
Інтегрування виразів, що містять тригонометричні функції 

 

Розглянемо основні методи знаходження інтегралів від виразів, що 

містять тригонометричні функції. Вираз, що містить функції sin x , cosx , tg x

, ctg x , над якими виконуються дії додавання, віднімання, множення та 

ділення, будемо позначати  sin , cos , tg , ctg R x x x x , де R  – знак раціональної 

функції. 

Обчислення невизначених інтегралів  sin , cos , tg , ctg R x x x x dx  можна 

звести до обчислення інтегралів від раціональної функції з допомогою 

універсальної тригонометричної підстановки tg 
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x
t . Тоді отримуємо: 
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Оскільки у цьому випадку 2arctg x t , то 
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Приклад 1. Обчислити інтеграл 
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Розв’язання. Підінтегральна функція є раціональною функцією аргументів 

sin x  та cos x , тому для інтегрування доцільно застосувати універсальну 

тригонометричну підстановку 
x

tg ,
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t x     . Тоді тригонометричні 

функції виражаються через раціональні дроби: 
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Підставляючи ці вирази в інтеграл, маємо: 
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На практиці застосовують і інші, простіші підстановки у залежності від 

властивостей та вигляду підінтегральної функції. Зокрема, застосовують 

наступні правила. 



1. Інтеграл  sin , cosR x x dx  зводиться до інтеграла від раціонального 

дробу, якщо функція  sin , cosR x x  непарна відносно sin x , тобто виконується 

рівність    sin , cos sin , cosR x x R x x   . У цьому випадку використовують 

підстановку cosx t . 

2. Якщо функція  sin , cosR x x  непарна відносно cos x , тобто 

виконується рівність    sin , cos sin , cosR x x R x x   , то підстановка sin x t  

зводить інтеграл до інтеграла від раціонального дробу. 

3. Функція  sin , cosR x x  є парною відносно sin x  та cos x , тобто є 

справедливою рівність    sin , cos sin , cosR x x R x x   . Використовуємо 

підстановку tg x t . Ця ж підстановка використовується і коли підінтегральна 

функція має вигляд  tg R x . 

Розглянемо методи обчислення інтегралів виду sin cos
m n

x xdx . Для 

знаходження таких інтегралів використовують наступні методи. 

1. Якщо n  є цілим додатним непарним числом, то використовують 

підстановку sin x t . 

2. Якщо m  є цілим додатним непарним числом, то використовують 

підстановку cosx t . 

3. Якщо m  та n  є цілими невід’ємними парними числами, то 

використовують формули пониження степеня: 
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Приклад 2. Обчислити інтеграл 
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Розв’язання. Маємо інтеграл виду sin cosm nx xdx , де 6, 3m n   . Оскільки 

n  – непарне ціле додатне число, то доцільно застосувати підстановку sin x t

. Перейдемо до змінної t : 
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Виконаємо зворотну заміну: 
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Приклад 3. Обчислити інтеграл 
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Розв’язання. Тут 3m   – непарне додатне число, тому використаємо заміну 

змінної cosx t . Для цього запишемо інтеграл у вигляді: 
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Перейшовши до змінної х, отримаємо: 
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Приклад 4. Обчислити інтеграл 𝐼 = ∫ 𝑠𝑖𝑛4𝑥𝑐𝑜𝑠4𝑥𝑑𝑥 

Розв’язання. 𝐼 = ∫ 𝑠𝑖𝑛4𝑥𝑐𝑜𝑠4𝑥𝑑𝑥 = ∫(𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥)4𝑑𝑥. 
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Задачі для самостійної роботи 
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