
Офісне програмування

Засоби VBA для роботи з об’єктами

Слайди до лекцій
(2 частина)

Класи і об'єкти VBA

 У звичайному модулі дані та підпрограми (функції і
процедури) функціонально не пов'язані між собою. Це
означає, наприклад, що оголошуючи деяку змінну на
рівні модуля, не можна задати їй різні значення для
двох процедур.

 У модулі класу (при об'єктно-орієнтованому
програмуванні (ООП)) дані та підпрограми логічно
пов'язані між собою.

Класи і об'єкти VBA

 Клас - складений тип даних, в якому описується
структура об'єкта. Об'єкт - основний будівельний
матеріал для написання ООП програм. Об'єкт,
створений на основі класу, можна називати
екземпляром класу.

Клас має наступну структуру:

 Поле - елемент класу для зберігання даних,

 Властивість - елемент класу для зберігання даних з
можливістю їх отримання-запису,

 Метод - аналог процедури або функції,

 Подія - сигнал при зміні стану об'єкта, наприклад,
виконання методу або зміни даних.

Бібліотеки типів -.dll або .ocx (іноді.exe або .tlb) у Windows

Створення класу MyPoint

Область декларацій

Створення та видалення об'єктів

Option Explicit

Option Private Module

Private Sub TestPoint()

Dim p1 As MyPoint

Set p1 = New MyPoint

Debug.Print "x=" & str(p1.X), "y=" & str(p1.Y)

Set p1 = Nothing

End Sub

Set змінна-об’єкт = [New] вираз-об’єкта | Nothing

У вікні Immediate після запуску процедури

x= 0 y= 0

Конструктор та деструктор класу MyPoint

'2D Point

Option Explicit

'Class fields - point's coordinates

Public X As Integer

Public Y As Integer

'Constructor

Private Sub Class_Initialize()

X = 1

Y = 1

End Sub

'Destructor

Private Sub Class_Terminate()

Debug.Print "The Point instance died."

End Sub

У вікні Immediate після запуску процедури
TestPoint()

x= 1 y= 1

The MyPoint instance died.

Доступ до публічного поля об’єкту класу

Створення та видалення об'єктів

Створення класу AdvPoint - інкапсуляція

'2D Point (advanced)

Option Explicit

'Class fields - point's cordinates

Private iX As Integer

Private iY As Integer

'Constructor

Private Sub Class_Initialize()

iX = 1

iY = 1

End Sub

'Destructor

Private Sub Class_Terminate()

Debug.Print "The AdvPoint instance with X="; iX;

", Y="; iY; "died."

End Sub

Створення класу AdvPoint - інкапсуляція
'Properties accessors

Public Property Get X() As Integer

X = iX

End Property

Public Property Let X(ByVal iXValue As Integer)

If (iXValue >= 0) Then

iX = iXValue

Else

iX = 0

Debug.Print "Attempt to assign negative value, X=0"

End If

End Property

Public Property Get Y() As Integer

Y = iY

End Property

...

Створення класу AdvPoint - інкапсуляція

...

Public Property Let Y(ByVal iYValue As Integer)

If (iYValue >= 0) Then

iY = iYValue

Else

iY = 0

Debug.Print "Attempt to assign negative value, Y=0"

End If

End Property

Робота з об’єктом AdvPoint
Private Sub TestAdvPoint()

Dim ap1 As New AdvPoint

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

ap1.X = -1

ap1.X = 4

ap1.Y = 5

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

Debug.Print "Object instances are deleted automatically

when Sub ends:"

End Sub

X= 1 Y= 1

Attempt to assign negative value, X=0

X= 4 Y= 5

Object instances are deleted automatically when Sub ends:

The AdvPoint instance with X= 4 , Y= 5 died.

У вікні Immediate після запуску процедури
TestAdvPoint()

Методи об’єктів

'Returns distance between this point and another point

'with cordinates-parameters

Public Function DistanceCoord(aX As Integer, aY As Integer)

As Double

Dim dx As Integer, dy As Integer

dx = aX - iX

dy = aY - iY

DistanceCoord = Sqr(dx ^ 2 + dy ^ 2)

End Function

Методи об’єктів
Private Sub TestAdvPoint()

Dim ap1 As New AdvPoint

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

ap1.X = -1

ap1.X = 4

ap1.Y = 5

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

Debug.Print "Distance = "; ap1.DistanceCoord(1, 1)

Debug.Print "Object instances are deleted automatically

when Sub ends:"

End Sub

Distance = 5

У вікні Immediate після запуску процедури
TestAdvPoint()

Методи об’єктів

'Returns distance between this point and another

'point-parameters

Public Function DistancePoint(point As AdvPoint) As Double

Dim dx, dy As Integer

dx = point.X - iX

dy = point.Y - iY

DistancePoint = Sqr(dx * dx + dy * dy)

End Function

Методи об’єктів
Private Sub TestAdvPoint()

Dim ap1 As New AdvPoint

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

ap1.X = -1

ap1.X = 4

ap1.Y = 5

Debug.Print "X=" & str(ap1.X), "Y=" & str(ap1.Y)

Debug.Print "Distance = "; ap1.DistanceCoord(1, 1)

Debug.Print "Distance = "; ap1.DistancePoint(ap2)

Debug.Print "Object instances are deleted automatically

when Sub ends:"

End Sub

Distance = 5

У вікні Immediate після запуску процедури
TestAdvPoint()

Події об’єктів

 Подія - це дія, яка розпізнається об'єктом, і у відповідь
на яку можна запрограмувати певні дії.

