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Preface to the Second Edition

This second edition of the book adds several new features:

•• An expanded treatment of one‐way ANOVA including multiple testing 
procedures;

•• A new chapter on two‐way, three‐way, and higher level ANOVAs, including 
both fixed, random, and mixed effects ANOVAs;

•• A substantially revised chapter on regression;

•• A new chapter on models for repeated measurements using linear mixed models 
and generalized estimating equations;

•• Examples worked throughout the book in R in addition to SAS software;

•• Additional end of chapter exercises in several chapters.

These features have been added with the help of a new second author. As in the first 
edition, data sets used in the in‐chapter examples and end of chapter exercises are 
largely based on real studies on which we collaborated. The very large data tables 
referred to throughout this book are too large for inclusion in the printed text; they 
are available at www.wiley.com/go/Le/Biostatistics.

We thank previous users of the book for feedback on the first edition, which led to 
many of the improvements in this second edition. We also thank Megan Schlick, 
Division of Biostatistics at the University of Minnesota, for her assistance with prep-
aration of several files and the index for this edition.

Chap T. Le
Lynn E. Eberly

Minneapolis, MN
September 2015

http://www.wiley.com/go/Le/Biostatistics




Preface to the First Edition

A course in introductory biostatistics is often required for professional students in 
public health, dentistry, nursing, and medicine, and for graduate students in nursing 
and other biomedical sciences, a requirement that is often considered a roadblock, 
causing anxiety in many quarters. These feelings are expressed in many ways and in 
many different settings, but all lead to the same conclusion: that students need help, 
in the form of a user‐friendly and real data‐based text, in order to provide enough 
motivation to learn a subject that is perceived to be difficult and dry. This introduc-
tory text is written for professionals and beginning graduate students in human health 
disciplines who need help to pass and benefit from the basic biostatistics requirement 
of a one‐term course or a full‐year sequence of two courses. Our main objective is to 
avoid the perception that statistics is just a series of formulas that students need to 
“get over with,” but to present it as a way of thinking – thinking about ways to gather 
and analyze data so as to benefit from taking the required course. There is no better 
way to do that than to base a book on real data, so many real data sets in various fields 
are provided in the form of examples and exercises as aids to learning how to use 
statistical procedures, still the nuts and bolts of elementary applied statistics.

The first five chapters start slowly in a user‐friendly style to nurture interest and 
motivate learning. Sections called “Brief Notes on the Fundamentals” are added here 
and there to gradually strengthen the background and the concepts. Then the pace is 
picked up in the remaining seven chapters to make sure that those who take a full‐
year sequence of two courses learn enough of the nuts and bolts of the subject. Our 
basic strategy is that most students would need only one course, which would end at 
about the middle of Chapter 9, after covering simple linear regression; instructors 
may add a few sections of Chapter 14. For students who take only one course, other 
chapters would serve as references to supplement class discussions as well as for 
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their future needs. A subgroup of students with a stronger background in mathe-
matics would go on to a second course, and with the help of the brief notes on the 
fundamentals would be able to handle the remaining chapters. A special feature of 
the book is the sections “Notes on Computations” at the end of most chapters. These 
notes cover the uses of Microsoft’s Excel, but samples of SAS computer programs 
are also included at the end of many examples, especially the advanced topics in the 
last several chapters.

The way of thinking called statistics has become important to all professionals, 
not only those in science or business, but also caring people who want to help to 
make the world a better place. But what is biostatistics, and what can it do? There are 
popular definitions and perceptions of statistics. We see “vital statistics” in the news-
paper: announcements of life events such as births, marriages, and deaths. Motorists 
are warned to drive carefully, to avoid “becoming a statistic.” Public use of the word 
is widely varied, most often indicating lists of numbers, or data. We have also heard 
people use the word data to describe a verbal report, a believable anecdote. For this 
book, especially in the first few chapters, we do not emphasize statistics as things, but 
instead, offer an active concept of “doing statistics.” The doing of statistics is a way 
of thinking about numbers (collection, analysis, presentation), with emphasis on 
relating their interpretation and meaning to the manner in which they are collected. 
Formulas are only a part of that thinking, simply tools of the trade; they are needed 
but not as the only things one needs to know.

To illustrate statistics as a way of thinking, let us begin with a familiar scenario: 
criminal court procedures. A crime has been discovered and a suspect has been iden-
tified. After a police investigation to collect evidence against the suspect, a prosecutor 
presents summarized evidence to a jury. The jurors are given the rules regarding con-
victing beyond a reasonable doubt and about a unanimous decision, and then they 
debate. After the debate, the jurors vote and a verdict is reached: guilty or not guilty. 
Why do we need to have this time‐consuming, cost‐consuming process of trial by 
jury? One reason is that the truth is often unknown, at least uncertain. Perhaps only the 
suspect knows but he or she does not talk. It is uncertain because of variability (every 
case is different) and because of possibly incomplete information. Trial by jury is the 
way our society deals with uncertainties; its goal is to minimize mistakes.

How does society deal with uncertainties? We go through a process called trial by 
jury, consisting of these steps: (1) we form an assumption or hypothesis (that every 
person is innocent until proved guilty), (2) we gather data (evidence against the sus-
pect), and (3) we decide whether the hypothesis should be rejected (guilty) or should 
not be rejected (not guilty). With such a well‐established procedure, sometimes we do 
well, sometimes we do not. Basically, a successful trial should consist of these ele-
ments: (1) a probable cause (with a crime and a suspect), (2) a thorough investigation 
by police, (3) an efficient presentation by a prosecutor, and (4) a fair and impartial jury.

In the context of a trial by jury, let us consider a few specific examples: (1) the 
crime is lung cancer and the suspect is cigarette smoking, or (2) the crime is leukemia 
and the suspect is pesticides, or (3) the crime is breast cancer and the suspect is a 
defective gene. The process is now called research and the tool to carry out that 
research is biostatistics. In a simple way, biostatistics serves as the biomedical 
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version of the trial by jury process. It is the science of dealing with uncertainties 
using incomplete information. Yes, even science is uncertain; scientists arrive at dif-
ferent conclusions in many different areas at different times; many studies are incon-
clusive (hung jury). The reasons for uncertainties remain the same. Nature is complex 
and full of unexplained biological variability. But most important, we always have to 
deal with incomplete information. It is often not practical to study an entire 
population; we have to rely on information gained from a sample.

How does science deal with uncertainties? We learn how society deals with uncer-
tainties; we go through a process called biostatistics, consisting of these steps: (1) we 
form an assumption or hypothesis (from the research question), (2) we gather data 
(from clinical trials, surveys, medical record abstractions), and (3) we make 
decision(s) (by doing statistical analysis/inference; a guilty verdict is referred to as 
statistical significance). Basically, a successful research should consist of these ele-
ments: (1) a good research question (with well‐defined objectives and endpoints), (2) 
a thorough investigation (by experiments or surveys), (3) an efficient presentation of 
data (organizing data, summarizing, and presenting data: an area called descriptive 
statistics), and (4) proper statistical inference. This book is a problem‐based intro-
duction to the last three elements; together they form a field called biostatistics. The 
coverage is rather brief on data collection but very extensive on descriptive statistics 
(Chapters 1, 2), especially on methods of statistical inference (Chapters 4–12). 
Chapter  3, on probability and probability models, serves as the link between the 
descriptive and inferential parts. Notes on computations and samples of SAS com-
puter programs are incorporated throughout the book. About 60% of the material in 
the first eight chapters overlaps with chapters from Health and Numbers: A Problems‐
Based Introduction to Biostatistics (another book by Wiley), but new topics have 
been added and others rewritten at a somewhat higher level. In general, compared to 
Health and Numbers, this book is aimed at a different audience – those who need a 
whole year of statistics and who are more mathematically prepared for advanced 
algebra and precalculus subjects.

I would like to express my sincere appreciation to colleagues, teaching assistants, 
and many generations of students for their help and feedback. I have learned very 
much from my former students, I hope that some of what they have taught me is 
reflected well in many sections of this book. Finally, my family bore patiently the 
pressures caused by my long‐term commitment to the book; to my wife and daugh-
ters, I am always most grateful.

Chap T. Le
Edina, Minnesota
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1
DESCRIPTIVE METHODS 
FOR CATEGORICAL DATA

Most introductory textbooks in statistics and biostatistics start with methods for 
summarizing and presenting continuous data. We have decided, however, to adopt a 
different starting point because our focused areas are in the biomedical sciences, and 
health decisions are frequently based on proportions, ratios, or rates. In this first 
chapter we will see how these concepts appeal to common sense, and learn their 
meaning and uses.

1.1  PROPORTIONS

Many outcomes can be classified as belonging to one of two possible categories: 
presence and absence, nonwhite and white, male and female, improved and nonim-
proved. Of course, one of these two categories is usually identified as of primary 
interest: for example, presence in the presence and absence classification, nonwhite 
in the white and nonwhite classification. We can, in general, relabel the two outcome 
categories as positive (+) and negative (−). An outcome is positive if the primary 
category is observed and is negative if the other category is observed.

It is obvious that, in the summary to characterize observations made on a group 
of people, the number x of positive outcomes is not sufficient; the group size n, or 
total number of observations, should also be recorded. The number x tells us very 
little and becomes meaningful only after adjusting for the size n of the group; in 
other words, the two figures x and n are often combined into a statistic, called a 
proportion:

	
p

x

n
.
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The term statistic means a summarized quantity from observed data. Clearly, 
0 1p . This proportion p is sometimes expressed as a percentage and is calculated 
as follows:

	
percentage % .

x

n
100

	

Example 1.1
A study published by the Urban Coalition of Minneapolis and the University of 
Minnesota Adolescent Health Program surveyed 12 915 students in grades 7–12 in 
Minneapolis and St. Paul public schools. The report stated that minority students, 
about one‐third of the group, were much less likely to have had a recent routine 
physical checkup. Among Asian students, 25.4% said that they had not seen a doctor 
or a dentist in the last two years, followed by 17.7% of Native Americans, 16.1% of 
blacks, and 10% of Hispanics. Among whites, it was 6.5%.

Proportion is a number used to describe a group of people according to a 
dichotomous, or binary, characteristic under investigation. It is noted that character-
istics with multiple categories can have a proportion calculated per category, or can 
be dichotomized by pooling some categories to form a new one, and the concept of 
proportion applies. The following are a few illustrations of the use of proportions in 
the health sciences.

1.1.1  Comparative Studies

Comparative studies are intended to show possible differences between two or more 
groups; Example 1.1 is such a typical comparative study. The survey cited in Example 
1.1 also provided the following figures concerning boys in the group who use tobacco 
at least weekly. Among Asians, it was 9.7%, followed by 11.6% of blacks, 20.6% of 
Hispanics, 25.4% of whites, and 38.3% of Native Americans.

In addition to surveys that are cross‐sectional, as seen in Example 1.1, data for 
comparative studies may come from different sources; the two fundamental designs 
being retrospective and prospective. Retrospective studies gather past data from 
selected cases and controls to determine differences, if any, in exposure to a suspected 
risk factor. These are commonly referred to as case–control studies; each such study 
is focused on a particular disease. In a typical case–control study, cases of a specific 
disease are ascertained as they arise from population‐based registers or lists of hospital 
admissions, and controls are sampled either as disease‐free persons from the population 
at risk or as hospitalized patients having a diagnosis other than the one under study. 
The advantages of a retrospective study are that it is economical and provides answers 
to research questions relatively quickly because the cases are already available. Major 
limitations are due to the inaccuracy of the exposure histories and uncertainty about 
the appropriateness of the control sample; these problems sometimes hinder retro-
spective studies and make them less preferred than prospective studies. The following 
is an example of a retrospective study in the field of occupational health.
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Example 1.2
A case–control study was undertaken to identify reasons for the exceptionally high 
rate of lung cancer among male residents of coastal Georgia. Cases were identified 
from these sources:

1.	 Diagnoses since 1970 at the single large hospital in Brunswick;

2.	 Diagnoses during 1975–1976 at three major hospitals in Savannah;

3.	 Death certificates for the period 1970–1974 in the area.

Controls were selected from admissions to the four hospitals and from death 
certificates in the same period for diagnoses other than lung cancer, bladder cancer, 
or chronic lung cancer. Data are tabulated separately for smokers and nonsmokers in 
Table 1.1. The exposure under investigation, “shipbuilding,” refers to employment in 
shipyards during World War II. By using a separate tabulation, with the first half of 
the table for nonsmokers and the second half for smokers, we treat smoking as a 
potential confounder. A confounder is a factor, an exposure by itself, not under 
investigation but related to the disease (in this case, lung cancer) and the exposure 
(shipbuilding); previous studies have linked smoking to lung cancer, and construction 
workers are more likely to be smokers. The term exposure is used here to emphasize 
that employment in shipyards is a suspected risk factor; however, the term is also 
used in studies where the factor under investigation has beneficial effects.

In an examination of the smokers in the data set in Example 1.2, the numbers of 
people employed in shipyards, 84 and 45, tell us little because the sizes of the two 
groups, cases and controls, are different. Adjusting these absolute numbers for the 
group sizes (397 cases and 315 controls), we have:

1.	 For the smoking controls,

	

proportion with exposure =

= or

45

315
0 143 14 3. . %.	

2.	 For the smoking cases,

	

proportion with exposure

o

84

397
0 212 21 2. . %.r 	

Table 1.1

Smoking Shipbuilding Cases Controls

No Yes 11 35
No 50 203

Yes Yes 84 45
No 313 270
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The results reveal different exposure histories: the proportion in shipbuilding 
among cases was higher than that among controls. It is not in any way conclusive 
proof, but it is a good clue, indicating a possible relationship between the disease 
(lung cancer) and the exposure (shipbuilding).

Similar examination of the data for nonsmokers shows that, by taking into 
consideration the numbers of cases and controls, we have the following figures for 
shipbuilding employment:

1.	 For the non‐smoking controls,

	

proportion with exposure

or

35

238
0 147 14 7. . %.	

2.	 For the non‐smoking cases,

	

proportion with exposure

or

11

61
0 180 18 0. . %.	

The results for non‐smokers also reveal different exposure histories: the proportion 
in shipbuilding among cases was again higher than that among controls.

The analyses above also show that the case‐control difference in the proportions 
with the exposure among smokers, that is,

	 21 2 14 3 6 9. . . %,	

is different from the case‐control difference in the proportions with the exposure 
among nonsmokers, which is:

	 18 0 14 7 3 3. . . %.	

The differences, 6.9% and 3.3%, are measures of the strength of the relationship 
between the disease and the exposure, one for each of the two strata: the two groups 
of smokers and nonsmokers, respectively. The calculation above shows that the 
possible effects of employment in shipyards (as a suspected risk factor) are different 
for smokers and nonsmokers. This difference of differences, if confirmed, is called a 
three‐term interaction or effect modification, where smoking alters the effect of 
employment in shipyards as a risk for lung cancer. In that case, smoking is not only a 
confounder, it is an effect modifier, which modifies the effects of shipbuilding (on the 
possibility of having lung cancer).

Another illustration is provided in the following example concerning glaucomatous 
blindness.
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Example 1.3
Counts of persons registered blind from glaucoma are listed in Table 1.2.

For these disease registry data, direct calculation of a proportion results in a very tiny 
fraction, that is, the number of cases of the disease per person at risk. For convenience, 
in Table 1.2, this is multiplied by 100 000, and hence the result expresses the number of 
cases per 100 000 people. This data set also provides an example of the use of proportions 
as disease prevalence, which is defined as:

	
prevalence

number of diseased persons at the time of investigation

ttotal number of persons examined
.
	

Disease prevalence and related concepts are discussed in more detail in Section 1.2.2.
For blindness from glaucoma, calculations in Example 1.3 reveal a striking difference 

between the races: The blindness prevalence among nonwhites was over eight times that 
among whites. The number “100 000” was selected arbitrarily; any power of 10 would be 
suitable so as to obtain a result between 1 and 100, sometimes between 1 and 1000; it is 
easier to state the result “82 cases per 100 000” than to say that the prevalence is 0.00082.

1.1.2  Screening Tests

Other uses of proportions can be found in the evaluation of screening tests or diag-
nostic procedures. Following these procedures, using clinical observations or 
laboratory techniques, people are classified as healthy or as falling into one of a number 
of disease categories. Such tests are important in medicine and epidemiologic studies 
and may form the basis of early interventions. Almost all such tests are imperfect, in 
the sense that healthy persons will occasionally be classified wrongly as being ill, 
while some people who are really ill may fail to be detected. That is, misclassification 
is unavoidable. Suppose that each person in a large population can be classified as truly 
positive or negative for a particular disease; this true diagnosis may be based on more 
refined methods than are used in the test, or it may be based on evidence that emerges 
after the passage of time (e.g., at autopsy). For each class of people, diseased and 
healthy, the test is applied, with the results depicted in Figure 1.1.

The two proportions fundamental to evaluating diagnostic procedures are 
sensitivity and specificity. Sensitivity is the proportion of diseased people detected as 
positive by the test:

	
sensitivity

number of diseased persons who test positive

total numbber of diseased persons
.
	

Table 1.2

Population Cases Cases per 100 000

White 32 930 233 2832 8.6
Nonwhite 3 933 333 3227 82.0
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The corresponding errors are false negatives. Specificity is the proportion of healthy 
people detected as negative by the test:

	
specificity

number of healthy persons who test negative

total numbeer of healthy persons
.
	

The corresponding errors are false positives.
Clearly, it is desirable that a test or screening procedure be highly sensitive and 

highly specific. However, the two types of errors go in opposite directions; for 
example, an effort to increase sensitivity may lead to more false positives, and vice 
versa.

Example 1.4
A cytological test was undertaken to screen women for cervical cancer. Consider a 
group of 24 103 women consisting of 379 women whose cervices are abnormal (to an 
extent sufficient to justify concern with respect to possible cancer) and 23 724 women 
whose cervices are acceptably healthy. A test was applied and results are tabulated in 
Table 1.3. (This study was performed with a rather old test and is used here only for 
illustration.)

General
population

Diseased

Positive test results

Figure 1.1  Graphical display of a screening test.

Table 1.3

True

Test

Total− +

− 23 362 362 23 724
+ 225 154 379
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The calculations

	

sensitivity

or

specificity

154

379
0 406 40 6

23 362

23 724

0 98

. . %

. 55 98 5or . %	

show that the test is highly specific (98.5%) but not very sensitive (40.6%); among 
the 379 women with the disease, more than half (59.4%) had false negatives. 
The implications of the use of this test are:

1.	 If a woman without cervical cancer is tested, the result would almost surely be 
negative, but

2.	 If a woman with cervical cancer is tested, the chance is that the disease would 
go undetected because 59.4% of these cases would result in false negatives.

Finally, it is important to note that throughout this section, proportions have been 
defined so that both the numerator and the denominator are counts or frequencies, 
and the numerator corresponds to a subgroup of the larger group involved in the 
denominator, resulting in a number between 0 and 1 (or between 0 and 100%). It is 
straightforward to generalize this concept for use with characteristics having more 
than two outcome categories; for each category we can define a proportion, and these 
category‐specific proportions add up to 1 (or 100%).

Example 1.5
An examination of the 668 children reported living in crack/cocaine households shows 
70% blacks, followed by 18% whites, 8% Native Americans, and 4% other or unknown.

1.1.3  Displaying Proportions

Perhaps the most effective and most convenient way of presenting data, especially 
discrete data, is through the use of graphs. Graphs convey the information, the general 
patterns in a set of data, at a single glance. Therefore, graphs are often easier to read 
than tables; the most informative graphs are simple and self‐explanatory. Of course, 
to achieve that objective, graphs should be constructed carefully. Like tables, they 
should be clearly labeled and units of measurement and/or magnitude of quantities 
should be included. Remember that graphs must tell their own story; they should be 
complete in themselves and require little or no additional explanation.

Bar Charts  Bar charts are a very popular type of graph used to display several 
proportions for quick comparison. In applications suitable for bar charts, there are 
several groups and we investigate one binary characteristic. In a bar chart, the various 
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groups are represented along the horizontal axis; they may be arranged alphabetically, 
by the size of their proportions, or on some other rational basis. A vertical bar is 
drawn above each group such that the height of the bar is the proportion associated 
with that group. The bars should be of equal width and should be separated from one 
another so as not to imply continuity.

Example 1.6
We can present the data set on children without a recent physical checkup (Example 1.1) 
by a bar chart, as shown in Figure 1.2.

Pie Charts  Pie charts are another popular type of graph. In applications suitable for 
pie charts, there is only one group but we want to decompose it into several categories. 
A pie chart consists of a circle; the circle is divided into wedges that correspond to 
the magnitude of the proportions for various categories. A pie chart shows the differ-
ences between the sizes of various categories or subgroups as a decomposition of the 
total. It is suitable, for example, for use in presenting a budget, where we can easily 
see the difference between United States expenditures on health care and defense. 
In other words, a bar chart is a suitable graphic device when we have several groups, 
each associated with a different proportion; whereas a pie chart is more suitable 
when we have one group that is divided into several categories. The proportions of 
various categories in a pie chart should add up to 100%. Like bar charts, the categories 
in a pie chart are usually arranged by the size of the proportions. They may also be 
arranged alphabetically or on some other rational basis.

Example 1.7
We can present the data set on children living in crack households (Example 1.5) by 
a pie chart as shown in Figure 1.3.

Another example of the pie chart’s use is for presenting the proportions of deaths 
due to different causes.

26.4%

17.7%

Asians Blacks Native
Americans

Hispanics Whites

16.1%

10.0%

6.5%

Figure 1.2  Children without a recent physical checkup.
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Example 1.8
Table 1.4 lists the number of deaths due to a variety of causes among Minnesota 
residents for the year 1975. After calculating the proportion of deaths due to each 
cause: for example,

	

deaths due to cancer

or

6448

32 686

0 197 19 7. . %	

we can present the results as in the pie chart shown in Figure 1.4.

Line Graphs  A line graph is similar to a bar chart, but the horizontal axis represents 
time. In the applications most suitable to use line graphs, one binary characteristic is 
observed repeatedly over time. Different “groups” are consecutive years, so that a 
line graph is suitable to illustrate how certain proportions change over time. In a line 
graph, the proportion associated with each year is represented by a point at the appro-
priate height; the points are then connected by straight lines.

Whites
(18%)

Blacks (70%)
Native Americans (8%)

Others/Unknown (4%)

Figure 1.3  Children living in crack households.

Table 1.4

Cause of death Number of deaths

Heart disease 12 378
Cancer 6448
Cerebrovascular disease 3958
Accidents 1814
Others 8088

Total 32 686
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Example 1.9
Between the years 1984 and 1987, the crude death rates for women in the United 
States were as listed in Table  1.5. The change in crude death rate for American 
women can be represented by the line graph shown in Figure 1.5.

In addition to their use with proportions, line graphs can be used to describe 
changes in the number of occurrences and in continuous measurements.

Example 1.10
The line graph shown in Figure 1.6 displays the trend in rates of malaria reported in 
the United States between 1940 and 1989 (proportion × 100 000 as above).

1.2  RATES

The term rate is somewhat confusing: sometimes it is used interchangeably with the 
term proportion as defined in Section 1.1; sometimes it refers to a quantity of a very 
different nature. In Section 1.2.1, on the change rate, we cover this special use, and in 

Heart disease
37.9%

Cancer
19.7%

Accidents
5.5%

Others
24.7%

Cerebrovascular
disease
12.1%

Figure 1.4  Causes of death for Minnesota residents, 1975.

Table 1.5

Year Crude death rate per 100 000

1984 792.7
1985 806.6
1986 809.3
1987 813.1
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the next two Sections, 1.2.2 and 1.2.3, we focus on rates used interchangeably with 
proportions as measures of morbidity and mortality. Even when they refer to the same 
things – measures of morbidity and mortality – there is some degree of difference 
between these two terms. In contrast to the static nature of proportions, rates are aimed 
at measuring the occurrences of events during or after a certain time period.

1.2.1  Changes

Familiar examples of rates include their use to describe changes after a certain period 
of time. The change rate is defined by:

	
change rate

new value old value

old value
% .100
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792.7
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Figure 1.5  Death rates for United States women, 1984–1987.
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Figure 1.6  Malaria rates in the United States, 1940–1989.
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In general, change rates could exceed 100%. They are not proportions (a proportion 
is a number between 0 and 1 or between 0 and 100%). Change rates are used primarily 
for description and are not involved in common statistical analyses.

Example 1.11
The following is a typical paragraph of a news report:

A total of 35 238 new AIDS cases was reported in 1989 by the Centers for Disease 
Control (CDC), compared to 32 196 reported during 1988. The 9% increase is the 
smallest since the spread of AIDS began in the early 1980s. For example, new AIDS 
cases were up 34% in 1988 and 60% in 1987. In 1989, 547 cases of AIDS transmis-
sions from mothers to newborns were reported, up 17% from 1988; while females 
made up just 3971 of the 35 238 new cases reported in 1989, that was an increase of 
11% over 1988.

In Example 1.11:

1.	 The change rate for new AIDS cases was calculated as

	

35 238 32 196

32 196
100 9 4. %

	

 (this was rounded down to the reported figure of 9% in the news report).

2.	 For the new AIDS cases transmitted from mothers to newborns, we have

	
17

547 1988

1988
100%

cases

cases 	

 leading to

	

1988
547

1 17
468

cases
.

	

	� (a figure obtainable, as shown above, but usually not reported because of 
redundancy).

  Similarly, the number of new AIDS cases for the year 1987 is calculated as 
follows:

	
34

32 196 1987

1987
100%

cases

total 	

 or

	

1987
32 196

1 34
24 027

cases
.

.	
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3.	 Among the 1989 new AIDS cases, the proportion of females is

	

3971

35 238
0 113 11 3. . %or

	

 and the proportion of males is

	

35 238 3971

35 238
0 887 88 7. . %.or

	

The proportions of females and males add up to 1.0 or 100%.

1.2.2  Measures of Morbidity and Mortality

The field of vital statistics makes use of some special applications of rates, three types 
of which are commonly mentioned: crude, specific, and adjusted (or standardized). 
Unlike change rates, these measures are proportions. Crude rates are computed for an 
entire large group or population; they disregard factors such as age, gender, and race. 
Specific rates consider these differences among subgroups or categories of diseases. 
Adjusted or standardized rates are used to make valid summary comparisons between 
two or more groups possessing (for example) different age distributions.

The annual crude death rate is defined as the number of deaths in a calendar year 
divided by the population on 1 July of that year (which is usually an estimate); the 
quotient is often multiplied by 1000 or other suitable power of 10, resulting in a 
number between 1 and 100 or between 1 and 1000. For example, the 1980 population 
of California was 23 000 000 (as estimated on 1 July) and there were 190 237 deaths 
during 1980, leading to

	

crude death rate

deaths per persons

190 247

23 000 000
1000

8 3 1000. pper year.	

The age‐ and cause‐specific death rates are defined similarly.
As for morbidity, the disease prevalence, as defined in Section 1.1, is a proportion 

used to describe the population at a certain point in time, whereas incidence is a rate 
used in connection with new cases:

	

incidence rate

number of persons who developed the disease
over a deffined period of time one year, say

number of persons initially withhout the disease
who were followed for the defined period of time

.

	

In other words, the prevalence presents a snapshot of the population’s morbidity 
experience at a certain time point, whereas the incidence is aimed to investigate new 
onset morbidity. For example, the 35 238 new AIDS cases in Example 1.11 and the 
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national population without AIDS at the start of 1989 could be combined according 
to the formula above to yield an incidence of AIDS for the year.

Another interesting use of rates is in connection with cohort studies, epidemiolog-
ical designs in which one enrolls a group of persons and follows them over certain 
periods of time; examples include occupational mortality studies, among others. The 
cohort study design focuses on a particular exposure rather than a particular disease 
as in case–control studies. Advantages of a longitudinal approach include the oppor-
tunity for more accurate measurement of exposure history and a careful examination 
of the time relationships between exposure and any disease under investigation. Each 
member of a cohort belongs to one of three types of termination:

1.	 Subjects still alive on the analysis date;

2.	 Subjects who died on a known date within the study period;

3.	 Subjects who are lost to follow‐up after a certain date (these cases are a poten-
tial source of bias; effort should be expended on reducing the number of sub-
jects in this category).

The contribution of each member is the length of follow‐up time from enrollment 
to his or her termination. The quotient, defined as the number of deaths observed for 
the cohort, divided by the total of all members’ follow‐up times (in person‐years, 
say) is the rate to characterize the mortality experience of the cohort:

	

follow-up
death rate

number of deaths

total person-years
.
	

Rates may be calculated for total deaths and for separate causes of interest, and they 
are usually multiplied by an appropriate power of 10, say 1000, to result in a single‐ or 
double‐digit figure: for example, deaths per 1000 months of follow‐up. Follow‐up 
death rates may be used to measure the effectiveness of medical treatment programs.

Example 1.12
In an effort to provide a complete analysis of the survival of patients with end‐stage 
renal disease (ESRD), data were collected for a sample that included 929 patients who 
initiated hemodialysis for the first time at the Regional Disease Program in Minneapolis, 
Minnesota, between 1 January 1976 and 30 June 1982; all patients were followed until 
31 December 1982. Of these 929 patients, 257 are diabetics; among the 672 nondia-
betics, 386 are classified as low risk (without co‐morbidities such as arteriosclerotic 
heart disease, peripheral vascular disease, chronic obstructive pulmonary disease, and 
cancer). Results from these two subgroups are listed in Table 1.6. (Only some summa-
rized figures are given here for illustration; details such as numbers of deaths and total 
treatment months for subgroups are not included.) For example, for low‐risk patients 
over 60 years of age, there were 38 deaths during 2906 treatment months, leading to

	

38

2906
1000 13 08 1000. .deaths per treatment months
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1.2.3  Standardization of Rates

Crude rates, as measures of morbidity or mortality, can be used for population 
description and may be suitable for investigations of their variations over time; 
however, comparisons of crude rates are often invalid because the populations may 
be different with respect to an important characteristic such as age, gender, or race 
(these are potential confounders). To overcome this difficulty, an adjusted (or 
standardized) rate is used in the comparison; the adjustment removes the difference 
between populations in composition with respect to a confounder.

Example 1.13
Table 1.7 provides mortality data for Alaska and Florida for the year 1977.

Example 1.13 shows that the 1977 crude death rate per 100 000 population for 
Alaska was 396.8 and for Florida was 1085.7, almost a three‐fold difference. 
However, a closer examination shows the following:

1.	 Alaska had higher age‐specific death rates for four of the five age groups, the 
only exception being 45–64 years.

2.	 Alaska had a higher percentage of its population in the younger age groups.

The findings make it essential to adjust the death rates of the two states for age 
distribution in order to make a valid comparison. A simple way to achieve this, called 

Table 1.6

Group Age Deaths/1000 treatment months

Low risk 1–45 2.75
46–60 6.93
61+ 13.08

Diabetic 1–45 10.29
46–60 12.52
61+ 22.16

Table 1.7

Age group

Alaska Florida

Number 
of deaths Persons

Deaths  
per 100 000

Number 
of deaths Persons

Deaths per 
100 000

0–4 162 40 000 405.0 2 049 546 000 375.3
5–19 107 128 000 83.6 1 195 1 982 000 60.3
20–44 449 172 000 261.0 5 097 2 676 000 190.5
45–64 451 58 000 777.6 19 904 1 807 000 1 101.5
65+ 444 9 000 4 933.3 63 505 1 444 000 4 397.9

Total 1 615 407 000 396.8 91 760 8 455 000 1 085.3
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the direct method, is to apply, to a common standard population, age‐specific rates 
observed from the two populations under investigation. For this purpose, the United 
States population as of the last decennial census is frequently used. The procedure 
consists of the following steps:

1.	 The standard population is enumerated by the same age groups.

2.	 The expected number of deaths in the standard population is computed for 
each age group of each of the two populations being compared. For example, 
for age group 0–4, the United States population for 1970 was 84 416 (per 
million in total population); therefore, we have:

a.  Alaska rate = 405.0 per 100 000. The expected number of deaths is:

	

84 416 405 0

100 000
341 9

342

.
.

 	

 ( means “almost equal to”).

b.  Florida rate = 375.3 per 100 000. The expected number of deaths is:

	

84 416 375 3

100 000
316 8

317

.
.

 	

	� which is lower than the expected number of deaths for Alaska obtained for the 
same age group.

3.	 Obtain the total number of deaths expected by adding expected deaths across 
the age groups.

4.	 The age‐adjusted death rate is:

	
adjusted rate

total number of deaths expected

total standard populaation
100 000.

	

The calculations are detailed in Table 1.8.
The age‐adjusted death rate per 100 000 population for Alaska is 788.6 and for 

Florida is 770.6. These age‐adjusted rates are much closer than as shown by the crude 
rates, and the adjusted rate for Florida is lower. It is important to keep in mind that 
any population could be chosen as “standard,” and because of this, an adjusted rate is 
artificial; it does not reflect data from an actual population. The numerical values of 
the adjusted rates depend in large part on the choice of the standard population. They 
have real meaning only as relative comparisons.

The advantage of using the United States population as the standard is that 
we  can adjust death rates of many states and compare them with each other. 
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Any population could be selected and used as a standard. In Example 1.13 it does 
not mean that there were only one million people in the United States in 1970; it 
only presents the age distribution of one million United States residents for that 
year. If all we want to do is to compare Florida with Alaska, we could choose 
either state as the standard and adjust the death rate of the other; this practice 
would save half the labor. For example, if we choose Alaska as the standard 
population, the adjusted death rate for Florida is calculated as shown in Table 1.9. 
The new adjusted rate,

	

1590 100 000

407 000
390 7 100 000. per

	

is not the same as that obtained using the 1970 United States population as the 
standard (it was 770.6), but it also shows that after age adjustment, the death rate in 
Florida (390.7 per 100 000) is somewhat lower than that of Alaska (396.8 per 100 000; 
there is no need for adjustment here because we use Alaska’s population as the 
standard population).

Table 1.8

Age group
1970 United States 
standard million

Alaska Florida

Age‐specific 
rate

Expected 
deaths

Age‐specific 
rate

Expected 
deaths

0–4 84 416 405.0 342 375.3 317
5–19 294 353 83.6 246 60.3 177
20–44 316 744 261.0 827 190.5 603
45–64 205 745 777.6 1600 1101.5 2266
65+ 98 742 4933.3 4871 4397.9 4343

Total 1 000 000 7886 7706

Table 1.9

Age group
Alaska population 
(used as standard)

Florida

Rate/100 000 Expected number of deaths

0–4 40 000 375.3 150
5–19 128 000 60.3 77
20–44 172 000 190.5 328
45–64 58 000 1101.5 639
65+ 9 000 4397.9 396

Total 407 000 1590
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1.3  RATIOS

In many cases, such as disease prevalence and disease incidence, proportions and rates 
are defined very similarly, and the terms proportions and rates may even be used inter-
changeably. Ratio is a completely different term; it is a computation of the form

	
ratio

a

b 	

where a and b are similar quantities measured from different groups or under different 
circumstances. An example is the male/female ratio of smoking rates; such a ratio is 
positive but may exceed 1.0.

1.3.1  Relative Risk

One of the most often used ratios in epidemiological studies is relative risk, a concept 
for the comparison of two groups or populations with respect to a certain unwanted 
event (e.g., disease or death). The traditional method of expressing it in prospective 
studies is simply the ratio of the incidence rates:

	
relative risk

disease incidence in group

disease incidence in gro

1

uup 2
.
	

However, the ratio of disease prevalences as well as follow‐up death rates can also 
be formed. Usually, group 2 is under standard conditions–such as nonexposure to a 
certain risk factor – against which group 1 (exposed) is measured. A relative risk 
greater than 1.0 indicates harmful effects, whereas a relative risk below 1.0 indicates 
beneficial effects. For example, if group 1 consists of smokers and group 2 of 
nonsmokers, we have a relative risk due to smoking. Using the data on end‐stage 
renal disease (ESRD) of Example 1.12, we can obtain the relative risks due to 
diabetes (Table  1.10). All three numbers are greater than 1.0 (indicating higher 
mortality for diabetics) and form a decreasing trend with increasing age.

1.3.2  Odds and Odds Ratio

The relative risk, also called the risk ratio, is an important index in epidemiological 
studies because in such studies it is often useful to measure the increased risk (if any) 
of incurring a particular disease if a certain factor is present. In cohort studies such 
an index is obtained readily by observing the experience of groups of subjects with 

Table 1.10

Age group Relative risk

1–45 3.74 = 10.29/2.75
46–60 1.81= 12.52/6.93
61+ 1.69 = 22.16/13.08
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and without the factor, as shown in Table 1.11. In a case–control study the data do not 
present an immediate answer to this type of question, and we now consider how to 
obtain a useful shortcut solution.

Suppose that each subject in a large study, at a particular time, is classified as 
positive or negative according to some risk factor, and as having or not having a 
certain disease under investigation. For any such categorization the population may 
be enumerated in a 2 × 2 table (Table 1.11). The entries A, B, C, and D in the table 
are sizes of the four combinations of disease presence/ absence and factor presence/
absence, and the number N at the lower right corner of the table is the total population 
size. The relative risk is

	

RR
A

A B

C

C D
A C D

C A B
.

	

In many situations, the number of subjects classified as disease positive is small 
compared to the number classified as disease negative; that is,

	

C D D

A B B



 	

and therefore the relative risk can be approximated as follows:

	

RR 
AD

BC
A B

C D
A C

B D

/

/
/

/ 	

where the slash denotes division. The resulting ratio, AD/BC, is an approximate 
relative risk, but it is often referred to as an odds ratio because:

1.	 A/B and C/D are the odds in favor of having disease from groups with or 
without the factor, respectively.

Table 1.11

Factor

Disease

Total+ −

+ A B A + B
− C D C + D

Total A + C B+D N = A + B + C + D
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2.	 A/C and B/D are the odds in favor of having been exposed to the factors from 
groups with or without the disease. These two odds can easily be estimated using 
case–control data, by using sample frequencies. For example, the odds A/C can 
be estimated by a/c, where a is the number of exposed cases and c the number of 
nonexposed cases in the sample of cases used in a case–control design.

For the many diseases that are rare, the terms relative risk and odds ratio are used 
interchangeably because of the above‐mentioned approximation. Of course, it is 
totally acceptable to draw conclusions on an odds ratio without invoking this approx-
imation for a disease that is not rare. The relative risk is an important epidemiological 
index used to measure seriousness, or the magnitude of the harmful effect of suspected 
risk factors. For example, if we have

	 RR 3 0. 	

we can say that people exposed have a risk of contracting the disease that is approxi-
mately three times the risk of those unexposed. A perfect 1.0 indicates no effect, and 
beneficial factors result in relative risk values which are smaller than 1.0. From data 
obtained by a case–control or retrospective study, it is impossible to calculate the relative 
risk that we want, but if it is reasonable to assume that the disease is rare (prevalence is 
less than 0.05, say), we can calculate the odds ratio as a stepping stone and use it as an 
approximate relative risk. In these cases, we interpret the odds ratio calculated just as we 
would interpret the relative risk.

Example 1.14
The role of smoking in the etiology of pancreatitis has been recognized for many 
years. To provide estimates of the quantitative significance of these factors, a hospital‐
based study was carried out in eastern Massachusetts and Rhode Island between 
1975 and 1979. Ninety‐eight patients who had a hospital discharge diagnosis of 
pancreatitis were included in this unmatched case–control study. The control group 
consisted of 451 patients admitted for diseases other than those of the pancreas and 
biliary tract. Risk factor information was obtained from a standardized interview 
with each subject, conducted by a trained interviewer.

Some data for the males are given in Table 1.12. For these data for this example, 
the approximate relative risks, or odds ratios, are calculated as follows:

1.	 For ex‐smokers relative to never‐smokers,

	

RRe 
13 2

80 56
13 56

80 2

4 55

/

/

. . 	

	� (The subscript e in RR
e
 indicates that we are calculating the relative risk (RR) 

for ex‐smokers.)
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2.	 For current smokers relative to never‐smokers,

	

RRc 
38 2

81 56
38 56

81 2

13 14

/

/

. . 	

	� (The subscript c in RR
c
 indicates that we are calculating the relative risk (RR) 

for current smokers.)

In these calculations, the nonsmokers (who never smoke) are used as references. 
These values indicate that the risk of having pancreatitis for current smokers is 
approximately 13.14 times the risk for people who never smoke. The effect for 
ex‐smokers is smaller (4.55 times) but is still very high (compared to 1.0, the  
no‐effect baseline for relative risks and odds ratios). In other words, if the smokers 
were to quit smoking, they would reduce their own risk (from 13.14 times to 
4.55 times) but not to the normal level for people who never smoke.

1.3.3  Generalized Odds for Ordered 2 × k Tables

In this section we provide an interesting generalization of the concept of odds ratios to 
ordinal outcomes which are sometime used in biomedical research. Readers, especially 
beginners, may decide to skip it without loss of continuity; if so, the corresponding 
end‐of‐chapter Exercises should be skipped accordingly: 1.24(b), 1.25(c), 1.26(b), 
1.27(b, c), 1.35(c), 1.38(c), and 1.45(b).

