
"Army" are treated as a single entity.
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6. To tokenize the text using the regular expression tokenizer, add the  
following code:

def tokenize_with_regex_tokenizer(text):

    reg_tokenizer = RegexpTokenizer('\w+|\$[\d\.]+|\S+')

    return reg_tokenizer.tokenize(text)

tokenize_with_regex_tokenizer(sentence)

The preceding code generates the following output:

Figure 2.12: Tokenization using the regular expression tokenizer
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7. To tokenize the text using the whitespace tokenizer, add the following code:

def tokenize_with_wst(text):

    wh_tokenizer = WhitespaceTokenizer()

    return wh_tokenizer.tokenize(text)

tokenize_with_wst(sentence)

The preceding code generates the following output:

Figure 2.13: Tokenization using the whitespace tokenizer
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8. To tokenize the text using the Word Punct tokenizer, add the following code:

def tokenize_with_wordpunct_tokenizer(text):

    wp_tokenizer = WordPunctTokenizer()

    return wp_tokenizer.tokenize(text)

tokenize_with_wordpunct_tokenizer(sentence)

The preceding code generates the following output:

Figure 2.14: Tokenization using the Word Punct tokenizer
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In this section, we have learned about different tokenization techniques and their 
nltk implementation.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hSbDWi.

You can also run this example online at https://packt.live/3hOi7oR.

Now, we're ready to use them in our programs. 

Stemming

In many languages, the base forms of words change when they're used in sentences. 
For example, the word "produce" can be written as "production" or "produced" or 
even "producing," depending on the context. The process of converting a word back 
into its base form is known as stemming. It is essential to do this, because without 
it, algorithms would treat two or more different forms of the same word as different 
entities, despite them having the same semantic meaning. So, the words "producing" 
and "produced" would be treated as different entities, which can lead to erroneous 
inferences. In Python, RegexpStemmer and PorterStemmer are the most widely 
used stemmers. Let's explore them one at a time.

RegexpStemmer

RegexpStemmer uses regular expressions to check whether morphological or 
structural prefixes or suffixes are present. For instance, in many cases, verbs in the 
present continuous tense (the present tense form ending with "ing") can be restored 
to their base form simply by removing "ing" from the end; for example, "playing" 
becomes "play".

Let's complete the following exercise to get some hands-on experience with 
RegexpStemmer.

https://packt.live/3hSbDWi
https://packt.live/3hOi7oR
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Exercise 2.05: Converting Words in the Present Continuous Tense into Base 

Words with RegexpStemmer

In this exercise, we will use RegexpStemmer on text to convert words into their 
basic form by removing some generic suffixes such as "ing" and "ed". To use nltk's 
regex_stemmer, we have to create an object of RegexpStemmer by passing the 
regex of the suffix or prefix and an integer, min, which indicates the minimum length 
of the stemmed string. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and import RegexpStemmer:

from nltk.stem import RegexpStemmer

3. Use regex_stemmer to stem each word of the sentence variable. Add the 
following code to do this:

def get_stems(text):

    """

    Creating an object of RegexpStemmer, any string ending 

    with the given regex 'ing$' will be removed.

    """

    regex_stemmer = RegexpStemmer('ing$', min=4) 

    """

    The below code line will convert every word into its 

    stem using regex stemmer and then join them with space.

    """

    return ' '.join([regex_stemmer.stem(wd) for \

                     wd in text.split()])

sentence = "I love playing football"

get_stems(sentence)

The preceding code generates the following output:

'I love play football'
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As we can see, the word playing has been changed into its base form, play. In this 
exercise, we learned how we can perform stemming using nltk's RegexpStemmer.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hRYUm6.

You can also run this example online at https://packt.live/2D0Ztvk.

The Porter Stemmer

The Porter stemmer is the most common stemmer for dealing with English words. It 
removes various morphological and inflectional endings (such as suffixes, prefixes, 
and the plural "s") from English words. In doing so, it helps us extract the base form 
of a word from its variations. To get a better understanding of this, let's carry out a 
simple exercise.

Exercise 2.06: Using the Porter Stemmer

In this exercise, we will apply the Porter stemmer to some text. Follow these steps to 
complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and any related packages and declare a sentence variable. Add 
the following code to do this:

from nltk.stem.porter import *

sentence = "Before eating, it would be nice to "\

           "sanitize your hands with a sanitizer"

https://packt.live/3hRYUm6
https://packt.live/2D0Ztvk
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3. Now, we'll make use of the Porter stemmer to stem each word of the  
sentence variables:

def get_stems(text):

    ps_stemmer = PorterStemmer()

    return ' '.join([ps_stemmer.stem(wd) for \

                     wd in text.split()])

get_stems(sentence)

The preceding code generates the following output:

'befor eating, it would be nice to sanit your hand wash with a sanit'

Note

To access the source code for this specific section, please refer  
to https://packt.live/2CUqelc.

You can also run this example online at https://packt.live/2X8WUhD.

PorterStemmer is a generic rule-based stemmer that tries to convert a word into 
its basic form by removing common suffixes and prefixes of the English language.

Though stemming is a useful technique in NLP, it has a severe drawback. As we can 
see from this exercise, we find that, while eating has been converted into eat 
(which is its proper grammatical base form), the word sanitize has been converted 
into sanit (which isn't the proper grammatical base form). This may lead to some 
problems if we use it. To overcome this issue, there is another technique we can use 
called lemmatization.

Lemmatization

As we saw in the previous section, there is a problem with stemming. It often 
generates meaningless words. Lemmatization deals with such cases by using 
vocabulary and analyzing the words' morphologies. It returns the base forms of 
words that can be found in dictionaries. Let's walk through a simple exercise to 
understand this better.

https://packt.live/2CUqelc
https://packt.live/2X8WUhD
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Exercise 2.07: Performing Lemmatization

In this exercise, we will perform lemmatization on some text. Follow these steps to 
complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and its related packages, and then declare a sentence variable. 
Add the following code to implement this:

import nltk

from nltk.stem import WordNetLemmatizer

from nltk import word_tokenize

nltk.download('wordnet')

nltk.download('punkt')

sentence = "The products produced by the process today are "\

           "far better than what it produces generally."

3. To lemmatize the tokens, we extracted from the sentence, add the  
following code:

lemmatizer = WordNetLemmatizer()

def get_lemmas(text):

    lemmatizer = WordNetLemmatizer()

    return ' '.join([lemmatizer.lemmatize(word) for \

                     word in word_tokenize(text)])

get_lemmas(sentence)

The preceding code generates the following output:

'The product produced by the process today are far better than what 
it produce generally.'
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With that, we learned how to generate the lemma of a word. The lemma is the correct 
grammatical base form. They use the vocabulary to match the word to its correct 
nearest grammatical form.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2X5JEKA.

You can also run this example online at https://packt.live/30Zqt6v.

In the next section, we will deal with other kinds of word variations by looking at 
singularizing and pluralizing words using textblob.

Exercise 2.08: Singularizing and Pluralizing Words

In this exercise, we will make use of the textblob library to singularize and pluralize 
words in the given text. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import TextBlob and declare a sentence variable. Add the following code to 
implement this:

from textblob import TextBlob

sentence = TextBlob('She sells seashells on the seashore')

To check the list of words in the sentence, type the following code:

sentence.words

The preceding code generates the following output:

WordList(['She', 'sells', 'seashells', 'on', 'the', 'seashore'])

https://packt.live/2X5JEKA
https://packt.live/30Zqt6v
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3. To singularize the third word in the sentence, type the following code:

def singularize(word):

    return word.singularize()

singularize(sentence.words[2])

The preceding code generates the following output:

'seashell'

4. To pluralize the fifth word in the given sentence, type the following code:

def pluralize(word):

    return word.pluralize()

pluralize(sentence.words[5])

The preceding code generates the following output:

'seashores'

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gooUoQ.

You can also run this example online at https://packt.live/309Gqrm.

Now, in the next section, we will learn about another preprocessing task:  
language translation.

Language Translation

You might have used Google Translate before, which gives the exact translation of 
a word in another language; this is an example of language translation or machine 
translation. In Python, we can use TextBlob to translate text from one language 
into another. TextBlob provides a method called translate(), in which you have 
to pass text in the source language. The method will return the translated word in the 
destination language. Let's look at how this is done.

https://packt.live/3gooUoQ
https://packt.live/309Gqrm
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Exercise 2.09: Language Translation

In this exercise, we will make use of the TextBlob library to translate a sentence 
from Spanish into English. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import TextBlob, as follows:

from textblob import TextBlob

3. Make use of the translate() function of TextBlob to translate the input 
text from Spanish to English. Add the following code to do this:

def translate(text,from_l,to_l):

    en_blob = TextBlob(text)

    return en_blob.translate(from_lang=from_l, to=to_l)

translate(text='muy bien',from_l='es',to_l='en')

The preceding code generates the following output:

TextBlob("very well")

With that, we have seen how we can use TextBlob to translate from one language 
to another.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2XquGiH.

You can also run this example online at https://packt.live/3hQiVK8.

In the next section, we will look at another preprocessing task: stop-word removal.

https://packt.live/2XquGiH
https://packt.live/3hQiVK8
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Stop-Word Removal

Stop words, such as "am," "the," and "are," occur frequently in text data. Although 
they help us construct sentences properly, we can find the meaning even if we 
remove them. This means that the meaning of text can be inferred even without 
them. So, removing stop words from text is one of the preprocessing steps in NLP 
tasks. In Python, nltk, and textblob, text can be used to remove stop words from 
text. To get a better understanding of this, let's look at an exercise.

Exercise 2.10: Removing Stop Words from Text

In this exercise, we will remove the stop words from a given text. Follow these steps 
to complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and declare a sentence variable with the text in question:

from nltk import word_tokenize

sentence = "She sells seashells on the seashore"

3. Define a remove_stop_words method and remove the custom list of stop 
words from the sentence by using the following lines of code:

def remove_stop_words(text,stop_word_list):

    return ' '.join([word for word in word_tokenize(text) \

                     if word.lower() not in stop_word_list])

custom_stop_word_list = ['she', 'on', 'the', 'am', 'is', 'not']

remove_stop_words(sentence,custom_stop_word_list)

The preceding code generates the following output:

'sells seashells seashore'
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Thus, we've seen how stop words can be removed from a sentence.

Note

To access the source code for this specific section, please refer  
to https://packt.live/337aMwH.

You can also run this example online at https://packt.live/30buvJF.

In the next activity, we'll put our knowledge of preprocessing steps into practice.

Activity 2.01: Extracting Top Keywords from the News Article

In this activity, you will extract the most frequently occurring keywords from a sample 
news article. 

Note

The new article that's being used for this activity can be found  
at https://packt.live/314mg1r.

The following steps will help you implement this activity:

1. Open a Jupyter Notebook.

2. Import nltk and any other necessary libraries.

3. Define some functions to help you load the text file, convert the string into 
lowercase, tokenize the text, remove the stop words, and perform stemming on 
all the remaining tokens. Finally, define a function to calculate the frequency of 
all these words.

4. Load news_article.txt using a Python file reader into a single string.

5. Convert the text string into lowercase.

6. Split the string into tokens using a white space tokenizer.

https://packt.live/337aMwH
https://packt.live/30buvJF
https://packt.live/314mg1r
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7. Remove any stop words.

8. Perform stemming on all the tokens.

9. Calculate the frequency of all the words after stemming.

Note

The solution to this activity can be found on page 373.

With that, we have learned about the various ways we can clean unstructured data. 
Now, let's examine the concept of extracting features from texts.

Feature Extraction from Texts
As we already know, machine learning algorithms do not understand textual data 
directly. We need to represent the text data in numerical form or vectors. To convert 
each textual sentence into a vector, we need to represent it as a set of features. This 
set of features should uniquely represent the text, though, individually, some of the 
features may be common across many textual sentences. Features can be classified 
into two different categories:

• General features: These features are statistical calculations and do not depend 
on the content of the text. Some examples of general features could be the 
number of tokens in the text, the number of characters in the text, and so on.

• Specific features: These features are dependent on the inherent meaning of 
the text and represent the semantics of the text. For example, the frequency of 
unique words in the text is a specific feature.

Let's explore these in detail.

Extracting General Features from Raw Text

As we've already learned, general features refer to those that are not directly 
dependent on the individual tokens constituting a text corpus. Let's consider these 
two sentences: "The sky is blue" and "The pillar is yellow". Here, the sentences have 
the same number of words (a general feature)—that is, four. But the individual 
constituent tokens are different. Let's complete an exercise to understand this better.
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Exercise 2.11: Extracting General Features from Raw Text

In this exercise, we will extract general features from input text. These general 
features include detecting the number of words, the presence of "wh" words (words 
beginning with "wh", such as "what" and "why") and the language in which the text is 
written. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the pandas library and create a DataFrame with four sentences. Add the 
following code to implement this:

import pandas as pd

from textblob import TextBlob

df = pd.DataFrame([['The interim budget for 2019 will '\

                    'be announced on 1st February.'], \

                   ['Do you know how much expectation '\

                    'the middle-class working population '\

                    'is having from this budget?'], \

                   ['February is the shortest month '\

                    'in a year.'], \

                   ['This financial year will end on '\

                    '31st March.']])

df.columns = ['text']

df.head()

The preceding code generates the following output:

Figure 2.15: DataFrame consisting of four sentences
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3. Use the apply() function to iterate through each row of the column text, 
convert them into TextBlob objects, and extract words from them. Add the 
following code to implement this:

def add_num_words(df):

    df['number_of_words'] = df['text'].apply(lambda x : \

                            len(TextBlob(str(x)).words))

    return df

add_num_words(df)['number_of_words']

The preceding code generates the following output:

0     11

1     15

2      8

3      8

Name:  number_of_words, dtype: int64

The preceding code line will print the number_of_words column of the 
DataFrame to represent the number of words in each row.

4. Use the apply() function to iterate through each row of the column text, 
convert the text into TextBlob objects, and extract the words from them 
to check whether any of them belong to the list of "wh" words that has been 
declared. Add the following code to do so:

def is_present(wh_words, df):

    """

    The below line of code will find the intersection 

    between set of tokens of every sentence and the 

    wh_words and will return true if the length of 

    intersection set is non-zero.

    """

    df['is_wh_words_present'] = df['text'].apply(lambda x : \

                                True if \

                                len(set(TextBlob(str(x)).\

                                words).intersection(wh_words))\

                                >0 else False)

    return df
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wh_words = set(['why', 'who', 'which', 'what', \

                'where', 'when', 'how'])

is_present(wh_words, df)['is_wh_words_present']

The preceding code generates the following output:

0     False

1     True

2     False

3     False

Name:  is_wh_words_present, dtype: bool

The preceding code line will print the is_wh_words_present column that 
was added by the is_present method to df, which means for every row, we 
will see whether wh_word is present.

5. Use the apply() function to iterate through each row of the column text, 
convert them into TextBlob objects, and detect their languages:

def get_language(df):

    df['language'] = df['text'].apply(lambda x : \

                     TextBlob(str(x)).detect_language())

    return df

get_language(df)['language']

The preceding code generates the following output:

0     en

1     en

2     en

3     en

Name:  language, dtype: object

With that, we have learned how to extract general features from text data.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2X9jLcS.

You can also run this example online at https://packt.live/3fgrYSK.

Let's perform another exercise to get a better understanding of this.

https://packt.live/2X9jLcS
https://packt.live/3fgrYSK
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Exercise 2.12: Extracting General Features from Text

In this exercise, we will extract various general features from documents. The dataset 
that we will be using here consists of random statements. Our objective is to find the 
frequency of various general features such as punctuation, uppercase and lowercase 
words, letters, digits, words, and whitespaces.

Note

The dataset that is being used in this exercise can be found at this link: 
https://packt.live/3k0qCPR.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from string import punctuation

import nltk

nltk.download('tagsets')

from nltk.data import load

nltk.download('averaged_perceptron_tagger')

from nltk import pos_tag

from nltk import word_tokenize

from collections import Counter

3. To see what different kinds of parts of speech nltk provides, add the  
following code:

def get_tagsets():

    tagdict = load('help/tagsets/upenn_tagset.pickle')

    return list(tagdict.keys())

tag_list = get_tagsets()

print(tag_list)

https://packt.live/3k0qCPR


Feature Extraction from Texts | 73

The preceding code generates the following output:

Figure 2.16: List of PoS

4. Calculate the number of occurrences of each PoS by iterating through each 
document and annotating each word with the corresponding pos tag. Add the 
following code to implement this:

"""

This method will count the occurrence of pos 

tags in each sentence.

"""

def get_pos_occurrence_freq(data, tag_list):

    # Get list of sentences in text_list

    text_list = data.text

    

    # create empty dataframe

    feature_df = pd.DataFrame(columns=tag_list)

    for text_line in text_list:

        

        # get pos tags of each word.

        pos_tags = [j for i, j in \

                    pos_tag(word_tokenize(text_line))]

        

        """

        create a dict of pos tags and their frequency 

        in given sentence.

        """

        row = dict(Counter(pos_tags))

        feature_df = feature_df.append(row, ignore_index=True)

    feature_df.fillna(0, inplace=True)

    return feature_df

tag_list = get_tagsets()

data = pd.read_csv('../data/data.csv', header=0)

feature_df = get_pos_occurrence_freq(data, tag_list)

feature_df.head()



74 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.17: Number of occurrences of each PoS in the sentence

5. To calculate the number of punctuation marks, add the following code:

def add_punctuation_count(feature_df, data):

    

    feature_df['num_of_unique_punctuations'] = data['text'].\

        apply(lambda x: len(set(x).intersection\

        (set(punctuation))))

    return feature_df

feature_df = add_punctuation_count(feature_df, data)

feature_df['num_of_unique_punctuations'].head()

The add_punctuation_count() method will find the intersection of the 
set of punctuation marks in the text and punctuation sets that were imported 
from the string module. Then, it will find the length of the intersection set in 
each row and add it to the num_of_unique_punctuations column of the 
DataFrame. The preceding code generates the following output:

0      0

1      0

2      1

3      1

4      0

Name:  num_of_unique_punctuations, dtype: int64
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6. To calculate the number of capitalized words, add the following code:

def get_capitalized_word_count(feature_df, data):

    """

    The below code line will tokenize text in every row and 

    create a set of only capital words, ten find the length of 

    this set and add it to the column 'number_of_capital_words' 

    of dataframe.

    """

    feature_df['number_of_capital_words'] = data['text'].\

        apply(lambda x: len([word for word in \

        word_tokenize(str(x)) if word[0].isupper()]))

    return feature_df

feature_df = get_capitalized_word_count(feature_df, data)

feature_df['number_of_capital_words'].head()

The preceding code will tokenize the text in every row and create a set of words 
consisting of only capital words. It will then find the length of this set and add it 
to the number_of_capital_words column of the DataFrame. The preceding 
code generates the following output:

0      1

1      1

2      1

3      1

4      1

Name:  number_of_capital_words, dtype: int64

The last line of the preceding code will print the number_of_capital_words 
column, which represents the count of the number of capital letter words in  
each row. 
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7. To calculate the number of lowercase words, add the following code:

def get_small_word_count(feature_df, data):

    """

    The below code line will tokenize text in every row and 

    create a set of only small words, then find the length of 

    this set and add it to the column 'number_of_small_words' 

    of dataframe.

    """

    feature_df['number_of_small_words'] = data['text'].\

        apply(lambda x: len([word for word in \

        word_tokenize(str(x)) if word[0].islower()]))

    return feature_df

feature_df = get_small_word_count(feature_df, data)

feature_df['number_of_small_words'].head()

The preceding code will tokenize the text in every row and create a set of only 
small words, then find the length of this set and add it to the number_of_
small_words column of the DataFrame. The preceding code generates the 
following output:

0      4

1      3

2      7

3      3

4      2

Name:  number_of_small_words, dtype: int64

The last line of the preceding code will print the number_of_small_words 
column, which represents the number of small letter words in each row.

8. To calculate the number of letters in the DataFrame, use the following code:

def get_number_of_alphabets(feature_df, data):

    feature_df['number_of_alphabets'] = data['text']. \

        apply(lambda x: len([ch for ch in str(x) \

        if ch.isalpha()]))

    return feature_df
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feature_df = get_number_of_alphabets(feature_df, data)

feature_df['number_of_alphabets'].head()

The preceding code will break the text line into a list of characters in each row 
and add the count of that list to the number_of_alphabets columns. This will 
produce the following output:

0     19

1     18

2     28

3     14

4     13

Name:  number_of_alphabets, dtype: int64

The last line of the preceding code will print the number_of_columns column, 
which represents the count of the number of alphabets in each row.

9. To calculate the number of digits in the DataFrame, add the following code:

def get_number_of_digit_count(feature_df, data):

    """

    The below code line will break the text line in a list of 

    digits in each row and add the count of that list into 

    the columns 'number_of_digits'

    """

    feature_df['number_of_digits'] = data['text']. \

        apply(lambda x: len([ch for ch in str(x) \

        if ch.isdigit()]))

    return feature_df

feature_df = get_number_of_digit_count(feature_df, data)

feature_df['number_of_digits'].head()

The preceding code will get the digit count from each row and add the count of 
that list to the number_of_digits columns. The preceding code generates 
the following output:

0      0

1      0

2      0

3      0

4      0

Name:  number_of_digits, dtype: int64
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10. To calculate the number of words in the DataFrame, add the following code:

def get_number_of_words(feature_df, data):

    """

    The below code line will break the text line in a list of 

    words in each row and add the count of that list into 

    the columns 'number_of_digits'

    """

    feature_df['number_of_words'] = data['text'].\

        apply(lambda x : len(word_tokenize(str(x))))

    return feature_df

feature_df = get_number_of_words(feature_df, data)

feature_df['number_of_words'].head()

The preceding code will split the text line into a list of words in each row and 
add the count of that list to the number_of_digits columns. We will get the 
following output:

0      5

1      4

2      9

3      5

4      3

Name:  number_of_words, dtype: int64

11. To calculate the number of whitespaces in the DataFrame, add the  
following code:

def get_number_of_whitespaces(feature_df, data):

    """

    The below code line will generate list of white spaces 

    in each row and add the length of that list into 

    the columns 'number_of_white_spaces

    """

    feature_df['number_of_white_spaces'] = data['text']. \

        apply(lambda x: len([ch for ch in str(x) \

        if ch.isspace()]))

    return feature_df
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feature_df = get_number_of_whitespaces(feature_df, data)

feature_df['number_of_white_spaces'].head()

The preceding code will generate a list of whitespaces in each row and add the 
length of that list to the number_of_white_spaces columns. The preceding 
code generates the following output:

0      4

1      3

2      7

3      3

4      2

Name:  number_of_white_spaces, dtype: int64

12. To view the full feature set we have just created, add the following code:

feature_df.head()

We will be printing the head of the final DataFrame, which means we will print 
five rows of all the columns. We will get the following output:

Figure 2.18: DataFrame consisting of the features we have created

With that, we have learned how to extract general features from the given text.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3jSsLNh.

You can also run this example online at https://packt.live/3hPFmPA.

Now, let's explore how we can extract unique features.

https://packt.live/3jSsLNh
https://packt.live/3hPFmPA
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Bag of Words (BoW)

The Bag of Words (BoW) model is one of the most popular methods for extracting 
features from raw texts.

In this technique, we convert each sentence into a vector. The length of this vector is 
equal to the number of unique words in all the documents. This is done in two steps:

1. The vocabulary or dictionary of all the words is generated.

2. The document is represented in terms of the presence or absence of all words.

A vocabulary or dictionary is created from all the unique possible words available in 
the corpus (all documents) and every single word is assigned a unique index number. 
In the second step, every document is represented by a list whose length is equal to 
the number of words in the vocabulary. The following exercise illustrates how BoW 
can be implemented using Python.

Exercise 2.13: Creating a Bag of Words

In this exercise, we will create a BoW representation for all the terms in a document 
and ascertain the 10 most frequent terms. In this exercise, we will use the 
CountVectorizer module from sklearn, which performs the following tasks:

• Tokenizes the collection of documents, also called a corpus

• Builds the vocabulary of unique words

• Converts a document into vectors using the previously built vocabulary

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries and declare a list corpus. Add the following code 
to implement this:

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer
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3. Use the CountVectorizer function to create the BoW model. Add the 
following code to do this:

def vectorize_text(corpus):

    """

    Will return a dataframe in which every row will ,be

    vector representation of a document in corpus

    :param corpus: input text corpus

    :return: dataframe of vectors

    """

    bag_of_words_model = CountVectorizer()

    """

    performs the above described three tasks on 

    the given data corpus.

    """

    dense_vec_matrix = bag_of_words_model.\

                       fit_transform(corpus).todense()

    bag_of_word_df = pd.DataFrame(dense_vec_matrix)

    bag_of_word_df.columns = sorted(bag_of_words_model.\

                                    vocabulary_)

    return bag_of_word_df

corpus = ['Data Science is an overlap between Arts and Science',\

          'Generally, Arts graduates are right-brained and '\

          'Science graduates are left-brained',\

          'Excelling in both Arts and Science at a time '\

          'becomes difficult',\

          'Natural Language Processing is a part of Data Science']

df = vectorize_text(corpus)

df.head()

The vectorize_text method will take a document corpus as an argument 
and return a DataFrame in which every row will be a vector representation of a 
document in the corpus.
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The preceding code generates the following output:

Figure 2.19: DataFrame of the output of the BoW model

4. Create a BoW model for the 10 most frequent terms. Add the following code to 
implement this:

def bow_top_n(corpus, n):

    """

    Will return a dataframe in which every row 

    will be represented by presence or absence of top 10 most 

    frequently occurring words in data corpus

    :param corpus: input text corpus

    :return: dataframe of vectors

    """

    bag_of_words_model_small = CountVectorizer(max_features=n)

    bag_of_word_df_small = pd.DataFrame\

    (bag_of_words_model_small.fit_transform\

    (corpus).todense())

    bag_of_word_df_small.columns = \

    sorted(bag_of_words_model_small.vocabulary_)

    return bag_of_word_df_small

df_2 = bow_top_n(corpus, 10)

df_2.head()

In the preceding code, we are checking the occurrence of the top 10 most 
frequent words in each sentence and creating a DataFrame out of it.
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The preceding code generates the following output:

Figure 2.20: DataFrame of the output of the BoW model for the 10 most frequent terms

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gdhViJ.

You can also run this example online at https://packt.live/3hPUTi8.

In this section, we learned what BoW is and how to can use it to convert a sentence or 
document into a vector. BoW is the easiest way to convert text into a vector; however, 
it has a severe disadvantage. This method only considers the presence and absence 
of words in a sentence or document—not the frequency of the words/tokens in a 
document. If we are going to use the semantics of any sentence, the frequency of 
the words plays an important role. To overcome this issue, there is another feature 
extraction model called TFIDF, which we will discuss later in this chapter.

Zipf's Law 

According to Zipf's law, the number of times a word occurs in a corpus is inversely 
proportional to its rank in the frequency table. In simple terms, if the words in a 
corpus are arranged in descending order of their frequency of occurrence, then the 
frequency of the word at the ith rank will be proportional to 1/i:

Figure 2.21: Zipf's law

https://packt.live/3gdhViJ
https://packt.live/3hPUTi8
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This also means that the frequency of the most frequent word will be twice the 
frequency of the second most frequent word. For example, if we look at the Brown 
University Standard Corpus of Present-Day American English, the word "the" is the 
most frequent word (its frequency is 69,971), while the word "of" is the second most 
frequent (with a frequency of 36,411). As we can see, its frequency is almost half 
of the most frequently occurring word. To get a better understanding of this, let's 
perform a simple exercise.

Exercise 2.14: Zipf's Law

In this exercise, we will plot both the expected and actual ranks and frequencies 
of tokens with the help of Zipf's law. We will be using the 20newsgroups dataset 
provided by the sklearn library, which is a collection of newsgroup documents. 
Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries:

from pylab import *

import nltk

nltk.download('stopwords')

from sklearn.datasets import fetch_20newsgroups

from nltk import word_tokenize

from nltk.corpus import stopwords

import matplotlib.pyplot as plt

import re

import string

from collections import Counter

Add two methods for loading stop words and the data from the  
newsgroups_data_sample variable:

def get_stop_words():

    stop_words = stopwords.words('english')

    stop_words = stop_words + list(string.printable)

    return stop_words



Feature Extraction from Texts | 85

def get_and_prepare_data(stop_words):

    """

    This method will load 20newsgroups data and 

    and remove stop words from it using given stop word list.

    :param stop_words: 

    :return: 

    """

    newsgroups_data_sample = \

    fetch_20newsgroups(subset='train')

    tokenized_corpus = [word.lower() for sentence in \

                        newsgroups_data_sample['data'] \

                        for word in word_tokenize\

                        (re.sub(r'([^\s\w]|_)+', ' ', sentence)) \

                        if word.lower() not in stop_words]

    return tokenized_corpus

In the preceding code, there are two methods; get_stop_words() will load 
stop word list from nltk data, while get_and_prepare_data() will load the 
20newsgroups data and remove stop words from it using the given stop  
word list.

3. Add the following method to calculate the frequency of each token:

def get_frequency(corpus, n):

    token_count_di = Counter(corpus)

    return token_count_di.most_common(n)

The preceding method uses the Counter class to count the frequency of tokens 
in the corpus and then return the most common n tokens.

4. Now, call all the preceding methods to calculate the frequency of the top 50 
most frequent tokens:

stop_word_list = get_stop_words()

corpus = get_and_prepare_data(stop_word_list)

get_frequency(corpus, 50)
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The preceding code generates the following output:

Figure 2.22: The 50 most frequent words of the corpus
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5. Plot the actual ranks of words that we got from frequency dictionary and the 
ranks expected as per Zipf's law. Calculate the frequencies of the top 10,000 
words using the preceding get_frequency() method and the expected 
frequencies of the same list using Zipf's law. For this, create two lists—an 
actual_frequencies and an expected_frequencies list. Use the log 
of actual frequencies to downscale the numbers. After getting the actual and 
expected frequencies, plot them using matplotlib:

def get_actual_and_expected_frequencies(corpus):

    freq_dict = get_frequency(corpus, 1000)

    actual_frequencies = []

    expected_frequencies = []

    for rank, tup in enumerate(freq_dict):

        actual_frequencies.append(log(tup[1]))

        rank = 1 if rank == 0 else rank

        # expected frequency 1/rank as per zipf's law

        expected_frequencies.append(1 / rank)

    return actual_frequencies, expected_frequencies

def plot(actual_frequencies, expected_frequencies):

    plt.plot(actual_frequencies, 'g*', \

             expected_frequencies, 'ro')

    plt.show()

# We will plot the actual and expected frequencies

actual_frequencies, expected_frequencies = \

get_actual_and_expected_frequencies(corpus)

plot(actual_frequencies, expected_frequencies)
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The preceding code generates the following output:

Figure 2.23: Illustration of Zipf's law

So, as we can see from the preceding output, both lines have almost the same slope. 
In other words, we can say that the lines (or graphs) depict the proportionality of  
two lists.

Note

To access the source code for this specific section, please refer  
to https://packt.live/30ZnKtD.

You can also run this example online at https://packt.live/3f9ZFoT.

https://packt.live/30ZnKtD
https://packt.live/3f9ZFoT
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Term Frequency–Inverse Document Frequency (TFIDF)

Term Frequency-Inverse Document Frequency (TFIDF) is another method of 
representing text data in a vector format. Here, once again, we'll represent each 
document as a list whose length is equal to the number of unique words/tokens in 
all documents (corpus), but the vector here not only represents the presence and 
absence of a word, but also the frequency of the word—both in the current document 
and the whole corpus. 

This technique is based on the idea that the rarely occurring words are better 
representatives of the document than frequently occurring words. Hence, this 
representation gives more weightage to the rarer or less frequent words than 
frequently occurring words. It does so with the following formula:

Figure 2.24: TFIDF formula

Here, term frequency is the frequency of a word in the given document. Inverse 
document frequency can be defined as log(D/df), where df is document frequency 
and D is the total number of documents in the background corpus.

Now, let's complete an exercise and learn how TFIDF can be implemented in Python.

Exercise 2.15: TFIDF Representation

In this exercise, we will represent the input texts with their TFIDF vectors. We will use 
a sklearn module named TfidfVectorizer, which converts text into TFIDF 
vectors. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import all the necessary libraries and create a method to calculate the TFIDF of 
the corpus. Add the following code to implement this:

from sklearn.feature_extraction.text import TfidfVectorizer

def get_tf_idf_vectors(corpus):

    tfidf_model = TfidfVectorizer()

    vector_list = tfidf_model.fit_transform(corpus).todense()

    return vector_list
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3. To create a TFIDF model, write the following code:

corpus = ['Data Science is an overlap between Arts and Science',\

          'Generally, Arts graduates are right-brained and '\

          'Science graduates are left-brained',\

          'Excelling in both Arts and Science at a '\

          'time becomes difficult',\

          'Natural Language Processing is a part of Data Science']

vector_list = get_tf_idf_vectors(corpus)

print(vector_list)

In the preceding code, the get_tf_idf_vectors() method will generate 
TFIDF vectors from the corpus. You will then call this method on a given corpus. 
The preceding code generates the following output:

Figure 2.25: TFIDF representation of the 10 most frequent terms
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The preceding output represents the TFIDF vectors for each row. As you can see 
from the results, each document is represented by a list whose length is equal to the 
unique words in the corpus and in each list (vector). The vector contains the TFIDF 
values of the words at their corresponding index.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gdzsHA.

You can also run this example online at https://packt.live/3fdP5gS.

In the next section, we will solve an activity to extract specific features from texts.

Finding Text Similarity – Application of Feature Extraction
So far in this chapter, we have learned how to generate vectors from text. These 
vectors are then fed to machine learning algorithms to perform various tasks. Other 
than using them in machine learning applications, we can also perform simple 
NLP tasks using these vectors. Finding the string similarity is one of them. This is a 
technique in which we find the similarity between two strings by converting them into 
vectors. The technique is mainly used in full-text searching.

There are different techniques for finding the similarity between two strings or texts. 
They are explained one by one here:

• Cosine similarity: The cosine similarity is a technique to find the similarity 
between the two vectors by calculating the cosine of the angle between them. 
As we know, the cosine of a zero-degree angle is 1 (meaning the cosine similarity 
of two identical vectors is 1), while the cosine of 180 degrees is -1 (meaning 
the cosine of two opposite vectors is -1). Thus, we can use this cosine angle to 
find the similarity between the vectors from 1 to -1. To use this technique in 
finding text similarity, we convert text into vectors using one of the previously 
discussed techniques and find the similarity between the vectors of the text. This 
is calculated as follows:

Figure 2.26: Cosine similarity

https://packt.live/3gdzsHA
https://packt.live/3fdP5gS
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Here, A and B are two vectors, A.B is the dot product of two vectors, and |A| and 
|B| are the magnitude of two vectors.

• Jaccard similarity: This is another technique that's used to calculate the 
similarity between the two texts, but it only works on BoW vectors. The Jaccard 
similarity is calculated as the ratio of the number of terms that are common 
between two text documents to the total number of unique terms present in 
those texts.

Consider the following example. Suppose there are two texts:

Text 1: I like detective Byomkesh Bakshi.

Text 2: Byomkesh Bakshi is not a detective; he is a truth seeker.

The common terms are "Byomkesh," "Bakshi," and "detective."

The number of common terms in the texts is three.

The unique terms present in the texts are "I," "like," "is," "not," "a," "he," "is," 
"truth," and "seeker." So, the number of unique terms is nine.

Therefore, the Jaccard similarity is 3/9 = 0.3.

To get a better understanding of text similarity, we will complete an exercise.

Exercise 2.16: Calculating Text Similarity Using Jaccard and Cosine Similarity

In this exercise, we will calculate the Jaccard and cosine similarity for a given pair of 
texts. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

lemmatizer = WordNetLemmatizer()
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3. Create a function to extract the Jaccard similarity between a pair of sentences by 
adding the following code:

def extract_text_similarity_jaccard(text1, text2):

    """

    This method will return Jaccard similarity between two texts

    after lemmatizing them.

    :param text1: text1

    :param text2: text2

    :return: similarity measure

    """

    lemmatizer = WordNetLemmatizer()

    words_text1 = [lemmatizer.lemmatize(word.lower()) \

                   for word in word_tokenize(text1)]

    words_text2 = [lemmatizer.lemmatize(word.lower()) \

                   for word in word_tokenize(text2)]

    nr = len(set(words_text1).intersection(set(words_text2)))

    dr = len(set(words_text1).union(set(words_text2)))

    jaccard_sim = nr / dr

    return jaccard_sim

4. Declare three variables named pair1, pair2, and pair3, as follows.

pair1 = ["What you do defines you", "Your deeds define you"]

pair2 = ["Once upon a time there lived a king.", \

         "Who is your queen?"]

pair3 = ["He is desperate", "Is he not desperate?"]

5. To check the Jaccard similarity between the statements in pair1, write the 
following code: 

extract_text_similarity_jaccard(pair1[0],pair1[1])

The preceding code generates the following output:

0.14285714285714285
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6. To check the Jaccard similarity between the statements in pair2, write the 
following code:

extract_text_similarity_jaccard(pair2[0],pair2[1])

The preceding code generates the following output:

0.0

7. To check the Jaccard similarity between the statements in pair3, write the 
following code:

extract_text_similarity_jaccard(pair3[0],pair3[1])

The preceding code generates the following output:

0.6

8. To check the cosine similarity, use the TfidfVectorizer() method to get the 
vectors of each text: 

def get_tf_idf_vectors(corpus):

    tfidf_vectorizer = TfidfVectorizer()

    tfidf_results = tfidf_vectorizer.fit_transform(corpus).\

                    todense()

    return tfidf_results

9. Create a corpus as a list of texts and get the TFIDF vectors of each text 
document. Add the following code to do this:

corpus = [pair1[0], pair1[1], pair2[0], \

          pair2[1], pair3[0], pair3[1]]

tf_idf_vectors = get_tf_idf_vectors(corpus)

10. To check the cosine similarity between the initial two texts, write the  
following code:

cosine_similarity(tf_idf_vectors[0],tf_idf_vectors[1])

The preceding code generates the following output:

array([[0.3082764]])
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11. To check the cosine similarity between the third and fourth texts, write the 
following code:

cosine_similarity(tf_idf_vectors[2],tf_idf_vectors[3])

The preceding code generates the following output:

array([[0.]])

12. To check the cosine similarity between the fifth and sixth texts, write the 
following code:

cosine_similarity(tf_idf_vectors[4],tf_idf_vectors[5])

The preceding code generates the following output:

array([[0.80368547]])

So, in this exercise, we learned how to check the similarity between texts. As you can 
see, the texts "He is desperate" and "Is he not desperate?" returned 
similarity results of 0.80 (meaning they are highly similar), whereas sentences such 
as "Once upon a time there lived a king." and "Who is your 
queen?" returned zero as their similarity measure.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Eyw0JC.

You can also run this example online at https://packt.live/2XbGRQ3.

Word Sense Disambiguation Using the Lesk Algorithm

The Lesk algorithm is used for resolving word sense disambiguation. Suppose 
we have a sentence such as "On the bank of river Ganga, there lies the scent of 
spirituality" and another sentence, "I'm going to withdraw some cash from the bank". 
Here, the same word—that is, "bank"—is used in two different contexts. For text 
processing results to be accurate, the context of the words needs to be considered. 

In the Lesk algorithm, words with ambiguous meanings are stored in the background 
in synsets. The definition that is closer to the meaning of a word being used in the 
context of the sentence will be taken as the right definition. Let's perform a simple 
exercise to get a better idea of how we can implement this.

https://packt.live/2Eyw0JC
https://packt.live/2XbGRQ3
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Exercise 2.17: Implementing the Lesk Algorithm Using String Similarity and 

Text Vectorization

In this exercise, we are going to implement the Lesk algorithm step by step using the 
techniques we have learned so far. We will find the meaning of the word "bank" in 
the sentence, "On the banks of river Ganga, there lies the scent of spirituality." We will 
use cosine similarity as well as Jaccard similarity here. Follow these steps to complete 
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity

from nltk import word_tokenize

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.datasets import fetch_20newsgroups

import numpy as np

3. Define a method for getting the TFIDF vectors of a corpus:

def get_tf_idf_vectors(corpus):

    tfidf_vectorizer = TfidfVectorizer()

    tfidf_results = tfidf_vectorizer.fit_transform\

                    (corpus).todense()

    return tfidf_results

4. Define a method to convert the corpus into lowercase:

def to_lower_case(corpus):

    lowercase_corpus = [x.lower() for x in corpus]

    return lowercase_corpus

5. Define a method to find the similarity between the sentence and the possible 
definitions and return the definition with the highest similarity score:

def find_sentence_definition(sent_vector,defnition_vectors):

    """

    This method will find cosine similarity of sentence with

    the possible definitions and return the one with 

    highest similarity score along with the similarity score.

    """

    result_dict = {}
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    for definition_id,def_vector in definition_vectors.items():

        sim = cosine_similarity(sent_vector,def_vector)

        result_dict[definition_id] = sim[0][0]

    definition  = sorted(result_dict.items(), \

                         key=lambda x: x[1], \

                         reverse=True)[0]

    return definition[0],definition[1]

6. Define a corpus with random sentences with the sentence and the two 
definitions as the top three sentences:

corpus = ["On the banks of river Ganga, there lies the scent "\

          "of spirituality",\

          "An institute where people can store extra "\

          "cash or money.",\

          "The land alongside or sloping down to a river or lake"

          "What you do defines you",\

          "Your deeds define you",\

          "Once upon a time there lived a king.",\

          "Who is your queen?",\

          "He is desperate",\

          "Is he not desperate?"]

