

Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar,

Muzaffar Bashir Shah, Sohom Ghosh, and Dwight Gunning

Confidently design and build your own NLP projects

with this easy-to-understand practical guide

The
Natural
Language
Processing
Workshop

The Natural Language Processing Workshop
Copyright © 2020 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar,
Muzaffar Bashir Shah, Sohom Ghosh, and Dwight Gunning

Reviewers: Ankit Bhatia, Nagendra Nagaraj, Nimish Narang, Sumit Kumar Raj,
Tom Taulli, and Ankit Verma

Managing Editor: Saumya Jha

Acquisitions Editors: Royluis Rodrigues, Kunal Sawant, Sneha Shinde, Archie Vankar,
and Karan Wadekar

Production Editor: Roshan Kawale

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: August 2020

Production reference: 1130820

ISBN: 978-1-80020-842-1

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introduction to Natural
Language Processing 1

Introduction .. 2

History of NLP .. 3

Text Analytics and NLP .. 3

Exercise 1.01: Basic Text Analytics ... 5

Various Steps in NLP .. 8

Tokenization ... 8

Exercise 1.02: Tokenization of a Simple Sentence 9

PoS Tagging ... 10

Exercise 1.03: PoS Tagging .. 11

Stop Word Removal ... 12

Exercise 1.04: Stop Word Removal ... 13

Text Normalization .. 15

Exercise 1.05: Text Normalization .. 16

Spelling Correction .. 17

Exercise 1.06: Spelling Correction of a Word and a Sentence 18

Stemming .. 20

Exercise 1.07: Using Stemming ... 20

Lemmatization ... 22

Exercise 1.08: Extracting the Base Word Using Lemmatization 23

Named Entity Recognition (NER) .. 24

Exercise 1.09: Treating Named Entities ... 25

Word Sense Disambiguation ... 26

Exercise 1.10: Word Sense Disambiguation .. 27

Sentence Boundary Detection .. 28

Exercise 1.11: Sentence Boundary Detection ... 29

Activity 1.01: Preprocessing of Raw Text .. 30

Kick Starting an NLP Project .. 31

Data Collection ... 32

Data Preprocessing .. 32

Feature Extraction ... 32

Model Development .. 33

Model Assessment ... 33

Model Deployment .. 33

Summary .. 33

Chapter 2: Feature Extraction Methods 35

Introduction ... 36

Types of Data ... 36

Categorizing Data Based on Structure .. 37

Categorizing Data Based on Content .. 39

Cleaning Text Data .. 40

Tokenization ... 41

Exercise 2.01: Text Cleaning and Tokenization 42

Exercise 2.02: Extracting n-grams .. 44

Exercise 2.03: Tokenizing Text with Keras and TextBlob 47

Types of Tokenizers .. 50

Exercise 2.04: Tokenizing Text Using Various Tokenizers 51

Stemming .. 58

RegexpStemmer ... 58

Exercise 2.05: Converting Words in the Present Continuous
Tense into Base Words with RegexpStemmer 59

The Porter Stemmer .. 60

Exercise 2.06: Using the Porter Stemmer ... 60

Lemmatization ... 61

Exercise 2.07: Performing Lemmatization .. 62

Exercise 2.08: Singularizing and Pluralizing Words 63

Language Translation .. 64

Exercise 2.09: Language Translation ... 65

Stop-Word Removal ... 66

Exercise 2.10: Removing Stop Words from Text 66

Activity 2.01: Extracting Top Keywords from the News Article 67

Feature Extraction from Texts .. 68

Extracting General Features from Raw Text .. 68

Exercise 2.11: Extracting General Features from Raw Text 69

Exercise 2.12: Extracting General Features from Text 72

Bag of Words (BoW) ... 80

Exercise 2.13: Creating a Bag of Words ... 80

Zipf's Law ... 83

Exercise 2.14: Zipf's Law .. 84

Term Frequency–Inverse Document Frequency (TFIDF) 89

Exercise 2.15: TFIDF Representation ... 89

Finding Text Similarity – Application of Feature Extraction 91

Exercise 2.16: Calculating Text Similarity Using Jaccard
and Cosine Similarity ... 92

Word Sense Disambiguation Using the Lesk Algorithm 95

Exercise 2.17: Implementing the Lesk Algorithm Using
String Similarity and Text Vectorization ... 96

Word Clouds ... 98

Exercise 2.18: Generating Word Clouds .. 99

Other Visualizations .. 102

Exercise 2.19: Other Visualizations Dependency Parse
Trees and Named Entities ... 102

Activity 2.02: Text Visualization .. 104

Summary .. 105

Chapter 3: Developing a Text Classifier 107

Introduction ... 108

Machine Learning ... 108

Unsupervised Learning ... 108

Hierarchical Clustering .. 110

Exercise 3.01: Performing Hierarchical Clustering 111

k-means Clustering .. 118

Exercise 3.02: Implementing k-means Clustering 119

Supervised Learning ... 124

Classification .. 124

Logistic Regression .. 125

Exercise 3.03: Text Classification – Logistic Regression 126

Naive Bayes Classifiers .. 130

Exercise 3.04: Text Classification – Naive Bayes 131

k-nearest Neighbors .. 136

Exercise 3.05: Text Classification Using the k-nearest
Neighbors Method ... 137

Regression .. 141

Linear Regression .. 141

Exercise 3.06: Regression Analysis Using Textual Data 142

Tree Methods ... 148

Exercise 3.07: Tree-Based Methods – Decision Tree 149

Random Forest ... 154

Gradient Boosting Machine and Extreme Gradient Boost 155

Exercise 3.08: Tree-Based Methods – Random Forest 157

Exercise 3.09: Tree-Based Methods – XGBoost 162

Sampling ... 167

Exercise 3.10: Sampling (Simple Random, Stratified,
and Multi-Stage) ... 168

Developing a Text Classifier .. 173

Feature Extraction ... 173

Feature Engineering .. 173

Removing Correlated Features .. 173

Exercise 3.11: Removing Highly Correlated Features (Tokens) 174

Dimensionality Reduction ... 179

Exercise 3.12: Performing Dimensionality Reduction Using
Principal Component Analysis ... 180

Deciding on a Model Type ... 185

Evaluating the Performance of a Model ... 186

Exercise 3.13: Calculating the RMSE and MAPE of a Dataset 189

Activity 3.01: Developing End-to-End Text Classifiers 191

Building Pipelines for NLP Projects .. 192

Exercise 3.14: Building the Pipeline for an NLP Project 192

Saving and Loading Models ... 194

Exercise 3.15: Saving and Loading Models .. 194

Summary .. 198

Chapter 4: Collecting Text Data with Web
Scraping and APIs 201

Introduction ... 202

Collecting Data by Scraping Web Pages ... 202

Exercise 4.01: Extraction of Tag-Based Information
from HTML Files ... 204

Requesting Content from Web Pages ... 208

Exercise 4.02: Collecting Online Text Data .. 208

Exercise 4.03: Analyzing the Content of Jupyter
Notebooks (in HTML Format) ... 211

Activity 4.01: Extracting Information from
an Online HTML Page .. 214

Activity 4.02: Extracting and Analyzing Data Using
Regular Expressions .. 215

Dealing with Semi-Structured Data .. 216

JSON ... 216

Exercise 4.04: Working with JSON Files ... 218

XML .. 220

Exercise 4.05: Working with an XML File ... 222

Using APIs to Retrieve Real-Time Data .. 224

Exercise 4.06: Collecting Data Using APIs ... 224

Extracting data from Twitter using the OAuth API 226

Activity 4.03: Extracting Data from Twitter .. 228

Summary .. 229

Chapter 5: Topic Modeling 231

Introduction ... 232

Topic Discovery ... 232

Exploratory Data Analysis ... 233

Transforming Unstructured Data to Structured Data 233

Bag of Words .. 234

Topic-Modeling Algorithms .. 235

Latent Semantic Analysis (LSA) .. 235

LSA – How It Works .. 236

Key Input Parameters for LSA Topic Modeling 237

Exercise 5.01: Analyzing Wikipedia World Cup Articles
with Latent Semantic Analysis ... 238

Dirichlet Process and Dirichlet Distribution .. 244

Latent Dirichlet Allocation (LDA) .. 245

LDA – How It Works ... 245

Measuring the Predictive Power of a Generative Topic Model 246

Exercise 5.02: Finding Topics in Canadian Open Data
Inventory Using the LDA Model ... 247

Activity 5.01: Topic-Modeling Jeopardy Questions 252

Hierarchical Dirichlet Process (HDP) .. 253

Exercise 5.03: Topics in Around the World in Eighty Days 254

Exercise 5.04: Topics in the Life and Adventures
of Robinson Crusoe by Daniel Defoe ... 259

Practical Challenges ... 266

State-of-the-Art Topic Modeling ... 266

Activity 5.02: Comparing Different Topic Models 267

Summary .. 268

Chapter 6: Vector Representation 271

Introduction ... 272

What Is a Vector? .. 272

Frequency-Based Embeddings ... 273

Exercise 6.01: Word-Level One-Hot Encoding 277

Character-Level One-Hot Encoding ... 283

Exercise 6.02: Character One-Hot Encoding – Manual 284

Exercise 6.03: Character-Level One-Hot Encoding with Keras 286

Learned Word Embeddings .. 293

Word2Vec .. 293

Exercise 6.04: Training Word Vectors .. 294

Using Pre-Trained Word Vectors .. 301

Exercise 6.05: Using Pre-Trained Word Vectors 302

Document Vectors ... 309

Uses of Document Vectors ... 310

Exercise 6.06: Converting News Headlines
to Document Vectors ... 310

Activity 6.01: Finding Similar News Article Using
Document Vectors ... 316

Summary .. 316

Chapter 7: Text Generation and Summarization 319

Introduction ... 320

Generating Text with Markov Chains ... 320

Markov Chains .. 320

Exercise 7.01: Text Generation Using a Random
Walk over a Markov Chain .. 322

Text Summarization ... 327

TextRank ... 327

Key Input Parameters for TextRank ... 329

Exercise 7.02: Performing Summarization Using TextRank 329

Exercise 7.03: Summarizing a Children's Fairy
Tale Using TextRank ... 333

Activity 7.01: Summarizing Complaints in the Consumer
Financial Protection Bureau Dataset .. 337

Recent Developments in Text Generation and Summarization ... 338

Practical Challenges in Extractive Summarization 340

Summary .. 340

Chapter 8: Sentiment Analysis 343

Introduction ... 344

Why Is Sentiment Analysis Required? ... 344

The Growth of Sentiment Analysis .. 345

The Monetization of Emotion ... 345

Types of Sentiments .. 345

Emotion ..345

Key Ideas and Terms ... 347

Applications of Sentiment Analysis ... 348

Tools Used for Sentiment Analysis ... 349

NLP Services from Major Cloud Providers .. 349

Online Marketplaces ... 350

Python NLP Libraries ... 350

Deep Learning Frameworks ... 351

The textblob library .. 352

Exercise 8.01: Basic Sentiment Analysis
Using the textblob Library .. 352

Activity 8.01: Tweet Sentiment Analysis Using
the textblob library .. 354

Understanding Data for Sentiment Analysis 356

Exercise 8.02: Loading Data for Sentiment Analysis 356

Training Sentiment Models ... 360

Activity 8.02: Training a Sentiment Model Using
TFIDF and Logistic Regression .. 361

Summary .. 362

Appendix 365

Index 425

Preface

ii | Preface

About the Book
Do you want to learn how to communicate with computer systems using Natural
Language Processing (NLP) techniques, or make a machine understand human
sentiments? Do you want to build applications like Siri, Alexa, or chatbots, even if
you've never done it before?

With The Natural Language Processing Workshop, you can expect to make consistent
progress as a beginner, and get up to speed in an interactive way, with the help of
hands-on activities and fun exercises.

The book starts with an introduction to NLP. You'll study different approaches to
NLP tasks, and perform exercises in Python to understand the process of preparing
datasets for NLP models. Next, you'll use advanced NLP algorithms and visualization
techniques to collect datasets from open websites, and to summarize and generate
random text from a document. In the final chapters, you'll use NLP to create a chatbot
that detects positive or negative sentiment in text documents such as movie reviews.

By the end of this book, you'll be equipped with the essential NLP tools
and techniques you need to solve common business problems that involve
processing text.

Audience

This book is for beginner to mid-level data scientists, machine learning developers,
and NLP enthusiasts. A basic understanding of machine learning and NLP is required
to help you grasp the topics in this workshop more quickly.

About the Chapters

Chapter 1, Introduction to Natural Language Processing, starts by defining natural
language processing and the different types of natural language processing tasks,
using practical examples for each type. This chapter also covers the process of
structuring and implementing a natural language processing project.

Chapter 2, Feature Extraction Methods, covers basic feature extraction methods
from unstructured text. These include tokenization, stemming, lemmatization, and
stopword removal. We also discuss observations we might see from these extraction
methods and introduce Zipf's Law. Finally, we discuss the Bag of Words model and
Term Frequency-Inverse Document Frequency (TF-IDF).

About the Book | iii

Chapter 3, Developing a Text Classifier, teaches you how to create a simple text
classifier with feature extraction methods covered in the previous chapters.

Chapter 4, Collecting Text Data with Web Scraping and APIs, introduces you to web
scraping and discusses various methods of collecting and processing text data from
online sources, such as HTML and XML files and APIs.

Chapter 5, Topic Modeling, introduces topic modeling, an unsupervised natural
language processing technique that groups documents according to topic. You will
see how this is done using Latent Dirichlet Allocation (LDA), Latent Semantic Analysis
(LSA), and Hierarchical Dirichlet Processes (HDP).

Chapter 6, Vector Representation, discusses the importance of representing text as
vectors, and various vector representations, such as Word2Vec and Doc2Vec.

Chapter 7, Text Generation and Summarization, teaches you two simple natural
language processing tasks: creating text summaries and generating random text with
statistical assumptions and algorithms.

Chapter 8, Sentiment Analysis, teaches you how to detect sentiment in text, using
simple techniques. Sentiment analysis is the use of computer algorithms to detect
whether the sentiment of text is positive or negative.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We find that the summary for the Wikipedia article is much more coherent than the
short story. We can also see that the summary with a ratio of 0.20 is a subset of a
summary with a ratio of 0.25."

Words that you see on the screen, for example, in menus or dialog boxes, also appear
in the text like this: "On this page, click on Keys option to access the secret keys."

A block of code is set as follows:

text_after_twenty=text_after_twenty.replace('\n',' ')

text_after_twenty=re.sub(r"\s+"," ",text_after_twenty)

New terms and important words are shown like this: "A Markov chain consists of a
state space and a specific type of successor function."

iv | Preface

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

Exercise 7.01.ipynb

1 HANDLE = '@\w+\n'
2 LINK = 'https?://t\.co/\w+'
3 SPECIAL_CHARS = '<|<|&|#'
4 PARA='\n+'
5 def clean(text):
6 #text = re.sub(HANDLE, ' ', text)
7 text = re.sub(LINK, ' ', text)
8 text = re.sub(SPECIAL_CHARS, ' ', text)
9 text = re.sub(PARA, '\n', text)

The full code can be found at https://packt.live/2D7RPPZ.

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

 validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

https://packt.live/2D7RPPZ

About the Book | v

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In
the following section, we shall see how to do that.

Installation and Setup

Jupyter notebooks are available once you install Anaconda on your system. Anaconda
can be installed for Windows systems using the steps available at https://docs.
anaconda.com/anaconda/install/windows/.

For other systems, navigate to the respective installation guide from https://docs.
anaconda.com/anaconda/install/.

These installations will be executed in the C drive of your system. You can choose to
change the destination.

Installing the Required Libraries

Open Anaconda Prompt and follow the steps given here to get your system ready.
We will create a new environment on Anaconda where we will install all the required
libraries and run our code:

1. To create a new environment, run the following command:

conda create --name nlp

2. To activate the environment, type the following:

conda activate nlp

For this course, whenever you are asked to open a terminal, you need to open
Anaconda Prompt, activate the environment, and then proceed.

3. To install all the libraries, download the environment file from
https://packt.live/30qfL9V and run the following command:

pip install -f requirements.txt

4. Jupyter notebooks allow us to run code and experiment with code blocks. To
start Jupyter Notebook, run the following inside the nlp environment:

jupyter notebook

A new browser window will open up with the Jupyter interface. You can now
navigate to the project location and run Jupyter Notebook.

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://packt.live/30qfL9V

vi | Preface

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install –r requirements.txt. You can find the requirements.txt file at
https://packt.live/39RZuOh.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries –
that is, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/3fJ4qap. You can
also run many activities and exercises directly in your web browser by using the
interactive lab environment at https://packt.live/3gwk4WQ.

We've tried to support interactive versions of all activities and exercises, but we
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us at
workshops@packt.com.

https://packt.live/39RZuOh
https://packt.live/3fJ4qap
https://packt.live/3gwk4WQ

Overview

In this chapter, you will learn the difference between Natural Language
Processing (NLP) and basic text analytics. You will implement various
preprocessing tasks such as tokenization, lemmatization, stemming, stop
word removal, and more. By the end of this chapter, you will have a deep
understanding of the various phases of an NLP project, from data collection
to model deployment.

Introduction to Natural

Language Processing

1

2 | Introduction to Natural Language Processing

Introduction
Before we can get into NLP in any depth, we first need to understand what natural
language is. To put it in simple terms, it is a means for us to express our thoughts
and ideas. To define it more specifically, language is a mutually agreed upon set of
protocols involving words/sounds that we use to communicate with each other.

In this era of digitization and computation, we are constantly interacting with
machines around us through various means, such as voice commands and
typing instructions in the form of words. Thus, it has become essential to develop
mechanisms by which human language can be comprehended accurately by
computers. NLP helps us do this. So, NLP can be defined as a field of computer
science that is concerned with enabling computer algorithms to understand, analyze,
and generate natural languages.

Let's look at an example. You have probably interacted with Siri or Alexa at some
point. Ask Alexa for a cricket score, and it will reply with the current score. The
technology behind this is NLP. Siri and Alexa use techniques such as Speech to Text
with the help of a search engine to do this magic. As the name suggests, Speech to
Text is an application of NLP in which computers are trained to understand verbally
spoken words.

NLP works at different levels, which means that machines process and understand
natural language at different levels. These levels are as follows:

• Morphological level: This level deals with understanding word structure and
word information.

• Lexical level: This level deals with understanding the part of speech of the word.

• Syntactic level: This level deals with understanding the syntactic analysis of a
sentence, or parsing a sentence.

• Semantic level: This level deals with understanding the actual meaning
of a sentence.

• Discourse level: This level deals with understanding the meaning of a sentence
beyond just the sentence level, that is, considering the context.

• Pragmatic level: This level deals with using real-world knowledge to understand
the sentence.

History of NLP | 3

History of NLP
NLP is a field that has emerged from various other fields such as artificial intelligence,
linguistics, and data science. With the advancement of computing technologies and
the increased availability of data, NLP has undergone a huge change. Previously,
a traditional rule-based system was used for computations, in which you had to
explicitly write hardcoded rules. Today, computations on natural language are being
done using machine learning and deep learning techniques.

Consider an example. Let's say we have to extract the names of some politicians from
a set of political news articles. So, if we want to apply rule-based grammar, we must
manually craft certain rules based on human understanding of language. Some of the
rules for extracting a person's name can be that the word should be a proper noun,
every word should start with a capital letter, and so on. As we can see, using a rule-
based system like this would not yield very accurate results.

Rule-based systems do work well in some cases, but the disadvantages far outweigh
the advantages. One major disadvantage is that the same rule cannot be applicable
in all cases, given the complex and nuanced nature of most language. These
disadvantages can be overcome by using machine learning, where we write an
algorithm that tries to learn a language using the text corpus (training data) rather
than us explicitly programming it to do so.

Text Analytics and NLP
Text analytics is the method of extracting meaningful insights and answering
questions from text data, such as those to do with the length of sentences, length of
words, word count, and finding words from the text. Let's understand this with
an example.

Suppose we are doing a survey using news articles. Let's say we have to find the top
five countries that contributed the most in the field of space technology in the past 5
years. So, we will collect all the space technology-related news from the past 5 years
using the Google News API. Now, we must extract the names of countries in these
news articles. We can perform this task using a file containing a list of all the countries
in the world.

4 | Introduction to Natural Language Processing

Next, we will create a dictionary in which keys will be the country names and their
values will be the number of times the country name is found in the news articles. To
search for a country in the news articles, we can use a simple word regex. After we
have completed searching all the news articles, we can sort the country names by the
values associated with them. In this way, we will come up with the top five countries
that contributed the most to space technology in the last 5 years.

This is a typical example of text analytics, in which we are generating insights from
text without getting into the semantics of the language.

It is important here to note the difference between text analytics and NLP. The art of
extracting useful insights from any given text data can be referred to as text analytics.
NLP, on the other hand, helps us in understanding the semantics and the underlying
meaning of text, such as the sentiment of a sentence, top keywords in text, and parts
of speech for different words. It is not just restricted to text data; voice (speech)
recognition and analysis also come under the domain of NLP. It can be broadly
categorized into two types: Natural Language Understanding (NLU) and Natural
Language Generation (NLG). A proper explanation of these terms is provided here:

• NLU: NLU refers to a process by which an inanimate object with computing
power is able to comprehend spoken language. As mentioned earlier, Siri and
Alexa use techniques such as Speech to Text to answer different questions,
including inquiries about the weather, the latest news updates, live match
scores, and more.

• NLG: NLG refers to a process by which an inanimate object with computing
power is able to communicate with humans in a language that they can
understand or is able to generate human-understandable text from a dataset.
Continuing with the example of Siri or Alexa, ask one of them about the chances
of rainfall in your city. It will reply with something along the lines of, "Currently,
there is no chance of rainfall in your city." It gets the answer to your query from
different sources using a search engine and then summarizes the results. Then,
it uses Text to Speech to relay the results in verbally spoken words.

So, when a human speaks to a machine, the machine interprets the language with
the help of the NLU process. By using the NLG process, the machine generates an
appropriate response and shares it with the human, thus making it easier for humans
to understand the machine. These tasks, which are part of NLP, are not part of text
analytics. Let's walk through the basics of text analytics and see how we can execute
it in Python.

Text Analytics and NLP | 5

Before going to the exercises, let's define some prerequisites for running the
exercises. Whether you are using Windows, Mac or Linux, you need to run your
Jupyter Notebook in a virtual environment. You will also need to ensure that
you have installed the requirements as stated in the requirements.txt file on
https://packt.live/3fJ4qap.

Exercise 1.01: Basic Text Analytics

In this exercise, we will perform some basic text analytics on some given text data,
including searching for a particular word, finding the index of a word, and finding
a word at a given position. Follow these steps to implement this exercise using the
following sentence:

"The quick brown fox jumps over the lazy dog."

1. Open a Jupyter Notebook.

2. Assign a sentence variable the value 'The quick brown fox jumps
over the lazy dog'. Insert a new cell and add the following code to
implement this:

sentence = 'The quick brown fox jumps over the lazy dog'

sentence

3. Check whether the word 'quick' belongs to that text using the following code:

def find_word(word, sentence):

 return word in sentence

find_word('quick', sentence)

The preceding code will return the output 'True'.

4. Find out the index value of the word 'fox' using the following code:

def get_index(word, text):

 return text.index(word)

get_index('fox', sentence)

The code will return the output 16.

https://packt.live/3fJ4qap

6 | Introduction to Natural Language Processing

5. To find out the rank of the word 'lazy', use the following code:

get_index('lazy', sentence.split())

This code generates the output 7.

6. To print the third word of the given text, use the following code:

def get_word(text,rank):

 return text.split()[rank]

get_word(sentence,2)

This will return the output brown.

7. To print the third word of the given sentence in reverse order, use the
following code:

get_word(sentence,2)[::-1]

This will return the output nworb.

8. To concatenate the first and last words of the given sentence, use the
following code:

def concat_words(text):

 """

 This method will concat first and last

 words of given text

 """

 words = text.split()

 first_word = words[0]

 last_word = words[len(words)-1]

 return first_word + last_word

concat_words(sentence)

Note

The triple-quotes (""") shown in the code snippet above are used to
denote the start and end points of a multi-line code comment. Comments
are added into code to help explain specific bits of logic.

The code will generate the output Thedog.

Text Analytics and NLP | 7

9. To print words at even positions, use the following code:

def get_even_position_words(text):

 words = text.split()

 return [words[i] for i in range(len(words)) if i%2 == 0]

get_even_position_words(sentence)

This code generates the following output:

['The', 'brown', 'jumps', 'the', 'dog']

10. To print the last three letters of the text, use the following code:

def get_last_n_letters(text, n):

 return text[-n:]

get_last_n_letters(sentence,3)

This will generate the output dog.

11. To print the text in reverse order, use the following code:

def get_reverse(text):

 return text[::-1]

get_reverse(sentence)

This code generates the following output:

'god yzal eht revo spmuj xof nworb kciuq ehT'

12. To print each word of the given text in reverse order, maintaining their
sequence, use the following code:

def get_word_reverse(text):

 words = text.split()

 return ' '.join([word[::-1] for word in words])

get_word_reverse(sentence)

This code generates the following output:

ehT kciuq nworb xof spmuj revo eht yzal god

8 | Introduction to Natural Language Processing

We are now well acquainted with basic text analytics techniques.

Note

To access the source code for this specific section, please refer
to https://packt.live/38Yrf77.

You can also run this example online at https://packt.live/2ZsCvpf.

In the next section, let's dive deeper into the various steps and subtasks in NLP.

Various Steps in NLP
We've talked about the types of computations that are done with natural language.
Apart from these basic tasks, you can also design your own tasks as per your
requirements. In the coming sections, we will discuss the various preprocessing tasks
in detail and demonstrate each of them with an exercise.

To perform these tasks, we will be using a Python library called NLTK (Natural
Language Toolkit). NLTK is a powerful open source tool that provides a set of
methods and algorithms to perform a wide range of NLP tasks, including tokenizing,
parts-of-speech tagging, stemming, lemmatization, and more.

Tokenization

Tokenization refers to the procedure of splitting a sentence into its constituent
parts—the words and punctuation that it is made up of. It is different from simply
splitting the sentence on whitespaces, and instead actually divides the sentence
into constituent words, numbers (if any), and punctuation, which may not always
be separated by whitespaces. For example, consider this sentence: "I am reading a
book." Here, our task is to extract words/tokens from this sentence. After passing this
sentence to a tokenization program, the extracted words/tokens would be "I," "am,"
"reading," "a," "book," and "." – this example extracts one token at a time. Such tokens
are called unigrams.

NLTK provides a method called word_tokenize(), which tokenizes given text into
words. It actually separates the text into different words based on punctuation and
spaces between words.

To get a better understanding of tokenization, let's solve an exercise based on it in
the next section.

https://packt.live/38Yrf77
https://packt.live/2ZsCvpf

Various Steps in NLP | 9

Exercise 1.02: Tokenization of a Simple Sentence

In this exercise, we will tokenize the words in a given sentence with the help of the
NLTK library. Follow these steps to implement this exercise using the sentence, "I am
reading NLP Fundamentals."

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries
and download the different types of NLTK data that we are going to use for
different tasks in the following exercises:

from nltk import word_tokenize, download

download(['punkt','averaged_perceptron_tagger','stopwords'])

In the preceding code, we are using NLTK's download() method, which
downloads the given data from NLTK. NLTK data contains different corpora
and trained models. In the preceding example, we will be downloading the stop
word list, 'punkt', and a perceptron tagger, which is used to implement parts
of speech tagging using a structured algorithm. The data will be downloaded at
nltk_data/corpora/ in the home directory of your computer. Then, it will
be loaded from the same path in further steps.

3. The word_tokenize() method is used to split the sentence into words/
tokens. We need to add a sentence as input to the word_tokenize() method
so that it performs its job. The result obtained will be a list, which we will store in
a word variable. To implement this, insert a new cell and add the following code:

def get_tokens(sentence):

 words = word_tokenize(sentence)

 return words

4. In order to view the list of tokens generated, we need to view it using the
print() function. Insert a new cell and add the following code to
implement this:

print(get_tokens("I am reading NLP Fundamentals."))

This code generates the following output:

['I', 'am', 'reading', 'NLP', 'Fundamentals', '.']

10 | Introduction to Natural Language Processing

We can see the list of tokens generated with the help of the
word_tokenize() method.

Note

To access the source code for this specific section, please refer
to https://packt.live/30bGG85.

You can also run this example online at https://packt.live/30dK1mZ.

In the next section, we will see another pre-processing step:
Parts-of-Speech (PoS) tagging.

PoS Tagging

In NLP, the term PoS refers to parts of speech. PoS tagging refers to the process
of tagging words within sentences with their respective PoS. We extract the PoS of
tokens constituting a sentence so that we can filter out the PoS that are of interest
and analyze them. For example, if we look at the sentence, "The sky is blue," we get
four tokens, namely "The," "sky," "is," and "blue", with the help of tokenization. Now,
using a PoS tagger, we tag the PoS for each word/token. This will look as follows:

[('The', 'DT'), ('sky', 'NN'), ('is', 'VBZ'), ('blue', 'JJ')]

The preceding format is an output of the NLTK pos_tag()method. It is a list of
tuples in which every tuple consists of the word followed by the PoS tag:

DT = Determiner

NN = Noun, common, singular or mass

VBZ = Verb, present tense, third-person singular

JJ = Adjective

For the complete list of PoS tags in NLTK, you can refer
to https://pythonprogramming.net/natural-language-toolkit-nltk-part-speech-tagging/.

PoS tagging is performed using different techniques, one of which is a rule-based
approach that builds a list to assign a possible tag for each word.

https://packt.live/30bGG85
https://packt.live/30dK1mZ
https://pythonprogramming.net/natural-language-toolkit-nltk-part-speech-tagging/

Various Steps in NLP | 11

PoS tagging finds application in many NLP tasks, including word sense
disambiguation, classification, Named Entity Recognition (NER), and coreference
resolution. For example, consider the usage of the word "planted" in these two
sentences: "He planted the evidence for the case " and " He planted five trees in
the garden. " We can see that the PoS tag of "planted" would clearly help us in
differentiating between the different meanings of the sentences.

Let's perform a simple exercise to understand how PoS tagging is done in Python.

Exercise 1.03: PoS Tagging

In this exercise, we will find out the PoS for each word in the sentence, I am
reading NLP Fundamentals. We first make use of tokenization in order to get
the tokens. Later, we will use the pos_tag() method, which will help us find the PoS
for each word/token. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import word_tokenize, pos_tag

3. To find the tokens in the sentence, we make use of the word_tokenize()
method. Insert a new cell and add the following code to implement this:

def get_tokens(sentence):

 words = word_tokenize(sentence)

 return words

4. Print the tokens with the help of the print() function. To implement this,
add a new cell and write the following code:

words = get_tokens("I am reading NLP Fundamentals")

print(words)

This code generates the following output:

['I', 'am', 'reading', 'NLP', 'Fundamentals']

12 | Introduction to Natural Language Processing

5. We'll now use the pos_tag() method. Insert a new cell and add the
following code:

def get_pos(words):

 return pos_tag(words)

get_pos(words)

This code generates the following output:

[('I', 'PRP'),

 ('am', 'VBP'),

 ('reading', 'VBG'),

 ('NLP', 'NNP'),

 ('Fundamentals', 'NNS')]

In the preceding output, we can see that for each token, a PoS has been allotted.
Here, PRP stands for personal pronoun, VBP stands for verb present, VGB stands
for verb gerund, NNP stands for proper noun singular, and NNS stands for
noun plural.

Note

To access the source code for this specific section, please refer
to https://packt.live/306WY24.

You can also run this example online at https://packt.live/38VLDpF.

We have learned about assigning appropriate PoS labels to tokens in a sentence.
In the next section, we will learn about stop words in sentences and ways to deal
with them.

Stop Word Removal

Stop words are the most frequently occurring words in any language and they are just
used to support the construction of sentences and do not contribute anything to the
semantics of a sentence. So, we can remove stop words from any text before an NLP
process, as they occur very frequently and their presence doesn't have much impact
on the sense of a sentence. Removing them will help us clean our data, making its
analysis much more efficient. Examples of stop words include "a," "am," "and," "the,"
"in," "of," and more.

In the next exercise, we will look at the practical implementation of removing stop
words from a given sentence.

https://packt.live/306WY24
https://packt.live/38VLDpF

Various Steps in NLP | 13

Exercise 1.04: Stop Word Removal

In this exercise, we will check the list of stop words provided by the nltk library.
Based on this list, we will filter out the stop words included in our text:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('stopwords')

from nltk import word_tokenize

from nltk.corpus import stopwords

3. In order to check the list of stop words provided for English, we pass it as a
parameter to the words() function. Insert a new cell and add the following
code to implement this:

stop_words = stopwords.words('english')

4. In the code, the list of stop words provided by English is stored in the stop_
words variable. In order to view the list, we make use of the print() function.
Insert a new cell and add the following code to view the list:

print(stop_words)

This code generates the following output:

Figure 1.1: List of stop words provided by English

14 | Introduction to Natural Language Processing

5. To remove the stop words from a sentence, we first assign a string to the
sentence variable and tokenize it into words using the word_tokenize()
method. Insert a new cell and add the following code to implement this:

sentence = "I am learning Python. It is one of the "\

 "most popular programming languages"

sentence_words = word_tokenize(sentence)

Note

The code snippet shown here uses a backslash (\) to split the logic
across multiple lines. When the code is executed, Python will ignore the
backslash, and treat the code on the next line as a direct continuation of the
current line.

6. To print the list of tokens, insert a new cell and add the following code:

print(sentence_words)

This code generates the following output:

['I', 'am', 'learning', 'Python', '.', 'It', 'is', 'one', 'of',
'the', 'most', 'popular', 'programming', 'languages']

7. To remove the stop words, we need to loop through each word in the sentence,
check whether there are any stop words, and then finally combine them to
form a complete sentence. To implement this, insert a new cell and add the
following code:

def remove_stop_words(sentence_words, stop_words):

 return ' '.join([word for word in sentence_words if \

 word not in stop_words])

8. To check whether the stop words are filtered out from our sentence, print the
sentence_no_stops variable. Insert a new cell and add the following code
to print:

print(remove_stop_words(sentence_words,stop_words))

This code generates the following output:

I learning Python. It one popular programming languages

Various Steps in NLP | 15

As you can see in the preceding code snippet, stop words such as "am," "is," "of,"
"the," and "most" are being filtered out and text without stop words is produced
as output.

9. Add your own stop words to the stop word list:

stop_words.extend(['I','It', 'one'])

print(remove_stop_words(sentence_words,stop_words))

This code generates the following output:

learning Python . popular programming languages

As we can see from the output, now words such as "I," "It," and* "One" are removed
as we have added them to our custom stop word list. We have learned how to
remove stop words from given text.

Note

To access the source code for this specific section, please refer
to https://packt.live/3j4KBw7.

You can also run this example online at https://packt.live/3fyYSir.

In the next section, we will focus on normalizing text.

Text Normalization

There are some words that are spelled, pronounced, and represented differently—for
example, words such as Mumbai and Bombay, and US and United States. Although
they are different, they refer to the same thing. There are also different forms of
words that need to be converted into base forms. For example, words such as "does"
and "doing," when converted to their base form, become "do." Along these lines, text
normalization is a process wherein different variations of text get converted into a
standard form. We need to perform text normalization as there are some words that
can mean the same thing as each other. There are various ways of normalizing text,
such as spelling correction, stemming, and lemmatization, which will be covered later.

For a better understanding of this topic, we will look into a practical implementation
of text normalization in the next section.

https://packt.live/3j4KBw7
https://packt.live/3fyYSir

16 | Introduction to Natural Language Processing

Exercise 1.05: Text Normalization

In this exercise, we will normalize some given text. Basically, we will be trying to
replace select words with new words, using the replace() function, and finally
produce the normalized text. replace() is a built-in Python function that works
on strings and takes two arguments. It will return a copy of a string in which the
occurrence of the first argument will be replaced by the second argument.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to assign a string to the
sentence variable:

sentence = "I visited the US from the UK on 22-10-18"

3. We want to replace "US" with "United States", "UK" with "United
Kingdom", and "18" with "2018". To do so, use the replace() function
and store the updated output in the "normalized_sentence" variable.
Insert a new cell and add the following code to implement this:

def normalize(text):

 return text.replace("US", "United States")\

 .replace("UK", "United Kingdom")\

 .replace("-18", "-2018")

4. To check whether the text has been normalized, insert a new cell and add the
following code to print it:

normalized_sentence = normalize(sentence)

print(normalized_sentence)

The code generates the following output:

I visited the United States from the United Kingdom on 22-10-2018

5. Add the following code:

normalized_sentence = normalize('US and UK are two superpowers')

print(normalized_sentence)

The code generates following output:

United States and United Kingdom are two superpowers

Various Steps in NLP | 17

In the preceding code, we can see that our text has been normalized.

Note

To access the source code for this specific section, please refer
to https://packt.live/2Wm49T8.

You can also run this example online at https://packt.live/2Wm4d5k.

Over the next sections, we will explore various other ways in which text can
be normalized.

Spelling Correction

Spelling correction is one of the most important tasks in any NLP project.
It can be time-consuming, but without it, there are high chances of losing
out on important information.

Spelling correction is executed in two steps:

1. Identify the misspelled word, which can be done by a simple dictionary lookup.
If there is no match found in the language dictionary, it is considered to
be misspelled.

2. Replace it or suggest the correctly spelled word. There are a lot of algorithms for
this task. One of them is the minimum edit distance algorithm, which chooses
the nearest correctly spelled word for a misspelled word. The nearness is
defined by the number of edits that need to be made to the misspelled word
to reach the correctly spelled word. For example, let's say there is a misspelled
word, "autocorect." Now, to make it "autocorrect," we need to add one "r," and to
make it "auto," we need to delete 6 characters, which means that "autocorrect" is
the correct spelling because it requires the fewest edits.

We make use of the autocorrect Python library to correct spellings.

autocorrect is a Python library used to correct the spelling of misspelled words
for different languages. It provides a method called spell(), which takes a word as
input and returns the correct spelling of the word.

Let's look at the following exercise to get a better understanding of this.

https://packt.live/2Wm49T8
https://packt.live/2Wm4d5k

18 | Introduction to Natural Language Processing

Exercise 1.06: Spelling Correction of a Word and a Sentence

In this exercise, we will perform spelling correction on a word and a sentence, with
the help of Python's autocorrect library. Follow these steps in order to complete
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import word_tokenize

from autocorrect import Speller

3. In order to correct the spelling of a word, pass a wrongly spelled word as a
parameter to the spell() function. Before that, you have to create a spell
object of the Speller class using lang='en' to signify the English language.
Insert a new cell and add the following code to implement this:

spell = Speller(lang='en')

spell('Natureal')

This code generates the following output:

'Natural'

4. To correct the spelling of a sentence, first tokenize it into tokens. After that, loop
through each token in sentence, autocorrect the words, and finally combine
the words. Insert a new cell and add the following code to implement this:

sentence = word_tokenize("Ntural Luanguage Processin deals with "\

 "the art of extracting insightes from "\

 "Natural Languaes")

5. Use the print() function to print all tokens. Insert a new cell and add the
following code to print the tokens:

print(sentence)

This code generates the following output:

['Ntural', 'Luanguage', 'Processin', 'deals', 'with', 'the', 'art',
'of', 'extracting', 'insightes', 'from', 'Natural', 'Languaes']

Various Steps in NLP | 19

6. Now that we have got the tokens, loop through each token in sentence,
correct the tokens, and assign them to a new variable. Insert a new cell and add
the following code to implement this:

def correct_spelling(tokens):

 sentence_corrected = ' '.join([spell(word) \

 for word in tokens])

 return sentence_corrected

7. To print the correct sentence, insert a new cell and add the following code:

print(correct_spelling(sentence))

This code generates the following output:

['Natural', 'Language', 'Procession', 'deals', 'with', 'the', 'art',

 'of', 'extracting', 'insights', 'from', 'Natural', 'Languages']

In the preceding code snippet, we can see that most of the wrongly spelled words
have been corrected. But the word "Processin" was wrongly converted into
"Procession." It should have been "Processing." This happened because to
change "Processin" to "Procession" or "Processing," an equal number of
edits is required. To rectify this, we need to use other kinds of spelling correctors that
are aware of context.

Note

To access the source code for this specific section, please refer
to https://packt.live/38YVCKJ.

You can also run this example online at https://packt.live/3gVpbj4.

In the next section, we will look at stemming, which is another form of
text normalization.

https://packt.live/38YVCKJ
https://packt.live/3gVpbj4

20 | Introduction to Natural Language Processing

Stemming

In most languages, words get transformed into various forms when being used in a
sentence. For example, the word "product" might get transformed into "production"
when referring to the process of making something or transformed into "products" in
plural form. It is necessary to convert these words into their base forms, as they carry
the same meaning in any case. Stemming is the process that helps us to do so. If we
look at the following figure, we get a perfect idea of how words get transformed into
their base forms:

Figure 1.2: Stemming of the word "product"

To get a better understanding of stemming, let's perform a simple exercise.

In this exercise, we will be using two algorithms, called the porter stemmer and the
snowball stemmer, provided by the NLTK library. The porter stemmer is a rule-based
algorithm that transforms words to their base form by removing suffixes from words.
The snowball stemmer is an improvement over the porter stemmer and is a little bit
faster and uses less memory. In NLTK, this is done by the stem() method provided
by the PorterStemmer class.

Exercise 1.07: Using Stemming

In this exercise, we will pass a few words through the stemming process so that they
get converted into their base forms. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import stem

Various Steps in NLP | 21

3. Now pass the following words as parameters to the stem() method. To
implement this, insert a new cell and add the following code:

def get_stems(word,stemmer):

 return stemmer.stem(word)

porterStem = stem.PorterStemmer()

get_stems("production",porterStem)

4. When the input is "production", the following output is generated:

'product'

5. Similarly, the following code would be used for the input "coming".

get_stems("coming",porterStem)

We get the following output:

'come'

6. Similarly, the following code would be used for the input "firing".

 get_stems("firing",porterStem)

When the input is "firing", the following output is generated:

'fire'

7. The following code would be used for the input "battling".

 get_stems("battling",porterStem)

If we give the input "battling", the following output is generated:

'battl'

8. The following code will also generate the same output as above, for the
input "battling".

stemmer = stem.SnowballStemmer("english")

get_stems("battling",stemmer)

The output will be as follows:

'battl'

22 | Introduction to Natural Language Processing

As you have seen while using the snowball stemmer, we have to provide the language
as "english". We can also use the stemmer for different languages such as
Spanish, French, and many more. From the preceding code snippets, we can see that
the entered words are converted into their base forms.

Note

To access the source code for this specific section, please refer
to https://packt.live/2DLzisD.

You can also run this example online at https://packt.live/30h147K.

In the next section, we will focus on lemmatization, which is another form of
text normalization.

Lemmatization

Sometimes, the stemming process leads to incorrect results. For example, in the
last exercise, the word battling was transformed to "battl", which is not a
word. To overcome such problems with stemming, we make use of lemmatization.
Lemmatization is the process of converting words to their base grammatical form,
as in "battling" to "battle," rather than just randomly axing words. In this process, an
additional check is made by looking through a dictionary to extract the base form
of a word. Getting more accurate results requires some additional information; for
example, PoS tags along with words will help in getting better results.

In the following exercise, we will be using WordNetLemmatizer, which is an
NLTK interface of WordNet. WordNet is a freely available lexical English database
that can be used to generate semantic relationships between words. NLTK's
WordNetLemmatizer provides a method called lemmatize(), which returns
the lemma (grammatical base form) of a given word using WordNet.

To put lemmatization into practice, let's perform an exercise where we'll use the
lemmatize() function.

https://packt.live/2DLzisD
https://packt.live/30h147K

Various Steps in NLP | 23

Exercise 1.08: Extracting the Base Word Using Lemmatization

In this exercise, we will use the lemmatization process to produce the proper form of
a given word. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('wordnet')

from nltk.stem.wordnet import WordNetLemmatizer

3. Create an object of the WordNetLemmatizer class. Insert a new cell and add
the following code to implement this:

lemmatizer = WordNetLemmatizer()

4. Bring the word to its proper form by using the lemmatize() method of the
WordNetLemmatizer class. Insert a new cell and add the following code to
implement this:

def get_lemma(word):

 return lemmatizer.lemmatize(word)

get_lemma('products')

With the input products, the following output is generated:

'product'

5. Similarly, use the input as production now:

get_lemma('production')

With the input production, the following output is generated:

'production'

6. Similarly, use the input as coming now:

get_lemma('coming')

With the input coming, the following output is generated:

'coming'

24 | Introduction to Natural Language Processing

Hence, we have learned how to use the lemmatization process to transform a
given word into its base form.

Note

To access the source code for this specific section, please refer
to https://packt.live/3903ETS.

You can also run this example online at https://packt.live/2Wlqu33.

In the next section, we will look at another preprocessing step in NLP: named entity
recognition (NER).

Named Entity Recognition (NER)

NER is the process of extracting important entities, such as person names, place
names, and organization names, from some given text. These are usually not present
in dictionaries. So, we need to treat them differently. The main objective of this
process is to identify the named entities (such as proper nouns) and map them to
categories, which are already defined. For example, categories might include names
of people, places, and so on.

NER has found use in many NLP tasks, including assigning tags to news articles,
search algorithms, and more. NER can analyze a news article and extract the major
people, organizations, and places discussed in it and assign them as tags for
new articles.

In the case of search algorithms, let's suppose we have to create a search engine,
meant specifically for books. If we were to submit a given query for all the words,
the search would take a lot of time. Instead, if we extract the top entities from all the
books using NER and run a search query on the entities rather than all the content,
the speed of the system would increase dramatically.

To get a better understanding of this process, we'll perform an exercise. Before
moving on to the exercise, let me introduce you to chunking, which we are going to
use in the following exercise. Chunking is the process of grouping words together into
chunks, which can be further used to find noun groups and verb groups, or can also
be used for sentence partitioning.

https://packt.live/3903ETS
https://packt.live/2Wlqu33

Various Steps in NLP | 25

Exercise 1.09: Treating Named Entities

In this exercise, we will find the named entities in a given sentence. Follow these steps
to implement this exercise using the following sentence:

"We are reading a book published by Packt which is based out of Birmingham."

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

from nltk import pos_tag

from nltk import ne_chunk

from nltk import word_tokenize

download('maxent_ne_chunker')

download('words')

3. Declare the sentence variable and assign it a string. Insert a new cell and add
the following code to implement this:

sentence = "We are reading a book published by Packt "\

 "which is based out of Birmingham."

4. To find the named entities from the preceding text, insert a new cell and add the
following code:

def get_ner(text):

 i = ne_chunk(pos_tag(word_tokenize(text)), binary=True)

 return [a for a in i if len(a)==1]

get_ner(sentence)

This code generates the following output:

[Tree('NE', [('Packt', 'NNP')]), Tree('NE', [('Birmingham', 'NNP')])]

26 | Introduction to Natural Language Processing

In the preceding code, we can see that the code identifies the named
entities "Packt" and "Birmingham" and maps them to an already-defined
category, "NNP."

Note

To access the source code for this specific section, please refer
to https://packt.live/3ezeukC.

You can also run this example online at https://packt.live/32rsOJs.

In the next section, we will focus on word sense disambiguation, which helps us to
identify the right sense of any word.

Word Sense Disambiguation
There's a popular saying: "A man is known by the company he keeps.'' Similarly, a
word's meaning depends on its association with other words in a sentence. This
means two or more words with the same spelling may have different meanings
in different contexts. This often leads to ambiguity. Word sense disambiguation
is the process of mapping a word to the sense that it should carry. We need to
disambiguate words based on the sense they carry so that they can be treated
as different entities when being analyzed. The following figure displays a perfect
example of how ambiguity is caused due to the usage of the same word in
different sentences:

Figure 1.3: Word sense disambiguation

One of the algorithms to solve word sense disambiguation is the Lesk algorithm.
It has a huge corpus in the background (generally WordNet is used) that contains
definitions of all the possible synonyms of all the possible words in a language. Then
it takes a word and the context as input and finds a match between the context and
all the definitions of the word. The meaning with the highest number of matches with
the context of the word will be returned.

https://packt.live/3ezeukC
https://packt.live/32rsOJs

Word Sense Disambiguation | 27

For example, suppose we have a sentence such as "We play only soccer" in a given
text. Now, we need to find the meaning of the word "play" in this sentence. In the
Lesk algorithm, each word with ambiguous meaning is saved in background synsets.
In this case, the word "play" will be saved with all possible definitions. Let's say we
have two definitions of the word "play":

1. Play: Participating in a sport or game

2. Play: Using a musical instrument

Then, we will find the similarity between the context of the word "play" in the text
and both of the preceding definitions using text similarity techniques. The definition
best suited to the context of "play" in the sentence will be considered the meaning
or definition of the word. In this case, we will find that our first definition fits best in
context, as the words "sport" and "game" are present in the preceding sentences.

In the next exercise, we will be using the Lesk module from NLTK. It takes a sentence
and the word as input, and returns the meaning or definition of the word. The output
of the Lesk method is synset, which contains the ID of the matched definition.
These IDs can be matched with their definitions using the definition() method
of wsd.synset('word').

To get a better understanding of this process, let's look at an exercise.

Exercise 1.10: Word Sense Disambiguation

In this exercise, we will find the sense of the word "bank" in two different sentences.
Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import nltk

nltk.download('wordnet')

from nltk.wsd import lesk

from nltk import word_tokenize

3. Declare two variables, sentence1 and sentence2, and assign them with
appropriate strings. Insert a new cell and the following code to implement this:

sentence1 = "Keep your savings in the bank"

sentence2 = "It's so risky to drive over the banks of the road"

28 | Introduction to Natural Language Processing

4. To find the sense of the word "bank" in the preceding two sentences, use the
Lesk algorithm provided by the nltk.wsd library. Insert a new cell and add the
following code to implement this:

def get_synset(sentence, word):

 return lesk(word_tokenize(sentence), word)

get_synset(sentence1,'bank')

This code generates the following output:

Synset('savings_bank.n.02')

5. Here, savings_bank.n.02 refers to a container for keeping money safely at
home. To check the other sense of the word "bank," write the following code:

get_synset(sentence2,'bank')

This code generates the following output:

Synset('bank.v.07')

Here, bank.v.07 refers to a slope in the turn of a road.

Thus, with the help of the Lesk algorithm, we were able to identify the sense of a
word in whatever context.

Note

To access the source code for this specific section, please refer
to https://packt.live/399JCq5.

You can also run this example online at https://packt.live/30haCQ6.

In the next section, we will focus on sentence boundary detection, which helps
detect the start and end points of sentences.

Sentence Boundary Detection
Sentence boundary detection is the method of detecting where one sentence ends
and another begins. If you are thinking that this sounds pretty easy, as a period (.)
or a question mark (?) denotes the end of a sentence and the beginning of another
sentence, then you are wrong. There can also be instances where the letters of
acronyms are separated by full stops, for instance. Various analyses need to be
performed at a sentence level; detecting the boundaries of sentences is essential.

https://packt.live/399JCq5
https://packt.live/30haCQ6

Sentence Boundary Detection | 29

An exercise will provide us with a better understanding of this process.

Exercise 1.11: Sentence Boundary Detection

In this exercise, we will extract sentences from a paragraph. To do so, we'll be using
the sent_tokenize() method, which is used to detect sentence boundaries. The
following steps need to be performed:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import nltk

from nltk.tokenize import sent_tokenize

3. Use the sent_tokenize() method to detect sentences in some given text.
Insert a new cell and add the following code to implement this:

def get_sentences(text):

 return sent_tokenize(text)

get_sentences("We are reading a book. Do you know who is "\

 "the publisher? It is Packt. Packt is based "\

 "out of Birmingham.")

This code generates the following output:

['We are reading a book.'

 'Do you know who is the publisher?'

 'It is Packt.',

 'Packt is based out of Birmingham.']

4. Use the sent_tokenize() method for text that contains periods (.) other
than those found at the ends of sentences:

get_sentences("Mr. Donald John Trump is the current "\

 "president of the USA. Before joining "\

 "politics, he was a businessman.")

The code will generate the following output:

['Mr. Donald John Trump is the current president of the USA.',

 'Before joining politics, he was a businessman.']

30 | Introduction to Natural Language Processing

As you can see in the code, the sent_tokenize method is able to differentiate
between the period (.) after "Mr" and the one used to end the sentence. We have
covered all the preprocessing steps that are involved in NLP.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZseU86.

You can also run this example online at https://packt.live/2CC8Ukp.

Now, using the knowledge we've gained, let's perform an activity.

Activity 1.01: Preprocessing of Raw Text

We have a text corpus that is in an improper format. In this activity, we will perform
all the preprocessing steps that were discussed earlier to get some meaning out of
the text.

