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Практичне заняття № 4. Інтегрування раціональних функцій 

 

4.1 Інтегрування деяких функцій, що містять  

квадратний тричлен 

 

Приклад 1. Обчислити інтеграл 
2

4 10

dx

x x 
 . 

Розв’язання. Виділимо повний квадрат у квадратному тричлені 

знаменника. Маємо:    
22 2 2 2

4 10 2 2 2 10 2 2 6x x x x x            . 

Отже, отримуємо інтеграл: 

 

 
2 2 2

12 ,
arctg 

4 10 6 6 62 6
1 2

arctg .
6 6

dx dx dt tx t
C

dx dtx x tx
x

C

 
     

   


 

  
 

 

Приклад 2. Обчислити інтеграл 
2

3

2 5

x
dx

x x



 
 . 

Розв’язання. Виділимо у чисельнику підінтегральної функції похідну 

знаменника. Оскільки  2
2 5 2 2x x x


    , то представимо чисельник у 

вигляді:  
1

3 2 2 4
2

x x    . Тоді заданий інтеграл набуває вигляду: 

 

 
2 2 2

2 23 1
4

22 5 2 5 1 6

xx dx
dx dx

x x x x x


 

     
   . 

Оскільки  

 

  2
2

1 12

2 2 2 5 , ln ln 2 5
2 22 5

x dtx x tdx t C x x C
dt x tx x

          
  

  , 

 
22

1 1 6
ln

2 6 1 61 6

dx x
C

xx

 
 

  
 , 
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то остаточно отримуємо: 

 

2

2

3 1 2 1 6
ln 2 5 ln

22 5 6 1 6

x x
dx x x C

x x x

  
    

   
 . 

 

Приклад 3. Обчислити інтеграл 
2

2 3 4

dx

x x 
 . 

Розв’язання. Виділимо повний квадрат у підкореневому виразі. 

Отримуємо: 

 

2 2 2

2 2

2

3 3 1 3 3 41
2 3 4 4 2 4

8 8 2 8 8 64

41 3
4 .

64 8

x x x x x

x

        
                                
  

       

 

 

Отже, заданий інтеграл набуває вигляду: 

 

2 22

2

2

31 ,
822 3 4 41 341 3

4
64 864 8

1 1 8 1 8 3
arcsin arcsin .

2 2 241 41
41

8

dx dx dx x t

x x dx dt
xx

dt t x
C C

t

    
     

           


    

 
 

 

  


 

Приклад 4. Обчислити інтеграл 
2

5 3

4 10

x
dx

x x



 
 . 

Розв’язання. Похідна підкореневого виразу у знаменнику дробу під 

знаком інтеграла  2
4 10 2 4x x x


    . Виділимо її у чисельнику:  



 

3 

 

   
5 5

5 3 2 4 4 3 2 4 7
2 2

x x x        . 

Запишемо заданий інтеграл у наступному вигляді: 

 

 

2 2 2

2

5
2 4 7

5 3 5 2 42

24 10 4 10 4 10

7 .
4 10

x
x x

dx dx dx
x x x x x x

dx

x x

 
 

  
     


 

  



 

 

Обчислимо інтеграли у правій частині отриманої рівності: 

 

 

2
2

1
2

2 4 4 10 ,
2 2 4 10

2 4 .4 10

x dtx x t
dx t C x x C

x dx dt tx x

   
       

  
 

. 

 

2

2
2 2

ln 2 4 10
4 10 2 6

dx dx
x x x C

x x x

      
   

  . 

 

Остаточно отримуємо значення заданого інтеграла у вигляді:  

2 2

2

5 3
5 4 10 7ln 2 4 10

4 10

x
dx x x x x x C

x x


        

 
 . 

Приклад 5. Отримати рекурентну формулу для інтеграла  

 2 2
n n

dx
J

x a



 . 

Користуючись цією формулою, знайти інтеграл 
 

3
2 4

dx
J

x



 . 
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Розв’язання. Для отримання рекурентної формули використаємо 

інтегрування частинами. Нехай 

 2 2

1
n

u
x a




, dv dx . Звідси отримуємо: 

 
1

2 2

2
n

nxdx
du

x a


 


, v x . Отже, маємо: 

     

 

 

 

2 2 2
2

1 1
2 2 2 2 2 2 2 2

2

1
2 2

2 2

2 2 .

n n n n n

n nn

x a ax x dx x
J n n dx

x a x a x a x a

x
nJ na J

x a

 



 
    

   

  


 
 

З отриманого рівняння відносно 1nJ   знаходимо: 

 
1 2 2

2 2

1 2 1 1

22
n nn

x n
J J

nna ax a



   


. 