Кожен клас вже має дві вбудованих події:

 Class_Initialize - відбувається при створенні
екземпляра класу. У цій події зручно задавати значення
полів об’єкту за замовчуванням.

 Class_Terminate - відбувається при видаленні
екземпляра класу.

 Можливе додавання власних подій в клас, які будуть
відбуватися за певних умов, при цьому екземпляр класу
з подіями повинен бути оголошений в об'єктному
модулі (модулі класу, форми, листа, книги, документу
і т.і.) на рівні модуля.

Події об’єктів – додання події у клас AdvPoint

'Returns distance between this point and another

'point-parameters

Public Function DistancePoint(point As AdvPoint) As Double

Dim dx, dy As Integer

dx = point.X - iX

dy = point.Y - iY

DistancePoint = Sqr(dx * dx + dy * dy)

'Fire event

RaiseEvent DistanceCalculated

End Function

Події об’єктів – використання події у класі
MyPoint

1

2

3

Події об’єктів – тестування об’єкту з подією у
звичайному модулі

Private Sub TestEvent()

Dim point As New MyPoint

point.CalcDistance

End Sub

Демонстрація MyPoint, AdvPoint

Перегляд об’єктів - Object Browser (F2)

Найпростіші форми та вставка елементів
управління в документ

Демонстрація вставки кнопки безпосередньо у документ

Створення форм

View -> Code (клавіша <F7>), View -> Object (клавіша <Shift> + <F7>)

Основні властивості та методи форм
Властивості:
 Name - визначає ім'я форми, що використовується програмістом в

програмному коді для цієї форми;
 Caption - визначає заголовок форми;
 Enabled - якщо встановлена в False, користувач працювати з формою не

зможе;
 ShowModal - якщо встановлено в True (за замовчуванням), користувач не

може перейти до інших форм або повернутися в документ, поки не зачине
цю форму.
Більша частина основних властивостей відноситься до зовнішнього
вигляду, розмірів і місцезнаходження вікна форми.

Методи:
 UserForm1.Show - запуск форми з якоїсь процедури (з макросів
AutoExec, AutoNew, AutoOpen, AutoClose, AutoExit,
кнопкою у документі);

 UserForm1.Hide – видалення форми з екрану, але вона залишиться в
пам'яті;

 Unload UserForm1 - видалення форми з пам’яті.

Решта методів відносяться або до обміну даними через буфер обміну
(Copy(), Cut(), Paste()), або до службових можливостей форми
(PrintForm(), Repaint(), Scroll()). Додати у документ кнопки, що

запускають та ховають форму

Основні події форм
Події:
 Initialize - відбувається при підготовці форми до відкриття, зазвичай в

обробнику цієї події розміщується код, пов'язаний з налаштуванням елементів
управління на формі, присвоєння їм значень за замовчуванням і т.і.

 Click (ця подія вибирається за замовчуванням) і DblClick - реакція на
одиночне та подвійне клацання мишею на формі, відповідно. Для форми ця
подія використовується не так часто. Зазвичай обробник клацань
використовується для кнопок (елементів управління CommandButton).

 Error - це подія, що виникає при помилці у формі, вона використовується для
надання користувачеві можливості виправити зроблену ним помилку
(або для інформування про помилку).

 Terminate - подія, що використовується при нормальному завершенні
роботи форми і вивантаження її з пам'яті, зазвичай використовується для
розриву відкритих з'єднань з базами даних, звільнення ресурсів,
протоколювання і т.і.

Інші події форми пов'язані або зі зміною розміру її вікна, або з натисканнями
клавіш, або з активізацією (отриманням фокуса)/деактивізацієюї (втратою
фокусу). Демонстрація властивостей та подій UserForm1

Елементи управління форми – Label (напис)

Private Sub UserForm_Initialize()

Label1.Caption = "Це елемент управління Напис (Label)"

End Sub

Елементи управління форми – TextBox
(текстове поле)

Private Sub TextBox1_AfterUpdate()

MsgBox "У текстове поле введено: " & (TextBox1.Value)

End Sub

Value (або Text, ці дві властивості для текстового поля ідентичні) - текстове

значення, яке міститься в цьому полі.

ControlSource - посилання на джерело текстових даних для поля (комірка Excel,

поле Recordset і т.і.) При зміні користувачем даних в текстовому полі автоматично

зміниться значення у джерелі, визначеному в ControlSource..