Note

The text corpus, file.txt, can be found at this location:
https://packt.live/30cu54z

After downloading the file, place it in the same directory as the notebook.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Load the text corpus to a variable.

3. Apply the tokenization process to the text corpus and print the first 20 tokens.

4. Apply spelling correction on each token and print the initial 20 corrected tokens
as well as the corrected text corpus.

5. Apply PoS tags to each of the corrected tokens and print them.

6. Remove stop words from the corrected token list and print the initial 20 tokens.

7. Apply stemming and lemmatization to the corrected token list and then print the
initial 20 tokens.

https://packt.live/2ZseU86
https://packt.live/2CC8Ukp
https://packt.live/30cu54z
https://packt.live/30cu54z

Kick Starting an NLP Project | 31

8. Detect the sentence boundaries in the given text corpus and print the total
number of sentences.

Note

The solution to this activity can be found on page 366.

We have learned about and achieved the preprocessing of given data. By now, you
should be familiar with what NLP is and what basic preprocessing steps are needed
to carry out any NLP project. In the next section, we will focus on the different phases
of an NLP project.

Kick Starting an NLP Project
We can divide an NLP project into several sub-projects or phases. These phases are
completed in a particular sequence. This tends to increase the overall efficiency of the
process, as memory usage changes from one phase to the next. An NLP project has
to go through six major phases, which are outlined in the following figure:

Figure 1.4: Phases of an NLP project

32 | Introduction to Natural Language Processing

Suppose you are working on a project in which you need to classify emails as
important and unimportant. We will explain how this is carried out by discussing each
phase in detail.

Data Collection

This is the initial phase of any NLP project. Our sole purpose is to collect data as per
our requirements. For this, we may either use existing data, collect data from various
online repositories, or create our own dataset by crawling the web. In our case, we
will collect different email data. We can even get this data from our personal emails
as well, to start with.

Data Preprocessing

Once the data is collected, we need to clean it. For the process of cleaning, we will
make use of the different preprocessing steps that we have learned about in this
chapter. It is necessary to clean the collected data to ensure effectiveness and
accuracy. In our case, we will follow these preprocessing steps:

1. Converting all the text data to lowercase

2. Stop word removal

3. Text normalization, which will include replacing all numbers with some common
term and replacing punctuation with empty strings

4. Stemming and lemmatization

Feature Extraction

Computers understand only binary digits: 0 and 1. As such, every instruction we
feed into a computer gets transformed into binary digits. Similarly, machine learning
models tend to understand only numeric data. Therefore, it becomes necessary to
convert text data into its equivalent numerical form.

To convert every email into its equivalent numerical form, we will create a dictionary
of all the unique words in our data and assign a unique index to each word. Then, we
will represent every email with a list having a length equal to the number of unique
words in the data. The list will have 1 at the indices of words that are present in the
email and 0 at the other indices. This is called one-hot encoding. We will learn more
about this in coming chapters.

Summary | 33

Model Development

Once the feature set is ready, we need to develop a suitable model that can be
trained to gain knowledge from the data. These models are generally statistical,
machine learning-based, deep learning-based, or reinforcement learning-based. In
our case, we will build a model that is capable of differentiating between important
and unimportant emails.

Model Assessment

After developing a model, it is essential to benchmark it. This process of
benchmarking is known as model assessment. In this step, we will evaluate the
performance of our model by comparing it to others. This can be done by using
different parameters or metrics. These parameters include precision, recall, and
accuracy. In our case, we will evaluate the newly created model by seeing how well it
performs at classifying emails as important and unimportant.

Model Deployment

This is the final stage for most industrial NLP projects. In this stage, the models
are put into production. They are either integrated into an existing system or new
products are created by keeping this model as a base. In our case, we will deploy our
model to production, so that it can classify emails as important and unimportant in
real time.

Summary
In this chapter, we learned about the basics of NLP and how it differs from text
analytics. We covered the various preprocessing steps that are included in NLP, such
as tokenization, PoS tagging, stemming, lemmatization, and more. We also looked
at the different phases an NLP project has to pass through, from data collection to
model deployment.

In the next chapter, you will learn about the different methods of extracting features
from unstructured text, such as TF-IDF and bag of words. You will also learn about
NLP tasks such as tokenization, lemmatization, and stemming in more detail.
Furthermore, text visualization techniques such as word clouds will be introduced.

Overview

In this chapter, you will be able to categorize data based on its content
and structure. You will be able to describe preprocessing steps in detail
and implement them to clean up text data. You will learn about feature
engineering and calculate the similarity between texts. Once you
understand these concepts, you will be able to use word clouds and
some other techniques to visualize text.

Feature Extraction Methods

2

36 | Feature Extraction Methods

Introduction
In the previous chapter, we learned about the concepts of Natural Language
Processing (NLP) and text analytics. We also took a quick look at various
preprocessing steps. In this chapter, we will learn how to make text understandable
to machine learning algorithms.

As we know, to use a machine learning algorithm on textual data, we need a
numerical or vector representation of text data since most of these algorithms are
unable to work directly with plain text or strings. But before converting the text data
into numerical form, we will need to pass it through some preprocessing steps such
as tokenization, stemming, lemmatization, and stop-word removal.

So, in this chapter, we will learn a little bit more about these preprocessing steps and
how to extract features from the preprocessed text and convert them into vectors.
We will also explore two popular methods for feature extraction (Bag of Words and
Term Frequency-Inverse Document Frequency), as well as various methods for finding
similarity between different texts. By the end of this chapter, you will have gained an
in-depth understanding of how text data can be visualized.

Types of Data
To deal with data effectively, we need to understand the various forms in which it
exists. First, let's explore the types of data that exist. There are two main ways to
categorize data (by structure and by content), as explained in the upcoming sections.

Types of Data | 37

Categorizing Data Based on Structure

Data can be divided on the basis of structure into three categories, namely,
structured, semi-structured, and unstructured data, as shown in the
following diagram:

Figure 2.1: Categorization based on content

These three categories are as follows:

• Structured data: This is the most organized form of data. It is represented in
tabular formats such as Excel files and Comma-Separated Value (CSV) files. The
following image shows what structured data usually looks like:

Figure 2.2: Structured data

The preceding table contains information about five people, with each row
representing a person and each column representing one of their attributes.

38 | Feature Extraction Methods

• Semi-structured data: This type of data is not presented in a tabular structure,
but it can be transformed into a table. Here, information is usually stored
between tags following a definite pattern. XML and HTML files can be referred to
as semi-structured data. The following screenshot shows how semi-structured
data can appear:

Figure 2.3: Semi-structured data

Types of Data | 39

The format shown in the preceding screenshot is called markup language
format. Here, the data is stored between tags, hierarchically. It is a universally
accepted format, and there are a lot of parsers available that can convert this
data into structured data.

• Unstructured data: This type of data is the most difficult to deal with. Machine
learning algorithms would find it difficult to comprehend unstructured data
without any loss of information. Text corpora and images are examples of
unstructured data. The following image shows what unstructured data looks like:

Figure 2.4: Unstructured data

This is called unstructured data because if we want to get employee details from
the preceding text snippet with our program, we will not be able to do so by simple
parsing. We have to make our algorithm understand the semantics of the language to
make it able to extract information from this.

Categorizing Data Based on Content

Data can be divided into four categories based on content, as shown in the
following diagram:

Figure 2.5: Categorizing data based on structure

40 | Feature Extraction Methods

Let's look at each category here:

• Text data: This refers to text corpora consisting of written sentences. This type
of data can only be read. An example would be the text corpus of a book.

• Image data: This refers to pictures that are used to communicate messages.
This type of data can only be seen.

• Audio data: This refers to voice recordings, music, and so on. This type of data
can only be heard.

• Video data: A continuous series of images coupled with audio forms a video.
This type of data can be seen as well as heard.

With that, we have learned about the different types of data and their categorization
on the basis of structure and content. When dealing with unstructured data, it
is necessary to clean it first. In the next section, we will look into some of the
preprocessing steps for cleaning data.

Cleaning Text Data
The text data that we are going to discuss here is unstructured text data, which
consists of written sentences. Most of the time, this text data cannot be used as it is
for analysis because it contains some noisy elements, that is, elements that do not
really contribute much to the meaning of the sentence at all. These noisy elements
need to be removed because they do not contribute to the meaning and semantics
of the text. If they're not removed, they can not only waste system memory and
processing time, but also negatively impact the accuracy of the results. Data cleaning
is the art of extracting meaningful portions from data by eliminating unnecessary
details. Consider the sentence, "He tweeted, 'Live coverage of General Elections
available at this.tv/show/ge2019. _/_ Please tune in :) '. "

In this example, to perform NLP tasks on the sentence, we will need to remove the
emojis, punctuation, and stop words, and then change the words into their base
grammatical form.

Cleaning Text Data | 41

To achieve this, methods such as stopword removal, tokenization, and stemming are
used. We will explore them in detail in the upcoming sections. Before we do so, let's
get acquainted with some basic NLP libraries that we will be using here:

• Re: This is a standard Python library that's used for string searching and string
manipulation. It contains methods such as match(), search(), findall(),
split(), and sub(), which are used for basic string matching, searching,
replacing, and more, using regular expressions. A regular expression is nothing
but a set of characters in a specific order that represents a pattern. This pattern
is searched for in the texts.

• textblob: This is an open source Python library that provides different
methods for performing various NLP tasks such as tokenization and PoS tagging.
It is similar to nltk, which was introduced in Chapter 1, Introduction to Natural
Language Processing. It is built on the top of nltk and is much simpler as it has
an easier to use interface and excellent documentation. In projects that don't
involve a lot of complexity, it should be preferable to nltk.

• keras: This is an open source, high-level neural network library that's was
developed on top of another neural network library called TensorFlow. In
addition to neural network functionality, it also provides methods for basic text
processing and NLP tasks.

Tokenization

Tokenization and word tokenizers were briefly described in Chapter 1, Introduction to
Natural Language Processing. Tokenization is the process of splitting sentences into
their constituents; that is, words and punctuation. Let's perform a simple exercise to
see how this can be done using various packages.

42 | Feature Extraction Methods

Exercise 2.01: Text Cleaning and Tokenization

In this exercise, we will clean some text and extract the tokens from it. Follow these
steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the re package:

import re

3. Create a method called clean_text() that will delete all characters other
than digits, alphabetical characters, and whitespaces from the text and split
the text into tokens. For this, we will use the text which matches with all
non-alphanumeric characters, and we will replace all of them with an
empty string:

def clean_text(sentence):

 return re.sub(r'([^\s\w]|_)+', ' ', sentence).split()

4. Store the sentence to be cleaned in a variable named sentence and pass it
through the preceding function. Add the following code to this: implement

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

 "of India from Rajpath, New Delhi. "\

 "Mesmerizing performance by Indian Army! "\

 "Awesome airshow! @india_official "\

 "@indian_army #India #70thRepublic_Day. "\

 "For more photos ping me sunil@photoking.com :)"'

clean_text(sentence)

Cleaning Text Data | 43

The preceding command fragments the string wherever any blank space is
present. The output should be as follows:

Figure 2.6: Fragmented string

44 | Feature Extraction Methods

With that, we have learned how to extract tokens from text. Often, extracting each
token separately does not help. For instance, consider the sentence, "I don't hate
you, but your behavior." Here, if we process each of the tokens, such as "hate"
and "behavior," separately, then the true meaning of the sentence would not be
comprehended. In this case, the context in which these tokens are present becomes
essential. Thus, we consider n consecutive tokens at a time. n-grams refers to the
grouping of n consecutive tokens together.

Note

To access the source code for this specific section, please refer
to https://packt.live/2CQikt7.

You can also run this example online at https://packt.live/33cn0nF.

Next, we will look at an exercise where n-grams can be extracted from a given text.

Exercise 2.02: Extracting n-grams

In this exercise, we will extract n-grams using three different methods. First, we will
use custom-defined functions, and then the nltk and textblob libraries. Follow
these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the re package and create a custom-defined function, which we can use
to extract n-grams. Add the following code to do this:

import re

def n_gram_extractor(sentence, n):

 tokens = re.sub(r'([^\s\w]|_)+', ' ', sentence).split()

 for i in range(len(tokens)-n+1):

 print(tokens[i:i+n])

In the preceding function, we are splitting the sentence into tokens using regex,
then looping over the tokens, taking n consecutive tokens at a time.

https://packt.live/2CQikt7
https://packt.live/33cn0nF

Cleaning Text Data | 45

3. If n is 2, two consecutive tokens will be taken, resulting in bigrams. To check the
bigrams, we pass the function the text and with n=2. Add the following code to
do this:

n_gram_extractor('The cute little boy is playing with the kitten.', \

 2)

The preceding code generates the following output:

['The', 'cute']

['cute', 'little']

['little', 'boy']

['boy', 'is']

['is', 'playing']

['playing', 'with']

['with', 'the']

['the', 'kitten']

4. To check the trigrams, we pass the function with the text and with n=3. Add the
following code to do this:

n_gram_extractor('The cute little boy is playing with the kitten.', \

 3)

The preceding code generates the following output:

['The', 'cute', 'little']

['cute', 'little', 'boy']

['little', 'boy', 'is']

['boy', 'is', 'playing']

['is', 'playing', 'with']

['playing', 'with', 'the']

['with', 'the', 'kitten']

5. To check the bigrams using the nltk library, add the following code:

from nltk import ngrams

list(ngrams('The cute little boy is playing with the kitten.'\

 .split(), 2))

46 | Feature Extraction Methods

The preceding code generates the following output:

[('The', 'cute'),

 ('cute', 'little'),

 ('little', 'boy'),

 ('boy', 'is'),

 ('is', 'playing'),

 ('playing', 'with'),

 ('with', 'the'),

 ('the', 'kitten')]

6. To check the trigrams using the nltk library, add the following code:

list(ngrams('The cute little boy is playing with the
kitten.'.split(), 3))

The preceding code generates the following output:

[('The', 'cute', 'little'),

 ('cute', 'little', 'boy'),

 ('little', 'boy', 'is'),

 ('boy', 'is', 'playing'),

 ('playing', 'with', 'the'),

 ('with', 'the', 'kitten.')]

7. To check the bigrams using the textblob library, add the following code:

!pip install -U textblob

from textblob import TextBlob

blob = TextBlob("The cute little boy is playing with the kitten.")

blob.ngrams(n=2)

The preceding code generates the following output:

[WordList(['The', 'cute']),

 WordList(['cute', 'little']),

 WordList(['little', 'boy']),

 WordList(['boy', 'is']),

 WordList(['is', 'playing']),

 WordList(['playing', 'with']),

 WordList(['with', 'the']),

 WordList(['the', 'kitten'])]

Cleaning Text Data | 47

8. To check the trigrams using the textblob library, add the following code:

blob.ngrams(n=3)

The preceding code generates the following output:

[WordList(['The', 'cute', 'little']),

 WordList(['cute', 'little', 'boy']),

 WordList(['little', 'boy', 'is']),

 WordList(['boy', 'is' 'playing']),

 WordList(['is', 'playing' 'with']),

 WordList(['playing', 'with' 'the']),

 WordList(['with', 'the' 'kitten'])]

In this exercise, we learned how to generate n-grams using various methods.

Note

To access the source code for this specific section, please refer
to https://packt.live/2PabHUK.

You can also run this example online at https://packt.live/2XbjFRX.

Exercise 2.03: Tokenizing Text with Keras and TextBlob

In this exercise, we will use keras and textblob to tokenize texts. Follow these
steps to complete this exercise:

1. Open a Jupyter Notebook and insert a new cell.

2. Import the keras and textblob libraries and declare a variable named
sentence, as follows.

from keras.preprocessing.text import text_to_word_sequence

from textblob import TextBlob

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

 "of India from Rajpath, New Delhi. "\

 "Mesmerizing performance by Indian Army! "\

 "Awesome airshow! @india_official "\

 "@indian_army #India #70thRepublic_Day. "\

 "For more photos ping me sunil@photoking.com :)"'

https://packt.live/2PabHUK
https://packt.live/2XbjFRX

48 | Feature Extraction Methods

3. To tokenize using the keras library, add the following code:

def get_keras_tokens(text):

 return text_to_word_sequence(text)

get_keras_tokens(sentence)

The preceding code generates the following output:

Figure 2.7: Tokenization using Keras

Cleaning Text Data | 49

4. To tokenize using the textblob library, add the following code:

def get_textblob_tokens(text):

 blob = TextBlob(text)

 return blob.words

get_textblob_tokens(sentence)

The preceding code generates the following output:

Figure 2.8: Tokenization using textblob

With that, we have learned how to tokenize texts using the keras and
textblob libraries.

Note

To access the source code for this specific section, please refer
to https://packt.live/3393hFi.

You can also run this example online at https://packt.live/39Dtu09.

In the next section, we will discuss the different types of tokenizers.

https://packt.live/3393hFi
https://packt.live/39Dtu09

50 | Feature Extraction Methods

Types of Tokenizers

There are different types of tokenizers that come in handy for specific tasks. Let's look
at the ones provided by nltk one by one:

• Whitespace tokenizer: This is the simplest type of tokenizer. It splits a string
wherever a space, tab, or newline character is present.

• Tweet tokenizer: This is specifically designed for tokenizing tweets. It takes care
of all the special characters and emojis used in tweets and returns clean tokens.

• MWE tokenizer: MWE stands for Multi-Word Expression. Here, certain groups
of multiple words are treated as one entity during tokenization, such as "United
States of America," "People's Republic of China," "not only," and "but also." These
predefined groups are added at the beginning with mwe() methods.

• Regular expression tokenizer: These tokenizers are developed using regular
expressions. Sentences are split based on the occurrence of a specific pattern (a
regular expression).

• WordPunctTokenizer: This splits a piece of text into a list of alphabetical and
non-alphabetical characters. It actually splits text into tokens using a fixed
regex, that is, '\w+|[^\w\s]+'.

Now that we have learned about the different types of tokenizers, in the next section,
we will carry out an exercise to get a better understanding of them.

Cleaning Text Data | 51

Exercise 2.04: Tokenizing Text Using Various Tokenizers

In this exercise, we will use different tokenizers to tokenize text. Perform the following
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and the following code to import all the tokenizers and declare
a variable sentence:

from nltk.tokenize import TweetTokenizer

from nltk.tokenize import MWETokenizer

from nltk.tokenize import RegexpTokenizer

from nltk.tokenize import WhitespaceTokenizer

from nltk.tokenize import WordPunctTokenizer

sentence = 'Sunil tweeted, "Witnessing 70th Republic Day "\

 "of India from Rajpath, New Delhi. "\

 "Mesmerizing performance by Indian Army! "\

 "Awesome airshow! @india_official "\

 "@indian_army #India #70thRepublic_Day. "\

 "For more photos ping me sunil@photoking.com :)"'

3. To tokenize the text using TweetTokenizer, add the following code:

def tokenize_with_tweet_tokenizer(text):

 # Here will create an object of tweetTokenizer

 tweet_tokenizer = TweetTokenizer()

 """

 Then we will call the tokenize method of

 tweetTokenizer which will return token list of sentences.

 """

 return tweet_tokenizer.tokenize(text)

tokenize_with_tweet_tokenizer(sentence)

Note

The # symbol in the code snippet above denotes a code comment.
Comments are added into code to help explain specific bits of logic.

52 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.9: Tokenization using TweetTokenizer

As you can see, the hashtags, emojis, websites, and Twitter IDs are extracted as
single tokens. If we had used the white space tokenizer, we would have got hash,
dots, and the @ symbol as separate tokens.

Cleaning Text Data | 53

4. To tokenize the text using MWETokenizer, add the following code:

def tokenize_with_mwe(text):

 mwe_tokenizer = MWETokenizer([('Republic', 'Day')])

 mwe_tokenizer.add_mwe(('Indian', 'Army'))

 return mwe_tokenizer.tokenize(text.split())

tokenize_with_mwe(sentence)

The preceding code generates the following output:

Figure 2.10: Tokenization using the MWE tokenizer

54 | Feature Extraction Methods

In the preceding screenshot, the words "Indian" and "Army!", which should
have been treated as a single identity, were treated separately. This is because
"Army!" (not "Army") is treated as a token. Let's see how this can be fixed in the
next step.

5. Add the following code to fix the issues in the previous step:

tokenize_with_mwe(sentence.replace('!',''))

The preceding code generates the following output:

Figure 2.11: Tokenization using the MWE tokenizer after removing the "!" sign

Here, we can see that instead of being treated as separate tokens, "Indian" and
"Army" are treated as a single entity.

Cleaning Text Data | 55

6. To tokenize the text using the regular expression tokenizer, add the
following code:

def tokenize_with_regex_tokenizer(text):

 reg_tokenizer = RegexpTokenizer('\w+|\$[\d\.]+|\S+')

 return reg_tokenizer.tokenize(text)

tokenize_with_regex_tokenizer(sentence)

The preceding code generates the following output:

Figure 2.12: Tokenization using the regular expression tokenizer

56 | Feature Extraction Methods

7. To tokenize the text using the whitespace tokenizer, add the following code:

def tokenize_with_wst(text):

 wh_tokenizer = WhitespaceTokenizer()

 return wh_tokenizer.tokenize(text)

tokenize_with_wst(sentence)

The preceding code generates the following output:

Figure 2.13: Tokenization using the whitespace tokenizer

Cleaning Text Data | 57

8. To tokenize the text using the Word Punct tokenizer, add the following code:

def tokenize_with_wordpunct_tokenizer(text):

 wp_tokenizer = WordPunctTokenizer()

 return wp_tokenizer.tokenize(text)

tokenize_with_wordpunct_tokenizer(sentence)

The preceding code generates the following output:

Figure 2.14: Tokenization using the Word Punct tokenizer

58 | Feature Extraction Methods

In this section, we have learned about different tokenization techniques and their
nltk implementation.

Note

To access the source code for this specific section, please refer
to https://packt.live/3hSbDWi.

You can also run this example online at https://packt.live/3hOi7oR.

Now, we're ready to use them in our programs.

Stemming

In many languages, the base forms of words change when they're used in sentences.
For example, the word "produce" can be written as "production" or "produced" or
even "producing," depending on the context. The process of converting a word back
into its base form is known as stemming. It is essential to do this, because without
it, algorithms would treat two or more different forms of the same word as different
entities, despite them having the same semantic meaning. So, the words "producing"
and "produced" would be treated as different entities, which can lead to erroneous
inferences. In Python, RegexpStemmer and PorterStemmer are the most widely
used stemmers. Let's explore them one at a time.

RegexpStemmer

RegexpStemmer uses regular expressions to check whether morphological or
structural prefixes or suffixes are present. For instance, in many cases, verbs in the
present continuous tense (the present tense form ending with "ing") can be restored
to their base form simply by removing "ing" from the end; for example, "playing"
becomes "play".

Let's complete the following exercise to get some hands-on experience with
RegexpStemmer.

https://packt.live/3hSbDWi
https://packt.live/3hOi7oR

Cleaning Text Data | 59

Exercise 2.05: Converting Words in the Present Continuous Tense into Base

Words with RegexpStemmer

In this exercise, we will use RegexpStemmer on text to convert words into their
basic form by removing some generic suffixes such as "ing" and "ed". To use nltk's
regex_stemmer, we have to create an object of RegexpStemmer by passing the
regex of the suffix or prefix and an integer, min, which indicates the minimum length
of the stemmed string. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and import RegexpStemmer:

from nltk.stem import RegexpStemmer

3. Use regex_stemmer to stem each word of the sentence variable. Add the
following code to do this:

def get_stems(text):

 """

 Creating an object of RegexpStemmer, any string ending

 with the given regex 'ing$' will be removed.

 """

 regex_stemmer = RegexpStemmer('ing$', min=4)

 """

 The below code line will convert every word into its

 stem using regex stemmer and then join them with space.

 """

 return ' '.join([regex_stemmer.stem(wd) for \

 wd in text.split()])

sentence = "I love playing football"

get_stems(sentence)

The preceding code generates the following output:

'I love play football'

60 | Feature Extraction Methods

As we can see, the word playing has been changed into its base form, play. In this
exercise, we learned how we can perform stemming using nltk's RegexpStemmer.

Note

To access the source code for this specific section, please refer
to https://packt.live/3hRYUm6.

You can also run this example online at https://packt.live/2D0Ztvk.

The Porter Stemmer

The Porter stemmer is the most common stemmer for dealing with English words. It
removes various morphological and inflectional endings (such as suffixes, prefixes,
and the plural "s") from English words. In doing so, it helps us extract the base form
of a word from its variations. To get a better understanding of this, let's carry out a
simple exercise.

Exercise 2.06: Using the Porter Stemmer

In this exercise, we will apply the Porter stemmer to some text. Follow these steps to
complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and any related packages and declare a sentence variable. Add
the following code to do this:

from nltk.stem.porter import *

sentence = "Before eating, it would be nice to "\

 "sanitize your hands with a sanitizer"

https://packt.live/3hRYUm6
https://packt.live/2D0Ztvk

Cleaning Text Data | 61

3. Now, we'll make use of the Porter stemmer to stem each word of the
sentence variables:

def get_stems(text):

 ps_stemmer = PorterStemmer()

 return ' '.join([ps_stemmer.stem(wd) for \

 wd in text.split()])

get_stems(sentence)

The preceding code generates the following output:

'befor eating, it would be nice to sanit your hand wash with a sanit'

Note

To access the source code for this specific section, please refer
to https://packt.live/2CUqelc.

You can also run this example online at https://packt.live/2X8WUhD.

PorterStemmer is a generic rule-based stemmer that tries to convert a word into
its basic form by removing common suffixes and prefixes of the English language.

Though stemming is a useful technique in NLP, it has a severe drawback. As we can
see from this exercise, we find that, while eating has been converted into eat
(which is its proper grammatical base form), the word sanitize has been converted
into sanit (which isn't the proper grammatical base form). This may lead to some
problems if we use it. To overcome this issue, there is another technique we can use
called lemmatization.

Lemmatization

As we saw in the previous section, there is a problem with stemming. It often
generates meaningless words. Lemmatization deals with such cases by using
vocabulary and analyzing the words' morphologies. It returns the base forms of
words that can be found in dictionaries. Let's walk through a simple exercise to
understand this better.

https://packt.live/2CUqelc
https://packt.live/2X8WUhD

62 | Feature Extraction Methods

Exercise 2.07: Performing Lemmatization

In this exercise, we will perform lemmatization on some text. Follow these steps to
complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and its related packages, and then declare a sentence variable.
Add the following code to implement this:

import nltk

from nltk.stem import WordNetLemmatizer

from nltk import word_tokenize

nltk.download('wordnet')

nltk.download('punkt')

sentence = "The products produced by the process today are "\

 "far better than what it produces generally."

3. To lemmatize the tokens, we extracted from the sentence, add the
following code:

lemmatizer = WordNetLemmatizer()

def get_lemmas(text):

 lemmatizer = WordNetLemmatizer()

 return ' '.join([lemmatizer.lemmatize(word) for \

 word in word_tokenize(text)])

get_lemmas(sentence)

The preceding code generates the following output:

'The product produced by the process today are far better than what
it produce generally.'

Cleaning Text Data | 63

With that, we learned how to generate the lemma of a word. The lemma is the correct
grammatical base form. They use the vocabulary to match the word to its correct
nearest grammatical form.

Note

To access the source code for this specific section, please refer
to https://packt.live/2X5JEKA.

You can also run this example online at https://packt.live/30Zqt6v.

In the next section, we will deal with other kinds of word variations by looking at
singularizing and pluralizing words using textblob.

Exercise 2.08: Singularizing and Pluralizing Words

In this exercise, we will make use of the textblob library to singularize and pluralize
words in the given text. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import TextBlob and declare a sentence variable. Add the following code to
implement this:

from textblob import TextBlob

sentence = TextBlob('She sells seashells on the seashore')

To check the list of words in the sentence, type the following code:

sentence.words

The preceding code generates the following output:

WordList(['She', 'sells', 'seashells', 'on', 'the', 'seashore'])

https://packt.live/2X5JEKA
https://packt.live/30Zqt6v

64 | Feature Extraction Methods

3. To singularize the third word in the sentence, type the following code:

def singularize(word):

 return word.singularize()

singularize(sentence.words[2])

The preceding code generates the following output:

'seashell'

4. To pluralize the fifth word in the given sentence, type the following code:

def pluralize(word):

 return word.pluralize()

pluralize(sentence.words[5])

The preceding code generates the following output:

'seashores'

Note

To access the source code for this specific section, please refer
to https://packt.live/3gooUoQ.

You can also run this example online at https://packt.live/309Gqrm.

Now, in the next section, we will learn about another preprocessing task:
language translation.

Language Translation

You might have used Google Translate before, which gives the exact translation of
a word in another language; this is an example of language translation or machine
translation. In Python, we can use TextBlob to translate text from one language
into another. TextBlob provides a method called translate(), in which you have
to pass text in the source language. The method will return the translated word in the
destination language. Let's look at how this is done.

https://packt.live/3gooUoQ
https://packt.live/309Gqrm

Cleaning Text Data | 65

Exercise 2.09: Language Translation

In this exercise, we will make use of the TextBlob library to translate a sentence
from Spanish into English. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import TextBlob, as follows:

from textblob import TextBlob

3. Make use of the translate() function of TextBlob to translate the input
text from Spanish to English. Add the following code to do this:

def translate(text,from_l,to_l):

 en_blob = TextBlob(text)

 return en_blob.translate(from_lang=from_l, to=to_l)

translate(text='muy bien',from_l='es',to_l='en')

The preceding code generates the following output:

TextBlob("very well")

With that, we have seen how we can use TextBlob to translate from one language
to another.

Note

To access the source code for this specific section, please refer
to https://packt.live/2XquGiH.

You can also run this example online at https://packt.live/3hQiVK8.

In the next section, we will look at another preprocessing task: stop-word removal.

https://packt.live/2XquGiH
https://packt.live/3hQiVK8

66 | Feature Extraction Methods

Stop-Word Removal

Stop words, such as "am," "the," and "are," occur frequently in text data. Although
they help us construct sentences properly, we can find the meaning even if we
remove them. This means that the meaning of text can be inferred even without
them. So, removing stop words from text is one of the preprocessing steps in NLP
tasks. In Python, nltk, and textblob, text can be used to remove stop words from
text. To get a better understanding of this, let's look at an exercise.

Exercise 2.10: Removing Stop Words from Text

In this exercise, we will remove the stop words from a given text. Follow these steps
to complete this exercise:

1. Open a Jupyter Notebook.

2. Import nltk and declare a sentence variable with the text in question:

from nltk import word_tokenize

sentence = "She sells seashells on the seashore"

3. Define a remove_stop_words method and remove the custom list of stop
words from the sentence by using the following lines of code:

def remove_stop_words(text,stop_word_list):

 return ' '.join([word for word in word_tokenize(text) \

 if word.lower() not in stop_word_list])

custom_stop_word_list = ['she', 'on', 'the', 'am', 'is', 'not']

remove_stop_words(sentence,custom_stop_word_list)

The preceding code generates the following output:

'sells seashells seashore'

Cleaning Text Data | 67

Thus, we've seen how stop words can be removed from a sentence.

Note

To access the source code for this specific section, please refer
to https://packt.live/337aMwH.

You can also run this example online at https://packt.live/30buvJF.

In the next activity, we'll put our knowledge of preprocessing steps into practice.

Activity 2.01: Extracting Top Keywords from the News Article

In this activity, you will extract the most frequently occurring keywords from a sample
news article.

Note

The new article that's being used for this activity can be found
at https://packt.live/314mg1r.

The following steps will help you implement this activity:

1. Open a Jupyter Notebook.

2. Import nltk and any other necessary libraries.

3. Define some functions to help you load the text file, convert the string into
lowercase, tokenize the text, remove the stop words, and perform stemming on
all the remaining tokens. Finally, define a function to calculate the frequency of
all these words.

4. Load news_article.txt using a Python file reader into a single string.

5. Convert the text string into lowercase.

6. Split the string into tokens using a white space tokenizer.

https://packt.live/337aMwH
https://packt.live/30buvJF
https://packt.live/314mg1r

68 | Feature Extraction Methods

7. Remove any stop words.

8. Perform stemming on all the tokens.

9. Calculate the frequency of all the words after stemming.

Note

The solution to this activity can be found on page 373.

With that, we have learned about the various ways we can clean unstructured data.
Now, let's examine the concept of extracting features from texts.

Feature Extraction from Texts
As we already know, machine learning algorithms do not understand textual data
directly. We need to represent the text data in numerical form or vectors. To convert
each textual sentence into a vector, we need to represent it as a set of features. This
set of features should uniquely represent the text, though, individually, some of the
features may be common across many textual sentences. Features can be classified
into two different categories:

• General features: These features are statistical calculations and do not depend
on the content of the text. Some examples of general features could be the
number of tokens in the text, the number of characters in the text, and so on.

• Specific features: These features are dependent on the inherent meaning of
the text and represent the semantics of the text. For example, the frequency of
unique words in the text is a specific feature.

Let's explore these in detail.

Extracting General Features from Raw Text

As we've already learned, general features refer to those that are not directly
dependent on the individual tokens constituting a text corpus. Let's consider these
two sentences: "The sky is blue" and "The pillar is yellow". Here, the sentences have
the same number of words (a general feature)—that is, four. But the individual
constituent tokens are different. Let's complete an exercise to understand this better.

Feature Extraction from Texts | 69

Exercise 2.11: Extracting General Features from Raw Text

In this exercise, we will extract general features from input text. These general
features include detecting the number of words, the presence of "wh" words (words
beginning with "wh", such as "what" and "why") and the language in which the text is
written. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the pandas library and create a DataFrame with four sentences. Add the
following code to implement this:

import pandas as pd

from textblob import TextBlob

df = pd.DataFrame([['The interim budget for 2019 will '\

 'be announced on 1st February.'], \

 ['Do you know how much expectation '\

 'the middle-class working population '\

 'is having from this budget?'], \

 ['February is the shortest month '\

 'in a year.'], \

 ['This financial year will end on '\

 '31st March.']])

df.columns = ['text']

df.head()

The preceding code generates the following output:

Figure 2.15: DataFrame consisting of four sentences

70 | Feature Extraction Methods

3. Use the apply() function to iterate through each row of the column text,
convert them into TextBlob objects, and extract words from them. Add the
following code to implement this:

def add_num_words(df):

 df['number_of_words'] = df['text'].apply(lambda x : \

 len(TextBlob(str(x)).words))

 return df

add_num_words(df)['number_of_words']

The preceding code generates the following output:

0 11

1 15

2 8

3 8

Name: number_of_words, dtype: int64

The preceding code line will print the number_of_words column of the
DataFrame to represent the number of words in each row.

4. Use the apply() function to iterate through each row of the column text,
convert the text into TextBlob objects, and extract the words from them
to check whether any of them belong to the list of "wh" words that has been
declared. Add the following code to do so:

def is_present(wh_words, df):

 """

 The below line of code will find the intersection

 between set of tokens of every sentence and the

 wh_words and will return true if the length of

 intersection set is non-zero.

 """

 df['is_wh_words_present'] = df['text'].apply(lambda x : \

 True if \

 len(set(TextBlob(str(x)).\

 words).intersection(wh_words))\

 >0 else False)

 return df

Feature Extraction from Texts | 71

wh_words = set(['why', 'who', 'which', 'what', \

 'where', 'when', 'how'])

is_present(wh_words, df)['is_wh_words_present']

The preceding code generates the following output:

0 False

1 True

2 False

3 False

Name: is_wh_words_present, dtype: bool

The preceding code line will print the is_wh_words_present column that
was added by the is_present method to df, which means for every row, we
will see whether wh_word is present.

5. Use the apply() function to iterate through each row of the column text,
convert them into TextBlob objects, and detect their languages:

def get_language(df):

 df['language'] = df['text'].apply(lambda x : \

 TextBlob(str(x)).detect_language())

 return df

get_language(df)['language']

The preceding code generates the following output:

0 en

1 en

2 en

3 en

Name: language, dtype: object

With that, we have learned how to extract general features from text data.

Note

To access the source code for this specific section, please refer
to https://packt.live/2X9jLcS.

You can also run this example online at https://packt.live/3fgrYSK.

Let's perform another exercise to get a better understanding of this.

https://packt.live/2X9jLcS
https://packt.live/3fgrYSK

72 | Feature Extraction Methods

Exercise 2.12: Extracting General Features from Text

In this exercise, we will extract various general features from documents. The dataset
that we will be using here consists of random statements. Our objective is to find the
frequency of various general features such as punctuation, uppercase and lowercase
words, letters, digits, words, and whitespaces.

Note

The dataset that is being used in this exercise can be found at this link:
https://packt.live/3k0qCPR.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from string import punctuation

import nltk

nltk.download('tagsets')

from nltk.data import load

nltk.download('averaged_perceptron_tagger')

from nltk import pos_tag

from nltk import word_tokenize

from collections import Counter

3. To see what different kinds of parts of speech nltk provides, add the
following code:

def get_tagsets():

 tagdict = load('help/tagsets/upenn_tagset.pickle')

 return list(tagdict.keys())

tag_list = get_tagsets()

print(tag_list)

https://packt.live/3k0qCPR

Feature Extraction from Texts | 73

The preceding code generates the following output:

Figure 2.16: List of PoS

4. Calculate the number of occurrences of each PoS by iterating through each
document and annotating each word with the corresponding pos tag. Add the
following code to implement this:

"""

This method will count the occurrence of pos

tags in each sentence.

"""

def get_pos_occurrence_freq(data, tag_list):

 # Get list of sentences in text_list

 text_list = data.text

 # create empty dataframe

 feature_df = pd.DataFrame(columns=tag_list)

 for text_line in text_list:

 # get pos tags of each word.

 pos_tags = [j for i, j in \

 pos_tag(word_tokenize(text_line))]

 """

 create a dict of pos tags and their frequency

 in given sentence.

 """

 row = dict(Counter(pos_tags))

 feature_df = feature_df.append(row, ignore_index=True)

 feature_df.fillna(0, inplace=True)

 return feature_df

tag_list = get_tagsets()

data = pd.read_csv('../data/data.csv', header=0)

feature_df = get_pos_occurrence_freq(data, tag_list)

feature_df.head()

74 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.17: Number of occurrences of each PoS in the sentence

5. To calculate the number of punctuation marks, add the following code:

def add_punctuation_count(feature_df, data):

 feature_df['num_of_unique_punctuations'] = data['text'].\

 apply(lambda x: len(set(x).intersection\

 (set(punctuation))))

 return feature_df

feature_df = add_punctuation_count(feature_df, data)

feature_df['num_of_unique_punctuations'].head()

The add_punctuation_count() method will find the intersection of the
set of punctuation marks in the text and punctuation sets that were imported
from the string module. Then, it will find the length of the intersection set in
each row and add it to the num_of_unique_punctuations column of the
DataFrame. The preceding code generates the following output:

0 0

1 0

2 1

3 1

4 0

Name: num_of_unique_punctuations, dtype: int64

Feature Extraction from Texts | 75

6. To calculate the number of capitalized words, add the following code:

def get_capitalized_word_count(feature_df, data):

 """

 The below code line will tokenize text in every row and

 create a set of only capital words, ten find the length of

 this set and add it to the column 'number_of_capital_words'

 of dataframe.

 """

 feature_df['number_of_capital_words'] = data['text'].\

 apply(lambda x: len([word for word in \

 word_tokenize(str(x)) if word[0].isupper()]))

 return feature_df

feature_df = get_capitalized_word_count(feature_df, data)

feature_df['number_of_capital_words'].head()

The preceding code will tokenize the text in every row and create a set of words
consisting of only capital words. It will then find the length of this set and add it
to the number_of_capital_words column of the DataFrame. The preceding
code generates the following output:

0 1

1 1

2 1

3 1

4 1

Name: number_of_capital_words, dtype: int64

The last line of the preceding code will print the number_of_capital_words
column, which represents the count of the number of capital letter words in
each row.

76 | Feature Extraction Methods

7. To calculate the number of lowercase words, add the following code:

def get_small_word_count(feature_df, data):

 """

 The below code line will tokenize text in every row and

 create a set of only small words, then find the length of

 this set and add it to the column 'number_of_small_words'

 of dataframe.

 """

 feature_df['number_of_small_words'] = data['text'].\

 apply(lambda x: len([word for word in \

 word_tokenize(str(x)) if word[0].islower()]))

 return feature_df

feature_df = get_small_word_count(feature_df, data)

feature_df['number_of_small_words'].head()

The preceding code will tokenize the text in every row and create a set of only
small words, then find the length of this set and add it to the number_of_
small_words column of the DataFrame. The preceding code generates the
following output:

0 4

1 3

2 7

3 3

4 2

Name: number_of_small_words, dtype: int64

The last line of the preceding code will print the number_of_small_words
column, which represents the number of small letter words in each row.

8. To calculate the number of letters in the DataFrame, use the following code:

def get_number_of_alphabets(feature_df, data):

 feature_df['number_of_alphabets'] = data['text']. \

 apply(lambda x: len([ch for ch in str(x) \

 if ch.isalpha()]))

 return feature_df

Feature Extraction from Texts | 77

feature_df = get_number_of_alphabets(feature_df, data)

feature_df['number_of_alphabets'].head()

The preceding code will break the text line into a list of characters in each row
and add the count of that list to the number_of_alphabets columns. This will
produce the following output:

0 19

1 18

2 28

3 14

4 13

Name: number_of_alphabets, dtype: int64

The last line of the preceding code will print the number_of_columns column,
which represents the count of the number of alphabets in each row.

9. To calculate the number of digits in the DataFrame, add the following code:

def get_number_of_digit_count(feature_df, data):

 """

 The below code line will break the text line in a list of

 digits in each row and add the count of that list into

 the columns 'number_of_digits'

 """

 feature_df['number_of_digits'] = data['text']. \

 apply(lambda x: len([ch for ch in str(x) \

 if ch.isdigit()]))

 return feature_df

feature_df = get_number_of_digit_count(feature_df, data)

feature_df['number_of_digits'].head()

The preceding code will get the digit count from each row and add the count of
that list to the number_of_digits columns. The preceding code generates
the following output:

0 0

1 0

2 0

3 0

4 0

Name: number_of_digits, dtype: int64

78 | Feature Extraction Methods

10. To calculate the number of words in the DataFrame, add the following code:

def get_number_of_words(feature_df, data):

 """

 The below code line will break the text line in a list of

 words in each row and add the count of that list into

 the columns 'number_of_digits'

 """

 feature_df['number_of_words'] = data['text'].\

 apply(lambda x : len(word_tokenize(str(x))))

 return feature_df

feature_df = get_number_of_words(feature_df, data)

feature_df['number_of_words'].head()

The preceding code will split the text line into a list of words in each row and
add the count of that list to the number_of_digits columns. We will get the
following output:

0 5

1 4

2 9

3 5

4 3

Name: number_of_words, dtype: int64

11. To calculate the number of whitespaces in the DataFrame, add the
following code:

def get_number_of_whitespaces(feature_df, data):

 """

 The below code line will generate list of white spaces

 in each row and add the length of that list into

 the columns 'number_of_white_spaces

 """

 feature_df['number_of_white_spaces'] = data['text']. \

 apply(lambda x: len([ch for ch in str(x) \

 if ch.isspace()]))

 return feature_df

Feature Extraction from Texts | 79

feature_df = get_number_of_whitespaces(feature_df, data)

feature_df['number_of_white_spaces'].head()

The preceding code will generate a list of whitespaces in each row and add the
length of that list to the number_of_white_spaces columns. The preceding
code generates the following output:

0 4

1 3

2 7

3 3

4 2

Name: number_of_white_spaces, dtype: int64

12. To view the full feature set we have just created, add the following code:

feature_df.head()

We will be printing the head of the final DataFrame, which means we will print
five rows of all the columns. We will get the following output:

Figure 2.18: DataFrame consisting of the features we have created

With that, we have learned how to extract general features from the given text.

Note

To access the source code for this specific section, please refer
to https://packt.live/3jSsLNh.

You can also run this example online at https://packt.live/3hPFmPA.

Now, let's explore how we can extract unique features.

https://packt.live/3jSsLNh
https://packt.live/3hPFmPA

80 | Feature Extraction Methods

Bag of Words (BoW)

The Bag of Words (BoW) model is one of the most popular methods for extracting
features from raw texts.

In this technique, we convert each sentence into a vector. The length of this vector is
equal to the number of unique words in all the documents. This is done in two steps:

1. The vocabulary or dictionary of all the words is generated.

2. The document is represented in terms of the presence or absence of all words.

A vocabulary or dictionary is created from all the unique possible words available in
the corpus (all documents) and every single word is assigned a unique index number.
In the second step, every document is represented by a list whose length is equal to
the number of words in the vocabulary. The following exercise illustrates how BoW
can be implemented using Python.

Exercise 2.13: Creating a Bag of Words

In this exercise, we will create a BoW representation for all the terms in a document
and ascertain the 10 most frequent terms. In this exercise, we will use the
CountVectorizer module from sklearn, which performs the following tasks:

• Tokenizes the collection of documents, also called a corpus

• Builds the vocabulary of unique words

• Converts a document into vectors using the previously built vocabulary

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries and declare a list corpus. Add the following code
to implement this:

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

Feature Extraction from Texts | 81

3. Use the CountVectorizer function to create the BoW model. Add the
following code to do this:

def vectorize_text(corpus):

 """

 Will return a dataframe in which every row will ,be

 vector representation of a document in corpus

 :param corpus: input text corpus

 :return: dataframe of vectors

 """

 bag_of_words_model = CountVectorizer()

 """

 performs the above described three tasks on

 the given data corpus.

 """

 dense_vec_matrix = bag_of_words_model.\

 fit_transform(corpus).todense()

 bag_of_word_df = pd.DataFrame(dense_vec_matrix)

 bag_of_word_df.columns = sorted(bag_of_words_model.\

 vocabulary_)

 return bag_of_word_df

corpus = ['Data Science is an overlap between Arts and Science',\

 'Generally, Arts graduates are right-brained and '\

 'Science graduates are left-brained',\

 'Excelling in both Arts and Science at a time '\

 'becomes difficult',\

 'Natural Language Processing is a part of Data Science']

df = vectorize_text(corpus)

df.head()

The vectorize_text method will take a document corpus as an argument
and return a DataFrame in which every row will be a vector representation of a
document in the corpus.

82 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.19: DataFrame of the output of the BoW model

4. Create a BoW model for the 10 most frequent terms. Add the following code to
implement this:

def bow_top_n(corpus, n):

 """

 Will return a dataframe in which every row

 will be represented by presence or absence of top 10 most

 frequently occurring words in data corpus

 :param corpus: input text corpus

 :return: dataframe of vectors

 """

 bag_of_words_model_small = CountVectorizer(max_features=n)

 bag_of_word_df_small = pd.DataFrame\

 (bag_of_words_model_small.fit_transform\

 (corpus).todense())

 bag_of_word_df_small.columns = \

 sorted(bag_of_words_model_small.vocabulary_)

 return bag_of_word_df_small

df_2 = bow_top_n(corpus, 10)

df_2.head()

In the preceding code, we are checking the occurrence of the top 10 most
frequent words in each sentence and creating a DataFrame out of it.

Feature Extraction from Texts | 83

The preceding code generates the following output:

Figure 2.20: DataFrame of the output of the BoW model for the 10 most frequent terms

Note

To access the source code for this specific section, please refer
to https://packt.live/3gdhViJ.

You can also run this example online at https://packt.live/3hPUTi8.

In this section, we learned what BoW is and how to can use it to convert a sentence or
document into a vector. BoW is the easiest way to convert text into a vector; however,
it has a severe disadvantage. This method only considers the presence and absence
of words in a sentence or document—not the frequency of the words/tokens in a
document. If we are going to use the semantics of any sentence, the frequency of
the words plays an important role. To overcome this issue, there is another feature
extraction model called TFIDF, which we will discuss later in this chapter.

Zipf's Law

According to Zipf's law, the number of times a word occurs in a corpus is inversely
proportional to its rank in the frequency table. In simple terms, if the words in a
corpus are arranged in descending order of their frequency of occurrence, then the
frequency of the word at the ith rank will be proportional to 1/i:

Figure 2.21: Zipf's law

https://packt.live/3gdhViJ
https://packt.live/3hPUTi8

84 | Feature Extraction Methods

This also means that the frequency of the most frequent word will be twice the
frequency of the second most frequent word. For example, if we look at the Brown
University Standard Corpus of Present-Day American English, the word "the" is the
most frequent word (its frequency is 69,971), while the word "of" is the second most
frequent (with a frequency of 36,411). As we can see, its frequency is almost half
of the most frequently occurring word. To get a better understanding of this, let's
perform a simple exercise.

Exercise 2.14: Zipf's Law

In this exercise, we will plot both the expected and actual ranks and frequencies
of tokens with the help of Zipf's law. We will be using the 20newsgroups dataset
provided by the sklearn library, which is a collection of newsgroup documents.
Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries:

from pylab import *

import nltk

nltk.download('stopwords')

from sklearn.datasets import fetch_20newsgroups

from nltk import word_tokenize

from nltk.corpus import stopwords

import matplotlib.pyplot as plt

import re

import string

from collections import Counter

Add two methods for loading stop words and the data from the
newsgroups_data_sample variable:

def get_stop_words():

 stop_words = stopwords.words('english')

 stop_words = stop_words + list(string.printable)

 return stop_words

Feature Extraction from Texts | 85

def get_and_prepare_data(stop_words):

 """

 This method will load 20newsgroups data and

 and remove stop words from it using given stop word list.

 :param stop_words:

 :return:

 """

 newsgroups_data_sample = \

 fetch_20newsgroups(subset='train')

 tokenized_corpus = [word.lower() for sentence in \

 newsgroups_data_sample['data'] \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', sentence)) \

 if word.lower() not in stop_words]

 return tokenized_corpus

In the preceding code, there are two methods; get_stop_words() will load
stop word list from nltk data, while get_and_prepare_data() will load the
20newsgroups data and remove stop words from it using the given stop
word list.

3. Add the following method to calculate the frequency of each token:

def get_frequency(corpus, n):

 token_count_di = Counter(corpus)

 return token_count_di.most_common(n)

The preceding method uses the Counter class to count the frequency of tokens
in the corpus and then return the most common n tokens.

4. Now, call all the preceding methods to calculate the frequency of the top 50
most frequent tokens:

stop_word_list = get_stop_words()

corpus = get_and_prepare_data(stop_word_list)

get_frequency(corpus, 50)

86 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.22: The 50 most frequent words of the corpus

Feature Extraction from Texts | 87

5. Plot the actual ranks of words that we got from frequency dictionary and the
ranks expected as per Zipf's law. Calculate the frequencies of the top 10,000
words using the preceding get_frequency() method and the expected
frequencies of the same list using Zipf's law. For this, create two lists—an
actual_frequencies and an expected_frequencies list. Use the log
of actual frequencies to downscale the numbers. After getting the actual and
expected frequencies, plot them using matplotlib:

def get_actual_and_expected_frequencies(corpus):

 freq_dict = get_frequency(corpus, 1000)

 actual_frequencies = []

 expected_frequencies = []

 for rank, tup in enumerate(freq_dict):

 actual_frequencies.append(log(tup[1]))

 rank = 1 if rank == 0 else rank

 # expected frequency 1/rank as per zipf's law

 expected_frequencies.append(1 / rank)

 return actual_frequencies, expected_frequencies

def plot(actual_frequencies, expected_frequencies):

 plt.plot(actual_frequencies, 'g*', \

 expected_frequencies, 'ro')

 plt.show()

We will plot the actual and expected frequencies

actual_frequencies, expected_frequencies = \

get_actual_and_expected_frequencies(corpus)

plot(actual_frequencies, expected_frequencies)

88 | Feature Extraction Methods

The preceding code generates the following output:

Figure 2.23: Illustration of Zipf's law

So, as we can see from the preceding output, both lines have almost the same slope.
In other words, we can say that the lines (or graphs) depict the proportionality of
two lists.

Note

To access the source code for this specific section, please refer
to https://packt.live/30ZnKtD.

You can also run this example online at https://packt.live/3f9ZFoT.

https://packt.live/30ZnKtD
https://packt.live/3f9ZFoT

Feature Extraction from Texts | 89

Term Frequency–Inverse Document Frequency (TFIDF)

Term Frequency-Inverse Document Frequency (TFIDF) is another method of
representing text data in a vector format. Here, once again, we'll represent each
document as a list whose length is equal to the number of unique words/tokens in
all documents (corpus), but the vector here not only represents the presence and
absence of a word, but also the frequency of the word—both in the current document
and the whole corpus.

This technique is based on the idea that the rarely occurring words are better
representatives of the document than frequently occurring words. Hence, this
representation gives more weightage to the rarer or less frequent words than
frequently occurring words. It does so with the following formula:

Figure 2.24: TFIDF formula

Here, term frequency is the frequency of a word in the given document. Inverse
document frequency can be defined as log(D/df), where df is document frequency
and D is the total number of documents in the background corpus.

Now, let's complete an exercise and learn how TFIDF can be implemented in Python.

