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для зменшення об’єму обчислювальної роботи треба обирати, якщо це 

можливо, такий порядок інтегрування, при якому не доводиться розбивати 

область інтегрування на частини. Продемонструємо це на прикладі. 

Приклад 1. Обчислити подвійний інтеграл 

D

ydxdy , якщо область 

інтегрування D обмежена прямою 

4y x   та параболою 2 2y x  (рис. 10.2).  

Розв’язання.  Знаходимо точки 

перетину даних ліній А(2;2) і B(8; – 4). 

Використаємо спочатку формулу (10.2). 

Спроектуємо область D на вісь Oy, вона 

проектується у відрізок [ – 4;2]. Якщо 

через будь-яку точку цього відрізка 

провести пряму, паралельну осі Ox, то 

вона перетине область лише у двох 

точках N1 кривої 2 2y x  та N2 прямої 4y x  . Розв’яжемо рівняння цих 

ліній відносно х: 
2

1 2, 4
2

y
x x y   . 

Подвійний інтеграл зводиться до двократного:  

2

42

4

2

y

D y

I ydxdy ydy dx





    . 

Обчислення повторного інтеграла почнемо з обчислення 

внутрішнього інтеграла, для якого x є змінною, y – сталою величиною. 

Після знаходження первісної, межі внутрішнього інтеграла підставляють 

замість змінної x. У результаті приходимо до визначеного інтеграла за 

змінною y. Таким чином, 

2 2 22 3
4 2

4 4 42

(4 ) (4 )
2 2

y
y

y y
I x ydy y ydy y y dy



  

           

3 4
2 2

42 18
3 8

y y
y     . 

Обчислимо інтеграл, проектуючи область D на вісь Ox. У цьому 

випадку необхідно розбити область інтегрування прямою AC на дві 

частини D1 та D2 внаслідок того, що верхня межа області складається з 

x 

A(2;2) 

O 

C 

N1 
N2 

B(8; – 4) 

Рис. 10.2 

М1 

М2 

М4 

Dxy 

y 

М3 
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двох ділянок, які мають неоднакові рівняння: 2y x  (ОА) та 4y x   

(АB). Інтеграл по області D слід подати як суму інтегралів по областях D1 

та D2: 

1 2D D D

ydxdy ydxdy ydxdy    . 

Проекцією 1D  на вісь Ох є відрізок [0,2], і будь-яка пряма constx , 

 2,0x  перетинає область у точках 1M  кривою 2y x   та 2M  кривою 

2y x . Тому 

1

2 2

0 2

0

x

D x

ydxdy dx ydy



    . 

Аналогічно, проекцією області 2D  на вісь Ох є відрізок [2,8], і будь-

яка пряма constx ,  8,2x  перетинає область у точках 3M  кривої 

2y x   та 4M  кривої 4y x  . Тому 

2

8 4 8 82
4 2

2
2 2 22

3
2 8

2

1
(16 8 2 )

2 2

1
(16 5 ) 18

2 3

x
x

x
D x

y
ydxdy dx ydy dx x x x dx

x
x x








      

    

    
 

18I   . 

Приклад 2. Обчислити інтеграл 

D

I xydxdy  , якщо область 

інтегрування D задається нерівностями: 2 20, , 2x y x y x    . 

Розв’язання. Область D зображена на рис.10.3. Точка перетину 

парабол має координати А(1,1). Проекцією області D на вісь абсцис є 

відрізок [0,1]. Вертикальна пряма при будь-якому сталому x перетинає D 

тільки в двох точках: точці М1 кривої 2
1y x  та М2 кривої 2

2 2y x  , при 

цьому аналітичний вираз функцій 1 2,y y  для всіх [0,1]x  залишається 

незмінним. Тоді 

 

 

 

2

2

2

2

1 2 1 12 2
2 2 4

0 0 0

1
5 / 2 3 / 2 7 / 2 1

0

0

1
2

2 2

4 4 16
2 2 .

3 7 21

x
x

x

x

y
I dx xydy x dx x x x dx

x x dx x x


  

      
 

 
     

 

   


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Обчислимо інтеграл, проектуючи 

область D на вісь Oy, тобто внутрішній 

інтеграл візьмемо по x, а зовнішній – по 

y. Прекцією є відрізок [0,2]. При 

змінюванні [0,2]y  верхня межа 

визначається різними рівняннями 2y x  

і 22y x  , тому інтеграл по області D 

слід подавати як суму інтегралів по 

областях D1 та D2. Оскільки тепер 

внутрішні інтеграли будуть 

обчислюватися за змінною x, то 

рівняння ліній, що обмежують кожну з областей D1 та D2, слід розв’язувати 

відносно цієї змінної. Оскільки 

0x  , то 1 2, 2x y x y   . Тоді 

21 2 1 2
23 / 2 3 / 2

0 0

0 0 1 0 0 1

2 2

3 3

y y
y y

I dy xydx dy xydx y x dy y x dy




           

   
1 2

3 / 47 / 4

0 1

2
2 2 2

3
y dy y y dy

 
      

 
 
   

   
11/ 4 7 / 42 2

1 1

2 4 4 8 2 4 4 8 16
2 2 .

3 11 11 7 3 11 11 7 21
y y

   
           

   
 

Приклад 3. Знайти межі 

двократного інтеграла  ,

D

f x y dxdy , 

якщо область D обмежена гіперболою 
2 2 1y x   та колом 2 2 9x y   

(область D містить початок координат) 

(рис. 10.4).  