We can see this possible generalization by noting that an odds ratio can be 
interpreted as an odds but for a different event. For example, consider again the same 
2 × 2 table as used in Section 1.3.2 (Table 1.11). Consider each of the A exposed cases, 
and imagine pairing each of them with each of the D unexposed controls; likewise 
consider each of the C unexposed cases and imagine pairing each of them with each 
of the B exposed controls. Then the number of these case–control pairs with different 
exposure histories is (AD + BC); among them, AD pairs with an exposed case and BC 
pairs with an exposed control. Therefore AD/BC, the odds ratio of Section 1.3.2, can 
be seen as the odds of finding a pair with an exposed case among the discordant pairs 
(a discordant pair is a case–control pair with different exposure histories).

The interpretation above of the concept of an odds ratio as an odds can be gener-
alized as follows. The aim here is to present an efficient method for use with ordered 

Table 1.12

Use of cigarettes Cases Controls

Never 2 56
Ex‐smokers 13 80
Current smokers 38 81

Total 53 217
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2 × k contingency tables, tables with two rows and k columns having a certain 
natural ordering. Let us first consider an example concerning the use of seat belts in 
automobiles. Each accident in this example is classified according to whether a seat 
belt was used and to the severity of injuries received: none, minor, major, or death 
(Table 1.13).

To compare the extent of injury from those who used seat belts with those who did 
not, we can calculate the percentage of seat belt users in each injury group, and we 
see that it decreases from level “none” to level “death:”

	

None

Minor

Major

De

: %

: %

: %

75

75 65
54

160

160 175
48

100

100 135
43

aath : %.
15

15 25
38

	

What we are seeing here is a trend or a statistical association indicating that the 
lower the percentage of seat belt users, the more severe the injury.

We now present the concept of generalized odds, a special statistic specifically 
formulated to measure the strength of such a trend, and will use the same example 
and another one to illustrate its use. In general, consider an ordered 2 × k table with 
the frequencies shown in Table 1.14.

The number of concordances is calculated by:

	 C a b b a b b a bk k k k1 2 2 3 1   	

Table 1.13

Seat belt

Extent of injury received

None Minor Major Death

Yes 75 160 100 15
No 65 175 135 25

Table 1.14

Row

Column level

Total1 2 ⋯ k

1 a
1

a
2

⋯ a
k

A
2 b

1
b

2
⋯ b

k
B

Total n
1

n
2

⋯ n
k

N
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(the term concordance pair as used above corresponds to a less severe injury for the 
seat belt user). The number of discordances is

	 D b a a b a a b ak k k k1 2 2 3 1   .	

To measure the degree of association, we use the index C/D and call it the gener-
alized odds; if there are only two levels of injury, this new index is reduced to the 
familiar odds ratio. When data are properly arranged, by an a priori hypothesis, the 
products in the number of concordance pairs C (e.g., a

1
b

2
) go from upper left to lower 

right, and the products in the number of discordance pairs D (e.g., b
1
a

2
) go from 

lower left to upper right. In that a priori hypothesis, column 1 is associated with row 
1; in the example above, the use of seat belt (yes, first row) is hypothesized to be 
associated with less severe injury (none, first column). Under this hypothesis, the 
resulting generalized odds is greater than 1.0.

Example 1.15
For the study above on the use of seat belts in automobiles, we have from the data 
shown in Table 1.13,

	

C

D

75 175 135 25 160 135 25 100 25

53 225

65 160 1100 15 175 100 15 135 15

40 025 	

leading to generalized odds of

	

C

D
53 225

40 025

1 33. . 	

That is, given two people with different levels of injury, the (generalized) odds that 
the more severely injured person did not wear a seat belt is 1.33. In other words, the 
people with the more severe injuries would be more likely than the people with less 
severe injuries to be those who did not use a seat belt.

The following example shows the use of generalized odds in case–control studies 
with an ordinal risk factor.

Example 1.16
A case–control study of the epidemiology of preterm delivery, defined as one with less 
than 37 weeks of gestation, was undertaken at Yale–New Haven Hospital in 
Connecticut during 1977. The study population consisted of 175 mothers of singleton 
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preterm infants and 303 mothers of singleton full‐term infants. Table 1.15 gives the 
distribution of mother’s age. We have:

	

C 15 25 62 122 78 22 62 122 78

47 122 78 56 78

23 837

16 22 47 56 35 25 47 56 35

62 56 35 122

D

35

15 922, 	

leading to generalized odds of:

	

C

D
23 837

15 922

1 5. . 	

This means that the odds that the younger mother has a preterm delivery is 1.5. 
In other words, the younger mothers would be more likely to have a preterm delivery.

The next example shows the use of generalized odds for contingency tables with 
more than two rows and more than two columns of data.

Example 1.17
Table 1.16 shows the results of a survey in which each subject of a sample of 282 
adults was asked to indicate which of three policies he or she favored with respect to 
smoking in public places. We have:

	

C

D

15 100 30 44 23 40 30 23 100 23

8380

5 100 30 40 10 44 30 10 100 10

4410. 	

Table 1.15

Age Cases Controls

14–17 15 16
18–19 22 25
20–24 47 62
25–29 56 122
≥30 35 78
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leading to generalized odds of:

	

C

D
8380

4410
1 9. . 	

This means that the odds that the more educated person favors more restriction for 
smoking in public places is 1.9. In other words, people with more education would 
prefer more restriction on smoking in public places.

1.3.4  Mantel–Haenszel Method

In most investigations we are concerned with one primary outcome, such as a disease, 
and are focusing on one primary (risk) factor, such as an exposure with a possible 
harmful effect. There are situations, however, where an investigator may want to 
adjust for a confounder that could influence the outcome of a statistical analysis. 
A confounder, or confounding variable, is a variable that may be associated with 
either the disease or exposure or both. For example, in Example 1.2, a case–control 
study was undertaken to investigate the relationship between lung cancer and 
employment in shipyards during World War II among male residents of coastal 
Georgia. In this case, smoking is a possible counfounder; it has been found to be 
associated with lung cancer and it may be associated with employment because 
construction workers are more likely to be smokers. Specifically, we want to know:

1.	 Among smokers, whether or not shipbuilding and lung cancer are related;

2.	 Among nonsmokers, whether or not shipbuilding and lung cancer are related.

In fact, the original data were tabulated separately for three smoking levels (non-
smoking, moderate smoking, heavy smoking); in Example 1.2, the last two tables 
were combined and presented together for simplicity. Assume that the confounder, 
smoking, is not an effect modifier (i.e., smoking does not alter the relationship 
between lung cancer and shipbuilding), and that we do not want to reach separate 

Table 1.16

Highest 
education level

Policy favored

Total
No restrictions 
on smoking

Smoking allowed in 
designated areas only

No smoking 
at all

Grade school 15 40 10 65
High school 15 100 30 145
College graduate 5 44 23 72

Total 35 184 63 300
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conclusions, one at each level of smoking. In those cases, we want to pool data for 
a combined decision. When both the disease and the exposure are binary, a popular 
method used to achieve this task is the Mantel–Haenszel method. This method 
provides one single estimate for the common odds ratio and can be summarized as 
follows:

1.	 We form 2 × 2 tables, one at each level of the confounder.

2.	 At each level of the confounder, we have the data listed in Table 1.17.

Since we assume that the confounder is not an effect modifier, the odds ratio is 
constant across its levels. The odds ratio at each level is estimated by ad/bc; the 
Mantel–Haenszel procedure pools data across levels of the confounder to obtain a 
combined estimate (a kind of weighted average of level‐specific odds ratios):

	
ORMH

ad n

bc n

/

/
.
	

Example 1.18
A case–control study was conducted to identify reasons for the exceptionally high 
rate of lung cancer among male residents of coastal Georgia as first presented in 
Example 1.2. The primary risk factor under investigation was employment in 
shipyards during World War II, and data are tabulated separately for three levels of 
smoking (Table 1.18).

There are three 2 × 2 tables, one for each level of smoking. We begin with the 2 × 2 
table for nonsmokers (Table 1.19). We have for the nonsmokers:

	

ad

n

bc

n

11 203

299
7 47

35 50

299
5 85

.

. . 	

Table 1.17

Exposure

Disease classification

Total+ −

+ a b r
1

− c d r
2

Total c
1

c
2

n
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The process is repeated for each of the other two smoking levels. For moderate 
smokers:

	

ad

n

bc

n

70 220

549
28 05

42 217

549
16 60

.

. . 	

For heavy smokers:

	

ad

n

bc

n

14 50

163
4 29

3 96

163
1 77

.

. . 	

These results are combined to obtain an estimate for the common odds ratio:

	

ORMH

7 47 28 05 4 29

5 85 16 60 1 77
1 64

. . .

. . .
. . 	

This combined estimate of the odds ratio, 1.64, represents an approximate increase 
of 64% in lung cancer risk for those employed in the shipbuilding industry.

Table 1.18

Smoking Shipbuilding Cases Controls

No Yes 11 35
No 50 203

Moderate Yes 70 42
No 217 220

Heavy Yes 14 3
No 96 50

Table 1.19

Shipbuilding Cases Controls Total

Yes 11 (a) 35 (b) 46 (r
1
)

No 50 (c) 203 (d) 253 (r
2
)

Total 61 (c
1
) 238 (c

2
) 299 (n)
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The following is a similar example aiming at the possible effects of oral contra-
ceptive use on myocardial infarction. The presentation has been shortened, showing 
only key calculations.

Example 1.19
A case–control study was conducted to investigate the relationship between myocar-
dial infarction (MI) and oral contraceptive use (OC). The data, stratified by cigarette 
smoking, are listed in Table  1.20. Application of the Mantel–Haenszel procedure 
yields the results shown in Table 1.21. The combined odds ratio estimate is

	

ORMH

3 57 18 84

2 09 12 54
1 53

. .

. .
. 	

representing an approximate increase of 53% in myocardial infarction risk for oral 
contraceptive users.

1.3.5  Standardized Mortality Ratio

In a cohort study, the follow‐up death rates are calculated and used to describe the 
mortality experience of the cohort under investigation. However, the observed 
mortality of the cohort is often compared with that expected from the death rates of 
the national population (used as standard or reference or baseline). The basis of this 
method is the comparison of the observed number of deaths, d, from the cohort with 
the mortality that would have been expected if the group had experienced death rates 
similar to those of the national population of which the cohort is a part. Let e denote 
the expected number of deaths; then the comparison is based on the following ratio, 
called the standardized mortality ratio:

	
SMR

d

e
.
	

Table 1.20

Smoking OC Use Cases Controls

No Yes 4 52
No 34 754

Yes Yes 25 83
No 171 853

Table 1.21

Smoking

No Yes

ad/n 3.57 18.84
bc/n 2.09 12.54
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The expected number of deaths is calculated using published national life tables, 
and the calculation can be approximated as follows:

	 e T 	

where T is the total follow‐up time (person‐years) from the cohort and λ the annual 
death rate (per person) from the referenced population. Of course, the annual death 
rate of the referenced population changes with age. Therefore, what we actually do 
in research is more complicated, although based on the same idea. First, we subdivide 
the cohort into many age groups, then calculate the product λT for each age group 
using the correct age‐specific rate for that group, and add up the results.

Example 1.20
Some 7000 British workers exposed to vinyl chloride monomer were followed for 
several years to determine whether their mortality experience differed from those of 
the general population. The data in Table 1.22 are for deaths from cancers and are 
tabulated separately for four groups based on years since entering the industry. This 
data display shows some interesting features:

1.	 For the group with 1–4 years since entering the industry, we have a death rate 
that is substantially less than that of the general population (SMR = 0.445, or 
44.5%). This phenomenon, known as the healthy worker effect, is probably a 
consequence of a selection factor whereby workers are necessarily in better 
health (than people in the general population) at the time of their entry into the 
workforce.

2.	 We see an attenuation of the healthy worker effect (i.e., a decreasing trend) 
with the passage of time, so that the cancer death rates show a slight excess 
after 15 years. (Vinyl chloride exposures are known to induce a rare form of 
liver cancer and to increase rates of brain cancer.)

Taking the ratio of two standardized mortality ratios is another way of expressing 
relative risk. For example, the risk of the 15+ years group is 1.58 times the risk of the 
5–9 years group, since the ratio of the two corresponding mortality ratios is:

	

111 8

70 6
1 58

.

.
. .

	

Table 1.22

Deaths from cancers

Years since entering the industry

Total1–4 5–9 10–14 15+

Observed   9 15 23   68 115
Expected 20.3 21.3 24.5   60.8 126.8
SMR (%) 44.5 70.6 94.0 111.8   90.7
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Similarly, the risk of the 15+ years group is 2.51 times the risk of the 1–4 years 
group because the ratio of the two corresponding mortality ratios is:

	

111 8

44 5
2 51

.

.
. .

	

1.4  NOTES ON COMPUTATIONS

Much of this book is concerned with arithmetic procedures for data analysis, some 
with rather complicated formulas. In many biomedical investigations, particularly 
those involving large quantities of data, the analysis (e.g., regression analysis in 
Chapter 9) gives rise to difficulties in computational implementation. In these inves-
tigations it will be necessary to use statistical software specially designed to do these 
jobs. Most of the calculations described in this book can be carried out readily using 
statistical packages, and any student or practitioner of data analysis will find the use 
of such packages essential.

Methods of survival analysis (first half of Chapter  13), for example, and 
nonparametric methods (Sections 2.4 and 7.4), and methods of multiple regression 
analysis (Section 9.2 and Chapters 10, 11, and 12) may best be handled by a special-
ized package such as SAS or R; coding instructions for these two packages are 
included in our examples where they were used. However, students and investigators 
contemplating the use of one of these commercial programs should read the specifica-
tions for each program before choosing the options necessary or suitable for any 
particular procedure. But these sections are exceptions; many calculations described 
in this book can be carried out readily using Microsoft Excel, software available in 
every personal computer. Notes on the use of Excel are included in separate sections 
at the end of each chapter.

A worksheet or spreadsheet is a (blank) sheet where you do your work. An Excel 
file holds a stack of worksheets in a workbook. You can name a sheet, put data on it 
and save; later, you can open and use it. You can move or size your windows by 
dragging the borders. You can also scroll up and down, or left and right, through an 
Excel worksheet using the scroll bars on the right side and at the bottom.

An Excel worksheet consists of grid lines forming columns and rows; columns are 
lettered and rows are numbered. The intersection of each column and row is a box 
called a cell. Every cell has an address, also called a cell reference; to refer to a cell, 
enter the column letter followed by the row number. For example, the intersection of 
column C and row 3 is cell C3. Cells hold numbers, text, or formulas. To refer to a 
range of cells, enter the cell in the upper left corner of the range followed by a 
colon (:) and then the lower right corner of the range. For example, A1:B20 refers to 
the first 20 rows in both columns A and B.

You can click a cell to make it active (for use); an active cell is where you enter or 
edit your data, and it is identified by a heavy border. You can also define or select a 
range by left‐clicking on the upper leftmost cell and dragging the mouse to the lower 
rightmost cell. To move around inside a selected range, press Tab or Enter to move 
forward one cell at a time.
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Excel is software designed to handle numbers; so get a project and start typing. 
Conventionally, files for data analysis use rows for subjects and columns for factors. 
For example, you conduct a survey using a 10‐item questionaire and receive returns 
from 75 people; your data require a file with 75 rows and 10 columns – not counting 
labels for columns (factor names) and rows (subject ID). If you make an error, it can 
be fixed (hit the Del key, which deletes the cell contents). You can change your mind 
again, deleting the delete, by clicking the Undo button (reverse curved arrow). 
Remember, you can widen your columns by double‐clicking their right borders.

The formula bar (near the top, next to an = sign) is a common way to provide the 
content of an active cell. Excel executes a formula from left to right and performs 
multiplication (*) and division (/) before addition (+) and subtraction (−). Parenthenses 
can/should be used to change the order of calculations. To use formulas (e.g., for data 
transformation), do it in one of two ways: (1) click the cell you want to fill, then type 
an = sign followed by the formula in the formula bar (e.g., click C5, then type = A5 + 
B5); or (2) click the cell you want to fill, then click the paste function icon, f*, which 
will give you – in a box – a list of Excel functions available for your use.

The cut and paste procedure greatly simplifies the typing necessary to form a chart 
or table or to write numerous formulas. The procedure involves highlighting the cells 
that contain the information you want to copy, clicking on the cut button (scissors 
icon) or copy button (two‐page icon), selecting the cell(s) in which the information is 
to be placed, and clicking on the paste button (clipboard and page icon).

The select and drag is very efficient for data transformation. Suppose that you 
have the weight and height of 15 men (weights are in C6:C20 and heights are in 
D6:D20) and you need their body mass index. You can use the formula bar, for 
example, clicking E6 and typing = C6/(D6∧2). The content of E6 now has the body 
mass index for the first man in your sample, but you do not have to repeat this process 
15 times. Notice that when you click on E6, there is a little box in the lower right 
corner of the cell boundary. If you move the mouse over this box, the cursor changes 
to a smaller plus sign. If you click on this box, you can then drag the mouse over the 
remaining cells (E7 to E20), and when you release the button, the cells will be filled 
with the calculated body mass index values.

Bar and Pie Charts  Forming a bar chart or pie chart to display proportions is a 
very simple task. Just click any blank cell to start; you’ll be able to move your chart 
to any location when done. With data ready, click the ChartWizard icon (the one 
with multiple colored bars on the standard toolbar near the top). A box appears with 
choices including bar chart, pie chart, and line chart; the list is on the left side. 
Choose your chart type and follow instructions. There are many choices, including 
three dimensions. You can put data and charts side by side for an impressive 
presentation.

Rate Standardization  This is a good problem to practice with Excel: Use it as a 
calculator. Recall this example:

•• Florida’s rate = 1085.3

•• Alaska’s rate = 396.8
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•• If Florida has Alaska’s population (see Table 1.9), you can:

•• Use formula to calculate the first number of expected deaths.

•• Use drag and fill to obtain other numbers of expected deaths.

•• Select the last column, then click the Autosum icon (Σ) to obtain the total 
number of deaths expected.

Forming 2 × 2 Tables  Recall that in a data file you have one row for each subject 
and one column for each variable. Suppose that two of those variables are categorical, 
say binary, and you want to form a 2 × 2 table so you can study their relationship: for 
example, to calculate an odds ratio.

•• Step 0: Create a dummy factor; call it, say, fake, and fill up that column with “1” 
(you can enter “1” for the first subject, then select and drag).

•• Step 1: Activate a cell (by clicking it), then click Data (on the bar above the 
standard toolbar, near the end); when a box appears, choose Pivot‐Table Report. 
Click “next” (to indicate that data are here, in Excel, then highlight the area 
containing your data (including variable names on the first row – use the mouse; 
or you could identify the range of cells – say, C5:E28) as a response to a question 
on range. Then click “next” to bring in the PivotTable Wizard, which shows two 
groups of things:

a.  A frame for a 2 × 2 table with places identified as row, column, and data;

b.  Names of the factors you chose: say, exposure, disease, and fake.

•• Step 2: Drag exposure to merge with row (or column), drag disease to merge 
with column (or row), and drag fake to merge with data. Then click Finish; a  
2  × 2 table appears in the active cell you identified, complete with cell 
frequencies, row and column totals, and grand total.

Note: If you have another factor in addition to exposure and disease available in 
the data set, even a column for names or IDs, there is no need to create the dummy 
factor. Complete step 1; then, in step 2, drag that third factor, say ID, to merge with 
“data” in the frame shown by the PivotTable Wizard; it appears as sum ID. Click on 
that item, then choose count (to replace sum).

EXERCISES

1.1	 Self‐reported injuries among left‐ and right‐handed people were compared in a 
survey of 1986 college students in British Columbia, Canada. Of the 180 left‐
handed students, 93 reported at least one injury, and 619 of the 1716 right‐
handed students reported at least one injury in the same period. Arrange the 
data in a 2 × 2 table and calculate the proportion of people with at least one 
injury during the period of observation for each group.

1.2	 A study was conducted to evaluate the hypothesis that tea consumption and 
premenstrual syndrome are associated. A group of 188 nursing students and 
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64 tea factory workers were given questionnaires. The prevalence of 
premenstrual syndrome was 39% among the nursing students and 77% among 
the tea factory workers. How many people in each group have premenstrual 
syndrome? Arrange the data in a 2 × 2 table.

1.3	 The relationship between prior condom use and tubal pregnancy was assessed in 
a population‐based case–control study at Group Health Cooperative of Puget 
Sound during 1981–1986. The results are shown in Table E1.3. Compute the group 
size and the proportion of subjects in each group who never used condoms.

1.4	 Epidemic keratoconjunctivitis (EKC) or “shipyard eye” is an acute infectious 
disease of the eye. A case of EKC is defined as an illness:

•• Consisting of redness, tearing, and pain in one or both eyes for more than 
three days’ duration;

•• Diagnosed as EKC by an ophthalmologist.

	� In late October 1977, physician A (one of the two ophthalmologists providing 
the majority of specialized eye care to the residents of a central Georgia county; 
population 45 000) saw a 27‐year‐old nurse who had returned from a vacation 
in Korea with severe EKC. She received symptomatic therapy and was warned 
that her eye infection could spread to others; nevertheless, numerous cases of 
an illness similar to hers soon occurred in the patients and staff of the nursing 
home (nursing home A) where she worked (these people came to physician A 
for diagnosis and treatment). Table E1.4 provides the exposure history of 22 
persons with EKC between 27 October 1977 and 13 January 1978 (when the 
outbreak stopped after proper control techniques were initiated). Nursing home 
B, included in this table, is the only other area chronic‐care facility. Compute 
and compare the proportions of cases from the two nursing homes. What would 
be your conclusion?

1.5	 In August 1976, tuberculosis was diagnosed in a high school student (index case) 
in Corinth, Mississippi. Subsequently, laboratory studies revealed that the stu-
dent’s disease was caused by drug‐resistant tubercule bacilli. An epidemiologic 

Table E1.3

Condom use Cases Controls

Never 176 488
Always 51 186

Table E1.4

Exposure cohort Number exposed Number of cases

Nursing home A 64 16
Nursing home B 238 6
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investigation was conducted at the high school. Table  E1.5 gives the rate of 
positive tuberculin reactions, determined for various groups of students according 
to degree of exposure to the index case.

(a)  �Compute and compare the proportions of positive cases for the two 
exposure levels. What would be your conclusion?

(b)  �Calculate the odds ratio associated with high exposure. Does this result 
support your conclusion in part (a)?

1.6	 Consider the data taken from a study that attempts to determine whether the use 
of electronic fetal monitoring (EFM) during labor affects the frequency of 
cesarean section deliveries. Of the 5824 infants included in the study, 2850 were 
electronically monitored and 2974 were not. The outcomes are listed in Table E1.6.

(a)  �Compute and compare the proportions of cesarean delivery for the two 
exposure groups. What would be your conclusion?

(b)  �Calculate the odds ratio associated with EFM exposure. Does this result 
support your conclusion in part (a)?

1.7	 A study was conducted to investigate the effectiveness of bicycle safety helmets 
in preventing head injury. The data consist of a random sample of 793 persons 
who were involved in bicycle accidents during a one‐year period (Table E1.7).

(a)	 Compute and compare the proportions of head injury for the group with 
helmets versus the group without helmets. What would be your conclusion?

Table E1.5

Exposure level Number tested Number positive

High 129 63
Low 325 36

Table E1.6

Cesarean delivery

EFM exposure

TotalYes No

Yes 358 229 587
No 2492 2745 5237
Total 2850 2974 5824

Table E1.7

Head injury

Wearing helmet

TotalYes No

Yes   17 218 235
No 130 428 558
Total 147 646 793
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(b)	 Calculate the odds ratio associated with not using helmet. Does this result 
support your conclusion in part (a)?

1.8	 A case–control study was conducted in Auckland, New Zealand, to investigate 
the effects among regular drinkers of alcohol consumption on both nonfatal 
myocardial infarction and coronary death in the 24 hours after drinking. Data 
were tabulated separately for men and women (Table E1.8).

(a)	 Refer to the myocardial infarction data. Calculate separately for men and 
women the odds ratio associated with drinking.

(b)	 Compare the two odds ratios in part (a). When the difference is confirmed 
properly, we have an effect modification.

(c)	 Refer to coronary deaths. Calculate separately for men and women the 
odds ratio associated with drinking.

(d)	 Compare the two odds ratios in part (c). When the difference is confirmed 
properly, we have an effect modification.

1.9	 Data taken from a study to investigate the effects of smoking on cervical cancer 
are stratified by the number of sexual partners (Table E1.9).

(a)	 Calculate the odds ratio associated with smoking separately for the two 
groups, those with zero or one partner and those with two or more partners.

(b)	 Compare the two odds ratios in part (a). When the difference is confirmed 
properly, we have an effect modification.

(c)	 Assuming that the odds ratios for the two groups, those with zero or one 
partner and those with two or more partners, are equal (in other words, the 
number of partners is not an effect modifier), calculate the Mantel–
Haenszel estimate of this common odds ratio.

Table E1.8

Drink during the last 24 h

Myocardial infarction Coronary death

Controls Cases Controls Cases

Men No 197 142 135 103
Yes 201 136 159 69

Women No 144 41 89 12
Yes 122 19 76 4

Table E1.9

Number of partners Smoking

Cancer

Yes No

Zero or one Yes 12 21
No 25 118

Two or more Yes 96 142
No 92 150
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1.10	 Table E1.10 provides the proportions of currently married women having an 
unplanned pregnancy. (Data are tabulated for several different methods of con-
traception.) Display these proportions in a bar chart.

1.11	 Table E1.11 summarizes the coronary heart disease (CHD) and lung cancer 
mortality rates per 1000 person‐years by the number of cigarettes smoked per 
day at baseline for men participating in the Multiple Risk Factor Intervention 
Trial (MRFIT, a very large controlled clinical trial focusing on the relationship 
between smoking and cardiovascular diseases). For each cause of death, display 
the rates in a bar chart.

1.12	 Table E1.12 provides data taken from a study on the association between race 
and use of medical care by adults experiencing chest pain in the past year. 
Display the proportions of the three response categories for each group, blacks 
and whites, in a separate pie chart.

1.13	 The frequency distribution for the number of cases of pediatric AIDS between 
1983 and 1989 is shown in Table E1.13. Display the trend of numbers of cases 
using a line graph.

Table E1.10

Method of contraception Proportion with unplanned pregnancy

None 0.431
Diaphragm 0.149
Condom 0.106
IUD 0.071
Pill 0.037

Table E1.11

Total

CHD deaths Lung cancer deaths

N Rate/1000 person‐years N Rate/1000 person‐years

Never‐smokers 1859 44 2.22 0 0
Ex‐smokers 2813 73 2.44 13 0.43
Smokers
1–19 cigarettes/day 856 23 2.56 2 0.22
20–39 cigarettes/day 3747 173 4.45 50 1.29
≥40 cigarettes/day 3591 115 3.08 54 1.45

Table E1.12

Response Black White

MD seen in past year 35 67
MD seen not in past year 45 38
MD never seen 78 39
Total 158 144
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1.14	 A study was conducted to investigate the changes between 1973 and 1985 in 
women’s use of three preventive health services. The data were obtained from 
the National Health Survey; women were divided into subgroups according to 
age and race. The percentages of women receiving a breast exam within the 
past two years are given in Table E1.14. Separately for each group, blacks and 
whites, display the proportions of women receiving a breast exam within the 
past two years in a bar chart so as to show the relationship between the exami-
nation rate and age. Mark the midpoint of each age group on the horizontal axis 
and display the same data using a line graph.

1.15	 Consider the data shown in Table E1.15. Calculate the sensitivity and speci-
ficity of x‐ray as a screening test for tuberculosis.

Table E1.13

Year Number of cases Year Number of cases

1983 122 1987 1 412
1984 250 1988 2 811
1985 455 1989 3 098
1986 848

Table E1.14

Age and race

Breast examination 
within past two years

1973 1985

Total 65.5 69.6
  Black 61.7 74.8
  White 65.9 69.0
20–39 years 77.5 77.9
  Black 77.0 83.9
  White 77.6 77.0
40–59 years 62.1 66.0
  Black 54.8 67.9
  White 62.9 65.7
60–79 years 44.3 56.2
  Black 39.1 64.5
  White 44.7 55.4

Table E1.15

X‐ray

Tuberculosis

TotalNo Yes

Negative 1739 8 747
Positive 51 22 73
Total 1790 30 1820
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1.16	 Sera from a T‐lymphotropic virus type (HTLV‐I) risk group (prostitute women) 
were tested with two commercial “research” enzyme‐linked immunoabsorbent 
assays (EIA) for HTLV‐I antibodies. These results were compared with a gold 
standard, and outcomes are shown in Table E1.16. Calculate and compare the 
sensitivity and specificity of these two EIAs.

1.17	 Table E1.17 provides the number of deaths for several leading causes among 
Minnesota residents for the year 1991.

(a)	 Calculate the percentage of total deaths from each cause, and display the 
results in a pie chart.

(b)	 From the death rate (per 100 000 population) for heart disease, calculate the 
population for Minnesota for the year 1991.

(c)	 From the result of part (b), fill in the missing death rates (per 100 000 
population) in the table.

1.18	 The survey described in Example 1.1, continued in Section 1.1.1, provided per-
centages of boys from various ethnic groups who use tobacco at least weekly. 
Display these proportions in a bar chart similar to the one in Figure 1.2.

1.19	 A case–control study was conducted relating to the epidemiology of breast 
cancer and the possible involvement of dietary fats, vitamins, and other nutrients. 
It included 2024 breast cancer cases admitted to Roswell Park Memorial Institute, 
Erie County, New York, from 1958 to 1965. A control group of 1463 was chosen 
from patients having no neoplasms and no pathology of gastrointestinal or repro-
ductive systems. The primary factors being investigated were vitamins A and E 
(measured in international units per month). Data for 1500 women over 54 years 
of age are given in Table E1.19. Calculate the odds ratio associated with a decrease 
(exposure is low consumption) in ingestion of foods containing vitamin A.

Table E1.16

True

Dupont’s EIA Cellular product’s EIA

Positive Negative Positive Negative

Positive 15 1 16 0
Negative 2 164 7 179

Table E1.17

Cause of death Number of deaths Rate per 100 000 population

Heart disease 10 382 294.5
Cancer 8 299 ?
Cerebrovascular disease 2 830 ?
Accidents 1 381 ?
Other causes 11 476 ?

Total 34 368 ?
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1.20	 Refer to the data set in Table 1.1 (see Example 1.2).

(a)	 Calculate the odds ratio associated with employment in shipyards for 
nonsmokers.

(b)	 Calculate the same odds ratio for smokers.

(c)	 Compare the results of parts (a) and (b). When the difference is confirmed 
properly, we have a three‐term interaction or effect modification, where 
smoking alters the effect of employment in shipyards as a risk for lung 
cancer.

(d)	 Assuming that the odds ratios for the two groups, nonsmokers and smokers, 
are equal (in other words, smoking is not an effect modifier), calculate the 
Mantel–Haenszel estimate of this common odds ratio.

1.21	 Although cervical cancer is not a major cause of death among American 
women, it has been suggested that virtually all such deaths are preventable. In 
an effort to find out who is being screened for the disease, data from the 1973 
National Health Interview (a sample of the United States population) were used 
to examine the relationship between Pap testing and some socioeconomic 
factors. Table E1.21 provides the percentages of women who reported never 
having had a Pap test. (These are from metropolitan areas.)

(a)	 Calculate the odds ratios associated with race (black versus white) among
(i)  25–44 years old, nonpoor

(ii)  45–64 years old, nonpoor

(iii)  65+ years old, nonpoor.

Table E1.19

Vitamin A (IU/month) Cases Controls

≤150 500 893 392
>150 500 132 83

Total 1025 475

Table E1.21

Age and income White Black

25–44 years
  Poor 13.0 14.2
  Nonpoor 5.9 6.3
45–64 years
  Poor 30.2 33.3
  Nonpoor 13.2 23.3
65 years and over
  Poor 47.4 51.5
  Nonpoor 36.9 47.4
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Briefly discuss a possible effect modification, if any.

(b)	 Calculate the odds ratios associated with income (poor versus nonpoor) 
among

(i)  25–44 years old, black

(ii)  45–64 years old, black

(iii)  65+ years old, black.
Briefly discuss a possible effect modification, if any.

(c)	 Calculate the odds ratios associated with race (black versus white) among

(i)  65+ years old, poor

(ii)  65+ years old, nonpoor.
Briefly discuss a possible effect modification.

1.22	 Since incidence rates of most cancers rise with age, this must always be consid-
ered a confounder. Stratified data for an unmatched case–control study are 
given in Table E1.22. The disease was esophageal cancer among men and the 
risk factor was alcohol consumption.

(a)	 Calculate separately for the three age groups the odds ratio associated with 
high alcohol consumption.

(b)	 Compare the three odds ratios in part (a). When the difference is confirmed 
properly, we have an effect modification.

(c)	 Assuming that the odds ratios for the three age groups are equal (in other 
words, age is not an effect modifier), calculate the Mantel–Haenszel estimate 
of this common odds ratio.

1.23	 Postmenopausal women who develop endometrial cancer are on the whole 
heavier than women who do not develop the disease. One possible explanation 
is that heavy women are more exposed to endogenous estrogens which are pro-
duced in postmenopausal women by conversion of steroid precursors to active 
estrogens in peripheral fat. In the face of varying levels of endogenous estrogen 

Table E1.22

Age

Daily alcohol consumption

80+ g 0–79 g

25–44 years
  Cases 5 5
  Controls 35 270
45–64 years
  Cases 67 55
  Controls 56 277
65+ years
  Cases 24 44
  Controls 18 129
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production, one might ask whether the carcinogenic potential of exogenous 
estrogens would be the same in all women. A case–control study has been con-
ducted to examine the relation among weight, replacement estrogen therapy, 
and endometrial cancer. The results are shown in Table E1.23.

(a)	 Calculate separately for the three weight groups the odds ratio associated 
with estrogen replacement.

(b)	 Compare the three odds ratios in part (a). When the difference is confirmed 
properly, we have an effect modification.

(c)	 Assuming that the odds ratios for the three weight groups are equal (in 
other words, weight is not an effect modifier), calculate the Mantel–
Haenszel estimate of this common odds ratio.

1.24	 The role of menstrual and reproductive factors in the epidemiology of breast 
cancer has been reassessed using pooled data from three large case–control 
studies of breast cancer from several Italian regions (Negri et al., 1988). 
Table E1.24 summarizes data for age at menopause and age at first live birth.

Table E1.23

Weight (kg)

Estrogen replacement

Yes No

<57
  Cases 20 12
  Controls 61 183
57–75
  Cases 37 45
  Controls 113 378
>75
  Cases 9 42
  Controls 23 140

Table E1.24

Cases Controls

Age at first live birth (years)
  <22 621 898
  22–24 795 909
  25–27 791 769
  ≥28 1043 775
Age at menopause (years)
  <45 459 543
  45–49 749 803
  ≥50 1378 1167
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(a)	 For each of the two factors (age at first live birth and age at menopause), 
choose the lowest level as the reference and calculate the odds ratio associ-
ated with each other level.

(b)	 For each of the two factors (age at first live birth and age at menopause), 
calculate the generalized odds and give your interpretation. How does this 
result compare with those in part (a)?

1.25	 Risk factors of gallstone disease were investigated in male self‐defense offi-
cials who received, between October 1986 and December 1990, a retirement 
health examination at the Self‐Defense Forces Fukuoka Hospital, Fukuoka, 
Japan. Some of the data are shown in Table E1.25.

(a)	 For each of the three factors (smoking, alcohol, body mass index), rear-
range the data into a 3 × 2 table; the other column is for those without 
gallstones.

(b)	 For each of the three 3 × 2 tables in part (a), choose the lowest level as the 
reference and calculate the odds ratio associated with each other level.

(c)	 For each of the three 3 × 2 tables in part (a), calculate the generalized odds 
and give your interpretation. How does this result compare with those in 
part (b)?

1.26	 Data were collected from 2197 white ovarian cancer patients and 8893 white 
controls in 12 different United States case–control studies conducted by var-
ious investigators in the period 1956–1986. These were used to evaluate the 
relationship of invasive epithelial ovarian cancer to reproductive and menstrual 
characteristics, exogenous estrogen use, and prior pelvic surgeries. Data related 
to unprotected intercourse and to history of infertility are shown in Table E1.26.

(a)	 For each of the two factors (duration of unprotected intercourse and history 
of infertility, treating the latter as ordinal: no history, history but no drug 

Table E1.25

Factor

Number of men surveyed

Total Number with gallstones

Smoking
Never 621 11
Past 776 17
Current 1342 33

Alcohol
Never 447 11
Past 113 3
Current 2179 47

Body mass index (kg/m2)
<22.5 719 13
22.5–24.9 1301 30
≥25.0 719 18
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use, and history with drug use), choose the lowest level as the reference, 
and calculate the odds ratio associated with each other level.

(b)	 For each of the two factors (duration of unprotected intercourse and history 
of infertility, treating the latter as ordinal: no history, history but no drug 
use, and history with drug use), calculate the generalized odds and give 
your interpretation. How does this result compare with those in part (a)?

1.27	 Postneonatal mortality due to respiratory illnesses is known to be inversely 
related to maternal age, but the role of young motherhood as a risk factor for 
respiratory morbidity in infants has not been explored thoroughly. A study 
was conducted in Tucson, Arizona, aimed at the incidence of lower respiratory 
tract illnesses during the first year of life. In this study, over 1200 infants 
were enrolled at birth between 1980 and 1984. The data shown in Table E1.27 
are concerned with wheezing lower respiratory tract illnesses (wheezing LRI: 
no/yes).

(a)	 For each of the two groups, boys and girls, choose the lowest age group as 
the reference and calculate the odds ratio associated with each age group.

(b)	 For each of the two groups, boys and girls, calculate the generalized odds 
and give your interpretation. How does this result compare with those in 
part (a)?

(c)	 Compare the two generalized odds in part (b) and draw your conclusion.

Table E1.26

Cases Controls

Duration of unprotected intercourse (years)
<2 237 477
2–9 166 354
10–14 47 91
≥15 133 174

History of infertility
No 526 966
Yes

No drug use 76 124
Drug use 20 11

Table E1.27

Maternal age (years)

Boys Girls

No Yes No Yes

<21 19 8 20 7
21–25 98 40 128 36
26–30 160 45 148 42
>30 110 20 116 25
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1.28	 An important characteristic of glaucoma, an eye disease, is the presence of 
classical visual field loss. Tonometry is a common form of glaucoma screening, 
whereas, for example, an eye is classified as positive if it has an intraocular 
pressure of 21 mmHg or higher at a single reading. Given the data shown in 
Table E1.28, calculate the sensitivity and specificity of this screening test.

1.29	 From the information in the news report quoted in Example 1.11, calculate:

(a)	 The number of new AIDS cases for the years 1987 and 1986.

(b)	 The number of cases of AIDS transmission from mothers to newborns for 
1988.

1.30	 In an effort to provide a complete analysis of the survival of patients with end‐
stage renal disease (ESRD), data were collected for a sample that included 929 
patients who initiated hemodialysis for the first time at the Regional Disease 
Program in Minneapolis, Minnesota between 1 January 1976 and 30 June 1982; 
all patients were followed until 31 December 1982. Of these 929 patients, 257 
are diabetics; among the 672 nondiabetics, 386 are classified as low risk 
(without comorbidities such as arteriosclerotic heart disease, peripheral 
vascular disease, chronic obstructive pulmonary, and cancer). For the low‐risk 
ESRD patients, we have the follow‐up data shown in Table E1.30 (in addition 
to those in Example 1.12). Compute the follow‐up death rate for each age group 
and the relative risk for the group “70+” versus “51–60.”

1.31	 Mortality data for the state of Georgia for the year 1977 are given in part (a) of 
Table E1.31.

(a)	 From this mortality table, calculate the crude death rate for Georgia.

(b)	 From Table E1.31 and the mortality data for Alaska and Florida for the year 
1977 (Table  1.7), calculate the age‐adjusted death rate for Georgia and 

Table E1.28

Field loss

Test result

TotalPositive Negative

Yes 13 7 20
No 413 4567 4980

Table E1.30

Age (years) Deaths Treatment months

21–30 4 1012
31–40 7 1387
41–50 20 1706
51–60 24 2448
61–70 21 2060
70+ 17 846
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compare to those for Alaska and Florida, with the United States population 
given in Table 1.8, reproduced here as part (b) in Table E1.31, being used 
as the standard.

(c)	 Calculate the age‐adjusted death rate for Georgia with the Alaska population 
serving as the standard population. How does this adjusted death rate 
compare to the crude death rate of Alaska?

1.32	 Refer to the same set of mortality data as in Exercise 1.31. Calculate and 
compare the age‐adjusted death rates for the states of Alaska and Florida, with 
the Georgia population serving as the standard population. How do mortality in 
these two states compare to mortality in the state of Georgia?

1.33	 Some 7000 British workers exposed to vinyl chloride monomer were followed 
for several years to determine whether their mortality experience differed from 
those of the general population. In addition to data for deaths from cancers as 
seen in Example 1.20 (Table 1.23), the study also provided the data shown in 
Table E1.33 for deaths due to circulatory disease. Calculate the SMR for each 
subgroup and the relative risk for group “15+” versus group “1–4.”

