
1

2

Section 6.0 Author’s Guide to Creating IDEF1
Diagrams

ATTRIBUTE CLASS

ENTITY CLASS

1:1 Relation

1:M Relation

M:1 Relation

M:N Relation

3

4

6.0 Author’s Guide To Creating IDEF1 Diagrams

6.1 Phase Zero - Context Definition

The IDEF1 information model must somehow be described and defined in terms of both its

limitations and its ambitions. The modeler is one of the primary influences in the

development of the scope of the model. Together, the modeler and the project manager

unfold the plan for reaching the objectives of Phase Zero. These objectives include:

1. Project definition – a general statement of “what” has to be done, “why”
and “how” it will get done.

2. Source material – a plan for the physical compilation of source material,
including the indexing and filing of it.

3. Author conventions – a fundamental declaration of the conventions
(optional methods) by which the author chooses to make and manage
the model.

The products of these objectives, coupled with other descriptive and explanatory documents

and information, become the products of the Phase Zero effort–the Phase Zero Kits. The

purpose of these kits will be described more fully later in this section.

6.2 Project Definition

6.2.1 The Strategic Objective

The first activity in the modeling project is to establish where the project is going, how, and,

to some extent, why. In this process, the project manager will establish his authority and

mandate for the project. Some rough guidelines establishing the scope of the project in terms

of money, time, and breadth of effort will have been laid down, usually in a project

manager’s authorizing documents. The extent of the project manager’s responsibility,

authority, and direct control must be made clear at this point in project start-up. The project

manager must understand and establish this control, since it is the project manager’s

5

responsibility to direct the activities of various other personnel during the course of the

project.

On the basis of this established authority, the project manager selects the modeler and

modeling team. Together they then formalize the scope of the project to be undertaken. A

problem domain is first identified and then carefully defined.

Thus, the number one element of the project plan emerges–the strategic objective. The

strategic objective is comprised of two statements, one of intention and one of elimination.

They are:

1. Statement of purpose – a statement that defines “what” the model will
be concerned with, i.e., its contextual limits.

2. Statement of viewpoint – a statement which expresses the perspective
of the model, the “eyes” through which the model is to be viewed.

One of the primary concerns which will be answered as a result of the establishment of the

strategic objective is the concern over the time-frame reference for the model. Will it be a

model of the current activities? Will it be a model of what is intended after a few changes in

the enterprise? The strategic objective identifies the appropriate “time slice.” Formal

description of a problem domain for an IDEF1 modeling project may include the review,

construction, modification, and/or elaboration of IDEFØ models. For this reason, both the

modeler and the project manager must be versed, to some degree, in the authoring and use of

IDEFØ models. Typically, an IDEFØ model exists which can serve as a basis for the problem

domain. A sample of the scope of in IDEF1 model, as viewed from the IDEFØ perspective,

can be seen in Figure 6-1.

6

USED
AT:

AU
T

HO
R

PROJECT:NO
T

ES 1 2 3 4 5 6 7 8 9 10

9 April 90

REV:

WORKING
DRAFT

RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXT

NODE: TITLE: NUMBER:

Figure 6-1. IDEF1 Scope

V IDEF1 Scope as Viewed from IDEF0 PerspectivePO/F3 DSC444

X
D.S. Coleman

IMCV
DATE

C1C2

O1

O2

O3

O4

O5

Production Design

Product Manufacturing Requirements
Manufacturing Plan

Costs

IPL

Status

Schedule and Budget

Resource Characteristics

Tool Specifications

Stores Requests

Production Resources

Production
Requirements

Production Item Specifications

Procurement
Specifications

Procured Items

Production Instructions

Product

Material
Availability

Production
and Test

Data

Develop
Production &
Schedule Plan

Estimate
Production
Costs

Develop &
Monitor
Schedule

Develop & Re-
lease Fabrica-
tion Instruction

Develop &
Monitor
Budgets

Provide People
& Facilities

Control & In-
spect Produc-
tion Materials

IPL

Resource
Characteristics

C3

Control & Re-
lease Produc-
tion Planning

Produce & Test
Product

Deliver
Product

Production
Instructions

Procure & Inventor Materil

Simplification of ICAM CompositeFunctional Architecture (IDEF0) Based
on ICAM Task I Final Report (REF:AFML-TR-78-148) for Illustration of
ICAM Composite Information Model(IDEF10 Scope.

Master
Schedule

Provide Tools
& Equipment

7

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXT

NODE: TITLE: NUMBER:P0/T1 IMM1

I.M. Modeler
IDEF1 Work Station

30 OCT 90 X

I. Strategic Objective

Purpose

The purpose of this task is the development of an IDEF1
information model of the Purchase Requisition (Form PI-R6 4-72),
as used to order parts and material which will be included in end
products.

Viewpoint

The model will be developed from the viewpoint of a buyer in
the Purchasing Department.

Strategic Objective

Figure 6-2. Strategic Objective

8

Differing viewpoints on a given problem invariably result in different models and it is

crudely that the project manager and modeler reach an agreement on what purpose is being

served, especially on what viewpoint is being used. As stated previously, the strategic

objective is a juxtaposition of two statements describing the objectives: the purpose and the

viewpoint. A sample strategic objective statement is shown in Figure 6-2.

6.2.2 Strategic Plan

The strategic plan is both a framing and organizing statement. It outlines the tasks to be

accomplished and the sequence in which they should be accomplished. These are laid out in

conformance with the overall tasks of the modeling effort:

1. Project planning

2. Data collection

3. Entity class definition

4. Relation class definition

5. Key Class definition

6. Attribute class population

7. Model validation

8. Acceptance review

Once the strategic planning effort gets underway, one of the several representation

alternatives should be selected. These alternatives represent different ways in which the

work efforts can be expressed in the strategic plan. Usually, modelers find it more

convenient to combine methods rather than selecting only one by which to organize the

project. Some of the more popular techniques employed include:

1. IDEFØ function models

2. WBS (work breakdown structures) – hierarchical or tree structure

3. Precedence networks (PERT)

4. Textual task definitions

9

A textual accompaniment to the formats which display the work structures is normally in

order. It also takes a variety of forms, including text in paragraph style, text in outline form,

text in tabular form, etc. A sample textual format is shown in Figure 6-3.

6.2.3 Functional Organization

In general, the model development may be viewed as ruled by the doctrine of “informed

consent.” By this we mean that the value of a model is measured not against some absolute

norm but rather in terms of its acceptability to experts and laymen within the community for

which it is built. This is accomplished through two mechanisms. A constant review by

experts of the evolving model provides a measure of validity of that model within the

particular environment of those experts. Then, a periodic review of the model by a

committee of experts and laymen provides for a corporate consensus to the model. The

principle of acceptability rather than perfection is maintained and information models are

achieved which represent the enterprise in an acceptable and integrated fashion.

Another doctrine worthy of mention is the doctrine of “active intent.” This means that, to the

extent possible, the builders of a model are held responsible for what the model says.

Nothing is assumed to have been left to the model reader’s imagination. Nor is the reader at

liberty to draw conclusions outside the scope of the statement of the model. This forces

modeler to very carefully consider each piece of information added to the model and to

carefully choose each figure which will be used to represent the model. A weakness in most

techniques which this doctrine specifically attacks is the tendency to under-explain, or under-

describe, components of the model. It is the intent of this doctrine that no imagination be

required in the interpretation of in IDEF1 model.

10

Figure 6-3. Strategic Plan

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXT

NODE: TITLE: NUMBER:

X

Strategic Plan

Strategic Plan

Essentially, the strategy is based on two primary assertions:

 A. The ability to develop a composite model which reflects real
 world characteristics is dependent on the participation of
 appropriate members of the aerospace manufacturing community.

 B. The initial focus of the composite model should be on
 information used directly in the manufacturing effort.

These assertions, coupled with recommendations from individuals with
experience in building various prototype information models, are
reflected in the following statements:

 1. Evaluate IDEFØ‚ Function Model, and select ’target‘ functions
 representing the departure points for the composite modelling
 effort.

 2. Identify the known entity classes in the information structure
 utilized or produced by the ’target‘ functions.

3. Develop a resource plan reflecting the manpower requirements,
 schedule, kit production rate, etc., and defining the degree
 of support needed from the aerospace manufacturing community.

PHASE 0

11

The functional organization is constructed to support these basic principles and to provide

organized project controls.

The IDEF functional organization has five primary roles in it:

1. The project manager

2. The modeler

3. The sources of information

4. The expert reviewers

5. The acceptance review committee

Whole companies, departments, coalitions, teams, and others can serve in any one or several

of the roles. The purpose of a role assignment, though, irrespective of the assignee, is the

determination of responsibility. Each of these is further defined on the pages which follow.

One person may serve in more than one capacity in the functional organization of the

modeling effort. But it is wise to remember that if there are insufficient points of view taken

into account when finalizing the model, the model may represent a very narrow perspective.

It may end up only partially serving to reach the objectives of the information modeling

project.

In the cases of the project manager and the modeler, there must be a lead, or principal,

individual who fulfills the role. Further, while it is the modeler’s ultimate goal to have the

model approved by the review committee, the modeler reports to the project manager, not the

review committee. In this way the otherwise conflicting interests of the modeler, review

committee, and project manager are disentangled. The project manager is always placed in a

position of control, while the various technical discussions and approvals are automatically

delegated to the qualified agency under that control. Figure 6-4 illustrates the functional

project organization, with the project manager at the nucleus of all project activity.

Project Manager. The project manager is that person or organization identified as having

administrative control over the modeling project. The project manager performs four

essential functions in the modeling effort.

First of all the project manager selects the models. As a major part of this function, the

project manager and the modeler must reach an agreement on the ground rules to be

12

followed in the modeling effort. These will include the use of this methodology, the extent of

control the project manager expects to exercise over the modeler and the scope and

orientation of the model to be developed.

The second function performed by the project manager is to identify the sources of

information on which the modeler will draw to build the model. These sources may either be

personnel particularly knowledgeable in some aspect of the manufacturing process, or

documents which record, instigate, or

Reviewer

Source
Project

Manager Modeler

Committee

Figure 6-4. Functional Organization

report aspects of that process. From a modeling standpoint, personnel who can interpret and

explain the information they deal with are the more desirable, but documents which record

that information are usually less expensive to obtain. The project manager must be in a

position to provide these sources to the modelers. Sources will initially be identified in

modeling Phase Zero, but the list must be reviewed and revised as the effort progresses since

the information required will tend to change as the model grows.

Next, the project manager selects experts on whose knowledge and understanding the

modeler will draw for validation of the evolving model. Validation, as will be discussed under

Experts, means concurrence that the model acceptably (in the abstract we would say

“accurately” or “truly”) reflects the system being modeled. The experts will be given portions

of the model and asked to review and comment based on their particular knowledge. Clearly,

more of an expert’s time will be absorbed in the modeling effort than the time we would set

aside for a source of basic information.

13

The initial list of experts will be established during Phase Zero, but will be reviewed and

revised throughout the modeling effort as the need arises. Finally, the project manager

forms and convenes the acceptance review committee. This committee periodically meets,

under the chairmanship of the project manager, to consider issues of substance requiring

arbitration, and to review portions of the model for formal acceptance. The project manager

sits on the committee as its non-voting chairman, thereby providing the needed link between

the modeler and the committee. While the modeler is not a member of the committee, it will

frequently turn out that the project manager will invite the modeler to attend a committee

meeting to provide background information or to explain difficult technical points. The first

meeting of the committee is held during Phase Zero and thereafter at the discretion of the

project manager.

Modeler. The modeler records the model on the basis of source material he is able to gather.

It is the modeler’s function to apply the modeling technique to the problem posed by the

project manager. There are four primary functions performed by the modeler. These are:

source data collection; education and training; model recording; and model control. The

modeler is the central clearinghouse for both modeling methodology information and

information about the model itself.

Before the modeler’s primary functions begin, the modeler and the project manager study

and establish the scope of the modeling effort. Then, the modeler outlines a project plan: the

tasks required to reach the stated objectives. The project manager provides the modeler with

a list of information sources and a list of experts on whom the modeler may rely. The

modeler must ensure that the necessary lines of communication are established with all

participants.

Source data are collected by the modeler from the various sources identified by the project

manager. The nature of these data will depend largely on the modeling phase being

exercised. Both personnel and documents will serve as sources of information throughout

the modeling effort. With personnel especially with documents, the modeler must be

particularly aware that each piece of source information provided represents a particular

view of the information in the enterprise. Each producer and each user of information has its

own distinct view of that information. The modeler is striving to see, “through the eyes of the

sources,” the underlying meaning and structure of the information. Each source provides a

perspective, a view of the information sought. By compositing these views, by comparing and

contrasting the various perspectives, the modeler must develop an image of the underlying

14

reality. Each document may be seen as a microcosmic implementation of a system meeting

the rules of the underlying information model. The modeler attempts to capture all of these

rules and represent them in a way that can be read, understood, and agreed upon by experts

and informed laymen.

The modeler’s second function is to provide assistance with the modeling technique to those

who may require it. This will fall generally into three categories: general orientation for

review committee members, sources, and some experts; model readership skills for some

sources, and experts; and modeling skills for some experts and modelers, as required.

The third function performed is the recording of the model. The modeler records the model

by means of filled-in modeling forms and diagram sheets. The methodology defines the rules

for using and filling in these sheets.

The modeler also controls the development of the model. Files of derived source information

are maintained to provide appropriate backup for decisions made by the modeler and to allow

a measure of participation for both project manager and modeler use. This record of

participation provides the modeler with an indication of the degree to which the anticipated

scope is being covered. By knowing who has provided information in what areas and the

“quality” of those interactions, the modeler can estimate the degree to which current

modeling efforts have been effective in meeting the original goals.

The modeler is also responsible for periodically organizing the content of the model into some

number of “Reader Kits” for distribution to reviewers. A reader kit is a collection of some

number of pages of the model, organized to facilitate its review and the collection of

comments from the information experts.

Sources. Source information for an IDEF1 model comes from every quarter within the

manufacturing enterprise. These sources are often personnel who have a particular

knowledge of some local area in manufacturing of management and whose contact with the

model may be limited to a few short minutes of interview time. Yet these sources form the

heart of the modeling process. It is their contribution which is modeled and their perception

which provides the modeler with the needed insight to construct a valid, useful model.

The project manager identifies sources of information which may be effective based on the

modeler’s statement of need. As the modeling effort progresses, needs change and the list of

sources must be revised. While the modeler must be careful to account for the information

15

provided by each source, both the modeler and source should be aware that any particular

contribution is necessarily biased. Each source perceives the world a little differently and it

is the modeler’s responsibility to sort out these varying views. This is especially true of

source documents.

Documents record the state of a minute portion of the enterprise at some point in time, but

the information on a document is arranged for the convenience of its users and seldom

directly reflects the underlying information structure. Redundancy of information is the

most common example of this, but the occurrence of serendipitous information on a document

is also a source of frequent and frustrating confusion. Documents are valuable sources of

information for the model, but they require a great deal of interpretation, understanding,

and corroboration to be used effectively.

Personnel used as sources can often extend themselves beyond their direct use of information

to tell the modeler how that information is derived, interpreted, or utilized. By being

prepared to ask appropriate questions, the modeler can use this information to advantage in

understanding how the perception of one source may relate to that of another source.

Experts. An expert is a person appointed by the project manager who has a particular

knowledge of some aspect of the manufacturing area being modeled and whose expertise will

allow valuable critical comments of the progressing model. The impact that appropriate

experts can have on the modeling effort cannot be overstressed. Both the modeler and the

project manager should seriously consider the selection of each expert.

Experts are called on to critically review portion of the evolving model. This is accomplished

through the exercise of some number of validation cycles (IDEF Kit Cycle), and by the use of

reader kits. These kits provide the expert with a related collection of information presented

so as to “tell a story.” In this fashion the expert is provided the information in an easily

digestible form and is challenged to “fill in the blanks” or “complete the story.” While the kit

is largely based on modeler interpretation of information from informed sources, the

comments of experts may also be expected to provide high quality source material for the

refinement of the model. The particular expertise of these people makes them uniquely

qualified to assist the modeler in constructing and refining the model. The modeler must

take every opportunity to solicit such input and this is why the kits of information must

present the expert with concise, clear problems to solve relative to the modeling effort.

16

The primary job of the expert is to validate the model. Expert validation is the principal

means of achieving an informed consensus of experts. A valid model is one agreed to by

experts informed about the model. Note that it is not necessary for a model to be “right” for

it to be valid. If the majority of experts in the field agree that the model appropriately and

completely represents the area of concern, then the model is considered to be valid.

Dissenting opinions are always noted and, it is assumed by the discipline that models are

invalid until proven otherwise. That is why expert participation is so vital to the modeling

effort. When the modeler first constructs a portion of the model he is saying: “I have

reviewed the facts and concluded the following...” When that portion is subsequently

submitted to experts for review, he asks, “...Am I right?...” Expert comments are then taken

into account in revising that portion of the model which the experts do not agree with, always

bearing in mind that a consensus is being sought.

Experts, more than any other non-modeling participants, require training to be effective. In

fact, one of the modeler’s responsibilities is to ensure that experts have an adequate

understanding of the modeling methodology and process. Principally, experts require good

model readership skills, but periodically it will be helpful to train an expert in some of the

rudiments of model authorship. By providing experts with a basic understanding of

modeling the project is assured of useful input from those experts. Further, the stepwise,

incremental nature of the modeling process presents experts with the modeling methodology

in “small doses.” This tends to enhance the expert’s ability to understand and contribute to

the modeling effort.

Acceptance Review Committee. The acceptance review committee is formed of experts

and informed laymen in the area of manufacturing to be addressed by the modeling effort.

The project manager forms the committee and sits as its chairman. It is the function of the

review committee to provide guidance and arbitration in the modeling effort and to pass final

judgement over the ultimate product of the effort: an IDEF1 information model. Since this

model is one part in a complex series of events to determine and implement systematic

improvements in the manufacturing productivity of the enterprise, it is important that the

committee include ample representation from providers, processors, and end users of the

information represented. Very often this will mean that policy planners and data processing

experts will be included on the committee. These personnel are primarily concerned with

eventual uses to which the model will be put. It may also be advantageous to include on the

committee experts from manufacturing or management areas outside, but related to, the

17

area under study. These personnel often can contribute valuable insight into how the

information model will impact, or should be impacted by, ongoing work in other areas.

It is not uncommon for personnel who serve in the role of experts to also serve as members of

the review committee. No conflict of interest should be anticipated. An expert is often only

exposed to restricted portions of the model at various intermediate stages, but the review

committee must pass judgement on the entire model. It is much less common for personnel

who serve in the role of source to also sit on the committee; their knowledge is usually so

restricted in coverage that it excludes them from practical contribution to the committee. It

is ill-advised for modelers to sit on the committee, because a severe conflict of interest is

clearly evident. The role of the modeler is to record the model without bias, while the role of

the committee is to ensure that the model in fact represents their particular manufacturing

enterprise.

The end product of this segment of the project definition is the documentation of specific

assignments made by the project manager to fulfill each of the functional role requirements

of the modeling technique. Once again, there are a number of graphic and textual

alternatives available to the modeler for representing these assignments.

6.2.4 Resource Allocation

The final effort in the Project Definition portion of Phase Zero is the development of the

resource allocation plan. This plan stipulates the magnitude of the task effort, the time

frame through which the task will be conducted, and the sequence of the efforts involved.

The major activities within the modeling effort must be broken down into more manageable

levels of detail. These more manageable pieces are then scheduled and phased and then a

milestone chart of these scheduled events can be produced.

The resource allocation plan displays the required hours of effort anticipated for each

participant in the project in relation to each phase of model development and calendar time

frame. It includes a summation of estimated hours by modeling phase and role as well as a

summation of estimated hours for each phase and for the total project.

Any one of a number of alternative formats can be selected to express the resource allocation

arrangement. Text, bar charts, milestone charts, etc., can fulfill the requirement to publish

the details of the resource allocation plan.

18

6.2.5 Source Material – Data Collection Plan

One of the first problems confronting the modeler is the determination or what sort of

material needs to be gathered and from what sources it should be gathered. Often the scope

and context of the IDEF1 model will be determined based on an analysis of an IDEFØ

function model. Once the analysis of the functions and pipelines between functions is

completed, “target” functions within the enterprise represented by the function model can be

identified. A “target” function node is one that represents a concentration of information in

use which is representative of the problem domain. An example of “target” function node

selection is shown in Figure 6-5.

BASED ON ‘MOST FOR LEAST’
‘CONCENTRATION POINTS’ OF
INFORMATION

PRODUCTION DESIGN

STORES REQUESTS

PROCURED ITEMS

PROCURE
ITEMS

PRODUCTION
RESOURCES

SCHED. &
BUDGET

PRODUCTION

Control &
Release
Production
Planning

Develop &
Release Fab.
Instruction

Provide
People &
Facility

Provide

Equipment
Tools &

Procure &
Inventory
Materials

Control &
Inspect
Production
Materials

TARGET FUNCTION NODES

Control & Release
Production Planning
Develop & Release
Fab. Instr.

Provide Tools & Equip.

Procure & Inventory
Material
Control & Inspect
Production Materials

Figure 6-5. Target Function Nodes

Once the target functional areas have been identified and the primary information categories

of interest selected individuals within functions can be selected to participate in the data

gathering process. This data gathering can be accomplished in several ways, including

interviews with knowledgeable individuals; observation of activities; evaluation of

documents, policies, and procedures; application specific information models; etc. This

requires translation of the target function nodes into their equivalent, or contributing,

19

administrative participants. Once the administrative groups participating in a “target”

function have been identified, the project manager can proceed to identify individuals (or

specific observable areas) which can be used as sources of material for the model. A

representation of the translation of “target” function nodes into administrative and

individual participants is shown in Figure 6-6.

Industrial
Engineering

Functional Area

Validate
&

Release
Planning

Administrative
Participants

Production
Planning
Production
Control
Quality
Assurance

Figure 6-6. Identifying Participants

Regardless of the method used, the objective of the modeler at this point is to establish a plan

for the collection or representative documentation reflecting the information pertinent to the

purpose and viewpoint of the model. Once collected, each piece of this documentation should

be marked in such a way that is traceable back to its source. This documentation, along with

added documentation which is discovered through the course of the modeling, will be

constantly referenced in the various phases of model development. It is this source material

which the modeler will study and search for objective evidence lending credibility to the basic

structural characteristics of the model and meaning of the information represented.

The source material may take on any one of several forms and may be fairly widespread

throughout an organization. It may take the form of:

1. Document (various media)

2. Blank forms (supplies)

3. Policies and Procedures (instructions)

4. Interview results

5. Observation results, etc.

20

To accomplish the objective successfully, a sound data collection plan is of paramount

importance. This data collection plan must reflect what kind of information is of importance,

where that information is available, and who will supply it. Characteristic of Phase Zero,

this plan may take any of several forms of presentation, as long as the basic information

requirements are met.

As the source material is actually collected, its availability is recorded on the source material

log. The source material log is the primary index to all source material used in the project.

Each piece of source material is sequentially assigned a unique identifying number as the log

is filled out. This number is written on the source material prior to its being placed in file. A

sample of the source material log is shown in Figure 6-7.

Once the collection of source material is initiated, the source data identification can

commence. This is a list of every name (i.e., every element) that is referenced in the source

material. Each name occurs only once on the source data list and each name must be

traceable to the specific piece(s) of source material where it can be observed. A sample source

data list is shown in Figure 6-8. An example of how this traceability is employed is shown in

Figure 6-9.

There are two work activities represented here:

1. Preparation of the data collection plan

2. Execution of the data collection plan

21

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

Sou
rce

Source Material Name/Description Received From Comments

SM#1

SM#2

SM#3

SM#4

SM#5

SM#6

SM

SM

SM

SM

SM

NODE:

30 OCT 90

Material#

TITLE: NUMBER:Source Material Log IMM5P /X1

Purchase Requisition/Form PI-R6 4-72 U.R. Buyer

U.R. Buyer

U.R. Buyer

U.R. Buyer

B.J. Commodity Code List

B.J. Product Code List

Procedure #079-003

Procedure #101-506
“ Purchasing Codes”

“ Preparation of the Requisition”
/Rev. 00

Procedure #079-001/ Rev. 00
“ Preparation of the Purchase Order”

Policy and Procedures
Manual
Policy and Procedures
Manual

Figure 6-7. Source Material Log

22

Figure 6-8. Source Data List

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

Source
Source Data Name Source Material

Cross-Reference Comments

SD#1

SD#2

SD#3

SD#4

SD#5

SD#6

SD#7

SD#8

SD#9

SD#10

SD#11

NODE:

30 OCT 90

Data
#

TITLE: NUMBER:P /X2 Source Data List IMM6

Requisition Number

Buyer Code

Vendor Number

Order Code

Chg. No. (Change Number)

Ship To (Location)

Purchase Requisition

Vendor Name and Address

Non-Confirming/Confirming To

Extra Copies

Requester (Name)

SM#1,#27,#36

SM#1,#17

SM#1,#21,#27

SM#1

SM#1

SM#1

SM#1

SM#1

SM#1

SM#1

SM#1

Pre-Printed on Form

Only for Orders NOT Delivered
to Plant 1 or 3 See 079-001

For Extra Purchase
Order Copies

Name of Person Contacted

is

Entered in Space Provided

23

SOURCE
MATERIAL LOG

DESCR. SOURCE

1
2
3

12 Purchase
Order

PURHCAS
E

ORDER

NO.
DATE

VENDOR NO.
ITEM PART

SOURCE DATE LIST

SOURCE
MAT'L LOGNAME

.

.

.

.
112
113
114
115
116

P.O. NO.
P.O. DATE
VENDOR NO.
P.O. ITEM
PART

12,26,73
12
12,17,26
12,32,73
12,32,73

Figure 6-9. Traceability of Source Data

The modeler includes the actual data collection plan in the Phase Zero documentation which

is distributed to readers, but the source material collected (forms, records, etc.) is not

distributed for review. Only the Source Material Log and Source Data List are distributed as

a part of the Phase Zero documentation.

6.2.6 Author Conventions

Author conventions are those latitudes granted to the modeler (author) to assist in the

development of the model, its review kits, and other presentations. Their purpose is

specifically for the enhancement of the presentation of the material. They may be used

anywhere that would facilitate a better understanding and appreciation of any portion of the

model.

Author conventions may take on various forms and appear in various places. For example, a

textual representation of a strategic plan rather than a Work Breakdown Structure or other

type of chart. But the most important aspect of all of this is what author conventions are not.

Author conventions are not:

1. Formal extensions of the technique

2. Violations of the technique

24

Author conventions are developed to serve specific needs. Each convention must be

documented as it is developed and included in the Phase Zero documentation which is

distributed for review.

6.2.7 Phase Zero Kits

Phase Zero kits are assembled in groups. The first group contains the products of the four

primary stages of project definition–strategic objective, strategic plan, functional

organization, and resource allocation. These are referred to as the project planning kits.

Next are the source material kits. This group consists of the Data Collection plan, the Source

Material Log, and the Source Data List. Finally, there is the last group of kits, the Author

Conventions.

There will typically be some number of kits representing each group in Phase Zero.

Together, the kits represent the whole of the Phase Zero product. Each of these kits is

prefaced by a Kit Cover Sheet. A thorough description of the forms and procedures for

submitting kits is found in Section 5.0.

The Phase Zero kit structure is not complicated. Basically, a Phase Zero kit is composed of a

kit cover sheet, followed by some number of pages representing one or more sections of the

Phase Zero documentation. An example of the Phase Zero kit structure is reflected in Figure

6-10. Most of the pages in Phase Zero documentation are textual in nature. Each page of the

textual material is assigned a unique “node” number within the phase. Figure 6-11 shows an

example of this standard.

It is imperative that Phase Zero content be approved by the project manager prior to

initiating Phase One. Later on, revisions may be made to this phase to reflect the

appearance of new elements in the model, but new Phase Zero kits have to be issued then to

document the change.

6.3 Phase One – Entity Class Definition

The objective of Phase One is to identify and define the entity classes which fall within the

problem domain being modeled. The first step in this process is the identification of entity

classes.

25

Kit cover
sheet

1 or more phase zero
sections; 50-75 pages
per kit

NODE:

NODE:
NODE:

NODE:
NODE:

NODE:
NODE:

TITLE:

TITLE:
TITLE:

TITLE:
TITLE:

TITLE:
TITLE:

PO/K1
PO/T1

PO/X1
PO/X2

PO/X3
PO/X4

PO/X5

Project Definition
Strategic Objective

Source Material Log
Source DAM List

Source DAM List
Source DAM List

Source DAM List

N
M
L
K
J
I

H

Figure 6-10. Phase Zero Kit Structure

6.3.1 Entity Class Definition

Most of these should have been represented on the Source Data List constructed during

Phase Zero. The modeler must first identify within the list of names those things which

represent potentially viable entity classes. One way this can be simplified is to identify the

occurrences of all nouns in the list. For example, terms like “part,” “vehicle,” “machine,”

“drawing,” etc., would be considered potentially viable as entity classes. Another method is

to identify those terms ending with the use of the word “code” or “number;” for example, part

number, purchase order number, routing number, etc. The phrase, or word, preceding the

word “code” or “number;” could also be considered at this stage a potentially viable entity

class. For the remainder of the items on this list, the modeler must ask whether the word

represents an object about which information is known, or is information about an object.

Those items which fall into the category of being objects about which information is known

may also be viable entity classes.

26

PO /T13

PO–Phase Zero

T13–the 13th page of text
 material developed

Figure 6-11. Unique Node Number

Entity classes result from a synthesis of basic entities, which become members of the entity

class. This means that some number of entities, all of whose detailed pieces are the same,

are represented as an entity class. An example of this concept is shown in Figure 6-12. The

entity classes, although expressed in a two-dimensional form, must be thought of in terms of

a three-dimensional image. The third dimension is the membership mentioned earlier. Each

occurrence of an entity in an entity class is a member of the entity class, all with the same

kind of identifying information.

