
Програмування мобільних пристроїв

Використання фрагментів

Слайди до лекцій  (6  змістовий модуль)



Функціональні вимоги до програми 
CriminalIntent

• Починаючи з цього розділу ми почнемо будувати програму
CriminalIntent. Вона призначена для зберігання інформації про
"офісні злочини": залишений у раковині брудний посуд,
порожній лоток принтера після друку документів тощо.

• У програмі CriminalIntent користувач створює запис про злочин
із заголовком, датою та фотографією. Також можна вибрати
підозрюваного в адресній книзі та надіслати скаргу
електронною поштою, опублікувати її в Twitter, Facebook або
іншій програмі. Повідомивши про злочин, користувач
звільняється від негативу і може зосередитися на поточному
завданні.

• CriminalIntent – складний застосунок, у якому
використовується інтерфейс типу "список/деталізація": на
головному екрані виводиться список зареєстрованих злочинів.
Користувач може додати новий або вибрати існуючий злочин
для перегляду та редагування інформації.



Функціональні вимоги до програми 
CriminalIntent



Гнучкість інтерфейсу користувача
• Базуючись на досвіді розробки попереднього застосунку,

можна спроєктувати застосунок типу "список/деталізація" з
двох активностей: для керування списком та для керування
деталізованим поданням. Така архітектура працює, але може
знадобитися більш складна схема представлення інформації та
навігації між екранами: наприклад, при роботі з програмою на
планшеті. Екрани планшетів та деяких великих телефонів
дозволяють одночасно відображати список та деталізацію
(принаймні в альбомній орієнтації).

• Користувач переглядає опис злочину на телефоні та хоче
побачити наступний злочин у списку. Було б зручно, якби
користувач міг провести пальцем на екрані, щоб перейти до
наступного злочину без повернення до списку. Такий сценарій
передбачає гнучкість інтерфейсу користувача: можливість
формування та зміни представлення активності під час
виконання залежно від того, що потрібно користувачеві або
пристрою.



Гнучкість інтерфейсу користувача

• Подібна гнучкість в активності не передбачена. Представлення
активності можуть змінюватися під час виконання, але код,
який керує цими змінами, повинен перебувати у
представленні. В результаті активність тісно зв'язується з
конкретним екраном, з яким працює користувач.



Технологія використання фрагментів
• Забезпечити гнучкість при побудуванні інтерфейсу можливо

передавши управління інтерфейсом програми від активності
одному або декільком фрагментам (Fragment). Фрагмент є
об'єктом контролера, якому активність може довірити
виконання операцій. Найчастіше такою операцією є керування
інтерфейсом користувача – цілим екраном або його частиною.

• Фрагмент, що управляє інтерфейсом користувача, називається
UI-фрагментом (UI-fragment). UI-фрагмент має власне
представлення, яке заповнюється виходячи з файлу макета
фрагмента. Представлення активності містить місце, в яке
вставляється представлення фрагмента (активність може мати
декілька місць для представлення кількох фрагментів).
Фрагменти, пов'язані з активністю, можуть використовуватися
для формування та зміни екрана відповідно до потреб
програми та користувачів. При цьому представлення
активності формально залишається незмінним протягом
життєвого циклу.



Використання фрагментів у застосунку 
"список-деталізація"

• У застосунку "список/деталізація" представлення активності
будується з фрагмента списку та фрагмента деталізації.
Представлення деталізації містить докладну інформацію про
вибраний елемент списку. При виборі іншого елемента у
списку на екрані з'являється нове деталізоване представлення.
Ця зміна представлень відбувається без знищення активності.

• Застосування UI-фрагментів дозволяє розділити інтерфейс
застосунку на структурні блоки, а це корисно не тільки для
застосунків "список/деталізація". Робота з окремими блоками
полегшує розробку інтерфейсів з вкладками, анімованих
бічних панелей та багато іншого. Крім того, деякі з нових
Android Jetpack API краще працюють саме з фрагментами.