Table E1.31a

Age (years) Deaths Population

0–4 2 483 424 600
5–19 1 818 1 818 000
20–44 3 656 1 126 500
45–64 12 424 870 800
65+ 21 405 360 800

Table E1.31b

Age (years) Group Population

0–4 84 416
5–19 294 353
20–44 316 744
45–64 205 745
65+ 98 742
Total 1 000 000

Table E1.33

Deaths

Years since entering the industry

Total1–4 5–9 10–14 15+

Observed   7 25 38 110 180
Expected 32.5 35.6 44.9 121.3 234.1
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1.34	 A long‐term follow‐up study of diabetes has been conducted among Pima 
Indian residents of the Gila River Indian Community of Arizona since 1965. 
Subjects of this study who were at least five years old and of at least half Pima 
ancestry were examined approximately every two years; examinations included 
measurements of height and weight and a number of other factors. Table E1.34 
relates diabetes incidence rate (new cases/1000 person‐years) to body mass 
index (a measure of obesity defined as weight/height2). Display these rates by 
means of a bar chart.

1.35	 In the course of selecting controls for a study to evaluate the effect of caffeine‐
containing coffee on the risk of myocardial infarction among women 30–49 
years of age, a study noted appreciable differences in coffee consumption 
among hospital patients admitted for illnesses not known to be related to 
coffee use. Among potential controls, the coffee consumption of patients who 
had been admitted to hospital by conditions having an acute onset (such as 
fractures) was compared to that of patients admitted for chronic disorders 
(Table E1.35).

(a)	 Each of the 6815 subjects above is considered as belonging to one of the 
three groups defined by the number of cups of coffee consumed per day 
(the three columns). Calculate for each of the three groups the proportion 
of subjects admitted because of an acute onset. Display these proportions 
by means of a bar chart.

(b)	 For those admitted because of their chronic conditions, express their coffee 
consumption by means of a pie chart.

(c)	 Calculate the generalized odds and give your interpretation. Exposure is 
defined as having an acute condition.

Table E1.34

Body mass index Incidence rate

<20 0.8
20–25 10.9
25–30 17.3
30–35 32.6
35–40 48.5
≥40 72.2

Table E1.35

Reason for admission

Cups of coffee per day

0 1–4 ≥5 Total

Acute conditions 340 457 183 980
Chronic conditions 2440 2527 868 5835
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1.36	 In a seroepidemiologic survey of health workers representing a spectrum of 
exposure to blood and patients with hepatitis B virus (HBV), it was found that 
infection increased as a function of contact. Table  E1.36 provides data for 
hospital workers with uniform socioeconomic status at an urban teaching 
hospital in Boston, Massachusetts.

(a)	 Calculate the proportion of HBV‐positive workers in each subgroup.

(b)	 Calculate the odds ratios associated with frequent contacts (compared to 
infrequent contacts). Do this separately for physicians and nurses.

(c)	 Compare the two ratios obtained in part (b). A large difference would 
indicate a three‐term interaction or effect modification, where frequent 
exposure effects are different for physicians and nurses.

(d)	 Assuming that the odds ratios for the two groups, physicians and nurses, 
are equal (in other words, type of personnel is not an effect modifier), 
calculate the Mantel–Haenszel estimate of this common odds ratio.

1.37	 The results of the Third National Cancer Survey have shown substantial 
variation in lung cancer incidence rates for white males in Allegheny County, 
Pennsylvania, which may be due to different smoking rates. Table E1.37 gives 
the percentages of current smokers by age for two study areas.

(a)	 Display the age distribution for Lawrenceville by means of a pie chart.

(b)	 Display the age distribution for South Hills by means of a pie chart. How 
does this chart compare to the one in part (a)?

(c)	 Display the smoking rates for Lawrenceville and South Hills, side by side, 
by means of a bar chart.

Table E1.36

Personnel Exposure n HBV positive

Physicians Frequent 81 17
Infrequent 89 7

Nurses Frequent 104 22
Infrequent 126 11

Table E1.37

Age (years)

Lawrenceville South Hills

n % n %

35–44 71 54.9 135 37.0
45–54 79 53.2 193 28.5
55–64 119 43.7 138 21.7
≥65 109 30.3 141 18.4

Total 378 46.8 607 27.1
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1.38	 Prematurity, which ranks as the major cause of neonatal morbidity and 
mortality, has traditionally been defined on the basis of a birth weight under 
2500 g. But this definition encompasses two distinct types of infants: infants 
who are small because they are born early, and infants who are born at or near 
term but are small because their growth was retarded. Prematurity has now 
been replaced by low birth weight to describe the second type, and preterm to 
characterize the first type (babies born before 37 weeks of gestation).

	�   A case–control study of the epidemiology of preterm delivery was under-
taken at Yale–New Haven Hospital in Connecticut during 1977. The study 
population consisted of 175 mothers of singleton preterm infants and 303 
mothers of singleton full‐term infants. Table E1.38 gives the distribution of age 
(Table E1.38a) and socioeconomic status (Table E1.38b).

(a)	 Refer to the age data and choose the “≥30” group as the reference. Calculate 
the odds ratio associated with every other age group. Is it true, in general, 
that the younger the mother, the higher the risk?

(b)	 Refer to the socioeconomic data and choose the “lower” group as the 
reference. Calculate the odds ratio associated with every other group. Is it 
true, in general, that the poorer the mother, the higher the risk?

(c)	 Refer to the socioeconomic data. Calculate the generalized odds and give 
your interpretation. Does this support the conclusion in part (b)?

1.39	 Sudden infant death syndrome (SIDS), also known as sudden unexplained 
death, crib death, or cot death, claims the lives of an alarming number of 
apparently normal infants every year. In a study at the University of Connecticut 

Table E1.38b

Socioeconomic level Cases Controls

Upper 11 40
Upper middle 14 45
Middle 33 64
Lower middle 59 91
Lower 53 58
Unknown   5   5

Table E1.38a

Age (years) Cases Controls

14–17 15 16
18–19 22 25
20–24 47 62
25–29 56 122
≥30 35 78
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School of Medicine, significant associations were found between SIDS and 
certain demographic characteristics. Some of the summarized data are given in 
Table E1.39. (Expected deaths are calculated using Connecticut infant mortality 
data for 1974–1976.)

(a)	 Calculate the standardized mortality ratio (SMR) for each subgroup.

(b)	 Compare males with females and blacks with whites.

1.40	 Adult male residents of 13 counties in western Washington in whom testicular 
cancer had been diagnosed during 1977–1983 were interviewed over the tele-
phone regarding their history of genital tract conditions, including vasectomy. 
For comparison, the same interview was given to a sample of men selected 
from the population of these counties by dialing telephone numbers at random. 
The data in Table E1.40 are tabulated by religious background. Calculate the 
odds ratio associated with vasectomy for each religious group. Is there any 
evidence of an effect modification? If not, calculate the Mantel–Haenszel 
estimate of the common odds ratio.

1.41	 The role of menstrual and reproductive factors in the epidemiology of breast 
cancer has been reassessed using pooled data from three large case–control 
studies of breast cancer from several Italian regions. The data are summarized 

Table E1.39

Number of deaths

Observed Expected

Gender
Male 55 45
Female 35 45

Race
Black 23 11
White 67 79

Table E1.40

Religion Vasectomy Cases Controls

Protestant Yes 24 56
No 205 239

Catholic Yes 10 6
No 32 90

Others Yes 18 39
No 56 96
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in Table E1.24 for age at menopause and age at first live birth. Find a way (or 
ways) to summarize the data further so as to express the observation that the 
risk of breast cancer is lower for women with younger ages at first live birth and 
younger ages at menopause.

1.42	 In 1979 the United States Veterans Administration conducted a health survey of 
11 230 veterans. The advantages of this survey are that it includes a large 
random sample with a high interview response rate, and it was done before the 
public controversy surrounding the issue of the health effects of possible 
exposure to Agent Orange. The data in Table E1.42 relate Vietnam service to 
eight posttraumatic stress disorder symptoms among the 1787 veterans who 
entered military service between 1965 and 1975. Calculate the odds ratio for 
each symptom.

1.43	 It has been hypothesized that dietary fiber decreases the risk of colon cancer, 
whereas meats and fats are thought to increase this risk. A large study was 
undertaken to confirm these hypotheses. Fiber and fat consumptions are classi-
fied as low or high, and data are tabulated separately in Table E1.43 for males 

Table E1.42

Symptom

Service in Vietnam

Yes No

Nightmares
  Yes 197 85
  No 577 925
Sleep problems
  Yes 173 160
  No 599 851
Troubled memories
  Yes 220 105
  No 549 906
Depression
  Yes 306 315
  No 465 699
Temper control problems
  Yes 176 144
  No 595 868
Life goal association
  Yes 231 225
  No 539 786
Omit feelings
  Yes 188 191
  No 583 821
Confusion
  Yes 163 148
  No 607 864
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and females (“low” means below median). For each group (males and females), 
using “low fat, high fiber” as the reference, calculate the odds ratio associated 
with every other dietary combination. Is there any evidence of an effect modi-
fication (interaction between consumption of fat and consumption of fiber)?

1.44	 Data are compiled in Table E1.44 from different studies designed to investigate 
the accuracy of death certificates. The results of 5373 autopsies were compared 
to the causes of death listed on the certificates. Find a graphical way to display 
the downward trend of accuracy over time.

1.45	 A study was conducted to ascertain factors that influence a physician’s 
decision to transfuse a patient. A sample of 49 attending physicians was 
selected. Each physician was asked a question concerning the frequency 
with which an unnecessary transfusion was given because another physician 
suggested it. The same question was asked of a sample of 71 residents. The 
data are shown in Table E1.45.

Table E1.43

Diet

Males Females

Cases Controls Cases Controls

Low fat, high fiber 27 38 23 39
Low fat, low fiber 64 78 82 81
High fat, high fiber 78 61 83 76
High fat, low fiber 36 28 35 27

Table E1.45

Type of 
physician

Frequency of unnecessary transfusion

Very 
Frequently 
(every week)

Frequently 
(every two 
weeks)

Occasionally 
(every 
month)

Rarely 
(every two 
months) Never

Attending 1   1   3 31 13
Resident 2 13 28 23   5

Table E1.44

Date of study

Accurate certificate

TotalYes No

1955–1965 2040 694 2734
1970–1971   437 203   640
1975–1978 1128 599 1727
1980   121 151   272
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(a)	 Choose “never” as the reference and calculate the odds ratio associated 
with each other frequency and “residency.”

(b)	 Calculate the generalized odds and give your interpretation. Does this 
result agree with those in part (a)?

1.46	 When a patient is diagnosed as having cancer of the prostate, an important 
question in deciding on a treatment strategy is whether or not the cancer has 
spread to the neighboring lymph nodes. The question is so critical in prognosis 
and treatment that it is customary to operate on the patient (i.e., perform a 
laparotomy) for the sole purpose of examining the nodes and removing tissue 
samples to examine under the microscope for evidence of cancer. However, 
certain variables that can be measured without surgery are predictive of the 
nodal involvement; and the purpose of the study presented here was to examine 
the data for 53 prostate cancer patients receiving surgery to determine which 
of five preoperative variables are predictive of nodal involvement. Table E1.46 
presents the complete data set. For each of the 53 patients, there are two 
continuous independent variables, age at diagnosis and level of serum acid 
phosphatase (×100; called “acid”), and three binary variables: x‐ray reading, 
pathology reading (grade) of a biopsy of the tumor obtained by needle before 
surgery, and a rough measure of the size and location of the tumor (stage) 
obtained by palpation with the fingers via the rectum. For these three binary 
independent variables, a value of 1 signifies a positive or more serious state 
and a 0 denotes a negative or less serious finding. In addition, the sixth column 
presents the finding at surgery—the primary outcome of interest, which is 
binary, a value of 1 denoting nodal involvement, and a value of 0 denoting no 
nodal involvement found at surgery. In this exercise we investigate the effects 
of the three binary preoperative variables (x‐ray, grade, stage); the effects of 
the two continuous factors (age, acid phosphatase) will be studied in an 
exercise in Chapter 2.

(a)	 Arrange the data on nodes and x‐ray into a 2 × 2 table, calculate the odds 
ratio associated with x‐ray and give your interpretation.

(b)	 Arrange the data on nodes and grade into a 2 × 2 table, calculate the odds 
ratio associated with grade and give your interpretation.

(c)	 Arrange the data on nodes and stage into a 2 × 2 table, calculate the odds 
ratio associated with stage and give your interpretation.

		�  If you use Microsoft Excel to solve this problem, 2 × 2 tables can be formed 
using PivotTable Wizard in the Data menu. A SAS program for part (a), for 
example, would include these intructions:

	 PROC FREQ;
  	      TABLES NODES*XRAY/ OR;
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2
DESCRIPTIVE METHODS FOR 
CONTINUOUS DATA

A class of measurements or a characteristic on which individual observations or 
measurements are made is called a variable; examples include weight, height, and 
blood pressure. Suppose that we have a set of numerical values for a variable:

1.	 If each element of this set may lie only at a few isolated points, we have a 
discrete data set. Examples are race, gender, counts of events, or some sort of 
artificial grading.

2.	 If each element of this set may theoretically lie anywhere on the numerical 
scale, we have a continuous data set. Examples are blood pressure, cholesterol 
level, or time to a certain event, such as death.

In Chapter 1 we dealt with the summarization and description of discrete data; in 
this chapter the emphasis is on continuous measurements.

2.1  TABULAR AND GRAPHICAL METHODS

There are various ways of organizing and presenting data; simple tables and graphs, 
however, are still very effective methods. They are designed to help the reader obtain 
an intuitive feeling for the data at a glance.

2.1.1  One‐Way Scatter Plots

One‐way scatter plots are the simplest type of graph that can be used to summarize 
a set of continuous observations. A one‐way scatter plot uses a single horizontal 
axis to display the relative position of each data point. As an example, Figure 2.1 
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depicts the crude death rates for all 50 states and the District of Columbia, from a 
low of 393.9 per 100 000 population to a high of 1242.1 per 100 000 population. An 
advantage of a one‐way scatter plot is that, since each observation is represented 
individually, no information is lost; a disadvantage is that it may be difficult to read 
(and to construct) if values are close to each other or if the data set is very large.

2.1.2  Frequency Distribution

There is no difficulty if the data set is small, for we can arrange those few numbers 
and write them, say, in increasing order; the result would be sufficiently clear and 
Figure 2.1 is an example. For fairly large data sets, a useful device for summariza­
tion is the formation of a frequency table or frequency distribution. This is a table 
showing the number of observations, called frequency, within certain ranges of 
values of the variable under investigation. For example, taking the variable to be age 
at death, we have the following example; the second column of the table provides 
the frequencies.

Example 2.1 
Table 2.1 gives the number of deaths by age for the state of Minnesota in 1987.

If a data set is to be grouped to form a frequency distribution, difficulties should 
be recognized, and an efficient strategy is needed for better communication. First, 
there is no clear‐cut rule on the number of intervals or classes. With too many inter­
vals, the data are not summarized enough for a clear visualization of how they are 
distributed. On the other hand, too few intervals are undesirable because the data are 
oversummarized, and some of the details of the distribution may be lost. In general, 
between 5 and 15 intervals are acceptable; of course, this also depends on the number 
of observations, we can and should use more intervals for larger data sets.

The widths of the intervals must also be decided. Example 2.1 shows the special 
case of mortality data, where it is traditional to show infant deaths (deaths of persons 
who are born live but die before living one year). Without such specific reasons, 
intervals generally should be of the same width. This common width w may be deter­
mined by dividing the range R by k, the number of intervals:

	
w

R

k 	

where the range R is the difference between the smallest and largest in the data set. 
In addition, a width should be chosen so that it is convenient to use or easy to recog­
nize, such as a multiple of 5 (or 1, for example, if the data set has a narrow range). 

393.9 1242.1
Rate per 100 000 population

Figure 2.1  Crude death rates for the United States, 1988.
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Similar considerations apply to the choice of the beginning of the first interval; it is 
a convenient number that is low enough for the first interval to include the smallest 
observation. Finally, care should be taken in deciding in which interval to place an 
observation falling on one of the interval boundaries. For example, a consistent rule 
could be made so as to place such an observation in the interval for which the obser­
vation in question is the lower limit.

Example 2.2 
The following are weights in pounds of 57 children at a day‐care center:

68  63 42 27 30 36 28 32 79 27
22 23 24 25 44 65 43 25 74 51
36 42 28 31 28 25 45 12 57 51
12 32 49 38 42 27 31 50 38 21
16 24 69 47 23 22 43 27 49 28
23 19 46 30 43 49 12

From the data set above we have:

1.	 The smallest number is 12 and the largest is 79, so that:

	
R 79 12

67. 	

If five intervals are used, we would have:

	

w
67

5
13 4. .	

Table 2.1

Age (years) Number of deaths

<1 564
1–4 86
5–14 127
15–24 490
25–34 667
35–44 806
45–54 1425
55–64 3511
65–74 6932
75–84 10 101
85+ 9825

Total 34 524
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and if 15 intervals are used, we would have:

	

w
67

15
4 5. .	

Between these two values, 4.5 and 13.6, there are two convenient (or conven­
tional) numbers: 5 and 10. Since the sample size of 57 is not large, a width of 
10 should be an apparent choice because it results in fewer intervals (the usual 
concept of “large” is “100 or more”).

2.	 Since the smallest number is 12, we may begin our first interval at 10. The con­
siderations discussed so far lead to the following seven intervals:

	

10 19

20 29

30 39

40 49

50 59

60 69

70 79	

3.	 Determining the frequencies or the number of values or measurements for each 
interval is merely a matter of examining the values one by one and of placing 
a tally mark beside the appropriate interval. When we do this we have the fre­
quency distribution of the weights of the 57 children (Table 2.2). The tempo­
rary column of tallies should be deleted from the final table.

4.	 An optional but recommended step in the formulation of a frequency distribu­
tion is to present the proportion or relative frequency in addition to frequency 
for each interval. These proportions, defined by

	
relative frequency

frequency

total number of observations	

are shown in Table 2.2 and would be very useful if we need to compare two 
data sets of different sizes.

Table 2.2

Weight interval (lb) Tally Frequency Relative frequency (%)

10–19 |||| 5 8.8
20–29 |||| |||| |||| |||| 19 33.3
30–39 |||| |||| 10 17.5
40–49 |||| |||| ||| 13 22.8
50–59 |||| 4 7.0
60–69 |||| 4 7.0
70–79 || 2 3.5

Total 57 100.0
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Example 2.3
A study was conducted to investigate the possible effects of exercise on the menstrual 
cycle. From the data collected from that study, we obtained the menarchal age (in 
years) of 56 female swimmers who began their swimming training after they had 
reached menarche (the beginning of menstruation); these served as controls to com­
pare with those who began their training prior to menarche.

14.0  16.1 13.4 14.6 13.7 13.2 13.7 14.3
12.9 14.1 15.1 14.8 12.8 14.2 14.1 13.6
14.2 15.8 12.7 15.6 14.1 13.0 12.9 15.1
15.0 13.6 14.2 13.8 12.7 15.3 14.1 13.5
15.3 12.6 13.8 14.4 12.9 14.6 15.0 13.8
13.0 14.1 13.8 14.2 13.6 14.1 14.5 13.1
12.8 14.3 14.2 13.5 14.1 13.6 12.4 15.1

From this data set we have the following:

1.	 The smallest number is 12.4 and the largest is 16.1, so that:

	
R 16 1 12 4

3 7
. .

. . 	

If five intervals are used, we would have:

	

w
3 7

5
0 74

.

. .	

and if 15 intervals are used, we would have:

	

w
3 7

15
0 25

.

. .	

Between these two values, 0.25 and 0.74, 0.5 seems to be a convenient number 
to use as the width; 0.25 is another choice but it would create many intervals 
(15) for such a small data set. (Another alternative is to express ages in months 
and not to deal with decimal numbers.)

2.	 Since the smallest number is 12.4, we may begin our intervals at 12.0, leading 
to the following intervals:

	

12 0 12 4
12 5 12 9
13 0 13 4
13 5 13 9
14 0 14 4
14 5 14 9
15 0

. .

. .

. .

. .

. .

. .

. 15 4
15 5 15 9
16 0 16 4

.
. .
. . 	
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3.	 Count the number of swimmers whose ages belong to each of the nine inter­
vals, and the frequencies, then obtain the frequency distribution of menarchal 
age of 56 swimmers (Table 2.3), completed with the last column for relative 
frequencies (expressed as percentages).

2.1.3  Histogram and Frequency Polygon

A convenient way of displaying a frequency table is by means of a histogram and/or 
a frequency polygon. A histogram is a diagram in which:

1.	 The horizontal scale represents the value of the variable marked at interval 
boundaries.

2.	 The vertical scale represents the frequency or relative frequency in each 
interval (see the exceptions below).

A histogram presents us with a graphical picture of the distribution of measure­
ments. This picture consists of rectangular bars adjacent to each other, one for each 
interval, as shown in Figure 2.2 for the data set of Example 2.2. If disjoint intervals 
are used, such as in Table 2.2, the horizontal axis is marked with true boundaries. 
A true boundary is the average of the upper limit of one interval and the lower limit 
of the next‐higher interval. For example, 19.5 serves as the true upper boundary of 
the first interval and the true lower boundary for the second interval. In cases where 
we need to compare the shapes of the histograms representing different data sets, or 
if intervals are of unequal widths, the height of each rectangular bar should represent 
the density of the interval, where the interval density is defined by:

	
density

relative frequency

interval width

%
.
	

The unit for density is percentage per unit (of measurement): for example, 
percentage per year. If we graph the densities on the vertical axis, the relative frequency 
is represented by the area of the rectangular bar, and the total area under the histogram 
is 100%. It may always be a good practice to graph densities on the vertical axis with 

Table 2.3

Age (years) Frequency Relative frequency (%)

12.0–12.4 1 1.8
12.5–12.9 8 14.3
13.0–13.4 5 8.9
13.5–13.9 12 21.4
14.0–14.4 16 28.6
14.5–14.9 4 7.1
15.0–15.4 7 12.5
15.5–15.9 2 3.6
16.0–16.4 1 1.8

Total 56 100.0
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or without having equal class widths; when class widths are equal, the shape of the his­
togram looks similar to the graph, with relative frequencies on the vertical axis.

To draw a frequency polygon, we first place a dot at the midpoint of the upper base 
of each rectangular bar. The points are connected with straight lines. At the ends, the 
points are connected to the midpoints of the previous and succeeding intervals (these 
are made‐up intervals with zero frequency, where the widths are the widths of the 
first and last intervals, respectively). A frequency polygon so constructed is another 
way to portray graphically the distribution of a data set (Figure 2.3). The frequency 
polygon can also be shown without the histogram on the same graph.

The frequency table and its graphical relatives, the histogram and the frequency 
polygon, have a number of applications, as explained below; the first leads to a 
research question and the second leads to a new analysis strategy.

1.	 When data are homogeneous, the table and graphs usually show a unimodal 
pattern with one peak in the middle part. A bimodal pattern might indicate the 
possible influence or effect of a certain hidden factor or factors.

Example 2.4 
Table 2.4 provides data on age and percentage saturation of bile for 31 male patients. 
Using 10% intervals, the data set can be represented by a histogram or a frequency 
polygon, as shown in Figure 2.4. This picture shows an apparent bimodal distribu­
tion; however, a closer examination shows that, among the nine patients with over 
100% saturation, eight (or 89%) are over 50 years of age. On the other hand, only 
four of 22 (or 18%) patients with less than 100% saturation are over 50 years of age. 
The two peaks in Figure 2.4 might correspond to the two age groups.
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Figure 2.2  Distribution of weights of 57 children.
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Figure 2.3  Distribution of weights of 57 children.

Table 2.4

Age
Percentage  
saturation Age

Percentage  
saturation Age

Percentage  
saturation

23 40 55 137 48 78
31 86 31 88 27 80
58 111 20 88 32 47
25 86 23 65 62 74
63 106 43 79 36 58
43 66 27 87 29 88
67 123 63 56 27 73
48 90 59 110 65 118
29 112 53 106 42 67
26 52 66 110 60 57
64 88
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Figure 2.4  Frequency polygon for percentage saturation of bile in men.
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2.	 Another application concerns the symmetry of the distribution as depicted by 
the table or its graphs. A symmetric distribution is one in which the distribution 
has the same shape on both sides of the peak location. If there are relatively 
more extremely large values compared to extremely small values, the distribu­
tion is then skewed to the right, or positively skewed. Examples include family 
income, antibody level after vaccination, and drug dose to produce a predeter­
mined level of response, among others. It is common that, for positively 
skewed distributions, subsequent statistical analyses should be performed on 
the log scale: for example, to compute and/or to compare averages of log(dose).

Example 2.5 
The distribution of family income for the United States in 1983 by race is shown in 
Table  2.5. The distribution for nonwhite families is represented in the histogram 
in Figure 2.5, where the vertical axis represents the density (percentage per $ 1000). 
It is obvious that the distribution is not symmetric; it is very skewed to the right. In 
this histogram, we graph the densities on the vertical axis. For example, for the sec­
ond income interval (15 000–19 999), the relative frequency is 31% and the width of 
the interval is $ 5000 (31% per $ 5000), leading to the density

	

31

5000
1000 6 2.

	

Table 2.5

Income ($)

Percentage of families

White Nonwhite

0–14 999 13 34
15 000–19 999 24 31
20 000–24 999 26 19
25 000–34 999 28 13
35 000–59 999 9 3
60 000 and over 1 Negligible

Total 100 100
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Figure 2.5  Income of United States nonwhite families, 1983.



64� DESCRIPTIVE METHODS FOR CONTINUOUS DATA

or 6.2% per $1000 (we arbitrarily multiply by 1000, or any power of 10, just to obtain 
a larger number for easy graphing).

2.1.4  Cumulative Frequency Graph and Percentiles

Cumulative relative frequency, or cumulative percentage, gives the percentage of 
persons having a measurement less than or equal to the upper boundary of the class 
interval. Data from Table 2.2 for the distribution of the weights of 57 children are 
reproduced and supplemented with a column for cumulative relative frequency in 
Table 2.6. This last column is easy to form; you do it by successively accumulating 
the relative frequencies of each of the various intervals. In the table the cumulative 
percentage for the first three intervals is

	 8 8 33 3 17 5 59 6. . . . 	

and we can say that 59.6% of the children in the data set have a weight of 39.5 lb or 
less. Or, as another example, 96.4% of children weigh 69.5 lb or less, and so on.

The cumulative relative frequency can be presented graphically as in Figure 2.6. This 
type of curve is called a cumulative frequency graph. To construct such a graph, we 
place a point with a horizontal axis marked at the upper class boundary and a vertical 
axis marked at the corresponding cumulative frequency. Each point represents the 
cumulative relative frequency and the points are connected with straight lines. At the left 
end it is connected to the lower boundary of the first interval. If disjoint intervals such as

	

10 19
20 29
and so on . . .	

are used, points are placed at the true boundaries.
The cumulative percentages and their graphical representation, the cumulative 

frequency graph, have a number of applications. When two cumulative frequency 
graphs, representing two different data sets, are placed on the same graph, they pro­
vide a rapid visual comparison without any need to compare individual intervals. 
Figure 2.7 gives such a comparison of family incomes, using data from Example 2.5.

The cumulative frequency graph provides a class of important statistics known as 
percentiles or percentile scores. The 90th percentile, for example, is the numerical 
value that exceeds 90% of the values in the data set and is exceeded by only 10% of 

Table 2.6

Weight interval (lb) Frequency Relative frequency (%)
Cumulative relative  
frequency (%)

10–19 5 8.8 8.8
20–29 19 33.3 42.1
30–39 10 17.5 59.6
40–49 13 22.8 82.4
50–59 4 7.0 89.4
60–69 4 7.0 96.4
70–79 2 3.5 99.9 ≃ 100.0

Total 57 100.0
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them. Or, as another example, the 80th percentile is that numerical value that exceeds 
80% of the values contained in the data set and is exceeded by 20% of them, and so 
on. The 50th percentile is commonly called the median. In Figure 2.7 the median 
family income in 1983 for nonwhites was about $ 17 500, compared to a median of 
about $ 22 000 for white families. To get the median, we start at the 50% point on the 
vertical axis and go horizontally until meeting the cumulative frequency graph; the 
projection of this intersection on the horizontal axis is the median. Other percentiles 
are obtained similarly.

The cumulative frequency graph also provides an important application in the 
formation of health norms (see Figure 2.8) for the monitoring of physical progress 
(weight and height) of infants and children. Here, the same percentiles, say the 90th, 
of the weight or height of groups of different ages are joined by a curve.

100%

75%

50%

25%

9.5 19.5 29.5 39.5
Weight (lb)

49.5 59.5 69.5 79.5

Figure 2.6  Cumulative distribution of weights of 57 children.
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Figure 2.7  Distributions of family income for the United States in 1983.



Figure 2.8  Weight (a) and height (b) curves.
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Example 2.6 
Figure 2.9 provides results from a study of Hmong refugees in the Minneapolis– 
St. Paul area, where each dot represents the average height of five refugee girls of the 
same age. The graph shows that, even though the refugee girls are small, mostly in 
the lowest 25%, they grow at the same rate as measured by the American standard. 
However, the pattern changes by the age of 15 years when their average height drops 
to a level below the 5th percentile. In this example, we plot the average height of five 
girls instead of individual heights; because the Hmong are small, individual heights 
are likely to be off the chart. This concept of average or mean is explained in detail 
in Section 2.2.
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Figure 2.9  Mean stature by age for 5 refugee girls superimposed on weight curves.
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2.1.5  Stem and Leaf Diagrams

A stem‐and‐leaf diagram is a graphical representation in which the data points are 
grouped in such a way that we can see the shape of the distribution while retaining 
the individual values of the data points. This is particularly convenient and useful for 
smaller data sets. Stem‐and‐leaf diagrams are similar to frequency tables and histo­
grams, but they also display each and every observation. Data on the weights of 
children from Example 2.2 are adopted here to illustrate the construction of this 
simple device. The weights (in pounds) of 57 children at a day‐care center are as 
follows:

68  63 42 27 30 36 28 32 79 27
22 23 24 25 44 65 43 25 74 51
36 42 28 31 28 25 45 12 57 51
12 32 49 38 42 27 31 50 38 21
16 24 69 47 23 22 43 27 49 28
23 19 46 30 43 49 12

A stem‐and‐leaf diagram consists of a series of rows of numbers. The number 
used to label a row is called a stem, and the other numbers in the row are called 
leaves. There are no hard rules about how to construct a stem‐and‐leaf diagram. 
Generally, it consists of the following steps:

1.	 Choose some convenient/conventional numbers to serve as stems. The stems 
chosen are usually the first one or two digits of individual data points.

2.	 Reproduce the data graphically by recording the digit or digits following the 
stems as a leaf on the appropriate stem. Usually the digits are recorded in 
ascending order.

If the final graph is turned on its side, it looks similar to a histogram (Figure 2.10). 
The device is not practical for use with larger data sets because some stems are too long 
(have too many leaves).
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Figure 2.10  Stem and leaf diagram of weights of 57 children.
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2.2  NUMERICAL METHODS

Although tables and graphs serve useful purposes, there are many situations that 
require other types of data summarization. What we need in many applications is the 
ability to summarize data by means of just a few numerical measures, particularly 
before inferences or generalizations are drawn from the data. Measures for describing 
the location (or typical value) of a set of measurements and their variation or disper­
sion are used for these purposes.

First, let us suppose that we have n measurements in a data set; for example, here 
is a data set:

	 { }8 2 3 5, , , 	

with n = 4. We usually denote these numbers as x
i
s; thus we have for the example 

above: x
1
 = 8, x

2
 = 2, x

3
 = 3, and x

4
 = 5. If we add all the x

i
s in the data set above, we 

obtain 18 as the sum. This addition process is denoted by

	 x 18	

where the Greek letter Σ (sigma) is the summation sign. With the summation notation, 
we are now able to define a number of important summarized measures, starting with 
the arithmetic average or mean.

2.2.1  Mean

Given a data set of size n,

	 x x xn1 2, , , 	

the mean of the x’s will be denoted by x  (“x‐bar”) and is computed by summing all 
the x’s and dividing the sum by n. Symbolically,

	
x

x

n
.
	

It is important to know that Σ stands for an operation (that of obtaining the sum of 
the quantities that follow) rather than a quantity itself. For example, considering the 
data set

	 { }8 5 4 12 15 5 7, , , , , , 	

we have

	

n
x

7
56	

leading to

	

x
56

7
8. 	
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Occasionally, data, especially secondhand data, are presented in the grouped form  
of a frequency table. In these cases, the mean x  can be approximated using the 
formula

	
x

fm

n


	

where f denotes the frequency (i.e., the number of observations in an interval), m the 
interval midpoint, and the summation is across the intervals. The midpoint for an 
interval is obtained by calculating the average of the interval lower true boundary and 
the upper true boundary. For example, if the first three intervals are

	

10 19
20 29
30 39	

the midpoint for the first interval is

	

9 5 19 5

2
14 5

. .
.

	

and for the second interval is

	

19 5 29 5

2
24 5

. .
. .

	

This process for calculation of the mean x  using Table 2.3 is illustrated in Table 2.7:

	

x 
2086 5

57
36 6

.

. .lb 	

(If individual weights were used, we would have x 36 7. lb.)
Of course, the mean x  obtained from this technique with a frequency table is 

different from the x  using individual or raw data. However, the process saves some 

Table 2.7

Weight interval Frequency, f Interval midpoint, m fm

10–19 5 14.5 72.5
20–29 19 24.5 465.5
30–39 10 34.5 345.0
40–49 13 44.5 578.5
50–59 4 54.5 218.0
60–69 4 64.5 258.0
70–79 2 74.5 149.0

Total 57 2086.5



NUMERICAL METHODS� 71

computational labor, and the difference between the two resulting xvalues is very 
small if the data set is large and the interval width is small.

As indicated earlier, a characteristic of some interest is the symmetry or lack of 
symmetry of a distribution, and it is recommended that for very positively skewed 
distributions, analyses are commonly done on the log scale. After obtaining a mean 
on the log scale, we should take the antilog to return to the original scale of 
measurement; the result is called the geometric mean of the xs. The effect of this pro­
cess is to minimize the influences of extreme observations (very large, or very small, 
numbers in the data set). For example, considering the data set

	 8 5 4 12 15 7 28, , , , , , 	

with one unusually large measurement, we have Table 2.8, with natural logs pre­
sented in the second column. The mean is

	

x
79

7
11 3. 	

while on the log scale we have

	

ln .

.

x

n

15 55

7
2 22 	

leading to a geometric mean of 9.22, which is less affected by the large measurement. 
Geometric mean is used extensively in microbiological and serological research, in 
which distributions are often skewed positively.

Example 2.7 
In some studies the important number is the time to an event, such as death; it is 
called the survival time. The term survival time is conventional even though the pri­
mary event could be nonfatal, such as time to a relapse or time to the appearance of 
the first disease symptom. Similar to cases of income and antibody level, the 
distributions of survival times are often positively skewed; therefore, data are often 
summarized using the median or geometric mean. The following is a typical example.

Table 2.8

x ln x

8 2.08
5 1.61
4 1.39
12 2.48
15 2.71
7 1.95
28 3.33
79 15.55
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The remission times of 42 patients with acute leukemia were reported from a 
clinical trial undertaken to assess the ability of the drug 6‐mercaptopurine (6‐MP) to 
maintain remission. Each patient was randomized to receive either 6‐MP or placebo. 
The study was terminated after one year; patients had different follow‐up times 
because they were enrolled sequentially at different times. Times to relapse in weeks 
for the 21 patients in the placebo group were

	 1 1 2 2 3 4 4 5 5 8 8 8 8 11 11 12 12 15 17 22 23, , , , , , , , , , , , , , , , , , , , .	

The mean is

	

x
x

n
8 67. weeks	

and on the log scale we have

	

ln
.

x

n
1 826

	

leading to a geometric mean of 6.21, which, in general, is less affected by the largest 
measurements.

2.2.2  Other Measures of Location

Another useful measure of location is the median. If the observations in the data set 
are arranged in increasing or decreasing order, the median is the middle observa­
tion, which divides the set into equal halves. If the number of observations n is odd, 
there will be a unique median, the 1

2 1( )n th number from either end in the ordered 
sequence. If n is even, there is strictly no middle observation, but the median is 
defined by convention as the average of the two middle observations, the 1

2 n th 
and 1

2 1( )n th from either end. In Section 2.1 we showed a quicker way to get an 
approximate value for the median using the cumulative frequency graph (see 
Figure 2.7).

The two data sets {8, 5, 4, 12, 15, 7, 28} and {8, 5, 4, 12, 15, 7, 49}, for example, 
have different means but the same median, 8. Therefore, the advantage of the median 
as a measure of location is that it is less affected by extreme observations. However, 
the median has some disadvantages in comparison with the mean:

1.	 It takes no account of the precise magnitude of most of the observations and is 
therefore less efficient than the mean because it wastes information.

2.	 If two groups of observations are pooled, the median of the combined group 
cannot be expressed in terms of the medians of the two component groups. 
However, the mean can be so expressed. If component groups are of sizes n

1
 and 

n
2
 and have means x1 and x2 respectively, the mean of the combined group is:

	
x

n x n x

n n
1 1 2 2

1 2

.
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3.	 In large data sets, the median requires more work to calculate than the mean 
and is not much use in the statistical techniques of later chapters (it is still use­
ful as a descriptive measure for skewed distributions).

A third measure of location, the mode, was introduced briefly in Section 2.1.3. It 
is the value at which the frequency polygon reaches a peak. The mode is not used 
widely in analytical statistics, other than as a descriptive measure, mainly because of 
the ambiguity in its definition, as the fluctuations of small frequencies are apt to pro­
duce spurious modes. For these reasons, in the remainder of the book we focus on a 
single measure of location, the mean.

2.2.3  Measures of Dispersion

When the mean x  of a set of measurements has been obtained, it is usually a matter 
of considerable interest to measure the degree of variation or dispersion around this 
mean. Are the xs all rather close to x , or are some of them dispersed widely in each 
direction? This question is important for purely descriptive reasons, but it is also 
important because the measurement of dispersion or variation plays a central part in 
the methods of statistical inference described in subsequent chapters.

An obvious candidate for the measurement of dispersion is the range R, defined 
as the difference between the largest value and the smallest value, which was intro­
duced in Section 2.1.2. However, there are a few difficulties about the use of the 
range. The first is that the value of the range is determined by only two of the original 
observations. Second, the interpretation of the range depends in a complicated way 
on the number of observations, which is an undesirable feature.

An alternative approach is to make use of deviations from the mean, x x ; it is 
obvious that the greater the variation in the data set, the larger the magnitude of these 
deviations will tend to be. From these deviations, the variance s2 (s squared) is computed 
by squaring each deviation, adding them, and dividing their sum by one less than n:

	
s

x x

n
2

2

1
.
	

The use of the divisor (n − 1) instead of n is clearly not very important when n is 
large. It is more important for small values of n, and its justification will be explained 
briefly later in this section. The following should be noted:

1.	 It would be no use to take the mean of deviations because:

	 x x 0.	

2.	 Taking the mean of the absolute values, for example

	

x x

n 	

is a possibility. However, this measure has the drawback of being difficult to 
handle mathematically, and we do not consider it further in this book.
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The variance s2 (s squared) is measured in the square of the units in which the xs 
are measured. For example, if x is the time in seconds, the variance is measured in 
seconds squared (s2). It is convenient, therefore, to have a measure of variation 
expressed in the same units as the xs, and this can be done easily by taking the square 
root of the variance. This quantity is the standard deviation, and its formula is:

	
s

x x

n

2

1
.
	

Consider again the data set

	 8 5 4 12 15 5 7, , , , , , .	

Calculation of the variance s2 and standard deviation s is illustrated in Table 2.9.
In general, this calculation process is likely to cause some trouble. If the mean is 

not a “round” number, say x 10 3/ , it will need to be rounded off, and errors arise 
in the subtraction of this value from each x. This difficulty can easily be overcome by 
using the following shortcut formula for the variance:

	
s

x x n

n
2

2 2

1
.
	

Our earlier example is reworked in Table 2.10, yielding identical results:

	

s2

2
548 56 7

6
16 67. . 	

When data are presented in the grouped form of a frequency table, the variance is 
calculated using the following modified shortcut formula:

	
s

fm fm n

n
2

2 2

1


	

Table 2.9

x x x ( )x x 2

8 0 0
5 −3 9
4 −4 16
12 4 16
15 7 49
5 −3 9
7 −1 1

x 56 ( )x x 2 100
n = 7 s2 = 100/6 = 16.67

x 8 s 16 67 4 08. .
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where f denotes an interval frequency, m denotes the interval midpoint calculated as 
in Section 2.2.1 and the summation is across the intervals. This approximation is 
illustrated in Table 2.11:

	

s

s

2

2
89 724 25 2086 5 57

56
238 35
15 4





. .