Exercise 2.15: TFIDF Representation

In this exercise, we will represent the input texts with their TFIDF vectors. We will use
a sklearn module named TfidfVectorizer, which converts text into TFIDF
vectors. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import all the necessary libraries and create a method to calculate the TFIDF of
the corpus. Add the following code to implement this:

from sklearn.feature_extraction.text import TfidfVectorizer

def get_tf_idf_vectors(corpus):

 tfidf_model = TfidfVectorizer()

 vector_list = tfidf_model.fit_transform(corpus).todense()

 return vector_list

90 | Feature Extraction Methods

3. To create a TFIDF model, write the following code:

corpus = ['Data Science is an overlap between Arts and Science',\

 'Generally, Arts graduates are right-brained and '\

 'Science graduates are left-brained',\

 'Excelling in both Arts and Science at a '\

 'time becomes difficult',\

 'Natural Language Processing is a part of Data Science']

vector_list = get_tf_idf_vectors(corpus)

print(vector_list)

In the preceding code, the get_tf_idf_vectors() method will generate
TFIDF vectors from the corpus. You will then call this method on a given corpus.
The preceding code generates the following output:

Figure 2.25: TFIDF representation of the 10 most frequent terms

Finding Text Similarity – Application of Feature Extraction | 91

The preceding output represents the TFIDF vectors for each row. As you can see
from the results, each document is represented by a list whose length is equal to the
unique words in the corpus and in each list (vector). The vector contains the TFIDF
values of the words at their corresponding index.

Note

To access the source code for this specific section, please refer
to https://packt.live/3gdzsHA.

You can also run this example online at https://packt.live/3fdP5gS.

In the next section, we will solve an activity to extract specific features from texts.

Finding Text Similarity – Application of Feature Extraction
So far in this chapter, we have learned how to generate vectors from text. These
vectors are then fed to machine learning algorithms to perform various tasks. Other
than using them in machine learning applications, we can also perform simple
NLP tasks using these vectors. Finding the string similarity is one of them. This is a
technique in which we find the similarity between two strings by converting them into
vectors. The technique is mainly used in full-text searching.

There are different techniques for finding the similarity between two strings or texts.
They are explained one by one here:

• Cosine similarity: The cosine similarity is a technique to find the similarity
between the two vectors by calculating the cosine of the angle between them.
As we know, the cosine of a zero-degree angle is 1 (meaning the cosine similarity
of two identical vectors is 1), while the cosine of 180 degrees is -1 (meaning
the cosine of two opposite vectors is -1). Thus, we can use this cosine angle to
find the similarity between the vectors from 1 to -1. To use this technique in
finding text similarity, we convert text into vectors using one of the previously
discussed techniques and find the similarity between the vectors of the text. This
is calculated as follows:

Figure 2.26: Cosine similarity

https://packt.live/3gdzsHA
https://packt.live/3fdP5gS

92 | Feature Extraction Methods

Here, A and B are two vectors, A.B is the dot product of two vectors, and |A| and
|B| are the magnitude of two vectors.

• Jaccard similarity: This is another technique that's used to calculate the
similarity between the two texts, but it only works on BoW vectors. The Jaccard
similarity is calculated as the ratio of the number of terms that are common
between two text documents to the total number of unique terms present in
those texts.

Consider the following example. Suppose there are two texts:

Text 1: I like detective Byomkesh Bakshi.

Text 2: Byomkesh Bakshi is not a detective; he is a truth seeker.

The common terms are "Byomkesh," "Bakshi," and "detective."

The number of common terms in the texts is three.

The unique terms present in the texts are "I," "like," "is," "not," "a," "he," "is,"
"truth," and "seeker." So, the number of unique terms is nine.

Therefore, the Jaccard similarity is 3/9 = 0.3.

To get a better understanding of text similarity, we will complete an exercise.

Exercise 2.16: Calculating Text Similarity Using Jaccard and Cosine Similarity

In this exercise, we will calculate the Jaccard and cosine similarity for a given pair of
texts. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

lemmatizer = WordNetLemmatizer()

Finding Text Similarity – Application of Feature Extraction | 93

3. Create a function to extract the Jaccard similarity between a pair of sentences by
adding the following code:

def extract_text_similarity_jaccard(text1, text2):

 """

 This method will return Jaccard similarity between two texts

 after lemmatizing them.

 :param text1: text1

 :param text2: text2

 :return: similarity measure

 """

 lemmatizer = WordNetLemmatizer()

 words_text1 = [lemmatizer.lemmatize(word.lower()) \

 for word in word_tokenize(text1)]

 words_text2 = [lemmatizer.lemmatize(word.lower()) \

 for word in word_tokenize(text2)]

 nr = len(set(words_text1).intersection(set(words_text2)))

 dr = len(set(words_text1).union(set(words_text2)))

 jaccard_sim = nr / dr

 return jaccard_sim

4. Declare three variables named pair1, pair2, and pair3, as follows.

pair1 = ["What you do defines you", "Your deeds define you"]

pair2 = ["Once upon a time there lived a king.", \

 "Who is your queen?"]

pair3 = ["He is desperate", "Is he not desperate?"]

5. To check the Jaccard similarity between the statements in pair1, write the
following code:

extract_text_similarity_jaccard(pair1[0],pair1[1])

The preceding code generates the following output:

0.14285714285714285

94 | Feature Extraction Methods

6. To check the Jaccard similarity between the statements in pair2, write the
following code:

extract_text_similarity_jaccard(pair2[0],pair2[1])

The preceding code generates the following output:

0.0

7. To check the Jaccard similarity between the statements in pair3, write the
following code:

extract_text_similarity_jaccard(pair3[0],pair3[1])

The preceding code generates the following output:

0.6

8. To check the cosine similarity, use the TfidfVectorizer() method to get the
vectors of each text:

def get_tf_idf_vectors(corpus):

 tfidf_vectorizer = TfidfVectorizer()

 tfidf_results = tfidf_vectorizer.fit_transform(corpus).\

 todense()

 return tfidf_results

9. Create a corpus as a list of texts and get the TFIDF vectors of each text
document. Add the following code to do this:

corpus = [pair1[0], pair1[1], pair2[0], \

 pair2[1], pair3[0], pair3[1]]

tf_idf_vectors = get_tf_idf_vectors(corpus)

10. To check the cosine similarity between the initial two texts, write the
following code:

cosine_similarity(tf_idf_vectors[0],tf_idf_vectors[1])

The preceding code generates the following output:

array([[0.3082764]])

Finding Text Similarity – Application of Feature Extraction | 95

11. To check the cosine similarity between the third and fourth texts, write the
following code:

cosine_similarity(tf_idf_vectors[2],tf_idf_vectors[3])

The preceding code generates the following output:

array([[0.]])

12. To check the cosine similarity between the fifth and sixth texts, write the
following code:

cosine_similarity(tf_idf_vectors[4],tf_idf_vectors[5])

The preceding code generates the following output:

array([[0.80368547]])

So, in this exercise, we learned how to check the similarity between texts. As you can
see, the texts "He is desperate" and "Is he not desperate?" returned
similarity results of 0.80 (meaning they are highly similar), whereas sentences such
as "Once upon a time there lived a king." and "Who is your
queen?" returned zero as their similarity measure.

Note

To access the source code for this specific section, please refer
to https://packt.live/2Eyw0JC.

You can also run this example online at https://packt.live/2XbGRQ3.

Word Sense Disambiguation Using the Lesk Algorithm

The Lesk algorithm is used for resolving word sense disambiguation. Suppose
we have a sentence such as "On the bank of river Ganga, there lies the scent of
spirituality" and another sentence, "I'm going to withdraw some cash from the bank".
Here, the same word—that is, "bank"—is used in two different contexts. For text
processing results to be accurate, the context of the words needs to be considered.

In the Lesk algorithm, words with ambiguous meanings are stored in the background
in synsets. The definition that is closer to the meaning of a word being used in the
context of the sentence will be taken as the right definition. Let's perform a simple
exercise to get a better idea of how we can implement this.

https://packt.live/2Eyw0JC
https://packt.live/2XbGRQ3

96 | Feature Extraction Methods

Exercise 2.17: Implementing the Lesk Algorithm Using String Similarity and

Text Vectorization

In this exercise, we are going to implement the Lesk algorithm step by step using the
techniques we have learned so far. We will find the meaning of the word "bank" in
the sentence, "On the banks of river Ganga, there lies the scent of spirituality." We will
use cosine similarity as well as Jaccard similarity here. Follow these steps to complete
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity

from nltk import word_tokenize

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.datasets import fetch_20newsgroups

import numpy as np

3. Define a method for getting the TFIDF vectors of a corpus:

def get_tf_idf_vectors(corpus):

 tfidf_vectorizer = TfidfVectorizer()

 tfidf_results = tfidf_vectorizer.fit_transform\

 (corpus).todense()

 return tfidf_results

4. Define a method to convert the corpus into lowercase:

def to_lower_case(corpus):

 lowercase_corpus = [x.lower() for x in corpus]

 return lowercase_corpus

5. Define a method to find the similarity between the sentence and the possible
definitions and return the definition with the highest similarity score:

def find_sentence_definition(sent_vector,defnition_vectors):

 """

 This method will find cosine similarity of sentence with

 the possible definitions and return the one with

 highest similarity score along with the similarity score.

 """

 result_dict = {}

Finding Text Similarity – Application of Feature Extraction | 97

 for definition_id,def_vector in definition_vectors.items():

 sim = cosine_similarity(sent_vector,def_vector)

 result_dict[definition_id] = sim[0][0]

 definition = sorted(result_dict.items(), \

 key=lambda x: x[1], \

 reverse=True)[0]

 return definition[0],definition[1]

6. Define a corpus with random sentences with the sentence and the two
definitions as the top three sentences:

corpus = ["On the banks of river Ganga, there lies the scent "\

 "of spirituality",\

 "An institute where people can store extra "\

 "cash or money.",\

 "The land alongside or sloping down to a river or lake"

 "What you do defines you",\

 "Your deeds define you",\

 "Once upon a time there lived a king.",\

 "Who is your queen?",\

 "He is desperate",\

 "Is he not desperate?"]

7. Use the previously defined methods to find the definition of the word bank:

lower_case_corpus = to_lower_case(corpus)

corpus_tf_idf = get_tf_idf_vectors(lower_case_corpus)

sent_vector = corpus_tf_idf[0]

definition_vectors = {'def1':corpus_tf_idf[1],\

 'def2':corpus_tf_idf[2]}

definition_id, score = \

find_sentence_definition(sent_vector,definition_vectors)

print("The definition of word {} is {} with similarity of {}".\

 format('bank',definition_id,score))

You will get the following output:

The definition of word bank is def2 with similarity of
0.14419130686278897

98 | Feature Extraction Methods

As we already know, def2 represents a riverbank. So, we have found the correct
definition of the word here. In this exercise, we have learned how to use text
vectorization and text similarity to find the right definition of ambiguous words.

Note

To access the source code for this specific section, please refer
to https://packt.live/39GzJAs.

You can also run this example online at https://packt.live/3fbxQwK.

Word Clouds

Unlike numeric data, there are very few ways in which text data can be represented
visually. The most popular way of visualizing text data is by using word clouds. A
word cloud is a visualization of a text corpus in which the sizes of the tokens (words)
represent the number of times they have occurred, as shown in the following image:

Figure 2.27: Example of a word cloud

https://packt.live/39GzJAs
https://packt.live/3fbxQwK

Finding Text Similarity – Application of Feature Extraction | 99

In the following exercise, we will be using a Python library called wordcloud to build
a word cloud from the 20newsgroups dataset.

Let's go through an exercise to understand this better.

Exercise 2.18: Generating Word Clouds

In this exercise, we will visualize the most frequently occurring words in the first 1,000
articles from sklearn's fetch_20newsgroups text dataset using a word cloud.
Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary libraries and dataset. Add the following code to do this:

import nltk

nltk.download('stopwords')

import matplotlib.pyplot as plt

plt.rcParams['figure.dpi'] = 200

from sklearn.datasets import fetch_20newsgroups

from nltk.corpus import stopwords

from wordcloud import WordCloud

import matplotlib as mpl

mpl.rcParams['figure.dpi'] = 200

3. Write the get_data() method to fetch the data:

def get_data(n):

 newsgroups_data_sample = fetch_20newsgroups(subset='train')

 text = str(newsgroups_data_sample['data'][:n])

 return text

100 | Feature Extraction Methods

4. Add a method to remove stop words:

def load_stop_words():

 other_stopwords_to_remove = ['\\n', 'n', '\\', '>', \

 'nLines', 'nI',"n'"]

 stop_words = stopwords.words('english')

 stop_words.extend(other_stopwords_to_remove)

 stop_words = set(stop_words)

 return stop_words

5. Add the generate_word_cloud() method to generate a word cloud object:

def generate_word_cloud(text, stopwords):

 """

 This method generates word cloud object

 with given corpus, stop words and dimensions

 """

 wordcloud = WordCloud(width = 800, height = 800, \

 background_color ='white', \

 max_words=200, \

 stopwords = stopwords, \

 min_font_size = 10).generate(text)

 return wordcloud

6. Get 1,000 documents from the 20newsgroup data, get the stop word list,
generate a word cloud object, and finally plot the word cloud with matplotlib:

text = get_data(1000)

stop_words = load_stop_words()

wordcloud = generate_word_cloud(text, stop_words)

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()

Finding Text Similarity – Application of Feature Extraction | 101

The preceding code generates the following output:

Figure 2.28: Word cloud representation of the first 10 articles

So, in this exercise, we learned what word clouds are and how to generate word
clouds with Python's wordcloud library and visualize this with matplotlib.

Note

To access the source code for this specific section, please refer
to https://packt.live/30eaSRn.

You can also run this example online at https://packt.live/2EzqLJJ.

In the next section, we will explore other visualizations, such as dependency parse
trees and named entities.

https://packt.live/30eaSRn
https://packt.live/2EzqLJJ

102 | Feature Extraction Methods

Other Visualizations

Apart from word clouds, there are various other ways of visualizing texts. Some of the
most popular ways are listed here:

• Visualizing sentences using a dependency parse tree: Generally, the phrases
constituting a sentence depend on each other. We depict these dependencies by
using a tree structure known as a dependency parse tree. For instance, the word
"helps" in the sentence "God helps those who help themselves" depends on two
other words. These words are "God" (the one who helps) and "those" (the ones
who are helped).

• Visualizing named entities in a text corpus: In this case, we extract the named
entities from texts and highlight them by using different colors.

Let's go through the following exercise to understand this better.

Exercise 2.19: Other Visualizations Dependency Parse Trees and Named Entities

In this exercise, we will look at two of the most popular visualization methods, after
word clouds, which are dependency parse trees and using named entities. Follow
these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import spacy

from spacy import displacy

!python -m spacy download

en_core_web_sm

import en_core_web_sm

nlp = en_core_web_sm.load()

3. Depict the sentence "God helps those who help themselves" using a dependency
parse tree with the following code:

doc = nlp('God helps those who help themselves')

displacy.render(doc, style='dep', jupyter=True)

Finding Text Similarity – Application of Feature Extraction | 103

The preceding code generates the following output:

Figure 2.29: Dependency parse tree

4. Visualize the named entities of the text corpus by adding the following code:

text = 'Once upon a time there lived a saint named '\

 'Ramakrishna Paramahansa. His chief disciple '\

 'Narendranath Dutta also known as Swami Vivekananda '\

 'is the founder of Ramakrishna Mission and '\

 'Ramakrishna Math.'

doc2 = nlp(text)

displacy.render(doc2, style='ent', jupyter=True)

The preceding code generates the following output:

Figure 2.30: Named entities

Note

To access the source code for this specific section, please refer
to https://packt.live/313m4iD.

You can also run this example online at https://packt.live/3103fgr.

Now that you have learned about visualizations, we will solve an activity based on
them to gain an even better understanding.

https://packt.live/313m4iD
https://packt.live/3103fgr

104 | Feature Extraction Methods

Activity 2.02: Text Visualization

In this activity, you will create a word cloud for the 50 most frequent words in a
dataset. The dataset we will use consists of random sentences that are not clean.
First, we need to clean them and create a unique set of frequently occurring words.

Note

The text_corpus.txt file that's being used in this activity can be found at
https://packt.live/2DiVIBj.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Fetch the dataset.

3. Perform the preprocessing steps, such as text cleaning, tokenization, and
lemmatization, on the fetched data.

4. Create a set of unique words along with their frequencies for the 50 most
frequently occurring words.

5. Create a word cloud for these top 50 words.

6. Justify the word cloud by comparing it with the word frequency that
you calculated.

Note

The solution to this activity can be found on page 375.

https://packt.live/2DiVIBj

Summary | 105

Summary
In this chapter, you have learned about various types of data and ways to deal with
unstructured text data. Text data is usually extremely noisy and needs to be cleaned
and preprocessed, which mainly consists of tokenization, stemming, lemmatization,
and stop-word removal. After preprocessing, features are extracted from texts using
various methods, such as BoW and TFIDF. These methods convert unstructured text
data into structured numeric data. New features are created from existing features
using a technique called feature engineering. In the last part of this chapter, we
explored various ways of visualizing text data, such as word clouds.

In the next chapter, you will learn how to develop machine learning models to classify
texts using the feature extraction methods you have learned about in this chapter.
Moreover, different sampling techniques and model evaluation parameters will
be introduced.

Overview

This chapter starts with an introduction to the various types of machine
learning methods, that is, the supervised and unsupervised methods.
You will learn about hierarchical clustering and k-means clustering and
implement them using various datasets. Next, you will explore tree-based
methods such as random forest and XGBoost. Finally, you will implement
an end-to-end text classifier in order to categorize text on the basis of
its content.

Developing a Text Classifier

3

108 | Developing a Text Classifier

Introduction
In the previous chapters, you learned about various extraction methods, such as
tokenization, stemming, lemmatization, and stop-word removal, which are used to
extract features from unstructured text. We also discussed Bag of Words and Term
Frequency-Inverse Document Frequency (TFIDF).

In this chapter, you will learn how to use these extracted features to develop machine
learning models. These models are capable of solving real-world problems, such as
detecting whether sentiments carried by texts are positive or negative, predicting
whether emails are spam or not, and so on. We will also cover concepts such as
supervised and unsupervised learning, classifications and regressions, sampling
and splitting data, along with evaluating the performance of a model in depth. This
chapter also discusses how to load and save these models for future use.

Machine Learning
Machine learning is the scientific study of algorithms and statistical models that
computer systems use to perform a specific task without using explicit instructions,
relying on patterns and inference instead.

Machine learning algorithms are fed with large amounts of data that they can work
on to build a model. This model is later used by businesses to generate solutions that
help them analyze data and build strategies for the future. For example, a beverage
production company can make use of multiple datasets to better understand the
trends of their product's consumption over the course of a year. This would help
them reduce wastage and better predict the requirements of their consumers.
Machine learning is further categorized into unsupervised and supervised
learning. Let's explore these two terms in detail.

Unsupervised Learning

Unsupervised learning is the method by which algorithms learn patterns within
data that is not labeled. Since labels (supervisors) are absent, it is referred to as
unsupervised learning. In unsupervised learning, you provide the algorithm with the
feature data and it learns patterns from the data on its own.

Machine Learning | 109

Unsupervised learning is further classified into clustering and association:

• Clustering: Clustering is the process of combining objects into groups called
clusters. For example, if there are 50 students who need to be categorized based
on their attributes, we do not use any specific attribute(s) to create segments.
Rather, we try to learn the hidden patterns that exist in their attributes and
categorize them accordingly. This process is known as cluster analysis or
clustering (one of the most popular types of unsupervised learning). When
handed a set of text documents, we can divide them into groups that are similar
with the help of clustering. A common example of clustering could be when you
search for a term on Google and similar pages or links are recommended. These
recommendations are powered by document clustering.

• Association: Another type of unsupervised learning is association rule mining.
We use association rule mining to obtain groups of items that occur together
frequently. The most common use case of association rule mining is to identify
customers' buying patterns. For example, in a supermarket, customers who tend
to buy milk and bread generally tend to buy cheese. This information can be
used to design supermarket layouts. An application of association rule mining
in Natural Language Processing (NLP) is to find similar words; for example,
outstanding, excellent, and superb are all synonyms of good. Association rule
mining can easily find patterns like this in any NLP dataset. However, the
detailed theoretical explanations of these algorithms are beyond the scope
of this chapter.

Let's explore the different types of clustering. In particular, we will be talking about
hierarchical and k-means clustering, and the different scenarios in which they
should be used. However, before we dive into those, it's important to understand
the concept of distance metrics, which is what we use to create clusters and identify
similar data points. The most common distance metric is Euclidean, which is
calculated as follows:

Figure 3.1: Formula for Euclidean distance

In the case of machine learning, p and q are different data points in the dataset and
pi, qi are the different features of those data points.

110 | Developing a Text Classifier

Hierarchical Clustering

Hierarchical clustering algorithms group similar objects together to create a cluster
with the help of a dendrogram. In this algorithm, we can vary the number of clusters
as per our requirements. First, we construct a matrix consisting of distances between
each pair of instances (data points). After that, we construct a dendrogram (a
representation of clusters in the form of a tree) based on the distances between
them. We truncate the tree at a location corresponding to the number of clusters
we need.

For example, imagine that you have 10 documents and want to group them into a
number of categories based on their attributes (the number of words they contain,
the number of paragraphs, punctuation, and so on) and don't have any fixed number
of categories in mind. This is a use case of hierarchical clustering. Let's assume that
we have a dataset containing the features of the 10 documents. Firstly, the distances
between each pair of documents from the set of 10 documents are calculated. After
that, we construct a dendrogram and truncate it at a suitable position to get a
suitable number of clusters:

Figure 3.2: Output dendrogram after performing hierarchical clustering

Machine Learning | 111

In the preceding graph, we can perform a truncation at distance 3.5 to get two
clusters or at 2.5 to get three clusters, depending on the requirements. To create a
dendrogram using scikit-learn, we can use the following code:

import scipy.cluster.hierarchy as sch

dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))

plt.title('Dendrogram')

plt.show()

Here, X is the dataset that we want to perform hierarchical clustering with. Let's
perform an exercise to understand how we can implement this.

Exercise 3.01: Performing Hierarchical Clustering

In this exercise, we will analyze the text documents in sklearn's
fetch_20newsgroups dataset. The 20 newsgroups dataset contains news
articles on 20 different topics. We will make use of hierarchical clustering to classify
the documents into different groups. Once the clusters have been created, we will
compare them with their actual categories. Follow these steps to implement
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from sklearn.datasets import fetch_20newsgroups

from scipy.cluster.hierarchy import ward, dendrogram

import matplotlib as mpl

from scipy.cluster.hierarchy import fcluster

from sklearn.metrics.pairwise import cosine_similarity

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

112 | Developing a Text Classifier

from pylab import *

import nltk

import warnings

warnings.filterwarnings('ignore')

3. Download a list of stop words and the Wordnet corpus from nltk. Insert a new
cell and add the following code to implement this:

nltk.download('stopwords')

stop_words=stopwords.words('english')

stop_words=stop_words+list(string.printable)

nltk.download('wordnet')

lemmatizer=WordNetLemmatizer()

4. Specify the categories of news articles we want to fetch to perform our clustering
task. We will use three categories: "For sale", "Electronics", and "Religion". Add
the following code to do this:

categories= ['misc.forsale', 'sci.electronics', \

 'talk.religion.misc']

5. To fetch the dataset, add the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

 categories=categories, \

 shuffle=True, random_state=42, \

 download_if_missing=True)

6. To view the data of the fetched content, add the following code:

news_data['data'][:5]

Machine Learning | 113

The preceding code generates the following output:

Figure 3.3: The first five news articles

7. To check the categories of news articles, insert a new cell and add the
following code:

print(news_data.target)

The target is the variable that we predict by making use of the rest of the
variables in a dataset. The preceding code generates the following output:

[0 0 1 … 0 1 0]

Here, 0 refers to misc.forsale, 1 refers to sci.electronics, and 2 refers
to talk.religion.misc.

8. To store news_data and the corresponding categories in a pandas
DataFrame and view it, write the following code:

news_data_df = pd.DataFrame({'text' : news_data['data'], \

 'category': news_data.target})

news_data_df.head()

114 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.4: Text corpus of news data corresponding to the categories in a DataFrame

9. To count the number of occurrences of each category appearing in this dataset,
write the following code:

news_data_df['category'].value_counts()

The preceding code generates the following output:

1 591

0 585

2 377

Name: category, dtype: int64

10. Use a lambda function to extract tokens from each "text" of the news_data_
df DataFrame. Check whether any of these tokens is a stop word, lemmatize
the ones that are not stop words, and then concatenate them to recreate the
sentence. Make use of the join function to concatenate a list of words into a
single sentence. To replace anything other than letters, digits, and whitespaces
with blank space, use a regular expression (re). Add the following code to
do this:

news_data_df['cleaned_text'] = news_data_df['text']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower())\

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ',\

 str(x))) if word.lower() \

 not in stop_words]))

Machine Learning | 115

11. Create a TFIDF matrix and transform it into a DataFrame. Add the following code
to do this:

tfidf_model = TfidfVectorizer(max_features=200)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.5: TFIDF representation as a DataFrame

12. Calculate the distance using the sklearn library:

from sklearn.metrics.pairwise import \

euclidean_distances as euclidean

dist = 1 - euclidean(tfidf_df)

13. Now, create a dendrogram for the TFIDF representation of documents:

import scipy.cluster.hierarchy as sch

dendrogram = sch.dendrogram(sch.linkage(dist, method='ward'))

plt.xlabel('Data Points')

plt.ylabel('Euclidean Distance')

plt.title('Dendrogram')

plt.show()

116 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.6: Truncated dendrogram

Here, you can see that a cluster count of four seems optimal.

14. Use the fcluster() function to obtain the cluster labels of the clusters that
were obtained by hierarchical clustering:

k=4

clusters = fcluster(sch.linkage(dist, method='ward'), k, \

 criterion='maxclust')

clusters

The preceding code generates the following output:

array([3, 3, 3, …, 4, 4, 1], dtype=int32)

Machine Learning | 117

15. Make use of the crosstab function of pandas to compare the clusters we have
obtained with the actual categories of news articles. Add the following code to
implement this:

news_data_df['obtained_clusters'] = clusters

pd.crosstab(news_data_df['category']\

 .replace({0:'misc.forsale', \

 1:'sci.electronics', \

 2:'talk.religion.misc'}),\

 news_data_df['obtained_clusters']\

 .replace({1 : 'cluster_1', 2 : 'cluster_2', \

 3 : 'cluster_3', 4: 'cluster_4'}))

The preceding code generates the following output:

Figure 3.7: Crosstab between actual categories and obtained clusters

Using the preceding image, we can analyze the high-level patterns that the clustering
algorithm found to group the articles into one of the four clusters. As you can see,
cluster 2 has mostly religion-related articles, while cluster 3 consists of primarily sales-
related articles. The other two clusters do not have a proper distinction. The reason
for this could be that the model figured out that words related to "religion" and "for
sale" appeared frequently in the articles that were classified into those respective
clusters, while the articles on "electronics" consist of mostly generic words.

Note

To access the source code for this specific section, please refer
to https://packt.live/39A4wyL.

You can also run this example online at https://packt.live/3ge4ezQ.

https://packt.live/39A4wyL
https://packt.live/3ge4ezQ

118 | Developing a Text Classifier

One major disadvantage of hierarchical clustering is scalability. Using hierarchical
clustering for large datasets is very difficult; for such cases, we can use k-means
clustering. Let us explore how this works.

k-means Clustering

In this algorithm, we segregate the given instances (data points) into "k" number of
groups (here, k is a natural number). First, we choose k centroids. We assign each
instance to its nearest centroid, thereby creating k groups. This is the assignment
phase, which is followed by the update phase.

In the update phase, new centroids for each of these k groups are calculated.
The data points are reassigned to their nearest newly calculated centroids. The
assignment phase and the update phase are carried on repeatedly until the
assignment of data points no longer changes.

For example, suppose you have 10 documents. You want to group them into three
categories based on their attributes, such as the number of words they contain, the
number of paragraphs, punctuation, and the tone of the document. In this case, we
will assume that k is 3; that is, we want to create these three groups. Firstly, three
centroids need to be chosen. In the initialization phase, each of these 10 documents
is assigned to one of these three categories, thereby forming three groups. In the
update phase, the centroids of the three newly formed groups are calculated. To
decide the optimal number of clusters (that is, k), we execute k-means clustering
for various values of k and note down their performances (sum of squared errors).
We try to select a small value for k that has the lowest sum of squared errors. This
method is called the elbow method.

The scikit-learn library can be used to perform k-means in Python using the
following code:

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4)

kmeans.fit(X)

clusters = kmeans.predict(X)

Here, we create the base model using the kmeans class of scikit-learn. Then, we train
the model using the fit function. The trained model can then be used to get clusters
using the predict function, where X represents a DataFrame of independent variables.
Let's perform an exercise to get a better understanding of k-means clustering.

Machine Learning | 119

Exercise 3.02: Implementing k-means Clustering

In this exercise, we will create four clusters from text documents in sklearn's
fetch_20newsgroups text dataset using k-means clustering. We will compare
these clusters with the actual categories and use the elbow method to obtain the
optimal number of clusters. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

import seaborn as sns

sns.set()

import numpy as np

from scipy.spatial.distance import cdist

from sklearn.cluster import KMeans

3. To use stop words for the English language and the WordNet corpus for
lemmatization, add the following code:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()

120 | Developing a Text Classifier

4. To specify the categories of news articles, add the following code:

categories= ['misc.forsale', 'sci.electronics', \

 'talk.religion.misc']

5. Use the following lines of code to fetch the dataset and store it in a
pandas DataFrame:

news_data = fetch_20newsgroups(subset='train', \

 categories=categories, \

 shuffle=True, \

 random_state=42, \

 download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

 'category': news_data.target})

6. Use the lambda function to extract tokens from each "text" of the news_
data_df DataFrame. Discard the tokens if they're stop words, lemmatize them
if they're not, and then concatenate them to recreate the sentence. Use the join
function to concatenate a list of words into a single sentence and use the regular
expression method (re) to replace anything other than alphabets, digits, and
whitespaces with a blank space. Add the following code to do this:

news_data_df['cleaned_text'] = news_data_df['text']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize(word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', \

 str(x))) \

 if word.lower() not in stop_words]))

7. Use the following lines of code to create a TFIDF matrix and transform it into
a DataFrame:

tfidf_model = TfidfVectorizer(max_features=200)

tfidf_df = pd.DataFrame(tfidf_model\

 .fit_transform\

 (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

Machine Learning | 121

The preceding code generates the following output:

Figure 3.8: TFIDF representation as a DataFrame

8. Use the KMeans function of sklearn to create four clusters from a TFIDF
representation of news articles. Add the following code to do this:

kmeans = KMeans(n_clusters=4)

kmeans.fit(tfidf_df)

y_kmeans = kmeans.predict(tfidf_df)

news_data_df['obtained_clusters'] = y_kmeans

9. Use pandas' crosstab function to compare the clusters we have obtained with
the actual categories of the news articles. Add the following code to do this:

pd.crosstab(news_data_df['category']\

 .replace({0:'misc.forsale', \

 1:'sci.electronics', \

 2:'talk.religion.misc'}),\

 news_data_df['obtained_clusters']\

 .replace({0 : 'cluster_1',\

 1 : 'cluster_2', 2 : 'cluster_3', \

 3: 'cluster_4'}))

122 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.9: Crosstab between the actual categories and obtained clusters xxx

From the figure above, you can see, cluster 2 has majorly religion related articles
and cluster 4 has mostly for sale related articles. The other two clusters do now
have a proper distinction but cluster 3 has majority of the electronic articles.

10. Finally, to obtain the optimal value of k (that is, the number of clusters), execute
the k-means algorithm for values of k ranging from 1 to 6. For each value of k,
store the distortion—that is, the mean of the distances of the documents from
their nearest cluster center. Look for the value of k where the slope of the plot
changes rapidly. Add the following code to implement this:

distortions = []

K = range(1,6)

for k in K:

 kmeanModel = KMeans(n_clusters=k)

 kmeanModel.fit(tfidf_df)

 distortions.append(sum(np.min(cdist\

 (tfidf_df, kmeanModel.cluster_centers_, \

 'euclidean'), axis=1)) / tfidf_df.shape[0])

plt.plot(K, distortions, 'bx-')

plt.xlabel('k')

plt.ylabel('Distortion')

plt.title('The Elbow Method showing the optimal number '\

 'of clusters')

plt.show()

Machine Learning | 123

The preceding code generates the following output:

Figure 3.10: Optimal clusters represented in a graph using the elbow method

From the preceding graph, we can conclude that the optimal number of clusters is 2.

Note

To access the source code for this specific section, please refer
to https://packt.live/2EuZckB.

You can also run this example online at https://packt.live/333x6Hw.

We have seen how unsupervised learning can be implemented in Python. Now, let us
talk about supervised learning.

https://packt.live/2EuZckB
https://packt.live/333x6Hw

124 | Developing a Text Classifier

Supervised Learning
Unlike unsupervised learning, supervised learning algorithms need labeled data. They
learn how to automatically generate labels or predict values by analyzing various
features of the data provided. For example, say you have already starred important
text messages on your phone, and you want to automate the task of going through
all your messages daily (considering they are important and marked already). This is
a use case for supervised learning. Here, messages that have been starred previously
can be used as labeled data. Using this data, you can create two types of models that
are capable of the following:

• Classifying whether new messages are important

• Predicting the probability of new messages being important

The first type is called classification, while the second type is called regression. Let's
learn about classification first.

Classification

Say you have two types of food, of which type 1 tastes sweet and type 2 tastes salty,
and you need to determine how an unknown food will taste using various attributes
of the food (such as color, fragrance, shape, and ingredients). This is an instance
of classification.

Here, the two classes are class 1, which tastes sweet, and class 2, which tastes salty.
The features that are used in this classification are color, fragrance, the ingredients
used to prepare the dish, and so on. These features are called independent variables.
The class (sweet or salty) is called a dependent variable.

Formally, classification algorithms are those that learn patterns from a given
dataset to determine classes of unknown datasets. Some of the most widely used
classification algorithms are logistic regression, Naive Bayes, k-nearest neighbor, and
tree methods. Let's learn about each of them.

Supervised Learning | 125

Logistic Regression

Despite having the term "regression" in it, logistic regression is used for probabilistic
classification. In this case, the dependent variable (the outcome) is binary, which
means that the values can be represented by 0 or 1. For example, consider that you
need to decide whether an email is spam or not. Here, the value of the decision (the
dependent variable, or the outcome) can be considered to be 1 if the email is spam;
otherwise, it will be 0. No other outcome is possible. The independent variables (that
is, the features) will consist of various attributes of the email, such as the number
of occurrences of certain keywords and so on. We can then make use of the logistic
regression algorithm to create a model that predicts if the email is spam (1) or not (0),
as shown in the following graph:

Figure 3.11: Example of logistic regression

Here, the decision boundary is created by training a logistic regression model that
helps us classify spam emails.

126 | Developing a Text Classifier

The scikit-learn library can be used to perform logistic regression in Python using the
following code:

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()

log_reg.fit(X,y)

predicted_labels = log_reg.predict(X)

predicted_probability = log_reg.predict_proba(X)[:,1]

Here, we create the base model using the LogisticRegression class of
scikit-learn. Then, we train the model using the fit function. The trained model
can then be used to make predictions, and we can also get probability estimates for
each class using the predict_proba function. Here, X represents a DataFrame of
independent variables, whereas y represents a DataFrame of dependent variables.

Exercise 3.03: Text Classification – Logistic Regression

In this exercise, we will classify reviews of musical instruments on Amazon with the
help of the logistic regression classification algorithm.

Note

To download the dataset, visit https://packt.live/3hQ6UEe.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

https://packt.live/3hQ6UEe

Supervised Learning | 127

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to
implement this:

review_data = pd.read_json\

 ('data/reviews_Musical_Instruments_5.json', \

 lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.12: Data stored in a DataFrame

4. Use a lambda function to extract tokens from each 'reviewText' of this
DataFrame, lemmatize them, and concatenate them side by side. Use the
join function to concatenate a list of words into a single sentence. Use the
regular expression method (re) to replace anything other than alphabetical
characters, digits, and whitespaces with blank space. Add the following code to
implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ',\

 str(x)))]))

128 | Developing a Text Classifier

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

 'overall']].head()

The preceding code generates the following output:

Figure 3.13: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following
code to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.14: A TFIDF representation as a DataFrame

Supervised Learning | 129

7. The following lines of code are used to create a new column target, which will
have 0 if the overall parameter is less than 4, and 1 otherwise. Add the
following code to implement this:

review_data['target'] = review_data['overall'].apply\

 (lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()

The preceding code generates the following output:

1 6938

0 3323

Name: target, dtype: int64

8. Use sklearn's LogisticRegression() function to fit a logistic regression
model on the TFIDF representation of these reviews after cleaning them. Add the
following code to implement this:

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(tfidf_df,review_data['target'])

predicted_labels = logreg.predict(tfidf_df)

logreg.predict_proba(tfidf_df)[:,1]

The preceding code generates the following output:

array([0.57146961, 0.68579907, 0.56068939, …, 0.65979968, \

 0.5495679 , 0.21186011])

9. Use the crosstab function of pandas to compare the results of our
classification model with the actual classes ('target', in this case) of the
reviews. Add the following code to do this:

review_data['predicted_labels'] = predicted_labels

pd.crosstab(review_data['target'], \

 review_data['predicted_labels'])

130 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.15: Crosstab between actual target values and predicted labels

Here, we can see 1543 instances with the target label 0 that are correctly classified
and 1780 such instances that are wrongly classified. Furthermore, 6312 instances
with the target label 1 are correctly classified, whereas 626 such instances are
wrongly classified.

Note

To access the source code for this specific section, please refer
to https://packt.live/3hOaKxJ.

You can also run this example online at https://packt.live/309yKWc.

We've seen how to implement logistic regression; now, let's look at
Naïve Bayes classification.

Naive Bayes Classifiers

Just like logistic regression, a Naive Bayes classifier is another kind of probabilistic
classifier. It is based on Bayes' theorem, which is shown here:

Figure 3.16: Bayes' theorem

In the preceding formula, A and B are events and P(B) is not equal to 0. P(A/B) is the
probability of event A occurring, given that event B is true. Similarly, P(B/A) is the
probability of event B occurring, given that event A is true. P(B) is the probability of
the occurrence of event B.

https://packt.live/3hOaKxJ
https://packt.live/309yKWc

Supervised Learning | 131

Say there is an online platform where hotel customers can provide a review for the
service provided to them. The hotel now wants to figure out whether new reviews
on the platform are appreciative in nature or not. Here, P(A) = the probability of
the review being an appreciative one, while P(B) = the probability of the review
being long. Now, we've come across a review that is long and want to figure out the
probability of it being appreciative. To do that, we need to calculate P(A/B). P(B/A)
will be the probability of appreciative reviews being long. From the training dataset,
we can easily calculate P(B/A), P(A), and P(B) and then use Bayes' theorem to
calculate P(A/B).

Similar to logistic regression, the scikit-learn library can be used to perform naïve
Bayes classification and can be implemented in Python using the following code:

from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(X,y)

predicted_labels = nb.predict(X)

predicted_probability = nb.predict_proba(X)[:,1]

Here, we created the base model using the GaussianNB class of scikit-learn. Then,
we trained the model using the fit function. The trained model can then be used
to make predictions; we can also get probability estimates for each class using
the predict_proba function. Here, X represents a DataFrame of independent
variables, whereas y represents a DataFrame of dependent variables.

Exercise 3.04: Text Classification – Naive Bayes

In this exercise, we will classify reviews of musical instruments on Amazon with the
help of the Naïve Bayes classification algorithm. Follow these steps to implement
this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3hQ6UEe.

1. Open a Jupyter Notebook.

https://packt.live/3hQ6UEe

132 | Developing a Text Classifier

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to
implement this:

review_data = pd.read_json\

 ('data/reviews_Musical_Instruments_5.json', \

 lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.17: Data stored in a DataFrame

Supervised Learning | 133

4. Use a lambda function to extract tokens from each 'reviewText' of this
DataFrame, lemmatize them, and concatenate them side by side. Use the join
function to concatenate a list of words into a single sentence. Use the regular
expression method (re) to replace anything other than alphabets, digits, and
whitespaces with blank space. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ',\

 str(x)))]))

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

 'overall']].head()

The preceding code generates the following output:

Figure 3.18: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following code
to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

134 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.19: A TFIDF representation as a DataFrame

7. The following lines of code are used to create a new column target, which will
have the value 0 if the 'overall' parameter is less than 4, and 1 otherwise.
Add the following code to implement this:

review_data['target'] = review_data['overall']\

 .apply(lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()

The preceding code generates the following output:

1 6938

0 3323

Name: target, dtype: int64

8. Use sklearn's GaussianNB() function to fit a Gaussian Naive Bayes model on
the TFIDF representation of these reviews after cleaning them. Add the following
code to do this:

from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(tfidf_df,review_data['target'])

predicted_labels = nb.predict(tfidf_df)

nb.predict_proba(tfidf_df)[:,1]

The preceding code generates the following output:

array([9.97730158e-01, 3.63599675e-09, 9.45692105e-07, …,

 2.46001047e-02, 3.43660991e-08, 1.72767906e-27])

The preceding screenshot shows the predicted probabilities of the input
tfidf_df dataset.

Supervised Learning | 135

9. Use the crosstab function of pandas to compare the results of our
classification model with the actual classes ('target', in this case) of the
reviews. Add the following code to do this:

review_data['predicted_labels'] = predicted_labels

pd.crosstab(review_data['target'], \

 review_data['predicted_labels'])

The preceding code generates the following output:

Figure 3.20: Crosstab between actual target values and predicted labels

Here, we can see 2333 instances with the target label 0 that are correctly classified
and 990 such instances that have been wrongly classified. Furthermore, 4558
instances with the target label 1 have been correctly classified, whereas 2380 such
instances have been wrongly classified.

Note

To access the source code for this specific section, please refer
to https://packt.live/2DnoeBx.

You can also run this example online at https://packt.live/3fcjT1t.

We'll explore k-nearest neighbors in the next section.

https://packt.live/2DnoeBx
https://packt.live/3fcjT1t

136 | Developing a Text Classifier

k-nearest Neighbors

k-nearest neighbors is an algorithm that can be used to solve both regression
and classification. In this chapter, we will focus on the classification aspect of the
algorithm as it is used for NLP applications. Consider, for instance, the saying
"birds of a feather flock together." This means that people who have similar interests
prefer to stay close to each other and form groups. This characteristic is called
homophily. This characteristic is the main idea behind the k-nearest neighbors
classification algorithm.

To classify an unknown object, k number of other objects located nearest to it with
class labels will be looked into. The class that occurs the most among them will be
assigned to it—that is, the object with an unknown class. The value of k is chosen by
running experiments on the training dataset to find the most optimal value. When
dealing with text data for a given document, we interpret "nearest neighbors" as
other documents that are the most similar to the unknown document.

We can make use of the scikit-learn library to implement the k-nearest neighbors
algorithm in Python using the following code:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X,y)

prediction = knn.predict(X)

Here, we created the base model using the KNeighborsClassifier class
of scikit-learn and pass it the value of k, which in this case is 3. Then, we trained
the model using the fit function. The trained model can then be used to make
predictions using the predict function. X represents a DataFrame of independent
variables, whereas y represents a DataFrame of dependent variables.

Now that we have an understanding of different types of classification, let's see how
we can implement them.

Supervised Learning | 137

Exercise 3.05: Text Classification Using the k-nearest Neighbors Method

In this exercise, we will classify reviews of musical instruments on Amazon with
the help of the k-nearest neighbors classification algorithm. Follow these steps to
implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3hQ6UEe.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Read the data file in JSON format using pandas. Add the following code to
implement this:

review_data = pd.read_json\

 ('data/reviews_Musical_Instruments_5.json',\

 lines=True)

review_data[['reviewText', 'overall']].head()

https://packt.live/3hQ6UEe

138 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.21: Data stored in a DataFrame

4. Use a lambda function to extract tokens from each reviewText of this
DataFrame, lemmatize them, and concatenate them side by side. Use the join
function to concatenate a list of words into a single sentence. Use the regular
expression method (re) to replace anything other than alphabets, digits, and
whitespaces with blank space. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ',\

 str(x)))]))

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version
of reviewText. Add the following code to implement this:

review_data[['cleaned_review_text', 'reviewText', \

 'overall']].head()

Supervised Learning | 139

The preceding code generates the following output:

Figure 3.22: Review texts before and after cleaning, along with their overall scores

6. Create a TFIDF matrix and transform it into a DataFrame. Add the following code
to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.23: A TFIDF representation as a DataFrame

7. The following lines of code are used to create a new column target, which will
have 0 if the overall parameter is less than 4, and 1 otherwise. Add the
following code to implement this:

review_data['target'] = review_data['overall']\

 .apply(lambda x : 0 if x<=4 else 1)

review_data['target'].value_counts()

140 | Developing a Text Classifier

The preceding code generates the following output:

1 6938

0 3323

Name: target, dtype: int64

8. Use sklearn's KNeighborsClassifier() function to fit a three-nearest
neighbor model on the TFIDF representation of these reviews after cleaning
them. Use the crosstab function of pandas to compare the results of our
classification model with the actual classes ('target', in this case) of
the reviews:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(tfidf_df,review_data['target'])

review_data['predicted_labels_knn'] = knn.predict(tfidf_df)

pd.crosstab(review_data['target'], \

 review_data['predicted_labels_knn'])

The preceding code generates the following output:

Figure 3.24: Crosstab between actual target values and predicted
labels by k-nearest neighbors

Here, we can see 2594 instances with the target label as 0 correctly classified and
729 such instances wrongly classified. Furthermore, 6563 instances with the target
label as 1 are correctly classified, whereas 375 such instances are wrongly classified.
You have just learned how to perform text classification with the help of various
classification algorithms.

Note

To access the source code for this specific section, please refer
to https://packt.live/338XQqb.

You can also run this example online at https://packt.live/39E5zNW.

https://packt.live/338XQqb
https://packt.live/39E5zNW

Supervised Learning | 141

In the next section, you will learn about regression, which is another type of
supervised learning.

Regression

To better understand regression, consider a practical example. For example, say
you have photos of several people, along with a list of their respective ages, and you
need to predict the ages of some other people from their photos. This is a use case
for regression.

In the case of regression, the dependent variable (age, in this example) is continuous.
The independent variables—that is, features—consist of the attributes of the images,
such as the color intensity of each pixel. Formally, regression analysis refers to the
process of learning a mapping function, which relates features or predictors (inputs)
to the dependent variable (output).

There are various types of regression: univariate, multivariate, simple, multiple,
linear, non-linear, polynomial regression, stepwise regression, ridge regression,
lasso regression, and elastic net regression. If there is just one dependent variable,
then it is referred to as univariate regression. On the other hand, two or more
dependent variables constitute multivariate regression. Simple regression has only
one predictor or target variable, while multivariate regression has more than one
predictor variable.

Since linear regression in the base algorithm for all the different types of regression
mentioned previously, in the next section, we will cover linear regression in detail.

Linear Regression

The term "linear" refers to the linearity of parameters. Parameters are the coefficients
of predictor variables in the linear regression equation. The following formula
represents the linear regression equation:

Figure 3.25: Formula for linear regression

Here, y is termed a dependent variable (output); it is continuous. X is an independent
variable or feature (input). β0 and β1 are parameters. Є is the error component,
which is the difference between the actual and predicted values of y. Since linear
regression requires the variable to be linear, it is not used much in the real world.
However, it is useful for high-level predictions, such as the sales revenue of a product
given the price and advertising cost.

142 | Developing a Text Classifier

We can use the scikit-learn library to implement the linear regression algorithm in
Python with the following code:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X,y)

coefficient = linreg.coef_

intercept = linreg.intercept_

linreg.predict(X)

Here, we created the base model using the LinearRegression class of scikit-learn.
Then, we trained the model using the fit function. Now that our linear regression
model has been trained, we can use the coef_ and intercept_ parameters of
the model to get the parameters and error components, as we discussed previously.
Here, X represents a DataFrame of independent variables, whereas y represents a
DataFrame of dependent variables. The trained model can then be used to make
predictions using the predict function.

In the next section, we will solve an exercise to get a better understanding of
regression analysis.

Exercise 3.06: Regression Analysis Using Textual Data

In this exercise, we will make use of linear regression to predict the overall ratings
from the reviews of musical instruments on Amazon. Follow these steps to implement
this exercise:

Note

The dataset for this exercise can be downloaded from
https://packt.live/3hQ6UEe.

9. Open a Jupyter Notebook.

https://packt.live/3hQ6UEe

Supervised Learning | 143

10. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

11. Read the given data file in JSON format using pandas. Add the following code
to implement this:

review_data = pd.read_json\

 ('data/reviews_Musical_Instruments_5.json', \

 lines=True)

review_data[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.26: Reviews of musical instruments stored as a DataFrame

144 | Developing a Text Classifier

12. Use a lambda function to extract tokens from each 'reviewText' of this
DataFrame, lemmatize them, and concatenate them side by side. Then, use the
join function to concatenate a list of words into a single sentence. In order to
replace anything other than alphabets, digits, and whitespaces with blank
space, use the regular expression method (re). Add the following code to
implement this:

lemmatizer = WordNetLemmatizer()

review_data['cleaned_review_text'] = review_data['reviewText']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ',\

 str(x)))]))

review_data[['cleaned_review_text', 'reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.27: Review texts before and after cleaning, along with their overall scores

13. Create a DataFrame from the TFIDF matrix representation of cleaned
reviewText. Add the following code to do this:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (review_data['cleaned_review_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

Supervised Learning | 145

The preceding code generates the following output:

Figure 3.28: TFIDF representation as a DataFrame

14. Use sklearn's LinearRegression() function to fit a linear regression model
on this TFIDF DataFrame. Add the following code to do this:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(tfidf_df,review_data['overall'])

linreg.coef_

The preceding code generates the following output:

Figure 3.29: Coefficients of the linear regression model

146 | Developing a Text Classifier

The preceding output shows the coefficients of the different features of the
trained model.

Please note that Figure 3.29 is truncated.

15. To check the intercept or the error term of the linear regression model, type the
following code:

linreg.intercept_

The preceding code generates the following output:

4.218882428983381

16. To check the prediction in a TFIDF DataFrame, write the following code:

linreg.predict(tfidf_df)

The preceding code generates the following output:

array([4.19200071, 4.25771652, 4.23084868, …, 4.40384767,

 4.49036403, 4.14791976])

17. Finally, use this model to predict the 'overall' score and store it in a column
called 'predicted_score_from_linear_regression'. Add the
following code to implement this:

review_data['predicted_score_from_linear_regression'] = \

linreg.predict(tfidf_df)

review_data[['overall', \

 'predicted_score_from_linear_regression']].head(10)

Supervised Learning | 147

The preceding code generates the following output:

Figure 3.30: Actual scores and predictions of the linear regression model

From the preceding table, we can see how the actual and predicted score varies for
different instances. We will use this table later to evaluate the performance of
the model.

Note

To access the source code for this specific section, please refer
to https://packt.live/2P58eqy.

You can also run this example online at https://packt.live/335pLqV.

You have just learned how to perform regression analysis on given data. In the next
section, you will learn about tree methods.

https://packt.live/2P58eqy
https://packt.live/335pLqV

148 | Developing a Text Classifier

Tree Methods

There are several algorithms that have both classification and regression forms. Tree-
based methods are instances of such cases. In the context of machine learning, "tree"
refers to a structure that aids decision-making—hence, the term decision tree. Tree-
based methods have high accuracy and unlike linear methods, they model non-linear
relationships as well. Additionally, decision trees handle categorical variables much
better than linear regression.

Let us use the example of a hotel trying to identify if the reviews provided by their
patrons have a positive sentiment or a negative one. So, the reviews needed to be
classified into two classes, namely, positive sentiments and negative sentiments. A
data scientist working for the hotel can create a dataset of all online reviews of their
hotel and create a decision tree, as shown in the following diagram:

Figure 3.31: Decision tree

In the preceding diagram, the first decision is made based on the length of the
sentences. He finds that the short length reviews generally have a positive sentiment,
whereas a medium length review has a negative sentiment. For reviews that were
longer, he had to rely on keywords to determine the sentiment as longer length
reviews are almost equally likely to be positive or negative. If the excellent keyword is
present, the review belongs to the positive sentiment; otherwise, it belongs to the
negative sentiment.

Supervised Learning | 149

We can make use of the scikit-learn library to implement the decision tree algorithm
in Python using the following code:

from sklearn import tree

dtc = tree.DecisionTreeClassifier()

dtc = dtc.fit(X, y)

predicted_labels = dtc.predict(X)

Here, we created the base model using the DecisionTreeClassifier class
of scikit-learn. Then, we trained the model using the fit function. The trained
model can then be used to make predictions using the predict function. Here,
X represents a DataFrame of independent variables, whereas y represents a
DataFrame of dependent variables.

