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Розділ 8 
АВТОКОРЕЛЯЦІЯ 

8.1. Причини виникнення автокореляції 
в економетричних моделях 

8.1.1. Поняття автокореляції.Означення 8.1. 
Автокореляція — це наявність взаємозв’язку між послідовними 
елементами часового чи просторового ряду даних. 

В економетричних дослідженнях часто виникають такі 
ситуації, коли дисперсія залишків є сталою, але спостерігається 
їх коваріація. Це явище називають автокореляцією залишків. 

Автокореляція залишків найчастіше спостерігається тоді, коли 
економетрична модель будується на основі часових рядів. Якщо 
існує кореляція між послідовними значеннями деякої 
пояснювальної змінної, то буде спостерігатись і кореляція 
послідовних значень залишків. 

Автокореляція може бути також наслідком помилкової 
специфікації економетричної моделі, зокрема наявність 
автокореляції залишків може означати, що необхідно ввести до 
моделі нову незалежну змінну. 

У загальному випадку ми вводимо до моделі лише деякі з 
істотних змінних, а вплив змінних, яких виключено з моделі, 
має позначитися на зміні залишків. Існування кореляції між 
послідовними значеннями виключеної з розгляду змінної не 
обов’язково має викликати відповідну кореляцію залишків, бо 
вплив різних змінних може взаємно погашатися. Якщо 
кореляція послідовних значень виключених з моделі змінних 
спостерігається, то загроза виникнення автокореляції залишків 
стає реальністю. 

Проілюструємо проблему автокореляції залишків на прикладі 
простої економетричної моделі. Нехай 

 ,ttt uxaay  10  (8.1) 

де припускається, що залишки tu  задовольняють схему 

авторегресії першого порядку (стаціонарний марковський 
процес 1-го порядку), тобто залежать тільки від залишків 
попереднього періоду: 

 ,1 ttt uu    (8.2) 
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причому 1 , а для t  виконуються такі властивості: 
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де s  — номер зрушення (лагу) залишків щодо періоду t. 
Величина  є коефіцієнтом автокореляції залишків, що 

характеризує рівень взаємозв’язку кожного наступного значення 
з попереднім, тобто коваріацію залишків. 

Специфікація моделі (8.1) на відміну від моделей, які 
розглядались у розд. 7, має індекс t, що свідчить про її 
динамічний характер, тобто t — період часу, для якого будується 
така модель на основі динамічних (часових) рядів вихідних 
даних. 

Розглянемо залишки моделі ut, враховуючи (8.2): 
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Звідси 
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де s  — лаг залишків. 
Оскільки 0 )( tM , то .)( 0tuM  

Визначимо диперсію залишків ut. 
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Враховуючи, що послідовні значення t  незалежні, запишемо 

,...)()( 2422 1 tuM  
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Коваріація послідовних значень залишків запишеться у 
такому вигляді: 
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і в загальному випадку  
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тобто для моделі (8.1) не задовольняється гіпотеза про 
незалежність послідовних значень залишків. 

Вираз (8.5) можна записати так: 
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Це означає, що за наявності автокореляції залишків друга 
необхідна умова подається у вигляді: 
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де S — матриця коефіцієнтів автокореляції s-го порядку для ряду 
,tu  або 
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Порівнюючи матрицю, яку маємо в даному разі, з матрицею за 
наявності гетероскедастичності, побачимо, що вони істотно 
відрізняються одна від одної. Це пов’язано з тим, що природа 
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порушення другої умови для застосування методу 1МНК для 
явищ гетероскедастичності та автокореляції різна. 

Отже, для гетероскедастичних залишків, розглянутих у 
розд. 7, існує одна форма порушення стандартної гіпотези, 

згідно з якою .)( SuuM u
2  Для автокореляційних залишків ми 

стикаємося з іншою формою порушення цієї гіпотези. 
 
8.1.2. Наслідки автокореляції залишків. Знехтувавши 

автокореляцією залишків і оцінивши параметри моделі 1МНК, 
дійдемо таких трьох основних наслідків. 

1. Оцінки параметрів моделі можуть бути незміщеними, але 

неефективними, тобто вибіркові дисперсії вектора оцінок Â  
можуть бути невиправдано великими. 

2. Оскільки вибіркові дисперсії обчислюються не за 
уточненими формулами, то статистичні критерії t- і F-
статистики, які знайдено для лінійної моделі, практично не 
можуть бути використані в дисперсійному аналізі при 
автокореляції. 

3. Неефективність оцінок параметрів економетричної моделі 
призводить, як правило, до неефективних прогнозів, тобто 
прогнозів з доволі великою вибірковою дисперсією. 

Нагадаємо, що за відсутності автокореляції залишків матриця 

коваріацій для вектора оцінок Â  така: 
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Припустимо, що незалежні змінні і залишки можна подати у 
вигляді стаціонарних марковських процесів першого порядку: 

 
.,

;,

1

1

1

1









ttt

ttt

uu

vxx
 (8.9) 

Якщо коефіцієнти  і  додатні, то говорять про додатну 
автокореляцію. Від’ємна автокореляція в економетричних 
моделях спостерігається дуже рідко. 

Залишки tv  і t  взаємно незалежні, і їхні автокореляційні 

матриці діагональні, тобто вони не автокорельовані. Тоді можна 
показати, що звичайний метод найменших квадратів дає при 

достатньо великому n таку оцінку дисперсії параметрів Â : 
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Із (8.10) бачимо, що зміщення 

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1
 дисперсії оцінок парамет-

рів тим більше, чим більші значення  і  (більша автокореляція). 

Нехай  =  = 0,5, тоді зміщення 
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загубленим при використанні 1МНК, що призводить до 
заниження дисперсії приблизно на 40 % порівняно з її 
справжнім значенням. Зі збільшенням  і , наприклад, 

 =  = 0,8, зміщення буде 
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істинне значення дисперсії в чотири з половиною разу 
перевищуватиме те, яке дістали, застосувавши 1МНК. 

Якщо додатна автокореляція спостерігається і в залишках, і в 
незалежній змінній, то 1МНК дає зміщення і для дисперсії залиш-
ків. Припустивши, як і раніше, що tx  і tu  підлягають однаковій 

схемі авторегресії, знайдемо: 
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Якщо  =  = 0,5 і n = 20, то 2

19

3,18
)( uuuM  , тобто 

недооцінка дисперсії залишків становить близько 3,5 %, а при 
 =  = 0,8; n = 20 ця недооцінка дорівнюватиме приблизно 

24,2 %. 2

19

4,15
)( uuuM  . 

Отже, в разі застосування 1МНК вибіркові дисперсії будуть 
заниженими. Навіть після коригування оцінок вибіркових диспер-
сій на величину зміщення не можна бути впевненим у коректності 
рівнів значущості для t- і F-cтатистик, оскільки наявність 

автокореляції залишків означає, що величина 
2
u

uu




, яка 

характеризує співвідношення між вибірковою дисперсією 
залишків і дисперсією в генеральній сукупності, може не 

розподілятися за законом 2 і не буде незалежною від  AAˆ . 



 301 

Недооцінка коваріації вектора оцінок параметрів моделі   Âcov  

є, очевидно, найбільш серйозною помилкою, коли застосовується 
1МНК і спостерігається автокореляція. Метод найменших 
квадратів приводить нас в цьому випадку до неефективних 
оцінок і до неефективних прогнозів, тобто стандартні похибки 
оцінок параметрів моделі та похибка прогнозу будуть 
заниженими. 

