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ABSTRACT Power grids are transforming into flexible, smart, and cooperative systems with greater
dissemination of distributed energy resources, advanced metering infrastructure, and advanced commu-
nication technologies. Short-term electric load forecasting for individual residential customers plays a
progressively crucial role in the operation and planning of future grids. Compared to the aggregated
electrical load at the community level, the prediction of individual household electric loads is legitimately
challenging because of the high uncertainty and volatility involved. Results from previous studies show that
prediction using machine learning and deep learning models is far from accurate, and there is still room for
improvement. We herein propose a deep learning framework based on a combination of a convolutional
neural network (CNN) and long short-term memory (LSTM). The proposed hybrid CNN-LSTM model
uses CNN layers for feature extraction from the input data with LSTM layers for sequence learning.
The performance of our developed framework is comprehensively compared to state-of-the-art systems
currently in use for short-term individual household electric load forecasting. The proposed model achieved
significantly better results compared to other competing techniques. We evaluated our proposed model
with the recently explored LSTM-based deep learning model on a publicly available electrical load data
of individual household customers from the Smart Grid Smart City (SGSC) project. We obtained an
average mean absolute percentage error (MAPE) of 40.38% for individual household electric load forecasts
in comparison with the LSTM-based model that obtained an average MAPE of 44.06%. Furthermore,
we evaluated the effectiveness of the proposed model on different time horizons (up to 3 h ahead). Compared
to the recently developed LSTM-based model tested on the same dataset, we obtained 4.01%, 4.76%, and
5.98% improvement for one, two, and six look-forward time steps, respectively (with 2 lookback time
steps). Additionally, we have performed clustering analysis based on the power consumption behavior of
the energy users, which indicate that prediction accuracy could be improved by grouping and training the
representative model using large amount of data. The results indicated that the proposed model outperforms
the LSTM-based model for both 1 h ahead and 3 h ahead in forecasting individual household electric loads.

INDEX TERMS CNN, deep learning framework, energy consumption, energy consumption forecasting,
individual household, LSTM.

I. INTRODUCTION

Short-term electric load forecasting is a vital part of the
energy sector since it concerns the forecasting of power
consumption in the subsequent few hours. The accurate pre-
diction of the load can significantly support the operations,
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maintenance, and management of the power system. Energy
cannot be stored in considerable quantity, which means that
there must be a fair balance between the generation and
demand [1]. For the accurate and effective scheduling of
power operations, a precise prediction of the power generated
and the power load is critical. Subsequently, it is crucial
to design and develop scheduling plans for efficient usage
of the power available. Moreover, forecasting errors have
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a considerable influence on the safety check, the dynamic
state estimation, and power load dispatching of the power
grid [2], [3]. To support both system operability and planning,
power distribution companies rely on accurate forecasts of
generation and consumption with different time horizons.

The integration of the information and communica-
tion technology (ICT) and advanced metering infrastruc-
ture (AMI) in the traditional power grid (TPG) results
in its transformation into a smart grid (SG) that enables
bi-directional communication between consumers and the
utility. By integrating the ICT in power grids, it is possible to
monitor and optimize power generation, power distribution,
and power consumption. Due to intelligent techniques and
ICT, the SGs empower its consumers with reliable, econom-
ical, sustainable, secure, and efficient energy. Demand-side
management (DSM) technology applied in SGs enables effi-
cient load utilization by shifting end customer load from peak
hours to off-peak hours, helping both in cost reduction and
energy management of the power grids. The opportunity of a
two-way communication flow between utility and consumers
empowers the optimization of energy consumption, which
helps in refining the management and operation of the power
system [4]-[8].

The forecast for energy consumption over time allows
individual customers to assess their consumption habits and,
whenever possible, to shift their energy use to off-peak peri-
ods. Accurate prediction of energy consumption provides
energy users with the opportunity of relating their current
usage pattern with the future expense of their energy. Conse-
quently, these users might take advantage of the forecasting
algorithms through awareness of their energy consumption
and future projections, and they might be able to manage the
expenses of their energy usage more efficiently.

Energy customers play an important role in smart grid
demand response and can be divided into three categories:
residential, business, and industrial sectors. The residential
sector consumes a significant quantity of the total generated
energy. The AMI installed in the residential sector is highly
helpful in forecasting the short-term power load of the end
energy customers [9].

In the past, statistical and machine learning models have
been developed for predicting energy generation through
renewable resources as well as aggregated load forecasting.
These learning models are established on time-series analyses
and can be termed data-driven models [10], [11].

Several approaches have been reported in the literature
to address short-term electric load forecasting. Very few of
them, however, addressed individual households. Recently,
a deep learning model based on long short term mem-
ory (LSTM) has been developed for short-term individual
electric load forecasting [12]. Their proposed model outper-
forms some well-known machine-learning methods.

LSTM networks and CNNs are probably the most widely
used techniques of deep learning. The main idea of utilizing
such models on time-series data is that the LSTM networks
are able to capture the sequence pattern information while
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CNN models are useful in extracting the valuable features and
may filter out the noise of the input data. However, the LSTM
networks although are designed to work with temporal corre-
lations, they utilize only the attributes provided in the training
set, while in contrast CNNs although are used to extract
patterns of local trend as well as the same pattern which
appears in different region of time-series data, they are not
usually adapted for long temporal dependencies. Therefore,
a hybrid model that exploits the benefits of both deep learning
techniques could improve the forecasting accuracy.