.
. .lb 	

(If individual weights were used, we would have s = 15.9 lb.)
It is often not clear to beginners why we use (n − 1) instead of n as the denomi­

nator for s2. This number, n − 1, called the degrees of freedom, represents the amount 
of information contained in the sample. The real explanation for n − 1 is hard to pre­
sent at the level of this book; however, it may be seen this way. What we are trying to 
do with s is to provide a measure of variability, a measure of the average gap or 
average distance between the numbers in the sample, and there are n − 1 gaps bet­
ween n numbers. When n = 2 there is only one gap or distance between the two num­
bers, and when n = 1, there is no variability to measure.

Finally, it is occasionally useful to describe the variation by expressing the stan­
dard deviation as a proportion or percentage of the mean. The resulting measure,

	
CV

s

x
100%

	

Table 2.10

x x2

8 64
5 25
4 16
12 144
15 225
5 25
7 49

∑ x = 56  ∑x2 = 548

Table 2.11

Weight interval f m m2 fm fm2

10–19 5 14.5 210.25 72.5 1051.25
20–29 19 24.5 600.25 465.5 11 404.75
30–39 10 34.5 1190.25 345.0 11 902.50
40–49 13 44.5 1980.25 578.5 25 743.25
50–59 4 54.5 2970.25 218.0 11 881.00
60–69 4 64.5 4160.25 258.0 16 641.00
70–79 2 74.5 5550.25 149.0 11 100.50

Total 57 2086.5 89 724.25
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is called the coefficient of variation. It is an index, a dimensionless quantity because 
the standard deviation is expressed in the same units as the mean and could be used 
to compare the difference in variation between two types of measurements. However, 
its use is rather limited.

2.2.4  Box Plots

The box plot is a graphical representation of a data set that gives a visual impression 
of location, spread, and the degree and direction of skewness. It also allows for the 
identification of outliers. Box plots are similar to one‐way scatter plots in that they 
require a single horizontal axis; however, instead of plotting every observation, they 
display a summary of the data. A box plot consists of the following:

1.	 A central box extends from the 25th to the 75th percentiles. This box is divided 
into two compartments at the median value of the data set. The relative sizes of 
the two halves of the box provide an indication of the distribution symmetry. If 
they are approximately equal, the data set is roughly symmetric; otherwise, we 
are able to see the degree and direction of skewness (Figure 2.11).

2.	 The line segments projecting out from the box extend in both directions to the 
adjacent values. The adjacent values are the values that are 1.5 times the length 
of the box beyond either quartile. All other data points outside this range are 
represented individually by little circles; these are considered to be outliers or 
extreme observations that are not typical of the rest of the data.

Of course, it is possible to combine a one‐way scatter plot and a box plot so as to 
convey an even greater amount of information (Figure 2.12). There are other ways of 
constructing box plots; for example, one may make it vertically or divide it into dif­
ferent levels of outliers.

Marked measurement scale

Lower
adjacent value

Upper
adjacent value

25th percentile 75th percentile
Median

Possible
outliers

Figure 2.11  Typical box plot.

393.9
Rate per 100 000 population

648.8 804.0 886.3 953.9 1062.4

1242.1

Figure 2.12  Crude death rates for the United States, 1988: a combination of one‐way 
scatter and box plots.
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2.3  SPECIAL CASE OF BINARY DATA

Observations or measurements may be made on different scales. If each element of a 
data set may lie at only a few isolated points, we have a discrete data set. A special 
case of discrete data are binary data, where each outcome has only two possible 
values; examples are gender and an indication of whether a treatment is a success or 
a failure. If each element of this set may theoretically lie anywhere on a numerical 
scale, we have a continuous data set; examples are blood pressure and cholesterol 
level. Chapter 1 deals with the summarization and description of discrete data, espe­
cially binary data; the primary statistic was proportion. In this chapter the emphasis 
so far has been on continuous measurements, where, for example, we learn to form 
the sample mean and use it as a measure of location, a typical value representing the 
data set. In addition, the variance and/or standard deviation is formed and used to 
measure the degree of variation or dispersion of data around the mean. In this short 
section we will see that binary data can be treated as a special case of continuous data.

Many outcomes can be classified as belonging to one of two possible categories: 
presence and absence, nonwhite and white, male and female, improved and not 
improved. Of course, one of these two categories is usually identified as being of 
primary interest; for example, presence in the presence and absence classification, or 
nonwhite in the white and nonwhite classification. We can, in general, relabel the two 
outcome categories as positive (+) and negative (−). An outcome is positive if the 
primary category is observed and is negative if the other category is observed. The 
proportion is defined as in Chapter 1:

	
p

x

n 	

where x is the number of positive outcomes and n is the sample size. However, it can 
also be expressed as:

	
p

x

n
i

	

where x
i
 is “1” if the ith outcome is positive and “0” otherwise, and the sum is across 

the observations in the sample. In other words, a sample proportion can be viewed as 
a special case of sample means where data are coded as 0 or 1. But what do we mean 
by variation or dispersion, and how do we measure it?

Let us write out the variance s2 using the shortcut formula of Section 2.2.3 but 
with the denominator n instead of n − 1 (this would make little difference when 
dealing with large samples of binary data):

	
s

x x n

n
i i
2 2

.
	

Since x
i
 is binary, with “1” if the ith outcome is positive and “0” otherwise, we have:

	 x xi i
2
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and therefore,

	

s
x x

n
x

n

x

n

p p

i i

i i

2

2

1

1

n

. 	

In other words, the statistic p(1 − p) can be used in place of s2 as a measure of varia-
tion; the logic can be seen as follows. First, the quantity p(1 − p), with 0 1p , attains 
its maximum value when p = 0.5. For example,

	

0 1 0 9 0 09

0 4 0 6 0 24

0 5 0 5 0 25

0 6 0 4 0

. . .

. . .

. . .

. .



..

. . .

24

0 9 0 1 0 09


	

The values of p(1 − p) are greatest in the vicinity of p = 0.5 and decrease as we go 
toward both ends (0 and 1) of the range of p. If we are performing a coin tossing 
experiment or conducting an election, the result would be most unpredictable when 
the chance to obtain the outcome wanted is in the vicinity of p = 0.5. In other words, 
the quantity p(1 − p) is a suitable statistic to measure volatility, dispersion, and 

variation. The corresponding statistic for standard deviation is p p1 .

2.4  COEFFICIENTS OF CORRELATION

Methods discussed in this chapter have been directed to the analysis of data where a 
single continuous measurement was made on each element of a sample. However, in 
many important investigations we may have two measurements made: where the 
sample consists of pairs of values and the research objective is concerned with the 
association between these variables. For example, what is the relationship between a 
mother’s weight and her baby’s weight? In Section 1.3 we were concerned with the 
association between dichotomous variables. For example, if we want to investigate the 
relationship between a disease and a certain risk factor, we could calculate an odds ratio 
to represent the strength of the relationship. In this section we deal with continuous 
measurements, and the method is referred to as correlation analysis. Correlation is a 
concept that carries the common colloquial implication of association, such as “height 
and weight are correlated.” The statistical procedure will give the word a technical 
meaning; we can actually calculate a number that tells the strength of the association.

When dealing with the relationship between two continuous variables, we first 
have to distinguish between a deterministic relationship and a statistical relationship. 
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For a deterministic relationship, values of the two variables are related through an 
exact mathematical formula. For example, consider the relationship between hospital 
cost and number of days in hospital. If the costs are $ 100 for admission and $ 1500 
per day, we can easily calculate the total cost given the number of days in hospital, 
and if any set of data is plotted, say cost versus number of days, all data points fall 
perfectly on a straight line. Unlike a deterministic relationship, a statistical relation-
ship is not perfect. In general, the points do not fall perfectly on any line or curve.

Table 2.12 gives the values for the birth weight (x) and increase in weight between 
days 70 and 100 of life, expressed as a percentage of the birth weight (y), for 12 
infants. If we let each pair of numbers (x, y) be represented by a dot in a diagram with 
the xs on the horizontal axis, we have Figure 2.13. The dots do not fall perfectly on a 
straight line, but rather, scatter around a line, very typical for statistical relationships. 
Because of this scattering of dots, the diagram is called a scatter diagram. The posi­
tions of the dots provide some information about the direction as well as the strength 
of the association under investigation. If they tend to go from lower left to upper 
right, we have a positive association; if they tend to go from upper left to lower right, 
we have a negative association. The relationship becomes weaker and weaker as the 

Table 2.12

x (oz) y (%) x (oz) y (%)

112 63 81 120
111 66 84 114
107 72 118 42
119 52 106 72
92 75 103 90
80 118 94 91
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Figure 2.13  Scatter diagram for birth‐weight data.



80� DESCRIPTIVE METHODS FOR CONTINUOUS DATA

distribution of the dots clusters less closely around the line, and becomes virtually no 
correlation when the distribution approximates a circle or oval (the method is ineffec­
tive for measuring a relationship that is not linear).

2.4.1  Pearson’s Correlation Coefficient

Consider the scatter diagram shown in Figure 2.14, where we have added a vertical 
and a horizontal line through the point ( , )x y  and labeled the four quarters as I, II, III, 
and IV. It can be seen that:

•• In quarters I and III,

	 x x y y 0	

so that for a positive association, we have

	 x x y y 0.	

Furthermore, this sum is large for stronger relationships because most of the 
dots, being closely clustered around the line, are in these two quarters.

•• Similarly, in quarters II and IV,

	 x x y y 0	

leading to

	 x x y y 0	

for a negative association.
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Figure 2.14  Scatter diagram divided into quadrants.
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With proper standardization, we obtain:

	

r
x x y y

x x y y
2 2

	

so that

	 1 1r .	

This statistic, r, called the correlation coefficient, is a popular measure for the 
strength of a statistical relationship; here is a shortcut formula:

	

r
xy x y n

x x n y y n2 2 2 2
.

	

Meaningful interpretation of the correlation coefficient r is rather complicated. 
We will revisit the topic in Chapter 9 in the context of regression analysis, a statistical 
method that is closely connected to correlation. Generally:

•• Values near 1 indicate a strong positive association.

•• Values near −1 indicate a strong negative association.

•• Values around 0 indicate a weak association.

Interpretation of r should be made cautiously, however. It is true that a scatter plot of 
data that results in a correlation number of +1 or −1 has to lie in a perfectly straight line. 
But a correlation of 0 does not mean that there is no association; it means that there is 
no linear association. You can have a correlation near 0 and yet have a very strong 
association, such as the case when the data fall neatly on a sharply bending curve.

Example 2.8 
Consider again the birth‐weight problem described earlier in this section. We have 
the data given in Table 2.13. Using the five totals, we obtain

	

r
94 322 1207 975 12

123 561 1207 12 86 487 975
2

,

, ,
2

12

0 946. 	

indicating a very strong negative association.
The following example has a similar data structure where the target of investiga­

tion is a possible relationship between a woman’s age and her systolic blood pressure.

Example 2.9
The data in Table 2.14 represent systolic blood pressure readings on 15 women. We 
set up a work table (Table 2.15) as in Example 2.8. Using these totals, we obtain



Table 2.13

x y x2 y2 xy

112 63 12 544 3969 7056
111 66 12 321 4356 7326
107 72 11 449 5184 7704
119 52 14 161 2704 6188
92 75 8464 5625 6900
80 118 6400 13 924 9440
81 120 6561 14 400 9720
84 114 7056 12 996 9576
118 42 13 924 1764 4956
106 72 11 236 5184 7632
103 90 10 609 8100 9270
94 91 8836 8281 8554

∑ x = 1207 ∑ y = 975 ∑ x2 = 123 561 ∑ y2 = 86 487 ∑ xy = 94 322

Table 2.15

x y x2 y2 xy

42 130 1764 16 900 5460
46 115 2116 13 225 5290
42 148 1764 21 904 6216
71 100 5041 10 000 7100
80 156 6400 24 336 12 480
74 162 5476 26 224 11 988
70 151 4900 22 801 10 570
80 156 6400 24 336 12 480
85 162 7225 26 224 13 770
72 158 5184 24 964 11 376
64 155 4096 24 025 9920
81 160 6561 25 600 12 960
41 125 1681 15 625 5125
61 150 3721 22 500 9150
75 165 5625 27 225 12 375

∑ x = 984 ∑ y = 2193 ∑ x2 = 67 954 ∑ y2 = 325 889 ∑ xy = 146 260

Table 2.14

Age (x) SBP (y) Age (x) SBP (y)

42 130 85 162
46 115 72 158
42 148 64 155
71 100 81 160
80 156 41 125
74 162 61 150
70 151 75 165
80 156
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r
146 260 984 2193 15

67 954 984 15 325 889 2193
2

,

, ,
2

15

0 566. 	

indicating a moderately positive association.

2.4.2  Nonparametric Correlation Coefficients

Suppose that the data set consists of n pairs of observations {(x
i
, y

i
)}, expressing a 

possible relationship between two continuous variables. We characterize the strength 
of such a relationship by calculating the coefficient of correlation:

	

r
x x y y

x x y y
2 2

	

called Pearson’s correlation coefficient. Like other common statistics, such as the 
mean x  and the standard deviation s, the correlation coefficient r is very sensitive to 
extreme observations. We may be interested in calculating a measure of association 
that is more robust with respect to outlying values. There are not one but two non­
parametric procedures: Spearman’s rho and Kendall’s tau rank correlations.

Spearman’s Rho  Spearman’s rank correlation is a direct nonparametric counter­
part of Pearson’s correlation coefficient. To perform this procedure, we first arrange 
the x values from smallest to largest and assign a rank from 1 to n for each value; let 
R

i
 be the rank of value x

i
. Similarly, we arrange the y values from smallest to largest 

and assign a rank from 1 to n for each value; let S
i
 be the rank of value y

i
. If there are 

tied (equal) observations, we assign an average rank, averaging the ranks that the tied 
observations take jointly. For example, if the second and third measurements are 
equal, they are both assigned 2.5 as their common rank. The next step is to replace, 
in the formula of Pearson’s correlation coefficient r, x

i
 by its rank R

i
 and y

i
 by its rank 

S
i
. The result is Spearman’s rho, a popular rank correlation:

	

R R S S

R R S S

R S

n n

i i

i i

i i

2 2

2

2
1

6

11
.

	

The second expression is simpler and easier to use.

Example 2.10
Consider again the birth‐weight problem of Example 2.8. We have the data given in 
Table 2.16. Substituting the value of ( )R Si i

2 into the formula for rho (ρ), we obtain



84� DESCRIPTIVE METHODS FOR CONTINUOUS DATA

	

1
6 560 5

12 143
0 96

.

. 	

which is very close to the value of r (−0.946) obtained in Example 2.8. This closeness 
is true when there are few or no extreme observations.

Kendall’s Tau  Unlike Spearman’s rho, the other rank correlation – Kendall’s tau, 
τ – is defined and calculated very differently, even though the two correlations often 
yield similar numerical results. The birth‐weight problem of Example 2.8 is adapted 
to illustrate this method with the following steps:

1.	 The x and y values are presented in two rows: the x values in the first row are 
arranged from smallest to largest and the y values are shown below their 
corresponding x values.

2.	 For each y value in the second row, we count:

a.  The number of larger y values to its right (recorded in the third row). The 
sum of these is denoted by C.

b.  The number of smaller y values to its right (recorded in the fourth row). The 
sum of these is denoted by D. C and D are the numbers of concordant and 
discordant pairs.

3.	 Kendall’s rank correlation is defined by:

	

C D

n n1 2 1/
.
	

Table 2.16

Birth weight Increase in weight

x (oz) Rank R y (%) Rank S R − S (R − S)2

112 10 63 3 7 49
111 9 66 4 5 25
107 8 72 5.5 2.5 6.25
119 12 52 2 10 100
92 4 75 7 −3 9
80 1 118 11 −10 100
81 2 120 12 −10 100
84 3 114 10 −7 49
118 11 42 1 10 100
106 7 72 5.5 1.5 2.25
103 6 90 8 −2 4
94 5 91 9 −416

∑ (R‐S)2 = 560.50
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Example 2.11 
For the birth‐weight problem above, we have the data given in Table 2.17. The value 
of Kendall’s tau is

	

3 61

1 2 12 11
0 88
/
. . 	

Note: A SAS program would include these instructions:

DATA BIRTHWEIGHT;
   INPUT x y;
   DATALINES;
      80 118
      81 120
         …
      119 52
   ;
PROC CORR PEARSON SPEARMAN KENDALL DATA=BIRTHWEIGHT;
   VAR x y;

If there are more than two variable names listed, the CORR procedure will com­
pute correlation coefficients between all pairs of variables. An R program would 
include this code:

x = c(112,111,107,119,92,80,81,84,118,106,103,94)
y = c(63,66,72,52,75,118,120,114,42,72,90,91)
cor(x,y,method=“pearson”)
cor(x,y,method=“spearman”)
cor(x,y,method=“kendall”)

2.5  NOTES ON COMPUTATIONS

Samples of SAS and R program code were provided at the end of Example 2.11.  
R code is case‐sensitive, while SAS code is not. In Section 1.4 we covered basic tech­
niques for Microsoft Excel: how to open/form a spreadsheet, save, and retrieve it. 

Table 2.17

Total

x 80 81 84 92 94 103 106 107 111 112 118 119
y 118 120 114 75 91 90 72 72 66 63 42 52
C 1 0 0 2 0 0 0 0 0 0 0 0 3
D 10 10 9 6 7 6 4 4 3 2 0 0 61
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Topics included data‐entry steps such as select and drag, use of the formula bar, and 
bar and pie charts. In this short section we focus on continuous data, covering topics 
such as the construction of histograms, basic descriptive statistics, and correlation 
analysis.

Histograms  With a frequency table ready, click the Chart Wizard icon (the one 
with multiple colored bars on the standard toolbar near the top). A box appears with 
choices (as when you learned to form a bar chart or pie chart); select the column chart 
type. Then click on next.

•• For the data range, highlight the frequency column. This can be done by click­
ing on the first observation and dragging the mouse to the last observation. Then 
click on next.

•• To remove the gridlines, click on the gridline tab and uncheck the box. To 
remove the legend, you can do the same using the legend tab. Now click finish.

•• The problem is that there are still gaps. To remove these, double‐click on a bar 
of the graph and a new set of options should appear. Click on the options tab and 
change the gap width from 150 to 0.

Descriptive Statistics

•• First, click the cell you want to fill, then click the paste function icon, f*, which 
will give you – in a box – a list of Excel functions available for your use.

•• The item you need in this list is Statistical; upon hitting this, a new list appears 
with function names, each for a statistical procedure.

•• The following are procedures/names we learn in this chapter (alphabetically): 
AVERAGE: provides the sample mean, GEOMEAN: provides the geometric 
mean, MEDIAN: provides the sample median, STDEV: provides the standard 
deviation, and VAR: provides the variance. In each case you can obtain only one 
statistic at a time. First, you have to enter the range containing your sample: for 
example, D6:D20 (you can see what you are entering on the formula bar). The 
computer will return with a numerical value for the statistic requested in your 
preselected cell.

Pearson’s Coefficient of Correlation

•• First, click the cell you want to fill, then click the paste function icon, f*, which 
will give you – in a box – a list of Excel functions available for your use.

•• The item you need in this list is Statistical; upon hitting this, a new list appears 
with function names, each for a statistical procedure. Click CORREL, for 
correlation.

•• In the new box, move the cursor to fill in the X and Y ranges in the two rows 
marked Array 1 and Array 2. The computer will return with numerical value for 
the statistic requested, Pearson’s correlation coefficient r, in your preselected cell.



EXERCISES� 87

EXERCISES

2.1	 Table E2.1 gives the values of serum cholesterol levels for 1067 American men 
aged 25–34 years.

(a)	 Plot the histogram, frequency polygon, and cumulative frequency graph.

(b)	 Find, approximately, the median using your cumulative frequency graph.

2.2	 Table  E2.2 provides the relative frequencies of blood lead concentrations  
for two groups of workers in Canada, one examined in 1979 and the other in 
1987.

(a)	 Plot the histogram and frequency polygon for each year on separate graphs.

(b)	 Plot the two cumulative frequency graphs in one figure.

(c)	 Find and compare the medians.

2.3	 A study on the effects of exercise on the menstrual cycle provides the following 
ages (years) of menarche (the beginning of menstruation) for 96 female swim­
mers who began training prior to menarche.

Table E2.1

Cholesterol level (mg/100 mL) Number of men

80–119 13
120–159 150
160–199 442
200–239 299
240–279 115
280–319 34
320–399 14

Total 1067

table E2.2

Blood lead (μg/dL)

Relative frequency (%)

1979 1987

0–19 11.5 37.8
20–29 12.1 14.7
30–39 13.9 13.1
40–49 15.4 15.3
50–59 16.5 10.5
60–69 12.8 6.8
70–79 8.4 1.4
80+ 9.4 0.4
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15.0  17.1 14.6 15.2 14.9 14.4 14.7 15.3
13.6 15.1 16.2 15.9 13.8 15.0 15.4 14.9
14.2 16.5 13.2 16.8 15.3 14.7 13.9 16.1
15.4 14.6 15.2 14.8 13.7 16.3 15.1 14.5
16.4 13.6 14.8 15.5 13.9 15.9 16.0 14.6
14.0 15.1 14.8 15.0 14.8 15.3 15.7 14.3
13.9 15.6 15.4 14.6 15.2 14.8 13.7 16.3
15.1 14.5 13.6 15.1 16.2 15.9 13.8 15.0
15.4 14.9 16.2 15.9 13.8 15.0 15.4 14.9
14.2 16.5 13.4 16.5 14.8 15.1 14.9 13.7
16.2 15.8 15.4 14.7 14.3 15.2 14.6 13.7
14.9 15.8 15.1 14.6 13.8 16.0 15.0 14.6

(a)	 Form a frequency distribution including relative frequencies and cumulative 
relative frequencies.

(b)	 Plot the frequency polygon and cumulative frequency graph.

(c)	 Find the median and 95th percentile.

2.4	 The following are the menarchal ages (in years) of 56 female swimmers who 
began training after they had reached menarche.

14.0  16.1 13.4 14.6 13.7 13.2 13.7 14.3
12.9 14.1 15.1 14.8 12.8 14.2 14.1 13.6
14.2 15.8 12.7 15.6 14.1 13.0 12.9 15.1
15.0 13.6 14.2 13.8 12.7 15.3 14.1 13.5
15.3 12.6 13.8 14.4 12.9 14.6 15.0 13.8
13.0 14.1 13.8 14.2 13.6 14.1 14.5 13.1
12.8 14.3 14.2 13.5 14.1 13.6 12.4 15.1

(a)	 Form a frequency distribution using the same age intervals as in Exercise 2.3. 
(These intervals may be different from those in Example 2.3.)

(b)	 Display on the same graph two cumulative frequency graphs, one for the 
group trained before menarche (Exercise 2.3) and one for the group trained 
after menarche. Compare these two graphs and draw your conclusion.

(c)	 Find the median and 95th percentile and compare to the results of Exercise 2.3.

2.5	 The following are the daily fat intake (grams) of a group of 150 adult males.

22  62 77 84 91 102  117  129 137 141
42 56 78 73 96 105 117 125 135 143
37 69 82 93 93 100 114 124 135 142
30 77 81 94 97 102 119 125 138 142
46 89 88 99 95 100 116 121 131 152
63 85 81 94 93 106 114 127 133 155
51 80 88 98 97 106 119 122 134 151
52 70 76 95 107 105 117 128 144 150
68 79 82 96 109 108 117 120 147 153
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67 75 76 92 105 104 117 129 148 164
62 85 77 96 103 105 116 132 146 168
53 72 72 91 102 101 128 136 143 164
65 73 83 92 103 118 127 132 140 167
68 75 89 95 107 111 128 139 148 168
68 79 82 96 109 108 117 130 147 153

(a)	 Form a frequency distribution, including relative frequencies and cumulative 
relative frequencies.

(b)	 Plot the frequency polygon and investigate the symmetry of the distribution.

(c)	 Plot the cumulative frequency graph and find the 25th and 75th percentiles. Also 
calculate the midrange = 75th percentile – 25th percentile. (This is also called 
the Inter‐quartile Range (IQR) and is another good descriptive measure of var­
iation; it is similar to the range but is less affected by extreme observations.)

2.6	 Refer to the data on daily fat intake in Exercise 2.5.

(a)	 Calculate the mean using raw data.

(b)	 Calculate, approximately, the mean using the frequency table obtained in 
Exercise 2.5.

2.7	 Using the income data of Example 2.5:

(a)	 Plot the histogram for the white families. Does it have the same shape as 
that for nonwhite families shown in Figure 2.5?

(b)	 Plot and compare the two cumulative frequency graphs, whites versus non­
whites, confirming the results shown in Figure 2.7.

(c)	 Compute, approximately, the means of the two groups and compare the 
results to the medians referred to in Section 2.1.4.

2.8	 Refer to the percentage saturation of bile for the 31 male patients in Example 2.4.

(a)	 Compute the mean, variance, and standard deviation.

(b)	 The frequency polygon of Figure 2.4 is based on the grouping (arbitrary 
choices) shown in Table E2.8. Plot the cumulative frequency graph and 
obtain, approximately, the median from this graph. How does the answer 
compare to the exact median (the 16th largest saturation percentage)?

table E2.8

Interval (%) Frequency Interval (%) Frequency

40–49 2 100–109 2
50–59 4 110–119 5
60–69 3 120–129 1
70–79 4 130–139 1
80–89 8 140–149 0
90–99 1
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  2.9	 The study cited in Example 2.4 also provided data (percentage saturation of 
bile) for 29 women. These percentages were:

65 58 52 91 84 107
86 98 35 128 116 84
76 146 55 75 73 120
89 80 127 82 87 123

142 66 77 69 76

(a)	 Form a frequency distribution using the same intervals as in Example 2.4 
and Exercise 2.8.

(b)	 Plot in the same graph and compare the two frequency polygons and 
cumulative frequency graphs: men and women.

(c)	 Compute the mean, variance, and standard deviation using these new data 
for women and compare the results to those for men in Exercise 2.8.

(d)	 Compute and compare the two coefficients of variation, men versus women.

2.10	 The following frequency distribution was obtained for the preoperational 
percentage hemoglobin values of a group of subjects from a village where 
there has been a malaria eradication program (MEP):

Hemoglobin (%) 30–39 40–49 50–59 60–69 70–79 80–89 90–99
Frequency 2 7 14 10 8 2 2

	 The results in another group were obtained after MEP:

43 63 63 75 95 75 80 48 62 71 76 90
51 61 74 103 93 82 74 65 63 53 64 67
80 77 60 69 73 76 91 55 65 69 84 78
50 68 72 89 75 57 66 79 85 70 59 71
87 67 72 52 35 67 99 81 97 74 61 62

(a)	 Form a frequency distribution using the same intervals as in the first table.

(b)	 Plot in the same graph and compare the two cumulative frequency graphs: 
before and after the malaria eradication program.

2.11	 In a study of water pollution, a sample of mussels was taken and lead 
concentration (milligrams per gram dry weight) was measured from each one. 
The following data were obtained:

	 113 0 140 5 163 3 185 7 202 5 207 2. . . . . ., , , , , 	

 Calculate the mean x , variance s2, and standard deviation s.

2.12	 Consider the data taken from a study that examines the response to ozone and 
sulfur dioxide among adolescents suffering from asthma. The following are 
measurements of forced expiratory volume (liters) for 10 subjects:
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	 3 50 2 60 2 75 2 82 4 05 2 25 2 68 3 00 4 02 2 85. . . . . . . . . ., , , , , , , , , 	

 Calculate the mean x , variance s2, and standard deviation s.

2.13	 The percentage of ideal body weight was determined for 18 randomly selected 
insulin‐dependent diabetics. The outcomes (%) are

107 119   99 114 120 104 124 88 114
116 101 121 152 125 100 114 95 117

	 Calculate the mean x , variance s2, and standard deviation s.

2.14	 A study on birth weight provided the following data (in ounces) on  
12 newborns:

	 112 111 107 119 92 80 81 84 118 106 103 94, , , , , , , , , , , 	

 Calculate the mean x , variance s2, and standard deviation s.

2.15	 The following are the activity values (micromoles per minute per gram of 
tissue) of a certain enzyme measured in the normal gastric tissue of 35 patients 
with gastric carcinoma:

0.360  1.189 0.614 0.788 0.273 2.464 0.571
1.827 0.537 0.374 0.449 0.262 0.448 0.971
0.372 0.898 0.411 0.348 1.925 0.550 0.622
0.610 0.319 0.406 0.413 0.767 0.385 0.674
0.521 0.603 0.533 0.662 1.177 0.307 1.499

	 Calculate the mean x , variance s2, and standard deviation s.

2.16	 The data shown in Table 2.14 represent systolic blood pressure readings on 15 
women (see Example 2.9). Calculate the mean x , variance s2, and standard 
deviation s for systolic blood pressure and for age.

2.17	 The ages (in days) at time of death for 11 girls and 16 boys who died of sudden 
infant death syndrome are shown in Table E2.17. Calculate the mean x , vari­
ance s2, and standard deviation s for each group.

2.18	 A study was conducted to investigate whether oat bran cereal helps to lower 
serum cholesterol in men with high cholesterol levels. Fourteen men were 
placed randomly on a diet that included either oat bran or cornflakes; after two 
weeks, their low‐density lipoprotein (LDL) cholesterol levels were recorded. 
Each man was then switched to the alternative diet. After a second two‐week 
period, the LDL cholesterol level of each person was recorded again. The data 
are shown in Table E2.18. Calculate the LDL difference (cornflake‐oat bran) 
for each of the 14 men, then the mean x , variance s2, and standard deviation s 
for this sample of differences.
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2.19	 An experiment was conducted at the University of California‐Berkeley to 
study the effect of psychological environment on the anatomy of the brain. A 
group of 19 rats was randomly divided into two groups. Twelve animals in the 
treatment group lived together in a large cage furnished with playthings that 
were changed daily; animals in the control group lived in isolation with no 
toys. After a month, the experimental animals were killed and dissected. 
Table E2.19 gives the cortex weights (the thinking part of the brain) in milli­
grams. Calculate separately for each group the mean x , variance s2, and stan­
dard deviation s of the cortex weight.

table E2.17

Females Males

53 46 115
56 52 133
60 58 134
60 59 175
78 77 175
87 78
102 80
117 81
134 84
160 103
277 114

table E2.18

Subject

LDL (mmol/L)

Cornflakes Oat bran

1 4.61 3.84
2 6.42 5.57
3 5.40 5.85
4 4.54 4.80
5 3.98 3.68
6 3.82 2.96
7 5.01 4.41
8 4.34 3.72
9 3.80 3.49
10 4.56 3.84
11 5.35 5.26
12 3.89 3.73
13 2.25 1.84
14 4.24 4.14
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2.20	 Ozone levels around Los Angeles have been measured as high as 220 parts per 
billion (ppb). Concentrations this high can cause the eyes to burn and are a hazard 
to both plant and animal life. But what about other cities? The following are data 
(ppb) on the ozone level obtained in a forested area near Seattle, Washington:

160 165 170 172 161
176 163 196 162 160
162 185 167 180 168
163 161 167 173 162
169 164 179 163 178

(a)	 Calculate x , s2, and s; compare the mean to that of Los Angeles.

(b)	 Calculate the coefficient of variation.

2.21	 The systolic blood pressures (in mmHg) of 12 women between the ages of 20 
and 35 were measured before and after administration of a newly developed 
oral contraceptive (Table E2.21). Focus on the column of differences in the 
table; calculate the mean x , variance s2, and standard deviation s.

table E2.19

Treatment Control

707 696 669
740 712 650
745 708 651
652 749 627
649 690 656
676 642
699 698

table E2.21

Subject Before After After – before difference, d
i

1 122 127 5
2 126 128 2
3 132 140 8
4 120 119 −1
5 142 145 3
6 130 130 0
7 142 148 6
8 137 135 −2
9 128 129 1
10 132 137 5
11 128 128 0
12 129 133 4
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2.22	 A group of 12 hemophiliacs, all under 41 years of age at the time of HIV 
seroconversion, were followed from primary AIDS diagnosis until death (ide­
ally, we should take as a starting point the time at which a person contracts 
AIDS rather than the time at which the patient is diagnosed, but this information 
is unavailable). Survival times (in months) from diagnosis until death of these 
hemophiliacs were: 2, 3, 6, 6, 7, 10, 15, 15, 16, 27, 30, and 32. Calculate the 
mean, geometric mean, and median.

2.23	 Suppose that we are interested in studying patients with systemic cancer who 
subsequently develop a brain metastasis; our ultimate goal is to prolong their 
lives by controlling the disease. A sample of 23 such patients, all of whom were 
treated with radiotherapy, were followed from the first day of their treatment until 
recurrence of the original tumor. Recurrence is defined as the reappearance of a 
metastasis in exactly the same site, or in the case of patients whose tumor never 
completely disappeared, enlargement of the original lesion. Times to recurrence 
(in weeks) for the 23 patients were: 2, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 14, 14, 18, 19, 
20, 22, 22, 31, 33, 39, and 195. Calculate the mean, geometric mean, and median.

2.24	 A laboratory investigator interested in the relationship between diet and the deve­
lopment of tumors divided 90 rats into three groups and fed them with low‐fat, sat­
urated‐fat, and unsaturated‐fat diets, respectively. The rats were all the same age and 
species and were in similar physical condition. An identical amount of tumor cells 
was injected into a foot pad of each rat. The tumor‐free time is the time from injec­
tion of tumor cells to the time that a tumor develops. All 30 rats in the unsaturated‐
fat diet group developed tumors; tumor‐free times (in days) were: 112, 68, 84, 109, 
153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66, 70, 77, 63, 66, 66, 94, 101, 105, 108, 
112, 115, 126, 161, and 178. Calculate the mean, geometric mean, and median.

2.25	 The data shown in Table E2.25 are from a study that compares adolescents 
who have bulimia to healthy adolescents with similar body compositions and 
levels of physical activity. The table provides measures of daily caloric intake 
(kcal/kg) for random samples of 23 bulimic adolescents and 15 healthy ones.

(a)	 Calculate and compare the means.

(b)	 Calculate and compare the variances.

table E2.25

Bulimic adolescents Healthy adolescents

15.9 17.0 18.9 30.6 40.8
16.0 17.6 19.6 25.7 37.4
16.5 28.7 21.5 25.3 37.1
18.9 28.0 24.1 24.5 30.6
18.4 25.6 23.6 20.7 33.2
18.1 25.2 22.9 22.4 33.7
30.9 25.1 21.6 23.1 36.6
29.2 24.5 23.8
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2.26	 Two drugs, amantadine (A) and rimantadine (R), are being studied for use in 
combating the influenza virus. A single 100‐mg dose is administered orally to 
healthy adults. The response variable is the time (minutes) required to reach 
maximum concentration. Results are shown in Table E2.26.

(a)	 Calculate and compare the means.

(b)	 Calculate and compare the variances and standard deviations.

(c)	 Calculate and compare the medians.

2.27	 Data are shown in Table E2.27 for two groups of patients who died of acute 
myelogenous leukemia. Patients were classified into the two groups according 
to the presence or absence of a morphologic characteristic of white cells. 

table E2.26

Drug A Drug R

105 123 124 221 227 280
126 108 134 261 264 238
120 112 130 250 236 240
119 132 130 230 246 283
133 136 142 253 273 516
145 156 170 256 271
200

table E2.27

AG positive, N = 17 AG negative, N = 16

WBC Survival time (weeks) WBC Survival time (weeks)

2300 65 4400 56
750 156 3000 65

4300 100 4000 17
2600 134 1500 7
6000 16 9000 16

10 500 108 5300 22
10 000 121 10 000 3
17 000 4 19 000 4

5400 39 27 000 2
7000 143 28 000 3
9400 56 31 000 8

32 000 26 26 000 4
35 000 22 21 000 3

100 000 1 79 000 30
100 000 1 100 000 4
52 000 5 100 000 43

100 000 65
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Patients termed AG positive were identified by the presence of Auer rods and/
or significant granulature of the leukemic cells in the bone marrow at diag­
nosis. For AG‐negative patients, these factors were absent. Leukemia is a can­
cer characterized by an overproliferation of white blood cells; the higher the 
white blood count (WBC), the more severe the disease.

(a)	 Calculate separately for each group (AG positive, AG negative) the mean x , 
variance s2, and standard deviation s for survival time.

(b)	 Calculate separately for each group (AG positive, AG negative) the mean, 
geometric mean, and median for white blood count.

2.28	 Refer to the data on systolic blood pressure (mmHg) of 12 women in  
Exercise 2.21. Calculate Pearson’s correlation coefficient, Kendall’s tau, and 
Spearman’s rho rank correlation coefficients, representing the strength of the 
relationship between systolic blood pressures measured before and after 
administration of the oral contraceptive.

2.29	 The following are the heights (measured to the nearest 2 cm) and weights 
(measured to the nearest kilogram) of 10 men and 10 women. For the men,

Height 162 168 174 176 180 180 182 184 186 186
Weight 65 65 84 63 75 76 82 65 80 81

	 and for the women,

Height 152 156 158 160 162 162 164 164 166 166
Weight 52 50 47 48 52 55 55 56 60 60

(a)	 Draw a scatter diagram, for men and women separately, to show the 
association, if any, between height and weight.

(b)	 Calculate Pearson’s correlation coefficient, Kendall’s tau, and Spearman’s 
rho rank correlation coefficients of height and weight for men and women 
separately.

2.30	 Table E2.30 gives the net food supply (x, the number of calories per person per 
day) and the infant mortality rate (y, the number of infant deaths per 1000 live 
births) for certain selected countries before World War II.

(a)	 Draw a scatter diagram to show the association, if any, between the 
average daily number of calories per person and the infant mortality rate.

(b)	 Calculate Pearson’s correlation coefficient, Kendall’s tau, and Spearman’s 
rho rank correlation coefficients.

2.31	 In an assay of heparin, a standard preparation is compared with a test prepara­
tion by observing the log clotting times (y, in seconds) of blood containing 
different doses of heparin (x is the log dose; Table E2.31). Replicate readings 
are made at each dose level.
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(a)	 Draw a scatter diagram to show the association, if any, between the log 
clotting times and log dose separately for the standard preparation and the 
test preparation. Do they appear to be linear?

(b)	 Calculate Pearson’s correlation coefficient for log clotting times and log 
dose separately for the standard preparation and the test preparation. Do 
they appear to be different?

2.32	 When a patient is diagnosed as having cancer of the prostate, an important 
question in deciding on treatment strategy for the patient is whether or not the 
cancer has spread to the neighboring lymph nodes. The question is so critical 
in prognosis and treatment that it is customary to operate on the patient (i.e., 
perform a laparotomy) for the sole purpose of examining the nodes and 
removing tissue samples to examine under the microscope for evidence of 
cancer. However, certain variables that can be measured without surgery are 
predictive of the nodal involvement. The purpose of the study presented here 
was to examine the data for 53 prostate cancer patients receiving surgery, to 
determine which of five preoperative variables are predictive of nodal involve­
ment. Table E2.32 presents the complete data set. For each of the 53 patients, 
there are two continuous independent variables (i.e., preoperative factors), age 
at diagnosis and level of serum acid phosphatase (×100; called “acid”), and 

table E2.30

Country x y Country x y

Argentina 2730 98.8 Iceland 3160 42.4
Australia 3300 39.1 India 1970 161.6
Austria 2990 87.4 Ireland 3390 69.6
Belgium 3000 83.1 Italy 2510 102.7
Burma 1080 202.1 Japan 2180 60.6
Canada 3070 67.4 Netherlands 3010 37.4
Chile 2240 240.8 New Zealand 3260 32.2
Cuba 2610 116.8 Sweden 3210 43.3
Egypt 2450 162.9 United Kingdom 3100 55.3
France 2880 66.1 United States 3150 53.2
Germany 2960 63.3 Uruguay 2380 94.1

table E2.31

Log clotting times

Log doseStandard Test

1.806 1.756 1.799 1.763 0.72
1.851 1.785 1.826 1.832 0.87
1.954 1.929 1.898 1.875 1.02
2.124 1.996 1.973 1.982 1.17
2.262 2.161 2.14 2.1 1.32



98� DESCRIPTIVE METHODS FOR CONTINUOUS DATA

three binary variables: x‐ray reading, pathology reading (grade) of a biopsy of 
the tumor obtained by needle before surgery, and a rough measure of the size 
and location of the tumor (stage) obtained by palpation with the fingers via the 
rectum. For these three binary independent variables, a value of 1 signifies a 
positive or more serious state and a 0 denotes a negative or less serious find­
ing. In addition, the sixth column presents the finding at surgery – the primary 
outcome of interest, which is binary, a value of 1 denoting nodal involvement, 
and a value of 0 denoting no nodal involvement found at surgery.