При цьому інтеграл 1 2 2

1
arctg 

dx x
J C

a ax a
  


 . 

Використаємо знайдену рекурентну формулу для обчислення інтеграла 

 
33

2 4

dx
J J

x
 


 . Тут 

2
4a  , 2a  , 1 3n   , 2n  , 

1 12

1
arctg 

2 24

dx x
J C

x
  


 . Далі послідовно знаходимо: 

2 1 22 2 2

1 2 1 1 1 1 1
arctg

2 1 4 8 2 22 1 2 4 4

x x x
J J C

x x

   
       

    
. 

   
3 22 2 2

2 2

3

1 2 2 1 1 1 3 1
arctg

2 2 4 2 2 4 16 8 2 244 4

.

x x x x
J J

xx x

C

 
                   

 


 

 

4.2 Інтегрування раціональних дробів 
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Нехай  mP x  та  nQ x  – це многочлени степенів відповідно m  та n . 

Відношення цих многочленів 
 

 
m

n

P x

Q x
 називають раціональною функцією або 

раціональним дробом. Раціональний дріб називають правильним, якщо степінь 

чисельника менший степеня знаменника ( m n ), у іншому випадку ( m n ) 

раціональний дріб називають неправильним. Будь-який неправильний 

раціональний дріб можна представити у вигляді суми многочлена степеня 

m n  та правильного раціонального дробу, поділивши чисельник 

раціонального робу на знаменник. 

Елементарними раціональними дробами називають раціональні дроби 

таких чотирьох видів: 1) 
A

x a
, 2) 

 
n

A

x a
, 3) 

2

Mx N

x px q



 
, 4) 

 2
n

Mx N

x px q



 
. 

Тут A , a , M , N , p , q  – дійсні числа, n , 2n  , квадратний тричлен 

2
x px q   не має дійсних коренів, тобто 

2
4 0p q  . 

Інтеграли від елементарних раціональних дробів виду 1) та 2) є 

табличними: 

 

ln
A

dx A x a C
x a

  
 , 

 
   

 

1

1

1

1 1

n n

n n

A A A
dx A x a dx x a C C

n nx a x a

  


       

   
  . 

 

Обчислення інтегралів виду 3) розглянуто у п.4.1 (інтеграли 1I  та 2I ). За 

схемою, аналогічною обчисленню інтеграла виду 3), знаходять і інтеграл виду 

4). Розглянемо обчислення такого інтеграла на прикладі. 

Приклад 6. Обчислити інтеграл 

 
2

2

3 2

2 10

x
I dx

x x




 
 .  

Розв’язання. Підінтегральна функція є елементарним дробом виду 4), 

тобто 

 2
n

Mx N

x px q



 
. Для знаходження інтегралу від цього дробу виділимо у 

чисельнику похідну від квадратного тричлена 
2

x px q  , тобто для даного 
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прикладу похідну від квадратного тричлена 2 2 10x x  . Вона дорівнює 

2 2x  , тому підінтегральну функцію перетворимо до вигляду  

 

 

 

      
2 2 2 2

2 2 2 2

3
2 2 1

3 2 3 2 2 12

22 10 2 10 2 10 1 9

x
x x

x x x x x x x

 
 

   
       

. 

 

Інтеграл 

 
1 22

2

3 2 3

22 10

x
I dx I I

x x


   

 
 , де  

 

 

 

2

1 12 2
2

2 10 1

2 102 10

d x x
I C

x xx x

 
   

  
 , 

 

а інтеграл 

  
2 2

2
1 9

dx
I

x



 
  заміною 1x t   зводиться до інтеграла виду 

 2 2
n n

dx
J

x a



 , що обчислюється за рекурентною формулою, наведеною у 

прикладі 5: 

 

 
2 22 2

2

1 1
arctg

18 9 54 39

dt t t
I C

tt
     


 . 