Гнучкість інтерфейсу користувача

Фрагмент списку

Фрагмент елемента списку

Фрагмент деталізації



Технологія використання фрагментів
• Фрагменти були введені в API рівня 11 (Android 3.0 Honeycomb

– лютий 2011 р) разом з першими планшетами Android.
Реалізація фреймворку фрагментів вже була вбудована в
пристрої, що працюють на рівні API 11 і вище. Незабаром після
цього до бібліотеки підтримки v4 було додано реалізацію
класу Fragment для включення підтримки фрагментів на старих
пристроях.

• Починаючи з Android 9.0 Pie (API 28 – січень 2022 р)
фреймворк-версія фрагментів застаріла. Жодних подальших
оновлень цієї версії проводитися не буде. Засоби роботи з
фрагментами були перенесені до Jetpack-бібліотеки. Усі
подальші оновлення відносяться до Jetpack, а не до
фреймворку або фрагментів підтримки v4. Тому у нових
проектах необхідно використовувати фрагменти Jetpack,
успадковуючи класи користувацьких фрагментів від класу
androidx.fragment.app.Fragment.

• .



Створення проєкту CriminalIntent



Створення проєкту CriminalIntent



Додання залежності fragment-ktx



Підключення технології зв'язування (Binding)

View binding is a feature that makes it easier to write code that 
interacts with views. It auto-generates a binding class for each XML 
layout file present in the module. An instance of a binding class 
contains direct references to all views that have an ID.



Створення класу моделі
package ua.edu.znu.criminalintent

import java.time.LocalDate

import java.util.UUID

data class Crime(

val id: UUID,

val title: String,

val date: LocalDate,

val isSolved: Boolean

);

• UUID – це допоміжний клас Java, що входить до
інфраструктури Android, він надає простий спосіб
генерування універсально-унікальних ідентифікаторів. Дата
злочину буде об'єктом LocalDate.



Додання рядкових ресурсів



Додання фрагменту деталізації 
CrimeDetailFragment

New–Fragment/Gallery...



Додання фрагменту деталізації 
CrimeDetailFragment



Макет фрагменту деталізації 
CrimeDetailFragment

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_margin="16dp"
android:orientation="vertical"
tools:context=".CrimeFragment">

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/crime_title_label"
android:textAppearance="?attr/textAppearanceHeadline5" />

<EditText
android:id="@+id/crime_title"
android:layout_width="match_parent"
android:layout_height="48dp"
android:hint="@string/crime_title_hint"
android:importantForAutofill="no"
android:inputType="text" /> ...

застосовує налаштування типографіки
Headline 5 до тексту, як зазначено у 
бібліотеці Material Design Google.



Макет фрагменту деталізації 
CrimeDetailFragment...

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/crime_details_label"
android:textAppearance="?attr/textAppearanceHeadline5" />

<Button
android:id="@+id/crime_date"
android:layout_width="match_parent"
android:layout_height="wrap_content"
tools:text="Mon Nov 11 11:56 EST 2024" />

<CheckBox
android:id="@+id/crime_solved"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/crime_solved_label" />

</LinearLayout>



Макет фрагменту деталізації 
CrimeDetailFragment



Клас фрагменту деталізації 
CrimeDetailFragment - onCreate

package ua.edu.znu.criminalintent

import ...

class CrimeDetailFragment : Fragment() {

/*View Binding*/
private lateinit var binding: FragmentCrimeDetailBinding

private lateinit var crime: Crime

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
crime = Crime(

id = UUID.randomUUID(),
title = "",
date = LocalDateTime.now(),
isSolved = false

)
} ...

функція життєвого циклу фрагменту



Клас фрагменту деталізації 
CrimeDetailFragment - onCreateView

...
override fun onCreateView(

inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View? {
/*Inflate the layout for this fragment.

