
Програмування мобільних пристроїв

Передача даних між активностями

Слайди до лекцій (5 змістовий модуль)

Створення додаткової активності
• Android-застосунки, як правило, мають більше однієї

активності: внаслідок даних, що вводяться до основної
активності відкривається та або інша додаткова активність,
застосунки мають пов'язані з активностями екрани
конфігурації, виведення звітів, покрокової роботи тощо.

• При наявності декількох активностей, вони, зазвичай,
взаємодіють, обмінюючись даними.

• Додаймо до застосунку GeoQuiz додаткову активність, що
надасть другий екран, на якому користувачеві буде
запропоновано побачити відповідь на поточне запитання.

• Якщо користувач вирішує підглянути відповідь, а потім
повертається до MainActivity та відповідає на запитання, він
отримує повідомлення, що підглядати недобре :)

Створення додаткової активності - рядкові
ресурси

<resources>

...

<string name="cheat_button">Cheat!</string>

<string name="show_answer_button">Show answer</string>

<string name="warning_text">Are you sure you want to do

this?</string>

<string name="judgment_toast">Cheating is wrong</string>

</resources>

<?xml version="1.0" encoding="utf-8"?>

<resources xmlns:tools="http://schemas.android.com/tools">

...

<string name="cheat_button">Підглянути!</string>

<string name="show_answer_button">Показати

відповідь</string>

<string name="warning_text">Ви впевнені, що хочете зробити

це?</string>

<string name="judgment_toast">Підглядати недобре</string>

</resources>

Створення додаткової активності

Створення додаткової активності

Макет додаткової активності

Макет прийнятно виглядає в обох орієнтаціях, тому макет з альбомною
орієнтацією не створюється

Макет додаткової активності
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:gravity="center"

android:orientation="vertical"

tools:context=".CheatActivity">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:padding="24dp"

android:text="@string/warning_text" />

<TextView

android:id="@+id/answer_text_view"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:padding="24dp"

android:text="Answer" /> ...

Макет додаткової активності
...

<Button

android:id="@+id/show_answer_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/show_answer_button" />

</LinearLayout>

Оголошення додаткової активності у маніфесті
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<application

...

<activity

android:name=".CheatActivity"

android:exported="false" />

<activity

android:name=".MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Атрибут android:exported визначає, чи може
активність запускатися компонентами інших
програм, для додаткової активності
встановлене значення, що не дозволяє
цього роботи з міркувань безпеки, а для
основної активності цей атрибут повинен
бути встановлений у true.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

...

<TextView ... />

<LinearLayout ... <Button ... /> <Button ... /> </LinearLayout>

<Button

android:id="@+id/cheat_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_marginTop="24dp"

android:text="@string/cheat_button" />

<Button

android:id="@+id/next_button"

... />

</LinearLayout>

Рефакторинг макету головної активності

Також ця кнопка додана
до макету альбомної орієнтації

Макет головної активності після рефакторингу

Макет прийнятно виглядає в обох орієнтаціях, тому макет з альбомною
орієнтацією не створюється

Передача інформації через інтенти - запуск
додаткової активності

• Intent перекладається з англійської, як намір – намір запустити
іншу активність.

• Для запуску CheatActivity з MainActivity до останньої необхідно
додати оголошення кнопки відкриття додаткової активності
cheatButton: Button та у методі onCreate(savedInstanceState:
Bundle?) створити кнопку, використовуючи її ресурс-
ідентифікатор та зареєструвати слухача подій кліку по цій
кнопці.

• У слухачі подій необхідно організувати створення об'єкту класу
android.content.Intent який буде пов'язаний з додатковою
активністю, та викликати метод класа android.app.Activity
startActivity(intent: Intent), що приймає створений інтент як
параметр.

package com.example.geoquiz

import ...

private const val TAG = "MainActivity"

class MainActivity : AppCompatActivity() {

...

private lateinit var nextButton: Button

private lateinit var prevButton: Button

private lateinit var questionTextView: TextView

private lateinit var cheatButton: Button

...

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

...

nextButton = findViewById(R.id.next_button)

prevButton = findViewById(R.id.prev_button)

questionTextView = findViewById(R.id.question_text_view)

cheatButton = findViewById(R.id.cheat_button)

...

Передача інформації через інтенти - запуск
додаткової активності

...

prevButton.setOnClickListener {

quizViewModel.moveToPrevious()

updateQuestion()

}

nextButton.setOnClickListener {

quizViewModel.moveToNext()

updateQuestion()

}

cheatButton.setOnClickListener {

val intent = Intent(this, CheatActivity::class.java)

startActivity(intent)

}

updateQuestion()

}

...