 

Остаточно отримуємо: 

   1 22 22

3 2 3 3 1 1
arctg

2 54 32 2 102 10

x x
I dx I I C

x xx x

 
       

  
 . 
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Нехай знаменник правильного раціонального дробу 
 

 
m

n

P x

Q x
 розкладено на 

множники: 

 

         
11 2 2

1 1 1... ...
rs

n s r rQ x a x a x a x p x q x p x q
 

       ,      (1) 

 

де 1a ,…, sa  – дійсні корені многочлена  nQ x , кратності яких відповідно 

дорівнюють 1 ,…, s , квадратні тричлени 
2

i ix p x q  , ip  , iq  , 

1,  2, ..., i r , не мають дійсних коренів, 1 1... 2 ... 2s r n         . Тоді 

цей дріб можна подати у вигляді суми елементарних раціональних дробів: 

 

 

       

     

   

1

1

1 1

1

1 2 1 2

2 2

1 1 1

1 1 2 2

2 2
2 2

1 11 1 1 1 1

1 1 2 2

2 2
2 2

... ... ...

... ...

... .

s

s

r r

r

m

n s s

r r
r r r r

AP x A A B B

Q x x a x ax a x a x a
B M x NM x N M x N

x p x qx a x p x q x p x q

C x DC x D C x D

x p x q x p x q x p x q





  

 

 



       
   

 
     

     

 
   

     

(2) 

 

Цю суму називають розкладом правильного раціонального дробу на 

елементарні дроби. 

Для знаходження чисел 1A ,…,
r

D  можна використати метод 

невизначених коефіцієнтів. Цей метод полягає у тому, що знаходять суму 

елементарних дробів у правій частині останньої рівності, привівши їх до 

спільного знаменника, після чого прирівнюють коефіцієнти при однакових 

степенях змінної x  у чисельнику отриманого дробу та многочлені  mP x  – 

чисельнику раціонального дробу з лівої частини рівності. Отримують систему 

лінійних алгебраїчних рівнянь відносно невідомих коефіцієнтів 1A ,…,
r

D , з 

якої визначають ці числа. 

Приклад 7. Знайти розклад на елементарні дроби раціонального дробу 

 

4 3 2

2
2

2 5 1

1

x x x

x x

  


. 
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Розв’язання. Заданий раціональний дріб є правильним, оскільки степінь 

чисельника ( 4m  ) менший, ніж степінь знаменника ( 5n  ). Розклад дробу на 

елементарні дроби має вигляд: 

 

   

4 3 2

2 2 2
2 2

2 5 1

11 1

x x x A Bx C Mx N

x xx x x

    
  

 
. 

 

Знайшовши суму дробів у правій частині цієї рівності, отримуємо: 

 

   
       

 

4 3 2

2 2 2
2 2

2
2 2

2
2

2 5 1

11 1

1 1
.

1

x x x A Bx C Mx N

x xx x x

A x Bx C x x Mx N x

x x

    
   

 

     




 

 

Прирівнюючи чисельники у лівій та правій частинах отриманої рівності, 

знаходимо, що        
2

4 3 2 2 2
2 5 1 1 1x x x A x Bx C x x Mx N x           

або      4 3 2 4 3 2
2 5 1 2x x x A B x Cx A B M x C N x A            . 

Тепер прирівняємо коефіцієнти при однакових степенях x  лівої та правої 

частини цієї рівності. Отримаємо систему: 

1A B  , 2C  , 2 5A B M   , 0C N  , 1A  . 

Розв’язуючи цю систему, знаходимо значення невідомих коефіцієнтів: 

1A  , 2B  , 2C  , 5M  , 2N   . Підставивши їх у розклад заданого дробу 

на елементарні дроби, отримуємо: 

 

   

4 3 2

2 2 2
2 2

2 5 1 1 2 2 5 2

11 1

x x x x x

x xx x x

    
   

 
. 

 

Розклад правильного раціонального дробу на елементарні дроби дозволяє 

обчислити інтеграли від будь-яких раціональних функцій.  
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Приклад 8. Обчислити інтеграл 
 

2

2

4 4

1

x x
I dx

x x

 



 . 

Розв’язання. Дріб 
 

2

2

4 4

1

x x

x x

 


 є правильним (степінь чисельника є 

меншим, ніж степінь знаменника), його розклад у суму елементарних дробів 

має вигляд:  

 

   

2

2 2

4 4

11 1

x x A B C

x xx x x

 
  

 
. 

 

Знайдемо коефіцієнти A , B  та C , для чого приведемо праву частину 

останньої рівності до спільного знаменника:  

 

   

   

 

22

2 2 2

1 14 4

11 1 1

A x Bx x Cxx x A B C

x xx x x x x

    
   

  
. 