Use a View Binding.
See the var binding defining at the class start*/

binding = FragmentCrimeDetailBinding.inflate(inflater, container, false)
return binding.root

}
... The fragment’s view does not need to 

be added to the parent view 

immediately – the activity will handle 

adding the view later.

функція життєвого циклу фрагменту



...
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

super.onViewCreated(view, savedInstanceState)

binding.apply {
crimeTitle.doOnTextChanged { text, _, _, _ ->

crime = crime.copy(title = text.toString())
}

crimeDate.apply {
text = crime.date.toString()
isEnabled = false

}

crimeSolved.apply {
setOnCheckedChangeListener { _, isChecked ->

crime = crime.copy(isSolved = isChecked)
}

}
} }        }

Клас фрагменту деталізації 
CrimeDetailFragment - onViewCreated

функція життєвого циклу фрагменту

визначення вмісту 
та поведінки
UI компонентів
технологією 
зв'язування

The underscore denotes 

unused parameters



Макет активності-хостингу UI-фрагментів 
activity_main.xml

• У 2019 році Google представила FragmentContainerView, який
полегшує створення хост-контейнера для фрагмента, що керуться
FragmentManager-ом.

• FragmentContainerView визначається як макет і має стандартні XML
атрибути макету.

• Атрибут android:name містить повну назву класу фрагменту, об'єкт
якого буде вставлений до макету активності, а атрибут tools:layout
містить ідентифікатор макету шаблону.

<?xml version="1.0" encoding="utf-8"?>
<androidx.fragment.app.FragmentContainerView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/fragment_container"
android:name="ua.edu.znu.criminalintent.CrimeDetailFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
tools:layout="@layout/fragment_crime_detail">

</androidx.fragment.app.FragmentContainerView>



FragmentManager
• Починаючи з Android 3.0 (Honeycomb) з'явився компонент

FragmentManager, який:

1) відповідає за додавання представлень фрагментів до
ієрархії представлень активності;

2) керує зворотнім стеком (back stack) транзакцій фрагментів;

3) керує життєвими циклами фрагментів.



FragmentManager
• Для додання фрагменту до активності необхідно робити явний

виклик FragmentManager-а активності за допомогою властивості
активності supportFragmentManager.

• Такі дії, як додавання, видалення або заміна фрагментів,
виконуються у межах транзакцій фрагментів. Вони дозволяють
групувати кілька операцій, наприклад додавати кілька
фрагментів до різних контейнерів одночасно.

• FragmentManager підтримує зворотній стек (back stack)
транзакцій фрагментів, по якому можна переміщатися. Якщо
транзакцію вилучити зі стеку, то всі операції у її межах
скасовуються.

val fragment = CrimeDetailFragment()
supportFragmentManager.beginTransaction() //returns FragmentTransaction

/*FragmentTransaction has several functions for adding, replacing
and removing fragments. These functions are chainable.*/

.add(R.id.fragment_container, fragment)

.commit() It is not need due to FragmentContainerView use



MainActivity з фрагментом



Життєвий цикл фрагментів

• На відміну від активності, функції життєвого циклу фрагмента
викликаються не операційною системою, а FragmentManager.
Операційна система нічого не знає про фрагменти, фрагменти –
це "внутрішня кухня" активності.



Життєвий цикл фрагментів
• Якщо фрагмент додається у той час, коли активність вже

знаходиться в стані зупинки, призупинки або виконання,
FragmentManager негайно проводить фрагмент через всі етапи,
необхідні для узгодження його стану з відповідним станом
активності.

• Наприклад, при додаванні фрагмента до активності, що вже
перебуває в стані виконання, фрагмент отримає виклики
onAttach(Context), onCreate(Bundle?), onCreateView(...),
onViewCreated(…), onActivityCreated(Bundle), onStart() і
onResume().