In this paper, we propose a CNN-LSTM model that uti-
lizes the ability of convolution layers to learn the internal
representation of time-series data and obtain the important
attributes as well as the usefulness of LSTM layers to identify
short-term and long-term dependencies. The proposed model
was developed and evaluated on real-world load consumption
data of various individual households from the Smart Grid
Smart City (SGSC) project funded by the Australian Gov-
ernment [13]. We compared the performance of the proposed
model with existing state-of-the-art methods in individual
household load forecasting. The effectiveness of the pro-
posed model was further evaluated for various time hori-
zons. The results show that the exploitation of convolutional
layers along with LSTM layers could provide a significant
improvement in the accuracy of individual household load
forecasting.

The major contributions of this paper are: (1) developing
a hybrid CNN-LSTM model, which can exploit the benefits
of convolutional layers and LSTM layers; (2) Illustrating the
effectiveness of the proposed model in individual household
load forecasting in comparison with existing state-of-the-art
methods; (3) validating the efficacy of the proposed model
for various time horizons; (4) investigating the clustering
behavior by grouping customers with structural similarity in
their load profiles.

The remainder of the paper is organized in the following
way. Section II provides a literature review of short-term
load forecasting. Data analysis and problem formulation are
provided in Section III. The proposed CNN-LSTM model is
presented in Section IV. Finally, the results and discussions
are elaborated in Section V.

Il. RELATED WORK

A lot of research work has been conducted in the field
of short-term power load forecasting. Previously, conven-
tional statistical analysis techniques were used for such
time-series analyses. Recently, with the enormous progress in
the fields of artificial intelligence and machine/deep learning,
researchers have developed various deep learning models for
load forecasting problems.

Artificial neural networks (ANNs) have been effectively
used for short term load forecasting at an industrial scale due
to their nonlinear mapping attributes [14]. The main issue
with ANN-based forecasting models is that these models
can easily be stuck into local minima, which causes poor
generalization. Moreover, the forecasting frameworks based
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on ANN models can be over-fitted, and their convergence rate
is slow [15].

The forecasting problems can also be solved by applying
other machine-learning models such as generalized regres-
sion neural networks (GRNNG5) [16], support vector machines
(SVMs) [17], extreme learning machine neural networks
(ELMNNSs) [18] and Kernel-based Support Vector Quantile
Regression [19]. The prediction accuracy of the ELMNN
is intensely reliant on the applied activation function. The
unsystematically chosen activation function will cause poor
generalization [20]. Moreover, it is not suitable for prediction
problems that require deep extraction of features as it cannot
encode the sequence of layers (it can encode one layer only).
The GRNN model is computationally much more complex,
which makes it inappropriate for such forecasting issues [21].
The attributes of all of these models, including large mem-
ory space requirements, high computational complexity, and
optimal choice of a kernel of SVM based models, make them
inappropriate for such forecasting problems [22].

Most of the developed models for short-term load fore-
casting focus on aggregated load forecasting [23]-[30]. For
supporting future smart grid applications, short-term power
load forecasting of individual energy customers is gaining
increasing interest, a subject that has been targeted by very
few researchers in the recent past.

The authors in [31] considered the functional time series
approach to examine the individual household load forecast-
ing. Their evaluation is based on the root mean square error
(RMSE). In [32], the Kalman filter is used to estimate the
load of the individual household for various time horizons and
sampling periods. They argued that the chosen sampling rate
provides a compromise between accuracy and computational
complexity.

The authors in [33] applied SVM and ANN methods on
high-resolution data collected over thirty days from three
houses. They obtained considerable improvements in the
mean absolute error of (4% — 33%). In [34], the authors
proposed an approach based on the activity sequence and
support vector regression. They concluded that the activity
sequence variable is an impelling factor that could enhance
the accuracy of individual household load forecasting for a
time horizon of fifteen minutes ahead.

The authors in [35] explored several forecasting models,
such as neural networks, ARIMA, and exponential smoothing
for horizons ranging from 15 min to 24 h. They evaluated
the developed models using two data sets. One dataset was
from six households in the United States, while the other
was from a single household in Germany. They obtained an
average mean absolute percentage error (MAPE) of 85% and
30% for the data sets from the United States and Germany
respectively.

In [36], the authors applied several different models,
including SVM, classification and regression trees, and
multilayer perceptron neural networks. They concluded
that a combination of household behavioral data and his-
torical electricity usage data from individual households
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could significantly improve the forecasting accuracy. They
achieved a MAPE of 51% and 48 % for the neural networks
and SVM, respectively. In our previous works in [37]-[40],
we have developed several efficient models for power load
forecasting.

In [12], the authors proposed a deep learning model based
on LSTM for short-term residential load forecasting. They
compared their model with state-of-the-art machine learning
models as well as empirical models. Their proposed model
outperformed all the rival techniques and achieved an average
MAPE of 44.06% for short-term residential load forecasting
of 69 customers.

Based on these recent explorations conducted by valuable
researchers, there is a vibrant and increasingly understand-
able research tendency that looks at challenges related to
behavioral and other factors that have an impact on the energy
consumption of the individual household. The motivation is
to observe and get feedback on power usage patterns of each
particular household energy user and determine important
fundamental relations between the contextual issues such
as time of use, day of the week (weekday or weekend),
season, etc. It is anticipated that the insights through such
explorations may enhance the understanding and awareness
of household energy consumption, which will lead us to better
usage of the electricity.

Our proposed method not only outperforms [12] for the
next time step forecasting but also achieved much better
results for load forecasting of up to 3 h ahead. In [12],
the authors forecasted the power load value after the next
30 minutes (look ahead). In our analysis, we included sim-
ulations for up to the next three hours. Additionally, we have
performed clustering analysis based on the power consump-
tion behavior of the energy users, in order to analyze whether
the prediction accuracy could be improved by grouping users
of similar energy profile.

