
Формула Тейлора 

 

Формулу Тейлора використовують для наближення функції за допомогою многочлена. Вона має 

вигляд: 
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Формула (1) –  формула Тейлора для функції  f x  у околі точки x a . 
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називають многочленом Тейлора. Вираз      n nR x f x P x   називають залишковим членом формули 

Тейлора. Для значень x , при яких залишковий член є достатньо малим, многочлен  nP x  є наближенням 



функції  f x .  Формула (1) дає можливість замінити функцію  f x  многочленом Тейлора  nP x  з 

точністю, що дорівнює значенню залишкового члена  nR x . 

Залишковий член формули Тейлора  nR x  можна представити у вигляді: 
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де точка   знаходиться між точками  x  та a .  

Формулу (3) для залишкового члена формули Тейлора називають залишковим членом у формі 

Лагранжа.  

При x a   nR x  є нескінченно малою вищого порядку, ніж  nx a , тому можна записати, що 
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Такий запис залишкового члена формули Тейлора називають залишковим членом у формі Пеано.  



Формулу Тейлора (1) при 0a   називають формулою Маклорена. Формула Маклорена для функції 

 f x  має вигляд: 
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де  nR x  визначається за формулою: 
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У формулі (6) точка   знаходиться між точками 0  та x , тобто x  , де. 0 1  . 

Формула (6) визначає залишковий член формули Маклорена у формі Лагранжа.  

Залишковий член у формі Пеано:  
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Формула (4.17) означає, що при заміні функції  f x  многочленом Тейлора  у околі точки 0x   похибка 

є нескінченно малою величиною більш високого порядку, ніж nx . 

Наведемо формулу Маклорена для наближення деяких основних елементарних функцій. 
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Приклад 1. Написати розвинення за цілими невід’ємними степенями 1х   до члена 5-го порядку для 

функції   1

2
f x

x



. 

Розв’язання. Функція визначена у околі точки 1а   і має у околі цієї точки похідні будь-якого порядку. 

Обчислимо значення функції та її похідних до 5-го порядку включно у цій точці. 
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За формулою (1) отримуємо: 
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Приклад 2. Написати розвинення за цілими невід’ємними степенями змінної � до члена вказаного 

порядку включно для наступних функцій 

а)   sin
2

x
f x   до 5х ; 

б)    2cos 2f x x  до 8х ; 
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22x xf x e   до члена з �� ; 
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x
f x

x
  до члена з 6x  . 

Розв’язання. а) Застосуємо стандартний розклад за формулою Маклорена (9) функції sin x , 

підставивши туди замість х  
2

х
. Отримуємо: 
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б) Застосуємо формулу Маклорена (10) для функції cos x , підставивши туди замість х  22х . Отримуємо:  
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в) Застосуємо формулу Маклорена (11) для функції   1
1 ,

4
х
     , підставивши туди замість х   
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г)  Застосовуємо стандартне розвинення (8) 
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Маючи на увазі властивості функцій ( )o  , де �(�) нескінченно мала функція, отримаємо 

 52 52 ( )o x x o x  , а для многочленів ( )np x  степеня � > 5 сума  	
(�) + �(�
�) = �(��). Тому розкриваємо 

дужки, враховуючи тільки доданки зі степенями, що не перевищують 5. Одержимо: 
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д) Для розвинення функції 
sin

ln
x

x
 до члена з 6x  застосуємо другий спосіб, в якому застосовуються 

розвинення функцій із таблиці розвинень елементарних функцій за формулою Маклорена з залишковим 

членом у формі Пеано. У даному випадку – це два розвинення 
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3n  , щоб після піднесення до цього степеня мати найменший степінь 6x , тоді отримаємо: 
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Приклад 3. Застосовуючи таблицю розвинень елементарних функцій за формулою Маклорена з 

залишковим членом у формі Пеано, знайти такі границі 

а) 
20

sin (1 )
lim

sin

x

x

e x x x

x x

 
; 

б)  3/2lim 1 1 2
x

x x x x


    ; 

в) 
3 2

30

sin(sin ) 1
lim

6sin 6x

x x x

x x x

 
 

. 

Розв’язання. а) Спочатку спростимо знаменник, застосовуючи еквівалентне перетворення, а саме: 
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тому розвивати функції чисельника потрібно до члена з ��. Застосуємо розвинення функцій �� і sin x  до 

членів з ��, а саме: 
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При розв’язанні застосовано формулу 
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 , що відповідає означенню «о-малого».  

б) Спочатку зробимо такі перетворення: 
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Оскільки в знаменнику стоїть ��, то застосовувати будемо таке розвинення до члена з другим степенем: 
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в) Для обчислення границі 
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 зазначеним умовою способом дізнаємося 

найменший степінь розвинення знаменника за формулою Маклорена, щоб потім до цього степеня 

розвивати чисельник. Маємо 
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Чисельник будемо розвивати до 5x , застосовуючи розвинення функцій (1 )mt  для � =
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