Розв’язання. Проекцією області 

на вісь Ox є відрізок [– 3,3]. Функції, за 

допомогою яких описується рівняння границі області на цьому проміжку, 

змінюють вигляд свого аналітичного виразу, тому область необхідно 

розбити на три частини: 1 2 3, ,D D D . Для знаходження меж інтегрування по 

кожній з областей знайдемо абсциси точок перетину кола та гіперболи 

      y 

          21 xy   
29 xy           1 

      D1         D2     D3 

          – 3  – 2   0        2   3       x 
29 xy                  21 xy   

 

Рис. 10.4 

Рис. 10.3 
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2 2 21 9 ; 2 8; 2x x x x      . 

За властивістю адитивності маємо 

       
1 2 3

, , , ,

D D D D

f x y dxdy f x y dxdy f x y dxdy f x y dxdy        

     

2 2 2

2 2 2

2 9 2 1 3 9

3 2 29 1 9

, , ,

x x x

x x x

dx f x y dy dx f x y dy dx f x y dy

   

      

        . 

 

Приклад 4. Змінити порядок інтегрування у подвійному інтегралі 

2

2 2

6
1

4

( , ) .

x

x

dx f x y dy






   

Розв’язання. Відновимо область 

інтегрування: 6 2,x    
2

1 2 .
4

x
y x     

Рівняння ліній, що обмежують область D, 

у =
2

1
4

x
  та 2y x  . Область інтегрування зображена на рис. 10.5. Для 

зміни порядку інтегрування необхідно область D спроектувати на вісь Oy. 

Проекцією є відрізок [– 1,8]; при цьому частина границі ABC складається з 

двох ліній – AB та BC, які визначаються різними рівняннями: (АВ) 

1 2 1x y   та (ВС) 2 2 1x y   . Тому при зміні порядку інтегрування 

область необхідно розбити на дві області – D1 та D2, тоді 

2

2 1 22 2 0 8

6 1 02 1 2 1
1

4

( , ) ( , ) ( , )

y yx

y yx

dx f x y dy dy f x y dx dy f x y dx

 

     


        

 

Приклад 5. Змінити порядок інтегрування у подвійному інтегралі 

2

2 2

0 2

( , ) ( 0).

a ax

ax x

I dx f x y dy a



    

1
4

2


x

y

 x 

y 

2 -2 

8 

 y=2 – x 

Рис. 10.5 
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Рис. 10.6 

Розв’язання. Відновимо область 

інтегрування, що описується 

нерівностями 

20 2 , 2 2x a ax x y ax     . 

Припускаємо, що  

2 2 22y ax x x a a x      ; 

2

2
2

y
y ax x

a
  . 

Область інтегрування зображена на 

рис. 10.6. Дуга кола OA має рівняння  

22 yaax  , а дуга кола АВ: 22 yaax  . 

Проектуючи область інтегрування на вісь Oy, отримуємо три області: D1, 

D2, D3 

      

2 2

2 22 2

2 2 2

0 0/ 2 / 2

, , , .

a a ya a a a a

ay a y aa a y

I dy f x y dx dy f x y dx dy f x ydx

 

 

         

 

10.2. Заміна змінних у подвійному інтегралі. Обчислення 

подвійного інтеграла в полярній системі координат 

 

Нехай необхідно обчислити подвійний інтеграл неперервної функції 

 ,z f x y  по області D. Припустимо, що формули 

   , ; ,x u v y u v   

встановлюють взаємно рівнозначне співвідношення між точками  ,M x y  

області D в площині xOy та точками  ' ,M u v  деякої області 'D  у площині 

uOv. Тоді можна довести вірогідність формули 

   
'

( , ) ( , , , )

D D

f x y dxdy f u v u v J dudv    , 

де J  – абсолютна величина визначника 

 
   

   

, ,
,

, ,

u u

v v

u v u v
J u v

u v u v

  


  
,    (10.3) 

який називається якобіаном. 
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Часто обчислення подвійного інтеграла спрощується заміною 

прямокутних координат x та y полярними координатами   та   за 

формулами: cos , sinx y    . В цьому випадку якобіан дорівнює 

cos sin

sin cos

x y

J
x y

 

 
   
   

 

 

 

 

.  (10.4) 

Враховуючи, що J   , маємо: 

( , ) ( cos , sin )

D D

f x y dxdy f d d



         .              (10.5) 

Якщо область інтегрування обмежена промінями, що утворюють з 

полярною віссю кути 1  та 2  1( < 2 ) і двома кривими 1( )    та 

2 ( )    ( 1 2( ) ( )    ) (рис.10.7), а функції 1( )    та 2 ( )    є 

неперервними, однозначними та зберігають аналітичний вираз, то 

2 2

1 1

( )

( )

( , ) ( cos , sin )

D

f x y dxdy d f d

  

  

          .  (10.6) 

Інтеграл у правій 

частині цієї формули – 

повторний (двократний). У 

внутрішньому інтегралі   слід 

розглядати як величину сталу, 

а   – змінну. Для визначення 

меж внутрішнього інтеграла за 

змінною   (полярного 

радіуса) проведемо з полюса О 

будь-який промінь const , 

 1 2,   . В точці входу 1M  

цього променя в область 1( )   , а в точці 2M  виходу його із області 

2 ( )   . 