7. Use the previously defined methods to find the definition of the word bank:

lower_case_corpus  = to_lower_case(corpus)

corpus_tf_idf  = get_tf_idf_vectors(lower_case_corpus)

sent_vector = corpus_tf_idf[0]

definition_vectors = {'def1':corpus_tf_idf[1],\

                      'def2':corpus_tf_idf[2]}

definition_id, score = \

find_sentence_definition(sent_vector,definition_vectors)

print("The definition of word {} is {} with similarity of {}".\

      format('bank',definition_id,score))

You will get the following output:

The definition of word bank is def2 with similarity of 
0.14419130686278897
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As we already know, def2 represents a riverbank. So, we have found the correct 
definition of the word here. In this exercise, we have learned how to use text 
vectorization and text similarity to find the right definition of ambiguous words. 

Note

To access the source code for this specific section, please refer  
to https://packt.live/39GzJAs.

You can also run this example online at https://packt.live/3fbxQwK.

Word Clouds

Unlike numeric data, there are very few ways in which text data can be represented 
visually. The most popular way of visualizing text data is by using word clouds. A 
word cloud is a visualization of a text corpus in which the sizes of the tokens (words) 
represent the number of times they have occurred, as shown in the following image:

Figure 2.27: Example of a word cloud

https://packt.live/39GzJAs
https://packt.live/3fbxQwK
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In the following exercise, we will be using a Python library called wordcloud to build 
a word cloud from the 20newsgroups dataset.

Let's go through an exercise to understand this better.

Exercise 2.18: Generating Word Clouds

In this exercise, we will visualize the most frequently occurring words in the first 1,000 
articles from sklearn's fetch_20newsgroups text dataset using a word cloud. 
Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries and dataset. Add the following code to do this:

import nltk

nltk.download('stopwords')

import matplotlib.pyplot as plt

plt.rcParams['figure.dpi'] = 200

from sklearn.datasets import fetch_20newsgroups

from nltk.corpus import stopwords

from wordcloud import WordCloud

import matplotlib as mpl

mpl.rcParams['figure.dpi'] = 200

3. Write the get_data() method to fetch the data:

def get_data(n):

    newsgroups_data_sample = fetch_20newsgroups(subset='train')

    text = str(newsgroups_data_sample['data'][:n])

    return text
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4. Add a method to remove stop words:

def load_stop_words():

    other_stopwords_to_remove = ['\\n', 'n', '\\', '>', \

                                 'nLines', 'nI',"n'"]

    stop_words = stopwords.words('english')

    stop_words.extend(other_stopwords_to_remove)

    stop_words = set(stop_words)

    return stop_words

5. Add the generate_word_cloud() method to generate a word cloud object:

def generate_word_cloud(text, stopwords):

    """

    This method generates word cloud object

    with given corpus, stop words and dimensions

    """

    wordcloud = WordCloud(width = 800, height = 800, \

                          background_color ='white', \

                          max_words=200, \

                          stopwords = stopwords, \

                          min_font_size = 10).generate(text)

    return wordcloud

6. Get 1,000 documents from the 20newsgroup data, get the stop word list, 
generate a word cloud object, and finally plot the word cloud with matplotlib:

text = get_data(1000)

stop_words = load_stop_words()

wordcloud = generate_word_cloud(text, stop_words)

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()
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The preceding code generates the following output:

Figure 2.28: Word cloud representation of the first 10 articles

So, in this exercise, we learned what word clouds are and how to generate word 
clouds with Python's wordcloud library and visualize this with matplotlib.

Note

To access the source code for this specific section, please refer  
to https://packt.live/30eaSRn.

You can also run this example online at https://packt.live/2EzqLJJ.

In the next section, we will explore other visualizations, such as dependency parse 
trees and named entities.

https://packt.live/30eaSRn
https://packt.live/2EzqLJJ
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Other Visualizations

Apart from word clouds, there are various other ways of visualizing texts. Some of the 
most popular ways are listed here:

• Visualizing sentences using a dependency parse tree: Generally, the phrases 
constituting a sentence depend on each other. We depict these dependencies by 
using a tree structure known as a dependency parse tree. For instance, the word 
"helps" in the sentence "God helps those who help themselves" depends on two 
other words. These words are "God" (the one who helps) and "those" (the ones 
who are helped).

• Visualizing named entities in a text corpus: In this case, we extract the named 
entities from texts and highlight them by using different colors.

Let's go through the following exercise to understand this better.

Exercise 2.19: Other Visualizations Dependency Parse Trees and Named Entities

In this exercise, we will look at two of the most popular visualization methods, after 
word clouds, which are dependency parse trees and using named entities. Follow 
these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import spacy

from spacy import displacy

!python -m spacy download

en_core_web_sm

import en_core_web_sm

nlp = en_core_web_sm.load()

3. Depict the sentence "God helps those who help themselves" using a dependency 
parse tree with the following code:

doc = nlp('God helps those who help themselves')

displacy.render(doc, style='dep', jupyter=True)
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The preceding code generates the following output:

Figure 2.29: Dependency parse tree

4. Visualize the named entities of the text corpus by adding the following code: 

text = 'Once upon a time there lived a saint named '\

       'Ramakrishna Paramahansa. His chief disciple '\

       'Narendranath Dutta also known as Swami Vivekananda '\

       'is the founder of Ramakrishna Mission and '\

       'Ramakrishna Math.'

doc2 = nlp(text)

displacy.render(doc2, style='ent', jupyter=True)

The preceding code generates the following output:

Figure 2.30: Named entities

Note

To access the source code for this specific section, please refer  
to https://packt.live/313m4iD.

You can also run this example online at https://packt.live/3103fgr.

Now that you have learned about visualizations, we will solve an activity based on 
them to gain an even better understanding.

https://packt.live/313m4iD
https://packt.live/3103fgr
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Activity 2.02: Text Visualization

In this activity, you will create a word cloud for the 50 most frequent words in a 
dataset. The dataset we will use consists of random sentences that are not clean. 
First, we need to clean them and create a unique set of frequently occurring words. 

Note

The text_corpus.txt file that's being used in this activity can be found at 
https://packt.live/2DiVIBj.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Fetch the dataset.

3. Perform the preprocessing steps, such as text cleaning, tokenization, and 
lemmatization, on the fetched data.

4. Create a set of unique words along with their frequencies for the 50 most 
frequently occurring words.

5. Create a word cloud for these top 50 words. 

6. Justify the word cloud by comparing it with the word frequency that  
you calculated.

Note

The solution to this activity can be found on page 375.

https://packt.live/2DiVIBj


Summary | 105

Summary
In this chapter, you have learned about various types of data and ways to deal with 
unstructured text data. Text data is usually extremely noisy and needs to be cleaned 
and preprocessed, which mainly consists of tokenization, stemming, lemmatization, 
and stop-word removal. After preprocessing, features are extracted from texts using 
various methods, such as BoW and TFIDF. These methods convert unstructured text 
data into structured numeric data. New features are created from existing features 
using a technique called feature engineering. In the last part of this chapter, we 
explored various ways of visualizing text data, such as word clouds.

In the next chapter, you will learn how to develop machine learning models to classify 
texts using the feature extraction methods you have learned about in this chapter. 
Moreover, different sampling techniques and model evaluation parameters will  
be introduced.





Overview

This chapter starts with an introduction to the various types of machine 
learning methods, that is, the supervised and unsupervised methods. 
You will learn about hierarchical clustering and k-means clustering and 
implement them using various datasets. Next, you will explore tree-based 
methods such as random forest and XGBoost. Finally, you will implement 
an end-to-end text classifier in order to categorize text on the basis of  
its content.

Developing a Text Classifier

3
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Introduction
In the previous chapters, you learned about various extraction methods, such as 
tokenization, stemming, lemmatization, and stop-word removal, which are used to 
extract features from unstructured text. We also discussed Bag of Words and Term 
Frequency-Inverse Document Frequency (TFIDF).

In this chapter, you will learn how to use these extracted features to develop machine 
learning models. These models are capable of solving real-world problems, such as 
detecting whether sentiments carried by texts are positive or negative, predicting 
whether emails are spam or not, and so on. We will also cover concepts such as 
supervised and unsupervised learning, classifications and regressions, sampling 
and splitting data, along with evaluating the performance of a model in depth. This 
chapter also discusses how to load and save these models for future use.

Machine Learning
Machine learning is the scientific study of algorithms and statistical models that 
computer systems use to perform a specific task without using explicit instructions, 
relying on patterns and inference instead.

Machine learning algorithms are fed with large amounts of data that they can work 
on to build a model. This model is later used by businesses to generate solutions that 
help them analyze data and build strategies for the future. For example, a beverage 
production company can make use of multiple datasets to better understand the 
trends of their product's consumption over the course of a year. This would help 
them reduce wastage and better predict the requirements of their consumers. 
Machine learning is further categorized into unsupervised and supervised 
learning. Let's explore these two terms in detail.

Unsupervised Learning

Unsupervised learning is the method by which algorithms learn patterns within 
data that is not labeled. Since labels (supervisors) are absent, it is referred to as 
unsupervised learning. In unsupervised learning, you provide the algorithm with the 
feature data and it learns patterns from the data on its own.
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Unsupervised learning is further classified into clustering and association:

• Clustering: Clustering is the process of combining objects into groups called 
clusters. For example, if there are 50 students who need to be categorized based 
on their attributes, we do not use any specific attribute(s) to create segments. 
Rather, we try to learn the hidden patterns that exist in their attributes and 
categorize them accordingly. This process is known as cluster analysis or 
clustering (one of the most popular types of unsupervised learning). When 
handed a set of text documents, we can divide them into groups that are similar 
with the help of clustering. A common example of clustering could be when you 
search for a term on Google and similar pages or links are recommended. These 
recommendations are powered by document clustering.

• Association: Another type of unsupervised learning is association rule mining. 
We use association rule mining to obtain groups of items that occur together 
frequently. The most common use case of association rule mining is to identify 
customers' buying patterns. For example, in a supermarket, customers who tend 
to buy milk and bread generally tend to buy cheese. This information can be 
used to design supermarket layouts. An application of association rule mining 
in Natural Language Processing (NLP) is to find similar words; for example, 
outstanding, excellent, and superb are all synonyms of good. Association rule 
mining can easily find patterns like this in any NLP dataset. However, the  
detailed theoretical explanations of these algorithms are beyond the scope  
of this chapter.

Let's explore the different types of clustering. In particular, we will be talking about 
hierarchical and k-means clustering, and the different scenarios in which they 
should be used. However, before we dive into those, it's important to understand 
the concept of distance metrics, which is what we use to create clusters and identify 
similar data points. The most common distance metric is Euclidean, which is 
calculated as follows:

Figure 3.1: Formula for Euclidean distance

In the case of machine learning, p and q are different data points in the dataset and 
pi, qi  are the different features of those data points.
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Hierarchical Clustering

Hierarchical clustering algorithms group similar objects together to create a cluster 
with the help of a dendrogram. In this algorithm, we can vary the number of clusters 
as per our requirements. First, we construct a matrix consisting of distances between 
each pair of instances (data points). After that, we construct a dendrogram (a 
representation of clusters in the form of a tree) based on the distances between 
them. We truncate the tree at a location corresponding to the number of clusters 
we need.

For example, imagine that you have 10 documents and want to group them into a 
number of categories based on their attributes (the number of words they contain, 
the number of paragraphs, punctuation, and so on) and don't have any fixed number 
of categories in mind. This is a use case of hierarchical clustering. Let's assume that 
we have a dataset containing the features of the 10 documents. Firstly, the distances 
between each pair of documents from the set of 10 documents are calculated. After 
that, we construct a dendrogram and truncate it at a suitable position to get a 
suitable number of clusters:

Figure 3.2: Output dendrogram after performing hierarchical clustering
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In the preceding graph, we can perform a truncation at distance 3.5 to get two 
clusters or at 2.5 to get three clusters, depending on the requirements. To create a 
dendrogram using scikit-learn, we can use the following code:

import scipy.cluster.hierarchy as sch

dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))

plt.title('Dendrogram')

plt.show()

Here, X is the dataset that we want to perform hierarchical clustering with. Let's 
perform an exercise to understand how we can implement this.

Exercise 3.01: Performing Hierarchical Clustering

In this exercise, we will analyze the text documents in sklearn's 
fetch_20newsgroups dataset. The 20 newsgroups dataset contains news 
articles on 20 different topics. We will make use of hierarchical clustering to classify 
the documents into different groups. Once the clusters have been created, we will 
compare them with their actual categories. Follow these steps to implement  
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from sklearn.datasets import fetch_20newsgroups

from scipy.cluster.hierarchy import ward, dendrogram

import matplotlib as mpl

from scipy.cluster.hierarchy import fcluster

from sklearn.metrics.pairwise import cosine_similarity

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter
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from pylab import *

import nltk

import warnings

warnings.filterwarnings('ignore')

3. Download a list of stop words and the Wordnet corpus from nltk. Insert a new 
cell and add the following code to implement this:

nltk.download('stopwords')

stop_words=stopwords.words('english')

stop_words=stop_words+list(string.printable)

nltk.download('wordnet')

lemmatizer=WordNetLemmatizer()

4. Specify the categories of news articles we want to fetch to perform our clustering 
task. We will use three categories: "For sale", "Electronics", and "Religion". Add 
the following code to do this:

categories= ['misc.forsale', 'sci.electronics', \

             'talk.religion.misc']

5. To fetch the dataset, add the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

                               categories=categories, \

                               shuffle=True, random_state=42, \

                               download_if_missing=True)

6. To view the data of the fetched content, add the following code:

news_data['data'][:5]
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The preceding code generates the following output:

Figure 3.3: The first five news articles

7. To check the categories of news articles, insert a new cell and add the  
following code:

print(news_data.target)

The target is the variable that we predict by making use of the rest of the 
variables in a dataset. The preceding code generates the following output:

[0 0 1 … 0 1 0]

Here, 0 refers to misc.forsale, 1 refers to sci.electronics, and 2 refers 
to talk.religion.misc.

8. To store news_data and the corresponding categories in a pandas 
DataFrame and view it, write the following code:

news_data_df = pd.DataFrame({'text' : news_data['data'], \

                             'category': news_data.target})

news_data_df.head()
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The preceding code generates the following output:

Figure 3.4: Text corpus of news data corresponding to the categories in a DataFrame

9. To count the number of occurrences of each category appearing in this dataset, 
write the following code:

news_data_df['category'].value_counts()

The preceding code generates the following output:

1        591

0        585

2        377

Name:  category, dtype: int64

10. Use a lambda function to extract tokens from each "text" of the news_data_
df DataFrame. Check whether any of these tokens is a stop word, lemmatize 
the ones that are not stop words, and then concatenate them to recreate the 
sentence. Make use of the join function to concatenate a list of words into a 
single sentence. To replace anything other than letters, digits, and whitespaces 
with blank space, use a regular expression (re). Add the following code to  
do this:

news_data_df['cleaned_text'] = news_data_df['text']\

                               .apply(lambda x : ' '.join\

                               ([lemmatizer.lemmatize\

                                 (word.lower())\

                               for word in word_tokenize\

                               (re.sub(r'([^\s\w]|_)+', ' ',\

                                str(x))) if word.lower() \

                                not in stop_words]))
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11. Create a TFIDF matrix and transform it into a DataFrame. Add the following code 
to do this:

tfidf_model = TfidfVectorizer(max_features=200)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.5: TFIDF representation as a DataFrame

12. Calculate the distance using the sklearn library:

from sklearn.metrics.pairwise import \

euclidean_distances as euclidean

dist = 1 - euclidean(tfidf_df)

13. Now, create a dendrogram for the TFIDF representation of documents:

import scipy.cluster.hierarchy as sch

dendrogram = sch.dendrogram(sch.linkage(dist, method='ward'))

plt.xlabel('Data Points')

plt.ylabel('Euclidean Distance')

plt.title('Dendrogram')

plt.show()
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The preceding code generates the following output:

Figure 3.6: Truncated dendrogram

Here, you can see that a cluster count of four seems optimal.

14. Use the fcluster() function to obtain the cluster labels of the clusters that 
were obtained by hierarchical clustering:

k=4

clusters = fcluster(sch.linkage(dist, method='ward'), k, \

                    criterion='maxclust')

clusters

The preceding code generates the following output:

array([3, 3, 3, …, 4, 4, 1], dtype=int32)
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15. Make use of the crosstab function of pandas to compare the clusters we have 
obtained with the actual categories of news articles. Add the following code to 
implement this:

news_data_df['obtained_clusters'] = clusters

pd.crosstab(news_data_df['category']\

            .replace({0:'misc.forsale', \

                      1:'sci.electronics', \

                      2:'talk.religion.misc'}),\

            news_data_df['obtained_clusters']\

            .replace({1 : 'cluster_1', 2 : 'cluster_2', \

                      3 : 'cluster_3', 4: 'cluster_4'}))

The preceding code generates the following output:

Figure 3.7: Crosstab between actual categories and obtained clusters 

Using the preceding image, we can analyze the high-level patterns that the clustering 
algorithm found to group the articles into one of the four clusters. As you can see, 
cluster 2 has mostly religion-related articles, while cluster 3 consists of primarily sales-
related articles. The other two clusters do not have a proper distinction. The reason 
for this could be that the model figured out that words related to "religion" and "for 
sale" appeared frequently in the articles that were classified into those respective 
clusters, while the articles on "electronics" consist of mostly generic words.

Note

To access the source code for this specific section, please refer  
to https://packt.live/39A4wyL.

You can also run this example online at https://packt.live/3ge4ezQ.

https://packt.live/39A4wyL
https://packt.live/3ge4ezQ
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One major disadvantage of hierarchical clustering is scalability. Using hierarchical 
clustering for large datasets is very difficult; for such cases, we can use k-means 
clustering. Let us explore how this works.

k-means Clustering

In this algorithm, we segregate the given instances (data points) into "k" number of 
groups (here, k is a natural number). First, we choose k centroids. We assign each 
instance to its nearest centroid, thereby creating k groups. This is the assignment 
phase, which is followed by the update phase.

In the update phase, new centroids for each of these k groups are calculated. 
The data points are reassigned to their nearest newly calculated centroids. The 
assignment phase and the update phase are carried on repeatedly until the 
assignment of data points no longer changes.

For example, suppose you have 10 documents. You want to group them into three 
categories based on their attributes, such as the number of words they contain, the 
number of paragraphs, punctuation, and the tone of the document. In this case, we 
will assume that k is 3; that is, we want to create these three groups. Firstly, three 
centroids need to be chosen. In the initialization phase, each of these 10 documents 
is assigned to one of these three categories, thereby forming three groups. In the 
update phase, the centroids of the three newly formed groups are calculated. To 
decide the optimal number of clusters (that is, k), we execute k-means clustering 
for various values of k and note down their performances (sum of squared errors). 
We try to select a small value for k that has the lowest sum of squared errors. This 
method is called the elbow method.

The scikit-learn library can be used to perform k-means in Python using the  
following code:

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)

kmeans.fit(X)

clusters = kmeans.predict(X)

Here, we create the base model using the kmeans class of scikit-learn. Then, we train 
the model using the fit function. The trained model can then be used to get clusters 
using the predict function, where X represents a DataFrame of independent variables. 
Let's perform an exercise to get a better understanding of k-means clustering.



Machine Learning | 119

Exercise 3.02: Implementing k-means Clustering

In this exercise, we will create four clusters from text documents in sklearn's 
fetch_20newsgroups text dataset using k-means clustering. We will compare 
these clusters with the actual categories and use the elbow method to obtain the 
optimal number of clusters. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

import seaborn as sns 

sns.set()

import numpy as np

from scipy.spatial.distance import cdist

from sklearn.cluster import KMeans

3. To use stop words for the English language and the WordNet corpus for 
lemmatization, add the following code:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()
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4. To specify the categories of news articles, add the following code:

categories= ['misc.forsale', 'sci.electronics', \

             'talk.religion.misc']

5. Use the following lines of code to fetch the dataset and store it in a  
pandas DataFrame:

news_data = fetch_20newsgroups(subset='train', \

                               categories=categories, \

                               shuffle=True, \

                               random_state=42, \

                               download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

                             'category': news_data.target})

6. Use the lambda function to extract tokens from each "text" of the news_
data_df DataFrame. Discard the tokens if they're stop words, lemmatize them 
if they're not, and then concatenate them to recreate the sentence. Use the join 
function to concatenate a list of words into a single sentence and use the regular 
expression method (re) to replace anything other than alphabets, digits, and 
whitespaces with a blank space. Add the following code to do this:

news_data_df['cleaned_text'] = news_data_df['text']\

                               .apply(lambda x : ' '.join\

                               ([lemmatizer.lemmatize(word.lower()) \

                               for word in word_tokenize\

                               (re.sub(r'([^\s\w]|_)+', ' ', \

                                       str(x))) \

                                if word.lower() not in stop_words]))

7. Use the following lines of code to create a TFIDF matrix and transform it into  
a DataFrame:

tfidf_model = TfidfVectorizer(max_features=200)

tfidf_df = pd.DataFrame(tfidf_model\

                        .fit_transform\

                        (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()
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The preceding code generates the following output:

Figure 3.8: TFIDF representation as a DataFrame

8. Use the KMeans function of sklearn to create four clusters from a TFIDF 
representation of news articles. Add the following code to do this:

kmeans = KMeans(n_clusters=4)

kmeans.fit(tfidf_df)

y_kmeans = kmeans.predict(tfidf_df)

news_data_df['obtained_clusters'] = y_kmeans

9. Use pandas' crosstab function to compare the clusters we have obtained with 
the actual categories of the news articles. Add the following code to do this:

pd.crosstab(news_data_df['category']\

            .replace({0:'misc.forsale', \

                      1:'sci.electronics', \

                      2:'talk.religion.misc'}),\

            news_data_df['obtained_clusters']\

            .replace({0 : 'cluster_1',\

                      1 : 'cluster_2', 2 : 'cluster_3', \

                      3: 'cluster_4'}))
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The preceding code generates the following output:

Figure 3.9: Crosstab between the actual categories and obtained clusters xxx

From the figure above, you can see, cluster 2 has majorly religion related articles 
and cluster 4 has mostly for sale related articles. The other two clusters do now 
have a proper distinction but cluster 3 has majority of the electronic articles.

10. Finally, to obtain the optimal value of k (that is, the number of clusters), execute 
the k-means algorithm for values of k ranging from 1 to 6. For each value of k, 
store the distortion—that is, the mean of the distances of the documents from 
their nearest cluster center. Look for the value of k where the slope of the plot 
changes rapidly. Add the following code to implement this:

distortions = []

K = range(1,6)

for k in K:

    kmeanModel = KMeans(n_clusters=k)

    kmeanModel.fit(tfidf_df)

    distortions.append(sum(np.min(cdist\

    (tfidf_df, kmeanModel.cluster_centers_, \

     'euclidean'), axis=1)) / tfidf_df.shape[0])

plt.plot(K, distortions, 'bx-')

plt.xlabel('k')

plt.ylabel('Distortion')

plt.title('The Elbow Method showing the optimal number '\

          'of clusters')

plt.show()
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The preceding code generates the following output:

Figure 3.10: Optimal clusters represented in a graph using the elbow method

From the preceding graph, we can conclude that the optimal number of clusters is 2.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2EuZckB.

You can also run this example online at https://packt.live/333x6Hw.

We have seen how unsupervised learning can be implemented in Python. Now, let us 
talk about supervised learning.

https://packt.live/2EuZckB
https://packt.live/333x6Hw
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Supervised Learning
Unlike unsupervised learning, supervised learning algorithms need labeled data. They 
learn how to automatically generate labels or predict values by analyzing various 
features of the data provided. For example, say you have already starred important 
text messages on your phone, and you want to automate the task of going through 
all your messages daily (considering they are important and marked already). This is 
a use case for supervised learning. Here, messages that have been starred previously 
can be used as labeled data. Using this data, you can create two types of models that 
are capable of the following:

• Classifying whether new messages are important

• Predicting the probability of new messages being important

The first type is called classification, while the second type is called regression. Let's 
learn about classification first.

Classification

Say you have two types of food, of which type 1 tastes sweet and type 2 tastes salty, 
and you need to determine how an unknown food will taste using various attributes 
of the food (such as color, fragrance, shape, and ingredients). This is an instance 
of classification.

Here, the two classes are class 1, which tastes sweet, and class 2, which tastes salty. 
The features that are used in this classification are color, fragrance, the ingredients 
used to prepare the dish, and so on. These features are called independent variables. 
The class (sweet or salty) is called a dependent variable.

Formally, classification algorithms are those that learn patterns from a given 
dataset to determine classes of unknown datasets. Some of the most widely used 
classification algorithms are logistic regression, Naive Bayes, k-nearest neighbor, and 
tree methods. Let's learn about each of them.
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Logistic Regression

Despite having the term "regression" in it, logistic regression is used for probabilistic 
classification. In this case, the dependent variable (the outcome) is binary, which 
means that the values can be represented by 0 or 1. For example, consider that you 
need to decide whether an email is spam or not. Here, the value of the decision (the 
dependent variable, or the outcome) can be considered to be 1 if the email is spam; 
otherwise, it will be 0. No other outcome is possible. The independent variables (that 
is, the features) will consist of various attributes of the email, such as the number 
of occurrences of certain keywords and so on. We can then make use of the logistic 
regression algorithm to create a model that predicts if the email is spam (1) or not (0), 
as shown in the following graph:

Figure 3.11: Example of logistic regression

Here, the decision boundary is created by training a logistic regression model that 
helps us classify spam emails.
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The scikit-learn library can be used to perform logistic regression in Python using the 
following code:

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()

log_reg.fit(X,y)

predicted_labels = log_reg.predict(X)

predicted_probability = log_reg.predict_proba(X)[:,1]

Here, we create the base model using the LogisticRegression class of  
scikit-learn. Then, we train the model using the fit function. The trained model 
can then be used to make predictions, and we can also get probability estimates for 
each class using the predict_proba function. Here, X represents a DataFrame of 
independent variables, whereas y represents a DataFrame of dependent variables.

Exercise 3.03: Text Classification – Logistic Regression

In this exercise, we will classify reviews of musical instruments on Amazon with the 
help of the logistic regression classification algorithm.

Note

To download the dataset, visit https://packt.live/3hQ6UEe.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk 

nltk.download('punkt')

https://packt.live/3hQ6UEe
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nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to 
implement this:

review_data = pd.read_json\

              ('data/reviews_Musical_Instruments_5.json', \

               lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.12: Data stored in a DataFrame

4. Use a lambda function to extract tokens from each 'reviewText' of this 
DataFrame, lemmatize them, and concatenate them side by side. Use the  
join function to concatenate a list of words into a single sentence. Use the 
regular expression method (re) to replace anything other than alphabetical 
characters, digits, and whitespaces with blank space. Add the following code to 
implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

                                     .apply(lambda x : ' '.join\

                                     ([lemmatizer.lemmatize\

                                      (word.lower()) \

                                      for word in word_tokenize\

                                      (re.sub(r'([^\s\w]|_)+', ' ',\

                                       str(x)))]))
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5. Create a DataFrame from the TFIDF matrix representation of the cleaned version 
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

             'overall']].head()

The preceding code generates the following output:

Figure 3.13: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following 
code to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.14: A TFIDF representation as a DataFrame
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7. The following lines of code are used to create a new column target, which will 
have 0 if the overall parameter is less than 4, and 1 otherwise. Add the 
following code to implement this:

review_data['target'] = review_data['overall'].apply\

                        (lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()

The preceding code generates the following output:

1     6938

0     3323

Name: target, dtype: int64

8. Use sklearn's LogisticRegression() function to fit a logistic regression 
model on the TFIDF representation of these reviews after cleaning them. Add the 
following code to implement this:

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(tfidf_df,review_data['target'])

predicted_labels = logreg.predict(tfidf_df)

logreg.predict_proba(tfidf_df)[:,1]

The preceding code generates the following output:

array([0.57146961, 0.68579907, 0.56068939, …, 0.65979968, \

       0.5495679 , 0.21186011])

9. Use the crosstab function of pandas to compare the results of our 
classification model with the actual classes ('target', in this case) of the 
reviews. Add the following code to do this:

review_data['predicted_labels'] = predicted_labels

pd.crosstab(review_data['target'], \

            review_data['predicted_labels'])
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The preceding code generates the following output:

Figure 3.15: Crosstab between actual target values and predicted labels 

Here, we can see 1543 instances with the target label 0 that are correctly classified 
and 1780 such instances that are wrongly classified. Furthermore, 6312 instances 
with the target label 1 are correctly classified, whereas 626 such instances are 
wrongly classified.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hOaKxJ.

You can also run this example online at https://packt.live/309yKWc.

We've seen how to implement logistic regression; now, let's look at  
Naïve Bayes classification.

Naive Bayes Classifiers

Just like logistic regression, a Naive Bayes classifier is another kind of probabilistic 
classifier. It is based on Bayes' theorem, which is shown here:

Figure 3.16: Bayes' theorem

In the preceding formula, A and B are events and P(B) is not equal to 0. P(A/B) is the 
probability of event A occurring, given that event B is true. Similarly, P(B/A) is the 
probability of event B occurring, given that event A is true. P(B) is the probability of 
the occurrence of event B.

https://packt.live/3hOaKxJ
https://packt.live/309yKWc
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Say there is an online platform where hotel customers can provide a review for the 
service provided to them. The hotel now wants to figure out whether new reviews 
on the platform are appreciative in nature or not. Here, P(A) = the probability of 
the review being an appreciative one, while P(B) = the probability of the review 
being long. Now, we've come across a review that is long and want to figure out the 
probability of it being appreciative. To do that, we need to calculate P(A/B). P(B/A)  
will be the probability of appreciative reviews being long. From the training dataset, 
we can easily calculate P(B/A), P(A), and P(B) and then use Bayes' theorem to  
calculate P(A/B). 

Similar to logistic regression, the scikit-learn library can be used to perform naïve 
Bayes classification and can be implemented in Python using the following code:

from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(X,y)

predicted_labels = nb.predict(X)

predicted_probability = nb.predict_proba(X)[:,1]

Here, we created the base model using the GaussianNB class of scikit-learn. Then, 
we trained the model using the fit function. The trained model can then be used 
to make predictions; we can also get probability estimates for each class using 
the predict_proba function. Here, X represents a DataFrame of independent 
variables, whereas y represents a DataFrame of dependent variables. 

Exercise 3.04: Text Classification – Naive Bayes

In this exercise, we will classify reviews of musical instruments on Amazon with the 
help of the Naïve Bayes classification algorithm. Follow these steps to implement  
this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3hQ6UEe.

1. Open a Jupyter Notebook.

https://packt.live/3hQ6UEe
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2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to 
implement this:

review_data = pd.read_json\

              ('data/reviews_Musical_Instruments_5.json', \

               lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.17: Data stored in a DataFrame
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4. Use a lambda function to extract tokens from each 'reviewText' of this 
DataFrame, lemmatize them, and concatenate them side by side. Use the join 
function to concatenate a list of words into a single sentence. Use the regular 
expression method (re) to replace anything other than alphabets, digits, and 
whitespaces with blank space. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

                                     .apply(lambda x : ' '.join\

                                     ([lemmatizer.lemmatize\

                                      (word.lower()) \

                                     for word in word_tokenize\

                                     (re.sub(r'([^\s\w]|_)+', ' ',\

                                      str(x)))]))

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version 
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

             'overall']].head()

The preceding code generates the following output:

Figure 3.18: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following code 
to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()
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The preceding code generates the following output:

Figure 3.19: A TFIDF representation as a DataFrame

7. The following lines of code are used to create a new column target, which will 
have the value 0 if the 'overall' parameter is less than 4, and 1 otherwise. 
Add the following code to implement this:

review_data['target'] = review_data['overall']\

                        .apply(lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()

The preceding code generates the following output:

1    6938

0    3323

Name: target, dtype: int64

8. Use sklearn's GaussianNB() function to fit a Gaussian Naive Bayes model on 
the TFIDF representation of these reviews after cleaning them. Add the following 
code to do this:

from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(tfidf_df,review_data['target'])

predicted_labels = nb.predict(tfidf_df)

nb.predict_proba(tfidf_df)[:,1]

The preceding code generates the following output:

array([9.97730158e-01, 3.63599675e-09, 9.45692105e-07, …,

       2.46001047e-02, 3.43660991e-08, 1.72767906e-27])

The preceding screenshot shows the predicted probabilities of the input  
tfidf_df dataset.
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9. Use the crosstab function of pandas to compare the results of our 
classification model with the actual classes ('target', in this case) of the 
reviews. Add the following code to do this:

review_data['predicted_labels'] = predicted_labels

pd.crosstab(review_data['target'], \

            review_data['predicted_labels'])

The preceding code generates the following output:

Figure 3.20: Crosstab between actual target values and predicted labels

Here, we can see 2333 instances with the target label 0 that are correctly classified 
and 990 such instances that have been wrongly classified. Furthermore, 4558 
instances with the target label 1 have been correctly classified, whereas 2380 such 
instances have been wrongly classified.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2DnoeBx.

You can also run this example online at https://packt.live/3fcjT1t.

We'll explore k-nearest neighbors in the next section.

https://packt.live/2DnoeBx
https://packt.live/3fcjT1t
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k-nearest Neighbors

k-nearest neighbors is an algorithm that can be used to solve both regression 
and classification. In this chapter, we will focus on the classification aspect of the 
algorithm as it is used for NLP applications. Consider, for instance, the saying  
"birds of a feather flock together." This means that people who have similar interests 
prefer to stay close to each other and form groups. This characteristic is called 
homophily. This characteristic is the main idea behind the k-nearest neighbors 
classification algorithm.

To classify an unknown object, k number of other objects located nearest to it with 
class labels will be looked into. The class that occurs the most among them will be 
assigned to it—that is, the object with an unknown class. The value of k is chosen by 
running experiments on the training dataset to find the most optimal value. When 
dealing with text data for a given document, we interpret "nearest neighbors" as 
other documents that are the most similar to the unknown document.

We can make use of the scikit-learn library to implement the k-nearest neighbors 
algorithm in Python using the following code:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X,y)

prediction = knn.predict(X)

Here, we created the base model using the KNeighborsClassifier class 
of scikit-learn and pass it the value of k, which in this case is 3. Then, we trained 
the model using the fit function. The trained model can then be used to make 
predictions using the predict function. X represents a DataFrame of independent 
variables, whereas y represents a DataFrame of dependent variables. 

Now that we have an understanding of different types of classification, let's see how 
we can implement them.
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Exercise 3.05: Text Classification Using the k-nearest Neighbors Method

In this exercise, we will classify reviews of musical instruments on Amazon with 
the help of the k-nearest neighbors classification algorithm. Follow these steps to 
implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3hQ6UEe.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to 
implement this:

review_data = pd.read_json\

              ('data/reviews_Musical_Instruments_5.json',\

               lines=True)

review_data[['reviewText', 'overall']].head()

https://packt.live/3hQ6UEe
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The preceding code generates the following output:

Figure 3.21: Data stored in a DataFrame

4. Use a lambda function to extract tokens from each reviewText of this 
DataFrame, lemmatize them, and concatenate them side by side. Use the join 
function to concatenate a list of words into a single sentence. Use the regular 
expression method (re) to replace anything other than alphabets, digits, and 
whitespaces with blank space. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

                                     .apply(lambda x : ' '.join\

                                     ([lemmatizer.lemmatize\

                                       (word.lower()) \

                                     for word in word_tokenize\

                                     (re.sub(r'([^\s\w]|_)+', ' ',\

                                      str(x)))]))

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version 
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

             'overall']].head()
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The preceding code generates the following output:

Figure 3.22: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following code 
to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.23: A TFIDF representation as a DataFrame

7. The following lines of code are used to create a new column target, which will 
have 0 if the overall parameter is less than 4, and 1 otherwise. Add the 
following code to implement this:

review_data['target'] = review_data['overall']\

                        .apply(lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()
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The preceding code generates the following output:

1     6938

0     3323

Name:  target, dtype: int64

8. Use sklearn's KNeighborsClassifier() function to fit a three-nearest 
neighbor model on the TFIDF representation of these reviews after cleaning 
them. Use the crosstab function of pandas to compare the results of our 
classification model with the actual classes ('target', in this case) of  
the reviews:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(tfidf_df,review_data['target'])

review_data['predicted_labels_knn'] = knn.predict(tfidf_df)

pd.crosstab(review_data['target'], \

            review_data['predicted_labels_knn'])

The preceding code generates the following output:

Figure 3.24: Crosstab between actual target values and predicted  
labels by k-nearest neighbors 

Here, we can see 2594 instances with the target label as 0 correctly classified and 
729 such instances wrongly classified. Furthermore, 6563 instances with the target 
label as 1 are correctly classified, whereas 375 such instances are wrongly classified. 
You have just learned how to perform text classification with the help of various 
classification algorithms.

Note

To access the source code for this specific section, please refer  
to https://packt.live/338XQqb.

You can also run this example online at https://packt.live/39E5zNW.

https://packt.live/338XQqb
https://packt.live/39E5zNW
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In the next section, you will learn about regression, which is another type of 
supervised learning.

Regression

To better understand regression, consider a practical example. For example, say  
you have photos of several people, along with a list of their respective ages, and you 
need to predict the ages of some other people from their photos. This is a use case 
for regression. 

In the case of regression, the dependent variable (age, in this example) is continuous. 
The independent variables—that is, features—consist of the attributes of the images, 
such as the color intensity of each pixel. Formally, regression analysis refers to the 
process of learning a mapping function, which relates features or predictors (inputs) 
to the dependent variable (output).

There are various types of regression: univariate, multivariate, simple, multiple, 
linear, non-linear, polynomial regression, stepwise regression, ridge regression, 
lasso regression, and elastic net regression. If there is just one dependent variable, 
then it is referred to as univariate regression. On the other hand, two or more 
dependent variables constitute multivariate regression. Simple regression has only 
one predictor or target variable, while multivariate regression has more than one 
predictor variable. 

Since linear regression in the base algorithm for all the different types of regression 
mentioned previously, in the next section, we will cover linear regression in detail.

Linear Regression

The term "linear" refers to the linearity of parameters. Parameters are the coefficients 
of predictor variables in the linear regression equation. The following formula 
represents the linear regression equation:

Figure 3.25: Formula for linear regression

Here, y is termed a dependent variable (output); it is continuous. X is an independent 
variable or feature (input). β0 and β1 are parameters. Є is the error component, 
which is the difference between the actual and predicted values of y. Since linear 
regression requires the variable to be linear, it is not used much in the real world. 
However, it is useful for high-level predictions, such as the sales revenue of a product 
given the price and advertising cost.
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We can use the scikit-learn library to implement the linear regression algorithm in 
Python with the following code:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X,y)

coefficient = linreg.coef_

intercept = linreg.intercept_

linreg.predict(X)

Here, we created the base model using the LinearRegression class of scikit-learn. 
Then, we trained the model using the fit function. Now that our linear regression 
model has been trained, we can use the coef_ and intercept_ parameters of 
the model to get the parameters and error components, as we discussed previously. 
Here, X represents a DataFrame of independent variables, whereas y represents a 
DataFrame of dependent variables. The trained model can then be used to make 
predictions using the predict function. 

In the next section, we will solve an exercise to get a better understanding of 
regression analysis.

Exercise 3.06: Regression Analysis Using Textual Data

In this exercise, we will make use of linear regression to predict the overall ratings 
from the reviews of musical instruments on Amazon. Follow these steps to implement 
this exercise:

Note

The dataset for this exercise can be downloaded from  
https://packt.live/3hQ6UEe.

9. Open a Jupyter Notebook.

https://packt.live/3hQ6UEe
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10. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

11. Read the given data file in JSON format using pandas. Add the following code 
to implement this:

review_data = pd.read_json\

              ('data/reviews_Musical_Instruments_5.json', \

               lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.26: Reviews of musical instruments stored as a DataFrame
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12. Use a lambda function to extract tokens from each 'reviewText' of this 
DataFrame, lemmatize them, and concatenate them side by side. Then, use the 
join function to concatenate a list of words into a single sentence. In order to 
replace anything other than alphabets, digits, and whitespaces with blank  
space, use the regular expression method (re). Add the following code to 
implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

                                     .apply(lambda x : ' '.join\

                                     ([lemmatizer.lemmatize\

                                       (word.lower()) \

                                     for word in word_tokenize\

                                     (re.sub(r'([^\s\w]|_)+', ' ',\

                                      str(x)))]))

review_data[['cleaned_review_text', 'reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.27: Review texts before and after cleaning, along with their overall scores

13. Create a DataFrame from the TFIDF matrix representation of cleaned 
reviewText. Add the following code to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()
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The preceding code generates the following output:

Figure 3.28: TFIDF representation as a DataFrame 

14. Use sklearn's LinearRegression() function to fit a linear regression model 
on this TFIDF DataFrame. Add the following code to do this:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(tfidf_df,review_data['overall'])

linreg.coef_

The preceding code generates the following output:

Figure 3.29: Coefficients of the linear regression model
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The preceding output shows the coefficients of the different features of the 
trained model.

Please note that Figure 3.29 is truncated. 

15. To check the intercept or the error term of the linear regression model, type the 
following code:

linreg.intercept_

The preceding code generates the following output:

4.218882428983381

16. To check the prediction in a TFIDF DataFrame, write the following code:

linreg.predict(tfidf_df)

The preceding code generates the following output:

array([4.19200071, 4.25771652, 4.23084868, …, 4.40384767, 

       4.49036403, 4.14791976])

17. Finally, use this model to predict the 'overall' score and store it in a column 
called 'predicted_score_from_linear_regression'. Add the 
following code to implement this:

review_data['predicted_score_from_linear_regression'] = \

linreg.predict(tfidf_df)

review_data[['overall', \

             'predicted_score_from_linear_regression']].head(10)
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The preceding code generates the following output:

Figure 3.30: Actual scores and predictions of the linear regression model

From the preceding table, we can see how the actual and predicted score varies for 
different instances. We will use this table later to evaluate the performance of  
the model.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2P58eqy.