IIl. DATA ANALYSIS AND PROBLEM FORMULATION
Individual household load forecasting is quite challenging
because hourly consumption of electricity depends on several
factors, such as the number of persons living in each house-
hold, the number of major appliances running at a particular
time, weather conditions, economics, lifestyle, and daily rou-
tines, etc. An individual household load can lack a stable pat-
tern and fluctuate even in consecutive hours. On the contrary,
forecasting the aggregated power load at the community or
utility level is comparatively easy [40]. The diversity in the
aggregated power demand smooths daily power load shapes,
which make relative forecasting errors quite low in terms
of MAPE.

In this work, we have used the data gathered during the
SGSC project initiated by the Australian Government [13].
The SGSC collected the power consumption data for about
10,000 customers in Australia. Short-term individual house-
holds electric load forecasting is one of the research areas that
can utilize the data gathered during this project.
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Our aim in this work is to forecast the power demand of
a group of general individual customers. Therefore, it was
unrealistic to consider all the customers available in the SGSC
database. For the demonstration of the proposed method to
make a one-on-one comparison with [12], we selected a
subset of the SGSC dataset, the customers who owned a hot
water system. Based on this selection criterion, we separated
a reasonably-sized subset of data, which corresponded to 69
customers.

Below, we present a brief analysis of the power load pro-
files of some of the individual households. For evaluating the
regularity in daily power consumption profiles, we applied
the well-known density-based clustering technique called
‘density-based spatial clustering of application with noise’
(DBSCAN) [41]. The advantage of using the DBSCAN for
regularity analysis in a power consumption profile is that it
does not need cluster information in the dataset. Additionally,
it includes outliers in the dataset. Generally, the power con-
sumption behavior of the customers will be repeated during
weekdays, which makes the DBSCAN an ideal clustering
technique for identifying outliers in the dataset of daily power
consumption. If the outcome of the DBSCAN shows a low
number of outliers, it means that the regularity in power
consumption behavior is high.

Customer 11462018 daily profiles
29 —— One Major Cluster
One Minor Cluster
Outliers

Energy Consumption {KWh)

i . FPFPFFFFPFPFF TIPS
R S U S N N G A A S

l'ime / Hour

FIGURE 1. The 92 curves of Customer 11462018 grouped into one major
cluster, one minor cluster, and five outliers.

Figure 1 shows the half-hourly power consumption profile
of randomly selected customer (customer ID 11462018) for
the considered period of 92 days. It can be inferred from the
figure that the behavior of this customer varies over a span of
three months and makes one major cluster, one minor cluster,
and some outliers.

Figure 2 shows the number of major and minor clusters
along with the number of outliers in the power consumption
of the daily profiles of a few randomly selected customers.
The independent axis shows customer identification (ID),
while the dependent axis indicates the number of major/minor
clusters and outliers. As seen in the figure, the number
of major/minor clusters and outliers vary from customer
to customer.
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FIGURE 2. Number of major/minor clusters and outliers for a few
randomly selected customers.

For instance, customer ID 8459427 has only one major
cluster with no outliers, which signifies that the household
has a regular power consumption pattern and could be eas-
ily predictable. On the contrary, customer ID 8282282 has
all outliers with no clusters. This customer exhibits highly
volatile power consumption behavior and is hence very diffi-
cult to predict accurately.

For some customers like (customer ID 10509861), there
exist more than one prominent pattern in daily profiles. For
such customers, it is difficult to apply the commonly used
forecasting schemes that are based on features such as time
of the day, any day of the week.
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FIGURE 3. Electricity load profile across a 24 h period on
5th June 2013 based on data [13]; (A) for an individual customer
(customer ID 8198267), (B) aggregated for 69 customers.

The load profile for a randomly selected day of
5th June 2013 for an individual customer (customer ID
8198267) as well as the aggregated load of 69 customers for
the same day are shown in Figure 3. It is evident from this
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figure that compared to the power profile of an individual
customer, the aggregated power profile of 69 customers have
smooth variations. The individual customer profile shows
a peak in the evening between 07:00 p.m. and 07:30 p.m.
and a second peak that is smaller than the peak in the
evening, between 01:30 p.m. and 02:00 p.m. On the contrary,
the aggregated power profile shows a distinct peak in the
morning and the second distinct peak in the evening.

The above analysis signifies that the load forecasting of an
individual customer is challenging due to the abrupt varia-
tions in daily profiles. For every individual customer, a deep
learning model should be trained and evaluated on his own set
of data. This means that for 69 different customers, 69 differ-
ent models should be trained and tested on their respective
datasets.

The CNN and the LSTM are the most commonly used
machine learning models. Our main purpose in designing the
hybrid model of CNN and LSTM layers is to exploit their
characteristics for developing an efficient model for load fore-
casting of the individual household. The individual household
load is a time-series data for which we chose the LSTM layers
because of their capability to extract the sequence pattern
information as well as short-term and long-term dependen-
cies. On the other hand, the CNN layers are employed due to
their capability of extracting the valuable features embedded
in the time series data. Additionally, the CNN layers are help-
ful in filtering out the noise of the input data. Consequently,
a hybrid model that exploits the benefits of both CNN and
LSTM is expected to enhance the load forecasting accuracy
of the individual household.

IV. THE PROPOSED HYBRID DEEP LEARNING
FRAMEWORK

In this section, we discuss the attributes considered for the
developed model. Next, we describe the architecture of the
proposed CNN-LSTM model. The convolutional layers are
used to extract the valuable features from the input data while
LSTM layers are used to exploit short-term and long-term
dependencies.