Якщо початок координат знаходиться всередині або на границі 

області інтегрування, то при інтегруванні спочатку по  , а потім по   

(формула (10.6)), нижня межа для першого інтеграла (по  ) буде 

дорівнювати нулю. 

  1  

  2  1  
2  

  
М1 

М2 

Рис. 10.7 

0 
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 Якщо область інтегрування є кругом з центром на початку координат 

та радіуса R, то межі інтегрування в полярній системі координат (для 

внутрішнього та зовнішнього інтегралів) будуть постійними, тобто 

2

0 0

( , ) ( cos , sin )

R

D

f x y dxdy d f d



         . 

Приклад 1. Обчислити 

D

xdxdy , якщо область D обмежена колом 

2 2x y ax  . 

Розв’язання. Рівняння кола в 

полярній системі має вигляд 
2 cosa    , або cosa   . Кут   

змінюється від / 2  до / 2 . При 

кожному фіксованому значенні   

змінна   змінюється від 0 до cosa  

(рис.10.8). Тоді  
cos cos/2 /2

2

./2 0 /2 0

/2 /2 /23 3
3 cos 4 4

0

/2 /2 0

/2 /23 3
2

0 0

3

cos cos

2
cos / 3 | cos cos

3 3

(1 2cos2 cos 2 ) (3 / 2 2cos2 cos 4 / 2)
6 6

3 s
sin 2

6 2

a a

D

a

xdxdy d d d d

a a
d d d

a a
d d

a

  

 

  


 

 

          

         

          

  

    

  

 

3
/2

0

in 4
;

8 8

a  
 

 

 

Якщо  , 1f x y  , то подвійний інтеграл чисельно дорівнює площі 

області інтегрування. 

 Приклад 2. Обчислити площу фігури, що обмежена лінією 

 
2

2 2 22x y a xy  . 

 Розв’язання. Рівняння кривої  
2

2 2 22x y a xy   в полярних 

координатах має вигляд 4 2 22 cos sina     , 

Рис. 10.8 

 cosa  

x  a O 
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або 2 2 22 sin cos sin2a a     ,  

або sin2a   . 

Будуємо криву, беручи до уваги, що 

0   або sin2 0 , тобто 

0 2 2 2
2

k k k k


             , 

(k=0,1). Таким чином, область знаходиться 

в 1-й та 3-й чвертях і симетрична відносно 

полюса. При змінюванні   від 0 до 
4


 

поточна точка ( , ) опише лише четверту частину кривої (рис.10.9). 

Площа виражається інтегралом 

sin 24 4
2 2

0 0 0

4 2 sin 2 .

a

S d d a d a

 



           

Приклад 3. Обчислити 
2 2

2 2
1

D

x y
I dxdy

a b
   , де область обмежена 

еліпсом. 

Розв’язання. Введемо так звані узагальнені полярні координати: 

cos , sinx a y b      . Якобіан перетворення за формулою (10.3) 

дорівнює 

cos sin
.

sin cos

a a
I ab

b b

   
  

  
 

Кут  змінюється від 0 до 2. Рівняння еліпса в узагальнених 

полярних координатах 1  , полюс знаходиться всередині області, тому  

змінюється від 0 до 1. 

Оскільки 
2 2

2 2 2 2 2

2 2
1 1 cos sin 1

x y

a b
            ,  

то 

 
3 / 2

22 1
2

0 0

1 11 2
1 2 .

02 3/ 2 3
I ab d d ab ab

  
  

            
 
 

   

0 

Рис. 10.9 

x 

y 
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10.3. Застосування подвійних інтегралів 
 

а) Обчислення об’ємів тіл 

Об’єм циліндричного тіла, обмеженого знизу областю D площини 

xОy, зверху – поверхнею ( , )z f x y , збоку – циліндричною поверхнею з 

твірними, паралельними осі Оz та з напрямною – границею області D, 

дорівнює ( , ) .

D

V f x y dxdy   

Приклад 1. Подвійним інтегруванням знайти об’єм тіла, обмеженого 

циліндрами y x , 2y x  та площинами z=0, 6x z   (рис. 10.10). 

Розв’язання. Тіло обмежене зверху площиною 6x z  , знизу 

площиною z = 0 та двома циліндрами y x  і 2y x , які проектують 

його на площину xOy в область D, обмежену прямою x = 6 та параболами 

y x  і 2y x  (рис. 10.11). При цьому змінна x змінюється від 0 до 6; 

при будь-якому значенні x із вказаного проміжку 2x y x  . Об’єм тіла 

знаходимо за формулою  , .

D

V f x y dxdy    

У даному випадку  , 6z f x y x   . Тоді маємо 

 6

D

V x dxdy  

      
6 2 6 6

2

0 0 0

6 6 6 2

x
x

x

x

x dx dy x y dx x x x dx            

 
66 3 2 5 2

0 0

72 48 6
6 6 24 6 6

3 2 5 2 5 5

x x
x x x dx

 
       

 
 . 

  z 

y 

D 

   x 

Рис. 10.10 

 y 

D 

0    6     x 

Рис. 10.11 

xy   xy 2  

xy   

xy 2  

0 
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Приклад 2. Обчислити об’єм тіла, обмеженого циліндрами lny x , 

2lny x  та площинами 0z   та 

1y z  . 

Розв’язання. Оскільки зверху 

тіло обмежене площиною 1z y  , а 

циліндри lny x  та 2lny x  є 

проектуючими циліндрами на площину 

xOy, побудова просторової області не є 

обов’язковою. 