ControlTipText - текст підказки, яка з'являється, коли користувач наводить

покажчик миші на елемент управління.

Enabled - якщо переставити в False, то текст в поле стане сірим і з вмістом поля

нічого зробити буде не можна.

Locked - якщо переставити в True, поле буде виглядати як зазвичай, користувач

зможе виділяти і копіювати дані з нього, але не змінювати їх.

MaxLength - максимальна довжина рядка у символах.

MultiLine - визначає чи можна використовувати в текстовому полі кілька рядків.

PasswordChar - дозволяє вказати символ, за яким будуть "ховатися" символи, що

вводяться користувачем.

ScrollBars - визначає, чи будуть показані горизонтальна і вертикальна смуги

прокрутки.

WordWrap - автоматичний перехід на новий рядок при досягненні межі текстового

поля.

Решта властивостей здебільшого відносяться до оформлення текстового поля і його

змісту, а також налаштувань редагування.

Головна подія для текстового поля - це подія Change (тобто зміна вмісту поля).

Зазвичай до цієї події прив'язується перевірка введених користувачем значень або

синхронізація введеного значення з іншими елементами управління (наприклад,

зробити доступною кнопку, змінити текст напису, вивести текст у діалоговому вікні і

т.і.).

Подія Change генерується при кожній зміні тексту, а подія AfterUpdate - коли після

зміни тексту користувач натискає кнопку Enter або залишає текстове поле.

Використовується :

• коли користувачеві необхідно вибрати одне або кілька значень зі списку

• коли список позицій для вибору необхідно формувати динамічно з даних

джерела (бази даних, листа Excel і т.і.).

Елементи управління форми – ComboBox
(комбінований список)

RowSource - джерело рядків для списку (наприклад, адреса діапазону на

робочому листі Excel).

MatchEntry - визначає, чи будуть при введенні користувачем перших символів

значення вибратися відповідні позиції зі списку.

MatchRequired - дозволяється користувачеві вводити значення, якого немає в

списку, за замовчуванням False, тобто дозволено.

Value (або Text) - дозволяє програмним способом встановити обране

значення в списку або повернути обране/введене користувачем значення.

ColumnCount, ColumnWidth, BoundColumn, ColumnHeads -

властивості, які застосовуються при роботі зі списками з декількох стовпців.

Решта властивості (AutoSize, Enabled, Locked, ControlText,

ControlTipText, MaxLength) - застосовуються аналогічно, як для TextBox.

Головна подія для комбінованого списку, як і для TextBox, - Change. Зазвичай в

обробнику цієї події перевіряються обрані користувачем значення.

Елементи управління форми – ComboBox
(комбінований список)

Заповнення елементів списку у обробнику події ініціалізації форми:

Private Sub UserForm_Initialize()

ComboBox1.AddItem "Запорізька область“ 'ListIndex = 0

ComboBox1.AddItem "Дніпропетровська область" 'ListIndex = 1

ComboBox1.AddItem "Київська область" 'ListIndex = 2

ComboBox1.AddItem "Львівська область“ 'ListIndex = 3

End Sub

Обробник події Change:

Private Sub ComboBox1_Change()

MsgBox "У комбінованому списку обрано: " _

& (ComboBox1.Value)

End Sub

Елементи управління форми – ListBox
(список)
Відміни від комбінованого списку:

• в ньому не можна відкрити список значень по спадаючої кнопці. Всі

значення їх видно відразу в поле, аналогічному текстовому, і тому велика

кількість позицій в ньому вмістити важко;

• користувач не може вводити свої значення - тільки вибирати з готових.
• користувач може вибирати не одне значення, як в ComboBox, а декілька

Зазвичай ListBox використовується:

• як проміжний засіб відображення введених/обраних користувачем через ComboBox

значень (або будь-яких інших списків, наприклад, списків вибраних файлів);

• як засіб редагування списку значень, сформованих як вказано вище або отриманих з

бази даних (для цього можна поряд з ListBox розмістити кнопки Видалити або

Змінити).

Заповнення елементів списку у обробнику події ініціалізації форми:

Private Sub UserForm_Initialize()

ListBox1.AddItem "Запорізька область“ 'ListIndex = 0

ListBox1.AddItem "Дніпропетровська область" 'ListIndex = 1

ListBox1.AddItem "Київська область" 'ListIndex = 2

ListBox1.AddItem "Львівська область“ 'ListIndex = 3

End Sub

Елементи управління форми – ListBox
(список)

Основні властивості, методи і події у ListBox - ті ж, що і у ComboBox. Головна
відмінність - те, що є властивість MultiSelect, яка дозволяє користувачеві вибирати
кілька значень. За замовчуванням ця властивість відключена.