8.2. Перевірка наявності автокореляції 

8.2.1. Критерій Дарбіна—Уотсона. Для перевірки 
наявності автокореляції залишків найчастіше застосовується 
критерій Дарбіна—Уотсона (DW): 
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який може набувати значень із проміжку [0, 4]:  40,DW . 
Якщо залишки tu  є випадковими величинами, нормально 

розподіленими, а не автокорельованими, то значення DW 
містяться поблизу 2. За додатної автокореляції DW < 2, а за 
від’ємної DW > 2. Фактичні значення критерію порівнюються з 
критичними (табличними) для різної кількості спостережень n і 
кількості незалежних змінних m за вибраного рівня значущості . 
Табличні значення мають нижню межу DW1 і верхню — DW2. 

Коли DWфакт < DW1, залишки мають автокореляцію. Якщо 
DWфакт > DW2, приймається гіпотеза про відсутність 
автокореляції. У разі DW1 <DW< DW2 конкретних висновків 
зробити не можна: необхідно далі провадити дослідження, 
збільшуючи сукупність спостережень. Зауважимо, що цей 
критерій призначений для малих вибіркових сукупностей. 

Вибірковий розподіл значень критерію Дарбіна—Уотсона 
залежить від емпіричних спостережень пояснювальних 
змінних і, якщо взяти до уваги цю обставину, можна 
стверджувати: параметр  для генеральної сукупності має 
тісний зв’язок з критерієм DW. Якщо  = 1, то значення 
DW = 0, при  = 0 DW = 2 і при  = –1 значення критерію 
DW = 4. Наведені співвідношення показують, що існують 
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області, в яких застосування критерію Дарбіна—Уотсона не 
може дати певних результатів, про що вже було сказано. 
Верхні та нижні межі критерію DW визначають межі цієї 
області для різних розмірів вибірки, заданої кількості 
пояснювальних змінних та певного рівня значущості. 

Шкалу визначення наявності автокореляції на основі 
порівняння фактично розрахованого критерію Дарбіна—Уотсона 
та його критичних значень зображено на рис. 8.1. 

 

ρ > 0 ρ < 0

0
DW1 DW2 2 4-DW2 4-DW1 4

Існує додатна 
автокореляція

Невизначе-
ність щодо 

автокореляції

Невизначе-
ність щодо 

автокореляції

Автокореляція 
відсутня

Існує 
від’ємна 

автокореляція  

Рис. 8.1. Шкала визначення наявності автокореляції  
за критерієм Дарбіна—Уотсона 

Із рис. 8.1 випливає, що коли фактичне значення DW 
потрапляє в межі від нуля до нижньої критичної межі DW1, то 
гіпотезу про наявність автокореляції необхідно прийняти. 

Якщо фактичне значення критерію DW потрапляє в межі від 
верхнього критичного рівня DW2 до двох, то гіпотезу про 
наявність автокореляції потрібно відхилити. Коли фактичне 
значення критерію DW міститься в межах від нижнього до 
верхнього критичного значення, то існує невизначеність щодо 
наявності автокореляції залишків. У цьому випадку гіпотезу про 
наявність автокореляції доцільніше прийняти, ніж відхилити. 

Якщо фактичне значення критерію DW більше від 2, то, як 
було зазначено, може йтися про від’ємну автокореляцію. 
Оскільки критичні значення критерію DW табульовані для 
додатної автокореляції, то щоб зробити висновки стосовно 
від’ємної автокореляції, необхідно відняти розраховане значення 
критерію DW від 4 і цю різницю порівнювати з критичними 
значеннями критерію DW, як це було показано раніше. 

Приклад 8.1. Нехай обсяг вибірки складається з 20 
спостережень. На основі цієї вибірки побудовано модель, яка 
включає в себе три пояснювальні змінні. Наведено табличні 
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значення критерію Дарбіна — Уотсона DW1 і DW2 для 1 %- і 5 %-
го рівнів значущості: 

DW1  DW2 
1 = 1 %  0,77  1,41 
2 = 5 %  1,00 1,68 
Для додатної автокореляції залишків ці значення є межами 

п’яти інтервалів, за якими можна дійти таких висновків: 
1) 0  DW  0,77 — нульова гіпотеза відхиляється як з 1 %-м, 

так і за 5 %-м рівнями значущості; 
2) 0,77  DW  1,00 — нульова гіпотеза відхиляється з 5 %-м 

рівнем значущості; для 1 %-го рівня значущості певних висновків 
зробити не можна; 

3) 1,00  DW  1,41 — критерій не дає певних результатів як 
для одного, так і для другого рівня значущості; 

4) 1,41  DW  1,68 — нульова гіпотеза не відхиляється з 1 %-м 
рівнем значущості, для 5 %-го рівня значущості певних висновків 
зробити не можна; 

5) 1,68  DW  2,00 — нульова гіпотеза не відхиляється для 
обох рівнів значущості. 

Дж. Джонстон [2] наводить ряд спостережень, які свідчать про 
те, що верхній рівень DW2 ближчий до істинного значення 
прийняття гіпотези, яка перевіряється. Отже, якщо виникають 
сумніви, можна обмежитись одним показником — DW2. Це 
означає, що сам критерій також може мати зміщення, він указує 
на наявність серійної кореляції першого порядку і там, де її не 
повинно бути. Дж. Джонстон зауважує, що оскільки наслідки 
некоректного прийняття нульової гіпотези можуть бути набагато 
серйознішими, ніж її некоректного відхилення, то в сумнівних 
випадках нульову гіпотезу, як правило, краще відхилити. 

 
8.2.2. Критерій фон Неймана. Для виявлення 

автокореляції залишків використовується також критерій фон 
Неймана: 
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Звідси 
1


n

n
DWQ . При .DWQn   Фактичне значення 

критерію фон Неймана порівнюється з табличним для вибраного 
рівня значущості і заданої кількості спостережень. Якщо 

таблфакт QQ  , то існує додатна автокореляція, у протилежному 

випадку — вона відсутня. 
8.2.3. Нециклічний коефіцієнт автокореляції. Цей 

коефіцієнт показує ступінь взаємозв’язку залишків кожного 
наступного значення з попереднім, а саме: 

1-й ряд — 1321 ...,, nuuuu ; 

2-й ряд — nuuuu ...,, 432 . 

Він обчислюється за формулою: 
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Коефіцієнт *r  може набувати значень в інтервалі (–1; +1). 
Від’ємні значення його свідчать про від’ємну автокореляцію, 
додатні — про додатну. Значення, що містяться в деякій 
критичній області біля нуля, свідчать про відсутність 
автокореляції, тобто стверджують нульову гіпотезу про 
відсутність автокореляції залишків. Оскільки ймовірнісний 
розподіл *r  встановити важко, то на практиці замість *r  часто 
застосовують циклічний коефіцієнт автокореляції .0r  

 

8.2.4. Циклічний коефіцієнт автокореляції. Він 
виражає ступінь взаємозв’язку рядів: 

1-й ряд — 1321 ...,, nuuuu , nu ; 

2-й ряд — nuuuu ,...,,, 432 , 1u . 