Проекція тіла D на площину xOy 

зображена на рис. 10.12. Для зведення 

подвійного інтеграла до повторного знайдемо абсциси точок перетину 

кривих lny x  і 2lny x   

2ln lnx x , або  ln 1 ln 0; 1,x x x x e     . 

Проекцією області D на вісь Oy є відрізок [0,1]. Об’єм тіла дорівнює  

 ,

D

V f x y dxdy   1

D

y dxdy       
1 1

0 0

1 1

y

y

e
y y

e

y dy dx y e e dy      = 

1 1 1 1

0 0 0 0

y yy ye dy ye dy e dy ye dy        .    

Тут 

1
1

0
0

1y ye dy e e   ;  

1 1
1

0
0 0

1 1y y yye dy ye e dy e e       ; 

1 12

0 0

,
2 2

2

y ty t y t
e dy te dt

dy tdt

 
  


  ; 

1 12
3

0 0

,
2 12 4

2

y ty t y t
ye dy t e dt e

dy tdt

 
   


   (застосовуємо формулу 

інтегрування частинами тричі). 

Знаходимо 1 1 2 12 4 3 8V e e e        . 

x 

y 

lny x  

2lny x  

0 

Рис. 10.12 
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Приклад 3. Подвійним інтегруванням знайти об’єм тіла, обмеженого 

циліндрами 2 2x y x   та 2 2 2x y x  , параболоїдом 2 2z x y   і 

площинами 0, 0, 0x y x y z     . 

 Розв’язання. Циліндричне тіло обмежене зверху поверхнею 
2 2z x y  . Його об’єм  

   2 2,

D D D

V f x y dxdy zdxdy x y dxdy       

 Побудуємо область D, яка є 

проекцією тіла на площину xOy 

(рис. 10.13).  

Область D обмежена колами  

2 2x y x  , або 

2 2
21 1

2 2
x y

   
     

   
; 

2 2 2x y x  , або  
2 21 1x y    

та прямими ,y x y x   . 

У полярних координатах рівняння кіл мають вигляд cos   та 

2cos   ; рівняння прямих 
4


    та 

4


  . Знаходимо 

2 cos4
3

cos

4

V d d





 


      няінтегруванобласті

симетріїзавдяки
2 cos

44

0 cos

2
4

d







    

 
24 4

4 4

0 0

1 15 1 cos2
16cos cos

2 2 2
d d

 

  
        

 
   

 
4 4

2

0 0

15 15 1 cos4
1 2cos2 cos 2 1 2cos2

8 8 2
d d

 

  
            

 
   

4

0

15 3 sin 4 15 3
sin 2 1

8 2 8 8 8



    
         

   
. 

Приклад 4. Знайти об’єм тіла, яке вирізане з кулі радіуса R  прямим 

круговим циліндром радіуса 2R , твірна якого проходить через центр кулі. 

    y        y = x 

 
          cos2  

   D 

        0.5   1        2     x 
                         cos  

 

        y = – x 

Рис. 10.13 
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0 RR/2

z

y

x

 

Рис. 10.14 

Розв’язання. Розташуємо 

початок координат у центрі кулі, вісь 

Oz направимо вздовж твірної циліндра, 

а вісь Ox – вздовж діаметра основи 

циліндра (рис.10.14) 

Рівняння сфери має вигляд: 
2 2 2 2x y z R   , тоді у першому 

октанті 2 2 2z R x y   . Через 

симетрію об’єм тіла, вирізаного 

циліндром із кулі, буде дорівнювати 

2 2 24 .V R x y dxdy    

Проекція тіла на площину xOy здігається з кругом 2 2x y Rx  . Для 

обчислення отриманого інтеграла зручно перейти до полярних координат. 

Рівняння кола 2 2x y Rx   в полярних координатах має вигляд cosR   . 

Кут   змінюється від 0 до 2 ,   змінюється в межах 0 cosR  . 

Переходячи до полярних координат, отримуємо 

cos2
2 2

0 0

4 .

R

V d R d





        

   cos

/ 232 3 / 2
2 2 3

0

0 0

1 2
sin 1

4 2 3 3

RV R
R d d





             

 
/ 23 3

2

0

R
   1 cos (cos )

3 6

R
d




       

3 3 3 3
/ 2 3

0

R cos 2 4 2
      cos .           .

3 3 6 3 2 3 3 2 3

R R
V R       

            
    

 

 

б) Обчислення маси неоднорідної пластини 

Маса пластини, що займає область D в площині xOy та має густину 

   , ,x y x y   , дорівнює ( , ) .

D

m x y dxdy   
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в) Обчислення моментів інерції пластини. 

Момент інерції пластини відносно початку координат визначається 

формулою 
2 2

0 ( ) ( , ) .

D

I x y x y dxdy    

Моменти інерції пластини відносно осей Ox та Oy дорівнюють 

відповідно  
2 2( , ) , ( , ) .x y

D D

I y x y dxdy I x x y dxdy      

Приклад 5. Знайти момент інерції квадрата зі стороною а, 

поверхнева густина якого пропорційна відстані до однієї зі сторін квадрата 

відносно вершини, що належить даній стороні. 