You can also run this example online at https://packt.live/335pLqV.

You have just learned how to perform regression analysis on given data. In the next 
section, you will learn about tree methods.

https://packt.live/2P58eqy
https://packt.live/335pLqV
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Tree Methods

There are several algorithms that have both classification and regression forms. Tree-
based methods are instances of such cases. In the context of machine learning, "tree" 
refers to a structure that aids decision-making—hence, the term decision tree. Tree-
based methods have high accuracy and unlike linear methods, they model non-linear 
relationships as well. Additionally, decision trees handle categorical variables much 
better than linear regression.

Let us use the example of a hotel trying to identify if the reviews provided by their 
patrons have a positive sentiment or a negative one. So, the reviews needed to be 
classified into two classes, namely, positive sentiments and negative sentiments. A 
data scientist working for the hotel can create a dataset of all online reviews of their 
hotel and create a decision tree, as shown in the following diagram:

Figure 3.31: Decision tree

In the preceding diagram, the first decision is made based on the length of the 
sentences. He finds that the short length reviews generally have a positive sentiment, 
whereas a medium length review has a negative sentiment. For reviews that were 
longer, he had to rely on keywords to determine the sentiment as longer length 
reviews are almost equally likely to be positive or negative. If the excellent keyword is 
present, the review belongs to the positive sentiment; otherwise, it belongs to the 
negative sentiment.
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We can make use of the scikit-learn library to implement the decision tree algorithm 
in Python using the following code:

from sklearn import tree

dtc = tree.DecisionTreeClassifier()

dtc = dtc.fit(X, y)

predicted_labels = dtc.predict(X)

Here, we created the base model using the DecisionTreeClassifier class 
of scikit-learn. Then, we trained the model using the fit function. The trained 
model can then be used to make predictions using the predict function. Here, 
X represents a DataFrame of independent variables, whereas y represents a 
DataFrame of dependent variables. 

Exercise 3.07: Tree-Based Methods – Decision Tree

In this exercise, we will use the tree-based method known as decision trees to predict 
the overall scores and labels of reviews of patio, lawn, and garden products on 
Amazon. Follow these steps to implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

https://packt.live/3gczb7P
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import nltk

nltk.download('wordnet')

nltk.download('punkt')

import warnings

warnings.filterwarnings('ignore')

3. Now, read the given data file in JSON format using pandas. Add the following 
code to implement this:

data_patio_lawn_garden = pd.read_json\

                         ('data/'\

                          'reviews_Patio_Lawn_and_Garden_5.json',\

                          lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.32: Storing reviews as a DataFrame

4. Use the lambda function to extract tokens from each 'reviewText' of this 
DataFrame, lemmatize them using WorrdNetLemmatizer, and concatenate 
them side by side. Use the join function to concatenate a list of words into a 
single sentence. Use the regular expression method (re) to replace anything 
other than letters, digits, and whitespaces with blank spaces. Add the following 
code to do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText']\

.apply(lambda x : ' '.join([lemmatizer.lemmatize(word.lower()) \

       for word in word_tokenize(re.sub(r'([^\s\w]|_)+', ' ', \

       str(x)))]))
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data_patio_lawn_garden[['cleaned_review_text', 'reviewText',\

                        'overall']].head()

The preceding code generates the following output:

Figure 3.33: Review text before and after cleaning, along with overall scores

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version 
of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (data_patio_lawn_garden['cleaned_review_text'])\

            .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.34: TFIDF representation as a DataFrame

6. The following lines of code are used to create a new column called target, which 
will have 0 if the 'overall' parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

                                   ['overall'].apply\

                                   (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()
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The preceding code generates the following output:

1     7037

0     6235

Name:  target, dtype: int64

7. Use sklearn's tree() function to fit a decision tree classification model on the 
TFIDF DataFrame we created earlier. Add the following code to do this:

from sklearn import tree

dtc = tree.DecisionTreeClassifier()

dtc = dtc.fit(tfidf_df, data_patio_lawn_garden['target'])

data_patio_lawn_garden['predicted_labels_dtc'] = dtc.predict\

                                                 (tfidf_df)

8. Use pandas' crosstab function to compare the results of the classification 
model with the actual classes ('target', in this case) of the reviews. Add the 
following code to do this:

pd.crosstab(data_patio_lawn_garden['target'], \

            data_patio_lawn_garden['predicted_labels_dtc'])

The preceding code generates the following output:

Figure 3.35: Crosstab between actual target values and predicted labels

Here, we can see 6627 instances with a target label of 0 correctly classified, and 
8 such instances wrongly classified. Furthermore, 7036 instances with a target 
label of 1 are correctly classified, whereas 1 such instance is wrongly classified.
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9. Use sklearn's tree() function to fit a decision tree regression model on the 
TFIDF representation of these reviews after cleaning. To predict the overall 
scores using this model, add the following code:

from sklearn import tree

dtr = tree.DecisionTreeRegressor()

dtr = dtr.fit(tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden['predicted_values_dtr'] = dtr.predict\

                                                 (tfidf_df)

data_patio_lawn_garden[['predicted_values_dtr', \

                        'overall']].head(10)

The preceding code generates the following output:

Figure 3.36: Overall scores with predicted values
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From the preceding table, we can see how the actual and predicted scores vary for 
different instances. We will use this table later to evaluate the performance of  
the model.

Note

To access the source code for this specific section, please refer  
to https://packt.live/39CHhEc.

You can also run this example online at https://packt.live/39EwKZ6.

Next, we will look at another tree-based method, random forest.

Random Forest

Imagine that you must decide whether to join a university. In one scenario, you ask 
only one person about the quality of the education the university provides. In another 
scenario, you ask several career counselors and academicians about this. Which 
scenario do you think would help you make a better and the most stable decision? 
The second one, right? This is because, in the first case, the only person you are 
consulting may be biased. "Wisdom of the crowd" tends to remove biases, thereby 
aiding better decision-making.

In general terms, a forest is a collection of different types of trees. The same 
definition holds true in the case of machine learning as well. Instead of using a single 
decision tree for prediction, we use several of them. 

In the scenario we described earlier, the first case is equivalent to using a single 
decision tree, whereas the second one is equivalent to using several—that is, using 
a forest. In a random forest, an individual tree's vote impacts the final decision. Just 
like decision trees, random forest is capable of carrying out both classification and 
regression tasks.

An advantage of the random forest algorithm is that it uses a sampling technique 
called bagging, which prevents overfitting. Bagging is the process of training meta-
algorithms on a different subsample of the data and then combining these to create a 
better model. Overfitting refers to cases where a model learns the training dataset so 
well that it is unable to generalize or perform well on another validation/test dataset.

https://packt.live/39CHhEc
https://packt.live/39EwKZ6
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Random forests also aid in understanding the importance of predictor variables and 
features. However, building a random forest often takes a huge amount of time and 
memory. We can make use of the scikit-learn library to implement the random forest 
algorithm in Python using the following code:

from sklearn.ensemble import RandomForestClassifier 

rfc = RandomForestClassifier()

rfc = rfc.fit(X, y)

predicted_labels = rfc.predict(X)

Here, we created the base model using the RandomForestClassifier class of 
scikit-learn. Then, we trained the model using the fit function. The trained model 
can then be used to make predictions using the predict function. X represents 
a DataFrame of independent variables, whereas y represents a DataFrame of 
dependent variables. 

Gradient Boosting Machine and Extreme Gradient Boost

There are various other tree-based algorithms, such as gradient boosting machines 
(GBM) and extreme gradient boosting (XGBoost). Boosting works by combining 
rough, less complex, or "weak" models into a single prediction that is more accurate 
than any single model. Iteratively, a subset of the training dataset is ingested into a 
"weak" algorithm or simple algorithm (such as a decision tree) to generate a weak 
model. These weak models are then combined to form the final prediction.

GBM makes use of classification trees as the weak algorithm. The results are 
generated by improving estimations from these weak models using a differentiable 
loss function, which gives us the performance of the model by calculating how far the 
prediction is from the actual value. The model fits consecutive trees by considering 
the net loss of the previous trees; therefore, each tree is partially present in the  
final solution.
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XGBoost is an enhanced version of GBM that is portable and distributed, which 
means that it can easily be used in different architectures and can use multiple cores 
(a single machine) or multiple machines (clusters). As a bonus, the XGBoost library is 
written in C++, which makes it fast. It is also useful when working with a huge dataset 
as it allows you to store data on an external disk rather than load all the data into 
memory. The main reasons for the popularity of XGBoost are as follows:

• Ability to automatically deal with missing values

• High-speed execution 

• High accuracy, if properly trained

• Support for distributed frameworks such as Hadoop and Spark

XGBoost uses a weighted combination of weak learners during the training phase. 

We can make use of the xgboost library to implement the XGBoost algorithm in 
Python using the following code:

from xgboost import XGBClassifier

xgb_clf=XGBClassifier()

xgb_clf = xgb_clf.fit(X, y)

predicted_labels = rfc.predict(X)

Here, we created the base model using the XGBClassifier class of xgboost. 
Then, we trained the model using the fit function. The trained model can then be 
used to make predictions using the predict function. Here, X represents a DataFrame 
of independent variables, whereas y represents a DataFrame of dependent variables. 
To get the important features for the trained model, we can use the following code:

pd.DataFrame({'word':X.columns,'importance':xgb_clf.feature_
importances_})

Let's perform some exercises to get a better understanding of tree-based methods.
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Exercise 3.08: Tree-Based Methods – Random Forest

In this exercise, we will use the tree-based method random forest to predict the 
overall scores and labels of reviews of patio, lawn, and garden products on Amazon. 
Follow these steps to implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import 
the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

2. Now, read the given data file in JSON format using pandas. Add the following 
code to implement this:

data_patio_lawn_garden = pd.read_json\

                         ('data/'\

                          'reviews_Patio_Lawn_and_Garden_5.json',\

                          lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head() 

https://packt.live/3gczb7P
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The preceding code generates the following output:

Figure 3.37: Storing reviews as a DataFrame

3. Use a lambda function to extract tokens from each reviewText of this 
DataFrame, lemmatize them using WordNetLemmatizer, and concatenate 
them side by side. Use the join function to concatenate a list of words into a 
single sentence. Use a regular expression (re) to replace anything other than 
letters, digits, and whitespaces with blank spaces. Add the following code to  
do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText']\

.apply(lambda x : ' '.join([lemmatizer.lemmatize(word.lower()) \

       for word in word_tokenize(re.sub(r'([^\s\w]|_)+', ' ', \

                                 str(x)))]))

data_patio_lawn_garden[['cleaned_review_text', 'reviewText', \

                        'overall']].head()
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The preceding code generates the following output:

Figure 3.38: Review text before and after cleaning, along with overall scores

4. Create a DataFrame from the TFIDF matrix representation of the cleaned 
version of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (data_patio_lawn_garden['cleaned_review_text'])\

           .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.39: TFIDF representation as a DataFrame

5. Add the following lines of code to create a new column called target, which will 
have 0 if the overall parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

                                   ['overall'].apply\

                                   (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()
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The preceding code generates the following output:

1     7037

0     6235

Name:  target, dtype: int64

6. Now, define a generic function for all the classifier models. Add the following 
code to do this:

def clf_model(model_type, X_train, y):

    model = model_type.fit(X_train,y)

    predicted_labels = model.predict(tfidf_df)

    return predicted_labels

7. Train three kinds of classifier models—namely, random forest, gradient boosting 
machines, and XGBoost. For random forest, we predict the class labels of the 
given set of review texts and compare them with their actual class—that is, the 
target, using crosstabs. Add the following code to do this:

from sklearn.ensemble import RandomForestClassifier 

rfc = RandomForestClassifier(n_estimators=20,max_depth=4,\

                             max_features='sqrt',random_state=1)

data_patio_lawn_garden['predicted_labels_rfc'] = \

clf_model(rfc, tfidf_df, data_patio_lawn_garden['target'])

pd.crosstab(data_patio_lawn_garden['target'], \

            data_patio_lawn_garden['predicted_labels_rfc'])

The preceding code generates the following output:

Figure 3.40: Crosstab between actual target values and predicted labels

Here, we can see 3302 instances with a target label of 0 correctly classified, 
and 2933 such instances wrongly classified. Furthermore, 5480 instances with 
a target label of 1 are correctly classified, whereas 1557 such instances are 
wrongly classified.
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8. Now, define a generic function for all regression models. Add the following code 
to do this:

def reg_model(model_type, X_train, y):

    model = model_type.fit(X_train,y)

    predicted_values = model.predict(tfidf_df)

    return predicted_values

9. Train three kinds of regression models: random forest, gradient boosting 
machines, and XGBoost. For random forest, we predict the overall score of the 
given set of review texts. Add the following code to do this:

from sklearn.ensemble import RandomForestRegressor 

rfg = RandomForestRegressor(n_estimators=20,max_depth=4,\

                            max_features='sqrt',random_state=1)

data_patio_lawn_garden['predicted_values_rfg'] = \

reg_model(rfg, tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden[['overall', \

                        'predicted_values_rfg']].head(10)

The preceding code generates the following output:

Figure 3.41: Actual overall score and predicted values using a random forest regressor
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From the preceding table, we can see how the actual and predicted scores vary for 
different instances. We will use this table later to evaluate the performance of  
the model.

Note

To access the source code for this specific section, please refer  
to https://packt.live/33aowa4.

You can also run this example online at https://packt.live/2P8a89V.

Now, let's perform a similar task using the XGBoost method.

Exercise 3.09: Tree-Based Methods – XGBoost

In this exercise, we will use the tree-based method XGBoost to predict the overall 
scores and labels of reviews of patio, lawn, and garden products on Amazon.

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

https://packt.live/33aowa4
https://packt.live/2P8a89V
https://packt.live/3gczb7P


Supervised Learning | 163

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Now, read the given data file in JSON format using pandas. Add the following 
code to implement this:

data_patio_lawn_garden = pd.read_json\

                         ('data/'\

                          'reviews_Patio_Lawn_and_Garden_5.json',\

                          lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head() 

The preceding code generates the following output:

Figure 3.42: Storing reviews as a DataFrame

4. Use a lambda function to extract tokens from each 'reviewText' of this 
DataFrame, lemmatize them using WorrdNetLemmatizer, and concatenate 
them side by side. Use the join function to concatenate a list of words into a 
single sentence. Use the regular expression method (re) to replace anything 
other than letters, digits, and whitespaces with blank spaces. Add the following 
code to do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText'].apply(lambda x : ' '.join\

                                           ([lemmatizer.lemmatize\

                                             (word.lower()) \

                                           for word in word_tokenize\

                                           (re.sub\
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                                            (r'([^\s\w]|_)+', ' ', \

                                             str(x)))]))

data_patio_lawn_garden[['cleaned_review_text', 'reviewText', \

                        'overall']].head()

The preceding code generates the following output:

Figure 3.43: Review text before and after cleaning, along with overall scores

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version 
of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (data_patio_lawn_garden['cleaned_review_text'])\

           .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.44: TFIDF representation as a DataFrame

6. The following lines of code are used to create a new column called target, which 
will have 0 if the 'overall' parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

                                   ['overall'].apply\

                                   (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()
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The preceding code generates the following output:

1     7037

0     6235

Name:  target, dtype: int64

7. Now, define a generic function for all the classifier models. Add the following 
code to do this:

def clf_model(model_type, X_train, y):

    model = model_type.fit(X_train,y)

    predicted_labels = model.predict(tfidf_df)

    return predicted_labels

8. Predict the class labels of the given set of reviewText and compare it with 
their actual class, that is, the target, using the crosstab function. Add the 
following code to do this:

pip install xgboost

from xgboost import XGBClassifier

xgb_clf=XGBClassifier(n_estimators=20,learning_rate=0.03,\

                      max_depth=5,subsample=0.6,\

                      colsample_bytree= 0.6,reg_alpha= 10,\

                      seed=42)

data_patio_lawn_garden['predicted_labels_xgbc'] = \

clf_model(xgb_clf, tfidf_df, data_patio_lawn_garden['target'])

pd.crosstab(data_patio_lawn_garden['target'], \

            data_patio_lawn_garden['predicted_labels_xgbc'])

The preceding code generates the following output:

Figure 3.45: Crosstab between actual target values and predicted labels using XGBoost
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Here, we can see 4300 instances with a target label of 0 correctly classified, 
and 1935 such instances wrongly classified. Furthermore, 2164 instances with 
a target label of 1 are correctly classified, whereas 4873 such instances are 
wrongly classified.

9. Now, define a generic function for all the regression models. Add the following 
code to do this:

def reg_model(model_type, X_train, y):

    model = model_type.fit(X_train,y)

    predicted_values = model.predict(tfidf_df)

    return predicted_values

10. Predict the overall score of the given set of reviewText. Add the following 
code to do this:

from xgboost import XGBRegressor 

xgbr = XGBRegressor(n_estimators=20,learning_rate=0.03,\

                    max_depth=5,subsample=0.6,\

                    colsample_bytree= 0.6,reg_alpha= 10,seed=42)

data_patio_lawn_garden['predicted_values_xgbr'] = \

reg_model(xgbr, tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden[['overall', \

                        'predicted_values_xgbr']].head(2)

The preceding code generates the following output:

Figure 3.46: Actual overall score and predicted values using an XGBoost regressor
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From the preceding table, we can see how the actual and predicted scores vary for 
different instances. We will use this table later to evaluate the performance of the 
model. With that, you have learned how to use tree-based methods to predict scores 
in data.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2P5woBi.

You can also run this example online at https://packt.live/2DfTa71.

In the next section, you will learn about sampling.

Sampling

Sampling is the process of creating a subset from a given set of instances. If you have 
1,000 sentences in an article, out of which you choose 100 sentences for analysis, the 
subset of 100 sentences will be called a sample of the original article. This process is 
referred to as sampling. 

Sampling is necessary when creating models for imbalanced datasets. For example, 
consider that the number of bad comments on a review board for a company is 10 
and the number of good comments is 1,000. If we input this data as it is into the 
model, it will not give us accurate results; classifying all the comments as "good" will 
provide a near-perfect accuracy, which isn't really applicable to most real datasets. 
Thus, we need to reduce the number of good reviews to a smaller number before 
using it as input for training. There are different kinds of sampling methods, such as 
the following:

• Simple random sampling

In this process, each instance of the set has an equal probability of being 
selected. For example, you have 10 balls of 10 different colors in a box. You need 
to select 4 out of 10 balls without looking at their color. In this case, each ball is 
equally likely to be selected. This is an instance of simple random sampling.

https://packt.live/2P5woBi
https://packt.live/2DfTa71
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• Stratified sampling

In this type of sampling, the original set is divided into parts called "strata", 
based on given criteria. Random samples are chosen from each of these "strata." 
For example, you have 100 sentences, out of which 80 are non-sarcastic and 20 
are sarcastic. To extract a stratified sample of 10 sentences, you need to select 
8 from 80 non-sarcastic sentences and 2 from 20 sarcastic sentences. This 
will ensure that the ratio of non-sarcastic to sarcastic sentences, that is, 80:20, 
remains unaltered in the sample that's selected.

• Multi-Stage Sampling

If you are analyzing the social media posts of all the people in a country related 
to the current weather, the text data will be huge as it will consist of the weather 
conditions of different cities. Drawing a stratified sample would be difficult. 
In this case, it is recommended to first extract a stratified sample by region 
and then further sample it within regions, that is, by cities. This is basically 
performing stratified sampling at each and every stage.

To better understand these, let's perform a simple exercise.

Exercise 3.10: Sampling (Simple Random, Stratified, and Multi-Stage)

In this exercise, we will extract samples from an online retail dataset that contains 
details about the transactions of an e-commerce website with the help of simple 
random sampling, stratified sampling, and multi-stage sampling.

Note

To download the dataset for this exercise, visit https://packt.live/3fdsZuL.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import pandas and read  
the dataset:

!pip install xlrd

import pandas as pd

data = pd.read_excel('data/Online Retail.xlsx')

data.shape

https://packt.live/3fdsZuL
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The preceding code generates the following output:

(54190, 8)

3. We use pandas' sample function to extract a sample from the DataFrame. 
Add the following code to do this:

# selecting 10% of the data randomly

data_sample_random = data.sample(frac=0.1,random_state=42)

data_sample_random.shape

The preceding code generates the following output:

(54191, 8)

4. Use sklearn's train_test_split function to create stratified samples. Add 
the following code to do this:

from sklearn.model_selection import train_test_split

X_train, X_valid, y_train, y_valid = train_test_split\

                                     (data, data['Country'],\

                                      test_size=0.2, \

                                      random_state=42,\

                                      stratify = data['Country'])

You can confirm the stratified split by checking the percentage of each category 
in the country column after the split. To get the train set percentages, use the 
following code: 

y_train.value_counts()/y_train.shape[0]
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The following is part of the output of the preceding code:

Figure 3.47: The percentage of countries for the training set

5. Similarly, for the validation set, add the following code:

y_valid.value_counts()/y_valid.shape[0]
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The following is part of the output of the preceding code:

Figure 3.48: The percentage of countries for the validation set

As we can see, the percentages of all countries are similar in both the train and 
validation sets.
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6. We filter out the data in various stages and extract random samples from it. 
We will extract a random sample of 2% from those transactions by country 
that occurred in the United Kingdom, Germany, or France and where the 
corresponding quantity is greater than or equal to 2. Add the following code to 
implement this:

data_ugf = data[data['Country'].isin(['United Kingdom', \

                                      'Germany', 'France'])]

data_ugf_q2 = data_ugf[data_ugf['Quantity']>=2]

data_ugf_q2_sample = data_ugf_q2.sample(frac = .02, \

                                        random_state=42)

data_ugf_q2.shape

The preceding code generates the following output:

(356940, 8)

Now, add the following line of code:

data_ugf_q2_sample.shape

This will generate the following output:

(7139, 8)

We can see the reduction in size of the data when the filtering criteria is applied and 
then the reduction in size when a sample of the filtered data is taken. In this exercise, 
you learned about the three major sampling techniques that will help you create a 
good training dataset for the text classifier that you will learn how to build in the  
next section.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2P7M4nD.

You can also run this example online at https://packt.live/3jT8XsZ.

https://packt.live/2P7M4nD
https://packt.live/3jT8XsZ
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Developing a Text Classifier
A text classifier is a machine learning model that is capable of labeling texts based 
on their content. For instance, a text classifier will help you understand whether 
a random text statement is sarcastic or not. Presently, text classifiers are gaining 
importance as manually classifying huge amounts of text data is impossible. In 
the next few sections, we will learn about the different parts of text classifiers and 
implement them in Python.

Feature Extraction

When dealing with text data, features denote its different attributes. Generally, 
they are numeric representations of the text. As we discussed in Chapter 2, Feature 
Extraction Methods, TFIDF representations of texts are one of the most popular ways 
of extracting features from them.

Feature Engineering

Feature engineering is the art of extracting new features from existing ones. 
Extracting novel features, which tend to capture variation in data better, requires 
sound domain expertise.

Removing Correlated Features

Correlation refers to the statistical relationship between two variables. Two highly 
correlated variables provide the same kind of information. For example, the 
remaining battery life of a laptop and its screen time are highly correlated. The 
battery life will decrease as the screen time increases. Regression models, including 
logistic regression, are unable to perform well when correlation between features 
exists. Thus, features with correlation beyond a certain threshold need to be 
removed. The most widely used correlation statistic is Pearson correlation, which can 
be calculated as follows:

Figure 3.49: Pearson correlation

Here, cov is the covariance, σ is the standard deviation, and X and Y are two variables/
features of the training data that we are testing for correlation.
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Exercise 3.11: Removing Highly Correlated Features (Tokens)

In this exercise, we will remove highly correlated words from a TFIDF matrix 
representation of sklearn's fetch_20newgroups text dataset. Follow these steps 
to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.datasets import fetch_20newsgroups

import matplotlib as mpl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. We will be using stop words from the English language only. WordNet is the 
lemmatizer we will be using. Add the following code to implement this:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()

4. To specify the categories of news articles you want to fetch, add the  
following code:

categories= ['misc.forsale', 'sci.electronics', \

             'talk.religion.misc']
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5. To fetch sklearn's 20newsgroups text dataset, corresponding to the categories 
mentioned earlier, use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

                               categories=categories, \

                               shuffle=True, random_state=42, \

                               download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

                             'category': news_data.target})

news_data_df.head()

The preceding code generates the following output:

Figure 3.50: Texts of news data as a DataFrame

6. Now, use the lambda function to extract tokens from each "text" of the news_
data_df DataFrame. Check whether any of these tokens are stop words, 
lemmatize them, and concatenate them side by side. Use the join function to 
concatenate a list of words into a single sentence. Use the regular expression 
method (re) to replace anything other than letters, digits, and whitespaces with 
blank spaces. Add the following code to implement this:

news_data_df['cleaned_text'] = news_data_df['text']\

                               .apply(lambda x : ' '.join\

                               ([lemmatizer.lemmatize\

                                 (word.lower()) \

                               for word in word_tokenize\

                               (re.sub(r'([^\s\w]|_)+', ' ', \

                                str(x))) if word.lower() \

                                not in stop_words]))
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7. Add the following lines of code used to create a TFIDF matrix and transform it 
into a DataFrame:

tfidf_model = TfidfVectorizer(max_features=20)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.51: TFIDF representation as a DataFrame

8. Calculate the correlation matrix for this TFIDF representation. Add the following 
code to implement this:

correlation_matrix = tfidf_df.corr()

correlation_matrix.head()

The preceding code generates the following output:

Figure 3.52: Correlation matrix

9. Now, plot the correlation matrix using seaborn's heatmap function. Add the 
following code to implement this:

import seaborn as sns

fig, ax = plt.subplots(figsize=(20, 20))

sns.heatmap(correlation_matrix,annot=True, fmt='.1g', \

            vmin=-1, vmax=1, center= 0, cmap= 'coolwarm')
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The preceding code generates the following output:

 

Figure 3.53: Heatmap representation of a correlation matrix
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10. To identify a pair of terms with high correlation, create an upper triangular 
matrix from the correlation matrix. Create a stacked array out of it and traverse 
it. Add the following code to do this:

import numpy as np

correlation_matrix_ut = correlation_matrix.where(np.triu\

                        (np.ones(correlation_matrix.shape))\

                        .astype(np.bool))

correlation_matrix_melted = correlation_matrix_ut.stack()\

                            .reset_index()

correlation_matrix_melted.columns = ['word1', 'word2', \

                                     'correlation']

correlation_matrix_melted[(correlation_matrix_melted['word1']\

                           !=correlation_matrix_melted['word2']) \

                           & (correlation_matrix_melted\

                              ['correlation']>.7)]

The preceding code generates the following output:

Figure 3.54: Highly correlated tokens

You can see that the most highly correlated features are host, nntp, posting, 
organization, and subject. Next, we will remove nntp, posting, and 
organization since host and subject are highly correlated with them.

11. Remove terms for which the coefficient of correlation is greater than 0.7 and 
create a separate DataFrame with the remaining terms. Add the following code 
to do this:

tfidf_df_without_correlated_word = tfidf_df.drop(['nntp', \

                                                  'posting', \

                                                  'organization'],\

                                                 axis = 1)

tfidf_df_without_correlated_word.head()
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The preceding code generates the following output:

Figure 3.55: The DataFrame after removing correlated tokens

After removing the highly correlated words from the TFIDF DataFrame, it appears like 
this. We have cleaned the dataset to remove highly correlated features and are now 
one step closer to building our text classifier.

Note

To access the source code for this specific section, please refer  
to https://packt.live/39RdJTz.

You can also run this example online at https://packt.live/2XbeCAX.

In the next section, we will learn how to reduce the size of the dataset and 
understand why this is necessary.

Dimensionality Reduction

There are some optional steps that we can follow on a case-to-case basis. For 
example, sometimes, the TFIDF matrix or Bag-of-Words representation of a text 
corpus is so big that it doesn't fit in memory. In this case, it would be necessary to 
reduce its dimension—that is, the number of columns in the feature matrix. The most 
popular method for dimension reduction is Principal Component Analysis (PCA).

PCA is used to perform dimensionality reduction. It converts a list of features (which 
may be correlated) into a list of variables that are linearly uncorrelated. These 
linearly uncorrelated variables are known as principal components. These principal 
components are arranged in descending order of the amount of variability they 
capture in the dataset. For example, let's consider a Twitter tweet dataset where 
people misspell words such as good and instead write "gud". PCA will combine these 
two highly correlated features into a single feature and reduce the dimensionality. In 
the next section, we'll look at an exercise to get a better understanding of this.

https://packt.live/39RdJTz
https://packt.live/2XbeCAX
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Exercise 3.12: Performing Dimensionality Reduction Using Principal Component 

Analysis

In this exercise, we will reduce the dimensionality of a TFIDF matrix representation 
of sklearn's fetch_20newsgroups text dataset to two. Then, we'll create a scatter 
plot of these documents. Each category should be colored differently. Follow these 
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.datasets import fetch_20newsgroups

import matplotlib as mpl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Use stop words from the English language only. WordNet states the 
lemmatizer we will be using. Add the following code to implement this:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()
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4. To specify the categories of news articles we want to fetch by, add the  
following code:

categories= ['misc.forsale', 'sci.electronics', \

             'talk.religion.misc']

5. To fetch sklearn's dataset corresponding to the categories we mentioned earlier, 
use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

                               categories=categories, \

                               shuffle=True, random_state=42, \

                               download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

                             'category': news_data.target})

news_data_df.head()

The preceding code generates the following output:

Figure 3.56: News texts and their categories
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6. Use the lambda function to extract tokens from each text item of the news_
data_df DataFrame, check whether any of these tokens are stop words, 
lemmatize them, and concatenate them side by side. Use the join function to 
concatenate a list of words into a single sentence. Use the regular expression 
method (re) to replace anything other than letters, digits, and whitespaces with 
a blank space. Add the following code to implement this:

news_data_df['cleaned_text'] = news_data_df['text']\

                               .apply(lambda x : ' '.join\

                               ([lemmatizer.lemmatize\

                                 (word.lower()) \

                               for word in word_tokenize\

                               (re.sub(r'([^\s\w]|_)+', ' ', \

                                str(x))) if word.lower() \

                                not in stop_words]))

7. The following lines of code are used to create a TFIDF matrix and transform it 
into a DataFrame:

tfidf_model = TfidfVectorizer(max_features=20)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.57: TFIDF representation as a DataFrame
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8. In this step, we are using sklearn's PCA function to extract two principal 
components from the initial data. Add the following code to do this:

from sklearn.decomposition import PCA

pca = PCA(2)

pca.fit(tfidf_df)

reduced_tfidf = pca.transform(tfidf_df)

reduced_tfidf

The preceding code generates the following output:

Figure 3.58: Principal components

In the preceding screenshot, you can see the two principal components that the 
PCA algorithm calculated.

9. Now, we'll create a scatter plot using these principal components and 
represent each category with a separate color. Add the following code to 
implement this:

scatter = plt.scatter(reduced_tfidf[:, 0], \

                      reduced_tfidf[:, 1], \

                      c=news_data_df['category'], cmap='gray')

plt.xlabel('dimension_1')

plt.ylabel('dimension_2')

plt.legend(handles=scatter.legend_elements()[0], \

           labels=categories, loc='lower left')

plt.title('Representation of NEWS documents in 2D')

plt.show()
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The preceding code generates the following output:

 

Figure 3.59: Two-dimensional representation of news documents
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From the preceding plot, we can see that a scatter plot has been created in which 
each category of article is represented by a different color. This plot shows another 
important use case of dimensionality reduction: visualization. We were able to plot 
this two-dimensional image because we had two principal components. With the 
earlier TFIDF matrix, we had 20 features, which is impossible to visualize. In this 
section, you learned how to perform dimensionality reduction to save memory space 
and visualize datasets.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Xa5eh4.

You can also run this example online at https://packt.live/3jU0dD7.

Next, we will learn how to evaluate the machine learning models that we train.

Deciding on a Model Type

Once the feature set is ready, it's necessary to decide on the type of model that will 
be used to deal with the problem. Usually, unsupervised models are chosen when 
data is not labeled. If we have a predefined number of clusters in mind, we go for 
clustering algorithms such as k-means; otherwise, we opt for hierarchical clustering. 
For labeled data, we generally follow supervised learning methods such as regression 
and classification.

If the outcome is continuous and numeric, we use regression. If it is discrete or 
categorical, we use classification. The Naive Bayes algorithm comes in handy for 
the fast development of simple classification models. More complex tree-based 
methods (such as decision trees, random forests, and so on) are needed when we 
want to achieve higher accuracy. In such cases, we sometimes compromise on model 
explainability and the time that's required to develop it. When the outcome of a 
model has to be the probability of the occurrence of a certain class, we use  
logistic regression.

https://packt.live/2Xa5eh4
https://packt.live/3jU0dD7
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Evaluating the Performance of a Model

Once a model is ready, it is necessary to evaluate its performance. This is because, 
without benchmarking it, we cannot be confident of how well or how badly it is 
functioning. It is not advisable to put a model into production without evaluating 
its efficiency. There are various ways to evaluate a model's performance. Let's work 
through them one by one:

• Confusion Matrix

This is a two-dimensional matrix mainly used for evaluating the performance 
of classification models. Its columns consist of predicted values, and its rows 
consist of actual values. In other words, for a given confusion matrix, it is a 
crosstab between actual and predicted values. The cell entries denote how 
many of the predicted values match with the actual values, and how many don't. 
Consider the following image:

Figure 3.60: Confusion matrix

In the preceding confusion matrix, the top-left cell will have the count of all 
correctly classified 0 values by the classifier, whereas the top-right cell will have 
the count of incorrectly classified 0 values, and so on. To create a confusion 
matrix using Python, you can use the following code:

from sklearn.metrics import confusion_matrix

confusion_matrix(actual_values,predicted_values)



Developing a Text Classifier | 187

• Accuracy

Accuracy is defined as the ratio of correctly classified instances to the total 
number of instances. Whenever accuracy is used for model evaluation, we 
need to ensure that the data is balanced in terms of classes, meaning it should 
have an almost equal number of instances of each class. Let's use an example 
of a dataset that has 90% positive labels and 10% negative labels. A model that 
predicts all the data points as positive will receive 90% accuracy, but that will not 
be a good indicator of the performance of the model.

To get the accuracy of the predicted values using Python, you can use the 
following code:

from sklearn.metrics import accuracy_score

accuracy_score(actual_values,predicted_values)

• Precision and Recall

For a better understanding of precision and recall, let's consider a real-life 
example. If your mother tells you to explore the kitchen of your house, find 
items that need to be restocked, and bring them back from the market, you will 
bring P number of items from the market and show them to your mother. Out 
of P items, she finds Q items to be relevant. The Q/P ratio is called precision. 
However, in this scenario, she was expecting you to bring R items relevant to her. 
The ratio, Q/R, is referred to as recall:

Precision = True Positive / (True Positive + False Positive)

Recall = True Positive / (True Positive + False Negative)

• F1 Score

For a given classification model, the F1 score is the harmonic mean of precision 
and recall. Harmonic mean is a way to find the average while giving equal weight 
to all numbers:

F1 score = 2 * ((Precision * Recall) / (Precision + Recall))

To get the F1 score, precision, and recall values using Python, you can use the 
following code:

from sklearn.metrics import classification_report

classification_report(actual_values,predicted_values)
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• Receiver Operating Characteristic (ROC) Curve

To understand the ROC curve, we need to get acquainted with the True Positive 
Rate (TPR) and the False Positive Rate (FPR):

TPR = True Positive / (True Positive + False Negative)

FPR = False Positive / (False Positive + True Negative)

The output of a classification model can be probabilities. In that case, we need to 
set a threshold to obtain classes from those probabilities. The ROC curve is a plot 
between the TPR and FPR for various values of the threshold. The area under 
the ROC curve (AUROC) represents the efficiency of the model. The higher the 
AUROC, the better the model is. The maximum value of AUROC is 1. To create 
the ROC curve using Python, use the following code:

fpr,tpr,threshold=roc_curve(actual_values, \

                            predicted_probabilities)

print ('\nArea under ROC curve for validation set:', auc(fpr,tpr))

fig, ax = plt.subplots(figsize=(6,6))

ax.plot(fpr,tpr,label='Validation set AUC')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

ax.legend(loc='best')

plt.show()

Here, actual_values refers to the actual dependent variable values, whereas 
predicted_probabilities is the predicted probability of getting 1 from 
the trained predictor model.

• Root Mean Square Error (RMSE)

This is mainly used for evaluating the accuracy of regression models. We define 
it as follows:

Figure 3.61: Formula for root mean square error
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Here, n is the number of samples, Pi is the predicted value of the ith observation, 
and Oi is the observed value of the ith observation. To find the RMSE using 
Python, use the following code:

from sklearn.metrics import mean_squared_error

rmse = sqrt(mean_squared_error(y_actual, y_predicted))

• Maximum Absolute Percentage Error (MAPE)

Just like RMSE, this is another way to evaluate a regression model's performance. 
It is described as follows:

Figure 3.62: Formula for maximum absolute percentage error

Here, n is the number of samples, Pi is the predicted value (that is, the forecast 
value) of the ith observation, and Oi is the observed value (that is, the actual 
value) of the ith observation. To find MAPE in Python, use the following code:

from sklearn.metrics import mean_absolute_error

mape = mean_absolute_error(y_actual, y_predicted) * 100

Exercise 3.13: Calculating the RMSE and MAPE of a Dataset

In this exercise, we will calculate the RMSE and MAPE of hypothetical predicted and 
actual values. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Use sklearn's mean_squared_error to calculate the MSE and then use the 
sqrt function to calculate the RMSE. Add the following code to implement this:

from sklearn.metrics import mean_squared_error

from math import sqrt

y_actual = [0,1,2,1,0]

y_predicted = [0.03,1.2,1.6,.9,0.1]

rms = sqrt(mean_squared_error(y_actual, y_predicted))

print('Root Mean Squared Error (RMSE) is:', rms)
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The preceding code generates the following output:

Root Mean Squared Error (RMSE) is: 0.21019038988498018

The preceding output shows the RMSE of the y_actual and y_predicted 
values that we created previously.

3. Next, use sklearn's mean_absolute_error to calculate the MAPE of a 
hypothetical model prediction. Add the following code to implement this:

from sklearn.metrics import mean_absolute_error

y_actual = [0,1,2,1,0]

y_predicted = [0.03,1.2,1.6,.9,0.1]

mape = mean_absolute_error(y_actual, y_predicted) * 100

print('Mean Absolute Percentage Error (MAPE) is:', \

      round(mape,2), '%')

The preceding code generates the following output:

Mean Absolute Percentage Error (MAPE) is 16.6 %

The preceding output shows the MAPE of the y_actual and y_predicted 
values that we created previously.

You have now learned how to evaluate the machine learning models that we train 
and are equipped to create your very own text classifier.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3ggqRnp.

You can also run this example online at https://packt.live/39E7i5S.

In the next section, we will solve an activity based on classifying text.

https://packt.live/3ggqRnp
https://packt.live/39E7i5S
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Activity 3.01: Developing End-to-End Text Classifiers

For this activity, you will build an end-to-end classifier that figures out whether a news 
article is political or not.

Note

The dataset for this activity can be found at https://packt.live/39DUNHL.

Follow these steps to implement this activity:

1. Import the necessary packages.

2. Read the dataset and clean it.

3. Create a TFIDF matrix out of it.

4. Divide the data into training and validation sets.

5. Develop classifier models for the dataset.

6. Evaluate the models that were developed using parameters such as confusion 
matrix, accuracy, precision, recall, F1 plot curve, and ROC curve.

Note

The solution to this activity can be found on page 380.

We have seen how to build end-to-end classifiers. Developing an end-to-end classifier 
was done in phases. Firstly, the text corpus was cleaned and tokenized, features were 
extracted using TFIDF, and then the dataset was divided into training and validation 
sets. The XGBoost algorithm was used to develop a classification model. Finally, 
the performance was measured using parameters such as the confusion matrix, 
accuracy, precision, recall, F1 plot curve, and ROC curve. In the next section, you will 
learn how to build pipelines for NLP projects.

https://packt.live/39DUNHL
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Building Pipelines for NLP Projects
In general, a pipeline refers to a structure that allows a streamlined flow of air, water, 
or something similar. In this context, pipeline has a similar meaning. It helps to 
streamline various stages of an NLP project.

An NLP project is done in various stages, such as tokenization, stemming, feature 
extraction (TFIDF matrix generation), and model building. Instead of carrying out each 
stage separately, we create an ordered list of all these stages. This list is known as 
a pipeline. The Pipeline class of sklearn helps us combine these stages into one 
object that we can use to perform these stages one after the other in a sequence. 
We will solve a text classification problem using a pipeline in the next section to 
understand the working of a pipeline better.

Exercise 3.14: Building the Pipeline for an NLP Project

In this exercise, we will develop a pipeline that will allow us to create a TFIDF matrix 
representation from sklearn's fetch_20newsgroups text dataset. Follow these 
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.pipeline import Pipeline

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn import tree

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import CountVectorizer

import pandas as pd

3. Specify the categories of news articles you want to fetch. Add the following code 
to do this:

categories = ['misc.forsale', 'sci.electronics', \

              'talk.religion.misc']
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4. To fetch sklearn's 20newsgroups dataset, corresponding to the categories 
mentioned earlier, we use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

                               categories=categories, \

                               shuffle=True, random_state=42, \

                               download_if_missing=True)

5. Define a pipeline consisting of two stages: CountVectorizer and 
TfidfTransformer. Fit it on the news_data we mentioned earlier and use it 
to transform that data. Add the following code to implement this:

text_classifier_pipeline = Pipeline([('vect', \

                                      CountVectorizer()), \

                                     ('tfidf', \

                                      TfidfTransformer())])

text_classifier_pipeline.fit(news_data.data, news_data.target)

pd.DataFrame(text_classifier_pipeline.fit_transform\

             (news_data.data, news_data.target).todense()).head()

The preceding code generates the following output:

Figure 3.63: TFIDF representation of the DataFrame created using a pipeline

Here, we created a pipeline consisting of the count vectorizer and TFIDF transformer. 
The outcome of this pipeline is the TFIDF representation of the text data that has 
been passed to it as an argument.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gqpeUt.