A. FEATURE PREPARATION
In this work, we study the energy data from the SGSC
project. The raw dataset acquired using smart-meters contains
half-hourly load consumption of residential customers mea-
sured in kilowatt-hour (kWh). We used the most commonly
exploited features in load forecasting literature to obtain the
attributes from the data. The electricity load for residential
customers can vary considerably across different hours of a
day as well as various days of the week, therefore features
such as an hour of the day, day of the week, and holiday
indicator are considered. The seasonal impact is excluded
from the analysis as the data only corresponded to the winter
season in Australia.

The input feature vector shown in Figure 4 is composed of
the following attributes:
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FIGURE 4. Data preparation steps.

1) The energy consumption sequence E; for the past K
time steps. The energy consumption data was first
applied to the Min-Max normalization technique.

2) The one-hot encoded hour indicator 7; which indicates
the time of the day for the past K time steps (ranges
from 1 to 48)

3) The one-hot encoded day of week indicator D; for the
past K time steps (range of values O to 6)

4) The one-hot encoded holiday indicator H; for the past
K time steps (which can be 0 or 1).

B. PROPOSED MODEL ARCHITECTURE
The architecture of the proposed CNN-LSTM based deep
learning framework is shown in Figure 5.

The CNN feature extraction block consists of three 1D
convolutional layers. We incorporated the MaxPooling layer
and Rectified Linear Unit (ReLU) layer in between the two
consecutive convolution layers. The convolutional operation
is highly effective and piling several convolutional layers
in a deep learning framework enables the initial layers to
learn low-level features in the applied input. The feature map,
which is the output of the convolutional layers has a limitation
that it keeps track of the precise location of the features in the
input. It means that little movements in the location of the fea-
ture in the input will lead to a different feature map. A pooling
layer is usually added after the convolutional layer for miti-
gating the limitation of the invariance of the produced feature
map whereas the activation function is applied for enhancing
the capability of the model for learning complex structures.
In our developed model, we have added a MaxPooling layer
which is a down-sampling scheme that reduces the spatial
dimension of the feature maps by a factor of 2, hence reduces
the overall computational load. The ReLU activation function
is resilient against the gradient vanishing problem and has
been widely implemented by various researchers to make the
network more trainable.
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FIGURE 5. Proposed deep CNN-LSTM framework.

In the development of any deep learning model, the dropout
layer offers a cool way to relieve the overfitting issue. This
layer includes the random selection of neurons and deacti-
vating some of them in the training process. In this work,
we have incorporated a dropout layer between the CNN
feature extraction block and the LSTM sequence learning to
prevent overfitting. The output of the sequence learning block
is connected to a dropout layer, followed by a fully connected
layer to produce the final output.

It is a common practice to adopt a coarse-to-fine approach
when developing a CNN model. This structure introduces
higher computational complexity as it involves a large num-
ber of trainable parameters. We chose a pyramid architec-
ture, as discussed in [43] when developing our CNN feature
extraction block, where the number of kernels is large in
the lower-level layers, which are gradually decreased by a
constant as we go down the higher-level layers. The config-
uration of various layers of the proposed model are provided
in Table 1. We select a kernel size of 48 for the first convo-
lution layer, which is reduced to 32 and 16 for the second
and third convolution layers. This type of structure avoids
overfitting and reduces the number of trainable parameters.

In the sequence learning block, we used three LSTM layers
with 20 neurons each. The return sequence is set to true for
the first two LSTM layers so that the network will output the
full sequence of hidden states whereas, in the final LSTM
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layer, the return sequence is set to false so that the network
will output the hidden state at the final time step. We used the
dropout layer before the fully connected layer to avoid over-
fitting. The fully connected layer has 20 neurons. The number
of neurons in the output layers are varied from one to six for
evaluating the different number of lookahead (up to 3 h ahead
load forecasting).

TABLE 1. Configuration of the various layers of the proposed model.

Proposed Model
. Kernels 48
Convolutionl R . .
Size of Receptive Field 3
MaxPooling - -
ReLU - -
. Kernels 32
Convolution2 X . .
Size of Receptive Field 3
MaxPooling - -
ReLU - -
Kernels 16

Convolution3 . A
Size of Receptive Field 3

MaxPooling - -
ReLU - -
Dropoutl - 0.25

Hidden Nodes 20
LSTM1

Return Sequence True

Hidden Nodes 20
LSTM2

Return Sequence True

Hidden Nodes 20
LSTM3

Return Sequence False
Dropout2 - 0.25
Fully Connected Hidden Nodes 20
Output Hidden Nodes 1/2/6

The parameter settings of the developed deep learning
framework are presented in Table 2. In this work, we have
used a well-known optimizer ‘Adam’ and mean absolute error
as a loss function.

TABLE 2. Parameter settings of the developed model.

Parameter Setting

Optimizer Adam

Loss Function Mean Absolute Error (MAE)
Learning Rate {0.001}

Learning Rate Monitor = validation loss, patience = 10 Epochs,

Adjustment factor = 0.8, minimum learning rate = le-5
Batch Size {128}
Epoch {150}

Figure 6 shows the training flow of the proposed deep
learning model. The input data is split into 70% training,
20% validation, and 10% test data. We used mean absolute
error (MAE) as a loss function to monitor the validation loss.
Initially, the training data and the validation data are loaded,
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MAE decreasing

Save model with
updated weights

FIGURE 6. Training flow of the proposed model.

and the training process is initialized. After completing each
epoch, the validation loss is determined and checked to see if
it is decreasing. If the validation loss is decreasing, then the
model is saved with the updated weights, and the epochs are
incremented. However, if the validation loss is not decreasing
for ten consecutive epochs, then the learning rate is decreased,
and the epochs are incremented. The training stops when
the epoch count reaches 150. We load the last saved best
model for prediction and evaluation on the test data to avoid
overfitting.