Заповнення елементів списку у обробнику події ініціалізації форми:

Private Sub ListBox1_Change()

Dim myMsg As String

Dim i As Long

For i = 0 To ListBox1.ListCount - 1

If ListBox1.Selected(i) Then

myMsg = myMsg & ListBox1.List(i) & " "

End If

Next i

MsgBox myMsg

End Sub

Елементи управління CheckBox (прапорець)
і ToggleButton (кнопка з фіксацією)
Прапорці (CheckBox) і кнопки з фіксацією (ToggleButton) використовуються для вибору
невзаємовиключних варіантів (якщо цих варіантів небагато).

У CheckBox три головних властивості:

• Caption - напис праворуч від прапорця, який пояснює, що вибирається цим

прапорцем;

• TripleState - якщо встановлена в False (за замовчуванням), то прапорець може

приймати тільки два стани: встановлений і невстановлений. Якщо для

TripleState встановити значення True, то з'являється третє значення: Null, коли

встановлена "сіра галка". Таке значення часто використовується, наприклад, при

виборі компонентів програми при установці, коли обрані не всі компоненти, а лише

деякі;

• Value - саме стан прапорця. Може приймати значення True (прапорець

встановлений), False (знятий) і Null - "сірий прапорець" (коли властивість TripleState

встановлена в True).

• Головна подія - Change.

Елементи управління CheckBox (прапорець)
і ToggleButton (кнопка з фіксацією)
Private Sub CheckCheckBoxes()

Dim cBox As Control

Dim msg As String

For Each cBox In Me.Controls

If TypeName(cBox) = "CheckBox" Then

'CheckBox "Red" is in Tripple State

If IsNull(cBox) Then

Msg = "Null "

If cBox.Value = True Then

msg = msg & cBox.Caption & " "

End If

End If

Next

MsgBox msg

End Sub

And 2 And 3

Private Sub CheckBox1_Change()

Call CheckCheckBoxes

End Sub

Елементи управління CheckBox (прапорець)
і ToggleButton (кнопка з фіксацією)
ToggleButton виглядає як кнопка, яка при натисканні стає "натиснутою", а при
повторному натисканні відключається. У неї можуть бути ті ж два (або три, відповідно
до властивістю TripleState) стану, що і у CheckBox. Властивості і методи - ті ж самі, як у
CheckBox. Єдина відмінність - в сприйнятті їх користувачем. Зазвичай ToggleButton
сприймається користувачем як перехід в якийсь режим або початок виконання
тривалої дії.

Private Sub ToggleButton1_Click()

If ToggleButton1.Value = True Then

ToggleButton1.Caption = "State On"

Else

ToggleButton1.Caption = "State Off"

End If

End Sub

CheckToggleButtons()

Елементи управління OptionButton
(перемикач) і Frame (рамка)
OptionButton (іноді цей елемент управління називають RadioButton) потрібен
для вибору одного з варіантів.

Головні властивості OptionButton :
• Caption - напис для перемикача;
• Value - встановлена відмітка чи ні (тільки два стани - True або False).
Головна подія - Change.

Зазвичай декілька елементів OptionButton угруповуються. Найпростіший
варіант угруповання - просто використовувати форму/вкладку на формі.
Якщо перемикачі знаходяться на одній формі (або одній вкладці) вони
автоматично вважаються взаємовиключними.
На практиці для угрупування елементів OptionButton частіше використовують
елемент управління Frame.
Frame - це рамка, яка виділяє прямокутну область на формі і дозволяє
організувати елементи управління. Вміщені всередину рамки елементи
OptionButton вважаються взаємовиключними, інші елементи управління у
рамці не змінюють свою поведінку, у цьому випадку рамка служить для їх
візуального угрупування, наприклад, набір елементів CheckBox

Елементи управління OptionButton
(перемикач) і Frame (рамка)

Private Sub OptionButtonsCheck()

Dim I As Integer

Dim Msg(0 To 1) As String

For I = 0 To Me.Frame1.Controls.Count - 1

Msg(I) = Me.Frame1.Controls(I).Name & " - " _

& Me.Frame1.Controls(I).Value

Next I

MsgBox Msg(0) & ", " & Msg(1)

End Sub

Private Sub OptionButton1_Click()

Call OptionButtonsCheck

End Sub

Private Sub OptionButton2_Click()

Call OptionButtonsCheck

End Sub

Елемент управління CommandButton
(кнопка)

Найважливіші властивості кнопки:
• Cancel - якщо для цієї властивості встановити значення True, то кнопка

буде автоматично натискатись при натисканні на клавішу <Esc> (необхідно
ще додати код в обробник події Click по цій кнопці);

• Caption - напис на кнопці;
• Default - якщо для цієї властивості встановити значення True, то кнопка

буде автоматично натискатись при натисканні на клавішу <Enter>;
• Picture - посилання на рисунок, що виводитиметься на кнопці;
• TakeFocusOnClick - визначає, чи буде передаватися управління цій

кнопці при натисканні на неї, за замовчуванням True.
Головна подія для кнопки - це Click. Як правило, до цієї події і прив'язується
той програмний код, заради якого створювалася кнопка.

CommandButton (кнопка) - найпоширеніший елемент управління в формах. У
більшості форм обов'язково буде принаймні дві кнопки: Отмена (Cancel) і
OK. При натисканні кнопки Отмена форма повинна закритися, після
натискання кнопки OK має виконатися та основна дія, заради якої
створювалася ця форма.

Елемент управління CommandButton
(кнопка)

Private Sub OptionButtonsCheck()

Dim I As Integer

Dim Msg(0 To 1) As String

For I = 0 To Me.Frame1.Controls.Count - 1

Msg(I) = Me.Frame1.Controls(I).Name & " - " _

& Me.Frame1.Controls(I).Value

Next I

MsgBox Msg(0) & ", " & Msg(1)

End Sub

Private Sub OptionButton1_Click()

Call OptionButtonsCheck

End Sub

Private Sub OptionButton2_Click()

Call OptionButtonsCheck

End Sub

Елементи управління ScrollBar (смуга
прокрутки) і SpinButton (лічильник)

Найважливіші властивості смуги прокрутки:
Max і Min - максимальне і мінімальне значення, які можна задати за
допомогою цього елемента керування.
LargeChange і SmallChange - якими кроками буде рухатися повзунок при
переміщенні його користувачем (шляхом клацання на смузі, вільній від
повзунка, або при натисканні на кнопці з напрямом прокрутки).
Orientation - визначає розташування повзунка (вертикальне чи
горизонтальне).
ProportionalThumb - визначає розмір повзунка: чи буде він пропорційний
розміру смуги прокрутки (за замовчуванням) або фіксованого розміру.
Value - головна властивість - визначає положення повзунка і те значення, яке
буде повертати цей елемент управління у програму.

Смуги прокрутки (ScrollBars) найчастіше зустрічаються в текстових полях, коли
введений текст повністю на екрані не вміщується. Однак є можливість
використовувати ScrollBar як окремий елемент управління (його часто називають
"повзунком") - для вибору користувачем якогось значення з діапазону плавно
змінюваних значень - наприклад, рівня гучності, яскравості, і т.і.

Елементи управління ScrollBar (смуга
прокрутки) і SpinButton (лічильник)

Елемент управління SpinButton - це та ж смуга прокрутки, позбавлена самої
смуги і повзунка. SpinButton використовується у тих ситуаціях, коли діапазон
обираних значень зовсім невеликий (наприклад, треба вибрати кількість копій
для друку). Всі властивості SpinButton, збігаються з властивостями ScrollBar.

Private Sub ScrollBar1_Change()

TextBox2.Value = ScrollBar1.Value

SpinButton1.Value = TextBox2.Value

End Sub

Private Sub SpinButton1_Change()

TextBox2.Value = SpinButton1.Value

ScrollBar1.Value = TextBox2.Value

End Sub

Елементи управління TabStrip (набір
вкладок) і MultiPage (набір сторінок)

Властивості і події у цих елементів управління практично ідентичні.
Найважливіші властивості:
• SelectedItem - повертає поточну (активну) вкладку,

(SelectedItem.Caption - повертає назву активної вкладки).
• MultiRow - визначає, чи можна буде використовувати кілька рядів

вкладок.
• TabOrientation - визначає, де будуть розташовані вкладки (за

замовчуванням - зверху).
• Value - номер вкладки, яка відкрита в даний момент (нумерація

починається з 0).
Головна подія - Change виникає при перемиканні між вкладками.

Ці елементи управління дозволяють створювати на формі кілька вкладок, які
зможе перемикати користувач. Принципова відмінність між цими елементами
управління полягає в тому, що на вкладках TabStrip завжди розташовуються
однакові елементи управління, а на вкладках MultiPage - різні.

Елементи управління TabStrip (набір
вкладок) і MultiPage (набір сторінок)
Private Sub UserForm_Initialize()

TabStrip1.Value = 0 'Встановлюється активною перша

вкладка

ComboBox1.Clear

ComboBox1.AddItem "Україна"

ComboBox1.AddItem "Росія"

ComboBox1.AddItem "Молдова"

End Sub

Private Sub TabStrip1_Change()

Select Case TabStrip1.SelectedItem.Caption

Case "Країна"

Label1.Caption = "Індекс"

Label2.Caption = "Країна"

ComboBox1.Clear

ComboBox1.AddItem "Україна"

ComboBox1.AddItem "Росія"

ComboBox1.AddItem "Молдова"

…

Елементи управління TabStrip (набір
вкладок) і MultiPage (набір сторінок)
…

Case "Область"

Label1.Caption = "Місто"

Label2.Caption = "Область"

ComboBox1.Clear

ComboBox1.AddItem "Запорізька область"

ComboBox1.AddItem "Дніпропетровська область"

ComboBox1.AddItem "Київська область"

ComboBox1.AddItem "Львівська область"

Case "Адреса"

Label1.Caption = "Вулиця, дім квартира"

Label2.Caption = "Тип вулиці"

ComboBox1.Clear

ComboBox1.AddItem "вулиця"

ComboBox1.AddItem "проспект"

ComboBox1.AddItem "провулок"

End Select

End Sub

Елементи управління TabStrip (набір
вкладок) і MultiPage (набір сторінок)

У разі використання елементу управління MultiPage всі елементи управління на різних
сторінках - різні

Елемент управління Image (рисунок)

Елемент управління Image дозволяє відобразити на формі рисунок в одному
з поширених форматів, який буде реагувати на клацання мишею (а може
просто використовуватися для прикраси форми) .
Деякі зауваження щодо використання Image:

• в якості альтернативи можна використовувати властивість Picture для
форми (особливо якщо вам потрібен фоновий малюнок для всієї форми);

• ще дві альтернативи - застосування властивості Picture для елементів
управління Label або CommandButton.

Основні властивості:
• Picture - дозволяє вибрати саме зображення для форми;
• PictureAlignment - дозволяє вибрати вирівнювання зображення у

відведеної йому області. За замовчуванням - по центру;
• PictureSizeMode - дозволяє вибрати режим розтягування/зменшення

елемента в разі, якщо він не точно відповідає розміру області;
• PictureTiling - дозволяє розмножувати маленький рисунок так, щоб він

покрив все відведену йому область.
Головна подія елемента управління Image - подія Click.

Елемент управління Image (рисунок)

Для динамічного завантаження рисунків використовують метод LoadPicture,
у якому вказують повний шлях до файлу рисунку, наприклад:

Image1.Picture =

LoadPicture("D:\Documents\images\countries.jpg")

TabStripForm

Додаткові елементи управління

Для розміщення на формі додаткових елементів управління, клацніть
правою кнопкою миші по порожньому простору в Toolbox і виберіть пункт
Additional Controls (або командою головного меню Tools- Additional Controls) -
а далі оберіть потрібний елемент

Додатковий елемент управління - Microsoft
Web Browser

Private Sub WebBrowser1_Enter()

WebBrowser1.Navigate " https://www.google.com"

End Sub

Додаткові елементи управління - Microsoft Date and
Time Picker Control та Microsoft MonthView Control
1. Скачати бібліотеку https://www.ocxme.com/files/mscomct2_ocx.

2. Розпакувати архів та скопіювати файл MSCOMCT2.OCX у каталог

Windows\SysWOW64 (для 64-бітних версій Windows) або у каталог

Windows\System32 (для 32-бітних версій Windows).

3. Виконати у консолі з правами адміністратора з каталогу з бібліотекою

команду:
regsvr32 MSCOMCT2.OCX

Увікні додаткових елементів управління панелі Toolbox з’являться:

- Microsoft Animation Control - анімація виконання будь-якого процесу

(копіювання/переміщення файлу з однієї папки в іншу, пошук та інше)

- Microsoft UpDown Control - покращений лічильник з додатковими

можливостями;

- Microsoft MonthView Control - вдалий календарик "в чистому вигляді";

- Microsoft Date and Time Picker Control - цей же календарик MonthView,

але у вигляді комбінованого списку, крім дати можна працювати і з часом;

- Microsoft Flat ScrollBar Control - смуга прокрутки.

https://www.ocxme.com/files/mscomct2_ocx

Private Sub DTPicker1_Change()

TextBox1.Value = DTPicker1.Value

MonthView1.Value = DTPicker1.Value

End Sub

Private Sub MonthView1_DateClick(ByVal DateClicked As

Date)

TextBox1.Value = MonthView1.Value

DTPicker1.Value = MonthView1.Value

End Sub

Додаткові елементи управління - Microsoft Date and
Time Picker Control та Microsoft MonthView Control

Головна властивість елементів управління Microsoft Date and Time Picker
Control та Microsoft MonthView Control - властивість Value, тобто та дата,
яка обрана користувачем. Решта властивостей призначені для
відображення зовнішнього вигляду календаря.

Типи помилок
- синтаксичні (неправильно написаний оператор, ім'я змінної і т.і.) -

"відловлюються" редактором коду VBA ще в процесі написання
коду або в ході компіляції і запуску програми. При цьому
компілятор VBA видає інформацію, в якому рядку коду виявлена
помилка, і в чому вона полягає.

- логічні - в ході виконання програма веде себе не так, як
планувалося. Як правило, для виявлення та виправлення помилок
такого типу і призначені прийоми налагодження.

- помилки часу виконання (run-time error) - це ситуація, коли в
процесі виконання програма зіткнулася з проблемою, вирішити яку
вона не в змозі (файл з таким ім'ям вже існує, виник конфлікт
записів при вставці в базу даних, зроблено спробу записати
інформацію на переповнений диск і т.і.). Необхідно передбачити
можливість виникнення помилок часу виконання і забезпечити їх
перехоплення і обробку.

Перехід в режим паузи
Перевести програму в режим паузи можливо такими способами:

• запустити програму в режимі покрокового виконання (меню
Debug -> Step Into або клавіша <F8>) - у цьому випадку програма
буде переходити в режим паузи після виконання кожного
оператора;

• встановити у програмі точку зупину (breakpoint). Це можна
зробити, встановивши покажчик в потрібному рядку і в меню
Debug вибравши Toggle Breakpoint (або натиснути на кнопку
на панелі інструментів Debug або натиснувши на клавішу <F9>),
або клацнути мишею по рамці зліва від рядка. Зняття точки
зупину - зробити все те ж саме ще раз. При запуску програма
автоматично зупиниться на першій точці зупину.

Перехід в режим паузи
• На жаль, точки зупину не зберігаються після закриття документа.

Якщо потрібно запам'ятати місце зупинки між сеансами
налагодження, то потрібно просто надрукувати в цей місце рядок
з єдиною командою Stop. Програма в ході виконання
автоматично зупиниться на цьому рядку.

• Якщо програма не хоче завершуватися (наприклад, у вас
виконується нескінченний цикл), можна в ході її виконання
натиснути на кнопку Break ,

або скористатися командою Break з меню Run, або просто натиснути
на клавіші <Ctrl> + <Break>.

Дії в режимі паузи
В режимі паузи можливо:

• Продовжити виконання в покроковому режимі. Для цього можна
скористатися кнопкою панелі інструментів Debug, виконати
команду Debug -> Step Into або натиснути на клавішу <F8>;

• Якщо викликається процедура, яка вже налагоджена, існує можливість
виконати її без зупинок і перейти до наступного оператору. Для цієї
мети використовується кнопка панелі інструментів Debug,
команда Debug -> Step Over або клавіатурна комбінація Shift + <F8>;

• Якщо після заходу у процедуру необхідно виконати її до кінця,
використовуйте кнопку панелі інструментів Debug, команду
Debug -> Step Out (або клавіатурну комбінацію <Ctrl> + <Shift> + <F8>);

• Якщо необхідно виконати код не покроково, а ділянками до курсору,
можна натиснути правою кнопкою миші по потрібній ділянці коду і в
контекстному меню вибрати Run to Cursor (альтернатива - скористатися
тією ж командою в меню Debug або натиснути <Ctrl> + <F8>).;

Дії в режимі паузи
В режимі паузи можливо:

• Якщо необхідно "перестрибнути" через якусь ділянку коду, що
викликає помилку, можна скористатися командою меню Debug -> Set
Next Statement (або натиснути <Ctrl> + <F9>), а потім перетягнути
жовту позначку по лівій межі вниз (або вгору). Альтернативний спосіб
пропуску команд - виділити непотрібний блок і за допомогою панелі
інструментів Edit його закоментувати кнопкою (але тоді потім
доведеться знімати коментарі кнопкою);

• Якщо в процесі перегляду коду Ви пішли досить далеко і необхідно
повернутися до місця зупинки без довгих розшуків, виконайте
команду Show Next Statement;

• Щоб продовжити виконання після зупинки, можна натиснути на
клавішу <F5> або кнопку або скористатися командою Continue
(вона з'явиться замість команди Run) в меню Run;

• Припинити виконання програми можна за допомогою команди Reset
в тому ж меню або кнопкою або клавішами <Alt> + <F4>.

Дії в режимі паузи
В режимі паузи можливо:

• Щоб отримати інформацію про поточне значення змінної, досить
навести на неї курсор миші (якщо включений параметр за
замовчуванням Tools -> Options -> Auto Data Tips)

• Щоб переглянути інформацію про області видимості і тип даних
змінної, необхідно встановити на неї курсор і в меню Edit вибрати
Quick Info (можна натиснути на кнопку панелі інструментів Edit
або клавіатурну комбінацію <Ctrl> + <I>).

Вікно Immediate

У вікні Immediate (викликати його можна через меню View або
<Ctrl> + <G>) можна переглядати або змінювати значення змінних і
властивостей об'єкта.

Вікно Locals
• У цьому вікні виводяться значення всіх змінних і властивостей

об'єктів, доступних на даний момент (змінних і властивостей
процедури/ функції, що виконується, і змінних і властивостей
модуля).

• Щоб змінити значення змінної/властивості, необхідно для
необхідної змінної/властивості у вікні Locals в стовпці Value ввести
необхідне значення. Якщо значення має бути строковим, то при
друку його у лапки (""), а якщо це значення дати - то в символи
решітки (#).

Вікно Watches
• Вікно Watches дозволяє виконувати "спостереження" відповідно до

заданих Вами умов. При роботі з ним спочатку потрібно визначити
контрольоване значення, яке називається Контрольованим виразом
(Watch expression).

Створити контрольований вираз можна так:
• клацнути по змінній/властивості/виразу у вікні редактора коду

правою кнопкою миші і в контекстному меню вибрати команду Add
Watch;

• скористатися командою Add Watch меню Debug;
• скористатися командою Quick Watch меню Debug, в цьому випадку у

вікно Watch буде поміщено вираз, на якому знаходиться курсор. Як
умова для "спрацьовування" в нього буде поміщено поточне
значення змінної/властивості;

• перетягнути вираз з коду у вікно Watches (його можна, як і всі інші,
відкрити командою View головного меню).

Вікно Watches
У вікні Add Watch:
• буде зазначений контрольований вираз та його значення при

покроковому проходженні програми (можна їх змінювати в стовпці
Value в вікні Watches);

• існує можливість автоматично переводити програму в режим паузи,
якщо контрольований вираз повертає значення True (Break When
Value is True);

• існує можливість автоматично переводити програму в режим паузи,
якщо значення контрольованого виразу змінилося (Break When Value
Changes).

Перехоплення і обробка помилок часу
виконання
Перед небезпечним кодом (збереження/відкриття файлу, можливість
поділу на нуль, можливість введення помилкових даних і т.і.)
поміщається команда
On Error GoTo позначка_обробника_помилки,
а далі в коді програми розміщується позначка обробника помилки і
програмний код обробки:

Private Sub UserForm_Click()

Dim a As Integer, b As Integer, c As Integer

On Error GoTo ErrorHandlerDivision

c = a / b

Exit Sub

ErrorHandlerDivision:

MsgBox "Ділення на нуль"

End Sub

Щоб код обробника помилки не виконувався якщо помилки не було,
є сенс поставити перед міткою обробника команду Exit Sub (якщо
це підпроцедура) або Exit Function (якщо це - функція).

UserForm2

Перехоплення і обробка помилок часу
виконання
Після виконання коду обробника помилки необхідно або продовжити
виконання тієї процедури, в якій виникла помилка, або припинити її
виконання і передати управління процедурі, яка її викликала.
Існують три можливості:
1. Ще раз виконати оператор, який викликав помилку (якщо обробник

помилки вирішує виниклі проблеми). Для цього в обробник помилок
необхідно вставити команду Resume;

2. Пропустити оператор, який викликав помилку. Для цього в обробник
помилок необхідно вставити команду Resume Next;

3. Продовжити виконання з певного місця в програмі. Для цього в
обробник помилок необхідно вставити команду Resume позначка
Синтаксис роботи з позначкою - такий же, як в GoTo.

Перехоплення і обробка помилок часу
виконання
Зверніть увагу на кілька моментів, які пов'язані з обробкою помилок:

• Щоб повернутися в нормальний режим роботи після проходження
небезпечної ділянки коду (скасувати обробку помилок) можна
скористатися командою On Error GoTo 0

• команда On Error Resume Next наказує компілятору
ігнорувати всі виникаючі помилки і переходити до виконання
наступного оператора. На практиці дуже часто перед виконанням
небезпечного оператора дається On Error Resume Next, а
потім за допомогою конструкції Select ... Case перевіряється
номер помилки (через властивості об'єкта Err) і в залежності від
цього організовується подальше виконання програми.

Перехоплення і обробка помилок часу
виконання
При виникненні помилки автоматично створюється об’єкт Err. У цього
об'єкта - дві головних властивості і два методи:
Number - ця властивість містить номер помилки, зазвичай він
перевіряється в обробнику помилок, щоб з'ясувати, яка саме помилка
виникла. Якщо номер помилки дорівнює 0, то помилок не було.
Description - текстовий опис помилки, за замовчуванням
відображається користувачеві у діалоговому вікні.
Err.Clear - цей метод очищає всі властивості об'єкта Err.
Err.Raise - цей метод дозволяє згенерувати програмно помилку у
програмі.

Перехоплення і обробка помилок часу
виконання
Синтаксис методу:
Err.Raise number [, source][, description]

[, helpfile] [, helpcontext]

Єдиний обов’язковий параметр number передає номер помилки (для
користувацьких помилок зарезервовані номери 513-65535). При
встановленні параметра number необхідно додати користувацький
номер коду помилки до константи vbObjectError. Наприклад, щоб
згенерувати номер помилки 513, призначте параметру number
значення vbObjectError + 513.
Параметр source - рядок-назва об'єкту або програми, що породили
помилку.
Параметр description - рядок-опис помилки
Параметри helpfile та helpcontext описують шлях до файлу
довідки та розділ в ньому, відповідно.

Перехоплення і обробка помилок часу
виконання
Генерування помилки може виконуватись у довільній частині
процедури/функції після оператора
On Error GoTo позначка_обробника_помилки

викликом оператора, наприклад:

On Error GoTo ErrHandler

Err.Raise vbObjectError + 513, "Calculator", _

"Programmatically raised Error!"

ErrHandler:

MsgBox " Programmatically raised Error with #" _

& Err.Number, vbCritical, "Error"

UserForm2