You can also run this example online at https://packt.live/3113qrJ.

https://packt.live/3gqpeUt
https://packt.live/3113qrJ
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Saving and Loading Models
After a model has been built and its performance matches our expectations, we 
may want to save it for future use. This eliminates the time needed for rebuilding it. 
Models can be saved on the hard disk using the joblib and pickle libraries.

The pickle module makes use of binary protocols to save and load Python objects. 
joblib makes use of the pickle library protocols, but it improves on them to 
provide an efficient replacement to save large Python objects. Both libraries have two 
main functions that we will make use of to save and load our models:

• dump: This function is used to save a Python object to a file on the disk.

• loads: This function is used to load a saved Python object from a file on  
the disk.

To deploy saved models, we need to load them from the hard disk to the memory. 
In the next section, we will perform an exercise based on this to get a better 
understanding of this process.

Exercise 3.15: Saving and Loading Models

In this exercise, we will create a TFIDF representation of sentences. Then, we will save 
this model on disk and later load it from the disk. Follow these steps to implement 
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and the following code to import the necessary packages:

import pickle

from joblib import dump, load

from sklearn.feature_extraction.text import TfidfVectorizer

3. Define a corpus consisting of four sentences by adding the following code:

corpus = ['Data Science is an overlap between Arts and Science',\

          'Generally, Arts graduates are right-brained and '\

          'Science graduates are left-brained', \

          'Excelling in both Arts and Science at a time '\

          'becomes difficult', \

          'Natural Language Processing is a part of Data Science']
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4. Fit a TFIDF model to it. Add the following code to do this:

tfidf_model = TfidfVectorizer()

tfidf_vectors = tfidf_model.fit_transform(corpus).todense()

print(tfidf_vectors)

The preceding code generates the following output:

Figure 3.64: TFIDF representation as a matrix

5. Save this TFIDF model on disk using joblib. Add the following code to do this:

dump(tfidf_model, 'tfidf_model.joblib')

6. Finally, load this model from disk to memory and use it. Add the following code 
to do this:

tfidf_model_loaded = load('tfidf_model.joblib')

loaded_tfidf_vectors = tfidf_model_loaded.transform(corpus).todense()

print(loaded_tfidf_vectors)
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The preceding code generates the following output:

Figure 3.65: TFIDF representation as a matrix

7. Save this TFIDF model on disk using pickle. Add the following code to do this:

pickle.dump(tfidf_model, open("tfidf_model.pickle.dat", "wb"))

8. Load this model from disk to memory and use it. Add the following code to  
do this:

loaded_model = pickle.load(open("tfidf_model.pickle.dat", "rb"))

loaded_tfidf_vectors = loaded_model.transform(corpus).todense()

print(loaded_tfidf_vectors)
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The preceding code generates the following output:

Figure 3.66: TFIDF representation as a matrix

From the preceding screenshot, we can see that the saved model and the model that 
was loaded from the disk are identical. You have now learned how to save and load 
models. This section marks the end of this chapter, where you learned how to build a 
text classifier from scratch.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2BIDNmZ.

You can also run this example online at https://packt.live/3hIay38.

https://packt.live/2BIDNmZ
https://packt.live/3hIay38
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Summary
In this chapter, you learned about the different types of machine learning techniques, 
such as supervised and unsupervised learning. We explored unsupervised algorithms 
such as hierarchical clustering and k-means clustering, and supervised learning 
algorithms, such as k-nearest neighbor, the Naive Bayes classifier, and tree-based 
methods, such as random forest and XGBoost, that can perform both regression and 
classification. We discussed the need for sampling and went over different kinds of 
sampling techniques for splitting a given dataset into training and validation sets. 
Finally, we covered the process of saving a model on the hard disk and loading it back 
into memory for future use.

In the next chapter, you will learn about several techniques that you can use to collect 
data from various sources.







Overview

This chapter introduces you to the concept of web scraping. You will first 
learn how to extract data (such as text, images, lists, and tables) from 
pages that are written using HTML. You will then learn about the various 
types of semi-structured data used to create web pages (such as JSON 
and XML) and extract data from them. Finally, you will use APIs for data 
extraction from Twitter, using the tweepy package.

Collecting Text Data with 

Web Scraping and APIs

4
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Introduction
In the last chapter, we developed a simple classifier using feature extraction methods. 
We also covered different algorithms that fall under supervised and unsupervised 
learning. In this chapter, you will learn how to collect text data by scraping web pages, 
and then you will learn how to process that data. Web scraping helps you extract 
useful data from online content, such as product prices and customer reviews, 
which can then be used for market research, price comparison for products, or data 
analysis. You will also learn how to handle various kinds of semi-structured data, 
such as JSON and XML. We will cover different methods for extracting data using 
Application Programming Interfaces (APIs). Finally, we will explore different ways 
to extract data from different types of files.

Collecting Data by Scraping Web Pages
The basic building block of any web page is HTML (Hypertext Markup Language)—a 
markup language that specifies the structure of your content. HTML is written 
using a series of tags, combined with optional content. The content encompassed 
within HTML tags defines the appearance of the web page. It can be used to make 
words bold or italicize them, to add hyperlinks to the text, and even to add images. 
Additional information can be added to the element using attributes within tags. So, a 
web page can be considered to be a document written using HTML. Thus, we need to 
know the basics of HTML to scrape web pages effectively.

The following figure depicts the contents that are included within an HTML tag:

Figure 4.1: Tags and attributes of HTML
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As you can see in the preceding figure, we can easily identify different elements 
within an HTML tag. The basic HTML structure and commonly used tags are shown 
and explained as follows:

Figure 4.2: Basic HTML structure

• DOCTYPE: This is a must-have preamble for every HTML page. It informs the 
browser that the document is written in HTML.

• <html> tag: This is considered the root of the page, encompassing all of the 
page content. It is mainly divided into two tags—<head> and <body>.

• <head> tag: This tag provides meta-information about the web page.

• <body> tag: This tag comprises content such as text, image, tables, and lists.

• <title> tag: This sets the title of your page, which is what you'll see in the 
browser's tab.

• <headline> tag: As the name suggests, this represents six levels of section 
headings, from <h1> to <h6>.

• <p> tag: This is used to define the paragraph text content.

• <i> tag: We can use this tag to italicize the text.

• <strong> tag: This makes the text bold.

• <li> tag: We can use this tag to list the content in ordered (the <ol> tag) or 
unordered (the <ul> tag) list format.



204 | Collecting Text Data with Web Scraping and APIs

• <img> tag: This tag is used to add an image in the HTML document.

• <h1> to <h6> tags: These represent the various levels of headings, with <h1> 
having the biggest size and <h6> having the smallest size.

• <span> tag: Although this tag provides no visual change by itself, it is useful for 
grouping inline-elements in a document and adding a hook to a part of a text or 
a part of a document. 

• <q> tag: Quotes are written within the <q> tag in HTML.

• table tag: Tabular content is represented as a table tag, which contains <th> 
(table header), <tr> (table row), and <td> (table data).

• <address> tag: In HTML documents, addresses are enclosed within 
<address> tags.

In the next section, we will walk through an exercise in which we'll extract tag-based 
information from HTML files.

Exercise 4.01: Extraction of Tag-Based Information from HTML Files

In this exercise, we will extract addresses, quotes, text written in bold, and a table 
present in an HTML file.

Note

The data for this sample HTML file can be accessed  
from https://packt.live/338opvv.

Follow these steps to implement this exercise: 

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the  
BeautifulSoup library:

from bs4 import BeautifulSoup

BeautifulSoup is a Python library for pulling data out of HTML and XML files. 
It provides a parser for HTML/XML formats, allowing us to navigate, search, and 
modify the parsed tree.

https://packt.live/338opvv
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3. Create an object of the BeautifulSoup class and pass the location of the 
HTML file to it:

soup = BeautifulSoup(open('../data/sample_doc.html'), \

                     'html.parser')

In the preceding line, html.parser is Python's built-in standard library parser. 
BeautifulSoup also supports third-party parsers such as html5lib, lxml, 
and others.

4. Add the following code to check the text contents of the  
sample_doc.html file:

soup.text

The preceding code generates the following output:

Figure 4.3: Text content of an HTML file

5. Similarly, to see the contents, you can simply write the following code:

soup.contents

Figure 4.4: Text content

6. To find the addresses from the document, insert a new cell and add the 
following code:

soup.find('address')

The preceding code generates the following output:

<address> Mess on No. 72, Banamali Naskar Lane, Kolkata.</address>
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7. To locate all the address tags within the given content, write the  
following code:

soup.find_all('address')

The preceding code generates the following output:

[<address> Mess on No. 72, Banamali Naskar Lane, Kolkata.</address>,

 <address>221B, Baker Street, London, UK.</address>]

8. To find the quotes in the document, add the following code:

soup.find_all('q')

The preceding code generates the following output:

[<q> There are more things in heaven and earth, Horatio, <br/> 

 Than are dreamt of in your philosophy. </q>]

9. To check all the bold items, write the following command:

soup.find_all('b')

The preceding code generates the following output:

[<b>Sherlock </b>, <b>Hamlet</b>, <b>Horatio</b>]

10. Write the following command to extract the tables in the document:

table = soup.find('table')

table
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The preceding code generates the following output:

Figure 4.5: Contents of the table tag

11. You can also view the contents of table by looping through it. Insert a new cell 
and add the following code to implement this:

for row in table.find_all('tr'):

    columns = row.find_all('td')

    print(columns)

The preceding code generates the following output:

[ ]

[<td>Gangaram</td>, <td>B.Tech</td>, <td>NA</td>, <td>NA</td>]

[<td>Ganga</td>, <td>B.A.</td>, <td>NA</td>, <td>NA</td>]

[<td>Ram</td>, <td>B.Tech</td>, <td>M.Tech</td>, <td>NA</td>]

[<td>Ramlal</td>, <td>B.Music</td>, <td>NA </td>, <td>Diploma in 
Music</td>]
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12. You can also locate specific content in the table. To locate the value at  
the intersection of the third row and the second column, write the  
following command:

table.find_all('tr')[3].find_all('td')[2]

The preceding code generates the following output:

<td>M.Tech</td>

We have learned how to extract tag-based information from an HTML file.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gekCAA.

You can also run this example online at https://packt.live/2EyJp4q.

In the next section, we will focus on fetching content from web pages.

Requesting Content from Web Pages

Whenever you visit a web page from your web browser, you are actually sending 
a request to fetch its content. This can be done using Python scripts. The Python 
requests package is widely used to handle all forms of HTTP requests. Let's walk 
through an exercise to get a better understanding of this concept.

To fetch content, you can use the get() method, which, as the name suggests, sends 
a GET request to the web page from which you want to fetch data. Let's perform a 
simple exercise now to get a better idea of how we can implement this in Python.

Exercise 4.02: Collecting Online Text Data

In this exercise, we will be fetching the web content with the help of requests. We 
will be pulling a text file from Project Gutenberg, the free e-book website, specifically, 
from the text file for Charles Dickens' famous book, David Copperfield. Follow these 
steps to complete this exercise:

https://packt.live/3gekCAA
https://packt.live/2EyJp4q
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1. Use the requests library to request the content of a book available online with 
the following set of commands:

import requests

""""

Let's read the text version of david copper field 

available online

"""

r = requests.get('https://www.gutenberg.org/files/766/766-0.txt')

r.status_code

The preceding code generates the following output:

200

When the browser visits the website, it fetches the content of the specified URL. 
Similarly, using requests, we get the content from the specified URL and all the 
information gets stored in the r object. 200 indicates that we received the right 
response from the URL.

2. Locate the text content of the fetched file by using the requests object r and 
referring to the text attribute. Write the following code for this:

r.text[:1000]

The preceding code generates the following output:

Figure 4.6: Text contents of the file
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3. Now, write the fetched content into a text file. To do this, add the following code:

from pathlib import Path

open(Path("../data/David_Copperfield.txt"),'w',\

     encoding='utf-8').write(r.text)

The preceding code generates the following output:

2033139

4. Similarly, we can do the same using Urllib3.First add the following code:

import urllib3

http = urllib3.PoolManager()

rr = http.request('GET', \

                  'http://www.gutenberg.org/files/766/766-0.txt')

rr.status

Again, we will get the output as 200, similar to the previous method.

5. Add the following code to locate the text content:

rr.data[:1000]

You will see that you get the same output as shown in Figure 4.6.

6. Again, add the following code to write the fetched content into a text file:

open(Path("../data/David_Copperfield_new.txt"), \

     'wb').write(rr.data)

The preceding code will generate the following output:

2033139

We have just learned how to collect data from online sources with the help of the 
requests library.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3fhu1pv.

You can also run this example online at https://packt.live/2Dmov7L.

Now, let's look at analyzing HTML content from Jupyter Notebooks.

https://packt.live/3fhu1pv
https://packt.live/2Dmov7L
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Exercise 4.03: Analyzing the Content of Jupyter Notebooks (in HTML Format)

In this exercise, we will analyze the content of a Jupyter Notebook. We will count the 
number of images, list the packages that have been imported, and check the models 
and their performance.

Note

The HTML file used for this exercise, can be accessed  
at https://packt.live/3fcYIfJ.

Follow these steps to complete this exercise:

1. Import BeautifulSoup and pass the location of the given HTML file using the 
following commands:

from bs4 import BeautifulSoup

soup = BeautifulSoup(open('../data/text_classifier.html'), \

                     'html.parser')

soup.text[:100]

Here, we are loading HTML using BeautifulSoup and printing parsed content. 
The preceding code generates the following output:

'\n\n\nCh3_Activity7_Developing_end_to_end_Text_Classifiers\n\n\n\n    
/*!\n*\n* Twitter Bootstrap\n*\n*/\n/*!\n*'

2. Use the img tag to count the number of images:

len(soup.find_all('img'))

The output shows that there are three img tags:

3

3. If you open the HTML file in the text editor or your web browser's console, you 
will see all import statements have the class attribute set to nn. So, to list all 
the packages that are imported, add the following code, referring to finding the 
span element with an nn class attribute: 

[i.get_text() for i in soup.find_all\

('span',attrs={"class":"nn"})]

https://packt.live/3fcYIfJ
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The preceding code generates the following output:

Figure 4.7: List of libraries imported

4. To extract the models and their performance, look at the HTML document and 
see which class attribute the models and their performance belong to. You 
will see the h2 and div tags with the class attribute output_subarea 
output_stream output_stdout output_text. Add the following code 
to extract the models:

for md,i in zip(soup.find_all('h2'), \

soup.find_all('div',\

attrs={"class":"output_subarea output_stream "\

       "output_stdout output_text"})):

    print("Model: ",md.get_text())

    print(i.get_text())

    print("---------------------------------------------------------
\n\n\n")
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The preceding code generates the following output:

Figure 4.8: Models and their performance

So, in the preceding output, we have extracted a classification report from the HTML 
file using BeautifulSoup by referring to the <h2> and <div> tags.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2PaM1Yk.

You can also run this example online at https://packt.live/315liSk.

https://packt.live/2PaM1Yk
https://packt.live/315liSk
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So far, we have seen how to get content from the web using the requests package, 
and in this exercise, we saw how to parse and extract the desired information. Next 
time you come across an article and want to extract certain information from it, you 
will be able to put these skills to use, instead of manually going over all of the content.

Activity 4.01: Extracting Information from an Online HTML Page

In this activity, we will extract data about Rabindranath Tagore from the Wikipedia 
page about him.

Note

Rabindranath Tagore was a poet and musician from South Asia whose 
art has had a profound influence on shaping the cultural landscape of the 
region. He was also the first Indian to win the Nobel Prize for Literature,  
in 1913.

After extracting the data, we will analyze information from the page. This should 
include the list of headings in the Works section, the list of his works, and the list of 
universities named after him. Follow these steps to implement this activity:

1. Open a Jupyter Notebook.

2. Import the requests and BeautifulSoup libraries.

3. Fetch the Wikipedia page from https://en.wikipedia.org/wiki/Rabindranath_Tagore 
using the get method of the requests library.

4. Convert the fetched content into HTML format using an HTML parser.

5. Print the list of headings in the Works section.

6. Print the list of original works written by Tagore in Bengali.

https://en.wikipedia.org/wiki/Rabindranath_Tagore
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7. Print the list of universities named after Tagore.

Note

The solution to this activity can be found on page 386.

We are now well-versed in extracting generic data from HTML pages. Let's perform 
another activity now, where we'll be using regular expressions.

Activity 4.02: Extracting and Analyzing Data Using Regular Expressions

To perform this activity, you will extract data from Packt's website. The data to be 
extracted includes frequently asked questions (FAQs) and their answers, phone 
numbers for customer care services, and the email addresses for customer care 
services. Follow these steps to complete this activity:

1. Import the necessary libraries and extract data from  
https://www.packtpub.com/support/faq using the requests library.

2. Fetch questions and answers from the data.

3. Create a DataFrame consisting of questions and answers.

4. Fetch email addresses with the help of regular expressions.

5. Fetch the phone numbers, with the help of regular expressions.

Note

The solution to this activity can be found on page 388.

In this activity, we were able to fetch data from online sources and analyze it in 
various ways. Now that we are well-versed in scraping web pages with the help 
of HTML, in the next section, we will discuss how to scrape web pages with semi-
structured data.

https://www.packtpub.com/support/faq
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Dealing with Semi-Structured Data
We learned about various types of data in Chapter 2, Feature Extraction Methods. Let's 
quickly recapitulate what semi-structured data refers to. A dataset is said to be semi-
structured if it is not in a row-column format but, if required, can be converted into a 
structured format that has a definite number of rows and columns. Often, we come 
across data that is stored as key-value pairs or embedded between tags,  
as is the case with JSON (JavaScript Object Notation) and XML (Extensible  
Markup Language) files. These are the most popularly used instances of  
semi-structured data.

JSON

JSON files are used for storing and exchanging data. JSON is human-readable 
and easy to interpret. Just like text files and CSV files, JSON files are language-
independent. This means that different programming languages, such as Python, 
Java, and so on, can work with JSON files effectively. In Python, a built-in data 
structure called a dictionary is capable of storing JSON objects as is. Generally, data 
in JSON objects is present in the form of key-value pairs. The datatype of values of 
JSON objects must be any of the following:

• A string

• A number

• Another JSON object

• An array

• A boolean

• Null
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NoSQL databases (such as MongoDB) store data in the form of JSON objects. Most 
APIs return JSON objects. The following figure depicts what a JSON file looks like:

Figure 4.9: A sample JSON file

Often, the response we get when requesting a URL is in the form of JSON objects. 
To deal with a JSON file effectively, we need to know how to parse it. The following 
exercise throws light on this.
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Exercise 4.04: Working with JSON Files

In this exercise, we will extract details such as the names of students, their 
qualifications, and additional qualifications from a JSON file.

Note

The sample JSON file can be accessed at https://packt.live/2P6ZwrI.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and import json. Pass the location of the file mentioned using 
the following commands:

import json

from pprint import pprint

data = json.load(open('../data/sample_json.json'))

pprint(data)

In the preceding code, we are importing Python's built-in json module and 
loading the local JSON file using the standard I/O operation of Python. This  
turns JSON into the Python dict object. The preceding code generates the 
following output:

Figure 4.10: Dictionary form of the fetched data

https://packt.live/2P6ZwrI
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3. To extract the names of the students, add the following code:

[dt['name'] for dt in data['students']]

The preceding code generates the following output:

['Gangaram', 'Ganga', 'Ram', 'Ramlal']

4. To extract their respective qualifications, enter the following code:

[dt['qualification'] for dt in data['students']]

The preceding code generates the following output:

['B.Tech', 'B.A.', 'B.Tech', 'B.Music']

5. To extract their additional qualifications, enter the following code. Remember, 
not every student will have additional qualifications. Thus, we need to check this 
separately. Add the following code to implement this:

[dt['additional qualification'] if 'additional qualification' \

in dt.keys() else None for dt in data['students']]

The preceding code generates the following output:

[None, None, 'M.Tech', None]

As JSON objects are similar to the dictionary data structure of Python, they are widely 
used on the web to send and receive data across web applications.

Note

To access the source code for this specific section, please refer  
to https://packt.live/33aSGKi.

You can also run this example online at https://packt.live/315MekS.

Now that we have learned how to load JSON data, let's extract data using another 
format, called Extensible Markup Language (XML), which is also used by web apps 
and Word documents to store information.

https://packt.live/33aSGKi
https://packt.live/315MekS
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XML

Just like HTML, XML is another kind of markup language that stores data in between 
tags. It is human-readable and extensible; that is, we have the liberty to define our 
own tags. Attributes, elements, and tags in the case of XML are similar to those of 
HTML. An XML file may or may not have a declaration. But, if it has a declaration, then 
that must be the first line of the XML file. 

This declaration statement has three parts: Version, Encoding, and 
Standalone. Version states which version of the XML standard is being 
used; Encoding states the type of character encoding being used in this file; 
Standalone tells the parser whether external information is needed for 
interpreting the content of the XML file. The following figure depicts what an XML file 
looks like:

Figure 4.11: A sample XML file
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An XML file can be represented as a tree called an XML tree. This XML tree begins with 
the root element (the parent). This root element further branches into child elements. 
Each element of the XML file is a node in the XML tree. Those elements that don't 
have any children are leaf nodes. The following figure clearly differentiates between 
an original XML file and a tree representation of an XML file: 

Figure 4.12: Comparison of an XML structure

XML files are somewhat similar in structure to HTML, with the main difference being 
that, in XML, we have custom tags rather than the fixed tags vocabulary like HTML. 
As we learned how to parse HTML using BeautifulSoup before, let's learn how to 
parse XML files in the following exercise.
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Exercise 4.05: Working with an XML File

In this exercise, we will parse an XML file and print the details from it, such as the 
names of employees, the organizations they work for, and the total salaries of  
all employees.

Note

The sample XML data file can be accessed here: https://packt.live/3hPCaDl.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell, import xml.etree.ElementTree, and pass the location of 
the XML file using the following code:

import xml.etree.ElementTree as ET

tree = ET.parse('../data/sample_xml_data.xml')

root = tree.getroot()

root

The preceding code generates the following output:

<Element 'records' at 0.112291710>

3. To check the tag of the fetched element, type the following code:

root.tag

The preceding code generates the following output:

'records'

4. Look for the name and company tags in the XML and print the data enclosed 
within them:

for record in root.findall('record')[:20]:

    print(record.find('name').text, "---",\

          record.find('company').text)

https://packt.live/3hPCaDl
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The preceding code generates the following output:

Figure 4.13: Data of the name and company tags printed

5. To find the sum of the salaries, create a list consisting of the salaries of all 
employees by iterating over each record and finding the salary tag in it. Next, 
remove the $ and , from the string of salary content, and finally, type cast into 
the integer to get the sum at the end. Add the following code to do so:

sum([int(record.find('salary').text.replace('$','').\

replace(',','')) for record in root.findall('record')])

The preceding code generates the following output:

745609
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Thus, we can see that the sum of all the salaries is $745,609. We just learned how  
to extract data from a local XML file. When we request data, many URLs return an 
XML file.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hQzuFM.

You can also run this example online at https://packt.live/3jU8VRP.

In the next section, we will look at how APIs can be used to retrieve real-time data.

Using APIs to Retrieve Real-Time Data

API stands for Application Programming Interface. To understand what an API is, 
let's consider a real-life example. Suppose you have a socket plug in the wall, and 
you need to charge your cellphone using it. How will you do it? You will have to use a 
charger/adapter, which will enable you to connect the cellphone to the socket. Here, 
this adapter is acting as a mediator that connects the cellphone and the socket, thus 
enabling the smooth transfer of electricity between them. 

Similarly, some websites do not provide their data directly. Instead, they provide 
APIs, which we can use to extract data from the websites. Just like the cellphone 
charger, an API acts as a mediator, enabling the smooth transfer of data between 
those websites and us. Let's perform a simple exercise to get hands-on experience of 
collecting data using APIs.

Exercise 4.06: Collecting Data Using APIs

In this exercise, we will use the Currency Exchange Rates API to convert USD to 
another currency rate. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary packages. Add the following code to do so:

import json 

import pprint 

import requests 

import pandas as pd

https://packt.live/3hQzuFM
https://packt.live/3jU8VRP
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3. Load the json data. Add the following code to do this:

r = requests.get("https://api.exchangerate-api.com/"\

                 "v4/latest/USD")

data = r.json()

pprint.pprint(data)

Note

Watch out for the slashes in the string below. Remember that the 
backslashes ( \ ) are used to split the code across multiple lines, while the 
forward slashes ( / ) are part of the URL.

The preceding code generates the following output:

Figure 4.14: Fetched data in the Python dict format

4. To create the DataFrame of the fetched data and print it, add the following code:

df = pd.DataFrame(data)

df.head()
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The preceding code generates the following output:

Figure 4.15: DataFrame showing details of currency exchange rates

Note that you will get a different output depending on the present currency exchange 
rates. We just learned how to collect data using APIs.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3jQAcEG.

You can also run this example online at https://packt.live/3jVIBa0.

In the next section, we will see how to create an API.

Extracting data from Twitter Using the OAuth API

Many popular websites, such as Twitter, provide an API that allows access to parts 
of their services so that people can build software that integrates with the website. 
We'll be focusing mainly on Twitter in this section. Twitter's data and services (such 
as tweets, advertisements, direct messages, and much more) can be accessed via the 
Twitter API. The Twitter API requires authentication and authorization to interact with 
its services using the OAuth method. Authentication is required to prove identity, 
while authorization proves the right to access its services and data. To access  
Twitter data and services using an API, you would need to register using a Twitter 
developer account. 

https://packt.live/3jQAcEG
https://packt.live/3jVIBa0
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You can collect data from Twitter using their Python module, named Tweepy. 
Tweepy is a Python library for accessing the Twitter API. It is great for simple 
automation and creating Twitter bots. It provides abstraction to communicate with 
Twitter and use its API to ease interactions, which makes this approach more efficient 
than using the requests library and Twitter API endpoints. 

To use the Tweepy library, simply go to https://dev.twitter.com/apps/new and fill in the 
form; you'll need to complete the necessary fields, such as App Name, Website 
URL, Callback URL, and App Usage. Once you've done this, submit and receive 
the keys and tokens, which you can use for extracting tweets and more. However, 
before you do any of this, you'll first need to import the tweepy library.

Your Python code should look like this:

import tweepy

consumer_key = 'your consumer key here'

consumer_secret = 'your consumer secret key here'

access_token = 'your access token here'

access_token_secret = 'your access token secret here'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

The preceding code uses auth instantiation from OAuthHandler, which takes in 
our consumer token and secret keys that were obtained during app registration. 
OAuthHandler handles interaction with Twitter's OAuth system.

To search for a query named randomquery using tweepy, you can use the Cursor 
object as follows:

tweepy.Cursor(api.search, q='randomquery', lang="en")

Cursor handles all the iterating-over-pages work for us behind the scenes, whereas 
the api.search method provides tweets that match a specified query given with 
the q parameter.

Let's do an activity now, to put our knowledge into practice.

https://dev.twitter.com/apps/new
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Activity 4.03: Extracting Data from Twitter

In this activity, you will extract 100 tweets containing the hashtag #climatechange from 
Twitter, using the Twitter API via the tweepy library, and load them into a pandas 
DataFrame. The following steps will help you implement this activity:

1. Log in to your Twitter account with your credentials.

2. Visit https://dev.twitter.com/apps/new and fill in the form by completing the 
necessary fields, such as App Name, providing Website URL, Callback 
URL, and App Usage.

3. Submit the form and receive the keys and tokens.

4. Use these keys and tokens in your application when making an API call  
for #climatechange.

5. Import the necessary libraries.

6. Fetch the data using the keys and tokens.

7. Create a DataFrame consisting of tweets.

Note

The full solution to this activity can be found on page 391.

In this activity, we extracted data from Twitter and loaded it into a pandas DataFrame. 
This data can also be used to analyze tweets and create a word cloud out of them, 
something that we will explore in detail in Chapter 8, Sentiment Analysis.

Publisher's Note

The preceding messages were extracted without bias from a given dataset 
and written by private individuals not affiliated with this company. The views 
expressed in these tweets do not necessarily reflect our company's  
official policies.

https://dev.twitter.com/apps/new
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Summary
In this chapter, we have learned various ways to collect data by scraping web pages. 
We also successfully scraped data from semi-structured formats such as JSON and 
XML and explored different methods of retrieving data in real time from a website 
without authentication. In the next chapter, you will learn about topic modeling—an 
unsupervised natural language processing technique that helps group documents 
according to the topics that it detects in them.





Overview

This chapter introduces topic modeling, which means using unsupervised 
machine learning to find "topics" within a given set of documents. You will 
explore the most common approaches to topic modeling, which are Latent 
Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and the 
Hierachical Dirichlet Process (HDP), and learn the differences between 
them. You will then practice implementing these approaches in Python and 
review the common practical challenges in topic modeling. By the end of 
this chapter, you will be able to create topic models from any given dataset.

Topic Modeling

5
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Introduction
In the previous chapter, we learned about different ways to collect data from local 
files and online resources. In this chapter, we will focus on topic modeling, which is 
an important area within natural language processing. Topic modeling is a simple way 
to capture the sense of what a document or a collection of documents is about. Note 
that in this case, documents are any coherent collection of words, which could be as 
short as a tweet or as long as an encyclopedia.

Topic modeling may be thought of as a way to automate the manual task of 
reading given document(s) to write an abstract, which you will then use to map the 
document(s) to a set of topics. Topic modeling is mostly done using unsupervised 
learning algorithms that detect topics on their own. Topic-modeling algorithms 
operate by performing statistical analysis on words or tokens in documents and 
using those statistics to automatically assign each document to multiple topics. A 
topic is represented by an arbitrary number and its keywords. When the topics are 
not interpretable, then topic modeling may be thought of as an automated process 
of a manual task in which the semantic structure or meaning of the documents was 
neither understood nor abstracted before mapping the document(s) to a set of topics.

Topic modeling generally uses unsupervised learning algorithms, as opposed to 
supervised learning algorithms. This means that, during training, we do not have 
to provide labels (that is, topic names corresponding to each document) in order to 
teach the model. This not only helps us discover interesting topics that might exist, 
but also reduces the manual effort spent in labeling texts. On the flip side, it can be a 
lot more challenging to evaluate the output of a topic model.

Topic modeling is often used as a first step to explore textual data in order to get a 
feel for the content of the text. This is especially true when abstracts/summaries  
are unavailable, and when the text is too large to be manually analyzed in the 
available timeframe.

Topic Discovery
The main goal of topic modeling is to find a set of topics that can be used to classify 
a set of documents. These topics are implicit because we do not know what they are 
beforehand, and they are unnamed.
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The number of topics could vary from around 3 to, say, 400 (or even more) topics. 
Since it is the algorithm that discovers the topics, the number is generally fixed as 
an input to the algorithm, except in the case of non-parametric models in which 
the number of topics is inferred from the text. These topics may not always directly 
correspond to topics that a human would find meaningful. In practice, the number 
of topics should be much smaller than the number of documents. In general, the 
number of topics specified in a parametric model ought to be greater than or equal to 
the expected number of topics in the text. In other words, one should err on the side 
of a greater number of topics rather than fewer topics. This is because fewer topics 
can cause a problem for the interpretability of topics.  Also, the more documents 
that we provide, the better the algorithm can map the documents to non-mutually 
exclusive topics.

The number of topics chosen depends on the documents and the objectives of the 
project. You may want to increase the number of topics if you have a large number 
of documents or if the documents are fairly diverse. Conversely, if you are analyzing 
a narrow set of documents, you may want to decrease the number of topics. This 
generally flows from your assumptions about the documents. If you think that 
the document set might inherently contain a large number of topics, you should 
configure the algorithm to look for a similar number of topics.

Exploratory Data Analysis

It is recommended to do exploratory data analysis prior to performing any machine 
learning project. This helps you learn about the probability distribution of the items 
in the dataset. We have seen this with word clouds in Chapter 2, Feature Extraction 
Methods. Even better exploration is possible with topic modeling. Doing this can give 
you a sense of the statistical properties of the text dataset and how the documents 
can be grouped. 

For example, you might want to know whether the text dataset is skewed to any 
particular set of topics, or whether the sources are uniform or disparate. This data 
further allows us to choose the appropriate algorithms for the actual project. 

Transforming Unstructured Data to Structured Data

Topic modeling clusters documents based on their topics. Specifically, it is a soft 
clustering method, as each document gets mapped to multiple topics. This is unlike 
hard clustering, which results in membership of an exemplar or a point of only 
one cluster. Topic models typically give a weight/probability of the document being 
associated with a topic.
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Thus, you can have a matrix of documents by topic, wherein the intersection of 
a document and a topic refers to the weight/probability that the document is 
associated with the topic. This matrix is effectively a numeric representation of the 
text and can be considered a way to transform unstructured text into structured 
data. Such a transformation is also an example of dimensionality reduction, as 
unstructured text can have many more dimensions (each dimension corresponds to 
a unique word) than the number of dimensions in structured data (each dimension 
corresponds to a topic).

Bag of Words

Before we explore modeling algorithms in depth, let's make a few simplifying 
assumptions. Firstly, we treat a document as a bag of words, meaning we ignore the 
structure and grammar of the document and just use the count of each word in the 
document to infer patterns in the variation of word counts. Ignoring the structure, 
sequences, and grammar allows us to use algorithms that rely on counts and 
probability to make the inferences.

As we have seen previously, a bag of words is a dictionary containing each unique 
word and the integer count of the occurrences of the word in the document. Like all 
models, it is, at best, an approximation of reality. All the topic-modeling algorithms 
that we will discuss consider the text as a bag of words.

Note

We will look at approaches that explicitly model sequences in later chapters. 
The sequential structure of languages is different from the sequential 
structure in time-series data. Moreover, some aspects of the sequential 
structure may be specific to the natural language being considered. This will 
be discussed in more detail in Chapter 6, Vector Representation.
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Topic-Modeling Algorithms
Topic-modeling algorithms operate on the following assumptions:

• Topics contain a set of words.

• Documents are made up of a set of topics.

Topics can be considered to be a weighted collection of words. After these common 
assumptions, different algorithms diverge in how they go about discovering topics. 
In the upcoming sections, we will cover in detail three topic-modeling algorithms—
namely LSA, LDA, and HDP. Here, the term latent (the L in these acronyms) refers to 
the fact that the probability distribution of the topics is not directly observable. We 
can observe the documents and the words but not the topics.

Note

The LDA algorithm builds on the LSA algorithm. In this case, similar 
acronyms are indicative of this association.

Latent Semantic Analysis (LSA)

We will start by looking at LSA. LSA actually predates the World Wide Web. It was 
first described in 1988. LSA is also known by an alternative name, Latent Semantic 
Indexing (LSI), particularly when it is used for semantic searches of document 
indices. The goal of LSA is to uncover the latent topics that underlie documents  
and words.
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LSA – How It Works

Consider that we have a collection of documents, and these documents are  
made up of words. Our goal is to discover the latent topics in the documents.  
So, in the beginning, we have a collection of documents that we can represent as 
a term-to-document matrix. This term-to-document matrix has terms as rows and 
documents as columns. The following table gives a simplified illustration of a  
term-to-document matrix:

Figure 5.1: A simplified view of a term-to-document matrix

Now, we break this matrix down into three separate matrix factors, namely a term-
to-topics matrix, a topic-importance matrix, and a topic-to-documents matrix. Let's 
consider the matrix shown on the left-hand side and the corresponding factor 
matrices on the right-hand side:

Figure 5.2: Document matrix and its broken matrices

As we can see in this diagram, the rectangular matrix is separated into the product  
of other matrices. The process takes a matrix, M, and splits it, as shown in the 
following formula:

Figure 5.3: Splitting the matrix M
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The following are the broad definitions of the preceding equation:

• M is an m×m matrix.

• U is an m×n matrix.

• Σ is an n×n diagonal matrix with non-negative real numbers.

• V is an m×n matrix.

• VT is an n×m matrix, which is the transpose of V.

The matrices U and VT are not unique as matrix factorization does not give unique 
factors. This is analogous to the fact that the number 108 can be factorized using 
three factors in more than one way: 9x1x12, 27x1x4, 3x1x36, and so on. In order to 
consistently get similar factors, a regularization parameter can be used. Moreover, 
the multiplication of the factor matrices gives a matrix approximately and not exactly 
equal to the original matrix. Collectively there are fewer elements in the factor 
matrices than in the original matrix and this is possible because the original matrix 
had many elements that were zero or close to zero.

The gensim library is a popular Python library for topic modeling. It is easy to use and 
provides various topic-modeling model classes, including LdaModel (for LDA) and 
LsiModel (for LSI).

The tomotopy library is also a powerful Python library for topic modeling. It too is 
easy to use and includes popular topic-modeling model classes, including HDPModel 
(for HDP) and LDAModel (for LDA).

Other Python topic-modeling libraries include scikit-learn and lda (for LDA).

Key Input Parameters for LSA Topic Modeling
We will be using the gensim library to perform LSA topic modeling. The key input 
parameters for gensim are corpus, the number of topics, and id2word. Here, the 
corpus is specified in the form of a list of documents in which each document is a 
list of tokens. The id2word parameter refers to a dictionary that is used to convert 
the corpus from a textual representation to a numeric representation such that 
each word corresponds to a unique number. Let's do an exercise to understand this 
concept better.
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spaCy is a popular natural language processing Library for Python. In our exercises, 
we will be using spaCy to tokenize the text, lemmatize the tokens, and check which 
part-of-speech that token is. We will be using spaCy v2.1.3. After installing spaCy 
v2.1.3 we will need to download the English language model using the following code, 
so that we can load this model (since there are models for many different languages).

python -m spacy download en_core_web_sm

Exercise 5.01: Analyzing Wikipedia World Cup Articles with Latent Semantic 

Analysis

In this exercise, you will perform topic modeling using LSA on a Wikipedia World Cup 
dataset. For this, you will make use of the LsiModel class provided by the gensim 
library. You will use the Wikipedia library to fetch articles, the spaCy engine for the 
tokenization of the text, and the newline character to separate documents within  
an article.

Note

The dataset used for this exercise can be found  
at https://packt.live/30dbExO.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import pandas as pd

from gensim import corpora

from gensim.models import LsiModel

from gensim.parsing.preprocessing import preprocess_string

https://packt.live/30dbExO
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3. To clean the text, define a function to remove the non-alphanumeric characters 
and replace numbers with the # character. Replace instances of multiple newline 
characters with a single newline character. Use the newline character to separate 
out the documents in the corpus. Insert a new cell and add the following code to 
implement this: 

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'

PARA='\n+'

def clean(text):

    text = re.sub(LINK, ' ', text)

    text = re.sub(SPECIAL_CHARS, ' ', text)

    text = re.sub(PARA, '\n', text)

    return text

4. Insert a new cell and add the following code to find Wikipedia articles related to 
the World Cup:

import wikipedia

wikipedia.search('Cricket World Cup'),\

wikipedia.search('FIFA World Cup')
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The code generates the following output:

Figure 5.4: Wikipedia articles related to the World Cup

5. Insert a new cell and add the following code fetch the Wikipedia articles about 
the 2018 FIFA World Cup and the 2019 Cricket World Cup, concatenate them, and 
show the result:

latest_soccer_cricket=['2018 FIFA World Cup',\

                       '2019 Cricket World Cup']

corpus=''

for cup in latest_soccer_cricket:

    corpus=corpus+wikipedia.page(cup).content

corpus
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The code generates the following output:

Figure 5.5: Result after concatenating articles from 2018 and 2019

6. Insert a new cell and add the following code to clean the text, using the spaCy 
English language model to tokenize the corpus and exclude all tokens that are 
not detected as nouns:

text=clean(corpus)

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \

        and token.pos_ in pos_list:

            preproc_sent.append(token.lemma_)

    else:

        preproc_text.append(preproc_sent)

        preproc_sent=[]

#last sentence

preproc_text.append(preproc_sent) 

print(preproc_text)
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The code generates the following output:

Figure 5.6: Output after tokenizing the corpus

7. Insert a new cell and add the following code to convert the corpus into a list in 
which each token corresponds to a number for more efficient representation, as 
gensim requires it in this form. Then, find the topics in the corpus:

dictionary = corpora.Dictionary(preproc_text)

corpus = [dictionary.doc2bow(text) for text in preproc_text]

NUM_TOPICS=3

lsamodel=LsiModel(corpus, num_topics=NUM_TOPICS, \

                  id2word = dictionary)

lsamodel.print_topics()

The code generates the following output:

Figure 5.7: Topics in the corpus

To create our LsiModel, we had to decide up front how many topics we 
wanted. This would not necessarily match the number of topics that are actually 
in the corpus.

Note that, in the output, you can see that negative weights are associated with 
some words in a few topics. Also, the sum of the weights does not add up to 
one. The weights are not to be interpreted as probabilities. This makes it difficult 
to even mechanically view the topic as a probability distribution over words. 
Additionally, it may be observed that topic 0 is essentially about cricket even 
though the corpus includes both soccer and cricket. Topic 1 seems to be related 
to a sports broadcast. Topic 2 does not seem to be interpretable.
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8. To determine which topics have the highest weight for a document, insert a new 
cell and add the following code:

model_arr = np.argmax(lsamodel.get_topics(),axis=0)

y, x = np.histogram(model_arr, bins=np.arange(NUM_TOPICS+1))

fig, ax = plt.subplots()

plt.xticks(ticks=np.arange(NUM_TOPICS),\

           labels=np.arange(NUM_TOPICS+1))

ax.plot(x[:-1], y)

fig.show()

The code generates the following output:

Figure 5.8: Graph representing weight of topics for the documents
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We can see that topic 1 and topic 0 have the highest weight in almost all  
the documents.