	   In Exercise 1.46, we investigated the effects of the three binary preoperative 
variables (x‐ray, grade, stage); in this exercise, we focus on the effects of the 
two continuous factors (age, acid phosphatase). The 53 patients are divided 
into two groups by the finding at surgery, a group with nodal involvement and 
a group without (denoted by 1 or 0 in the sixth column). For each group and 
for each of the two factors age at diagnosis and level of serum acid phospha­
tase, calculate the mean x , variance s2, and standard deviation s.

table E 2.32

X‐ray Grade Stage Age Acid Nodes X‐ray Grade Stage Age Acid Nodes

0 1 1 64 40 0 0 0 0 60 78 0
0 0 1 63 40 0 0 0 0 52 83 0
1 0 0 65 46 0 0 0 1 67 95 0
0 1 0 67 47 0 0 0 0 56 98 0
0 0 0 66 48 0 0 0 1 61 102 0
0 1 1 65 48 0 0 0 0 64 187 0
0 0 0 60 49 0 1 0 1 58 48 1
0 0 0 51 49 0 0 0 1 65 49 1
0 0 0 66 50 0 1 1 1 57 51 1
0 0 0 58 50 0 0 1 0 50 56 1
0 1 0 56 50 0 1 1 0 67 67 1
0 0 1 61 50 0 0 0 1 67 67 1
0 1 1 64 50 0 0 1 1 57 67 1
0 0 0 56 52 0 0 1 1 45 70 1
0 0 0 67 52 0 0 0 1 46 70 1
1 0 0 49 55 0 1 0 1 51 72 1
0 1 1 52 55 0 1 1 1 60 76 1
0 0 0 68 56 0 1 1 1 56 78 1
0 1 1 66 59 0 1 1 1 50 81 1
1 0 0 60 62 0 0 0 0 56 82 1
0 0 0 61 62 0 0 0 1 63 82 1
1 1 1 59 63 0 1 1 1 65 84 1
0 0 0 51 65 0 1 0 1 64 89 1
0 1 1 53 66 0 0 1 0 59 99 1
0 0 0 58 71 0 1 1 1 68 126 1
0 0 0 63 75 0 1 0 0 61 136 1
0 0 1 53 76 0

Note: This is a very long data file; its electronic copy, in a Web‐based form, is available from www.wiley.
com/go/Le/Biostatistics.

http://www.wiley.com/go/Le/Biostatistics#_blank
http://www.wiley.com/go/Le/Biostatistics#_blank
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2.33	 Refer to the data on cancer of the prostate in Exercise 2.32. Investigate the 
relationship between age at diagnosis and level of serum acid phosphatase by 
calculating Pearson’s correlation coefficient and draw your conclusion. Repeat 
this analysis, but analyze the data separately for the two groups: the group 
with nodal involvement and the group without. Does the nodal involvement 
seem to have any effect on the strength of this relationship?

2.34	 A study was undertaken to examine the data for 44 physicians working for an 
emergency department at a major hospital so as to determine which of a 
number of factors are related to the number of complaints received during the 
preceding year. In addition to the number of complaints, the data available 
consist of the number of visits – which serves as the size for the observation 
unit, the physician – and four other factors under investigation. Table E2.34 
presents the complete data set. For each of the 44 physicians there are two 
continuous explanatory factors: revenue (dollars per hour) and workload at the 
emergency service (hours); and two binary variables: gender (female/male) 
and residency training in emergency services (no/yes). Divide the number of 
complaints by the number of visits and use this ratio (number of complaints 
per visit) as the primary outcome or endpoint X.

(a)	 For each of the two binary factors, gender (female/male) and residency 
training in emergency services (no/yes), which divide the 44 physicians 
into two subgroups – say, men and women – calculate the mean x  and 
standard deviation s for the endpoint X.

(b)	 Investigate the relationship between the outcome, number of complaints 
per visit, and each of two continuous explanatory factors, revenue (dollars 
per hour) and workload at the emergency service (hours), by calculating 
Pearson’s correlation coefficient, and draw your conclusion.

(c)	 Draw a scatter diagram to show the association, if any, between the 
number of complaints per visit and the workload at the emergency service. 
Does it appear to be linear?

table E2.34

Number of visits Complaint Residency Gender Revenue Hours

2014 2 Y F 263.03 1287.25
3091 3 N M 334.94 1588.0
879 1 Y M 206.42 705.25
1780 1 N M 226.32 1005.5
3646 11 N M 288.91 1667.25
2690 1 N M 275.94 1517.75
1864 2 Y M 295.71 967.0
2782 6 N M 224.91 1609.25
3071 9 N F 249.32 1747.75

(Continued )
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Number of visits Complaint Residency Gender Revenue Hours

1502 3 Y M 269.00 906.25
2438 2 N F 225.61 1787.75
2278 2 N M 212.43 1480.50
2458 5 N M 211.05 1733.50
2269 2 N F 213.23 1847.25
2431 7 N M 257.30 1433.00
3010 2 Y M 326.49 1520.00
2234 5 Y M 290.53 1404.75
2906 4 N M 268.73 1608.50
2043 2 Y M 231.61 1220.00
3022 7 N M 241.04 1917.25
2123 5 N F 238.65 1506.25
1029 1 Y F 287.76 589.00
3003 3 Y F 280.52 1552.75
2178 2 N M 237.31 1518.00
2504 1 Y F 218.70 1793.75
2211 1 N F 250.01 1548.00
2338 6 Y M 251.54 1446.00
3060 2 Y M 270.52 1858.25
2302 1 N M 247.31 1486.25
1486 1 Y F 277.78 933.75
1863 1 Y M 259.68 1168.25
1661 0 N M 260.92 877.25
2008 2 N M 240.22 1387.25
2138 2 N M 217.49 1312.00
2556 5 N M 250.31 1551.50
1451 3 Y F 229.43 973.75
3328 3 Y M 313.48 1638.25
2927 8 N M 293.47 1668.25
2701 8 N M 275.40 1652.75
2046 1 Y M 289.56 1029.75
2548 2 Y M 305.67 1127.00
2592 1 N M 252.35 1547.25
2741 1 Y F 276.86 1499.25
3763 10 Y M 308.84 1747.50

Note: This is a very long data file; its electronic copy, in a Web‐based form, is available from www.wiley.
com/go/Le/Biostatistics.

table E2.34  (Continued)

http://www.wiley.com/go/Le/Biostatistics
http://www.wiley.com/go/Le/Biostatistics


2.35	 There have been times when the city of London, United Kingdom, experi­
enced periods of dense fog. Table E2.35 shows such data for a very severe 
15‐day period, including the number of deaths in each day (y), the mean atmo­
spheric smoke (x

1
, in mg/m3), and the mean atmospheric sulfur dioxide content 

(x
2
, in ppm).

(a)	 Calculate Pearson’s correlation coefficient for y and x
1
.

(b)	 Calculate Pearson’s correlation coefficient for y and x
2
.
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table E2.35

Number of deaths Smoke Sulfur dioxide

112 0.30 0.09
140 0.49 0.16
143 0.61 0.22
120 0.49 0.14
196 2.64 0.75
294 3.45 0.86
513 4.46 1.34
518 4.46 1.34
430 1.22 0.47
274 1.22 0.47
255 0.32 0.22
236 0.29 0.23
256 0.50 0.26
222 0.32 0.16
213 0.32 0.16
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3
PROBABILITY AND PROBABILITY 
MODELS

3.1  PROBABILITY

Most of Chapter  1 dealt with proportions. A proportion is defined to represent the 
relative size of the portion of a population with a certain (binary) characteristic. 
For  example, disease prevalence is the proportion of a population with a disease. 
Similarly, we can talk about the proportion of positive reactors to a certain screening 
test, the proportion of males in colleges, and so on. A proportion is used as a descriptive 
measure for a target population with respect to a binary or dichotomous characteristic. 
It is a number between 0 and 1 (or 100%); the larger the number, the larger the subpop-
ulation with the chacteristic [e.g., 70% male means more males (more than 50%)].

Now consider a population with a certain binary characteristic. A random selection 
is defined as one in which each person has an equal chance of being selected. What is 
the chance that a person with the characteristic will be selected (e.g., the chance of 
selecting, say, a diseased person)? The answer depends on the size of the subpopula-
tion to which he or she belongs (i.e., the proportion). The larger the proportion, the 
higher the chance (of such a person being selected). That chance is measured by the 
proportion, a number between 0 and 1, called the probability. Proportion measures 
size; it is a descriptive statistic. Probability measures chance. When we are concerned 
about the outcome (still uncertain at this stage) with a random selection, a proportion 
(static, no action) becomes a probability (action about to be taken). Think of this 
simple example about a box containing 100 marbles, 90 of them red and the other 10 
blue. If the question is: “Are there red marbles in the box?”, someone who saw the 
box’s contents would answer “90%.” But if the question is: “If I take one marble at 
random, do you think I would have a red one?”, the answer would be “90% chance.” 
The first 90% represents a proportion; the second 90% indicates the probability. 
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In addition, if we keep taking random selections (called repeated sampling), the accu-
mulated long‐term relative frequency with which an event occurs (i.e., characteristic 
to be observed) is equal to the proportion of the subpopulation with that characteristic. 
Because of this observation, proportion and probability are sometimes used inter-
changeably. In the following sections we deal with the concept of probability and 
some simple applications in making health decisions.

3.1.1  Certainty of Uncertainty

Even science is uncertain. Scientists are sometimes wrong. They arrive at different 
conclusions in many different areas: the effects of a certain food ingredient or of 
low‐level radioactivity, the role of fats in diets, and so on. Many studies are inconclu-
sive. For example, for decades surgeons believed that a radical mastectomy was the 
only treatment for breast cancer. More recently, carefully designed clinical trials 
showed that less drastic treatments seem equally effective.

Why is it that science is not always certain? Nature is complex and full of unexplained 
biological variability. In addition, almost all methods of observation and experiment are 
imperfect. Observers are subject to human bias and error. Science is a continuing story; 
subjects vary; measurements fluctuate. Biomedical science, in particular, contains con-
troversy and disagreement; with the best of intentions, biomedical data – medical his-
tories, physical examinations, interpretations of clinical tests, descriptions of symptoms 
and diseases – are somewhat inexact. But most important of all, we always have to deal 
with incomplete information: It is either impossible, or too costly, or too time‐consuming, 
to study the entire population; we often have to rely on information gained from a sample – 
that is, a subgroup of the population under investigation. So some uncertainty almost 
always prevails. Science and scientists cope with uncertainty by using the concept of 
probability. By calculating probabilities, they are able to describe what has happened and 
predict what should happen in the future under similar conditions.

3.1.2  Probability

The target population of a specific research effort is the entire set of subjects at 
which the research is aimed. For example, in a screening for cancer in a community, 
the target population will consist of all persons in that community who are at risk for 
the disease. For one cancer site, the target population might be all women over the 
age of 35; for another cancer site, all men over the age of 50.

The probability of an event, such as a screening test being positive, in a target 
population is defined as the relative frequency (i.e., proportion) with which the event 
occurs in that target population. For example, the probability of having a disease is 
the disease prevalence. For another example, suppose that out of N = 100 000 persons 
of a certain target population, a total of 5500 are positive reactors to a certain screen-
ing test; then the probability of being positive, denoted by Pr(positive), is

	

Pr

. . %.

positive

or

5500

100000
0 055 5 5 	
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A probability is thus a descriptive measure for a target population with respect 
to a certain event of interest. It is a number between 0 and 1 (or zero and 100%); 
the  larger the number, the larger the subpopulation. For the case of a continuous 
measurement, we have the probability of being within a certain interval. For example, 
the probability of a serum cholesterol level between 180 and 210 (mg/100 mL) is the 
proportion of people in a certain target population who have cholesterol levels falling 
between 180 and 210 (mg/100 mL). This is measured, in the context of the histogram 
of Chapter 2, by the area of a rectangular bar for the class (180–210). Now of critical 
importance in the interpretation of probability is the concept of random sampling so 
as to associate the concept of probability with uncertainty and chance.

Let the size of the target population be N (usually, a very large number), a sample 
is any subset – say, n in number (n < N) – of the target population. Simple random 
sampling from the target population is sampling so that every possible sample of size 
n has an equal chance of selection. For simple random sampling:

1.	 Each individual draw is uncertain with respect to any event or characteristic 
under investigation (e.g., having a disease), but

2.	 In repeated sampling from the population, the accumulated long‐run relative 
frequency with which the event occurs is the population relative frequency of 
the event.

The physical process of random sampling can be carried out as follows (or in a 
fashion logically equivalent to the following steps).

1.	 A list of all N subjects in the population is obtained. Such a list is termed a 
sampling frame of the population. The subjects are thus available to an arbi-
trary numbering (e.g., from 000 to N = 999). The frame is often based on a 
directory (telephone, city, etc.) or on hospital or medical records.

2.	 A tag is prepared for each subject carrying a number 1, 2, …, N.

3.	 The tags are placed in a receptacle (e.g., a box) and mixed thoroughly.

4.	 A tag is drawn blindly. The number on the tag then identifies the subject from 
the population; this subject becomes a member of the sample.

Steps 2 to 4 can also be implemented using a table of random numbers (Appendix 
A). Arbitrarily pick a three‐digit column (or four‐digit column if the population size 
is large), and a number selected arbitrarily in that column serves to identify the 
subject from the population. In practice, this process has been computerized.

We can now link the concepts of probability and random sampling as follows. In the 
example of cancer screening in a community of N = 100 000 persons, the calculated 
probability of 0.055 is interpreted as: “The probability of a randomly drawn person 
from the target population having a positive test result is 0.055 or 5.5%.” The rationale 
is as follows. On an initial draw, the subject chosen may or may not be a positive 
reactor. However, if this process – of randomly drawing one subject at a time from the 
population – is repeated over and over again a large number of times, the accumulated 
long‐run relative frequency of positive receptors in the sample will approximate 0.055.
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3.1.3  Statistical Relationship

The data from the cancer screening test of Example 1.4 are reproduced here as 
Table 3.1. In this design, each member of the population is characterized by two 
binary variables: the test result X and the true disease status Y. Following our defini-
tion above, the probability of a positive test result, denoted Pr(X = +), is

	

Pr

.

X
516

24103
0 021 	

and the probability of a negative test result, denoted Pr(X = −), is

	

Pr

.

X
23587

24103
0 979 	

and similarly, the probabilities of having (Y = +) and not having (Y = −) the disease 
are given by

	

Pr

.

Y
379

24103
0 015 	

and

	

Pr

.

Y
23724

24103
0 985 	

Note that the sum of these marginal probabilities for each variable is unity:

	

Pr Pr .

Pr Pr .

X X

Y Y

1 0

1 0	

This is an example of the addition rule of probabilities for mutually exclusive events: 
One of the two events (X = +) or (X = −) is certain to be true for a person selected 
randomly from the population.

Further, we can calculate the joint probabilities. These are the probabilities for 
two events – such as having the disease and having a positive test result – occurring 

Table 3.1

Disease, Y

Test result, X

Total+ −

+ 154 225 379
− 362 23 362 23 724

Total 516 23 587 24 103
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simultaneously. With two binary variables, X and Y, there are four conditions and the 
associated joint probabilities are

	

Pr ,

.

Pr ,

.

Pr ,

X Y

X Y

X

154

24103
0 006

362

24103
0 015

YY
225

24103
0 009. 	

and

	

Pr ,

. .

X Y
23362

24103
0 970 	

The second of the four joint probabilities, 0.015, represents the probability of a 
person drawn randomly from the target population having a positive test result but 
being healthy (i.e., a false positive). These joint probabilities and the marginal 
probabilities above, calculated separately for X and Y, are summarized and displayed 
in Table 3.2. Observe that the four cell probabilities add to unity [i.e., one of the four 
events (X = +, Y = +) or (X = +, Y = −) or (X = −,Y = +) or (X = −, Y = −) is certain to 
be true for a randomly selected individual from the population]. Also note that the 
joint probabilities in each row (or column) add up to the marginal or univariate 
probability at the margin of that row (or column). For example,

	

Pr , Pr , Pr
.

X Y X Y Y
0 015 	

We now consider a third type of probability. For example, the sensitivity is 
expressible as

	

sensitivity
154

379
0 406. 	

Table 3.2

Y

X

Total+ −

+ 0.006 0.009 0.015
− 0.015 0.97 0.985

Total 0.021 0.979 1.0
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calculated for the event (X = +) using the subpopulation having (Y = +). That is, of 
the total number of 379 persons with cancer, the proportion with a positive test result 
is 0.406 or 40.6%. This number, denoted by Pr(X = + | Y = +), is called a conditional 
probability (Y = + being the condition; the vertical bar “|” is read as “given”) and is 
related to the other two types of probability:

	
Pr |

Pr ,

Pr
X Y

X Y

Y 	

or

	 Pr , Pr | PrX Y X Y Y 	

Clearly, we want to distinguish this conditional probability, Pr(X = + | Y = +), from 
the marginal probability, Pr(X = +). If they are equal,

	 Pr | PrX Y X 	

the two events (X = +) and (Y = +) are said to be independent (because the condition 
Y = + does not change the probability of X = +) and we have the multiplication rule 
for probabilities of independent events:

	 Pr , Pr Pr .X Y X Y 	

If the two events are not independent, they have a statistical relationship or we say 
that they are statistically associated. For the screening example above,

	

Pr .

Pr | .

X

X Y

0 021

0 406	

clearly indicating a strong statistical relationship [because Pr(X = + | Y = +) ≠ Pr(X = +)]. 
Of course, it makes sense to have a strong statistical relationship here; otherwise, the 
screening is useless. However, it should be emphasized that a statistical association 
does not necessarily mean that there is a cause and an effect. Unless a relationship is 
so strong and repeated so constantly that the case is overwhelming, a statistical rela-
tionship, especially one observed from a sample (because the totality of population 
information is rarely available), is only a clue, meaning that more study or confirma-
tion is needed.

It should be noted that there are several different ways to check for the presence 
of a statistical relationship.

1.	 Calculation of the odds ratio. When X and Y are independent, or not associated 
statistically, the odds ratio equals 1. Here we refer to the odds ratio value for 
the population; this value is defined as

	
odds ratio

Pr | / Pr |

Pr | / Pr |

X Y X Y

X Y X Y 	
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and can be expressed, equivalently, in terms of the joint probabilities as

	
odds ratio

Pr , Pr ,

Pr , Pr ,

X Y X Y

X Y X Y 	

and the example above yields

	

OR
0 006 0 970

0 015 0 009
43 11

. .

. .

. 	

clearly indicating a statistical relationship.

2.	 Comparison of conditional probability and unconditional (or marginal) prob-
ability: for example, Pr(X = + | Y = +) versus Pr(X = +).

3.	 Comparison of conditional probabilities: for example, Pr(X = + | Y = +) versus 
Pr(X = + | Y = −). The screening example above yields

	 Pr | .X Y 0 406	

whereas

	

Pr |
,

.

X Y
362

23 724
0 015 	

again clearly indicating a statistical relationship. It should also be noted that 
we illustrate the concepts using data from a cancer screening test but that these 
concepts apply to any cross‐classification of two binary factors or variables. 
The primary aim is to determine whether a statistical relationship is present; 
Exercise 3.1, for example, deals with relationships between health services 
and race.

The next two sections present some applications of those simple probability rules 
introduced in this section: the problem of when to use screening tests and the problem 
of how to measure agreement between two binary variables.

3.1.4  Using Screening Tests

We have introduced the concept of conditional probability. However, it is important to 
distinguish the two conditional probabilities, Pr(X = + | Y = +) and Pr(Y = + | X = +). 
In Example 1.4, reintroduced in Section 3.1.3, we have

	

Pr |

.

X Y
154

379
0 406	
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whereas

	

Pr |

. .

Y X
154

516
0 298 	

Within the context of screening test evaluation:

1.	 Pr(X = + | Y = +) and Pr(X = − | Y = −) are the sensitivity and specificity, 
respectively.

2.	 Pr(Y = + | X = +) and Pr(Y = − | X = −) are called the positive predictivity and 
negative predictivity.

With positive predictivity (or positive predictive value), the question is: Given that 
the test X suggests cancer, what is the probability that, in fact, cancer is present? 
Rationales for these predictive values are that a test passes through several stages. 
Initially, the original test idea occurs to a researcher. It must then go through a devel-
opmental stage. This may have many aspects (in biochemistry, microbiology, etc.) 
one of which is in biostatistics: trying the test out on a pilot population. From this 
developmental stage, the efficiency of the test is characterized by its sensitivity and 
specificity. An efficient test will then go through an applicational stage with an actual 
application of X to a target population; and here we are concerned with its predictive 
values. The simple example given in Table 3.3 shows that unlike sensitivity and spec-
ificity, the positive and negative predictive values depend not only on the efficiency 
of the test but also on the disease prevalence of the target population. In both cases, 
the test is 90% sensitive and 90% specific. However:

1.	 Population A has a prevalence of 50%, leading to a positive predictive value 
of 90%.

2.	 Population B has a prevalence of 10%, leading to a positive predictive 
value of 50%.

The conclusion is clear: If a test – even a highly sensitive and highly specific one – 
is applied to a target population in which the disease prevalence is low (e.g., 
population screening for a rare disease), the positive predictive value is low. 
(How  does this relate to an important public policy: Should we conduct random 
testing for HIV?)

Table 3.3

Population A Population B

Y

X

Y

X

+ − + −

+ 45 000    5000 + 9000 1000
−    5000 45 000 − 9000 81 000
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In the actual application of a screening test to a target population (the applica-
tional stage), data on the disease status of individuals are not available (otherwise, 
screening would not be needed). However, disease prevalences are often available 
from national agencies and health surveys. Predictive values are then calculated from

	
positive predictivity

prevalence sensitivity

prevalence ssensitivity prevalence specificity1 1 	

and

	
negative predictivity

prevalence specificity

prevalen

1

1 cce specificity prevalence sensitivity1
.
	

These formulas, called Bayes’ theorem, allow us to calculate the predictive values 
without having data from the application stage. All we need are the disease preva-
lence (obtainable from federal health agencies) and sensitivity and specificity; these 
were obtained after the developmental stage. It is not too hard to prove these formulas 
using the addition and multiplication rules of probability. For example, we have

	

Pr |
Pr ,

Pr

Pr ,

Pr , Pr

Y X
X Y

X

X Y

X Y X ,

Pr Pr |

Pr Pr | Pr Pr

Y

Y X Y

Y X Y Y X ||

Pr Pr |

Pr Pr | Pr

Y

Y X Y

Y X Y Y1 11 Pr |X Y 	

which is the first equation for positive predictivity. You can also see, instead of going 
through formal proofs, our illustration of their validity using the population B data above:

1.	 Direct calculation of positive predictivity yields

	

9000

18000
0 5. .

	

2.	 Use of prevalence, sensitivity, and specificity yields

	

prevalence sensitivity

prevalence sensitivity preva1 llence specificity1

0 1 0 9

0 1 0 9 1 0 1 1 0 9

. .

. . . .
0 5. . 	
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3.1.5  Measuring Agreement

Many research studies rely on an observer’s judgment to determine whether a disease, 
a trait, or an attribute is present or absent. For example, results of ear examinations 
will certainly have effects on a comparison of competing treatments for ear infection. 
Of course, the basic concern is the issue of reliability. Sections 1.1.2 and 3.1.4 dealt 
with an important aspect of reliability, the validity of the assessment. However, to 
judge a method’s validity, an exact method for classification, or gold standard, must 
be available for the calculation of sensitivity and specificity. When an exact method is 
not available, reliability can only be judged indirectly in terms of reproducibility; the 
most common way for doing that is measuring the agreement between examiners.

For simplicity, assume that each of two observers independently assigns each of 
n items or subjects to one of two categories. The sample may then be enumerated in 
a 2 × 2 table (Table 3.4) or in terms of the cell probabilities (Table 3.5). n

11
 represents 

the number of items assigned to category 1 by both observers. Using these frequencies, 
we can define:

1.	 An overall proportion of concordance:

	
C

n n

n
11 22 .

	

2.	 Category‐specific proportions of concordance:

	

C
n

n n n

C
n

n n n

1
11

11 12 21

2
22

22 12 21

2

2
2

2
.
	

Table 3.4

Observer 1

Observer 2

TotalCategory 1 Category 2

Category 1 n
11

n
12

n
1+

Category 2 n
21

n
22

n
2+

Total n
+1

n
+2

n

Table 3.5

Observer 1

Observer 2

TotalCategory 1 Category 2

Category 1 p
11

p
12

p
1+

Category 2 p
21

p
22

p
2+

Total p
+1

p
+2

1.0
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The distinction between concordance and association is that for two responses to 
be associated perfectly, we require only that we can predict the category on one 
response from the category of the other response, while for two responses to have a 
perfect concordance, they must fall into the identical category. However, the propor-
tions of concordance, overall or category‐specific, do not measure agreement. 
Among other reasons, they are affected by the marginal totals. One possibility is to 
compare the overall concordance,

	
1

i
iip
	

where the p
ii
s are the diagonal proportions in the second 2 × 2 table above, with the 

chance concordance,

	
2

i
i ip p

	

which occurs if the row variable is independent of the column variable, because if 
two events are independent, the probability of their joint occurrence is the product of 
their individual or marginal probabilities (the multiplication rule). This leads to a 
measure of agreement,

	

1 2

21 	

called the kappa statistic, 0 1, which can be expressed as

	

2 11 22 12 21

1 2 1 2

n n n n

n n n n 	

and the following are guidelines for the evaluation of kappa in clinical research:

	

0 75
0 40 0 75

. :
. . :

excellent reproducibility
good reproducibillity
marginal poor reproducibility0 0 40. : / .	

In general, reproducibility that is not good indicates the need for multiple assessment.

Example 3.1
Two nurses perform ear examinations, focusing on the color of the eardrum (tympanic 
membrane); each independently assigns each of 100 ears to one of two categories: (a) 
normal or gray, or (b) not normal (white, pink, orange, or red). The data are shown in 
Table 3.6. The result,

	

2 35 35 20 10

45 45 55 55
0 406. 	

indicates that the agreement is barely acceptable.
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It should also be pointed out that:

1.	 The kappa statistic, as a measure for agreement, can also be used when there 
are more than two categories for classification:

	

p p p

p p
iii i ii

i ii
1

.
	

2.	 We can form category‐specific kappa statistics (e.g., with two categories); we have

	

1
11 1 1

1 1

2
22 2 2

2 2

1

1

p p p

p p
p p p

p p
.
	

3.	 The major problem with kappa is that it approaches zero (even with a high 
degree of agreement) if the prevalence is near 0 or near 1.

3.2  NORMAL DISTRIBUTION

3.2.1  Shape of the Normal Curve

The histogram of Figure 2.3 is reproduced here as Figure 3.1 (for numerical details, 
see Table 2.2). A close examination shows that in general, the relative frequencies (or 
densities) are greatest in the vicinity of the intervals 20–29, 30–39, and 40–49 and 
decrease as we go toward both extremes of the range of measurements.

Figure 3.1 shows a distribution based on a total of 57 children; the frequency dis-
tribution consists of intervals with a width of 10 lb. Now imagine that we increase the 
number of children to 50 000 and decrease the width of the intervals to 0.01 lb. The 
histogram would now look more like the one in Figure 3.2, where the step to go from 
one rectangular bar to the next is very small. Finally, suppose that we increase the 
number of children to 10 million and decrease the width of the interval to 0.00001 lb. 
You can now imagine a histogram with bars having practically no widths and thus the 
steps have all but disappeared. If we continue to increase the size of the data set and 
decrease the interval width, we eventually arrive at the smooth curve superimposed on 

Table 3.6

Nurse 1

Nurse 2

TotalNormal Not Normal

Normal 35 10 45
Not normal 20 35 55

Total 55 45 100
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the histogram of Figure 3.2 called a density curve. You may already have heard about 
the normal distribution; it is described as being a bell‐shaped distribution, sort of like 
a handlebar moustache, similar to Figure  3.2. The name may suggest that most 
distributions in nature are normal. Strictly speaking, that is false. Even more strictly 
speaking, they cannot be exactly normal. Some, such as heights of adults of a particular 
gender and race, are amazingly close to normal, but never exactly.

The normal distribution is extremely useful in statistics, but for a very different 
reason – not because it occurs in nature. Mathematicians proved that for samples that 
are “big enough,” values of their sample means, xs (including sample proportions as 
a special case), are approximately distributed as normal, even if the samples are taken 
from really strangely shaped distributions. This important result is called the central 
limit theorem. It is as important to statistics as the understanding of germs is to the 
understanding of disease. Keep in mind that “normal” is just a name for this curve; 
if  an attribute is not distributed normally, it does not imply that it is “abnormal.” 
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Figure 3.1  Distribution of weights of 57 children.

Figure 3.2  Histogram based on a large data set of weights.
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Many statistics texts provide statistical procedures for finding out whether a distribu-
tion is normal, but they are beyond the scope of this book.

From now on, to distinguish samples from populations (a sample is a subgroup of 
a population), we adopt the set of notations defined in Table 3.7. Quantities in the 
second column (μ, σ2, and π) are parameters representing numerical properties of 
populations; μ and σ2 for continuously measured information and π for binary 
information. Quantities in the first column (x , s2, and p) are statistics representing 
summarized information from samples. Parameters are fixed (constants) but 
unknown, and each statistic can be used as an estimate for the parameter listed in the 
same row of the foregoing table. For example, x  is used as an estimate of μ; this topic 
is discussed in more detail in Chapter 4. A major problem in dealing with statistics 
such as x  and p is that if we take a different sample – even using the same sample 
size – values of a statistic change from sample to sample. The central limit theorem 
tells us that if sample sizes are fairly large, values of x  (or p) in repeated sampling 
have a very nearly normal distribution. Therefore, to handle variability due to chance, 
so as to be able to declare – for example – that a certain observed difference is more 
than would occur by chance but is real, we first have to learn how to calculate prob-
abilities associated with normal curves.

The term normal curve, in fact, refers not to one curve but to a family of curves, 
each characterized by a mean μ and a variance σ2. In the special case where μ = 0 and 
σ2 = 1, we have the standard normal curve. For a given μ and a given σ2, the curve is 
bell‐shaped with the tails dipping down to the baseline. In theory, the tails get closer 
and closer to the baseline but never touch it, proceeding to infinity in either direction. 
In practice, we ignore that and work within practical limits.

The peak of the curve occurs at the mean μ (which for this special distribution is 
also median and mode), and the height of the curve at the peak depends, inversely, on 
the variance σ2. Figure 3.3 shows some of these curves.

3.2.2  Areas Under the Standard Normal Curve

A variable that has a normal distribution with mean μ = 0 and variance σ2 = 1 is called 
the standard normal variate and is commonly designated by the letter Z. As with any 
continuous variable, probability calculations here are always concerned with finding 
the probability that the variable assumes any value in an interval between two specific 

Table 3.7

Quantity

Notation

Sample Population

Mean x  (x‐bar) μ (mu)
Variance s2 (s squared) σ2 (sigma squared)
Standard deviation s σ
Proportion p π (pi)
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points a and b. The probability that a continuous variable assumes a value between 
two points a and b is the area under the graph of the density curve between a and b; 
the vertical axis of the graph represents the densities as defined in Chapter 2. The total 
area under any such curve is unity (or 100%), and Figure 3.4 shows the standard 

σ = 5

σ = 10

xμ

–10 0

(a)

(b)

Figure 3.3  Family of normal curves: (a) two normal distributions with the same mean but 
different variances; (b) two normal distributions with the same variance but different means.

99.74%

99.45%

68.25%

–3 –2 –1 +1 +2 +3

Figure 3.4  Standard normal curve and some important divisions.
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normal curve with some important divisions. For example, about 68% of the area is 
contained within ±1:

	 Pr .1 1 0 6826z 	

and about 95% within ±2:

	 Pr . .2 2 0 9545z 	

More areas under the standard normal curve have been computed and are available 
in tables, one of which is our Appendix B. The entries in the table of Appendix B give 
the area under the standard normal curve between the mean (z = 0) and a specified 
positive value of z. Graphically, it is represented by the shaded region in Figure 3.5.

Using the table of Appendix B and the symmetric property of the standard normal 
curve, we show how some other areas are computed. (With access to some computer 
packaged program, these can be obtained easily; see Section  3.5. However, we 
believe that these practices do add to the learning, even though they may no longer 
be needed.)

How to Read the Table in Appendix B  The entries in Appendix B give the area 
under the standard normal curve between zero and a positive value of z. Suppose 
that we are interested in the area between z = 0 and z = 1.35 (numbers are first 
rounded off to two decimal places). To do this, first find the row marked with 1.3 in 
the left‐hand column of the table, and then find the column marked with 0.05 in the 
top row of the table (1.35 = 1.3 + 0.05). Then looking in the body of the table, we 
find that the “1.30 row” and the “0.05 column” intersect at the value 0.4115. This 
number, 0.4115, is the desired area between z = 0 and z = 1.35. A portion of 
Appendix B relating to these steps is shown in Table 3.8. Another example: The area 
between z = 0 and z = 1.23 is 0.3907; this value is found at the intersection of the 
“1.2 row” and the “0.03 column” of the table.

Inversely, given the area between zero and some positive value z, we can find that 
value of z. Suppose that we are interested in a z value such that the area between zero 
and z is 0.2. To find this z value, we look into the body of the table to find the 

Area of shaded
region = probability

0 z

Figure 3.5  Area under the standard normal curve as in Appendix B.
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tabulated area value nearest to 0.2, which is 0.2019. This number is found at the 
intersection of the “0.5 row” and the “0.03 column.” Therefore, the desired z value is 
0.53 (0.53 = 0.5 + 0.03).

Example 3.2
What is the probability of obtaining a z value between −1 and 1? We have

	

Pr Pr Pr

Pr

.
.

1 1 1 0 0 1

2 0 1

2 0 3413
0

z z z

z

66826 	

which confirms the number listed in Figure 3.4. This area is shown graphically in 
Figure 3.6.

Example 3.3
What is the probability of obtaining a z value of at least 1.58? We have

	

Pr . . Pr .
. .
.

z z1 58 0 5 0 1 58
0 5 0 4429
0 0571 	

and this probability is shown in Figure 3.7.

Table 3.8

Z 0.0 0.01 0.02 0.03 0.04 0.05 …

0.0
0.1
0.2
…

1.3 0.4115
…

Pr (–1≤ z ≤ 0) = 0.3413  Pr (0.00 ≤ z ≤ 1.00) = 0.3413  

–1 0 1
z

Figure 3.6  Graphical display for Example 3.2.
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Example 3.4
What is the probability of obtaining a z value of −0.5 or larger? We have

	

Pr . Pr . Pr

Pr . Pr
.

z z z

z z

0 5 0 5 0 0

0 0 5 0
0 1915 0 5
0 6915

.
. 	

and this probability is shown in Figure 3.8.

Example 3.5
What is the probability of obtaining a z value between 1.0 and 1.58? We have

	

Pr . . Pr . Pr .
. .
.

1 0 1 58 0 1 58 0 1 0
0 4429 0 3413
0 10

z z z

116 	

and this probability is shown in Figure 3.9.

0.5000 of total area
to the left of z = 0.00 0.5000 of total area

to the right of z = 0.00
0.4429 is the area
between z = 0.00
and z = 1.58

Pr (Z ≥ 1.58)
= 0.5000 – 0.4420 = 0.0571

–3 –2 –1 0 +1 +2

1.58

+3
z

Figure 3.7  Graphical display for Example 3.3.

Pr (–0.50 ≤ z ≤ 0.00) = 0.1915 Pr (z ≥ 0.00) = 0.50

Total shaded area is
Pr (z ≥ –0.50) = 0.6915

z
–3 –2 –1 0 +1 +2 +3

Figure 3.8  Graphical display for Example 3.4.
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Example 3.6
Find a z value such that the probability of obtaining a larger z value is only 0.1. We have

	 Pr ? .z 0 1	

and this is illustrated in Figure 3.10. Scanning the table in Appendix B, we find 0.3997 
(area between 0 and 1.28), so that

	

Pr . . Pr .
. .
. .

z z1 28 0 5 0 1 28
0 5 0 3997
0 1 	

In terms of the question asked, there is approximately a 0.1 probability of obtaining 
a z value of 1.28 or larger.

Area between z = 0.00
and z = 1.58 is 0.4429

Area between z = 0.00
and z = 1 is 0.3413

–3 –2 –1 0 +1 +2 +3

Area between z = 1.00
and z = 1.58 is
0.4429–0.3413 = 0.1016

z

Figure 3.9  Graphical display for Example 3.5.

Probability (area) is 0.10

What is this z value?

–3 –2 –1 0 +1 +2 +3
z

Figure 3.10  Graphical display for Example 3.6.
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3.2.3  Normal Distribution as a Probability Model

The reason we have been discussing the standard normal distribution so extensively 
with many examples is that probabilities for all normal distributions are computed 
using the standard normal distribution. That is, when we have a normal distribution 
for variable x with a given mean μ and a given standard deviation σ (or variance σ2), 
we answer probability questions about the distribution by first converting (or stan-
dardizing) to the standard normal:

	
z

x
.
	

Here we interpret the z value (or z score) as the number of standard deviations 
from the mean.

Example 3.7
If the total cholesterol values for a certain target population are approximately 
normally distributed with a mean of 200 (mg/100 mL) and a standard deviation of 
20 (mg/100 mL), the probability that a person picked at random from this population 
will have a cholesterol value greater than 240 (mg/100 mL) is

	

Pr Pr

Pr .

. Pr .

x
x

z

z

240
200

20

240 200

20
2 0

0 5 0 2 00
0 5 0 4772
0 0228 2 28
. .
. . %.or 	

Example 3.8
Figure 3.11 is a model for hypertension and hypotension (Journal of the American 
Medical Association, 1964), presented here as a simple illustration on the use of the 
normal distribution; acceptance of the model itself is not universal.

Data from a population of males were collected by age as shown in Table 3.9. 
From this table, using Appendix B, systolic blood pressure limits for each group can 
be calculated (Table 3.10). For example, the highest healthy limit for the 20–24 age 
group is obtained as follows:

	

Pr ? .

Pr
.

.

? .

.

x

x

0 1

123 9

13 74

123 9

13 74 	
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5%

Hypotensive Borderline HypertensiveBorderlineNormal
blood pressure 

5% 5%

5%

Figure 3.11  Graphical display of a hypertension model.

Table 3.9

Age (years)

Systolic blood pressure (mmHg)

Mean Standard deviation

16 118.4 12.17
17 121.0 12.88
18 119.8 11.95
19 121.8 14.99
20–24 123.9 13.74
25–29 125.1 12.58
30–34 126.1 13.61
35–39 127.1 14.20
40–44 129.0 15.07
45–54 132.3 18.11
55–64 139.8 19.99

Table 3.10

Age Hypotension if below: Lowest healthy Highest healthy Hypertension if above:

16 98.34 102.80 134.00 138.46
17 99.77 104.49 137.51 142.23
18 100.11 104.48 135.12 139.49
19 97.10 102.58 141.02 146.50
20–24 ? ? ? ?
25–29 ? ? ? ?
30–34 103.67 108.65 143.55 148.53
35–39 103.70 108.90 145.30 150.50
40–44 104.16 109.68 148.32 153.84
45–54 102.47 109.09 155.41 162.03
55–64 106.91 114.22 165.38 172.74
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and from Example 3.6 we have

	
1 28

123 9

13 74
.

? .

. 	

leading to

	

? . . .
. .

123 9 1 28 13 74
141 49 	

3.3  PROBABILITY MODELS FOR CONTINUOUS DATA

In Section 3.2 we treated the family of normal curves very informally because it was 
intended to reach more students and readers for whom mathematical formulas may 
not be very relevant. In this section we provide some supplementary information 
that may be desirable for those who may be more interested in the fundamentals of 
biostatistical inference.

A class of measurements or a characteristic on which individual observations or 
measurements are made is called a variable. If values of a variable may theoretically 
lie anywhere on a numerical scale, we have a continuous variable; examples include 
weight, height, and blood pressure, among others. We saw in Section 3.2 that each 
continuous variable is characterized by a smooth density curve. Mathematically, a 
curve can be characterized by an equation of the form

	 y f x 	

called a probability density function, which includes one or several parameters; the 
total area under a density curve is 1.0. The probability that the variable assumes any 
value in an interval between two specific points a and b is given by

	
f x dx

a

b
.
	

The probability density function for the family of normal curves, sometimes 
referred to as the Gaussian distribution, is given by

	
f x

x
x

1

2

1

2

2

exp .for
	

The meaning and significance of the parameters μ, σ, and σ2 have been discussed 
in Section 3.2; μ is the mean, σ2 is the variance, and σ is the standard deviation. When 
μ = 1 and σ2 = 1, we have the standard normal distribution. The numerical values 
listed in Appendix B are those given by

	

1

2

1

2
2

0
exp .x dx

z
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The normal distribution plays an important role in statistical inference because:

1.	 Many real‐life distributions are approximately normal.

2.	 Many other distributions can be almost normalized by appropriate data 
transformations (e.g., taking the log). When log X has a normal distribution, X 
is said to have a lognormal distribution.

3.	 As a sample size increases, the means of samples drawn from a population of any 
distribution will approach the normal distribution. This theorem, when stated 
rigorously, is known as the central limit theorem (more details in Chapter 4).

In addition to the normal distribution (Appendix B), topics introduced in 
subsequent chapters involve three other continuous distributions:

•• The t distribution (Appendix C)

•• The chi‐square distribution (Appendix D)

•• The F distribution (Appendix E).