 

Знаменники дробів у лівій та правій частинах цієї рівності є однаковими, тому 

повинні співпадати і знаменники. Маємо  

 

   2 2 24 4 2 1x x A x x B x x Cx        . 

 

Прирівнюючи коефіцієнти при однакових степенях x  у правій та лівій 

частинах останньої рівності, отримуємо систему для знаходження 

коефіцієнтів A , B  та C : 

 

1, 4,

2 4, 3,

4. 9.

A B A

A B C B

A C

   
 
       
   
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Таким чином, розклад підінтегральної функції на елементарні дроби має 

вигляд: 

 

   

2

2 2

4 4 4 3 9

11 1

x x

x xx x x

 
  

 
. 

 

Підставивши даний розклад у інтеграл I , отримуємо: 

 

   

2

2 2

4 4 9
4 3 9 4ln 3ln 1

1 11 1

x x dx dx dx
I dx x x C

x x xx x x

 
        

  
    . 

 

Приклад 9. Обчислити інтеграл 
  

2

2

4

1 5 6

x x
I dx

x x x

 


  
 . 

Розв’язання.   2 5 6 2 3x x x x     . Знайдемо розклад 

підінтегральної функції на елементарні дроби. 

 

      

2 2

2

4 4

1 2 3 1 2 31 5 6

x x x x A B C

x x x x x xx x x

   
   

       
. 

 

Після приведення суми дробів у правій частині до спільного знаменника, 

прирівнявши чисельники, отримаємо: 

 

        2 4 2 3 1 3 1 2x x A x x B x x C x x           . 

 

Для знаходження коефіцієнтів A , B  та C  замість прирівнювання коефіцієнтів 

при однакових степенях x  можна обчислити значення правої та лівої частин 

даної рівності при трьох різних значеннях змінної x . Для цього зручно 

вибрати корені знаменника підінтегральної функції 1x   , 2x   та 3x  . При 
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1x    отримуємо 
1

12 6,
2

A A  . При 2x   3 6, 2B B    , при 3x   маємо 

5
4 10,

2
C C  . 

Таким чином, отримуємо: 

 

1 5 1 5
2 ln 1 2ln 2 ln 3

2 1 2 2 3 2 2

dx dx dx
I x x x C

x x x
         

     . 

 

Приклад 10. Обчислити інтеграл 

   

2

2
2

3 2

1 1

x x
I dx

x x

 


 
 . 

Розв’язання. Розклад дробу 

   

2

2
2

3 2

1 1

x x

x x

 

 
 у суму елементарних дробів 

шукаємо у вигляді: 

 

     

2

2 22
2 2

3 2

1 11 1 1

x x A Bx C Dx E

x xx x x

   
  

   
. 

 

Систему для визначення коефіцієнтів даного розкладу отримаємо, звівши 

дроби у лівій частині даної рівності до спільного знаменника та прирівнюючи 

коефіцієнти при однакових степенях змінної x  у чисельнику:  

        
2

2 2 23 2 1 1 1 1x x A x Bx C x x Dx E x           .  

Вибравши 1x  , знаходимо 1A . З рівності коефіцієнтів при однакових 

степенях x  випливає: 

 

0,

0,

2 3,

2.

A B

B C

A C D B

A C E

 

  


   
   
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З врахуванням 1A  з даної системи знаходимо решту коефіцієнтів:

1, 1, 0B C D E     .

 
 

 

 
 

 

2

22
2

2

2

2 22

1 1
ln 1 ln 1 arctg

1 1 21

11 1 1
ln 1 ln 1 arctg .

2 2 2 11

dx x xdx
I dx x x x

x x x

d x
x x x C

xx


        

  


       



  



Нехай потрібно обчислити інтеграл від раціонального дробу
 

 
m

n

P x

Q x
.

Якщо даний дріб неправильний, то його можна представити у вигляді суми

многочлена та правильного раціонального дробу. Останній можна розкласти

на суму елементарних дробів. Отже, задача звелася до інтегрування

многочлена та суми елементарних раціональних дробів.
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Оскільки розклад на елементарні дроби здебільшого потребує значних

затрат часу, то при обчисленні інтегралів від раціональних функцій корисно

виконувати спрощення або заміну змінних у підінтегральному виразі, що

дозволяє полегшити обчислення інтеграла.

Приклад 13. Обчислити інтеграл
  3 4

dx
I

x x


  .

Розв’язання.
  