Note

In general, the topics found are extremely sensitive to randomization in 
both gensim and tomotopy. While setting a random_state in gensim 
could help in reproducibility, in general, the topics found using tomotopy are 
superior from the perspective of interpretability. Generally, your output is 
expected to be different. In order to have exactly the same topic model, we 
can save and load topic models, which we'll do in Exercise 5.04, Topics in 
The Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer  
to https://packt.live/2PdOCkd.

You can also run this example online at https://packt.live/3jSS7uB.

We have now performed topic modeling with the help of LSA. In the next section, 
we will learn about another topic-modeling algorithm: LDA. Before we move onto its 
implementation, let's quickly try and build a basic intuition about a couple of concepts 
that will help us in the subsequent sections. 

Dirichlet Process and Dirichlet Distribution 

A Dirichlet process is a distribution over a distribution. It can be represented as 
DP(α,G) where G is the base distribution and α is the concentration parameter that 
defines how close DP(α,G) is to the base distribution G. It is for this reason that the 
Dirichlet process is a versatile way to represent various probability distributions. It is 
used for the HDP topic-modeling algorithm.

The Dirichlet distribution is a special case of the Dirichlet process, in which  
the number of topics needs to be specified explicitly. It is used for the LDA  
topic-modeling algorithm.

https://packt.live/2PdOCkd
https://packt.live/3jSS7uB
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Latent Dirichlet Allocation (LDA)

Instead of using matrix factorization, like we did for LSA, it is possible to consider a 
generative model called LDA. LDA is considered an advancement over probabilistic 
LSA. Probabilistic LSA is prone to overfitting as it does not probabilistically model the 
distribution of the documents. LDA is a three-level hierarchical generative statistical 
model that maps documents to topics, which in turn get mapped to words—all in a 
probabilistic way. In this case, we have two concentration parameters corresponding 
to the document level and the topic level. 

LDA – How It Works

To understand how LDA works, let's look at a simple example. We have four 
documents that contain only three unique words: Cat, Dog, and Hippo.  
The following figure shows the documents and the number of times each  
word is found in each document:

Figure 5.9: Occurrence of words in different documents

As we can see in the figure, the word Cat is found 10 times in Document 1 and 
Document 4 and 0 times in documents 2 and 3. Document 4 contains all three 
words 10 times each. For its analysis, LDA maintains two probability tables. The first 
table tracks the probability of selecting a specific word when sampling a specific topic. 
The second table keeps track of the probability of selecting a specific topic when 
sampling a particular document:

Figure 5.10: Probability tables
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These probability tables reflect how likely it is to get a word if you sampled from each 
topic. If you sampled a word from topic 3, it would likely be Cat (probability 99%). 
If you sampled Document 4, then there is a one-third chance of getting each of the 
topics, since it contains all three t in equal proportions. In this example, a word is 
exclusive to a topic. In general, though, this is not the case.

The gensim and the scikit-learn libraries use one way of implementing LDA 
(called variational inference). The tomotopy and lda libraries use another way 
(called collapsed Gibbs sampling). It is essentially because of these differing 
implementations: when tomotopy is able to generate the topics in the available time, 
we usually prefer using tomotopy; otherwise we use gensim.

The parameters that we use for tomotopy are as follows:

• corpus: This refers to text that we want to analyze.

• Number of topics: This is the number of topics that the corpus contains.

• iter: This refers to the number of iterations that the model considers  
the corpus.

• α: This is associated with document generation.

• η: This is associated with topic generation.

• seed: This helps with fixing the initial randomization.

Measuring the Predictive Power of a Generative Topic Model

The predictive power of a generative topic model can be measured by analyzing 
the distribution of the generated corpus. Perplexity is a measure of how close the 
distribution of the words in the generated corpus is to reality. Log perplexity is a more 
convenient measure for this closeness. The formula for log perplexity is as follows:

Figure 5.11: Formula for log perplexity

Here, n is number of words and P(w) is the probability associated with word w. We can 
see that negative log likelihood is identical to log perplexity.
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Usually, a lower log perplexity means better performance. This is because the 
probability distribution of words is not uniform. It is concentrated on a small subset 
of words. And such a concentration (a non-uniform probability density function) 
causes a lower negative likelihood. In order to be sure that the model is generalizing 
well, the log likelihood should be computed on a hold-out sample. An extremely low 
negative log likelihood is indicative of an extremely low capacity of the model to learn. 
If a topic model has an unacceptable log perplexity on the corpus used for training 
then it is unlikely to perform well on a hold-out sample as it is indicative of the model 
having a low capacity to learn or it is indicative of the dataset not being generalizable. 
The negative log likelihood is approximately estimated in topic modeling libraries as it 
is intractable to calculate.

Exercise 5.02: Finding Topics in Canadian Open Data Inventory Using the LDA 

Model

In this exercise, we will use the tomotopy LDA model to analyze the Canadian Open 
Data Inventory. For simplicity, we will consider that the corpus has twenty topics.

Note

The dataset used for this exercise can be found  
at https://packt.live/2PbvMds.

The following steps will help you complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

https://packt.live/2PbvMds
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3. Insert a new cell and add the following code to read from a download of the 
Canadian Open Data Inventory, and clean the text:

OPEN_DATA_URL = '../data/canada-open-data/inventory.csv'

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'

PARA='\n+'

def clean(text):

    text = re.sub(LINK, ' ', text)

    text = re.sub(SPECIAL_CHARS, ' ', text)

    text = re.sub(PARA, '\n', text)

    return text

catalog['description_en'].sample(frac=0.25,replace=False,\

                                 random_state=0).to_c \

                                 sv(OPEN_DATA_URL,\

                                 encoding='utf-8')

file='../data/canada-open-data/catalog.txt'

f=open(file,'r',encoding='utf-8')

text=f.read()

f.close()

text = clean(text)

4. Insert a new cell and add the following code to clean the text, using the spaCy 
English language model to tokenize the corpus and to exclude all tokens that are 
not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \
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        and token.pos_ in pos_list:

            preproc_sent.append(token.lemma_)

    else:

        preproc_text.append(preproc_sent)

        preproc_sent=[]

#last sentence

preproc_text.append(preproc_sent) 

print(preproc_text)

The code generates the following output:

Figure 5.12: Tokenized corpus after text preprocessing

The pandas DataFrame was sampled. 25% of the dataset has been considered 
so that the memory restrictions related to spaCy can be addressed, since this is a 
fairly large sample.

5. Insert a new cell and add the following code to see how the negative log 
likelihood varies by the number of iterations:

import tomotopy as tp

NUM_TOPICS=20

mdl = tp.LDAModel(k=NUM_TOPICS,seed=1234)

for line in preproc_text:

    mdl.add_doc(line)

for i in range(0, 110, 10):

    mdl.train(i)

    print('Iteration: {}\tLog-likelihood: {}'.\

          format(i, mdl.ll_per_word))
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The code generates the following output:

Figure 5.13: Variation of negative log likelihood with different iterations

6. Insert a new cell and add the following code to train a topic model with ten 
iterations and to show the inferred topics:

mdl.train(10)

for k in range(mdl.k):

    print('Top 10 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=7))

The code generates the following output:

Top 10 words of topic #0

[('polygon', 0.36050185561180115), ('dataset', 0.0334757782722234726), 
('information', 0.03004324994981289), ('soil', 0,029185116291046143), 
('area', 0,026610717177391052), ('surface', 0.025752583518624306), 
('map', 0.024036318063735962)]

7. Insert a new cell and add the following code to see the probability distribution of 
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

mdl.infer(doc_inst)[0]

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]
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The code generates the following output:

array([11,17,14,19,12,  7,  4, 13, 10,  2,  3, 15,  1, 18, 16,  9,  
0,
        6,  8,  5], dtype=int64)

8. Insert a new cell and add the following code to see the probability distribution of 
topic 11:

print(mdl.get_topic_words(11, top_n=7))

The code generates the following output

[('table', 0.24849626421928406), ('census', 0.1265643984079361), 
('level', 0.06526772677898407), ('series', 0.06306280940771103), 
('topic', 0.062401335686445236), ('geography', 0.062401335686445236), 
('country', 0.06218084320425987)]

9. Insert a new cell and add the following code to see the probability distribution of 
topic 17:

print(mdl.get_topic_words(17, top_n=7))

The code generates the following output:

[('datum', 0.0603327676653862), ('information', 0.057247743010520935), 
('year', 0.03462424501776695), ('dataset', 0.03291034325957298), 
('project', 0.017828006289734993), ('website', 0.014057422056794167), 
('activity', 0.012000739574432373)]

10. Insert a new cell and add the following code to see the probability distribution of 
topic 5:

print(mdl.get_topic_words(5, top_n=7))

The code generates the following output:

[('survey', 0.04966237023472786), ('catch', 0.03862873837351799), 
('sponge', 0.0364220105111599), ('sea', 0.0342152863740921), 
('datum', 0.028698472306132317), ('fishing', 0.02759511023759842), 
('matter', 0.026491746306419373)]
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Topic 11, topic 17, and topic 5 seem to be interpretable. One could say that topic 11, 
topic 17, and topic 5 seem to be broadly about geographical data, internet data, and 
marine life data respectively.

Note

In general, the topics found are extremely sensitive to randomization in 
both gensim and tomotopy. While setting a random_state in gensim 
could help in reproducibility, in general, the topics found using tomotopy are 
superior from the perspective of interpretability. Generally, your output is 
expected to be different. In order to have exactly the same topic model, we 
can save and load topic models; we do this in Exercise 5.04, Topics in The 
Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer  
to https://packt.live/33d0FGw.

This section does not currently have an online interactive example and will 
need to be run locally.

Activity 5.01: Topic-Modeling Jeopardy Questions

Jeopardy is a popular TV show that covers a variety of topics. In this show, participants 
are given answers and then asked to frame questions. The purpose of this activity is 
to give a real-world feel to some of the complexity associated with topic modeling. In 
this activity, you will do topic modeling on a dataset of Jeopardy questions. 

Note

The dataset to be used for this activity can be found  
at https://packt.live/2PbvMds.

Follow these steps to complete this activity: 

1. Open a Jupyter Notebook.

2. Insert a new cell and import pandas and other necessary libraries.

3. Load the dataset into a pandas DataFrame.

https://packt.live/33d0FGw
https://packt.live/2PbvMds
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4. Clean the data by dropping the DataFrame rows where the Question column 
has empty cells. 

5. Find the unique number of categories based on the Category column.

6. Randomly select 4% of the questions. Tokenize the text using spaCy. Select 
tokens that are nouns/verbs/adjectives or a combination.

7. Train a tomotopy LDA model with 1,000 topics.

8. Print the log perplexity.

9. Find the probability distribution on the entire dataset.

10. Sample a few topics and check for interpretability.

Note

The full solution to this activity can be found on page 395.

Hierarchical Dirichlet Process (HDP)
HDP is a non-parametric variant of LDA. It is called "non-parametric" since the 
number of topics is inferred from the data, and this parameter isn't provided  
by us. This means that this parameter is learned and can increase (that is, it is 
theoretically unbounded). 

The tomotopy HDP implementation can infer between 1 and 32,767 topics. gensim's 
HDP implementation seems to fix the number of topics at 150 topics. For our 
purposes, we will be using the tomotopy HDP implementation.

The gensim and the scikit-learn libraries use variational inference, while the tomotopy 
library uses collapsed Gibbs sampling. When the time required by collapsed Gibbs 
sampling is not an issue, then it is preferable to use collapsed Gibbs sampling over 
variational inference. In other cases, we may prefer to use variational inference. For 
the tomotopy library, the following parameters are used:

iter: This refers to the number of iterations that the model considers the corpus.

α: This concentration parameter is associated with document generation.

η: This concentration parameter is associated with topic generation.
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seed: This fixes the initial randomization.

min_cf: This helps eliminate those words that occur fewer times than the frequency 
specified by us.

To get a better understanding of this, let's perform some simple exercises.

Exercise 5.03: Topics in Around the World in Eighty Days

In this exercise, we will make use of the tomotopy HDP model to analyze the text file 
for Jules Verne's Around the World in Eighty Days, available from the Gutenberg Project. 
We will use the min_cf hyperparameter that is used to ignore words that occur 
fewer times than the specified frequency and discuss its impact on the interpretability 
of topics.

Note

The dataset used for this exercise can be found at https://packt.live/2Xdv4kt.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Insert a new cell and add the following code to read from a download of the 
Gutenberg Project's Around the World in Eighty Days by Jules Verne, and clean  
the text:

OPEN_DATA_URL = '../data/aroundtheworld/pg103.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

import re

https://packt.live/2Xdv4kt
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HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'

PARA='\n+'

def clean(text):

    text = re.sub(LINK, ' ', text)

    text = re.sub(SPECIAL_CHARS, ' ', text)

    text = re.sub(PARA, '\n', text)

    return text

text = clean(text)

text

The code generates the following output:

Figure 5.14: Text from "Around the World in Eighty Days" 

4. Insert a new cell and add the following code to import the necessary libraries, 
clean the text (using the spaCy English language model to tokenize the corpus), 
and exclude all tokens that are not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \

        and token.pos_ in pos_list:

            preproc_sent.append(token.lemma_)

    else:

        preproc_text.append(preproc_sent)
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        preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)

The code generates the following output:

Figure 5.15: Tokenized corpus after the text is cleaned

5. Insert a new cell and add the following code to create HDP models in which 
tokens that occur fewer than five times are ignored, and then show how the 
negative log likelihood varies according to the number of iterations:

import tomotopy as tp

mdl = tp.HDPModel(min_cf=5,seed=0)

for line in preproc_text:

    mdl.add_doc(line)

for i in range(0, 100, 10):

    mdl.train(i)

    print('Iteration: {}\tLog-likelihood: {}'.\

          format(i, mdl.ll_per_word))

for k in range(mdl.k):

    print('Top 10 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=7))
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The code generates the following output:

Figure 5.16: Variation of negative log likelihood with number of iterations

6. Insert a new cell and add the following code to see the probability distribution of 
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

Figure 5.17: Probability distribution of topics if the entire dataset is considered
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7. Insert a new cell and add the following code to see the probability distribution of 
topic 33:

print(mdl.get_topic_words(33, top_n=7))

The code generates the following output:

[('danger', 0.1534954458475113), ('hour', 0.0015197568573057652), 
('time', 0.0015197568573057652), ('train', 0.0015197568573057652), 
('master', 0.0015197568573057652), ('man', 0.0015197568573057652), 
('steamer', 0.0015197568573057652)]

8. Insert a new cell and add the following code to see the probability distribution of 
topic 21:

print(mdl.get_topic_words(21, top_n=7))

The code generates the following output:

[('hour', 0.1344495415687561), ('minute', 0.1232500821352005), 
('day', 0.08405196666717529), ('quarter', 0.07285250723361969), 
('moment', 0.07285250723361969), ('clock', 0.005605331063270569), 
('card', 0.039254117757081985)]

9. Insert a new cell and add the following code to see the probability distribution of 
topic 70:

print(mdl.get_topic_words(70, top_n=7))

The code generates the following output:

[('event', 0.12901155650615692), ('midnight', 0.12901155650615692), 
('detective', 0.06482669711112976), ('bed', 0.06482669711112976), 
('traveller', 0.06482669711112976), ('watch', 0.06482669711112976), 
('clown', 0.06482669711112976)]

10. Insert a new cell and add the following code to see the probability distribution of 
topic 4:

print(mdl.get_topic_words(4, top_n=7))

The code generates the following output:

[('house', 0.20237493515014648), ('opium', 0.10131379961967468), 
('town', 0.07604850828647614), ('brick', 0.07604850828647614), 
('mansion', 0.07604850828647614), ('glimpse', 0.50783220678567886), 
('ball', 0.050783220678567886)]
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We can see that ignoring tokens that occur fewer than five times significantly 
improves the interpretability of the topic model. Also, we have 378 topics in all, many 
of which are not likely to be interpretable. So, what does this mean? Let's analyze a 
corpus from another classic and then return to these questions.

Note

In general, the topics found are extremely sensitive to randomization in both 
gensim and tomotopy. While setting a random_state in gensim could 
help reproducibility,  the topics found using tomotopy are superior from 
the perspective of interpretability. Your output is expected to be different. 
In order to have exactly the same topic model, we can save and load 
topic models, which we'll do now in Exercise 5.04, Topics in The Life and 
Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer  
to https://packt.live/3jTxUVk.

You can also run this example online at https://packt.live/2X8lG1p.

Exercise 5.04: Topics in The Life and Adventures of Robinson Crusoe by Daniel 

Defoe

In this exercise, we will make use of the tomotopy HDP model to analyze a text corpus 
taken from the text file for Daniel Defoe's The Life and Adventures of Robinson Crusoe, 
available on the Gutenberg Project website. Here, we will take the value of α as 0.8 
and experiment with selecting tokens based on different combinations of parts of 
speech, before training the model.

Note

The dataset used for this exercise can be found at https://packt.live/3ffhfrP.

1. Open a Jupyter Notebook.

https://packt.live/3jTxUVk
https://packt.live/2X8lG1p
https://packt.live/3ffhfrP
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2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Insert a new cell and add the following code to read from a download of the 
Gutenberg Project's The Life and Adventures of Robinson Crusoe by Daniel Defoe, 
and clean the text:

OPEN_DATA_URL = '../data/robinsoncrusoe/521-0.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'

PARA='\n+'

def clean(text):

    text = re.sub(LINK, ' ', text)

    text = re.sub(SPECIAL_CHARS, ' ', text)

    text = re.sub(PARA, '\n', text)

    return text

text = clean(text)

text
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The code generates the following output:

Figure 5.18: Text from The Life and Adventures of Robinson Crusoe

4. Insert a new cell and add the following code to import the necessary libraries. 
Clean the text using the spaCy English language model to tokenize the corpus 
and to exclude all tokens that are not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

"""

We can experiment with other or a combinations of parts of speech 
['NOUN','ADJ','VERB','ADV'] #['NOUN','ADJ']
"""

pos_list=['NOUN'] 

preproc_text=[]

preproc_sent=[]

for token in doc:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \

        and token.pos_ in pos_list:

            preproc_sent.append(token.lemma_)

    else:

        preproc_text.append(preproc_sent)

        preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)
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The code generates the following output:

Figure 5.19: Tokenized corpus after preprocessing is done

5. Insert a new cell and add the following code to import the necessary libraries. 
Create an HDP model with the α concentration parameter as 0.8 and see how 
the negative log likelihood varies with the number of iterations:

import tomotopy as tp 

mdl = tp.HDPModel(alpha=0.8,seed=0)

for line in preproc_text:

    mdl.add_doc(line)

for i in range(0, 110, 10):

    mdl.train(i)

    print('Iteration: {}\tLog-likelihood: {}'.\

          format(i, mdl.ll_per_word))

for k in range(mdl.k):

    print('Top 10 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=7))
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The code generates the following output:

Figure 5.20: Variation of negative log likelihood with the number of iterations

6. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/robinsoncrusoe/hdp_model.bin')

7. Insert a new cell and add the following code to load the topic model:

mdl = tp.HDPModel.load('../data/robinsoncrusoe/'\

                       'hdp_model.bin')

8. Insert a new cell and add the following code to see the probability distribution of 
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

mdl.infer(doc_inst)[0]

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]
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The code generates the following output:

Figure 5.21: Probability distribution if the entire corpus is considered

9. Insert a new cell and add the following code to see the probability distribution of 
topic 163:

print(mdl.get_topic_words(163, top_n=7))

The code generates the following output:

[('horse', 0.13098040223121643), ('way', 0.026405228301882744), 
('mankind', 0.26405228301882744), ('fire', 0.026405228301882744), 
('object', 0.026405228301882744), ('bridle', 0.026405228301882744), 
('distress', 0.026405228301882744)]

10. Insert a new cell and add the following code to see the probability distribution of 
topic 103:

print(mdl.get_topic_words(103, top_n=7))

The code generates the following output:

[('manor', 0.03706422075629234), ('inheritance', 0.03706422075629234), 
('lord', 0.03706422075629234), ('man', 0.0003669724682377309), 
('shore', 0.0003669724682377309), ('ship',0.0003669724682377309)]
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11. Insert a new cell and add the following code to see the probability distribution of 
topic 28:

print(mdl.get_topic_words(28, top_n=7))

The code generates the following output:

[('thought', 0.07716038823127747), ('mind', 0.045609116554260254), 
('word', 0.038597721606492996), ('face', 0.03509202599525452), 
('terror', 0.03509202599525452), ('tear', 0.3158633038401604), 
('apprehension', 0.3158633038401604)]

We see that we have 195 topics in all, many of which are likely not interpretable. 
In general, finding interpretable topics is difficult and connecting the words to 
interpret topics often requires familiarity with the domain. We have seen that  
log perplexity has very limited utility. In the case of prior knowledge of the 
corpus, the topic model has a much smaller role to play in the discovery of the 
thematic structure.

Note

In general, the topics found are extremely sensitive to randomization in both 
gensim and tomotopy. While setting a random_state in gensim could 
help reproducibility, in general, the topics found using tomotopy are superior 
from the perspective of interpretability. Generally, your output is expected 
to be different. In order to have exactly the same topic model, we can save 
and load topic models, and this was used in this exercise.

To access the source code for this specific section, please refer  
to https://packt.live/3ggbfAn.

This section does not currently have an online interactive example and will 
need to be run locally.

We have explored three of the most popular approaches to topic modeling. Let's now 
discuss the practical challenges in using topic modeling and the state-of-the-art topic 
modeling technologies.

https://packt.live/3ggbfAn
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Practical Challenges

The selection of the number of topics and topic-modeling algorithms, the number of 
iterations, and the evaluation of the topic model are the main challenges faced by a 
practitioner. Having prior knowledge about the domain can greatly help in choosing 
the number of topics. In the absence of prior knowledge about the expected number 
of topics, we may need to rely on experimentation for the choice of the topic-
modeling algorithm. The HDP model is an attractive choice when there isn't much 
information about the number of topics. In the case of a small corpus, the LSA model 
could be used.

One factor that makes interpreting topics difficult is that they contain a lot of very 
frequently occurring (but indistinctive) words. To overcome this, we can iteratively 
identify these words and add them to a list of stop words. At times, we may want to 
filter out words that are too rare and/or too common. The use of only nouns, only 
verbs, or a combination of various parts of speech can improve the interpretability  
of topics.

Qualitative evaluation of the topics is essential. We may have to accept a mix of 
interpretable and non-interpretable topics in the real world. In the absence of human 
participants, we can use qualitative ways of considering word intrusion. Unless 
there is a downstream use of the topic model being developed, a complete lack of 
interpretability will render the topic model useless. When we have a downstream 
application, even non-interpretable topics are useful as they offer a convenient 
means to carry out dimensionality reduction on the dataset.

State-of-the-Art Topic Modeling

There is no known benchmark for quantitively identifying the state-of-the-art 
topic-modeling algorithm. It necessarily involves human participation whenever 
interpretable topics are required. In cases where the interpretation of topics is not 
necessary, the topic model needs to be evaluated by downstream tasks. A qualitative 
approach to interpreting topic models may be useful if there is prior knowledge or 
familiarity with the corpus.

While there have been attempts at using labeled topic modeling, there is no evidence 
of these models broadly outperforming unsupervised topic-modeling algorithms. 
Interestingly, given that much of the topic modeling literature was published prior 
to 2014, this is not among the most active areas of research. This suggests that 
complete automation is hard and human participation is here to stay as the state-of-
the-art technique in the near future.
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Activity 5.02: Comparing Different Topic Models

The Consumer Financial Protection Bureau (CFPB) publishes consumer complaints 
made against organizations in the financial sector. This original dataset is available at 
https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data. 
In this activity, you will qualitatively compare how HDP and LDA models perform on 
the interpretability of topics by analyzing student loan complaints.

Note

The dataset to be used for this activity can be found  
at https://packt.live/39GoyYe.

Follow these steps to complete this activity:

1. Open a Jupyter Notebook.

2. Import the pandas library and load the dataset from a text file produced 
by partially processing the dataset from the CFPB website mentioned at the 
beginning of this section.

3. Tokenize the text using spaCy. Select tokens that may be a part of speech (noun/
verb/adjective or a combination).

4. Train an HDP model.

5. Save and load the HDP model. To save a topic model, use the following line  
of code:

mdl.save('../data/consumercomplaints/hdp_model.bin')

To load a topic model, use the following:

mdl = tp.HDPModel.load('../data/consumercomplaints/hdp_model.bin')

6. Determine the topics in the entire set of complaints. Sample a few topics and 
check for interpretability.

7. Repeat steps 3-8 for an LDA model instead of an HDP model. Consider the 
number of topics in the LDA model to around the number of topics found in the 
HDP model.

https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://packt.live/39GoyYe
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8. Select the qualitatively better model from the HDP and LDA models trained in 
this activity. Also, compare these two models quantitatively.

Note

The full solution to this activity can be found on page 400.

In this activity, we successfully compared two different models both qualitatively  
and quantitatively.

Summary
In this chapter, we discussed topic modeling in detail. Without delving into advanced 
statistics, we reviewed various topic-modeling algorithms (such as LSA, LDA, and HDP) 
and how they can be used for topic modeling on a given dataset. We explored the 
challenges involved in topic modeling, how experimentation can help address those 
challenges, and, finally, broadly discussed the current state-of-the-art approaches to 
topic modeling.

In the next chapter, we will learn about vector representation of text, which helps  
us convert text into a numerical format to make it more easily understandable  
by machines.







Overview

This chapter introduces you to the various ways in which text can be 
represented in the form of vectors. You will start by learning why this is 
important, and the different types of vector representation. You will then 
perform one-hot encoding on words, using the preprocessing package 
provided by scikit-learn, and character-level encoding, both manually and 
using the powerful Keras library. After covering learned word embeddings 
and pre-trained embeddings, you will use Word2Vec and Doc2Vec for 
vector representation for Natural Language Processing (NLP) tasks, 
such as finding the level of similarity between multiple texts.

Vector Representation

6
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Introduction
The previous chapters laid a firm foundation for NLP. But now we will go deeper into 
a key topic—one that gives us surprising insights into how language processing works 
and how some of the key advances in human-computer interaction are facilitated. 
At the heart of NLP is the simple trick of representing text as numbers. This helps 
software algorithms perform the sophisticated computations that are required to 
understand the meaning of the text.

As we have already discussed in previous chapters, most machine learning algorithms 
take numeric data as input and do not understand the text as such. We need to 
represent our text in numeric form so that we can apply different machine learning 
algorithms and other NLP techniques to it. These numeric representations are called 
vectors and are also sometimes called word embeddings or simply embeddings.

This chapter begins with a discussion of vectors, how text can be represented as 
vectors, and how vectors can be composed to represent complex speech. We will 
walk through the various representations in both directions—learning how to encode 
text as vectors as well as how to retrieve text from vectors. We will also look at some 
cutting-edge techniques used in NLP that are based on the idea of representing text 
as vectors.

What Is a Vector?
The basic mathematical definition of a vector is an object that has both magnitude 
and direction. In our definition, it is mostly compared with a scalar, which can 
be defined as an object that has only magnitude. Vectors are also defined as an 
element in vector space—for example, a point in space with the coordinates (x=4, 
y=5, z=6) is a vector. Here, we can see the vector dimensions are the geometric 
coordinates of a point or element in space. However, the vector dimensions can also 
represent any quantity or property of some element or object in addition to mere 
geometric coordinates.

As an example, let's say that we're defining the weather at a given place using 
five features: temperature, humidity, precipitation, wind speed, and air pressure. 
The units that these would be measured in are Celsius, percentage, centimeters, 
kilometers per hour (km/h), and millibar (mbar), respectively. The following are the 
values for two places:
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Figure 6.1: Weather indicators at two different places

So, we can represent the weather of these places in vector form as follows:

• Vector for place 1: [25, 50, 1, 18, 1200.0]

• Vector for place 2: [32, 60, 0, 7, 1019.0]

In the preceding representation, the first dimension represents temperature, the 
second dimension represents humidity, and so on. Note that the order of these 
dimensions should be consistent among all the vectors.

Similarly, we can also represent text as a vector in which each dimension can 
represent either the presence or absence of certain metrics. Examples of these 
are bag of words and TFIDF vectors that we looked at in the previous chapters. 
There are other techniques as well for vector representation of text—learned word 
embeddings, for instance. We will discuss all these different techniques in the 
upcoming sections. These techniques can be broadly classified into two categories:

• Frequency-based embeddings

• Learned word embeddings

Frequency-Based Embeddings

Frequency-based embedding is a technique in which the text is represented in vector 
form by considering the frequency of the word in a corpus. The techniques that come 
under this category are the following:

• Bag of words: As we've already seen in Chapter 2, Feature Extraction Methods, 
bag of words is the technique of converting text into vector or numeric form by 
representing each sentence or document in a list the length of which is equal to 
the total number of unique words in the corpus.  

• TFIDF: As seen previously in Chapter 2, Feature Extraction Methods, this technique 
considers the frequency of a term as well as the inverse of its occurrence in  
the corpus.
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• Term frequency-based technique: This is a somewhat simpler version  
of TFIDF. We represent each word in the vector by its number of occurrences  
in the document. For example, let's say that a document contains the  
following sentences:

1. The girl is pretty, and the boy is handsome.

2. Do whatever your heart says.

3. The boy has a bike.

4. His bike was red in color.

Now let's build term frequency vectors of all these sentences. We will first create 
a dictionary of unique words as follows. Note that we are considering every 
word in lowercase only:

{1: the

2: girl

3: pretty

4: and

5: boy

5: is

7: handsome

8: do

9: whatever

10: your

11: heart

12: says

13: was

14: has

15: bike

16: his

17: red
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18: in 

19: color

}

Now every document will be represented by a vector with 19 dimensions, where 
every dimension represents the frequency of a word in that document. So, for 
sentence 1, the vector will be [2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 
Similarly, for sentence 2, the vector representation will be [0, 0, 0, 0, 0, 0, 0, 1, 1, 
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], and so on. Note that the order needs to be consistent 
here, too.

Note

It is recommended that you use preprocessing techniques such as 
stemming, stop word removal, and conversion to lowercase before 
converting a text into the aforementioned vector format. Term frequency is 
a simple and quick technique for converting text into vector form. However, 
the TFIDF technique is a more effective technique than term frequency as it 
not only considers the frequency of a word in the current document but also 
in the background corpus.

• One-hot encoding: In all techniques described previously, we have  
represented a word with a single number. Using one-hot encoding, we can 
represent a word with an array. To understand this concept better, let's take the 
following sentences:

5. I love cats and dogs.

6. Cats are light in weight.

We will use a dictionary to assign a numeric label or index to each unique word 
(after converting to lowercase) as follows:

{1: i

2: love

3: cats

4: and

5: dogs
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6: are

7: light

8: in

9: weight

}

Now we will represent each word in these sentences as follows:

i            [1 0 0 0 0 0 0 0 0]

love      [0 1 0 0 0 0 0 0 0]

cats      [0 0 1 0 0 0 0 0 0]

and       [0 0 0 1 0 0 0 0 0]

dogs     [0 0 0 0 1 0 0 0 0]

are       [0 0 0 0 0 1 0 0 0]

light      [0 0 0 0 0 0 1 0 0]

in          [0 0 0 0 0 0 0 1 0]

weight  [0 0 0 0 0 0 0 0 1]

We can see that each vector consists of 9 elements; that is, the number of elements 
equals the total number of words in the dictionary. For each word, the value of 
an element will be 1, only if the word is present at the corresponding position in 
the dictionary. When one-hot encoding words, you also need to consider the 
vocabulary. The meaning of vocabulary here is the total number of unique words in 
the text sources for your project. So, if you have a large source, then you will end up 
with a huge vocabulary and large one-hot vector sizes, which will eventually consume 
a lot of memory. The next exercise on word-level one-hot encoding will help us 
understand this better.

Label encoding is a technique used to convert categorical data in numerical data, 
where each category is represented by a unique number. In order to perform 
label encoding and one-hot encoding, we will be using the LabelEncoder() and 
OneHotEncoder() classes from the preprocessing package provided by the 
scikit-learn library. The following exercise will help us get a better understanding  
of this.
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Exercise 6.01: Word-Level One-Hot Encoding

In this exercise, we will one-hot encode words with the help of the preprocessing 
package provided by the scikit-learn library. For this, we shall make use of a file 
containing lines from Jane Austen's Pride and Prejudice.

Note

The text file used for this exercise can be found  
at https://packt.live/3hUxNqQ.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. First, load the file containing the lines from the novel using the Path class 
provided by the pathlib library to specify the location of the file. Insert a new 
cell and add the following code:

from pathlib import Path

data = Path('../data')

novel_lines_file = data / 'novel_lines.txt'

3. Now that you have the file, open it and read its contents. Use the open()  
and read() functions to perform these actions. Store the results in the  
novel_lines file variable. Insert a new cell and add the following code to 
implement this:

with novel_lines_file.open() as f:

    novel_lines_raw = f.read()

4. After reading the contents of the file, load it by inserting a new cell and adding 
the following code:

novel_lines_raw

https://packt.live/3hUxNqQ
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The code generates the following output:

Figure 6.2: Raw text from the file

In the output, you will see a lot of newline characters. This is because we loaded 
the entire content at once into a single variable instead of separate lines. You will 
also see a lot of non-alphanumeric characters.

5. The main objective is to create one-hot vectors for each word in the file. To do 
this, construct a vocabulary, which is the entire list of unique words in the file, by 
tokenizing the string into words and removing newlines and non-alphanumeric 
characters. Define a function named clean_tokenize() to do this. Store 
the vocabulary created using clean_tokenize() inside a variable named 
novel_lines. Add the following code:

import string

import re

alpha_characters = str.maketrans('', '', string.punctuation)

def clean_tokenize(text):

    text = text.lower()

    text = re.sub(r'\n', '*** ', text)

    text = text.translate(alpha_characters)
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    text = re.sub(r' +', ' ', text)

    return text.split(' ')

novel_lines = clean_tokenize(novel_lines_raw)

6. Take a look at the content inside novel_lines now. It should look like a list. 
Insert a new cell and add the following code to view it:

novel_lines

The code generates the following output:

Figure 6.3: Text after preprocessing is done

7. Insert a new cell and add the following code to convert the list to a NumPy array 
and print the shape of the array: 

import numpy as np

novel_lines_array = np.array([novel_lines])

novel_lines_array = novel_lines_array.reshape(-1, 1)

novel_lines_array.shape
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The code generates the following output:

(459, 1)

As you can see, the novel_lines_array array consists of 459 rows and 1 
column. Each row is a word in the original novel_lines file.

Note

NumPy arrays are more specific to NLP algorithms than Python lists. It is 
the format that is required for the scikit-learn library, which we will be using 
to one-hot encode words.

8. Now use encoders, such as the LabelEncoder() and OneHotEncoder() 
classes from scikit-learn's preprocessing package, to convert novel_
lines_array to one-hot encoded format. Insert a new cell and add the 
following lines of code to implement this: 

from sklearn import preprocessing

labelEncoder = preprocessing.LabelEncoder()

novel_lines_labels = labelEncoder.fit_transform(\

                     novel_lines_array)

import warnings

warnings.filterwarnings('ignore')

wordOneHotEncoder = preprocessing.OneHotEncoder()

line_onehot = wordOneHotEncoder.fit_transform(\

              novel_lines_labels.reshape(-1,1))

In the code, the LabelEncoder() class encodes the labels, and the fit_
transform() method fits the label encoder and returns the encoded labels. 
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9. To check the list of encoded labels, insert a new cell and add the following code:

novel_lines_labels

The preceding code generates output that looks as follows:

Figure 6.4: List of encoded labels

The OneHotEncoder() class encodes the categorical integer features as a 
one-hot numeric array. The fit_transform() method of this class takes 
the novel_lines_labels array as input. This is a numeric array, and each 
feature included in this array is encoded using the one-hot encoding scheme.
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10. Create a binary column for each category. A sparse matrix is returned as 
output. To view the matrix, insert a new cell and type the following code:

line_onehot

The code generates the following output:

<459x199 sparse matrix of type '<class 'numpy.float64'>'

                With 459 stored elements in Compressed Sparse Row 
format>

11. To convert the sparse matrix into a dense array, use the toarray() function. 
Insert a new cell and add the following code to implement this:

line_onehot.toarray()

The code generates the following output:

Figure 6.5: Dense array

Note

To access the source code for this specific section, please refer  
to https://packt.live/2Xd2aAU.

You can also run this example online at https://packt.live/39GSAeu.

The preceding output shows that we have achieved our objective of one-hot  
encoding words.

One-hot encoding is mostly used in techniques such as language generation models, 
where a model is trained to predict the next word in the sequence given the words 
that precede it (think about your phone recommending words while you're chatting 
with your friends). Language models are used in many important natural language 
tasks nowadays, including machine translation, spell correction, text summarization, 
and in tools like Amazon Echo, Alexa, and more. 

https://packt.live/2Xd2aAU
https://packt.live/39GSAeu


What Is a Vector? | 283

In addition to word-level language models, we can also build character-level 
language models, which can be trained to predict the next character in a sequence 
of characters. For character-level language models, we need character-level one-hot 
encoding. Let's explore this in the next section.

Character-Level One-Hot Encoding

In character-level one-hot encoding, we assign a numeric value to all the possible 
characters. We can use alpha-numeric characters and punctuation as well. Then, 
we represent each character by an array of size equal to all the characters in the 
document. This array contains zero at all the indices, other than the index assigned 
with the character. Let's explain this with an example. Consider the word "hello". Let's 
say our vocabulary contains only twenty-six characters, so our dictionary will look 
like this:

{'a': 0 

 'b': 1

 'c': 2

 'd': 3 

 'e': 4 

 'f': 5 

'g': 6

'h': 7 

'i': 8 

'j': 9 

'k': 10 

…….'z': 25}

Now, 'h' will be represented as [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. 
Similarly, 'e' can be represented as [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. 
Let's see how we can implement this in the next exercise.
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Exercise 6.02: Character One-Hot Encoding – Manual

In this exercise, we will create our own function that can one-hot encode the 
characters of the word "data". Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. To one-hot encode the characters of a given word, create a function named 
onehot_word(). Within this function, create a lookup table for each of the 
characters in the given word. Then, map each character to an index. Add the 
following code to implement this:

def onehot_word(word):

    lookup = {v[1]: v[0] for v in enumerate(set(word))}

    word_vector = []

3. Next, loop through the characters in the word and create a vector named one_
hot_vector of the same size as the number of characters in the lookup. This 
vector is filled with zeros. Then, use the lookup table to find the position of the 
character and set that character's value to 1. 

Note

 Execute the code for step 1 and step 2 together. 

Add the following code:

    for c in word:

        one_hot_vector = [0] * len(lookup)

    

        one_hot_vector[lookup[c]] = 1

        word_vector.append(one_hot_vector)

    return word_vector

The function created earlier will return a word vector.

4. Once the onehot_word() function has been created, test it by adding some 
input as a parameter. Add the word "data" as an input to the function. To 
implement this, add a new cell and write the following code:

onehot_vector = onehot_word('data')

print(onehot_vector)
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The code generates the following output:

[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]

Since there are four characters in the input (data), there will be four one-hot 
vectors. To determine the size of each one-hot vector for data, we enumerate 
the total number of characters in it. It is important to note that only one 
index gets assigned for repeated characters. After enumerating through the 
characters, the character d will be assigned index 0, the character a will be 
assigned index 1, and the character t will be assigned index 2. 

Based on each character's index position, the elements in each one-hot 
vector will be marked as 1, leaving other elements marked 0. In this way, 
we can manually one-hot encode any given text. Note that, in most practical 
applications, the size of one-hot encoded vector is equal to the size of all the 
characters, and sometimes, non-alphabetical characters are also considered.

Note

To access the source code for this specific section, please refer  
to https://packt.live/314aTX1.

You can also run this example online at https://packt.live/3gaWbE5.

We have learned how character-level one-hot encoding can be performed manually 
by developing our own function. We will focus on performing character-level one-hot 
encoding using Keras in the next exercise. Keras is a machine learning library that 
works along with TensorFlow to create deep learning models.

We will be using the Tokenizer class from Keras to create vectors from the text. 
Tokenizer can work on both characters and words, depending on the char_
level argument. If char_level is set to true, then it will work on the character 
level; otherwise, it will work on the word level. The Tokenizer class comes with the 
following functions:

• fit_on_text(): This method reads all the text and creates an internal 
dictionary, either word-wise or character-wise. We should always call it for 
the entire text, so that no word or character is left out of the dictionary. All the 
methods/variables listed after this should be called or used only after calling  
this method.

https://packt.live/314aTX1
https://packt.live/3gaWbE5
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• word_index: This is a dictionary that contains all the possible words or 
characters in the vocabulary. Each word or character is assigned a unique 
number/index.

• index_word: This is the reverse dictionary of word_index; it contains 
key-value pairs with the index as the key and the word or character as its value.

• texts_to_sequences(): This function converts each word or character 
sequence into its corresponding index value.

• texts_to_matrix(): This converts each word or character in a given 
text into one-hot vector using a built-in dictionary. It takes the text as input, 
processes it, and returns a NumPy array of one-hot encoded vectors.