V. RESULTS AND DISCUSSIONS

In this study, we chose a pool of 69 customers out of thou-
sands of customers’ data. The data were retrieved from the
SGSC project initiated by the Australian Government [13].
The 69 customers were chosen based on the criterion of
energy users having a hot water system. Some customers had
more than one year of data available, while some had only a
few months of data available. We selected data starting from
June (01 June 2013) until the end of August (31 August2013),
when all of the customers’ data was available. We excluded
the seasonal impact from our analysis as the data only cor-
responded to the winter season in Australia. For each cus-
tomer, the data spanned 92 days. We partitioned the data into
training, validation, and test data as 70%, 20%, and 10%,
respectively.

The developed model was experimented with different
configurations of various lookback time steps to include two,
six, and twelve. In addition, the model was evaluated for a
different look ahead/forward time steps such as half-hour, one
hour, and 3 h corresponding to one, two, and six look forward
time steps.
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TABLE 3. Attributes of the data set used for training and testing of the
developed model.

Attribute No. Description Formula

1 Energy Consumption sequence £

2-49 Time of the day Indicator 7i,i=1,2,.,48
(dummy variable)

50 - 56 Day of the week Indicator Di,i=l,2,..,7
(dummy variable)

57-58 Holiday Indicator (dummy Hi,i=0/1

variable)

The various attributes of the data, including the energy
consumption value, the time of the day indicator, the day of
the week indicator, and the holiday indicator, are organized
column wise. The numbering of the various attributes of
column-wise data is shown in Table 3.

A. SINGLE-STEP FORECAST

In this section, we investigated the comparison of various
machine learning and deep learning models with the proposed
model for a single-step forecast, i.e., to predict the value at the
next time step.

In [12], the authors evaluated various machine learning
models including the ELM [27], KNN [28], [29], back-
propagation neural network (BPNN), and the input selection
combined with hybrid forecasting (IS-HF) [30] on the same
dataset. The comparison of the MAPE results for various
machine learning models, including the deep learning model
based on LSTM [12] with the proposed hybrid model for
different lookback time steps, is shown in Table 4.

We did not re-evaluate all of the machine learning mod-
els, and empirical methods mentioned in Table 4 solely for
comparison. However, we did take the MAPE values of these
methods from Table 2 of [12]. The LSTM based model
achieved an average MAPE of 44.06% for a look back of
12-time steps. As concluded in [12], the average MAPE of
the deep learning model based on the LSTM architecture is
better than those of the other machine learning models as well
as empirical methods for various lookback time steps. Based
on this analysis, we selected the deep learning model based on
the LSTM architecture for evaluating the performance of the
proposed hybrid CNN-LSTM model. It can be inferred from
Table 4 that the proposed hybrid CNN-LSTM model achieved
an average MAPE of 40.38% with a look back of two-time
steps. On the contrary, the model based on LSTM achieved
the best result with a look back of twelve-time steps. The
proposed method achieved better forecasting performance as
compared to many state-of-the-art methods including LSTM
based approach.

The comparison of the proposed hybrid CNN-LSTM
model with the LSTM based deep learning model [12] is
shown in Figure 7. The independent axis in this figure shows
the varying number of outliers while the dependent axis
shows the MAPE. It can be observed in this figure that the
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TABLE 4. Comparison of the proposed deep learning framework with
other models.

model improves the overall average MAPE of individual
household energy consumption forecasting. This improve-
ment is more noticeable when the outliers are relatively large.

Scenario Average MAPE Individual
Method
(Lookback) Forecasts (%)
> time ot 1038 B. MULTI-STEP FORECAST
-time steps g . . .
_ P In this section, we evaluated the effectiveness of the proposed
CNN-LSTM 6-time steps 4107 model for different time-horizons, i.e., multi-step forecast-
12-time steps 42.85 ing. For each instance of test data, the proposed model was
2 time steps 44.39 assessed such that if the time horizon is set to 3 h ahead, then
LSTM 6-time steps 4431 the model will forecast the next six values. We compared the
12-time steps 44.06 proposed hybrlq CNN-LSTM model with the LSTM based
> time s 196 model for multi-step forecasting. Table 5 shows the average
i Tmeseps ’ MAPE for the individual household forecasts for different
BPNN O-time steps 49.04 lookback and look-forward time steps.
12-time steps 49.49
2-time steps 74.83 TABLE 5. The comparison of proposed model with the LSTM model for
KNN 6-time steps 71.19 various lookback and look-forward configurations.
12-time steps 81.13
Average MAPE
2-time steps 122.90 Lookback Look forward Individual Forecasts Percentage
ELM 6-time steps 136.49 (time steps)  (time steps) (%) Impr(();c;ment
12-time steps 123.45 Proposed LSTM ’
MAPE Minimization - 46.00 1 40.38 44.39 4.01
IS-HF - 96.76 2 2 46.98 51.74 4.76
Empirical Mean - 136.46 6 59.26 65.24 5.98
1 41.07 4431 3.24
6 2 46.73 53.66 6.93
¢ H_\ brid CNN-LSTM Model 6 59.86 67.24 738
LSTM
160 ; -+ Linear (Hybrid CNN-LSTM Model) ! 4285 44.06 121
110 Linear (LSTM) 12 2 48.05 56.08 8.03
. 6 6191 69.55 7.64
120
= 100 . s a It is evident from this table that for all the lookback and
E 30 look-forward time steps, the average MAPE of the proposed
> ' o 28" : model is lower than that of the LSTM. It is observed that
S 60 3. * % o i3 the percentage improvement in terms of MAPE is slightly
40 o* ‘A . decreasing when the lookback is varied from 2-12 time steps.
b W et o0y %* This trend is only observed for a look-forward of the next time
o) LA | o : 1
20 s, ° step which may be due to the LSTM layers learning more
0 from the lag features. Other than that the gap between the
0 20 40 60 80 100

Number of Qutliers

FIGURE 7. MAPE vs. no. of outliers for the proposed hybrid model and
the LSTM model.