Циклічний коефіцієнт обчислюється за формулою: 
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Для досить довгих рядів вплив циклічних членів на значення 
коефіцієнта 0r  неістотний, тому можна вважати, що 
ймовірнісний розподіл 0r  наближається до розподілу *r . Якщо 
останній член ряду дорівнює першому, тобто u1 = un, то 
нециклічний коефіцієнт автокореляції дорівнює циклічному. 
Очевидно, що коли залишки не містять тренду, то припущення 
про рівність u1 = un не далеке від реальності і циклічний 
коефіцієнт автокореляції наближається до нециклічного. 

Фактично обчислене значення циклічного коефіцієнта 
автокореляції порівнюється з табличним для вибраного рівня 
значущості і довжини ряду n. Якщо табл

0
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0 rr  , то існує 

автокореляція. Припускаючи, що 0
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коефіцієнт автокореляції можна записати у вигляді 
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На практиці часто замість (8.16) обчислюють 
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8.3. Оцінвання параметрів моделі 
з автокорельованими залишками 

8.3.1. Метод Ейткена. Нехай в економетричній моделі 

 yt = a0 + a1xt + ut , (8.18) 

ut = ̂ ut + t , 1 , 

де t — нормально розподілені випадкові залишки. Тоді, щоб 
усунути автокореляцію залишків ut, потрібно перетворити 
основну модель так, щоб вона мала нормально розподілені 
залишки t. Оскільки t = ut – ut – 1, то для такого перетворення 
запишемо модель для попереднього періоду 

 yt – 1 = a0 + a1xt – 1 + ut – 1. (8.19) 
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Помножимо ліву і праву частину її на ̂  та віднімемо від 

моделі для періоду t (8.18). 
У результаті дістанемо таку економетричну модель: 

 yt – ̂ yt – 1 = a0(1 – ̂ ) + a1(xt – ̂ xt – 1) + (ut – ̂ ut – 1). (8.20) 

Оскільки в цій моделі (ut –  ut – 1) дорівнює t, то очевидно, що 

коли вихідні дані перетворені, а саме yt – ̂ yt – 1, xt – ̂ xt – 1, то для 

оцінювання параметрів можна застосувати 1МНК. При цьому для 
перетворення можна використати перші різниці yt – yt – 1 і xt – xt – 1, 
коли ̂  наближається до одиниці. Якщо ̂  близьке до нуля, то 

вихідні дані можна не перетворювати. Зауважимо, що коли ̂  = 1, 

у перетвореній моделі буде відсутній вільний член (як виняток 
може бути ситуація, коли вихідна модель містить лінійний 
часовий тренд). Якщо залишки вихідної моделі 
характеризувались додатною автокореляцією, використання 
перших різниць може спричинити виникнення від’ємної 
автокореляції. 

Параметр  наближено можна знайти на основі залишків, 
якщо обчислити циклічний коефіцієнт кореляції r0. На практиці, 
як правило,   r0, але r0 коригується на величину зміщення. 

Усі ці міркування покладено в основу методів оцінювання 
параметрів економетричної моделі з автокорельованими 
залишками. 

Для оцінювання параметрів економетричної моделі, що має 
автокореляцію залишків, можна застосувати узагальнений 
метод найменших квадратів (метод Ейткена), який 
базується на скоригованій вихідній інформації з урахуванням 
коваріації залишків. 

У розд. 7 було розглянуто метод Ейткена і показано, що 
система рівнянь для оцінювання параметрів моделі на основі 
цього методу записується так: 

 ,ˆ)( YVXAXVX 11    (8.21) 

або 

 ,ˆ)( YSXAXSX 11    (8.22) 

де Â — вектор оцінок параметрів економетричної моделі; 
X — матриця пояснювальних змінних; 
X  — матриця, транспонована до матриці X; 

1S — матриця, обернена до матриці кореляції залишків; 
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1V — матриця, обернена до матриці V, де ,SV u
2  а 2

u  —  

залишкова дисперсія; 
Y — вектор залежних змінних. 
Звідси 

,)(ˆ YVXXVXA 111    

або 

.)(ˆ YSXXSXA 111    

Отже, щоб оцінити параметри моделі за методом Ейткена, 
потрібно сформувати матрицю S або V. 

Матриця S має вигляд  
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У цій симетричній матриці s  виражає коефіцієнт 

автокореляції s-го порядку для залишків tu . Очевидно, що 

коефіцієнт автокореляції нульового порядку дорівнює 1. 

Оскільки коваріація залишків s  при s > 2 часто наближається 

до нуля, то матриця, обернена до матриці S, матиме такий вигляд: 
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S . (8.23) 

Таку матрицю пропонується використовувати для оцінювання 
параметрів моделі з автокорельованими залишками за методом 
Ейткена. 

Покажемо, як розрахувати циклічний коефіцієнт кореляції. 
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де ut — величина залишків у період t; ut–1 — величина залишків у 
період t – 1; n — кількість спостережень. 

Якщо n , то 0* rr  . 

На практиці ρ = r0. 
Зауважимо, що параметр r0 має зміщення. Тому, 

використовуючи такий параметр для формування матриці S, 
можна скоригувати його на величину зміщення 
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де 
n

m
 — величина зміщення (m — кількість змінних моделі). 

Матриця SV u

2 , де 2

u  — залишкова дисперсія, що 
визначається за формулою 
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де u— вектор, транспонований до вектора залишків u; n – m — 
кількість ступенів свободи. 

Дисперсія залишків з урахуванням зміщення обчислюється так: 
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Значення  можна обчислити методом 1МНК за допомогою 
авторегресійного рівняння xt =  xt–1 + vt. У такому разі за 1МНК 
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де xt взято як відхилення від свого середнього значення. 
Реалізація алгоритму Ейткена для оцінювання параметрів 

моделі включає такі п’ять кроків. 
Крок 1. Оцінювання параметрів моделі за методом 1МНК. 
Крок 2. Дослідження залишків на наявність автокореляції. 
Крок 3. Формування матриці коваріації залишків V або S. 
Крок 4. Обернення матриці V або S. 
Крок 5. Оцінювання параметрів методом Ейткена, тобто 

згідно з (8.21), (8.22). 
Приклад 8.2. За допомогою двох взаємозв’язаних часових 

рядів про роздрібний товарообіг та доходи населення побудувати 
економетричну модель, що характеризує залежність роздрібного 
товарообігу від доходу. Вихідні дані наведено в табл. 8.1. 

Таблиця 8.1 

Рік 1 2 3 4 5 6 7 8 9 10 

Роздрібний 
товарообіг, 
грош. од. 

24,0 25,0 25,7 27,0 28,8 30,8 33,8 38,1 43,4 45,5 

Дохід, грош. од. 27,1 28,2 29,3 31,3 34,0 36,0 38,7 43,2 50,0 52,1 

Розв’язання  
1. Ідентифікуємо змінні моделі: 
yt — роздрібний товарообіг у період t, залежна змінна; 
xt — дохід у період t, пояснювальна змінна. 
Звідси  
yt = f (xt , ut), 

де ut — стохастична складова, залишки.  
2. Специфікуємо економетричну модель у лінійній формі: 

yt = a0 + a1xt + ut ; 

tt xaay 10
ˆˆˆ  ; 

ut = yt – tŷ . 



 310 

3. Визначаємо оцінки параметрів моделі 0â , 1â  за методом 

найменших квадратів, припускаючи, що залишки ut не корельовані: 

,)(ˆ YVXXVXA 111    

де X  — матриця, транспонована до X. 
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;,ˆ 17200 a  

.,ˆ 86501 a  

Економетрична модель має вигляд 

.,, tt xy 86501720 


 

4. Знаходимо розрахункові значення роздрібного товарообігу 
на основі моделі tt xy 86501720 ,, 


 і визначаємо залишки ut 

(табл. 8.2). 