At the end of this process of selection of terms, the modeler has completed what is referred to

as the entity class pool. This pool simply contains all of the known names of entity classes

within the context of the model being constructed at this point. As the modeler is building

the entity class pool, a discrete identification number is assigned to each entry and reference

to its source is recorded. This way, the traceability of the information is maintained. The

integrity of the pool remains intact and the management of the pool is relatively easy. A

sample of an entity class pool is shown in Figure 6-13.

It is unlikely that all names on the list will remain as entity classes by the end of Phase Four.

Also, a number of new entity classes will be added to this list and become a part of the

information model as the modeling progresses and the understanding of the information

improves.

27

Engineer Buyer Inspector

Entity Class: Employee
Name:
Employee #:
Age:
Job Title:

..

IDEF1 Entities

.. ..

Figure 6-12. Synthesizing an Entity Class

28

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Entity Class Pool IMM11P1/X1

Node No.
E1
E2

E3

E5
E6

E4

E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17

Name
Entity Class Entity Class

Node No. Name
Source
Data ID #

Source
Data ID #

SD1

SD2
SD3
SD15
SD6

SD11
SD12

SD21
SD26

SD23
SD30
SD31
SD34

SD36
SD37
SD38

SD39

SD38

SD40
SD41

SD43
SD
SD

SD
SD
SD
SD
SD

SD
SD
SD

SD
SD

SD

E18

E19

E20
E21

E22
E23
E24

E
E

E
E
E
E
E
E
E

E

Purchase Requisition
Buyer
Vendor
Purchase Order

Ship To Location
Requester
Department
Pattern
Part
Purchase Req. Item
Commodity
Purchase Req. Line
Job

Account
Product

B.M. Page
B.M. Line

Bill Of Material

Route Sheet
Destination
Approver

1 NOV 90
3 NOV 90

Part Source

Confirmer
Extra Copy

Figure 6-13. Entity Class Pool

29

Entity class names discovered in some later phase must be added to the entity class pool and

assigned a unique identification number. One of the products of the Phase One effort is the

entity class pool. To remain viable it must be up to date.

The next product that will emerge out of the Phase One efforts is the beginning of the Entity

Class Glossary. During Phase One, the glossary is merely an assemblage of the entity class

definition pages.

There is a standard outline for the entity class definition page, which is reflected below. The

heading and title blocks of the form are standard, but the body of the form is unique to the

entity class definition page. Each of the items contained in the body of the page is discussed

below:

1. Entity Class Name – Entity class name is the formal name by which the
entity class will be recognized in the IDEF1 model. It should be fully
descriptive in nature, not shorthand.

2. Entity Class Label – The entity class label is a pseudonym assigned to
the entity class which is based on the entity class name. It should bear
some resemblance to the entity class name, but is a short form of the
name. It is destined to be the form of the name used in the entity class
box throughout the model. It is stressed that, although the entity class
label is a shorter form of the entity class name, it must be meaningful.
Character strings which are unrecognizable or carry no immediate
recognized significance to the reader are worthless as entity class
labels.

3. Entity Class Definition – This is a definition of the entity class which is
most commonly used in the enterprise from the viewpoint upon which
the model is based. It is not intended to be “Websterian” (dictionary-
like) in nature. It would be meaningless (if not totally confusing) to
include definitions outside of the Phase Zero scope, since the meaning
of the information reflected in the model is specific to the viewpoint
upon which the model is based and to the context of the model defined
in Phase Zero There may be slight connotative differences in the way
that the entity class is defined, primarily based on contextual usage.
When these occur, or when there are alternate definitions (which are
not necessarily the most common from the viewpoint of the model),
these should also be recorded. It is up to the reviewers to identify what
definition should be associated with the term used to identify the entity
class. The Phase One definition process is the mechanism used to force
the evolvement of a commonly accepted definition.

4. Entity Class Synonyms – This is a list of other names by which the
entity class might be known. The only rule pertaining to this is that the
definition associated with the entity class name must apply exactly and
precisely to each of the synonyms in the synonym list.

30

A sample of the entity class definition page is exhibited in Figure 6-14.

Entity class definitions are not most easily organized and completed by first going after the

ones which require the least amount of research. Thus, the volume of glossary pages will

surge in the shortest period of time, then the modeler can conduct the research required to

become fully conversant with the rest of the names in the pool. Good management of the

time and the effort required to gather and define the information will ensure that the

modeling effort continues at a reasonable pace.

Each element of the entity class glossary page is defined as it pertains to the methodology

and its use in this instance. Their definitions and an example of a “good” and a “poor”

application of each follows:

1. Number – sequential; non-significant; assigned in the entity class pool.

2. Name – descriptive; a singular noun; must not be an abbreviation

Good: Purchase Order

Poor: Purch. Ord.

3. Label – meaningful, but in short-form; tied closely with name to ensure
compatibility and recognition.

Good: Purch. Ord. or Prod. Order

Poor: P.O.

4. Definition – precise; specific; complete; “universally” understandable.

Good: Employee: a person who performs specific duties for the
company over a duration of 20 or more hours per week and meets the
other stipulations of an employee as defined by the state employment
office.

Poor: Employee: a person who works for the Company.

5. Synonyms – other names for the entity; must be 100% congruous in
meaning; must be synonymous in context.

Entity Class Synonyms

Good: Purchase Order Purchase Authorization

Purchase Agreement

Poor: Purchase Order Purchase Request

31

Definition of the entity classes can commence after the construction of the entity class pool.

Each entity class will have one definition page which contains the information about the

entity class that is known at the time.

A completed entity class definition page is exhibited in Figure 6-15.

6.3.2 Phase One Kits

The modeler is now ready to construct and circulate Phase One kits to the export reviewers.

Eventually, all members of the entity class pool will be defined and circulated through Phase

One to the expert reviewers, but the modeler is most interested in establishing adequate

definitions to circulate in kit form as early as possible. The modeler will therefore select

some number of these potential entity classes, usually 15 to 20 per kit, define them, and

release the kit for review and comment. While the review and comment cycle is going on, the

modeler will be defining additional entity classes and preparing additional kits which will

themselves be circulated for additional review and comment as well. The number of kits to

be circulated during this phase is determined basically by two things:

1. The total number of entity classes.

2. The amount of revision and iteration required on the entity class
definitions.

The standard diagram form, previously described, is used as the basis for the Phase One kits.

The entity class definition page identification follows a prescribed pattern. Included are:

1. Node – a number comprised of the phase number, entity class number,
and glossary page number...

e.g.: P1 / E26 (G1)

Glossary Page: 1

Entity Class: #E26

Phase: I (One)

2. Title – “Entity Class Definition:” followed by the entity class name...

e.g.: Entity Class Definition: Purchase Order

3. Number – Author Page Control (C) Number

An exmple of the entity class definition page labeling convention is shown in Figure 6-16.

32

33

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXT

NODE: TITLE: NUMBER:Entity Class Definition:P1/E1 (G1)

Entity Class Name:

Entity Class Label:

Entity Class Definition:

Entity Class Synonym(s):

Figure 6-14. Entity Class Definition Page

34

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Work Shop

X

NODE:

30 OCT 90

TITLE: NUMBER:Entity Class Definition: Purchase Requisition IMM12P1/E1 (G1)

Entity Class Name: Purchase Requisition

Entity Class Label: Purch.Req.

Entity Class Definition: A Purchase Requisition reflects information which is used by the

 Inventory Control Department to request the Purchasing Department to

Entity Class Synonyms:

Figure 6-15. Completed Entity Class Definition Page

35

NumberNode: Title:
Entity Class Definition:

P1 E26 G1 Purchase Order

Phase
I

Entity
Class

#6

Glossary
Page #1

Entity
Class
Name

Figure 6-16. Entity Class Definition Page Labeling

As indicated earlier, a Phase One kit typically consists of 15-20 entity class definition pages.

Each kit is prefaced by a standard kit cover sheet. A sample of a Phase One kit cover sheet,

as completed by the modeler, is exhibited in Figure 6-17.

The structure of Phase One kits is not complicated. Each Phase One kit is composed of 15-20

entity class definition pages, prefaced by a kit cover sheet. This structure is exhibited in

Figure 6-18.

Structuring the Phase One kits of about 15 to 20 entity classes per kit will provide, on the

average, 1 to 1 1/2 hours of review work for each expert per kit.

Once structured, the modeler must ensure that adequate copies of the kit can be reproduced

to meet the distribution requirements of the validation cycle. Then the originals of each page

are placed in the “current model file” until required again.

36

I.M. Modeler
IDEF1 Work Shop

3 NOV 90

IMM122Entity Class DefinitionsP1 /K1NODE: TITLE: NUMBER:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

AUTHOR:
PROJECT:

WORKING
DRAFT

PUBLICATION

READER

DATE

LOG
FILE
AUTHOR

DOCUMENT
NUMBER

COPYING INSTRUCTIONS:

as soon a possible by

RESPONSE REQUIRED:
CONTENTS:
Pg Node Title C Number Status

= Total

COMMENTS:
 UPDATE
 REPLACE

SPECIAL INSTRUCTIONS.

New Kit
To Readers Due Back

 Comments
To Authors Due Back

as author copy
COVER SHEET

Response
To Readers

Received

Completed

NormalFast Slow None

READERS:

RECOMMENDED

A
B
C
D
E
F

H
I
J
K
L

M
N

G

Model File with this kit

extra author copies

Copies of Pages

x P1

IMM
12

Buyer IMM13
Vendor IMM14
Pur. Order IMM15
Requester IMM16
Part IMM17
Pur. Req. Item IMM18
Pur. Req. Line IMM19
Approver IMM20

E1/G1
E2/G1
E3/G1
E4/G1
E6/G1
E7/G1
E10/G1
E12/G1
E21/G1

Purchase Requisition

Figure 6-17. Phase One Cover Sheet

37

6.4 Phase Two – Relation Class Definition

The objectives of this phase in the development of the model are threefold, two of which have

to do with the identification and definition of relationships and their representation as

relation classes. With the relation call definitions in hand the modeler can proceed with the

third objective: the construction of the entity class diagrams. All of the products of Phase

Two will emerge as the by-products of the effort to reach these objectives. They will finally

be joined together in the Phase Two kits, which serve as the vehicle for validation of the

model.

Following is a list of the products which result from the Phase Two effort.

1. Relation Matrix

2. Entity Class Diagrams

3. Relation Class Definitions

4. Entity Class Node Cross-reference

5. Reference Diagrams (FEOs)

6. Phase Two Kits

Kit Cover
Sheet

15 -20 Entity Class
Definition Pages
Per Kit

Figure 6-18. Phase One Kit Structure

38

32

Entity Class Number

Employee

Entity Class Label

Entity
Class
Box

Figure 6-19. Phase Two Entity Class Box

To get started on this effort requires that the modeler become intimately familiar with the

basic structural figure of modeling–the entity class box. A sample is shown in Figure 6-19.

The symbol of an entity class is a simple rectangle with a small rectangle in the lower left

hand corner for the entity class label, and a small triangle in the upper left hand corner for

the entity class number.

The basic format used in the model diagrams is two entity class boxes connected by a straight

line. The line represents relationships between entities. The basic diagram format is

illustrated in Figure 6-20. This relationship is defined by adding symbols and phrases to the

connecting line. This process results in the identification of what is called the Relation Class.

A

B

Label A

Label B Figure 6-20. Entity Class Diagram Syntax

The initial step in Phase Two requires that the modeler understand the basic purpose served

by the Relation Class.

First of all, a relationship is a meaningful association between two entities. This is

illustrated in Figure 6-21. Here the relationship is between “Operator #862” and “Machine

#12678.” There are literally millions of these kinds of relationships pictured everyday–

between a car and a driver, an aircraft and a pilot, a system and a procedure, and so on.

39

A relation class is the manner in which members of one entity class are associated with

(related to) members of another entity class (or to members of the same entity class). This is

illustrated in Figure 6-21, as well.

Operator #862 is assigned to Drill Press #12678

Operator Is Assigned To Machine

Entity Class:
Operator

Entity Class:
Machine

. .

. .

. .

Figure 6-21. Relation Class Label

There are two aspects of the relation class which serve to describe the relationship which

exists between the entities. They are the Relation Class Label and the Relation Class Ratio.

The relation class ratio serves to quantify (loosely) the number of relationships that may

exist for each member of an entity class. It also defines the functional (existential)

dependency that exists in the relationship. An existential dependency exists when the

association between two entities is such that one cannot exist without the other existing first.

In this kind of relationship, the entity class, which is not dependent on the other one, is

called the “independent” entity class; the entity class which is dependent on the other one is

called the “dependent” entity class.

There are three expressions of relation ratio used in IDEF modeling:

1. One-to-One (1:1)

2. One-to-Many (1:N)

3. Many-to-Many (M:N)

These relation ratios have a specific syntax so that they can be expressed graphically. Figure

6-22 shows the syntactical representation of each of the relation ratio variations. A full

diamond is used as the symbol representing a “zero, one or many” relationship, while a half-

40

diamond represents a “zero or one” relationship. Those relation classes where either of the

entity classes can exist independent of the other one are referred to as “non-specific” relation

classes; if either of the entity classes is dependent, the relation classes are referred to as

“specific.”

Non-specific

One-to-one
 (1:1)

A

Label A

B

Label B

A

Label A

B

Label B

Many-to-many
(M:N)

Specific

One-to-one
(1:1)

One-to-many
(1:N)

A

Label A

B

Label B

A

Label A

B

Label B

Dependent
Independent

Figure 6-22. Relation Class Ratio Syntax

Learning to read and interpret these expressions and variations is one of the academic

aspects of modeling. A closer look at the basic interpretation of this syntax will help you

understand them better.

Using the same example, Figure 6-22, the basic interpretation would be:

1. The “Non-Specific” Relation Classes

1:1 Each member of entity class “A” is related to zero or one member of
entity class “B”; conversely, each member of entity class “B” is related to
zero or one member of entity class “A.”

M:N Each member of entity class “A” is related to zero, one, or many
members of entity class “B”; conversely, each member of entity class “B”
is related to zero, one, or many members of “A.”

2. The “Specific” Relation Classes

1:1 Each member of entity class “A” is related to zero or one member of
entity class “B”; conversely, each member of entity class “B” is related to
exactly one member of entity class “A.”

M:N Each member of entity class “A” is related to zero, one, or many
members of entity class “B”; conversely, each member of entity class “B”
is related to exactly one member of entity class “A.”

Note: In the “specific” form of relation class expression, entity class “B”
is existentially dependent on entity class “A”; that is, the member of
entity class “A” to which the member(s) of entity class “B” is related,
must exist “before” the related member or entity class “B.”

41

Once the relation class syntax has been selected, the modeler must select a label and develop

a definition for the relation class. The relation class label is a short phrase typically verb-

like, with a conjunction to the second entity mentioned (as a preposition introduces its

phrase). This phrase reflects the meaning of the relationship represented. Often, the

relation class label is simply a single verb, but verbs, adverbs and prepositions also make

frequent appearances in relation class labels. Once a relation class label is selected, the

modeler should be able to read the diagram and produce a meaningful sentence defining or

describing the relationship between the two entity classes.

In the case of the “specific” relation class form, there is always an entity class and a entity

class; the relation class label is interpreted from the “independent” end first, then from the

dependent. This is illustrated in Figure 6-23.

In the case of the “non-specific” relation class form, there are two relation class labels, one for

each entity class, separated by a “/” mark. In this case, the relation class labels are

interpreted from “top to bottom” or “left to right” (depending on the relative positions of the

entity classes on the diagram) and then in reverse. This is illustrated in Figure 6-24.

Relation
class
label

Each member of entity class ‘A’ is related to
zero, one, or many members of entity class ‘B’

Each member of entity
class ‘B’ is related to exactly one
member of entity class ‘A’

‘A’ is independent

‘B’ is dependent

B

Label B

A

Label A

Figure 6-23. One-to-Many

42

Each member of entity class ‘A’ is
related to zero, one, or many members
of entity class ‘B’

Each member of entity
class ‘B’ is related to zero, one, or
many members of entity class ‘A’

B

Label B

A

Label A

Relation class
label/Relation
class label

No functional dependency defined

Figure 6-24. Many-to-Many

The emphasis on the relation class labels is that they must carry meaning. There must be

some substance in what they express. The full meaning and the modeler’s rationale in

selecting a specific relation class label must be documented textually by what is called the

Relation Class Definition. The relation class definition is a textual statement explaining the

relation class meaning. The same rules of definition character apply to the relation class

definition as applied to the entity class definitions; they must be:

1. Specific

2. Concise

3. Meaningful

6.4.1 Basic Process

The first step in Phase Two is to identify the relation classes that are observed between

members of the various entity classes. This task requires the development of a Relation

Matrix as shown in Figure 6-25. A Relation Matrix is merely a two-dimensional array,

having a horizontal and a vertical axis. One set of predetermined factors (in this case all the

entity classes) is recorded along one of the axes, while a second set of factors (in this case,

also all entity classes) is recorded along the other. An “X” placed in the intersecting points

along which any of the two axes meet is used to indicate a relationship which may exist

between the entity classes involved. At this point, the nature of the relationship is

unimportant; the fact that a relationship may exist is sufficient.

43

Once the Relation Matrix is completed, the modeler can start to produce rough drafts of the

entity class diagrams. Basically, the entity class diagrams at this stage represent a simple

translation from the Relation Matrix to IDEF1 diagram format.

One diagram is produced for each line, that is, each entity class represented on the horizontal

axis of the matrix. Each of these entity classes is the subject that is depicted in the center of

only one diagram. The entity classes to which they are related, as indicated by the “X”s in

the vertical axes of the matrix, are drawn to the top, sides, and bottom of the subject entity

class on the diagram. A sample “preliminary” or “rough draft” entity class diagram is

depicted in Figure 6-26. It is important to note that at this stage there has been no attempt

to define what kind of relationship is being reflected.

In the earlier material it was pointed out that there are two categories of relation classes: the

non-specific and the specific. In this phase of information modeling, all of the relation class

forms are legal for the modeler to use. The next step in preparing these preliminary

diagrams involves selection of the appropriate relation class form to apply to the lines

between entity classes. Once the proper symbols have been selected and drawn in on the

rough draft, the modeler can choose a label for the relation class; one that aptly and

succinctly describes the relationship represented. The modeler may choose to label some

non-specific one-to-one (1:1) relation classes as “unknown” if more information is needed to

understand the nature of the relationship represented.

44

Figure 6-25. Relation Matrix

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER: IMM22P2/T1 Relation Matrix

Entity Class #
Entity Class Pur. Req.

Buyer

Vendor

Pur. Order

Requester Part

Pur. Req. Item

Pur. Req. Line

Approver

1
2

3
4

6
9

10
12

21

Pur. Req.
Buyer
Vendor

Pur. Order
Requester
Part
Pur. Req. Item
Pur. Req. Line
Approver

1 2 3 4 6 9

10 12 21

X
X

X

X

X

X X

X

X

X
X

X

X

X

X

X
X
X

45

Now the modeler is ready to formalize the entity class diagram, based on the “rough drafts”

that have been completed. To begin with, a standard entity class diagram format is used in

the development of the formal entity class diagrams.

There are specific guidelines the modeler must follow with the formal entity class diagrams.

These are:

1. The “subject” entity class will always appear in the approximate center
of the page.

2. The “independent” entity classes should be placed above the subject
entity class.

3. The “dependent” entity classes should be placed below the subject entity
class.

4. The relation class lines radiate from the “subject” entity class box to the
related entity classes. The only relationships shown on the diagram are
those between the subject” entity class and the related entity classes.

5. Every relation class line has a label; in the case of non-specific relation
classes, the line has two labels, separated by a “/.”

6. The only exceptions to the basic formatting guidelines are the non-
specific relation class forms, which are frequently shown to the side of
the subject entity class box.

The modeler now must define the relation classes. This does not mean simply defining or

restating the syntactical interpretation of the diagram. Rather, it involves defining the

rationale behind the selection of the relation class syntax and relation class name. An

example of several relation class labels and their definitions is shown in Figure 6-27.

46

Relation Class Label Relation Class Definition

Is authorized to Selected employees are
perform as authorized to perform as

buyers, and are provided
unique identification per-
taining to this role, dis-
tinct from their employee
identification.

Is Currently Each operator may be
assigned to assigned to some number

of work stations during
any shift, but this relat-
ionship reflects the one
the operator is assigned
to at the moment.

Figure 6-27. Relation Class Definition

It is important to keep in mind that the relation class definition must have meaning too. A

clear and precise definition will provide for a clear and precise understanding by the

reviewers. Relation class definitions must leave little room for doubt or confusion in order to

fulfill their intended purpose.

Now the modeler is ready to draft the node cross-reference statements and forms. The node

cross-reference is basically a restatement of the entity class diagram. It is through this

medium that interpretation of the diagram syntax is specifically illustrated. A sample of the

node cross-reference sheet is illustrated in Figure 6-28. The upper left-hand corner of one of

the fields for entity class names on each line is partially filled in, i.e. darkened in a triangular

figure. This indicates the starting point for interpreting the relationship illustrated on the

diagram. In Figure 6-28, for example, line number 1 would read, “Customer authorizes

contract spec. change.” Line number 2 would read, “Contract spec. change results in

engineering change.”

47

Figure 6-28. Node Cross-References Sheet

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER: IMM488P2/E84 (x1)

SUBJECT ENTITY CLASS RELATED ENTITY CLASS RELATION CLASS LABEL# LABEL LABEL

#

84
84

1
14

Customer
Engineering Change

Contract Spec. Change
Contract Spec. Change

Authorizes

Results In

Contract Specification Change
Entity Class Diagram

Node Cross-Reference:

P
lease n

ote th
at n

o in
dication

 of th
e ratio of occu

rren
ce is in

dicated on
 th

e n
ode cross-

48

reference. This is simply an aid in double checking the interpretation of the relation class

and diagram structure. The sentence structure to interpret the non-specific relation class

must be performed in two directions, one for each of the non-specific ends of the

relationships.

At this point the material available for each entity class set includes:

1. The entity class definition.

2. The entity class diagram.

3. The relation class definitions.

4. The near cross-reference.

The information about an entity class can be expanded by the addition of reference diagrams,

at the modeler’s discretion.

12

Part

5

Purchase Req.

1:1 Does not reflect
our operation correctly

Relation Class
Alternative #1

requests/is
requested by

12

Part

5

Purchase Req.

1:N is closer, but we
allow multiple parts per
Purchase Requisition

Relation Class
Alternative #2

is requested
by

5

Purchase Req.

12

Part

M:N appears to suit our
operation well, but will
require some refinement
in Phase III

Preferred

Relation Class
Alternative #3

requests/is
requested by

Figure 6-29. Reference Diagram

Reference diagrams (diagrams For Exposition Only, sometimes called “FEOs”) are an

optional feature available to the modeler, to which individual modeler conventions may be

applied. These diagrams are primarily platforms for discussion between the modeler and the

reviewer(s). They offer a unique capability to the modeler to document rationale, discuss

problems, analyze alternatives, and look into any of the various aspects of model

development. One example of a reference diagram is shown in Figure 6-29. This figure

depicts the alternatives available in the selection of a relation class and is marked with the

modeler’s preference.

49

Another type of reference diagram, illustrated by Figure 6-30 depicts a problem confronted

by the modeler. In this example, the modeler has identified the problem and its complexities

for the reviewer’s attention.

2

Part

Model Problem

Topical Discussion

What happens to
the model if

serialized control
of parts is
required?One occurrence of

part ‘a’ provides for
the quantity of three

Real World

Three instances
of part ‘a’ which
are not uniquely

identifiable

Part
‘A’

Figure 6-30. The “FEO” - A Reference Diagram

By this stage, the modeler has compiled sufficient information to begin the development and

distribution of Phase Two kits.

6.4.2 Phase Two Kits

The kit structuring in Phase Two is somewhat different than kit structuring in Phase One

because it is more complex. An example of how a Phase Two kit is structured is reflected in

Figure 6-31.

A kit cover sheet must be prepared for each kit. lt must denote the content of the kit (lower

left-hand corner) as well as other pertinent information. A sample is shown in Figure 6-32.

50

‘Reference
Only’ E.C.
Definition

General
FEOs

Entity
Class Set

Reference FEOs

Relation Class
Definitons

Subject E.C.
Diagram

Subject E.C.
Definition

Entity
Class Set

Node
X-Refer.

Overview
FEO

 Cover
Sheet

30-50 Pages
Total Per

Kit

20-30 of
these
pages
per kit

Figure 6-31. Phase Two Kit Structure

Once the specific entity classes to be included in a kit have been selected, a reference

diagram must be constructed which reflects the relationships between the “subject” entity

classes. This diagram is called the kit overview diagram. In some cases, all entity classes in

the kit will be directly related with one another, but, in others, the entity classes may be only

indirectly related, usually through other entity classes which are not included in the kit.

These indirect relationships are customarily reflected by enclosing the non-subject entity

class(es) within a large dotted line box and indicating textually that they are not included as

subject entity classes in the kit. This is illustrated in Figure 6-33. The kit overview

diagrams (included in kits as FEOs) are designed to:

1. Reflect the entity classes which are “subjects” of the kit.

2. Inform the reader of what the general content of the kit is.

3. Show the relationship which exists between the “subjects” in the kit.

The specific content of the kit is primarily a function of the number of pages associated in

total with each entity class set and to a certain degree the level of complexity of the entity

class sets. The primary objective of the modeler at this point is to constrain the kits to a

point where no more than 1 1/2 to 2 hours of the reviewer’s time (maximum) will be occupied

in reviewing and commenting on any single kit. The general Phase Two kit sizing

parameters to meet are:

51

1. 30-50 total printed pages per kit.

2. 4-6 entity class sets per kit.

3. 1 1/2-2 hours of review time per kit per reviewer.

There are typically four to six pages of information per entity class set in Phase Two. This

statistic, coupled with two other aspects of kit structuring, will help in determining an

equitable kit sizing:

1. The node cross-reference pages for the “subject” entity classes in the kit
are extracted from the entity class sets and placed in a group toward
the front of the kit. These form an index of the contents of the kit.

2. The entity class definitions for the “subject” entity classes are included
with the entity class sets. The entity class definitions for the non-
subject (related) entity classes shown in the node cross-reference are
grouped near the front of the kit, to be used for reference only.

One of the efforts that consumes a lot of reviewer time is reading and commenting on the

pages where it is not really necessary. It is a good practice for the modeler to draw attention

to the reason for placing a page in the kit. Entity classes which are being released for the

first time should be clearly pointed out. On the other hand, if a page is inserted simply for

reference, then it should be clearly marked “For Reference Only” to avoid the reviewer

spending a lot of time commenting on this page. The “informal” page markings help the

reviewer focus attention on the appropriate aspects of the kit.

One important point to remember about the expansion which could occur in the Phase Two

process is that any new entity classes entered into the model at this point must meet all the

prior requirements of Phase One.

Whenever this occurs, the modeler is required to update the entity class pool and to proceed

with the development of a new entity class definition, before the entity class(es) can be used

in Phase Two material.

52

Figure 6-32. Phase Two Cover Sheet

I.M. Modeler
IDEF1 Work Shop

3 NOV 90

IMM122Entity Class DefinitionsP1 /K1NODE: TITLE: NUMBER:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

AUTHOR:
PROJECT:

WORKING
DRAFT

PUBLICATION

READER

DATE

LOG
FILE
AUTHOR

DOCUMENT
NUMBER

COPYING INSTRUCTIONS:

as soon a possible by

RESPONSE REQUIRED:
CONTENTS:
Pg Node Title C Number Status

= Total

COMMENTS:
 UPDATE
 REPLACE

SPECIAL INSTRUCTIONS:

New Kit
To Readers Due Back

 Comments
To Authors Due Back

as author copy
COVER SHEET

Response
To Readers

Received

Completed

NormalFast Slow None

READERS:

RECOMMENDED

A
B
C
D
E
F

H
I
J
K
L

M
N

G

Model File with this kit

extra author copies

Copies of Pages

x

x

* Included for reference only

F5
E1/X1
E2/X1
E3/X1
E4/X1
E6/X1

E1
E2
E3
E4
E6

Kit Overview IMM155
Node X-Ref IMM45
 " " IMM46
 " " IMM47
 " " IMM48
 " " IMM49

E.C. Definitions* 3 pages
Pur. Req.
Buyer
Vendor
Pur. Order
Requester

P2

53

126

13

18

P.O.

P.O. Item

Part

Order Part

not
included
in kit

Figure 6-33. Phase Two - Kit Overview Diagram

6.5 Phase Three – Key Class Definitions

Phase Three of the IDEF1 methodology deals with the identification and definition of an

element of information about entities referred to here as Key Classes. The purpose of the

Phase Three activity is to identify those attributes by which each entity in an entity class can

be, uniquely identified. Phase Three expands upon the work done in Phase One and Phase

Two. This will be accomplished through the attaining of the following objectives:

1. Refine the “non-specific” relation classes carried over from the Phase
Two activity.

2. Identify the attribute classes readily observed within the context of the
model.

3. Identify the key classes. These are the identifiers of entities by which
they are uniquely identifiable one from the other.

4. Define the key attribute classes. These are the attribute classes which
are used in key classes.

5. Construct the attribute class diagrams. These are extensions of entity
class diagrams.

There are a significant number of products which result from Phase Three. These products

include:

54

1. Attribute class pool

2. Attribute class diagrams

3. Key Class identifications

4. Entity class/attribute class matrix

5. Key attribute class definitions

6. Inherited attribute class cross-reference

7. Attribute class migration index

8. Refinement alternative diagrams

9. Function view diagrams

10. Entity class/function view matrix

11. Phase Three kits

Phase Three involves an extensive amount of product and a large number of activities. The

basic terms which are used in Phase Three areas follows:

1. Attribute

2. Attribute Class

3. Key Attribute Class

4. Non-Key Attribute Class

5. Key Class

6. Key Class Migration

7. Inherited (Shared) Attribute Class

The basic element of IDEF1 diagramming is the entity class box, but in Phase Three it begins

to take on characteristics which are different from those which have become familiar in

Phase Two. The primary difference is the inclusion of certain attribute classes in the

“subject” entity class box. An illustration of the Phase Three entity class box is shown in

Figure 6-34.