• Після того, як стан фрагмента буде узгоджений зі станом
активності, об'єкт FragmentManager хост-активності буде
викликати подальші функції життєвого циклу приблизно
одночасно з отриманням відповідних викликів від ОС для
синхронізації стану фрагмента зі станом активності.



Фрагменти та управління пам'яттю

1

2

3

1 - Запуск застосунку
2 - зупинка застосунку
3 - відновлення застосунку до активного стану

Видалення



Фрагменти та управління пам'яттю

• Властивість ViewBinding обмежена життєвим циклом перегляду
фрагмента (між onCreateView та onDestroyView).

• Тому рекомендується встановлення для відповідного
ViewBinding значення null у onDestroyView фрагмента.

class CrimeDetailFragment : Fragment() {

/*For View Binding cleanup*/
private var _binding: FragmentCrimeDetailBinding? = null
/*This property is only valid between onCreateView

and onDestroyView.*/
private val binding get() = _binding!!

...



Фрагменти та управління пам'яттю
...

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View? {
_binding = FragmentCrimeDetailBinding.inflate(inflater, container, false)
Log.d(TAG, "onCreateView called - ${binding}")
return binding.root

}

...

override fun onDestroyView() {
super.onDestroyView()
Log.d(TAG, "onDestroyView called - $binding")
/*View Binding cleanup*/
_binding = null

} ... }



Фрагменти та управління пам'яттю



Виведення списків за допомогою RecyclerView



Макет активності UI-фрагментів 
activity_main.xml

Фрагмент списку

Фрагмент елемента списку

Фрагмент деталізації



Виведення списків за допомогою RecyclerView

Архітектура застосунку CriminalIntent з підтримкою списку



Додання залежності lifecycle-viewmodel-ktx



Додання фрагменту списку 
CrimeListFragment

New–Fragment–Fragment (with ViewModel)



Клас ViewModel списку

Тестові дані

class CrimeListViewModel : ViewModel() {

val crimes = mutableListOf<Crime>()

init {
for (i in 0 until 100) {

val crime = Crime(
id = UUID.randomUUID(),
title = "Crime #$i",
date = LocalDateTime.now(),
isSolved = i % 2 == 0

)
crimes += crime

}
}

}



Клас фрагменту списку CrimeListFragment
private const val TAG = "CrimeListFragment"

class CrimeListFragment : Fragment() {

companion object {
fun newInstance() = CrimeListFragment()

}

private val crimeListViewModel: CrimeListViewModel by viewModels()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
Log.d(TAG, "Total crimes: ${crimeListViewModel.crimes.size}")

}

override fun onCreateView(
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

): View {
return inflater.inflate(R.layout.fragment_crime_list, container, false)

}    }

For now, CrimeListFraglemt

is an empty shell of fragments.



Життєвий цикл ViewModel з фрагментами
• Об'єкт ViewModel залишатиметься активним, доки віджет

фрагмента знаходиться на екрані. ViewModel зберігається при
повороті (навіть якщо екземпляр фрагмента не зберігається) і буде
доступним для нового екземпляра фрагмента.

• Але об'єкт ViewModel знищується після знищення фрагмента. Це
може статися, коли користувач натискає кнопку "Назад",
закриваючи екран. Це також може статися, якщо хост-активність
замінює фрагмент на інший. Хоча на екрані відображається та ж
активність, старий фрагмент, і пов'язаний з ним об'єкт ViewModel
будуть знищені, оскільки вони більше не потрібні.

• Є виключення з цієї поведінки – коли активність в рамках
транзакції замінює поточний фрагмент іншим, а поточний
фрагмент додається до зворотного стеку (методом
addToBackSack()), - фрагмент та його ViewModel знищені не будуть.
Якщо користувач натискає кнопку "Назад", фрагмент, збережений
у стеку, відновлюється. Оригінальний екземпляр фрагмента
повертається назад на екран, відтворюючи дані з ViewModel.