Exercise 3.07: Tree-Based Methods – Decision Tree

In this exercise, we will use the tree-based method known as decision trees to predict
the overall scores and labels of reviews of patio, lawn, and garden products on
Amazon. Follow these steps to implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

https://packt.live/3gczb7P

150 | Developing a Text Classifier

import nltk

nltk.download('wordnet')

nltk.download('punkt')

import warnings

warnings.filterwarnings('ignore')

3. Now, read the given data file in JSON format using pandas. Add the following
code to implement this:

data_patio_lawn_garden = pd.read_json\

 ('data/'\

 'reviews_Patio_Lawn_and_Garden_5.json',\

 lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.32: Storing reviews as a DataFrame

4. Use the lambda function to extract tokens from each 'reviewText' of this
DataFrame, lemmatize them using WorrdNetLemmatizer, and concatenate
them side by side. Use the join function to concatenate a list of words into a
single sentence. Use the regular expression method (re) to replace anything
other than letters, digits, and whitespaces with blank spaces. Add the following
code to do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText']\

.apply(lambda x : ' '.join([lemmatizer.lemmatize(word.lower()) \

 for word in word_tokenize(re.sub(r'([^\s\w]|_)+', ' ', \

 str(x)))]))

Supervised Learning | 151

data_patio_lawn_garden[['cleaned_review_text', 'reviewText',\

 'overall']].head()

The preceding code generates the following output:

Figure 3.33: Review text before and after cleaning, along with overall scores

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version
of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (data_patio_lawn_garden['cleaned_review_text'])\

 .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.34: TFIDF representation as a DataFrame

6. The following lines of code are used to create a new column called target, which
will have 0 if the 'overall' parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

 ['overall'].apply\

 (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()

152 | Developing a Text Classifier

The preceding code generates the following output:

1 7037

0 6235

Name: target, dtype: int64

7. Use sklearn's tree() function to fit a decision tree classification model on the
TFIDF DataFrame we created earlier. Add the following code to do this:

from sklearn import tree

dtc = tree.DecisionTreeClassifier()

dtc = dtc.fit(tfidf_df, data_patio_lawn_garden['target'])

data_patio_lawn_garden['predicted_labels_dtc'] = dtc.predict\

 (tfidf_df)

8. Use pandas' crosstab function to compare the results of the classification
model with the actual classes ('target', in this case) of the reviews. Add the
following code to do this:

pd.crosstab(data_patio_lawn_garden['target'], \

 data_patio_lawn_garden['predicted_labels_dtc'])

The preceding code generates the following output:

Figure 3.35: Crosstab between actual target values and predicted labels

Here, we can see 6627 instances with a target label of 0 correctly classified, and
8 such instances wrongly classified. Furthermore, 7036 instances with a target
label of 1 are correctly classified, whereas 1 such instance is wrongly classified.

Supervised Learning | 153

9. Use sklearn's tree() function to fit a decision tree regression model on the
TFIDF representation of these reviews after cleaning. To predict the overall
scores using this model, add the following code:

from sklearn import tree

dtr = tree.DecisionTreeRegressor()

dtr = dtr.fit(tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden['predicted_values_dtr'] = dtr.predict\

 (tfidf_df)

data_patio_lawn_garden[['predicted_values_dtr', \

 'overall']].head(10)

The preceding code generates the following output:

Figure 3.36: Overall scores with predicted values

154 | Developing a Text Classifier

From the preceding table, we can see how the actual and predicted scores vary for
different instances. We will use this table later to evaluate the performance of
the model.

Note

To access the source code for this specific section, please refer
to https://packt.live/39CHhEc.

You can also run this example online at https://packt.live/39EwKZ6.

Next, we will look at another tree-based method, random forest.

Random Forest

Imagine that you must decide whether to join a university. In one scenario, you ask
only one person about the quality of the education the university provides. In another
scenario, you ask several career counselors and academicians about this. Which
scenario do you think would help you make a better and the most stable decision?
The second one, right? This is because, in the first case, the only person you are
consulting may be biased. "Wisdom of the crowd" tends to remove biases, thereby
aiding better decision-making.

In general terms, a forest is a collection of different types of trees. The same
definition holds true in the case of machine learning as well. Instead of using a single
decision tree for prediction, we use several of them.

In the scenario we described earlier, the first case is equivalent to using a single
decision tree, whereas the second one is equivalent to using several—that is, using
a forest. In a random forest, an individual tree's vote impacts the final decision. Just
like decision trees, random forest is capable of carrying out both classification and
regression tasks.

An advantage of the random forest algorithm is that it uses a sampling technique
called bagging, which prevents overfitting. Bagging is the process of training meta-
algorithms on a different subsample of the data and then combining these to create a
better model. Overfitting refers to cases where a model learns the training dataset so
well that it is unable to generalize or perform well on another validation/test dataset.

https://packt.live/39CHhEc
https://packt.live/39EwKZ6

Supervised Learning | 155

Random forests also aid in understanding the importance of predictor variables and
features. However, building a random forest often takes a huge amount of time and
memory. We can make use of the scikit-learn library to implement the random forest
algorithm in Python using the following code:

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()

rfc = rfc.fit(X, y)

predicted_labels = rfc.predict(X)

Here, we created the base model using the RandomForestClassifier class of
scikit-learn. Then, we trained the model using the fit function. The trained model
can then be used to make predictions using the predict function. X represents
a DataFrame of independent variables, whereas y represents a DataFrame of
dependent variables.

Gradient Boosting Machine and Extreme Gradient Boost

There are various other tree-based algorithms, such as gradient boosting machines
(GBM) and extreme gradient boosting (XGBoost). Boosting works by combining
rough, less complex, or "weak" models into a single prediction that is more accurate
than any single model. Iteratively, a subset of the training dataset is ingested into a
"weak" algorithm or simple algorithm (such as a decision tree) to generate a weak
model. These weak models are then combined to form the final prediction.

GBM makes use of classification trees as the weak algorithm. The results are
generated by improving estimations from these weak models using a differentiable
loss function, which gives us the performance of the model by calculating how far the
prediction is from the actual value. The model fits consecutive trees by considering
the net loss of the previous trees; therefore, each tree is partially present in the
final solution.

156 | Developing a Text Classifier

XGBoost is an enhanced version of GBM that is portable and distributed, which
means that it can easily be used in different architectures and can use multiple cores
(a single machine) or multiple machines (clusters). As a bonus, the XGBoost library is
written in C++, which makes it fast. It is also useful when working with a huge dataset
as it allows you to store data on an external disk rather than load all the data into
memory. The main reasons for the popularity of XGBoost are as follows:

• Ability to automatically deal with missing values

• High-speed execution

• High accuracy, if properly trained

• Support for distributed frameworks such as Hadoop and Spark

XGBoost uses a weighted combination of weak learners during the training phase.

We can make use of the xgboost library to implement the XGBoost algorithm in
Python using the following code:

from xgboost import XGBClassifier

xgb_clf=XGBClassifier()

xgb_clf = xgb_clf.fit(X, y)

predicted_labels = rfc.predict(X)

Here, we created the base model using the XGBClassifier class of xgboost.
Then, we trained the model using the fit function. The trained model can then be
used to make predictions using the predict function. Here, X represents a DataFrame
of independent variables, whereas y represents a DataFrame of dependent variables.
To get the important features for the trained model, we can use the following code:

pd.DataFrame({'word':X.columns,'importance':xgb_clf.feature_
importances_})

Let's perform some exercises to get a better understanding of tree-based methods.

Supervised Learning | 157

Exercise 3.08: Tree-Based Methods – Random Forest

In this exercise, we will use the tree-based method random forest to predict the
overall scores and labels of reviews of patio, lawn, and garden products on Amazon.
Follow these steps to implement this exercise:

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import
the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

2. Now, read the given data file in JSON format using pandas. Add the following
code to implement this:

data_patio_lawn_garden = pd.read_json\

 ('data/'\

 'reviews_Patio_Lawn_and_Garden_5.json',\

 lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head()

https://packt.live/3gczb7P

158 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.37: Storing reviews as a DataFrame

3. Use a lambda function to extract tokens from each reviewText of this
DataFrame, lemmatize them using WordNetLemmatizer, and concatenate
them side by side. Use the join function to concatenate a list of words into a
single sentence. Use a regular expression (re) to replace anything other than
letters, digits, and whitespaces with blank spaces. Add the following code to
do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText']\

.apply(lambda x : ' '.join([lemmatizer.lemmatize(word.lower()) \

 for word in word_tokenize(re.sub(r'([^\s\w]|_)+', ' ', \

 str(x)))]))

data_patio_lawn_garden[['cleaned_review_text', 'reviewText', \

 'overall']].head()

Supervised Learning | 159

The preceding code generates the following output:

Figure 3.38: Review text before and after cleaning, along with overall scores

4. Create a DataFrame from the TFIDF matrix representation of the cleaned
version of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (data_patio_lawn_garden['cleaned_review_text'])\

 .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.39: TFIDF representation as a DataFrame

5. Add the following lines of code to create a new column called target, which will
have 0 if the overall parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

 ['overall'].apply\

 (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()

160 | Developing a Text Classifier

The preceding code generates the following output:

1 7037

0 6235

Name: target, dtype: int64

6. Now, define a generic function for all the classifier models. Add the following
code to do this:

def clf_model(model_type, X_train, y):

 model = model_type.fit(X_train,y)

 predicted_labels = model.predict(tfidf_df)

 return predicted_labels

7. Train three kinds of classifier models—namely, random forest, gradient boosting
machines, and XGBoost. For random forest, we predict the class labels of the
given set of review texts and compare them with their actual class—that is, the
target, using crosstabs. Add the following code to do this:

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=20,max_depth=4,\

 max_features='sqrt',random_state=1)

data_patio_lawn_garden['predicted_labels_rfc'] = \

clf_model(rfc, tfidf_df, data_patio_lawn_garden['target'])

pd.crosstab(data_patio_lawn_garden['target'], \

 data_patio_lawn_garden['predicted_labels_rfc'])

The preceding code generates the following output:

Figure 3.40: Crosstab between actual target values and predicted labels

Here, we can see 3302 instances with a target label of 0 correctly classified,
and 2933 such instances wrongly classified. Furthermore, 5480 instances with
a target label of 1 are correctly classified, whereas 1557 such instances are
wrongly classified.

Supervised Learning | 161

8. Now, define a generic function for all regression models. Add the following code
to do this:

def reg_model(model_type, X_train, y):

 model = model_type.fit(X_train,y)

 predicted_values = model.predict(tfidf_df)

 return predicted_values

9. Train three kinds of regression models: random forest, gradient boosting
machines, and XGBoost. For random forest, we predict the overall score of the
given set of review texts. Add the following code to do this:

from sklearn.ensemble import RandomForestRegressor

rfg = RandomForestRegressor(n_estimators=20,max_depth=4,\

 max_features='sqrt',random_state=1)

data_patio_lawn_garden['predicted_values_rfg'] = \

reg_model(rfg, tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden[['overall', \

 'predicted_values_rfg']].head(10)

The preceding code generates the following output:

Figure 3.41: Actual overall score and predicted values using a random forest regressor

162 | Developing a Text Classifier

From the preceding table, we can see how the actual and predicted scores vary for
different instances. We will use this table later to evaluate the performance of
the model.

Note

To access the source code for this specific section, please refer
to https://packt.live/33aowa4.

You can also run this example online at https://packt.live/2P8a89V.

Now, let's perform a similar task using the XGBoost method.

Exercise 3.09: Tree-Based Methods – XGBoost

In this exercise, we will use the tree-based method XGBoost to predict the overall
scores and labels of reviews of patio, lawn, and garden products on Amazon.

Note

To download the dataset for this exercise, visit https://packt.live/3gczb7P.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

https://packt.live/33aowa4
https://packt.live/2P8a89V
https://packt.live/3gczb7P

Supervised Learning | 163

import nltk

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Now, read the given data file in JSON format using pandas. Add the following
code to implement this:

data_patio_lawn_garden = pd.read_json\

 ('data/'\

 'reviews_Patio_Lawn_and_Garden_5.json',\

 lines = True)

data_patio_lawn_garden[['reviewText', 'overall']].head()

The preceding code generates the following output:

Figure 3.42: Storing reviews as a DataFrame

4. Use a lambda function to extract tokens from each 'reviewText' of this
DataFrame, lemmatize them using WorrdNetLemmatizer, and concatenate
them side by side. Use the join function to concatenate a list of words into a
single sentence. Use the regular expression method (re) to replace anything
other than letters, digits, and whitespaces with blank spaces. Add the following
code to do this:

lemmatizer = WordNetLemmatizer()

data_patio_lawn_garden['cleaned_review_text'] = \

data_patio_lawn_garden['reviewText'].apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub\

164 | Developing a Text Classifier

 (r'([^\s\w]|_)+', ' ', \

 str(x)))]))

data_patio_lawn_garden[['cleaned_review_text', 'reviewText', \

 'overall']].head()

The preceding code generates the following output:

Figure 3.43: Review text before and after cleaning, along with overall scores

5. Create a DataFrame from the TFIDF matrix representation of the cleaned version
of reviewText with the following code:

tfidf_model = TfidfVectorizer(max_features=500)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (data_patio_lawn_garden['cleaned_review_text'])\

 .todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.44: TFIDF representation as a DataFrame

6. The following lines of code are used to create a new column called target, which
will have 0 if the 'overall' parameter is less than 4; otherwise, it will have 1:

data_patio_lawn_garden['target'] = data_patio_lawn_garden\

 ['overall'].apply\

 (lambda x : 0 if x<=4 else 1)

data_patio_lawn_garden['target'].value_counts()

Supervised Learning | 165

The preceding code generates the following output:

1 7037

0 6235

Name: target, dtype: int64

7. Now, define a generic function for all the classifier models. Add the following
code to do this:

def clf_model(model_type, X_train, y):

 model = model_type.fit(X_train,y)

 predicted_labels = model.predict(tfidf_df)

 return predicted_labels

8. Predict the class labels of the given set of reviewText and compare it with
their actual class, that is, the target, using the crosstab function. Add the
following code to do this:

pip install xgboost

from xgboost import XGBClassifier

xgb_clf=XGBClassifier(n_estimators=20,learning_rate=0.03,\

 max_depth=5,subsample=0.6,\

 colsample_bytree= 0.6,reg_alpha= 10,\

 seed=42)

data_patio_lawn_garden['predicted_labels_xgbc'] = \

clf_model(xgb_clf, tfidf_df, data_patio_lawn_garden['target'])

pd.crosstab(data_patio_lawn_garden['target'], \

 data_patio_lawn_garden['predicted_labels_xgbc'])

The preceding code generates the following output:

Figure 3.45: Crosstab between actual target values and predicted labels using XGBoost

166 | Developing a Text Classifier

Here, we can see 4300 instances with a target label of 0 correctly classified,
and 1935 such instances wrongly classified. Furthermore, 2164 instances with
a target label of 1 are correctly classified, whereas 4873 such instances are
wrongly classified.

9. Now, define a generic function for all the regression models. Add the following
code to do this:

def reg_model(model_type, X_train, y):

 model = model_type.fit(X_train,y)

 predicted_values = model.predict(tfidf_df)

 return predicted_values

10. Predict the overall score of the given set of reviewText. Add the following
code to do this:

from xgboost import XGBRegressor

xgbr = XGBRegressor(n_estimators=20,learning_rate=0.03,\

 max_depth=5,subsample=0.6,\

 colsample_bytree= 0.6,reg_alpha= 10,seed=42)

data_patio_lawn_garden['predicted_values_xgbr'] = \

reg_model(xgbr, tfidf_df, data_patio_lawn_garden['overall'])

data_patio_lawn_garden[['overall', \

 'predicted_values_xgbr']].head(2)

The preceding code generates the following output:

Figure 3.46: Actual overall score and predicted values using an XGBoost regressor

Supervised Learning | 167

From the preceding table, we can see how the actual and predicted scores vary for
different instances. We will use this table later to evaluate the performance of the
model. With that, you have learned how to use tree-based methods to predict scores
in data.

Note

To access the source code for this specific section, please refer
to https://packt.live/2P5woBi.

You can also run this example online at https://packt.live/2DfTa71.

In the next section, you will learn about sampling.

Sampling

Sampling is the process of creating a subset from a given set of instances. If you have
1,000 sentences in an article, out of which you choose 100 sentences for analysis, the
subset of 100 sentences will be called a sample of the original article. This process is
referred to as sampling.

Sampling is necessary when creating models for imbalanced datasets. For example,
consider that the number of bad comments on a review board for a company is 10
and the number of good comments is 1,000. If we input this data as it is into the
model, it will not give us accurate results; classifying all the comments as "good" will
provide a near-perfect accuracy, which isn't really applicable to most real datasets.
Thus, we need to reduce the number of good reviews to a smaller number before
using it as input for training. There are different kinds of sampling methods, such as
the following:

• Simple random sampling

In this process, each instance of the set has an equal probability of being
selected. For example, you have 10 balls of 10 different colors in a box. You need
to select 4 out of 10 balls without looking at their color. In this case, each ball is
equally likely to be selected. This is an instance of simple random sampling.

https://packt.live/2P5woBi
https://packt.live/2DfTa71

168 | Developing a Text Classifier

• Stratified sampling

In this type of sampling, the original set is divided into parts called "strata",
based on given criteria. Random samples are chosen from each of these "strata."
For example, you have 100 sentences, out of which 80 are non-sarcastic and 20
are sarcastic. To extract a stratified sample of 10 sentences, you need to select
8 from 80 non-sarcastic sentences and 2 from 20 sarcastic sentences. This
will ensure that the ratio of non-sarcastic to sarcastic sentences, that is, 80:20,
remains unaltered in the sample that's selected.

• Multi-Stage Sampling

If you are analyzing the social media posts of all the people in a country related
to the current weather, the text data will be huge as it will consist of the weather
conditions of different cities. Drawing a stratified sample would be difficult.
In this case, it is recommended to first extract a stratified sample by region
and then further sample it within regions, that is, by cities. This is basically
performing stratified sampling at each and every stage.

To better understand these, let's perform a simple exercise.

Exercise 3.10: Sampling (Simple Random, Stratified, and Multi-Stage)

In this exercise, we will extract samples from an online retail dataset that contains
details about the transactions of an e-commerce website with the help of simple
random sampling, stratified sampling, and multi-stage sampling.

Note

To download the dataset for this exercise, visit https://packt.live/3fdsZuL.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import pandas and read
the dataset:

!pip install xlrd

import pandas as pd

data = pd.read_excel('data/Online Retail.xlsx')

data.shape

https://packt.live/3fdsZuL

Supervised Learning | 169

The preceding code generates the following output:

(54190, 8)

3. We use pandas' sample function to extract a sample from the DataFrame.
Add the following code to do this:

selecting 10% of the data randomly

data_sample_random = data.sample(frac=0.1,random_state=42)

data_sample_random.shape

The preceding code generates the following output:

(54191, 8)

4. Use sklearn's train_test_split function to create stratified samples. Add
the following code to do this:

from sklearn.model_selection import train_test_split

X_train, X_valid, y_train, y_valid = train_test_split\

 (data, data['Country'],\

 test_size=0.2, \

 random_state=42,\

 stratify = data['Country'])

You can confirm the stratified split by checking the percentage of each category
in the country column after the split. To get the train set percentages, use the
following code:

y_train.value_counts()/y_train.shape[0]

170 | Developing a Text Classifier

The following is part of the output of the preceding code:

Figure 3.47: The percentage of countries for the training set

5. Similarly, for the validation set, add the following code:

y_valid.value_counts()/y_valid.shape[0]

Supervised Learning | 171

The following is part of the output of the preceding code:

Figure 3.48: The percentage of countries for the validation set

As we can see, the percentages of all countries are similar in both the train and
validation sets.

172 | Developing a Text Classifier

6. We filter out the data in various stages and extract random samples from it.
We will extract a random sample of 2% from those transactions by country
that occurred in the United Kingdom, Germany, or France and where the
corresponding quantity is greater than or equal to 2. Add the following code to
implement this:

data_ugf = data[data['Country'].isin(['United Kingdom', \

 'Germany', 'France'])]

data_ugf_q2 = data_ugf[data_ugf['Quantity']>=2]

data_ugf_q2_sample = data_ugf_q2.sample(frac = .02, \

 random_state=42)

data_ugf_q2.shape

The preceding code generates the following output:

(356940, 8)

Now, add the following line of code:

data_ugf_q2_sample.shape

This will generate the following output:

(7139, 8)

We can see the reduction in size of the data when the filtering criteria is applied and
then the reduction in size when a sample of the filtered data is taken. In this exercise,
you learned about the three major sampling techniques that will help you create a
good training dataset for the text classifier that you will learn how to build in the
next section.

Note

To access the source code for this specific section, please refer
to https://packt.live/2P7M4nD.

You can also run this example online at https://packt.live/3jT8XsZ.

https://packt.live/2P7M4nD
https://packt.live/3jT8XsZ

Developing a Text Classifier | 173

Developing a Text Classifier
A text classifier is a machine learning model that is capable of labeling texts based
on their content. For instance, a text classifier will help you understand whether
a random text statement is sarcastic or not. Presently, text classifiers are gaining
importance as manually classifying huge amounts of text data is impossible. In
the next few sections, we will learn about the different parts of text classifiers and
implement them in Python.

Feature Extraction

When dealing with text data, features denote its different attributes. Generally,
they are numeric representations of the text. As we discussed in Chapter 2, Feature
Extraction Methods, TFIDF representations of texts are one of the most popular ways
of extracting features from them.

Feature Engineering

Feature engineering is the art of extracting new features from existing ones.
Extracting novel features, which tend to capture variation in data better, requires
sound domain expertise.

Removing Correlated Features

Correlation refers to the statistical relationship between two variables. Two highly
correlated variables provide the same kind of information. For example, the
remaining battery life of a laptop and its screen time are highly correlated. The
battery life will decrease as the screen time increases. Regression models, including
logistic regression, are unable to perform well when correlation between features
exists. Thus, features with correlation beyond a certain threshold need to be
removed. The most widely used correlation statistic is Pearson correlation, which can
be calculated as follows:

Figure 3.49: Pearson correlation

Here, cov is the covariance, σ is the standard deviation, and X and Y are two variables/
features of the training data that we are testing for correlation.

174 | Developing a Text Classifier

Exercise 3.11: Removing Highly Correlated Features (Tokens)

In this exercise, we will remove highly correlated words from a TFIDF matrix
representation of sklearn's fetch_20newgroups text dataset. Follow these steps
to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.datasets import fetch_20newsgroups

import matplotlib as mpl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. We will be using stop words from the English language only. WordNet is the
lemmatizer we will be using. Add the following code to implement this:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()

4. To specify the categories of news articles you want to fetch, add the
following code:

categories= ['misc.forsale', 'sci.electronics', \

 'talk.religion.misc']

Developing a Text Classifier | 175

5. To fetch sklearn's 20newsgroups text dataset, corresponding to the categories
mentioned earlier, use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

 categories=categories, \

 shuffle=True, random_state=42, \

 download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

 'category': news_data.target})

news_data_df.head()

The preceding code generates the following output:

Figure 3.50: Texts of news data as a DataFrame

6. Now, use the lambda function to extract tokens from each "text" of the news_
data_df DataFrame. Check whether any of these tokens are stop words,
lemmatize them, and concatenate them side by side. Use the join function to
concatenate a list of words into a single sentence. Use the regular expression
method (re) to replace anything other than letters, digits, and whitespaces with
blank spaces. Add the following code to implement this:

news_data_df['cleaned_text'] = news_data_df['text']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', \

 str(x))) if word.lower() \

 not in stop_words]))

176 | Developing a Text Classifier

7. Add the following lines of code used to create a TFIDF matrix and transform it
into a DataFrame:

tfidf_model = TfidfVectorizer(max_features=20)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.51: TFIDF representation as a DataFrame

8. Calculate the correlation matrix for this TFIDF representation. Add the following
code to implement this:

correlation_matrix = tfidf_df.corr()

correlation_matrix.head()

The preceding code generates the following output:

Figure 3.52: Correlation matrix

9. Now, plot the correlation matrix using seaborn's heatmap function. Add the
following code to implement this:

import seaborn as sns

fig, ax = plt.subplots(figsize=(20, 20))

sns.heatmap(correlation_matrix,annot=True, fmt='.1g', \

 vmin=-1, vmax=1, center= 0, cmap= 'coolwarm')

Developing a Text Classifier | 177

The preceding code generates the following output:

Figure 3.53: Heatmap representation of a correlation matrix

178 | Developing a Text Classifier

10. To identify a pair of terms with high correlation, create an upper triangular
matrix from the correlation matrix. Create a stacked array out of it and traverse
it. Add the following code to do this:

import numpy as np

correlation_matrix_ut = correlation_matrix.where(np.triu\

 (np.ones(correlation_matrix.shape))\

 .astype(np.bool))

correlation_matrix_melted = correlation_matrix_ut.stack()\

 .reset_index()

correlation_matrix_melted.columns = ['word1', 'word2', \

 'correlation']

correlation_matrix_melted[(correlation_matrix_melted['word1']\

 !=correlation_matrix_melted['word2']) \

 & (correlation_matrix_melted\

 ['correlation']>.7)]

The preceding code generates the following output:

Figure 3.54: Highly correlated tokens

You can see that the most highly correlated features are host, nntp, posting,
organization, and subject. Next, we will remove nntp, posting, and
organization since host and subject are highly correlated with them.

11. Remove terms for which the coefficient of correlation is greater than 0.7 and
create a separate DataFrame with the remaining terms. Add the following code
to do this:

tfidf_df_without_correlated_word = tfidf_df.drop(['nntp', \

 'posting', \

 'organization'],\

 axis = 1)

tfidf_df_without_correlated_word.head()

Developing a Text Classifier | 179

The preceding code generates the following output:

Figure 3.55: The DataFrame after removing correlated tokens

After removing the highly correlated words from the TFIDF DataFrame, it appears like
this. We have cleaned the dataset to remove highly correlated features and are now
one step closer to building our text classifier.

Note

To access the source code for this specific section, please refer
to https://packt.live/39RdJTz.

You can also run this example online at https://packt.live/2XbeCAX.

In the next section, we will learn how to reduce the size of the dataset and
understand why this is necessary.

Dimensionality Reduction

There are some optional steps that we can follow on a case-to-case basis. For
example, sometimes, the TFIDF matrix or Bag-of-Words representation of a text
corpus is so big that it doesn't fit in memory. In this case, it would be necessary to
reduce its dimension—that is, the number of columns in the feature matrix. The most
popular method for dimension reduction is Principal Component Analysis (PCA).

PCA is used to perform dimensionality reduction. It converts a list of features (which
may be correlated) into a list of variables that are linearly uncorrelated. These
linearly uncorrelated variables are known as principal components. These principal
components are arranged in descending order of the amount of variability they
capture in the dataset. For example, let's consider a Twitter tweet dataset where
people misspell words such as good and instead write "gud". PCA will combine these
two highly correlated features into a single feature and reduce the dimensionality. In
the next section, we'll look at an exercise to get a better understanding of this.

https://packt.live/39RdJTz
https://packt.live/2XbeCAX

180 | Developing a Text Classifier

Exercise 3.12: Performing Dimensionality Reduction Using Principal Component

Analysis

In this exercise, we will reduce the dimensionality of a TFIDF matrix representation
of sklearn's fetch_20newsgroups text dataset to two. Then, we'll create a scatter
plot of these documents. Each category should be colored differently. Follow these
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.datasets import fetch_20newsgroups

import matplotlib as mpl

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import re

import string

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from collections import Counter

from pylab import *

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

warnings.filterwarnings('ignore')

3. Use stop words from the English language only. WordNet states the
lemmatizer we will be using. Add the following code to implement this:

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

lemmatizer = WordNetLemmatizer()

Developing a Text Classifier | 181

4. To specify the categories of news articles we want to fetch by, add the
following code:

categories= ['misc.forsale', 'sci.electronics', \

 'talk.religion.misc']

5. To fetch sklearn's dataset corresponding to the categories we mentioned earlier,
use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

 categories=categories, \

 shuffle=True, random_state=42, \

 download_if_missing=True)

news_data_df = pd.DataFrame({'text' : news_data['data'], \

 'category': news_data.target})

news_data_df.head()

The preceding code generates the following output:

Figure 3.56: News texts and their categories

182 | Developing a Text Classifier

6. Use the lambda function to extract tokens from each text item of the news_
data_df DataFrame, check whether any of these tokens are stop words,
lemmatize them, and concatenate them side by side. Use the join function to
concatenate a list of words into a single sentence. Use the regular expression
method (re) to replace anything other than letters, digits, and whitespaces with
a blank space. Add the following code to implement this:

news_data_df['cleaned_text'] = news_data_df['text']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', \

 str(x))) if word.lower() \

 not in stop_words]))

7. The following lines of code are used to create a TFIDF matrix and transform it
into a DataFrame:

tfidf_model = TfidfVectorizer(max_features=20)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (news_data_df['cleaned_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

The preceding code generates the following output:

Figure 3.57: TFIDF representation as a DataFrame

Developing a Text Classifier | 183

8. In this step, we are using sklearn's PCA function to extract two principal
components from the initial data. Add the following code to do this:

from sklearn.decomposition import PCA

pca = PCA(2)

pca.fit(tfidf_df)

reduced_tfidf = pca.transform(tfidf_df)

reduced_tfidf

The preceding code generates the following output:

Figure 3.58: Principal components

In the preceding screenshot, you can see the two principal components that the
PCA algorithm calculated.

9. Now, we'll create a scatter plot using these principal components and
represent each category with a separate color. Add the following code to
implement this:

scatter = plt.scatter(reduced_tfidf[:, 0], \

 reduced_tfidf[:, 1], \

 c=news_data_df['category'], cmap='gray')

plt.xlabel('dimension_1')

plt.ylabel('dimension_2')

plt.legend(handles=scatter.legend_elements()[0], \

 labels=categories, loc='lower left')

plt.title('Representation of NEWS documents in 2D')

plt.show()

184 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.59: Two-dimensional representation of news documents

Developing a Text Classifier | 185

From the preceding plot, we can see that a scatter plot has been created in which
each category of article is represented by a different color. This plot shows another
important use case of dimensionality reduction: visualization. We were able to plot
this two-dimensional image because we had two principal components. With the
earlier TFIDF matrix, we had 20 features, which is impossible to visualize. In this
section, you learned how to perform dimensionality reduction to save memory space
and visualize datasets.

Note

To access the source code for this specific section, please refer
to https://packt.live/2Xa5eh4.

You can also run this example online at https://packt.live/3jU0dD7.

Next, we will learn how to evaluate the machine learning models that we train.

Deciding on a Model Type

Once the feature set is ready, it's necessary to decide on the type of model that will
be used to deal with the problem. Usually, unsupervised models are chosen when
data is not labeled. If we have a predefined number of clusters in mind, we go for
clustering algorithms such as k-means; otherwise, we opt for hierarchical clustering.
For labeled data, we generally follow supervised learning methods such as regression
and classification.

If the outcome is continuous and numeric, we use regression. If it is discrete or
categorical, we use classification. The Naive Bayes algorithm comes in handy for
the fast development of simple classification models. More complex tree-based
methods (such as decision trees, random forests, and so on) are needed when we
want to achieve higher accuracy. In such cases, we sometimes compromise on model
explainability and the time that's required to develop it. When the outcome of a
model has to be the probability of the occurrence of a certain class, we use
logistic regression.

https://packt.live/2Xa5eh4
https://packt.live/3jU0dD7

186 | Developing a Text Classifier

Evaluating the Performance of a Model

Once a model is ready, it is necessary to evaluate its performance. This is because,
without benchmarking it, we cannot be confident of how well or how badly it is
functioning. It is not advisable to put a model into production without evaluating
its efficiency. There are various ways to evaluate a model's performance. Let's work
through them one by one:

• Confusion Matrix

This is a two-dimensional matrix mainly used for evaluating the performance
of classification models. Its columns consist of predicted values, and its rows
consist of actual values. In other words, for a given confusion matrix, it is a
crosstab between actual and predicted values. The cell entries denote how
many of the predicted values match with the actual values, and how many don't.
Consider the following image:

Figure 3.60: Confusion matrix

In the preceding confusion matrix, the top-left cell will have the count of all
correctly classified 0 values by the classifier, whereas the top-right cell will have
the count of incorrectly classified 0 values, and so on. To create a confusion
matrix using Python, you can use the following code:

from sklearn.metrics import confusion_matrix

confusion_matrix(actual_values,predicted_values)

Developing a Text Classifier | 187

• Accuracy

Accuracy is defined as the ratio of correctly classified instances to the total
number of instances. Whenever accuracy is used for model evaluation, we
need to ensure that the data is balanced in terms of classes, meaning it should
have an almost equal number of instances of each class. Let's use an example
of a dataset that has 90% positive labels and 10% negative labels. A model that
predicts all the data points as positive will receive 90% accuracy, but that will not
be a good indicator of the performance of the model.

To get the accuracy of the predicted values using Python, you can use the
following code:

from sklearn.metrics import accuracy_score

accuracy_score(actual_values,predicted_values)

• Precision and Recall

For a better understanding of precision and recall, let's consider a real-life
example. If your mother tells you to explore the kitchen of your house, find
items that need to be restocked, and bring them back from the market, you will
bring P number of items from the market and show them to your mother. Out
of P items, she finds Q items to be relevant. The Q/P ratio is called precision.
However, in this scenario, she was expecting you to bring R items relevant to her.
The ratio, Q/R, is referred to as recall:

Precision = True Positive / (True Positive + False Positive)

Recall = True Positive / (True Positive + False Negative)

• F1 Score

For a given classification model, the F1 score is the harmonic mean of precision
and recall. Harmonic mean is a way to find the average while giving equal weight
to all numbers:

F1 score = 2 * ((Precision * Recall) / (Precision + Recall))

To get the F1 score, precision, and recall values using Python, you can use the
following code:

from sklearn.metrics import classification_report

classification_report(actual_values,predicted_values)

188 | Developing a Text Classifier

• Receiver Operating Characteristic (ROC) Curve

To understand the ROC curve, we need to get acquainted with the True Positive
Rate (TPR) and the False Positive Rate (FPR):

TPR = True Positive / (True Positive + False Negative)

FPR = False Positive / (False Positive + True Negative)

The output of a classification model can be probabilities. In that case, we need to
set a threshold to obtain classes from those probabilities. The ROC curve is a plot
between the TPR and FPR for various values of the threshold. The area under
the ROC curve (AUROC) represents the efficiency of the model. The higher the
AUROC, the better the model is. The maximum value of AUROC is 1. To create
the ROC curve using Python, use the following code:

fpr,tpr,threshold=roc_curve(actual_values, \

 predicted_probabilities)

print ('\nArea under ROC curve for validation set:', auc(fpr,tpr))

fig, ax = plt.subplots(figsize=(6,6))

ax.plot(fpr,tpr,label='Validation set AUC')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

ax.legend(loc='best')

plt.show()

Here, actual_values refers to the actual dependent variable values, whereas
predicted_probabilities is the predicted probability of getting 1 from
the trained predictor model.

• Root Mean Square Error (RMSE)

This is mainly used for evaluating the accuracy of regression models. We define
it as follows:

Figure 3.61: Formula for root mean square error

Developing a Text Classifier | 189

Here, n is the number of samples, Pi is the predicted value of the ith observation,
and Oi is the observed value of the ith observation. To find the RMSE using
Python, use the following code:

from sklearn.metrics import mean_squared_error

rmse = sqrt(mean_squared_error(y_actual, y_predicted))

• Maximum Absolute Percentage Error (MAPE)

Just like RMSE, this is another way to evaluate a regression model's performance.
It is described as follows:

Figure 3.62: Formula for maximum absolute percentage error

Here, n is the number of samples, Pi is the predicted value (that is, the forecast
value) of the ith observation, and Oi is the observed value (that is, the actual
value) of the ith observation. To find MAPE in Python, use the following code:

from sklearn.metrics import mean_absolute_error

mape = mean_absolute_error(y_actual, y_predicted) * 100

Exercise 3.13: Calculating the RMSE and MAPE of a Dataset

In this exercise, we will calculate the RMSE and MAPE of hypothetical predicted and
actual values. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Use sklearn's mean_squared_error to calculate the MSE and then use the
sqrt function to calculate the RMSE. Add the following code to implement this:

from sklearn.metrics import mean_squared_error

from math import sqrt

y_actual = [0,1,2,1,0]

y_predicted = [0.03,1.2,1.6,.9,0.1]

rms = sqrt(mean_squared_error(y_actual, y_predicted))

print('Root Mean Squared Error (RMSE) is:', rms)

190 | Developing a Text Classifier

The preceding code generates the following output:

Root Mean Squared Error (RMSE) is: 0.21019038988498018

The preceding output shows the RMSE of the y_actual and y_predicted
values that we created previously.

3. Next, use sklearn's mean_absolute_error to calculate the MAPE of a
hypothetical model prediction. Add the following code to implement this:

from sklearn.metrics import mean_absolute_error

y_actual = [0,1,2,1,0]

y_predicted = [0.03,1.2,1.6,.9,0.1]

mape = mean_absolute_error(y_actual, y_predicted) * 100

print('Mean Absolute Percentage Error (MAPE) is:', \

 round(mape,2), '%')

The preceding code generates the following output:

Mean Absolute Percentage Error (MAPE) is 16.6 %

The preceding output shows the MAPE of the y_actual and y_predicted
values that we created previously.

You have now learned how to evaluate the machine learning models that we train
and are equipped to create your very own text classifier.

Note

To access the source code for this specific section, please refer
to https://packt.live/3ggqRnp.

You can also run this example online at https://packt.live/39E7i5S.

In the next section, we will solve an activity based on classifying text.

https://packt.live/3ggqRnp
https://packt.live/39E7i5S

Developing a Text Classifier | 191

Activity 3.01: Developing End-to-End Text Classifiers

For this activity, you will build an end-to-end classifier that figures out whether a news
article is political or not.

Note

The dataset for this activity can be found at https://packt.live/39DUNHL.

Follow these steps to implement this activity:

1. Import the necessary packages.

2. Read the dataset and clean it.

3. Create a TFIDF matrix out of it.

4. Divide the data into training and validation sets.

5. Develop classifier models for the dataset.

6. Evaluate the models that were developed using parameters such as confusion
matrix, accuracy, precision, recall, F1 plot curve, and ROC curve.

Note

The solution to this activity can be found on page 380.

We have seen how to build end-to-end classifiers. Developing an end-to-end classifier
was done in phases. Firstly, the text corpus was cleaned and tokenized, features were
extracted using TFIDF, and then the dataset was divided into training and validation
sets. The XGBoost algorithm was used to develop a classification model. Finally,
the performance was measured using parameters such as the confusion matrix,
accuracy, precision, recall, F1 plot curve, and ROC curve. In the next section, you will
learn how to build pipelines for NLP projects.

https://packt.live/39DUNHL

192 | Developing a Text Classifier

Building Pipelines for NLP Projects
In general, a pipeline refers to a structure that allows a streamlined flow of air, water,
or something similar. In this context, pipeline has a similar meaning. It helps to
streamline various stages of an NLP project.

An NLP project is done in various stages, such as tokenization, stemming, feature
extraction (TFIDF matrix generation), and model building. Instead of carrying out each
stage separately, we create an ordered list of all these stages. This list is known as
a pipeline. The Pipeline class of sklearn helps us combine these stages into one
object that we can use to perform these stages one after the other in a sequence.
We will solve a text classification problem using a pipeline in the next section to
understand the working of a pipeline better.

Exercise 3.14: Building the Pipeline for an NLP Project

In this exercise, we will develop a pipeline that will allow us to create a TFIDF matrix
representation from sklearn's fetch_20newsgroups text dataset. Follow these
steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

from sklearn.pipeline import Pipeline

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn import tree

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import CountVectorizer

import pandas as pd

3. Specify the categories of news articles you want to fetch. Add the following code
to do this:

categories = ['misc.forsale', 'sci.electronics', \

 'talk.religion.misc']

Building Pipelines for NLP Projects | 193

4. To fetch sklearn's 20newsgroups dataset, corresponding to the categories
mentioned earlier, we use the following lines of code:

news_data = fetch_20newsgroups(subset='train', \

 categories=categories, \

 shuffle=True, random_state=42, \

 download_if_missing=True)

5. Define a pipeline consisting of two stages: CountVectorizer and
TfidfTransformer. Fit it on the news_data we mentioned earlier and use it
to transform that data. Add the following code to implement this:

text_classifier_pipeline = Pipeline([('vect', \

 CountVectorizer()), \

 ('tfidf', \

 TfidfTransformer())])

text_classifier_pipeline.fit(news_data.data, news_data.target)

pd.DataFrame(text_classifier_pipeline.fit_transform\

 (news_data.data, news_data.target).todense()).head()

The preceding code generates the following output:

Figure 3.63: TFIDF representation of the DataFrame created using a pipeline

Here, we created a pipeline consisting of the count vectorizer and TFIDF transformer.
The outcome of this pipeline is the TFIDF representation of the text data that has
been passed to it as an argument.

Note

To access the source code for this specific section, please refer
to https://packt.live/3gqpeUt.

You can also run this example online at https://packt.live/3113qrJ.

https://packt.live/3gqpeUt
https://packt.live/3113qrJ

194 | Developing a Text Classifier

Saving and Loading Models
After a model has been built and its performance matches our expectations, we
may want to save it for future use. This eliminates the time needed for rebuilding it.
Models can be saved on the hard disk using the joblib and pickle libraries.

The pickle module makes use of binary protocols to save and load Python objects.
joblib makes use of the pickle library protocols, but it improves on them to
provide an efficient replacement to save large Python objects. Both libraries have two
main functions that we will make use of to save and load our models:

• dump: This function is used to save a Python object to a file on the disk.

• loads: This function is used to load a saved Python object from a file on
the disk.

To deploy saved models, we need to load them from the hard disk to the memory.
In the next section, we will perform an exercise based on this to get a better
understanding of this process.

Exercise 3.15: Saving and Loading Models

In this exercise, we will create a TFIDF representation of sentences. Then, we will save
this model on disk and later load it from the disk. Follow these steps to implement
this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and the following code to import the necessary packages:

import pickle

from joblib import dump, load

from sklearn.feature_extraction.text import TfidfVectorizer

3. Define a corpus consisting of four sentences by adding the following code:

corpus = ['Data Science is an overlap between Arts and Science',\

 'Generally, Arts graduates are right-brained and '\

 'Science graduates are left-brained', \

 'Excelling in both Arts and Science at a time '\

 'becomes difficult', \

 'Natural Language Processing is a part of Data Science']

Saving and Loading Models | 195

4. Fit a TFIDF model to it. Add the following code to do this:

tfidf_model = TfidfVectorizer()

tfidf_vectors = tfidf_model.fit_transform(corpus).todense()

print(tfidf_vectors)

The preceding code generates the following output:

Figure 3.64: TFIDF representation as a matrix

5. Save this TFIDF model on disk using joblib. Add the following code to do this:

dump(tfidf_model, 'tfidf_model.joblib')

6. Finally, load this model from disk to memory and use it. Add the following code
to do this:

tfidf_model_loaded = load('tfidf_model.joblib')

loaded_tfidf_vectors = tfidf_model_loaded.transform(corpus).todense()

print(loaded_tfidf_vectors)

196 | Developing a Text Classifier

The preceding code generates the following output:

Figure 3.65: TFIDF representation as a matrix

7. Save this TFIDF model on disk using pickle. Add the following code to do this:

pickle.dump(tfidf_model, open("tfidf_model.pickle.dat", "wb"))

8. Load this model from disk to memory and use it. Add the following code to
do this:

loaded_model = pickle.load(open("tfidf_model.pickle.dat", "rb"))

loaded_tfidf_vectors = loaded_model.transform(corpus).todense()

print(loaded_tfidf_vectors)

Saving and Loading Models | 197

The preceding code generates the following output:

Figure 3.66: TFIDF representation as a matrix

From the preceding screenshot, we can see that the saved model and the model that
was loaded from the disk are identical. You have now learned how to save and load
models. This section marks the end of this chapter, where you learned how to build a
text classifier from scratch.

Note

To access the source code for this specific section, please refer
to https://packt.live/2BIDNmZ.

You can also run this example online at https://packt.live/3hIay38.

https://packt.live/2BIDNmZ
https://packt.live/3hIay38

198 | Developing a Text Classifier

Summary
In this chapter, you learned about the different types of machine learning techniques,
such as supervised and unsupervised learning. We explored unsupervised algorithms
such as hierarchical clustering and k-means clustering, and supervised learning
algorithms, such as k-nearest neighbor, the Naive Bayes classifier, and tree-based
methods, such as random forest and XGBoost, that can perform both regression and
classification. We discussed the need for sampling and went over different kinds of
sampling techniques for splitting a given dataset into training and validation sets.
Finally, we covered the process of saving a model on the hard disk and loading it back
into memory for future use.

In the next chapter, you will learn about several techniques that you can use to collect
data from various sources.

Overview

This chapter introduces you to the concept of web scraping. You will first
learn how to extract data (such as text, images, lists, and tables) from
pages that are written using HTML. You will then learn about the various
types of semi-structured data used to create web pages (such as JSON
and XML) and extract data from them. Finally, you will use APIs for data
extraction from Twitter, using the tweepy package.

Collecting Text Data with

Web Scraping and APIs

4

202 | Collecting Text Data with Web Scraping and APIs

Introduction
In the last chapter, we developed a simple classifier using feature extraction methods.
We also covered different algorithms that fall under supervised and unsupervised
learning. In this chapter, you will learn how to collect text data by scraping web pages,
and then you will learn how to process that data. Web scraping helps you extract
useful data from online content, such as product prices and customer reviews,
which can then be used for market research, price comparison for products, or data
analysis. You will also learn how to handle various kinds of semi-structured data,
such as JSON and XML. We will cover different methods for extracting data using
Application Programming Interfaces (APIs). Finally, we will explore different ways
to extract data from different types of files.

Collecting Data by Scraping Web Pages
The basic building block of any web page is HTML (Hypertext Markup Language)—a
markup language that specifies the structure of your content. HTML is written
using a series of tags, combined with optional content. The content encompassed
within HTML tags defines the appearance of the web page. It can be used to make
words bold or italicize them, to add hyperlinks to the text, and even to add images.
Additional information can be added to the element using attributes within tags. So, a
web page can be considered to be a document written using HTML. Thus, we need to
know the basics of HTML to scrape web pages effectively.

The following figure depicts the contents that are included within an HTML tag:

Figure 4.1: Tags and attributes of HTML

Collecting Data by Scraping Web Pages | 203

As you can see in the preceding figure, we can easily identify different elements
within an HTML tag. The basic HTML structure and commonly used tags are shown
and explained as follows:

Figure 4.2: Basic HTML structure

• DOCTYPE: This is a must-have preamble for every HTML page. It informs the
browser that the document is written in HTML.

• <html> tag: This is considered the root of the page, encompassing all of the
page content. It is mainly divided into two tags—<head> and <body>.

• <head> tag: This tag provides meta-information about the web page.

• <body> tag: This tag comprises content such as text, image, tables, and lists.

• <title> tag: This sets the title of your page, which is what you'll see in the
browser's tab.

• <headline> tag: As the name suggests, this represents six levels of section
headings, from <h1> to <h6>.

• <p> tag: This is used to define the paragraph text content.

• <i> tag: We can use this tag to italicize the text.

• tag: This makes the text bold.

• tag: We can use this tag to list the content in ordered (the tag) or
unordered (the tag) list format.

204 | Collecting Text Data with Web Scraping and APIs

• tag: This tag is used to add an image in the HTML document.

• <h1> to <h6> tags: These represent the various levels of headings, with <h1>
having the biggest size and <h6> having the smallest size.

• tag: Although this tag provides no visual change by itself, it is useful for
grouping inline-elements in a document and adding a hook to a part of a text or
a part of a document.

• <q> tag: Quotes are written within the <q> tag in HTML.

• table tag: Tabular content is represented as a table tag, which contains <th>
(table header), <tr> (table row), and <td> (table data).

• <address> tag: In HTML documents, addresses are enclosed within
<address> tags.

In the next section, we will walk through an exercise in which we'll extract tag-based
information from HTML files.

Exercise 4.01: Extraction of Tag-Based Information from HTML Files

In this exercise, we will extract addresses, quotes, text written in bold, and a table
present in an HTML file.

Note

The data for this sample HTML file can be accessed
from https://packt.live/338opvv.

Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the
BeautifulSoup library:

from bs4 import BeautifulSoup

BeautifulSoup is a Python library for pulling data out of HTML and XML files.
It provides a parser for HTML/XML formats, allowing us to navigate, search, and
modify the parsed tree.

https://packt.live/338opvv

Collecting Data by Scraping Web Pages | 205

3. Create an object of the BeautifulSoup class and pass the location of the
HTML file to it:

soup = BeautifulSoup(open('../data/sample_doc.html'), \

 'html.parser')

In the preceding line, html.parser is Python's built-in standard library parser.
BeautifulSoup also supports third-party parsers such as html5lib, lxml,
and others.

4. Add the following code to check the text contents of the
sample_doc.html file:

soup.text

The preceding code generates the following output:

Figure 4.3: Text content of an HTML file

5. Similarly, to see the contents, you can simply write the following code:

soup.contents

Figure 4.4: Text content

6. To find the addresses from the document, insert a new cell and add the
following code:

soup.find('address')

The preceding code generates the following output:

<address> Mess on No. 72, Banamali Naskar Lane, Kolkata.</address>

206 | Collecting Text Data with Web Scraping and APIs

7. To locate all the address tags within the given content, write the
following code:

soup.find_all('address')

The preceding code generates the following output:

[<address> Mess on No. 72, Banamali Naskar Lane, Kolkata.</address>,

 <address>221B, Baker Street, London, UK.</address>]

8. To find the quotes in the document, add the following code:

soup.find_all('q')

The preceding code generates the following output:

[<q> There are more things in heaven and earth, Horatio,

 Than are dreamt of in your philosophy. </q>]

9. To check all the bold items, write the following command:

soup.find_all('b')

The preceding code generates the following output:

[Sherlock , Hamlet, Horatio]

10. Write the following command to extract the tables in the document:

table = soup.find('table')

table

Collecting Data by Scraping Web Pages | 207

The preceding code generates the following output:

Figure 4.5: Contents of the table tag

11. You can also view the contents of table by looping through it. Insert a new cell
and add the following code to implement this:

for row in table.find_all('tr'):

 columns = row.find_all('td')

 print(columns)

The preceding code generates the following output:

[]

[<td>Gangaram</td>, <td>B.Tech</td>, <td>NA</td>, <td>NA</td>]

[<td>Ganga</td>, <td>B.A.</td>, <td>NA</td>, <td>NA</td>]

[<td>Ram</td>, <td>B.Tech</td>, <td>M.Tech</td>, <td>NA</td>]

[<td>Ramlal</td>, <td>B.Music</td>, <td>NA </td>, <td>Diploma in
Music</td>]

208 | Collecting Text Data with Web Scraping and APIs

12. You can also locate specific content in the table. To locate the value at
the intersection of the third row and the second column, write the
following command:

table.find_all('tr')[3].find_all('td')[2]

The preceding code generates the following output:

<td>M.Tech</td>

We have learned how to extract tag-based information from an HTML file.

Note

To access the source code for this specific section, please refer
to https://packt.live/3gekCAA.

You can also run this example online at https://packt.live/2EyJp4q.

In the next section, we will focus on fetching content from web pages.

Requesting Content from Web Pages

Whenever you visit a web page from your web browser, you are actually sending
a request to fetch its content. This can be done using Python scripts. The Python
requests package is widely used to handle all forms of HTTP requests. Let's walk
through an exercise to get a better understanding of this concept.

To fetch content, you can use the get() method, which, as the name suggests, sends
a GET request to the web page from which you want to fetch data. Let's perform a
simple exercise now to get a better idea of how we can implement this in Python.

Exercise 4.02: Collecting Online Text Data

In this exercise, we will be fetching the web content with the help of requests. We
will be pulling a text file from Project Gutenberg, the free e-book website, specifically,
from the text file for Charles Dickens' famous book, David Copperfield. Follow these
steps to complete this exercise:

https://packt.live/3gekCAA
https://packt.live/2EyJp4q

Collecting Data by Scraping Web Pages | 209

1. Use the requests library to request the content of a book available online with
the following set of commands:

import requests

""""

Let's read the text version of david copper field

available online

"""

r = requests.get('https://www.gutenberg.org/files/766/766-0.txt')

r.status_code

The preceding code generates the following output:

200

When the browser visits the website, it fetches the content of the specified URL.
Similarly, using requests, we get the content from the specified URL and all the
information gets stored in the r object. 200 indicates that we received the right
response from the URL.