   
  

4 31 1 1 1 1

3 4 7 3 4 7 3 4

x x

x x x x x x

    
    

      
.

Підставивши в інтеграл, отримаємо:

1 1 3
ln

7 3 4 7 4

dx dx x
I C

x x x

 
    

   
  .
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Приклад 15. Обчислити інтеграл

 
2

31

dx
I

x x



 .

Розв’язання. Домножимо чисельник та знаменник підінтегрального

виразу на 23x . Отримаємо:

 

 

 
 

 

 

   

32
2 2

2 2
3 3 3 3

2

11
3 1 1

31 1
3 33 1 1

1

3 1 1

u udu
d xx dx

I u u u u
x x x x

du du

u u u

 


    
 

 
   

   


  

 

 
 

3

3 3

11 1 1 1 1 1
ln

3 1 1 3 1 1 3 1 1

u u du du x
du C

u u u u u u x x

     
                    

   .

                              
2

  

 

  

 
   

  

 
 

    



   

Приклад 1. Обчислити інтеграл
3

2 5 6

x x
I dx

x x




  .

Розв’язання. Оскільки дріб під знаком інтеграла є неправильним

(степінь чисельника є більшим, ніж степінь знаменника), то перед його

розкладом на прості дроби необхідно спочатку виділити цілу частину. Ділимо

3x x  на квадратний тричлен 2 5 6x x   та отримуємо:

3 2 2

3 2

2

2

0 0 5 6

55 6

5 7

5 25 30

18 30.

x x x x x

xx x x

x x

x x

x

    


 




 



Звідки

  

3

2 2

18 30 18 30
5 5

2 35 6 5 6

x x x x
x x

x xx x x x

  
     

    
.

Розкладемо дріб у правій частині рівності  на прості дроби:

  
   
   

3 218 30

2 3 2 3 2 3

A x B xx A B

x x x x x x

  
  

     
.

Прирівнюючи коефіцієнти при степенях x  у чисельниках, маємо 18A B  ,

3 2 30A B    . Звідси знаходимо 6, 24A B   . Таким чином,

 
2

5 6 24 5 6ln 2 24ln 3
2 3 2

dx dx x
I x dx x x x C

x x
          

    . ■



   

Приклад 2. Обчислити інтеграл  
 dx

xx

x
I

2
2

10

.

Розв’язання. Підінтегральний раціональний дріб є неправильним, тому

спочатку виділимо цілу частину, поділивши чисельник на знаменник

«стовпчиком»:

_ x 10+0x 9+ 0x 8+ 0x 7+0x 6+ 0x5+  0x4 +  0x3  +  0x2  +  0x + 0 x2+x   2

x10+  x9  2x8   x8  x7+3x6  5x5+11x4 

_  x9  + 2x8 +0x7   21x3+43x2  85x+171

 x9   x8   +2x7

_  3x8  2x7+ 0x6

3x8  +3x7  6x6

_  5x7 + 6x6 + 0x5

 5x7  5x6 +10x5

_ 11x6  10x5 + 0x4

11x6  +11x5  22x4

_  21x5   + 22x4  +0x3

 21x5  21x4 +42x3

_43x4  42x3 +  0x2

43x4 + 43x3  86x2

_  85x3 + 86x2 +  0 x

 85x3  85x2 + 170x

_ 171x2  170x + 0

171x2 + 171x  342

 341x+342

Звідки отримаємо

 










 dx

xx

x
xxxxxxxxI

2

342341
1718543211153

2

2345678

 


 dx

xx

x
x

xxxxxxxx

2

342341
171

2

85

3

43

4

21

5

11

6

5

7

3

89 2

23456789

.

Тепер розглянемо підінтегральну функцію в інтегралі 
2

341 342

2

x
dx

x x

 

  і

розкладемо цей дріб на найпростіші:

2

341 342 341 342

( 1)( 2) 1 22

x x A B

x x x xx x

   
  

    
.



   

Знаходимо невизначені коефіцієнти::
1 1024

,
3 3

A B   . Після чого одержимо

2

341 342 1 1024 1 1024
ln | 1 | ln | 2 |

3( 1) 3( 2) 3 32

x
dx dx x x C

x xx x

  
           

  .

Об’єднуючи разом усі отримані результати, отримаємо:

 x
xxxxxxxx

I 171
2

85

3

43

4

21

5

11

6

5

7

3

89

23456789

1 1024
ln | 1 | ln | 2 |

3 3
x x C     . ■