MAPE of the proposed hybrid model is lower than that of
the LSTM model. For a look back of 2-time steps, the hybrid
CNN-LSTM model performs the best (lower MAPE value)
for 57 out of 69 households, whereas the LSTM is the best
predictor for 12 households. It is pertinent to note that as the
number of outliers increases, forecasting energy consumption
became more challenging for both the LSTM based model
and the proposed hybrid approach. However, the proposed
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MAPE values of the proposed hybrid model and the LSTM
model gets wider for increasing look-forward time steps. This
signifies that the proposed hybrid model not only outperforms
the LSTM based model for a single-step forecast but the
multi-step forecast as well. Compared to the LSTM based
deep learning model [12] for two lookback time steps, with
our developed model, we obtained 4.01%, 4.76%, and 5.98%
improvement for one, two, and six look-forward time steps
respectively.

The proposed model and the deep learning model based
on LSTM are applied to the test data, and the results are
presented in Figure 8 for three different customers. The
independent axis shows the time instances of the different
days of the test data. By carefully observing different parts

180551



IEEE Access

M. Alhussein et al.: Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting

— Actual Load

— CNN-LSTM Forecast
14- — LSTM Forccast
12 Customer ID
1.0 8478501

Consumption (KWh)
Z

) -
351 Customer ID
10595596

(b)

Consumption (KWh)

144 168 192 216 240

0.7r  Customer ID
0.6F 11462018

Consumption (KWh)
z
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FIGURE 8. Forecast results of three customers for the proposed and the
LSTM models.

of this figure, we can see that a deep learning approach
based on LSTM only has unreasonably high peaks at various
instances of time. On the contrary, our proposed model, which
is based on a combination of CNN and LSTM quite closely
follow the actual original load at almost all the time instances.
Additionally, the LSTM based model also shows some peaks
at time instances ‘168’ and ‘216’ in Figure 8 (b) where there
are no peaks in the actual load. In part (c) of Figure 8, there
are some peaks at time instances ahead of the real peaks.
Based on all these observations, we can conclude that the
proposed CNN-LSTM based deep learning framework is an
efficient approach for forecasting individual household power
consumption.

C. CLUSTERING ANALYSIS

The research on household clustering has shifted its
focus from attributes-oriented factors to consumption-
pattern-oriented factors. This shift is mainly due to the use of
smart meters that provides high-resolution power consump-
tion time-series data.

In this section, we have used the k-mean clustering
technique to group similar households based on their con-
sumption pattern, i.e. load profiling. For clustering analy-
sis, we have considered the training data of the same pool
of 69 customer that were used in the single and multi-scale
forecast in Section V. For our analysis, we have divided a day
into four periods that are described below:
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1) Breakfast period: 6.30 AM - 9.00 AM

2) Daytime period: 9.00 AM - 3.30 PM

3) Evening period: 3.30 PM-10.30 PM

4) Overnight period: 10.30 PM - 6.30 AM

The different attributes of the considered data are explained
below:

Attributes I — 4: For each time period, the relative mean
power using P, = »_ P/P; where numerator is the sum of
power for each time interval #; and Py is the daily mean power
over the entire training data.

Attribute 5: The mean relative standard deviation using
4

o = 1/4 " 0i/P; over the entire training data, where o; and

i=1
P; corresponds to standard deviation and average power in
each time period respectively.
Attribute 6 — 9: For each time interval, weekend versus

. . Weekday
weekday difference score using Wy; = |P;““"“® — pl¥eckend

Weekd .
where P; e and Piweek‘”d are the average power dur-

ing the weekdays and weekend respectively over the entire
training data.

For each household, the above mentioned nine attributes
summarize their consumption behavior for the training data.
In order to find the optimal number of clusters, different
alternatives have been explored by the researchers, and the
silhouette score analysis is one of the appropriate technique.
The silhouette index ranges from -1 to +1 and is an indicator
of how closely similar an object is to the rest of the members
of its cluster. A higher value of the silhouette index (close
to +1) shows that an object is highly similar to other members
of its own cluster and is highly dissimilar to the objects of
other clusters.

0.19 1 k=15
018 1
017
0.16
015 A
0.14 A
0.13 1
0.12 A

Average Silhouette Score

011 A
0.10

0 10 20 30 40 50
Number of Clusters k

FIGURE 9. Average silhouette score based on nine attributes
of 69 customers.

The k-means clustering is iteratively performed on the
above mentioned nine attributes of the 69 households from
2 to 50 clusters and the result is shown in Figure 9. As shown
in the figure, silhouette score is maximum at k equal to 15 and
decreases afterwards. The high-resolution time-series load
profiles of households often carry comprehensive attributes.
It is common to find larger number of clusters, i.e. more than
10 clusters (e.g. [45]-[47]).
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FIGURE 10. The average power consumption patterns of the fifteen clusters.

The average power consumption patterns of the fifteen

Training and Validation Data

16 Overnight

Breakfast

Daytime

Test Data

Evening

clusters over the entire day is shown in Figure 10. For each
cluster, only the training and validation data (83 days out
of 92 days) of their representative households are considered.
The average power consumption is normalized with the max-
imum value in each cluster. The resulting clusters show some
differences from each other. For example, Cluster_1, Clus-
ter_8, Cluster_12, and Cluster_13 has three distinct peaks,
the main difference between them is the time. Cluster_1 has
a smaller overnight peak whereas Cluster_8 doesn’t have
an overnight peak. Cluster_12 and Cluster_13 don’t have a
distinct peak in the daytime. Cluster_3, Cluster_6, Cluster_7,
and Cluster_11 have only one distinct peak in the evening
time.

