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Теми 8-9 

ЗМІСТОВИЙ МОДУЛЬ 4 

1. Лінійна багатофакторна економетрична
модель (множинна регресія).

2. Визначення факторного впливу на
показник методом кореляційного аналізу.

КЛАСИЧНА ЛІНІЙНА 
БАГАТОФАКТОРНА МОДЕЛЬ 



ПРО ПРИЧИННО-НАСЛІДКОВІ ЗВ’ЯЗКИ:

Результат діяльності економічних агентів залежить від складного переплетіння
низки причин

Причинами, які можуть суттєво впливати на результат діяльності, є інтенсивність
залучення у бізнес-процеси економічних агентів ресурсів (матеріально-
сировинних, трудових, фінансових, інформаційних тощо), раціональність
управлінських рішень (внутрішні чинники) та різноманіття зовнішніх чинників

Усі дестабілізуючі чинники утворюють причинну базу, яка у сукупності й визначає
реалістичність того чи іншого сценарію поводження економічного агенту та
отримання ним певного результату діяльності

ВИСНОВОК: 1. Результуючий показник діяльності економічних агентів
слід моделювати з урахуванням певної кількості ключових
причин (факторних показників) у вигляді множинної
регресії.

2. Статистичну базу для побудови моделі множинної регресії
утворюють синхронізовані за часом і об’єктом (об’єктами)
ретроспективні дані спостережень для виділених з
причинної бази деякої підмножини факторів.

Поміж усіх причин є такі фактори, що більше (суттєво більше) за інші випливають
на результат діяльності, а також є такі, що дублюють вплив інших факторів,
викривлюючи інформацію
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МНОЖИННА ЛІНІЙНА РЕГРЕСІЯ

Змістовний приклад:

Y - річний (квартальний, місячний, тижневий, денний) попит на
товари першої необхідності на душу населення (у.г.о.);
Х1 – споживання м’ясних продуктів (у.г.о);
Х2 – споживання молочних продуктів (у.г.о);
Х3 – споживання зерна і продуктів його переробки (у.г.о);
Х4 – споживання овочів і фруктів (у.г.о);
Х5 – споживання цукру і кондитерських виробів (у.г.о);
Х6 – споживання алкогольних і безалкогольних напоїв (у.г.о);
Х7 – споживання смакових товарів (у.г.о);
Х8 – купівля тканини та швейних виробів (у.г.о);
Х9 – купівля галантерейних виробів (у.г.о);
Х10 – купівля взуття (у.г.о).

Y

Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8 Х9 Х10



МОДЕЛЬ МНОЖИННОЇ ЛІНІЙНОЇ РЕГРЕСІЇ

Загальний випадок:

Змістовний приклад:
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Статистичні оцінки 

справжніх параметрів регресії

,......ˆ
22110 mmii XaXaXaXaaY ++++++= Модель множинної регресії

Стохастична залежність 

Y від Xі

МНК
Оцінка вектора 

невідомих параметрів

( ),;...;;...;;; 210 mi aaaaaa =

Оцінка адекватності 
моделі факт. даним

( )21;; kkpFF таблрозрах 

ВИКОРИСТАННЯ 
МОДЕЛІ



МАТЕМАТИЧНИЙ ІНСТРУМЕНТАРІЙ:

Матрична форма множинної лінійної регресії   LXY += 
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АЛГОРИТМ ЗНАХОДЖЕННЯ НЕВІДОМИХ ПАРАМЕТРІВ:

   XX
T

1. Знайти добуток матриць:

2. Знайти обернену матрицю:      1−

XX
T

3. Знайти добуток матриці на вектор:   YX
T


4. Знайти добуток матриці на вектор:

матриця,

матриця,

вектор-стовпець, 

( ) ( )11 ++ mm

( ) ( )11 ++ mm

( ) 11 +m

       YXXXa
TT
 1−

= вектор-стовпець, ( ) 11 +m



УЗАГАЛЬНЕНА СХЕМА ПЕРЕВІРКИ ПОБУДОВАНОЇ 

МОДЕЛІ НА АДЕКВАТНІСТЬ (МАТЕМАТИЧНИЙ АСПЕКТ):