Рефакторинг activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<androidx.fragment.app.FragmentContainerView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/fragment_container"
android:name="ua.edu.znu.criminalintent.CrimeListFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity"
tools:layout="@layout/fragment_crime_list">

</androidx.fragment.app.FragmentContainerView>

Now MainActivity hosts CrimeListFragment



Перевірка запуску CrimeListFragment

в MainActivity

Now MainActivity hosts CrimeListFragment



Додання залежності recyclerview



Відображення списку у RecyclerView

Заміна кореневого елемента fragment_crime_list.xml

на androidx.recyclerview.widget.RecyclerView

crime_recycler_view



Макет fragment_crime_list.xml

<?xml version="1.0" encoding="utf-8"?>
<androidx.recyclerview.widget.RecyclerView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/crime_recycler_view"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".CrimeListFragment"/>



Клас фрагменту списку CrimeListFragment -
підключення макета

package ua.edu.znu.criminalintent

private const val TAG = "CrimeListFragment"

class CrimeListFragment : Fragment() {

companion object {
fun newInstance() = CrimeListFragment()

}

private var _binding: FragmentCrimeListBinding? = null
private val binding

get() = checkNotNull(_binding) {
"Cammot access bimdimg because it is mukk. Is the view visibke?"

}

private val crimeListViewModel: CrimeListViewModel by viewModels()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
Log.d(TAG, "Total crimes: ${crimeListViewModel.crimes.size}")

} ...



Клас фрагменту списку CrimeListFragment -
підключення макета

...

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View {
_binding = FragmentCrimeListBinding.inflate(inflater, container, false)
return binding.root

}

override fun onDestroyView() {
super.onDestroyView()
_binding = null

}
}



Реалізація LayoutManager

• RecyclerView — це GroupView, що повторно використовує
віджети, відображаючи їх у списку. RecyclerView використовує
такі компоненти, як: LayoutManager, ViewHolder і Adapter.

• LayoutManager розміщує кожен елемент, а також визначає, як
працює прокручування.

• Існують декілька вбудованих варіантів LayoutManager. Ми
будемо використовувати LinearLayoutManager як LayoutManager
для RecyclerView. Він розташує елементи у списку вертикально,
один за одним, як LinearLayout.

override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?): View {

_binding = FragmentCrimeListBinding.inflate(inflater, container, false)
binding.crimeRecyclerView.layoutManager =

LinearLayoutManager(context)
return binding.root

} CrimeListFragment.kt



Клас активності
package ua.edu.znu.criminalintent

import ...

private const val TAG = "MainActivity"

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
Log.d(TAG, "onCreate called - $this")
enableEdgeToEdge()
setContentView(R.layout.activity_main) 

...
val fragment = CrimeListFragment()
supportFragmentManager.beginTransaction()

.add(R.id.fragment_container, fragment)

.commit()
}

}



Реалізація Item View Layout

• RecyckerView відображає список дочірніх об’єктів View (items
views). Кожен item view представляє окремий об’єкт зі списку
RecyckerView.



Макет елемента списку list_item_crime.xml
app\res\layout context menu New–Layout Resource File



Макет елемента списку list_item_crime.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical"

android:padding="8dp">

<TextView

android:id="@+id/list_item_crime_title"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="@string/crime_title_label" />

<TextView

android:id="@+id/list_item_crime_date"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="@string/crime_date" />

</LinearLayout> доданий рядковий ресурс
(зі значеннями Date та Дата)



RecylerView.ViewHolder

• Об'єкт RecyclerView очікує, що віджети, які він повинен
виводити для кожного елемента списку (item views) будуть
надаватися об'єктом RecyclerView.ViewHolder.

• Але безпосередня взаємодія з View не очікується. Натомість
буде використовуватися ListItemCrimeBinding.