The t distribution is similar to the standard normal distribution in that it is unimodal, 
bell‐shaped, and symmetrical; extends infinitely in either direction; and has a mean of 
zero. This is a family of curves, each indexed by a number called degrees of freedom 
(df). Given a sample of continuous data, the degrees of freedom measure the quantity of 
information available in a data set that can be used for estimating the population vari-
ance σ2 (i.e., n − 1, the denominator of s2). The t curves have “thicker” tails than those of 
the standard normal curve; their variance is slightly greater than 1 [= df / (df − 2)]. 
However, the area under each curve is still equal to unity (or 100%). Areas under a curve 
from the right tail, shown by the shaded region, are listed in Appendix C; the t distribu-
tion for infinite degrees of freedom is precisely equal to the standard normal distribution. 
This equality is readily seen by examining the column marked, say, “Area = .025.” The 
last row (infinite df) shows a value of 1.96, which can be verified using Appendix B.

Unlike the normal and t distributions, the chi‐square and F distributions are concerned 
with nonnegative attributes and will be used only for certain “tests” in Chapter 6 (chi‐
square distribution) and Chapter 7 (F distribution). Similar to the case of the t distribu-
tion, the formulas for the probability distribution functions of the chi‐square and 
F distributions are rather complex mathematically and are not presented here. Each 
chi‐square distribution is indexed by a number called the degrees of freedom r. We refer 
to it as the chi‐square distribution with r degrees of freedom; its mean and variance are 
r and 2r, respectively. An F distribution is indexed by two degrees of freedom (m, n).

3.4  PROBABILITY MODELS FOR DISCRETE DATA

Again, a class of measurements or a characteristic on which individual observations 
or measurements are made is called a variable. If values of a variable may lie at only 
a few isolated points, we have a discrete variable; examples include race, gender, or 
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some sort of artificial grading. Topics introduced in subsequent chapters involve two 
of these discrete distributions: the binomial distribution and the Poisson distribution.

3.4.1  Binomial Distribution

In Chapter 1 we discussed cases with dichotomous outcomes such as male–female, 
survived–not survived, infected–not infected, white–nonwhite, or simply positive–
negative. We have seen that such data can be summarized into proportions, rates, and 
ratios. In this section we are concerned with the probability of a compound event: the 
occurrence of x (positive) outcomes ( )0 x n  in n trials, called a binomial proba-
bility. For example, if a certain drug is known to cause a side effect 10% of the time 
and if five patients are given this drug, what is the probability that four or more 
experience the side effect?

Let S denote a “side‐effect” outcome and N a “no side-effect” outcome. The pro-
cess of determining the chance of x Ss in n trials consists of listing all the possible 
mutually exclusive outcomes, calculating the probability of each outcome using the 
multiplication rule (where the trials are assumed to be independent), and then 
combining the probability of all those outcomes that are compatible with the desired 
results using the addition rule. With five patients there are 32 mutually exclusive 
outcomes, as shown in the rows of Table 3.11.

Since the results for the five patients are independent, the multiplication rule pro-
duces the probabilities shown for each combined outcome. For example:

•• The probability of obtaining an outcome with four Ss and one N is

	 0 1 0 1 0 1 0 1 1 0 1 0 1 0 9
4

. . . . . . . .	

•• The probability of obtaining all five Ss is

	 0 1 0 1 0 1 0 1 0 1 0 1
5

. . . . . . .	

The event “all five with side effects” corresponds to only one of the 32 outcomes 
above and the event “four with side effects and one without” pertains to five of 
the 32 outcomes, each with probability (0.1)4(0.9). The addition rule thus yields a 
probability

	 0 1 5 0 1 0 9 0 00046
5 4

. . . . 	

for the compound event that “four or more have side effects.” In general, the binomial 
model applies when each trial of an experiment has two possible outcomes (often 
referred to as “failure” and “success” or “negative” and “positive”; one has a success 
when the primary outcome is observed). Let the probabilities of failure and success 
be, respectively, 1 − π and π, and we “code” these two outcomes as 0 (zero successes) 
and 1 (one success). The experiment consists of n repeated trials satisfying these 
assumptions:

1.	 The n trials are all independent.

2.	 The parameter π is the same for each trial.
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The binomial model is concerned with the total number of successes in n trials as 
a random variable, denoted by X. Its probability density function is given by

	
Pr , , , ,X x

n

x
for x nx n x

1 0 1 2
	

where 
n

x
 is the number of combinations of x objects selected from a set of n objects,

	

n

x

n

x n x

!

! !	

Table 3.11

Outcome

Probability

Number of patients 
having patient side 

effects
First 
patient

Second 
patient

Third 
patient

Fourth 
patient

Fifth 
patient

S S S S S (0.1)5 →5
S S S S N (0.1)4(0.9) →4
S S S N S (0.1)4(0.9) →4
S S S N N (0.1)3(0.9)2 3
S S N S S (0.1)4(0.9) →4
S S N S N (0.1)3(0.9)2 3
S S N N S (0.1)3(0.9)2 3
S S N N N (0.1)2(0.9)3 2
S N S S S (0.1)4(0.9) →4
S N S S N (0.1)3(0.9)2 3
S N S N S (0.1)3(0.9)2 3
S N S N N (0.1)2(0.9)3 2
S N N S S (0.1)3(0.9)2 3
S N N S N (0.1)2(0.9)3 2
S N N N S (0.1)2(0.9)3 2
S N N N N (0.1)(0.9)4 1
N S S S S (0.1)4(0.9) →4
N S S S N (0.1)3(0.9)2 3
N S S N S (0.1)3(0.9)2 3
N S S N N (0.1)2(0.9)3 2
N S N S S (0.1)3(0.9)2 3
N S N S N (0.1)2(0.9)3 2
N S N N S (0.1)2(0.9)3 2
N S N N N (0.1)(0.9)4 1
N N S S S (0.1)3(0.9)2 3
N N S S N (0.1)2(0.9)3 2
N N S N S (0.1)2(0.9)3 2
N N S N N (0.1)(0.9)4 1
N N N S S (0.1)2(0.9)3 2
N N N S N (0.1)(0.9)4 1
N N N N S (0.1)(0.9)4 1
N N N N N (0.9)5 0



128� PROBABILITY AND PROBABILITY MODELS

and n! is the product of the first n integers. For example,

	 3 1 2 3! 	

The mean and variance of the binomial distribution are

	

n
n2 1 	

and when the number of trials n is from moderate to large (n > 25, say), we 
approximate the binomial distribution by a normal distribution and answer proba-
bility questions by first converting to a standard normal score:

	

z
x n

n 1 	

where π is the probability of having a positive outcome from a single trial. For 
example, for π = 0.1 and n = 30, we have

	

30 0 1
3
30 0 1 0 9

2 7

2

.

. .
. 	

so that

	

Pr Pr
.

Pr .
. .

x z

z

7
7 3

2 7
2 43

0 0075



	

In other words, if the true probability for having the side effect is 10%, the prob-
ability of having seven or more of 30 patients with the side effect is less than 1% 
(=0.0075).

3.4.2  Poisson Distribution

The next discrete distribution that we consider is the Poisson distribution, named 
after a French mathematician. This distribution has been used extensively in health 
science to model the distribution of the number of occurrences x of some random 
event in an interval of time or space, or some volume of matter. For example, a 
hospital administrator has been studying daily emergency admissions over a period 
of several months and has found that admissions have averaged three per day. He 
or she is then interested in finding the probability that no emergency admissions 
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will occur on a particular day. The Poisson distribution is characterized by its 
probability density function:

	
Pr

!
, , ,X x

e

x
x

x

for 0 1 2
	

It turns out, interestingly enough, that for a Poisson distribution the variance is equal 
to the mean, the parameter θ above. Therefore, we can answer probability questions 
by using the formula for the Poisson density above or by converting the number of 
occurrences x to the standard normal score, provided that θ ≥ 10:

	
z

x
.
	

In other words, we can approximate a Poisson distribution by a normal distribution 
with mean θ if θ is at least 10.

Here is another example involving the Poisson distribution. The infant mortality 
rate (IMR) is defined as

	
IMR

d

N 	

for a certain target population during a given year, where d is the number of deaths dur-
ing the first year of life and N is the total number of live births. In the studies of IMRs, 
N is conventionally assumed to be fixed and d to follow a Poisson distribution.

Example 3.9
For the year 1981 we have the following data for the New England states (Connecticut, 
Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont):

	

d
N

1585
164200.	

For the same year, the national infant mortality rate was 11.9 (per 1000 live births). 
If we apply the national IMR to the New England states, we would have

	

11 9 164 2
1954

. .
. infant deaths 	

Then the event of having as few as 1585 infant deaths would occur with a 
probability

	

Pr Pr

Pr .

d z

z

1585
1585 1954

1954
8 35

0 	

The conclusion is clear: either we observed an extremely improbable event, 
or  infant mortality in the New England states is lower than the national average. 
The rate observed for the New England states was 9.7 deaths per 1000 live births.
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3.5  BRIEF NOTES ON THE FUNDAMENTALS

In this section we provide some brief notes on the foundation of some methods in 
previous sections. Readers, especially beginners, may decide to skip it without loss 
of continuity.

3.5.1  Mean and Variance

As seen in Sections 3.3 and 3.4, a probability density function f is defined so that:

a)  f (k) = Pr(X = k) in the discrete case.

b)  f (x) dx = Pr(x ≤ X ≤ x + dx) in the continuous case.

For a continuous distribution, such as the normal distribution, the mean μ and 
variance σ2 are calculated from:

a)  μ = ∫ xf (x) dx.

b)  σ2 = ∫ (x − μ)2f (x) dx.

For a discrete distribution, such as the binomial distribution or Poisson distribu-
tion, the mean μ and variance σ2 are calculated from:

a)  xf x( ).

b)  2 2( ) ( )x f x .

For example, we have for the binomial distribution,

	

np
np p2 1 	

and for the Poisson distribution,

	 2 .	

3.5.2  Pair‐Matched Case–Control Study

Data from epidemiologic studies may come from various sources, the two fundamental 
designs being retrospective and prospective (or cohort). Retrospective studies gather 
past data from selected cases (diseased individuals) and controls (nondiseased 
individuals) to determine differences, if any, in the exposure to a suspected risk 
factor. They are commonly referred to as case–control studies. Cases of a specific 
disease, such as lung cancer, are ascertained as they arise from population‐based 
disease registers or lists of hospital admissions, and controls are sampled either as 
disease‐free persons from the population at risk or as hospitalized patients having a 
diagnosis other than the one under investigation. The advantages of a case–control 
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study are that it is economical and that it is possible to answer research questions 
relatively quickly because the cases are already available. Suppose that each person 
in a large population has been classified as exposed or not exposed to a certain factor, 
and as having or not having some disease. The population may then be enumerated 
in a 2 × 2 table (Table 3.12), with entries being the proportions of the total population.

Using these proportions, the association (if any) between the factor and the disease 
could be measured by the ratio of risks (or relative risk) of being disease positive for 
those with or without the factor:

	

relative risk
P

P P

P

P P
P P P

P P P

1

1 3

2

2 4

1 2 4

2 1 3 	

since in many (although not all) situations, the proportions of subjects classified as 
disease positive will be small. That is, P

1
 is small in comparison with P

3
, and P

2
 will 

be small in comparison with P
4
. In such a case, the relative risk is almost equal to

	

P P

P P
P P

P P

1 4

2 3

1 3

2 4

/

/ 	

the odds ratio of being disease positive, or

	

P P

P P
1 2

3 4

/

/ 	

the odds ratio of being exposed. This justifies the use of an odds ratio to determine 
differences, if any, in the exposure to a suspected risk factor.

As a technique to control confounding factors in a designed study, individual 
cases are matched, often one to one, to a set of controls chosen to have similar values 
for the important confounding variables. The simplest example of pair‐matched data 
occurs with a single binary exposure (e.g., smoking versus nonsmoking). The data 
for outcomes can be represented by a 2 × 2 table (Table 3.13) where (+, −) denotes 
(exposed, unexposed).

Table 3.12

Factor

Disease

Total+ −

+ P
1

P
3

P
1
 + P

3

− P
2

P
4

P
2
 + P

4

Total P
1
 + P

2
P

3
 + P

4
1
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For example, n
10

 denotes the number of pairs where the case is exposed, but the 
matched control is unexposed. The most suitable statistical model for making infer-
ences about the odds ratio θ is to use the conditional probability of the number of 
exposed cases among the discordant pairs. Given n = n

10
 + n

01
 being fixed, it can be 

seen that n
10

 follows a binomial distribution B(n, p), where

	
p

1
.
	

The proof can be presented briefly as follows. Denoting by

	

1 1 1

0 0 0

1 0 1

1 0 1 	

the exposure probabilities for cases and controls, respectively, then the probability of 
observing a case–control pair with only the case exposed is λ

1
ψ

0
, while that of 

observing a pair where only the control is exposed is ψ
1
λ

0
. Hence the conditional 

probability of observing a pair of the former variety, given that it is discordant, is

	

P 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 1 0 0

1 1

1

/

/
/ / /

/ / /0 0 1

1 	

a function of the odds ratio θ only.

3.6  NOTES ON COMPUTATIONS

In Sections 1.4 and 2.5 we covered basic techniques for Microsoft Excel: how to 
open/form a spreadsheet, save it, retrieve it, and perform certain descriptive statistical 
tasks. Topics included data‐entry steps, such as select and drag, use of formula bar, 
bar and pie charts, histograms, calculations of descriptive statistics such as mean and 
standard deviation, and calculation of a coefficient of correlation. In this short 

Table 3.13

Control

Case

+ −

+ n
11

n
01

− n
10

n
00
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section we focus on probability models related to the calculation of areas under 
density curves, especially normal curves and t curves, and we provide the 
corresponding SAS and R functions as well.

Normal Curves  The first two steps are the same as in obtaining descriptive statistics 
(but no data are needed now): (i) click the paste function icon, f*, and (ii) click 
Statistical. Among the functions available, two are related to normal curves: 
NORMDIST and NORMINV. Excel provides needed information for any normal 
distribution, not just the standard normal distribution as in Appendix B. Upon select-
ing either one of the two functions above, a box appears asking you to provide: (i) the 
mean μ, (ii) the standard deviation σ, and (iii) in the last row, marked cumulative, to 
enter TRUE (there is a choice FALSE, but you do not need that). The answer will 
appear in a preselected cell.

•• NORMDIST gives the area under the normal curve (with mean and variance 
provided) all the way from the far‐left side (minus infinity) to the value x that 
you have to specify. For example, if you specify μ = 0 and σ = 1, the return is the 
area under the standard normal curve up to the point specified (which is the 
same as the number from Appendix B plus 0.5). In a SAS data step, use the 
function CDF(‘normal’,x,μ,σ). In R, use the function pnorm(x,mean=μ,sd=σ).

•• NORMINV performs the inverse process, where you provide the area under the 
normal curve (a number between 0 and 1), together with the mean μ and standard 
deviation σ, and request the point x on the horizontal axis so that the area under 
that normal curve from the far‐left side (minus infinity) to the value x is equal to 
the number provided between 0 and 1. For example, if you put in μ = 0, σ = 1, 
and probability = 0.975, the return is 1.96. In a SAS data step, use the function 
QUANTILE(‘normal’, p,μ,σ). In R, use the function qnorm(p,mean=μ,sd=σ). 
Unlike Appendix B, if you want a number in the right tail of the curve, the input 
probability should be a number greater than 0.5.

The t Curves: Procedures TDIST and TINV  We want to learn how to find the 
areas under the normal curves so that we can determine the p values for statistical 
tests (a topic starting in Chapter 5). Another popular family in this category is the 
t distributions, which begin with the same first two steps: (i) click the paste function 
icon, f*, and (ii) click Statistical. Among the functions available, two related to the 
t distributions are TDIST and TINV. Similar to the case of NORMDIST and 
NORMINV, TDIST gives the area under the t curve, but you must provide the 
degrees of freedom (df). However, TDIST provides the right tail area (or the sum of 
both tail areas) corresponding to a positive value of x, while NORMDIST provides 
the area to the left of x (whether x is positive or negative). In the last row of the 
TDIST box, marked with tails, enter:

•• (Tails=) 1 if you want one‐sided;

•• (Tails=) 2 if you want two‐sided.
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(More details on the concepts of one‐ and two‐sided areas are given in Chapter 5.) 
For example:

•• Example 1: If you enter (x=) 2.73, (deg freedom=) 18, and, (Tails=) 1, you’re 
requesting the area under a t curve with 18 degrees of freedom and to the right 
of 2.73 (i.e., right tail); the answer is 0.00687.

•• Example 2: If you enter (x=) 2.73, (deg freedom=) 18, and (Tails=) 2, you’re 
requesting the area under a t curve with 18 degrees of freedom and to the right 
of 2.73 and to the left of −2.73 (i.e., both right and left tails); the answer is 
0.01374, which is twice the previous answer of 0.00687.

The SAS and R t functions are exactly analogous to the corresponding normal 
functions; they both provide the area to the left of the specified x. In a SAS data step, 
use the function CDF(‘t’,x,df). In R, use the function pt(x,df=df).

TINV performs the inverse process where you provide the area under the curve p 
and request the corresponding point x on the horizontal axis. TINV returns the value 
x corresponding to the provided sum of both tail areas (so x is always positive), in 
contrast to NORMINV which returns the value x corresponding to the provided left‐
side area (so x is positive if the area is >0.5 and x is negative if the area is <0.5). The 
SAS and R inverse t functions are exactly analogous to the corresponding inverse 
normal functions; they both return the value x corresponding to the provided area p 
to the left of x. In a SAS data step, use the function QUANTILE(‘t’,p,df). In R, use 
the function qt(p,df=df).

EXERCISES

3.1	 Although cervical cancer is not a leading cause of death among women in the 
United States, it has been suggested that virtually all such deaths are prevent-
able (5166 American women died from cervical cancer in 1977). In an effort to 
find out who is being or not being screened for cervical cancer (Pap testing), 
data were collected from a certain community (Table E3.1). Is there a statistical 
relationship here? (Try a few different methods: calculation of odds ratio, 
comparison of conditional and unconditional probabilities, and comparison of 
conditional probabilities.)

Table E3.1

Pap test

Race

TotalWhite Black

No 5244 785 6029
Yes 25 117 2348 27 465

Total 30 361 3133 33 494
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3.2	 In a study of intraobserver variability in assessing cervical smears, 3325 slides 
were screened for the presence or absence of abnormal squamous cells. Each 
slide was screened by a particular observer and then rescreened six months 
later by the same observer. The results are shown in Table  E3.2. Is there a 
statistical relationship between first screening and second screening? (Try a 
few different methods as in Exercise 3.1.)

3.3	 From the intraobserver variability study above, find:

(a)	 The probability that abnormal squamous cells were found to be absent in 
both screenings.

(b)	 The probability of an absence in the second screening given that abnormal 
cells were found in the first screening.

(c)	 The probability of an abnormal presence in the second screening given that 
no abnormal cells were found in the first screening.

(d)	 The probability that the screenings disagree.

3.4	 Given the screening test of Example 1.4, where

	

sensitivity
specificity

0 406
0 985
.
. 	

calculate the positive predictive values when the test is applied to the following 
populations:

	

Population A prevalence
Population B prevalence

: % ,
: % .

80
25 	

3.5	 Consider the data shown in Table E3.5 on the use of x‐ray as a screening test 
for tuberculosis:

(a)	 Calculate the sensitivity and specificity.

(b)	 Find the disease prevalence.

(c)	 Calculate the positive predictive value both directly and indirectly using 
Bayes’ theorem.

Table E3.2

First screening

Second screening

TotalPresent Absent

Present 1763 489 2252
Absent 403 670 1073

Total 2166 1159 3325



136� PROBABILITY AND PROBABILITY MODELS

3.6	 From the sensitivity and specificity of x‐rays found in Exercise 3.5, compute 
the positive predictive value corresponding to these prevalences: 0.2, 0.4, 0.6, 
0.7, 0.8, and 0.9. Can we find a prevalence when the positive predictive value 
is preset at 0.8 or 80%?

3.7	 Refer to the standard normal distribution. What is the probability of obtaining 
a z value of:

(a)	 At least 1.25?

(b)	 At least −0.84?

3.8	 Refer to the standard normal distribution. What is the probability of obtaining 
a z value:

(a)	 Between −1.96 and 1.96?

(b)	 Between 1.22 and 1.85?

(c)	 Between −0.84 and 1.28?

3.9	 Refer to the standard normal distribution. What is the probability of obtaining 
a z value:

(a)	 Less than 1.72?

(b)	 Less than −1.25?

3.10	 Refer to the standard normal distribution. Find a z value such that the probability 
of obtaining a larger z value is:

(a)	 0.05.

(b)	 0.025.

(c)	 0.2.

3.11	 Verify the numbers in the first two rows of Table 3.10 in Example 3.8; for 
example, show that the lowest healthy systolic blood pressure for 16‐year‐old 
boys is 102.8.

3.12	 Complete Table 3.10 in Example 3.8 at the question marks.

3.13	 Medical research has concluded that people experience a common cold 
roughly two times per year. Assume that the time between colds is normally 
distributed with a mean of 160 days and a standard deviation of 40 days.

Table E3.5

X‐ray

Tuberculosis

No Yes

Negative 1739   8
Positive     51 22

Total 1790 30
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(a)	 What is the probability of going 200 or more days between colds? Of 
going 365 or more days?

(b)	 What is the probability of getting a cold within 80 days of a previous cold?

3.14	 Assume that the test scores for a large class are normally distributed with a 
mean of 74 and a standard deviation of 10.

(a)	 Suppose that you receive a score of 88. What percent of the class received 
scores higher than yours?

(b)	 Suppose that the teacher wants to limit the number of A grades in the class 
to no more than 20%. What would be the lowest score for an A?

3.15	 Intelligence test scores, referred to as intelligence quotient or IQ scores, are 
based on characteristics such as verbal skills, abstract reasoning power, 
numerical ability, and spatial visualization. If plotted on a graph, the distribu-
tion of IQ scores approximates a normal curve with a mean of about 100. An 
IQ score above 115 is considered superior. Studies of “intellectually gifted” 
children have generally defined the lower limit of their IQ scores at 140; 
approximately 1% of the population have IQ scores above this limit (based on 
Biracree, 1984).

(a)	 Find the standard deviation of this distribution.

(b)	 What percent are in the “superior” range of 115 or above?

(c)	 What percent of the population have IQ scores of 70 or below?

3.16	 IQ scores for college graduates are normally distributed with a mean of 120 
(as compared to 100 for the general population) with a standard deviation of 12. 
What is the probability of randomly selecting a graduate with an IQ score:

(a)	 Between 110 and 130?

(b)	 Above 140?

(c)	 Below 100?

3.17	 Suppose it is known that the probability of recovery for a certain disease is 
0.4. If 35 people are stricken with the disease, what is the probability that:

(a)	 25 or more will recover?

(b)	 Fewer than five will recover?

(Use the normal approximation.)

3.18	 A study found that for 60% of the couples who have been married 10 years or 
less, both spouses work. A sample of 30 couples who have been married 10 
years or less are selected from marital records available at a local courthouse. 
We are interested in the number of couples in this sample in which both 
spouses work. What is the probability that this number is:

(a)	 20 or more?

(b)	 25 or more?
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(c)	 10 or fewer?

(Use the normal approximation.)

3.19	 Many samples of water, all the same size, are taken from a river suspected of 
having been polluted by irresponsible operators at a sewage treatment plant. 
The number of coliform organisms in each sample was counted; the average 
number of organisms per sample was 15. Assuming the number of organisms 
to be Poisson distributed, find the probability that:

(a)	 The next sample will contain at least 20 organisms.

(b)	 The next sample will contain no more than five organisms.

3.20	 For the year 1981 (see Example 3.9), we also have the following data for the 
South Atlantic states (Delaware, Florida, Georgia, Maryland, North and South 
Carolina, Virginia, and West Virginia, and the District of Columbia):

	

d
N

7643
550300

infant deaths
live births.	

Find the infant mortality rate, and compare it to the national average using the 
method of Example 3.9.

3.21	 For a t curve with 20 df, find the areas:

(a)	 To the left of 2.086 and of 2.845.

(b)	 To the right of 1.725 and of 2.528.

(c)	 Beyond ± 2.086 and beyond ± 2.845.

3.22	 For a chi‐square distribution with 2 df, find the areas:

(a)	 To the right of 5.991 and of 9.21.

(b)	 To the right of 6.348.

(c)	 Between 5.991 and 9.21.

3.23	 For an F distribution with 2 numerator dfs and 30 denominator dfs, find the 
areas:

(a)	 To the right of 3.32 and of 5.39.

(b)	 To the right of 2.61.

(c)	 Between 3.32 and 5.39.

3.24	 In a study of intraobserver variability in assessing cervical smears, 3325 
slides were screened for the presence or absence of abnormal squamous 
cells. Each slide was screened by a particular observer and then rescreened 
six months later by the same observer. The results are shown in Table E3.2. 
Calculate the kappa statistic representing the agreement between the two 
screenings.



EXERCISES� 139

3.25	 Ninety‐eight heterosexual couples, at least one of whom was HIV‐infected, 
were enrolled in an HIV transmission study and interviewed about sexual 
behavior. Table E3.25 provides a summary of condom use reported by hetero-
sexual partners. How strongly do the couples agree?

Table E3.25

Woman

Man

TotalEver Never

Ever 45 6 51
Never 7 40 47

Total 52 46 98
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4
ESTIMATION OF PARAMETERS

The entire process of statistical design and analysis can be described briefly as 
follows. The target of a scientist’s investigation is a population with a certain 
characteristic of interest: for example, a man’s systolic blood pressure or his choles-
terol level, or whether a leukemia patient responds to an investigative drug. 
A numerical characteristic of a target population is called a parameter: for example, 
the population mean μ (average SBP) or the population proportion π (a drug’s 
response rate). Generally, it would be too time‐consuming or too costly to obtain the 
totality of population information in order to learn about the parameter(s) of interest. 
For example, there are millions of men to survey in a target population, and the value 
of the information may not justify the high cost. Sometimes the population does not 
even exist. For example, in the case of an investigative drug for leukemia, we are 
interested in future patients as well as present patients. To deal with the problem, the 
researcher may decide to take a sample or to conduct a small phase II clinical trial. 
Chapters 1 and 2 provided methods by which we can learn about data from the 
sample or samples. We learned how to organize data, how to summarize data, and 
how to present them. The topic of probability in Chapter 3 set the framework for 
dealing with uncertainties. 

By this point the researcher is ready to draw inferences about the population of interest 
based on what he or she learned from his or her sample(s). Depending on the research’s 
objectives, we can classify inferences into two categories: one in which we want to 
estimate the value of a parameter, for example the response rate of a leukemia investiga-
tive drug, and one where we want to compare the parameters for two subpopulations 
using statistical tests of significance. For example, we want to know whether men have 
higher cholesterol levels, on average, than women. In this chapter we deal with the first 
category and the statistical procedure called estimation. It is extremely useful, one of the 
most useful procedures of statistics. The word estimate actually has a language problem, 
the opposite of the language problem of statistical “tests” (the topic of Chapter  5). 



142� ESTIMATION OF PARAMETERS

The colloquial meaning of the word test carries the implication that statistical tests 
are especially objective, no‐nonsense procedures that reveal the truth. Conversely, 
the colloquial meaning of the word estimate is that of guessing, perhaps off the top 
of the head and uninformed, not to be taken too seriously. It is used by car body repair 
shops, which “estimate” how much it will cost to fix a car after an accident. The 
estimate in that case is actually a bid from a for‐profit business establishment seeking 
your trade. In our case, the word estimation is used in the usual sense that provides a 
“substitute” for an unknown truth, but it is not that bad a choice of word once you 
understand how to do it. But it is important to make it clear that statistical estimation 
is no less objective than any other formal statistical procedure; statistical estimation 
requires calculations and tables just as statistical testing does. In addition, it is very 
important to differentiate formal statistical estimation from ordinary guessing. In 
formal statistical estimation, we can determine the amount of uncertainty (and so the 
error) in the estimate. How often have you heard of someone making a guess and 
then giving you a number measuring the “margin of error” of the guess? That is what 
statistical estimation does. It gives you the best guess and then tells you how “wrong” 
the guess could be, in quite precise terms. Certain media, sophisticated newspapers 
in particular, are starting to educate the public about statistical estimation. They do it 
when they report the results of polls. They say things like, “74% of the voters disagree 
with the governor’s budget proposal,” and then go on to say that the margin of error 
is plus or minus 3%. What they are saying is that whoever conducted the poll is 
claiming to have polled about 1000 people chosen at random and that statistical 
estimation theory tells us to be 95% certain that if all the voters were polled, their 
disagreement percentage would be discovered to be within 3 of 74%. In other words, 
it’s very unlikely that the 74% is off the mark by more than 3%; the truth is almost 
certainly between 71 and 77%. In subsequent sections of this chapter we introduce 
the strict interpretation of these confidence intervals.

4.1  BASIC CONCEPTS

A class of measurements or a characteristic on which individual observations or mea-
surements are made is called a variable or random variable. The value of a random 
variable varies from subject to subject; examples include weight, height, blood 
pressure, or the presence or absence of a certain habit or practice, such as smoking or 
use of drugs. The distribution of a random variable is often assumed to belong to a 
certain family of distributions, such as binomial, Poisson, or normal. This assumed 
family of distributions is specified or indexed by one or several parameters, such as 
a population mean μ or a population proportion π. It is usually either impossible, too 
costly, or too time‐consuming to obtain the entire population data on any variable in 
order to learn about a parameter involved in its distribution. Decisions in health 
science are thus often made using a small sample of a population. The problem for a 
decision maker is to decide on the basis of data, the estimated value of a parameter, 
such as the population mean, as well as to provide certain ideas concerning errors 
associated with that estimate.
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4.1.1  Statistics as Variables

A parameter is a numerical property of a population; examples include population 
mean μ and population proportion π. The corresponding quantity obtained from a 
sample is called a statistic; examples of statistics include the sample mean x  and 
sample proportion p. Statistics help us draw inferences or conclusions about 
population parameters. After a sample has already been obtained, the value of a 
statistic – for example, the sample mean x  – is known and fixed; however, if we take 
a different sample, we almost certainly have a different numerical value for that same 
statistic. In this repeated sampling context, a statistic is looked upon as a variable that 
takes different values from sample to sample.

4.1.2  Sampling Distributions

The distribution of values of a statistic obtained from repeated samples of the same 
size from a given population is called the sampling distribution of that statistic.

Example 4.1
Consider a population consisting of six subjects (this small size is impractical, but we 
need something small enough to use as an illustration here). Table  4.1 gives the 
subject names (for identification) and values of a variable under investigation (e.g., 1 
for a smoker and 0 for a nonsmoker). In this case the population mean μ (also the 
population proportion π for this very special dichotomous variable) is 0.5 (= 3/6). 
We now consider all possible samples, without replacement, of size 3; none or some 
or all subjects in each sample have value “1,” the remaining “0.” Table 4.2 lists all 
possible samples and shows the sampling distribution of the sample mean.

This sampling distribution gives us a few interesting properties:

1.	 Its mean (i.e., the mean of all possible sample means) is

	

1 0 9 1 3 9 2 3 1 1

20
0 5

/ /
.

	

	� which is the same as the mean of the population. Because of this, we say 
that  the sample mean (sample proportion) is an unbiased estimator for the 

Table 4.1

Subject Value

A 1
B 1
C 1
D 0
E 0
F 0
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population mean (population proportion). In other words, if we use the sample 
mean (sample proportion) to estimate the population mean (population 
proportion), we are correct on the average.

2.	 If we form a bar graph for this sampling distribution (Figure 4.1), it shows a 
shape somewhat similar to that of a symmetric, bell‐shaped normal curve. This 
resemblance is much clearer with real populations and larger sample sizes.

We now consider the same population and all possible samples of size n = 4. 
Table 4.3 represents the new sampling distribution. It can be seen that we have a 
different sampling distribution because the sample size is different. However, we still 
have both above‐mentioned properties:

1.	 Unbiasedness of the sample mean:

	

3 0 25 9 0 50 3 0 75

15
0 5

. . .
. .

	

2.	 Normal shape of the sampling distribution (bar graph; Figure 4.2).

3.	 In addition, we can see that the variance of the new distribution is smaller. 
The two extreme values of x , 0 and 1, are no longer possible; new values – 0.25 
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nc

y
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1

9

1/3 2/3
x

Figure 4.1  Bar graph for sampling distribution in Example 4.1.

Table 4.2

Samples Number of samples Value of sample mean, x

(D, E, F) 1 0
(A, D, E), (A, D, F), (A, E, F)
(B, D, E), (B, D, F), (B, E, F)
(C, D, E), (C, D, F), (C, E, F) 9 1/3
(A, B, D), (A, B, E), (A, B, F)
(A, C, D), (A, C, E), (A, C, F)
(B, C, D), (B, C, E), (B, C, F) 9 2/3
(A, B, C) 1 1

Total 20
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and 0.75 – are closer to the mean 0.5, and the majority (nine samples) have 
values that are right at the sampling distribution mean. The major reason for 
this is that the new sampling distribution is associated with a larger sample 
size, n = 4, compared to n = 3 for the previous sampling distribution.

4.1.3  Introduction to Confidence Estimation

Statistical inference is a procedure whereby inferences about a population are made 
on the basis of the results obtained from a sample drawn from that population. 
Professionals in health science are often interested in a parameter of a certain 
population. For example, a health professional may be interested in knowing what 
proportion of a certain type of person, treated with a particular drug, suffers undesirable 
side effects. The process of estimation entails calculating, from the data of a sample, 
some statistic that is offered as an estimate of the corresponding parameter of the 
population from which the sample was drawn.

A point estimate is a single numerical value used to estimate the corresponding 
population parameter. For example, the sample mean is a point estimate for the 
population mean, and the sample proportion is a point estimate for the population 
proportion. However, having access to the data of a sample and a knowledge of 
statistical theory, we can do more than just provide a point estimate. The sampling 
distribution of a statistic – if available –would provide information on biasedness/
unbiasedness (several statistics, such as x , p, and s2, are unbiased) and variance.

Variance is important; a small variance for a sampling distribution indicates that 
most possible values for the statistic are close to each other, so that a particular value 
is more likely to be reproduced. In other words, the variance of a sampling 
distribution of a statistic can be used as a measure of precision or reproducibility of 

Table 4.3

Samples Number of samples Value of sample mean, x

(A, D, E, F), (B, D, E, F), (C, D, E, F) 3 0.25
(A, B, D, E), (A, B, D, F), (A, B, E, F)
(A, C, D, E), (A, C, D, F), (A, C, E, F)
(B, C, D, E), (B, C, D, F), (B, C, E, F) 9 0.50
(A, B, C, D), (A, B, C, E), (A, B, C, F) 3 0.75

Total 15

x
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Figure 4.2  Normal shape of sampling distribution for Example 4.1.
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that statistic; the smaller this quantity, the better the statistic as an estimate of the 
corresponding parameter. The square root of this variance is called the standard error 
of the statistic; for example, we will have the standard error of the sample mean, or 
SE x ; the standard error of the sample proportion, SE(p); and so on. It is the same 
quantity, but we use the term standard deviation for measurements and the term stan-
dard error when we refer to the standard deviation of a statistic. In the next few sec-
tions we introduce a process whereby the point estimate and its standard error are 
combined to form an interval estimate or confidence interval. A confidence interval 
consists of two numerical values, defining an interval which, with a specified degree 
of confidence, we believe includes the value of the parameter being estimated.

4.2  ESTIMATION OF MEANS

The results of Example 4.1 are not coincidences but are examples of the characteristics 
of sampling distributions in general. The key tool here is the central limit theorem, 
introduced in Section 3.2.1, which may be summarized as follows: Given any population 
with mean μ and variance σ2, the sampling distribution of x  will be approximately 
normal with mean μ and variance σ2/n when the sample size n is large (of course, the 
larger the sample size, the better the approximation; in practice, n = 25 or more could 
be considered adequately large). This means that we have the two properties

	

x

x n
2

2

	

as seen in Example 4.1.
The following example shows how good x  is as an estimate for the population μ 

even if the sample size is as small as 25. (Of course, it is used only as an illustration; 
in practice, μ and σ2 are unknown.)

Example 4.2
Birth weights obtained from deliveries over a long period of time at a certain hospital 
show a mean μ of 112 oz and a standard deviation σ of 20.6 oz. Let us suppose that 
we want to compute the probability that the mean birth weight from a sample of 
25 infants will fall between 107 and 117 oz (i.e., the estimate of the mean is off the 
mark by no more than 5 oz). The central limit theorem is applied and it indicates that 
x  follows a normal distribution with mean

	 x 112	
and variance

	
x
2

2
20 6

25

.
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or standard error

	 x 4 12. .	

It follows by standardizing that

	

Pr Pr
. .

Pr .

107 117
107 112

4 12

117 112

4 12

1 21

x z

z 11 21

2 0 3869

0 7738

.

.

. . 	

In other words, if we use the mean of a sample of size n = 25 to estimate the population 
mean, about 80% of the time we are correct within 5 oz; this value would be 98.5% 
if the sample size were 100.

4.2.1  Confidence Intervals for a Mean

Similar to what was done in Example 4.2, we can write, for example,

	

Pr . . .

. .

1 96 1 96 2 0 475

0 95

x

n/

	

This statement is a consequence of the central limit theorem, which indicates that for 
a large sample size n, x  is a random variable (in the context of repeated sampling) 
with a normal sampling distribution in which

	

x

x n2 2 / .	

The quantity inside brackets in the equation above is equivalent to:

	 x n x n0 96 1 96. / . / .	

All we need to do now is to select a random sample, calculate the numerical value of 
x  and its standard error with σ replaced by sample variance s, s n/ , and substitute 
these values to form the endpoints of the interval

	 x s n1 96. / .	

In a specific numerical case this will produce two numbers,

	 a x s n1 96. / 	

and
	 b x s n1 96. / 	
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and we have the interval

	 a b.	

But here we run into a logical problem. We are sampling from a fixed population. 
We are examining values of a random variable obtained by selecting a random sample 
from that fixed population. The random variable has a distribution with mean μ that 
we wish to estimate. Since the population and the distribution of the random variable 
we are investigating are fixed, it follows that the parameter μ is fixed. The quantities 
μ, a, and b are all fixed (after the sample has been obtained); then we cannot assert 
that the probability that μ lies between a and b is 0.95. In fact, either μ lies in (a, b) 
or it does not, and it is not correct to assign a probability to the statement (even the 
truth remains unknown).

The difficulty here arises at the point of substitution of the numerical values 
observed for x  and its standard error. The random variation in x  is variation from 
sample to sample in the context of repeated sampling. When we substitute x  and its 
standard error s n/  by their numerical values resulting in interval (a, b), it is under-
stood that the repeated sampling process could produce many different intervals of 
the same form:

	 x x1 96. .SE 	

About 95% of these intervals would actually include μ. Since we have only one of these 
possible intervals, the interval (a, b) from our sample, we say we are 95% confident 
that μ lies between these limits. The interval (a, b) is called a 95% confidence interval 
for μ, and the figure “95” is called the degree of confidence or confidence level.

In forming confidence intervals, the degree of confidence is determined by the 
investigator of a research project. Different investigators may prefer different 
confidence intervals; the coefficient to be multiplied with the standard error of the 
mean should be determined accordingly. A few typical choices are given in Table 4.4; 
95% is the most conventional.

Finally, it should be noted that, since the standard error is

	 SE x s n/ ,	

the width of a confidence interval becomes narrower as sample size increases, and 
the process above is applicable only to large samples (n > 25, say). In the next section 
we show how to handle smaller samples (there is nothing magic about “25”; see the 
note at the end of Section 4.2.2).

Table 4.4

Degree of confidence Coefficient

99% 2.576
→95% 1.960
90% 1.645
80% 1.282
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Example 4.3
For the data on percentage saturation of bile for 31 male patients of Example 2.4:

	

40 86 111 86 106 66 123 90 112 52 88 137 88 88

65 79 87 56

, , , , , , , , , , , , ,

, , , ,1110 106 110 78 80 47 74 58 88 73 118

67 57

, , , , , , , , , ,

, 	

we have

	

n

x

s

31

84 65

24 00

.

. 	

leading to a standard error

	

SE x
24 00

31
4 31

.

. 	

and a 95% confidence interval for the population mean:

	 84 65 1 96 4 31 76 2 93 1. . . . . ., 	

(The resulting interval is wide, due to a large standard deviation as observed from the 
sample, s = 24.0, reflecting heterogeneity of sample subjects.)

4.2.2 U ses of Small Samples

The procedure for confidence intervals in Section 4.2.1 is applicable only to large 
samples (say, n > 25). For smaller samples, the results are still valid if the population 
variance σ2 is known and standard error is expressed as / n. However, σ2 is almost 
always unknown. When σ is unknown, we can estimate it by s but the procedure has 
to be modified by changing the coefficient to be multiplied by the standard error. This 
is done to accommodate the error in estimating σ by s; how much larger the coeffi-
cient is depends on how much information we have in estimating σ (by s), that is, the 
sample size n.