Таблиця 8.2 
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Рік yt ty


 ut 
2
tu  ut — ut–1 (ut — ut–1)2 ut ut–1 

1 24,0 23,612 0,388 0,150 — — — 

2 25,0 24,564 0,436 0,190 0,049 0,0024 0,1691 

3 25,7 25,515 0,485 0,034 –0,252 0,0632 0,0806 

4 27,0 27,245 –0,245 0,060 –0,430 0,1848 –0,045 

5 28,8 29,581 –0,779 0,609 –0,535 0,2866 0,1913 

6 30,8 31,310 –0,510 0,261 0,270 0,0729 0,3984 

7 33,8 33,646 0,154 0,023 0,665 0,4417 –0,0787 

8 38,1 37,971 0,129 0,017 –0,025 0,0006 0,0199 

9 43,4 43,420 –0,020 0,0002 –0,149 0,0222 –0,003 

10 45,5 45,236 0,264 0,070 0,284 0,0804 –0,005 

 322,1   1,4152  1,1550 0,7276 

Записуємо оцінку критерію Дарбіна—Уотсона: 

8160
41521

1551

1

2

2

2
1

,
,

,
)(
















n

t
t

n

t
tt

u

uu

DW . 

Порівнюємо значення критерію DW з табличним для  = 0,05 і 
n = 10. Критичні значення критерію DW у цьому разі такі: 

DW1 = 0,879 — нижня межа; DW2 = 1,320 — верхня межа. 
Оскільки критерій DWфакт < DW1, то можна стверджувати, що 

залишки ut мають додатну автокореляцію. 
Наявність чи відсутність автокореляції залишків можна також 

визначити за критерієм фон Неймана. 

Критерій фон Неймана .,9060
110

10



 DWQ  Це значення порів-

нюється з табличним; 181,табл Q  при n = 10 і рівні значущості 

  = 0,05. Оскільки таблфакт QQ  , то існує додатна автокореляція 

залишків. 
6. Застосовуюючи метод Ейткена, оцінюємо параметри 

економетричної моделі з автокорельованими залишками. 
Оператор оцінювання записуємо так: 
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,)(ˆ YSXXSXA 111    

де 1S  — матриця, обернена до матриці S; 1V  — матриця, 
обернена до матриці V. 

Матриця S — матриця коваріацій залишків вигляду 
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7. Щоб сформувати матрицю S або V, необхідно визначити 
величину , яка характеризує взаємозв’язок між послідовними 
членами ряду залишків. Нехай залишки описуються 
автокореляційною моделлю першого порядку ut = ut – 1 + t , 
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Отже, матриця S набирає вигляду: 
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0 a ; 861,0ˆ

1 a . 

Остаточно дістаємо економетричну модель: 

 .861,0442,0 tt xy 


 (1) 

8. Знайдемо розрахункові значення 1ŷ  на основі побудованої 

економетричної моделі та визначимо залишки vt (табл. 8.3). 

Таблиця 8.3 
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Рік yt ty


 vt 
2

tv  vt – vt–1 (vt – vt–1)2 vtvt–1 

1 24,0 23,784 0,216 0,0468 — — — 

2 25,0 24,731 0,269 0,0724 0,0526 0,0028 0,0528 

3 25,7 25,678 0,022 0,0005 –0,2774 0,0612 0,0058 

4 27,0 27,401 –0,401 0,1608 –0,4226 0,1786 –0,0086 

5 28,8 29,727 –0,927 0,8586 –0,5255 0,2762 0,3716 

6 30,8 31,449 –0,649 0,4215 0,2774 0,0769 0,6016 

7 33,8 33,775 0,025 0,0006 0,6745 0,4549 –0,0164 

8 38,1 38,081 0,019 0,0004 –0,0066 0,00004 0,0005 

9 43,4 43,508 –0,108 0,0116 –0,1262 0,0159 0,0020 

10 45,5 45,316 0,184 0,0937 0,2912 0,0848 0,9908 

    1,6069  1,1514 0,9908 

9. Обчислимо критерій Дарбіна—Уотсона і фон Неймана: 

7160
60691

15141
,

,

,
DW  . 

Порівнявши його з критичним значенням при n = 10 і 
 = 0,05, коли DWфакт < DW1, дійдемо висновку, що ми не 
звільнились від автокореляції залишків. Це означає, що 
вихідна гіпотеза, коли залишки описуються авторегресійною 
схемою першого порядку, не виконується. Якщо залишки 
описуються авторегресійною схемою вищого порядку, то 
доцільно виконати оцінювання параметрів моделі іншими 
методами, наприклад методом Кочрена—Оркатта або Дарбіна, 
які буде розгляну- 
то далі. 

10. Визначаємо оцінку параметрів моделі, скориставшись обер-
неною матрицею S–1 вигляду: 
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Підставивши  = 0,77, дістанемо: 
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Вектор оцінок параметрів моделі: 
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Отже, 442,0ˆ
0 a ; 861,0ˆ

1 a , і економетрична модель 

подається у вигляді 

 tt xy 861,0442,0 


. (2) 

Порівнюючи економетричні моделі (1) і (2), бачимо, що при 

оцінюванні параметрів методом Ейткена за допомогою матриці S
–1

, 
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коли коваріація залишків для 2S  відсутня, дістаємо ті самі 

результати, що й раніше.  
 
8.3.2. Метод перетворення вихідної інформації. 

Випадок, коли залишки задовольняють авторегресійну модель 
першого порядку, допускає альтернативний підхід до пошу- 
ку оцінок параметрів моделі за допомогою двокрокової про- 
цедури: 

1) перетворення вихідної інформації із застосуванням для 
цього параметра ; 

2) застосування 1МНК для оцінювання параметрів на основі 
перетворених даних. 

Для цього треба знайти матрицю перетворення T, щоб модель 

 TuTXATY   (8.24) 

мала скалярну дисперсійну матрицю 

.)( ETuTuM u
2  

Розглянемо матрицю T1 розміром n  n: 
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Безпосереднім множенням легко переконатися, що 

.)( ETuuTM u
2

11   

А це означає, що можна застосувати 1МНК до перетворених 
даних YT1  і XT1  вигляду 
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Іноді для перетворення вихідної інформації використовується 
матриця 2T  розміром (n – 1)  n, яка отримується з матриці 2T  

викреслюванням першого рядка: 
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Неважко показати, що застосування 1МНК до даних YT1  і XT1  

дає таку саму оцінку параметрів моделі, як і метод Ейткена, а для 
даних YT2  і XT2  — забезпечує порівняно добру апроксимацію. 

У загальному випадку, коли ми не маємо інформації ні про 
порядок авторегресійної моделі, ні про значення параметрів у 
ній, а через це не можемо застосувати ні метод Ейткена, ні 
метод перетворення вихідної інформації, в економетричній 
літературі пропонуються наближені методи Кочрена—Оркатта 
і Дарбіна. 

Приклад 8.3. Згідно з даними, які наведено в табл. 8.1 
(приклад 8.2), необхідно оцінити параметри економетричної 
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моделі, яка має автокорельовані залишки, методом перетворення 
вихідної інформації. 