2. Locate the text content of the fetched file by using the requests object r and
referring to the text attribute. Write the following code for this:

r.text[:1000]

The preceding code generates the following output:

Figure 4.6: Text contents of the file

210 | Collecting Text Data with Web Scraping and APIs

3. Now, write the fetched content into a text file. To do this, add the following code:

from pathlib import Path

open(Path("../data/David_Copperfield.txt"),'w',\

 encoding='utf-8').write(r.text)

The preceding code generates the following output:

2033139

4. Similarly, we can do the same using Urllib3.First add the following code:

import urllib3

http = urllib3.PoolManager()

rr = http.request('GET', \

 'http://www.gutenberg.org/files/766/766-0.txt')

rr.status

Again, we will get the output as 200, similar to the previous method.

5. Add the following code to locate the text content:

rr.data[:1000]

You will see that you get the same output as shown in Figure 4.6.

6. Again, add the following code to write the fetched content into a text file:

open(Path("../data/David_Copperfield_new.txt"), \

 'wb').write(rr.data)

The preceding code will generate the following output:

2033139

We have just learned how to collect data from online sources with the help of the
requests library.

Note

To access the source code for this specific section, please refer
to https://packt.live/3fhu1pv.

You can also run this example online at https://packt.live/2Dmov7L.

Now, let's look at analyzing HTML content from Jupyter Notebooks.

https://packt.live/3fhu1pv
https://packt.live/2Dmov7L

Collecting Data by Scraping Web Pages | 211

Exercise 4.03: Analyzing the Content of Jupyter Notebooks (in HTML Format)

In this exercise, we will analyze the content of a Jupyter Notebook. We will count the
number of images, list the packages that have been imported, and check the models
and their performance.

Note

The HTML file used for this exercise, can be accessed
at https://packt.live/3fcYIfJ.

Follow these steps to complete this exercise:

1. Import BeautifulSoup and pass the location of the given HTML file using the
following commands:

from bs4 import BeautifulSoup

soup = BeautifulSoup(open('../data/text_classifier.html'), \

 'html.parser')

soup.text[:100]

Here, we are loading HTML using BeautifulSoup and printing parsed content.
The preceding code generates the following output:

'\n\n\nCh3_Activity7_Developing_end_to_end_Text_Classifiers\n\n\n\n
/*!\n*\n* Twitter Bootstrap\n*\n*/\n/*!\n*'

2. Use the img tag to count the number of images:

len(soup.find_all('img'))

The output shows that there are three img tags:

3

3. If you open the HTML file in the text editor or your web browser's console, you
will see all import statements have the class attribute set to nn. So, to list all
the packages that are imported, add the following code, referring to finding the
span element with an nn class attribute:

[i.get_text() for i in soup.find_all\

('span',attrs={"class":"nn"})]

https://packt.live/3fcYIfJ

212 | Collecting Text Data with Web Scraping and APIs

The preceding code generates the following output:

Figure 4.7: List of libraries imported

4. To extract the models and their performance, look at the HTML document and
see which class attribute the models and their performance belong to. You
will see the h2 and div tags with the class attribute output_subarea
output_stream output_stdout output_text. Add the following code
to extract the models:

for md,i in zip(soup.find_all('h2'), \

soup.find_all('div',\

attrs={"class":"output_subarea output_stream "\

 "output_stdout output_text"})):

 print("Model: ",md.get_text())

 print(i.get_text())

 print("---
\n\n\n")

Collecting Data by Scraping Web Pages | 213

The preceding code generates the following output:

Figure 4.8: Models and their performance

So, in the preceding output, we have extracted a classification report from the HTML
file using BeautifulSoup by referring to the <h2> and <div> tags.

Note

To access the source code for this specific section, please refer
to https://packt.live/2PaM1Yk.

You can also run this example online at https://packt.live/315liSk.

https://packt.live/2PaM1Yk
https://packt.live/315liSk

214 | Collecting Text Data with Web Scraping and APIs

So far, we have seen how to get content from the web using the requests package,
and in this exercise, we saw how to parse and extract the desired information. Next
time you come across an article and want to extract certain information from it, you
will be able to put these skills to use, instead of manually going over all of the content.

Activity 4.01: Extracting Information from an Online HTML Page

In this activity, we will extract data about Rabindranath Tagore from the Wikipedia
page about him.

Note

Rabindranath Tagore was a poet and musician from South Asia whose
art has had a profound influence on shaping the cultural landscape of the
region. He was also the first Indian to win the Nobel Prize for Literature,
in 1913.

After extracting the data, we will analyze information from the page. This should
include the list of headings in the Works section, the list of his works, and the list of
universities named after him. Follow these steps to implement this activity:

1. Open a Jupyter Notebook.

2. Import the requests and BeautifulSoup libraries.

3. Fetch the Wikipedia page from https://en.wikipedia.org/wiki/Rabindranath_Tagore
using the get method of the requests library.

4. Convert the fetched content into HTML format using an HTML parser.

5. Print the list of headings in the Works section.

6. Print the list of original works written by Tagore in Bengali.

https://en.wikipedia.org/wiki/Rabindranath_Tagore

Collecting Data by Scraping Web Pages | 215

7. Print the list of universities named after Tagore.

Note

The solution to this activity can be found on page 386.

We are now well-versed in extracting generic data from HTML pages. Let's perform
another activity now, where we'll be using regular expressions.

Activity 4.02: Extracting and Analyzing Data Using Regular Expressions

To perform this activity, you will extract data from Packt's website. The data to be
extracted includes frequently asked questions (FAQs) and their answers, phone
numbers for customer care services, and the email addresses for customer care
services. Follow these steps to complete this activity:

1. Import the necessary libraries and extract data from
https://www.packtpub.com/support/faq using the requests library.

2. Fetch questions and answers from the data.

3. Create a DataFrame consisting of questions and answers.

4. Fetch email addresses with the help of regular expressions.

5. Fetch the phone numbers, with the help of regular expressions.

Note

The solution to this activity can be found on page 388.

In this activity, we were able to fetch data from online sources and analyze it in
various ways. Now that we are well-versed in scraping web pages with the help
of HTML, in the next section, we will discuss how to scrape web pages with semi-
structured data.

https://www.packtpub.com/support/faq

216 | Collecting Text Data with Web Scraping and APIs

Dealing with Semi-Structured Data
We learned about various types of data in Chapter 2, Feature Extraction Methods. Let's
quickly recapitulate what semi-structured data refers to. A dataset is said to be semi-
structured if it is not in a row-column format but, if required, can be converted into a
structured format that has a definite number of rows and columns. Often, we come
across data that is stored as key-value pairs or embedded between tags,
as is the case with JSON (JavaScript Object Notation) and XML (Extensible
Markup Language) files. These are the most popularly used instances of
semi-structured data.

JSON

JSON files are used for storing and exchanging data. JSON is human-readable
and easy to interpret. Just like text files and CSV files, JSON files are language-
independent. This means that different programming languages, such as Python,
Java, and so on, can work with JSON files effectively. In Python, a built-in data
structure called a dictionary is capable of storing JSON objects as is. Generally, data
in JSON objects is present in the form of key-value pairs. The datatype of values of
JSON objects must be any of the following:

• A string

• A number

• Another JSON object

• An array

• A boolean

• Null

Dealing with Semi-Structured Data | 217

NoSQL databases (such as MongoDB) store data in the form of JSON objects. Most
APIs return JSON objects. The following figure depicts what a JSON file looks like:

Figure 4.9: A sample JSON file

Often, the response we get when requesting a URL is in the form of JSON objects.
To deal with a JSON file effectively, we need to know how to parse it. The following
exercise throws light on this.

218 | Collecting Text Data with Web Scraping and APIs

Exercise 4.04: Working with JSON Files

In this exercise, we will extract details such as the names of students, their
qualifications, and additional qualifications from a JSON file.

Note

The sample JSON file can be accessed at https://packt.live/2P6ZwrI.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and import json. Pass the location of the file mentioned using
the following commands:

import json

from pprint import pprint

data = json.load(open('../data/sample_json.json'))

pprint(data)

In the preceding code, we are importing Python's built-in json module and
loading the local JSON file using the standard I/O operation of Python. This
turns JSON into the Python dict object. The preceding code generates the
following output:

Figure 4.10: Dictionary form of the fetched data

https://packt.live/2P6ZwrI

Dealing with Semi-Structured Data | 219

3. To extract the names of the students, add the following code:

[dt['name'] for dt in data['students']]

The preceding code generates the following output:

['Gangaram', 'Ganga', 'Ram', 'Ramlal']

4. To extract their respective qualifications, enter the following code:

[dt['qualification'] for dt in data['students']]

The preceding code generates the following output:

['B.Tech', 'B.A.', 'B.Tech', 'B.Music']

5. To extract their additional qualifications, enter the following code. Remember,
not every student will have additional qualifications. Thus, we need to check this
separately. Add the following code to implement this:

[dt['additional qualification'] if 'additional qualification' \

in dt.keys() else None for dt in data['students']]

The preceding code generates the following output:

[None, None, 'M.Tech', None]

As JSON objects are similar to the dictionary data structure of Python, they are widely
used on the web to send and receive data across web applications.

Note

To access the source code for this specific section, please refer
to https://packt.live/33aSGKi.

You can also run this example online at https://packt.live/315MekS.

Now that we have learned how to load JSON data, let's extract data using another
format, called Extensible Markup Language (XML), which is also used by web apps
and Word documents to store information.

https://packt.live/33aSGKi
https://packt.live/315MekS

220 | Collecting Text Data with Web Scraping and APIs

XML

Just like HTML, XML is another kind of markup language that stores data in between
tags. It is human-readable and extensible; that is, we have the liberty to define our
own tags. Attributes, elements, and tags in the case of XML are similar to those of
HTML. An XML file may or may not have a declaration. But, if it has a declaration, then
that must be the first line of the XML file.

This declaration statement has three parts: Version, Encoding, and
Standalone. Version states which version of the XML standard is being
used; Encoding states the type of character encoding being used in this file;
Standalone tells the parser whether external information is needed for
interpreting the content of the XML file. The following figure depicts what an XML file
looks like:

Figure 4.11: A sample XML file

Dealing with Semi-Structured Data | 221

An XML file can be represented as a tree called an XML tree. This XML tree begins with
the root element (the parent). This root element further branches into child elements.
Each element of the XML file is a node in the XML tree. Those elements that don't
have any children are leaf nodes. The following figure clearly differentiates between
an original XML file and a tree representation of an XML file:

Figure 4.12: Comparison of an XML structure

XML files are somewhat similar in structure to HTML, with the main difference being
that, in XML, we have custom tags rather than the fixed tags vocabulary like HTML.
As we learned how to parse HTML using BeautifulSoup before, let's learn how to
parse XML files in the following exercise.

222 | Collecting Text Data with Web Scraping and APIs

Exercise 4.05: Working with an XML File

In this exercise, we will parse an XML file and print the details from it, such as the
names of employees, the organizations they work for, and the total salaries of
all employees.

Note

The sample XML data file can be accessed here: https://packt.live/3hPCaDl.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell, import xml.etree.ElementTree, and pass the location of
the XML file using the following code:

import xml.etree.ElementTree as ET

tree = ET.parse('../data/sample_xml_data.xml')

root = tree.getroot()

root

The preceding code generates the following output:

<Element 'records' at 0.112291710>

3. To check the tag of the fetched element, type the following code:

root.tag

The preceding code generates the following output:

'records'

4. Look for the name and company tags in the XML and print the data enclosed
within them:

for record in root.findall('record')[:20]:

 print(record.find('name').text, "---",\

 record.find('company').text)

https://packt.live/3hPCaDl

Dealing with Semi-Structured Data | 223

The preceding code generates the following output:

Figure 4.13: Data of the name and company tags printed

5. To find the sum of the salaries, create a list consisting of the salaries of all
employees by iterating over each record and finding the salary tag in it. Next,
remove the $ and , from the string of salary content, and finally, type cast into
the integer to get the sum at the end. Add the following code to do so:

sum([int(record.find('salary').text.replace('$','').\

replace(',','')) for record in root.findall('record')])

The preceding code generates the following output:

745609

224 | Collecting Text Data with Web Scraping and APIs

Thus, we can see that the sum of all the salaries is $745,609. We just learned how
to extract data from a local XML file. When we request data, many URLs return an
XML file.

Note

To access the source code for this specific section, please refer
to https://packt.live/3hQzuFM.

You can also run this example online at https://packt.live/3jU8VRP.

In the next section, we will look at how APIs can be used to retrieve real-time data.

Using APIs to Retrieve Real-Time Data

API stands for Application Programming Interface. To understand what an API is,
let's consider a real-life example. Suppose you have a socket plug in the wall, and
you need to charge your cellphone using it. How will you do it? You will have to use a
charger/adapter, which will enable you to connect the cellphone to the socket. Here,
this adapter is acting as a mediator that connects the cellphone and the socket, thus
enabling the smooth transfer of electricity between them.

Similarly, some websites do not provide their data directly. Instead, they provide
APIs, which we can use to extract data from the websites. Just like the cellphone
charger, an API acts as a mediator, enabling the smooth transfer of data between
those websites and us. Let's perform a simple exercise to get hands-on experience of
collecting data using APIs.

Exercise 4.06: Collecting Data Using APIs

In this exercise, we will use the Currency Exchange Rates API to convert USD to
another currency rate. Follow these steps to implement this exercise:

1. Open a Jupyter Notebook.

2. Import the necessary packages. Add the following code to do so:

import json

import pprint

import requests

import pandas as pd

https://packt.live/3hQzuFM
https://packt.live/3jU8VRP

Dealing with Semi-Structured Data | 225

3. Load the json data. Add the following code to do this:

r = requests.get("https://api.exchangerate-api.com/"\

 "v4/latest/USD")

data = r.json()

pprint.pprint(data)

Note

Watch out for the slashes in the string below. Remember that the
backslashes (\) are used to split the code across multiple lines, while the
forward slashes (/) are part of the URL.

The preceding code generates the following output:

Figure 4.14: Fetched data in the Python dict format

4. To create the DataFrame of the fetched data and print it, add the following code:

df = pd.DataFrame(data)

df.head()

226 | Collecting Text Data with Web Scraping and APIs

The preceding code generates the following output:

Figure 4.15: DataFrame showing details of currency exchange rates

Note that you will get a different output depending on the present currency exchange
rates. We just learned how to collect data using APIs.

Note

To access the source code for this specific section, please refer
to https://packt.live/3jQAcEG.

You can also run this example online at https://packt.live/3jVIBa0.

In the next section, we will see how to create an API.

Extracting data from Twitter Using the OAuth API

Many popular websites, such as Twitter, provide an API that allows access to parts
of their services so that people can build software that integrates with the website.
We'll be focusing mainly on Twitter in this section. Twitter's data and services (such
as tweets, advertisements, direct messages, and much more) can be accessed via the
Twitter API. The Twitter API requires authentication and authorization to interact with
its services using the OAuth method. Authentication is required to prove identity,
while authorization proves the right to access its services and data. To access
Twitter data and services using an API, you would need to register using a Twitter
developer account.

https://packt.live/3jQAcEG
https://packt.live/3jVIBa0

Dealing with Semi-Structured Data | 227

You can collect data from Twitter using their Python module, named Tweepy.
Tweepy is a Python library for accessing the Twitter API. It is great for simple
automation and creating Twitter bots. It provides abstraction to communicate with
Twitter and use its API to ease interactions, which makes this approach more efficient
than using the requests library and Twitter API endpoints.

To use the Tweepy library, simply go to https://dev.twitter.com/apps/new and fill in the
form; you'll need to complete the necessary fields, such as App Name, Website
URL, Callback URL, and App Usage. Once you've done this, submit and receive
the keys and tokens, which you can use for extracting tweets and more. However,
before you do any of this, you'll first need to import the tweepy library.

Your Python code should look like this:

import tweepy

consumer_key = 'your consumer key here'

consumer_secret = 'your consumer secret key here'

access_token = 'your access token here'

access_token_secret = 'your access token secret here'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

The preceding code uses auth instantiation from OAuthHandler, which takes in
our consumer token and secret keys that were obtained during app registration.
OAuthHandler handles interaction with Twitter's OAuth system.

To search for a query named randomquery using tweepy, you can use the Cursor
object as follows:

tweepy.Cursor(api.search, q='randomquery', lang="en")

Cursor handles all the iterating-over-pages work for us behind the scenes, whereas
the api.search method provides tweets that match a specified query given with
the q parameter.

Let's do an activity now, to put our knowledge into practice.

https://dev.twitter.com/apps/new

228 | Collecting Text Data with Web Scraping and APIs

Activity 4.03: Extracting Data from Twitter

In this activity, you will extract 100 tweets containing the hashtag #climatechange from
Twitter, using the Twitter API via the tweepy library, and load them into a pandas
DataFrame. The following steps will help you implement this activity:

1. Log in to your Twitter account with your credentials.

2. Visit https://dev.twitter.com/apps/new and fill in the form by completing the
necessary fields, such as App Name, providing Website URL, Callback
URL, and App Usage.

3. Submit the form and receive the keys and tokens.

4. Use these keys and tokens in your application when making an API call
for #climatechange.

5. Import the necessary libraries.

6. Fetch the data using the keys and tokens.

7. Create a DataFrame consisting of tweets.

Note

The full solution to this activity can be found on page 391.

In this activity, we extracted data from Twitter and loaded it into a pandas DataFrame.
This data can also be used to analyze tweets and create a word cloud out of them,
something that we will explore in detail in Chapter 8, Sentiment Analysis.

Publisher's Note

The preceding messages were extracted without bias from a given dataset
and written by private individuals not affiliated with this company. The views
expressed in these tweets do not necessarily reflect our company's
official policies.

https://dev.twitter.com/apps/new

Summary | 229

Summary
In this chapter, we have learned various ways to collect data by scraping web pages.
We also successfully scraped data from semi-structured formats such as JSON and
XML and explored different methods of retrieving data in real time from a website
without authentication. In the next chapter, you will learn about topic modeling—an
unsupervised natural language processing technique that helps group documents
according to the topics that it detects in them.

Overview

This chapter introduces topic modeling, which means using unsupervised
machine learning to find "topics" within a given set of documents. You will
explore the most common approaches to topic modeling, which are Latent
Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and the
Hierachical Dirichlet Process (HDP), and learn the differences between
them. You will then practice implementing these approaches in Python and
review the common practical challenges in topic modeling. By the end of
this chapter, you will be able to create topic models from any given dataset.

Topic Modeling

5

232 | Topic Modeling

Introduction
In the previous chapter, we learned about different ways to collect data from local
files and online resources. In this chapter, we will focus on topic modeling, which is
an important area within natural language processing. Topic modeling is a simple way
to capture the sense of what a document or a collection of documents is about. Note
that in this case, documents are any coherent collection of words, which could be as
short as a tweet or as long as an encyclopedia.

Topic modeling may be thought of as a way to automate the manual task of
reading given document(s) to write an abstract, which you will then use to map the
document(s) to a set of topics. Topic modeling is mostly done using unsupervised
learning algorithms that detect topics on their own. Topic-modeling algorithms
operate by performing statistical analysis on words or tokens in documents and
using those statistics to automatically assign each document to multiple topics. A
topic is represented by an arbitrary number and its keywords. When the topics are
not interpretable, then topic modeling may be thought of as an automated process
of a manual task in which the semantic structure or meaning of the documents was
neither understood nor abstracted before mapping the document(s) to a set of topics.

Topic modeling generally uses unsupervised learning algorithms, as opposed to
supervised learning algorithms. This means that, during training, we do not have
to provide labels (that is, topic names corresponding to each document) in order to
teach the model. This not only helps us discover interesting topics that might exist,
but also reduces the manual effort spent in labeling texts. On the flip side, it can be a
lot more challenging to evaluate the output of a topic model.

Topic modeling is often used as a first step to explore textual data in order to get a
feel for the content of the text. This is especially true when abstracts/summaries
are unavailable, and when the text is too large to be manually analyzed in the
available timeframe.

Topic Discovery
The main goal of topic modeling is to find a set of topics that can be used to classify
a set of documents. These topics are implicit because we do not know what they are
beforehand, and they are unnamed.

Topic Discovery | 233

The number of topics could vary from around 3 to, say, 400 (or even more) topics.
Since it is the algorithm that discovers the topics, the number is generally fixed as
an input to the algorithm, except in the case of non-parametric models in which
the number of topics is inferred from the text. These topics may not always directly
correspond to topics that a human would find meaningful. In practice, the number
of topics should be much smaller than the number of documents. In general, the
number of topics specified in a parametric model ought to be greater than or equal to
the expected number of topics in the text. In other words, one should err on the side
of a greater number of topics rather than fewer topics. This is because fewer topics
can cause a problem for the interpretability of topics. Also, the more documents
that we provide, the better the algorithm can map the documents to non-mutually
exclusive topics.

The number of topics chosen depends on the documents and the objectives of the
project. You may want to increase the number of topics if you have a large number
of documents or if the documents are fairly diverse. Conversely, if you are analyzing
a narrow set of documents, you may want to decrease the number of topics. This
generally flows from your assumptions about the documents. If you think that
the document set might inherently contain a large number of topics, you should
configure the algorithm to look for a similar number of topics.

Exploratory Data Analysis

It is recommended to do exploratory data analysis prior to performing any machine
learning project. This helps you learn about the probability distribution of the items
in the dataset. We have seen this with word clouds in Chapter 2, Feature Extraction
Methods. Even better exploration is possible with topic modeling. Doing this can give
you a sense of the statistical properties of the text dataset and how the documents
can be grouped.

For example, you might want to know whether the text dataset is skewed to any
particular set of topics, or whether the sources are uniform or disparate. This data
further allows us to choose the appropriate algorithms for the actual project.

Transforming Unstructured Data to Structured Data

Topic modeling clusters documents based on their topics. Specifically, it is a soft
clustering method, as each document gets mapped to multiple topics. This is unlike
hard clustering, which results in membership of an exemplar or a point of only
one cluster. Topic models typically give a weight/probability of the document being
associated with a topic.

234 | Topic Modeling

Thus, you can have a matrix of documents by topic, wherein the intersection of
a document and a topic refers to the weight/probability that the document is
associated with the topic. This matrix is effectively a numeric representation of the
text and can be considered a way to transform unstructured text into structured
data. Such a transformation is also an example of dimensionality reduction, as
unstructured text can have many more dimensions (each dimension corresponds to
a unique word) than the number of dimensions in structured data (each dimension
corresponds to a topic).

Bag of Words

Before we explore modeling algorithms in depth, let's make a few simplifying
assumptions. Firstly, we treat a document as a bag of words, meaning we ignore the
structure and grammar of the document and just use the count of each word in the
document to infer patterns in the variation of word counts. Ignoring the structure,
sequences, and grammar allows us to use algorithms that rely on counts and
probability to make the inferences.

As we have seen previously, a bag of words is a dictionary containing each unique
word and the integer count of the occurrences of the word in the document. Like all
models, it is, at best, an approximation of reality. All the topic-modeling algorithms
that we will discuss consider the text as a bag of words.

Note

We will look at approaches that explicitly model sequences in later chapters.
The sequential structure of languages is different from the sequential
structure in time-series data. Moreover, some aspects of the sequential
structure may be specific to the natural language being considered. This will
be discussed in more detail in Chapter 6, Vector Representation.

Topic-Modeling Algorithms | 235

Topic-Modeling Algorithms
Topic-modeling algorithms operate on the following assumptions:

• Topics contain a set of words.

• Documents are made up of a set of topics.

Topics can be considered to be a weighted collection of words. After these common
assumptions, different algorithms diverge in how they go about discovering topics.
In the upcoming sections, we will cover in detail three topic-modeling algorithms—
namely LSA, LDA, and HDP. Here, the term latent (the L in these acronyms) refers to
the fact that the probability distribution of the topics is not directly observable. We
can observe the documents and the words but not the topics.

Note

The LDA algorithm builds on the LSA algorithm. In this case, similar
acronyms are indicative of this association.

Latent Semantic Analysis (LSA)

We will start by looking at LSA. LSA actually predates the World Wide Web. It was
first described in 1988. LSA is also known by an alternative name, Latent Semantic
Indexing (LSI), particularly when it is used for semantic searches of document
indices. The goal of LSA is to uncover the latent topics that underlie documents
and words.

236 | Topic Modeling

LSA – How It Works

Consider that we have a collection of documents, and these documents are
made up of words. Our goal is to discover the latent topics in the documents.
So, in the beginning, we have a collection of documents that we can represent as
a term-to-document matrix. This term-to-document matrix has terms as rows and
documents as columns. The following table gives a simplified illustration of a
term-to-document matrix:

Figure 5.1: A simplified view of a term-to-document matrix

Now, we break this matrix down into three separate matrix factors, namely a term-
to-topics matrix, a topic-importance matrix, and a topic-to-documents matrix. Let's
consider the matrix shown on the left-hand side and the corresponding factor
matrices on the right-hand side:

Figure 5.2: Document matrix and its broken matrices

As we can see in this diagram, the rectangular matrix is separated into the product
of other matrices. The process takes a matrix, M, and splits it, as shown in the
following formula:

Figure 5.3: Splitting the matrix M

Key Input Parameters for LSA Topic Modeling | 237

The following are the broad definitions of the preceding equation:

• M is an m×m matrix.

• U is an m×n matrix.

• Σ is an n×n diagonal matrix with non-negative real numbers.

• V is an m×n matrix.

• VT is an n×m matrix, which is the transpose of V.

The matrices U and VT are not unique as matrix factorization does not give unique
factors. This is analogous to the fact that the number 108 can be factorized using
three factors in more than one way: 9x1x12, 27x1x4, 3x1x36, and so on. In order to
consistently get similar factors, a regularization parameter can be used. Moreover,
the multiplication of the factor matrices gives a matrix approximately and not exactly
equal to the original matrix. Collectively there are fewer elements in the factor
matrices than in the original matrix and this is possible because the original matrix
had many elements that were zero or close to zero.

The gensim library is a popular Python library for topic modeling. It is easy to use and
provides various topic-modeling model classes, including LdaModel (for LDA) and
LsiModel (for LSI).

The tomotopy library is also a powerful Python library for topic modeling. It too is
easy to use and includes popular topic-modeling model classes, including HDPModel
(for HDP) and LDAModel (for LDA).

Other Python topic-modeling libraries include scikit-learn and lda (for LDA).

Key Input Parameters for LSA Topic Modeling
We will be using the gensim library to perform LSA topic modeling. The key input
parameters for gensim are corpus, the number of topics, and id2word. Here, the
corpus is specified in the form of a list of documents in which each document is a
list of tokens. The id2word parameter refers to a dictionary that is used to convert
the corpus from a textual representation to a numeric representation such that
each word corresponds to a unique number. Let's do an exercise to understand this
concept better.

238 | Topic Modeling

spaCy is a popular natural language processing Library for Python. In our exercises,
we will be using spaCy to tokenize the text, lemmatize the tokens, and check which
part-of-speech that token is. We will be using spaCy v2.1.3. After installing spaCy
v2.1.3 we will need to download the English language model using the following code,
so that we can load this model (since there are models for many different languages).

python -m spacy download en_core_web_sm

Exercise 5.01: Analyzing Wikipedia World Cup Articles with Latent Semantic

Analysis

In this exercise, you will perform topic modeling using LSA on a Wikipedia World Cup
dataset. For this, you will make use of the LsiModel class provided by the gensim
library. You will use the Wikipedia library to fetch articles, the spaCy engine for the
tokenization of the text, and the newline character to separate documents within
an article.

Note

The dataset used for this exercise can be found
at https://packt.live/30dbExO.

Follow these steps to complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import pandas as pd

from gensim import corpora

from gensim.models import LsiModel

from gensim.parsing.preprocessing import preprocess_string

https://packt.live/30dbExO

Key Input Parameters for LSA Topic Modeling | 239

3. To clean the text, define a function to remove the non-alphanumeric characters
and replace numbers with the # character. Replace instances of multiple newline
characters with a single newline character. Use the newline character to separate
out the documents in the corpus. Insert a new cell and add the following code to
implement this:

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '<|<|&|#'

PARA='\n+'

def clean(text):

 text = re.sub(LINK, ' ', text)

 text = re.sub(SPECIAL_CHARS, ' ', text)

 text = re.sub(PARA, '\n', text)

 return text

4. Insert a new cell and add the following code to find Wikipedia articles related to
the World Cup:

import wikipedia

wikipedia.search('Cricket World Cup'),\

wikipedia.search('FIFA World Cup')

240 | Topic Modeling

The code generates the following output:

Figure 5.4: Wikipedia articles related to the World Cup

5. Insert a new cell and add the following code fetch the Wikipedia articles about
the 2018 FIFA World Cup and the 2019 Cricket World Cup, concatenate them, and
show the result:

latest_soccer_cricket=['2018 FIFA World Cup',\

 '2019 Cricket World Cup']

corpus=''

for cup in latest_soccer_cricket:

 corpus=corpus+wikipedia.page(cup).content

corpus

Key Input Parameters for LSA Topic Modeling | 241

The code generates the following output:

Figure 5.5: Result after concatenating articles from 2018 and 2019

6. Insert a new cell and add the following code to clean the text, using the spaCy
English language model to tokenize the corpus and exclude all tokens that are
not detected as nouns:

text=clean(corpus)

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

 and token.pos_ in pos_list:

 preproc_sent.append(token.lemma_)

 else:

 preproc_text.append(preproc_sent)

 preproc_sent=[]

#last sentence

preproc_text.append(preproc_sent)

print(preproc_text)

242 | Topic Modeling

The code generates the following output:

Figure 5.6: Output after tokenizing the corpus

7. Insert a new cell and add the following code to convert the corpus into a list in
which each token corresponds to a number for more efficient representation, as
gensim requires it in this form. Then, find the topics in the corpus:

dictionary = corpora.Dictionary(preproc_text)

corpus = [dictionary.doc2bow(text) for text in preproc_text]

NUM_TOPICS=3

lsamodel=LsiModel(corpus, num_topics=NUM_TOPICS, \

 id2word = dictionary)

lsamodel.print_topics()

The code generates the following output:

Figure 5.7: Topics in the corpus

To create our LsiModel, we had to decide up front how many topics we
wanted. This would not necessarily match the number of topics that are actually
in the corpus.

Note that, in the output, you can see that negative weights are associated with
some words in a few topics. Also, the sum of the weights does not add up to
one. The weights are not to be interpreted as probabilities. This makes it difficult
to even mechanically view the topic as a probability distribution over words.
Additionally, it may be observed that topic 0 is essentially about cricket even
though the corpus includes both soccer and cricket. Topic 1 seems to be related
to a sports broadcast. Topic 2 does not seem to be interpretable.

Key Input Parameters for LSA Topic Modeling | 243

8. To determine which topics have the highest weight for a document, insert a new
cell and add the following code:

model_arr = np.argmax(lsamodel.get_topics(),axis=0)

y, x = np.histogram(model_arr, bins=np.arange(NUM_TOPICS+1))

fig, ax = plt.subplots()

plt.xticks(ticks=np.arange(NUM_TOPICS),\

 labels=np.arange(NUM_TOPICS+1))

ax.plot(x[:-1], y)

fig.show()

The code generates the following output:

Figure 5.8: Graph representing weight of topics for the documents

244 | Topic Modeling

We can see that topic 1 and topic 0 have the highest weight in almost all
the documents.

Note

In general, the topics found are extremely sensitive to randomization in
both gensim and tomotopy. While setting a random_state in gensim
could help in reproducibility, in general, the topics found using tomotopy are
superior from the perspective of interpretability. Generally, your output is
expected to be different. In order to have exactly the same topic model, we
can save and load topic models, which we'll do in Exercise 5.04, Topics in
The Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer
to https://packt.live/2PdOCkd.

You can also run this example online at https://packt.live/3jSS7uB.

We have now performed topic modeling with the help of LSA. In the next section,
we will learn about another topic-modeling algorithm: LDA. Before we move onto its
implementation, let's quickly try and build a basic intuition about a couple of concepts
that will help us in the subsequent sections.

Dirichlet Process and Dirichlet Distribution

A Dirichlet process is a distribution over a distribution. It can be represented as
DP(α,G) where G is the base distribution and α is the concentration parameter that
defines how close DP(α,G) is to the base distribution G. It is for this reason that the
Dirichlet process is a versatile way to represent various probability distributions. It is
used for the HDP topic-modeling algorithm.

The Dirichlet distribution is a special case of the Dirichlet process, in which
the number of topics needs to be specified explicitly. It is used for the LDA
topic-modeling algorithm.

https://packt.live/2PdOCkd
https://packt.live/3jSS7uB

Key Input Parameters for LSA Topic Modeling | 245

Latent Dirichlet Allocation (LDA)

Instead of using matrix factorization, like we did for LSA, it is possible to consider a
generative model called LDA. LDA is considered an advancement over probabilistic
LSA. Probabilistic LSA is prone to overfitting as it does not probabilistically model the
distribution of the documents. LDA is a three-level hierarchical generative statistical
model that maps documents to topics, which in turn get mapped to words—all in a
probabilistic way. In this case, we have two concentration parameters corresponding
to the document level and the topic level.

LDA – How It Works

To understand how LDA works, let's look at a simple example. We have four
documents that contain only three unique words: Cat, Dog, and Hippo.
The following figure shows the documents and the number of times each
word is found in each document:

Figure 5.9: Occurrence of words in different documents

As we can see in the figure, the word Cat is found 10 times in Document 1 and
Document 4 and 0 times in documents 2 and 3. Document 4 contains all three
words 10 times each. For its analysis, LDA maintains two probability tables. The first
table tracks the probability of selecting a specific word when sampling a specific topic.
The second table keeps track of the probability of selecting a specific topic when
sampling a particular document:

Figure 5.10: Probability tables

246 | Topic Modeling

These probability tables reflect how likely it is to get a word if you sampled from each
topic. If you sampled a word from topic 3, it would likely be Cat (probability 99%).
If you sampled Document 4, then there is a one-third chance of getting each of the
topics, since it contains all three t in equal proportions. In this example, a word is
exclusive to a topic. In general, though, this is not the case.

The gensim and the scikit-learn libraries use one way of implementing LDA
(called variational inference). The tomotopy and lda libraries use another way
(called collapsed Gibbs sampling). It is essentially because of these differing
implementations: when tomotopy is able to generate the topics in the available time,
we usually prefer using tomotopy; otherwise we use gensim.

The parameters that we use for tomotopy are as follows:

• corpus: This refers to text that we want to analyze.

• Number of topics: This is the number of topics that the corpus contains.

• iter: This refers to the number of iterations that the model considers
the corpus.

• α: This is associated with document generation.

• η: This is associated with topic generation.

• seed: This helps with fixing the initial randomization.

Measuring the Predictive Power of a Generative Topic Model

The predictive power of a generative topic model can be measured by analyzing
the distribution of the generated corpus. Perplexity is a measure of how close the
distribution of the words in the generated corpus is to reality. Log perplexity is a more
convenient measure for this closeness. The formula for log perplexity is as follows:

Figure 5.11: Formula for log perplexity

Here, n is number of words and P(w) is the probability associated with word w. We can
see that negative log likelihood is identical to log perplexity.

Key Input Parameters for LSA Topic Modeling | 247

Usually, a lower log perplexity means better performance. This is because the
probability distribution of words is not uniform. It is concentrated on a small subset
of words. And such a concentration (a non-uniform probability density function)
causes a lower negative likelihood. In order to be sure that the model is generalizing
well, the log likelihood should be computed on a hold-out sample. An extremely low
negative log likelihood is indicative of an extremely low capacity of the model to learn.
If a topic model has an unacceptable log perplexity on the corpus used for training
then it is unlikely to perform well on a hold-out sample as it is indicative of the model
having a low capacity to learn or it is indicative of the dataset not being generalizable.
The negative log likelihood is approximately estimated in topic modeling libraries as it
is intractable to calculate.

Exercise 5.02: Finding Topics in Canadian Open Data Inventory Using the LDA

Model

In this exercise, we will use the tomotopy LDA model to analyze the Canadian Open
Data Inventory. For simplicity, we will consider that the corpus has twenty topics.

Note

The dataset used for this exercise can be found
at https://packt.live/2PbvMds.

The following steps will help you complete this exercise:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

https://packt.live/2PbvMds

248 | Topic Modeling

3. Insert a new cell and add the following code to read from a download of the
Canadian Open Data Inventory, and clean the text:

OPEN_DATA_URL = '../data/canada-open-data/inventory.csv'

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '<|<|&|#'

PARA='\n+'

def clean(text):

 text = re.sub(LINK, ' ', text)

 text = re.sub(SPECIAL_CHARS, ' ', text)

 text = re.sub(PARA, '\n', text)

 return text

catalog['description_en'].sample(frac=0.25,replace=False,\

 random_state=0).to_c \

 sv(OPEN_DATA_URL,\

 encoding='utf-8')

file='../data/canada-open-data/catalog.txt'

f=open(file,'r',encoding='utf-8')

text=f.read()

f.close()

text = clean(text)

4. Insert a new cell and add the following code to clean the text, using the spaCy
English language model to tokenize the corpus and to exclude all tokens that are
not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

Key Input Parameters for LSA Topic Modeling | 249

 and token.pos_ in pos_list:

 preproc_sent.append(token.lemma_)

 else:

 preproc_text.append(preproc_sent)

 preproc_sent=[]

#last sentence

preproc_text.append(preproc_sent)

print(preproc_text)

The code generates the following output:

Figure 5.12: Tokenized corpus after text preprocessing

The pandas DataFrame was sampled. 25% of the dataset has been considered
so that the memory restrictions related to spaCy can be addressed, since this is a
fairly large sample.

5. Insert a new cell and add the following code to see how the negative log
likelihood varies by the number of iterations:

import tomotopy as tp

NUM_TOPICS=20

mdl = tp.LDAModel(k=NUM_TOPICS,seed=1234)

for line in preproc_text:

 mdl.add_doc(line)

for i in range(0, 110, 10):

 mdl.train(i)

 print('Iteration: {}\tLog-likelihood: {}'.\

 format(i, mdl.ll_per_word))

250 | Topic Modeling

The code generates the following output:

Figure 5.13: Variation of negative log likelihood with different iterations

6. Insert a new cell and add the following code to train a topic model with ten
iterations and to show the inferred topics:

mdl.train(10)

for k in range(mdl.k):

 print('Top 10 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=7))

The code generates the following output:

Top 10 words of topic #0

[('polygon', 0.36050185561180115), ('dataset', 0.0334757782722234726),
('information', 0.03004324994981289), ('soil', 0,029185116291046143),
('area', 0,026610717177391052), ('surface', 0.025752583518624306),
('map', 0.024036318063735962)]

7. Insert a new cell and add the following code to see the probability distribution of
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

mdl.infer(doc_inst)[0]

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

Key Input Parameters for LSA Topic Modeling | 251

The code generates the following output:

array([11,17,14,19,12, 7, 4, 13, 10, 2, 3, 15, 1, 18, 16, 9,
0,
 6, 8, 5], dtype=int64)

8. Insert a new cell and add the following code to see the probability distribution of
topic 11:

print(mdl.get_topic_words(11, top_n=7))

The code generates the following output

[('table', 0.24849626421928406), ('census', 0.1265643984079361),
('level', 0.06526772677898407), ('series', 0.06306280940771103),
('topic', 0.062401335686445236), ('geography', 0.062401335686445236),
('country', 0.06218084320425987)]

9. Insert a new cell and add the following code to see the probability distribution of
topic 17:

print(mdl.get_topic_words(17, top_n=7))

The code generates the following output:

[('datum', 0.0603327676653862), ('information', 0.057247743010520935),
('year', 0.03462424501776695), ('dataset', 0.03291034325957298),
('project', 0.017828006289734993), ('website', 0.014057422056794167),
('activity', 0.012000739574432373)]

10. Insert a new cell and add the following code to see the probability distribution of
topic 5:

print(mdl.get_topic_words(5, top_n=7))

The code generates the following output:

[('survey', 0.04966237023472786), ('catch', 0.03862873837351799),
('sponge', 0.0364220105111599), ('sea', 0.0342152863740921),
('datum', 0.028698472306132317), ('fishing', 0.02759511023759842),
('matter', 0.026491746306419373)]

252 | Topic Modeling

Topic 11, topic 17, and topic 5 seem to be interpretable. One could say that topic 11,
topic 17, and topic 5 seem to be broadly about geographical data, internet data, and
marine life data respectively.

Note

In general, the topics found are extremely sensitive to randomization in
both gensim and tomotopy. While setting a random_state in gensim
could help in reproducibility, in general, the topics found using tomotopy are
superior from the perspective of interpretability. Generally, your output is
expected to be different. In order to have exactly the same topic model, we
can save and load topic models; we do this in Exercise 5.04, Topics in The
Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer
to https://packt.live/33d0FGw.

This section does not currently have an online interactive example and will
need to be run locally.

Activity 5.01: Topic-Modeling Jeopardy Questions

Jeopardy is a popular TV show that covers a variety of topics. In this show, participants
are given answers and then asked to frame questions. The purpose of this activity is
to give a real-world feel to some of the complexity associated with topic modeling. In
this activity, you will do topic modeling on a dataset of Jeopardy questions.

Note

The dataset to be used for this activity can be found
at https://packt.live/2PbvMds.

Follow these steps to complete this activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and import pandas and other necessary libraries.

3. Load the dataset into a pandas DataFrame.

https://packt.live/33d0FGw
https://packt.live/2PbvMds

Hierarchical Dirichlet Process (HDP) | 253

4. Clean the data by dropping the DataFrame rows where the Question column
has empty cells.

5. Find the unique number of categories based on the Category column.

6. Randomly select 4% of the questions. Tokenize the text using spaCy. Select
tokens that are nouns/verbs/adjectives or a combination.

7. Train a tomotopy LDA model with 1,000 topics.

8. Print the log perplexity.

9. Find the probability distribution on the entire dataset.

10. Sample a few topics and check for interpretability.

Note

The full solution to this activity can be found on page 395.

Hierarchical Dirichlet Process (HDP)
HDP is a non-parametric variant of LDA. It is called "non-parametric" since the
number of topics is inferred from the data, and this parameter isn't provided
by us. This means that this parameter is learned and can increase (that is, it is
theoretically unbounded).

The tomotopy HDP implementation can infer between 1 and 32,767 topics. gensim's
HDP implementation seems to fix the number of topics at 150 topics. For our
purposes, we will be using the tomotopy HDP implementation.

The gensim and the scikit-learn libraries use variational inference, while the tomotopy
library uses collapsed Gibbs sampling. When the time required by collapsed Gibbs
sampling is not an issue, then it is preferable to use collapsed Gibbs sampling over
variational inference. In other cases, we may prefer to use variational inference. For
the tomotopy library, the following parameters are used:

iter: This refers to the number of iterations that the model considers the corpus.

α: This concentration parameter is associated with document generation.

η: This concentration parameter is associated with topic generation.

254 | Topic Modeling

seed: This fixes the initial randomization.

min_cf: This helps eliminate those words that occur fewer times than the frequency
specified by us.

To get a better understanding of this, let's perform some simple exercises.

Exercise 5.03: Topics in Around the World in Eighty Days

In this exercise, we will make use of the tomotopy HDP model to analyze the text file
for Jules Verne's Around the World in Eighty Days, available from the Gutenberg Project.
We will use the min_cf hyperparameter that is used to ignore words that occur
fewer times than the specified frequency and discuss its impact on the interpretability
of topics.

Note

The dataset used for this exercise can be found at https://packt.live/2Xdv4kt.

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Insert a new cell and add the following code to read from a download of the
Gutenberg Project's Around the World in Eighty Days by Jules Verne, and clean
the text:

OPEN_DATA_URL = '../data/aroundtheworld/pg103.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

import re

https://packt.live/2Xdv4kt

Hierarchical Dirichlet Process (HDP) | 255

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '<|<|&|#'

PARA='\n+'

def clean(text):

 text = re.sub(LINK, ' ', text)

 text = re.sub(SPECIAL_CHARS, ' ', text)

 text = re.sub(PARA, '\n', text)

 return text

text = clean(text)

text

The code generates the following output:

Figure 5.14: Text from "Around the World in Eighty Days"

4. Insert a new cell and add the following code to import the necessary libraries,
clean the text (using the spaCy English language model to tokenize the corpus),
and exclude all tokens that are not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

 and token.pos_ in pos_list:

 preproc_sent.append(token.lemma_)

 else:

 preproc_text.append(preproc_sent)

256 | Topic Modeling

 preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)

The code generates the following output:

Figure 5.15: Tokenized corpus after the text is cleaned

5. Insert a new cell and add the following code to create HDP models in which
tokens that occur fewer than five times are ignored, and then show how the
negative log likelihood varies according to the number of iterations:

import tomotopy as tp

mdl = tp.HDPModel(min_cf=5,seed=0)

for line in preproc_text:

 mdl.add_doc(line)

for i in range(0, 100, 10):

 mdl.train(i)

 print('Iteration: {}\tLog-likelihood: {}'.\

 format(i, mdl.ll_per_word))

for k in range(mdl.k):

 print('Top 10 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=7))

Hierarchical Dirichlet Process (HDP) | 257

The code generates the following output:

Figure 5.16: Variation of negative log likelihood with number of iterations

6. Insert a new cell and add the following code to see the probability distribution of
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

Figure 5.17: Probability distribution of topics if the entire dataset is considered

258 | Topic Modeling

7. Insert a new cell and add the following code to see the probability distribution of
topic 33:

print(mdl.get_topic_words(33, top_n=7))

The code generates the following output:

[('danger', 0.1534954458475113), ('hour', 0.0015197568573057652),
('time', 0.0015197568573057652), ('train', 0.0015197568573057652),
('master', 0.0015197568573057652), ('man', 0.0015197568573057652),
('steamer', 0.0015197568573057652)]

8. Insert a new cell and add the following code to see the probability distribution of
topic 21:

print(mdl.get_topic_words(21, top_n=7))

The code generates the following output:

[('hour', 0.1344495415687561), ('minute', 0.1232500821352005),
('day', 0.08405196666717529), ('quarter', 0.07285250723361969),
('moment', 0.07285250723361969), ('clock', 0.005605331063270569),
('card', 0.039254117757081985)]

9. Insert a new cell and add the following code to see the probability distribution of
topic 70:

print(mdl.get_topic_words(70, top_n=7))

The code generates the following output:

[('event', 0.12901155650615692), ('midnight', 0.12901155650615692),
('detective', 0.06482669711112976), ('bed', 0.06482669711112976),
('traveller', 0.06482669711112976), ('watch', 0.06482669711112976),
('clown', 0.06482669711112976)]

10. Insert a new cell and add the following code to see the probability distribution of
topic 4:

print(mdl.get_topic_words(4, top_n=7))

The code generates the following output:

[('house', 0.20237493515014648), ('opium', 0.10131379961967468),
('town', 0.07604850828647614), ('brick', 0.07604850828647614),
('mansion', 0.07604850828647614), ('glimpse', 0.50783220678567886),
('ball', 0.050783220678567886)]

Hierarchical Dirichlet Process (HDP) | 259

We can see that ignoring tokens that occur fewer than five times significantly
improves the interpretability of the topic model. Also, we have 378 topics in all, many
of which are not likely to be interpretable. So, what does this mean? Let's analyze a
corpus from another classic and then return to these questions.

Note

In general, the topics found are extremely sensitive to randomization in both
gensim and tomotopy. While setting a random_state in gensim could
help reproducibility, the topics found using tomotopy are superior from
the perspective of interpretability. Your output is expected to be different.
In order to have exactly the same topic model, we can save and load
topic models, which we'll do now in Exercise 5.04, Topics in The Life and
Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer
to https://packt.live/3jTxUVk.

You can also run this example online at https://packt.live/2X8lG1p.

Exercise 5.04: Topics in The Life and Adventures of Robinson Crusoe by Daniel

Defoe

In this exercise, we will make use of the tomotopy HDP model to analyze a text corpus
taken from the text file for Daniel Defoe's The Life and Adventures of Robinson Crusoe,
available on the Gutenberg Project website. Here, we will take the value of α as 0.8
and experiment with selecting tokens based on different combinations of parts of
speech, before training the model.

Note

The dataset used for this exercise can be found at https://packt.live/3ffhfrP.

1. Open a Jupyter Notebook.

https://packt.live/3jTxUVk
https://packt.live/2X8lG1p
https://packt.live/3ffhfrP

260 | Topic Modeling

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 800)

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Insert a new cell and add the following code to read from a download of the
Gutenberg Project's The Life and Adventures of Robinson Crusoe by Daniel Defoe,
and clean the text:

OPEN_DATA_URL = '../data/robinsoncrusoe/521-0.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

import re

HANDLE = '@\w+'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '<|<|&|#'

PARA='\n+'

def clean(text):

 text = re.sub(LINK, ' ', text)

 text = re.sub(SPECIAL_CHARS, ' ', text)

 text = re.sub(PARA, '\n', text)

 return text

text = clean(text)

text

Hierarchical Dirichlet Process (HDP) | 261

The code generates the following output:

Figure 5.18: Text from The Life and Adventures of Robinson Crusoe

4. Insert a new cell and add the following code to import the necessary libraries.
Clean the text using the spaCy English language model to tokenize the corpus
and to exclude all tokens that are not detected as nouns:

import spacy

nlp = spacy.load('en_core_web_sm')

doc=nlp(text)

"""

We can experiment with other or a combinations of parts of speech
['NOUN','ADJ','VERB','ADV'] #['NOUN','ADJ']
"""

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

 and token.pos_ in pos_list:

 preproc_sent.append(token.lemma_)

 else:

 preproc_text.append(preproc_sent)

 preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)

262 | Topic Modeling

The code generates the following output:

Figure 5.19: Tokenized corpus after preprocessing is done

5. Insert a new cell and add the following code to import the necessary libraries.
Create an HDP model with the α concentration parameter as 0.8 and see how
the negative log likelihood varies with the number of iterations:

import tomotopy as tp

mdl = tp.HDPModel(alpha=0.8,seed=0)

for line in preproc_text:

 mdl.add_doc(line)

for i in range(0, 110, 10):

 mdl.train(i)

 print('Iteration: {}\tLog-likelihood: {}'.\

 format(i, mdl.ll_per_word))

for k in range(mdl.k):

 print('Top 10 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=7))

Hierarchical Dirichlet Process (HDP) | 263

The code generates the following output:

Figure 5.20: Variation of negative log likelihood with the number of iterations

6. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/robinsoncrusoe/hdp_model.bin')

7. Insert a new cell and add the following code to load the topic model:

mdl = tp.HDPModel.load('../data/robinsoncrusoe/'\

 'hdp_model.bin')

8. Insert a new cell and add the following code to see the probability distribution of
topics if you consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

mdl.infer(doc_inst)[0]

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

264 | Topic Modeling

The code generates the following output:

Figure 5.21: Probability distribution if the entire corpus is considered

9. Insert a new cell and add the following code to see the probability distribution of
topic 163:

print(mdl.get_topic_words(163, top_n=7))

The code generates the following output:

[('horse', 0.13098040223121643), ('way', 0.026405228301882744),
('mankind', 0.26405228301882744), ('fire', 0.026405228301882744),
('object', 0.026405228301882744), ('bridle', 0.026405228301882744),
('distress', 0.026405228301882744)]

10. Insert a new cell and add the following code to see the probability distribution of
topic 103:

print(mdl.get_topic_words(103, top_n=7))

The code generates the following output:

[('manor', 0.03706422075629234), ('inheritance', 0.03706422075629234),
('lord', 0.03706422075629234), ('man', 0.0003669724682377309),
('shore', 0.0003669724682377309), ('ship',0.0003669724682377309)]

Hierarchical Dirichlet Process (HDP) | 265

11. Insert a new cell and add the following code to see the probability distribution of
topic 28:

print(mdl.get_topic_words(28, top_n=7))

The code generates the following output:

[('thought', 0.07716038823127747), ('mind', 0.045609116554260254),
('word', 0.038597721606492996), ('face', 0.03509202599525452),
('terror', 0.03509202599525452), ('tear', 0.3158633038401604),
('apprehension', 0.3158633038401604)]

We see that we have 195 topics in all, many of which are likely not interpretable.
In general, finding interpretable topics is difficult and connecting the words to
interpret topics often requires familiarity with the domain. We have seen that
log perplexity has very limited utility. In the case of prior knowledge of the
corpus, the topic model has a much smaller role to play in the discovery of the
thematic structure.

Note

In general, the topics found are extremely sensitive to randomization in both
gensim and tomotopy. While setting a random_state in gensim could
help reproducibility, in general, the topics found using tomotopy are superior
from the perspective of interpretability. Generally, your output is expected
to be different. In order to have exactly the same topic model, we can save
and load topic models, and this was used in this exercise.

To access the source code for this specific section, please refer
to https://packt.live/3ggbfAn.

This section does not currently have an online interactive example and will
need to be run locally.