}

Передача інформації через інтенти - запуск
додаткової активності

• Коли у коді активності викликається функція
startActivity(Intent), цей виклик передається компоненту
операційної системи, який називається менеджером
активностей (ActivityManager).

• ActivityManager створює екземпляр зазначеної об'єктом Intent
активності та викликає її функцію onCreate(Bundle?).

• Перш ніж запустити активність, ActivityManager шукає у файлі
AndroidManifest.xml оголошення активності, що відповідає
зазначеному як аргумент об'єкту Class. Якщо таке оголошення
буде знайдено, активність запускається, якщо ні – генерується
ActivityNotFoundException.

Передача інформації через інтенти - запуск
додаткової активності

Передача інформації через інтенти - запуск
додаткової активності

• Використання ActivityManager, що знаходиться зовні
застосунку, дозволяє запускати з одного застосунку
активність іншого.

Передача інформації через інтенти
• Якщо об'єкт Intent створюється конструктором, що приймає

параметрами об'єкти Context і Class (як у описаному вище
прикладі), то говорять, що створюється явний (explicit) інтент.
Явні інтенти використовуються для запуску активності у
поточному застосунку.

• Якщо ж активність застосунку має запустити активність іншого
застосунку (це можливо, оскільки запуск виконує компонент
операційної системи ActivityManager), створюється неявний
(implicit) інтент, приклади їх використання буде розглянутий
далі.

• На цьому етапі можливо запустити застосунок та перевірити
відкриття додаткової активності (завершити її роботу поки
можна натисканням системної кнопки Назад).

Передача інформації через інтенти - передача
даних додатковій активності

• У GeoQuiz від головної активності до додаткової
передаватиметься відповідь на поточне запитання.

• Для передачі даних вони оформлюються як доповнення (extra)
інтента, пересилаються разом з ним до цільової активності, де
витягуються та використовуються.

• Доповнення інтента є парою "ключ – значення".

• Для включення доповнень до інтенту використовується
функція putExtra(name: String, value: Boolean). У першому
аргументі передається ключ, а у другому значення того чи
іншого типу.

• Активність може запускатися з кількох різних місць, тому ключі
повинні визначатися в активності, яка читає і використовує їх.

• Функція повертає об'єкт Intent, так що за потреби можна
використовувати ланцюжки зі зчеплених викликів, які додають
дані-доповнення до інтенту.

Передача інформації через інтенти - передача
даних додатковій активності

Передача інформації через інтенти - передача
даних додатковій активності

• Додаймо до CheatActivity функцію-компаньон, яка буде
створювати інтент, додавати до нього доповнення і повертати
його:

private const val EXTRA_ANSWER_IS_TRUE =

"com.example.geoquiz.answer_is_true"

class CheatActivity : AppCompatActivity() {

companion object {

fun newIntent(packageContext: Context, answerIsTrue: Boolean): Intent {

return Intent(packageContext, CheatActivity::class.java).apply {

putExtra(EXTRA_ANSWER_IS_TRUE, answerIsTrue)

}

}

}

...

}

Уточнення ключа доповнення іменем пакета

запобігає конфліктам імен із ключами

доповнень інших застосунків

Передача інформації через інтенти - передача
даних додатковій активності

• Використаємо функцію-компаньон newIntent(...) у обробнику
події натискання на кнопку Підглянути в MainActivity:

cheatButton.setOnClickListener {

val answerIsTrue = quizViewModel.currentQuestionAnswer

val intent = CheatActivity.newIntent(this@MainActivity, answerIsTrue)

startActivity(intent)

}

• Для читання значення із доповнення використовується функція
Intent.getBooleanExtra(String, Boolean). Перший аргумент
містить ключ доповнення, а другий – відповідь за
замовчуванням, якщо ключ не знайдено.
class CheatActivity : AppCompatActivity() {

...

private var answerIsTrue = false

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContentView(R.layout.activity_cheat)

answerIsTrue = intent.getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false)

...

Передача інформації через інтенти - передача
даних додатковій активності

...

answerTextView = findViewById(R.id.answer_text_view)

showAnswerButton = findViewById(R.id.show_answer_button)

showAnswerButton.setOnClickListener {

val answerText = when {

answerIsTrue -> R.string.true_button

else -> R.string.false_button

}

answerTextView.setText(answerText)

}

}

...