Exercise 6.03: Character-Level One-Hot Encoding with Keras

In this exercise, we will perform one-hot encoding on a given word using the Keras 
library. Follow these steps to implement this exercise:

1. Open a Jupyter notebook. 

2. Insert a new cell and the following code to import the necessary libraries:

from keras.preprocessing.text import Tokenizer

import numpy as np

3. Once you have imported the Tokenizer class, create an instance of it by 
inserting a new cell and adding the following code:

char_tokenizer = Tokenizer(char_level=True)

Since you are encoding at the character level, in the constructor, char_level is 
set to True.

Note

By default, char_level is set to False if we are encoding words.

4. To test the Tokenizer instance, you will require some text to work on. Insert a 
new cell and add the following code to assign a string to the text variable:

text = 'The quick brown fox jumped over the lazy dog'
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5. After getting the text, use the fit_on_texts() method provided by  
the Tokenizer class. Insert a new cell and add the following code to  
implement this: 

char_tokenizer.fit_on_texts(text)

In this code, char_tokenizer will break text into characters and internally 
keep track of the tokens, the indices, and everything else needed to perform 
one-hot encoding.

6. Now, look at the possible output. One type of output is the sequence of the 
characters—that is, the integers assigned with each character in the text. The 
texts_to_sequences() method of the Tokenizer class helps assign 
integers to each character in the text. Insert a new cell and add the following 
code to implement this:

seq =char_tokenizer.texts_to_sequences(text)

seq

The code generates the following output:

Figure 6.6: List of integers assigned to each character
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As you can see, there were 44 characters in the text variable. From the output, 
we can see that for every unique character in text, an integer is assigned. 

7. Use sequences_to_texts() to get text from the sequence with the 
following code:

char_tokenizer.sequences_to_texts(seq)

The snippet of the preceding output follows:

Figure 6.7: Text generated from the sequence
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8. Now look at the actual one-hot encoded values. For this, use the  
texts_to_matrix() function. Insert a new cell and add the following  
code to implement this:

char_vectors = char_tokenizer.texts_to_matrix(text)

Here, the results of the array are stored in the char_vectors variable. 

9. In order to view the vector values, just insert a new cell and add the  
following line:

char_vectors

On execution, the code displays the array of one-hot encoded vectors:

Figure 6.8: Actual one-hot encoded values for the given text

10. In order to investigate the dimensions of the NumPy array, make use of the 
shape attribute. Insert a new cell and add the following code to execute it:

char_vectors.shape

The following output is generated:

(44, 27)

So, char_vectors is a NumPy array with 44 rows and 27 columns. This is 
because we are considering 26 characters and an additional character for space.

11. To access the first row of char_vectors NumPy array, insert a new cell and 
add the following code:

char_vectors[0]

This returns a one-hot vector, which can be seen in the following figure:

array([0 ., 0., 0., 0., 1., 0., 0., 0., 0 .,

       0., 0., 0., 0., 0., 0., 0.,0., 0 .,

       0., 0., 0., 0., 0., 0., 0 ., 0., 0])
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12. To access the index of this one-hot vector, use the argmax() function provided 
by NumPy. Insert a new cell and write the following code to implement this:

np.argmax(char_vectors[0])

The code generates the following output:

4

13. The Tokenizer class provides two dictionaries, index_word and  
word_index, which you can use to view the contents of Tokenizer in 
key-value form. Insert a new cell and add the following code to view the  
index_word dictionary:

char_tokenizer.index_word

The code generates the following output:

Figure 6.9: The index_word dictionary
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As you can see in this figure, the indices act as keys, and the characters  
act as values. Now insert a new cell and the following code to view the  
word_index dictionary:

char_tokenizer.word_index

The code generates the following output:

Figure 6.10: The word_index dictionary

In this figure, the characters act as keys, and the indices act as values.
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14. In the preceding steps, you saw how to access the index of a given one-hot 
vector by using the argmax() function provided by NumPy. Using this index 
as a key, you can access its value in the index_word dictionary. To implement 
this, we insert a new cell and write the following code:

char_tokenizer.index_word[np.argmax(char_vectors[0])]

The preceding code generates the following output:

't'

In this code, np.argmax(char_vectors[0]) produces an output of 4. This 
will act as a key in finding the value in the index_word dictionary. So, when 
char_tokenizer.index_word[4] is executed, it will scan through the 
dictionary and find that, for key 4, the value is t, and finally, it will print t.

Note

To access the source code for this specific section, please refer  
to https://packt.live/2ECjNnf.

You can also run this example online at https://packt.live/2P9c69V.

In the preceding section, we learned how to convert text into one-hot vectors at either 
the character level or the word level. One-hot encoding is a simple representation 
of a word, but it has a disadvantage. Whenever the corpus is large (that is, when the 
number of unique characters or words increases), the size of the one-hot encoded 
vector also increases. Thus, it becomes very memory intensive and is sometimes not 
feasible; speed and simplicity here lead to the "curse of dimensionality" by creating a 
new dimension for each category/word. To tackle this problem, learned embeddings 
can be used, as explained in the following sections.

https://packt.live/2ECjNnf
https://packt.live/2P9c69V
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Learned Word Embeddings

The vector representations discussed in the preceding section have some serious 
disadvantages, as discussed here:

• Sparsity and large size: The sizes of one-hot encoded or other frequency-
based vectors depend upon the number of unique words in the corpus. This 
means that when the size of the corpus increases, the number of unique words 
increases, thereby increasing the size of the vectors in turn.

• Context: None of these vector representations consider the words with respect 
to its context while representing it as a vector. However, the meaning of a word 
in any language depends upon the context it is used in. Not taking the context 
into account can often lead to inaccurate results.

Prediction-based word embeddings or learned word embeddings try to address 
both problems. For starters, these methods represent words with a fixed number 
of dimensions. Moreover, these representations are actually learned from the 
different contexts in which the word has been used at different places. Learned 
word embeddings is actually a collective name given to a set of language models 
that represent words in such a way that words with similar meanings have somewhat 
similar representations. There are different techniques for creating learned word 
embeddings, such as Word2Vec and GloVe. Let's discuss them one by one.

Word2Vec

Word2Vec is a prediction-based algorithm that represents a word by a vector of a 
fixed size. This is a form of unsupervised learning algorithm, which means that we 
need not to provide manually annotated data; we just feed the raw text. It will train a 
model in such a way that each word is represented in terms of its context throughout 
the training data.

This algorithm has two variations, as follows:

• Continuous Bag of Words (CBoW): This model tends to predict the probability 
of a word given the context. The learning problem here is to predict the word 
given a fixed-window context—that is, a fixed set of continuous words in text.

• Skip-Gram model: This model is the reverse of the CBoW model, as it tends to 
predict the context of a word.
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These vectors find application in a lot of NLP tasks including text generation, machine 
translation, speech to text, text to speech, text classification, and text similarity. 

Let's explore how they can be used for text similarity. Suppose we generated 300 
dimensional vectors from words such as "love", "adorable", and "hate". If we find the 
cosine similarity between the vectors for "love" and "adorable", and "love" and "hate", 
we will find a higher similarity between the former pair of words than the latter. 

In the next exercise, we will train word vectors using the gensim library. Specifically, 
we'll be using the Word2Vec class. The Word2Vec class has parameters such as 
documents, size, window, min_count, and workers. Here, documents refers 
to the sentences that we have to provide to the class, size represents the length 
of the dense vector to represent each token, min_count represents the minimum 
count of words that can be taken into consideration when training a particular model, 
and workers represents the number of threads that are required when training  
a model. 

For training a model, we use the model.train() method. This method takes 
arguments such as documents, total_examples, and epochs. Here, 
documents represents the sentences, and total_examples represents the count 
of sentences, while epochs represents the total number of iterations over the given 
data. Finally, the trained word vectors get stored in model.wv, which is an instance 
of KeyedVectors.

In order to perform basic text cleaning, before it's processed, we will make use of the 
textcleaner class from gensim. Some of the most useful functions available in 
textcleaner that we will be using are as follows:

• split_sentences(): As the name suggests, this function splits the text and 
gets a list of sentences from the text.

• simple_preprocess(): This function converts a document into a list 
consisting of lowercase tokens. 

Let's see how we can use these functions to create word vectors.

Exercise 6.04: Training Word Vectors
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In this exercise, we will train word vectors. We will be using books freely available 
on Project Gutenberg for this. We will also see the vector representation using 
Matplotlib's pyplot framework.

Note

The file we are using for this exercise can be found  
at https://packt.live/39JeZYP.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. Use the requests library to load books from the Project Gutenberg website, 
the json library to load a book catalog, and the regex package to clean the text 
by removing newline characters. Insert a new cell and add the following code to 
implement this:

import requests

import json

import re

3. After importing all the necessary libraries, load the json file, which contains 
details of 10 books, including the title, the author, and the ID. Insert a new cell 
and add the following steps to implement this:

with open('../data/ProjectGutenbergBooks.json', 'r') \

    as catalog_file:

    catalog = json.load(catalog_file)

https://packt.live/39JeZYP
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4. To print the details of all the books, insert a new cell and add the following code:

catalog

The preceding code generates the following output:

Figure 6.11: Book details in the catalog

5. Create a function named load_book(), which will take book_id as a 
parameter and, based on that book_id, fetch the book and load it. It should 
also clean the text by removing the newline characters. Insert a new cell and add 
the following code to implement this:

GUTENBERG_URL ='https://www.gutenberg.org/files/{}/{}-0.txt'

def load_book(book_id):

    url = GUTENBERG_URL.format(book_id, book_id)

    contents = requests.get(url).text

    cleaned_contents = re.sub(r'\r\n', ' ', contents)

    return cleaned_contents

6. Once you have defined our load_book() function, you will loop through the 
catalog, fetch all the id instances of the books, and store them in the book_ids 
list. The id instances stored in the book_ids list will act as parameters for our 
load_book() function. The book information fetched for each book ID will be 
loaded in the books variable. Insert a new cell and add the following code to 
implement this:

book_ids = [ book['id'] for book in catalog ]

books = [ load_book(id) for id in book_ids]

To view the information of the books variable, add the following code in a  
new cell:

books[:5]
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A snippet of the output generated by the preceding code is as follows:

Figure 6.12: Information of various books

7. Before you can train the word vectors, you need to split the books into a list 
of documents. In this case, you want to teach the Word2Vec algorithm about 
words in the context of the sentences that they are in. So here, a document 
is actually a sentence. Thus, you need to create a list of sentences from all 10 
books. Insert a new cell and add the following code to implement this: 

from gensim.summarization import textcleaner

from gensim.utils import simple_preprocess

def to_sentences(book):

    sentences = textcleaner.split_sentences(book)

    sentence_tokens = [simple_preprocess(sentence) \

                       for sentence in sentences]

    return sentence_tokens

In the preceding code, all the text preprocessing takes place inside the  
to_sentences() function that you have defined.
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8. Now, loop through each book in books and pass each book as a parameter to 
the to_sentences() function. The results should be stored in the book_
sentences variable. Also, split books into sentences and sentences into 
documents. The result should be stored in the documents variable. Insert a 
new cell and add the following code to implement this:

books_sentences = [to_sentences(book) for book in books]

documents = [sentence for book_sent in books_sentences \

             for sentence in book_sent]

9. To check the length of the documents, use the len() function as follows:

len(documents)

The code generates the following output:

32922

10. Now that you have your documents, train the model by making use of the 
Word2Vec class provided by the gensim package. Insert a new cell and add the 
following code to implement this:

from gensim.models import Word2Vec

# build vocabulary and train model

model = Word2Vec(

        documents,

        size=100,

        window=10,

        min_count=2,

        workers=10)

model.train(documents, total_examples=len(documents), \

            epochs=50)

The code generates the following output:

(27809439, 37551450)

Now make use of the most_similar() function of the model.wv instance to 
find the similar words. The most_similar() function takes positive as a 
parameter and returns a list of strings that contribute positively. Insert a new cell 
and add the following code to implement this:

model.wv.most_similar(positive="worse")
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The code generates the following output:

Figure 6.13: Most similar words

Note

You may get a slightly different output as the output depends on the model 
training process, so you may have a different model than the one we have 
trained here.

11. Create a show_vector() function that will display the vector using pyplot, a 
plotting framework in Matplotlib. Insert a new cell and add the following code to 
implement this:

%matplotlib inline

import matplotlib.pyplot as plt

def show_vector(word):

    vector = model.wv[word]

    fig, ax = plt.subplots(1,1, figsize=(10, 2))

    ax.tick_params(axis='both', \

                   which='both',\

                   left=False, \

                   bottom=False, \

                   top=False,\

                   labelleft=False, \

                   labelbottom=False)
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    ax.grid(False)

    print(word)

    ax.bar(range(len(vector)), vector, 0.5)

show_vector('sad')

The code generates the following output:

Figure 6.14: Graph of the vector when the input is "sad"

Note

To access the source code for this specific section, please refer  
to https://packt.live/317nb11.

You can also run this example online at https://packt.live/2BJC40I.

In the preceding figure, we can see the vector representation when the word 
provided to the show_vector() function is "sad". We have learned about training 
word vectors and representing them using pyplot. In the next section, we will focus 
more on using pre-trained word vectors, which are required for NLP projects. 

https://packt.live/317nb11
https://packt.live/2BJC40I
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Using Pre-Trained Word Vectors

For a machine learning model, the more data you have, the better the model you get. 
But training the model on large amounts of data is intensively resource-consuming 
in terms of both time and memory. So, we usually train a Word2Vec model on a 
large amount of data and retain the model for future use. There are also a lot of 
pre-trained models publicly available have been trained on huge datasets such 
as Wikipedia articles. These models include gensim by fastText (research group 
by Facebook), and Word2Vec has recently proved to be state-of-the-art for tasks 
including checking for word analogies and word similarities, as follows:

• vector('Paris') - vector('France') + vector('Italy') results in a vector that is very close 
to vector('Rome').

• vector('king') - vector('man') + vector('woman') is close to vector('queen').

Google's publicly available glove model is similar to the Word2Vec model and has 
produced incredible results. In some applications, we may need to train a Word2Vec 
model on our own specific dataset rather than train a new model from scratch; that 
is, we can train a pre-trained model on more data. This process is called transfer 
learning. Transfer learning is based on the concept of transferring knowledge from 
one domain into another.

Note

Pre-trained word vectors can get pretty large. For example, vectors trained 
on Google News contain 3 million words, and on disk, its compressed size 
is 1.5 GB.

To better understand how we can use pre-trained word vectors in Python, let's walk 
through a simple exercise.
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Exercise 6.05: Using Pre-Trained Word Vectors

In this exercise, we will load and use pre-trained word embeddings. We will also show 
the image representation of a few word vectors using the pyplot framework of the 
Matplotlib library. We will be using glove6B50d.txt, which is a pre-trained model.

Note

The pre-trained model being used for this file can be found  
at https://www.kaggle.com/watts2/glove6b50dtxt/download.  
Download this file and place it in the data folder of Chapter 6, 
Vector Representation. 

Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. Add the following statement to import the numpy library:

import numpy as np

import zipfile

3. Move the downloaded model from the preceding link to the location given in the 
following code snippet. In order to extract data from a ZIP file, use the zipfile 
Python package. Add the following code to unzip the embeddings from the  
ZIP file:

GLOVE_DIR = '../data/'

GLOVE_ZIP = GLOVE_DIR + 'glove6B50d.txt.zip'

print(GLOVE_ZIP)

zip_ref = zipfile.ZipFile(GLOVE_ZIP, 'r')

zip_ref.extractall(GLOVE_DIR)

zip_ref.close()

4. Define a function named load_glove_vectors() to return a model Python 
dictionary. Insert a new cell and add the following code to implement this:

def load_glove_vectors(fn):

    print("Loading Glove Model")

    with open( fn,'r', encoding='utf8') as glove_vector_file:

        model = {}

        for line in glove_vector_file:

https://www.kaggle.com/watts2/glove6b50dtxt/download
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            parts = line.split()

            word = parts[0]

            embedding = np.array([float(val) \

                        for val in parts[1:]])

            model[word] = embedding

        print("Loaded {} words".format(len(model)))

    return model

glove_vectors = load_glove_vectors(GLOVE_DIR +'glove6B50d.txt')

Here, glove_vector_file is a text file containing a dictionary. In this, words 
act as keys and vectors act as values. So, we need to read the file line by line, 
split it, and then map it to a Python dictionary. The preceding code generates the 
following output:

Loading Glove Model

Loaded 400000 words

If we want to view the values of glove_vectors, then we insert a new cell and 
add the following code:

glove_vectors

You will get the following output:

Figure 6.15: Dictionary of glove_vectors

The order of the result dictionary can vary as it is a Python dict.
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5. The glove_vectors object is basically a dictionary containing the mappings 
of the words to the vectors, so you can access the vector for a word, which will 
return a 50-dimensional vector. Insert a new cell and add the code to check the 
vector for the word dog:

glove_vectors["dog"]

Figure 6.16: Array of glove vectors with an input of dog

In order to see the vector for the word cat, add the following code:

glove_vectors["cat"]

Figure 6.17: Array of glove vectors with an input of cat
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6. Now that you have the vectors, represent them as an image using the pyplot 
framework of the Matplotlib library. Insert a new cell and add the following code 
to implement this:

%matplotlib inline

import matplotlib.pyplot as plt

def to_vector(glove_vectors, word):

    vector = glove_vectors.get(word.lower())

    if vector is None:

        vector = [0] * 50

    return vector

def to_image(vector, word=''):

    fig, ax = plt.subplots(1,1)

    ax.tick_params(axis='both', which='both',\

                   left=False, \

                   bottom=False, \

                   top=False,\

                   labelleft=False,\

                   labelbottom=False)

    ax.grid(False)

    ax.bar(range(len(vector)), vector, 0.5)

    ax.text(s=word, x=1, y=vector.max()+0.5)

    return vector

In the preceding code, you defined two functions. The to_vector() function 
accepts glove_vectors and word as parameters. Here, the get() function 
of glove_vectors will find the word and convert it into lowercase. The result 
will be stored in the vector variable.

7. The to_image() function takes vector and word as input and shows the 
image representation of vector. To find the image representation of the word 
man, type the following code: 

man = to_image(to_vector(glove_vectors, "man"))
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The code generates the following output:

Figure 6.18: Graph generated with an input of man

8. To find the image representation of the word woman, type the following code:

woman = to_image(to_vector(glove_vectors, "woman"))

This will generate the following output:

Figure 6.19: Graph generated with an input of woman
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9. To find the image representation of the word king, type the following code:

king = to_image(to_vector(glove_vectors, "king"))

This will generate the following output:

Figure 6.20: Graph generated with an input of king

10. To find the image representation of the word queen, type the following code:

queen = to_image(to_vector(glove_vectors, "queen"))

This will generate the following output:

Figure 6.21: Graph generated with an input of queen



308 | Vector Representation

11. To find the image representation of the vector for king – man + woman – 
queen, type the following code:

diff = to_image(king – man + woman - queen)

This will generate the following output:

Figure 6.22: Graph generated with (king-man+woman-queen) as input

12. To find the image representation of the vector for king – man + woman, 
type the following code:

nd = to_image(king – man + woman)

This will generate the following output:

Figure 6.23: Graph generated with (king-man+woman) as input
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Note

To access the source code for this specific section, please refer  
to https://packt.live/33btLpH.

This section does not currently have an online interactive example, and will 
need to be run locally.

The preceding results are the visual proof of the example we already discussed. 
We've learned how to load and use pre-trained word vectors and view their image 
representations. In the next section, we will focus on document vectors and  
their uses.

Document Vectors

Word vectors and word embeddings represent words. But if we wanted to represent 
a whole document, we'd need to use document vectors. Note that when we refer to 
a document, we are referring to a collection of words that have some meaning to a 
user. A document can be a single sentence or a group of sentences. A document can 
consist of product reviews, tweets, or lines of movie dialogue, and can be from a few 
words to thousands of words. A document can be used in a machine learning project 
as an instance of something that the algorithm can learn from. We can represent a 
document with different techniques:

• Calculating the mean value: We calculate the mean of all the constituent word 
vectors of a document and represent the document by the mean vector.

• Doc2Vec: Doc2Vec is a technique by which we represent documents by 
a fixed-length vector. It is trained quite similarly to the way we train the 
Word2Vec model. Here, we also add the unique ID of the document to which 
the word belongs. Then, we can get the vector of the document from the trained 
model using the document ID.

Similar to Word2Vec, the Doc2Vec class contains parameters such as min_count, 
window, vector_size, sample, negative, and workers. The min_count 
parameter ignores all the words with a frequency less than that specified. The 
window parameter sets the maximum distance between the current and predicted 
words in the given sentence. The vector_size parameter sets the dimensions of 
each vector. 

https://packt.live/33btLpH
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The sample parameter defines the threshold that allows us to configure the higher-
frequency words that are regularly down-sampled, while negative specifies the 
total amount of noise words that should be drawn and workers specifies the total 
number of threads required to train the model. To build the vocabulary from the 
sequence of sentences, Doc2Vec provides the build_vocab method. We'll be 
using all of these in the upcoming exercise.

Uses of Document Vectors

Some of the uses of document vectors are as follows:

• Similarity: We can use document vectors to compare texts for similarity. For 
example, legal AI software can use document vectors to find similar legal cases.

• Recommendations: For example, online magazines can recommend similar 
articles based on those that users have already read.

• Predictions: Document vectors can be used as input into machine learning 
algorithms to build predictive models.

In the next section, we will perform an exercise based on document vectors.

Exercise 6.06: Converting News Headlines to Document Vectors

In this exercise, we will convert some news headlines into document vectors. Also, we 
will look at the image representation of the vector. Again, for image representation, 
we will be using the pyplot framework of the Matplotlib library. Follow these steps to 
complete this exercise:

Note

The file which we are going to use in this exercise is in zipped format  
and can be found at https://packt.live/3fhE2TG. It should be unzipped  
once downloaded.

1. Open a Jupyter notebook.

2. Import all the necessary libraries for this exercise. You will be using the gensim 
library. Insert a new cell and add the following code:

import pandas as pd

from gensim import utils

from gensim.models.doc2vec import TaggedDocument

https://packt.live/3fhE2TG
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from gensim.models import Doc2Vec

from gensim.parsing.preprocessing \

import preprocess_string, remove_stopwords

import random

import warnings

warnings.filterwarnings("ignore")

In the preceding code snippet, other than other imports, you imported 
TaggedDocument from gensim, which prepares the document formats 
used in Doc2Vec. It represents the document along with the tag. This will be 
clearer from the following code lines. Doc2Vec requires each instance to be a 
TaggedDocument instance.

3. Move the downloaded file to the following location and create a variable of the 
path as follows:

sample_news_data = '../data/sample_news_data.txt'

4. Now load the file:

with open(sample_news_data, encoding="utf8", \

          errors='ignore') as f:

    news_lines = [line for line in f.readlines()]

5. Now create a DataFrame out of the headlines as follows:

lines_df = pd.DataFrame()

indices  = list(range(len(news_lines)))

lines_df['news'] = news_lines

lines_df['index'] = indices

6. View the head of the DataFrame using the following code:

lines_df.head()
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This will create the following output:

Figure 6.24: Head of the DataFrame

7. Create a class, the object of which will create the training instances for the 
Doc2Vec model. Insert a new cell and add the following code to implement this:

class DocumentDataset(object):

    

    def __init__(self, data:pd.DataFrame, column):

        document = data[column].apply(self.preprocess)

        self.documents = [ TaggedDocument( text, [index]) \

                          for index, text in \

                          document.iteritems() ]

      

    def preprocess(self, document):

        return preprocess_string(\

            remove_stopwords(document))

        

    def __iter__(self):

        for document in self.documents:

            yield documents

            

    def tagged_documents(self, shuffle=False):

        if shuffle:

            random.shuffle(self.documents)

        return self.documents
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In the code, the preprocess_string() function applies the given filters 
to the input. As its name suggests, the remove_stopwords() function 
is used to remove stopwords from the given document. Since Doc2Vec 
requires each instance to be a TaggedDocument instance, we create a list of 
TaggedDocument instances for each headline in the file.

8. Create an object of the DocumentDataset class. It takes two parameters. One 
is the lines_df_small DataFrame and the other is the Line column name. 
Insert a new cell and add the following code to implement this:

documents_dataset = DocumentDataset(lines_df, 'news')

9. Create a Doc2Vec model using the Doc2Vec class. Insert a new cell and add 
the following code to implement this:

docVecModel = Doc2Vec(min_count=1, window=5, vector_size=100, \

                      sample=1e-4, negative=5, workers=8)

docVecModel.build_vocab(documents_dataset.tagged_documents())

10. Now you need to train the model using the train() function of the Doc2Vec 
class. This could take a while, depending on how many records we train. Here, 
epochs represents the total number of records required to train the document. 
Insert a new cell and add the following code to implement this: 

docVecModel.train(documents_dataset.\

                  tagged_documents(shuffle=True),\

                  total_examples = docVecModel.corpus_count,\

                  epochs=10)

11. Save this model for future use as follows:

docVecModel.save('../data/docVecModel.d2v')

12. The model has been trained. To verify this, access one of the vectors with its 
index. To do this, insert a new cell and add the following code to find the doc 
vector of index 657:

docVecModel[657]
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You should get an output similar to the one below:

Figure 6.25: Lines represented as vectors

13. To check the image representation of any given vector, make use of the pyplot 
framework of the Matplotlib library. The show_news_lines() function takes 
a line number as a parameter. Based on this line number, find the vector and 
store it in the doc_vector variable. The show_image() function takes two 
parameters, vector and line, and displays an image representation of the 
vector. Insert a new cell and add the following code to implement this:

import matplotlib.pyplot as plt

def show_image(vector, line):

    fig, ax = plt.subplots(1,1, figsize=(10, 2))

    ax.tick_params(axis='both', \

                   which='both',\

                   left=False, \

                   bottom=False,\

                   top=False,\

                   labelleft=False,\

                   labelbottom=False)

    ax.grid(False)

    print(line)
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    ax.bar(range(len(vector)), vector, 0.5)

def show_news_lines(line_number):

    line = lines_df[lines_df.index==line_number].news

    doc_vector = docVecModel[line_number]

    show_image(doc_vector, line)

14. Now that you have defined the functions, implement the  
show_news_lines() function to view the image representation of  
the vector. Insert a new cell and add the following code to implement this:

show_news_lines(872)

The code generates the following output:

Figure 6.26: Image representation of a given vector

Note

To access the source code for this specific section, please refer  
to https://packt.live/30dFxxV.

You can also run this example online at https://packt.live/39MiTQG.

We have learned how to represent a document as a vector. We have also seen a 
visual representation of this. In the next section, we will complete an activity to find 
similar news headlines using the document vector.

https://packt.live/30dFxxV
https://packt.live/39MiTQG
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Activity 6.01: Finding Similar News Article Using Document Vectors

To complete this activity, you need to build a news search engine that finds similar 
news articles like the one provided as input using the Doc2Vec model. You will find 
headlines similar to "US raise TV indecency US politicians are proposing a tough  
new law aimed at cracking down on indecency." Follow these steps to complete  
this activity:

1. Open a Jupyter notebook and import the necessary libraries.

2. Load the new article lines file.

3. Iterate over each headline and split the columns and create a DataFrame.

4. Load the Doc2Vec model that you created in the previous exercise.

5. Create a function that converts the sentences into vectors and another that does 
the similarity checks.

6. Test both the functions.

Note

The full solution to this activity can be found on page 406.

So, in this activity, we were able to find similar news headlines with the help of 
document vectors. A common use case of inferring text similarity from document 
vectors is in text paraphrasing, which we'll explore in detail in the next chapter.

Summary
In this chapter, we learned about the motivations behind converting human 
language in the form of text into vectors. This helps machine learning algorithms to 
execute mathematical functions on the text, detect patterns in language, and gain 
an understanding of the meaning of the text. We also saw different types of vector 
representation techniques, such as character-level encoding and one-hot encoding. 

In the next chapter, we will look at the areas of text paraphrasing, summarization, 
and generation. We will see how we can automate the process of text summarization 
using the NLP techniques we have learned so far.







Overview

This chapter begins with the concept of text generation using Markov 
chains, before moving on to two types of text summarization—namely, 
abstractive and extractive summarization. You will then explore the 
TextRank algorithm and use it with different datasets. By the end of this 
chapter, you will understand the applications and challenges of text 
generation and summarization using Natural Language Processing 
(NLP) approaches.

Text Generation and 

Summarization

7
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Introduction
The ability to express thoughts in words (sentence generation), the ability to replace 
a piece of text with different but equivalent text (paraphrasing), and the ability to find 
the most important parts of a piece of text (summarization) are all key elements of 
using language. Although sentence generation, paraphrasing, and summarization are 
challenging tasks in NLP, there have been great strides recently that have made them 
considerably more accessible. In this chapter, we explore them in detail and see how 
we can implement them in Python.

Generating Text with Markov Chains
An idea is expressed using the words of a language. As ideas are not tangible, it is 
useful to look at text generation in order to gauge whether a machine can think 
on its own. The utility of text generation is currently limited to an auto-complete 
functionality, besides a few negative use cases that we will discuss later in this 
section. Text can be generated in many different ways, which we will explore using 
Markov chains. Whether this generated text can correspond to a coherent line of 
thought is something that we will address later in this section.

Markov Chains

A state space defines all possible states that can exist. A Markov chain consists of a 
state space and a specific type of successor function. For example, in the case of the 
simplified state space to describe the weather, the states could be Sunny, Cloudy, or 
Rainy. The successor function describes how a system in its current state can move 
to a different state or even continue in the same state. To better understand this, 
consider the following diagram:
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Figure 7.1: Markov chain for weather

The successor function of a Markov chain is a random selection of a successor 
state based on probabilities. For instance, consider that the initial state is randomly 
selected as Rainy. The next state could be Rainy (there is a 0.8 probability that the 
state stays Rainy). Then, the next state could be Sunny (there is a 0.05 probability 
associated with this transition). It could be Rainy again, and then it could be Cloudy, 
and so on. Our sequence of states is Rainy-Rainy-Sunny-Rainy-Cloudy. For each 
state, the successor state is found by a random selection; this is called a random walk 
on the Markov chain.
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Similarly, if we have a state space in which the states correspond to a vocabulary, 
then a random walk on such a Markov chain will generate text. Now, the vocabulary 
could have around 20,000 words. In this case, the Markov chain will have 20,000 
states. The probabilities in this case will correspond to the likelihood of a word 
succeeding a given word. We can begin with any state randomly drawn from among 
the words that could be used for the first word of a sentence, for example, common 
words such as "the, " "a, " "I, " "he, " "she, " "if, " "this, " "why, " and "where". We 
then find its successor state in a random way, followed by the next successor state 
found in a random way, and continue in the same manner until we have generated a 
sequence of words of the required length. In the next section, we will do an exercise 
related to Markov chains to get a better understanding of them.

Exercise 7.01: Text Generation Using a Random Walk over a Markov Chain

In this exercise, we will generate text with the help of Markov chains. We will use 
Robert Frost's collection of poems, North of Boston, available from Project Gutenberg, 
to specify the successor state(s) for each state using a dictionary. We'll use a list to 
specify the successor state(s) for any state so that the number of times a successor 
state occurs in that list is directly proportional to the probability of transitioning to 
that successor state. 

Then, we will generate 10 phrases with three words in addition to an initial word, and 
then generate another 10 phrases with four words in addition to an initial word. The 
initial state or initial word will be randomly selected from among these words: "the," 
"a," "I," "he," "she," "if," "this," "why," and "where." Note that since we are generating 
text using a random walk over a Markov chain, in general, the output you get will be 
different from the output shown in this exercise. Each different output corresponds 
to new text generation.

Note

You can find the text file that's been used for this exercise  
at https://packt.live/2DiGAE3.

https://packt.live/2DiGAE3
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Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries 
and read the dataset:

import re

import random

OPEN_DATA_URL = '../data/robertfrost/pg3026.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

3. Insert a new cell and add the following code to preprocess the text using 
regular expressions:

HANDLE = '@\w+\n'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '&lt;|&lt;|&amp;|#'

PARA='\n+'

def clean(text):

    #text = re.sub(HANDLE, ' ', text)

    text = re.sub(LINK, ' ', text)

    text = re.sub(SPECIAL_CHARS, ' ', text)

    text = re.sub(PARA, '\n', text)

    return text

text = clean(text)

4. Split the corpus into a list of words. Show the number of words in the corpus:

corpus=text.split()

corpus_length=len(corpus)

corpus_length

The preceding code generates the following output:

19985
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5. Insert a new cell and add the following code to define the successor states for 
each state. Use a dictionary for this:

succ_func={}

corpus_counter=0

for token in corpus:

    corpus_counter=corpus_counter+1

    if corpus_counter<corpus_length:

        if token not in succ_func.keys():

            succ_func[token]=[corpus[corpus_counter]]

        else:

            succ_func[token].append(corpus[corpus_counter])

succ_func

The preceding code generates an output as follows. Note that we're only 
displaying a part of the output here.

Figure 7.2: Dictionary of successor states

We find that "he" is shown as a successor of "who" more than once. This is 
because this occurs more than once in the dataset. In effect, the number 
of times the successors occur in the list is proportional to their respective 
probabilities. Though it is not the only method, this is a convenient way to 
represent the successor function.

6. Define the list of initial states. Then, define a function to select a random initial 
state from these and concatenate it with successor states. These successor 
states are randomly selected from the list containing successor states for a 
specific current state. Add the following code to do this:

initial_states=['The','A','I','He','She','If',\

                'This','Why','Where']

def generate_words(k=5):
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    initial_state=random.choice(initial_states)

    current_state=initial_state

    text=current_state+' '

    for i in range(k):

        succ_state=random.choice(succ_func[current_state])

        text=text+succ_state+' '

        current_state=succ_state

    print(text.split('.')[0])

7. Insert a new cell and add the following code to generate text containing 10 
phrases of four words (including the initial word) and 10 phrases of five words 
(including the initial word):

for k in range(3,5):

    for j in range(10):

        generate_words(k)

The preceding code generates the following output:

Figure 7.3: Phrases generated, consisting of four and five words
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Note

To access the source code for this specific section, please refer  
to https://packt.live/313fiJY.

You can also run this example online at https://packt.live/33ilO2l.

It's quite interesting that we are able to generate text using a random walk over a 
Markov chain. If we look more closely, we will see that only a few of the phrases make 
sense. Broadly speaking, we are generating text that has an element of Robert Frost's 
style. However, it can hardly be said to correspond to a thought of any kind.

The practical utility of generating text using a Markov chain is somewhat limited 
to generating spam (spam generators could use a Markov chain) and generating 
something that is a little amusing. Nevertheless, this exercise demonstrates the 
surprising results we can get by using a simple approach in which nothing about the 
structure of a language is explicitly taught to the machine.

In general, auto-complete is one positive use case and arguably the sole positive use 
case for text generation given that other use cases (besides spam) tend to include the 
generation of misinformation.

Paraphrasing involves replacing some text with different text that has the same 
meaning. Now, intuitively, a machine will be able to tell whether one piece of text is 
a paraphrase of another, but only if that machine understands the meaning. So, one 
way of checking whether a machine understands the meaning of a piece of text is to 
check if it can tell if another different piece of text is a paraphrase of that first text.

Benchmark datasets provide a standard touchstone for evaluating approaches 
to solve a problem. The approaches are typically ranked in a publicly available 
leaderboard. Even in the case of such benchmark datasets, as of February 21, 
2020, the SuperGLUE leaderboard (https://super.gluebenchmark.com/leaderboard) sets 
human baselines at the top when considered across a variety of tasks. This means 
that humans are superior at paraphrasing than the most sophisticated approaches 
even on the specified datasets. Paraphrasing is even tougher outside of benchmark 
datasets because it is tougher to teach models in a more general way so that the 
model is as effective for other datasets. Thus, compared to machines, humans can 
paraphrase even better on other datasets than machines can. In short, paraphrasing 
using NLP is challenging and is currently of limited practical utility to the practitioner. 
In the next section, we will learn about summarization.

https://packt.live/313fiJY
https://packt.live/33ilO2l
https://super.gluebenchmark.com/leaderboard
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Text Summarization
Automated text summarization is the process of using NLP tools to produce concise 
versions of text that preserve the key information present in the original content. 
Good summaries can communicate the content with less text by retaining the key 
information while filtering out other information and noise (or useless text, if any). 
A shorter text may often take less time to read, and thus summarization facilitates 
more efficient use of time.

The type of summarization that we are typically taught in school is abstractive 
summarization. One way to think of this is to consider abstractive summarization as 
a combination of understanding the meaning and expressing it in fewer sentences. 
It is usually considered as a supervised learning problem as the original text and 
the summary are both required. However, a piece of text can be summarized in 
more than one way. This makes it hard to teach the machine in a general way. While 
abstractive summarization is an active area of research, it is, for the time being, not at 
a stage that will be of interest to the practitioner.

There is another form of summarization, called extractive summarization, in which 
parts of the text are extracted to form a summary. There is no paraphrasing in this 
form of summarization. This second type will be the focus of the remainder of this 
section. We will look at the TextRank algorithm, which is an unsupervised machine 
learning method. For simplicity, we will focus on single-document summarization in 
this chapter. To implement this, we will be using the gensim library.

TextRank

TextRank is a graph-based algorithm (developed by Rada Mihalcea and Paul Tarau) 
used to find the key sentences in a piece of text. As we already know, in graph  
theory, a graph has nodes and edges. In the TextRank algorithm, we estimate the 
importance of each sentence and create a summary with the sentences that have the 
highest importance.
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The TextRank algorithm works as follows:

1. Represent a unit of text (say, a sentence) as a node.

2. Each node is given an arbitrary importance score.

3. Each edge has a weight that corresponds to the similarity between two nodes 
(for instance, the sentences Sx and Sy). The weight could be the number of 
common words (say, wk) in the two sentences divided by the sum of the number 
of words in the two sentences. This can be represented as follows:

Figure 7.4: Formula for similarity between two sentences

4. For each node, we compute a new importance score, which is a function of the 
importance score of the neighboring nodes and the edge weights (wji) between 
them. Specifically, the function (f) could be the edge-weighted average score of 
all the neighboring nodes that are directed toward that node that is adjusted 
by all the outward edge weights (wjk) and the damping factor (d). This can be 
represented as follows:

Figure 7.5: Formula for importance score

d=0.85 is typically used as the damping factor. While we have used a directed 
graph here, an undirected graph could also be used with a TextRank algorithm.

5. We repeat the preceding step until the importance score varies by less than a 
pre-defined tolerance level in two consecutive iterations.

6. Sort the nodes in decreasing order of the importance scores.

7. The top n nodes give us a summary.
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The number of iterations required for convergence depends on the number of nodes 
and the connectedness among the nodes. The number of iterations required for an 
undirected graph is expected to be higher than the number of iterations required 
for a directed graph since the edges don't have a direction in the case of the former. 
We typically use a directed graph in the TextRank algorithm. In general, around 20-40 
iterations may be required for convergence. We can drop edges that have less than 
a certain threshold weight for faster convergence since they won't have much of an 
impact on the result anyway. The basic concept underpinning the TextRank algorithm 
is that key parts of a document are connected to form a coherent summary.

Key Input Parameters for TextRank
We'll be using the gensim library to implement TextRank. The following are the 
parameters required for this:

• text: This is the input text.

• ratio: This is the required ratio of the number of sentences in the summary to 
the number of sentences in the input text.

The gensim implementation of the TextRank algorithm uses BM25—a probabilistic 
variation of TF-IDF—for similarity computation in place of the similarity measure 
described in step 3 of the algorithm. This will be clearer in the following exercise, in 
which you will summarize text using TextRank.

Exercise 7.02: Performing Summarization Using TextRank

In this exercise, we will use the classic short story, After Twenty Years by O. Henry, 
which is available on Project Gutenberg, and the first section of the Wikipedia article 
on Oscar Wilde. We will summarize each text separately so that we have 20% of the 
sentences in the original text and then have 25% of the sentences in the original text 
using the gensim implementation of the TextRank algorithm. In all, we shall extract 
and print four summaries.

In addition to these libraries, you will need to import the following:

from gensim.summarization import summarize

summarize(text,ratio=0.20)
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In the preceding code snippet, ratio=0.20 means that 20% of the sentences from 
the original text will be used to create the summary.

Note

The text corpus for O. Henry's short story, After Twenty Years, being used in 
this exercise can be found at https://packt.live/33atvr0.

The Oscar Wilde section from the Wikipedia article can be found  
at https://packt.live/3fhEocY.