We have explored three of the most popular approaches to topic modeling. Let's now
discuss the practical challenges in using topic modeling and the state-of-the-art topic
modeling technologies.

https://packt.live/3ggbfAn

266 | Topic Modeling

Practical Challenges

The selection of the number of topics and topic-modeling algorithms, the number of
iterations, and the evaluation of the topic model are the main challenges faced by a
practitioner. Having prior knowledge about the domain can greatly help in choosing
the number of topics. In the absence of prior knowledge about the expected number
of topics, we may need to rely on experimentation for the choice of the topic-
modeling algorithm. The HDP model is an attractive choice when there isn't much
information about the number of topics. In the case of a small corpus, the LSA model
could be used.

One factor that makes interpreting topics difficult is that they contain a lot of very
frequently occurring (but indistinctive) words. To overcome this, we can iteratively
identify these words and add them to a list of stop words. At times, we may want to
filter out words that are too rare and/or too common. The use of only nouns, only
verbs, or a combination of various parts of speech can improve the interpretability
of topics.

Qualitative evaluation of the topics is essential. We may have to accept a mix of
interpretable and non-interpretable topics in the real world. In the absence of human
participants, we can use qualitative ways of considering word intrusion. Unless
there is a downstream use of the topic model being developed, a complete lack of
interpretability will render the topic model useless. When we have a downstream
application, even non-interpretable topics are useful as they offer a convenient
means to carry out dimensionality reduction on the dataset.

State-of-the-Art Topic Modeling

There is no known benchmark for quantitively identifying the state-of-the-art
topic-modeling algorithm. It necessarily involves human participation whenever
interpretable topics are required. In cases where the interpretation of topics is not
necessary, the topic model needs to be evaluated by downstream tasks. A qualitative
approach to interpreting topic models may be useful if there is prior knowledge or
familiarity with the corpus.

While there have been attempts at using labeled topic modeling, there is no evidence
of these models broadly outperforming unsupervised topic-modeling algorithms.
Interestingly, given that much of the topic modeling literature was published prior
to 2014, this is not among the most active areas of research. This suggests that
complete automation is hard and human participation is here to stay as the state-of-
the-art technique in the near future.

Hierarchical Dirichlet Process (HDP) | 267

Activity 5.02: Comparing Different Topic Models

The Consumer Financial Protection Bureau (CFPB) publishes consumer complaints
made against organizations in the financial sector. This original dataset is available at
https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data.
In this activity, you will qualitatively compare how HDP and LDA models perform on
the interpretability of topics by analyzing student loan complaints.

Note

The dataset to be used for this activity can be found
at https://packt.live/39GoyYe.

Follow these steps to complete this activity:

1. Open a Jupyter Notebook.

2. Import the pandas library and load the dataset from a text file produced
by partially processing the dataset from the CFPB website mentioned at the
beginning of this section.

3. Tokenize the text using spaCy. Select tokens that may be a part of speech (noun/
verb/adjective or a combination).

4. Train an HDP model.

5. Save and load the HDP model. To save a topic model, use the following line
of code:

mdl.save('../data/consumercomplaints/hdp_model.bin')

To load a topic model, use the following:

mdl = tp.HDPModel.load('../data/consumercomplaints/hdp_model.bin')

6. Determine the topics in the entire set of complaints. Sample a few topics and
check for interpretability.

7. Repeat steps 3-8 for an LDA model instead of an HDP model. Consider the
number of topics in the LDA model to around the number of topics found in the
HDP model.

https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://packt.live/39GoyYe

268 | Topic Modeling

8. Select the qualitatively better model from the HDP and LDA models trained in
this activity. Also, compare these two models quantitatively.

Note

The full solution to this activity can be found on page 400.

In this activity, we successfully compared two different models both qualitatively
and quantitatively.

Summary
In this chapter, we discussed topic modeling in detail. Without delving into advanced
statistics, we reviewed various topic-modeling algorithms (such as LSA, LDA, and HDP)
and how they can be used for topic modeling on a given dataset. We explored the
challenges involved in topic modeling, how experimentation can help address those
challenges, and, finally, broadly discussed the current state-of-the-art approaches to
topic modeling.

In the next chapter, we will learn about vector representation of text, which helps
us convert text into a numerical format to make it more easily understandable
by machines.

Overview

This chapter introduces you to the various ways in which text can be
represented in the form of vectors. You will start by learning why this is
important, and the different types of vector representation. You will then
perform one-hot encoding on words, using the preprocessing package
provided by scikit-learn, and character-level encoding, both manually and
using the powerful Keras library. After covering learned word embeddings
and pre-trained embeddings, you will use Word2Vec and Doc2Vec for
vector representation for Natural Language Processing (NLP) tasks,
such as finding the level of similarity between multiple texts.

Vector Representation

6

272 | Vector Representation

Introduction
The previous chapters laid a firm foundation for NLP. But now we will go deeper into
a key topic—one that gives us surprising insights into how language processing works
and how some of the key advances in human-computer interaction are facilitated.
At the heart of NLP is the simple trick of representing text as numbers. This helps
software algorithms perform the sophisticated computations that are required to
understand the meaning of the text.

As we have already discussed in previous chapters, most machine learning algorithms
take numeric data as input and do not understand the text as such. We need to
represent our text in numeric form so that we can apply different machine learning
algorithms and other NLP techniques to it. These numeric representations are called
vectors and are also sometimes called word embeddings or simply embeddings.

This chapter begins with a discussion of vectors, how text can be represented as
vectors, and how vectors can be composed to represent complex speech. We will
walk through the various representations in both directions—learning how to encode
text as vectors as well as how to retrieve text from vectors. We will also look at some
cutting-edge techniques used in NLP that are based on the idea of representing text
as vectors.

What Is a Vector?
The basic mathematical definition of a vector is an object that has both magnitude
and direction. In our definition, it is mostly compared with a scalar, which can
be defined as an object that has only magnitude. Vectors are also defined as an
element in vector space—for example, a point in space with the coordinates (x=4,
y=5, z=6) is a vector. Here, we can see the vector dimensions are the geometric
coordinates of a point or element in space. However, the vector dimensions can also
represent any quantity or property of some element or object in addition to mere
geometric coordinates.

As an example, let's say that we're defining the weather at a given place using
five features: temperature, humidity, precipitation, wind speed, and air pressure.
The units that these would be measured in are Celsius, percentage, centimeters,
kilometers per hour (km/h), and millibar (mbar), respectively. The following are the
values for two places:

What Is a Vector? | 273

Figure 6.1: Weather indicators at two different places

So, we can represent the weather of these places in vector form as follows:

• Vector for place 1: [25, 50, 1, 18, 1200.0]

• Vector for place 2: [32, 60, 0, 7, 1019.0]

In the preceding representation, the first dimension represents temperature, the
second dimension represents humidity, and so on. Note that the order of these
dimensions should be consistent among all the vectors.

Similarly, we can also represent text as a vector in which each dimension can
represent either the presence or absence of certain metrics. Examples of these
are bag of words and TFIDF vectors that we looked at in the previous chapters.
There are other techniques as well for vector representation of text—learned word
embeddings, for instance. We will discuss all these different techniques in the
upcoming sections. These techniques can be broadly classified into two categories:

• Frequency-based embeddings

• Learned word embeddings

Frequency-Based Embeddings

Frequency-based embedding is a technique in which the text is represented in vector
form by considering the frequency of the word in a corpus. The techniques that come
under this category are the following:

• Bag of words: As we've already seen in Chapter 2, Feature Extraction Methods,
bag of words is the technique of converting text into vector or numeric form by
representing each sentence or document in a list the length of which is equal to
the total number of unique words in the corpus.

• TFIDF: As seen previously in Chapter 2, Feature Extraction Methods, this technique
considers the frequency of a term as well as the inverse of its occurrence in
the corpus.

274 | Vector Representation

• Term frequency-based technique: This is a somewhat simpler version
of TFIDF. We represent each word in the vector by its number of occurrences
in the document. For example, let's say that a document contains the
following sentences:

1. The girl is pretty, and the boy is handsome.

2. Do whatever your heart says.

3. The boy has a bike.

4. His bike was red in color.

Now let's build term frequency vectors of all these sentences. We will first create
a dictionary of unique words as follows. Note that we are considering every
word in lowercase only:

{1: the

2: girl

3: pretty

4: and

5: boy

5: is

7: handsome

8: do

9: whatever

10: your

11: heart

12: says

13: was

14: has

15: bike

16: his

17: red

What Is a Vector? | 275

18: in

19: color

}

Now every document will be represented by a vector with 19 dimensions, where
every dimension represents the frequency of a word in that document. So, for
sentence 1, the vector will be [2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
Similarly, for sentence 2, the vector representation will be [0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], and so on. Note that the order needs to be consistent
here, too.

Note

It is recommended that you use preprocessing techniques such as
stemming, stop word removal, and conversion to lowercase before
converting a text into the aforementioned vector format. Term frequency is
a simple and quick technique for converting text into vector form. However,
the TFIDF technique is a more effective technique than term frequency as it
not only considers the frequency of a word in the current document but also
in the background corpus.

• One-hot encoding: In all techniques described previously, we have
represented a word with a single number. Using one-hot encoding, we can
represent a word with an array. To understand this concept better, let's take the
following sentences:

5. I love cats and dogs.

6. Cats are light in weight.

We will use a dictionary to assign a numeric label or index to each unique word
(after converting to lowercase) as follows:

{1: i

2: love

3: cats

4: and

5: dogs

276 | Vector Representation

6: are

7: light

8: in

9: weight

}

Now we will represent each word in these sentences as follows:

i [1 0 0 0 0 0 0 0 0]

love [0 1 0 0 0 0 0 0 0]

cats [0 0 1 0 0 0 0 0 0]

and [0 0 0 1 0 0 0 0 0]

dogs [0 0 0 0 1 0 0 0 0]

are [0 0 0 0 0 1 0 0 0]

light [0 0 0 0 0 0 1 0 0]

in [0 0 0 0 0 0 0 1 0]

weight [0 0 0 0 0 0 0 0 1]

We can see that each vector consists of 9 elements; that is, the number of elements
equals the total number of words in the dictionary. For each word, the value of
an element will be 1, only if the word is present at the corresponding position in
the dictionary. When one-hot encoding words, you also need to consider the
vocabulary. The meaning of vocabulary here is the total number of unique words in
the text sources for your project. So, if you have a large source, then you will end up
with a huge vocabulary and large one-hot vector sizes, which will eventually consume
a lot of memory. The next exercise on word-level one-hot encoding will help us
understand this better.

Label encoding is a technique used to convert categorical data in numerical data,
where each category is represented by a unique number. In order to perform
label encoding and one-hot encoding, we will be using the LabelEncoder() and
OneHotEncoder() classes from the preprocessing package provided by the
scikit-learn library. The following exercise will help us get a better understanding
of this.

What Is a Vector? | 277

Exercise 6.01: Word-Level One-Hot Encoding

In this exercise, we will one-hot encode words with the help of the preprocessing
package provided by the scikit-learn library. For this, we shall make use of a file
containing lines from Jane Austen's Pride and Prejudice.

Note

The text file used for this exercise can be found
at https://packt.live/3hUxNqQ.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. First, load the file containing the lines from the novel using the Path class
provided by the pathlib library to specify the location of the file. Insert a new
cell and add the following code:

from pathlib import Path

data = Path('../data')

novel_lines_file = data / 'novel_lines.txt'

3. Now that you have the file, open it and read its contents. Use the open()
and read() functions to perform these actions. Store the results in the
novel_lines file variable. Insert a new cell and add the following code to
implement this:

with novel_lines_file.open() as f:

 novel_lines_raw = f.read()

4. After reading the contents of the file, load it by inserting a new cell and adding
the following code:

novel_lines_raw

https://packt.live/3hUxNqQ

278 | Vector Representation

The code generates the following output:

Figure 6.2: Raw text from the file

In the output, you will see a lot of newline characters. This is because we loaded
the entire content at once into a single variable instead of separate lines. You will
also see a lot of non-alphanumeric characters.

5. The main objective is to create one-hot vectors for each word in the file. To do
this, construct a vocabulary, which is the entire list of unique words in the file, by
tokenizing the string into words and removing newlines and non-alphanumeric
characters. Define a function named clean_tokenize() to do this. Store
the vocabulary created using clean_tokenize() inside a variable named
novel_lines. Add the following code:

import string

import re

alpha_characters = str.maketrans('', '', string.punctuation)

def clean_tokenize(text):

 text = text.lower()

 text = re.sub(r'\n', '*** ', text)

 text = text.translate(alpha_characters)

What Is a Vector? | 279

 text = re.sub(r' +', ' ', text)

 return text.split(' ')

novel_lines = clean_tokenize(novel_lines_raw)

6. Take a look at the content inside novel_lines now. It should look like a list.
Insert a new cell and add the following code to view it:

novel_lines

The code generates the following output:

Figure 6.3: Text after preprocessing is done

7. Insert a new cell and add the following code to convert the list to a NumPy array
and print the shape of the array:

import numpy as np

novel_lines_array = np.array([novel_lines])

novel_lines_array = novel_lines_array.reshape(-1, 1)

novel_lines_array.shape

280 | Vector Representation

The code generates the following output:

(459, 1)

As you can see, the novel_lines_array array consists of 459 rows and 1
column. Each row is a word in the original novel_lines file.

Note

NumPy arrays are more specific to NLP algorithms than Python lists. It is
the format that is required for the scikit-learn library, which we will be using
to one-hot encode words.

8. Now use encoders, such as the LabelEncoder() and OneHotEncoder()
classes from scikit-learn's preprocessing package, to convert novel_
lines_array to one-hot encoded format. Insert a new cell and add the
following lines of code to implement this:

from sklearn import preprocessing

labelEncoder = preprocessing.LabelEncoder()

novel_lines_labels = labelEncoder.fit_transform(\

 novel_lines_array)

import warnings

warnings.filterwarnings('ignore')

wordOneHotEncoder = preprocessing.OneHotEncoder()

line_onehot = wordOneHotEncoder.fit_transform(\

 novel_lines_labels.reshape(-1,1))

In the code, the LabelEncoder() class encodes the labels, and the fit_
transform() method fits the label encoder and returns the encoded labels.

What Is a Vector? | 281

9. To check the list of encoded labels, insert a new cell and add the following code:

novel_lines_labels

The preceding code generates output that looks as follows:

Figure 6.4: List of encoded labels

The OneHotEncoder() class encodes the categorical integer features as a
one-hot numeric array. The fit_transform() method of this class takes
the novel_lines_labels array as input. This is a numeric array, and each
feature included in this array is encoded using the one-hot encoding scheme.

282 | Vector Representation

10. Create a binary column for each category. A sparse matrix is returned as
output. To view the matrix, insert a new cell and type the following code:

line_onehot

The code generates the following output:

<459x199 sparse matrix of type '<class 'numpy.float64'>'

 With 459 stored elements in Compressed Sparse Row
format>

11. To convert the sparse matrix into a dense array, use the toarray() function.
Insert a new cell and add the following code to implement this:

line_onehot.toarray()

The code generates the following output:

Figure 6.5: Dense array

Note

To access the source code for this specific section, please refer
to https://packt.live/2Xd2aAU.

You can also run this example online at https://packt.live/39GSAeu.

The preceding output shows that we have achieved our objective of one-hot
encoding words.

One-hot encoding is mostly used in techniques such as language generation models,
where a model is trained to predict the next word in the sequence given the words
that precede it (think about your phone recommending words while you're chatting
with your friends). Language models are used in many important natural language
tasks nowadays, including machine translation, spell correction, text summarization,
and in tools like Amazon Echo, Alexa, and more.

https://packt.live/2Xd2aAU
https://packt.live/39GSAeu

What Is a Vector? | 283

In addition to word-level language models, we can also build character-level
language models, which can be trained to predict the next character in a sequence
of characters. For character-level language models, we need character-level one-hot
encoding. Let's explore this in the next section.

Character-Level One-Hot Encoding

In character-level one-hot encoding, we assign a numeric value to all the possible
characters. We can use alpha-numeric characters and punctuation as well. Then,
we represent each character by an array of size equal to all the characters in the
document. This array contains zero at all the indices, other than the index assigned
with the character. Let's explain this with an example. Consider the word "hello". Let's
say our vocabulary contains only twenty-six characters, so our dictionary will look
like this:

{'a': 0

 'b': 1

 'c': 2

 'd': 3

 'e': 4

 'f': 5

'g': 6

'h': 7

'i': 8

'j': 9

'k': 10

…….'z': 25}

Now, 'h' will be represented as [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0].
Similarly, 'e' can be represented as [0 0 0 0 1 0].
Let's see how we can implement this in the next exercise.

284 | Vector Representation

Exercise 6.02: Character One-Hot Encoding – Manual

In this exercise, we will create our own function that can one-hot encode the
characters of the word "data". Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. To one-hot encode the characters of a given word, create a function named
onehot_word(). Within this function, create a lookup table for each of the
characters in the given word. Then, map each character to an index. Add the
following code to implement this:

def onehot_word(word):

 lookup = {v[1]: v[0] for v in enumerate(set(word))}

 word_vector = []

3. Next, loop through the characters in the word and create a vector named one_
hot_vector of the same size as the number of characters in the lookup. This
vector is filled with zeros. Then, use the lookup table to find the position of the
character and set that character's value to 1.

Note

 Execute the code for step 1 and step 2 together.

Add the following code:

 for c in word:

 one_hot_vector = [0] * len(lookup)

 one_hot_vector[lookup[c]] = 1

 word_vector.append(one_hot_vector)

 return word_vector

The function created earlier will return a word vector.

4. Once the onehot_word() function has been created, test it by adding some
input as a parameter. Add the word "data" as an input to the function. To
implement this, add a new cell and write the following code:

onehot_vector = onehot_word('data')

print(onehot_vector)

What Is a Vector? | 285

The code generates the following output:

[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]

Since there are four characters in the input (data), there will be four one-hot
vectors. To determine the size of each one-hot vector for data, we enumerate
the total number of characters in it. It is important to note that only one
index gets assigned for repeated characters. After enumerating through the
characters, the character d will be assigned index 0, the character a will be
assigned index 1, and the character t will be assigned index 2.

Based on each character's index position, the elements in each one-hot
vector will be marked as 1, leaving other elements marked 0. In this way,
we can manually one-hot encode any given text. Note that, in most practical
applications, the size of one-hot encoded vector is equal to the size of all the
characters, and sometimes, non-alphabetical characters are also considered.

Note

To access the source code for this specific section, please refer
to https://packt.live/314aTX1.

You can also run this example online at https://packt.live/3gaWbE5.

We have learned how character-level one-hot encoding can be performed manually
by developing our own function. We will focus on performing character-level one-hot
encoding using Keras in the next exercise. Keras is a machine learning library that
works along with TensorFlow to create deep learning models.

We will be using the Tokenizer class from Keras to create vectors from the text.
Tokenizer can work on both characters and words, depending on the char_
level argument. If char_level is set to true, then it will work on the character
level; otherwise, it will work on the word level. The Tokenizer class comes with the
following functions:

• fit_on_text(): This method reads all the text and creates an internal
dictionary, either word-wise or character-wise. We should always call it for
the entire text, so that no word or character is left out of the dictionary. All the
methods/variables listed after this should be called or used only after calling
this method.

https://packt.live/314aTX1
https://packt.live/3gaWbE5

286 | Vector Representation

• word_index: This is a dictionary that contains all the possible words or
characters in the vocabulary. Each word or character is assigned a unique
number/index.

• index_word: This is the reverse dictionary of word_index; it contains
key-value pairs with the index as the key and the word or character as its value.

• texts_to_sequences(): This function converts each word or character
sequence into its corresponding index value.

• texts_to_matrix(): This converts each word or character in a given
text into one-hot vector using a built-in dictionary. It takes the text as input,
processes it, and returns a NumPy array of one-hot encoded vectors.

Exercise 6.03: Character-Level One-Hot Encoding with Keras

In this exercise, we will perform one-hot encoding on a given word using the Keras
library. Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and the following code to import the necessary libraries:

from keras.preprocessing.text import Tokenizer

import numpy as np

3. Once you have imported the Tokenizer class, create an instance of it by
inserting a new cell and adding the following code:

char_tokenizer = Tokenizer(char_level=True)

Since you are encoding at the character level, in the constructor, char_level is
set to True.

Note

By default, char_level is set to False if we are encoding words.

4. To test the Tokenizer instance, you will require some text to work on. Insert a
new cell and add the following code to assign a string to the text variable:

text = 'The quick brown fox jumped over the lazy dog'

What Is a Vector? | 287

5. After getting the text, use the fit_on_texts() method provided by
the Tokenizer class. Insert a new cell and add the following code to
implement this:

char_tokenizer.fit_on_texts(text)

In this code, char_tokenizer will break text into characters and internally
keep track of the tokens, the indices, and everything else needed to perform
one-hot encoding.

6. Now, look at the possible output. One type of output is the sequence of the
characters—that is, the integers assigned with each character in the text. The
texts_to_sequences() method of the Tokenizer class helps assign
integers to each character in the text. Insert a new cell and add the following
code to implement this:

seq =char_tokenizer.texts_to_sequences(text)

seq

The code generates the following output:

Figure 6.6: List of integers assigned to each character

288 | Vector Representation

As you can see, there were 44 characters in the text variable. From the output,
we can see that for every unique character in text, an integer is assigned.

7. Use sequences_to_texts() to get text from the sequence with the
following code:

char_tokenizer.sequences_to_texts(seq)

The snippet of the preceding output follows:

Figure 6.7: Text generated from the sequence

What Is a Vector? | 289

8. Now look at the actual one-hot encoded values. For this, use the
texts_to_matrix() function. Insert a new cell and add the following
code to implement this:

char_vectors = char_tokenizer.texts_to_matrix(text)

Here, the results of the array are stored in the char_vectors variable.

9. In order to view the vector values, just insert a new cell and add the
following line:

char_vectors

On execution, the code displays the array of one-hot encoded vectors:

Figure 6.8: Actual one-hot encoded values for the given text

10. In order to investigate the dimensions of the NumPy array, make use of the
shape attribute. Insert a new cell and add the following code to execute it:

char_vectors.shape

The following output is generated:

(44, 27)

So, char_vectors is a NumPy array with 44 rows and 27 columns. This is
because we are considering 26 characters and an additional character for space.

11. To access the first row of char_vectors NumPy array, insert a new cell and
add the following code:

char_vectors[0]

This returns a one-hot vector, which can be seen in the following figure:

array([0 ., 0., 0., 0., 1., 0., 0., 0., 0 .,

 0., 0., 0., 0., 0., 0., 0.,0., 0 .,

 0., 0., 0., 0., 0., 0., 0 ., 0., 0])

290 | Vector Representation

12. To access the index of this one-hot vector, use the argmax() function provided
by NumPy. Insert a new cell and write the following code to implement this:

np.argmax(char_vectors[0])

The code generates the following output:

4

13. The Tokenizer class provides two dictionaries, index_word and
word_index, which you can use to view the contents of Tokenizer in
key-value form. Insert a new cell and add the following code to view the
index_word dictionary:

char_tokenizer.index_word

The code generates the following output:

Figure 6.9: The index_word dictionary

What Is a Vector? | 291

As you can see in this figure, the indices act as keys, and the characters
act as values. Now insert a new cell and the following code to view the
word_index dictionary:

char_tokenizer.word_index

The code generates the following output:

Figure 6.10: The word_index dictionary

In this figure, the characters act as keys, and the indices act as values.

292 | Vector Representation

14. In the preceding steps, you saw how to access the index of a given one-hot
vector by using the argmax() function provided by NumPy. Using this index
as a key, you can access its value in the index_word dictionary. To implement
this, we insert a new cell and write the following code:

char_tokenizer.index_word[np.argmax(char_vectors[0])]

The preceding code generates the following output:

't'

In this code, np.argmax(char_vectors[0]) produces an output of 4. This
will act as a key in finding the value in the index_word dictionary. So, when
char_tokenizer.index_word[4] is executed, it will scan through the
dictionary and find that, for key 4, the value is t, and finally, it will print t.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ECjNnf.

You can also run this example online at https://packt.live/2P9c69V.

In the preceding section, we learned how to convert text into one-hot vectors at either
the character level or the word level. One-hot encoding is a simple representation
of a word, but it has a disadvantage. Whenever the corpus is large (that is, when the
number of unique characters or words increases), the size of the one-hot encoded
vector also increases. Thus, it becomes very memory intensive and is sometimes not
feasible; speed and simplicity here lead to the "curse of dimensionality" by creating a
new dimension for each category/word. To tackle this problem, learned embeddings
can be used, as explained in the following sections.

https://packt.live/2ECjNnf
https://packt.live/2P9c69V

What Is a Vector? | 293

Learned Word Embeddings

The vector representations discussed in the preceding section have some serious
disadvantages, as discussed here:

• Sparsity and large size: The sizes of one-hot encoded or other frequency-
based vectors depend upon the number of unique words in the corpus. This
means that when the size of the corpus increases, the number of unique words
increases, thereby increasing the size of the vectors in turn.

• Context: None of these vector representations consider the words with respect
to its context while representing it as a vector. However, the meaning of a word
in any language depends upon the context it is used in. Not taking the context
into account can often lead to inaccurate results.

Prediction-based word embeddings or learned word embeddings try to address
both problems. For starters, these methods represent words with a fixed number
of dimensions. Moreover, these representations are actually learned from the
different contexts in which the word has been used at different places. Learned
word embeddings is actually a collective name given to a set of language models
that represent words in such a way that words with similar meanings have somewhat
similar representations. There are different techniques for creating learned word
embeddings, such as Word2Vec and GloVe. Let's discuss them one by one.

Word2Vec

Word2Vec is a prediction-based algorithm that represents a word by a vector of a
fixed size. This is a form of unsupervised learning algorithm, which means that we
need not to provide manually annotated data; we just feed the raw text. It will train a
model in such a way that each word is represented in terms of its context throughout
the training data.

This algorithm has two variations, as follows:

• Continuous Bag of Words (CBoW): This model tends to predict the probability
of a word given the context. The learning problem here is to predict the word
given a fixed-window context—that is, a fixed set of continuous words in text.

• Skip-Gram model: This model is the reverse of the CBoW model, as it tends to
predict the context of a word.

294 | Vector Representation

These vectors find application in a lot of NLP tasks including text generation, machine
translation, speech to text, text to speech, text classification, and text similarity.

Let's explore how they can be used for text similarity. Suppose we generated 300
dimensional vectors from words such as "love", "adorable", and "hate". If we find the
cosine similarity between the vectors for "love" and "adorable", and "love" and "hate",
we will find a higher similarity between the former pair of words than the latter.

In the next exercise, we will train word vectors using the gensim library. Specifically,
we'll be using the Word2Vec class. The Word2Vec class has parameters such as
documents, size, window, min_count, and workers. Here, documents refers
to the sentences that we have to provide to the class, size represents the length
of the dense vector to represent each token, min_count represents the minimum
count of words that can be taken into consideration when training a particular model,
and workers represents the number of threads that are required when training
a model.

For training a model, we use the model.train() method. This method takes
arguments such as documents, total_examples, and epochs. Here,
documents represents the sentences, and total_examples represents the count
of sentences, while epochs represents the total number of iterations over the given
data. Finally, the trained word vectors get stored in model.wv, which is an instance
of KeyedVectors.

In order to perform basic text cleaning, before it's processed, we will make use of the
textcleaner class from gensim. Some of the most useful functions available in
textcleaner that we will be using are as follows:

• split_sentences(): As the name suggests, this function splits the text and
gets a list of sentences from the text.

• simple_preprocess(): This function converts a document into a list
consisting of lowercase tokens.

Let's see how we can use these functions to create word vectors.

Exercise 6.04: Training Word Vectors

What Is a Vector? | 295

In this exercise, we will train word vectors. We will be using books freely available
on Project Gutenberg for this. We will also see the vector representation using
Matplotlib's pyplot framework.

Note

The file we are using for this exercise can be found
at https://packt.live/39JeZYP.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. Use the requests library to load books from the Project Gutenberg website,
the json library to load a book catalog, and the regex package to clean the text
by removing newline characters. Insert a new cell and add the following code to
implement this:

import requests

import json

import re

3. After importing all the necessary libraries, load the json file, which contains
details of 10 books, including the title, the author, and the ID. Insert a new cell
and add the following steps to implement this:

with open('../data/ProjectGutenbergBooks.json', 'r') \

 as catalog_file:

 catalog = json.load(catalog_file)

https://packt.live/39JeZYP

296 | Vector Representation

4. To print the details of all the books, insert a new cell and add the following code:

catalog

The preceding code generates the following output:

Figure 6.11: Book details in the catalog

5. Create a function named load_book(), which will take book_id as a
parameter and, based on that book_id, fetch the book and load it. It should
also clean the text by removing the newline characters. Insert a new cell and add
the following code to implement this:

GUTENBERG_URL ='https://www.gutenberg.org/files/{}/{}-0.txt'

def load_book(book_id):

 url = GUTENBERG_URL.format(book_id, book_id)

 contents = requests.get(url).text

 cleaned_contents = re.sub(r'\r\n', ' ', contents)

 return cleaned_contents

6. Once you have defined our load_book() function, you will loop through the
catalog, fetch all the id instances of the books, and store them in the book_ids
list. The id instances stored in the book_ids list will act as parameters for our
load_book() function. The book information fetched for each book ID will be
loaded in the books variable. Insert a new cell and add the following code to
implement this:

book_ids = [book['id'] for book in catalog]

books = [load_book(id) for id in book_ids]

To view the information of the books variable, add the following code in a
new cell:

books[:5]

What Is a Vector? | 297

A snippet of the output generated by the preceding code is as follows:

Figure 6.12: Information of various books

7. Before you can train the word vectors, you need to split the books into a list
of documents. In this case, you want to teach the Word2Vec algorithm about
words in the context of the sentences that they are in. So here, a document
is actually a sentence. Thus, you need to create a list of sentences from all 10
books. Insert a new cell and add the following code to implement this:

from gensim.summarization import textcleaner

from gensim.utils import simple_preprocess

def to_sentences(book):

 sentences = textcleaner.split_sentences(book)

 sentence_tokens = [simple_preprocess(sentence) \

 for sentence in sentences]

 return sentence_tokens

In the preceding code, all the text preprocessing takes place inside the
to_sentences() function that you have defined.

298 | Vector Representation

8. Now, loop through each book in books and pass each book as a parameter to
the to_sentences() function. The results should be stored in the book_
sentences variable. Also, split books into sentences and sentences into
documents. The result should be stored in the documents variable. Insert a
new cell and add the following code to implement this:

books_sentences = [to_sentences(book) for book in books]

documents = [sentence for book_sent in books_sentences \

 for sentence in book_sent]

9. To check the length of the documents, use the len() function as follows:

len(documents)

The code generates the following output:

32922

10. Now that you have your documents, train the model by making use of the
Word2Vec class provided by the gensim package. Insert a new cell and add the
following code to implement this:

from gensim.models import Word2Vec

build vocabulary and train model

model = Word2Vec(

 documents,

 size=100,

 window=10,

 min_count=2,

 workers=10)

model.train(documents, total_examples=len(documents), \

 epochs=50)

The code generates the following output:

(27809439, 37551450)

Now make use of the most_similar() function of the model.wv instance to
find the similar words. The most_similar() function takes positive as a
parameter and returns a list of strings that contribute positively. Insert a new cell
and add the following code to implement this:

model.wv.most_similar(positive="worse")

What Is a Vector? | 299

The code generates the following output:

Figure 6.13: Most similar words

Note

You may get a slightly different output as the output depends on the model
training process, so you may have a different model than the one we have
trained here.

11. Create a show_vector() function that will display the vector using pyplot, a
plotting framework in Matplotlib. Insert a new cell and add the following code to
implement this:

%matplotlib inline

import matplotlib.pyplot as plt

def show_vector(word):

 vector = model.wv[word]

 fig, ax = plt.subplots(1,1, figsize=(10, 2))

 ax.tick_params(axis='both', \

 which='both',\

 left=False, \

 bottom=False, \

 top=False,\

 labelleft=False, \

 labelbottom=False)

300 | Vector Representation

 ax.grid(False)

 print(word)

 ax.bar(range(len(vector)), vector, 0.5)

show_vector('sad')

The code generates the following output:

Figure 6.14: Graph of the vector when the input is "sad"

Note

To access the source code for this specific section, please refer
to https://packt.live/317nb11.

You can also run this example online at https://packt.live/2BJC40I.

In the preceding figure, we can see the vector representation when the word
provided to the show_vector() function is "sad". We have learned about training
word vectors and representing them using pyplot. In the next section, we will focus
more on using pre-trained word vectors, which are required for NLP projects.

https://packt.live/317nb11
https://packt.live/2BJC40I

What Is a Vector? | 301

Using Pre-Trained Word Vectors

For a machine learning model, the more data you have, the better the model you get.
But training the model on large amounts of data is intensively resource-consuming
in terms of both time and memory. So, we usually train a Word2Vec model on a
large amount of data and retain the model for future use. There are also a lot of
pre-trained models publicly available have been trained on huge datasets such
as Wikipedia articles. These models include gensim by fastText (research group
by Facebook), and Word2Vec has recently proved to be state-of-the-art for tasks
including checking for word analogies and word similarities, as follows:

• vector('Paris') - vector('France') + vector('Italy') results in a vector that is very close
to vector('Rome').

• vector('king') - vector('man') + vector('woman') is close to vector('queen').

Google's publicly available glove model is similar to the Word2Vec model and has
produced incredible results. In some applications, we may need to train a Word2Vec
model on our own specific dataset rather than train a new model from scratch; that
is, we can train a pre-trained model on more data. This process is called transfer
learning. Transfer learning is based on the concept of transferring knowledge from
one domain into another.

Note

Pre-trained word vectors can get pretty large. For example, vectors trained
on Google News contain 3 million words, and on disk, its compressed size
is 1.5 GB.

To better understand how we can use pre-trained word vectors in Python, let's walk
through a simple exercise.

302 | Vector Representation

Exercise 6.05: Using Pre-Trained Word Vectors

In this exercise, we will load and use pre-trained word embeddings. We will also show
the image representation of a few word vectors using the pyplot framework of the
Matplotlib library. We will be using glove6B50d.txt, which is a pre-trained model.

Note

The pre-trained model being used for this file can be found
at https://www.kaggle.com/watts2/glove6b50dtxt/download.
Download this file and place it in the data folder of Chapter 6,
Vector Representation.

Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. Add the following statement to import the numpy library:

import numpy as np

import zipfile

3. Move the downloaded model from the preceding link to the location given in the
following code snippet. In order to extract data from a ZIP file, use the zipfile
Python package. Add the following code to unzip the embeddings from the
ZIP file:

GLOVE_DIR = '../data/'

GLOVE_ZIP = GLOVE_DIR + 'glove6B50d.txt.zip'

print(GLOVE_ZIP)

zip_ref = zipfile.ZipFile(GLOVE_ZIP, 'r')

zip_ref.extractall(GLOVE_DIR)

zip_ref.close()

4. Define a function named load_glove_vectors() to return a model Python
dictionary. Insert a new cell and add the following code to implement this:

def load_glove_vectors(fn):

 print("Loading Glove Model")

 with open(fn,'r', encoding='utf8') as glove_vector_file:

 model = {}

 for line in glove_vector_file:

https://www.kaggle.com/watts2/glove6b50dtxt/download

What Is a Vector? | 303

 parts = line.split()

 word = parts[0]

 embedding = np.array([float(val) \

 for val in parts[1:]])

 model[word] = embedding

 print("Loaded {} words".format(len(model)))

 return model

glove_vectors = load_glove_vectors(GLOVE_DIR +'glove6B50d.txt')

Here, glove_vector_file is a text file containing a dictionary. In this, words
act as keys and vectors act as values. So, we need to read the file line by line,
split it, and then map it to a Python dictionary. The preceding code generates the
following output:

Loading Glove Model

Loaded 400000 words

If we want to view the values of glove_vectors, then we insert a new cell and
add the following code:

glove_vectors

You will get the following output:

Figure 6.15: Dictionary of glove_vectors

The order of the result dictionary can vary as it is a Python dict.

304 | Vector Representation

5. The glove_vectors object is basically a dictionary containing the mappings
of the words to the vectors, so you can access the vector for a word, which will
return a 50-dimensional vector. Insert a new cell and add the code to check the
vector for the word dog:

glove_vectors["dog"]

Figure 6.16: Array of glove vectors with an input of dog

In order to see the vector for the word cat, add the following code:

glove_vectors["cat"]

Figure 6.17: Array of glove vectors with an input of cat

What Is a Vector? | 305

6. Now that you have the vectors, represent them as an image using the pyplot
framework of the Matplotlib library. Insert a new cell and add the following code
to implement this:

%matplotlib inline

import matplotlib.pyplot as plt

def to_vector(glove_vectors, word):

 vector = glove_vectors.get(word.lower())

 if vector is None:

 vector = [0] * 50

 return vector

def to_image(vector, word=''):

 fig, ax = plt.subplots(1,1)

 ax.tick_params(axis='both', which='both',\

 left=False, \

 bottom=False, \

 top=False,\

 labelleft=False,\

 labelbottom=False)

 ax.grid(False)

 ax.bar(range(len(vector)), vector, 0.5)

 ax.text(s=word, x=1, y=vector.max()+0.5)

 return vector

In the preceding code, you defined two functions. The to_vector() function
accepts glove_vectors and word as parameters. Here, the get() function
of glove_vectors will find the word and convert it into lowercase. The result
will be stored in the vector variable.

7. The to_image() function takes vector and word as input and shows the
image representation of vector. To find the image representation of the word
man, type the following code:

man = to_image(to_vector(glove_vectors, "man"))

306 | Vector Representation

The code generates the following output:

Figure 6.18: Graph generated with an input of man

8. To find the image representation of the word woman, type the following code:

woman = to_image(to_vector(glove_vectors, "woman"))

This will generate the following output:

Figure 6.19: Graph generated with an input of woman

What Is a Vector? | 307

9. To find the image representation of the word king, type the following code:

king = to_image(to_vector(glove_vectors, "king"))

This will generate the following output:

Figure 6.20: Graph generated with an input of king

10. To find the image representation of the word queen, type the following code:

queen = to_image(to_vector(glove_vectors, "queen"))

This will generate the following output:

Figure 6.21: Graph generated with an input of queen

308 | Vector Representation

11. To find the image representation of the vector for king – man + woman –
queen, type the following code:

diff = to_image(king – man + woman - queen)

This will generate the following output:

Figure 6.22: Graph generated with (king-man+woman-queen) as input

12. To find the image representation of the vector for king – man + woman,
type the following code:

nd = to_image(king – man + woman)

This will generate the following output:

Figure 6.23: Graph generated with (king-man+woman) as input

What Is a Vector? | 309

Note

To access the source code for this specific section, please refer
to https://packt.live/33btLpH.

This section does not currently have an online interactive example, and will
need to be run locally.

The preceding results are the visual proof of the example we already discussed.
We've learned how to load and use pre-trained word vectors and view their image
representations. In the next section, we will focus on document vectors and
their uses.

Document Vectors

Word vectors and word embeddings represent words. But if we wanted to represent
a whole document, we'd need to use document vectors. Note that when we refer to
a document, we are referring to a collection of words that have some meaning to a
user. A document can be a single sentence or a group of sentences. A document can
consist of product reviews, tweets, or lines of movie dialogue, and can be from a few
words to thousands of words. A document can be used in a machine learning project
as an instance of something that the algorithm can learn from. We can represent a
document with different techniques:

• Calculating the mean value: We calculate the mean of all the constituent word
vectors of a document and represent the document by the mean vector.

• Doc2Vec: Doc2Vec is a technique by which we represent documents by
a fixed-length vector. It is trained quite similarly to the way we train the
Word2Vec model. Here, we also add the unique ID of the document to which
the word belongs. Then, we can get the vector of the document from the trained
model using the document ID.

Similar to Word2Vec, the Doc2Vec class contains parameters such as min_count,
window, vector_size, sample, negative, and workers. The min_count
parameter ignores all the words with a frequency less than that specified. The
window parameter sets the maximum distance between the current and predicted
words in the given sentence. The vector_size parameter sets the dimensions of
each vector.

https://packt.live/33btLpH

310 | Vector Representation

The sample parameter defines the threshold that allows us to configure the higher-
frequency words that are regularly down-sampled, while negative specifies the
total amount of noise words that should be drawn and workers specifies the total
number of threads required to train the model. To build the vocabulary from the
sequence of sentences, Doc2Vec provides the build_vocab method. We'll be
using all of these in the upcoming exercise.

Uses of Document Vectors

Some of the uses of document vectors are as follows:

• Similarity: We can use document vectors to compare texts for similarity. For
example, legal AI software can use document vectors to find similar legal cases.

• Recommendations: For example, online magazines can recommend similar
articles based on those that users have already read.

• Predictions: Document vectors can be used as input into machine learning
algorithms to build predictive models.

In the next section, we will perform an exercise based on document vectors.

Exercise 6.06: Converting News Headlines to Document Vectors

In this exercise, we will convert some news headlines into document vectors. Also, we
will look at the image representation of the vector. Again, for image representation,
we will be using the pyplot framework of the Matplotlib library. Follow these steps to
complete this exercise:

Note

The file which we are going to use in this exercise is in zipped format
and can be found at https://packt.live/3fhE2TG. It should be unzipped
once downloaded.

1. Open a Jupyter notebook.

2. Import all the necessary libraries for this exercise. You will be using the gensim
library. Insert a new cell and add the following code:

import pandas as pd

from gensim import utils

from gensim.models.doc2vec import TaggedDocument

https://packt.live/3fhE2TG

What Is a Vector? | 311

from gensim.models import Doc2Vec

from gensim.parsing.preprocessing \

import preprocess_string, remove_stopwords

import random

import warnings

warnings.filterwarnings("ignore")

In the preceding code snippet, other than other imports, you imported
TaggedDocument from gensim, which prepares the document formats
used in Doc2Vec. It represents the document along with the tag. This will be
clearer from the following code lines. Doc2Vec requires each instance to be a
TaggedDocument instance.

3. Move the downloaded file to the following location and create a variable of the
path as follows:

sample_news_data = '../data/sample_news_data.txt'

4. Now load the file:

with open(sample_news_data, encoding="utf8", \

 errors='ignore') as f:

 news_lines = [line for line in f.readlines()]

5. Now create a DataFrame out of the headlines as follows:

lines_df = pd.DataFrame()

indices = list(range(len(news_lines)))

lines_df['news'] = news_lines

lines_df['index'] = indices

6. View the head of the DataFrame using the following code:

lines_df.head()

312 | Vector Representation

This will create the following output:

Figure 6.24: Head of the DataFrame

7. Create a class, the object of which will create the training instances for the
Doc2Vec model. Insert a new cell and add the following code to implement this:

class DocumentDataset(object):

 def __init__(self, data:pd.DataFrame, column):

 document = data[column].apply(self.preprocess)

 self.documents = [TaggedDocument(text, [index]) \

 for index, text in \

 document.iteritems()]

 def preprocess(self, document):

 return preprocess_string(\

 remove_stopwords(document))

 def __iter__(self):

 for document in self.documents:

 yield documents

 def tagged_documents(self, shuffle=False):

 if shuffle:

 random.shuffle(self.documents)

 return self.documents

What Is a Vector? | 313

In the code, the preprocess_string() function applies the given filters
to the input. As its name suggests, the remove_stopwords() function
is used to remove stopwords from the given document. Since Doc2Vec
requires each instance to be a TaggedDocument instance, we create a list of
TaggedDocument instances for each headline in the file.

8. Create an object of the DocumentDataset class. It takes two parameters. One
is the lines_df_small DataFrame and the other is the Line column name.
Insert a new cell and add the following code to implement this:

documents_dataset = DocumentDataset(lines_df, 'news')

9. Create a Doc2Vec model using the Doc2Vec class. Insert a new cell and add
the following code to implement this:

docVecModel = Doc2Vec(min_count=1, window=5, vector_size=100, \

 sample=1e-4, negative=5, workers=8)

docVecModel.build_vocab(documents_dataset.tagged_documents())

10. Now you need to train the model using the train() function of the Doc2Vec
class. This could take a while, depending on how many records we train. Here,
epochs represents the total number of records required to train the document.
Insert a new cell and add the following code to implement this:

docVecModel.train(documents_dataset.\

 tagged_documents(shuffle=True),\

 total_examples = docVecModel.corpus_count,\

 epochs=10)

11. Save this model for future use as follows:

docVecModel.save('../data/docVecModel.d2v')

12. The model has been trained. To verify this, access one of the vectors with its
index. To do this, insert a new cell and add the following code to find the doc
vector of index 657:

docVecModel[657]

314 | Vector Representation

You should get an output similar to the one below:

Figure 6.25: Lines represented as vectors

13. To check the image representation of any given vector, make use of the pyplot
framework of the Matplotlib library. The show_news_lines() function takes
a line number as a parameter. Based on this line number, find the vector and
store it in the doc_vector variable. The show_image() function takes two
parameters, vector and line, and displays an image representation of the
vector. Insert a new cell and add the following code to implement this:

import matplotlib.pyplot as plt

def show_image(vector, line):

 fig, ax = plt.subplots(1,1, figsize=(10, 2))

 ax.tick_params(axis='both', \

 which='both',\

 left=False, \

 bottom=False,\

 top=False,\

 labelleft=False,\

 labelbottom=False)

 ax.grid(False)

 print(line)

What Is a Vector? | 315

 ax.bar(range(len(vector)), vector, 0.5)

def show_news_lines(line_number):

 line = lines_df[lines_df.index==line_number].news

 doc_vector = docVecModel[line_number]

 show_image(doc_vector, line)

14. Now that you have defined the functions, implement the
show_news_lines() function to view the image representation of
the vector. Insert a new cell and add the following code to implement this:

show_news_lines(872)

The code generates the following output:

Figure 6.26: Image representation of a given vector

Note

To access the source code for this specific section, please refer
to https://packt.live/30dFxxV.

You can also run this example online at https://packt.live/39MiTQG.

We have learned how to represent a document as a vector. We have also seen a
visual representation of this. In the next section, we will complete an activity to find
similar news headlines using the document vector.

https://packt.live/30dFxxV
https://packt.live/39MiTQG

316 | Vector Representation

Activity 6.01: Finding Similar News Article Using Document Vectors

To complete this activity, you need to build a news search engine that finds similar
news articles like the one provided as input using the Doc2Vec model. You will find
headlines similar to "US raise TV indecency US politicians are proposing a tough
new law aimed at cracking down on indecency." Follow these steps to complete
this activity:

1. Open a Jupyter notebook and import the necessary libraries.

2. Load the new article lines file.

3. Iterate over each headline and split the columns and create a DataFrame.

4. Load the Doc2Vec model that you created in the previous exercise.

5. Create a function that converts the sentences into vectors and another that does
the similarity checks.

6. Test both the functions.

Note

The full solution to this activity can be found on page 406.

So, in this activity, we were able to find similar news headlines with the help of
document vectors. A common use case of inferring text similarity from document
vectors is in text paraphrasing, which we'll explore in detail in the next chapter.

Summary
In this chapter, we learned about the motivations behind converting human
language in the form of text into vectors. This helps machine learning algorithms to
execute mathematical functions on the text, detect patterns in language, and gain
an understanding of the meaning of the text. We also saw different types of vector
representation techniques, such as character-level encoding and one-hot encoding.

In the next chapter, we will look at the areas of text paraphrasing, summarization,
and generation. We will see how we can automate the process of text summarization
using the NLP techniques we have learned so far.

Overview

This chapter begins with the concept of text generation using Markov
chains, before moving on to two types of text summarization—namely,
abstractive and extractive summarization. You will then explore the
TextRank algorithm and use it with different datasets. By the end of this
chapter, you will understand the applications and challenges of text
generation and summarization using Natural Language Processing
(NLP) approaches.

Text Generation and

Summarization

7

320 | Text Generation and Summarization

Introduction
The ability to express thoughts in words (sentence generation), the ability to replace
a piece of text with different but equivalent text (paraphrasing), and the ability to find
the most important parts of a piece of text (summarization) are all key elements of
using language. Although sentence generation, paraphrasing, and summarization are
challenging tasks in NLP, there have been great strides recently that have made them
considerably more accessible. In this chapter, we explore them in detail and see how
we can implement them in Python.

Generating Text with Markov Chains
An idea is expressed using the words of a language. As ideas are not tangible, it is
useful to look at text generation in order to gauge whether a machine can think
on its own. The utility of text generation is currently limited to an auto-complete
functionality, besides a few negative use cases that we will discuss later in this
section. Text can be generated in many different ways, which we will explore using
Markov chains. Whether this generated text can correspond to a coherent line of
thought is something that we will address later in this section.

Markov Chains

A state space defines all possible states that can exist. A Markov chain consists of a
state space and a specific type of successor function. For example, in the case of the
simplified state space to describe the weather, the states could be Sunny, Cloudy, or
Rainy. The successor function describes how a system in its current state can move
to a different state or even continue in the same state. To better understand this,
consider the following diagram:

Generating Text with Markov Chains | 321

Figure 7.1: Markov chain for weather

The successor function of a Markov chain is a random selection of a successor
state based on probabilities. For instance, consider that the initial state is randomly
selected as Rainy. The next state could be Rainy (there is a 0.8 probability that the
state stays Rainy). Then, the next state could be Sunny (there is a 0.05 probability
associated with this transition). It could be Rainy again, and then it could be Cloudy,
and so on. Our sequence of states is Rainy-Rainy-Sunny-Rainy-Cloudy. For each
state, the successor state is found by a random selection; this is called a random walk
on the Markov chain.

322 | Text Generation and Summarization

Similarly, if we have a state space in which the states correspond to a vocabulary,
then a random walk on such a Markov chain will generate text. Now, the vocabulary
could have around 20,000 words. In this case, the Markov chain will have 20,000
states. The probabilities in this case will correspond to the likelihood of a word
succeeding a given word. We can begin with any state randomly drawn from among
the words that could be used for the first word of a sentence, for example, common
words such as "the, " "a, " "I, " "he, " "she, " "if, " "this, " "why, " and "where". We
then find its successor state in a random way, followed by the next successor state
found in a random way, and continue in the same manner until we have generated a
sequence of words of the required length. In the next section, we will do an exercise
related to Markov chains to get a better understanding of them.

Exercise 7.01: Text Generation Using a Random Walk over a Markov Chain

In this exercise, we will generate text with the help of Markov chains. We will use
Robert Frost's collection of poems, North of Boston, available from Project Gutenberg,
to specify the successor state(s) for each state using a dictionary. We'll use a list to
specify the successor state(s) for any state so that the number of times a successor
state occurs in that list is directly proportional to the probability of transitioning to
that successor state.

Then, we will generate 10 phrases with three words in addition to an initial word, and
then generate another 10 phrases with four words in addition to an initial word. The
initial state or initial word will be randomly selected from among these words: "the,"
"a," "I," "he," "she," "if," "this," "why," and "where." Note that since we are generating
text using a random walk over a Markov chain, in general, the output you get will be
different from the output shown in this exercise. Each different output corresponds
to new text generation.

Note

You can find the text file that's been used for this exercise
at https://packt.live/2DiGAE3.

https://packt.live/2DiGAE3

Generating Text with Markov Chains | 323

Follow these steps to complete this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries
and read the dataset:

import re

import random

OPEN_DATA_URL = '../data/robertfrost/pg3026.txt'

f=open(OPEN_DATA_URL,'r',encoding='utf-8')

text=f.read()

f.close()

3. Insert a new cell and add the following code to preprocess the text using
regular expressions:

HANDLE = '@\w+\n'

LINK = 'https?://t\.co/\w+'

SPECIAL_CHARS = '<|<|&|#'

PARA='\n+'

def clean(text):

 #text = re.sub(HANDLE, ' ', text)

 text = re.sub(LINK, ' ', text)

 text = re.sub(SPECIAL_CHARS, ' ', text)

 text = re.sub(PARA, '\n', text)

 return text

text = clean(text)

4. Split the corpus into a list of words. Show the number of words in the corpus:

corpus=text.split()

corpus_length=len(corpus)

corpus_length

The preceding code generates the following output:

19985

324 | Text Generation and Summarization

5. Insert a new cell and add the following code to define the successor states for
each state. Use a dictionary for this:

succ_func={}

corpus_counter=0

for token in corpus:

 corpus_counter=corpus_counter+1

 if corpus_counter<corpus_length:

 if token not in succ_func.keys():

 succ_func[token]=[corpus[corpus_counter]]

 else:

 succ_func[token].append(corpus[corpus_counter])

succ_func

The preceding code generates an output as follows. Note that we're only
displaying a part of the output here.

Figure 7.2: Dictionary of successor states

We find that "he" is shown as a successor of "who" more than once. This is
because this occurs more than once in the dataset. In effect, the number
of times the successors occur in the list is proportional to their respective
probabilities. Though it is not the only method, this is a convenient way to
represent the successor function.