• Додаймо клас CrimeListAdapter.kt на початку якого оголосимо
клас CrimeHolder - нащадок RecyclerView.ViewHolder :

package ua.edu.znu.criminalintent

import androidx.recyclerview.widget.RecyclerView
import ua.edu.znu.criminalintent.databinding.ListItemCrimeBinding

class CrimeHolder(
val binding: ListItemCrimeBinding

) : RecyclerView.ViewHolder(binding.root) {
}



RecylerView.ViewHolder

ViewHolder утримуватиме 
представлення у 
властивості itemView.



RecyclerView.Adapter<CrimeHolder>

• Насправді об'єкт RecyclerView не створює ViewHolder особисто.
Натомість використовується адаптер, який є об'єктом
контролера і знаходиться між RecyclerView і наборами даних,
які відображає RecyclerView.

• Об'єкт адаптера виконує такі функції:

- створення за запитом необхідних об'єктів ViewHolder;

- зв'язування об'єктів ViewHolder з даними шару моделі.

• Об'єкт RecyclerView виконує такі функції:

- надсилає адаптеру запит на створення нового об'єкта 
ViewHolder;

- надсилає адаптеру запит на зв'язування об'єкта ViewHolder з 
елементом даних, який відповідає поточній позиції.

• Додаймо клас CrimeListAdapter до файлу CrimeListAdapter.kt
нижче класу CrimeHolder:



RecyclerView.Adapter<CrimeHolder>
package ua.edu.znu.criminalintent

import ...

class CrimeHolder(...){...}

class CrimeListAdapter(
private val crimes: List<Crime>

) : RecyclerView.Adapter<CrimeHolder>() {

override fun onCreateViewHolder(
parent: ViewGroup,
viewType: Int

): CrimeHolder {
val inflater = LayoutInflater.from(parent.context)
val binding = ListItemCrimeBinding.inflate(inflater, parent, false)
return CrimeHolder(binding)

}

...



RecyclerView.Adapter<CrimeHolder>
...

override fun onBindViewHolder(holder: CrimeHolder, position: Int) {
val crime = crimes[position]
holder.apply {

binding.listItemCrimeTitle.text = crime.title
binding.listItemCrimeDate.text = crime.date.toString()

}
}

override fun getItemCount(): Int = crimes.size
}



RecyclerView.Adapter<CrimeHolder>

• Метод Adapter.onCreateViewHolder(...) відповідає за створення
зв'язування (View Binding) та огортання його у Holder. У нашому
застосунку виконується створення віджетів, визначених у
list_item_crime.xml за допомогою зв'язування
ListItemCrimeBinding, яке огортається об'єктом CrimeHolder. (Поки
що Ви можете ігнорувати параметри onCreateViewHolder(...). Ці
значення потрібні, лише якщо Ви робите щось неординарне,
наприклад відображення різних типів представлень у одному
RecyclerView.

• Adapter.onBindViewHolder(...) відповідає за заповнення
CrimeHolder даними злочину із заданої позиції у списку.

• Adapter.getItemCount() викликається, коли компоненту
RecyclerView потрібно знати, скільки елементів у наборі даних, що
він обробляє (наприклад, коли RecyclerView вперше запускається).

• Сам RecyclerView нічого не знає про об’єкт Crime або список
об’єктів Crime, які мають відображатися. Це знає CrimeListAdapter.



Робота адаптера



Клас фрагменту списку CrimeListFragment -
додання адаптера

class CrimeListFragment : Fragment() {

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View {
_binding = FragmentCrimeListBinding.inflate(inflater, container, false)
binding.crimeRecyclerView.layoutManager =

LinearLayoutManager(context)
...