However, the difference between them is the average power
consumption during overnight, breakfast, and daytime as well
as the width of the peak span. Cluster_2 exhibits a decreasing
trend during the day-time whereas average power consump-
tion drastically increases in the late evening. Cluster_4, Clus-
ter_5, Cluster_9, and Cluster_14 have two distinct peaks in
the breakfast and in the evening. However, Cluster_4 has a
wider peak span as compared to Cluster_5. Moreover, Clus-
ter_9 has a low average power consumption during the night
time whereas a sharp rise in the early breakfast.

In the previous section, we compare the individual
household forecasting performance of the proposed model
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8680284.

The average hourly power consumption of customer id

with the LSTM model, where the average MAPE of
the LSTM model was obtained from [12] as mentioned
in Table 4. In order to make a one-to-one MAPE compari-
son between the proposed model and the LSTM model for
all the households, we have implemented the LSTM model
presented in [12]. The obtained average MAPE of 44.68%
for the LSTM model is very close to the average MAPE
of 44.39% presented in [12]. We present the comparison of
the individual forecast using LSTM (third column), and indi-
vidual forecast using the proposed method (fourth column) in
terms of MAPE for each of the 69 households in Table 6.

In this section, we perform the clustering analysis using
the proposed method to examine if by grouping the similar
households will further improve the forecasting accuracy.
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TABLE 6. Compared MAPEs for Sixty Nine Households in Fifteen Clusters with or without clustering.

Customer ID /No. LSTM Proposed Proposed Cluster Customer ID /No. LSTM Proposed Proposed
Cluster of Outliers in without Method Method with No. of Outliers in without Method Method with
No. Training & Cluster without Cluster Cluster Training & Cluster without Cluster Cluster
Validation Data _ MAPE (%) __ MAPE (%) MAPE (%) Validation Data__ MAPE (%) MAPE (%) MAPE (%)

8804804 / 01 36.15 36.50 41.41 8451629 / 14 28.76 26.79 31.37

8350006 / 05 21.58 22.09 21.88 8181075/ 16 27.50 18.15 24.35

8496980 / 06 29.94 29.85 30.61 8673172/ 16 38.34 33.96 35.55

8618165 / 07 33.44 31.04 30.04 8617151 /17 35.09 32.41 32.52

Cluster 0 8328122/ 08 3225 30.99 28.73 8679346 / 26 66.19 64.71 62.37
8308588 / 21 26.09 24.33 24.77 Cluster 9 8184653 /28 32.02 28.30 25.65

8176593 / 30 2.52 2236 23.69 8211599 /31 45.86 35.83 46.42

8566459 / 35 42.87 43.35 42.69 10598990 / 47 52.74 47.94 41.90

8282282 /83 81.15 76.39 99.15 11081920/ 52 34.43 2928 30.49

8342852/ 01 39.90 3376 36.28 8376656 / 56 39.87 33.10 43.76

8482121/ 02 3136 28.02 39.60 8540084 / 63 72.62 7030 84.39

Cluster_1 8196671 /06 25.83 2427 25.52 Cluster 10 9393680 / 65 88.97 77.29 77.29

8487461 / 34 50.44 5597 61.65 8459427 / 00 20.49 18.55 2111

11462018 / 05 3572 26.26 34.00 8466525 / 03 2572 2537 27.66

8196669/ 11 24.16 243 22.86 8478501 / 08 50.94 42.71 37.84

Cluster 2 10692972/ 11 47.06 3723 3741 8334780 / 16 26.04 23.41 23.66
9012348 /75 135.07 99.25 129.30 8196621/ 16 3532 34.66 34.87

8685932/ 02 1634 15.65 1475 Cluster_11 8419708 / 19 28.84 28.08 24.55

Cluster 3 8257054 /20 25.62 20.13 21.64 8198267 /20 34.52 32.76 34.91
8557605 / 07 37.46 35.74 3441 8733828 /23 29.85 29.65 3172

8661542/ 15 28.48 2838 30.04 8347238 /23 35.98 33.72 36.00

Cluster 4 8196659 / 39 2521 27.98 38.56 8687500 / 30 35.56 33.32 40.58
8156517 /46 96.90 94.51 144.65 8523058 / 00 56.13 56.39 43.42

8326944 / 54 93.94 70.81 74.63 8655993 / 00 27.43 32.33 27.67

10509861 /25 27.99 2338 2354 Cluster 12 8198319 /01 30.44 28.74 36.80

Cluster 5 8273592 /30 31.51 28.97 2824 8487297 / 07 107.12 97.88 109.71
8147703 / 47 4112 42,08 48.68 8273230/ 19 25.96 26.16 48.82

8149711 /31 5651 55.09 5278 8351602 /22 22.84 22.05 25.17

Cluster 6 8568200/ 37 5723 29,61 68.91 Cluster 13 8504552 / 28 2334 24.69 27.70
8145135/ 65 4928 4457 48.10 8487285 / 34 25.25 2.16 27.49

8264534/ 49 32.16 32.98 39.10 10702066 / 37 36.10 3591 47.67

Cluster 7 8198345/ 54 49.99 53.18 5537 8680284 / 02 57.96 50.70 5139
8291712/ 68 134.73 124.47 13134 Cluster 14 8432046 / 63 58.42 53.40 64.44

8519102 / 44 55.82 6221 53.61 8257034 / 66 80.61 5191 48.18

Chuster 8 10595596 / 62 70.17 4955 42.66 Average 44.68 4038 44776

We identify patterns in energy usage profiles over four
periods, i.e. overnight, breakfast, daytime and evening, and
group the households with similar profiles. In this experi-
ment, the training, validation, and test data for each cluster
are prepared by concatenating their representative household
attributes. For example, to train a single model for Clus-
ter_0, we vertically concatenate the training data attributes
mentioned in Table 3 of each representative household. The
result of the clustering analysis is presented in column five of
Table 6. The green and the red color represents the best and
the worst model for each household in Table 6. We observed
that some clusters contain very less number of households
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since the number of households for the analysis is not large
enough (only 69 customers).