} код, який забезпечує використання

прочитаного значення відповіді у віджеті
answerTextView

• Тепер після натискання на кнопку Показати відповідь у
додатковій активності, буде відображено правильну
відповідь.

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

• Щоб отримати результат від запущеної активності, можна
викликати функцію Activity.startActivityForResult(Intent, Int).
Перший параметр містить інтент, що був визначений у
основній активності, з якої запущена додаткова актвність. У
другому параметрі передається код запиту – визначене
користувачем ціле число, яке передається додатковій
активністі, а потім знову приймається основною. Воно
використовується тоді, коли основна активність запускає
відразу декілька додаткових активностей, і їй необхідно
визначити, яка з них повертає дані.

• У класі MainActivity змінимо слухача кнопки Підглянути! :

cheatButton.setOnClickListener {

val answerIsTrue = quizViewModel.currentQuestionAnswer

val intent = CheatActivity.newIntent(this@MainActivity, answerIsTrue)

// startActivity(intent)

startActivityForResult(intent, REQUEST_CODE_CHEAT)

}

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

• Функції, які можуть викликатися у додатковій активності для
повернення даних-результату основній активності:

setResult(resultCode: Int)

setResult(resultCode: Int, data: Intent)

• Як правило, resultCode містить одну з констант: Activity.
RESULT_OK (=-1) або Activity.RESULT_CANCELED (=0).

• Призначення коду результату є корисним у тому випадку, коли
основна активність повинна виконати різні дії залежно від
того, як завершилася додаткова активність.

• Виклик setResult(...) є необов'язковим для додаткової
активності, операційна система автоматично відправить одну з
вище зазначених констанат як resultCode, якщо додаткова
активність була запущена функцією startActivityForResult(...).
Якщо функція setResult(...) не викликалася, при натисканні
користувачем системної кнопки Назад основна активність
отримає код Activity.RESULT_CANCELED (=0).

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

package com.example.geoquiz

import ...

private const val EXTRA_ANSWER_SHOWN =

"com.example.geoquiz.answer_shown"

private const val EXTRA_ANSWER_IS_TRUE =

"com.example.geoquiz.answer_is_true"

class CheatActivity : AppCompatActivity() {

...

private var answerIsTrue = false

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContentView(R.layout.activity_cheat)

answerIsTrue = intent.getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false)

answerTextView = findViewById(R.id.answer_text_view)

showAnswerButton = findViewById(R.id.show_answer_button)

...

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

...

showAnswerButton.setOnClickListener {

val answerText = when {

answerIsTrue -> R.string.true_button

else -> R.string.false_button

}

answerTextView.setText(answerText)

setAnswerShownResult(true)

}

}

private fun setAnswerShownResult(isAnswerShown: Boolean) {

val data = Intent().apply {

putExtra(EXTRA_ANSWER_SHOWN, isAnswerShown)

}

setResult(Activity.RESULT_OK, data)

}

}

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

• Отриманий результат будемо зберігати у QuizViewModel, тому
додаймо до цього класу віповідне поле isCheater (зробимо
його пакетно-приватним для спрощення доступу):

package com.example.geoquiz

import ...

private const val TAG = "QuizViewModel"

private const val KEY_INDEX = "index"

class QuizViewModel(state: SavedStateHandle) : ViewModel() {

...

private val savedStateHandle = state

private var currentIndex = getCurrentIndex()

var isCheater = false

...

}

Передача даних додатковій активності з
поверненням результату (startActivityForResult)

• Для аналізу результату з CheatActivity, необхідно у MainActivity
перевизначити метод onActivityResult(requestCode: Int,
resultCode: Int, data: Intent):

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

super.onActivityResult(requestCode, resultCode, data)

if (resultCode != Activity.RESULT_OK)

return

if (requestCode == REQUEST_CODE_CHEAT) {

quizViewModel.isCheater = data?.getBooleanExtra(EXTRA_ANSWER_SHOWN,

false) ?: false

showToast(R.string.judgment_toast)

}

}

• Тепер після натискання кнопки Підглянути! на головному
екрані, а потім натискання кнопки Показати відповідь на
додатковому екрані і натискання після цього кнопки Назад,
повинно відобразитися повідомлення з осудом внаслідок
підглядування.

Передача даних додатковій активності з
поверненням результату (Activity Result API)

• Метод Activity startActivityForResult() оголошений застарілим і
Google наполегливо рекомендує використовувати Activity
Result API, представлений у класах AndroidX Activity і Fragment.