55

Entity Class Label

Key Classes

(Employee No.)

(Social Security No.)

Entity
Class
Box

Non-key
Attribute

Class

Entity
Class
Node

Number
32

Department

Employee

Figure 6-34. Phase Three Entity Class Box

It is important at this point that the definition and the meaning of the terms attribute and

“Attribute Class” be reemphasized. An attribute is a property or characteristic of an entity.

Attributes are composed of a name and a value. In other words, an attribute is one element

of information that is known about a particular entity. Attributes are descriptors; they tend

to be adjective-like in nature.

An example of some attributes and their respective entities, is shown in Figure 6-35. Note

that the first entity, or individual, is identified with an employer number of “1” and the name

associated with the entity is “Smith;” and that the job of the entity is “operator.” These

attributes, taken all together, describe the entity uniquely and separate that entity from

other similar entities. Every attribute has both a name and a value. It is the unique

combination of attribute values which describes a specific entity.

{
{

{

Employee No. 1
Name = Smith
Job = Operator

Employee No. 2
Name = Jones
Job = Supervisor

Employee No. 3
Name = Starbuck
Job = Pilot

Every attribute has
a name and a value

A unique combination
of attribute values
describes a specific entity

Figure 6-35. Attribute Examples

An attribute class represents a collection of attributes of the same name which apply to all

the entities of the same entity class. Attribute class names are typically singular

56

“descriptive” nouns. In the example of the entity class “employee,” there are several

attribute classes including:

1. Employee number

2. Employee name

3. Employee job/position

An example of how attributes are represented as attribute classes is shown in Figure 6-36.

The attribute values belong to the entities. But the attribute classes themselves belong to

the entity class. Thus, an “ownership” association is established between an entity class and

some number of attribute classes.

An attribute class has only one owner. An owner is the entity class in which the attribute

class originates. In our example, the owner of the attribute class “employee number” would

be the entity class “employee.” Although attribute classes have only one owner, the owner

can “share” the attribute class with other entity classes. How this works will be discussed in

detail in later segments.

An attribute class represents the use of an attribute to describe a specific property of a

specific entity. Additionally, some attribute classes represent the use of an attribute to help

uniquely identify a specific entity. These are informally referred to as key attribute classes.

Phase Three focuses on the identification of the “key” attribute classes within the context of

our model. In Phase Four the “non-key” attribute classes will be identified and defined.

One or more key attribute classes form the “Key Class” of an Entity Class. A Key Class is

defined as one or more key attribute classes used to represent the attributes required to

uniquely identify each member (each entity) of an entity class. An employee number is an

example of one attribute class being used as a Key Class of an entity class. Each employee is

identified from all the other employees by an employee number. Therefore, employee

number is the key class which we can say uniquely identifies each member of the entity class

employee.

57

Entity Attributes Entity Class: Employee

Attribute Classes (of
employee):No: 1

Name: Smith
Job: Operator

No: 2
Name: Jones
Job: Supervisor

No: 3
Name: Starbuck
Job: Pilot

Employee
No.

Name

Job

Figure 6-36. Attribute Classes Example

Key classes are included within the entity class box of the subject entity class on attribute

class diagrams. Key classes are always underscored. There are several “visual” forms of key

classes. The first of these is informally called the “simple” form. A “simple” Key Class is

composed of a single “key” attribute class. A second visual form that a Key Class can take is

formally called the “compound” form. A “compound” Key Class is made up of more than one

“key” attribute class. Each of the attribute classes which make up a “compound” Key Class is

separated by commas, but the entire Key Class is still underscored. A third visual form

which a Key Class can assume is called “alternate” or “equivalent” Key Class. It must be

emphasized that alternate key classes are exactly and precisely equivalent to their

counterpart. That is, either Key Class will result in the same unique identification of

precisely the same entity (member of the entity class). Alternate key classes may be either

simple or compound. In either event, each alternate Key Class is parenthetically enclosed

and underscored within the parentheses. Attribute classes which are used as part of a Key

Class are often referred to as Key Attribute Classes or Key Class Members. An example of

the various Key Class forms is shown in Figure 6-37.

Simple
Key Class

Employee No.

Employee

Compound
Key Class

P.O. No., P.O.
Item No.

Pur.Ord.Item

Alternate
(Equivalent)

Key Class
(Employee No)
(Social
Security No.)

Employee

Figure 6-37. Key Class Forms

58

Earlier, it was mentioned that the entity class which “owns” an attribute class can “share” it

with another entity class. Attribute classes become shared through the process of Key Class

migration. Key Class “migration” is when “key” attribute classes are moved from one entity

class to another. The rules which govern Key Class migration are as follows:

1. Migration always occurs from the independent to the dependent entity
class in the related pair.

2. The entire Key Class (that is, all attribute classes which are members of
the Key Class) must migrate once for each relation class shared by the
entity class pair.

3. Non-key attribute classes never migrate.

Attribute classes that migrate from one entity class to another are called “Inherited” or

“Shared” . An inherited attribute class must be a key attribute class (a member of a Key

Class) of the entity class from which it migrated, but an inherited attribute class does not

always have to be a member of the Key Class of the entity class to which it migrated (by

which it is inherited). All attribute classes are either owned or inherited by the entity class

with which they are associated.

An example of the migration of an attribute class from one (independent) entity class to

another (dependent) entity class is shown in Figure 6-38. In this example, purchase order

number (the Key Class of the entity class purchase order) migrates to (is inherited by) the

entity class purchase order item. It is then used by purchase order item as a member of its

Key Class in conjunction with another attribute class “owned” by purchase order item, which

is called purchase order item number. The two attribute classes (purchase order number and

purchase order item number) form the Key Class for the entity class purchase order item.

Purchase
Order

P.O. Number

Purchase Order
Item

P.O. Number,
P.O. Item No.

Independent

Dependent

Related
Entity
Class
‘pair’

Is
For

59

Figure 6-38. Key Class Migration

The process of Key Class migration is one of the techniques used to drive the model in total to

the next lower level of detail. Before Key Class migration can be accomplished, the modeler

must first resolve all non-specific relation classes carried over from Phase Two. This

resolution causes the stabilization of the functional (existential) dependencies within the

model. You may recall from our Phase Two discussion that functional dependency is

reflected only in the specific relation class syntax.

6.5.1 Phase Three Process

Phase Three of the IDEF1 information modeling technique is composed of the following

processes:

1. Refine “non-specific” relation classes.

2. Construct function view diagrams.

3. Initiate construction of attribute class pool.

4. Identify key classes.

5. Define key attribute classes.

6. Formalize Phase Three entity class sets.

7. Build and distribute Phase Three kits.

The first step in this phase is to insure that all non-specific relation classes observed in Phase

Two have been refined. Phase Three requires that only a “specific” relation class form be

used; either the specific one-to-one or specific one-to-many. Figure 6-39 illustrates the

“specific” form. To meet this requirement, the modeler will employ the use of “refinement”

alternatives. A alternative diagram is a type of reference diagram. They are normally

divided into two parts: the left part deals with the subject (the “non-specific” relation class to

be refined), while the right part deals with the refinement alternative. An example of a

refinement alternative dealing with a many-to-many resolution is exhibited in Figure 6-40.

The process of refinement of relation classes translates or converts the non-specific relation

classes into some number of “specific” relation classes. Out of this process new entity classes

frequently evolve. It is in Phase Three that we now begin to see a new kind of entity class.

60

In all earlier phases we’ve been working with what we might informally call the “natural”

entity classes. A natural entity class is one which we will probably see evidenced in the

source data list or in the source material log. A “natural” entity class would include such

names as:

1. Purchase order

2. Employee

3. Buyer

Label A

A

Label B

B

One-to-One
(1:1)

A

Label A

B

Label B
One-to-Many

(1:N)

Independent

Dependent

Figure 6-39. Specific Relation Classes

It is now during Phase Three that we begin to see the appearance of what may informally be

called the entity class. Figure 6-41 is an example of a “derived” entity class. In this

example, a “derived” entity class is used to represent the ways in which purchase requisition

items are related to purchase order items. Notice that a derived entity class name label is

somewhat different in character than the object nouns typifying the natural entity classes. It

is also not unusual to tag the entity class both of a derived entity class with an entity class

description to clarify the reason for the existence of the entity class. One of the subtle

differences between the natural and derived entity classes is in the entity class names.

Typically the entity class name for natural entity classes is a singular common noun. On the

other hand, the entity class name of the derived entity classes is often an artificial type of

noun.

The derived entity class is somewhat more abstract in nature and normally results from the

application of rules governing the validity of entity classes which are first applied in Phase

61

Three. The first of these rules is the rule requiring refinement of all “non-specific” relation

classes. This process of refinement is the first major step in stabilizing the integrated

information structure.

This process of refinement involves a number of basic steps, including:

1. The production of one or more rough draft refinement alternatives for
each “non-specific” relation class.

2. The selection by the modeler of a preferred alternative which will be
reflected in the Phase Three diagrams.

3. The updating of Phase One information to accommodate inclusion of
new entity classes resulting from the refinement.

4. The updating of Phase Two information to accommodate utilization of
new entity classes resulting from the refinement.

Once refinement is completed, the modeler can begin to determine the “functionality” of the

model.

62

Figure 6-40. Refinement Diagram

USED
AT:

AUTHOR:
PROJECT:
NOTES:

1 2
3 4
5 6
7 8
910

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:P3/F1 Refinement Diagram IMM55

9

Part

3

Vendor

Is Supplied
By/Supplies

9

Part

3

Vendor

Part Source

To refine the non-specific
many-to-many relation class
at the left, a new entity class
‘Part Source’ must be created.

Illustrates
that a
particular vendor
can suppply a
particular part.

Is Used AsIs Supplied By

63

3

Purchase Req.
Item

7

Purchase
Order Item

92

P.R. Item To
P.O. Item Assign

Entity Class Names/Labels
appear as expletive nouns

Derived to
support
combining
purchase
requisition
items

Is composed ofIs assigned to

Figure 6-41. The “Derived” Entity Class

6.5.2 Function View FEOs

Typically, the volume and complexity level of the information model at this point is becoming

appreciable. It was quite natural during Phase One to evaluate each entity class

independently of the other entity classes, because the entity classes were simply definitions

of words. In Phase Two, it is practical to continue evaluating one entity class at a time,

because the total volume of entity classes is usually not so large as to prohibit the

development of a mental image of the whole model at one time. In Phase Three, the volume

of entity classes and the complexity of relationships being reflected in the model is such that

an individual can no longer retain a total mental image of the meaning of the model. The

model must be reviewed and validated from a new perspective. This perspective enables the

evaluation of the model in a fashion more directly related to the “functional” aspects of the

enterprise being modeled. This perspective is represented by what is called the “function

view.” A function view is a general diagram For Exposition Only (FEO). Its purpose is to

establish some limited context within which portions of the model can be evaluated at one

sitting. The primary characteristics of a function view are as follows:

1. A function view deals with a single topic. The topic might be a
document, a report, or a process.

What the function view reflects is the cluster of entity classes and
relation classes which represent the information structure of the
document, report, or process.

64

2. Typically, a function view is limited to 25 to 30 entity classes. This is
simply a practical limitation established to facilitate the development
and maintenance of a mental image of the topic and related information
structure on the part of the reader.

The reason for the Function View Diagram is to focus attention on particular aspects of the

information model. By time the Phase Three refinement is nearing completion, an

information model is a relatively complex object. Because of this complexity different images

will be perceived in the model by different individuals. The model at this stage might be

likened to a collage of lines and images. The interpretation of the perceiver of the model will

vary somewhat based on the perspective. This variance in perception is like the perception

which takes place in an “ink blot” examination, or some similar type exercise. In a model

which is being utilized to facilitate requirements definition, though, wide variances of

perception are intolerable.

Figure 6-42 depicts an excellent example of this type of perception problem that can produce

an extreme difference of opinion.

Which figure, do you see first? The old woman? Or the young woman? Have you now seen

them both?

What could have helped you find them more quickly? More easily?

Young Woman?

Old Woman?

65

Figure 6-42. Perspective

One of the tools by which perspectives of the information model can be examined is through

the use of function view diagrams. These are diagrams which emphasize specific

characteristics or features of the perspective. The connections, key relationships, etc., are

used to draw attention onto the proper perspective. An analogy can be drawn from the “old

woman/young woman” example.

Function View #1

Figure 6-43. Perspective Number One

Function View #2

66

Figure 6-44. Perspective Number Two

If it were possible to develop a set of glasses which would “see” only the aspects of one image

or the other, the ability to distinguish between the two would be much keener. Those glasses

could be referred to as the “function views,” and one pair would be required for each view

(perspective). Figure 6-43 illustrates “perspective” number one, Figure 6-44 “perspective”

number two.

The function view is very much like colored, “perspective sensitive” glasses. Each function

view causes the focus of attention to be on a particular subset of the information model and

causes a particular image (the image of the topic) to appear and other images to go away.

This does not change the content of the model. It simply adjusts the focus of the reviewers to

a particular perspective.

Obviously, function views can be instrumental in the evaluation and validation of the

information model. Just as obviously, the modeler must exercise some care in the

determination or selection of topics illustrated in a function view. Two methods which have

been used with some success are:

1. Select sample source material to use as the topic of a function view. For
example, a purchase order, etc.

2. Relate the function view to job categories, or specific processes,
represented by the administrative groups or functional areas identified
as sources in Phase Zero.

A Function View Diagram is basically a type of reference diagram. It is For Exposition Only–

a FEO. Function View Diagrams represent a single topic on which they focus. They may

involve, however, some 25 to 30 entity classes. Each of the entity classes and selected

relation classes which are included in the function view are there because they contribute to

the topic, which is the subject of the function view. Anything that does not directly

contribute to the topic is de-emphasized as “transparent” to the function view. The function

view then reflects some portion of the existing model. It must be emphasized that anything

within the context of the function view (any entity classes, relation classes, key classes, etc.)

must be in the model proper. If, in the process of constructing a function view some entity

67

classes are discovered (more than likely, derived), they must be then added to the model,

starting with the entity class pool and proceeding on through the modeling activities.

The purpose of the function view is to represent some clustering of entity classes and relation

classes. This information may be that which is:

1. Required to reconstruct a document (perhaps some source material).

2. Required to reconstruct information used in, by, or produced by a
process (perhaps something which has been observed and documented).

In Figure 6-45 for example, the information within the sample function view can be used to

reconstruct a purchase order, or to reconstruct a report about some number of purchase

orders. When constructing a function view, the author must have in mind the topic, so that it

can be precisely expressed.

The information which can be reconstructed using the function views may not always be that

kind of information commonly found in paper form. In fact, it may be information which is

most often used in the form of an inquiry, such as when trying to:

1. Determine where something is stocked.

2. Determine where something can be stocked.

Figure 6-46 is in example of a function view which might deal with such a topic. This

function view perhaps relates more to information used in a process than it does information

used in a document and it is extremely important that the modeler be precise about the

intent of the function view. This involves developing a function view description which is a

textual definition of the topic of the function view. It should highlight both the purpose of

the function view and the viewpoint of the function view. The reviewer needs to know and to

understand what the cluster of entity classes is intended to represent and to whom it would

be important. An additional area which should be included in the function view description

is some textual or graphic definition of how this function view relates to the scope of the

model as defined in Phase Zero.

It would seem feasible to represent the entire information model at some point in a series of

interlocking function views, somewhat like putting together a jigsaw puzzle. Picking up one

piece of the puzzle and looking at it, without an understanding of the total context within

which the piece fits may make it somewhat difficult to relate to.

68

The point being illustrated here is that in order to optimize the understanding of the function

view, the modeler must precisely define how he intends the function view to be used and by

whom. That way reviewers with varying perspectives and purposes can properly relate to

the viewpoint projected, and comment intelligently.

A function view is used to focus attention on a single topic and how that topic fits into the

model. It helps the reader relate to the detail of the model within the context of the defined

scope.

An added value of the function views is that the process of constructing them, the modeler

frequently discovers the need for additional “derived” entity classes to express the meaning of

information being represented. This aspect of the function view makes it a practical aid in

the Phase Three refinement process.

6.5.3 Attribute Class Pool

The next step in the Phase Three process is to initiate construction of the attribute class pool.

An attribute class pool is very similar to the entity class pool except that it is a collection of

potentially viable attribute class names. Each name in the attribute class pool occurs only

once and each is assigned a unique identifying number.

Purchase Order No.___
To:

Item Part Other

Purchase Orders

Vendor P.O. Item Part

1

Vendor

2

Part

73

Ordered Part

7

P.O.

36

P.O. Item

Is assigned

Is for

Is
Replenished
By

Requires

Figure 6-45. Purpose of the Function View

69

The process of constructing the Phase Three attribute class pool is similar in nature to

construction of the entity class pool as well. In Phase One, when constructing the entity class

pool, we extracted names from the Phase Zero source data list which appeared to be object

nouns. Now we will return to the source data list and extract those names which appear to

be “descriptive” nouns. Descriptive nouns (nouns which are used to describe objects) most

commonly represent an attribute class.

Figure 6-47 reflects one page of an attribute class pool. Note that each attribute class name

occurs only once in the pool and that each attribute class name has a unique identifying

number.

70

Figure 6-46. Function View Example

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:P3/F14 Part Stock Location Traceability DSC1056

Appears As

Is Stored At

Is Used As

Appears As

Is Stored At

Is Stored At

Is Used
As

Is Used As

Stock
Location Part

Part Lot

Part Lot
Stock Loc.

Stock
Location Use

Serialized
Part Instance

Serialized Part
Stock Loc.

126 6

227 147 93

228

229

71

Many of the names on the Source Data List from Phase Zero were entered into the entity

class pool in Phase One as potential entity classes, but some may have been recognized in

Phase Three as not qualifying as entity classes. In all probability, these were attribute

classes and many names which were not selected from the list in the first place were

probably attribute classes. The list, in conjunction with the knowledge gained during Phase

One and Phase Two, is the basis for establishment of the attribute class pool. The attribute

class pool is a list of potentially viable attribute classes observed within the context of the

model. This list will be appreciably larger than the entity class pool.

The attribute class pool is the source of attribute class names which are used in the model.

In the event that attribute classes should be discovered in later phases of the modeling effort,

these attribute classes must always be added to the attribute class pool, assigned a unique

identifying number and progress from there to their intended use in the model.

In Phase Three, construction of the attribute class pool is initiated with the entry of Attribute

Classes used to identify entity classes; i.e., attribute classes which are members of key

classes.

6.5.4 Identifying Key Classes

The identification of key classes (the selection of attribute classes as members of a Key Class)

starts with an evaluation of the way in which attributes are used in the enterprise being

modeled. This may require that the modeler be able to trace a given attribute class back to

the original source material, since that is most commonly the location where the use of an

attribute class is best represented.

72

Figure 6-47. Attribute Class Pool

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

31 OCT 90

TITLE: NUMBER:Attribute Class Pool IMM55P3/X1

A1
A2
A3

A5
A6

A4

A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17

Name
Attribute Class

I.D. No. Name
SourceData ID # Source

Data ID #

SD1
SD2

SD3
SD4

SD6
SD5

SD8

SD5
SD9

SD10

SD11,42
SD12
SD13
SD14
SD15

SD16

SD17
SD19
SD20

SD21
SD22
SD18
SD23
SD24

SD25
SD26

SD27

SD28
SD29
SD31

SD32
SD33

SD30

I.D. No.

A18
A19

A21
A22

A20

A23
A24
A25
A26
A27
A28
A29
A30
A31
A32

A33
A34

Buyer Code

Vendor Number
Order Code

Change Number
Ship To Location

SD9

Vendor Name
Vendor Address
Confirmation Code

Confirmer’s Name

Extra Copy Code
Requester Name

Department Code
Ship Via

Buyer Name
Purchase Order Number

Purchase Requisition Issue Date

Taxable Code
Resale Code
Pattern Number
Payment Terms

Quantity Ordered

Quantity Unit of Measure
Part Number
Part Description
Unit Price

Price Unit of Measure
Requested Delivery Date

Requested Delivery Quantity

Commodity Code

Quality ControlApproval Code

Freight On BoardDelivery Location
Purchase RequisitionItem Number

Purchase Requisition
Line Code

73

The first step in identifying key classes is to select the entity classes which have no

dependent relationship. That is to say those entity classes which are not existentially

dependent on any other entity classes. These generally represent the entity classes whose

key classes are most obvious. Figure 6-48 illustrates this process.

Start with entity
classes that are
not dependent

Figure 6-48. Key Class Identification

Some number of the attribute classes will be selected or identified as members of key classes

somewhere within the model. Not all attribute classes will be used as key classes. Those

which are not used as key classes in Phase Three will be dealt with in Phase Four.

The reason for selecting those entity classes which are wholly independent in the model is

that the key classes for these entity classes tend to be the easiest to identify and because

“migration” of key classes is initiated at these points in the model.

Key Class migration lays the foundation for beginning the conversion of the information

model into a basic structural form. There are four basic rules which must be observed in

Phase Three, all of which contribute to this transformation:

1. The use of “non-specific” relation class syntax is prohibited.

2. Key Class migration from independent to dependent entity classes is
mandatory.

3. The use of attribute classes to represent attributes which could be null
(or have no value) in an entity is prohibited.

4. The use of attribute class to represent attributes which might have
repeating values (multiple values, or more than one value) at a time for
a given entity is prohibited.

74

We have already discussed the first two rules in previous sections, so we will turn our

attention to the last two at this point.

Figure 6-49 shows a refinement alternative diagram dealing with the application of the “no

repeat” rule. Notice that the subject of the diagram reflects both the purchase order number

and purchase order item numbers as being members of the Key Class of purchase order.

However, evaluation of the way purchase order item number is used will show that a single

purchase order (entity) can be associated or related to some number of purchase order items

(entities). To properly depict this in the information model, a new entity class called

“Purchase Order Item” would have to be created. To the relation class label, syntax and

definition must be added. At this time, the true characteristics of the relationship between

purchase orders and purchase order items begins to emerge.

Figure 6-50 shows a refinement alternative diagram dealing with the application of the “no

null” rule. Part number has been inherited by purchase order item. This relationship was

established because purchase order items are in some way associated with the parts, but the

diagram asserts that every purchase order item is associated with exactly one part number.

Investigation (or perhaps reviewer comment) reveals that not all purchase order items are

associated with parts. In fact, some may be associated with services or other commodities

which have no part numbers. This prohibits the migration of part number directly to the

entity class purchase order item and requires the establishment of a new entity class in our

example called “ordered part.”

Once a new entity class is established, Key Class migration must occur, as mandated by the

migration rule and the modeler will once again “validate”the entity class/relation structure

with the application of the “no null” and “no repeat ” attribute rules.

New entity class results

Purchase Order
6

P.O. No.

P.O. Item

7

P.O. No., P.O.
Item No.

Authorizes
the purchase

of

Subject

Purchase Order

P.O. No., P.O.
Item No.

6

Each purchase
order can have
multiple P.O.

items

Figure 6-49. Phase Three - Applying the “No Repeat” Rule

75

6.5.5 Entity Class/Attribute Class Matrix

As Key Class members are identified, entries are made into the attribute class pool and into

what is called the entity class/attribute class matrix. This matrix identifies the distribution

and utilization of attribute classes throughout the model. Basically, it has the following

characteristics:

1. All entity class labels are depicted on the side.

2. All attribute class labels are depicted at the top.

3. The use of attribute classes by entity classes is depicted in the adjoining
vectors, as appropriate, using “keys” such as the following:

“O” = Owner

“K” = Key Class Member

“I” = Inherited

76

Figure 6-50. Refinement Alternative Diagram

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:P3/F9 Refinement Alternative IMM105

Pur.Ord.Item

6

Part

10

Ordered Part

29

Is
Replenished

ByRequires

10

Part

6

PUR.ORD.ITEM

Is
Replenished

By

Subject Refinement

This structure appears to
provide the required flexibility.

This structure does not
provide the P.O. Items which
may not be for parts (such
as those for services,
administrative supplies, etc.)

77

A sample of an entity class/attribute class matrix is shown in Figure 6-51. This matrix is a

principal tool in both maintaining model continuity and preparing model indices for inclusion

in Phase Three and Phase Four documentation.

6.5.6 Key Attribute Class Definition

Once the key classes have been identified for the model, it is time for us to define the

attribute classes which have been used as members of one or more key classes. In Phase

Three, definitions are developed for these “key” attribute classes only. The same basic

guidelines for these definitions apply as applied to relation class definitions and entity class

definitions. They must be precise, specific, complete, and universally understandable.

Attribute class definitions are always associated with the entity class that “owns” the

attribute class. That is, they are always members of the “owner” entity class set. Therefore,

it is simply a matter of identifying those attribute classes for each entity class which have

been identified as “owned” by the entity class and used in its (the owner’s) Key Class. In

Figure 6-51, those attribute classes are coded “OK” on the entity class/attribute class matrix.

There are two types of attribute class definition pages. One, shown in Figure 6-52, provides

for the identification of the key class(es) for the entity class above the attribute class section.

The other, shown in Figure 6-53, makes no provision for the entry of key classes. It is used

principally as a continuation page for the attribute class definitions.

78

Figure 6-51. Entity Class/Attribute Class Matrix

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKINGD
R

A
F

T

RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER: IMM76P3/T1 Entity Class/Attribute Class Matrix

Entity Class #
1

2
3
4

6
9

10
12

21

ribute Class

Pur.Requisition

Buyer
Vendor
Pur

Order
Requester
Part
Pur. Req. Item

Pur. Req. Line
Approver

Part Source 22

Pur. Req. No.

Buyer Code

Vendor No.

Order Code

Change No.

Ship to Loc.

Vendor Name

Vendor Address

Confirm. Code

Confirm Name

Dept. Code

Ship Via

Requester Name

Extra Copy Code

Pur. Ord. No.
Purchase Req.

Issue Date
Q.C. Att. Code

Taxable Code

Resale Code

Pattern No.

Payment Terms

Buyer Name

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

OK
OK

OK

OK

OK

IK

IK

IK

I

I I

I

79

Figure 6-52. Attribute Class Defintion Page

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Attribute Class Definition(s) IMM12P1/E1 (G1)

KEY CLASS(ES):

ATTRIBUTE CLASS
NAME

ATTRIBUTE CLASS
LABEL

ATTRIBUTE CLASS
DEFINITION

ATTRIBUTE CLASS
SYNONYM(S)

ATTRIBUTE CLASS
I.D. NO.

80

Figure 6-53. Attribute Class Defintion Page

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Attribute Class Definition(s) IMM12P1/E1 (G1)

ATTRIBUTE CLASS
NAME

ATT
RIB
UTE
CLA
SS

LABEL
ATTRIBUTE CLASS

DEFINITION
ATTRIBUTE CLASS

SYNONYM(S)
ATTRIBUTE CLASS

I.D. NO.

81

6.5.7 Phase Three Formalization

Formalization of the Phase Three entity class sets can be a fairly extensive process. This is

because there tends to be a number of new entity classes identified in Phase Three and there

are several indices and cross-references to be completed, in addition. Basically, formalization

of the Phase Three entity class sets involves the following steps:

1. Finalization of new entity class definitions and updating of the entity
class pool (from Phase One).

2. Finalization of all attribute class diagrams, including the updating of
the Relation Matrix, relation class definitions, and node cross-reference
pages (from Phase Two).

3. Finalization of the attribute class definitions.

4. The development of inherited attribute class cross-reference pages.

5. The development of the attribute class migration indices.

6. Finalization of reference diagrams, including refinement alternatives
and function views.

Attribute class diagrams are similar to entity class diagrams in some respects; one is that

they reflect only those entity classes with which the subject entity class shares some direct

relationship.

The characteristics of the attribute class diagram are:

1. Each attribute class diagram deals with only one subject entity class.

2. Each attribute class diagram reflects, in addition to the subject entity
class, all entity classes related directly to the subject entity class.

3. “Independent” entity classes are at the top of the page and dependent
entity classes are at the bottom of the page.

4. Only “specific” relation class syntax is used.

5. Each subject entity class box (one per attribute class diagram) reflects
the Key Class identification of the entity class, with all Key Class
members underscored, multiple attribute classes separated by commas
and alternate Key Classes parenthetically enclosed.

6. Each subject entity class box (one per attribute class diagram) reflects
all attribute classes which are inherited by the entity class, those which
are not members of its Key Class being recorded below, and indented to
the right of, the key classes.

82

This format is illustrated in Figure 6-54. The key class(es) is always underscored at the top

of the entity class box (and left-justified). Any inherited “non-key” attribute classes are listed

below the “key” classes and are indented noticeably from the left margin of the entity

class(es) box. Non-key attribute classes are never underscored.

An example of the basic form used for attribute class diagrams is shown in Figure 6-55. Note

that the subject entity class box is noticeably enlarged as compared to the subject entity class

box used on entity class diagrams. This is to facilitate the additional information which must

be enclosed in the entity class box on attribute class diagrams.

83

Figure 6-54. Attribute Class Diagram

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Attribute Class Definition(s) IMM170P1/E10

1 9

12

PartPur. Req.

Pur. Req. Item

Pur.req.line

Appears AsContains

Is Delivered By

Pur. Req. No., Pur.
Req. Item No.
Part No.

84

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Attribute Class Diagram:P1/E

Figure 6-55. Attribute Class Diagram Form

85

Figure 6-56. Attribute Class Migration Index

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:
Attribute Class Migration Index:

IMM183P1/E10 (G1)

OWNED ATTRIBUTE
CLASS LABEL

‘MIGRATED TO’ ENTITY CLASS
#LABEL

OWNED ATTRIBUTE
CLASS LABEL

‘MIGRATED TO’ ENTITY CLASS
#LABEL

Pur.Req. Item No. 12Pur. Req. Line

Purchase Requisition Item

86

Figure 6-57. Attribute Class Cross-Reference

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Purchase Requisition Item IMM87P3/E10 (X3)

INHERITED ATTRIBUTE
CLASS LABEL

‘OWNER’ ENTITY CLASS #

LABEL
‘INHERITED THROUGH’
RELATION CLASS LABEL

‘INHERITED FROM’ ENTITY CLASS
#LABEL

Pur. Req. No.