Column two of Table 6 shows the customer ID along with
the number of outliers in daily profiles of training and vali-
dation data. For each household, the total number of days in
the training (67 days) and validation data (16 days) is 83. The
households in each cluster are arranged in increasing order
of the number of outliers in their training and validation data.
For instance, for Cluster_0, customer id 8804804 has only
one outlier whereas customer id 8282282 has all the outliers
with no distinct daily profile in the training and validation
data.
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FIGURE 12. Cluster_6 forecasting using proposed method with clustering.

It is evident from the below table that for households
with mostly outliers in the training and validation data will
result in larger MAPE, e.g. customer id 8282282, 9012348,
8291712, 8540084, and 9393680 in Cluster_0, Cluster_2,
Cluster_7, Cluster_9 and Cluster_10 respectively. As shown
in the table as we move down the cluster, MAPE is gen-
erally increasing. Such a large error is because of the fact
that there are no distinct daily profiles of such customers
i.e. most of the data are outliers. For such households, the pro-
posed method without clustering achieved better results com-
pared to the individual LSTM based approach as well as
the clustering-based approach. One of the reasons why the
clustering-based approach may not be performing generally
well as compared to the proposed method without cluster-
ing could be due to a large number of outliers in various
households in different clusters. It results in more variation in
the training data in terms of load characteristics that degrade
the optimal learning of the model.

Another observation can be made from the table that for
some customers the average MAPE is relatively large with
very few or no outliers in the training data. For instance,
customer id 8680284 in Cluster_14 has a larger value of
MAPE even though it has only two outliers in the training
data.

Figure 12 shows how the proposed method with the clus-
tering approach forecasts the energy consumption of each
household in Cluster_6. As shown in the figure, the prediction
curve follows the fluctuation of the original consumption
on an hourly basis for all three customers, except for a few
peak usage hours for customer id 8145135 and 8149711. This
occurs due to the fact that there are random peaks for an
individual household.

We observed from the hourly load profile of customer id
8680284 that the average hourly power consumption in the
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test data was lower than that of training data as shown in
FIGURE 11Figure 11. It is pertinent to note that for the
training and validation data, the average power consumption
is gradually rising from around 06:00 pm whereas the peak
average consumption occurs in the late evening. However, for
the test data, there is a sharp decrease in average consump-
tion after 06:00 pm. The model may predict a peak in the
late evening however the actual power consumption is quite
low which results in larger MAPE. The proposed method
without clustering achieved a MAPE of 50.70 whereas the
clustering-based approach achieved second-best MAPE of
51.39 for customer id 8680284.

— Training and Validation Data Test Data

Qvernight Breakfast Daytime Evening

Average Consumption (KWh}

I 1
e (g \ & @ & & & @ §
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FIGURE 13. The average hourly power consumption of customer id
8568209.

The hourly profile of customer id 8568209 shows that
the peak average consumption occurs in the evening for the
training and validation data whereas there is no peak in the
test data as shown in Figure 13. The prediction curve follows
the original consumption for customer id 8568209 as shown
in Figure 12, however results in larger MAPE. This occurs
due to the fact that the actual value of power consumption
for the entire test data is close to zero which results in larger
MAPE.
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The results presented in Table 6 indicates that the
clustering-based approach performs the best (lower MAPE
value) for 17 out of 69 households, whereas the LSTM with-
out clustering is the best predictor for only 10 households.
The proposed method with clustering approach obtained an
average MAPE of 44.76% which is very close to the average
MAPE of 44.68% obtained using the LSTM model. The
proposed method without clustering outperform the LSTM
model as well as the clustering-based approach for most of
the customers.

The cluster analysis revealed information on the electricity
use pattern of various households in SGSC database. The
customers are classified in their energy profiles, depending
on their structural similarity. The obtained findings are con-
strained by the small sample size, i.e., only 69 households.
Future study may have greater sample size and more diverse
samples.

VI. CONCLUSION

This paper seeks to explore the short-term energy con-
sumption prediction problem of the individual household
customers in the residential sector. Load forecasting at an
individual household level is quite challenging because it
lacks a stable pattern and fluctuates even in consecutive
hours.

First, a clustering technique is applied to identify the num-
ber of outliers and to discover the regularity in daily power
consumption profiles of individual household data. Next,
a hybrid model is proposed, which is based on a combination
of CNN and LSTM.

The developed framework is tested on a publicly available
residential smart meter data from the SGSC project. The
performance of the developed framework is comprehensively
compared to other state of the art systems in short-term
electric load forecasting. The results indicate that the pro-
posed hybrid CNN-LSTM based deep learning framework
outperforms the other rival techniques in forecasting individ-
ual household energy consumption having both regular and
irregular usage behavior.

The prediction problem becomes more challenging for
both the LSTM based model and the proposed hybrid
approach as the number of outliers increases. However,
the proposed model improves the overall average MAPE
of individual household energy consumption prediction for
both single-step and multi-step forecasting. This improve-
ment is more noticeable when the outliers are relatively
large.

The load forecasting model would reveal a better pre-
diction result if parameters such as appliance ownership,
sociodemographics data and household occupancy can be
detected and added as feature. Future research should focus
on further exploring the behavioral characteristics of cus-
tomers and using that data to the load forecasting model.
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