6. Define the list of initial states. Then, define a function to select a random initial
state from these and concatenate it with successor states. These successor
states are randomly selected from the list containing successor states for a
specific current state. Add the following code to do this:

initial_states=['The','A','I','He','She','If',\

 'This','Why','Where']

def generate_words(k=5):

Generating Text with Markov Chains | 325

 initial_state=random.choice(initial_states)

 current_state=initial_state

 text=current_state+' '

 for i in range(k):

 succ_state=random.choice(succ_func[current_state])

 text=text+succ_state+' '

 current_state=succ_state

 print(text.split('.')[0])

7. Insert a new cell and add the following code to generate text containing 10
phrases of four words (including the initial word) and 10 phrases of five words
(including the initial word):

for k in range(3,5):

 for j in range(10):

 generate_words(k)

The preceding code generates the following output:

Figure 7.3: Phrases generated, consisting of four and five words

326 | Text Generation and Summarization

Note

To access the source code for this specific section, please refer
to https://packt.live/313fiJY.

You can also run this example online at https://packt.live/33ilO2l.

It's quite interesting that we are able to generate text using a random walk over a
Markov chain. If we look more closely, we will see that only a few of the phrases make
sense. Broadly speaking, we are generating text that has an element of Robert Frost's
style. However, it can hardly be said to correspond to a thought of any kind.

The practical utility of generating text using a Markov chain is somewhat limited
to generating spam (spam generators could use a Markov chain) and generating
something that is a little amusing. Nevertheless, this exercise demonstrates the
surprising results we can get by using a simple approach in which nothing about the
structure of a language is explicitly taught to the machine.

In general, auto-complete is one positive use case and arguably the sole positive use
case for text generation given that other use cases (besides spam) tend to include the
generation of misinformation.

Paraphrasing involves replacing some text with different text that has the same
meaning. Now, intuitively, a machine will be able to tell whether one piece of text is
a paraphrase of another, but only if that machine understands the meaning. So, one
way of checking whether a machine understands the meaning of a piece of text is to
check if it can tell if another different piece of text is a paraphrase of that first text.

Benchmark datasets provide a standard touchstone for evaluating approaches
to solve a problem. The approaches are typically ranked in a publicly available
leaderboard. Even in the case of such benchmark datasets, as of February 21,
2020, the SuperGLUE leaderboard (https://super.gluebenchmark.com/leaderboard) sets
human baselines at the top when considered across a variety of tasks. This means
that humans are superior at paraphrasing than the most sophisticated approaches
even on the specified datasets. Paraphrasing is even tougher outside of benchmark
datasets because it is tougher to teach models in a more general way so that the
model is as effective for other datasets. Thus, compared to machines, humans can
paraphrase even better on other datasets than machines can. In short, paraphrasing
using NLP is challenging and is currently of limited practical utility to the practitioner.
In the next section, we will learn about summarization.

https://packt.live/313fiJY
https://packt.live/33ilO2l
https://super.gluebenchmark.com/leaderboard

Text Summarization | 327

Text Summarization
Automated text summarization is the process of using NLP tools to produce concise
versions of text that preserve the key information present in the original content.
Good summaries can communicate the content with less text by retaining the key
information while filtering out other information and noise (or useless text, if any).
A shorter text may often take less time to read, and thus summarization facilitates
more efficient use of time.

The type of summarization that we are typically taught in school is abstractive
summarization. One way to think of this is to consider abstractive summarization as
a combination of understanding the meaning and expressing it in fewer sentences.
It is usually considered as a supervised learning problem as the original text and
the summary are both required. However, a piece of text can be summarized in
more than one way. This makes it hard to teach the machine in a general way. While
abstractive summarization is an active area of research, it is, for the time being, not at
a stage that will be of interest to the practitioner.

There is another form of summarization, called extractive summarization, in which
parts of the text are extracted to form a summary. There is no paraphrasing in this
form of summarization. This second type will be the focus of the remainder of this
section. We will look at the TextRank algorithm, which is an unsupervised machine
learning method. For simplicity, we will focus on single-document summarization in
this chapter. To implement this, we will be using the gensim library.

TextRank

TextRank is a graph-based algorithm (developed by Rada Mihalcea and Paul Tarau)
used to find the key sentences in a piece of text. As we already know, in graph
theory, a graph has nodes and edges. In the TextRank algorithm, we estimate the
importance of each sentence and create a summary with the sentences that have the
highest importance.

328 | Text Generation and Summarization

The TextRank algorithm works as follows:

1. Represent a unit of text (say, a sentence) as a node.

2. Each node is given an arbitrary importance score.

3. Each edge has a weight that corresponds to the similarity between two nodes
(for instance, the sentences Sx and Sy). The weight could be the number of
common words (say, wk) in the two sentences divided by the sum of the number
of words in the two sentences. This can be represented as follows:

Figure 7.4: Formula for similarity between two sentences

4. For each node, we compute a new importance score, which is a function of the
importance score of the neighboring nodes and the edge weights (wji) between
them. Specifically, the function (f) could be the edge-weighted average score of
all the neighboring nodes that are directed toward that node that is adjusted
by all the outward edge weights (wjk) and the damping factor (d). This can be
represented as follows:

Figure 7.5: Formula for importance score

d=0.85 is typically used as the damping factor. While we have used a directed
graph here, an undirected graph could also be used with a TextRank algorithm.

5. We repeat the preceding step until the importance score varies by less than a
pre-defined tolerance level in two consecutive iterations.

6. Sort the nodes in decreasing order of the importance scores.

7. The top n nodes give us a summary.

Key Input Parameters for TextRank | 329

The number of iterations required for convergence depends on the number of nodes
and the connectedness among the nodes. The number of iterations required for an
undirected graph is expected to be higher than the number of iterations required
for a directed graph since the edges don't have a direction in the case of the former.
We typically use a directed graph in the TextRank algorithm. In general, around 20-40
iterations may be required for convergence. We can drop edges that have less than
a certain threshold weight for faster convergence since they won't have much of an
impact on the result anyway. The basic concept underpinning the TextRank algorithm
is that key parts of a document are connected to form a coherent summary.

Key Input Parameters for TextRank
We'll be using the gensim library to implement TextRank. The following are the
parameters required for this:

• text: This is the input text.

• ratio: This is the required ratio of the number of sentences in the summary to
the number of sentences in the input text.

The gensim implementation of the TextRank algorithm uses BM25—a probabilistic
variation of TF-IDF—for similarity computation in place of the similarity measure
described in step 3 of the algorithm. This will be clearer in the following exercise, in
which you will summarize text using TextRank.

Exercise 7.02: Performing Summarization Using TextRank

In this exercise, we will use the classic short story, After Twenty Years by O. Henry,
which is available on Project Gutenberg, and the first section of the Wikipedia article
on Oscar Wilde. We will summarize each text separately so that we have 20% of the
sentences in the original text and then have 25% of the sentences in the original text
using the gensim implementation of the TextRank algorithm. In all, we shall extract
and print four summaries.

In addition to these libraries, you will need to import the following:

from gensim.summarization import summarize

summarize(text,ratio=0.20)

330 | Text Generation and Summarization

In the preceding code snippet, ratio=0.20 means that 20% of the sentences from
the original text will be used to create the summary.

Note

The text corpus for O. Henry's short story, After Twenty Years, being used in
this exercise can be found at https://packt.live/33atvr0.

The Oscar Wilde section from the Wikipedia article can be found
at https://packt.live/3fhEocY.

Complete the following steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries
and extract the required text from After Twenty Years:

from gensim.summarization import summarize

import wikipedia

import re

file_url_after_twenty=r'../data/ohenry/pg2776.txt'

with open(file_url_after_twenty, 'r') as f:

 contents = f.read()

start_string='AFTER TWENTY YEARS\n\n\n'

end_string='\n\n\n\n\n\nLOST ON DRESS PARADE'

text_after_twenty=contents[contents.find(start_string):\

 contents.find(end_string)]

text_after_twenty=text_after_twenty.replace('\n',' ')

text_after_twenty=re.sub(r"\s+"," ",text_after_twenty)

text_after_twenty

https://packt.live/33atvr0
https://packt.live/3fhEocY

Key Input Parameters for TextRank | 331

The preceding code generates the following output:

Figure 7.6: Text from After Twenty Years

3. Add the following code to extract the required text and print the summarized
text, with the ratio parameter set to 0.2:

summary_text_after_twenty=summarize(text_after_twenty, \

 ratio=0.2)

print(summary_text_after_twenty)

The preceding code generates the following output:

Figure 7.7: Summarized text when the ratio parameter is 0.2

4. Insert a new cell and add the following code to summarize the text and print the
summarized text, with the ratio parameter set to 0.25:

summary_text_after_twenty=summarize(text_after_twenty, \

 ratio=0.25)

print(summary_text_after_twenty)

The preceding code generates the following output:

Figure 7.8: Summarized text when the ratio parameter is 0.25

332 | Text Generation and Summarization

5. Insert a new cell and add the following code to extract the required text from the
Wikipedia page for Oscar Wilde:

#text_wiki_oscarwilde=wikipedia.summary("Oscar Wilde")

file_url_wiki_oscarwilde=r'../data/oscarwilde/'\

 'ow_wikipedia_sum.txt'

with open(file_url_wiki_oscarwilde, 'r', \

 encoding='latin-1') as f:

 text_wiki_oscarwilde = f.read()

text_wiki_oscarwilde=text_wiki_oscarwilde.replace('\n',' ')

text_wiki_oscarwilde=re.sub(r"\s+"," ",text_wiki_oscarwilde)

text_wiki_oscarwilde

The preceding code generates the following output:

Figure 7.9: Text from the Wikipedia page for Oscar Wilde

6. Insert a new cell and add the following code to summarize the text and print the
summarized text using ratio=0.2:

summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, \

 ratio=0.2)

print(summary_wiki_oscarwilde)

The preceding code generates the following output:

Figure 7.10: Summarized text when the ratio parameter is 0.2

7. Add the following code to summarize the text and print the summarized text
using ratio=0.25:

summary_wiki_oscarwilde=summarize(text_wiki_oscarwilde, \

 ratio=0.25)

print(summary_wiki_oscarwilde)

Key Input Parameters for TextRank | 333

The preceding code generates the following output:

Figure 7.11: Summarized text when the ratio is 0.25

Note

To access the source code for this specific section, please refer
to https://packt.live/3i5sNQn.

You can also run this example online at https://packt.live/39G0Knx.

We find that the summary for the Wikipedia article is much more coherent than the
short story. We can also see that the summary with a ratio of 0.20 is a subset of
a summary with a ratio of 0.25. Would extractive summarization work better for
a children's fairytale than it does for an O. Henry short story? Let's explore this in the
next exercise.

Exercise 7.03: Summarizing a Children's Fairy Tale Using TextRank

In this exercise, we consider the fairy tale Little Red Riding Hood in two variations
for the input texts. The first variation is from Children's Hour with Red Riding Hood
and Other Stories, edited by Watty Piper, while the second variation is from The
Fairy Tales of Charles Perrault, both of which are available on Project Gutenberg's
website. The aim of this exercise is to explore how TextRank (gensim) performs on
this summarization.

Note

You can find the text from the Watty Piper variation
at https://packt.live/2Xd30xy. The text from the Charles Perrault
version can be found at https://packt.live/30g5ZHy.

https://packt.live/3i5sNQn
https://packt.live/39G0Knx
https://packt.live/2Xd30xy
https://packt.live/30g5ZHy

334 | Text Generation and Summarization

Complete the following steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the required libraries:

from gensim.summarization import summarize

import re

3. Insert a new cell and add the following code to fetch Watty Piper's version of
Little Red Riding Hood:

file_url_grimms=r'../data/littleredrh/pg11592.txt'

with open(file_url_grimms, 'r') as f:

 contents_grimms = f.read()

start_string_grimms='LITTLE RED RIDING HOOD\n\n\n'

end_string_grimms='\n\n\n\n\nTHE GOOSE-GIRL'

text_grimms=contents_grimms[contents_grimms.find(\

 start_string_grimms):\

 contents_grimms.find(\

 end_string_grimms)]

text_grimms=text_grimms.replace('\n',' ')

text_grimms=re.sub(r"\s+"," ",text_grimms)

text_grimms

The preceding code generates the following output:

Figure 7.12: Text from the Watty Piper variation of Little Red Riding Hood

4. Insert a new cell, add the following code, and fetch the Perrault fairy tale version
of Little Red Riding Hood:

file_url_perrault=r'../data/littleredrh/pg29021.txt'

with open(file_url_perrault, 'r') as f:

 contents_perrault = f.read()

start_string_perrault='Little Red Riding-Hood\n\n'

end_string_perrault='\n\n_The Moral_'

text_perrault=contents_perrault[contents_perrault.find(\

 start_string_perrault):\

Key Input Parameters for TextRank | 335

 contents_perrault.find(\

 end_string_perrault)]

text_perrault=text_perrault.replace('\n',' ')

text_perrault=re.sub(r"\s+"," ",text_perrault)

text_perrault

The preceding code generates the following output:

Figure 7.13: Tales from the Perrault version of Little Red Riding Hood

5. Insert a new cell and add the following code to generate the two summaries with
a ratio of 0.20:

llrh_grimms_textrank=summarize(text_grimms,ratio=0.20)

llrh_perrault_textrank=summarize(text_perrault,ratio=0.20)

6. Insert a new cell and add the following code to print the TextRank summary
(ratio of 0.20) of Grimm's version of Little Red Riding Hood:

print(llrh_grimms_textrank)

The preceding code generates the following output:

Figure 7.14: Output after implementing TextRank on the Watty Piper variation

7. Insert a new cell and add the following code to print the TextRank summary
(ratio of 0.20) of Perrault's version of Little Red Riding Hood:

print(llrh_perrault_textrank)

The preceding code generates the following output:

Figure 7.15: Output after implementing TextRank on the Perrault version

336 | Text Generation and Summarization

8. Add the following code to generate two summaries with a ratio of 0.5:

llrh_grimms_textrank=summarize(text_grimms,ratio=0.5)

llrh_perrault_textrank=summarize(text_perrault,ratio=0.5)

9. Add the following code to print a TextRank summary (ratio of 0.5) of Piper's
version of Little Red Riding Hood:

print(llrh_grimms_textrank)

The preceding code generates the following output:

Figure 7.16: Output after implementing TextRank on the Watty Piper variation

10. Add the following code to print a TextRank summary (ratio of 0.5) of
Perrault's version of Little Red Riding Hood:

print(llrh_perrault_textrank)

The preceding code generates the following output:

Figure 7.17: Output after implementing TextRank on the Perrault version

Note

To access the source code for this specific section, please refer
to https://packt.live/3i5sRzB.

You can also run this example online at https://packt.live/2XfObu1.

With this, we've found that the four summaries lack coherency and are also
incomplete. This is also true of the two summaries with a ratio of 0.5—that
is, even when half of the sentences are extracted for the summary. This might be
because the conversations in the fairytale are contextual in nature, as a sentence
often refers to the preceding sentence(s). This contextual aspect of language makes
NLP complex for machines.

https://packt.live/3i5sRzB
https://packt.live/2XfObu1

Key Input Parameters for TextRank | 337

Interestingly, extractive summarization works much better for an O. Henry short story
such as After Twenty Years than it does for a children's fairytale such as Little Red Riding
Hood. Furthermore, this is not specific to the language used by a specific author, as
we have explored with two different variations of this fairytale. It seems a fairytale is
unsuitable for extractive summarization. Lets now do an activity in which we'll use the
TextRank algorithm to summarize complaints that customers have written against
some organizations.

Activity 7.01: Summarizing Complaints in the Consumer Financial Protection

Bureau Dataset

The Consumer Financial Protection Bureau publishes consumer complaints made
against organizations in the financial sector. This original dataset is available at https://
www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data. To
complete this activity, you will summarize a few complaints using TextRank.

Note

You can find the dataset to be used for this activity at
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_
E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv.
To complete the activity, you will need to place the .csv file into the
data folder for this chapter in your local directory.

Follow these steps to implement this activity:

1. Import the summarization libraries and instantiate the summarization model.

2. Load the dataset from a .csv file into a pandas DataFrame. Drop all columns
other than Product, Sub-product, Issue, Sub-issue, and Consumer
complaint narrative.

3. Select 12 complaints corresponding to the rows 242830, 1086741, 536367,
957355, 975181, 483530, 950006, 865088, 681842, 536367, 132345, and
285894 from the 300,000 odd complaints with a narrative. Note that since the
dataset is an evolving dataset, the use of a version that's different from the one
in the data folder could give different results because the input texts could
be different.

https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://www.consumerfinance.gov/data-research/consumer-complaints/#download-the-data
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv
https://www.dropbox.com/sh/qmq3x3ah1cf3ecz/AAAg_E6f0I5vdaB4WVmR6TCga?dl=0&preview=Consumer_Complaints.csv

338 | Text Generation and Summarization

4. Add a column with the TextRank summary. Each element of this column
corresponds to a summary, using TextRank, of the complaint narrative in the
corresponding column. Use a ratio of 0.20. Also, use a try-except clause
since the gensim implementation of the TextRank algorithm throws exceptions
with summaries that have very few sentences.

5. Show the DataFrame. You should get an output similar to the following figure:

Figure 7.18: DataFrame showing the summarized complaints

Note

The full solution to this activity can be found on page 409.

Recent Developments in Text Generation and Summarization
Alan Turing (for whom the equivalent of the Nobel Prize in Computer Science is
named) proposed a test for artificial intelligence in 1950. This test, known as the
Turing Test, says that if humans ask questions and cannot distinguish between text
responses generated by a machine and a human, then that machine can be deemed
to be intelligent.

Recent Developments in Text Generation and Summarization | 339

Text generation using very large models, such as the GPT-2 (with around 1.5 billion
parameters) and BERT (Bidirectional Encoder Representation from Transformers)
(with around 340 million parameters), can aid in auto-completion tasks. Auto-
completion presents unique ethical challenges. While it can offer convenience, it
can also reinforce biases in the data. This is accentuated by the fact that most user
experience layouts can show only a limited number of options. Furthermore, auto-
completion can controversially suggest responses that are different from what the
sender originally wants to type.

Unfortunately, most use cases for text generation are negative use cases for
generating spam and misinformation. Given that the Turing Test may not be passed
any time soon, we are clearly nowhere near considering text generation as a proxy
for thought within a machine and there is no widely accepted benchmark for
text generation.

Since late 2018, with the invention of self-attention, transformers, and BERT, these
approaches are generally considered the best way to teach a machine about some
of the most challenging NLP tasks. Self-attention is a technique in which a word
is combined with other words in its neighborhood by matrix multiplications. Such
multiplications are possible because of vector representations of words. Using such
combined representations for all the words in a sentence allows us to represent a
sentence in a way that captures context. This allows us to build much larger models
that have a significantly higher capacity to learn. A transformer is a combination of
attention units and includes position information for each word, that is, multiple self-
attention layers and position information are used to capture the context better.

BERT is a transformer that learns the sequential structure of a text in both directions,
that is, from left to right and from right to left. This is achieved by randomly masking
the words while the model is trained, much like how children are often taught a
language by using fill-in-the-blanks exercises. Such is the generalized learning of
BERT that it can be used even for translation-related tasks, even though it has not
been specifically taught translation as a task. BERT and other large models, such as
GPT-2, require a huge computing infrastructure, which is generally not available to
most people outside of leading universities and the biggest technology corporations.
Pre-trained models fill the void in such cases. The TextRank algorithm considers each
sentence to be a bag of words. With the advent of BERT, it is possible for us to have a
superior sentence representation that captures meaning much better than the bag of
words model.

340 | Text Generation and Summarization

In the case of summarization, even though there is a benchmark called Recall-
Oriented Understudy for Gisting Evaluation (ROUGE), summarization is best
evaluated qualitatively given that there isn't only one correct way to summarize text.
In February 2020, Microsoft's Turing NLG model, which has 17 billion parameters,
generated abstractive summaries for three examples, which were shared publicly.
However, the model is not publicly available currently and so the results cannot
be reproduced.

Furthermore, we don't know how the Microsoft NLG model does with a naïve test
such as the Little Red Riding Hood test. In general, extractive summarization of
the kind discussed earlier in this chapter is by far the most useful for practitioners
compared with the utility of the state-of-the-art technology in text generation
and paraphrasing. Due to this, in the next section, we'll largely focus on practical
challenges in extractive summarization.

Practical Challenges in Extractive Summarization
Given the rapid pace of development in NLP, it is even more important to use
compatible versions of the libraries that we use. Evaluation of a document's suitability
for extractive summarization can be undertaken manually. Often, we would like to
summarize multiple pieces of text, all of which could be short in length. The TextRank
algorithm will not work well in such cases.

All unverified claims reported in this field ought to be taken with a grain of salt until
the claim has been verified. Such claims ought to be subjected by practitioners to
naïve tests such as the Little Red Riding test. We can only use a model if it works and
if the limitations related to scope and any biases are considered.

Summary
In this chapter, we learned about text generation using Markov chains and extractive
summarization using the TextRank algorithm. We also explored both the power and
limitations of various advanced approaches. In the next chapter, we will learn about
sentiment analysis.

Overview

This chapter introduces you to one of the most exciting applications of
natural language processing—that is, sentiment analysis. You will explore
the various tools used to perform sentiment analysis, such as popular NLP
libraries and deep learning frameworks. You will then perform sentiment
analysis on given text data using the powerful textblob library. You will
load textual data and perform preprocessing on it to fine-tune the results of
your sentiment analysis program. By the end of the chapter, you will be able
to train a sentiment analysis model.

Sentiment Analysis

8

344 | Sentiment Analysis

Introduction
In the previous chapter, we looked at text generation, paraphrasing, and
summarization, all of which can be immensely useful in helping us focus on only the
essential and meaningful parts of the text corpus. This, in turn, helps us to further
refine the results of our NLP project. In this chapter, we will look at sentiment
analysis, which, as the name suggests, is the area of NLP that involves teaching
computers how to identify the sentiment behind written content or parsed
audio—that is, audio converted to text. Adding this ability to automatically detect
sentiment in large volumes of text and speech opens new possibilities for us to write
useful software.

In sentiment analysis, we try to build models that detect how people feel. This
starts with determining what kind of feeling we want to detect. Our application may
attempt to determine the level of human emotion (most often, whether a person is
sad or happy; satisfied or dissatisfied; or interested or disinterested and so on). The
common thread here is that we measure how sentiments vary in different directions.
This is also called polarity. Polarity signifies the emotions present in a sentence,
such as joy or anger. For example, "I love oranges" implies an emotionally positive
statement, whereas "I hate politics" is a strong negative emotion.

Why Is Sentiment Analysis Required?

In machine learning projects, we try to build applications that work similarly to a
human being. We measure success in part by seeing how close our application is to
matching human-level performance. Generally, machine learning programs cannot
exceed human-level performance by a significant margin—especially if our training
data source is human-generated.

Let's say that we want to carry out a sentiment analysis of product reviews. The
sentiment analysis program should detect how reviewers feel. Obviously, it is
impractical for a person to read thousands of movie reviews. This is where automated
sentiment analysis enters the picture. Artificial intelligence is useful when it is
impractical for people to perform the task. In this case, the task is reading thousands
of reviews.

Introduction | 345

The Growth of Sentiment Analysis

The field of sentiment analysis is driven by a few main factors. Firstly, it's driven by
the rapid growth in online content that's used by companies to understand and
respond to how people feel. Secondly, since sentiment drives human decisions,
businesses that understand their customers' sentiments have a major advantage in
predicting and shaping purchasing decisions. Finally, NLP technology has improved
significantly, allowing the much wider application of sentiment analysis.

The Monetization of Emotion

The growth of the internet and internet services has enabled new business models
to work with human connection, communication, and sentiment. In January 2020,
Facebook had about 61.3% of the social media traffic and has been one of the
most successful social media platforms at connecting people across the world and
providing features that enable users to express their thoughts and post memorable
moments from their life online. Similarly, although Twitter had just 14.51% of the
traffic, it has still proved to be an influential way to display sentiment online.

There are now large amounts of information on social media about what people like
or dislike. This data is of significant value not only in business but also in political
campaigns. This means that sentiment has significant business value and can
be monetized.

Types of Sentiments

There are various sentiments that we can try to detect in language sources. Let's
discuss a few of them in detail.

Emotion

Sentiment analysis is often used to detect the emotional state of a person. It checks
whether the person is happy or sad, or content or discontent. Businesses often use it
to improve customer satisfaction. For example, let's look at the following statement:

"I thought I would have enjoyed the movie, but it left me feeling that it could have
been better."

In this statement, it seems as though the person who has just watched a movie is
unhappy about it. A sentiment detector, in this case, would be able to classify the
review as negative and allow the business (the movie studio, for instance) to adjust
how they make movies in the future.

346 | Sentiment Analysis

Action Orientation versus Passivity

This is about whether a person is prone to action or not. This is often used to
determine how close a person is to making a choice. For example, using a travel
reservation chatbot, you can detect whether a person needs to make a reservation
urgently or is simply making passive queries and is therefore less likely to book a
ticket right now. The level of action orientation or passivity provides additional clues
to detect intention. This can be used to make smart business decisions.

Tone

Speech and text are often meant to convey certain impressions that are not
necessarily factual and not entirely emotional. Examples of this are sarcasm, irony,
and humor. This may provide useful additional information about how a person
thinks. Although tone is tricky to detect, there might be certain words or phrases that
are often used in certain contexts. We can use NLP algorithms to extract statistical
patterns from document sources. For example, we can use sentiment analysis to
detect whether a news article is sarcastic.

Subjectivity versus Objectivity

You may want to detect whether the given text source is subjective or objective. For
example, you might want to detect whether a person has issued and expressed an
opinion, or whether their statement reads more like a fact and can only be true or
false. Let's look at the following two statements to get a better understanding:

• Statement 1: "The duck was overcooked, and I could hardly taste the flavor."

• Statement 2: "Ducks are aquatic birds."

In these two statements, statement 1 should be recognized as a subjective opinion
and statement 2 as an objective fact. Determining the objectivity of a statement helps
us decide on the appropriate response to the statement.

Introduction | 347

Key Ideas and Terms

Let's look at some of the key ideas and terms that are used in sentiment analysis.

Classification

As we learned in Chapter 3, Developing a Text Classifier, classification is the NLP
technique of assigning one or more classes to text documents. This helps in
separating and sorting the documents. If you use classification for sentiment
analysis, you assign different sentiment classes such as positive, negative, or neutral.
Sentiment analysis is a type of text classification that aims to create a classifier
trained on a set of labeled pairs – text and its corresponding sentiment (label). Upon
training such a classifier on a large labeled dataset, the sentiment analysis model
generalizes well and can classify unseen text into appropriate sentiment categories.

Supervised Learning

As we have already seen, in supervised learning, we create a model by supplying
data and labeled targets to the training algorithms. The algorithms learn using this
supply. When it comes to sentiment analysis, we provide the training dataset with
the labels that represent the sentiment. For example, for each text in a dataset,
we would assign a value of 1 if the sentiment is positive, and a value of 0 if the
statement is negative.

Polarity

Polarity is a measure of how negative or positive the sentiment is in a given language.
Polarity is used because it is simple and easy to measure and can be easily translated
to a simple numeric scale. It usually ranges between -1 and 1. Values close to 1
reflect documents that have positive sentiments, whereas values close to -1 reflect
documents that have negative sentiments. Values around 0 reflect documents that
are neutral in sentiment.

It's worth noting that the polarity detected by a model depends on how it has been
trained. On political Reddit threads, the opinions tend to be highly polarized. On
the other hand, if you use the same model on business documents to measure
sentiments, the scores tend to be neutral. So, you need to choose models that are
trained in similar domains.

Intensity

In contrast to polarity, which is measured from negative to positive, intensity is
measured in terms of arousal, which ranges from low to high. Most often, the level of
intensity is included in the sentiment score. It is measured by looking at the closeness
of the score to 0 or 1.

348 | Sentiment Analysis

Applications of Sentiment Analysis

There are various applications of sentiment analysis.

Financial Market Sentiment

Financial markets operate partially on economic fundamentals but are also heavily
influenced by human sentiment. Stock market prices, which tend to rise and fall,
are influenced by the opinions of news articles regarding the overall market or any
specific securities.

Financial market sentiment helps measure the overall attitude of investors toward
securities. Market sentiment can be detected using news or social media articles. We
can use NLP algorithms to build models that detect market sentiment and use those
models to predict future market prices.

Product Satisfaction

Sentiment analysis is commonly used to determine how customers feel about
products and services. For example, Amazon makes use of its extensive product
reviews dataset. This not only helps to improve its products and services but also acts
as a source of training data for its sentiment analysis services.

Social Media Sentiment

A really useful area of focus for sentiment analysis is social media monitoring.
Social media has become a key communication medium with which most people
around the world interact every day, and so there is a large and growing source of
human language data available there. More importantly, the need for businesses
and organizations to be able to process and understand what people are saying on
social media has only increased. This has led to an exponential growth in demand for
sentiment analysis services.

Brand Monitoring

A company's brand is a significant asset and companies spend a lot of time,
effort, and money maintaining their brand value. With the growth of social media,
companies are now exposed to considerable potential brand risks from negative
social media conversations. On the other hand, there is also the potential for positive
brand growth from positive interactions and messages on social media. For this
reason, businesses deploy people to monitor what is said about them and their
brands on social media. Automated sentiment analysis makes this significantly easier
and also more efficient.

Tools Used for Sentiment Analysis | 349

Customer Interaction

Organizations often want to know how their customers feel during an interaction in
an online chat or a phone conversation. In such cases, the objective is to detect the
level of satisfaction with the service or the products. Sentiment analysis tools help
companies handle large volumes of text and voice data that are generated during
customer interaction. Every company, irrespective of the domain, wants to utilize the
data at their disposal to glean valuable insights, as there is potential revenue to be
had if companies can gain insights into customer satisfaction.

Tools Used for Sentiment Analysis
There are a lot of tools capable of analyzing sentiment. Each tool has its advantages
and disadvantages. We will look at each of them in detail.

NLP Services from Major Cloud Providers

Online sentiment analysis is carried out by all major cloud services providers, such as
Amazon, Microsoft, Google, and IBM. You can usually find sentiment analysis as a part
of their text analysis services or general machine learning services. Online services
offer the convenience of packaging all the necessary algorithms behind the provider's
API. These algorithms are capable of performing sentiment analysis. To use such
services, you need to provide the text or audio sources, and in return, the services
will provide you with a measure of the sentiment. These services usually return
a standard, simple score, such as positive, negative, or neutral. The score usually
ranges between 0 and 1.

The following are the advantages and disadvantages of NLP services from major
cloud providers:

Advantages

• You require almost no knowledge of NLP algorithms or sentiment analysis.
This results in fewer staffing needs.

• Sentiment analysis services provide their own computation, reducing your own
computational infrastructure needs.

• Online services can scale well beyond what regular companies can do on
their own.

• You gain the benefits of automatic improvements and updates to sentiment
analysis algorithms and data.

350 | Sentiment Analysis

Disadvantages

• Online services require—at least temporarily—a reduction in privacy since you
must provide the documents to be analyzed by the service. Depending on your
project's privacy needs, this may or may not be acceptable. There might also be
laws that restrict data crossing into another national jurisdiction.

• The service provided by cloud providers is like one-solution-fits-all and is
considered very generic, so it won't necessarily apply to niche use cases.

Online Marketplaces

Recently, AI marketplaces have emerged that offer different algorithms from third
parties. Online marketplaces differ from cloud providers. An online marketplace
allows third-party developers to deploy sentiment analysis services on their platform.

Here are the advantages and disadvantages of online marketplaces:

Advantages

• AI marketplaces provide the flexibility of choosing between different sentiment
analysis algorithms instead of just one algorithm. This enables users to try out
different techniques and see which one fits their business needs the best.

• Using algorithms from an AI marketplace reduces the need for dedicated data
scientists for your project.

Disadvantages

• Algorithms from third parties are of varying quality.

• Since the algorithms are provided by smaller companies, there is no guarantee
that they won't disappear. And for businesses, this is a big risk since their
solution has a direct dependency on a third party that is outside their control.

Python NLP Libraries

There are a few NLP libraries that need to be integrated into your project instead
of being called upon as services. These are called dedicated NLP libraries and they
usually include many NLP algorithms from academic research. Sophisticated NLP
libraries used across the industry are spaCy, gensim, and AllenNLP.

Here are the advantages and disadvantages of Python NLP libraries:

Tools Used for Sentiment Analysis | 351

Advantages

• It's usually state-of-the-art research that goes into these libraries, and they
usually have well-chosen datasets.

• They provide a framework that makes it much easier to build projects and do
rapid experiments.

• They offer out-of-the-box abstractions that are required for all NLP projects, such
as Token and Span.

• They are easy to scale to real-world deployment.

Disadvantages

• This won't be considered a true disadvantage since libraries are meant to be
general-purpose, but for complex use cases, developers would have to write
their own implementations as required.

Deep Learning Frameworks

Deep learning libraries such as PyTorch and TensorFlow are meant to be used to
build complex models for a wide range of applications, not limited to just NLP. These
libraries provide you with more advanced algorithms and mathematical functions,
helping you develop powerful and complex models.

The advantages and disadvantages of these frameworks are explained here:

Advantages

• You have the flexibility to develop your sentiment analysis model to meet
complex business needs.

• You can integrate the latest and the most advanced algorithms when they are
available in general-purpose libraries.

• You can make use of transfer learning, which takes a model trained on a large
text source, to fine-tune the training as per your project's needs. This allows you
to create a sentiment analysis model that is more suitable for your needs.

352 | Sentiment Analysis

Disadvantages

• This approach requires you to have in-depth knowledge of machine learning and
complex topics such as deep learning.

• Deep learning libraries require a large volume of rich annotated datasets
along with an intense computational infrastructure to train and experiment
with different modeling techniques to get a generalized model that's fit to be
deployed in production. So, there is a requirement for training on non-CPU
hardware such as GPUs/TPUs.

Now that we've learned about the various tools available for sentiment analysis, let's
explore the most popular Python libraries.

The textblob library
textblob is a Python library used for NLP, as we've seen in the previous chapters.
It has a simple API and is probably the easiest way to begin with sentiment analysis.
textblob is built on top of the NLTK library but is much easier to use. In the
following sections, we will do an exercise and an activity to get a better understanding
of how we can use textblob for sentiment analysis.

Exercise 8.01: Basic Sentiment Analysis Using the textblob Library

In this exercise, we will perform sentiment analysis on a given text. For this, we will be
using the TextBlob class of the textblob library. Follow these steps to complete
this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to implement to import the
TextBlob class from the textblob library:

from textblob import TextBlob

3. Create a variable named sentence and assign it a string. Insert a new cell and
add the following code to implement this:

sentence = "but you are Late Flight again!! "\

 "Again and again! Where are the crew?"

The textblob library | 353

4. Create an object of the TextBlob class. Add sentence as a parameter
to the TextBlob container. Insert a new cell and add the following code to
implement this:

blob = TextBlob(sentence)

5. In order to view the details of the blob object, insert a new cell and add the
following code:

print(blob)

The code generates the following output:

but you are Late Flight again!! Again and again! Where are the crew?

6. To use the sentiment property of the TextBlob class (which returns a tuple),
insert a new cell and add the following code:

blob.sentiment

The code generates the following output:

Sentiment(polarity=—0.5859375, subjectivity=0.6

Note

To access the source code for this specific section, please refer
to https://packt.live/2DlQvbM.

You can also run this example online at https://packt.live/3jXvAN1.

In the code, we can see the polarity and subjectivity scores for a given
text. The output indicates a polarity score of -0.5859375, which means that negative
sentiment has been detected in the text. The subjectivity score means that the text is
somewhat on the subjective side, though not entirely subjective. We have performed
sentiment analysis on a given text using the textblob library. In the next section,
we will perform sentiment analysis on tweets about airlines.

https://packt.live/2DlQvbM
https://packt.live/3jXvAN1

354 | Sentiment Analysis

Activity 8.01: Tweet Sentiment Analysis Using the textblob library

In this activity, you will perform sentiment analysis on tweets related to airlines.
You will also be providing condition for determining positive, negative, and neutral
tweets, using the textblob library.

Note

You can find the data to be used for this activity here:
https://packt.live/33cnr1q.

Follow these steps to implement this activity:

1. Import the necessary libraries.

2. Load the CSV file.

3. Fetch the text column from the DataFrame.

4. Extract and remove the handles from the fetched data.

5. Perform sentiment analysis and get the new DataFrame.

6. Join both the DataFrames.

7. Apply the appropriate conditions and view positive, negative, and neutral tweets.

After executing those steps, the output for positive tweets should be as follows:

Figure 8.1: Positive tweets

As you can see from the preceding output, the Polarity column shows a positive
integer. This implies that the tweet displays positive sentiment. The Subjectivity
column indicates that most tweets are found to be of a subjective nature.

https://packt.live/33cnr1q

The textblob library | 355

The output for negative tweets is as follows:

Figure 8.2: Negative tweets

The preceding output shows a Polarity column with a negative integer, implying
that the tweet displays negative sentiment, while the Subjectivity column shows
a positive integer, which implies the same as before—personal opinion or feeling.

The output for neutral tweets should be as follows:

Figure 8.3: Neutral tweets

356 | Sentiment Analysis

The preceding output has a Polarity column and a Subjectivity column with
a zero or almost zero value. This implies the tweet has neither positive nor negative
sentiment, but neutral; moreover, no subjectivity is detected for these tweets.

Note

The solution to this activity can be found on page 412.

In the next section, we will explore more about performing sentiment analysis using
online web services.

Understanding Data for Sentiment Analysis
Sentiment analysis is a type of text classification. Sentiment analysis models are
usually trained using supervised datasets. Supervised datasets are a kind of dataset
that is labeled with the target variable, usually a column that specifies the sentiment
value in the text. This is the value we want to predict in the unseen text.

Exercise 8.02: Loading Data for Sentiment Analysis

In this exercise, we will load data that could be used to train a sentiment analysis
model. For this exercise, we will be using three datasets—namely Amazon, Yelp,
and IMDb.

Note

You can find the data being used in this exercise here:
https://packt.live/2XgeQqJ.

Follow these steps to implement this exercise:

1. Open a Jupyter notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 200)

This imports the pandas library. It also sets the display width to 200 characters
so that more of the review text is displayed on the screen.

https://packt.live/2XgeQqJ

Understanding Data for Sentiment Analysis | 357

3. To specify where the sentiment data is located, first load three different datasets
from Yelp, IMDb, and Amazon. Insert a new cell and add the following code to
implement this:

DATA_DIR = 'data/sentiment_labelled_sentences/'

IMDB_DATA_FILE = DATA_DIR + 'imdb_labelled.txt'

YELP_DATA_FILE = DATA_DIR + 'yelp_labelled.txt'

AMAZON_DATA_FILE = DATA_DIR + 'amazon_cells_labelled.txt'

COLUMN_NAMES = ['Review', 'Sentiment']

Each of the data files has two columns: one for the review text and a numeric
column for the sentiment.

4. To load the IMDb reviews, insert a new cell and add the following code:

imdb_reviews = pd.read_table(IMDB_DATA_FILE, names=COLUMN_NAMES)

In this code, the read_table() method loads the file into a DataFrame.

5. Display the top 10 records in the DataFrame. Add the following code in the
new cell:

imdb_reviews.head(10)

The code generates the following output:

Figure 8.4: The first few records in the IMDb movie review file

In the preceding figure, you can see that the negative reviews have sentiment
scores of 0 and positive reviews have sentiment scores of 1.

358 | Sentiment Analysis

6. To check the total number of records of the IMDb review file, use the value_
counts() function. Add the following code in a new cell to implement this:

imdb_reviews.Sentiment.value_counts()

The expected output with total reviews should be as follows:

1 386

0 362

Name: Sentiment, dtype: int64

In the preceding figure, you can see that the data file contains a total of 748
reviews, out of which 362 are negative and 386 are positive.

7. Format the data by adding the following code in a new cell:

imdb_counts = imdb_reviews.Sentiment.value_counts().to_frame()

imdb_counts.index = pd.Series(['Positive', 'Negative'])

imdb_counts

The code generates the following output:

Figure 8.5: Counts of positive and negative sentiments in the IMDb review file

We called value_counts(), created a DataFrame, and assigned Positive
and Negative as index labels.

8. To load the Amazon reviews, insert a new cell and add the following code:

amazon_reviews = pd.read_table(AMAZON_DATA_FILE, \

 names=COLUMN_NAMES)

amazon_reviews.head(10)

Understanding Data for Sentiment Analysis | 359

The code generates the following output:

Figure 8.6: Reviews from the Amazon dataset

9. To load the Yelp reviews, insert a new cell and add the following code:

yelp_reviews = pd.read_table(YELP_DATA_FILE, \

 names=COLUMN_NAMES)

yelp_reviews.head(10)

The code generates the following output:

Figure 8.7: Reviews from the Yelp dataset

360 | Sentiment Analysis

Note

To access the source code for this specific section, please refer
to https://packt.live/2XfwmLB.

You can also run this example online at https://packt.live/339NTss.

We have learned how to load data that could be used to train a sentiment analysis
model. The review files mentioned in this exercise are an example. Each file contains
review text, plus a sentiment label for each. This is the minimum requirement
of a supervised machine learning project: to build a model that is capable of
predicting sentiments. However, the review text cannot be used as is; it needs to be
preprocessed so that we can extract feature vectors out of it and eventually provide it
as input to the model.

Now that we have learned about loading the data, in the next section, we will focus on
training sentiment models.

Training Sentiment Models
The end product of any sentiment analysis project is a sentiment model. This is an
object containing a stored representation of the data on which it was trained. Such a
model has the ability to predict sentiment values for text that it has not seen before.
To develop a sentiment analysis model, the following steps should be taken:

1. The document dataset must be split into train and test datasets. The test dataset
is normally a fraction of the overall dataset. It is usually between 5% and 40% of
the overall dataset, depending on the total number of examples available. If the
amount of data is too large, then a smaller test dataset can be used.

2. Next, the text should be preprocessed by stripping unwanted characters,
removing stop words, and performing other common preprocessing steps.

3. The text should be converted to numeric vector representations in order to
extract the features. These representations are used for training machine
learning models.

4. Once we have the vector representations, we can train the model. This will be
specific to the type of algorithm being used. During the training, our model will
use the test dataset as a guide to learn about the text.

5. We can then use the model to predict the sentiment of documents that it has not
seen before. This is the step that will be performed in production.

https://packt.live/2XfwmLB
https://packt.live/339NTss

Training Sentiment Models | 361

In the next section, we will train a sentiment model. We'll make use of the
TfidfVectorizer and LogisticRegression classes, which we explored in
one of the previous chapters.

Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression

To complete this activity, you will build a sentiment analysis model using the Amazon,
Yelp, and IMDb datasets that you used in the previous exercise. Use the TFIDF
method to extract features from the text and use logistic regression for the learning
algorithm. The following steps will help you complete this activity:

1. Open a Jupyter notebook.

2. Import the necessary libraries.

3. Load the Amazon, Yelp, and IMDb datasets.

4. Concatenate the datasets and take out a random sample of 10 items.

5. Create a function for preprocessing the text, that is, convert the words into
lowercase and normalize them.

6. Apply the function created in the previous step on the dataset.

7. Use TfidfVectorizer to convert the review text into TFIDF vectors and
use the LogisticRegression class to create a model that uses logistic
regression for the model. These should be combined into a Pipeline object.

8. Now split the data into train and test sets, using 70% to train the data and 30% to
test the data.

9. Use the fit() function to fit the training data on the pipeline.

10. Print the accuracy score.

11. Test the model on these sentences: "I loved this place" and "I hated this place".

Note

The full solution to this activity can be found on page 418.

362 | Sentiment Analysis

Summary
We started our journey into NLP with basic text analytics and text preprocessing
techniques, such as tokenization, stemming, lemmatization, and lowercase
conversion, to name a few. We then explored ways in which we can represent our
text data in numerical form so that it can be understood by machines in order to
implement various algorithms. After getting some practical knowledge of topic
modeling, we moved on to text vectorization, and finally, in this chapter, we explored
various applications of sentiment analysis. This included different tools that use
sentiment analysis, from technologies available from online marketplaces to deep
learning frameworks. More importantly, we learned how to load data and train our
model to use it to predict sentiment.

Appendix

366 | Appendix

Chapter 1: Introduction to Natural Language Processing

Activity 1.01: Preprocessing of Raw Text

Solution

Let's perform preprocessing on a text corpus. To complete this activity,
follow these steps:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

from nltk import download

download('stopwords')

download('wordnet')

nltk.download('punkt')

download('averaged_perceptron_tagger')

from nltk import word_tokenize

from nltk.stem.wordnet import WordNetLemmatizer

from nltk.corpus import stopwords

from autocorrect import Speller

from nltk.wsd import lesk

from nltk.tokenize import sent_tokenize

from nltk import stem, pos_tag

import string

3. Read the content of file.txt and store it in a variable named sentence.
Insert a new cell and add the following code to implement this:

#load the text file into variable called sentence

sentence = open("../data/file.txt", 'r').read()

4. Apply tokenization on the given text corpus. Insert a new cell and add the
following code to implement this:

words = word_tokenize(sentence)

Chapter 1: Introduction to Natural Language Processing | 367

5. To print the list of tokens, insert a new cell and add the following code:

print(words[0:20])

This code generates the following output:

['The', 'reader', 'of', 'this', 'course', 'should', 'have',

 'a', 'basic', 'knowledge', 'of', 'the', 'Python', 'programming',

 'lenguage', '.', 'He/she', 'must', 'have', 'knowldge']

In the preceding figure, we can see the initial 20 tokens of our text corpus.

6. To perform spelling correction in our given text corpus, loop through each token
and correct the tokens that are wrongly spelled. Insert a new cell and add the
following code to implement this:

spell = Speller(lang='en')

def correct_sentence(words):

 corrected_sentence = ""

 corrected_word_list = []

 for wd in words:

 if wd not in string.punctuation:

 wd_c = spell(wd)

 if wd_c != wd:

 print(wd+" has been corrected to: "+wd_c)

 corrected_sentence = corrected_sentence+" "+wd_c

 corrected_word_list.append(wd_c)

 else:

 corrected_sentence = corrected_sentence+" "+wd

 corrected_word_list.append(wd)

 else:

 corrected_sentence = corrected_sentence + wd

 corrected_word_list.append(wd)

 return corrected_sentence, corrected_word_list

corrected_sentence, corrected_word_list = correct_sentence(words)

368 | Appendix

This code generates the following output:

lenguage has been corrected to: language

knowldge has been corrected to: knowledge

Familiarity has been corrected: familiarity

7. To print the corrected text corpus, add a new cell and type the following code:

corrected_sentence

This code generates the following output:

' The reader of this course should have a basic knowledge of the
Python programming language. He/she must have knowledge of data
types in Python. He should be able to write functions, and also have
the ability to import and use libraries and packages in Python.
familiarity with basic linguistics and probability is assumed
although not required to fully complete this course.'

8. To print a list of the initial 20 tokens of the corrected words, insert a new cell and
add the following code:

print(corrected_word_list[0:20])

This code generates the following output:

['The', 'reader', 'of', 'this', 'course', 'should', 'have',

 'a', 'basic', 'knowledge', 'of', 'the', 'Python', 'programming',

 'language', '. ', 'He/she', 'must', 'have', 'knowledge']

9. To add a PoS tag to all the corrected words in the list, insert a new cell and add
the following code:

print(pos_tag(corrected_word_list))

This code generates the following output:

Figure 1.5: List of corrected words tagged with appropriate PoS

Chapter 1: Introduction to Natural Language Processing | 369

10. To remove the stop words, insert a new cell and add the following code:

stop_words = stopwords.words('english')

def remove_stop_words(word_list):

 corrected_word_list_without_stopwords = []

 for wd in word_list:

 if wd not in stop_words:

 corrected_word_list_without_stopwords.append(wd)

 return corrected_word_list_without_stopwords

corrected_word_list_without_stopwords = remove_stop_words\

 (corrected_word_list)

corrected_word_list_without_stopwords[:20]

This code generates the following output:

Figure 1.6: List excluding the stop words

In the preceding figure, we can see that the stop words have been removed and
a new list has been returned.

370 | Appendix

11. Apply the stemming process, and then insert a new cell and add the
following code:

stemmer = stem.PorterStemmer()

def get_stems(word_list):

 corrected_word_list_without_stopwords_stemmed = []

 for wd in word_list:

 corrected_word_list_without_stopwords_stemmed\

 .append(stemmer.stem(wd))

 return corrected_word_list_without_stopwords_stemmed

corrected_word_list_without_stopwords_stemmed = \

get_stems(corrected_word_list_without_stopwords)

corrected_word_list_without_stopwords_stemmed[:20]

This code generates the following output:

Figure 1.7: List of stemmed words

In the preceding code, we looped through each of the words in the
corrected_word_list_without_stopwords list and applied stemming
to them. The preceding figure shows the list of the initial 20 stemmed words.

Chapter 1: Introduction to Natural Language Processing | 371

12. To apply the lemmatization process to the corrected word list, insert a new cell
and add the following code:

lemmatizer = WordNetLemmatizer()

def get_lemma(word_list):

 corrected_word_list_without_stopwords_lemmatized = []

 for wd in word_list:

 corrected_word_list_without_stopwords_lemmatized\

 .append(lemmatizer.lemmatize(wd))

 return corrected_word_list_without_stopwords_lemmatized

corrected_word_list_without_stopwords_lemmatized = \

get_lemma(corrected_word_list_without_stopwords_stemmed)

corrected_word_list_without_stopwords_lemmatized[:20]

This code generates the following output:

Figure 1.8: List of lemmatized words

372 | Appendix

In the preceding code, we looped through each of the words in the
corrected_word_list_without_stopwords list and applied
lemmatization to them. The preceding figure shows a list of the initial 20
lemmatized words.

13. To detect the sentence boundary in the given text corpus, use the sent_
tokenize() method. Insert a new cell and add the following code to
implement this:

print(sent_tokenize(corrected_sentence))

This code generates the following output:

[' The reader of this course should have a basic knowledge of the
Python programming language.', 'He/she must have knowledge of
data types in Python.', 'He should be able to write functions and
also have the ability to import and use libraries and packages in
Python.', 'familiarity with basic linguistics and probability is
assumed although not required to fully complete this course.']

Note

To access the source code for this specific section, please refer
to https://packt.live/3gmyclC.

You can also run this example online at https://packt.live/2D3h0ms.

https://packt.live/3gmyclC
https://packt.live/2D3h0ms

Chapter 2: Feature Extraction Methods | 373

Chapter 2: Feature Extraction Methods

Activity 2.01: Extracting Top Keywords from the News Article

Solution

The following steps will help you complete this Activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries
and download the data:

import operator

from nltk.tokenize import WhitespaceTokenizer

from nltk import download, stem

The below statement will download the stop word list

'nltk_data/corpora/stopwords/' at home directory of your computer

download('stopwords')

from nltk.corpus import stopwords

The download statement will download the stop word list at nltk_data/
corpora/stopwords/ into your system's home directory.

3. Create the different types of methods to perform various NLP tasks:

Activity 2.01.ipynb

def load_file(file_path):
 news = ''.join\
 ([line for line in open(file_path,encoding='utf-8')])
 return news

"""
This method will take string as input and return the string
converted into lowercase
"""
def to_lower_case(text):
 return text.lower()

This will take a text string as input and return the token.
wht = WhitespaceTokenizer()
def tokenize_text(text):
 return wht.tokenize(text=text)

The full code snippet can be found at https://packt.live/3hRl3kI

https://packt.live/3hRl3kI

374 | Appendix

The load_file() function will take the file path as input and return the
content of the file as a string. The lower_case() function will take a string
as an argument and convert it into lowercase. Next, the tokenize_text()
function will tokenize the string into its constituent tokens. The get_stem()
method will perform stemming on the tokens, while get_freq() will calculate
the frequency of the tokens. Finally, get_top_n_words() will return the n
tokens with the highest frequency.

4. Load a text file into a string using the load_file() method:

path = "../data/news_article.txt"

news_article = load_file(path)

5. Convert the text into lowercase using the to_lower_case() method:

lower_case_news_art = to_lower_case(text=news_article)

6. Tokenize the text with the tokenize_text() method using the following line
of code:

tokens = tokenize_text(lower_case_news_art)

7. Remove the stop words from the list; add the following code to do this:

removed_tokens = remove_stop_words(tokens)

8. Perform stemming on the words using the get_stems() method:

stems = get_stems(removed_tokens)

9. Now, calculate the frequency of stemmed tokens with the
get_freq() method:

freq_dict = get_freq(stems)

10. To get the top six most frequently used words in the news article, use the
following code:

top_keywords = get_top_n_words(freq_dict, 6)

top_keywords

The preceding line of code will generate the following output:

['law', 'justic', 'european', 'parti', 'took', 'poland'']

Chapter 2: Feature Extraction Methods | 375

Thus, we have extracted the top six keywords from the news article, which can give us
an idea of what the article is about. However, in this example, we have extracted only
unigrams. For a more comprehensive output, bigrams and trigrams are often more
useful. So, for even better results, you can perform the preceding activity on bigrams
and trigrams.