• Це пов'язано з тим, що startActivityForResult() повертає єдиний
об'єкт результату для відповідей від різних активностей і
розробник змушений шукати необхідний результат за кодом
запиту, що робить метод onActivityResult() перевантаженим
кодом.

• Activity Result API надає окремі методи зворотного виклику
для кожної активності.

• Окрім того, він пропонує вбудовані контракти для типових
активностей при роботі з мобільним пристроєм, як то запуск
іншої активності, пропонування обрати контакт з системного
застосунку Контакти, отримання зображення з камери тощо
(повний список контрактів надається у документації Android).

• Також існує можливість визначити клас користувацького
контракту.

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts#summary

Передача даних додатковій активності з
поверненням результату (Activity Result API)

• Для нашого випадку можна скористуватися вбудованим
контрактом ActivityResultContracts.StartActivityForResult(),
який передається як перший аргумент до методу:

класу ComponentActivity – нащадку Activity.

• Другий аргумент – це визначення функції зворотного виклику,
яка буде обробляти повернутий результат так, як і при
використанні onActivityResult(requestCode: Int, resultCode: Int,
data: Intent).

public final <I, O> ActivityResultLauncher<I> registerForActivityResult(
@NonNull ActivityResultContract<I, O> contract,
@NonNull ActivityResultCallback<O> callback)

Передача даних додатковій активності з
поверненням результату (Activity Result API)

• Додаймо до MainActivity змінну activityResultLauncher, яка
отримуватиме результат метода registerForActivityResult()
– об'єкт класу <I,O>ActivityResultLauncher<I>:

private val activityResultLauncher =

registerForActivityResult(

ActivityResultContracts.StartActivityForResult(),

fun(activityResult: ActivityResult) {

if (activityResult.resultCode == RESULT_OK) {

quizViewModel.saveCheaterFlag(

activityResult.data?.getBooleanExtra(

EXTRA_ANSWER_SHOWN,

false

) ?: false

)

showToast(R.string.judgment_toast)

}

}

)

Передача даних додатковій активності з
поверненням результату (Activity Result API)

• Замінимо змінну var isCheater = false у класі QuizViewModel на
private var cheaterFlag = getCheaterFlag()

• та додаймо до QuizViewModel допоміжні методи:

та

private fun getCheaterFlag(): Boolean {
// Gets the current value of the cheaterFlag from the saved state handle
Log.i(TAG, "Is cheater=${cheaterFlag} retrieved from $this")
return savedStateHandle[KEY_CHEATER_FLAG] ?: false

}

fun saveCheaterFlag(isCheater: Boolean) {
// Sets the current value of the cheaterFlag to the saved state handle
Log.i(TAG, "Current isCheater=${isCheater} saved in $this")
savedStateHandle[KEY_CHEATER_FLAG] = isCheater

}

Передача даних додатковій активності з
поверненням результату (Activity Result API)

• Після отримання лончера ми можемо його запустити у слухачі
натискання на кнопку Підглянути!:

cheatButton.setOnClickListener {

val answerIsTrue = quizViewModel.currentQuestionAnswer

val intent = CheatActivity.newIntent(this@MainActivity, answerIsTrue)

// startActivity(intent)

// startActivityForResult(intent, REQUEST_CODE_CHEAT) //deprecated

activityResultLauncher.launch(intent)
}

• Для формування результату, що буде переданий з
CheatActivity до MainActivity додаймо до CheatActivity
функцію:

private fun returnForResult(){

val replyIntent = Intent ()

replyIntent.putExtra(EXTRA_ANSWER_SHOWN, true)

setResult(Activity.RESULT_OK, replyIntent)

}

Передача даних додатковій активності з
поверненням результату (Activity Result API)

та викличемо її у слухачі натискання на кнопку
showAnswerButton:

• Тепер застосунок використовує Activity Result API та має таку ж
функціональність, як і при використанні метода
startActivityForResult()

• Тепер функція override fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent?) у MainActivity, яка перевизначає
застарілий метод Activity, може бути видалена.

• Також може бути видалена функція private fun
setAnswerShownResult(isAnswerShown: Boolean) у CheatActivity.

showAnswerButton.setOnClickListener {

val answerText = when {

answerIsTrue -> R.string.true_button

else -> R.string.false_button

}

answerTextView.setText(answerText)

returnForResult()

}

Передача даних додатковій активності з
поверненням результату (registerForActivityResult)

Стек повернення (back stack) ОС Android

• Коли запускається застосунок, ОС запускає не застосунок, а
активність застосунку.