Вибірковий коефіцієнт 

множинної детермінації:
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Вибірковий коефіцієнт 

множинної кореляції:

Оцінка адекватності
моделі факт. даним за
критерієм Фішера

( )21;; kkpFF таблрозрах 
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k1=m і  k2=n-m-1 – ступені вільності
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ПЕРЕВІРКА ПОБУДОВАНОЇ МОДЕЛІ НА АДЕКВАТНІСТЬ 

(ЗМІСТОВНА ІНТЕРПРЕТАЦІЯ):

Тіснота зв’язку загального впливу всіх незалежних змінних Х (фактори,
причини) на залежну змінну Y (регресант, результат) визначається
коефіцієнтами множинної детермінації R2 та множинної кореляції R, а
також парними коефіцієнтами кореляції rik:

Коефіцієнт множинної кореляції R є оцінкою близькості математичної
форми зв’язку до вибіркових (фактичних) даних

Коефіцієнт множинної детермінації R2 характеризує, якою мірою варіація
залежної змінної Y визначається варіацією сукупності незалежних
змінних Х

Парні коефіцієнти кореляції rik дають оцінку тісноти зв’язку між парами
змінних:

iXYr ;

ki XXr ;

- залежною змінною Y та незалежною Хi

- незалежними змінними Хi та незалежною Хk



СТАТИСТИЧНІ ГІПОТЕЗИ: ПЕРЕВІРКА ЗНАЧУЩОСТІ:
Перевірка статистичної значущості коефіцієнта множинної детермінації:

досліджуване рівняння множинної регресії НЕ ПОЯСНЮЄ 

змінювання регресанта Y під впливом сукупності факторів Хi

0......: 210 ====== mi aaaaH

0: 2

0 =RH

( )21;; kkpFF таблрозрах 

УСІ КОЕФІЦІЄНТИ при незалежних 

змінних Хi дорівнюють НУЛЮ

( )mіаH іА ,...,1,0: 
Хоча б ОДИН КОЕФІЦІЄНТ при незалежній змінній Хi

відмінний від НУЛЯ, тобто хоча б один з факторів Хi

ВПЛИВАЄ на змінювання регресанта Y

Н0 відхиляється та приймається Н1: модель множинної 

регресії є адекватною статистичним даним

Перевірка статистичної значущості коефіцієнта множинної кореляції:

ЗВ‘ЯЗОК між залежною змінною Y (регресантом) та всіма 

незалежними факторами Хi ВІДСУТНІЙ
0:0 =RH

,pkрозрах tt  Н0 відхиляється та приймається Н1: коефіцієнт множинної 

кореляції достовірний, тобто зв’язок між Y та {Хi} є суттєвим



СТАТИСТИЧНІ ГІПОТЕЗИ:

ПЕРЕВІРКА ЗНАЧУЩОСТІ ТА ДОВІРЧІ ІНТЕРВАЛИ:

     1−

= XXC
T

Перевірка статистичної значущості параметрів множинної регресії:
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Довірчий інтервал для окремого 

значимого параметру регресії аi :
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РОЗКЛАД КОЕФІЦІЄНТА МНОЖИННОЇ ДЕТЕРМІНАЦІЇ 

НА КОЕФІЦІЄНТИ ОКРЕМОЇ ДЕТЕРМІНАЦІЇ:

Для з’ясування частки впливу кожного окремого фактора Хi на показник Y
використовують коефіцієнти окремої детермінації (частинні коефіцієнти детермінації):
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ДОВІРЧІ ІНТЕРВАЛИ ДЛЯ БАЗИСНИХ ДАНИХ

Модельне значення регресанта:

 jmjijj xxxX ;...;;...;;1 1=Вектор значень факторів для 

деякого j-го спостереження:
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ПРОГНОЗУВАННЯ ЗА МНОЖИННОЮ ЛІНІЙНОЮ РЕГРЕСІЄЮ: 

ДОВІРЧІ ІНТЕРВАЛИ ДЛЯ ПРОГНОЗУ

Прогнозне значення регресанта:
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