Розв’язання 
1. Сформуємо матрицю T1 для перетворення вихідних даних: 
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2. Перетворимо змінні Y, X на основі матриці T1: 
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3. Для перетворених даних скористаємося оператором 1МНК: 

.)(ˆ)(ˆ **** YXXXAYXXXA


  11  

Позначимо ,*YYT t 1  .*XXT t 1  Тоді маємо 
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Звідси ;,ˆ 44200 a  ;,ˆ 86101 a  економетрична модель: 

.,, tt xy 86104420 


 

Оцінки параметрів моделі, які визначені за методом 
перетворення вихідної інформації, не відрізняються від оцінок, 
здобутих методом Ейткена для різних матриць коваріацій 
залишків. Це означає, що обидва методи є альтернативними, коли 
залишки — описуються авторегресійною функцією першого 
порядку. 

Дещо відрізняються одна від одної оцінки параметрів моделі, 
якщо для перетворення вихідних даних використовується 
матриця Т2. Так, вектор оцінок 

 88408620 ,,ˆ A . 

Звідси ;862,0ˆ
0 a    ;884,0ˆ

1 a  економетрична модель: 

.,, tt xy 88408620 


 

Приклад 8.4. На основі статистичної інформації, що задана в 
таблиці (приклад 4.2), необхідно побудувати економетричну 
модель з автокорельованими залишками. 

Місяць 
Прибуток, 

гр. од. 
Інвестиції, 

гр. од. 
ОВФ, 
гр. од. 

ФРЧ, 
людино–днів 

t (Y) (Х1) (Х2) (Х3) 
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1 39 62 22 104 

2 41 65 25 109 

3 38 57 17 99 

4 42 66 27 114 

5 44 69 28 116 

6 49 58 20 110 

7 44 72 32 119 

8 45 70 30 116 

9 48 75 34 114 

10 51 79 35 120 

11 49 77 33 124 

12 54 82 37 119 

13 55 80 37 129 

14 57 75 39 129 

15 56 83 38 132 

16 54 81 36 130 

17 59 87 40 124 

18 61 92 42 134 

19 62 95 43 137 

20 64 97 42 139 

 
Для побудови економетричної моделі необхідно: 
1. Дослідити наявність автокореляції. 
2. Побудувати матриці S та S–1. 
3. Оцінити параметри моделі методом Ейткена. 
4. Оцінити параметри моделі на основі перетворення вихідної 

інформації. 
5. Розрахувати точковий та інтервальний прогнози. 
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6. Зробити порівняльний аналіз кількісних характеристик 
взаємозв’язку, здобутих 1МНК методом Ейткена у разі 
гетероскедастичності та автокореляції. 

 

Розв’язання  
1. Дослідимо наявність автокореляції. 
Спочатку запишемо економетричну модель: 

ttttt uxaxaxay  332211 ;  

tttt xaxaxaay 3322110
ˆˆˆˆ 


. 

Припустимо, що наявність автокореляції залишків описується 
авторегресійною моделлю першого порядку: 

ttt uu  1 . 

1а. Для визначення наявності автокореляції залишків 
застосуємо критерій Дарбіна—Уотсона: 

 
.,6932

1

2

2

2

1
















n

t
t

n

t
tt

u

uu

DW  

Оскільки критерій DW перевищує число 2, то маємо справу з 
від’ємною автокореляцією. Табличні значення критерію DW, 
табульовані для додатної автокореляції. Тому для перевірки 
суттєвості автокореляції необхідно від верхньої межі існування 
критерію Дарбіна—Уотсона відняти здобуте значення і його 
порівнювати з табличними: 

DW = 2,692560477, 

DWф = 1,307439523, 

DW1кр = 1, 

DW2кр = 1,68. 
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Таким чином, DWф = 4 – 2,693 = 1,307. 
Цю величину будемо порівнювати з нижньою та верхньою 

межами табличного значення. 
Оскільки DW1 ≤ DWф ≤ DW2, то існує невизначеність щодо 

автокореляції. У цьому випадку відхиляємо нульову гіпотезу і 
приймаємо гіпотезу про наявність автокореляції. 

1б. Визначимо критерій фон Неймана: 

   








 


n

t
t

n

t
tt

nu

nuu

Q

1

2

2

2

1 1

; 

.,, 371
19

20
3071

1




n

n
DWQ  

Фактично розраховане значення Q порівнюється з Q 
критичним (табличним) за довжини часового ряду n = 20 і рівня 
значущості  = 0,05. Оскільки фактичне значення Q практично 
дорівнює табличному (Qтабл = 1,36), то існує невизначеність щодо 
автокореляції. 

1в. Визначимо циклічний коефіцієнт автокореляції: 

351,0

1

2

2
1

0 



 








n

t
t

n

t
tt

u

uu

r . 

Циклічний коефіцієнт автокореляції від’ємний, оскільки 

автокореляція є від’ємною Якщо 300 ,r , то автокореляцією 

можна знехтувати. У нашому випадку автокореляцію потрібно 
вважати перепоною до застосування методу найменших 

квадратів, бо 300 ,r . 

Оцінимо параметри економетричної моделі узагальненим 
методом найменших квадратів. 

2. Побудуємо матриці S та S–1: 
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Розрахуємо оцінки параметрів моделі методом Ейткена, 

застосувавши   .ˆ YSXXSXA 111    
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Економетрична модель прибутку запишеться так: 

321 42,007,024,074,20ˆ XXXY  . 

4. Оцінимо параметри моделі на основі перетворення вихідної 
інформації. Для цього побудуємо матрицю Т1: 
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Помноживши матрицю Т1 на вектор Y та матрицю Х, 

дістанемо скориговану інформацію: 



 328 

Y* *
0X  

*
1X  *

2X  *
3X  

36,51706949 0,936335115 58,05277713 20,59937253 97,37885196 

54,69319671 1,351107608 86,7686717 32,72436738 145,5151912 

52,39541193 1,351107608 79,82199452 25,7776902 137,2707293 

55,3420891 1,351107608 86,01313366 32,69882934 148,7596532 

58,74651954 1,351107608 92,17310213 37,47990542 156,0262673 

64,44873475 1,351107608 82,22642495 29,83101302 150,7284825 

61,20427279 1,351107608 92,36424126 39,02215216 157,6218369 

60,44873475 1,351107608 95,27974778 41,23544346 157,7818054 

63,79984236 1,351107608 99,57753256 44,53322824 154,7284825 

67,85316518 1,351107608 105,3330706 46,93765867 160,0262673 

66,90648801 1,351107608 104,737501 45,28876628 166,132913 

71,20427279 1,351107608 109,0352858 48,58655106 162,5373434 

73,95981083 1,351107608 108,7908239 49,9909815 170,7818054 

76,31091844 1,351107608 103,0886086 51,9909815 174,2928814 

76,01313366 1,351107608 109,3330706 51,69319671 177,2928814 

73,6202605 1,351107608 110,1419315 49,3420891 176,3462043 

77,95981083 1,351107608 115,4397162 52,63987389 169,643989 

81,71534887 1,351107608 122,5463619 56,04430432 177,5373434 

83,41756409 1,351107608 127,3018999 57,74651954 184,0484195 

85,7686717 1,351107608 130,3552228 57,09762714 187,1017423 

 
Застосувавши функцію «Лінійн» (Exсel) до перетвореної 

інформації, дістанемо: 

Вектор оцінок параметрів моделі: 























4178310

0738600

2417730

73795820

,

,

,

,

Â . 

Як бачимо, він повністю збігається з раніше розрахованим на 
основі матриці S–1. 
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8.3.3. Метод Кочрена—Оркатта. Нехай задано 
економетричну модель 

 ;,, ntuxaay ttt 110   (8.26) 

., 11   ttt uu  

Перетворивши вихідну інформацію за допомогою ,  дістанемо: 

 .)()( ttttt xxaayy   1101 1  (8.27) 

У цій моделі залишки t  мають скалярну дисперсійну матрицю. 

Сума квадратів залишків на основі (8.27) визначатиметься 
співвідношенням 

   .)()()(
2

2
1101

1

2 1






n

t
tttt

n

t
t xxaayy  (8.28) 

Безпосередня мінімізація функції (8.28) приводить до системи 
нелінійних рівнянь, тому аналітичний вираз оцінок параметрів 

0â , 1â  і   дістати важко. 

Метод наближеного пошуку параметрів ,ˆ
0a  1â  і ,  які 

мінімізують суму квадратів (8.28), дає ітеративний метод, 
запропонований Кочреном і Оркаттом. 

Опишемо його алгоритм. 
Крок 1. Довільно вибирають значення параметра ,  

наприклад .0

1r  Підставивши його в (8.28), обчислюють )1(

0â  і 

.ˆ )(1
1a  

Крок 2. Узявши )1(

00
ˆˆ aa   і ,ˆˆ )(1

11 aa   підставимо їх у (8.28) і 

обчислимо .01r  

Крок 3. Підставивши в співвідношення (8.28) значення ,2r  

знайдемо )2(

0â  і .ˆ )(2
1a  

Крок 4. Використаємо )2(

00
ˆˆ aa   і )2(

11
ˆˆ aa   для мінімізації суми 

квадратів залишків (8.27) за невідомим параметром 0
3r . 

Процедура триває доти, доки наступні значення параметрів 0â , 

1â  і   не будуть відрізнятись менш як на задану величину. 

Цей ітеративний метод, як і інші аналогічні процедури, має дві 
проблеми: 

а) збіжності; 
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б) характеру знайденого мінімуму — локальний чи гло- 
бальний. 

Проведені дослідження [2] за цими двома проблемами 
показали, що в результаті застосування методу Кочрена—
Оркатта завжди знаходимо глобальний оптимум і алгоритм 
забезпечує порівняно добру збіжність. 

Часто пропонується альтернативний підхід до використання 
цього ітеративного методу. 

На відміну від попереднього в ньому подальші ітерації 
припиняються тоді, коли на основі критерію Дарбіна—Уотсона 
робиться висновок про відсутність автокореляції залишків. 

Розглянемо алгоритм 

Крок 1. Приймається гіпотеза 01  r  і мінімізується на 

основі 1МНК сума квадратів: .)ˆˆ( )()(




n

t
tt xaay

1

21
1

1
0  Знаходяться 

оцінки параметрів  1

0â  і  .ˆ 1
1a  

Крок 2. Знаходяться залишки і на основі критерію Дарбіна—
Уотсона перевіряється нульова гіпотеза відносно автокореляції 
залишків. Якщо гіпотеза відхиляється, то переходять до кроку 3. 

Крок 3. На цьому кроці мінімізується сума квадратів залишків: 

  ,)ˆˆ()ˆˆ( )()()()(
2

1
1

1
1

1
01

1
1

1
0


 

n

t
tttt xaayxaay  

де )1(

0â  і )1(

1â  — оцінки параметрів, знайдені на першому кроці 

1МНК. У результаті параметр 0

2r  визначається як коефіцієнт 

регресії залишків, знайдених 1МНК. 

Крок 4. Використовуючи значення оцінки параметра ,02r  

визначають оцінки параметрів )2(

0â  і )2(

1̂a  на основі 1МНК, який 

застосовується до перетворених даних )( 1

0

2  tt yry  і ).( 1
0

2  tt xrx  

Крок 5. Визначаються залишки і перевіряються на наявність 
автокореляції. Якщо гіпотеза про наявність автокореляції 
відхиляється, то ітеративний процес припиняється. У 
протилежному випадку переходимо до кроку 3, де 

використовуються знайдені оцінки параметрів )2(

0â  і .ˆ )(2
1a  

Коли ітеративний процес припиняється, то виконується 
перевірка значущості параметрів для останньої економетричної 
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моделі. У цьому випадку звичайні формули дадуть обґрунтовані 
оцінки дисперсій залишків. 

8.3.4. Метод Дарбіна. Дарбін запропонував просту 
двокрокову процедуру, яка також дає оцінки параметрів. Вони 
асимптотично мають той самий вектор середніх і ту саму 
матрицю дисперсій, що й оцінки за методом найменших 
квадратів. 

Крок 1. Підставимо значення залишків, яке підпорядковане 
авторегресійній моделі першого порядку ,ttt uu  1  в 

економетричну модель ttt uxaay  10 . Тоді дістанемо 

tttt uxaay  110 , де 11011   ttt xaayu ˆˆ . 

Звідси ,)( ttttt xaxayay   11110 1  де t  має скалярну 

матрицю дисперсій. 
Згідно з 1МНК визначаються параметри цієї моделі, куди 

входить і коефіцієнт  . У результаті обчислень маємо .r  

Крок 2. Значення r  використовується для перетворення 

змінних )( 1
 tt yry  і )( 1

 tt xrx , а 1МНК застосовується до 

перетворених даних. Коефіцієнт при )( 1
 tt xrx  є оцінкою 

параметра ,1a  а вільний член, поділений на ,r1  оцінює 

параметр .0a  

Метод Дарбіна дуже просто поширюється на випадок кількох 
незалежних змінних і для автокореляції вищих порядків. 

Нехай задано модель 

 ,... ttmmttt uxaxaxaay  22110  (8.29) 

де .tttt uuu   2211  

Підставивши значення tu  в (8.29), дістанемо: 

.ˆ...ˆˆ...ˆ

ˆ...ˆ

1,22,1121,11,111

112211

ttmmttmmt

tmmtttt

xaxaxaxa

xaxayyy








 

Застосувавши 1МНК, обчислимо параметри цієї моделі. 
Коефіцієнти 11 r  і 22 r  використаємо для перетворення 

даних: 

),( 2211   ttt yryry   ),( ,, 2211   tjtjjt xrxrx   .,,, ntmj 11   

Знову застосуємо 1МНК для цих перетворених даних і 

знайдемо оцінки параметрів моделі ,ˆ
0a  ),(ˆ mja j 1 . 
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Описаний щойно ітеративний метод Кочрена—Оркатта і 
розглянута двокрокова процедура Дарбіна за наявності 
автокореляції залишків асимптотично ефективніші, ніж 1МНК. 

Але при цьому постають два важливі запитання: 
1) Чи будуть ці методи ефективнішими, ніж 1МНК, для малих 

вибіркових сукупностей? 
2) Якою — однаковою чи різною — буде ефективність 

застосування методів Кочрена—Оркатта і Дарбіна для малих 
вибірок? 

Чисельний аналіз, виконаний Гриліхесом і Рао [2] за 
допомогою методу Монте-Карло, дав відповідь на ці запитання. 

Висновок 1. 1МНК дає менш ефективні оцінки порівняно з 
іншими методами, якщо сукупність спостережень n = 20 одиниць, а 
  > 0,3. 