Розв’язання. Нехай квадрат розташований у площині xOy; одна з 

його вершин лежить на початку координат, а дві інші збігаються з осями 

координат. Відзначимо, що момент інерції не залежить від вибору системи 

координат. Шуканий момент інерції буде дорівнювати моменту інерції 

квадрата відносно початку координат з поверхневою густиною kx, k – 

коефіцієнт пропорційності (беремо поверхневу густину пропорційною 

відстані до осі Oy). Тоді 

   
3

2 2 2 2 2
0

0 0 0 0
3

aa a a

D

y
I x y kxdxdy k xdx x y dy k x x y dx

 
       

 
     

3 3 4 2 3
2 3

0 0 0
3 3 4 6

aa a
a a x x a

k x x a dx k x a x dx k a
     

           
     

   

5 6 55

4 6 12

a a ka
k
 

   
 

. 

г) Знаходження центра ваги пластини 

Координати центра ваги cx  та cy  неоднорідної пластини дорівнюють 

відповідно відношенням статичних моментів відносно осей Оy та Оx до 

маси пластини 

( , )

;
( , )

y D
c

D

x x y dxdy
M

x
M x y dxdy



 





 

( , )

.
( , )

x D
c

D

y x y dxdy
M

y
M x y dxdy



 





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Якщо ж пластина однорідна 

;D
c

xdxdy

x
S




    .D

c

ydxdy

y
S




 

Приклад 6. Знайти центр ваги однорідної пластини, що обмежена 

лініями 2y x  і 1y   (рис. 10.15). 

Розв’язання. Очевидно, що через симетрію фігури 0cx  . 

51 1
12
0

0 0

4 4
2

5 5

y

D y

ydxdy dy ydx y ydy y



       ; 

2

1 1 1
2

1 1

1 3
2 1

0

0

(1 )

1 4
2 (1 ) 2( ) 2(1 ) .

3 3 3

D x

S dxdy dx dy x dx

x
x dx x

 

    

      

   



 

Остаточно: ус=
3

5
. 

 

10.4 Потрійні інтеграли та їх обчислення в декартовій системі 

координат 

 

Нехай в замкненій обмеженій області V задана обмежена функція 

( , , )f x y z . Розіб’ємо область V на n елементарних підобластей V1, V2, …, Vn, 

які не мають спільних внутрішніх точок, об’єми яких позначимо iV . В 

кожній елементарній області Vi виберемо довільним чином точку 

 ,i i i iM     та утворимо суму 

 
1

, ,
n

i i i i

i

f V


      , 

яку будемо називати інтегральною сумою для функції ( , , )f x y z  по області 

V. Найбільший з діаметрів елементарних областей Vi позначимо  , тобто 

idmax , ni ,1 . 

 Визначення. Якщо існує границя інтегральної суми 

 
1

, ,
n

i i i i

i

f V


       за умови, що 0 , яка не залежить від способу 

х 

у 

1 

   0 

Рис. 10.15 
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розбиття області V на елементарні частини та вибору точок 

 ,i i i iM    Vi, то вона називається потрійним інтегралом від функції 

( , , )f x y z  по області V та позначається 

     
0

1

lim , , , , , ,
n

i i i i

i V V

f V f x y z dV f x y z dxdydz




        . 

Функція ( , , )f x y z  в цьому випадку називається інтегровною в 

області V. Обчислення потрійного інтеграла в декартовій системі 

координат зводиться до обчислення подвійного інтеграла за проекцією D 

об’єму V  на яку-небудь координатну площину (в даному випадку xOy) та 

внутрішнього інтеграла за третьою змінною (змінною z). Внутрішній 

інтеграл береться від нижньої межі  1z z x,y  області V  до її верхньої 

межі  2 ,z z x y . Припускається, що область є правильною в напрямку осі 

Oz (рис. 10.16). 

 
Визначення. Якщо будь-яка пряма, яка проходить через внутрішню 

точку області V паралельно осі Oz, перетинає границю області V у двох 

точках, а проекція V на площину хОу є правильною областю D, то область 

V називається правильною. 

Враховуючи правила обчислення подвійного інтеграла, останню 

формулу можна переписати таким чином: 

2 2

1 1

( ) ( , )

( ) ( , )

( , , ) ( , , ) .

y x z x yb

V a y x z x y

f x y z dxdydz dx dy f x y z dz     

D 

0 

z 

y 

a 

b 

x 

y=y2(x) 
y=y1(x) 

z=z2(x,y) 

z=z1(x,y) 

D 

Рис. 10.16 
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1 

x 

y 

z 

Рис. 10.18 

0 

Якщо область V є неправильною, то її розбивають на скінченне число 

правильних областей та обчислюють інтеграл, використовуючи 

властивість адитивності потрійного інтеграла. 

Якщо областю інтегрування є прямокутний паралелепіпед, 

обмежений площинами  ,x a x b a b   ,  ,y c y d c d   , 

 ,z m z n m n   , то межі інтегрування будуть постійними, тобто 

( , , ) ( , , ) .

b d n

V a c m

f x y z dV dx dy f x y z dz     

У випадку, якщо  , , 1f x y z  , то потрійний інтеграл чисельно 

дорівнює об’єму області інтегрування. 

Приклад 1. Обчислити об’єм тіла, обмеженого поверхнями xy  , 

2xy  , 22 yxz  ,  222 yxz  . 