1

Pur. Req.

Inherited Attribute Class
Cross-Reference:

Part No. Part

9

Pur. Req.

Part
1
9

Contains
Appears As

T
h

e n
ext task facin

g th
e m

odeler is th
e creation

 of th
e attribu

te class m
igration

 in
dex an

d

87

the inherited attribute class cross-reference. Both of these documents are constructed based

upon the entity class/ attribute class matrix.

The attribute class migration index reflects, from the “owner” entity class perspective, all of

the entity classes wherein the various members of its Key Class (its “key” attribute classes)

are used within the model. A sample migration index is reflected in Figure 6-56. To

determine its content, the modeler first records an attribute class which is “owned” by an

entity class and is a member of its Key Class. Then the modeler records the required

information about each of the other entity classes with which the attribute class is shared,

locating these by searching the vertical column of the matrix for the appropriate indicator.

This process is repeated for all members of the “owner” Key Class.

The inherited attribute class cross-reference is from the perspective of the entity class which

inherits in attribute class. It reflects how the attribute class arrived at the subject entity

class. A sample of an inherited attribute class cross-reference is shown in Figure 6-57. To

determine its content, the modeler first records all attribute classes which are inherited by

the entity class and then, using the entity class/attribute class matrix, the “owner” of each

one is identified and recorded. Using the attribute class diagram, the modeler records the

information about the entity class and relation class through which the attribute class was

directly inherited.

6.5.8 Phase Three Kits

Figure 6-58 illustrates the general structure of a typical Phase Three kit. Note that the

structure of the review kit has become progressively more complex since Phase One.

The basic structure of the Phase Three kit, though more complex than Phase Two, is similar

in several respects. For example, the cover sheet, kit overview, node cross-reference and

reference only entity class definitions are handled in the same way. The primary difference

is the injection of the function view (which is optional) and the additional material within the

context of each entity class set. In total, the typical Phase Three kit will run in the vicinity of

40 to 44 pages. This allows some six to ten pages available to the modeler for the insertion of

general text or reference diagrams pertaining to subjects other than the entity class sets

within a kit.

88

In Phase Three, there are two types of kit overviews. If the kit is around a function view,

then the same guidelines as used in Phase Two apply to structuring of the kit overview. If a

function view is to be used, then the kit overview must be a subset of the function view

employed.

Phase Three kits, like all other IDEF modeling kits, are prefaced with a kit cover sheet. A

sample Phase Three kit cover sheet is shown in Figure 6-59.

When a Phase Three kit is organized around a function view, the subject kit overview

diagram, is simply a subset of the function view diagram representing or reflecting those

entity classes which are subjects of the kit. The function view diagram is included to provide

the context within which the information contained in each entity class set is to be validated.

The focal point of the review is intended to be validation of the relation classes reflected in

the context of the function view and validation of all attribute class information within each

entity class set. The secondary issue is the validation of all other relation classes shared by

each subject entity class in the kit. This is because the remaining relation classes should be

topics of other function views and submitted for review and validation in other kits.

A sample kit overview, representing a subset of a function view around which the kit was

organized, is shown in Figure 6-60. Figure 6-61 is the function view it is based on. There has

been an attempt to use the same lines and spacing on the kit overview as used in the function

view; this is to achieve a degree of highlighting effect and to focus attention on the subject of

the kit within the context of the function view used.

89

General FEOs

Entity
class set

Entity
class set

20-30 of
these pages

per kit

Node cross-
reference

Overview
FEO

 Cover
sheet

30-50 pages
total per

kit

Function
view FEO

Reference
only E.C.

definitions

Function
view desc.

Subject E.C.
Definition

A.C. Diagrams

R.C. Definitions

Attribute
Class Def.

A.C. Migration
Index

Figure 6-58. Phase Three - Kit Structure

90

Figure 6-59. Phase Three Kit Cover Sheet

Pur. Req.

I.M. Modeler
IDEF1 Work Shop

3 NOV 90

IMM122Entity Class DefinitionsP1 /K1NODE: TITLE: NUMBER:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

AUTHOR:
PROJECT:

WORKING
DRAFT

PUBLICATION

READER

DATE

LOG
FILE
AUTHOR

DOCUMENT
NUMBER

COPYING INSTRUCTIONS:

as soon a possible by

RESPONSE REQUIRED:
CONTENTS:
Pg Node Title C Number Status

=
Total

COMMENTS:
 UPDATE
 REPLACE

SPECIAL INSTRUCTIONS:

New Kit
To Readers Due Back

 Comments
To Authors Due Back

as author copy
COVER SHEET

Response
To Readers

Received

Completed

NormalFast Slow None

READERS:

RECOMMENDED

A
B
C
D
E
F

H
I
J
K
L

M
N

G

Model File with this kit

extra author copies

Copies of Pages

x

x

* Included for reference only

Kit Overview

E.C. Definitions* 3 pages

Func. View
Func. Defs.
Node X-Ref.
Node X-Ref.
Node X-Ref.
Node X-Ref.

IMM161
IMM131
IMM145
IMM45
IMM50
IMM51
IMM52

F11
F2
F2/T1
E1/X1
E9/X1
E10/X1
E12/X1

E1
E9
E10
E12

Part
Pur. Req. Item
Pur. Req. Line

P3

91

USED
AT:

AUTHOR:
PROJECT:
NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXTI.M. Modeler
IDEF1 Workstation

X

NODE:

30 OCT 90

TITLE: NUMBER:Entity Class Diagram: Purchase Requisition IMM23P2/E1

Figure 6-60. Kit Overview

Pur.Req.Line

Pur.Req.Item

Purchase Req.

92

As in prior phases, there are some specific kit sizing parameters applicable to Phase Three.

Phase Three kits:

1. Should contain 30 to 50 pages total.

2. Will typically contain 2 to 4 entity class sets.

3. Should require no more than 1 1/2-2 hours of review time per reader.

Note that the total number of pages in an entity class set has increased markedly from Phase

Two. The typical entity class set in Phase Three will contain 10 pages.

The addition of new entity classes particularly in such volume as expected in Phase Three,

makes it advisable for the modeler to mark each page that is for reference only and each

entity class definition that is released for the first time.

Last, is the importance of handling new entity classes which are developed in Phase Three.

The basic rule to be employed is that any new entity classes developed in Phase Three must

meet all of the Phase One and Phase Two requirements before they can be incorporated into

the model. This includes entry into the entity class pool, development of entity class

definitions, inclusion in the Relation Matrix, development of relation class definitions, etc.

6.6 Phase Four – Attribute Class Population

The last phase of the basic information modeling process is Phase Four. The objective of this

phase is to determine the “owner” entity class of each “non-key” attribute class represented

in the attribute class pool. Although, on the surface this last phase appears to be relatively

simple, it can result in some rather appreciable changes in the model structure.

Perhaps the most important rules to remember during Phase Four are:

1. An attribute class has only one “owner” in the model.

2. Non-key attribute classes cannot migrate.

3. The “no null” attribute rule.

4. The “no repeat” attribute rule.

The Phase Three construction of the attribute class pool was initiated and an entity

class/attribute class matrix was built. The matrix is only partially completed at this point in

93

time, indicating only those attribute classes which were used as members of one or more key

classes in Phase Three. Attribute classes which were not used as members of any Key Class

in Phase Three are the targets of Phase Four.

Phase Four concentrates on the further delineation of already established materials, rather

than producing an appreciable quantity of new material. There are new attribute class

definitions which are added and some number of refinement alternative diagrams or function

views. It should also be expected that some quantity of new entity classes will emerge during

Phase Four, primarily derived as a result of the application of the refinement rules already

exercised in Phase Three, reapplied as the rest of the attribute classes are distributed

through the model.

A partial list of the products resulting from Phase Four is reflected below:

1. Expanded Attribute Class Pool

2. Revised Attribute Class Definitions

3. Revised Entity Class/Attribute Class Matrix

4. Refined Attribute Class Diagrams

5. Revised Inherited Attribute Class Cross-Reference

6. Revised Attribute Class Migration Index

7. Refinement Alternative Diagrams

8. Revised Function View Diagrams

9. Phase Four Kits

The basic processes employed in Phase Four are as follows:

1. Identify “non-key” attribute classes from Phase Three.

2. Identify the “owners” of the non-key attribute classes.

3. Define the non-key attribute classes.

4. Refine the relation classes.

5. Formalize the Phase Four entity class sets.

6. Revise the function views (FEOs).

94

7. Build and distribute Phase Four kits.

6.6.1 Phase Four Process

The first step in the construction of Phase Four material is the identification of non-key

attribute classes from Phase Three. This is relatively straightforward. Any attribute class–

with no usage reflected on the entity class/attribute class matrix from Phase Three–is in fact

a “non-key” attribute class at this point.

The next step requires that each of these non-key attribute classes be assigned to one

“owner” entity class. The “owner” entity class for many of them will be obvious. For

example, in the case of vendor name, the modeler should be able to readily associate this

attribute class with the entity class vendor, but there may be some attribute classes which

will cause the modeler difficulty in locating their “owner” entity classes.

95

Figure 6-61. Function View

USED
AT:

AUTHOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

WORKING
DRAFT
RECOMMENDED
PUBLICATION

READER:

DATE:

CONTEXT

NODE: TITLE: NUMBER:Constructing a Part Procurement RequestP4/F1 DSC1115

X11 Jul 80

14 Aug 80

D.S. Coleman
IMCV

3-1-21

115

Department

170
Purchase Req.
Approval Auth.

171
Purchase Req.
Approval

81

Contract

Allows

Results In

172

Contract Purch. Req.

Has 116

Employee

Issues 22

Purchase Req.

173

Req. Supplier

174
Approv. Suppl./
Purch. Req. Item

23

Purch. Req. Item

30

Approv. Suppl.
Is

Is

Has

Is For

Has Has

Is For

Is Used As

4

Cost Account Appears
As

175

Req. Purch. Part

Is Used As

Requires

Requires

176

Req. Carrier

177
Approved Part
Source

179
Approv. Carrier/
Purch. Req. Item

178
Spec. Use/
Requested Part

Approved Part
Carrier

180

106

Approv. Carrier

Is
Used
As

Is

Is
Used
As

178
Spec. Use/
Requested Part

Is
Supplied

By

13

Eng. Spec.

6

Part

Has

Conforms
To

Is
Used
As

Is
Transported

By

Is
Used
As

12

Eng. Drawing

181

Part Drawing

Is Used As

Is Used As

182
Drawing Use/
Requested Part

Has

Is
Assigned

To

96

Government
Source Data

Vendor
Qualification

Name And
Address

Officers

Quality

Security

Attribute Class(es)

Name = Vendor Name

Definition = ____________

Name = Vendor Address

Definition = ____________

Name = Vendor Contact

Definition = ____________
Name = Vendor Chief
 Financial Officer
Definition = ____________
Etc. ...
 ...
 ...

Vendor No.

Vendor

Source
Data List

Source
Material

Figure 6-62. Non-Key Attribute Class Population

If the modeler is not certain of the “owner” entity class of an attribute class, it may be

advisable to refer to the source material form which the attribute was extracted. This will

aid in the determination of the “owner.” In Phase Zero, the source data list was established

and became the foundation for the attribute class pool. The source data list, then points the

modeler to the location(s) where the attribute represented is used in the original source

material. This is illustrated in Figure 6-62. By analyzing the usage of the attribute class in

the source material, the modeler will be able to more easily determine the “owner” entity

class in the information model. The modeler should keep in mind that the governing factor

for determining “ownership” of the attribute classes is reflected in the source material. As

each attribute class is assigned to its owner entity class, the attribute class/entity class

matrix must be updated accordingly. This matrix, like the Relation Matrix, is one of the

primary working tools of the modeler for managing the continuity of the information model.

For each of the attribute classes identified in Phase Four, a definition must be developed.

The principles governing other definitions used in the information model and particularly

those in Phase Three, apply here as well. The definitions must be precise, specific, complete,

and universally understandable. These attribute class definitions are produced in the same

97

format as the attribute class definitions from Phase Three. They are simply added to the

attribute class definitions in the owner entity class set.

The modeler is now ready to commence with the Phase Four refinement of relation classes.

The same basic rules apply to this refinement as applied in Phase Three. The application as

the “no null” and “no repeat” attribute rules introduced in Phase Three are now applied. As a

result, the modeler can expect that some number of new entity classes will be found. As

these entity classes are identified, the Key Class migration rule must be applied, just as it

was in Phase Three.

The only difference in applying the no null and no repeat attribute class rules in Phase Four

is that they are applied primarily to the “non-key” attribute classes as well. Figure 6-63

illustrates the application of the “no null” attribute rule to a “non-key” attribute class. Figure

6-64 illustrates the application of the “no repeat” attribute rule applied to non-key attribute

classes.

As new entity classes emerge, they must be entered in the entity class pool, be defined,

reflected in the Relation Matrix, etc. They must meet all of the documentation requirement

as earlier phases in order to qualify for inclusion in Phase Four material.

With the Phase Four material gathered and prepared, the task of formalizing the Phase Four

entity class sets can commence. This process is almost identical to the corresponding process

of Phase Three. This is primarily because the basic changes to the model during Phase Four

are:

1. Completion of attribute class identification.

2. Completion of the attribute class distribution.

3. The completion of definitions for all attribute classes.

4. Structural changes resulting from the application of the refinement
rules to the attribute classes.

98

RefinementSubject

Emp. No.

Employee

Not all
employees have
a buyer number;
only employees
who are buyers

Emp. No.

Employee

Buyer No.

Is authorized
to perform as

Buyer No.

Buyer

Emp. No.

Figure 6-63. Phase Four

Primarily, formalization of the entity class sets involves the revision and update of material

which has been previously constructed. The steps involved in the Phase Four formalization

of those previously defined materials are:

1. Formalize new entity class definition

A. Update entity class pool

2. Finalize attribute class diagrams

A. Update relation class matrix

B. Update relation class definitions

C. Update node cross-reference

3. Finalize attribute class definitions

4. Finalize inherited attribute class cross-reference

5. Finalize attribute class migration index

6. Finalize reference diagrams

RefinementSubject

Part No.

Part

Part No.

Part

Serial No.

Is physically

Part No.

Serialized Part

Serial No.

99

Figure 6-64. Phase Four - Applying The “No Repeat” Rule

If the modeler has developed function views in Phase Three, then the structural changes

resulting from Phase Four would necessarily cause revision of some number of function

views. In Phase Three it was emphasized that the function views reflect some portion of the

existing model. If a change to the existing model effects entity class or relation class

structures included within the scope of any function view, then the affected function view(s)

must be revised. Correspondingly, the entity class/function view matrix developed in Phase

Three must be revised to reflect these changes.

6.6.2 Phase Four Kits

Once the author has completed the formalization of the Phase Four entity class sets, the

construction of the Phase Four kits can proceed. Phase Four kits are quite similar to Phase

Three kits in their general construction. Once again, because of the size and complexity level

of the model, the modeler may choose to release kits oriented around a function view. The

basic parameters for successfully using the function view remain the same as they were in

Phase Three. In addition, should the modeler choose to produce kits oriented around the

function views, the construction of these kits is essentially identical.

The basic kit structure is illustrated in Figure 6-65. Also, a sample of a cover page is shown

in Figure 6-66. The same basic guidelines for kit structuring applied in Phase Three can be

applied to Phase Four.

Phase Four kits:

1. Should be 30 to 50 pages in length, total.

2. Will typically contain 2 to 4 entity class sets.

3. Should require no more than 1-1/2 to 2 hours of review time from each
reader.

The volume of pages in each entity class set in Phase Four will not have varied significantly

from Phase Three entity class sets, but the volume of entity class sets, in total, will have

increased. The average entity class set in Phase Four will contain about 11 pages.

100

Note that the kit sizing and structuring characteristics in Phase Four are almost identical to

those in Phase Three, but because of the slight growth in the number of pages per entity

class set, the average Phase Four kit size will be between 45 and 50 pages, typically. This

still allows some 2 to 3 pages for the modeler to use for general text and reference diagrams,

if that is desirable. Again, the modeler should take into account the amount of time requires

for and the difficulty in reviewing the material.

General FEOs

Entity
class set

Entity
class set

20-30 of
these pages

per kit

Node cross-
reference

Overview
FEO

 Cover
sheet

30-50 pages
total per

kit

Function
view FEO

Reference
only E.C.

definitions

Function
view desc.

Subject E.C.
Definition

A.C. Diagrams

R.C. Definitions

Attribute
Class Def.

A.C. Migration
Index

Figure 6-65. Phase Four - Kit Structure

101

P4

IMM130Non-Key Attribute Class Definition

Pur. Req.

IMM185
IMM174
IMM175
IMM45
IMM46

Buyer

Figure 6-66. Phase Four Kit Cover Sheet

I.M. Modeler
IDEF1 Work Shop

3 NOV 90

P1 /K1NODE: TITLE: NUMBER:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:

REV:

AUTHOR:
PROJECT:

WORKING
DRAFT

PUBLICATION

READER

DATE

LOG
FILE
AUTHOR

DOCUMENT
NUMBER

COPYING INSTRUCTIONS:

as soon a possible by

RESPONSE REQUIRED:
CONTENTS:
Pg Node Title C Number Status

=
Total

COMMENTS:
 UPDATE
 REPLACE

SPECIAL INSTRUCTIONS:

New Kit
To Readers Due Back

 Comments
To Authors Due Back

as author copy
COVER SHEET

Response
To Readers

Received

Completed

NormalFast Slow None

READERS:

RECOMMENDED

A
B
C
D
E
F

H
I
J
K
L

M
N

G

Model File
i h hi ki

extra author copies

Copies of Pages

x

x

* Included for reference only

Kit Overview

E.C. Definitions* 5 pages

Func. View
Func. Defs.
Node X-Ref.
Node X-Ref.

F19
F5
F5/T1
E1/X1
E2/X2

E1
E2

102

The same basic rules regarding the expansion of the model apply to Phase Four, as they have

applied to prior phases. Any new entity classes discovered (derived) in Phase Four, if they

are to remain in the model, must be registered in the entity class pool, be assigned their own

unique number, be defined, etc. All of the rules and requirements of earlier phases apply to

all new entity classes, relation classes, and attribute classes. These must be met before they

can be included in Phase Four diagrams and kits.

Once the modeler has begun the construction of Phase Four kits, they can be distributed to

reviewers for comments. It is through this process of review, comment, and iteration that the

resultant model is validated

6.6.3 Conclusion

Upon completion of Phase Four, the modeler has produced a basic information model. If all

of the methodology rules have been applied correctly throughout the development, the model

will be representative of the fundamental information structure of the enterprise modeled.

Each entity class will represent a non-redundant collection of information; each entity class

pair sharing a relation class will convey some non-redundant meaning in the model.

At this point, the information model is in a form which will facilitate basic translation into

any data base management system currently on the market. This does not imply that the

resultant information model, at the end of Phase four, is a database design. Rather, the

model represents a stable information structure–a stable set of rules. Regardless of the

technical specifics of any database which eventually results, its architecture must adhere to

the rules of information structure and meaning reflected in the information model. It is

through this medium that integration of information in the manufacturing enterprise can be

approached.

103

Section 7.0 Data Collection For IDEF
Modeling

ATTRIBUTE CLASS

ENTITY CLASS

1:1 Relation

1:M Relation

M:1 Relation

M:N Relation

104

105

7.0 Data Collection For IDEF Modeling

7.1 Introduction

When analyzing or designing any system, it may be necessary to obtain or verify facts about

the system or subject matter at hand. There are many sources of factual information. One

might:

1. Read existing documents, using each table of contents and index to
locate needed information.

2. Observe the system in operation, if it already exists.

3. Survey a large group of people, through questionnaires or other such
means.

4. Talk to one or more “experts” who possess the desired knowledge.

5. Use whatever is already known by the author.

6. Guess or invent a hypothetical description and ask readers to help
bring it closer to reality.

Of all these methods, the most important is face-to-face interaction with an expert. Seldom

will all existing information be written. Preconceived notions that are reflected in

questionnaires are often faulty.

Obtaining information from an expert has been formalized in an interview process. This

provides steps to follow, so that an interview can be conducted without unduly influencing

the expert with information already obtained by the interviewers.

A key part of interviewing is to record the information obtained. This can be done either as

informal notes or as diagram sketches.

7.2 The Interview Process

The purpose of an interview is to gather information from an individual who possesses an

expertise considered important to the analytical effort. There are four types of interviews

106

that might be conducted during the course of performing the analysis phase of an IDEF

project.

1. Fact Finding for understanding current operations. This type of
interview is used to establish the content of a Current Operations
Model, or to help understand the existing environment.

2. Problem Identification to assist in the establishment of future
requirements. This type of interview is used to validate the Current
Operations Model and to provide the foundation for a Future
Operations Model.

3. Solution Discussion regarding future system capabilities. This type of
interview is used to establish the content of a Future Operations Model.

4. IDEF Author/Commentor Talk Session. This type of interview is used
to resolve problems which have surfaced during the construction of an
IDEF model.

The reason for identifying types of interviews is that during the course of performing an

actual interview, ingredients of each type appear. The respondent might tell the interviewer

facts about a given system in terms of problems. Also, the respondent might identify

problems in terms of solutions to the problems. The interviewer, by constantly classifying

the respondents remarks, can obtain the maximum useful information from the interview.

7.3 The Interview Kit

It is recommended that a “standard” Interview Kit be used for recording the interview. It

may be stored in an Interview File and it may be distributed to appropriate individuals. This

distribution might include other members on the Analysis team or even the interview

respondent for corrections, additions, and deletions. The interview kit would contain:

1. Cover Page (Kit cover)

2. Interview and Record Follow-up

A. Interviewer Name (IDEF Author Name)

B. Interview Date (IDEF Diagram Date)

C. Interview Duration (Start time, End time)

D. Respondent Name

E. Respondent Title and Organizational Responsibility

F. Respondent Telephone Number and Extension

107

G. Additional Sources of Information Identified

1. Documents – Title and Location

2. Other Interviewees – Name, Title, Organizational
Responsibility, Address, Telephone number

H. Essential Elements of Information – a Summary of the key
points covered in the interview.

I. Follow-up questions and/or areas of concern either not
covered during the interview, or postponed

J. New Terms for Project Glossary

3. Entity and Attribute Pool Candidates

4. Interview Agenda (Developed in preparation of Interview – This is
covered in the following section)

5. Interview Notes and Rough Diagrams

7.4 Interview Guidelines

There are five stages to the successful interview; each must be performed in order to assure

that the most information is obtained and recorded in the least amount of time.

1. Preparation

2. Initialization

3. Interview

4. Termination

5. Finalization

In each stage of an interview there are certain basic activities which must be performed.

Additionally, associated with each stage, there exist psychological aids which will help the

interviewer establish an atmosphere of professionalism and trust with the respondent.

7.4.1 Interview Preparation

By thinking through certain key interview needs before the interview, a more organized and

efficient dialogue can be achieved. Preparation for an interview should contain, but is not

limited to, the following activities:

108

1. Select Interviewee

A. From areas of responsibility

B. From recommendations of others

C. From various levels of the organizational hierarchy – upper
levels useful for big picture, lower levels for detail
information, and middle levels for bridging the gap

2. Make Appointment

A. Short duration – 1/2 to 1 hour

B. Not immediately before lunch, nor late afternoon

C. Identify purpose of interview

D. Explain interviewer role

3. Establish Tentative Agenda

A. Topical areas – used as a foundation for interview (this helps
prepare “broad general questions”)

B. Specific questions

4. Review applicable background information

5. Review appropriate terminology

6. Insure coordination with other interviews

Check interview file to ascertain that the respondent has or has not
been previously interviewed. If the interview is a follow-up interview,
then examine the results of previous interviews.

7. Fill out Interview Record and Follow-up with pertinent information

8. Make out Interview Agenda

7.4.2 Interview Initialization

This stage of the interview is directed at establishing a rapport between the interviewer and

respondent. The courtesy permitted by the respondent at the start of an interview is usually

short. This time is important in motivating the respondent to help the interviewer. This

stage of the interview should contain the following topics:

1. Provide respondent with a tangible means of introduction e.g., a
business card (this removes doubt on the part of the respondent as to

109

how to pronounce or spell the interviewer’s name and can therefore
remove a frequent cause of respondent embarrassment).

2. Establish purpose of interview

A. Expand on information provided in initial contact.

B. Establish point of view for the interview. Use interview type
1, 2, 3 or 4 as a basis.

C. Establish purpose of the interview–even if the interview is a
follow-up interview.

3. Establish the acceptability of note taking. The respondent may require
assurance of confidentiality.

4. Establish the Expert/Author relationship – alleviate the fear that the
interview will be used to tell the respondent how to do his job, or that
the respondent’s job is in jeopardy.

5. Start with broad general questions which will get the respondent
talking – these should be based upon the topical areas identified in the
agenda.

6. Assess the respondent’s ability to provide pertinent information – if the
information is too general or too detailed for the stage of the IDEF
model being prepared, evaluate respondent’s ability to contribute.
Terminate the interview if necessary–it may be a waste of both the
interviewer’s and respondent’s time.

7. Begin to formulate specific questions which complement the agenda.

8. Write, don’t talk.

7.4.3 Conducting the Interview

While it is not useful to define questions to ask during an interview, it is possible to identify

guidelines that should be considered during the interview. The first set of guidelines deals

with the qualification of the information being obtained. The second set of guidelines relate

to the stimulation of information flow.

Information Qualification: The human mind can comprehend at double the rate at which

people speak. The danger in interviewing is that this rate difference is typically used by the

listener to think about what should be said in response instead of about what is being said.

To assist the interviewer in thinking about what is being said, there is a series of questions

which may be used to help the interviewer keep his mind on the information being provided:

110

1. What supporting facts are being provided for the main points being
discussed?

2. How recent is the information?

3. How complete is the information?

4. Do I really understand what is being said?

5. Is the level of detail being presented appropriate for my purpose?

6. Are there areas being omitted?

7. Has this information been discussed with someone else?

8. How important is this information?

9. Are side-topics being discussed?

10. Has the interview viewpoint changed?

: The following set of guidelines can be used to stimulate the respondent into providing

maximum reliable information.

1. Keep extraneous comments and conversations to a minimum. The
interview is used to obtain information, not make friends, or sell ideas.

2. Be aware of the respondent’s failure to identify problem areas in the
environment. This may indicate that the respondent is not at ease with
the interviewer.

3. Provide the respondent time to think. Do not suggest answers or ask
another question. A pause in the interview is useful to allow the
respondent to recall vital pieces of information.

4. Avoid outside distractions which tend to “uncouple” the train of
thought. If at all possible, conduct interviews outside of the
respondent’s normal habitat.

5. Be aware of internal distractions, signs that the respondent is not
comfortable or at ease with the interview.

6. Try to determine if the information being obtained is fact or opinion.

7. Encourage elaboration by asking for a rephrasing or a summary of the
information presented.

8. Ascertain the respondent’s background and association with the subject
matter being discussed. Valuable insight into the respondent’s remarks
can be obtained knowing his relationship to the organization and
existing systems.

111

9. Do not enter into or encourage sarcasm and humor.

10. Do not mention or discuss any interview with another person.

11. Record all questions asked by the respondent. The interviewer should
answer all questions except those dealing with user–organization
management, plans, or personalities.

12. Show interest in what the respondent is saying.

13. Concentrate on the unfamiliar and difficult aspects of the subject being
discussed. Avoid the obvious.

14. Be alert for the inconsistent or incorrect use of words. Ask for
definitions for any unfamiliar or questionable term. Record the
definition for the project glossary.

15. Do not contradict the respondent even if facts do not support what is
being said. Use the Kit Cycle to resolve such conflicts.

16. Be humble. The respondent is the expert, not the interviewer.

17. Postpone subjects which cannot be fully covered within the agreed upon
time frame. Do not extend the interview time, but rather make another
appointment.

18. Appreciate different opinions on the same subject. Use IDEF to show
these opinions and to resolve conflicts.

19. Stimulate the respondent with pertinent open ended questions.

7.4.4

The interview should be terminated because of the four following reasons:

1. The information being obtained in the interview is not appropriate.

2. The time limit has been reached.

3. The interviewer has been saturated with information.

4. There is a clash of personalities between the interviewer and the
respondent.

Depending upon the cause of termination, the following topics should be considered during

the termination of the interview:

1. The interview should not be closed abruptly, but rather should end with
a few minutes of informal discussion.

112

2. The main points of the interview should be summarized.

3. Areas of concern which have been postponed or not covered should be
identified.

4. A follow-up interview, if necessary, should be arranged.

5. The respondent should be asked to recommend other persons who
should be interviewed.

6. If the interview notes are to be reviewed by the respondent prior to
distribution, this fact should be mentioned during the termination.

7. The respondent should be thanked for his time and effort.

7.4.5 Finalization

This stage of the interview is directed at assuring that the information obtained during the

interview is properly recorded and disseminated to the project team. The vehicle used to

accomplish the finalization of an interview is the Interview Kit. If note taking was not

permitted by the respondent, the interviewer should, upon termination of the interview,

immediately write down the salient points discussed. Finalization of the interview includes

the following:

1. Identify additional sources of information.

2. Summarize the Essential Elements of Information.

3. Identify new terms for the project glossary.

4. List the follow-up questions and areas of concern either postponed or
not covered during the interview.

5. Complete Entity and Attribute Pools.

6. Expand on any notes with any information recalled during the review.

7. Prepare rough IDEF diagrams that reflect the information obtained.

8. Identify in the Interview Kit any assumptions being made or any items
which are not clear.

9. Publish and distribute the Interview Kit.

10. Add persons name, area of expertise, phone number, and address to the
expert and commentor list which were mentioned in the interview.

113

114

Section 8.0 IDEF1 Glossary

ATTRIBUTE CLASS

ENTITY CLASS

1:1 Relation

1:M Relation

M:1 Relation

M:N Relation

115

116

IDEF1 Glossary

Acceptance Review Committee – One of the members of the functional organization

whose responsibility is to provide guidance and arbitration over the modeling effort and to

pass final judgement over the completed product (i.e., model acceptance).

Alternate Key Class – An alternate Key Class is a Key Class which is exactly equivalent to

another Key Class and can be used as a unique identifier of an entity class with precisely the

same effect as the other Key Class.

Attribute – A property (characteristic) of an entity; an attribute is composed of a name and

value and is one element of information known about an entity.

Attribute Class – A collection of attributes of the same name which apply to all entities of

the same entity class; attribute class names are singular, descriptive nouns.

Attribute Class Diagram – A diagram containing one “subject” entity class and all entity

classes directly related to it, with the key attribute class(es) and non-key attribute class(es) of

the subject entity class displayed.

Attribute Class Population – That effort by which the “ownership” of attribute classes is

determined.

Author Conventions – The special practices and standards developed by the modeler to

enhance the presentation or utilization of the model. Author conventions are not allowed to

violate any methodology rules and do not represent “official” standards of practice.

Data Collection Plan – The plan which identifies the targets–the functions, the

departments, the personnel which are the sources of the material used for the development of

the model.

Entity – An object, either physical or conceptual, which exists within the scope or the model,

is uniquely identifiable and has one or more attributes which define its specific

characteristics.

Entity (IDEF1) – A collection of information about a specific object (entity).

117

Entity Class – A collection of entities (IDEF1) which are described using the same kind of

information.

Entity Class Diagram – A diagram which depicts a “subject” entity class and all entity

classes directly related to the subject entity class.

Entity Class Set – A collection of information about an entity class, representing all of the

information that is known about the entity class.

Expert Reviewer (Commentor) – One of the members of the functional organization

whose expertise is focused on some particular activity within the manufacturing enterprise

and whose responsibility it is to provide critical comments on the evolving model.

FEO – An acronym meaning For Exhibition Only; it is one vehicle by which supportive or

explanatory information is provided for the model, via some combination of drawings, text,

etc.

IDEF1 – An acronym standing for ICAM DEFinition Method (Information Model

Methodology): this method is used for the expression of the structural characteristics of

information

IDEF1 Kit Cycle – The regular interchange of portions or the model in development

between the modeler and the readers/expert reviewers, the purpose of which is the isolation

and detection of errors, omissions, and misrepresentations.

IDEF1 Model – A representation of the structural characteristics of information; a

requirements statement which reflects the basic nature of information.

Key Class – One or more attribute classes which are used to uniquely identify each member

of an entity class.

Key Class Migration Rule – One of the rules of the IDEF1 Method which defines

(migration) of key classes between a related “pair” of entity classes.

Modeler (Author) – One of the members of the Functional Organization whose

responsibilities include the data collection, education and training, model recording, and

model control during the development of the model; the modeler is the expert on the IDEF

modeling methodology.

118

“No Null” Attribute Rule – One of the rules of the IDEF1 methodology which establishes

specific action requirements which must be met whenever a situation arises in which an

attribute class is used to represent an attribute value which would not be available for any

member of the entity class at any time.

“No Repeat” Attribute Rule – One of the rules of the IDEF1 methodology which

establishes specific action requirements must be met whenever a situation arises in which an

attribute class represents more than one attribute value for any member of the entity class at

a time.

Phase Zero – The initial efforts of the modeling activity in which the Context Definition is

established–project definition, data collection plan, author convention standards, etc.

Phase One – The second in the orderly progression of modeling efforts during which the

entity classes are identified and defined.

Phase Two – The third in the set of orderly steps of the modeling efforts, during which the

relation classes are identified and defined.

Phase Three – The fourth step in the orderly progress of model development, during which

the key classes are identified and defined.

Phase Four – The fifth effort in the progression of orderly model development, during which

the “non-key” attribute classes are identified and defined.

Project Manager – One of the members of the Functional Organization whose

responsibilities include administrative control over the modeling effort–the duties include:

staffing the Functional Organization, setting the scope and objectives, chairing the

acceptance review committee, etc.

Relation – A meaningful association between two entity classes.

Relation Class – The manner in which the members of one entity class are associated with

(or related to) members of another entity class (or members of their own entity class).

Relation Class Label – A phrase-like definition which reflects the meaning of the

relationship expressed between two entities shown on the diagram on which the label

appears.

119

Relation Ratio – The relation property which “loosely” defines how many relationships may

exist for each member of an entity class.

Source(s) – One of the members of the functional organization whose responsibility it is to

provide the elements of information (documents, forms, procedures, knowledge, etc.) on

which the development of the model will commence and continue.

Validation – An effort which results in the informed consensus of the experts who are

knowledgeable about the model; the model is considered “valid” if the majority of experts

agree that it appropriately and completely represents the area of concern.

120

Section 9.0 IDEF1 Index of Terms

ATTRIBUTE CLASS

ENTITY CLASS

1:1 Relation

1:M Relation

M:1 Relation

M:N Relation

121

122

IDEF1 Index Of Terms

Attribute 27

Attribute Class pool 30, 144

Attribute Class Population 168

Attribute Class, 27

Attribute diagram, analysis and

construction 127

Attribute diagram, principle

characteristics 157

Attribute diagram, proofreading 45

Author/Commentor Interchanges 54

Authors 52

Box, entity class 128

Class, concept of 21

Commentor 52

Commenting,guidelines for 53

Comments 53

Concepts of IDEF1 7

Cover Sheet,Completing 56

Cross Reference, Attribute Class 162

Data Collection and procedures 17

Data Collection Plan 86

Development of IDEF1 11

Diagram 8

Diagram ,Standard Form 57

Diagram, Fields 58

Diagrams, marking 101

Dictionary–8

Entity Class 21

Entity Class Definition 98

Entity Class Label 98

Entity class name 95

Entity Class number 37

Entity class pool 96

Entity Class Synonyms 99

Entity class, “derived” 135

Entity class,“dependent” 111

Entity class,“independent” 111

Entity Classes, related 22

Entity diagram 41

Entity Diagram, refinement of 134

Experts 52, 83

Facts (in IDEF3 Descriptions) 241

FEO 120, 138

File, Kit 64

File, Working 64

Form, Diagram 57

Function View FEO 138

Glossary 21

IDEF Kit Cycle 50

IDEF Kits 55

IDEF1 Approach 71

IDEF1 Defined 8

IDEF1 Diagrams 8

IDEF1 information model 9

IDEFØ 241

Inherited attribute class 132

Interface symbol 39

Interview Initialization 186

Interview Preparation 185

Interview, conducting of 187

Interview, follow up 190

123

Interview, Information Flow Stimulation

188

Interview, Termination 189

Interviewing 182

Iterative Review Process 9

Key Class Definitions 126

Key Class, Multiple 30

Key Classes 27, 130

Key classes, Multiple 131

Kits 55

Kits, How to Prepare 57

Label Frame 106

Meeting Rules 54

Migration, Key Class 133

Model, Initiation of 71

No null rule 151

No repeat rule 151

Node cross-reference, instructions for 118

Nodes, Target Function 86

Personnel roles 78

Phase Four, Authoring 168

Phase One is, Authoring 94

Phase Three, Authoring 126

Phase Two, Authoring 106

Phase Zero, Authoring 71

Project Manager 79

Purpose 49, 72

Readers 52

Refinement 134

Relation Class 22

Relation class definition 27, 106

Relation classes, labeling 26

Relation Classes, Non-Specific 110

Relation Classes, Resolving 134

Relation Classes, Specific 110

Roles 9, 51

Semantics of IDEF1 45

Shared Attribute Classes 132

Sources 82

Syntax 39

Talk Rules 54

Viewpoint 49, 72

Walk-Through Procedure 64

124

Appendix A

IDEF Family of Methods Overview and

Practical Guidelines for IDEF Use

Richard J. Mayer, Ph.D.
Knowledge Based Systems, Inc.

One KBSI Place
1408 University Drive East
College Station, TX 77840

(409) 260-5274

Capt. Michael K. Painter
Armstrong Laboratory/ HRGA

WPAFB, OH 45433
(513) 255-7775

Paula S. deWitte, Ph.D.
Knowledge Based Systems, Inc.

One KBSI Place
1408 University Drive East
College Station, TX 77840

(409) 260-5274

“It must be remembered that there is nothing more difficult to plan, more doubtful of
success, nor more dangerous to manage than the creation of a new system. For the
initiator has the enmity of all who would profit by the preservation of the old
institution and merely lukewarm defenders in those who would gain by the new
ones” ––

Machiavelli, “The Prince,” 1513 AD.

Introduction

In today’s environment, system implementors in Corporate Information Management (CIM),

Concurrent Engineering (CE), and Computer Integrated Manufacturing (CAM) face two

overwhelming challenges. Besides their primary responsibility for introducing a new system

into their engineering and manufacturing organizations, they also have an underlying need

to introduce a new system of processes for developing these implementations. These new

system development processes must employ an integrated framework of modeling methods.

That is, the development process uses a structured collection of methods, rules, procedures,

125

and tools to support the development and evolution of systems. The framework guides the

user in applying the appropriate method within the system development life-cycle. The goal

of this paper is to provide some insight into the purpose of modeling, particularly from the

perspective of a CIM or CE project manager/engineer who must select, use, and evaluate the

results of modeling efforts in support of systems development.

For all the rapid advances in computer hardware and specific software technology (e.g.,

databases), the bane of large-scale information systems development continues to be the lack

of effective, well and widely understood methods for engineering such systems. With

additional requirements for the system to be integrated and evolving, the complexities

become truly overwhelming. A solid base of methods support is essential to these types of

system development efforts. Complex, large-scale, evolving, integrated systems require

multiple, diverse methods, each for a specific purpose. Thus, there is clearly a critical need

for the development of effective methods. As a result, many methods remain to be developed.

A two-prong approach to method development is necessary. The goal of the first approach is

to identify the methods needed to support an evolving, integrated information system (EIIS)

and develop these methods. In the context of this paper, emphasis is placed on analysis and

design methods needed to support EIISs for CE and CIM. Part of this method development

includes developing precise, mathematical-based formalizations of the individual methods, as

well as capabilities for translating among the methods.

The second approach is to develop an engineering discipline for the appropriate selection,

use, extension, and creation of methods to support the planning, analysis, and design of

large-scale, EIISs. That is, methods that are developed, in turn, are used recursively to

develop new system engineering methods with predictable effectiveness. Within this

approach, techniques for the analysis and comparison of methods must also be developed.

Developing methods (and particularly developing a methods engineering discipline) requires

an uncommon experience base in method work. A method development team must include

members with extensive experience in the actual application of the technology, as well as

members with experience in methodization, language syntax design (both graphical and

lexical), and formal models of semantics.

From a scientific viewpoint, the two interesting observations of methods appear to contradict

each other. The first salient observation is that methods, almost by definition, are not

derived in any logical, traceable manner; the second observation is that in spite of this, they

126

work. If the history of a method’s development could be captured, it would be obvious that

the method was not developed arbitrarily. Yet, methods do tend to be developed piece-meal,

over time, by many individuals and as a result of a discovery process of what works well in a

domain. Indeed, the underlying theoretical reasons for why a method works may not be

understood at all by the discoverer. Rather, a hunch, an intuition, or an accidental

circumstance may lead to such discoveries. For the very reason that a theoretical basis for a

method may be unknown or not well understood, methods also tend to be difficult to enforce.

It is simply difficult to convince someone to use a method when given no logical reasons, as

the following anecdote illustrates.

A young welder new to a railroad construction yard was assigned the job of
forming and welding the stays for the large wooden barrels used as
containers on the railroad cars. Proud of his welding prowess, the newcomer
chafed that the foreman insisted on giving him instructions at great length on
exactly how to carry out the job–instructions which the young welder
considered outdated. He argued with the foreman that he could do the job
much faster his own way. The foreman, for his part, insisted adamantly that
the job must be done just this certain way or it wouldn’t be done right.

Unconvinced, the welder decided to show the foreman. In two days, he
completed a week’s worth of work which he triumphantly showed the
foreman. Wordlessly, the foreman took one of the stays in hand, climbed to
the top of the water tower, and threw the stay to the ground. The welder
watched as the stay bounced twice and shattered at the seam. Climbing
down from the water tower, the foreman quietly handed the welder a stay
built the foreman’s way and pointed to the tower. When the welder repeated
the experiment with the foreman’s stay, the stay hit the ground bouncing
repeatedly, but holding firm.

While the young welder may never understand why the foreman’s method
works, there is no doubt that he will use it religiously in the future.
Whatever the exact nature of the foreman’s particular method, it was typical
of methods because it represented “best practice” in the domain of welding
stays, a best practice learned over time and through experience. In fact, a
method may be abstractly described as an encapsulation of best practice in a
domain of cognitive or physical activity.

Nature and Importance of Methods

The purpose of a method is realized through its use by a human mind. Just as shovels

themselves do not dig holes, but provide leverage for a human to dig holes, methods provide

leverage for the human mind to accomplish a job more effectively. The method may assist

127

and motivate the intellectual activities of the human, but it doesn’t make the decisions,

create the insights, or discover the problems.

Recognizing the nature of a method as an enabler, and not as a creator, should not diminish

the recognition of the importance of methods. As the anecdote in the previous section

illustrates, it may not be easy to pass down the knowledge of best practice from the expert to

the novice. The basic importance of methods has long been recognized in the manufacturing

industry. Methods are prominent in the “5 M’s” of manufacturing–manpower, methods,

materials, machines, and money. Materials, machines, and even money can be replaced, but

manpower and methods that leverage the knowledge of the manpower are vital components

of industry.

Components of a Method

Informally, a method is thought of as a procedure for doing something. That is, methods

attempt to capture the “best practice” or experience. In addition, the method may have a

representational notation to communicate this procedure more effectively. More formally, a

method consists of three components as illustrated in Figure A-1. Each method has a

definition, a discipline, and many uses. The definition contains the concepts, motivation, and

the theory behind the method. The discipline includes the syntax of the method, a computer

interpretable format (labelled ISyCL [Mayer 91g] Syntax in Figure A-1), and the procedure

governing its use. Many methods have multiple syntaxes which have either evolved over

time or are used for different aspects. Perhaps the most visible component of a method is the

language associated with the discipline. Many system analysis and engineering methods use

a graphical syntax to provide visualization of collected data in such a way that key

information is unambiguously displayed. The use of a method may be by itself or within a

suite of methods.

Types of Methods

The methods in the EIIS context are primarily methods that produce models, but some

methods produce descriptions. Models and descriptions are similar in that they both consist

of diagrams and texts. A model can be characterized as an idealized system of objects,

128

properties, and relations designed in certain relevant respects within a particular structure

to imitate the character of a given real-world system. The power of a model comes from its

ability to simplify the real-world system it represents, and to predict certain facts about that

system with corresponding facts within the model. Thus, a model is a designed system in its

own right, constrained to satisfy certain conditions by the abstract system of which it is an

instance.

129

Procedure

In
System

Evolution
Process

Stan d-alon e
In an

In tegrated
Sui tes of
Methods

In depen den t
of System

Developm en t

Data
Ass im i lation

Val idation
Form ulation

Graphical
Syn tax

ISyCL
Syn tax

Lexicon Gram m ar

Con cepts

Motivation

T heory

In form al

Form al
Lan guage

Form al
Sem an ti cs

Disc
ip

lin
e

Definition

U
se

Method

Figure A-1. Components of a Method

Models are known to be incorrect, but assumed to be “close enough” to provide reliable

predictors of the real properties of the domain of interest. A description, on the other hand,

is a recording of facts or beliefs about the world. As such, descriptions are, in general,

partial. A person giving a description may omit facts that don’t seem relevant, or that he has

forgotten in the course of describing the system. Thus, while descriptions must be accurate,

they are not constrained by abstract, testable conditions that must be satisfied.

It is important to distinguish conceptually between models and descriptions. Unfortunately,

the term model may be used ambiguously in a general sense to mean both a description and a

model. This occurs most frequently when discussing activities of modeling activities common

to many methods and not a particular method. This paper discusses the family of IDEF

methods including, descriptive methods, such as, IDEF3 and IDEF5 and modeling methods

such as, IDEFØ and IDEF1. In this paper, the terms model, modeler, or modeling may refer

either to models in the most general sense (referring to both models and descriptions) and

models in the more restricted definition (i.e., versus descriptions). The context of the use of

the term will clarify its intended meaning.

Methods in the System Development Process

All too often, modelers are caught between the system developer who claims that the effort

cannot afford the lack of the modeling activity and the funding source who claims that the

130

modeling effort is prohibitively expensive. In fact, there are many reasons to justify the time,

labor, and expense required by a modeling activity to build system models or descriptions. A

model of the system development process can be used to illustrate where system modeling

fits. Figure A-2 depicts the customer’s perspective of the activities involved in developing a

system and their relationships to one another. The nature of the system is unimportant and

may be anything including night vision goggles, an information system, or even a house.

In the activity labeled Establish Requirements, the customer provides input in the form of an

expression of needs. While the customer may recognize problems in the environment, he/she

usually does not understand the exact cause and may, in fact, misdiagnosis a symptom.

Needs are conditions that must be satisfied for the problem to be considered solved. The

system developer must establish the limiting constraints on the conditions to be satisfied,

(i.e., the requirements). For example, an architect tasked with designing a new home will

take an expression of needs for more space and lower heating bills and will ask questions

that determine requirements.

Customer
Expectations

Needs

Analysis
Methods
& Tools

Communication
Methods & Tools

Requirements

Understanding of
Customer Requirements

Design
Methods &
Tools

Design

Contract for
Tradeoff Decisions

Product

Fabrication
Methods &
Tools

Raw Materials

Alternative
Technologies

Knowledge of
Previous Designs

Establish
Requirements

Design
System

Build
System

Figure A-2. Develop System (IDEFØ Model)

How big is your lot size?

What kind of additional space do you need? Storage space? Sleeping space?

What is an acceptable range for heating bills?

131

How much money is to be spent on this house?

This activity produces two results: 1) a clear set of requirements and 2) a perception of the

customer that the environment is understood well enough by the developer that the

customers’ needs will be satisfied. This perception is a by-product of the developers’ attempt

to isolate the causes of the problems through careful study of the environment where the

symptoms occur. This analysis will not only lead to the rediscovery of the problems known to

the customer, but will also often result in identifying other existing or potential problems.

As far as the customer is concerned, the developer can use any analysis method and tool as

long as it accomplishes the goal and promotes lower costs and faster turn-around time. In

this context, tools are considered support (usually automated) for using the prescribed

methods. In fact, much generated by the method may never be directly seen by the customer.

However, periodically, it is necessary to communicate to the customer what the system

developer is actually thinking. This may amount to nothing more than asking the customer

“Is this what you mean?”

The second activity, Design System, will typically not proceed without both a clear set of

requirements and the customer’s feeling that his expectations will be satisfied. The system

developer then uses whatever design methods and tools will best help him satisfy the

requirements. There may also be cases where communication methods and tools are used by

the system developer to communicate with the customer throughout the design activity. An

architect, for example, may generate a set of blueprints from the requirements without

needing to consult further with the customer. Cases where it is necessary to involve the

customer further will most likely occur when trade-off decisions have to be made. The

system developer then presents the effects of competing design decisions in terms of

constraints (e.g., cost). The trade-off decisions made at this point can then be captured either

implicitly by verbal agreement or explicitly by formal sign-off.

Once the design is accomplished and the trade-offs have been accepted by the customer, the

building of the system can begin. The fabrication methods and tools to be used in this

process can range in sophistication from strictly manual approaches to totally automatic

system generation.

Models built as part of the system development process, as a minimum, should 1) instill in

the customer a feeling of assurance that the system developer understands the customer’s

environment, the customer needs, and the conditions that must be satisfied to meet

132

expectations or the system requirements and 2) involve the customer in making trade-off

decisions and document those decisions. One important purpose for modeling from the

customer’s perspective is to satisfy these needs. A corollary to this assertion is that if the

developer is building models that do not satisfy these expectations, success in meeting the

customer’s needs is left largely to chance. This should in no way overshadow the importance

of models to system development needs. Rather, these guidelines should be used to help

guide what kind and how much modeling is actually needed.

With the purpose of modeling from the customer’s perspective more fully understood, the

discussion will center on experiences in the use of the IDEF (Integrated Computer-Aided

Manufacturing (ICAM) DEFinition) methods to perform modeling activities in support of

CIM and CE system development. Experience with three such methods will be described in

detail, namely, IDEFØ Function Modeling, IDEF1 Information Modeling, and IDEF1X Data

Modeling. Following this discussion, the emerging IDEF methods including IDEF3 Process

Description Capture, IDEF4 Object-oriented Design, IDEF5 Ontology Description, and

IDEF6 Design Rationale Capture will be introduced and their envisioned application

potential for CIM implementations described.

Function Modeling Using IDEFØ

The IDEFØ Function Modeling method is designed to model the decisions, actions, and

activities of an organization or system. IDEFØ was derived from a well-established graphical

language known as the Structured Analysis and Design Technique (SADT) [Mayer 90]. The

Air Force commissioned the developers of SADT to develop a function modeling method for

analyzing and communicating the functional perspective of a system. Effective IDEFØ

models assist in organizing system analysis and promoting effective communication between

the analyst and the customer. In addition, the IDEFØ modeling method establishes the

scope of analysis either for a particular functional analysis or for future analyses from

another system perspective. As a communication tool, IDEFØ enhances domain expert

involvement and consensus decision-making through simplified graphical devices. As an

analysis tool, IDEFØ assists the modeler in identifying functions performed, what is needed

to perform those functions, what the current system does correctly, and what the current

system does incorrectly. Thus, IDEFØ models are often created as one of the first tasks of a

system development effort.

Modeling Systems from an IDEFØ Perspective

133

IDEFØ includes both a process and a language for constructing a model of the decisions,

actions, and activities in an organization. Applying the IDEFØ method results in an

organized representation of the activities and the important relations between these

activities in a nontemporal, non-departmentalized fashion. IDEFØ is designed to allow the

user to “tell the story” of what an organization does. It does not support the specification of a

recipe or process. Such detailed descriptions of the specific logic or timing associated with

the activities requires the IDEF3 Process Description Capture Method. IDEFØ models

isolate or separate functions from organizations, identifying common functional threads

across organizational units, and facilitating organization-independent analysis.

IDEFØ has been successfully used as both an analysis tool and as a communication tool in a

number of application areas. Referring back to Figure A-2, this characterization indicates

that IDEFØ can be applied as a mechanism for performing the Establish Requirements

activity. The communication facilitation capability of IDEFØ makes it an effective analysis

tool for cooperative interdisciplinary team projects as those required by any CIM or CE

initiative.

Organizational Structures and Strategies of IDEFØ

A number of organization strategies designed in the IDEFØ method lend tremendous

expressive power and ease in communication. When improperly used or not understood, they

yield models that are difficult to comprehend or may make absurd declarations which appear

well-founded. Examples of IDEFØ organization strategies include 1) the purpose, viewpoint,

and context statements, 2) the hierarchical or top-down analysis approach to model

development, and 3) the levels of abstraction.

For the modeler, these organization strategies focus work on one piece of the model and

establish clear boundary conditions within which to perform the analysis. For the customer,

they allow rapid discovery and inspection of the pieces of the system with which the customer

is most familiar. They also provide powerful browsing mechanisms for learning about the

system as a whole and communicating the modeler’s understanding of the system. The

following will address the use of purpose, viewpoint, and context statements as organization

strategies in the IDEFØ method. Following that discussion, the hierarchical or top-down

analysis approach to model development and the notion of levels of abstraction will be

discussed.

134

To begin an IDEFØ modeling activity, the modeler must first determine (and clearly

describe) what the purpose of the model is, from what viewpoint the activity descriptions will

be formulated, and within what context. The purpose is a statement of the goals of the

modeling activities (e.g., what information needs to be assembled, what decisions this

information is supposed to support, what consensus is to be achieved, etc.). For example, one

purpose of an IDEFØ functional analysis could be to identify opportunities for consolidating

existing functions under a new CIM strategy. An accepted purpose provides the modeling

team with a completion criteria. That is, when the purpose is accomplished, the model is

finished.

The viewpoint statement describes the perspective that should be taken when constructing,

reviewing, or reading a model. This viewpoint establishes how the reader will interpret the

model and how the modeler will constrain his idealization or abstraction of the activities that

occur in the system under study. An accepted viewpoint statement provides the modeling

team a mechanism for controlling the scope and level of detail in a model.

The context establishes the interpretation and scope of the model as part of a larger scope.

This focus creates a boundary within the environment for the model.

Another strategy for organizing the development of IDEFØ models is the notion of

hierarchical decomposition of activities. Although IDEFØ models are developed using a

hierarchical or top-down approach, Doug Ross, the creator of SADT, is thought to have often

struggled with these terms. In fact, Mr. Ross proposed that this process might more

accurately be characterized as an Outside-in approach [Ross 85]. A box in an IDEFØ model,

after all, represents the boundaries drawn around some activity. Looking inside that box

leads one to discover the breakdown of that activity into smaller activities which together

comprise the box at the higher level.

This hierarchical structure helps the analyst keep the scope of the model within the

boundaries represented by the activity’s decomposition. The customer also finds this

organization strategy useful for hiding unnecessary complexity from view until a more in-

depth understanding is required by looking inside the box at its decomposition (See Figure A-

3).

This complexity hiding may also be characterized as part of the abstraction mechanism used

in IDEFØ. One common misconception, however, is that levels of abstraction are only

evidenced in the activities themselves as one moves between levels of the model. The arrows

135

also exhibit different levels of abstraction between levels of the model. In fact, achieving the

correct balance between the level of abstraction associated with a box and the level of

abstraction associated with the arrows attached to the box is not always trivial. For example,

suppose the four mechanism arrows inside the inner box in Figure A-3 represent different

types of tools used to accomplish their respective activities. These four arrows could be

bundled together into a more abstract perspective as a single arrow labeled “tools.” Thus, the

outer box in Figure A-3 would have only one mechanism arrow for its level of abstraction. A

far less elegant depiction would have all four arrows appear at both the more abstract and

the more detailed levels of the model. It can be seen that one easy way to tell whether or not

the modeler has effectively used the information hiding constructs available in IDEFØ is to

count the number of arrows attached to the boxes at any given level. If the model seems

cluttered with arrows, it is very likely that the level of abstraction used in bundling the

arrows is not the same as the level of abstraction as the activity.

Perhaps the least understood and most frequently misapplied IDEFØ constructs for

screening unnecessary detail at a given level of abstraction is the notion of bundling and

unbundling of arrows. It would be logically inconsistent to unbundle all but two of the four

mechanism arrows in Figure A-3 when each occurs at the same level of abstraction, namely,

as component tools. Likewise, it would make little sense to unbundle and rebundle an arrow

at the same level of abstraction. Unfortunately, the IDEFØ literature does not adequately

cover how to appropriately avoid logical inconsistencies that can be introduced through

incorrect use of information hiding constructs through arrow bundling. The best approach is

to build models using an automated support tool that enforces good practice. Otherwise, an

IDEFØ modeler can take years to learn how to recognize and avoid bundling problems.

Input

Control

Output

Mechanism

Figure A-3. Looking Outside-In

136

IDEFØ Guidelines

There is a considerable knowledge base of heuristics available for aspiring IDEFØ modelers

[Cullinane et. al. 90, KBSI 90a, Mayer 89b, Softech 81a]. In the following paragraphs, a few

of the more common hints for obtaining the most from an IDEFØ modeling exercise are

discussed. Specifically, these guidelines will help determine how well a given model satisfies

the purposes of modeling outlined above.

Without question, the most difficult aspect to master in IDEFØ modeling is maintaining the

same consistent purpose and viewpoint between levels of the model. What makes this task

so difficult is the difficulty of recognizing shifting viewpoints. A good heuristic is to look at

the boundaries within which the modeler develops a decomposition and formulate questions

including the following: “Does this activity fall within the scope of the higher-level activity?”

and “Does this activity conform to the established viewpoint and purpose of the model?”

Secondly, look for models that push the numerical constraints of the method. For example,

the discipline component of the IDEFØ method establishes a rule that there should never be

less than three nor more than six activities to a decomposition. Likewise, there should never

be more than six arrows on one side of an activity box. A common modeling mistake is to

decide that a seventh activity in the decomposition becomes indispensable. In fact, one

tendency is first to draw six boxes for the decomposition and then attempt to come up with

names for all six activities. Another mistake occurs when activity boxes and their associated

arrows begin to look like wiring diagrams for electronic components. This is largely due to a

failure to logically organize the arrows into bundles at different levels of abstraction

consistent with the same level of abstraction as their associated activity boxes. Inappropriate

bundling, such as that done simply to abide by the established rules, may also occur. These

kind of errors become obvious when arrows seem arbitrarily grouped together.

Another common problem emerges when new conventions are introduced into the method.

For example, some modelers will choose to establish a convention that inputs and outputs

can only be data elements. In this way, they hope to ensure that inputs and outputs

translate directly into information model elements. Intuitively, this approach would then

provide clear and unambiguous tracking of data needs across activities as well as clearly

delineating the scope of their information models. However, with this approach, the modeler

is forced to further change conventions by making mechanisms into resources assigned to an

activity. For example, consider an activity Fix Broken Airplane. With these conventions,

137

there is only one place for the broken airplane, as an input to the activity. But with this

approach, there is no place to show that what emerges is a fixed airplane, since outputs can

only be data elements. It is far more useful to use the existing conventions and then use

inputs and outputs as candidates for what may be data elements to be examined and

discriminated later.

A frequently misunderstood convention of IDEFØ is the built-in notion of nontemporality

implicit in the IDEFØ method. As discussed previously, IDEFØ does not explicitly capture

time-ordered constraints between activities. In fact, temporal logic is purposely not included

in IDEFØ to lend more expressive power and generality. While IDEFØ could provide a

description of a specific set of activities operating within the bounds of a specific time-ordered

process, it is far more useful for analysis purposes to provide a generalized model which

accounts for all, or at least all relevant, paths that could be taken through a set of activities

for any number of time-ordered processes. Models should therefore be judged, in part, by the

degree to which they accommodate likely or possible sequences of activities and should not be

built with the intention of implying a specific process.

Perhaps the most useful exercise used for assessing the quality of an IDEFØ model is to sit

down, read the model, and determine if it makes sense with a constraint of no more than two

minutes per page. For a large model, this should require no more than two hours. If a

reader can understand the environment modeled by the IDEFØ representation within that

time and feel capable of explaining what occurs in that environment, it is likely that the

model is of significant value. Models that require two full days of careful study to fully

comprehend are not good IDEFØ models.

Information Modeling Using IDEF1

Referring to Figure A-2, IDEF1 is viewed as a method for both analysis and communication

in establishing requirements. In this case, however, IDEF1 establishes the requirements for

what information is or should be managed by enterprise. In CIM applications, IDEF1 is

generally used to 1) identify what information is currently managed in the organization, 2)

identify which of the problems identified during the needs analysis are caused by lack of

managing appropriate information, and 3) specify what information will be managed in the

“TO-BE” CIM implementation.

The IDEF1 information modeling method derives its foundations from three primary sources.

The Entity-Link-Key-Attribute (ELKA) method developed by Hughes Aircraft, the Entity-

138

Relationship (ER) method proposed by Peter Chen, and Codd’s Relational Model (see Figure

A-4). The original intent of IDEF1 was to capture what information exists or should be

managed about objects within the scope of an enterprise. The IDEF1 perspective of an

information system includes not only the automated system components, but also non-

automated objects such as people, filing cabinets, telephones, etc. IDEF1 was specifically

designed to not be a database design method. At the time of IDEF1 development, the

database community believed that a method for analyzing and stating information resource

management needs and requirements was needed. This was the intent of IDEF1. Rather

than a design method, IDEF1 is an analysis method used to identify the following.

1. The information collected, stored, and managed by the enterprise.

2. The rules governing the management of information.

3. Logical relationships within the enterprise reflected in the information.

4. Problems resulting from the lack of good information management.

The results of information analysis can be used by strategic and tactical planners within the

enterprise to leverage the information assets to achieve competitive advantage. Part of these

plans may include the design and implementation of automated systems which can more

effectively take advantage of the information available to the enterprise. IDEF1 models

provide the basis for those design decisions. IDEF1, then, is not used to design a database;

rather, it is used to provide managers with the insight and knowledge required to establish

good information management policy. The next section will provide an overview of some of

the basic concepts and rules of IDEF1. The interested reader is referred to [Softech 81b,

KBSI 90b, Mayer 89b, Menzel 89] for additional details regarding this method.

Elka
(Hughes Aircraft)

Entity-
Relationship Model

(Chen)

Relational
Model
(Codd)

IDEF 1
Information

Modeling

Figure A-4. IDEF1 Origins

Modeling Systems From The IDEF1 Perspective

139

IDEF1 uses simple graphical conventions to embody a powerful set of rules which help the

modeler distinguish between the following.

1. Real-world objects.

2. Physical or abstract associations maintained between real-world
objects.

3. The information managed about the real-world object.

4. The data structure used to represent that information for acquiring,
applying, and managing that information.

Simply stated, IDEF1 was designed to represent information that is, or should be, collected,

managed, controlled, and ultimately paid for by the enterprise (item 3). The rules of the

method help prevent modeling items 1 and 2 (normally considered the province of knowledge

engineers). They also divert the attention of the modeler away from database design (item

4, normally considered the province of software engineers).

There are two important realms to modelers in determining information requirements. The

first realm is the real-world as perceived by the people in an organization. This realm

includes the physical and conceptual objects (e.g., people, places, things, ideas, etc.), the

properties of those objects, and the relations associated with those objects. The second realm

is the information realm. This realm includes information images of those objects found in

the real-world. An information image is not the real-world object, but only the information

collected, stored, and managed about real-world objects. IDEF1 is designed to assist in

discovering, organizing, and documenting this information image. These tasks are essential

to any CIM implementation. This does not mean that the task of structuring the

organization’s knowledge of the first realm is not important. Looking towards intelligent

CIM systems and/or CIM implementations that embody large numbers of knowledge based

systems, this task (often referred to as ontology definition) becomes more important.

However, a specialized method, IDEF5, is designed to assist in the structuring of this

knowledge base. IDEF5 and its application are discussed in a later section. The following

section concentrates on the role of IDEF1 which attempts to capture an organization’s

information management requirements.

IDEF1 Basic Concepts

Focus on the real-world realm for a moment (see Figure A-5). The term real-world object is

used to describe real-world people, places, things, or ideas. In this sense, the sales

140

department in a company may be a real-world object, as is an employee working in that

department. These objects have characteristic properties associated with them, such as a

name, age, gender, etc. Further, one real-world object may be involved in some kind of

association with other real-world objects. For example, an employee may work for a

department.

Now, focus on the information realm. An IDEF1 entity represents the information

maintained in a specific organization about physical or conceptual objects (e.g., people,

places, things, or ideas). For example, an IDEF1 entity exists when an organization

maintains information about the sales department resulting in the existence of an

information image of that object in the organization’s information system. In IDEF1, the

term entity class refers to a collection of entities or the class of information kept about objects

in the real-world. An entity class can be thought of as an empty box for holding 3" x 5" cards

with each card an actual entity. The box is labeled on the outside with 1) an entity class

name describing what type of cards go in the box, and 2) a template for the individual cards

that will eventually go inside.

Entities have characteristic attributes associated with them that record values of properties

of the real-world objects. Using the card file model, an attribute class is the template for the

attribute-value pairs found on the individual file cards. The term attribute class refers to the

set of attribute-value pairs formed by grouping the name of the attribute found on the

outside of the file box, and the values of that attribute for individual entity class members

(entities), listed on the individual cards themselves. A collection of one (or more) attribute

classes which allow us to distinguish one card from another, or one member of an entity

class from another, is called a Key Class. A Key Class is indicated by placing it in the top left

corner of the template and underlining it.

A relation in IDEF1 is an association between two individual information images. The

existence of such a reference is discovered (or verified) by noting that the attribute classes of

the one entity class contain the attribute classes of the Key Class of the referenced entity

class member. For example, the information managed about an employee may contain a

department number (an attribute class that belongs to the collection of information kept

about a department). A relation class can be thought of as the template for associations that

exist between entity classes. An example of a relation class in IDEF1 would be the label

works for on the link between the information entity class employee and the information

entity class department. It is important to note that if no information is kept about an

141

association between two or more objects in the real-world, then from an IDEF1 point of view,

no relation exists. Relation classes are represented by links between the entity class boxes

on an IDEF1 diagram. The diamonds on the end of the links and the half diamonds in the

middle of the links encode additional information about the relation class (i.e., cardinality

and dependency). These links often indicate the existence of a business rule of an

organization. If there are inconsistencies during the analysis of these links, the analyst very

often discovers inconsistencies in business rules.

The procedure portion of the IDEF1 method was designed to be scalable from small

department level analyses to large enterprise-wide projects. It has been demonstrated as an

effective problem solving method where the cause of a particular problem has to do with the

lack of management (or mismanagement) of information. However, it is important to have

the analysis done correctly. The next section describes some indicators of quality in an

information analysis performed using IDEF1.

IDEF1 Modeling Guidelines

There are some very simple ways to quickly inspect an IDEF1 model and determine whether

or not the modeler has been able to take the expression of need, together with an

understanding of the environment, and successfully identify existing and future information

management requirements. These inspection techniques will help the customer identify,

almost immediately, whether or not the IDEF1 modeler is modeling from the real-world

realm (generally considered incorrect) or from the information realm (generally considered

correct).

142

Dept #
Dept-name

Department

123
Sales

SSN
Name
Dept #
Employee- Id

Employee

000-11-2222
Bob Smith
123
12345

employs

Information
Realm

Real World
Realm

Sales Department

Bob Smith

Figure A-5. IDEF1 Basic Concepts

First, check the labels used to name the entity classes. If the labels are plural rather than

singular names, it is unlikely that the model was created with the information realm in

mind. For example, a box labeled Employee conforms better to the convention that the entity

class represents the set of information important to manage about a real-world person than a

box labeled Employees. With the Employees label, the modeler may mean a group of people

with some of the same properties (i.e., individuals who all have a job at the company).

Remember, an IDEF1 modeler is not concerned about the real-world objects directly, only the

information about them that is actually managed by the organization.

A second indication of models which represent real-world objects and not information images

are models which have some boxes without non-key attribute classes and others with whole

laundry lists of them. Those models without non-key attribute classes typically are objects

like organizational units. Close inspection of boxes with long lists of attributes will often

reveal that the box represents a form, like a Purchase Order form, with the attributes of the

actual fields on the form.

The third check is to look for models that have most of their entity boxes with only one or two

relations whereas a few entity boxes are wired with many relations. In this case, it is highly

probable that the box with all the relations will be the entity box with a label such as Person.

In this example, many of the relations attached to the enetity box indicate the roles that a

143

person can assume. For example, the model might read: Person inspects Parts; Person

certifies Inspection; or Person is married to Person.

Although it is a natural tendency for first-time IDEF1 users to model what they know about

the real-world in terms of what can be easily seen, misapplication of IDEF1 may lead to huge

models with little or no benefit. With little direction, the novice modeler attempts to model

everything that is observed in the real-world. These models become more and more difficult

to manage as they continue to grow. Soon, it becomes easy to lose sight of the purpose of the

modeling exercise. Information models that model the real-world realm rather than the

information realm provide virtually no insight into what the information requirements are or

where more effective information management policies can improve competitive posture.

Guidelines When Using IDEF1

A potential trap for information system developers is to assume that the ability to uniquely

identify one information entity from another necessarily implies that one real-world object

can be uniquely identifiable from another. Remember, an information model represents

information that is actually managed about real-world objects. Any other knowledge is

unavailable to the information system. When information is kept about individual real-world

objects, the information model can be used as a means for identifying specific real-world

objects. For example, the serial number used to distinguish one engine from another may

also serve to distinguish one entity called Engine from another. However, when information

is kept only about types of real-world objects, the same situation does not hold. Consider, for

example, a standard bolt. A unique part number is not usually assigned to each bolt. The

information model, however, may use part number to uniquely identify the information kept

about specific families of bolts.

To avoid confusion , the IDEF1 modeler should be careful naming the relation classes and the

links that connect entity class boxes. As seen in Figure A-5, it seems very intuitive to read

the model as, “A Department employs one or more Employees.” Is this the same as, “The

information kept about Departments employs the information kept about Employees?”

Obviously, the first reading may confuse one into thinking that the file box is actually the

real-world object and not the information kept about an object. Remember, the link between

the boxes represents a reference from one file card to another, or information relationships,

not real-world relationships.

144

A sentence such as “A Department employs one or more Employees” is a natural language

fact or a business rule. Since business rules are important to know and manage, perhaps

they should be tracked and managed in a similar fashion to show how source data items in

IDEF1 are tracked and managed. The only exception being that they are managed

separately as a source facts list. In the meantime, the links between entity classes can be

labeled L1, L2, etc. This makes it very clear that a relation class represents a function which

when applied to a member of one entity class will return those entity class members involved

in the information relationship. Information relationships and real-world associations

cannot be indiscriminately mixed without leading to confusion, paradox, and error [ISO 87].

For example, suppose an entity class System is created and attached to a relation originating

from and ending at the System entity class with a is comprised of relation class label. How is

such a model interpreted?

Intuitively, it seems reasonable to interpret the entity box as representing a

system/subsystem hierarchy. The highest level system may be something like an automobile

that is comprised of subsystems and further subsystems to the individual component level.

With this approach, it appears that the same system/subsystem hierarchy can be ascribed to

the information kept about a vehicle to enable more intuitive thinking. This approach

implies that the information kept about the highest level system is comprised of the

information kept about subsystems below it in the system hierarchy. However, this doesn’t

work because the information kept about an automobile includes information such as who

owns it, what state it is registered in, what year it was manufactured, etc. None of that

information has anything to do with the information kept about subsystems such as the

braking system, which might include the type of front and rear brakes, the moisture content

in the brake fluid, or the thickness of the remaining brake pad. Obviously, information

relationships will not behave in the same manner that real-world relationships behave. The

only correct interpretation from an IDEF1 viewpoint is that one member of the class of

information kept about an object can reference information about other objects through the

referenced member’s Key Class.

The rules and procedures of IDEF1 assist the construction of accurate models of information

currently managed in an organization targeted for CIM implementation. They also serve as

mechanisms for definition of the information requirements for the TO-BE system. However,

IDEF1 was designed to be technology independent. Therefore, when the design for the CIM

implementation is being started, two other IDEF methods are used: IDEF1X for relational

145

data base implementations and IDEF4 for object-oriented implementations. These methods

are described in the following sections.

Data Modeling Using IDEF1X

In Figure A-2, IDEF1X is intended as a method for accomplishing the Design System activity.

Because it is a design method, IDEF1X is not particularly suited to serve as an “AS-IS”

analysis method, although it is often suggested as an alternative to IDEF1. IDEF1X is most

useful for logical data base design after 1) the information requirements are known and 2)

the decision to implement using a relational database has been made. Hence, the IDEF1X

perspective of the information system is focused on the actual data elements in a relational

database. If the target system is not a relational system, e.g., an object-oriented system,

IDEF1X is not the best method. The interested reader is referred to [GE 85, KBSI 90c,

Mayer 89b] for additional details regarding this method.

The development of IDEF1X was influenced by Chen’s Entity Relationship (ER) model,

Codd’s Relational model, and Smith’s Aggregation/Generalization model. These origins led to

the development of the Logical Database Design Technique (LDDT) by the Database Design

Group, Inc. LDDT later became a commercial product of Dan Appleton Company (DACOM)

as the Data Modeling Technique (DMT). A coalition of companies lead by General Electric

including SDRC, CDC, and DACOM used this method and their experience with IDEF1, to

create the IDEF Data Modeling Method, or IDEF1X (See Figure A-6).

Modeling Systems From The IDEF1X Perspective

Once there is a thorough understanding of the information requirements, decisions about

how to manage that information more effectively can be made. One possible decision is to

implement an automated system, requiring the selection of an appropriate design method.

Good design methods should result in a robust, high quality, cost effective implementation

with affordable life-cycle costs. Therefore, a good design method must embody the best

application experience associated with a particular technology. This usually means that a

design method will generally work “well” only for that technology whose experience base it

encapsulates. The IDEF family of methods recognizes this fact and provides specific methods

for design with particular implementation technologies in mind. If the technology of choice is

the relational database technology, IDEF1X is appropriate for logical database design. If the

technology of choice is an object-oriented database paradigm, IDEF4 (discussed in a later

section) is more appropriate.

146

Aggregation/
Generalizatim

Model
 (Smith)

Data Modeling
 Technique
 (Dacom)

LDDT
(DDG)

IDEF1X
(Semantic Data

Modeling)

Elka
(Hughes)

Entity-
Relationship

Model
(Chen)

Relational
 Model
 (Codd)

IDEF 1
(Information

Modeling)

Figure A-6. IDEF1X Origins

There are several reasons why IDEF1X is not well suited for non-relational system

implementations. IDEF1X requires that the modeler designate a Key Class to distinguish

one entity from another, whereas object-oriented systems do not require keys to individuate

one object from another. In situations where more than one attribute or set of attributes will

serve equally well for individuating IDEF1X entities, the modeler must designate one as the

primary key and all others as alternate keys. The explicit labeling of a foreign key, which is

an attribute owned by one entity, but which serves as the key attribute in another entity, is

also required. Modeling constructs like these clearly indicate specific intent to incorporate

the best practice in logical design for relational systems implementations. The results

(logical design models) of an IDEF1X activity are intended to be used by the programmers

involved in taking the “blueprint” for an information system, or the logical database design,

and implement that design in a relational database. However, the modeling language of

IDEF1X is sufficiently similar to that of IDEF1 that the designs generated from the

information requirements specification can be easily reviewed and understood by the

ultimate users of the proposed system.

IDEF1X Basic Concepts

Since the terminology used in the IDEF1X method is very similar to that used by the IDEF1

method, further definition of terms is necessary to avoid confusion. There are fundamental

differences in the theoretical foundations and concepts employed by the two methods. An

entity in IDEF1X refers to a collection, or set, of similar data instances (data records about

147

persons, places, things, or events) that can be individually distinguished from one another.

Thus, an entity box in IDEF1X represents a set of data items in the real-world realm. An

attribute is a slot value associated with each individual member of the set, (these individual

members are called entity instances). In Figure A-7, the record labeled Bob Smith and Sales

Department are both entity instances. Department is the collection of specific records in a

relational table representing departments; Employee is the collection of records about people

employed by individual departments. Department-Name, Department Number, and

Department-Location might be attributes of the Department-Entity. The relationship that

exists between individual members of these sets is given a name. In this case, this relation is

interpreted as establishing a referential integrity constraint.

A powerful feature of the IDEF1X method is the support for modeling logical data types

through the use of classification structures. This classification structure is the

generalization/specialization construct. This construct is an attempt to overlay models of the

natural kinds of things that the data represents whereas the boxes, or entities, attempt to

model types of data things. These categorization relationships represent mutually exclusive

subsets of a generic entity or set. In other words, subsets that emerge from the superset

cannot have common instances. One example of how this is used is to state that given a

generic entity Person, two subsets can be created which represent a complete set of categories

of people, namely, Male and Female. No instance of the Male set can be a instance of the

Female set, and vice versa. The unique identifier attribute for an instance of the male set is,

by definition, the same type of data as that for an instance of the generic entity. The same

holds true for the female category entity. The general attributes that apply to all members of

the entity Person are listed in the generic entity. The specialization attribute, gender in this

case, is listed in the category entity.

148

Sets of real data
things

Real or
abstract things

Sales Department

Bob Smith

employs

Department
t uples

Employee
t uples

Personnel

Training

Accounting
Sales

Bob

Wendy

Diana

Larry

Figure A-7. IDEF1X Concepts

Wendy Diana

LarryBob

Wendy Diana

LarryBob

Person

Male Female

Figure A-8. IDEF1X Generalization/Specialization Construct

Guidelines When Using IDEF1X

The underlying concepts associated with the IDEF1X method are intended to bridge the

modeling of natural language facts about real-world things, people, places, events, etc., with

the modeling of logical data structure. This is very different than the IDEF1’s goal which

149

focuses strictly on the information image of the real-world things (not the things themselves,

nor the data structures that represent the information about the things). IDEF1X is often

extended to go a step further by also attempting to design data specifications associated with

these sets of data items. This is accomplished through the glossary associated with the

attributes and relationships.

Considering the examples discussed in the section on IDEF1, the intent of IDEF1X is to

model how the database represents facts such as “A department employs one or more

employees” or “A system is comprised of one or more subsystems.” Since real-world

relationships between objects do not behave the same way that information relationships do,

it is questionable if this approach is useful for designing logical data structures. The reader

may want to address this question by reconsidering the example of the model representing

hierarchies of systems. From considering this example, one can easily recognize ample

possibility for misuse of the IDEF1X capabilities exists. This misuse results in models of the

real-world things, and not sets of relational database entities.

Another example of this problem is illustrated in an entity called “Technical Order

Improvement” that appeared in a model delivered to the Air Force intended to establish the

specification for a logical database design. This entity name would have been more accurate

with the word Form appended to the end of the entity name. This is because the attributes

listed in the entity actually correspond to individual fields on an Air Force form called the

AFTO 22. The entity here is used to model an artifact (namely the form itself) which is a list

of attributes.

The first question to ask is, “Is this a reasonable model of the set of forms called AFTO 22s?”

This entity certainly presents an accurate model of the fields on the existing form and may

therefore be fully justified. The next question to ask is, “Has any design activity been

facilitated through modeling the form in this manner?” In other words, “Does this kind of

modeling assist in moving from a set of information requirements to the logical design of

relational tables and from which trade-off decisions can be made?” Does it make sense to

create a table, or relation, in a relational database that corresponds directly with what one

would find on existing forms? This approach may have little or no impact for small

implementations where only a limited set of artifacts have to be modeled. However, for

large-scale implementations, the plethora of different forms would easily employ an army of

modelers maintaining the inventory of the forms and their associated fields. More

importantly, if such a model is handed to an implementor as the design specification, the

150

implementation will be a simple computerization of the current paper system. Such

automation of paper systems are infamous in the history of CIM failures.

Based on these examples, it is obvious that misapplication of a design method can lead to

confusion and/or poor design. One possible solution is to establish the convention that an

entity must represent information kept about real-world objects rather than the objects

themselves. But, this would result in little more than a syntactic variant of IDEF1, with one

major exception, namely, the generalization/specialization construct. This too will lead to

confusion if used without exercising great caution. For example, is it true that the set of

information kept about people is divided into two types, namely, male information and

female information? Probably not, and if so, it would probably be illegal. More importantly

reducing IDEF1X to IDEF1 loses a good design method.

Perhaps, IDEF1X is best used as a method for modeling just the objects themselves and not

the structure of the data associated with those objects. Models of this type are often called

concept models. Again, the difficulty occurs with the generalization/specialization construct

since in the real-world, kinds are usually overlapping, and not mutually disjoint. Since

IDEF1X does not allow for categorization entities with mutual members, IDEF1X could not

serve well as a concept modeling language. For example, a model of the kinds of employees

found in a company might include managers, engineers, designers, and secretaries, among

others. A generalization entity in this case would be Employee, and the specialization

entities would be those previously listed. The interpretation of this structure implies that

engineers cannot be designers, nor can they be managers.

Methods are needed for three different aspects. First, methods are needed that can

effectively capture what is known about the real-world and the relationships that exist

between people, places, events, etc. Second, there is a need for methods that can capture

existing and anticipated information management requirements. Third, good methods for

supporting the design of systems that apply specific technology to meet the information

management requirements are needed. The IDEF3 Process Description Capture and IDEF5

Ontology Description methods discussed in the following sections are specifically designed to

address the first of these needs. The IDEFØ Function Modeling and IDEF1 Information

Modeling were specifically targeted at the second of these needs. The IDEF1X Data

Modeling, IDEF2 System Dynamics Modeling, and IDEF4 Object-oriented Design were

developed to satisfy the third need. Unfortunately, there are a number of commonly used

151

modeling languages which fail to maintain an unambiguous distinction between these three

realms.

System Dynamics Modeling With IDEF2

The potential for benefits from the use of simulation modeling for manufacturing and

information system analysis, planning, and design have been well established over the past

20 years. As a result, more and more decision makers turn to simulation to study the

complex interactions and the dynamic behaviors of integrated manufacturing systems.

Simulation modeling is a powerful decision support tool that aids in solving complex

problems in a variety of application domains. Simulation is useful when:

1. The cause of a problem is the result of a complex time dependent
interaction among the components of the system.

2. The effect of a change to an existing system needs to be analyzed.

3. A proposed system does not exist.

4. Options to improve or measure system performance need to be
quantified.

5. Other quantitative analytic methods are computationally intractable.

Simulation allows one to ask “what if” questions and to derive new information from existing

knowledge. The simulation activity, coupled with the evaluation of alternate designs and

courses of action, can lead to a better understanding of system operations and management

policies.

The widespread use of simulation as an effective manufacturing or system development

decision aid has been thwarted by the requirement for extensive training and skill in the

design and use of the simulation modeling technique. The frustration of simulation has been

that domain experts who know how their systems operate, and who can describe in detail the

system operation, have been unable to take advantage of simulation modeling. These experts

have relied on experienced simulation analysts to design and develop the simulation model.

This dependence on experienced analysts by the domain experts has made effective

communication between these two parties imperative. The success of simulation activities

depends on 1) how well the expert can describe the system to a simulation expert, 2) how well

the simulation analyst can understand that system, and 3) the effectiveness of accurately

translating systems descriptions and goals to a simulation model. IDEF2 is focused on

152

improving the productivity of the simulation modeler by improving the ability of the

simulation modeler to communicate model assumptions and designs to the domain expert.

Thus IDEF2 is a simulation model design tool that provides a language for representing

models of the time varying behavior of resources in a manufacturing system, providing a

framework for specification of math model based simulations. IDEF2 was designed to

improve the process of design of representative simulation models that can be executed to

predict what a system will do under specific conditions. The interested reader is referred to

[Softech 81c] for additional details regarding this method.

Simulation Model Design from the IDEF2 Perspective

The IDEF2 method development was based on an extensive experience base with continuous,

discrete, and network simulation languages design and the application of these languages to

industrial problems. The primary designers of IDEF2 were A. Alan B. Pritsker, Robin J.

Miner, and John F. Ippolito of Pritsker & Associates, one of the leading industrial simulation

companies in the United States. IDEF2 decomposes the design of a simulation model into

the following four submodels.

1. Facility Submodel (used to specify the model of the agents of the system
and environment).

2. Entity Flow Submodel (used to specify the model of the transformations
that an entity undergoes).

3. Resource Disposition Submodel (specifies the logic of agent assignment
to entity transform demands).

4. System Control Submodel (specifies the effect of transformation
independent or system external events on the modeled system).

One of the goals of this submodel decomposition was the need to allow teams of analysts to

easily partition the tasks associated with the construction of large models. It was also the

intent that the submodel specifications could be reused as actual system specifications, e.g.,

use of the facilities submodel as a basis for other quantitative plant layout analysis, or the

use of the resource disposition submodel and the system control submodel as the control logic

specification for the shop floor control specifications. Finally, through the use of

decomposition of the specification by behavioral partitioning, it was hoped that reuse of

model specifications could be achieved.

IDEF2 Basic Concepts

153

IDEF2 is a graphical specification language with a computable interpretation. This means

that simulation model designs are specified with a graphical syntax. However, they are

complete enough to allow direct execution of the simulation model that they specify. This

paper will not attempt to describe each element of the language in this brief summary, but

rather illustrate each of the described submodels in the following figures.

Rep

Rep

S1 Store1

Tote

Tote

Saw1

Saw2

Man1

Man2

Drill1

Drill2

Man3

Man4

Man5

Chute

Chute

D1
Boring

Machine

Store4

Store5

Store2

Store3

Figure A-9. Facility Submodel used for Plant Layout

S5
Go To

Pieces2q
1/4

Store2q

S4
Go To

Pieces3q
1/4

1
Saw1

Man1

1

1

Saw1

Man1
1

1
Drill1

Man3

1

1

Drill1

Man3

1
Saw2

Man2

1

1

Saw2

Man2
1

1
Drill2

1

Man4

1

1

Drill2

Man4
1

Part1s
Start Store1q

Subc2
End

Subc3
End

Sawing1

Sawing2

Drilling1

Drilling2

Saw

Activity

1

Store3q

Figure A-10. Example Entity Flow Network

154

Issues In IDEF2 Modeling

IDEF2 was widely used in CIM implementation initiatives and factory modernization efforts.

A VAX-based simulation and decision support system developed by Pritsker & Associates was

used to analyze these models. At this time, the IDEF2 method is relatively dormant. Many

of the specification capabilities, and graphical innovations have been incorporated into

commercially available simulation languages (e.g., MAP, SLAM, and SIMAN). IDEF2

demonstrates the ability to reduce the semantic gap between simulation model design and an

executable simulation program. It represents an important advance for improving the

productivity of simulation modelers, but does little to aid the non-simulation trained decision

maker. This is similiar to a traditional CAD system that aids a product designer in quickly

producing specifications for a mechanical part, but provides no support for the actual design

decisions behind those specifications.

Saw1

Free

No Yes

No Yes

Free Allocate

Allocate

Saw1,1

Saw1,1

Any Requests?

Resource
Man1 Free?

Saw1,1

Store1q

Man1,1

Store1q

Figure A-11. Example Resource Disposition Submodel

Ed1

Time Between Drill Breakdowns

Drill1 Repair

1

Drill1

Store2q

Drill1s

Add Drill1
1/1Grabdrill1

Drill1

155

Figure A-12. Example System Control Submodel

The IDEF3 method (described in the next section) is targeted at assisting the domain experts

in recording their knowledge about process flow and object state transitions in their

environment. Continuing research is being directed at the construction of knowledge based

systems to automate the design of simulation models from these IDEF3 process descriptions

and the analysis question to be answered. Such a system would provide support for the

decision maker to input what is known about the system (a description of how his system

works, and a question about his system that he wants answered). In these environments,

IDEF2 can provide an intermediate representation of the generated model design for review

by the simulation analyst. It is expected that IDEF2 will be updated to incorporate object-

based (if not object-oriented) specification constructs that have recently emerged.

IDEF: The Next Generation

A method is a designed system. Unlike other CIM technology, a method is designed to

execute on the human mind (more often on a multidisciplinary collection of minds). Like any

other system, a method extended beyond its designed limits will fail. The goal of the IDEF

developments has been to provide an interlocking framework of methods for the definition (or

reverse engineering), design, development and maintenance of information integrated

systems. The term framework [Zachman 87, IUG 90, Mayer 90] means a structured

collection of methods, rules, procedures, and tools to support the development and evolution

of systems. Experience during the first seven years of applying the IDEF methods resulted

in the identification of a number of additional method needs [Mayer 87] including the

following.

1. Need to capture scenarios of logical or temporal sequences of events.

2. Need to design effective object-oriented applications and databases.

3. Need to capture reference descriptions of the objects described in the
real-world realm.

4. Need to record CIM design decision rationale in order to achieve TQM
on the CIM system itself.

These needs are being addressed by the next generation of IDEF methods, described in the

following sections.

156

Process Flow & Object State Descriptions With IDEF3

One of the most common communication mechanisms to describe a situation or process is a

story told as an ordered sequence of events or activities. IDEF3 is a scenario-driven process

flow modeling method created specifically for these types of descriptive activities. IDEF3 is

based upon the concept of direct capture of descriptions of the precedence and causality

relations between situations and events in a form that is natural to domain experts in an

environment. The goal of IDEF3 is to provide a structured method for expressing the domain

expert’s knowledge about how a particular system or organization works. An IDEF3

description can be used to provide the data for many purposes including the following.

1. To provide a systematic method for recording and analyzing the raw
data that results from fact-finding interviews in a systems analysis
project.

2. To determine the impact of an organization’s information resource on
the major operating scenarios of an enterprise.

3. To provide a mechanism for documenting the decision procedures
affecting the states and life-cycle of critical shared data (particularly
manufacturing, engineering, maintenance, and product definition data).

4. To define data configuration management and change control policy
definition.

5. To support system design and design tradeoff analysis.

6. To provide powerful mechanisms to support the generation of
simulation models.

7. To provide useful information for the creation of functional (IDEFØ)
models.

8. To facilitate process mapping for the design of software to achieve real-
time control by providing a mechanism for clearly defining the facts,
decision points, and job classifications.

9. To provide an analyst with a method to clearly define the data needed
to develop needs and requirements from a user viewpoint.

10. To collect and express the views of domain experts required for the
development of expert systems.

The IDEF3 Process Description Capture Method is used by system developers to capture

domain expert knowledge about the “behavioral” aspects of an existing or proposed system.

Process knowledge captured using IDEF3 is structured within the context of a scenario,

157

making IDEF3 an intuitive knowledge acquisition device for describing a system. Unlike

IDEFØ models which adopt a single perspective of the system and explicitly remove all

temporal logic to promote generality and simplification, IDEF3 serves to structure different

user descriptions of the temporal precedence and causality relationships associated with

enterprise processes. The resulting IDEF3 descriptions provide a structured knowledge base

from which analysis and design models can be constructed.

The development of IDEF3 was motivated by the need to distinguish between descriptions of

what a system is supposed to do and mathematical idealizations, or models, that predict what

a system will do. The IDEF2 Simulation Modeling Method and a host of other simulation

languages (e.g., QGERT, SLAM, etc.) are targeted at satisfying the latter concern. Such

languages represent the time-varying behavior of system resources and provide a framework

for the specification of math model based simulations. IDEF3 addresses the former concern

as a language for the organization and expression of different user views of the system. The

organizational principles and concepts upon which IDEF3 is based come from pioneering

work by 1) Dr. Shir Nijssen and 2) Dr. Jon Barwise [Barwise 83, Devlin 89]. Dr. Nijssen

promoted the notion that an information system is the embodiment of a discourse situation

between agents in an organization. Dr. Barwise initiated an entirely new field of situation

theory and situation semantics that promises to provide the theoretic basis for a new

understanding of how any such discourse situation can come about and what flow of

information can be supported by such a discourse situation. The interested reader is referred

to [Mayer 89a, Menzel 90] for additional details regarding the theoretical background of this

method.

Describing Systems From The IDEF3 Perspective

Two modeling modes exist within IDEF3: process flow description and object state transition

description. Process flow descriptions are intended to capture knowledge of “how things

work” in an organization. The object state transition description summarizes the allowable

transitions an object may undergo throughout a particular process. Both the Process Flow

Description and Object State Transition Description contain units of information that make

up the description. These model entities form the basic units of an IDEF3 description. The

resulting diagrams and text comprise a “description” as opposed to other IDEF methods that

produce a “model.” This distinction is an important one.

158

As discussed previously, a model is really an idealized system of objects, properties, and

relations designed to imitate important aspects of a given real-world system. In a very real

sense, models are themselves systems built around assumptions and simplifications of the

real-world system presumed to hold true over the range of design situations to which the

model will be applied to predict real-world behavior. A model must therefore be complete

and internally consistent to ensure its usefulness.

Descriptions, however, are generally incomplete. For example, one might know something

about a process or event outside of his specific area of expertise, but not know everything. Or

facts could be omitted from a given description as irrelevant, or simply forgotten.

Descriptions are simply recordings of facts and beliefs about the world around us that are

assumed to be true, but incomplete. Model construction must therefore be preceded by the

accumulation of descriptions provided by domain experts.

IDEF3 Basic Concepts

An IDEF3 Process Flow Description captures a network of relations between actions within

the context of a specific scenario. The intent of this description is to show how things work in

a particular organization in the context of a particular problem solving (or recurring)

situation. IDEF3 uses the “scenario” as the basic organizing structure for establishing the

focus and boundary conditions for the process description. This feature of the method is

motivated by the fact that humans tend to describe what they know in terms of an ordered

sequence of activities they have experienced or observed within the context of a given

scenario or situation. This natural tendency towards organizing thoughts and expressions

within the context of a process description has motivated widespread use of the scenario as

an informal framework for proposing alternative “external views” of possible system designs

whose role will be to support the activities of the organization within the established context.

Such development approaches have been referred to as “External Constraint Driven Design”

approaches, and have been repeatedly demonstrated in practice as an effective mechanism

for the design of new systems. Figure A-13 presents an example IDEF3 Process Flow

Diagram.

159

X
Order
from New
Supplier
5

Request for
Material

1 Evaluate
Bids

4

X

Order from
Existing
Supplier
2

Request
for Bids

3

Figure A-13. An Example Process Flow Diagram

An IDEF3 Process Flow Diagram consists of the following structures:

1. Units of Behavior (UOBs)

2. Junctions

3. Links

4. Referents

5. Elaborations

The development of an IDEF3 Process Flow Diagram will consist of the generation and

manipulation of these descriptive entities.

The basic syntactic unit of IDEF3 graphical descriptions used within the context of a given

scenario is the Unit of Behavior (UOB). This is the name given to what may be further

classified as a function, activity, action, act, process, operation, event, scenario, decision, or

procedure depending on its surrounding structure. Each UOB represents a specific view of

the world in terms of a perceived state of affairs or state of change relative to the given

scenario. Each UOB can have associated with it both “descriptions in terms of other UOBs,”

otherwise called decompositions, and a “description in terms of a set of participating objects

and their relations,” called elaborations. Note from Figure A-13 that IDEFØ activities can be

reused (and cross referenced with) IDEF3 UOBs.

160

Decomposition(s)

UOB #

&

Elaboration

Do C

Do A

1

3

Act on

2
B

UOB Label:_______________________
UOB Reference Number: __________
--
Objects___________________________

--
Facts_____________________________

Constraints_______________________

&

Unit
of

Behavior

Figure A-14. UOB with Its Decomposition and Elaboration

UOBs are connected to one another through the use of junctions and links. Junctions

provide the semantic facilities for expressing synchronous and asynchronous behavior among

a network of UOBs. Links are 1) temporal precedence, 2) object flow, and 3) relational.

Relational links are provided to permit constraint capture not accommodated by the default

semantics of the precedence and object flow links.

Junction
Type

Junction
Type

Asynchronous

Synchronous

Junction Boxes

Links

Precedence Link

Relational Link

Object Flow Link

Junction Type
 (Branch or Join)

AND (denoted &)
OR (denoted O)
XOR (denoted X)

Figure A-15. IDEF3 Junction Types, Link Types, and Their Meanings

An Object State Transition Diagram is used to capture an object-centered view of a process.

This view cuts across the process diagrams and summarizes the allowable transitions of an

object in the domain. The entities of an Object State Transition Description are the

following.

161

1. Object States

2. State Transition Arcs

An object state is defined in terms of property values and constraints. The properties that

are kept track of by the information systems must be defined as attributes in an IDEF1

model and cross referenced in the object state Transition Diagram. An Object State can also

have Pre-transition and Post-transition constraints associated with it. These constraints

specify the conditions that must be met: 1) before a transition can begin, or 2) before a

transition can be considered complete. The constraints are specified by a simple list of

property/value pairs or by a constraint statement. The values of the attributes must match

the specified values for the requirements to be met. The object state diagram also allow one

to specify that an object must be processed through a particular process flow network before

the transition from one state to the next is allowed. Figure A-16 shows how an object state

description would appear in an Object State Transition Network (OSTN) diagram. The solid

circle represents the description of the actual state. Each object state has an associated

elaboration. An OSD form is constructed for every object state represented in the OSTN

diagram. In addition to enabling a detailed characterization of a state, the OSD form

facilitates the specification of the requirements for all possible transitions in and out of the

state as well as the requirements for the object to exist in a state. There are three types of

requirements which are necessary to define a state. These are 1) entry conditions (for an

object state) that must exist for the object to transition into a state; 2) exit conditions (for an

object state) that must exist for the object to transition out of a state, and 3) state description

that exist while an object is in a state. These conditions are expressed as attribute-value

pairs and/or constraints.

Referent to a Scenario,
UOB, or another OSTN
diagram.

Object States

Transition Arc

Object
State 1

Object
State 2

Referent

162

Figure A-16. IDEF3 Object State Description

163

Guidelines When Using IDEF3

IDEF3 is designed to provide a medium for capturing the raw description of facts known by

domain experts about how their system works. However, it does provide a rich variety of

mechanisms for organizing and conveying those facts. Overly complex IDEF3 diagrams can

result from combining many scenarios and viewpoints into a single diagram. A heuristic to

constructing IDEF3 diagrams is if any of the displayed UOBs are not visible from all of the

views associated with a scenario, it should probably be in a separate UOB. Also, beware of

the tendency to “fill in the gaps” in the data collected. As a description capture method,

IDEF3 was designed to be tolerant of “partial” and even inconsistent descriptions. In the

analysis of organizations and the information systems that support those organizations, it is

often just those areas of inconsistency or incompleteness that are the root of a particular

problem. If the description hides these areas either by omission or by intention, the problems

may go unnoticed giving rise to the often heard comment, “These models don’t indicate

anything is wrong.” Of course, they don’t, since the modeler has polished over all of the

rough areas which are exactly the areas of interest!

Object-oriented Design with IDEF4

Like IDEF1X, IDEF4 (Object-oriented Design Method) is intended to be used as a design

method for automated systems implementation. IDEF4, however, targets the use of object-

oriented technology, rather than relational technology, for the target implementation. The

emergence of object-oriented philosophy and development practice have demonstrated the

ability to produce code that exhibits desirable life-cycle qualities such as modularity,

maintainability, and reusability. Likewise, the object-oriented programming paradigm has

demonstrated major advancements in the ease with which software code can be created,

enabling more people to successfully produce code. Paradoxically, this ease with which code

can be produced also makes it easier to create software that is of poor design. Poor designs

result in systems that are not modular, are difficult to maintain, and whose implementations

are far more difficult to reuse. The goal of IDEF4 [Edwards 89] is to assist in the correct

application of the Object-oriented Programming (OOP) paradigm to ensure consistent

benefits from that technology. Before describing IDEF4, it is useful to review the

background and philosophy of OOP.

Amid rising costs of serving the information needs of modern manufacturing corporations,

one of the emerging technologies is OOP. Whether measured by cost, headcount, weight, or

164

volume, information is a major product of every world-class manufacturing corporation. The

need for reductions in information production costs has led to intense interest in a technology

that started for user interfaces to CAD systems in the artificial intelligence (AI) labs at the

Massachusetts Institute of Technology, was used by simulation groups for many years, again

became the purview of the AI community as a possible knowledge representation paradigm,

and emerged as a major software productivity paradigm. The impact and benefits of this

paradigm in the engineering and manufacturing domain will depend upon how well it is

actually understood.

One of the current problems plaguing OOX is the nature of the X. In the scramble to acquire

the technology and the mad dash to supply technology which vendors don’t have, there has

been the tendency to redefine object-oriented (reminiscent of the relational, three schema,

rule based, and other buzzwords of the not so distant past). Thus, there are the terms object-

based and object-centered as well as object-oriented sorts. Even Ada and IMS are presented

as being “inherently” object-oriented, which, of course, might cause even the mildest skeptic

to wonder what in the world is going on!

Presumably the intended goals of object-orientation was attaining goals of reusability,

modifiability, reliability, maintainability, reduction of redundant code, and increased human

ability to comprehend and implement more complex systems. An important feature of object-

orientation in a programming language is its higher levels of abstraction. It is worthwhile to

recount how the abstractions contribute to these goals.

Reusability is attained by two principal means: 1) through the encapsulation of the sets of

routines operating on a data type (object class type) as a software module constituting the

definition of that data type; and 2) through the concept of protocols, or declarative

specifications of the purpose and effects of generic routines and their intended uses.

Modifiability and maintainability is enhanced through the same means as reusability. In

addition, inheritance will make it possible to make alterations in a program simply by adding

inheritance links, in cases where such alterations would require extensive rewriting of code

(or design) in non-object-oriented programming languages (or design methods).

Reduction of redundant code is achieved again through the use of inheritance, which

provides the effect of extensive copying of code (as in a macro definition) without any actual

copying. Reducing redundancy also leads to increased reliability; redundant copies of code

can easily lead to inconsistencies in much the same way redundancies in a database can.

165

Object-orientation is a conceptual power tool because it is so closely linked to taxonomic

reasoning, which is fundamental to the human way of thinking about the ontology of problem

domains. Though it must be emphasized that an object-class hierarchy is not the same as a

taxonomy, the two are similar enough for object-orientation to significantly reduce the

division between problem conceptualization and program coding.

The term object in the original computer language vernacular refers to a programming

concept that supports creating and manipulating program objects consisting of some local

state data (which represents relevant local state information) and some programmed

behavior. A key phrase is relevant local state information. If one examines a large body of

actual object-oriented programs, typically the classes of objects represent some information

concept (possibly about a real-world object but generally not). Thus, the term object suffers

from the phenomenon of use of a common term in a specialized manner. That is, the use of

object in object-oriented in general does not refer to the physical object with the same name.

Nor do object-class hierarchies in object-oriented designs normally correspond to the

taxonomy hierarchy associated with the physical objects with the same names. Thus, object-

oriented programming objects normally correspond to data things which may or may not

correspond to or behave like the real thing! However, there are emerging sister paradigms to

the OOP paradigm which attempt to move the conceptual power tool characteristics of the

OOP up into the design, requirements, and even problem analysis stages of system

development.

The following definitions are of some assistance in understanding the levels of object-

orientation technology:

1. Object-based technology provides methodological analysis and
conceptualization support based on analogy to real-world physical or
conceptual objects. Object-based technology runs on the human brain.

2. Object-centered technology provides programming objects with local
state storage, protocol, and method definition. However, the
programmer must usually build his own basic inheritance structures for
the object state and protocol methods.

3. Object-oriented technology provides full language and machine support
(including type checking and multiple inheritance support) for the
object state storage, protocol, and method definition and manipulation.

4. Persistent object-oriented technology extends the half-life of the objects
providing disk resident support for storage of object-oriented structure
definitions and instances.

166

Luckily, hardware and operating systems are advancing to the state where programmers no

longer “need” to be concerned with low level details such as memory allocation. OOP based

systems can raise the level of abstraction to the point where applications programmers can

express the solution to problems in a clear maintainable fashion while letting the systems

programmers worry about the details. This should allow widespread access to the benefits

described above. As more programmers are allowed to adopt the object-oriented languages,

the emerging technology of object-oriented databases (OODB) can be used to provide

persistent objects, and to allow access to objects by other systems over networks. It is

postulated that because of the more visible reference semantics of the OOP paradigm (i.e., it

is more obvious what the data represents and how it is going to be used), system performance

can improve 100 to 500 percent with OODB over relational systems.

Designing Systems From The IDEF4 Perspective

Whereas traditional methodologies, such as structure charts, data flow diagrams, etc., and

data design models (hierarchical, relational, and network) have supported the development

philosophy and practice for conventional systems development, IDEF4 seeks to provide the

necessary facilities to support the object-oriented design decision making process.

Specifically, the two primary design goals of IDEF4 are to 1) provide support for creating

object-oriented designs whose implementations will exhibit desirable life-cycle qualities and

reduce total implementation development time, and 2) make it easy to evaluate object-

oriented code to determine whether or not the delivered product both conforms to the design

and exhibits the desired life-cycle qualities.

Just as Structured Design (e.g., Structure Charts, Data Flow Diagrams) facilitated higher

quality and productivity in the era of functional programming, the IDEF4 method is targeted

at achieving similar advancement for object-oriented programming. Whereas the functional

emphasis of structured design is paralleled by the functional emphasis of programming

languages like Pascal, C, Modula-2, and Ada, the object-oriented emphasis of IDEF4 design is

intended to serve the object-oriented emphasis of languages such as Smalltalk, CLOS, C++,

and Eiffel. Thus, IDEF4 is intended as a mechanism for the Design System activity (See

Figure A-2).

IDEF4 maintains information about an object-oriented design in a manner which will

preserve as many of the concept and notational advances made in previous efforts. Such

consistency with the previous work should assist the practicing software engineer in learning

167

and using effectively the IDEF4 modeling techniques. However, IDEF4 attempts to

encapsulate the best practice experience of designing for object-oriented databases and

programming environments. As such, IDEF4 is focused on the identification, manipulation,

display and analysis of the following.

1. Object definitions including instance variables, class variables,
temporary variables, and data/object types of the above variable values.

2. Object structures including the inheritance hierarchy or lattice
structure and an individual objects visibility relative to other objects.

3. Individual object behavior including instantiation methods and
constraints (pre-, post-, and during conditions), deletion methods and
constraints, and an abstract description of the behavior

4. The protocol of the system of methods including location of the methods
in the object inheritance lattice, type, number and ordering of the
arguments, abstract description of the behavior of each protocol item,
and specialization of the abstract behavior for the individual object
classes.

As a design methodology IDEF4 was structured to expose the components of an object-

oriented system design which are important for a design team to manage during the design

phase of a system development process. The primary elements of an object-oriented design is

the state maintenance (defined in the class structure) and the behavior sharing (described in

the methods and inheritance structure). On the other hand, since IDEF4 is used to design

for implementation, there may be times when a record, structure, list, string, or some other

common data structure is better suited than an object. If a common data structure is used,

then IDEF4 provides a means by which that type can be specified along with the class and

method specifications.

IDEF4 employs a unique organization structure to ensure that design models do not become

cumbersome and difficult to use with increasingly larger projects. This is accomplished by

dividing the IDEF4 model into a variety of submodels, diagrams, and data sheets. In other

words, IDEF4 divides the object-oriented design activity into discrete, manageable chunks,

with each subactivity supported by a graphical method highlighting the design decisions that

must be made along with their impact on other perspectives of the design. No single diagram

shows all the information contained in the IDEF4 design model. This limits complexity and

allows rapid inspection for the desired information. Carefully designed overlap among

diagram types ensures consistency among the different submodels. IDEF4 is a graphically

oriented methodology for the object-oriented design of computer systems. It provides the

168

necessary facilities to support the object-oriented design decision making process.

Conceptually, an IDEF4 design model consists of two submodels: the Class Submodel and

the Method Submodel. These two submodels are linked through the Dispatch Mapping, and

combined capture all the information represented in a design model. However, due to the

size of the Class and Method Submodels, the designer never sees these structures. Instead,

the designer makes use of a collection of smaller diagrams that effectively capture the

information represented in the Class and Method Submodels.

There are five diagram types used within IDEF4 to express the structure of the data object

classes, inheritance relations, methods, and protocol of an object-oriented design. The

following is a list of these diagrams and a brief description of their purpose.

1. Inheritance Diagrams specify the inheritance relations among classes.

2. Type Diagrams specify relations among classes defined through
attributes of one class having instances of another class as values.

3. Protocol Diagrams specify the protocol for method invocation.

4. Method Taxonomy Diagrams classify method types by behavior
similarity and links between class features and method types.

5. Client Diagrams illustrate clients and suppliers of methods.

There are also two specialized Data Sheets that accompany the diagrams.

1. Class Invariant Data Sheets (specify constraints which apply to every
instance of a particular class of objects).

2. Contract Data Sheets (specify contracts that the methods in a method
set must satisfy).

Understanding these diagrams requires a description of the basic concepts of IDEF4. These

concepts are presented in the next section.

IDEF4 Basic Concepts

The concepts that exist within IDEF4 will be familiar to those with object-oriented

experience. The same structures that exist in most object-oriented languages also exist in

IDEF4. The most notable concepts in IDEF4 are:

1. Classes

2. Features

169

3. Inheritance Links

4. Type Links

5. Method Sets

The class is the basic syntactic unit in an IDEF4 design model. The characteristics of a class

are represented by a collection of features. Each feature can be either public or private,

where a public feature is accessible to all classes and a private feature is accessible only by

the class and its subclasses. The power of the object-oriented paradigm comes through the

inheritance of classes. When an inheritance relationship is specified, all features of the

parent class (superclass) are passed on to the child class (subclass). When this occurs, the

inherited features in the subclass maintain the same characteristics as in the superclass

unless they are explicitly redefined. This inheritance provides the ability to build complex

class structures from simple classes. Figure A-17 shows an example class inheritance

diagram and the effect of both single and multiple inheritance on a simple set of graphics

objects.

Object

? Label

Filled-object

? Color

Rectangle

? left
? top
? right
? bottom
$ area

Filled-rectangle

& ? label

Figure A-17. A Class Inheritance Diagram in IDEF4

Figure A-18 shows how a class would appear in an IDEF4 Class Inheritance Diagram. The

class is represented by a square-cornered box with the name of the class listed below the

double line at the bottom of the box. IDEF4 requires that the first letter of the class name be

capitalized. The features of the class are also displayed in the class box with private features

displayed below the export line and public features displayed above the export line. The

170

feature symbols provide additional information about the role that the particular feature

plays.

For each class defined, the designer will attach a Class Invariant Data Sheet. This sheet is

used to provide additional information about the objects in a class. The information

represented in this data sheet must be true for all objects in the class at all times. An

interesting feature of the Class Invariant Data Sheet is that subclasses also inherit the Data

Sheet constraints of their superior.

171

Class Name

Public Features

Private Features

Export Line

Employee

 @ Name
 ? Employee #
 @ Department

 ? Salary

Feature
Symbols

Figure A-18. A Class Box in IDEF4

A feature is the named representation of a particular characteristic of a class. The features

are used to capture the behavior of instances of a particular class. When the designer defines

a feature, the type of feature must be specified. It is important to distinguish between the

type of feature and the type of value of the feature. Feature value type is concerned with the

legal values that a feature may take or return. Feature type is concerned with the role that a

feature will play within the context of a class. A feature can be only one of six types in an

IDEF4 design model:

1. Non-Specific Feature (used as a place-holder early in the design
process)

2. Routine (used to specify a feature that is to be implemented as a
program)

3. Attribute (used to specify a feature that will hold or calculate a value)

4. Function (feature with characteristics of both a routine and an
attribute)

5. Procedure (routine that is executed only for its side effect, doesn’t
return a value)

6. Slot (attribute that “holds” a value)

An Inheritance Link simply defines a parent/child relationship between two classes. When

an inheritance link is specified, all characteristics of the parent class are inherited in the

child class. Also, the inherited features will exhibit the same behavior in the child class as in

the parent class unless the features are redefined using the auxiliary feature symbols.

172

A class can be considered to be a data type, and traditional programming data types can be

considered to be classes. Since the features of classes that are classified as Attributes, or

more specifically Slots or Routines, take on values, it would be useful to indicate the type of

value that the feature will take. These type declarations are made with Type Links. The

Type Link specifies the feature being typed and the class that represents the legal values

that the Attribute may take.

Figure A-19 shows the four different Type Links supported in IDEF4. The first link simply

says that the Attribute f of A returns a value of Type B. The second link is identical to the

first except there is also a dual: while f of A returns a value of Type B, g of B returns a value

of Type A. This dual link reduces the number of links that might appear in a Type Diagram

and thus provides for a simpler diagram. The third link indicates that f of A returns a value

that is constructed from B. This may be a list of instances of B or some other structure

composed of instances of B. Finally, the fourth link provides a semi-dual for the third link

type. While f of A returns a value constructed from instances of B, g of B returns a value of

Type A. Figure A-20 shows a type diagram for the graphical object example.

173

A

A

A

A B

B

B

B

? f

? f

? f

? f ? g

? g

f returns values of type B

f returns values of type B
g returns values of type A

f returns values of some type
constructed from B

f returns values of some type
constructed from B
g returns values of type A

Figure A-19. IDEF4 Link Types

Object

? Label : String

Filled-object

? color : Color

Rectangle

? left : Integer
? top : Integer
? right : Integer
? bottom : Integer$ area : Integer

Filled-rectangle

? label : String

String

Integer

Color

Figure A-20. IDEF4 Type Diagram

IDEF4 does not represent individual methods. The reason for this is that a method could

accept parameters that are instances of more than one class. As a result, the same method

must be defined for both classes. To alleviate this repetition and confusion, the information

of these methods will be maintained in a method set. A feature of a class and that class will

map to a method set. This mapping is referred to as Dispatch Mapping.

A method set is defined by its associated contract. In actuality, a method set is just a name

for a contract data sheet. The contract data sheet maintains the declarative statements that

define the intended effect of the methods in the method set. For a function, the contract

would state the relationship between the function’s argument list and the corresponding

174

return values. For a procedure, the contract would have to specify how the method set

changed the environment when passed an argument list and the current environment.

Guidelines When Using IDEF4

Many users of OOP have adopted the technology under the assumption that it eliminates the

need for requirements analysis and design. This results in the same types of cultural

problems with the use of IDEF4 as were experienced in the early days of traditional

structured design (e.g., experienced OOP programmers don’t see the reason, novice don’t

understand the concepts, and managers were hoping to eliminate a step in the life-cycle

process.) Besides these cultural problems the IDEF4 method provides means for assisting in

the focus on behavioral abstractions. However, new users typically use taxonomic

abstractions in their formulation of the type diagrams. The natural consequence of this is

that the method mapping between the type diagrams and the method set diagrams becomes

very complex. This complexity is IDEF4’s way of indicating to the designer that the class

structure needs revision. Finally, IDEF4 was designed to assist in the design process. The

assumption of IDEF4 was that it would be supporting an underactive design decision making

process. However, it is quite common for the user of IDEF4 to treat the method simply as a

means of documenting a design, often one that has already been coded.

175

Concept / Ontology Descriptions With IDEF5

In the context of information management, ontology is the task of extracting the nature and

structure of a given engineering, manufacturing, business, or logistical domain and storing it

in an usable representational medium. There is a pressing need for methods that can

effectively capture what is known about the real-world and the relationships that exist

between people, places, events, etc. The importance of capturing ontological information is

especially crucial in the context of large systems. A large CIM project involves coordination

of the resources of many different clusters of cooperative organizations. Each cluster makes

its own contributions, and the overall success of the project depends on the degree of

integration between those different clusters throughout the development process. A key to

effective integration is a system ontology that can be accessed and modified across clusters

that captures common features of the overall system relevant to the goals of disparate

clusters. This common framework 1) promotes sharing of information arising from various

sources within the system, 2) eases problems of information base maintenance, and 3)

enhances the reusability of information once collected.

Rapid acquisition of reliable systems is perhaps the strongest motivation for ontology.

Among the most significant problems in information management is the redundant effort

expended capturing or re-creating information in systems that has already been recorded

and developed. Rarely is this redundant effort expended purposefully. Rather, it is often the

result of the inability of the development team to recognize the similarities or equivalencies

between the situations. IDEF5 is targeted at the construction of reference models that can

be used as a basis for both manual and automated identification of these similarities. IDEF5

can also be used as a precursor to enterprise information analysis. It provides a structure for

recording and organizing the raw knowledge about physical and conceptual objects along

with their natural associations. This fact base can then be used as the basis for a variety of

analysis purposes (including determination of the information implications of these

concepts). Finally, ontological analysis has been demonstrated to be an effective first step in

the construction of robust knowledge based systems [Hobbs 87]. The current generation of

CIM implementations will be taking advantage of knowledge based and expert systems

technology. IDEF5 provides a method for the initial knowledge acquisition for these systems.

It also provides a representation of that knowledge that is independent of any particular

implementation shell.

176

Ontologic inquiry has been the subject of extensive work within the information sciences.

IDEF5 developments have drawn from such foundation work as Semantic Nets, Situation

Theory, the NIAM Object Role Model, IDEF1, set theory, first-order predicate logic, modal

logic, etc. In doing so, IDEF5 attempts to fill a methodological gap not targeted by any other

existing methodology. IDEF1 and IDEF1X capture primarily structural information. IDEFØ

and IDEF3 capture various types of process information. Of course, since both structural

information and process information involve objects in a system, there is the capacity for

limited ontology representation within the existing methodologies. But, as noted below,

there are several important kinds of ontological information that are not representable in

those methodologies. Furthermore, those methodologies do not include techniques

specifically designed for eliciting and capturing system ontologies. This suggests that there

is a need for a separate method.

IDEF5 models the concepts and the conceptual relations for a domain. Conceptual modeling

provides an abstract level of representation for describing a problem domain and/or system

which closely reflects the human conceptualization of that domain including representation

of real-world objects, attributes, and functions. An ontology represents the theory of what

exists in a domain.

Describing Systems from the IDEF5 Perspective

An ontology can be thought of as a structure for representing knowledge about the world as

perceived from different perspectives such that those perspectives can be related to one

another. Ontologies are concerned with the identification and classification of concepts,

objects, and associations together with the essential characteristics that identify the those

kinds and associations.

Defining an ontology for a domain involves four major activities [Menzel 91]: 1) providing an

inventory of the kinds of objects that exist within a given domain according to best sources of

information regarding that domain (e.g., a domain expert); 2) for each kind of object,

providing a description of the properties that are common to all and only instances of that

kind; 3) characterizing the particular objects that in fact instantiate the kinds within a

system; and 4) providing an inventory of the associations that exist within a given domain

between (and within) kinds of objects.

For example, consider the semiconductor manufacturing industry. The first two tasks might

identify kinds of objects including wafers and reagents. Reagents may represent several

177

subkinds including liquid reagents and etchants. Each of these kinds would have an

associated set of necessary properties that its members contain.

The third and fourth tasks of ontology become more relevant in contexts where we want to be

able to characterize specific individual objects, to speak specifically of them, their properties,

and their associations. A basic distinction that is incorporated into IDEF5 is the distinction

between essential and accidental properties. An essential property of an object is simply a

property that the object could not possibly have lacked. An accidental property, by contrast,

is a property that an object in fact has, but nonetheless might not have. The following

section discusses how this feature in IDEF5 supports the rapid development of usable

ontologies in the manufacturing domain which must deal with a rich combination of both

natural and human designed objects.

IDEF5 Basic Concepts

The notion of “kind” (as distinct from class or type) is a central concept for IDEF5. It is

important to recognize the distinction between the usual meaning of “kind” and what it

represents in IDEF5. In naturally occurring systems it is often the case that all objects of the

same kind have a distinguishing set of properties that must be maintained to remain a

member of that kind. That is to say that the properties for membership are essential

properties of the member. Thus, the usual notion of a kind is that of a collection of objects,

all of which share a common nature, i.e., a set of properties that belong essentially to all and

only members of the kind. However, in the manufacturing systems it is frequently the case

that objects must have a certain set of properties to become part of a kind but are not

required to keep those properties to remain part of the kind. Consider semiconductor

manufacturing as discussed above. A chemical has certain properties that identify it as an

etchant, and all etchants have those properties. This is the traditional idea of a natural kind.

Contrast this with the kind of object that a manufacturing “rework” item represents. A

rework item might be any wafer that has more than three defects. Therefore, a wafer with

four defects becomes a rework item. However, after one or more of the defects on a wafer is

repaired, it is still a rework item. In fact, it remains a rework item until it is reclassified by

an inspector as an acceptable wafer or is discarded. This is an example of the “kinds” that

typically arise in human designed systems. IDEF5 supports the identification of both kinds

of kinds.

178

Put another way, the reason for the broader notion of a kind is that when an ontology is built

for a certain human designed system, we are not just setting out to discover and classify the

world as it is in itself, but rather to divide up and categorize the objects within the system in

useful and informative ways. An ontology’s categorization scheme is justified only insofar as

it is useful to organizing, managing, and representing knowledge or information in the

system so categorized. If objects of a certain kind K play a useful role in the system, that is

all the justification one needs for admitting them into the system’s ontology, irrespective of

whether or not the defining properties of K are essential to its members (ask yourself, Is it

necessary that your manager know how to manage?).

There is more to characterizing the objects in a system than listing their properties, though.

For in the context of a given system it is equally important to detail the associations that

objects in the system can, and do, bear to one another. Just as with properties, system-

essential associations must be distinguished from system-accidental associations. This is

partially because associations occur that way. It is also because the association may be a

defining property of a kind (e.g., the marriage association and the kind “married”). A system-

essential association relative to two (or more) kinds K1, K2 is an association that must hold

whenever there are instances of K1 and K2. A system-accidental association relative to K1

and K2, by contrast, is one that need not hold between all possible instances of those kinds.

Note that, just as defining properties of kinds neednot be essential to their instances, in the

same way objects that stand in system-essential relations don’t necessarily stand in those

relations essentially; in human designed systems.

IDEF5 provides three diagram types for the visualization of an ontology. These diagrams are

useful in both the construction and validation of the ontology.

Is-a diagrams are used in IDEF5 to show “is-a” relationships between kinds in an IDEF5

model. IDEF5 provides three types of is-a links: 1) generalization/specialization, 2) AKO (a

kind of), and 3) description subsumption. These link types are taken from [Brachman 83].

Generalization/specialization links (also called superset/subset links) represent the

specialization of a kind by another kind. For example, a hex-headed bolt kind is a

specialization of a fastener kind for bolts with hex heads. AKO links are useful for

representing natural kinds. For example, a dog kind is a kind of a mammal kind.

Description subsumption links are useful for representing abstract kinds. The fact that “a

square is a rectangle with four equal sides” is captured in a description subsumption link.

179

fastener

machine
threaded
fastener

square

rectangle

dog

mammal

generalization/
specialization

description
subsumption a kind of

Figure A-21. Is-a Link Types

System kind diagrams are used in IDEF5 to show the kinds and relations that make up a

system. Figure A-22 is an example of a system kind diagram for a “Wafer Cutting System.”

Kinds in the system are represented by circles. System kinds in the system are represented

by double circles. Lines between the circles represent relations, with the relation being from

the tail of the arrow to the head of the arrow. System-essential relations are shown by

double lines, and system-accidental relations are shown by single lines.

wafer
carrier
loader wafer

cutter

12 inches

AGV

may be

loaded by

may
 lo

ad

System: Wafer Cutting System

Figure A-22. System Kind Diagram

The third type of diagram in IDEF5 is the relation type diagram. This diagram shows the

axiomatization of a relation in the model. To axiomatize a relation is to describe its meaning

in terms of other relations in the system. This has traditionally been one of the most difficult

parts of ontology development. The idea behind the relation type diagrams is to maximize

reuse of a core set of relation definitions. Figure A-23 shows a relation type diagram for the

has_sealant relation.

180

has_sealant

uses

ACO

forms

part_of

Figure A-23. Relation Type Diagram

The has_sealant relation occurs between a fastener kind and a sealant kind. This relation

reflects the fact that, in the automotive domain, there are fasteners that require sealants for

some applications. The two relation type specifiers, as shown in the figure, are ACO (abides

by the contract of) and uses. ACO links allow the ontology developer to reuse axioms that

characterize one relation in the description of another. The uses link allows quick

determination of the interrelationships between the relation characterizations.

Besides the diagram types IDEF5 includes a ten step process for the construction and

application of the method. A more complete discussion of the theoretical foundations for the

method can be found in [Menzel 91]. An in-depth description of the actual method can be

found in [KBSI 91].

Things To Consider When Using IDEF5

IDEF5 provides the basic concepts for organization of the process of ontology development in

a domain. Initial experience with this process indicates that it involves an iterative set of

activities of: 1) fact data collection and analysis; 2) discovery of “proto-kinds” (initial guesses

at the kinds); 3) refinement of the proto-kinds and their associations; 4) validation of the

ontology against the original facts. One of the lessons learned is that steps 2 and 3 appear to

be best performed by single individuals working alone on separate chunks of the data, where

as steps 1 and 4 can easily be performed by a team of modelers.

Information System Design Rationale Capture With IDEF6

Advancement in technology, manufacturing methods, and materials has brought about the

emergence of products whose expected usable lifetimes extend over decades and even

centuries. Information systems too, have evolved from stand alone application oriented

181

systems with relatively short lifetimes and limited scope towards large scale, distributed

systems which must service their users over extended periods of time. Not unlike traditional

products, maintenance of information systems whose expected lifetimes may extend over

many career periods required explicit capture and storage of the rationale used in their

design.

When explicitly captured, design rationale typically exists in the form of unstructured

textual comments. In addition to making it difficult, if not impossible to find relevant

information on demand, lack of a structured method for organizing and providing

completeness criteria for design rationale capture make it unlikely that important

information will be documented.

Unlike design methods (like IDEF1X, IDEF2, and IDEF4) which serve to document WHAT a

design is, new methods are needed to capture WHY a design is the way it is, or WHY it is not

manifested in some other form, together with HOW the final design configuration was

reached. For the purpose of this discussion, Design Specification means capture of WHAT a

design is; Design Rationale indicates WHY, WHY NOT, and HOW a design arrived at its

final configuration; and Design History indicates the time-ordered sequence of steps used in

the realization of the design.

IDEF6 is intended to be a method with the representational capability to capture information

system design rationale and associate that rationale with the design models and

documentation for the end system. Thus, IDEF6 attempts to capture the logic underlying the

decisions contributing to, or resulting in, the final design. The explicit capture of design

rationale serves to help avoid repeating past mistakes, provides a direct means for

determining the impact of proposed design changes, forces the explicit statement of goals and

assumptions, and aids in the communication of final system specifications. Explicit capture

of the motivations for why a designer selected or adopted a particular design strategy or

system feature for enterprise level information systems is essential to the maintenance of

that system over its life-cycle.

Design Rationale from the IDEF6 Perspective

The purpose of IDEF6 is to facilitate the acquisition, representation, and manipulation of the

design rationale utilized in the development of enterprise level information systems. The

term ‘rationale’ is interpreted as the “reason, justification, underlying motivation, or excuse”

that moved the designer to select or adopt a particular strategy or system feature. More

182

simply, ‘rationale’ is interpreted as the nature of the answer given to the question “Why is

this design the way it is?” IDEF6 is intended to be a method with the concepts and language

capabilities needed to represent information about the situations, relations, objects, states of

affairs or courses of events that constitute system design rationale and associate that

rationale with design specifications, models and documentation for the system. The scope of

applicability of the technique component of IDEF6 is in the conceptual, preliminary and

detailed design activities of the information system development process. To the extent that

detailed design decisions for software systems are relegated to the coding phase the IDEF6

technique should be usable during the software construction process. Assumptions

associated with the scope of IDEF6 include:

1. IDEF6 is targeted towards facilitation of the capture of design rationale
for enterprise level information systems from the system level design to
the detailed design of the implementation data structures, algorithms,
user interface and processes.

2. It is unreasonable to expect designers to sit down at some point in time
and “model” design rationale. Rationale must be captured at the
source–at the point in time at which decisions are made.

3. People rarely write down design assumptions or rationale. To the
extent possible it must be the case that IDEF6 be incorporated in a
transparent manner into a wide variety of design methods (both formal
and informal).

4. Design rationale is a small part of development decision rationale.
That is, assume that design rationale will reference decisions on “what
are important symptoms” and decisions defining what are the problems
that give rise to those symptoms.

A general characterization of design rationale can be given as: “The beliefs and facts as well

as their organization that the human uses to make design commitments and propagate those

commitments.” IDEF6 characterizes both “types” of design rationale and “mechanisms” for

representation of these types. Types of design rationale identified for IDEF6 capture include:

1. Philosophy of a design including:

A. Process descriptions of intended system operation.

B. Design themes in terms of object or relation types.

2. Design limitations expressed as range restrictions on system
parameters or environmental factors.

3. Factors considered in trade-off decisions.

183

4. Design goals expressed in terms of:

A. Use or lack of use of particular components.

B. Priorities on a problems requirements.

C. Product life-cycle characteristics (e.g., disposable versus
maintainable).

D. Design rules followed in problem or solution space
partitioning, test/model data interpretation, or system
structuring.

5. Precedence or historical proof of viability.

6. Legislative, social, professional society, business, or personal evaluation
factors or constraints.

Possibly due to the commonness of the carry-over strategy or the complexity of design

rationale expression, the most common rationale given for a design is that it was the design

that worked last year. Without making judgment on this situation, a minimum requirement

for a design knowledge rationale capture capability is the ability to record historical

precedence, as well as statements of beliefs and rationalizations for why a current design

situation is identical to the one the previous design serviced. Another important rationale

given for a design is just “it feels better,” “it seems more balanced, symmetric.” There is an

important aesthetic side to software design.

Software design rationale includes expectations about how the design will evolve through the

development process itself. For example, expectations about how the program structure will

probably change–note such expectations do not appear to be as well defined as similar

expectations we have seen in mechanical hardware design.

IDEF6 Basic Concepts

Thus, IDEF6 can be viewed as a structured technique for formulation of the types of design

rationale statements (e.g., philosophy of the design, range restrictions or constraints, factors

considered in trade-off decisions, design goals, etc.) It is also capable of supporting the

formulation of such statements by simple reference to other life-cycle artifacts or objects.

That is, if the reason for a particular design element is to satisfy a particular requirement

constraint, then IDEF6 allows the statement of just this relationship with references to the

requirement constraint (eliminating the need to reproduce the requirement constraint in the

184

IDEF6 language). IDEF6 is still in its formulative stages. At this point of time, it takes the

form of a language for the following.

1. Stating rationale.

2. Associating rationale statements with design elements.

3. Making and classifying “rationale” links between design elements and
other life-cycle objects.

While IDEF6 could be applied in purely manual form, it is best suited for application in an

automated environment that includes a life-cycle artifact repository (e.g., the IBM AD-cycle

or DEC repositories or the Air Force Integrated Development Support Environment – IDSE).

The IDEF6 language is based on an ontology of design rationale. That is, the language

includes (as key words) a set of commonly used terms or phrases that express elements of

rationale. An example of such a term and a phrase is the term “satisfies” and the phrase “is

satisfied by” used in the following structures.

1. Design feature A satisfies the requirement B.

2. Requirement B is satisfied by design feature A.

Other terms/phrases that must be considered in an ontology of design rationale would

include the following.

System

Subsystem

Component

Requires/Is Required By

Constrains/Is Constrained By

Bounds/Is Bounded By

Supports/Is Supported By

Creates/ Is Created By

Translates/Is Translated By

The IDEF6 language structure provides simple structured English-like sentence forms for

employing these “rationale forming” constructs into statements associated with a design of a

particular CIM system.

185

Issues In Design Rationale Capture

Since IDEF6 is still in the formulative stages, this paper describes factors associated with its

application that have been discovered in the development process. For example, it is

unreasonable to expect designers to introduce a separate step in the design process to

document, or model, the assumptions or rationale upon which a given design decision is

based. Therefore, much of the capture of this information must occur through background

processes or interactive questioning initiated by a design support environment rather than

the designer. This has influenced the IDEF6 method development in that it is assumed that

the method will be used simultaneous with a number of different system design methods.

Another important issue that has surfaced is that design rationale is just a part of the

rationale motivating a development decision in the first place. Design rationale must

therefore reference the symptoms motivating the system development decision and the

probable causes giving rise to those symptoms.

Closing Remarks

Referring to Figure A-2, this paper has presented some of the IDEF family of methods that

have been used or are being developed to accomplish the analysis and design of a CIM

system. Figure A-24 shows a list of the current IDEF methods being developed. The reader

may question the number of methods and the lack of one encompassing method capable of

representing all that is needed to know about an existing or proposed system. Intuitively, it

would be nice to have a single method representing all relevant perspectives of the system.

This question can be answered by considering the purpose of models and descriptions from a

slightly different perspective.

Generally speaking, the purpose of models and descriptions is to help make decisions. Each

type of model or description focuses on a relatively narrow set of relationships and system

characteristics comprising a particular viewpoint or perspective of the overall system.

Analysis models, for example, are used to determine existing or anticipated design

requirements. Design models serve to facilitate optimization of desirable design features for

a restricted set of system requirements. Simulation models provide a perspective from which

various measures and statistics associated with system performance can be generated to

examine specific performance characteristics under a restricted set of operational conditions.

Each model and the decisions generated through its construction carries with it a relative

186

weighting towards overall system level decisions. Competing design decisions highlighted

within and between model types eventually emerge, necessitating trade-offs.

IDEFØ

IDEF1

IDEF1X

IDEF3

IDEF4

IDEF5

IDEF6

IDEF8

IDEF9

IDEF10

IDEF11

IDEF12

IDEF13

IDEF14

Function Modeling

Information Modeling

Data Modeling

Process Description Capture

Object Oriented Design

Ontology Description Capture

Design Rationale Capture

User Interface Modeling

Scenario-driven IS Design

Implementation Architecture Modeling

Information Artifact Modeling

Organization Modeling

Three Schema Mapping Design

Network Design

Figure A-24. Suite of IDEF Methods Including

IICE Methods in Development

The goal of this process is an optimal design of the proposed system. Of course, designs or

systems are considered optimal when evaluated against the current set of values, each of

which is somehow manifested in the trade-off decisions made. This means that an optimal

design does not necessarily, and most likely won’t, exhibit all desirable life-cycle or

performance characteristics.

As a result, models and descriptions focus on a limited set of system characteristics and

explicitly ignore those characteristics not directly pertinent to the decisions at hand. Models

and descriptions were never intended to represent every possible state or behavioral

characteristic of a system. If such a goal were achievable, the exercise would itself constitute

building the actual system, thus negating the benefits of modeling (e.g., low cost, rapid

evaluation of anticipated performance, etc.). Having extended beyond the bounds of

modeling into the realm of actual system construction, simulation becomes a statistical

exercise rather than a design decision-making process.

The tendency to seek a single model to represent all relevant system life-cycle and behavioral

characteristics, therefore, would necessitate skipping the design process altogether.

Similarly, the search for a single method, or modeling language, to facilitate

conceptualization, system analysis, and design continues to frustrate those making the

attempt. Recognizably, the plethora of special purpose methods which typically provide few,

187

if any, explicit mechanisms for integration with other methods, is equally frustrating. The

IDEF family of methods is intended to strike a favorable balance between special purpose

methods whose effective application is limited to specific problem types, and “super methods”

which attempt to include all that could ever be needed. This balance is maintained within

the IDEF family of methods by providing explicit mechanisms for integrating the results of

individual method application.

Perhaps the most compelling argument for a family of methods is the ever-increasing need

for methods that help manage complexity by dividing up the systems that must be analyzed,

designed, and developed into discrete, manageable chunks. Methods are designed to embody

knowledge of good practice for a given analysis, design, or fabrication activity. An

appropriately designed method serves to raise the level of performance of the novice to a

level comparable with that of an expert by focusing the modeler’s attention on important

decisions while masking out irrelevant information and unneeded complexity.

For the customer, floor plans and artists renderings are just as important as the final

blueprints. It is therefore incumbent on the methods developer to constantly re-evaluate how

well individual methods serve the needs of both the modeler and the customer. Practitioners

must become sufficiently familiar with the basic theory behind the methods to ensure their

appropriate selection and use.

Just as the original IDEF methods were targeted at managing the complexity associated with

evolution towards large-scale integration in the manufacturing environment, new challenges

will continue to emerge as those visions extend to integration across traditional boundaries

as well. Large-scale integration between engineering, manufacturing, and support activities

will be both exciting and challenging, particularly to the methods engineer. Their task will

be to encapsulate the basic theory and body of experience associated with the analysis,

design, and realization of tomorrow’s integrated environments in easily usable forms

188

189

Bibliography

[ANSI 75] ANSI/X3/SPARC, Study Group on Data Base Management Systems: Interim

Report, 75-02-08, In: ACM SIGMOD Newsletter, FDT, Vol. 7, No. 2, 1975.

[Barwise 83] Barwise, J. and Perry, J., Situations and Attitudes, The MIT Press, Cambridge,

1983.

[Cullinane 90] Cullinane, T., McCollom, N., Duran, P., and Thornhill, D. “The Human

Elements of IDEF,” Unpublished Paper, May, 1990.

[Devlin 91] Devlin, K., Logic and Information, Volume I: Situation Theory, Cambridge

University Press, 1991.

[GE 85] General Electric, Integrated Information Support System (IISS). Volume 5.

Common Data Model Subsystem. Part 4. Information Modeling Manual. IDEF1 Extended.

DTIC-A181952, December, 1985.

[Feldmann 89] Feldmann, C.G., “Levels of Abstraction in IDEFØ Models,” Unpublished

Paper, October 10, 1989.

[ISO 87] International Standards Organization, “Information Processing Systems – Concepts

and Terminology for the Conceptual Schema and the Information Base,” ISO/TR 9007, July

1, 1987.

[IUG 90] IDEF Users Group, “IDEF – Framework, Draft Report,” IDEF-U.S.-0001, Version

1.2, Working Group 1 (Frameworks), Technical and Test Committee, IDEF – Users Group,

May 22, 1990.

[KBSI 91a] Knowledge Based Systems, Inc. (KBSI). The Nature of Ontological Knowledge: A

Manufacturing Systems Perspective. KBSI Technical Report Number KBSI-SBONT-91-TR-

01-1291-01, 1991.

[KBSI 91b] Knowledge Based Systems, Inc. (KBSI). Formal Foundations for an Ontology

Description Method. KBSI Technical Report Number KBSI-SBONT-91-TR-01-1291-02.

[KBSI 91c] Knowledge Based Systems, Inc. (KBSI). Ontology Acquisition Method

Requirements Document. KBSI Technical Report Number KBSI-SBONT-91-TR-01-1291-03.

190

[KBSI 91d] Knowledge Based Systems, Inc. (KBSI). Ontology Capture Tool Requirements

Document. KBSI Technical Report Number KBSI-SBONT-91-TR-01-1291-04.

[KBSI 91e] Knowledge Based Systems, Inc. (KBSI). IDEF5 Method Report. Prepared for

U.S. Air Force Human Resources Laboratory, Contract No. F33615-C-90-0012.

[KBSI 91f] Knowledge Based Systems, Inc. (KBSI). Reliable Object Based Architecture for

Intelligent Controllers. DARPA SBIR 91-050. Contract No. DAAH01-91-C-R235.

[KBSI 91g] Knowledge Based Systems, Inc. (KBSI). “Knowledge Based Information Model

Integration,” Final Technical Report, NSF SBIR . Award No. ISI-9060808, 1991.

[KBSI 92a] Knowledge Based Systems, Inc. (KBSI), 1992. Ontology Capture Tool: Object-

oriented Design Document. KBSI Technical Report Number KBSI-SBONT-91-TR-01-0292-

01.

[KBSI 92b] Knowledge Based Systems, Inc. (KBSI), 1992. Knowledge-Based Automated

Process Planning System with Assumption-Based Truth Maintenance System and Geometric

Reasoning System. DARPA SBIR 91-223. Contract No. DAAH01-92-C-R066.

[KBSI 92c] Knowledge Based Systems, Inc, (KBSI), 1992. IDEF3 Method Report, Prepared

for U.S. AL/HRG, Contract Number: F33615-90-C-0012.

[KBSI 92d] Knowledge Based Systems, Inc, (KBSI), 1992. IDEF4 Method Report, Prepared

for U.S. AL/HRG, Contract Number: F33615-90-C-0012.

[Mayer 87] Mayer, R.J., et al., “Knowledge-Based Integrated Information Systems

Development Methodologies Plan.” Volume 2, DTIC-A195851, December, 1987.

[Mayer 90a] “IDEFØ Function Modeling: A Reconstruction of the Original Air Force Report,”

Mayer, R.J., editor, Knowledge Based Systems, Inc. College Station, TX, 1990a.

[Mayer 90b] “IDEF1 Information Modeling: A Reconstruction of the Original Air Force

Report,” Mayer, R.J., editor, Knowledge Based Systems, Inc. College Station, TX, 1990b.

[Mayer 90c] “IDEF1X Data Modeling: A Reconstruction of the Original Air Force Report,”

Mayer, R.J., editor, Knowledge Based Systems, Inc. College Station, TX, 1990c.

191

[Mayer 91a] Mayer, R.J., Menzel, C.P., and Mayer, P.S.D., “IDEF3: A Methodology for

Process Description,” Final Technical Report, Integrated Information Systems Evolution

Environment Project, United States Air Force AL/HRGA, Wright-Patterson Air Force Base,

OH, August, 1991.

[Mayer 91b] Mayer, R.J., Edwards, D. A., Decker, L. P., and Ackley, K. A., “IDEF4 Technical

Report,” Integrated Information Systems Evolution Environment, United States Air Force

AL/HRGA, Wright-Patterson Air Force Base, OH, July, 1991.

[Mayer 91c] Mayer, R.J., deWitte, P., Griffith, P., Menzel, C.P., “IDEF6 Concept Report,”

Integrated Information Systems Evolution Environment, United States Air Force AL/HRGA,

Wright-Patterson Air Force Base, OH, July, 1991.

[Mayer 91d] Mayer, R.J., deWitte, P., Framework Research Report, Final Technical Report,

Integrated Information Systems Evolution Environment, United States Air Force AL/HRGA,

Wright-Patterson Air Force Base, OH, June, 1991.

[Mayer 91e] Mayer, R.J., Painter, M., “IDEF Family of Methods,” Technical Report,

Knowledge Based Systems, Inc., College Station, TX, January, 1991.

[Mayer 91f] Mayer, R.J., et al., “Integrated Development Support Environment (IDSE)

Concepts and Standards, Final Technical Report,” Integrated Information Systems Evolution

Environment Project, United States Air Force AL/HRGA, Wright-Patterson Air Force Base,

OH, July, 1991.

[Mayer 91g] Mayer, R.J., Decker., L., “ISyCL Technical Report,” KBSL-89-1002, Knowledge

Based Systems Laboratory. AFHRL, Wright-Patterson Air Force Base, OH, 1991.

[Menzel 90] Menzel, C.P., Mayer, R.J., and Edwards, D., “IDEF3 Process Descriptions and

Their Semantics,” Kuziak, A., and Dagli, C., eds. Knowledge Base Systems in Design and

Manufacturing, Chapman Publishing, 1990.

[Menzel 90] Knowledge Based Systems Laboratory. IDEF3 Formalization Report.

Integrated Information Systems Evolution Environment, United States Air Force AL/HRGA,

Wright-Patterson Air Force Base, OH, 1990.

192

[Menzel 91] Menzel, C.P., and Mayer, R.J., “IDEF5 Concept Report,” Final Technical Report,

Integrated Information Systems Evolution Environment, United States Air Force AL/HRGA,

Wright-Patterson Air Force Base, OH, July, 1991.

[Painter 90] Painter, M.P., “Modeling with an IDEF Perspective: Some Practical Insights”

Proceedings, SME Autofact 90, Detroit, MI, 1990.

[Ross 85] Ross, D.T., “SADT Today: A Retrospective On An Idea.” IEEE Computer

Magazine, 1985 Special Issue on Requirements Engineering, June, 1985.

[SEM 83] “Analysis of IDEF Method Application in Industrial Practice,” Interim Technical

Report, Systems Engineering Methodology Program, Hughes Aircraft Corporation.

[Soley 90] Soley, R.M. (ed.), “Object Management Architecture Guide,” Object Management

Group, Inc.

[Softech 81a] Softech Inc., “Integrated Computer-Aided Manufacturing (ICAM) Architecture

Part II, Volume IV, Function Modeling Manual (IDEFØ),” DTIC-B062457, June, 1981a.

[Softech 81b] Softech Inc., “Integrated Computer-Aided Manufacturing (ICAM) Architecture

Part II. Volume V. Information Modeling Manual (IDEF1),” DTIC-B062458, June, 1981b.

[Softech 81c] Softech Inc., “Integrated Computer-Aided Manufacturing (ICAM) Architecture

Part II. Volume VI. Dynamics Modeling Manual (IDEF2),” DTIC-B062458, June, 1981b.

[Williamson 90] Williamson, W.R. “Effective IDEFØ Modeling—Some Tricks of the Trade,”

Unpublished Report, May, 1990.

[Zachman 87] Zachman, J., “A Framework for Information Systems Architecture”, IBM

Systems Journal, Vol. 26 No. 3, September, 1987, pp. 276-292.

193

194

Appendix B

Knowledge Based Systems, Inc.
One KBSI Place

1408 University Drive East

College Station, Texas 77840-2335

(409) 260-5274

Profile

Knowledge Based Systems, Inc. (KBSI) is a Texas-based corporation with offices in College
Station, Texas and Detroit, Michigan. Knowledge Based Systems, Inc. specializes in
innovative software solutions and products in areas including expert systems for
engineering, manufacturing and maintenance, and tools for systems/software engineering.
Because of close university and industry ties, a major thrust within KBSI is the translation
of research results into new products designed to address industry needs. KBSI is the Air
Force contractor responsible for the continued development and maintenance of the public
domain IDEF system/software definition, design, and engineering methods.

Current KBSI software products include the following:

AIØTM An interactive PC-based tool for function analysis using hierarchical
function modeling based on the Air Force IDEFØ Function Modeling
Method.

AI1TM An interactive PC-based tool for information analysis using hierarchical
information modeling based on the Air Force IDEF1 Information
Modeling Method.

AI1XTM An interactive PC-based tool for database design using hierarchical data
modeling based on the Air Force IDEF1X Data Modeling Method.

AI3TM An interactive PC/MAC/UNIX-based tool for process and object state
analysis using the Air Force IDEF3 Process Description Capture Method.

AI4TM An interactive UNIX-based tool for structured design of object oriented
applications using the Air Force IDEF4 Object-oriented Design Method.

MDSETM An integrated system that provides design decision support for
engineering model development. This system also provides the means for
capturing and managing engineering analysis plans and their rationale.

ACCESS A knowledge based design advisor for the planning and design of heating
and air conditioning systems. The primary applications for this system to
date have been within the automotive industry.

COOLSYS A knowledge based advisor for the planning and design of internal
combustion engine radiator and water pump designs.

195

COS A knowledge representation and reasoning system with embedded
constraint management tools specifically developed to address the needs
of flexible persistent management of long lived reusable knowledge
assets.

HPCAD A C++ based toolkit for development of High Productivity CAD systems.
This toolkit supports the development of solid and surface geometry
modelers as well as specialized translators for interfacing with existing
commercial CAD systems.

KBSI also offers the best available IDEF training. Courses include IDEFØ, IDEF1, IDEF1X,
IDEF3, IDEF4, and IDEF5. In addition, we provide IDEF modeling support, model review
services, and IDEF courses customized for a particular organization’s needs.

Knowledge Based Systems, Inc. provides systems engineering and systems integration
technical support to engineering, manufacturing, and government organizations. The
principals at KBSI have extensive experience in IDEFØ, IDEF1, and IDEF1X, and other
classic information system analysis and design methods. We are also experienced in
developing custom planning systems and artificial intelligence systems for engineering and
manufacturing.

The application experience of our team includes the following:

Intelligent Design Support Systems

Integrated IDEF Modeling Support Environments

Intelligent Tutoring Systems

Seamless CASE Environments

Manufacturing Process Planning

Part Feature Extraction and Shape Based Reasoning

Space Station Design Support Environment

Integrated Management Decision Support Systems

Integrated Programming Environments for Embedded Real-Time Applications

Assemblers, Operating Systems, and Graphics Utilities for Specialized
Hardware

The twenty-five professionals at Knowledge Based Systems, Inc. are experienced in using a

wide range of hardware architectures, including Lisp machines, PCs, Macintoshes, and a

variety of UNIX workstations. We bring a strong background in specialized, knowledge-

based software solutions to manufacturing and engineering problems in industry, and

government organizations. KBSI also has a proven track record in aggressively moving

research results into software product development. Knowledge Based Systems, Inc. is

196

currently working on projects funded by NASA, DARPA, the Air Force, Chrysler Motors, and

the National Science Foundation.