Висновок 2. Якщо   < 0,3, то зниження ефективності оцінок 

1МНК порівняно зі складнішими процедурами невелике. 
Висновок 3. Метод Дарбіна забезпечує найкращу оцінку для 

більшого кола параметрів порівняно з іншими методами. 
Висновок 4. Нелінійний метод оцінювання параметрів не дає 

відчутних переваг порівняно з двокроковою процедурою Дарбіна. 

8.4. Прогноз 

Теоретичні дослідження прогнозу в разі порушення умови 
(4.3) було розглянуто в розд. 7. 

Нехай маємо модель: ,uXAY   де 0)(uM  і ,)( VSuuM u  2  

яка побудована для n спостережень. 
Використаємо цю модель для визначення прогнозу залежної 

змінної 1ny


 для періоду n + 1, коли в цьому періоді задано 

незалежну змінну 1nx . Формула дає найкращий незміщений 

прогноз: 

,ˆˆ uVWAxy nn
1

11



  

де Â  — оцінка параметрів моделі за методом Ейткена, 

AXYu ˆ  
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і W — вектор коваріації розрахованих залишків для n 
спостережень і прогнозних залишків un+1: 


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Якщо залишки описуються авторегресійною моделлю 

першого порядку, то з урахуванням рівності 2)( u

s

sttuuM 
 

можна записати: 
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u
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Отже, вектор W можна дістати, помноживши   на останній 

стовпець матриці V. Але оскільки EVV 1 , то добуток 1VW  

являє собою останній рядок матриці E, помножений на  . 

Звідси .nn uuVW  1  

Формула прогнозу має такий вигляд 

 ,ˆˆ
nnn uAxy   11  (8.30) 

де 1
ˆ

ny  — прогнозний рівень залежної змінної; 1nx  — прогнозне 

значення незалежної змінної. 

Приклад 8.5. Використовуючи економетричну модель, яку 
побудовано за даними про роздрібний товарообіг та дохід 
(приклад 8.2), визначити прогнозний рівень товарообігу, коли 
дохід становитиме xn+1 = 55. 

Розв’язання 
1. Запишемо співвідношення, яке визначатиме прогнозний 

рівень залежної змінної 
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,ˆˆ
nnn uAXy   11  

де Хn+1 Â  — точкова оцінка прогнозної залежної змінної; nu  — за-
лишки прогнозу, а un — залишки періоду t(t = n), здобуті згідно з 
1МНК. 

2. Скористаємося економетричною моделлю роздрібного 
товарообігу (приклад 8.2) для обчислення прогнозу: 

1
ˆ

ny = 0,442 + 0,861xn+1 = 0,442 + 0,861 55 = 0,442 + 47,35 = 47,8. 

3. Знайдемо оцінку залишків прогнозу nû , де  — коефіцієнт 

коваріації залишків; nû  — залишки за моделлю для t = 10. 

;,770  ;,ˆ 180nu  

.,,,ˆ 140180770  nu  

4. Визначимо точковий прогнозний рівень роздрібного 
товарообігу на одинадцятий рік (n + 1): 

1
ˆ

ny  = 47,8 + 0,14 = 47,94. 

Приклад 8.6. Виконаємо точковий та інтервальний прогноз 
прибутку на основі економетричної моделі, здобутої у прикладі 8.4. 

Спочатку задамо очікувані значення пояснювальних змінних: 
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
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
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90

1

прX ;  ;пр 13543901X  

точковий прогноз прибутку на основі моделі запишеться так: 

;ˆˆˆˆ прпрпр
пр nuxaxaxaay  3322110


 

  .,,,,,,,пр 3856091703510135417043070902407420 y


 

Для визначення інтервального прогнозу розрахуємо 
стандартну похибку прогнозу за формулою: 
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  ;прпрпр
XXSXXS uy

12     8061207620,
пр
yS . 

Визначимо граничну похибку прогнозу за формулою: 

  ;
прпр крит yy St      ;,050    .,

пр
4073935171 y  

Додавши граничну похибку до точкового прогнозу, дістанемо 
максимально можливий рівень прибутку: 

.792,61407,1385,60
прпрmаx пр  yyy


 

Віднявши граничну похибку від точкового прогнозу, 
дістанемо мінімально можливий рівень прибутку: 

.978,58407,1385,60
прпрmin пр  yyy


 

У результаті маємо: .,, пр 7926197858  y  

Порівняємо отримані значення прогнозу прибутку зі 
значеннями прогнозу, здобутими на основі оцінок моделей за 
1МНК: 

;,пр 0634152760y


 

;17325357,62max пр y  

.95357697,57min пр y  

Як бачимо, точковий та інтервальний прогнози прибутку на 
основі економетричних моделей, параметри яких оцінені 1МНК 
та УМНК, відрізняються в даному випадку несуттєво. 
Зауважимо, що оцінки за УМНК та кількісні характеристики, 
здобуті на основі цих оцінок, ніколи не будуть гіршими ніж за 
1МНК. 

8.5. Стислі висновки 
 

1. Часто під час побудови економетричної моделі стикаються 
з порушенням другої необхідної умови для застосування 1МНК, 
коли SuuM u

2)(  , де матриця S (n  n) характеризує коваріації 

між залишками, а дисперсія лишається сталою. Це явище 
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спостерігається насамперед тоді, коли економетрична модель 
будується на основі часових рядів і називається автокореляцією 
залишків. 

2. Виникнення автокореляції залишків пов’язане ось із чим: 
1) автокореляцією послідовних елементів векторів залежної і 

незалежних змінних; 
2) автокореляцією послідовних значень змінної (змінних), які 

не ввійшли до економетричної моделі; 
3) помилковою специфікацією економетричної моделі. 
3. Оскільки коваріація послідовних значень залишків подається 

у вигляді 

,
)(

2
u

stts uuM


   

то друга з необхідних умов записується так: 

,)( SuuM u
2  

де S — матриця коефіцієнтів коваріацій s-го порядку для 
елементів ряду ut або ,)( VuuM   де .SV u

2  

4. За наявності автокореляції залишків оцінювання параметрів 
моделі 1МНК може мати такі результати: 

1) оцінки параметрів моделі будуть зміщеними; 
2) статистичні критерії Стьюдента (t-критерій) і Фішера (F-

критерій) не можуть бути використані в дисперсійному аналізі 
економетричної моделі; 

3) неефективність оцінок параметрів економетричної моделі 
призводить до неефективних прогнозів. 

5. Наявність автокореляції перевіряється за такими критеріями: 
1) Дарбіна—Уотсона — DW (d); 
2) фон Неймана — Q; 
3) нециклічного коефіцієнта автокореляції r*; 
4) циклічного коефіцієнта автокореляції r0. 

6. Для оцінювання параметрів моделі з автокорельованими 
залишками можна застосувати такі методи: 

1) Ейткена; 
2) перетворення вихідної інформації; 
3) Кочрена—Оркатта; 
4) Дарбіна. 
Перші два методи використовуються тоді, коли залишки 

задовольняють авторегресійну модель першого порядку, третій і 
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четвертий можна застосувати і тоді, коли залишки описуються 
авторегресійною моделлю вищого порядку. 

7. Метод Ейткена базується на скоригованій вихідній 
інформації з урахуванням коваріації залишків. Система рівнянь 
для оцінювання параметрів моделі запишеться так: 

,ˆ)( YVXAXVX 11    

або 

.ˆ)( YSXAXSX 11    

Звідси оператор оцінювання за методом Ейткена має такий 
вигляд 

YVXXVXA 111   )(ˆ  

або  .)(ˆ YSXXSXA 111    

Матриця S у цьому операторі: 









































1

1

1

1

54321

322

232

1432

...