Розв’язання. Тіло обмежене 

площиною y x , циліндром 2y x  

та параболоїдами обертання 

 2 2 2 2, 2z x y z x y    . Нехай D – 

проекція тіла на площину xOy. В 

даному випадку проектуючими поверхнями тіла є площина y x та 

циліндр 2y x (рис. 10.17). Тоді об’єм тіла  

 
   

2 2

2 2

2 2

2 2 2 2 2

21 1 1
2 2 2

0 0 0

x yx x x
x y

x y
v x x y x x

V dv dx dy dz dx z dy dx x y dy







              

2

1 13 3 6
2 4

0 0

4 3

3 3 3 35

x

x

y x x
x y dx x dx

   
       

   
 

. 

Приклад 2. Обчислити масу тіла, 

обмеженого циліндром 
2 2x y  і 

площинами 0z  , 2 2y z  , 

якщо в кожній його точці об’ємна 

густина чисельно дорівнює 

аплікаті цієї точки.  

Розв’язання. Циліндричне 

         y 

    y=x 

         1 

              y=x
2 

      D 

                       1   x 

Рис. 10.17 
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тіло (рис.10.18) обмежено зверху площиною 2 2z y  , яка перетинається 

з площиною 0z   по прямій 1y  . Масу тіла, що займає область V , 

обчислюють за формулою ( , , )

V

m x y z dxdydz  , де ( , , ,)x y z  – об’ємна 

густина. У даній задачі ( , , )x y z z   і 

2 22 21 1 1
2 2

0 0 0 02 2

1
3 5 3 5 71 2
2 2 2 2 2

0

2 (1 ) 4 (1 ) 2

2 4 2 1 64 2
4 2 ( 2 ) 4 2( ) .

3 5 7 0 105

y yy

V y y

m zdxdydz dy dx zdz y dy dx y ydy

y y y dy y y y



 

     

      

      



 

 

 

10.5. Потрійний інтеграл у циліндричній та сферичній системах 

координат 

 

У багатьох задачах обчислення потрійних інтегралів зручніше 

проводити в циліндричній, сферичній або інших системах координат. 

Питання про заміну змінних у потрійному інтегралі вирішується 

таким самим чином, як і у випадку подвійного інтеграла, тобто якщо 

функція  , ,f x y z  неперервна в області V та формули 

     , , ; , , , , ,x u v w y u v w z u v w     

встановлюють взаємно однозначну відповідність між точками  , ,M x y z  

області V та точками  ' , ,M u v w  області 'V , то 

     
'

( , , ) ( , , , , , , , , )

V V

f x y z dxdydz f u v w u v w u v w J dudvdw     , 

де J  – абсолютна величина якобіана: 
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
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
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У циліндричній системі координат положення точки визначається 

полярними координатами ,   та аплікатою z, (рис. 10.19, а) (формули, що 

зв’язують прямокутні та циліндричні координати мають вигляд cosx   ; 

siny   ; z=z), модуль якобіана (10.7) дорівнює J   . 

'

( , , ) ( cos , sin , )ρ

V V

f x y z dxdydz f z d d dz        . 

У системі циліндричних координат координатні поверхні const , 

const , constz  являють відповідно кругові циліндри з віссю Oz, 

полуплощини, що виходять із осі Oz та площини, паралельні площині xOy. 

Тому якщо область інтегрування є круговим циліндром з віссю Oz, то 

потрійний інтеграл по цій області в циліндричній системі координат буде 

мати сталі межі за всіма змінними, тобто 

   
2

0 0 0

, , cos , sin ,

R H

V

f x y z dV d d f z dz



           

Сферичні координати точки M області V позначаються як , ,   , де 

  – відстань від початку координат до точки M, 2 2 2 2x y z    ,   – кут 

між віссю Ox та проекцією радіус-вектора OM на площину xOy, а   – кут 

між додатним напрямком осі Oz та радіус-вектором OM (рис. 10.19, б). 

Вочевидь, що ( 0, 0 , 0 2 )      . Тут координатні поверхні є 

такими:   = const – сфери з центром на початку координат, const  – 

полуплощини, що виходить із осі Oz, const  – кругові конуси з віссю Oz. 

Сферичні координати , ,    пов’язані з прямокутними координатами 

співвідношеннями 

sin cos , sin sin , cosx y z        , 

  z           z 

   М 

               М 

    0          z        

      y         y 

 

  x           x 

            Рис. 10.19, а         Рис. 10.19, б 

  
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а модуль Якобіана (10.7) дорівнює 2 sinJ    . 

Перехід у потрійному інтегралі до сферичних координат 

здійснюється за формулою 

2( , , ) ( sin cos , sin sin , cos )ρ sinθ

V V

f x y z dxdydz f d d d



               

Вочевидь, що якщо область інтегрування є кулею з центром на початку 

координат та радіуса R, то потрійний інтеграл по цій області в сферичній 

системі координат буде мати сталі межі інтегрування за всіма змінними, 

тобто 

   
2

2

0 0 0

, , sin sin cos , sin sin , cos

R

V

f x y z dV d d f d

 

                . 

Нижче на конкретних прикладах проілюстровано правила 

розставлення меж інтегрування в циліндричній та сферичній системах 

координат і показано їх геометричні та фізичні застосування. 

Приклад 1.  Обчислити 

V

xyzdxdydz , де V є частиною області, 

обмеженої сферою 2 2 2 4x y z    та параболоїдом 2 2 3x y z  , 

розташованими у першому октанті 

(рис.10.20). 

 Розв’язання. Перший спосіб. 