Therefore, instead of taking coefficients from the standard normal distribution 
table (numbers such as 2.576, 1.960, 1.645, and 1.282 for degrees of confidence 
99%, 95%, 90%, and 80%), we will use corresponding numbers from the t curves 
where the quantity of information is indexed by the degree of freedom (df = n − 1). 
The figures are listed in Appendix C; the column to read is the one with the correct 
normal coefficient on the bottom row (marked with df = ∞). See, for example, 
Table 4.5 for the case where the degree of confidence is 0.95. (For better results, 
it is always a good practice to use the t table regardless of sample size because 
coefficients such as 1.96 are only for very large sample sizes.)
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Example 4.4
In an attempt to assess the physical condition of joggers, a sample of n = 25 joggers 
was selected and maximum volume oxygen (VO

2
) uptake was measured, with the 

following results:

	

x
s

x

47 5
4 8
4 8

25
0 96

. /
. /
.

. .

mL kg
mL kg

SE

	

From Appendix C we find that the t coefficient with 24 df for use with a 95% 
confidence interval is 2.064, leading to a 95% confidence interval for the population 
mean μ (this is the population mean of joggers’ VO

2
 uptake) of

	 47 5 2 064 0 96 45 5 49 5. . . . , . .	

Example 4.5
In addition to the data in Example 4.4, we have data from a second sample consisting 
of 26 nonjoggers which were summarized into these statistics:

	

n
x
s

x

2

2

2

26
37 5
5 1
5 1

26
1 0

. /
. /
.

. .

mL kg
mL kg

SE 2

	

From Appendix C we find that the t coefficient with 25 df for use with a 95% 
confidence interval is 2.060, leading to a 95% confidence interval for the population 
mean μ (this is the population of joggers’ VO

2
 uptake) of

	 37 5 2 060 1 0 35 4 39 6. . . . , . .	

Table 4.5

df t Coefficient (percentile)

5 2.571
10 2.228
15 2.131
20 2.086
24 2.064
→ ∞ 1.960
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4.2.3  Evaluation of Interventions

In efforts to determine the effect of a risk factor or an intervention, we may want to 
estimate the difference of means: say, between the population of cases and the 
population of controls. However, we choose not to present the methodology with 
much detail at this level – with one exception, the case of a matched design or before 
and after intervention, where each experimental unit serves as its own control. This 
design makes it possible to control for confounding variables that are difficult to 
measure (e.g. environmental exposure) and therefore difficult to adjust at the analysis 
stage. The main reason to include this method here, however, is because we treat the 
data as one sample and the aim is still estimating the (population) mean. That is, data 
from matched, or before and after, experiments should not be considered as coming 
from two independent samples. The procedure is to reduce the data to a one‐sample 
problem by computing before and after (or control and case) differences for each 
subject (or pairs of matched subjects). By doing this with paired observations, we get 
a set of differences that can be handled as a single sample problem. The mean to be 
estimated, using the sample of differences, represents the effects of the intervention 
(or the effects of the disease) under investigation.

Example 4.6
The systolic blood pressures of 12 women between the ages of 20 and 35 were 
measured before and after administration of a newly developed oral contraceptive. 
Given the data in Table 4.6, we have from the column of differences, the d

i
 s,

	

n
d
d

i

i

12
31
1852

	

Table 4.6

Subject

Systolic blood pressure (mmHg)

After–before difference, d
i

d2
i

Before After

1 122 127 5 25
2 26 28 2 4
3 132 140 8 64
4 120 119 −1 1
5 142 145 3 9
6 130 130 0 0
7 142 148 6 36
8 137 135 −2 4
9 128 129 1 1
10 132 137 5 25
11 128 128 0 0
12 129 133 4 16
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leading to

	

d

s

s

average difference

mmHg

31

12
2 58

185 31 12

11
9 54

3

2

2

.

/

.

..

.

. .

09

3 09

0 89

12SE d /

	

With a degree of confidence of 0.95 the t coefficient from Appendix C is 2.201, for 
11 degree of freedom, so that a 95% confidence interval for the mean difference is

	 2 58 2 201 0 89 0 62 4 54. . . . , . .	

This means that the “after” mean is larger than the “before” mean, an increase of 
between 0.62 and 4.54.

In many other interventions, or in studies to determine possible effects of a risk 
factor, it may not be possible to employ a matched design. The comparison of means 
is based on data from two independent samples. The process of estimating the 
difference of means is summarized briefly as follows:

1.	 Data are summarized separately to obtain

	

sample

sample

1

2
1 1 1

2

2 2 2
2

: , ,

: , , .

n x s

n x s 	

2.	 The standard error of the difference of means is given by

	
SE x x

s

n

s

n1 2
1
2

1

2
2

2

.
	

3.	 Finally, a 95% confidence interval for the difference of population means,  
μ

1
 − μ

2
, can be calculated from the formula

	 x x x x1 2 1 2coefficient SE 	

where the coefficient is 1.96 if n
1
 + n

2
 is large; otherwise, a t coefficient is used with 

approximately

	 df n n1 2 2.	
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4.3  ESTIMATION OF PROPORTIONS

The sample proportion is defined as in Chapter 1:

	
p

x

n 	

where x is the number of positive outcomes and n is the sample size. However, the 
proportion p can also be viewed as a sample mean x , where x

i
 is 1 if the ith outcome 

is positive and 0 otherwise:

	
p

x

n
i .

	

Its standard error is still derived using the same process:

	
SE p

s

n 	

with the standard deviation s given as in Section 2.3:

	 s p p1 .	

In other words, the standard error of the sample proportion is calculated from

	
SE p

p p

n

1
.
	

To state it more formally, the central limit theorem implies that the sampling distri-
bution of p will be approximately normal when the sample size n is large; the mean 
and variance of this sampling distribution are

	 p 	

and

	
p n
2 1

	

respectively, where π is the population proportion.

Example 4.7
Suppose that the true proportion of smokers in a community is known to be in the 
vicinity of π = 0.4, and we want to estimate it using a sample of size n = 100. The 
central limit theorem indicates that p follows a normal distribution with mean

	 p 0 40. 	
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and variance

	
p
2 0 4 0 6

100

. .

	

or standard error

	 p 0 049. .	

Suppose that we want our estimate to be correct within ±3%; it follows that

	

Pr . . Pr
. .

.

. .

.

Pr

0 37 0 43
0 37 0 40

0 049

0 43 0 40

0 049
p z

0 61 0 61

2 0 2291

0 4582 46

. .

.

. %.

z

or approximately 	

That means if we use the proportion of smokers from a sample of n = 100 to estimate 
the true proportion of smokers, only about 46% of the time are we correct within 
±3%; this figure would be 95.5% if the sample size is raised to n = 1000. What we 
learn from this example is that compared to the case of continuous data in Example 
4.2, it should take a much larger sample to have a good estimate of a proportion such 
as a disease prevalence or a drug side effect.

From this sampling distribution of the sample proportion, in the context of 
repeated sampling, we have an approximate 95% confidence interval for a population 
proportion π:

	 p p1 96. SE 	

where, again, the standard error of the sample proportion is calculated from

	
SE p

p p

n

1
.
	

There are no easy ways for small samples; this is applicable only to larger samples  
(n > 25, n should be much larger for a narrow interval; procedures for small samples 
are rather complicated and are not covered in this book).

Example 4.8
Consider the problem of estimating the prevalence of malignant melanoma in 45‐ to 
54‐year‐old women in the United States. Suppose that a random sample of n = 5000 
women is selected from this age group and x = 28 are found to have the disease. 
Our point estimate for the prevalence of this disease is

	

p
28

5000
0 0056. .	
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Its standard error is

	

SE p
0 0056 1 0 0056

5000
0 0011

. .

. . 	

Therefore, a 95% confidence interval for the prevalence π of malignant melanoma in 
45‐ to 54‐year‐old women in the United States is given by

	 0 0056 1 96 0 0011 0 0034 0 0078. . . . , . .	

Example 4.9
A public health official wishes to know how effective health education efforts are 
regarding smoking. Of n

1
 = 100 males sampled in 1965 at the time of the release of 

the Surgeon General’s Report on the health consequences of smoking, x
1
 = 51 were 

found to be smokers. In 1980 a second random sample of n
2
 = 100 males, gathered 

similarly, indicated that x
2
 = 43 were smokers. Application of the method above 

yields the following 95% confidence intervals for the smoking rates:

a)  In 1965, the estimated rate was

	

p1

51

100
0 51. 	

 with its standard error

	

SE p1

0 51 1 0 51

100
0 05

. .

. 	

 leading to a 95% confidence interval of

	 0 51 1 96 0 05 0 41 0 61. . . . , . .	

b)  In 1980, the estimated rate was

	

p2

43

100
0 43. 	

 with its standard error

	

SE p2

0 43 1 0 43

100
0 05

. .

. 	
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leading to a 95% confidence interval of

	 0 43 1 96 0 05 0 33 0 53. . . . , . .	

It can be seen that the two confidence intervals, one for 1965 and one for 1980, are 
both quite wide and they overlap, even though the estimated rates show a decrease of 
8% in smoking rate, because the sample sizes are rather small.

Example 4.10
A study was conducted to look at the effects of oral contraceptives (OC) on heart 
disease in women 40–44 years of age. It is found that among n

1
 = 5000 current OC 

users, 13 develop a myocardial infarction (MI) over a three‐year period, while among 
n

2
 = 10 000 non‐OC users, seven develop an MI over a three‐year period. Application 

of the method described above yields the following 95% confidence intervals for the 
MI rates:

a)  For OC users, the estimated rate was

	

p1

13

5000
0 0026. 	

 with its standard error

	

SE p2

0 0026 1 0 0026

5000
0 0007

. .

. 	

 leading to a 95% confidence interval of

	 0 0026 1 96 0 0007 0 0012 0 0040. . . . , . .	

b)  For non‐OC users, the estimated rate was

	

p2

7

10000
0 0007. 	

 with its standard error

	

SE p2

0 0007 1 0 0007

10 000
0 0003

. .

,
. 	

 leading to a 95% confidence interval of

	 0 0007 1 96 0 0003 0 0002 0 0012. . . . , . .	
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It can be seen that the two confidence intervals, one for OC users and one for 
non‐OC users, do not overlap, a strong indication that the two population MI rates are 
probably not the same.

In many trials for interventions, or in studies to determine possible effects of a risk 
factor, the comparison of proportions is based on data from two independent samples. 
However, the process of constructing two confidence intervals separately, one from 
each sample, as mentioned briefly at the end of the last few examples, is not efficient. 
The reason is that the overall confidence level may no longer be, say, 95% as intended 
because the process involves two separate inferences; possible errors may add up 
(this is discussed further in Chapter 7). The estimation of the difference of propor-
tions should be formed using the following formula (for a 95% confidence interval):

	 p p p p1 2 1 21 96. SE 	
where

	
SE p p

p p

n

p p

n1 2
1 1

1

2 2

2

1 1
.
	

4.4  ESTIMATION OF ODDS RATIOS

So far we have relied heavily on the central limit theorem in forming confidence inter-
vals for the means (Section 4.2) and the proportions (Section 4.3). The central limit 
theorem stipulates that as a sample size increases, the means of samples drawn from a 
population of any distribution will approach the normal distribution; and a proportion 
can be seen as a special case of the mean. Even when the sample sizes are not large, 
since many real‐life distributions are approximately normal, we still can form 
confidence intervals for the means (see Section 4.2.2 on the uses of small samples).

Besides the mean and the proportion, we have had two other statistics of interest, 
the odds ratio and Pearson’s coefficient of correlation. However, the method used to 
form confidence intervals for the means and proportions does not apply directly to 
the case of these two new parameters. The sole reason is that they do not have the 
backing of the central limit theorem. The sampling distributions of the (sample) odds 
ratio and (sample) coefficient of correlation are positively skewed. Fortunately, these 
sampling distributions can be almost normalized by an appropriate data transforma-
tion: in these cases, by taking the logarithm. Therefore, we learn to form confidence 
intervals on the log scale; then we take antilogs of the two endpoints, a method used 
in Chapter 2 to obtain the geometric mean. In this section we present in detail such a 
method for the calculation of confidence intervals for odds ratios.

Data from a case–control study, for example, may be summarized in a 2 × 2 table 
(Table 4.7). We have:

a)  The odds that a case was exposed is

	
odds for cases

a

b
.
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b)  The odds that a control was exposed is

	
odds for controls

c

d
.
	

Therefore, the (observed) odds ratio from the samples is

	

OR
a b

c d
ad

bc

/

/

.
	

Confidence intervals are derived from the normal approximation to the sampling 
distribution of ln(OR) with variance

	
Var ORln .

1 1 1 1

a b c d 	

(ln is logarithm to base e, or the natural logarithm.) Consequently, an approximate 
95% confidence interval, on the log scale, for odds ratio is given by

	
ln . .

ad

bc a b c d
1 96

1 1 1 1

	

A 95% confidence interval for the odds ratio under investigation is obtained by 
exponentiating (the reverse log operation or antilog) each of the two endpoints:

	
ln .

ad

bc a b c d
1 96

1 1 1 1

	

and

	
ln . .

ad

bc a b c d
1 96

1 1 1 1

	

Table 4.7

Exposure Cases Controls

Exposed a c
Unexposed b d
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Example 4.11
The role of smoking in pancreatitis has been recognized for many years; the data 
shown in Table 4.8 are from a case–control study carried out in eastern Massachusetts 
and Rhode Island in 1975–1979 (see Example 1.14). We have:

a)  For ex‐smokers, compared to those who never smoked,

	

OR
13 56

80 2
4 55. 	

and a 95% confidence interval for the population odds ratio on the log scale 
is from

	
ln . . .4 55 1 96

1

13

1

56

1

80

1

2
0 01

	

to

	
ln . . .4 55 1 96

1

13

1

56

1

80

1

2
3 04

	

and hence the corresponding 95% confidence interval for the population odds 
ratio is (0.99; 20.96).

b)  For current smokers, compared to those who never smoked,

	

OR
38 56

81 2

13 14. 	

and a 95% confidence interval for the population odds ratio on the log scale 
is from

	
ln . . .13 14 1 96

1

38

1

56

1

81

1

2
1 11

	

Table 4.8

Use of cigarettes Cases Controls

Current smokers 38 81
Ex‐smokers 13 80
Never   2 56



160� ESTIMATION OF PARAMETERS

to

	
ln . . .13 14 1 96

1

38

1

56

1

81

1

2
4 04

	

and hence the corresponding 95% confidence interval for the population odds 
ratio is (3.04, 56.70).

Example 4.12
Toxic shock syndrome (TSS) is a disease first recognized in the 1980s, characterized 
by sudden onset of high fever (>102 °F), vomiting, diarrhea, rapid progression to 
hypotension, and in most cases, shock. Because of the striking association with 
menses, several studies have been undertaken to look at various practices associated 
with the menstrual cycle. In a study by the Centers for Disease Control, 30 of 40 TSS 
cases and 30 of 114 controls who used a single brand of tampons used the Rely 
brand. Data are presented in a 2 × 2 table (Table 4.9). We have:

	

OR
30 84

10 30
8 4. 	

and a 95% confidence interval for the population odds ratio on the log scale is from

	
ln . . .8 4 1 96

1

30

1

10

1

30

1

84
1 30

	

to

	
ln . . .8 4 1 96

1

30

1

10

1

30

1

84
2 96

	

and hence the corresponding 95% confidence interval for the population odds ratio is 
(3.67, 19.30), indicating a very high risk elevation for Rely users.

4.5  ESTIMATION OF CORRELATION COEFFICIENTS

Similar to the case of the odds ratio, the sampling distribution of Pearson’s coefficient 
of correlation is also positively skewed. After completing our descriptive analysis 
(Section  2.4), information about a possible relationship between two continuous 

Table 4.9

Brand Cases Controls

Rely 30 30
Others 10 84

Total 40 114
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variables are sufficiently contained in two statistics: the number of pairs of data n 
(sample size) and Pearson’s coefficient of correlation r (which is a number between 
0 and 1). Confidence intervals are then derived from the normal approximation to the 
sampling distribution of

	
z

r

r

1

2

1

1
ln

	

with variance of approximately

	
Var z

n

1

3
.
	

Consequently, an approximate 95% confidence interval for the correlation coeffi-
cient, on this newly transformed scale, is given by

	
z

n
1 96

1

3
. .

	

A 95% confidence interval (r
l
, r

u
) for the coefficient of correlation under investigation 

is obtained by transforming the two endpoints,

	
z z

nl 1 96
1

3
.

	

and

	
z z

nu 1 96
1

3
.

	

as follows to obtain the lower endpoint,

	
r

z

zl
l

l

exp

exp

2 1

2 1	

and the upper endpoint of the confidence interval for the population coefficient of 
correlation,

	
r

z

zu
u

u

exp

exp
.

2 1

2 1 	

(In these formulas, “exp” is the exponentiation, or antinatural log, operation.)
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Example 4.13
The data shown in Table  4.10 represent systolic blood pressure readings on 15 
women. The descriptive analysis in Example 2.9 yields r = 0.566 and we have:

	

z

zl

1

2

1 0 566

1 0 566
0 642

0 642 1 96
1

12
0 076

ln
.

.
.

. .

. 	



z

r

r

u

l

u

0 642 1 96
1

12
1 207

0 152 1

0 152 1
0 076

. .

.

exp .

exp .
.

eexp .

exp .
.

2 414 1

2 414 1
0 836 	

or a 95% confidence interval for the population coefficient of correlation of (0.076, 
0.836), indicating a positive association between a woman’s age and her systolic 
blood pressure; that is, older women are likely to have higher systolic blood pressure 
(it is just a coincidence that z

l
 = r

l
 ).

Example 4.14
Table 4.11 gives the values for the birth weight (x) and the increase in weight between 
days 70 and 100 of life (y), expressed as a percentage of the birth weight, for 
12 infants. The descriptive analysis in Example 2.8 yields r = −0.946 and we have

Table 4.10

Age (x) SBP (y) Age (x) SBP (y)

42 130 80 156
46 115 74 162
42 148 70 151
71 100 80 156
80 156 41 125
74 162 61 150
70 151 75 165
80 156
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z

z

z

l

u

1

2

1 0 946

1 0 946
1 792

0 014 1 96
1

9
2 446

0 014

ln
.

.
.

. .

.

. 11 96
1

9
1 139

.

. 	



r

r

u

i

exp .

exp .
.

exp .

exp .

2 278 1

2 278 1
0 985

4 892 1

4 8892 1
0 814. 	

or a 95% confidence interval for the population coefficient of correlation of (−0.985, 
−0.814), indicating a very strong negative association between a baby’s birth weight 
and his or her increase in weight between days 70 and 100 of life; that is, smaller 
babies are likely to grow faster during that period (that may be why, at three months, 
most babies look the same size!).

4.6  BRIEF NOTES ON THE FUNDAMENTALS

Problems in the biological and health sciences are formulated mathematically by 
considering the data that are to be used for making a decision as the observed values 
of a certain random variable X. The distribution of X is assumed to belong to a certain 
family of distributions specified by one or several parameters; examples include the 
normal distribution, the binomial distribution, and the Poisson distribution, among 
others. The magnitude of a parameter often represents the effect of a risk or environ-
mental factor and knowing its value, even approximately, would shed some light on 

Table 4.11

x (oz) y (%) x (oz) y (%)

112 63 81 120
111 66 84 114
107 72 118 42
119 52 106 72
92 75 103 90
80 118 94 91
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the impact of such a factor. The problem for decision makers is to decide on the basis 
of the data which members of the family of distributions could represent the distribu-
tion of X, that is, to predict or estimate the value of the primary parameter θ.

Maximum Likelihood Estimation  The likelihood function L(x; θ ) for random 
sample {x

i
} of size n from the probability density function (pdf ) f (x; θ ) is

	
L x f x

i

n

i; ;
1

.
	

The maximum likelihood estimator (MLE) of θ is the value ˆ for which L(x; θ) is 
maximized. Calculus suggests setting the derivative of L with respect to θ equal to 
zero and solving the resulting equation. We can obtain, for example:

1.	 For a binomial distribution,

	
L x p

n

x
p px n x

; 1
	

 leading to

	
ˆ .p

x

n
sample proportion

	

2.	 For the Poisson distribution,

	
L x

e

xi

n x

i

i

;
1 ! 	

 leading to

	

ˆ

.

x

n
x

i

sample mean 	

3.	 For the normal distribution,

	

L x
x

i

n
i; ,

1

2

2

1

2 2
exp

	

 leading to

	 ˆ .x 	

 The “hat” notation over a parameter indicates “estimate”.
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Matched Case–Control Studies  Pair‐matched case–control studies with a binary 
risk factor were introduced near the end of Chapter  3. To control confounding 
factors in this design, individual diseased cases are matched one to one to a set of 
controls, or disease‐free persons, chosen to have similar values for important 
confounding variables. The data are represented by a 2 × 2 table (Table 4.12) where 
(+; −) denotes (exposed; unexposed) categories. Let θ be the odds ratio associated 
with the exposure under investigation; n

10
 was shown in Section 3.5.2 to have the 

binomial distribution B(n, p), where

	

n n n

p

10 01

1
.

	

This corresponds to the following likelihood function:

	
L x

n n

n

n n

; 10 01

10 1

1

1

10 01

	

leading to a simple point estimate for the odds ratio ˆ /n n10 01.

4.7  NOTES ON COMPUTATIONS

All the computations for confidence intervals can be put together using a calculator, 
even though some are quite tedious, especially the confidence intervals for odds 
ratios and coefficients of correlation. Descriptive statistics such as mean x  and stan-
dard deviation s can be obtained with the help of Excel (see Section 2.5). Standard 
normal and t coefficients can also be obtained with the help of Excel (see Section 3.6). 
If you try the first two usual steps: (1) click the paste function icon, f*, and (2) click 
Statistical, among the functions available you will find CONFIDENCE, which is 
intended for use in forming confidence intervals. But it is not worth the effort; the 
process is only for 95% confidence intervals for the mean using a large sample (with 
coefficient 1.96), and you still need to enter the sample mean, standard deviation, 
and sample size.

Table 4.12

Control

Case

+ −

+ n
11

n
01

− n
10

n
00
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EXERCISES

4.1	 Consider a population consisting of four subjects, A, B, C, and D. The values 
for a random variable X under investigation are given in Table E4.1. Form the 
sampling distribution for the sample mean of size n = 2 and verify that x . 
Then repeat the process with sample size of n = 3.

4.2	 The body mass index (kg/m2) is calculated by dividing a person’s weight by the 
square of his or her height and is used as a measure of the extent to which the 
person is overweight. Suppose that the distribution of the body mass index for 
men has a standard deviation of σ = 3 kg/m2, and we wish to estimate the mean 
μ using a sample of size n = 49. Find the probability that we would be correct 
within 1 kg/m2.

4.3	 Self‐reported injuries among left‐ and right‐handed people were compared 
in a survey of 1896 college students in British Columbia, Canada. Of the 
180  left‐handed students, 93 reported at least one injury, and 619 of the 
1716 right‐handed students reported at least one injury in the same period. 
Calculate the 95% confidence interval for the proportion of students with at 
least one injury for each of the two subpopulations, left‐ and right‐handed 
students.

4.4	 A study was conducted to evaluate the hypothesis that tea consumption and 
premenstrual syndrome are associated. A total of 188 nursing students and 64 
tea factory workers were given questionnaires. The prevalence of premenstrual 
syndrome was 39% among the nursing students and 77% among the tea factory 
workers. Calculate the 95% confidence interval for the prevalence of 
premenstrual syndrome for each of the two populations, nursing students and 
tea factory workers.

4.5	 A study was conducted to investigate drinking problems among college 
students. In 1983, a group of students was asked whether they had ever driven 
an automobile while drinking. In 1987, after the legal drinking age was 
raised, a different group of college students was asked the same question. 
The results are given in Table E4.5. Calculate, separately for 1983 and 1987, 
the 95% confidence interval for the proportion of students who had driven an 
automobile while drinking.

Table E4.1

Subject Value

A 1
B 1
C 0
D 0
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4.6	 In August 1976, tuberculosis was diagnosed in a high school student (index 
case) in Corinth, Mississippi. Subsequently, laboratory studies revealed that the 
student’s disease was caused by drug‐resistant tubercule bacilli. An epidemio-
logic investigation was conducted at the high school. Table E4.6 gives the rates 
of positive tuberculin reaction, determined for various groups of students 
according to degree of exposure to the index case. Calculate the 95% confidence 
interval for the rate of positive tuberculin reaction separately for each of the two 
subpopulations, those with high exposure and those with low exposure.

4.7	 The prevalence rates of hypertension among adult (ages 18–74) white and black 
Americans were measured in the second National Health and Nutrition 
Examination Survey, 1976–1980. Prevalence estimates (and their standard errors) 
for women are given in Table E4.7. Calculate and compare the 95% confidence 
intervals for the proportions of the two groups, blacks and whites, and draw an 
appropriate conclusion. Do you need the sample sizes to do your calculations?

4.8	 Consider the data given in Table E4.8. Calculate the 95% confidence intervals 
for the sensitivity and specificity of x‐ray as a screening test for tuberculosis.

Table E4.5

Drove while drinking

Year

Total1983 1987

Yes 1250   991 2241
No 1387 1666 3053

Total 2637 2657 5294

Table E4.6

Exposure level Number tested Number positive

High 129 63
Low 325 36

Table E4.7

p (%) SE( p)

Whites 25.3 0.9
Blacks 38.6 1.8

Table E4.8

X‐ray

Tuberculosis

TotalNo Yes

Negative 1739 8 1747
Positive 51 22 73

Total 1790 30 1820
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4.9	 Sera from a T‐lymphotropic virus type (HTLV‐I) risk group (prostitute women) 
were tested with two commercial research enzyme‐linked immunoabsorbent 
assays (EIA) for HTLV‐I antibodies. These results were compared with a gold 
standard, and the outcomes are shown in Table E4.9. Calculate the 95% confidence 
intervals for the sensitivity and specificity separately for the two EIAs.

4.10	� In a seroepidemiologic survey of health workers representing a spectrum of 
exposure to blood and patients with hepatitis B virus (HBV), it was found that 
infection increased as a function of contact. Table  E4.10 provides data for 
hospital workers with uniform socioeconomic status at an urban teaching 
hospital in Boston, Massachusetts. Calculate the 95% confidence intervals for 
the proportions of HBV‐positive workers in each subpopulation.

4.11	� Consider the data taken from a study attempting to determine whether the use 
of electronic fetal monitoring (EFM) during labor affects the frequency of 
cesarean section deliveries. Of the 5824 infants included in the study, 2850 
were electronically monitored and 2974 were not. The outcomes are given in 
Table E4.11.

(a)	 Using the data from the group without EFM exposure, calculate the 95% 
confidence interval for the proportion of cesarean delivery.

(b)	 Calculate the 95% confidence interval for the odds ratio representing the 
relationship between EFM exposure and cesarean delivery.

Table E4.9

True

Dupont’s EIA Cellular product’s EIA

Positive Negative Positive Negative

Positive 15 1 16 0
Negative 2 164 7 179

Table E4.10

Personnel Exposure n HBV positive

Physicians Frequent 81 17
Infrequent 89   7

Nurses Frequent 104 22
Infrequent 126 11

Table E4.11

Cesarean delivery

EFM exposure

TotalYes No

Yes 358 229 587
No 2492 2745 5237

Total 2850 2974 5824



4.12	� A study was conducted to investigate the effectiveness of bicycle safety 
helmets in preventing head injury. The data consist of a random sample of 
793 persons who were involved in bicycle accidents during a one‐year 
period (Table E4.12).

(a)	 Using the data from the group without helmets, calculate the 95% 
confidence interval for the proportion with head injury.

(b)	 Calculate the 95% confidence interval for the odds ratio representing the 
relationship between use (or nonuse) of a helmet and head injury.

4.13	� A case–control study was conducted in Auckland, New Zealand, to investi-
gate the effects of alcohol consumption on both nonfatal myocardial infarc-
tion and coronary death in the 24 hours after drinking, among regular drinkers. 
Data were tabulated separately for men and women (Table E4.13).

(a)	 Refer to the myocardial infarction data and calculate separately for men 
and women the 95% confidence interval for the odds ratio associated with 
drinking.

(b)	 Refer to coronary death data and calculate separately for men and women 
the 95% confidence interval for the odds ratio associated with drinking.

(c)	 From the results in parts (a) and/or (b), is there any indication that gender 
may act as an effect modifier?

4.14	� Adult male residents of 13 counties of western Washington in whom testicular 
cancer had been diagnosed during 1977–1983 were interviewed over the tele-
phone regarding both their history of genital tract conditions and possible vasec-
tomy. For comparison, the same interview was given to a sample of men selected 
from the population of these counties by dialing telephone numbers at random. 

Table E4.12

Head injury

Wearing helmet

TotalYes No

Yes 17 218 235
No 130 428 558

Total 147 646 793

Table E4.13

Drink in the last 24 h

Myocardial infarction Coronary death

Controls Cases Controls Cases

Men No 197 142 135 103
Yes 201 136 159 69

Women No 144 41 89 12
Yes 122 19 76 4
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The data, tabulated by religious background, are given in Table E4.14. Calculate 
the 95% confidence interval for the odds ratio associated with vasectomy for 
each religious group. Is there any evidence of an effect modification?

4.15	� A case–control study was conducted relating to the epidemiology of breast 
cancer and the possible involvement of dietary fats, along with vitamins and 
other nutrients. It included 2024 breast cancer cases who were admitted to 
Roswell Park Memorial Institute, Erie County, New York, from 1958 to 1965. 
A control group of 1463 was chosen from patients having no neoplasms and no 
pathology of gastrointestinal or reproductive systems. The primary factors being 
investigated were vitamins A and E (measured in international units per month). 
The data listed in Table E4.15 are for 1500 women over 54 years of age.

(a)	 Calculate the 95% confidence interval for the proportion among the controls 
who consumed at least 150 500 international units of vitamin A per month.

(b)	 Calculate the 95% confidence interval for the odds ratio associated with 
vitamin A deficiency.

4.16	� A study was undertaken to investigate the effect of bloodborne environmental 
exposures on ovarian cancer from an assessment of consumption of coffee, 
tobacco, and alcohol. Study subjects consist of 188 women in the San 
Francisco Bay area with epithelial ovarian cancers diagnosed in 1983–1985, 
and 539 control women. Of the 539 controls, 280 were hospitalized women 
without overt cancer, and 259 were chosen from the general population by 
random telephone dialing. Data for coffee consumption are summarized in 
Table E4.16. Calculate the odds ratio and its 95% confidence interval for:

(a)	 Cases versus hospital controls.

(b)	 Cases versus population controls.

Table E4.14

Religion Vasectomy Cases Controls

Protestant Yes 24 56
No 205 239

Catholic Yes 10 6
No 32 90

Others Yes 18 39
No 56 96

Table E4.15

Vitamin A (IU/month) Cases Controls

≤150 500 893 392
>150 500 132 83

Total 1025 475



4.17	� Postneonatal mortality due to respiratory illnesses is known to be inversely 
related to maternal age, but the role of young motherhood as a risk factor for 
respiratory morbidity in infants has not been explored thoroughly. A study was 
conducted in Tucson, Arizona, aimed at the incidence of lower respiratory tract 
illnesses during the first year of life. In this study, over 1200 infants were 
enrolled at birth between 1980 and 1984. The data shown in Table E4.17 are 
concerned with wheezing lower respiratory tract illnesses (wheezing LRI): no/
yes. Using “>30” as the reference, calculate the odds ratio and its 95% confidence 
interval for each other maternal age group for boys and girls separately.

4.18	� Data were collected from 2197 white ovarian cancer patients and 8893 white 
controls in 12 different United States case–control studies conducted by various 
investigators in the period 1956–1986 (American Journal of Epidemiology, 
1992). These were used to evaluate the relationship of invasive epithelial ovarian 
cancer to reproductive and menstrual characteristics, exogenous estrogen use, 
and prior pelvic surgeries. Part of the data is shown in Table E4.18.

Table E4.16

Coffee drinkers Cases Hospital controls Population controls

No 11 31 26
Yes 177 249 233

Table E4.17

Maternal age (years)

Boys Girls

No Yes No Yes

<21 19 8 20 7
21–25 98 40 128 36
26–30 160 45 148 42
>30 110 20 116 25

Table E4.18

Cases Controls

Duration of unprotected intercourse (years)
  < 2 237 477
  2–9 166 354
  10–14 47 91
  ≥ 15 133 174
History of infertility
  No 526 966
  Yes
    No drug use 76 124
    Drug use 20 11
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(a)	 For the first factor in Table E4.18, using “<2” as the reference calculate the 
odds ratio and its 95% confidence interval for each other level of exposure.

(b)	 For the second factor, using “no history of infertility” as the baseline, cal-
culate the odds ratio and its 95% confidence interval for each group with 
a history of infertility.

4.19	� Consider the following measurements of forced expiratory volume (liters) for 
10 subjects taken from a study that examines the response to ozone and sulfur 
dioxide among adolescents suffering from asthma:

	 3 50 2 60 2 75 2 82 4 05 2 25 2 68 3 00 4 02 2 85. . . . . . . . . ., , , , , , , , , 	

	� Calculate the 95% confidence interval for the (population) mean of forced 
expiratory volume (liters).

4.20	� The percentage of ideal body weight was determined for 18 randomly selected 
insulin‐dependent diabetics. The outcomes (%) were

	

107 119 99 114 120 104 124 88 114

116 101 121 152 125 100 114 95 117	

	� Calculate the 95% confidence interval for the (population) mean of the 
percentage of ideal body weight.

4.21	� A study on birth weight provided the following data (in ounces) on 12 
newborns:

	 112 111 107 119 92 80 81 84 118 106 103 94, , , , , , , , , , , 	

	� Calculate the 95% confidence interval for the (population) mean of the birth 
weight.

4.22	� The ages (in days) at time of death for samples of 11 girls and 16 boys who 
died of sudden infant death syndrome are shown in Table E4.22. Calculate 
separately for boys and girls the 95% confidence interval for the (population) 
mean of age (in days) at time of death.

Table E4.22

Females Males

  53 46 115
  56 52 133
  60 58 134
  60 59 175
  78 77 175
  87 78
102 80
117 81
134 84
160 103
277 114



4.23	� A study was conducted to investigate whether oat bran cereal helps to lower 
serum cholesterol in men with high cholesterol levels. Fourteen men were 
randomly placed on a diet that included either oat bran or cornflakes; after two 
weeks, their low‐density lipoprotein (LDL) cholesterol levels were recorded. 
Each man was then switched to the alternative diet. After a second two‐week 
period, the LDL cholesterol level of each person was recorded again. The data are 
shown in Table E4.23. Calculate the 95% confidence interval for the (population) 
mean difference of the LDL cholesterol level (mmol/L; cornflakes – oat bran).

4.24	� An experiment was conducted at the University of California–Berkeley to study 
the psychological environment effect on the anatomy of the brain. A group of 
19 rats was randomly divided into two groups. Twelve animals in the treatment 
group lived together in a large cage, furnished with playthings that were changed 
daily; animals in the control group lived in isolation with no toys. After a month, 
the experimental animals were killed and dissected. Table  E4.24 gives the 
cortex weights (the thinking part of the brain) in milligrams. Calculate separately 
for each treatment the 95% confidence interval for the (population) mean of the 
cortex weight. How do the means compare?

Table E4.23

Subject

LDL (mmol/L)

Cornflakes Oat bran

1 4.61 3.84
2 6.42 5.57
3 5.40 5.85
4 4.54 4.80
5 3.98 3.68
6 3.82 2.96
7 5.01 4.41
8 4.34 3.72
9 3.80 3.49
10 4.56 3.84
11 5.35 5.26
12 3.89 3.73
13 2.25 1.84
14 4.24 4.14

Table E4.24

Treatment Control

707 669 696
740 650 712
745 651 708
652 627 749
649 656 690
676 642
699 698
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4.25	� The systolic blood pressures (mmHg) of 12 women between the ages of 20 
and 35 were measured before and after administration of a newly developed 
oral contraceptive (Table E4.25).

(a)	 Calculate the 95% confidence interval for the mean systolic blood pressure 
change. Does the oral contraceptive seem to change the mean systolic 
blood pressure?

(b)	 Calculate a 95% confidence interval for Pearson’s correlation coefficient 
representing a possible relationship between systolic blood pressures 
measured before and after the administration of oral contraceptive. What 
does it mean that these measurements are correlated (if confirmed)?

4.26	� Suppose that we are interested in studying patients with systemic cancer who 
subsequently develop a brain metastasis; our ultimate goal is to prolong their 
lives by controlling the disease. A sample of 23 such patients, all of whom 
were treated with radiotherapy, were followed from the first day of their 
treatment until recurrence of the original tumor. Recurrence is defined as the 
reappearance of a metastasis in exactly the same site, or in the case of patients 
whose tumor never completely disappeared, enlargement of the original 
lesion. Times to recurrence (in weeks) for the 23 patients were: 2, 2, 2, 3, 4, 5, 
5, 6, 7, 8, 9, 10, 14, 14, 18, 19, 20, 22, 22, 31, 33, 39, and 195. First, calculate 
the 95% confidence interval for the mean time to recurrence on the log scale; 
then convert the endpoints to weeks.

4.27	� An experimental study was conducted with 136 five‐year‐old children in four 
Quebec schools to investigate the impact of simulation games designed to 
teach children to obey certain traffic safety rules. The transfer of learning was 
measured by observing children’s reactions to a quasireal‐life model of traffic 
risks. The scores on the transfer of learning for the control and attitude/
behavior simulation game groups are summarized in Table E4.27. Find and 

Table E4.25

Subject Before After After–before difference, d
i

1 122 127 5
2 126 128 2
3 132 140 8
4 120 119 −1
5 142 145 3
6 130 130 0
7 142 148 6
8 137 135 −2
9 128 129 1
10 132 137 5
11 128 128 0
12 129 133 4



compare the 95% confidence intervals for the means of the two groups, and 
draw an appropriate conclusion.

4.28	� The body mass index is calculated by dividing a person’s weight by the square 
of his or her height (it is used as a measure of the extent to which the person 
is overweight). A sample of 58 men, selected (retrospectively) from a large 
group of middle‐aged men who later developed diabetes mellitus, yields x  = 
25.0 kg/m2 and s = 2.7 kg/m2.

(a)	 Calculate a 95% confidence interval for the mean of this subpopulation.

(b)	 If it is known that the average body mass index for middle‐aged men 
who do not develop diabetes is 24.0 kg/m2, what can you say about the 
relationship between body mass index and diabetes in middle‐aged 
men?

4.29	� A study was undertaken to clarify the relationship between heart disease and 
occupational carbon disulfide exposure along with another important factor, 
elevated diastolic blood pressure (DBP), in a data set obtained from a 10‐year 
prospective follow‐up of two cohorts of over 340 male industrial workers in 
Finland. Carbon disulfide is an industrial solvent that is used all over the 
world in the production of viscose rayon fibers. Table E4.29 gives the mean 
and standard deviation (SD) of serum cholesterol (mg/100 mL) among 
exposed and nonexposed cohorts, by diastolic blood pressure (DBP). Compare 
serum cholesterol levels between exposed and nonexposed cohorts at each 
level of DBP by calculating the two 95% confidence intervals for the means 
(exposed and nonexposed groups).

4.30	� Refer to the data on cancer of the prostate in Exercise 2.32, and calculate the 
95% confidence interval for Pearson’s correlation between age and the level 
of serum acid phosphatase.

Table E4.27

Summarized data Control Simulation game

n 30 33
x 7.9 10.1
s 3.7 2.3

Table E4.29

DBP (mmHg)

Exposed Nonexposed

n Mean SD n Mean SD

<95 205 220 50 271 221 42
95–100 92 227 57 53 236 46
≥100 20 233 41 10 216 48
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4.31	� Table E4.31 gives the net food supply (x, the number of calories per person per 
day) and the infant mortality rate (y, the number of infant deaths per 1000 live 
births) for certain selected countries before World War II. Calculate the 95% 
confidence interval for Pearson’s correlation coefficient between the net food 
supply and the infant mortality rate.

4.32	� In an assay of heparin, a standard preparation is compared with a test prepara-
tion by observing the log clotting times (y, in seconds) of blood containing 
different doses of heparin (x is the log dose; Table E4.32). Replicate readings 
are made at each dose level. Calculate separately for the standard preparation 
and the test preparation the 95% confidence interval for Pearson’s correlation 
coefficient between the log clotting times and log dose.

4.33	� There have been times when the city of London, England, experienced periods 
of dense fog. Table E4.33 shows such data for a 15‐day very severe period 
including the number of deaths each day (y), the mean atmospheric smoke (x

1
, 

in mg/m3), and the mean atmospheric sulfur dioxide content (x
2
, in ppm). 

Calculate the 95% confidence interval for Pearson’s correlation coefficient 
between the number of deaths (y) and the mean atmospheric smoke (x

1
, in 

mg/m3), and between the number of deaths (y) and the mean atmospheric 
sulfur dioxide content (x

2
), respectively.