Complete the following steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries 
and extract the required text from After Twenty Years:

from gensim.summarization import summarize

import wikipedia

import re

file_url_after_twenty=r'../data/ohenry/pg2776.txt'

with open(file_url_after_twenty, 'r') as f:

        contents = f.read()

start_string='AFTER TWENTY YEARS\n\n\n'

end_string='\n\n\n\n\n\nLOST ON DRESS PARADE'

text_after_twenty=contents[contents.find(start_string):\

                           contents.find(end_string)]

text_after_twenty=text_after_twenty.replace('\n',' ')

text_after_twenty=re.sub(r"\s+"," ",text_after_twenty)

text_after_twenty

https://packt.live/33atvr0
https://packt.live/3fhEocY
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The preceding code generates the following output:

Figure 7.6: Text from After Twenty Years

3. Add the following code to extract the required text and print the summarized 
text, with the ratio parameter set to 0.2:

summary_text_after_twenty=summarize(text_after_twenty, \

                                    ratio=0.2)

print(summary_text_after_twenty)

The preceding code generates the following output:

Figure 7.7: Summarized text when the ratio parameter is 0.2

4. Insert a new cell and add the following code to summarize the text and print the 
summarized text, with the ratio parameter set to 0.25:

summary_text_after_twenty=summarize(text_after_twenty, \

                                    ratio=0.25)

print(summary_text_after_twenty)

The preceding code generates the following output:

Figure 7.8: Summarized text when the ratio parameter is 0.25
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5. Insert a new cell and add the following code to extract the required text from the 
Wikipedia page for Oscar Wilde:

#text_wiki_oscarwilde=wikipedia.summary("Oscar Wilde")

file_url_wiki_oscarwilde=r'../data/oscarwilde/'\

                          'ow_wikipedia_sum.txt'

with open(file_url_wiki_oscarwilde, 'r', \

          encoding='latin-1') as f:

        text_wiki_oscarwilde = f.read()

text_wiki_oscarwilde=text_wiki_oscarwilde.replace('\n',' ')

text_wiki_oscarwilde=re.sub(r"\s+"," ",text_wiki_oscarwilde)

text_wiki_oscarwilde

The preceding code generates the following output:

Figure 7.9: Text from the Wikipedia page for Oscar Wilde

6. Insert a new cell and add the following code to summarize the text and print the 
summarized text using ratio=0.2:

summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, \

                                  ratio=0.2)

print(summary_wiki_oscarwilde)

The preceding code generates the following output:

Figure 7.10: Summarized text when the ratio parameter is 0.2

7. Add the following code to summarize the text and print the summarized text 
using ratio=0.25:

summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, \

                                  ratio=0.25)

print(summary_wiki_oscarwilde)
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The preceding code generates the following output:

Figure 7.11: Summarized text when the ratio is 0.25

Note

To access the source code for this specific section, please refer  
to https://packt.live/3i5sNQn.

You can also run this example online at https://packt.live/39G0Knx.

We find that the summary for the Wikipedia article is much more coherent than the 
short story. We can also see that the summary with a ratio of 0.20 is a subset of 
a summary with a ratio of 0.25. Would extractive summarization work better for 
a children's fairytale than it does for an O. Henry short story? Let's explore this in the 
next exercise.

Exercise 7.03: Summarizing a Children's Fairy Tale Using TextRank 

In this exercise, we consider the fairy tale Little Red Riding Hood in two variations  
for the input texts. The first variation is from Children's Hour with Red Riding Hood  
and Other Stories, edited by Watty Piper, while the second variation is from The  
Fairy Tales of Charles Perrault, both of which are available on Project Gutenberg's 
website. The aim of this exercise is to explore how TextRank (gensim) performs on 
this summarization.

Note

You can find the text from the Watty Piper variation  
at https://packt.live/2Xd30xy. The text from the Charles Perrault  
version can be found at https://packt.live/30g5ZHy.

https://packt.live/3i5sNQn
https://packt.live/39G0Knx
https://packt.live/2Xd30xy
https://packt.live/30g5ZHy
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Complete the following steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the required libraries:

from gensim.summarization import summarize

import re

3. Insert a new cell and add the following code to fetch Watty Piper's version of 
Little Red Riding Hood:

file_url_grimms=r'../data/littleredrh/pg11592.txt'

with open(file_url_grimms, 'r') as f:

        contents_grimms = f.read()

start_string_grimms='LITTLE RED RIDING HOOD\n\n\n'

end_string_grimms='\n\n\n\n\nTHE GOOSE-GIRL'

text_grimms=contents_grimms[contents_grimms.find(\

                            start_string_grimms):\

                            contents_grimms.find(\

                            end_string_grimms)]

text_grimms=text_grimms.replace('\n',' ')

text_grimms=re.sub(r"\s+"," ",text_grimms)

text_grimms

The preceding code generates the following output:

Figure 7.12: Text from the Watty Piper variation of Little Red Riding Hood

4. Insert a new cell, add the following code, and fetch the Perrault fairy tale version 
of Little Red Riding Hood:

file_url_perrault=r'../data/littleredrh/pg29021.txt'

with open(file_url_perrault, 'r') as f:

        contents_perrault = f.read()

start_string_perrault='Little Red Riding-Hood\n\n'

end_string_perrault='\n\n_The Moral_'

text_perrault=contents_perrault[contents_perrault.find(\

                                start_string_perrault):\
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                                contents_perrault.find(\

                                end_string_perrault)]

text_perrault=text_perrault.replace('\n',' ')

text_perrault=re.sub(r"\s+"," ",text_perrault)

text_perrault

The preceding code generates the following output:

Figure 7.13: Tales from the Perrault version of Little Red Riding Hood

5. Insert a new cell and add the following code to generate the two summaries with 
a ratio of 0.20:

llrh_grimms_textrank=summarize(text_grimms,ratio=0.20)

llrh_perrault_textrank=summarize(text_perrault,ratio=0.20)

6. Insert a new cell and add the following code to print the TextRank summary 
(ratio of 0.20) of Grimm's version of Little Red Riding Hood:

print(llrh_grimms_textrank)

The preceding code generates the following output:

Figure 7.14: Output after implementing TextRank on the Watty Piper variation

7. Insert a new cell and add the following code to print the TextRank summary 
(ratio of 0.20) of Perrault's version of Little Red Riding Hood:

print(llrh_perrault_textrank)

The preceding code generates the following output:

Figure 7.15: Output after implementing TextRank on the Perrault version
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8. Add the following code to generate two summaries with a ratio of 0.5:

llrh_grimms_textrank=summarize(text_grimms,ratio=0.5)

llrh_perrault_textrank=summarize(text_perrault,ratio=0.5)

9. Add the following code to print a TextRank summary (ratio of 0.5) of Piper's 
version of Little Red Riding Hood:

print(llrh_grimms_textrank)

The preceding code generates the following output:

Figure 7.16: Output after implementing TextRank on the Watty Piper variation

10. Add the following code to print a TextRank summary (ratio of 0.5) of 
Perrault's version of Little Red Riding Hood:

print(llrh_perrault_textrank)

The preceding code generates the following output:

Figure 7.17: Output after implementing TextRank on the Perrault version

Note

To access the source code for this specific section, please refer  
to https://packt.live/3i5sRzB.

You can also run this example online at https://packt.live/2XfObu1.

With this, we've found that the four summaries lack coherency and are also 
incomplete. This is also true of the two summaries with a ratio of 0.5—that 
is, even when half of the sentences are extracted for the summary. This might be 
because the conversations in the fairytale are contextual in nature, as a sentence 
often refers to the preceding sentence(s). This contextual aspect of language makes 
NLP complex for machines.

https://packt.live/3i5sRzB
https://packt.live/2XfObu1
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Interestingly, extractive summarization works much better for an O. Henry short story 
such as After Twenty Years than it does for a children's fairytale such as Little Red Riding 
Hood. Furthermore, this is not specific to the language used by a specific author, as 
we have explored with two different variations of this fairytale. It seems a fairytale is 
unsuitable for extractive summarization. Lets now do an activity in which we'll use the 
TextRank algorithm to summarize complaints that customers have written against 
some organizations.

Activity 7.01: Summarizing Complaints in the Consumer Financial Protection 

Bureau Dataset

The Consumer Financial Protection Bureau publishes consumer complaints made 
against organizations in the financial sector. This original dataset is available at https://
www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data. To 
complete this activity, you will summarize a few complaints using TextRank. 

Note

You can find the dataset to be used for this activity at 
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_
E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv.  
To complete the activity, you will need to place the .csv file into the  
data folder for this chapter in your local directory.

Follow these steps to implement this activity:

1. Import the summarization libraries and instantiate the summarization model.

2. Load the dataset from a .csv file into a pandas DataFrame. Drop all columns 
other than Product, Sub-product, Issue, Sub-issue, and Consumer 
complaint narrative.

3. Select 12 complaints corresponding to the rows 242830, 1086741, 536367, 
957355, 975181, 483530, 950006, 865088, 681842, 536367, 132345, and 
285894 from the 300,000 odd complaints with a narrative. Note that since the 
dataset is an evolving dataset, the use of a version that's different from the one 
in the data folder could give different results because the input texts could  
be different.

https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv
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4. Add a column with the TextRank summary. Each element of this column 
corresponds to a summary, using TextRank, of the complaint narrative in the 
corresponding column. Use a ratio of 0.20. Also, use a try-except clause 
since the gensim implementation of the TextRank algorithm throws exceptions 
with summaries that have very few sentences.

5. Show the DataFrame. You should get an output similar to the following figure:

Figure 7.18: DataFrame showing the summarized complaints

Note

The full solution to this activity can be found on page 409.

Recent Developments in Text Generation and Summarization
Alan Turing (for whom the equivalent of the Nobel Prize in Computer Science is 
named) proposed a test for artificial intelligence in 1950. This test, known as the 
Turing Test, says that if humans ask questions and cannot distinguish between text 
responses generated by a machine and a human, then that machine can be deemed 
to be intelligent. 
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Text generation using very large models, such as the GPT-2 (with around 1.5 billion 
parameters) and BERT (Bidirectional Encoder Representation from Transformers) 
(with around 340 million parameters), can aid in auto-completion tasks. Auto-
completion presents unique ethical challenges. While it can offer convenience, it 
can also reinforce biases in the data. This is accentuated by the fact that most user 
experience layouts can show only a limited number of options. Furthermore, auto-
completion can controversially suggest responses that are different from what the 
sender originally wants to type.

Unfortunately, most use cases for text generation are negative use cases for 
generating spam and misinformation. Given that the Turing Test may not be passed 
any time soon, we are clearly nowhere near considering text generation as a proxy 
for thought within a machine and there is no widely accepted benchmark for  
text generation.

Since late 2018, with the invention of self-attention, transformers, and BERT, these 
approaches are generally considered the best way to teach a machine about some 
of the most challenging NLP tasks. Self-attention is a technique in which a word 
is combined with other words in its neighborhood by matrix multiplications. Such 
multiplications are possible because of vector representations of words. Using such 
combined representations for all the words in a sentence allows us to represent a 
sentence in a way that captures context. This allows us to build much larger models 
that have a significantly higher capacity to learn. A transformer is a combination of 
attention units and includes position information for each word, that is, multiple self-
attention layers and position information are used to capture the context better. 

BERT is a transformer that learns the sequential structure of a text in both directions, 
that is, from left to right and from right to left. This is achieved by randomly masking 
the words while the model is trained, much like how children are often taught a 
language by using fill-in-the-blanks exercises. Such is the generalized learning of 
BERT that it can be used even for translation-related tasks, even though it has not 
been specifically taught translation as a task. BERT and other large models, such as 
GPT-2, require a huge computing infrastructure, which is generally not available to 
most people outside of leading universities and the biggest technology corporations. 
Pre-trained models fill the void in such cases. The TextRank algorithm considers each 
sentence to be a bag of words. With the advent of BERT, it is possible for us to have a 
superior sentence representation that captures meaning much better than the bag of 
words model.
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In the case of summarization, even though there is a benchmark called Recall-
Oriented Understudy for Gisting Evaluation (ROUGE), summarization is best 
evaluated qualitatively given that there isn't only one correct way to summarize text. 
In February 2020, Microsoft's Turing NLG model, which has 17 billion parameters, 
generated abstractive summaries for three examples, which were shared publicly. 
However, the model is not publicly available currently and so the results cannot  
be reproduced.

Furthermore, we don't know how the Microsoft NLG model does with a naïve test 
such as the Little Red Riding Hood test. In general, extractive summarization of 
the kind discussed earlier in this chapter is by far the most useful for practitioners 
compared with the utility of the state-of-the-art technology in text generation 
and paraphrasing. Due to this, in the next section, we'll largely focus on practical 
challenges in extractive summarization.

Practical Challenges in Extractive Summarization
Given the rapid pace of development in NLP, it is even more important to use 
compatible versions of the libraries that we use. Evaluation of a document's suitability 
for extractive summarization can be undertaken manually. Often, we would like to 
summarize multiple pieces of text, all of which could be short in length. The TextRank 
algorithm will not work well in such cases.

All unverified claims reported in this field ought to be taken with a grain of salt until 
the claim has been verified. Such claims ought to be subjected by practitioners to 
naïve tests such as the Little Red Riding test. We can only use a model if it works and 
if the limitations related to scope and any biases are considered.

Summary
In this chapter, we learned about text generation using Markov chains and extractive 
summarization using the TextRank algorithm. We also explored both the power and 
limitations of various advanced approaches. In the next chapter, we will learn about 
sentiment analysis.







Overview

This chapter introduces you to one of the most exciting applications of 
natural language processing—that is, sentiment analysis. You will explore 
the various tools used to perform sentiment analysis, such as popular NLP 
libraries and deep learning frameworks. You will then perform sentiment 
analysis on given text data using the powerful textblob library. You will 
load textual data and perform preprocessing on it to fine-tune the results of 
your sentiment analysis program. By the end of the chapter, you will be able 
to train a sentiment analysis model.

Sentiment Analysis

8
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Introduction
In the previous chapter, we looked at text generation, paraphrasing, and 
summarization, all of which can be immensely useful in helping us focus on only the 
essential and meaningful parts of the text corpus. This, in turn, helps us to further 
refine the results of our NLP project. In this chapter, we will look at sentiment 
analysis, which, as the name suggests, is the area of NLP that involves teaching 
computers how to identify the sentiment behind written content or parsed  
audio—that is, audio converted to text. Adding this ability to automatically detect 
sentiment in large volumes of text and speech opens new possibilities for us to write 
useful software.

In sentiment analysis, we try to build models that detect how people feel. This 
starts with determining what kind of feeling we want to detect. Our application may 
attempt to determine the level of human emotion (most often, whether a person is 
sad or happy; satisfied or dissatisfied; or interested or disinterested and so on). The 
common thread here is that we measure how sentiments vary in different directions. 
This is also called polarity. Polarity signifies the emotions present in a sentence, 
such as joy or anger. For example, "I love oranges" implies an emotionally positive 
statement, whereas "I hate politics" is a strong negative emotion.

Why Is Sentiment Analysis Required?

In machine learning projects, we try to build applications that work similarly to a 
human being. We measure success in part by seeing how close our application is to 
matching human-level performance. Generally, machine learning programs cannot 
exceed human-level performance by a significant margin—especially if our training 
data source is human-generated.

Let's say that we want to carry out a sentiment analysis of product reviews. The 
sentiment analysis program should detect how reviewers feel. Obviously, it is 
impractical for a person to read thousands of movie reviews. This is where automated 
sentiment analysis enters the picture. Artificial intelligence is useful when it is 
impractical for people to perform the task. In this case, the task is reading thousands 
of reviews.
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The Growth of Sentiment Analysis

The field of sentiment analysis is driven by a few main factors. Firstly, it's driven by 
the rapid growth in online content that's used by companies to understand and 
respond to how people feel. Secondly, since sentiment drives human decisions, 
businesses that understand their customers' sentiments have a major advantage in 
predicting and shaping purchasing decisions. Finally, NLP technology has improved 
significantly, allowing the much wider application of sentiment analysis.

The Monetization of Emotion

The growth of the internet and internet services has enabled new business models 
to work with human connection, communication, and sentiment. In January 2020, 
Facebook had about 61.3% of the social media traffic and has been one of the 
most successful social media platforms at connecting people across the world and 
providing features that enable users to express their thoughts and post memorable 
moments from their life online. Similarly, although Twitter had just 14.51% of the 
traffic, it has still proved to be an influential way to display sentiment online.

There are now large amounts of information on social media about what people like 
or dislike. This data is of significant value not only in business but also in political 
campaigns. This means that sentiment has significant business value and can  
be monetized.

Types of Sentiments

There are various sentiments that we can try to detect in language sources. Let's 
discuss a few of them in detail.

Emotion

Sentiment analysis is often used to detect the emotional state of a person. It checks 
whether the person is happy or sad, or content or discontent. Businesses often use it 
to improve customer satisfaction. For example, let's look at the following statement:

"I thought I would have enjoyed the movie, but it left me feeling that it could have 
been better."

In this statement, it seems as though the person who has just watched a movie is 
unhappy about it. A sentiment detector, in this case, would be able to classify the 
review as negative and allow the business (the movie studio, for instance) to adjust 
how they make movies in the future.
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Action Orientation versus Passivity

This is about whether a person is prone to action or not. This is often used to 
determine how close a person is to making a choice. For example, using a travel 
reservation chatbot, you can detect whether a person needs to make a reservation 
urgently or is simply making passive queries and is therefore less likely to book a 
ticket right now. The level of action orientation or passivity provides additional clues 
to detect intention. This can be used to make smart business decisions.

Tone

Speech and text are often meant to convey certain impressions that are not 
necessarily factual and not entirely emotional. Examples of this are sarcasm, irony, 
and humor. This may provide useful additional information about how a person 
thinks. Although tone is tricky to detect, there might be certain words or phrases that 
are often used in certain contexts. We can use NLP algorithms to extract statistical 
patterns from document sources. For example, we can use sentiment analysis to 
detect whether a news article is sarcastic.

Subjectivity versus Objectivity

You may want to detect whether the given text source is subjective or objective. For 
example, you might want to detect whether a person has issued and expressed an 
opinion, or whether their statement reads more like a fact and can only be true or 
false. Let's look at the following two statements to get a better understanding:

• Statement 1: "The duck was overcooked, and I could hardly taste the flavor."

• Statement 2: "Ducks are aquatic birds."

In these two statements, statement 1 should be recognized as a subjective opinion 
and statement 2 as an objective fact. Determining the objectivity of a statement helps 
us decide on the appropriate response to the statement.
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Key Ideas and Terms

Let's look at some of the key ideas and terms that are used in sentiment analysis.

Classification

As we learned in Chapter 3, Developing a Text Classifier, classification is the NLP 
technique of assigning one or more classes to text documents. This helps in 
separating and sorting the documents. If you use classification for sentiment 
analysis, you assign different sentiment classes such as positive, negative, or neutral. 
Sentiment analysis is a type of text classification that aims to create a classifier 
trained on a set of labeled pairs – text and its corresponding sentiment (label). Upon 
training such a classifier on a large labeled dataset, the sentiment analysis model 
generalizes well and can classify unseen text into appropriate sentiment categories.

Supervised Learning

As we have already seen, in supervised learning, we create a model by supplying 
data and labeled targets to the training algorithms. The algorithms learn using this 
supply. When it comes to sentiment analysis, we provide the training dataset with  
the labels that represent the sentiment. For example, for each text in a dataset,  
we would assign a value of 1 if the sentiment is positive, and a value of 0 if the 
statement is negative.

Polarity

Polarity is a measure of how negative or positive the sentiment is in a given language. 
Polarity is used because it is simple and easy to measure and can be easily translated 
to a simple numeric scale. It usually ranges between -1 and 1. Values close to 1 
reflect documents that have positive sentiments, whereas values close to -1 reflect 
documents that have negative sentiments. Values around 0 reflect documents that 
are neutral in sentiment.

It's worth noting that the polarity detected by a model depends on how it has been 
trained. On political Reddit threads, the opinions tend to be highly polarized. On 
the other hand, if you use the same model on business documents to measure 
sentiments, the scores tend to be neutral. So, you need to choose models that are 
trained in similar domains.

Intensity

In contrast to polarity, which is measured from negative to positive, intensity is 
measured in terms of arousal, which ranges from low to high. Most often, the level of 
intensity is included in the sentiment score. It is measured by looking at the closeness 
of the score to 0 or 1.
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Applications of Sentiment Analysis

There are various applications of sentiment analysis.

Financial Market Sentiment

Financial markets operate partially on economic fundamentals but are also heavily 
influenced by human sentiment. Stock market prices, which tend to rise and fall, 
are influenced by the opinions of news articles regarding the overall market or any 
specific securities.

Financial market sentiment helps measure the overall attitude of investors toward 
securities. Market sentiment can be detected using news or social media articles. We 
can use NLP algorithms to build models that detect market sentiment and use those 
models to predict future market prices.

Product Satisfaction

Sentiment analysis is commonly used to determine how customers feel about 
products and services. For example, Amazon makes use of its extensive product 
reviews dataset. This not only helps to improve its products and services but also acts 
as a source of training data for its sentiment analysis services.

Social Media Sentiment

A really useful area of focus for sentiment analysis is social media monitoring. 
Social media has become a key communication medium with which most people 
around the world interact every day, and so there is a large and growing source of 
human language data available there. More importantly, the need for businesses 
and organizations to be able to process and understand what people are saying on 
social media has only increased. This has led to an exponential growth in demand for 
sentiment analysis services.

Brand Monitoring

A company's brand is a significant asset and companies spend a lot of time, 
effort, and money maintaining their brand value. With the growth of social media, 
companies are now exposed to considerable potential brand risks from negative 
social media conversations. On the other hand, there is also the potential for positive 
brand growth from positive interactions and messages on social media. For this 
reason, businesses deploy people to monitor what is said about them and their 
brands on social media. Automated sentiment analysis makes this significantly easier 
and also more efficient.
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Customer Interaction

Organizations often want to know how their customers feel during an interaction in 
an online chat or a phone conversation. In such cases, the objective is to detect the 
level of satisfaction with the service or the products. Sentiment analysis tools help 
companies handle large volumes of text and voice data that are generated during 
customer interaction. Every company, irrespective of the domain, wants to utilize the 
data at their disposal to glean valuable insights, as there is potential revenue to be 
had if companies can gain insights into customer satisfaction.

Tools Used for Sentiment Analysis
There are a lot of tools capable of analyzing sentiment. Each tool has its advantages 
and disadvantages. We will look at each of them in detail.

NLP Services from Major Cloud Providers

Online sentiment analysis is carried out by all major cloud services providers, such as 
Amazon, Microsoft, Google, and IBM. You can usually find sentiment analysis as a part 
of their text analysis services or general machine learning services. Online services 
offer the convenience of packaging all the necessary algorithms behind the provider's 
API. These algorithms are capable of performing sentiment analysis. To use such 
services, you need to provide the text or audio sources, and in return, the services 
will provide you with a measure of the sentiment. These services usually return 
a standard, simple score, such as positive, negative, or neutral. The score usually 
ranges between 0 and 1.

The following are the advantages and disadvantages of NLP services from major 
cloud providers:

Advantages

• You require almost no knowledge of NLP algorithms or sentiment analysis.  
This results in fewer staffing needs.

• Sentiment analysis services provide their own computation, reducing your own 
computational infrastructure needs.

• Online services can scale well beyond what regular companies can do on  
their own.

• You gain the benefits of automatic improvements and updates to sentiment 
analysis algorithms and data.
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Disadvantages

• Online services require—at least temporarily—a reduction in privacy since you 
must provide the documents to be analyzed by the service. Depending on your 
project's privacy needs, this may or may not be acceptable. There might also be 
laws that restrict data crossing into another national jurisdiction.

• The service provided by cloud providers is like one-solution-fits-all and is 
considered very generic, so it won't necessarily apply to niche use cases.

Online Marketplaces

Recently, AI marketplaces have emerged that offer different algorithms from third 
parties. Online marketplaces differ from cloud providers. An online marketplace 
allows third-party developers to deploy sentiment analysis services on their platform.

Here are the advantages and disadvantages of online marketplaces:

Advantages

• AI marketplaces provide the flexibility of choosing between different sentiment 
analysis algorithms instead of just one algorithm. This enables users to try out 
different techniques and see which one fits their business needs the best.

• Using algorithms from an AI marketplace reduces the need for dedicated data 
scientists for your project.

Disadvantages

• Algorithms from third parties are of varying quality.

• Since the algorithms are provided by smaller companies, there is no guarantee 
that they won't disappear. And for businesses, this is a big risk since their 
solution has a direct dependency on a third party that is outside their control.

Python NLP Libraries

There are a few NLP libraries that need to be integrated into your project instead 
of being called upon as services. These are called dedicated NLP libraries and they 
usually include many NLP algorithms from academic research. Sophisticated NLP 
libraries used across the industry are spaCy, gensim, and AllenNLP.

Here are the advantages and disadvantages of Python NLP libraries:
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Advantages

• It's usually state-of-the-art research that goes into these libraries, and they 
usually have well-chosen datasets.

• They provide a framework that makes it much easier to build projects and do 
rapid experiments.

• They offer out-of-the-box abstractions that are required for all NLP projects, such 
as Token and Span.

• They are easy to scale to real-world deployment.

Disadvantages

• This won't be considered a true disadvantage since libraries are meant to be 
general-purpose, but for complex use cases, developers would have to write 
their own implementations as required.

Deep Learning Frameworks

Deep learning libraries such as PyTorch and TensorFlow are meant to be used to 
build complex models for a wide range of applications, not limited to just NLP. These 
libraries provide you with more advanced algorithms and mathematical functions, 
helping you develop powerful and complex models.

The advantages and disadvantages of these frameworks are explained here:

Advantages

• You have the flexibility to develop your sentiment analysis model to meet 
complex business needs.

• You can integrate the latest and the most advanced algorithms when they are 
available in general-purpose libraries.

• You can make use of transfer learning, which takes a model trained on a large 
text source, to fine-tune the training as per your project's needs. This allows you 
to create a sentiment analysis model that is more suitable for your needs.
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Disadvantages

• This approach requires you to have in-depth knowledge of machine learning and 
complex topics such as deep learning.

• Deep learning libraries require a large volume of rich annotated datasets 
along with an intense computational infrastructure to train and experiment 
with different modeling techniques to get a generalized model that's fit to be 
deployed in production. So, there is a requirement for training on non-CPU 
hardware such as GPUs/TPUs.

Now that we've learned about the various tools available for sentiment analysis, let's 
explore the most popular Python libraries.

The textblob library
textblob is a Python library used for NLP, as we've seen in the previous chapters. 
It has a simple API and is probably the easiest way to begin with sentiment analysis. 
textblob is built on top of the NLTK library but is much easier to use. In the 
following sections, we will do an exercise and an activity to get a better understanding 
of how we can use textblob for sentiment analysis.

Exercise 8.01: Basic Sentiment Analysis Using the textblob Library

In this exercise, we will perform sentiment analysis on a given text. For this, we will be 
using the TextBlob class of the textblob library. Follow these steps to complete 
this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to implement to import the 
TextBlob class from the textblob library:

from textblob import TextBlob

3. Create a variable named sentence and assign it a string. Insert a new cell and 
add the following code to implement this:

sentence = "but you are Late Flight again!! "\

           "Again and again! Where are the  crew?" 
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4. Create an object of the TextBlob class. Add sentence as a parameter  
to the TextBlob container. Insert a new cell and add the following code to 
implement this:

blob = TextBlob(sentence)

5. In order to view the details of the blob object, insert a new cell and add the 
following code:

print(blob)

The code generates the following output:

but you are Late Flight again!! Again and again! Where are the crew?

6. To use the sentiment property of the TextBlob class (which returns a tuple), 
insert a new cell and add the following code:

blob.sentiment

The code generates the following output:

Sentiment(polarity=—0.5859375, subjectivity=0.6

Note

To access the source code for this specific section, please refer  
to https://packt.live/2DlQvbM.

You can also run this example online at https://packt.live/3jXvAN1.

In the code, we can see the polarity and subjectivity scores for a given 
text. The output indicates a polarity score of -0.5859375, which means that negative 
sentiment has been detected in the text. The subjectivity score means that the text is 
somewhat on the subjective side, though not entirely subjective. We have performed 
sentiment analysis on a given text using the textblob library. In the next section, 
we will perform sentiment analysis on tweets about airlines.

https://packt.live/2DlQvbM
https://packt.live/3jXvAN1
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Activity 8.01: Tweet Sentiment Analysis Using the textblob library

In this activity, you will perform sentiment analysis on tweets related to airlines.  
You will also be providing condition for determining positive, negative, and neutral 
tweets, using the textblob library.

Note

You can find the data to be used for this activity here:  
https://packt.live/33cnr1q.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Load the CSV file.

3. Fetch the text column from the DataFrame.

4. Extract and remove the handles from the fetched data.

5. Perform sentiment analysis and get the new DataFrame.

6. Join both the DataFrames.

7. Apply the appropriate conditions and view positive, negative, and neutral tweets.

After executing those steps, the output for positive tweets should be as follows:

Figure 8.1: Positive tweets

As you can see from the preceding output, the Polarity column shows a positive 
integer. This implies that the tweet displays positive sentiment. The Subjectivity 
column indicates that most tweets are found to be of a subjective nature.

https://packt.live/33cnr1q
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The output for negative tweets is as follows:

Figure 8.2: Negative tweets

The preceding output shows a Polarity column with a negative integer, implying 
that the tweet displays negative sentiment, while the Subjectivity column shows 
a positive integer, which implies the same as before—personal opinion or feeling.

The output for neutral tweets should be as follows:

Figure 8.3: Neutral tweets
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The preceding output has a Polarity column and a Subjectivity column with 
a zero or almost zero value. This implies the tweet has neither positive nor negative 
sentiment, but neutral; moreover, no subjectivity is detected for these tweets.

Note

The solution to this activity can be found on page 412.

In the next section, we will explore more about performing sentiment analysis using 
online web services.

Understanding Data for Sentiment Analysis
Sentiment analysis is a type of text classification. Sentiment analysis models are 
usually trained using supervised datasets. Supervised datasets are a kind of dataset 
that is labeled with the target variable, usually a column that specifies the sentiment 
value in the text. This is the value we want to predict in the unseen text.

Exercise 8.02: Loading Data for Sentiment Analysis

In this exercise, we will load data that could be used to train a sentiment analysis 
model. For this exercise, we will be using three datasets—namely Amazon, Yelp,  
and IMDb.

Note

You can find the data being used in this exercise here:  
https://packt.live/2XgeQqJ.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 200)

This imports the pandas library. It also sets the display width to 200 characters 
so that more of the review text is displayed on the screen.

https://packt.live/2XgeQqJ
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3. To specify where the sentiment data is located, first load three different datasets 
from Yelp, IMDb, and Amazon. Insert a new cell and add the following code to 
implement this:

DATA_DIR = 'data/sentiment_labelled_sentences/'

IMDB_DATA_FILE = DATA_DIR + 'imdb_labelled.txt'

YELP_DATA_FILE = DATA_DIR + 'yelp_labelled.txt'

AMAZON_DATA_FILE = DATA_DIR + 'amazon_cells_labelled.txt'

COLUMN_NAMES = ['Review', 'Sentiment']

Each of the data files has two columns: one for the review text and a numeric 
column for the sentiment.

4. To load the IMDb reviews, insert a new cell and add the following code:

imdb_reviews = pd.read_table(IMDB_DATA_FILE, names=COLUMN_NAMES)

In this code, the read_table() method loads the file into a DataFrame.

5. Display the top 10 records in the DataFrame. Add the following code in the  
new cell:

imdb_reviews.head(10)

The code generates the following output:

Figure 8.4: The first few records in the IMDb movie review file

In the preceding figure, you can see that the negative reviews have sentiment 
scores of 0 and positive reviews have sentiment scores of 1.
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6. To check the total number of records of the IMDb review file, use the value_
counts() function. Add the following code in a new cell to implement this:

imdb_reviews.Sentiment.value_counts()

The expected output with total reviews should be as follows:

1          386

0          362

Name:    Sentiment, dtype: int64

In the preceding figure, you can see that the data file contains a total of 748 
reviews, out of which 362 are negative and 386 are positive.

7. Format the data by adding the following code in a new cell:

imdb_counts = imdb_reviews.Sentiment.value_counts().to_frame()

imdb_counts.index = pd.Series(['Positive', 'Negative'])

imdb_counts

The code generates the following output:

Figure 8.5: Counts of positive and negative sentiments in the IMDb review file

We called value_counts(), created a DataFrame, and assigned Positive 
and Negative as index labels.

8. To load the Amazon reviews, insert a new cell and add the following code:

amazon_reviews = pd.read_table(AMAZON_DATA_FILE, \

                               names=COLUMN_NAMES)

amazon_reviews.head(10)
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The code generates the following output:

Figure 8.6: Reviews from the Amazon dataset

9. To load the Yelp reviews, insert a new cell and add the following code:

yelp_reviews = pd.read_table(YELP_DATA_FILE, \

                             names=COLUMN_NAMES)

yelp_reviews.head(10)

The code generates the following output:

Figure 8.7: Reviews from the Yelp dataset
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Note

To access the source code for this specific section, please refer  
to https://packt.live/2XfwmLB.

You can also run this example online at https://packt.live/339NTss.

We have learned how to load data that could be used to train a sentiment analysis 
model. The review files mentioned in this exercise are an example. Each file contains 
review text, plus a sentiment label for each. This is the minimum requirement 
of a supervised machine learning project: to build a model that is capable of 
predicting sentiments. However, the review text cannot be used as is; it needs to be 
preprocessed so that we can extract feature vectors out of it and eventually provide it 
as input to the model.

Now that we have learned about loading the data, in the next section, we will focus on 
training sentiment models.

Training Sentiment Models
The end product of any sentiment analysis project is a sentiment model. This is an 
object containing a stored representation of the data on which it was trained. Such a 
model has the ability to predict sentiment values for text that it has not seen before. 
To develop a sentiment analysis model, the following steps should be taken:

1. The document dataset must be split into train and test datasets. The test dataset 
is normally a fraction of the overall dataset. It is usually between 5% and 40% of 
the overall dataset, depending on the total number of examples available. If the 
amount of data is too large, then a smaller test dataset can be used.

2. Next, the text should be preprocessed by stripping unwanted characters, 
removing stop words, and performing other common preprocessing steps.

3. The text should be converted to numeric vector representations in order to 
extract the features. These representations are used for training machine 
learning models.

4. Once we have the vector representations, we can train the model. This will be 
specific to the type of algorithm being used. During the training, our model will 
use the test dataset as a guide to learn about the text.

5. We can then use the model to predict the sentiment of documents that it has not 
seen before. This is the step that will be performed in production.

https://packt.live/2XfwmLB
https://packt.live/339NTss
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In the next section, we will train a sentiment model. We'll make use of the 
TfidfVectorizer and LogisticRegression classes, which we explored in 
one of the previous chapters.

Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression

To complete this activity, you will build a sentiment analysis model using the Amazon, 
Yelp, and IMDb datasets that you used in the previous exercise. Use the TFIDF 
method to extract features from the text and use logistic regression for the learning 
algorithm. The following steps will help you complete this activity:

1. Open a Jupyter notebook.

2. Import the necessary libraries.

3. Load the Amazon, Yelp, and IMDb datasets.

4. Concatenate the datasets and take out a random sample of 10 items.

5. Create a function for preprocessing the text, that is, convert the words into 
lowercase and normalize them.

6. Apply the function created in the previous step on the dataset.

7. Use TfidfVectorizer to convert the review text into TFIDF vectors and 
use the LogisticRegression class to create a model that uses logistic 
regression for the model. These should be combined into a Pipeline object.

8. Now split the data into train and test sets, using 70% to train the data and 30% to 
test the data.

9. Use the fit() function to fit the training data on the pipeline.

10. Print the accuracy score.

11. Test the model on these sentences: "I loved this place" and "I hated this place".

Note

The full solution to this activity can be found on page 418.
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Summary
We started our journey into NLP with basic text analytics and text preprocessing 
techniques, such as tokenization, stemming, lemmatization, and lowercase 
conversion, to name a few. We then explored ways in which we can represent our 
text data in numerical form so that it can be understood by machines in order to 
implement various algorithms. After getting some practical knowledge of topic 
modeling, we moved on to text vectorization, and finally, in this chapter, we explored 
various applications of sentiment analysis. This included different tools that use 
sentiment analysis, from technologies available from online marketplaces to deep 
learning frameworks. More importantly, we learned how to load data and train our 
model to use it to predict sentiment.
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Chapter 1: Introduction to Natural Language Processing

Activity 1.01: Preprocessing of Raw Text

Solution

Let's perform preprocessing on a text corpus. To complete this activity,  
follow these steps:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('stopwords')

download('wordnet')

nltk.download('punkt')

download('averaged_perceptron_tagger')

from nltk import word_tokenize

from nltk.stem.wordnet import WordNetLemmatizer

from nltk.corpus import stopwords

from autocorrect import Speller

from nltk.wsd import lesk

from nltk.tokenize import sent_tokenize

from nltk import stem, pos_tag

import string

3. Read the content of file.txt and store it in a variable named sentence. 
Insert a new cell and add the following code to implement this:

#load the text file into variable called sentence

sentence = open("../data/file.txt", 'r').read()

4. Apply tokenization on the given text corpus. Insert a new cell and add the 
following code to implement this:

words = word_tokenize(sentence)
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5. To print the list of tokens, insert a new cell and add the following code:

print(words[0:20])

This code generates the following output:

['The', 'reader', 'of', 'this', 'course', 'should', 'have', 

 'a', 'basic', 'knowledge', 'of', 'the', 'Python', 'programming',

 'lenguage', '.', 'He/she', 'must', 'have', 'knowldge']

In the preceding figure, we can see the initial 20 tokens of our text corpus.

6. To perform spelling correction in our given text corpus, loop through each token 
and correct the tokens that are wrongly spelled. Insert a new cell and add the 
following code to implement this:

spell = Speller(lang='en')

def correct_sentence(words):

    corrected_sentence = ""

    corrected_word_list = []

    for wd in words:

        if wd not in string.punctuation:

            wd_c = spell(wd)

            if wd_c != wd:

                print(wd+" has been corrected to: "+wd_c)

                corrected_sentence = corrected_sentence+" "+wd_c

                corrected_word_list.append(wd_c)

            else:

                corrected_sentence = corrected_sentence+" "+wd

                corrected_word_list.append(wd)

        else:

            corrected_sentence = corrected_sentence + wd

            corrected_word_list.append(wd)

    return corrected_sentence, corrected_word_list

corrected_sentence, corrected_word_list = correct_sentence(words)
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This code generates the following output:

lenguage has been corrected to: language

knowldge has been corrected to: knowledge

Familiarity has been corrected: familiarity

7. To print the corrected text corpus, add a new cell and type the following code:

corrected_sentence

This code generates the following output:

' The reader of this course should have a basic knowledge of the 
Python programming language. He/she must have knowledge of data 
types in Python. He should be able to write functions, and also have 
the ability to import and use libraries and packages in Python. 
familiarity with basic linguistics and probability is assumed 
although not required to fully complete this course.'

8. To print a list of the initial 20 tokens of the corrected words, insert a new cell and 
add the following code:

print(corrected_word_list[0:20])

This code generates the following output:

['The', 'reader', 'of', 'this', 'course', 'should', 'have', 

 'a', 'basic', 'knowledge', 'of', 'the', 'Python', 'programming', 

 'language', '. ', 'He/she', 'must', 'have', 'knowledge']

9. To add a PoS tag to all the corrected words in the list, insert a new cell and add 
the following code:

print(pos_tag(corrected_word_list))

This code generates the following output:

Figure 1.5: List of corrected words tagged with appropriate PoS
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10. To remove the stop words, insert a new cell and add the following code:

stop_words = stopwords.words('english')

def remove_stop_words(word_list):

    corrected_word_list_without_stopwords = []

    for wd in word_list:

        if wd not in stop_words:

            corrected_word_list_without_stopwords.append(wd)

    return corrected_word_list_without_stopwords

corrected_word_list_without_stopwords = remove_stop_words\

                                        (corrected_word_list)

corrected_word_list_without_stopwords[:20]

This code generates the following output:

Figure 1.6: List excluding the stop words

In the preceding figure, we can see that the stop words have been removed and 
a new list has been returned.
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11. Apply the stemming process, and then insert a new cell and add the  
following code:

stemmer = stem.PorterStemmer()

def get_stems(word_list):

    corrected_word_list_without_stopwords_stemmed = []

    for wd in word_list:

        corrected_word_list_without_stopwords_stemmed\

        .append(stemmer.stem(wd))

    return corrected_word_list_without_stopwords_stemmed

corrected_word_list_without_stopwords_stemmed = \

get_stems(corrected_word_list_without_stopwords)

corrected_word_list_without_stopwords_stemmed[:20]

This code generates the following output:

Figure 1.7: List of stemmed words

In the preceding code, we looped through each of the words in the 
corrected_word_list_without_stopwords list and applied stemming 
to them. The preceding figure shows the list of the initial 20 stemmed words.



Chapter 1: Introduction to Natural Language Processing | 371

12. To apply the lemmatization process to the corrected word list, insert a new cell 
and add the following code:

lemmatizer = WordNetLemmatizer()

def get_lemma(word_list):

    corrected_word_list_without_stopwords_lemmatized = []

    for wd in word_list:

        corrected_word_list_without_stopwords_lemmatized\

        .append(lemmatizer.lemmatize(wd))

    return corrected_word_list_without_stopwords_lemmatized

corrected_word_list_without_stopwords_lemmatized = \

get_lemma(corrected_word_list_without_stopwords_stemmed)

corrected_word_list_without_stopwords_lemmatized[:20]

This code generates the following output:

Figure 1.8: List of lemmatized words
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In the preceding code, we looped through each of the words in the 
corrected_word_list_without_stopwords list and applied 
lemmatization to them. The preceding figure shows a list of the initial 20 
lemmatized words.

13. To detect the sentence boundary in the given text corpus, use the sent_
tokenize() method. Insert a new cell and add the following code to 
implement this:

print(sent_tokenize(corrected_sentence))

This code generates the following output:

[' The reader of this course should have a basic knowledge of the 
Python programming language.', 'He/she must have knowledge of 
data types in Python.', 'He should be able to write functions and 
also have the ability to import and use libraries and packages in 
Python.', 'familiarity with basic linguistics and probability is 
assumed although not required to fully complete this course.']

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gmyclC.

You can also run this example online at https://packt.live/2D3h0ms.

https://packt.live/3gmyclC
https://packt.live/2D3h0ms
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Chapter 2: Feature Extraction Methods

Activity 2.01: Extracting Top Keywords from the News Article

Solution

The following steps will help you complete this Activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries 
and download the data:

import operator

from nltk.tokenize import WhitespaceTokenizer

from nltk import download, stem

# The below statement will download the stop word list 

# 'nltk_data/corpora/stopwords/' at home directory of your computer

download('stopwords')

from nltk.corpus import stopwords

The download statement will download the stop word list at nltk_data/
corpora/stopwords/ into your system's home directory.