Note

To access the source code for this specific section, please refer
to https://packt.live/3hRl3kI.

You can also run this example online at https://packt.live/2DnUHaU.

Activity 2.02: Text Visualization

Solution

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import
the necessary libraries:

from wordcloud import WordCloud, STOPWORDS

import matplotlib.pyplot as plt

%matplotlib inline

from nltk import word_tokenize

from nltk.stem import WordNetLemmatizer

import nltk

nltk.download('punkt')

from collections import Counter

import re

import matplotlib as mpl

mpl.rcParams['figure.dpi'] = 300

2. To fetch the dataset and read its content, add the following code:

text = open('../data//text_corpus.txt', 'r', \

 encoding='utf-8').read()

text[:1040]

https://packt.live/3hRl3kI
https://packt.live/2DnUHaU

376 | Appendix

The preceding code generates the following output:

Figure 2.31: Text corpus

3. The text in the fetched data is not clean. In order to clean it, we need to make
use of various preprocessing steps, such as tokenization and lemmatization. Add
the following code to implement this:

def lemmatize_and_clean(text):

 nltk.download('wordnet')

 lemmatizer = WordNetLemmatizer()

 cleaned_lemmatized_tokens = [lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', \

 text))]

 return cleaned_lemmatized_tokens

4. To check the set of unique words, along with their frequencies, as well as to find
the 50 most frequently occurring words, add the following code:

Counter(lemmatize_and_clean(text)).most_common(50)

Chapter 2: Feature Extraction Methods | 377

The preceding code generates the following output:

Figure 2.32: The 50 most frequent words

378 | Appendix

5. Once you get the set of unique words along with their frequencies, remove the
stop words. Then, generate the word cloud for the top 50 most frequent words.
Add the following code to implement this:

stopwords = set(STOPWORDS)

cleaned_text = ' '.join(lemmatize_and_clean(text))

wordcloud = WordCloud(width = 800, height = 800, \

 background_color ='white', \

 max_words=50, \

 stopwords = stopwords, \

 min_font_size = 10).generate(cleaned_text)

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()

The preceding code generates the following output:

Figure 2.33: Word cloud representation of the 50 most frequent words

Chapter 2: Feature Extraction Methods | 379

As shown in the preceding image, words that occur more frequently, such as
"unbeaten," "final," and "wicket," appear in larger sizes in the word cloud.

Note

To access the source code for this specific section, please refer
to https://packt.live/30cDHxt.

You can also run this example online at https://packt.live/33buXtj.

https://packt.live/30cDHxt
https://packt.live/33buXtj

380 | Appendix

Chapter 3: Developing a Text Classifier

Activity 3.01: Developing End-to-End Text Classifiers

Solution

The following steps will help you implement this activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary packages:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

from nltk import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

import nltk

nltk.download('stopwords')

nltk.download('punkt')

nltk.download('wordnet')

import warnings

import string

import re

warnings.filterwarnings('ignore')

from sklearn.metrics import accuracy_score, roc_curve, \

classification_report, confusion_matrix, \

precision_recall_curve, auc

3. Read a data file. It has three columns: is_political, headline, and
short_description. The headline column contains various news
headlines, the short_description column contains an abstract of the
article, and the is_political column indicates whether the article is about
politics or not. Here, label 0 denotes that a headline is not political and label
1 denotes that the headline is political. Here, we will only use the short_
description column to train our model. Add the following code to do this:

data = pd.read_csv('data/news_political_dataset.csv')

data.sample(5)

Chapter 3: Developing a Text Classifier | 381

The preceding code generates the following output:

Figure 3.67: Text data and labels stored as a DataFrame

4. Create a generic function for all the classifiers called clf_model. It takes four
inputs: the type of model, the features of the training dataset, the labels of the
training dataset, and the features of the validation dataset. It returns predicted
labels, predicted probabilities, and the model it has been trained on. Add the
following code to do this:

def clf_model(model_type, X_train, y_train, X_valid):

 model = model_type.fit(X_train,y_train)

 predicted_labels = model.predict(X_valid)

 predicted_probab = model.predict_proba(X_valid)[:,1]

 return [predicted_labels,predicted_probab, model]

5. Furthermore, another function is defined, called model_evaluation. It takes
three inputs: actual values, predicted values, and predicted probabilities. It prints
a confusion matrix, accuracy, f1-score, precision, recall scores, and the AUROC
curve. It also plots the ROC curve:

def model_evaluation(actual_values, predicted_values, \

 predicted_probabilities):

 cfn_mat = confusion_matrix(actual_values,predicted_values)

 print("confusion matrix: \n",cfn_mat)

 print("\naccuracy: ",accuracy_score\

 (actual_values,predicted_values))

 print("\nclassification report: \n", \

 classification_report(actual_values,predicted_values))

 fpr,tpr,threshold=roc_curve(actual_values, \

 predicted_probabilities)

 print('\nArea under ROC curve for validation set:', \

 auc(fpr,tpr))

 fig, ax = plt.subplots(figsize=(6,6))

382 | Appendix

 ax.plot(fpr,tpr,label='Validation set AUC')

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 ax.legend(loc='best')

 plt.show()

6. Use a lambda function to extract tokens from each text in this DataFrame
(called data), check whether any of these tokens are stop words, lemmatize
them, and then concatenate them side by side. Use the join function to
concatenate a list of words into a single sentence. After that, use the regular
expression method (re) to replace anything other than letters, digits, and
whitespaces with blank spaces. Add the following code to implement this:

lemmatizer = WordNetLemmatizer()

stop_words = stopwords.words('english')

stop_words = stop_words + list(string.printable)

data['cleaned_headline_text'] = data['short_description']\

 .apply(lambda x : ' '.join\

 ([lemmatizer.lemmatize\

 (word.lower()) \

 for word in word_tokenize\

 (re.sub(r'([^\s\w]|_)+', ' ', \

 str(x))) if word.lower() \

 not in stop_words]))

7. Create a TFIDF matrix representation of these cleaned texts. Add the following
code to do this:

MAX_FEATURES = 200

tfidf_model = TfidfVectorizer(max_features=MAX_FEATURES)

tfidf_df = pd.DataFrame(tfidf_model.fit_transform\

 (data['cleaned_headline_text']).todense())

tfidf_df.columns = sorted(tfidf_model.vocabulary_)

tfidf_df.head()

Chapter 3: Developing a Text Classifier | 383

The preceding code generates the following output:

Figure 3.68: TFIDF representation of the DataFrame

8. Use sklearn's train_test_split function to divide the dataset into training
and validation sets. Add the following code to do this:

X_train, X_valid, y_train, y_valid = \

train_test_split(tfidf_df, data['is_political'], test_size=0.2, \

 random_state=42,stratify = data['is_political'])

9. Train an XGBoost model using the XGBClassifier() function and evaluate it
for the validation set. Add the following code to do this:

pip install xgboost

from xgboost import XGBClassifier

xgb_clf=XGBClassifier(n_estimators=10,learning_rate=0.05,\

 max_depth=18,subsample=0.6,\

 colsample_bytree= 0.6,\

 reg_alpha= 10,seed=42)

results = clf_model(xgb_clf, X_train, y_train, X_valid)

model_evaluation(y_valid, results[0], results[1])

model_xgb = results[2]

384 | Appendix

The preceding code generates the following output:

Figure 3.69: Performance of the XGBoost model

Chapter 3: Developing a Text Classifier | 385

10. Extract the importance of features, that is, tokens or words that play a vital role
in determining the type of content. Add the following code to do this:

word_importances = pd.DataFrame\

 ({'word':X_train.columns,\

 'importance':model_xgb.feature_importances_})

word_importances.sort_values('importance', \

 ascending = False).head(4)

The preceding code generates the following output:

Figure 3.70: Words and their importance

Note

To access the source code for this specific section, please refer
to https://packt.live/2ParIKD.

You can also run this example online at https://packt.live/33axiEK.

https://packt.live/2ParIKD
https://packt.live/33axiEK

386 | Appendix

Chapter 4: Collecting Text Data with Web Scraping and APIs

Activity 4.01: Extracting Information from an Online HTML Page

Solution

Let's extract the data from an online source and analyze it. Follow these steps to
implement this activity:

1. Open a Jupyter Notebook.

2. Import the requests and BeautifulSoup libraries. Pass the URL to
requests with the following command. Convert the fetched content into HTML
format using the BeautifulSoup HTML parser. Add the following code to
do this:

import requests

from bs4 import BeautifulSoup

r = requests\

 .get('https://en.wikipedia.org/wiki/Rabindranath_Tagore')

r.status_code

soup = BeautifulSoup(r.text, 'html.parser')

3. To extract the list of headings, see which HTML elements belong to each bold
headline in the Works section. You can see that they belong to the h3 tag. We
only need the first six headings here. Look for a span tag that has a class
attribute with the following set of commands:

for element in soup.find_all('h3', limit=6):

 spans = element.find('span', attrs={'class':"mw-headline"})

 print(spans['id'])

The preceding code generates the following output:

Drama

Short_stories

Novels

Poetry

Songs_(Rabindra_Sangeet)

Art_works

Chapter 4: Collecting Text Data with Web Scraping and APIs | 387

4. To extract information regarding the original list of works written in Bengali by
Tagore, look for the table tag. Traverse through the table and use select to
pick table rows (tr) from following table data (td) associated with it. Add the
following code to extract the text:

table = soup.find('table', attrs={'class':"wikitable"})

for row in table.select('tr td'):

 print(row.text)

The preceding code generates the following output:

Figure 4.16: List of Tagore's work

388 | Appendix

5. To extract the list of universities named after Tagore, look for the ol tag. Add the
following code to do this:

[each.text.strip() for each in soup.find('ol') if each != '\n']

The preceding code generates the following output:

Figure 4.17: List of universities named after Rabindranath Tagore

Note

To access the source code for this specific section, please refer
to https://packt.live/315vOcd.

You can also run this example online at https://packt.live/2D6qIV9.

Activity 4.02: Extracting and Analyzing Data Using Regular Expressions

Solution

Follow these steps to complete this activity:

1. Collect the data using the requests package with the following code:

import requests

from bs4 import BeautifulSoup

r = requests.get('https://www.packtpub.com/support/faq')

r.status_code

The preceding code generates the following output:

200

https://packt.live/315vOcd
https://packt.live/2D6qIV9

Chapter 4: Collecting Text Data with Web Scraping and APIs | 389

2. Convert the fetched content into HTML format using BeautifulSoup's
HTML parser.

soup = BeautifulSoup(r.text, 'html.parser')

3. Inspect the HTML tag of the Packt website FAQs page. You can extract the
question text by first searching for the div tag with the "class":"tab"
attribute and inside that element, find the label tag to get the
question text. Similarly, to get the answer text, find the div tag with
"class":"tab-content", as shown here:

qas = []

for each in soup.find_all('div', attrs={"class":"tab"}):

 question = each.find('label')

 answer = each.find('div', attrs={"class":"tab-content"})

 qas.append((question.text, answer.text))

print(qas[1])

The preceding code generates the following output:

('What format are Packt eBooks?', '\nPackt eBooks can be downloaded
as a PDF, EPUB or MOBI file. They can also be viewed online using your
subscription.\n')

4. Create a DataFrame consisting of these questions and answers:

import pandas as pd

pd.DataFrame(qas, columns=['Question', 'Answer']).head()

The preceding code generates the following output:

Figure 4.18: DataFrame of the question and answers

390 | Appendix

5. To extract email addresses, make use of a regular expression. Insert a new cell
and add the following code to implement this:

tc_page_r = requests\

 .get('https://www.packtpub.com/books/info/'\

 'packt/terms-and-conditions')

tc_page_r.status_code

soup2 = BeautifulSoup(tc_page_r.text, 'html.parser')

import re

set(re.findall\

 (r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",\

 soup2.text))

Here, the regular expression pattern will be looking for an alphanumeric blob,
followed by the @ sign, followed by an alphanumeric blob. Next, it will look for
a dot (.) followed by a 2 to 4-character suffix for domains (com/in/org). The
preceding code generates the following output:

{'customercare@packt.com', 'subscription.support@packt.com'}

6. To extract phone numbers using a regular expression, insert a new cell and add
the following code:

re.findall(r"\+\d{2}\s{1}\(0\)\s\d{3}\s\d{3}\s\d{3}",soup2.text)

The preceding code generates the following output:

['+44 (0) 121 265 648', '+44 (0) 121 212 141']

Note

To access the source code for this specific section, please refer
to https://packt.live/2D4ijBK.

You can also run this example online at https://packt.live/3jSXRVb.

https://packt.live/2D4ijBK
https://packt.live/3jSXRVb

Chapter 4: Collecting Text Data with Web Scraping and APIs | 391

Activity 4.03: Extracting Data from Twitter

Solution

Let's extract tweets using the tweepy library. Follow these steps to implement
this activity:

1. Log in to your Twitter account with your credentials.

2. Visit https://dev.twitter.com/apps/new, fill in the necessary details, and submit
the form.

3. Once the form is submitted, go to the Keys and tokens tab; copy
consumer_key, consumer_secret, access_token, and
access_token_secret from there.

4. Open a Jupyter Notebook.

5. Import the relevant packages and follow the authentication steps by writing the
following code:

consumer_key = 'your_consumer_key'

consumer_secret = 'your_consumer_secret'

access_token = 'your_access_token'

access_token_secret = 'your_access_token_secret'

import pandas as pd

import json

from pprint import pprint

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

https://dev.twitter.com/apps/new

392 | Appendix

6. Call the Twitter API with the #climatechange search query. Insert a new cell
and add the following code to implement this:

tweet_list = []

for tweet in tweepy.Cursor(api.search, q='#climatechange', \

 lang="en").items(100):

 tweet_list.append(tweet)

len(tweet_list)

tweet_list[0]

The preceding code generates an output that should look similar to the following
screenshot. The content will vary since the tweets will be different according to
when you are running the program:

Figure 4.19: The Twitter API called with the #climatechange search query

7. Each tweepy Status object will have a json object associated with it, which
will have tweet content and meta info. Let's see what information is present:

status = tweet_list[0]

status_json = status._json

pprint(status_json)

Chapter 4: Collecting Text Data with Web Scraping and APIs | 393

The preceding code generates the following output with different tweet content
fetched at the time of running the program:

Figure 4.20: Twitter status objects converted to JSON objects

8. To check the tweet text, use the following code:

status_json['text']

Again, though the content may vary, the preceding code generates output similar
to the following:

'The latest The Passivhaus Daily! https://t.co/sPqQhgSRdo Thanks
to @TheMarkofPolo @PeterGleick @boris_kapkov #passivehouse
#climatechange'

9. To create a DataFrame consisting of the text of tweets, add a new cell and write
the following code:

tweets = []

for twt in tweet_list:

 tweets.append(twt._json['text'])

tweet_text_df = pd.DataFrame({'tweet_text' : tweets})

tweet_text_df.head()

394 | Appendix

The preceding code generates the following output. Again, the content may vary
depending on the current tweets:

Figure 4.21: DataFrame with the text of tweets

Note

To access the source code for this specific section, please refer
to https://packt.live/3jXyx03.

This section does not currently have an online interactive example and will
need to be run locally.

https://packt.live/3jXyx03

Chapter 5: Topic Modeling | 395

Chapter 5: Topic Modeling

Activity 5.01: Topic-Modeling Jeopardy Questions

Solution

Let's perform topic modeling on the dataset of Jeopardy questions:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import pandas and
other libraries:

import numpy as np

import spacy

nlp = spacy.load('en_core_web_sm')

import pandas as pd

pd.set_option('display.max_colwidth', 800)

3. After downloading the data, you can extract it and place at the location below.
Then load the Jeopardy CSV file into a pandas DataFrame. Insert a new cell and
add the following code:

JEOPARDY_CSV = '../data/jeopardy/Jeopardy.csv'

questions = pd.read_csv(JEOPARDY_CSV)

questions.columns = [x.strip() for x in questions.columns]

4. The data in the DataFrame is not clean. In order to clean it, remove records that
have missing values in the Question column. Add the following code to do this:

questions = questions.dropna(subset=['Question'])

5. Find the number of unique categories. Add the following code to do this:

questions['Category'].nunique()

The code generates the following output:

27995

396 | Appendix

6. Sample 4% of the questions and tokenize the corpus where the tokens are
classified as NOUN by spaCy:

file='../data/JQuestions.txt'

questions['Question'].sample(frac=0.04,replace=False,\

 random_state=0).to_csv(file)

f=open(file,'r',encoding='utf-8')

text=f.read()

f.close()

doc=nlp(text)

pos_list=['NOUN']

preproc_text=[]

preproc_sent=[]

for token in doc:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

 and token.pos_ in pos_list:

 preproc_sent.append(token.lemma_)

 else:

 preproc_text.append(preproc_sent)

 preproc_sent=[]

preproc_text.append(preproc_sent) #last sentence

print(preproc_text)

The code generates output like the following:

Figure 5.22: Tokenized corpus after selecting 4% of the sample

Chapter 5: Topic Modeling | 397

7. Train a tomotopy LDA model with 1,000 topics. Print a few topics. Add the
following code to do this:

import tomotopy as tp

NUM_TOPICS=1000

mdl = tp.LDAModel(k=NUM_TOPICS,seed=1234)

for line in preproc_text:

 mdl.add_doc(line)

mdl.train(10)

for k in range(mdl.k):

 print('Top 7 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=7))

The code generates the following output:

Figure 5.23: Topics inferred after training the LDA model

8. Now print the log perplexity. Add the following code to do this:

print('Log perplexity=',mdl.ll_per_word)

The code generates output like so:

Log perplexity= -14.396450040387437

9. Insert a new cell and add the following code to see the probability distribution of
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

398 | Appendix

The code generates output like so:

Figure 5.24: Probability distribution of topics if the entire dataset is considered

10. Insert a new cell and add the following code to see the probability distribution of
topic 461:

print(mdl.get_topic_words(461, top_n=7))

The code generates output like so:

[('city', 0.15946216881275177), ('device', 0.02001992054283619),

 ('force', 0.02001992054283619), ('character', 0.2001992054283619),

 ('death', 0.010059761814773083), ('person', 0.010059761814773083),

 ('language', 0.010059761814773083)]

11. Insert a new cell and add the following code to see the probability distribution of
topic 234:

print(mdl.get_topic_words(234, top_n=7))

The code generates output like so:

[('year', 0.09871795773506165), ('group', 0.02968442067503929),

 ('child', 0.019822485744953156), ('murder', 0.019822485744953156),

 ('field', 0.019822485744953156), ('writing', 0.009960552677512169),

 ('memorial', 0.009960552677512169)]

Chapter 5: Topic Modeling | 399

12. Insert a new cell and add the following code to see the probability distribution of
topic 186:

print(mdl.get_topic_words(186, top_n=7))

The code generates output like so:

[('dragon', 0.027016131207346916), ('power', 0.01357526984065711),

 ('flying', 0.013575269840657711), ('line', 0.013575269840657711),

 ('process', 0.013575269840657711),

 ('crystal', 0.013575269840657711),

 ('freestyle', 0.013575269840657711)]

We find that the log perplexity is around -14, but the topics are not interpretable and
the number of categories is an order of magnitude greater than the number of topics.
The topic model could still be used for dimensionality reduction.

Note

In general, the topics found are extremely sensitive to randomization in both
gensim and tomotopy. While setting a random_state in gensim could
help with reproducibility, in general, the topics found using tomotopy are
superior from the perspective of interpretability. Generally, your output is
expected to be different. In order to have exactly the same topic model, we
can save and load topic models, and we do this in Exercise 5.04, Topics in
The Life and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer
to https://packt.live/33c2O5p.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/33c2O5p

400 | Appendix

Activity 5.02: Comparing Different Topic Models

Solution

Let's perform topic modeling on the CFPB dataset. Follow these steps to complete
this activity:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the pandas library:

import numpy as np

import spacy

nlp = spacy.load('en_core_web_sm')

file_student='../data/consumercomplaints/'\

 'student_comp_narrative.txt'

f=open(file_student,'r',encoding='utf-8')

student_text=f.read()

f.close()

3. Tokenize and include only nouns:

doc_student=nlp(student_text)

student_pos_list=['NOUN']

student_preproc_text=[]

student_preproc_sent=[]

for token in doc_student:

 if token.text!='\n':

 if not(token.is_stop) and not(token.is_punct) \

 and token.pos_ in student_pos_list:

 student_preproc_sent.append(token.lemma_)

 else:

 student_preproc_text.append(student_preproc_sent)

 student_preproc_sent=[]

student_preproc_text.append(student_preproc_sent) #last sentence

print(student_preproc_text)

Chapter 5: Topic Modeling | 401

The code generates the following output:

Figure 5.25: Tokenized corpus containing only nouns

4. Train an HDP model and print the log perplexity and topics:

import tomotopy as tp

mdl = tp.HDPModel(alpha=0.1,seed=0)

for line in student_preproc_text:

 mdl.add_doc(line)

mdl.train(50)

print('Log Perplexity=', mdl.ll_per_word)

for k in range(mdl.k):

 print('Top 10 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=10))

The code generates the following output:

Figure 5.26: Log perplexity and the topics inferred from the HDP model

5. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/consumercomplaints/hdp_model.bin')

6. Insert a new cell and add the following code to load the topic model:

mdl = tp.HDPModel.load('../data/consumercomplaints/hdp_model.bin')

402 | Appendix

7. Insert a new cell and add the following code to see the probability distribution of
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in student_preproc_text \

 for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

array([5, 7, 4, 6, 0, 1, 11, 9, 14, 2, 18, 17, 10, 8, 12,

 13, 15, 3, 16], dtype=int64)

8. Insert a new cell and add the following code to see the probability distribution of
topic 5:

print(mdl.get_topic_words(5, top_n=7))

The code generates the following output:

[('school', 0.05379803851246834), ('aid', 0.05379803851246834),

 ('password', 0.003592493385076523),

 ('username', 0.03592493385076523),

 ('information', 0.03592493385076523),

 ('direction', 0.03592493385076523), ('bus', 0.03592493385076523)]

9. Insert a new cell and add the following code to see the probability distribution of
topic 7:

print(mdl.get_topic_words(7, top_n=7))

The code generates the following output:

[('graduate', 0.061739806085824966),

 ('program', 0.061739806085824966),

 ('assistance', 0.04634334146976471),

 ('loan', 0.03094688430428505), ('school', 0.03094688430428505),

 ('world', 0.03094688430428505)]

10. Insert a new cell and add the following code to see the probability distribution of
topic 4:

print(mdl.get_topic_words(4, top_n=7))

Chapter 5: Topic Modeling | 403

The code generates the following output:

[('employer', 0.03343059867620468),

 ('graduation', 0.03343059867620468),

 ('book', 0.03343059867620468),

 ('diploma', 0.025093790143728256),

 ('debt', 0.025093790143728256),

 ('education', 0.025093790143728256),

 ('college', 0.025093790143728256)]

11. Now, train the LDA model. Add the following code for this:

NUM_TOPICS=20

mdl = tp.LDAModel(k=NUM_TOPICS,alpha=0.1,seed=0)

for line in student_preproc_text:

 mdl.add_doc(line)

mdl.train(50)

print('Log Perplexity=', mdl.ll_per_word)

for k in range(mdl.k):

 print('Top 10 words of topic #{}'.format(k))

 print(mdl.get_topic_words(k, top_n=10))

The code generates the following output:

Figure 5.27: Log perplexity and topics inferred from the LDA model

12. Insert a new cell and add the following code to save the topic model:

mdl.save('../data/consumercomplaints/lda_model.bin')

404 | Appendix

13. Insert a new cell and add the following code to load the topic model:

mdl = tp.LDAModel.load('../data/consumercomplaints/lda_model.bin')

14. Insert a new cell and add the following code to see the probability distribution of
topics if we consider the entire dataset as a single document:

bag_of_words=[word for sent in preproc_text for word in sent]

doc_inst = mdl.make_doc(bag_of_words)

np.argsort(np.array(mdl.infer(doc_inst)[0]))[::-1]

The code generates the following output:

array([17, 7, 6, 8, 12, 0, 2, 4, 10, 5, 18, 14, 13, 11,

 16, 15, 9, 3, 1, 19], dtype=int64)

15. Insert a new cell and add the following code to see the probability distribution of
topic 17:

print(mdl.get_topic_words(17, top_n=7))

The code generates the following output:

[('interest', 0.20065094530582428), ('loan', 0.16345429420471191),

 ('payment', 0.152724489569664), ('rate', 0.07046262919902802),

 ('balance', 0.04184982180595398), ('year', 0.0314776748418808),

 ('principal', 0.25755111128091812)]

16. Insert a new cell and add the following code to see the probability distribution of
topic 7:

print(mdl.get_topic_words(7, top_n=7))

The code generates the following output:

[('loan', 0.14698922634124756), ('year', 0.09230735898017883),

 ('repayment', 0.08487062156200409),

 ('payment', 0.08312080055475235), ('plan', 0.07349679619073868),

 ('income', 0.05074914172291756), ('month', 0.03981276974081993)]

Chapter 5: Topic Modeling | 405

17. Insert a new cell and add the following code to see the probability distribution of
topic 6:

print(mdl.get_topic_words(6, top_n=7))

The code generates the following output:

[('loan', 0.24387744069099426), ('time', 0.06379450112581253),

 ('student', 0.051527272909879684), ('m', 0.05103658139705659),

 ('money', 0.04514831304550171), ('payment', 0.03239039331674576),

 ('collection', 0.02794190190434456)]

For our dataset and with the experimentation undertaken, the LDA topics were
much more interpretable than the HDP topics. As seen from the preceding
outputs, the log perplexity of the LDA model is also better than the log perplexity
of the HDP model. We did, of course, benefit from using the number of topics
found by the HDP model when training the LDP model, and so this is not an
entirely fair comparison. Rather, this illustrates that there could be benefits
to using an HDP model first even if we later select the LDA model for better
interpretability or better log perplexity.

Note

In general, the topics found are extremely sensitive to randomization in both
gensim and tomotopy. While setting a random_state in gensim could
help reproducibility, in general, the topics found using tomotopy are superior
from the perspective of interpretability. Generally, your output is expected
to be different. In order to have exactly the same topic model, we can save
and load topic models, and this was used in Exercise 5.04, Topics in The Life
and Adventures of Robinson Crusoe by Daniel Defoe.

To access the source code for this specific section, please refer
to https://packt.live/312B9Bf..

https://packt.live/312B9Bf

406 | Appendix

Chapter 6: Vector Representation

Activity 6.01: Finding Similar News Article Using Document Vectors

Solution

Follow these steps to complete this activity:

1. Open a Jupyter Notebook. Insert a new cell and add the following code to import
all necessary libraries:

import warnings

warnings.filterwarnings("ignore")

from gensim.models import Doc2Vec

import pandas as pd

from gensim.parsing.preprocessing import preprocess_string, \

remove_stopwords

2. Now load the news_lines file.

news_file = '../data/sample_news_data.txt'

3. After that, you need to iterate over each headline in the file and split the
columns, then create a DataFrame containing the headlines. Insert a new cell
and add the following code to implement this:

with open(news_file, encoding="utf8", errors='ignore') as f:

 news_lines = [line for line in f.readlines()]

lines_df = pd.DataFrame()

indices = list(range(len(news_lines)))

lines_df['news'] = news_lines

lines_df['index'] = indices

lines_df.head()

Chapter 6: Vector Representation | 407

The code produces the following output:

Figure 6.27: Head of the DataFrame

4. You already have a trained document model named docVecModel.d2v in the
previous exercise. Now you can simply load and use it. Insert a new cell and add
the following code to implement this:

docVecModel = Doc2Vec.load('../data/docVecModel.d2v')

5. Now, since you have loaded the document model, create two functions,
namely, to_vector() and similar_news_articles(). The to_
vector() function converts the sentences into vectors. The second function,
similar_news_articles(), implements the similarity check. It uses the
docVecModel.docvecs.most_similar() function, which compares the
vector against all the other lines it was built with. To implement this, insert a new
cell and add the following code:

from gensim.parsing.preprocessing import preprocess_string, \

remove_stopwords

def to_vector(sentence):

 cleaned = preprocess_string(sentence)

 docVector = docVecModel.infer_vector(cleaned)

 return docVector

408 | Appendix

def similar_news_articles(sentence):

 vector = to_vector(sentence)

 similar_vectors = docVecModel.docvecs.most_similar\

 (positive=[vector])

 print(similar_vectors)

 similar_lines = lines_df\

 [lines_df.index==similar_vectors[0][0]].news

 return similar_lines

6. Now that you have created the functions, it is time to test them. Insert a new cell
and add the following code to implement this:

similar_news_articles("US raise TV indecency US politicians "\

 "are proposing a tough new law aimed at "\

 "cracking down on indecency")

The code will generate the following output:

1958 Clarke to unveil immigration plan New controls

Name: news, dtype: object

Note

To access the source code for this specific section, please refer
to https://packt.live/3hMOcgO.

You can also run this example online at https://packt.live/3gbDFvg.

https://packt.live/3hMOcgO
https://packt.live/3gbDFvg

Chapter 7: Text Generation and Summarization | 409

Chapter 7: Text Generation and Summarization

Activity 7.01: Summarizing Complaints in the Consumer Financial Protection

Bureau Dataset

Solution

Follow these steps to complete this activity:

1. Open a Jupyter Notebook and insert a new cell. Add the following code to import
the required libraries:

import warnings

warnings.filterwarnings('ignore')

import os

import csv

import pandas as pd

from gensim.summarization import summarize

2. Insert a new cell and add the following code to fetch the Consumer Complaints
dataset and consider the rows that have a complaint narrative. Drop all the
columns other than Product, Sub-product, Issue, Sub-issue, and
Consumer complaint narrative:

complaints_pathname = '../data/consumercomplaints/'\

 'Consumer_Complaints.csv'

df_all_complaints = pd.read_csv(complaints_pathname)

df_all_narr = df_all_complaints.dropna\

 (subset=['Consumer complaint narrative'])

df_all_narr = df_all_narr[['Product','Sub-product','Issue',\

 'Sub-issue',\

 'Consumer complaint narrative']]

410 | Appendix

3. Insert a new cell and add the following code to select 12 complaints:

df_part_narr = df_all_narr[df_all_narr.index.isin\

 ([242830,1086741,536367,957355,975181,483530,\

 950006,865088,681842,536367,132345,285894])]

df_part_narr

The preceding code generates the following output:

Figure 7.19: DataFrame showing the 12 selected complaints

4. Insert a new cell and add the following code to add a new column, named
TextRank Summary, that includes a TextRank summary for each of the
12 complaints:

def try_summarize(x,ratio):

 try:

 return(summarize(x,ratio=ratio))

 except:

 return('')

df_part_narr['TextRank Summary']=df_part_narr\

 ['Consumer complaint narrative']\

 .apply(lambda x: try_summarize\

 (x,ratio=0.20))

Chapter 7: Text Generation and Summarization | 411

5. Insert a new cell and add the following code to show the DataFrame:

df_part_narr

The preceding code generates the following output:

Figure 7.20: DataFrame showing the summarized complaints

Note

To access the source code for this specific section, please refer
to https://packt.live/313r5YP.

This section does not currently have an online interactive example,
and will need to be run locally.

https://packt.live/313r5YP

412 | Appendix

Chapter 8: Sentiment Analysis

Activity 8.01: Tweet Sentiment Analysis Using the textblob library

Solution

To perform sentiment analysis on the given set of tweets related to airlines, follow
these steps:

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

from textblob import TextBlob

import re

3. Since we are displaying the text in the notebook, we want to increase the
display width for our DataFrame. Insert a new cell and add the following code to
implement this:

pd.set_option('display.max_colwidth', 240)

4. Now, load the airline-tweets.csv dataset. We will read this CSV file using
pandas' read_csv() function. Insert a new cell and add the following code to
implement this:

tweets = pd.read_csv('data/airline-tweets.csv')

5. Insert a new cell and add the following code to view the first 10 records of
the DataFrame:

tweets.head()

Chapter 8: Sentiment Analysis | 413

The code generates the following output:

Figure 8.8: The first few tweets

6. If we look at the preceding figure, we can see that the tweets contain Twitter
handles, which start with the @ symbol. It might be useful to extract those
handles. The string column included in the DataFrame has an extract()
function, which uses a regex to get parts of a string. Insert a new cell and add the
following code to implement this:

tweets['At'] = tweets['tweet'].str.extract(r'^(@\S+)')

This code declares a new column called At and sets the value to what the
extract function returns. The extract function uses a regex, ^(@\S+),
to return strings that start with @. To view the initial 10 records of the tweets
DataFrame, we insert a new cell and write the following code:

tweets.head(10)

The output should look something like this (only top four tweets are
shown here):

Figure 8.9: The first 10 tweets along with the Twitter handles

414 | Appendix

7. Now, we want to remove the Twitter handles inside the tweets since they are
irrelevant for sentiment analysis. First, create a function named remove_
handles(), which accepts a DataFrame as a parameter. After passing the
DataFrame, the re.sub() function will remove the handles in the DataFrame.
Insert a new cell and add the following code to implement this:

def remove_handles(tweet):

 return re.sub(r'@\S+', '', tweet)

8. To remove the handles, insert a column in the DataFrame called tweets_
preprocessed and add the following code:

tweets['tweet_preprocessed'] = tweets['tweet']\

 .apply(remove_handles)

tweets.head(10)

The expected output for the tweets after removing the Twitter handles should
look like this (only the top four are shown in this figure):

Figure 8.10: The first 10 tweets after removing the Twitter handles

From the preceding figure, we can see that the Twitter handles have been
separated from the tweets.

Chapter 8: Sentiment Analysis | 415

9. Now we can apply sentiment analysis on the tweets. First, create a get_
sentiment() function, which accepts a DataFrame and a column as
parameters. Using this function, we create two new columns, Polarity and
Subjectivity, which will show the sentiment scores of each tweet. Insert a
new cell and add the following code to implement this:

def get_sentiment(dataframe, column):

 text_column = dataframe[column]

 textblob_sentiment = text_column.apply(TextBlob)

 sentiment_values = [{'Polarity': v.sentiment.polarity, \

 'Subjectivity': v.sentiment.subjectivity}

 for v in textblob_sentiment.values]

 return pd.DataFrame(sentiment_values)

This function takes a DataFrame and applies the TextBlob constructor to each
value of text_column. Then it extracts and creates a new DataFrame with the
Polarity and Objectivity columns.

10. Since the function has been created, we test it and pass the necessary
parameters. The result of this will be stored in a new DataFrame, sentiment_
frame. Insert a new cell and add the following code to implement this:

sentiment_frame = get_sentiment(tweets, 'tweet_preprocessed')

11. To view the initial four values of the new DataFrame, type the following code:

sentiment_frame.head(4)

The code generates the following output:

Figure 8.11: Polarity and subjectivity scores

416 | Appendix

12. To join the original tweet DataFrame to the sentiment_frame DataFrame,
use the concat() function. Insert a new cell and add the following code to
implement this:

tweets = pd.concat([tweets, sentiment_frame], axis=1)

13. To view the initial 10 rows of the new DataFrame, we add the following code:

tweets.head(10)

The expected output with sentiment scores added should be as follows:

Figure 8.12: Tweets DataFrame with sentiment scores added

From the preceding figure, we can see that for each tweet, Polarity, and
Subjectivity scores have been calculated.

14. To distinguish between the positive, negative, and neutral tweets, we need to
add certain conditions. Consider tweets with polarity scores greater than 0.5 as
positive, and tweets with polarity scores less than or equal to -0.5 as negative.
For neutral tweets, consider only those tweets that fall in the range of -0.1 and
0.1. Insert a new cell and add the following code to implement this:

positive_tweets = tweets[tweets.Polarity > 0.5]

negative_tweets = tweets[tweets.Polarity <= - 0.5]

neutral_tweets = tweets[(tweets.Polarity > -0.1) \

 & (tweets.Polarity < 0.1)]

Chapter 8: Sentiment Analysis | 417

15. To view positive, negative, and neutral tweets, add the following code:

positive_tweets.head(15)

negative_tweets.head(15)

neutral_tweets

This displays the result of positive, negative, and neutral tweets. We have seen
how to perform sentiment analysis using the textblob library. The following
image shows the top four neutral tweets:

Figure 8.13: Neutral tweets

Note

To access the source code for this specific section, please refer
to https://packt.live/2XfcuIC.

You can also run this example online at https://packt.live/2DqDSfq.

https://packt.live/2XfcuIC
https://packt.live/2DqDSfq

418 | Appendix

Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression

Solution

1. Open a Jupyter Notebook.

2. Insert a new cell and add the following code to import the necessary libraries:

import pandas as pd

pd.set_option('display.max_colwidth', 200)

3. To load all three datasets, insert a new cell and add the following code:

DATA_DIR = 'data/sentiment_labelled_sentences/'

IMDB_DATA_FILE = DATA_DIR + 'imdb_labelled.txt'

YELP_DATA_FILE = DATA_DIR + 'yelp_labelled.txt'

AMAZON_DATA_FILE = DATA_DIR + 'amazon_cells_labelled.txt'

COLUMN_NAMES = ['Review', 'Sentiment']

yelp_reviews = pd.read_table(YELP_DATA_FILE, names=COLUMN_NAMES)

amazon_reviews = pd.read_table(AMAZON_DATA_FILE, \

 names=COLUMN_NAMES)

imdb_reviews = pd.read_table(YELP_DATA_FILE, names=COLUMN_NAMES)

If we look at the code, even though the data comes from three different business
domains, they are labeled and stored in the same format, which can help us to
concatenate them together. This is the reason we can combine them to train our
sentiment analysis model.

4. Now we concatenate the different datasets into one dataset using the
concat() function. Insert a new cell and add the following code to
implement this:

review_data = pd.concat([amazon_reviews, imdb_reviews, \

 yelp_reviews])

Since we combined the data from three separate files, let's make use of the
sample() function, which returns a random selection from the dataset. This
will allow us to see the reviews from different files. Insert a new cell and add the
following code to implement this:

review_data.sample(10)

Chapter 8: Sentiment Analysis | 419

The code generates the following output (only the top four reviews are
displayed here):

Figure 8.14: Output from calling the sample() function

5. To view the number of counts, add the following code:

review_data.Sentiment.value_counts()

6. Create a function named clean() and do some preprocessing. Basically, we
need to remove unnecessary characters. Insert a new cell and add the following
code to do this:

import re

def clean(text):

 text = re.sub(r'[\W]+', ' ', text.lower())

 text = text.replace('hadn t' , 'had not')\

 .replace('wasn t', 'was not')\

 .replace('didn t', 'did not')

 return text

In the preceding code snippet, first, the text is converted to lowercase and
cleaned, and then keywords with apostrophes are converted into their
original form.

7. Once the function is defined, we can clean and tokenize the text. It is a good
practice to apply transformation functions on copies of our data unless you are
really constrained with memory. Insert a new cell and add the following code to
implement this:

review_model_data = review_data.copy()

review_model_data.Review = review_data.Review.apply(clean)

420 | Appendix

8. Now sample the data again to see what the processed text looks like. Add the
following code in a new cell to implement this:

review_model_data.sample(10)

The code generates the following output (only the top four reviews are
displayed here):

Figure 8.15: Sample of 10 after cleaning the Review column

In the preceding figure, we can see that the text is converted to lowercase and
only alphanumeric characters remain.

9. Now it is time to develop our model. We will use TfidfVectorizer
to convert each review into a TFIDF vector. We will then use
LogisticRegression to build a model. Insert a new cell and add the
following code to import the necessary libraries:

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import Pipeline

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

Next, combine TfidfVectorizer and LogisticRegression in a
Pipeline object. In order to do this, insert a new cell and add the
following code:

tfidf = TfidfVectorizer()

log_reg = LogisticRegression()

log_tfidf = Pipeline([('vect', tfidf),\

 ('clf', log_reg)])

Chapter 8: Sentiment Analysis | 421

10. Once the data is ready, split it into train and test sets. Split it into 70%
for training and 30% for testing. This can be achieved with the help of the
train_test_split() function. Insert a new cell and add the following code
to implement this:

X_train, X_test, y_train, y_test = train_test_split\

 (review_model_data.Review, \

 review_model_data.Sentiment,\

 test_size=0.3, \

 random_state=42)

11. Fit the training data to the training pipeline with the help of the fit() function.
Insert a new cell and add the following code to implement this:

log_tfidf.fit(X_train.values, y_train.values)

The code generates the following output:

Figure 8.16: Output from calling the fit() function on the training model

12. In order to check our model's accuracy, use the score() function. Insert a new
cell and add the following code to implement this:

test_accuracy = log_tfidf.score(X_test.values, y_test.values)

'The model has a test accuracy of {:.0%}'.format(test_accuracy)

You should an output as follows:

'The model has a test accuracy of 81%'

As you can see from the preceding figure, our model has an accuracy of 81%,
which is pretty good for such a simple model.

422 | Appendix

13. The model is ready with an accuracy of 81%. Now we can use it to predict
the sentiment of sentences. Insert a new cell and add the following code to
implement this:

log_tfidf.predict(['I loved this place', 'I hated this place'])

You should see an output like the following:

array([1, 0], dtype=int64)

In the preceding figure, we can see how our model predicts sentiment. For a
positive test sentence, it returns a score of 1. For a negative test sentence, it
returns a score of 0.

Note

To access the source code for this specific section, please refer
to https://packt.live/3gto1M9.

You can also run this example online at https://packt.live/2PowrIN.

https://packt.live/3gto1M9
https://packt.live/2PowrIN

Index

A
airshow: 42, 47, 51
AllenNLP: 350
Amazon: 126, 131,

137, 142, 149, 157,
162, 282, 348-349,
356-359, 361

arrays: 280

B
banamali: 205-206
bigrams: 45-46

D
dendrogram:

110-111, 115-116
doctype: 203
Dropbox: 337

G
Gaussian: 134
Gutenberg: 208-210,

254, 259-260,
295-296, 322,
329, 333

H
Hadoop: 156
histogram: 243

J
Jaccard: 92-94, 96
JavaScript: 216
joblib: 194-195

K
key-value: 216,

286, 290
kmeanModel: 122
k-nearest: 124,

135-137, 140, 198

L
lsamodel: 242-243

M
matplotlib: 84, 87,

99-101, 111, 119,
126, 132, 137, 143,
149, 157, 162, 174,
180, 238, 247, 254,
260, 295, 299, 302,
305, 310, 314

MongoDB: 217

N
n-grams: 44, 47

O
one-hot: 32, 271,

275-278, 280-290,
292-293, 316

P
perplexity: 246-247,

253, 265
pprint: 218, 224-225
pyplot: 84, 99, 111,

119, 126, 132, 137,
143, 149, 157, 162,
174, 180, 238,
247, 254, 260,
295, 299-300, 302,
305, 310, 314

PyTorch: 351

S
seaborn: 119, 176
stemmer: 20-22, 59-61
stemming: 1, 8, 15,

19-20, 22, 30, 32-33,
36, 41, 58, 60-61,
67-68, 105, 108,
192, 275, 362

stop-word: 36,
65-66, 105, 108

T
TextBlob: 41, 44,

46-47, 49, 63-66,
69-71, 343, 352-354

TextRank: 319,
327-329, 333,
335-340

tf-idf: 33, 329
toarray: 282

todense: 81-82, 89,
94, 96, 115, 120,
128, 133, 139, 144,
151, 159, 164, 176,
182, 193, 195-196

tokenizer: 50-57, 67,
285-288, 290-292

tomotopy: 237, 244,
246-247, 249,
252-254, 256,
259, 262, 265

Tweepy: 201, 227-228

U
unigrams: 8
urllib: 210

X
XGBoost: 107,

155-156, 160-162,
165-166, 191, 198

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Natural Language Processing
	Introduction
	History of NLP
	Text Analytics and NLP
	Exercise 1.01: Basic Text Analytics

	Various Steps in NLP
	Tokenization
	Exercise 1.02: Tokenization of a Simple Sentence
	PoS Tagging
	Exercise 1.03: PoS Tagging
	Stop Word Removal
	Exercise 1.04: Stop Word Removal
	Text Normalization
	Exercise 1.05: Text Normalization
	Spelling Correction
	Exercise 1.06: Spelling Correction of a Word and a Sentence
	Stemming
	Exercise 1.07: Using Stemming
	Lemmatization
	Exercise 1.08: Extracting the Base Word Using Lemmatization
	Named Entity Recognition (NER)
	Exercise 1.09: Treating Named Entities

	Word Sense Disambiguation
	Exercise 1.10: Word Sense Disambiguation

	Sentence Boundary Detection
	Exercise 1.11: Sentence Boundary Detection
	Activity 1.01: Preprocessing of Raw Text

	Kick Starting an NLP Project
	Data Collection
	Data Preprocessing
	Feature Extraction
	Model Development
	Model Assessment
	Model Deployment

	Summary

	Chapter 2: Feature Extraction Methods
	Introduction
	Types of Data
	Categorizing Data Based on Structure
	Categorizing Data Based on Content

	Cleaning Text Data
	Tokenization
	Exercise 2.01: Text Cleaning and Tokenization
	Exercise 2.02: Extracting n-grams
	Exercise 2.03: Tokenizing Text with Keras and TextBlob
	Types of Tokenizers
	Exercise 2.04: Tokenizing Text Using Various Tokenizers
	Stemming
	RegexpStemmer
	Exercise 2.05: Converting Words in the Present Continuous Tense into Base Words with RegexpStemmer
	The Porter Stemmer
	Exercise 2.06: Using the Porter Stemmer
	Lemmatization
	Exercise 2.07: Performing Lemmatization
	Exercise 2.08: Singularizing and Pluralizing Words
	Language Translation
	Exercise 2.09: Language Translation
	Stop-Word Removal
	Exercise 2.10: Removing Stop Words from Text
	Activity 2.01: Extracting Top Keywords from the News Article

	Feature Extraction from Texts
	Extracting General Features from Raw Text
	Exercise 2.11: Extracting General Features from Raw Text
	Exercise 2.12: Extracting General Features from Text
	Bag of Words (BoW)
	Exercise 2.13: Creating a Bag of Words
	Zipf's Law
	Exercise 2.14: Zipf's Law
	Term Frequency–Inverse Document Frequency (TFIDF)
	Exercise 2.15: TFIDF Representation

	Finding Text Similarity – Application of Feature Extraction
	Exercise 2.16: Calculating Text Similarity Using Jaccard and Cosine Similarity
	Word Sense Disambiguation Using the Lesk Algorithm
	Exercise 2.17: Implementing the Lesk Algorithm Using String Similarity and Text Vectorization
	Word Clouds
	Exercise 2.18: Generating Word Clouds
	Other Visualizations
	Exercise 2.19: Other Visualizations Dependency Parse Trees and Named Entities
	Activity 2.02: Text Visualization

	Summary

	Chapter 3: Developing a Text Classifier
	Introduction
	Machine Learning
	Unsupervised Learning
	Hierarchical Clustering
	Exercise 3.01: Performing Hierarchical Clustering
	k-means Clustering
	Exercise 3.02: Implementing k-means Clustering

	Supervised Learning
	Classification
	Logistic Regression
	Exercise 3.03: Text Classification – Logistic Regression
	Naive Bayes Classifiers
	Exercise 3.04: Text Classification – Naive Bayes
	k-nearest Neighbors
	Exercise 3.05: Text Classification Using the k-nearest Neighbors Method
	Regression
	Linear Regression
	Exercise 3.06: Regression Analysis Using Textual Data
	Tree Methods
	Exercise 3.07: Tree-Based Methods – Decision Tree
	Random Forest
	Gradient Boosting Machine and Extreme Gradient Boost
	Exercise 3.08: Tree-Based Methods – Random Forest
	Exercise 3.09: Tree-Based Methods – XGBoost
	Sampling
	Exercise 3.10: Sampling (Simple Random, Stratified, and Multi-Stage)

	Developing a Text Classifier
	Feature Extraction
	Feature Engineering
	Removing Correlated Features
	Exercise 3.11: Removing Highly Correlated Features (Tokens)
	Dimensionality Reduction
	Exercise 3.12: Performing Dimensionality Reduction Using Principal Component Analysis
	Deciding on a Model Type
	Evaluating the Performance of a Model
	Exercise 3.13: Calculating the RMSE and MAPE of a Dataset
	Activity 3.01: Developing End-to-End Text Classifiers

	Building Pipelines for NLP Projects
	Exercise 3.14: Building the Pipeline for an NLP Project

	Saving and Loading Models
	Exercise 3.15: Saving and Loading Models

	Summary

	Chapter 4: Collecting Text Data with Web Scraping and APIs
	Introduction
	Collecting Data by Scraping Web Pages
	Exercise 4.01: Extraction of Tag-Based Information from HTML Files
	Requesting Content from Web Pages
	Exercise 4.02: Collecting Online Text Data
	Exercise 4.03: Analyzing the Content of Jupyter Notebooks (in HTML Format)
	Activity 4.01: Extracting Information from an Online HTML Page
	Activity 4.02: Extracting and Analyzing Data Using Regular Expressions

	Dealing with Semi-Structured Data
	JSON
	Exercise 4.04: Working with JSON Files
	XML
	Exercise 4.05: Working with an XML File
	Using APIs to Retrieve Real-Time Data
	Exercise 4.06: Collecting Data Using APIs
	Extracting data from Twitter Using the OAuth API
	Activity 4.03: Extracting Data from Twitter

	Summary

	Chapter 5: Topic Modeling
	Introduction
	Topic Discovery
	Exploratory Data Analysis
	Transforming Unstructured Data to Structured Data
	Bag of Words

	Topic-Modeling Algorithms
	Latent Semantic Analysis (LSA)
	LSA – How It Works

	Key Input Parameters for LSA Topic Modeling
	Exercise 5.01: Analyzing Wikipedia World Cup Articles with Latent Semantic Analysis
	Dirichlet Process and Dirichlet Distribution
	Latent Dirichlet Allocation (LDA)
	LDA – How It Works
	Measuring the Predictive Power of a Generative Topic Model
	Exercise 5.02: Finding Topics in Canadian Open Data Inventory Using the LDA Model
	Activity 5.01: Topic-Modeling Jeopardy Questions

	Hierarchical Dirichlet Process (HDP)
	Exercise 5.03: Topics in Around the World in Eighty Days
	Exercise 5.04: Topics in The Life and Adventures of Robinson Crusoe by Daniel Defoe
	Practical Challenges
	State-of-the-Art Topic Modeling
	Activity 5.02: Comparing Different Topic Models

	Summary

	Chapter 6: Vector Representation
	Introduction
	What Is a Vector?
	Frequency-Based Embeddings
	Exercise 6.01: Word-Level One-Hot Encoding
	Character-Level One-Hot Encoding
	Exercise 6.02: Character One-Hot Encoding – Manual
	Exercise 6.03: Character-Level One-Hot Encoding with Keras
	Learned Word Embeddings
	Word2Vec
	Exercise 6.04: Training Word Vectors
	Using Pre-Trained Word Vectors
	Exercise 6.05: Using Pre-Trained Word Vectors
	Document Vectors
	Uses of Document Vectors
	Exercise 6.06: Converting News Headlines to Document Vectors
	Activity 6.01: Finding Similar News Article Using Document Vectors

	Summary

	Chapter 7: Text Generation and Summarization
	Introduction
	Generating Text with Markov Chains
	Markov Chains
	Exercise 7.01: Text Generation Using a Random Walk over a Markov Chain

	Text Summarization
	TextRank

	Key Input Parameters for TextRank
	Exercise 7.02: Performing Summarization Using TextRank
	Exercise 7.03: Summarizing a Children's Fairy Tale Using TextRank
	Activity 7.01: Summarizing Complaints in the Consumer Financial Protection Bureau Dataset

	Recent Developments in Text Generation and Summarization
	Practical Challenges in Extractive Summarization
	Summary

	Chapter 8: Sentiment Analysis
	Introduction
	Why Is Sentiment Analysis Required?
	The Growth of Sentiment Analysis
	The Monetization of Emotion
	Types of Sentiments
	Emotion

	Key Ideas and Terms
	Applications of Sentiment Analysis

	Tools Used for Sentiment Analysis
	NLP Services from Major Cloud Providers
	Online Marketplaces
	Python NLP Libraries
	Deep Learning Frameworks

	The textblob library
	Exercise 8.01: Basic Sentiment Analysis Using the textblob Library
	Activity 8.01: Tweet Sentiment Analysis Using the textblob library

	Understanding Data for Sentiment Analysis
	Exercise 8.02: Loading Data for Sentiment Analysis

	Training Sentiment Models
	Activity 8.02: Training a Sentiment Model Using TFIDF and Logistic Regression

	Summary

	Appendix
	Index