• Але, якщо говорити точніше, запускається активність лаунчера
програми.

• Для GeoQuiz активністю лаунчера є MainActivity. Статус
активності лаунчера задається в маніфесті елементом intent-
filter в оголошенні MainActivity:

Стек повернення ОС Android

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<application

...

<activity

android:name=".CheatActivity"

android:exported="false" />

<activity

android:name=".MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Стек повернення (back stack) ОС Android

• Коли екземпляр MainActivity з’являється на екрані, користувач
може натиснути кнопку Підглянути!. Коли це трапляється,
екземпляр CheatActivity запускається поверх MainActivity.
Обидві активності знаходяться у стеку повернення (рис. 7.10).

• Натискання кнопки «Назад» у CheatActivity видаляє цей
екземпляр зі стеку, а MaimActivity повертається до своєї позиції
вгорі, як показано на (Рис. 7.10).

Стек повернення ОС Android

Стек повернення застосунку GeoQuiz

Стек повернення ОС Android

Стек повернення ОС Android

Робота з графічними ресурсами

• Застосунок GeoQuiz працює, але інтерфейс користувача
виглядав би більш привабливо, якби на кнопці Наступне була
зображена стрілка, звернена праворуч.

• Графічні файли розміщуються у підкаталогах drawable-????dpi
каталогу GeoQuiz/app/src/main/res:

Робота з графічними ресурсами

• Суфікси імен каталогів позначають екранну густину пікселів
пристрою. Існують такі значення густини пікселів:

▪ ldpi – середня щільність (~120 dpi) – у проєктах не
використовуєтся;

▪ mdpi – середня щільність (~160 dpi) – розмір стрілки
10 х 15 пікселів;

▪ hdpi – висока щільність (~240 dpi) – розмір стрілки
15 х 22 пікселів;

▪ xhdpi – надвисока щільність (~320 dpi) – розмір стрілки
20 х 30 пікселів;

▪ xxhdpi – наднадвисока щільність (~480 dpi) – розмір стрілки
30 х 45 пікселів;

▪ xxxhdpi – наднадвисока щільність (~640 dpi) – розмір
стрілки 40 х 60 пікселів.

Робота з графічними ресурсами - додання файлів
зображень
New–Image Asset контекстного меню каталогу res (app\src\main\res)

Робота з графічними ресурсами - додання файлів
зображень

Робота з графічними ресурсами

• При запуску ОС Android обирає файл зображення, який
найбільше підходить для конкретного пристрою, на якому
виконується програма.

• Якщо програма виконується на пристрої, екранна щільність
якого не відповідає жодній ознаці в іменах каталогів, Android
автоматично масштабує зображення до відповідного розміру.

• Завдяки цій обставині необов'язково надавати зображення
всім категорій щільності.

• Будь-якому файлу .png, .jpg або .gif, доданому до каталогів
res/drawable-????dpi, призначається ідентифікатор ресурсу у
вигляді @drawable/ім'я_файлу_без_розширення

(імена файлів повинні бути записані в нижньому регістрі і не
можуть містити пробілів).

• Ці ідентифікатори ресурсів не уточнюються щільністю пікселів,
під час запуску ОС автоматично вибере зображення, яке
підходить для конкретного пристрою.

Робота з графічними ресурсами

• Для розміщення зображення стрілки на кнопці Наступне
необхідно додати до неї атрибут android:drawableXXX, де
XXX вказує місце додання по відношенню до основного
контенту віджету (Start, End, Left, Right, Top, Bottom)
та, за необхідністю, атрибут android:drawablePadding, що
встановлює відступ зображення від основного контенту.

• Розмітка віджета–кнопки Наступне тепер буде виглядати
(необхідно додати виділені атрибути і до розміти макету з
горизонтальною орієнтацією):

<Button

android:id="@+id/next_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:drawableEnd="@drawable/arrow_right"

android:drawablePadding="4dp"

android:text="@string/next_button" />

Робота з графічними ресурсами - ImageView

<ImageView
android:id="@+id/app_picture"
android:layout_width="match_parent"
android:layout_height="wrap_content"
app:srcCompat="@drawable/canberra"
android:contentDescription="@string/canberra"/>

• Copy the picture file to the res\drawable folder of the project.

• Add ImageView component to the activity layout:

