
Практичне заняття № 1. Обчислення визначеного 

інтеграла 

 

1. Формула Ньютона-Лейбніца 
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де  F x  – первісна функції  f x . 
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2. Метод заміни змінної (підстановки) 
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3. Інтегрування частинами у визначеному 

інтегралі 
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Формула (2) – формула інтегрування частинами у 

визначеному інтегралі. 
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