/*Set RecyclerView adapter*/
var crimes = crimeListViewModel.crimes
val adapter = CrimeListAdapter(crimes)
binding.crimeRecyclerView.adapter = adapter
return binding.root

} ...    }



Відображення злочинів у RecycleView



RecyclerView

• Замість створення 100 об'єктів View, RecyclerView створює їх
стільки, скільки потрібно для заповнення екрана. Коли елемент
зникає з екрана, RecyclerView використовує його
представлення для інших елементів (recycle). Коли створено
достатньо об'єктів ViewHolder для заповненя екрану,
RecyclerView перестає викликати onCreateViewHolder(..).
Натомість він заощаджує час і пам'ять шляхом повторного
використання старих об'єктів ViewHolder і передає їх до
onBindViewHolder(ViewHolder, Int).

• В даний момент Adapter прив'язує дані злочину до текстових
віджетів у функції Adapter.onBindViewHolder(...). Але краще
розділити завдання між холдером та адаптером: адаптер
повинен знати якомога менше про внутрішню кухню і дані
холдера. Тому перенесемо код, який виконує прив'язку даних
злочину до текстових віджетів до CrimeHolder:



Перенесення прив'язки даних до віджетів з 
CrimeListAdapter до CrimeHolder

package ua.edu.znu.criminalintent

import ...

class CrimeHolder(
val binding: ListItemCrimeBinding

) : RecyclerView.ViewHolder(binding.root) {
fun bind(crime: Crime) {

binding.apply {
listItemCrimeTitle.text = crime.title
listItemCrimeDate.text = crime.date.toString()

}
}

}
...



Перенесення прив'язки даних до віджетів з 
CrimeListAdapter до CrimeHolder

...
class CrimeListAdapter(

private val crimes: List<Crime>
) : RecyclerView.Adapter<CrimeHolder>() {

override fun onCreateViewHolder(...) : CrimeHolder {
...

}

override fun onBindViewHolder(holder: CrimeHolder, position: Int) {
val crime = crimes[position]

//        holder.apply {
//            binding.listItemCrimeTitle.text = crime.title
//            binding.listItemCrimeDate.text = crime.date.toString()
//        }

holder.bind(crime)
}
...  

}



Додання обробки події кліку на елементі 
списку RecyclerView

package ua.edu.znu.criminalintent

import ...

class CrimeHolder(
val binding: ListItemCrimeBinding

) : RecyclerView.ViewHolder(binding.root) {
fun bind(crime: Crime) {

binding.apply {
listItemCrimeTitle.text = crime.title
listItemCrimeDate.text = crime.date.toString()

binding.root.setOnClickListener {
Toast.makeText(

binding.root.context,
"${crime.title} clicked!",
Toast.LENGTH_SHORT

).show()
} } } } ... }

CrimeListAdapter.kt



Додання обробки події кліку на елементі 
списку RecyclerView



Lists та Grids: минуле, теперішнє та майбутнє

• Ядро ОС Android включає класи ListView, GridView та Adapter,
які до Android 5.0 були основними засобами створення списків
або сіток елементів. API для цих компонентів дуже схожий на
API RecyclerView: ListView або GridView відповідає за
прокручування колекції елементів, але вони "не знають" багато
про ці елементи, делегуючи це Адаптеру. Однак ListView та
GridView не зобов’язують використовувати ViewHolder (хоча Ви
можете – і повинні – його використовувати).

• Ці старі реалізації замінено на RecyclerView через складність,
необхідну для зміни поведінки ListView або GridView.
Наприклад, створення ListView з горизонтальним
прокручуванням не входить до ListView API і потребує багато
роботи. А RecyclerView можна використовувати з
GridLayoutManager для впорядкування елементів у сітці.
...



Lists та Grids: минуле, теперішнє та майбутнє
...

• Ще одна ключова функція RecyclerView - анімація елементів у
списку. Анімація додавання або видалення елементів у ListView
або GridView є складним і схильним до помилок завданням.
RecyclerView робить це набагато простіше; він містить кілька
вбудованих анімацій і дозволяє легко налаштовувати ці
анімації. Наприклад, якщо ви дізналися, що злочин із позиції 0
перемістився на позицію 5, ви можете анімувати цю зміну так:

binding.crimeRecyclerView.adapter?.notifyItemMoved(0, 5)

• RecyclerView є потужним і розширюваним, але він також
складний і вимагає багато налаштувань навіть для простих
інтерфейсів користувача. За допомогою Jetpack Compose Ви
маєте доступ до складових елементів LazyColumn і LazyRow. Ці
composables мають усі можливості налаштування та
продуктивність RecyclerView, але їх можна створити малою
кількістю коду.