Обчислення інтеграла в декартовій 

системі координат. 

Перш ніж проектувати область V на 

площину xOy, знайдемо лінію перетину 

сфери та параболоїда. Для цього 

розв’яжемо сумісно ці два рівняння  

2 2 2
2

2 2

4
3 4 0

3

x y z
z z

x y z

    
     

   

 

2 21 3z x y    . 

Тобто поверхні перетинаються по колу радіуса 3R  , що лежить у 

площині 1z  . Об’єм V проектується на площину xOy як чверть кола 

даного радіуса, що знаходиться у першій чверті. 

z 

x 

3  

y 

3  

2 

x
2
+y

2
=3 

Рис. 10.20 
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Таким чином, будемо мати 
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



 

Другий спосіб. Обчислення інтеграла в циліндричній системі 

координат 

!

3 sin cos

V V

I xyzdxdydz zd d dz        , де V   – область змінення 

циліндричних координат точок області V. 

Після визначення меж інтегрування одержимо 

2

2

4
43 322 3 22

3

0 0 00

3

1 sin (4 )
sin cos 9

2 2

d
I d d zdz

 





      

          
27

32
 . 

Приклад 2. Обчислити об’єм 

частини кулі 2 2 2 2x y z R   , 

розташованої всередині циліндра  

    2 2 2 2 2 0x y R x y z     (рис.10.21). 

Розв’язання. Напрямну циліндра, 

що обмежена лемніскатою, побудуємо, 

переходячи до полярних координат 

cos , sinx y   . Полярне рівняння 

цієї кривої cos2R   . Крива є 

симетричною відносно осей Ox та Oy та 

при зміненні   від 0 до 4  поточна точка  ,   опише четверту частину 

кривої. Шуканий об’єм в циліндричній системі координат обчислюють так: 

x 

z y 

0 

=/ 

Рис. 10.21 
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 
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Приклад 3. Обчислити об’єм тіла, що обмежене поверхнями: 

параболоїдом  
2 21x y z    та площиною 2 2x z   (рис. 10.22). 

 Розв’язання. Знайдемо рівняння проекції лінії перетину поверхні 

 
2 21x y z    з площиною 2 2x z   на 

площину xOy. На лінії перетину аплікати 

збігаються, тоді будемо мати 

 
2 2 2 21 2 2 , 1x y x x y      . 

Оскільки область V проектується на 

коло 2 2: 1xyD x y  , доцільно перейти до 

циліндричних координат. Рівняння границі 

xyD  в циліндричних координатах 

2 2 2 2cos sin 1 1     ; 

рівняння площини  2 1 cosz    ; 

рівняння параболоїда 2 2 22 1 2 cos 1z x x y z         . 

При кожному значенні  , :0 1, 0 2      змінна z змінюється 

від 2
1 2 cos 1z      (в точці M1 – точці входу в просторову область V) 

до  2 2 1 cosz     (в точці M2 – точці виходу з області V). Об’єм тіла в 

циліндричній системі координат  
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Рис. 10.22 
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Приклад 4. Обчислити об’єм тіла, що обмежене поверхнею 

 
2

2 2 2 3 , 0.x y z a x a     

Розв’язання. В цьому випадку доцільно перейти до сферичних 

координат, оскільки в сферичних координатах рівняння даної поверхні 

суттєво спрощується. Дійсно, оскільки  
2 2 2 2 2 2 2 2 2 2 2 2cos sin sin sin cosx y z             , 

то рівняння поверхні, що обмежує тіло, буде мати вигляд 
4 3 cos sina      або 3 3 3cos sin cos sina a      . 

Оскільки з рівняння поверхні випливає, що 0x   (ліва частина 

рівняння невід’ємна ) отримаємо, що 
2 2
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Приклад 5. Обчислити об’єм тіла, що обмежене 

поверхнею  
6 23

2 2 2

2 2
, 0.

a z
x y z a

x y
   


 (рис. 10.23) 

Розв’язання. В сферичних координатах рівняння поверхні має вигляд 

6 2 2
6 6 2

2 2

cos
ctg

sin

a
a

 
   

 
 26 ctga    . 

x 

y 

z 

0 

Рис. 10.23 
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Таким чином, маємо 2 26 6

0 0
lim ctg lim ctga a
 

    ; 0
2

 
  
 

. Через 

симетрію поверхня має вигляд, зображений на рис. 10.23 

Об’єм тіла дорівнює 

33 ctgctg2 3 32 2 2
22

0
0 0 0 0 00

4
sin 2 sin sin ctg

3 3

aa
a

V d d d d d

  
  

                  

3 32

0

4 4
sin 2

3 3

a a


 
    . 

Приклад 6. Обчислити об’єм тіла, що 

обмежене сферою 2 2 2 24 3x y z Rz R      

та конусом   2 2 24z x y   (мається на 

увазі частина кулі, що лежить всередині 

конуса) (рис. 10.24). 

 Розв’язання. Перетворимо рівняння 

сфери:  
22 2 22x y z R R    . 

Центр сфери (0,0,2R), радіус дорівнює 

R. Знайдемо проекції ліній перетину конуса 

та сфери на площину xOy. Для цього запишемо рівняння поверхонь у 

циліндричних координатах та прирівняємо аплікати. 

 

 

2 2 2 2 2

22 2 2 2

2 2

4 4 , 2

2 2

2 2

z x y z z

x y z R z R R

R R

      


       

    

 

2 2 2 2 2 24 8 4 5 8 3 0R R R R R             ; 1 2

3
; .