.....................

...

...

...

nnnnn

n

n

n

S . 

Оскільки коваріація залишків s при s > 2 часто наближається 
до нуля, то матрицю, обернену до S, іноді доцільно подавати у 
такому вигляді 































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0010
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00001

1

1 2

2

2

1

...

.....................

...

...

...

S . 

8. Метод перетворення вихідної інформації дає 
альтернативний підхід до пошуку оцінок параметрів моделі за 
допомогою двокрокової процедури: 

1) перетворення вихідної інформації за допомогою 
параметра ; 
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2) застосування 1МНК для оцінок параметрів згідно з 
перетвореними даними. 

Доведено, що ETuuTM u
2

11  )( , тому перетворення вихідної 

інформації виконується за допомогою такої матриці: 




































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0010
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1
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..................

...

...

...

...

T  

розміром n × n. 
Іноді для перетворення вихідної інформації використовується 

матриця T2 розміром (n – 1)  n, яка утворюється з матриці T1 
викреслюванням першого рядка: 











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

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


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T . 

9. Метод Кочрена—Оркатта є ітеративним методом 
оцінювання параметрів економетричної моделі, коли 
мінімізується сума квадратів залишків, яка для моделі 

,ttt uxaay  10  

ttt uu  1  

визначається так: 

  .)()()(
2

2
1101

2

2 1






n

t
tttt

n

t
t xxaayy  

Для мінімізації цієї функції використовується наведений далі 
алгоритм. 
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Крок 1. Довільно вибираємо значення параметра , 
наприклад  = r1, і підставляємо у співвідношення, яке 
визначає суму квадратів залишків, а на основі 1МНК 
знаходимо параметри )1(

0â  і .ˆ )(1
1a  

Крок 2. Узявши )1(

00
ˆˆ aa   і ,ˆˆ )(1

11 aa   підставимо їх у 

співвідношення, яке визначає суму квадратів залишків, та 
обчислимо  = r2. 

Крок 3. Підставивши  = r2, знайдемо оцінки параметрів 
)2(

0â  і .ˆ )(2
1a  

Крок 4. Використовуємо )2(

00
ˆˆ aa   і )2(

11
ˆˆ aa   для мінімізації 

суми квадратів залишків за невідомим параметром  = r3 і т. д. 
Процедура триває доти, доки наступні значення параметрів 0â , 

1â  і  практично не відрізнятимуться від попередніх або 

відрізнятимуться на задану величину. 
10. Метод Дарбіна також є ітеративним методом, який 

складається з двокрокової процедури. На першому кроці 
визначаються 1МНК оцінки параметрів моделі 

, 
j

tjtjt uxaay 0  

де ut = ut–1 + t, або ut = 1ut–1 + 2ut–2 + t і т. д. 
На другому кроці 1МНК застосовується для перетворених 

даних з допомогою параметра , який визначено на першому 
кроці, тобто змінні наберуть вигляду (yt – yt–1), (xtj – x tj–1). 

Коефіцієнт при xtj – xtj–1 є оцінкою параметра aj, а вільний 
член, поділений на , — оцінкою параметра a0. 

11. Оцінку прогнозного рівня залежної змінної можна дістати, 
скориставшись таким співвідношенням: 

,ˆˆ uVWAXy nn
1

11



  

де Â  — вектор оцінок параметрів моделі з автокорельованими 

залишками AXYu ˆ . Оскільки nn uuVW  1 , то формула 

найкращого незміщеного прогнозу запишеться у вигляді: 

nnn uAXy  
ˆˆ

11 . 

8.6. Запитання та завдання  
для самостійної роботи ?
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1. Дайте означення автокореляції. 
2. Які причини виникнення автокореляції залишків? 
3. Як впливає автокореляція залишків на оцінку параметрів 

економетричної моделі? 
4. Які особливості оцінювання параметрів за методом Ейткена за 

наявності автокореляції? 
5. Запишіть матриці перетворення вихідної інформації згідно з 

двокроковою процедурою Дарбіна. 
6. В яких випадках за автокореляції залишків доцільніше 

використовувати методи Кочрена—Оркатта або Дарбіна? 
7. Дайте коротку характеристику алгоритму методу Кочрена—Оркатта. 
8. Чим відрізняється метод Дарбіна від методу Кочрена—Оркатта? 
9. Як записати формулу прогнозу залежної змінної за автокореляції 

залишків? Чому вона має такий вигляд? 

10. Для оцінювання параметрів моделі ttt uxaay  10  

скористайтеся методом перетворення вихідної інформації, яку задано у 
вигляді двох взаємозв’язаних часових рядів: 

 

Рік 1 2 3 4 5 6 7 

Y 10 12 11 10 13 14 16 

X 5 7 6 4 7 8 10 

 
а залишки tu  задовольняють авторегресійну схему першого порядку: 

.ttt uu  1  

11. Дайте порівняльний аналіз оцінок параметрів моделі, наведеної в 
завданні 10, на основі 1МНК і перетворення вихідної інформації. 

12. Визначте ступінь зміщення коваріації параметрів і залишкової 
дисперсії в разі застосування 1МНК у завданні 10. 

13. Дайте оцінку параметрів моделі за методом Кочрена—Оркатта, 
якщо порядок авторегресійної моделі для залишків є схемою другого 

порядку. Вказівка: 1r  = 0,4, 2r  = 0,3 (за даними завдання 10). 

14. Виконайте порівняльний аналіз оцінок параметрів моделі із завдання 
10, знайдених за допомогою перетворення вихідної інформації, а також 
за методом Кочрена—Оркатта. Обґрунтуйте результати порівняння, 
виходячи з особливостей цих двох методів. 

15. Для моделі ,ttt uxaay  10  де ,tttt uuu   2211  дайте 

оцінку параметрів за методом Дарбіна, якщо вихідну інформацію 
задано у вигляді двох часових рядів: 
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Рік 1 2 3 4 5 6 

Y 16 18 19 19 22 25 

X 6 7 8 9 12 13 

 

16. Використовуючи 1  і 2  із завдання 15, зробіть перетворення 

вихідної інформації зі згаданого завдання. 

17. Знайдіть прогнозне значення 8y , коли х8 = 15, за моделлю 

,,,ˆ
txy 6035   скориставшись такими даними: 

 

Рік 1 2 3 4 5 6 7 

Y 10 12 13 11 14 15 14 

u –0,5 –0,3 0,2 0,4 0,1 –0,6 0,6 

18. Визначте вектор W, коли відомі залишки: 
 

t 1 2 3 4 5 6 7 8 9 

t
u  1 –1 1,2 1,1 –1,2 –1,1 0,6 –0,5 0,2 

8.7. Основні терміни і поняття 
 

Автокореляція  Модель з автокорельованими залишками  
Коваріація залишків  Стаціонарний марковський процес  
Додатна автокореляція  Від’ємна автокореляція  Критерій 
Дарбіна—Уотсона  Критерій фон Неймана  Авторегресійна 
схема другого порядку  Нециклічний коефіцієнт автокореляції  
Циклічний коефіцієнт автокореляції  Метод перетворення 
вихідної інформації  Метод Кочрена—Оркатта  Метод 
Дарбіна  Авторегресійна схема першого порядку 
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