• Додаймо інтерфейс OnCrimeClickListener до файлу
CrimeListAdapter.kt та виконаємо рефакторинг класів
CrimeHolder та CrimeListAdapter, щоб вони використовували
цей інтерфейс:

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeListAdapter.kt

package ua.edu.znu.criminalintent

import ...

interface OnCrimeClickListener {
fun onCrimeClick(crimeId: UUID)

}

...



...

class CrimeHolder(
private val binding: ListItemCrimeBinding,
private val crimeClickListener: OnCrimeClickListener

) : RecyclerView.ViewHolder(binding.root) {

fun bind(crime: Crime) {
binding.apply {

listItemCrimeTitle.text = crime.title
listItemCrimeDate.text = crime.date.toString()

binding.root.setOnClickListener {
crimeClickListener.onCrimeClick(crime.id)

}
}

}  
} 
...

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeListAdapter.kt



...

class CrimeListAdapter(
private val crimes: List<Crime>,
private val crimeClickListener: OnCrimeClickListener

) : RecyclerView.Adapter<CrimeHolder>() {

override fun onCreateViewHolder(
parent: ViewGroup,
viewType: Int

): CrimeHolder {
val inflater = LayoutInflater.from(parent.context)
val binding = ListItemCrimeBinding.inflate(inflater, parent, false)
return CrimeHolder(binding, crimeClickListener)

}
...
}

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeListAdapter.kt



package ua.edu.znu.criminalintent

import ...

private const val TAG = "CrimeDetailFragment"
private const val ARG_CRIME_ID = "crime_id"

class CrimeDetailFragment : Fragment() {

private var _binding: FragmentCrimeDetailBinding? = null
private val binding get() = _binding!!

private lateinit var crime: Crime

...

• Виконаємо рефакторинг CrimeDetailFragment так, щоб при
створенні його екземпляру приймався параметр crimeId:

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeDetailFragment.kt



...

companion object {
fun newInstance(crimeId: UUID): CrimeDetailFragment {

val args = Bundle().apply {
putSerializable(ARG_CRIME_ID, crimeId)

}
return CrimeDetailFragment().apply {

arguments = args
}

}
}

...
}

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeDetailFragment.kt



package ua.edu.znu.criminalintent

import ...

private const val TAG = "CrimeListFragment"

class CrimeListFragment : Fragment(), OnCrimeClickListener {

...

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View {
...

• Реалізуємо інтерфейс OnCrimeClickListener у класі
CrimeListFragment, визначивши заміну фрагменту
CrimeListFragment на фрагмент CrimeDetailFragment:

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeListFragment.kt



...
_binding = FragmentCrimeListBinding.inflate(inflater, container, false)
binding.crimeRecyclerView.layoutManager =

LinearLayoutManager(context)

val crimes = crimeListViewModel.crimes
val adapter = CrimeListAdapter(crimes, this)
binding.crimeRecyclerView.adapter = adapter
return binding.root

}

override fun onCrimeClick(crimeId: UUID) {
val fragment = CrimeDetailFragment.newInstance(crimeId)
parentFragmentManager.beginTransaction()

.replace(R.id.fragment_container, fragment)

.addToBackStack(null)

.commit()
}

... }

Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

CrimeListFragment.kt

Заміна фрагменту 
у контейнері



Рефакторинг обробки події кліку на елементі 
списку RecyclerView для заміни фрагменту

Додавання/редагування/видалення даних
потребує використання ViewModel
та бази даних