5
R R     

Спочатку обчислимо об’єм частини кулі, що знаходиться зовні 

конуса: 

 
2 2

22
2 2

1

3 30 2
5 5

2 2 2

R R

R RR R

V d d dz R R d



 

                

R
5

3
 

z 

x 

y 

2R 

R 

Рис. 10.24 
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 
3 2

2 2 2

33

55

2 2 2 2 2 2
3 2

RR

RR

R R d R
  

              
 

  

   
1

2 2 2 2 3 3 3 32

3

5

1 2 27 9
2 2

2 3 125 25

R

R

R d R R R R R
  

             
  

  

 
3

2 2 2

3

3

5

1 8
2

32 75
2

R

R

R
R

 
    . 

Тоді об’єм кулі, що лежить всередині конуса, буде дорівнювати 

3 3 3 3
1

4 4 8 92

3 3 75 75
V R V R R R         . 

Приклад 7. Обчислити об’єм тіла    
3 2

2 2 2 2 2 2 .x y z a x y     

Розв’язання. Перейдемо до сферичних координат, тоді рівняння 

поверхні буде мати вигляд 2 2 4sina   , або 2sina   . Обєм тіла у 

сферичних координатах обчислюють так: 

2
2 sin2 sin 3

2

0 0 0 0 0

sin 2 sin
3

aa

V d d d d

   


             
3 2

7

0

2
2 sin

3

a
d




   

3 3 34 6!! 4 6 4 2 64

3 7!! 3 7 5 3 105

a a a    
    

 
. 

Приклад 8. Знайти момент інерції 

відносно осі Oz однорідного тіла (  , , 1x y z  ), 

що обмежене сферою 2 2 2 2x y z z    та 

конусом 2 2 2x y z   (рис. 10.25).  

Розв’язання. Побудуємо дане тіло. Для 

цього знайдемо лінію перетину поверхонь 

2 2 2
2

2 2 2

2
2 2 1,

x y z z
z z z

x y z

   
   

 

 

тобто ця лінія є колом з радіусом 1R  , що лежить у площині 1z  . 

1    y 
1 

x 

z 

Рис. 10.25 
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Проекцією тіла на площину xOy є коло 2 2 1x y  . 

Момент інерції обчислюється за формулою 
2 2( ) .z

V

I x y dxdydz   

Перейдемо до сферичних координат, тоді межі інтегрування за   та 

  можна визначити за допомогою рівняння 2 2 2x y z  . Припускаючи, що 

0x   (або 0y  ), будемо мати 
4

y z


    , тобто 0
4


   . 

!

42 2 cos
2 2 2 3 4

0 0 0

11
sin sin sin

30
z

V

I r r drd d d d r dr

 


             . 

Приклад 9. Обчислити центр ваги спільної частини куль 
2 2 2 2x y z R    та 2 2 2 2x y z Rz   , якщо густина у будь-якій точці 

даного тіла дорівнює відстані цієї точки від площини xOy. 

 
Рис. 10.26 

Розв’язання. Координати центра 

ваги тіла обчислюють за формулами: 

( , , )

;
( , , )

yz D
c

D

x x y z dxdydz
M

x
M x y z dxdydz



 





 

( , , )

;
( , , )

xz D
c

D

y x y z dxdydz
M

y
M x y z dxdydz



 





 

( , , )

,
( , , )

xy D
c

D

z x y z dxdydz
M

z
M x y z dxdydz



 





 

де М – маса тіла, , ,yz xz xyM M M  – статичні моменти. 

У данному прикладі  , ,x y z z  . Через симетрію тіла (рис. 10.26) 

відносно осі Oz маємо 0c cx y  . Визначимо кут 0 , розв’язуючи сумісно 

рівняння сфер (у сферичних координатах): 

0 0

; 1
cos ; .

2 cos ; 2 3

R

R

  
    

  
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Тоді   2
x

V

M z dV 
4 2cos sin

V

d d d       = 

2 2 2 cos3 2
2 4 2 4

0 0 0 0 0

3

sin cos sin cos

R R

d d d d d d

 

  



                     

5 5 57 59
.

60 160 480

R R R  
    

V

M zdV 
23

3 3

0 0 0

cos sin sin cos

R

V

d d d d d d





                   

2 2 cos 42
3

0 0

3

19
sin cos .

80

R
R

d d d



 




           

Таким чином, 
5 459 19 59

480 80 114
c

R R R
z

 
  . 

 

 

Контрольні приклади до гл. 10 
 

Перш ніж приступити до виконання індивідуального 

розрахункового завдання, читачу рекомендується разом з нами 

розв’язати декілька типових задач, замінюючи знак   необхідними 

числами та виразами. 

Приклад 10.1. Обчислити  2 2 3 312 16

D

x y x y dxdy , якщо область 

D  обмежена такими лініями 21x ; y x ; y x    . 

Розв’язання. Побудуємо область, що обмежена заданою прямою та 

параболами. Для визначення меж інтегрування виберемо внутрішню та 

зовнішню змінні, наприклад, нехай x  – зовнішня, а y  – внутрішня. Тоді 

1x ;  
 

 та x y    . Обчислимо наданий інтеграл 

   2 2 3 3 212 16 4 3 4

D

x y x y dxdy x dx y dy

 



 

       = 