3. Create the different types of methods to perform various NLP tasks:

Activity 2.01.ipynb

def load_file(file_path):
    news = ''.join\
              ([line for line in open(file_path,encoding='utf-8')])
    return news

"""
This method will take string as input and return the string
converted into lowercase
"""
def to_lower_case(text):
    return text.lower()

# This will take a text string as input and return the token.
wht = WhitespaceTokenizer()
def tokenize_text(text):
    return wht.tokenize(text=text)

The full code snippet can be found at https://packt.live/3hRl3kI

https://packt.live/3hRl3kI 
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The load_file() function will take the file path as input and return the 
content of the file as a string. The lower_case() function will take a string 
as an argument and convert it into lowercase. Next, the tokenize_text() 
function will tokenize the string into its constituent tokens. The get_stem() 
method will perform stemming on the tokens, while get_freq() will calculate 
the frequency of the tokens. Finally, get_top_n_words() will return the n 
tokens with the highest frequency.

4. Load a text file into a string using the load_file() method:

path = "../data/news_article.txt"

news_article = load_file(path)

5. Convert the text into lowercase using the to_lower_case() method:

lower_case_news_art = to_lower_case(text=news_article)

6. Tokenize the text with the tokenize_text() method using the following line 
of code:

tokens = tokenize_text(lower_case_news_art)

7. Remove the stop words from the list; add the following code to do this:

removed_tokens = remove_stop_words(tokens)

8. Perform stemming on the words using the get_stems() method:

stems = get_stems(removed_tokens)

9. Now, calculate the frequency of stemmed tokens with the  
get_freq() method:

freq_dict = get_freq(stems)

10. To get the top six most frequently used words in the news article, use the 
following code:

top_keywords = get_top_n_words(freq_dict, 6)

top_keywords

The preceding line of code will generate the following output:

['law', 'justic', 'european', 'parti', 'took', 'poland'']
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Thus, we have extracted the top six keywords from the news article, which can give us 
an idea of what the article is about. However, in this example, we have extracted only 
unigrams. For a more comprehensive output, bigrams and trigrams are often more 
useful. So, for even better results, you can perform the preceding activity on bigrams 
and trigrams.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hRl3kI.

You can also run this example online at https://packt.live/2DnUHaU.

Activity 2.02: Text Visualization

Solution

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import 
the necessary libraries:

from wordcloud import WordCloud, STOPWORDS

import matplotlib.pyplot as plt

%matplotlib inline

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

import nltk

nltk.download('punkt')

from collections import Counter

import re

import matplotlib as mpl

mpl.rcParams['figure.dpi'] = 300

2. To fetch the dataset and read its content, add the following code:

text = open('../data//text_corpus.txt', 'r', \

            encoding='utf-8').read()

text[:1040]

https://packt.live/3hRl3kI
https://packt.live/2DnUHaU
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The preceding code generates the following output:

Figure 2.31: Text corpus

3. The text in the fetched data is not clean. In order to clean it, we need to make 
use of various preprocessing steps, such as tokenization and lemmatization. Add 
the following code to implement this:

def lemmatize_and_clean(text):

    nltk.download('wordnet')

    lemmatizer = WordNetLemmatizer()

    cleaned_lemmatized_tokens = [lemmatizer.lemmatize\

                                 (word.lower()) \

                                 for word in word_tokenize\

                                 (re.sub(r'([^\s\w]|_)+', ' ', \

                                  text))]

    return cleaned_lemmatized_tokens

4. To check the set of unique words, along with their frequencies, as well as to find 
the 50 most frequently occurring words, add the following code:

Counter(lemmatize_and_clean(text)).most_common(50)
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The preceding code generates the following output:

Figure 2.32: The 50 most frequent words
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5. Once you get the set of unique words along with their frequencies, remove the 
stop words. Then, generate the word cloud for the top 50 most frequent words. 
Add the following code to implement this:

stopwords = set(STOPWORDS)

cleaned_text = ' '.join(lemmatize_and_clean(text))

wordcloud = WordCloud(width = 800, height = 800, \

                      background_color ='white', \

                      max_words=50, \

                      stopwords = stopwords, \

                      min_font_size = 10).generate(cleaned_text)

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()

The preceding code generates the following output:

Figure 2.33: Word cloud representation of the 50 most frequent words
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As shown in the preceding image, words that occur more frequently, such as 
"unbeaten," "final," and "wicket," appear in larger sizes in the word cloud.

Note

To access the source code for this specific section, please refer  
to https://packt.live/30cDHxt.

You can also run this example online at https://packt.live/33buXtj.

https://packt.live/30cDHxt
https://packt.live/33buXtj
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Chapter 3: Developing a Text Classifier

Activity 3.01: Developing End-to-End Text Classifiers

Solution

The following steps will help you implement this activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

import string

import re

warnings.filterwarnings('ignore')

from sklearn.metrics import accuracy_score, roc_curve, \

classification_report, confusion_matrix, \

precision_recall_curve, auc

3. Read a data file. It has three columns: is_political, headline, and 
short_description. The headline column contains various news 
headlines, the short_description column contains an abstract of the 
article, and the is_political column indicates whether the article is about 
politics or not. Here, label 0 denotes that a headline is not political and label 
1 denotes that the headline is political. Here, we will only use the short_
description column to train our model. Add the following code to do this:

data = pd.read_csv('data/news_political_dataset.csv')

data.sample(5)
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The preceding code generates the following output:

Figure 3.67: Text data and labels stored as a DataFrame

4. Create a generic function for all the classifiers called clf_model. It takes four 
inputs: the type of model, the features of the training dataset, the labels of the 
training dataset, and the features of the validation dataset. It returns predicted 
labels, predicted probabilities, and the model it has been trained on. Add the 
following code to do this:

def clf_model(model_type, X_train, y_train, X_valid):

    model = model_type.fit(X_train,y_train)

    predicted_labels = model.predict(X_valid)

    predicted_probab = model.predict_proba(X_valid)[:,1]

    return [predicted_labels,predicted_probab, model]

5. Furthermore, another function is defined, called model_evaluation. It takes 
three inputs: actual values, predicted values, and predicted probabilities. It prints 
a confusion matrix, accuracy, f1-score, precision, recall scores, and the AUROC 
curve. It also plots the ROC curve:

def model_evaluation(actual_values, predicted_values, \

                     predicted_probabilities):

    cfn_mat = confusion_matrix(actual_values,predicted_values)

    print("confusion matrix: \n",cfn_mat)

    print("\naccuracy: ",accuracy_score\

                         (actual_values,predicted_values))

    print("\nclassification report: \n", \

          classification_report(actual_values,predicted_values))

    fpr,tpr,threshold=roc_curve(actual_values, \

                                predicted_probabilities)

    print('\nArea under ROC curve for validation set:', \

          auc(fpr,tpr))

    fig, ax = plt.subplots(figsize=(6,6))
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    ax.plot(fpr,tpr,label='Validation set AUC')

    plt.xlabel('False Positive Rate')

    plt.ylabel('True Positive Rate')

    ax.legend(loc='best')

    plt.show()

6. Use a lambda function to extract tokens from each text in this DataFrame 
(called data), check whether any of these tokens are stop words, lemmatize 
them, and then concatenate them side by side. Use the join function to 
concatenate a list of words into a single sentence. After that, use the regular 
expression method (re) to replace anything other than letters, digits, and 
whitespaces with blank spaces. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

data['cleaned_headline_text'] = data['short_description']\

                                .apply(lambda x : ' '.join\

                                ([lemmatizer.lemmatize\

                                  (word.lower()) \

                                for word in word_tokenize\

                                (re.sub(r'([^\s\w]|_)+', ' ', \

                                 str(x))) if word.lower() \

                                 not in stop_words]))

7. Create a TFIDF matrix representation of these cleaned texts. Add the following 
code to do this:

MAX_FEATURES = 200 

tfidf_model = TfidfVectorizer(max_features=MAX_FEATURES) 

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

           (data['cleaned_headline_text']).todense()) 

tfidf_df.columns = sorted(tfidf_model.vocabulary_) 

tfidf_df.head()



Chapter 3: Developing a Text Classifier | 383

The preceding code generates the following output:

Figure 3.68: TFIDF representation of the DataFrame

8. Use sklearn's train_test_split function to divide the dataset into training 
and validation sets. Add the following code to do this:

X_train, X_valid, y_train, y_valid = \

train_test_split(tfidf_df, data['is_political'], test_size=0.2, \

                 random_state=42,stratify = data['is_political'])

9. Train an XGBoost model using the XGBClassifier() function and evaluate it 
for the validation set. Add the following code to do this:

pip install xgboost

from xgboost import XGBClassifier

xgb_clf=XGBClassifier(n_estimators=10,learning_rate=0.05,\

                      max_depth=18,subsample=0.6,\

                      colsample_bytree= 0.6,\

                      reg_alpha= 10,seed=42)

results = clf_model(xgb_clf, X_train, y_train, X_valid)

model_evaluation(y_valid, results[0], results[1])

model_xgb = results[2]
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The preceding code generates the following output:

Figure 3.69: Performance of the XGBoost model
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10. Extract the importance of features, that is, tokens or words that play a vital role 
in determining the type of content. Add the following code to do this:

word_importances = pd.DataFrame\

                   ({'word':X_train.columns,\

                     'importance':model_xgb.feature_importances_})

word_importances.sort_values('importance', \

                             ascending = False).head(4)

The preceding code generates the following output:

Figure 3.70: Words and their importance

Note

To access the source code for this specific section, please refer  
to https://packt.live/2ParIKD.

You can also run this example online at https://packt.live/33axiEK.

https://packt.live/2ParIKD
https://packt.live/33axiEK
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Chapter 4: Collecting Text Data with Web Scraping and APIs

Activity 4.01: Extracting Information from an Online HTML Page

Solution

Let's extract the data from an online source and analyze it. Follow these steps to 
implement this activity:

1. Open a Jupyter Notebook.

2. Import the requests and BeautifulSoup libraries. Pass the URL to 
requests with the following command. Convert the fetched content into HTML 
format using the BeautifulSoup HTML parser. Add the following code to  
do this:

import requests

from bs4 import BeautifulSoup

r = requests\

    .get('https://en.wikipedia.org/wiki/Rabindranath_Tagore')

r.status_code

soup = BeautifulSoup(r.text, 'html.parser')

3. To extract the list of headings, see which HTML elements belong to each bold 
headline in the Works section. You can see that they belong to the h3 tag. We 
only need the first six headings here. Look for a span tag that has a class 
attribute with the following set of commands:

for element in soup.find_all('h3', limit=6):

    spans = element.find('span', attrs={'class':"mw-headline"})

    print(spans['id'])

The preceding code generates the following output:

Drama

Short_stories

Novels

Poetry

Songs_(Rabindra_Sangeet)

Art_works
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4. To extract information regarding the original list of works written in Bengali by 
Tagore, look for the table tag. Traverse through the table and use select to 
pick table rows (tr) from following table data (td) associated with it. Add the 
following code to extract the text:

table = soup.find('table', attrs={'class':"wikitable"})

for row in table.select('tr td'):

    print(row.text)

The preceding code generates the following output:

Figure 4.16: List of Tagore's work
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5. To extract the list of universities named after Tagore, look for the ol tag. Add the 
following code to do this:

[each.text.strip() for each in soup.find('ol') if each != '\n']

The preceding code generates the following output:

Figure 4.17: List of universities named after Rabindranath Tagore

Note

To access the source code for this specific section, please refer  
to https://packt.live/315vOcd.

You can also run this example online at https://packt.live/2D6qIV9.

Activity 4.02: Extracting and Analyzing Data Using Regular Expressions

Solution

Follow these steps to complete this activity:

1. Collect the data using the requests package with the following code:

import requests

from bs4 import BeautifulSoup

r = requests.get('https://www.packtpub.com/support/faq')

r.status_code

The preceding code generates the following output:

200

https://packt.live/315vOcd
https://packt.live/2D6qIV9
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2. Convert the fetched content into HTML format using BeautifulSoup's  
HTML parser.

soup = BeautifulSoup(r.text, 'html.parser')

3. Inspect the HTML tag of the Packt website FAQs page. You can extract the 
question text by first searching for the div tag with the "class":"tab" 
attribute and inside that element, find the label tag to get the  
question text. Similarly, to get the answer text, find the div tag with 
"class":"tab-content", as shown here:

qas = []

for each in soup.find_all('div', attrs={"class":"tab"}):

    question = each.find('label')

    answer = each.find('div', attrs={"class":"tab-content"})

    qas.append((question.text, answer.text))

print(qas[1])

The preceding code generates the following output:

('What format are Packt eBooks?', '\nPackt eBooks can be downloaded 
as a PDF, EPUB or MOBI file. They can also be viewed online using your 
subscription.\n')

4. Create a DataFrame consisting of these questions and answers:

import pandas as pd

pd.DataFrame(qas, columns=['Question', 'Answer']).head()

The preceding code generates the following output:

Figure 4.18: DataFrame of the question and answers
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5. To extract email addresses, make use of a regular expression. Insert a new cell 
and add the following code to implement this:

tc_page_r = requests\

            .get('https://www.packtpub.com/books/info/'\

                 'packt/terms-and-conditions')

tc_page_r.status_code

soup2 = BeautifulSoup(tc_page_r.text, 'html.parser')

import re

set(re.findall\

    (r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",\

     soup2.text))

Here, the regular expression pattern will be looking for an alphanumeric blob, 
followed by the @ sign, followed by an alphanumeric blob. Next, it will look for 
a dot (.) followed by a 2 to 4-character suffix for domains (com/in/org). The 
preceding code generates the following output:

{'customercare@packt.com', 'subscription.support@packt.com'}

6. To extract phone numbers using a regular expression, insert a new cell and add 
the following code:

re.findall(r"\+\d{2}\s{1}\(0\)\s\d{3}\s\d{3}\s\d{3}",soup2.text)

The preceding code generates the following output:

['+44 (0) 121 265 648', '+44 (0) 121 212 141']

Note

To access the source code for this specific section, please refer  
to https://packt.live/2D4ijBK.

You can also run this example online at https://packt.live/3jSXRVb.

https://packt.live/2D4ijBK
https://packt.live/3jSXRVb
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Activity 4.03: Extracting Data from Twitter

Solution

Let's extract tweets using the tweepy library. Follow these steps to implement  
this activity:

1. Log in to your Twitter account with your credentials.

2. Visit https://dev.twitter.com/apps/new, fill in the necessary details, and submit  
the form.

3. Once the form is submitted, go to the Keys and tokens tab; copy  
consumer_key, consumer_secret, access_token, and  
access_token_secret from there.

4. Open a Jupyter Notebook.

5. Import the relevant packages and follow the authentication steps by writing the 
following code:

consumer_key = 'your_consumer_key'

consumer_secret = 'your_consumer_secret'

access_token = 'your_access_token'

access_token_secret = 'your_access_token_secret'

import pandas as pd 

import json

from pprint import pprint

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret) 

api = tweepy.API(auth)

https://dev.twitter.com/apps/new
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6. Call the Twitter API with the #climatechange search query. Insert a new cell 
and add the following code to implement this:

tweet_list = []

for tweet in tweepy.Cursor(api.search, q='#climatechange', \

                           lang="en").items(100):

    tweet_list.append(tweet)

len(tweet_list)

tweet_list[0]

The preceding code generates an output that should look similar to the following 
screenshot. The content will vary since the tweets will be different according to 
when you are running the program:

Figure 4.19: The Twitter API called with the #climatechange search query

7. Each tweepy Status object will have a json object associated with it, which 
will have tweet content and meta info. Let's see what information is present:

status = tweet_list[0]

status_json = status._json

pprint(status_json)
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The preceding code generates the following output with different tweet content 
fetched at the time of running the program:

Figure 4.20: Twitter status objects converted to JSON objects

8. To check the tweet text, use the following code:

status_json['text']

Again, though the content may vary, the preceding code generates output similar 
to the following:

'The latest The Passivhaus Daily! https://t.co/sPqQhgSRdo Thanks 
to @TheMarkofPolo @PeterGleick @boris_kapkov #passivehouse 
#climatechange'

9. To create a DataFrame consisting of the text of tweets, add a new cell and write 
the following code:

tweets = []

for twt in tweet_list:

    tweets.append(twt._json['text'])

tweet_text_df = pd.DataFrame({'tweet_text' : tweets})

tweet_text_df.head()
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The preceding code generates the following output. Again, the content may vary 
depending on the current tweets:

Figure 4.21: DataFrame with the text of tweets

Note

To access the source code for this specific section, please refer  
to https://packt.live/3jXyx03.

This section does not currently have an online interactive example and will 
need to be run locally.

https://packt.live/3jXyx03
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Chapter 5: Topic Modeling

Activity 5.01: Topic-Modeling Jeopardy Questions

Solution

Let's perform topic modeling on the dataset of Jeopardy questions:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import pandas and  
other libraries:

import numpy as np

import spacy

nlp = spacy.load('en_core_web_sm')

import pandas as pd

pd.set_option('display.max_colwidth', 800)

3. After downloading the data, you can extract it and place at the location below. 
Then load the Jeopardy CSV file into a pandas DataFrame. Insert a new cell and 
add the following code:

JEOPARDY_CSV =  '../data/jeopardy/Jeopardy.csv'

questions = pd.read_csv(JEOPARDY_CSV)

questions.columns = [x.strip() for x in questions.columns]

4. The data in the DataFrame is not clean. In order to clean it, remove records that 
have missing values in the Question column. Add the following code to do this:

questions = questions.dropna(subset=['Question'])

5. Find the number of unique categories. Add the following code to do this:

questions['Category'].nunique()

The code generates the following output:

27995
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6. Sample 4% of the questions and tokenize the corpus where the tokens are 
classified as NOUN by spaCy:

file='../data/JQuestions.txt'

questions['Question'].sample(frac=0.04,replace=False,\

                             random_state=0).to_csv(file)

f=open(file,'r',encoding='utf-8')

text=f.read()

f.close()

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \

        and token.pos_ in pos_list:

            preproc_sent.append(token.lemma_)

    else:

        preproc_text.append(preproc_sent)

        preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)

The code generates output like the following:

Figure 5.22: Tokenized corpus after selecting 4% of the sample
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7. Train a tomotopy LDA model with 1,000 topics. Print a few topics. Add the 
following code to do this:

import tomotopy as tp

NUM_TOPICS=1000

mdl = tp.LDAModel(k=NUM_TOPICS,seed=1234)

for line in preproc_text:

    mdl.add_doc(line)

    

mdl.train(10)

    

for k in range(mdl.k):

    print('Top 7 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=7))

The code generates the following output:

Figure 5.23: Topics inferred after training the LDA model

8. Now print the log perplexity. Add the following code to do this:

print('Log perplexity=',mdl.ll_per_word)

The code generates output like so:

Log perplexity= -14.396450040387437

9. Insert a new cell and add the following code to see the probability distribution of 
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]
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The code generates output like so:

Figure 5.24: Probability distribution of topics if the entire dataset is considered

10. Insert a new cell and add the following code to see the probability distribution of 
topic 461:

print(mdl.get_topic_words(461, top_n=7))

The code generates output like so:

[('city', 0.15946216881275177), ('device', 0.02001992054283619),

 ('force', 0.02001992054283619), ('character', 0.2001992054283619),

 ('death', 0.010059761814773083), ('person', 0.010059761814773083),

 ('language', 0.010059761814773083)]

11. Insert a new cell and add the following code to see the probability distribution of 
topic 234:

print(mdl.get_topic_words(234, top_n=7))

The code generates output like so:

[('year', 0.09871795773506165), ('group', 0.02968442067503929), 

 ('child', 0.019822485744953156), ('murder', 0.019822485744953156),

 ('field', 0.019822485744953156), ('writing', 0.009960552677512169),

 ('memorial', 0.009960552677512169)]
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12. Insert a new cell and add the following code to see the probability distribution of 
topic 186:

print(mdl.get_topic_words(186, top_n=7))

The code generates output like so:

[('dragon', 0.027016131207346916), ('power', 0.01357526984065711),

 ('flying', 0.013575269840657711), ('line', 0.013575269840657711),

 ('process', 0.013575269840657711), 

 ('crystal', 0.013575269840657711),

 ('freestyle', 0.013575269840657711)]

We find that the log perplexity is around -14, but the topics are not interpretable and 
the number of categories is an order of magnitude greater than the number of topics. 
The topic model could still be used for dimensionality reduction.

Note

In general, the topics found are extremely sensitive to randomization in both 
gensim and tomotopy. While setting a random_state in gensim could 
help with reproducibility, in general, the topics found using tomotopy are 
superior from the perspective of interpretability. Generally, your output is 
expected to be different. In order to have exactly the same topic model, we 
can save and load topic models, and we do this in Exercise 5.04, Topics in 
The Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer  
to https://packt.live/33c2O5p.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/33c2O5p
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Activity 5.02: Comparing Different Topic Models

Solution

Let's perform topic modeling on the CFPB dataset. Follow these steps to complete 
this activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the pandas library:

import numpy as np

import spacy

nlp = spacy.load('en_core_web_sm')

file_student='../data/consumercomplaints/'\

             'student_comp_narrative.txt'

f=open(file_student,'r',encoding='utf-8')

student_text=f.read()

f.close()

3. Tokenize and include only nouns:

doc_student=nlp(student_text)

student_pos_list=['NOUN']

student_preproc_text=[]

student_preproc_sent=[]

for token in doc_student:

    if token.text!='\n':

        if not(token.is_stop) and not(token.is_punct) \

        and token.pos_ in student_pos_list:

            student_preproc_sent.append(token.lemma_)

    else:

        student_preproc_text.append(student_preproc_sent)

        student_preproc_sent=[]

student_preproc_text.append(student_preproc_sent) #last sentence

print(student_preproc_text)
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The code generates the following output:

Figure 5.25: Tokenized corpus containing only nouns

4. Train an HDP model and print the log perplexity and topics:

import tomotopy as tp

mdl = tp.HDPModel(alpha=0.1,seed=0)

for line in student_preproc_text:

    mdl.add_doc(line)

mdl.train(50)

print('Log Perplexity=', mdl.ll_per_word)

for k in range(mdl.k):

    print('Top 10 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=10))

The code generates the following output:

Figure 5.26: Log perplexity and the topics inferred from the HDP model

5. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/consumercomplaints/hdp_model.bin')

6. Insert a new cell and add the following code to load the topic model:

mdl = tp.HDPModel.load('../data/consumercomplaints/hdp_model.bin')
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7. Insert a new cell and add the following code to see the probability distribution of 
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in student_preproc_text \

              for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

array([5, 7, 4, 6, 0, 1, 11, 9, 14, 2, 18, 17, 10, 8, 12, 

       13, 15, 3, 16], dtype=int64)

8. Insert a new cell and add the following code to see the probability distribution of 
topic 5:

print(mdl.get_topic_words(5, top_n=7))

The code generates the following output:

[('school', 0.05379803851246834), ('aid', 0.05379803851246834),

 ('password', 0.003592493385076523),

 ('username', 0.03592493385076523),

 ('information', 0.03592493385076523), 

 ('direction', 0.03592493385076523), ('bus', 0.03592493385076523)]

9. Insert a new cell and add the following code to see the probability distribution of 
topic 7:

print(mdl.get_topic_words(7, top_n=7))

The code generates the following output:

[('graduate', 0.061739806085824966), 

 ('program', 0.061739806085824966), 

 ('assistance', 0.04634334146976471), 

 ('loan', 0.03094688430428505), ('school', 0.03094688430428505), 

 ('world', 0.03094688430428505)]

10. Insert a new cell and add the following code to see the probability distribution of 
topic 4:

print(mdl.get_topic_words(4, top_n=7))
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The code generates the following output:

[('employer', 0.03343059867620468), 

 ('graduation', 0.03343059867620468), 

 ('book', 0.03343059867620468), 

 ('diploma', 0.025093790143728256), 

 ('debt', 0.025093790143728256), 

 ('education', 0.025093790143728256), 

 ('college', 0.025093790143728256)]

11. Now, train the LDA model. Add the following code for this:

NUM_TOPICS=20

mdl = tp.LDAModel(k=NUM_TOPICS,alpha=0.1,seed=0)

for line in student_preproc_text:

    mdl.add_doc(line)

mdl.train(50)

print('Log Perplexity=', mdl.ll_per_word)

for k in range(mdl.k):

    print('Top 10 words of topic #{}'.format(k))

    print(mdl.get_topic_words(k, top_n=10))

The code generates the following output:

Figure 5.27: Log perplexity and topics inferred from the LDA model

12. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/consumercomplaints/lda_model.bin')
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13. Insert a new cell and add the following code to load the topic model:

mdl = tp.LDAModel.load('../data/consumercomplaints/lda_model.bin')

14. Insert a new cell and add the following code to see the probability distribution of 
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

array([17,  7,  6,  8, 12,  0,  2,  4, 10,  5, 18, 14, 13, 11, 

       16, 15,  9,  3,  1, 19], dtype=int64)

15. Insert a new cell and add the following code to see the probability distribution of 
topic 17:

print(mdl.get_topic_words(17, top_n=7))

The code generates the following output:

[('interest', 0.20065094530582428), ('loan', 0.16345429420471191),

 ('payment', 0.152724489569664), ('rate', 0.07046262919902802), 

 ('balance', 0.04184982180595398), ('year', 0.0314776748418808),

 ('principal', 0.25755111128091812)]

16. Insert a new cell and add the following code to see the probability distribution of 
topic 7:

print(mdl.get_topic_words(7, top_n=7))

The code generates the following output:

[('loan', 0.14698922634124756), ('year', 0.09230735898017883),

 ('repayment', 0.08487062156200409), 

 ('payment', 0.08312080055475235), ('plan', 0.07349679619073868),

 ('income', 0.05074914172291756), ('month', 0.03981276974081993)]



Chapter 5: Topic Modeling | 405

17. Insert a new cell and add the following code to see the probability distribution of 
topic 6:

print(mdl.get_topic_words(6, top_n=7))

The code generates the following output:

[('loan', 0.24387744069099426), ('time', 0.06379450112581253),

 ('student', 0.051527272909879684), ('m', 0.05103658139705659),

 ('money', 0.04514831304550171), ('payment', 0.03239039331674576),

 ('collection', 0.02794190190434456)]

For our dataset and with the experimentation undertaken, the LDA topics were 
much more interpretable than the HDP topics. As seen from the preceding 
outputs, the log perplexity of the LDA model is also better than the log perplexity 
of the HDP model. We did, of course, benefit from using the number of topics 
found by the HDP model when training the LDP model, and so this is not an 
entirely fair comparison. Rather, this illustrates that there could be benefits 
to using an HDP model first even if we later select the LDA model for better 
interpretability or better log perplexity.

Note

In general, the topics found are extremely sensitive to randomization in both 
gensim and tomotopy. While setting a random_state in gensim could 
help reproducibility, in general, the topics found using tomotopy are superior 
from the perspective of interpretability. Generally, your output is expected 
to be different. In order to have exactly the same topic model, we can save 
and load topic models, and this was used in Exercise 5.04, Topics in The Life 
and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer  
to https://packt.live/312B9Bf..

https://packt.live/312B9Bf
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Chapter 6: Vector Representation

Activity 6.01: Finding Similar News Article Using Document Vectors

Solution

Follow these steps to complete this activity:

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import 
all necessary libraries:

import warnings

warnings.filterwarnings("ignore")

from gensim.models import Doc2Vec

import pandas as pd

from gensim.parsing.preprocessing import preprocess_string, \

remove_stopwords 

2. Now load the news_lines file.

news_file = '../data/sample_news_data.txt'

3. After that, you need to iterate over each headline in the file and split the 
columns, then create a DataFrame containing the headlines. Insert a new cell 
and add the following code to implement this:

with open(news_file, encoding="utf8", errors='ignore') as f:

    news_lines = [line for line in f.readlines()]

lines_df = pd.DataFrame()

indices  = list(range(len(news_lines)))

lines_df['news'] = news_lines

lines_df['index'] = indices

lines_df.head()
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The code produces the following output:

Figure 6.27: Head of the DataFrame

4. You already have a trained document model named docVecModel.d2v in the 
previous exercise. Now you can simply load and use it. Insert a new cell and add 
the following code to implement this:

docVecModel = Doc2Vec.load('../data/docVecModel.d2v')

5. Now, since you have loaded the document model, create two functions, 
namely, to_vector() and similar_news_articles(). The to_
vector() function converts the sentences into vectors. The second function, 
similar_news_articles(), implements the similarity check. It uses the 
docVecModel.docvecs.most_similar() function, which compares the 
vector against all the other lines it was built with. To implement this, insert a new 
cell and add the following code:

from gensim.parsing.preprocessing import preprocess_string, \

remove_stopwords

def to_vector(sentence):

    cleaned = preprocess_string(sentence)

    docVector = docVecModel.infer_vector(cleaned)

    return docVector
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def similar_news_articles(sentence):

    vector = to_vector(sentence)

    similar_vectors = docVecModel.docvecs.most_similar\

                      (positive=[vector])

    print(similar_vectors)

    similar_lines = lines_df\

                    [lines_df.index==similar_vectors[0][0]].news

    return similar_lines

6. Now that you have created the functions, it is time to test them. Insert a new cell 
and add the following code to implement this:

similar_news_articles("US raise TV indecency US politicians "\

                      "are proposing a tough new law aimed at "\

                      "cracking down on indecency")

The code will generate the following output:

1958        Clarke to unveil immigration plan New controls

Name: news, dtype: object

Note

To access the source code for this specific section, please refer  
to https://packt.live/3hMOcgO.

You can also run this example online at https://packt.live/3gbDFvg.

https://packt.live/3hMOcgO
https://packt.live/3gbDFvg
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Chapter 7: Text Generation and Summarization

Activity 7.01: Summarizing Complaints in the Consumer Financial Protection 

Bureau Dataset

Solution

Follow these steps to complete this activity:

1. Open a Jupyter Notebook and insert a new cell. Add the following code to import 
the required libraries:

import warnings

warnings.filterwarnings('ignore')

import os

import csv

import pandas as pd

from gensim.summarization import summarize

2. Insert a new cell and add the following code to fetch the Consumer Complaints 
dataset and consider the rows that have a complaint narrative. Drop all the 
columns other than Product, Sub-product, Issue, Sub-issue, and 
Consumer complaint narrative:

complaints_pathname = '../data/consumercomplaints/'\

                      'Consumer_Complaints.csv'

df_all_complaints = pd.read_csv(complaints_pathname)

df_all_narr = df_all_complaints.dropna\

              (subset=['Consumer complaint narrative'])

df_all_narr = df_all_narr[['Product','Sub-product','Issue',\

                           'Sub-issue',\

                           'Consumer complaint narrative']]
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3. Insert a new cell and add the following code to select 12 complaints:

df_part_narr = df_all_narr[df_all_narr.index.isin\

               ([242830,1086741,536367,957355,975181,483530,\

                 950006,865088,681842,536367,132345,285894])]

df_part_narr

The preceding code generates the following output:

Figure 7.19: DataFrame showing the 12 selected complaints

4. Insert a new cell and add the following code to add a new column, named 
TextRank Summary, that includes a TextRank summary for each of the  
12 complaints:

def try_summarize(x,ratio):

    try:

        return(summarize(x,ratio=ratio))

    except:

        return('')

df_part_narr['TextRank Summary']=df_part_narr\

                                 ['Consumer complaint narrative']\

                                  .apply(lambda x: try_summarize\

                                  (x,ratio=0.20))
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5. Insert a new cell and add the following code to show the DataFrame:

df_part_narr

The preceding code generates the following output:

Figure 7.20: DataFrame showing the summarized complaints

Note

To access the source code for this specific section, please refer  
to https://packt.live/313r5YP.

This section does not currently have an online interactive example,  
and will need to be run locally.

https://packt.live/313r5YP
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Chapter 8: Sentiment Analysis

Activity 8.01: Tweet Sentiment Analysis Using the textblob library

Solution

To perform sentiment analysis on the given set of tweets related to airlines, follow 
these steps:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from textblob import TextBlob

import re

3. Since we are displaying the text in the notebook, we want to increase the 
display width for our DataFrame. Insert a new cell and add the following code to 
implement this:

pd.set_option('display.max_colwidth', 240)

4. Now, load the airline-tweets.csv dataset. We will read this CSV file using 
pandas' read_csv() function. Insert a new cell and add the following code to 
implement this:

tweets = pd.read_csv('data/airline-tweets.csv')

5. Insert a new cell and add the following code to view the first 10 records of  
the DataFrame:

tweets.head()
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The code generates the following output:

Figure 8.8: The first few tweets

6. If we look at the preceding figure, we can see that the tweets contain Twitter 
handles, which start with the @ symbol. It might be useful to extract those 
handles. The string column included in the DataFrame has an extract() 
function, which uses a regex to get parts of a string. Insert a new cell and add the 
following code to implement this:

tweets['At'] = tweets['tweet'].str.extract(r'^(@\S+)')

This code declares a new column called At and sets the value to what the 
extract function returns. The extract function uses a regex, ^(@\S+), 
to return strings that start with @. To view the initial 10 records of the tweets 
DataFrame, we insert a new cell and write the following code:

tweets.head(10)

The output should look something like this (only top four tweets are  
shown here):

Figure 8.9: The first 10 tweets along with the Twitter handles
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7. Now, we want to remove the Twitter handles inside the tweets since they are 
irrelevant for sentiment analysis. First, create a function named remove_
handles(), which accepts a DataFrame as a parameter. After passing the 
DataFrame, the re.sub() function will remove the handles in the DataFrame. 
Insert a new cell and add the following code to implement this:

def remove_handles(tweet):

    return re.sub(r'@\S+', '', tweet)

8. To remove the handles, insert a column in the DataFrame called tweets_
preprocessed and add the following code:

tweets['tweet_preprocessed'] = tweets['tweet']\

                               .apply(remove_handles)

tweets.head(10)

The expected output for the tweets after removing the Twitter handles should 
look like this (only the top four are shown in this figure):

Figure 8.10: The first 10 tweets after removing the Twitter handles

From the preceding figure, we can see that the Twitter handles have been 
separated from the tweets.
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9. Now we can apply sentiment analysis on the tweets. First, create a get_
sentiment() function, which accepts a DataFrame and a column as 
parameters. Using this function, we create two new columns, Polarity and 
Subjectivity, which will show the sentiment scores of each tweet. Insert a 
new cell and add the following code to implement this:

def get_sentiment(dataframe, column):

    text_column = dataframe[column]

    textblob_sentiment = text_column.apply(TextBlob)

    sentiment_values = [{'Polarity': v.sentiment.polarity, \

                         'Subjectivity': v.sentiment.subjectivity}

                   for v in textblob_sentiment.values]

    return pd.DataFrame(sentiment_values)

This function takes a DataFrame and applies the TextBlob constructor to each 
value of text_column. Then it extracts and creates a new DataFrame with the 
Polarity and Objectivity columns.

10. Since the function has been created, we test it and pass the necessary 
parameters. The result of this will be stored in a new DataFrame, sentiment_
frame. Insert a new cell and add the following code to implement this:

sentiment_frame = get_sentiment(tweets, 'tweet_preprocessed')

11. To view the initial four values of the new DataFrame, type the following code:

sentiment_frame.head(4)

The code generates the following output:

Figure 8.11: Polarity and subjectivity scores
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12. To join the original tweet DataFrame to the sentiment_frame DataFrame, 
use the concat() function. Insert a new cell and add the following code to 
implement this:

tweets = pd.concat([tweets, sentiment_frame], axis=1)

13. To view the initial 10 rows of the new DataFrame, we add the following code:

tweets.head(10)

The expected output with sentiment scores added should be as follows:

Figure 8.12: Tweets DataFrame with sentiment scores added

From the preceding figure, we can see that for each tweet, Polarity, and 
Subjectivity scores have been calculated.

14. To distinguish between the positive, negative, and neutral tweets, we need to 
add certain conditions. Consider tweets with polarity scores greater than 0.5 as 
positive, and tweets with polarity scores less than or equal to -0.5 as negative. 
For neutral tweets, consider only those tweets that fall in the range of -0.1 and 
0.1. Insert a new cell and add the following code to implement this:

positive_tweets = tweets[tweets.Polarity > 0.5]

negative_tweets = tweets[tweets.Polarity <= - 0.5]

neutral_tweets = tweets[ (tweets.Polarity > -0.1) \

                        & (tweets.Polarity < 0.1) ]
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15. To view positive, negative, and neutral tweets, add the following code:

positive_tweets.head(15)

negative_tweets.head(15)

neutral_tweets

This displays the result of positive, negative, and neutral tweets. We have seen 
how to perform sentiment analysis using the textblob library. The following 
image shows the top four neutral tweets:

Figure 8.13: Neutral tweets

Note

To access the source code for this specific section, please refer  
to https://packt.live/2XfcuIC.

You can also run this example online at https://packt.live/2DqDSfq.

https://packt.live/2XfcuIC
https://packt.live/2DqDSfq
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Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression

Solution

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 200)

3. To load all three datasets, insert a new cell and add the following code:

DATA_DIR = 'data/sentiment_labelled_sentences/'

IMDB_DATA_FILE = DATA_DIR + 'imdb_labelled.txt'

YELP_DATA_FILE = DATA_DIR + 'yelp_labelled.txt'

AMAZON_DATA_FILE = DATA_DIR + 'amazon_cells_labelled.txt'

COLUMN_NAMES = ['Review', 'Sentiment']

yelp_reviews = pd.read_table(YELP_DATA_FILE, names=COLUMN_NAMES)

amazon_reviews = pd.read_table(AMAZON_DATA_FILE, \

                               names=COLUMN_NAMES)

imdb_reviews = pd.read_table(YELP_DATA_FILE, names=COLUMN_NAMES)

If we look at the code, even though the data comes from three different business 
domains, they are labeled and stored in the same format, which can help us to 
concatenate them together. This is the reason we can combine them to train our 
sentiment analysis model.

4. Now we concatenate the different datasets into one dataset using the 
concat() function. Insert a new cell and add the following code to  
implement this:

review_data = pd.concat([amazon_reviews, imdb_reviews, \

                         yelp_reviews])

Since we combined the data from three separate files, let's make use of the 
sample() function, which returns a random selection from the dataset. This 
will allow us to see the reviews from different files. Insert a new cell and add the 
following code to implement this:

review_data.sample(10)
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The code generates the following output (only the top four reviews are  
displayed here):

Figure 8.14: Output from calling the sample() function

5. To view the number of counts, add the following code:

review_data.Sentiment.value_counts()

6. Create a function named clean() and do some preprocessing. Basically, we 
need to remove unnecessary characters. Insert a new cell and add the following 
code to do this:

import re

def clean(text):

    text = re.sub(r'[\W]+', ' ', text.lower())

    text = text.replace('hadn t' , 'had not')\

               .replace('wasn t', 'was not')\

               .replace('didn t', 'did not')

    return text

In the preceding code snippet, first, the text is converted to lowercase and 
cleaned, and then keywords with apostrophes are converted into their  
original form.

7. Once the function is defined, we can clean and tokenize the text. It is a good 
practice to apply transformation functions on copies of our data unless you are 
really constrained with memory. Insert a new cell and add the following code to 
implement this:

review_model_data = review_data.copy()

review_model_data.Review = review_data.Review.apply(clean)
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8. Now sample the data again to see what the processed text looks like. Add the 
following code in a new cell to implement this:

review_model_data.sample(10)

The code generates the following output (only the top four reviews are  
displayed here):

Figure 8.15: Sample of 10 after cleaning the Review column

In the preceding figure, we can see that the text is converted to lowercase and 
only alphanumeric characters remain.

9. Now it is time to develop our model. We will use TfidfVectorizer 
to convert each review into a TFIDF vector. We will then use 
LogisticRegression to build a model. Insert a new cell and add the 
following code to import the necessary libraries:

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import Pipeline

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

Next, combine TfidfVectorizer and LogisticRegression in a 
Pipeline object. In order to do this, insert a new cell and add the  
following code:

tfidf = TfidfVectorizer()

log_reg = LogisticRegression()

log_tfidf = Pipeline([('vect', tfidf),\

                      ('clf', log_reg)])
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10. Once the data is ready, split it into train and test sets. Split it into 70%  
for training and 30% for testing. This can be achieved with the help of the 
train_test_split() function. Insert a new cell and add the following code 
to implement this:

X_train, X_test, y_train, y_test = train_test_split\

                                   (review_model_data.Review, \

                                    review_model_data.Sentiment,\

                                    test_size=0.3, \

                                    random_state=42)

11. Fit the training data to the training pipeline with the help of the fit() function. 
Insert a new cell and add the following code to implement this:

log_tfidf.fit(X_train.values, y_train.values)

The code generates the following output:

Figure 8.16: Output from calling the fit() function on the training model

12. In order to check our model's accuracy, use the score() function. Insert a new 
cell and add the following code to implement this:

test_accuracy = log_tfidf.score(X_test.values, y_test.values)

'The model has a test accuracy of {:.0%}'.format(test_accuracy)

You should an output as follows:

'The model has a test accuracy of 81%'

As you can see from the preceding figure, our model has an accuracy of 81%, 
which is pretty good for such a simple model.
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13. The model is ready with an accuracy of 81%. Now we can use it to predict 
the sentiment of sentences. Insert a new cell and add the following code to 
implement this:

log_tfidf.predict(['I loved this place', 'I hated this place'])

You should see an output like the following:

array([1, 0], dtype=int64)

In the preceding figure, we can see how our model predicts sentiment. For a 
positive test sentence, it returns a score of 1. For a negative test sentence, it 
returns a score of 0.

Note

To access the source code for this specific section, please refer  
to https://packt.live/3gto1M9.

You can also run this example online at https://packt.live/2PowrIN.

https://packt.live/3gto1M9
https://packt.live/2PowrIN
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