Table E4.31

Country x y Country x y

Argentina 2730 98.8 Iceland 3160 42.4
Australia 3300 39.1 India 1970 161.6
Austria 2990 87.4 Ireland 3390 69.6
Belgium 3000 83.1 Italy 2510 102.7
Burma 1080 202.1 Japan 2180 60.6
Canada 3070 67.4 Netherlands 3010 37.4
Chile 2240 240.8 New Zealand 3260 32.2
Cuba 2610 116.8 Sweden 3210 43.3
Egypt 2450 162.9 U.K. 3100 55.3
France 2880 66.1 U.S.A. 3150 53.2
Germany 2960 63.3 Uruguay 2380 94.1

Table E4.32

Log clotting times

Log doseStandard Test

1.806 1.756 1.799 1.763 0.72
1.851 1.785 1.826 1.832 0.87
1.954 1.929 1.898 1.875 1.02
2.124 1.996 1.973 1.982 1.17
2.262 2.161 2.140 2.100 1.32



4.34	� The following are the heights (measured to the nearest 2 cm) and the weights 
(measured to the nearest kilogram) of 10 men:

Height 162 168 174 176 180 180 182 184 186 186

Weight 65 65 84 63 75 76 82 65 80 81

	 and 10 women:

Height 152 156 158 160 162 162 164 164 166 166

Weight 52 50 47 48 52 55 55 56 60 60

	� Calculate, separately for men and women, the 95% confidence interval for 
Pearson’s correlation coefficient between height and weight. Is there any 
indication that the two population correlation coefficients are different?

4.35	� Data are shown in Table E4.35 for two groups of patients who died of acute 
myelogenous leukemia. Patients were classified into the two groups according 
to the presence or absence of a morphologic characteristic of white cells. 
Patients termed AG positive were identified by the presence of Auer rods and/
or significant granulature of the leukemic cells in the bone marrow at diagnosis. 
For AG‐negative patients these factors were absent. Leukemia is a cancer 
characterized by an overproliferation of white blood cells; the higher the 
white blood count (WBC), the more severe the disease. Calculate separately 
for the AG‐positive and AG‐negative patients the 95% confidence interval for 
Pearson’s correlation coefficient between survival time and white blood count 
(both on a log scale). Is there any indication that the two population correlation 
coefficients are different?

Table E4.33

Number of deaths Smoke Sulfur dioxide

112 0.30 0.09
140 0.49 0.16
143 0.61 0.22
120 0.49 0.14
196 2.64 0.75
294 3.45 0.86
513 4.46 1.34
518 4.46 1.34
430 1.22 0.47
274 1.22 0.47
255 0.32 0.22
236 0.29 0.23
256 0.50 0.26
222 0.32 0.16
213 0.32 0.16
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Table E4.35

AG positive, N = 17 AG negative, N = 16

WBC Survival time (weeks) WBC Survival time (weeks)

2300 65 4400 56
750 156 3000 65

4300 100 4000 17
2600 134 1500 7
6000 16 9000 16

10 500 108 5300 22
10 000 121 10 000 3
17 000 4 19 000 4
5 400 39 27 000 2
7 000 143 28 000 3
9 400 56 31 000 8

32 000 26 26 000 4
35 000 22 21 000 3

100 000 1 79 000 30
100 000 1 100 000 4
52 000 5 100 000 43

100 000 65
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5
INTRODUCTION TO STATISTICAL 
TESTS OF SIGNIFICANCE

This chapter covers the most used and yet most misunderstood statistical proce-
dures, called tests or tests of significance. The reason for the misunderstanding is 
simple: language. The colloquial meaning of the word test is one of no‐nonsense 
objectivity. Students take tests in school, hospitals draw blood to be sent to labora-
tories for tests, and automobiles are tested by the manufacturer for performance and 
safety. It is thus natural to think that statistical tests are “objective” procedures to 
use on data. The truth is that statistical tests are no more or less objective than any 
other statistical procedure, such as confidence estimation (Chapter 4).

Statisticians have made the problem worse by using the word significance, another 
word that has a powerful meaning in ordinary, colloquial language: importance. 
Statistical tests that result in significance are naturally misunderstood by the public 
to mean that the findings or results are important. That is not what statisticians mean; 
it only means that, for example, the difference they hypothesized was real.

Statistical tests are commonly seriously misinterpreted by nonstatisticians, but the 
misinterpretations are very natural. It is very natural to look at data and ask whether 
there is “anything going on” or whether it is just a bunch of meaningless numbers 
that cannot be interpreted. Statistical tests appeal to investigators and readers of 
research for a reason in addition to the aforementioned reasons of language confu-
sion. Statistical tests are appealing because they seem to make a decision; they are 
attractive because they say “yes” or “no.” There is comfort in using a procedure that 
gives definitive answers from confusing data.

One way of explaining statistical tests is to use criminal court procedures as a met-
aphor. In criminal court, the accused is “presumed innocent” until “proved guilty 
beyond all reasonable doubt.” This framework of presumed innocence has nothing 
whatsoever to do with anyone’s personal belief as to the innocence or guilt of the 
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defendant. Sometimes everybody, including the jury, the judge, and even the defen-
dant’s attorney, think the defendant is guilty. The rules and procedures of the criminal 
court must be followed, however. There may be a mistrial, or a hung jury, or the 
arresting officer forgot to read the defendant his or her rights. Any number of things 
can happen to save the guilty from a conviction. On the other hand, an innocent 
defendant is sometimes convicted by overwhelming circumstantial evidence. 
Criminal courts occasionally make mistakes, sometimes releasing the guilty and 
sometimes convicting the innocent. Statistical tests are like that. Sometimes, 
statistical significance is attained when nothing is going on, and sometimes, no 
statistical significance is attained when something very important is going on.

Just as in the courtroom, everyone would like statistical tests to make mistakes as 
infrequently as possible. Actually, the mistake rate of one of two possible mistakes 
made by statistical tests has usually been chosen (arbitrarily) to be 5 or 1%. The kind 
of mistake referred to here is the mistake of attaining statistical significance when there 
is actually nothing going on, just as the mistake of convicting the innocent in a trial by 
jury. This mistake is called a type I mistake or type I error. Statistical tests are often 
constructed so that type I errors occur 5 or 1% of the time. There is no custom regarding 
the rate of type II errors, however. A type II error is the mistake of not getting statistical 
significance when there is something going on, just as the mistake of releasing the 
guilty in a trial by jury. The rate of type II mistakes is dependent on several factors. One 
of the factors is how much is going on, just as the severity of the crime in a trial by jury. 
If there is a lot going on, one is less likely to make type II errors. Another factor is the 
amount of variability (“noise”) there is in the data, just as in the quality of evidence 
available in a trial by jury. A lot of variability makes type II errors more likely. Yet 
another factor is the size of the study, just as the amount of evidence in a trial by jury. 
There are more type II errors in small studies than there are in large ones. Type II errors 
are rare in really huge studies but quite common in small studies.

There is a very important, subtle aspect of statistical tests, based on the aforemen-
tioned three things that make type II errors very improbable. Since really huge studies 
virtually guarantee getting statistical significance if there is even the slightest amount 
going on, such studies result in statistical significance when the amount that is going 
on is of no practical importance. In this case, statistical significance is attained in the 
face of no practical significance. On the other hand, small studies can result in 
statistical nonsignificance when something of great practical importance is going on. 
The conclusion is that the attainment of statistical significance in a study is just as 
affected by extraneous factors as it is by practical importance. It is essential to learn 
that statistical significance is not synonymous with practical importance.

5.1  BASIC CONCEPTS

From the introduction of sampling distributions in Chapter 4, it was clear that the 
value of a sample mean is influenced by:

1.	 The population μ, because

	 x .	



BASIC CONCEPTS� 181

2.	 Chance: x  and μ are almost never identical. The variance of the sampling 
distribution is

	
x n
2

2

	

a combined effect of natural variation in the population (σ2) and sample size n.

Therefore, when an observed value x  is far from a hypothesized value of μ (e.g., 
mean high blood pressures for a group of oral contraceptive users compared to a 
typical average for women in the same age group), a natural question would be: 
Was it just due to chance, or something else? To deal with questions such as this, 
statisticians have invented the concept of hypothesis tests, and these tests have 
become widely used statistical techniques in the health sciences. In fact, it is almost 
impossible to read a research article in public health or medical sciences without 
running across hypothesis tests!

5.1.1  Hypothesis Tests

When a health investigator seeks to understand or explain something, for example the 
effect of a toxin or a drug, he or she usually formulates his or her research question in the 
form of a hypothesis. In the statistical context, a hypothesis is a statement about a distri-
bution (e.g., “the distribution is normal”) or its underlying parameter(s) (e.g., “μ = 10”), 
or a statement about the relationship between probability distributions (e.g., “there is no 
statistical relationship”) or its parameters (e.g., “μ

1
 = μ

2
” – equality of population means). 

The hypothesis to be tested is called the null hypothesis and will be denoted by H
0
; it is 

usually stated in the null form, indicating no difference or no relationship between 
distributions or parameters, similar to the constitutional guarantee that the accused is pre-
sumed innocent until proven guilty. In other words, under the null hypothesis, an observed 
difference (like the one between sample means x1 and x2 for samples 1 and 2, respec-
tively) just reflects chance variation. A hypothesis test is a decision‐making process that 
examines a set or sets of data, and on the basis of expectation under H

0
, leads to a decision 

as to whether or not to reject H
0
. An alternative hypothesis, which we denote by H

A
, is a 

hypothesis that in some sense contradicts the null hypothesis H
0
, just as the charge by the 

prosecution in a trial by jury. Under H
A
, the observed difference is real (e.g., x x1 2 not by 

chance but because 1 2). A null hypothesis is rejected if and only if there is sufficiently 
strong evidence from the data to support its alternative – the names are somewhat unset-
tling, because the alternative hypothesis is, for a health investigator, the one that he or 
she usually wants to prove. (The null hypothesis is just a dull explanation of the findings – in 
terms of chance variation!) However, these are entrenched statistical terms and will be 
used as standard terms for the rest of this book.

Why is hypothesis testing important? Because in many circumstances we merely 
wish to know whether a certain proposition is true or false. The process of hypothesis 
tests provides a framework for making decisions on an objective basis, by weighing 
the relative merits of different hypotheses, rather than on a subjective basis by simply 
looking at the numbers. Different people can form different opinions by looking at 
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data (confounded by chance variation or sampling errors), but a hypothesis test 
provides a standardized decision‐making process that will be consistent for all 
people. The mechanics of the tests vary with the hypotheses and measurement scales 
(Chapters 6, 7, and 10), but the general philosophy and foundation is common and is 
discussed in some detail in this chapter.

5.1.2  Statistical Evidence

A null hypothesis is often concerned with a parameter or parameters of population(s). 
However, it is often either impossible, or too costly or time‐consuming, to obtain the 
entire population’s data on any variable in order to see whether or not a null hypo-
thesis is true. Decisions are thus made using sample data. Sample data are summa-
rized into a statistic or statistics that are used to estimate the parameter(s) involved in 
the null hypothesis. For example, if a null hypothesis is about μ (e.g., H

0
: μ = 10), a 

good place to look for information about μ is x . In that context, the statistic x  is called 
a test statistic; a test statistic can be used to measure the difference between the data 
(i.e., the numerical value of x  obtained from the sample) and what is expected if the 
null hypothesis is true (i.e., “μ = 10”). However, this evidence is statistical evidence; 
it varies from sample to sample (in the context of repeated sampling). It is a variable 
with a specific sampling distribution. The observed value is thus usually converted to 
a standard unit: the number of standard errors away from a hypothesized value. At this 
point, the logic of the test can be seen more clearly. It is an argument by contradiction, 
designed to show that the null hypothesis will lead to a less acceptable conclusion (an 
almost impossible event – some event that occurs with near‐zero probability) and 
must therefore be rejected. In other words, the difference between the data and what 
is expected under the null hypothesis would be very difficult – even absurd – to explain 
as a chance variation; it makes you want to abandon (or reject) the null hypothesis and 
believe in the alternative hypothesis because it is more plausible.

5.1.3  Errors

Since a null hypothesis H
0
 may be true or false and our possible decisions are whether 

to reject or not to reject it, there are four possible outcomes or combinations. Two of 
the four outcomes are correct decisions:

1.	 Not rejecting a true H
0
.

2.	 Rejecting a false H
0
.

but there are also two possible ways to commit an error:

1.	 Type I: A true H
0
 is rejected.

2.	 Type II: A false H
0
 is not rejected.

These possibilities are shown in Table 5.1.
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The general aim in hypothesis testing is to keep α and β, the probabilities – in the 
context of repeated sampling – of types I and II respectively, as small as possible. 
However, if resources are limited, this goal requires a compromise because these 
actions are contradictory (e.g., a decision to decrease the size of α will increase the 
size of β, and vice versa). Conventionally, we fix α at some specific conventional 
level – say, 0.05 or 0.01 – and β is controlled through the use of sample size(s).

Example 5.1
Suppose that the national smoking rate among men is 25% and we want to study the 
smoking rate among men in the New England states. Let π be the proportion of 
New England men who smoke. The null hypothesis that the smoking prevalence in 
New England is the same as the national rate is expressed as:

	 H0 0 25: . .	

Suppose that we plan to take a sample of size n = 100 and use this decision‐making 
rule:

	 If is rejectedp H0 20 0. , ,	

where p is the proportion obtained from the sample.

a)  Alpha (α) is defined as the probability of wrongly rejecting a true null 
hypothesis, that is:

	 Pr . , . .p 0 20 0 25given that 	

Since n = 100 is large enough for the central limit theorem to apply, the sampling dis-
tribution of p is approximately normal with mean and variance, under H

0
, given by:

	

p

p n

0 25
1

0 043

2

2

.

. 	

Table 5.1

Truth

Decision

H
0
 is not rejected H

0
 is rejected

H
0
 is true Correct decision Type I error

H
0
 is false Type II error Correct decision
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respectively. Therefore, for this decision‐making rule:

	

Pr
. .

.
Pr .
. . %.

z

z

0 20 0 25

0 043
1 16

0 123 12 3or 	

Of course, we can make this smaller (as small as we wish) by changing the decision‐
making rule; however, that action will increase the value of β (or the probability of a 
type II error).

b)  Suppose that the truth is:

	 HA : . .0 15 	

Beta (β) is defined as the probability of not rejecting a false H
0
, that is:

	 Pr . ; . .p 0 20 0 15knowing that 	

Again, an application of the central limit theorem indicates that the sampling 
distribution, under H

A
, of p is approximately normal with mean

	 p 0 15. 	

and variance

	

p
2

2

0 15 0 85

100
0 036

. .

. . 	

Therefore,

	

Pr
. .

.
Pr .
. . %.

z

z

0 20 0 15

0 036
1 39

0 082 8 2or 	

The sampling distributions under H
A
 and H

0
 can be represented graphically as 

shown in Figure 5.1. It can be seen that β depends on a specific alternative (e.g., β 
is larger for H

A
: π = 0.17 or any alternative hypothesis that specifies a value of π that 

is closer to 0.25), and if we change the decision‐making rule by using a smaller cut 
point (smaller than 0.2), we would decrease α but increase β.
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5.2  ANALOGIES

To reinforce some of the definitions or terms that we have encountered, we consider 
in this section two analogies: trials by jury and medical screening tests.

5.2.1  Trials by Jury

Statisticians and statistics users may find a lot in common between a court trial and 
a statistical test of significance. In a criminal court, the jury’s duty is to evaluate the 
evidence of the prosecution and the defense to determine whether a defendant is 
guilty or innocent. By use of the judge’s instructions, which provide guidelines for 
their reaching a decision, the members of the jury can arrive at one of two verdicts: 
guilty or not guilty. Their decision may be correct or they could make one of two 
possible errors: convict an innocent person or free a criminal. The analogy between 
statistics and trials by jury goes as follows:

	

Test of significance Court

Null hypothesis Every defendan

trial

“ tt is innocent until proved

Research design Police investi

guilty”

ggation

Data test statistics Evidence exhibits

Statistical pri

/ /

nnciples Judge s instruction

Statistical decision Verdict

Type

’

II error Conviction of an innocent defendant

Type II error Acquittaal of a criminal 	

This analogy clarifies a very important concept: When a null hypothesis is not 
rejected, it does not necessarily lead to its acceptance, because a “not guilty” verdict 

α

β

0.250.20.15

HA H0

H0 is rejected
(rejection region) H0 is not rejected

Figure 5.1  Graphical display of the probabilities of type I and type II errors.
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is just an indication of “lack of evidence,” and “innocence” is one of the possibil-
ities. That is, when a difference is not statistically significant, there are still two 
possibilities:

1.	 The null hypothesis is true.

2.	 The null hypothesis is false, but there is not enough evidence from sample data 
to support its rejection (i.e., sample size is too small).

5.2.2  Medical Screening Tests

Another analogy of hypothesis testing can be found in the application of screening 
tests or diagnostic procedures. Following these procedures, clinical observations, or 
laboratory techniques, people are classified as healthy or as having a disease. Of 
course, these tests are imperfect: Healthy persons will occasionally be classified 
wrongly as being ill, while some who are ill may fail to be detected. The analogy 
between statistical tests and screening tests goes briefly as follows:

	

type I error false postitives
type II error false negatives,	

so that

	

1
1

specificity
sensitivity.	

5.2.3  Common Expectations

The medical care system, with its high visibility and remarkable history of achieve-
ments, has been perceived somewhat naively by the general public as a perfect 
remedy factory. Medical tests are expected to diagnose correctly any disease (and 
physicians are expected to treat and cure all diseases effectively!). Another common 
misconception is the assumption that all tests, regardless of the disease being tested 
for, are equally accurate. People are shocked to learn that a test result is wrong (of 
course, the psychological effects could be devastating). Another analogy between 
tests of significance and screening tests exists here: Statistical tests are also expected 
to provide a correct decision!

In some medical cases such as infections, the presence or absence of bacteria and 
viruses is easier to confirm correctly. In other cases, such as the diagnosis of diabetes 
by a blood sugar test, the story is different. One very simple model for these situa-
tions would be to assume that the variable X (e.g., the sugar level in blood) on which 
the test is based is distributed with different means for the healthy and diseased sub-
populations (Figure 5.2).

It can be seen from Figure  5.2 that errors are unavoidable, especially when 
the  two means, μ

H
 and μ

D
, are close. The same is true for statistical tests of 
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significance; when the null hypothesis H
0
 is not true, it could be a little wrong or 

very wrong. For example, for

	 H0 10: 	

the truth could be μ = 12 or μ = 50. If μ = 50, type II errors would be less likely, and 
if μ = 12, type II errors are more likely.

5.3  SUMMARIES AND CONCLUSIONS

To perform a hypothesis test, we take the following steps:

1.	 Formulate a null hypothesis and an alternative hypothesis. This would follow 
our research question, providing an explanation of what we want to prove in 
terms of chance variation; the statement resulting from our research question 
forms our alternative hypothesis.

2.	 Design the experiment and obtain data.

3.	 Choose a test statistic. This choice depends on the null hypothesis as well as 
the measurement scale.

4.	 Summarize findings and state appropriate conclusions.

This section involves the final step of the process outlined above.

5.3.1  Rejection Region

The most common approach is the formation of a decision rule. All possible values 
of the chosen test statistic (in the repeated sampling context) are divided into two 
regions. The region consisting of values of the test statistic for which the null hypo-
thesis H

0
 is rejected is called the rejection region. The values of the test statistic 

comprising the rejection region are those values that are less likely to occur if the null 
hypothesis is true. The decision rule tells us to reject H

0
 if the value of the test 

Healthy Diseased

Mean μH Mean μD

Figure 5.2  Graphical display of a translational model of diseases.
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statistic that we compute from our sample(s) is one of the values in this region. 
For example, if a null hypothesis is about μ, say

	 H0 10: 	

then a good place to look for a test statistic for H
0
 is x , and it is obvious that H

0
 should 

be rejected if x  is far away from “10”, the hypothesized value of μ. Before we 
proceed, a number of related concepts should be made clear.

One‐Sided versus Two‐Sided Tests  In the example above, a vital question is: Are 
we interested in the deviation of x  from 10 in one or both directions? If we are inter-
ested in determining whether μ is significantly different from 10, we would perform 
a two‐sided test and the rejection region would be as shown in Figure 5.3a. On the 
other hand, if we are interested in whether μ is significantly larger than 10, we would 
perform a one‐sided test and the rejection region would be as shown in Figure 5.3b.

A one‐sided test is indicated for research questions like these: Is a new drug 
superior to a standard drug? Does the air pollution exceed safe limits? Has the death 
rate been reduced for those who quit smoking? A two‐sided test is indicated for 
research questions like these: Is there a difference between the cholesterol levels of 
men and women? Does the mean age of a target population differ from that of the 
general population?

Level of Significance  The decision as to which values of the test statistic go into 
the rejection region, or as to the location of the cut point, is made on the basis of the 
desired level of type I error α (also called the size of the test). A computed value of 
the test statistic that falls in the rejection region is said to be statistically significant. 
Common choices for α, the level of significance, are 0.01, 0.05, and 0.10; the 0.05 or 
5% level is especially popular.

Reproducibility  Here we aim to clarify another misconception about hypothesis 
tests. A very simple and common situation for hypothesis tests is that the test statistic, 
for example the sample mean x , is normally distributed with different means under 

Rejection region Rejection region

Rejection region

Cut points
(equidistant from 10)

10

10

x
(a)

(b)

Cut point

x

Figure 5.3  Rejection regions for: (a) a two‐sided test and (b) a one‐sided test.
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the null hypothesis H
0
 and alternative hypothesis H

A
. A one‐sided test could be 

represented graphically as shown in Figure 5.4. It should now be clear that a statistical 
conclusion is not guaranteed to be reproducible. For example, if the alternative hypo-
thesis is true and the mean of the distribution of the test statistic is right at the cut 
point (see Figure 5.4), the probability would be 50% to obtain a test statistic inside 
the rejection region.

5.3.2  p Values

Instead of saying that an observed value of the test statistic is significant (i.e., falling 
into the rejection region for a given choice of α) or is not significant, many writers in 
the research literature prefer to report findings in terms of p values. The p value is the 
probability of getting values of the test statistic as extreme as, or more extreme than, 
that observed if the null hypothesis is true. For the example above of

	 H0 10: 	

if the test is a one‐sided test, we would have the p value shown in Figure 5.5a, and if 
the test is a two‐sided test, we have the p value shown in Figure 5.5b. The curve in 
these graphs represents the sampling distribution of x  if H

0
 is true.

Compared to the approach of choosing a level of significance and formulating a 
decision rule, the use of the p‐value criterion would be as follows:

1.	 If p < α, H
0
 is rejected.

2.	 If p ≥ α, H
0
 is not rejected.

However, the reporting of p values as part of the results of an investigation is more 
informative to readers than statements such as “the null hypothesis is rejected at the 
0.05 level of significance” or “the results were not significant at the 0.05 level.” 
Reporting the p value associated with a test lets the reader know how common or 
how rare is the computed value of the test statistic given that H

0
 is true. In other 

words, the p value can be used as a measure of the compatibility between the data 
(reality) and a null hypothesis (theory); the smaller the p value, the less compatible 

H0 HA

Cut point Rejection region

β

α

Figure 5.4  Graphical display of a one‐sided test.
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the theory and the reality. A compromise between the two approaches would be to 
report both in statements such as “the difference is statistically significant (p < 0.05).” 
In doing so, researchers generally agree on the conventional terms listed in Table 5.2.

Finally, it should be noted that the difference between means, for example, 
although statistically significant, may be so small that it has little health consequence. 
In other words, the result may be statistically significant but may not be practically 
significant.

Example 5.2
Suppose that the national smoking rate among men is 25% and we want to study the 
smoking rate among men in the New England states. The null hypothesis under 
investigation is:

	 H0 0 25: . .	

Of n = 100 males sampled, x = 15 were found to be smokers. Does the proportion 
π of smokers in New England states differ from that in the nation?

p value = shaded area

p value = sum 
of shaded areas

Observed value of x

Observed value of x

10

H0

H0

(a)

(b)

10

Same length

Figure 5.5  Graphical display of: (a) a one‐sided test and (b) a two‐sided test.

Table 5.2

p Value Interpretation

p > 0.10 Result is not significant
0.05 < p < 0.10 Result is marginally significant
0.01 < p < 0.05 Result is significant
p < 0.01 Result is highly significant
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Since n = 100 is large enough for the central limit theorem to apply, it indicates 
that the sampling distribution of the sample proportion p is approximately normal 
with mean and variance under H

0
:

	

p

p

0 25

0 25 1 0 25

100
0 043

2

2

.

. .

. . 	

The value of p observed from our sample is

	

15

100
0 15.

	

representing a difference of 0.10 from the hypothesized value of 0.25. The p value is 
defined as the probability of getting a value of the test statistic as extreme as, or more 
extreme than, that observed if the null hypothesis is true. This is represented graph-
ically as shown in Figure 5.6.

Therefore,

	

p p p

p

z

value orPr . .

Pr .

Pr
. .

.

0 15 0 35

2 0 35

2
0 35 0 25

0 0433
2 2 33

2 0 5 0 4901
0 02

Pr .

. .
. .

z

 	

In other words, with the data given, the difference between the national smoking 
rate and the smoking rate of New England states is statistically significant (p < 0.05).

5.3.3  Relationship to Confidence Intervals

Suppose that we consider a hypothesis of the form

	 H0 0: 	

p value = sum
of shaded areas

0.15

H0

0.25
Observed

value
As extreme as observed
value in other direction

0.35

Figure 5.6  Graphical display of the p value for Example 5.2.
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where μ
0
 is a known hypothesized value. A two‐sided hypothesis test for H

0
 is related 

to confidence intervals as follows:

1.	 If μ
0
 is not included in the 95% confidence interval for μ, H

0
 should be rejected 

at the 0.05 level. This is represented graphically as shown in Figure 5.7.

2.	 If μ
0
 is included in the 95% confidence interval for μ, H

0
 should not be rejected 

at the 0.05 level (Figure 5.8).

Example 5.3
Consider the hypothetical data set in Example 5.2. Our point estimate of smoking 
prevalence in New England is:

	

p
15

100
0 15. .	

Rejection
region

95% confidence
interval for μ

Rejection region

Sampling distribution
of x under H0

μ0

μ0 not included

x

Figure 5.7  μ
0
 not included in 95% confidence interval for μ.

Rejection
region

Rejection
region

Sampling distribution
of x under H0

μ0

μ0 included
95% confidence

interval for μ

x

Figure 5.8  μ
0
 included in 95% confidence interval for μ.
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Its standard error is:

	

SE p
0 15 1 0 15

100
0 036

. .

. . 	

Therefore, a 95% confidence interval for the New England states smoking rate π 
is given by:

	 0 15 1 96 0 036 0 079 0 221. . . . , . .	

It is noted that the national rate of 0.25 is not included in that confidence interval.

5.4  BRIEF NOTES ON THE FUNDAMENTALS

A statistical hypothesis is a statement about a probability distribution or its under-
lying parameter(s), or a statement about the relationship between probability 
distributions and their parameters. If the hypothesis specifies a probability density 
function (pdf) completely, it is called simple; otherwise, it is composite. The hypo-
thesis to be tested, the null hypothesis, is denoted by H

0
; it is always stated in the null 

form, indicating no difference or no relationship between distributions or parameters. 
A statistical test is a decision‐making process that examines a set or sets of sample 
data and on the basis of expectation under H

0
 leads to a decision as to whether or not 

to reject H
0
. An alternative hypothesis, which we denote by H

A
, is a hypothesis that 

in some sense contradicts the null hypothesis H
0
. A null hypothesis is rejected if and 

only if there is sufficiently strong evidence from the data to support its alternative.

5.4.1  Type I and Type II Errors

Since a null hypothesis may be true or false and our possible decisions are whether 
to reject or not reject it, there are four possible combinations. Two of the four combi-
nations are correct decisions, but there are two possible ways to commit an error:

1.	 Type I: A true H
0
 is wrongly rejected.

2.	 Type II: A false H
0
 is not rejected.

The probability of a type I error is usually denoted by α and is commonly referred 
to as the significance level of a test. The probability of a type II error (for a specific 
alternative H

A
) is denoted by β; and (1 − β) is called the power of the test. The general 

aim in hypothesis testing is to use statistical tests that make α and β as small as pos-
sible. This goal requires a compromise because these actions are contradictory; in a 
statistical data analysis, we fix α at some specific conventional level – say, 0.01 or 
0.05 – and use the test that minimizes β or, equivalently, maximizes the power.
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5.4.2  More about Errors and p Values

Given that a type I error is more important or clear‐cut, statistical tests are formed 
according to the Neyman–Pearson framework. Begin by specifying a small number 
α > 0 such that probabilities of type I error greater than α are undesirable. Then 
restrict attention to tests which have the probability of rejection under H

0
 less than or 

equal to α; such tests are said to to have level of significance α; the values 0.01 and 
0.05 are common choices for α. Since a test of level alpha is also of level α′ > α, it is 
convenient to give a name to the smallest level of significance of a test. This quantity 
is called the size of the test. In general, if we have a test statistic T and use a critical 
value t, our test has size α(t), which depends on the value of t, given by:

	 t T tPr .	

The problem is that different people faced with the same testing problem may 
have different criteria of size; investigator A may be satisfied to reject the null 
hypothesis using a test of size 0.05, while investigator B insists on using size 0.01. If 
the two investigators can agree on a common test statistic T, this difficulty may be 
overcome by reporting the outcome of the investigation in terms of the observed size 
or p value of the test. In other words, the p value is α (t = observed T). This quantity 
is a statistic that is defined as the smallest level of significance at which an investigator 
using T would reject on the basis of the outcome observed. That is, if the investiga-
tor’s critical value corresponds to a test of size less than the p value, the null hypo-
thesis is rejected. If the null hypothesis is true and the investigation repeated, p values 
are distributed uniformly on the interval [0, 1].

EXERCISES

5.1	 For each part, state the null (H
0
) and alternative (H

A
) hypotheses.

(a)	 Has the average community level of suspended particulates for the month 
of August exceeded 30 μg/cm3?

(b)	 Does the mean age of onset of a certain acute disease for schoolchildren 
differ from 11.5 years?

(c)	 A psychologist claims that the average IQ of a sample of 60 children is 
significantly above the normal IQ of 100.

(d)	 Is the average cross‐sectional area of the lumen of coronary arteries for 
men, ages 40–59 years, less than 31.5% of the total arterial cross‐section?

(e)	 Is the mean hemoglobin level of high‐altitude workers different from 16 g/cm3?

(f)	 Does the average speed of 50 cars as checked by radar on a particular 
highway differ from 55 mph?

5.2	 The distribution of diastolic blood pressures for the population of female dia-
betics between the ages of 30 and 34 has an unknown mean μ and a standard 
deviation of σ = 9 mmHg. It may be useful to physicians to know whether the 
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mean μ of this population is equal to the mean diastolic blood pressure of the 
general population of females of this age group, which is 74.5 mmHg. What are 
the null and alternative hypotheses for this test?

5.3	 E. canis infection is a tick‐borne disease of dogs that is sometimes contracted 
by humans. Among infected humans, the distribution of white blood cell counts 
has an unknown mean μ and a standard deviation σ. In the general population 
the mean white blood count is 7250 per mm3. It is believed that persons infected 
with E. canis must on average have a lower white blood cell count. What is the 
null hypothesis for the test? Is this a one‐ or two‐sided alternative?

5.4	 It is feared that the smoking rate in young females has increased in the last 
several years. In 1985, 38% of the females in the 17‐ to 24‐year age group were 
smokers. An experiment is to be conducted to gain evidence to support or refute 
the increase contention. Set up the appropriate null and alternative hypotheses. 
Explain in a practical sense what, if anything, has occurred if a type I or type II 
error has been committed.

5.5	 A group of investigators wishes to explore the relationship between the use of 
hair dyes and the development of breast cancer in females. A group of 1000 
beauticians 40–49 years of age is identified and followed for five years. After 
five years, 20 new cases of breast cancer have occurred. Assume that breast 
cancer incidence over this time period for average American women in this age 
group is 7 per 1000. We wish to test the hypothesis that using hair dyes increases 
the risk of breast cancer. Is a one‐ or two‐sided test appropriate here? Compute 
the p value for your choice.

5.6	 Height and weight are often used in epidemiological studies as possible predic-
tors of disease outcomes. If the people in the study are assessed in a clinic, 
heights and weights are usually measured directly. However, if the people are 
interviewed at home or by mail, a person’s self‐reported height and weight are 
often used instead. Suppose that we conduct a study on 10 people to test the 
comparability of these two methods. Data from these 10 people were obtained 
using both methods on each person. What is the criterion for the comparison? 
What is the null hypothesis? Should a two‐ or a one‐sided test be used here?

5.7	 Suppose that 28 cancer deaths are noted among workers exposed to asbestos in 
a building materials plant from 1981 to 1985. Only 20.5 cancer deaths are 
expected from statewide mortality rates. Suppose that we want to know if there 
is a significant excess of cancer deaths among these workers. What is the null 
hypothesis? Is a one‐ or two‐sided test appropriate here?

5.8	 A food‐frequency questionnaire was mailed to 20 subjects to assess the intake of 
various food groups. The sample standard deviation of vitamin C intake over the 
20 subjects was 15 (exclusive of vitamin C supplements). Suppose that we know 
from using an in‐person diet interview method in an earlier large study that the 
standard deviation is 20. Formulate the null and alternative hypotheses if we want 
to test for any differences between the standard deviations of the two methods.
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5.9	 In Example 5.1 it was assumed that the national smoking rate among men 
is 25%. A study is to be conducted for New England states using a sample size 
n = 100 and the decision rule:

	 If is rejectedp H0 20 0. , 	

where H
0
 is H0 0 25: .  and π and p are population and sample proportions, 

respectively, for New England states. Is this a one‐ or a two‐tailed test?

5.10	 In Example 5.1, with the rule: 

	 If is rejectedp H0 20 0. , 	

it was found that the probabilities of type I and type II errors are:

	

0 123
0 082
.
.

for H
A
: π = 0.15. Find α and β if the rule is changed to: 

	 If is rejected.p H0 18 0. ,

How does this change affect α and β values?

5.11	 Answer the questions in Exercise 5.10 for the decision rule:

	 If is rejectedp H0 22 0. , .

5.12	 Recalculate the p value in Example 5.2 if it was found that 18 (instead of 15) 
men in a sample of n = 100 are smokers.

5.13	 Calculate the 95% confidence interval for π using the sample in Exercise 5.12 
and compare the findings to the testing results of Exercise 5.12.

5.14	 Plasma glucose levels are used to determine the presence of diabetes. Suppose 
that the mean log plasma glucose concentration (mg/dL) in 35‐ to 44‐year‐
olds is 4.86 with standard deviation 0.54. A study of 100 sedentary persons in 
this age group is planned to test whether they have higher levels of plasma 
glucose than the general population.

(a)	 Set up the null and alternative hypotheses.

(b)	 If the real increase is 0.1 log unit, what is the power of such a study if a 
two‐sided test is to be used with α = 0.05?

5.15	 Suppose that we are interested in investigating the effect of race on level of 
blood pressure. The mean and standard deviation of systolic blood pressure 
among 25‐ to 34‐year‐old white males were reported as 128.6 and 11.1 mmHg, 
respectively, based on a very large sample. Suppose that the actual mean for 
black males in the same age group is 135 mmHg. What is the power of the test 
(two‐sided, α = 0.05) if n =100 and we assume that the variances are the same 
for whites and blacks?
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6
COMPARISON OF POPULATION 
PROPORTIONS

In this chapter we present basic inferential methods for categorical data, especially 
the analysis of two‐way contingency tables. Let X

1
 and X

2
 denote two categorical 

variables, X
1
 having I levels and X

2
 having J levels, thus IJ combinations of 

classifications. We display the data in a rectangular table having I rows for the cate-
gories of X

1
 and J columns for the categories of X

2
; the IJ cells represent the IJ 

combinations of outcomes. When the cells contain frequencies of outcomes, the table 
is called a contingency table or cross‐classified table, also referred to as an I by J or 
I × J table. Most topics in this chapter are devoted to the analyses of these two‐way 
tables; however, before we can get there, let us start with the simplest case: that of a 
one‐sample problem with binary data.

6.1  ONE‐SAMPLE PROBLEM WITH BINARY DATA

In this type of problem, we have a sample of binary data (n, x) with n being an ade-
quately large sample size and x the number of positive outcomes among the n obser-
vations, and we consider the null hypothesis

	 H0 0: 	

where π
0
 is a fixed and known number between 0 and 1: for example,

	 H0 0 25: . .	

π
0
 is often a standardized or referenced figure, for example the effect of a standard-

ized drug or therapy or the national smoking rate (where the national sample is often 
large enough so as to produce negligible sampling error in π

0
). Or we could be 

concerned with a research question such as: Does the side effect (of a certain drug) 
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exceed a regulated limit π
0
? In Exercise 5.5 we compared the incidence of breast  

cancer among female beauticians (who are frequently exposed to the use of hair 
dyes) versus a standard level of 7/1000 (for five years) for “average” American 
women. The figure 7/1000 is π

0
 for that example.

In a typical situation, the null hypothesis of a statistical test is concerned with a 
parameter; the parameter in this case is the proportion π. Sample data are summa-
rized into a statistic used to estimate the parameter under investigation. Since the 
parameter under investigation is the proportion π, our focus in this case is the sample 
proportion p. In general, a statistic is itself a variable with a specific sampling distri-
bution (in the context of repeated sampling). Our statistic in this case is the sample 
proportion p; the corresponding sampling distribution is obtained easily by invoking 
the central limit theorem. With a large sample size and assuming that the null hypo-
thesis H

0
 is true, it is the normal distribution with mean and variance given by

	

p

p n

0

2 0 01

	

respectively. From this sampling distribution, the observed value of the sample 
proportion can be standardized, converted to a standard unit: the number of standard 
errors away from the hypothesized value of π

0
. In other words, to perform a test of 

significance for H
0
, we proceed with the following steps:

1.	 Decide whether a one‐ or a two‐sided test is appropriate.

2.	 Choose a level of significance α, a common choice being 0.05.

3.	 Calculate the z score:

	

z
p

n
0

0 01
.

	

4.	 From the table for the standard normal distribution (Appendix B) and the 
choice of α (e.g., α = 0.05), the rejection region is determined by:

a.  For a one‐sided test:

	

z H

z H
A

A

1 65

1 65
0

0

.

. .

for :

for : 	

b.  For a two‐sided test or H
A
 : π ≠ π

0
:

	 z z1 96 1 96. . .or 	

Example 6.1
A group of investigators wish to explore the relationship between the use of hair dyes 
and the development of breast cancer in women. A sample of n = 1000 female beau-
ticians 40–49 years of age is identified and followed for five years. After five years, 
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x = 20 new cases of breast cancer have occurred. It is known that breast cancer 
incidence over this time period for average American women in this age group is  
π

0
 = 7/1000. We wish to test the hypothesis that using hair dyes increases the risk of 

breast cancer (a one‐sided alternative). We have:

1.	 A one‐sided test with

	
HA :

7

1000
.
	

2.	 Using the conventional choice of α = 0.05 leads to the rejection region z >1.65.

3.	 From the data,

	

p
20

1000
0 02. 	

leading to a z score of:

	

z
0 02 0 007

0 007 0 993 1000

4 93

. .

. .

. 	

(i.e., the observed proportion p is 4.93 standard errors away from the hypothe-
sized value of π

0
 = 0.007).

4.	 Since the computed z score falls into the rejection region (4.93 > 1.65), the null 
hypothesis is rejected at the 0.05 level chosen. In fact, the difference is very 
highly significant (p < 0.001).

6.2  ANALYSIS OF PAIR‐MATCHED DATA

The method presented in this section applies to cases where each subject or member 
of a group is observed twice for the presence or absence of a certain characteristic 
(e.g., at admission to and discharge from a hospital), or matched pairs are observed 
for the presence or absence of the same characteristic. A popular application is an 
epidemiological design called a pair‐matched case–control study. In case–control 
studies, cases of a specific disease are ascertained as they arise from population‐
based registers or lists of hospital admissions, and controls are sampled either as 
disease‐free persons from the population at risk or as hospitalized patients having a 
diagnosis other than the one under investigation. As a technique to control confound-
ing factors, individual cases are matched, often one to one, to controls chosen to have 
similar values for confounding variables such as age, gender, and race.

For pair‐matched data with a single binary exposure (e.g., smoking vs non-
smoking), data can be represented by a 2 × 2 table (Table 6.1) where (+, −) denotes 
the (exposed, nonexposed) outcome. In this 2 × 2 table, a denotes the number of pairs 
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with two exposed members, b denotes the number of pairs where the case is exposed 
but the matched control is unexposed, c denotes the number of pairs where the case 
is unexposed but the matched control is exposed, and d denotes the number of pairs 
with two unexposed members. The analysis of pair‐matched data with a single binary 
exposure can be seen, heuristically, as follows. What we really want to do is to com-
pare the incidence of exposure among the cases versus the controls; the parts of the 
data showing no difference, the number a of pairs with two exposed members, and 
the number d of pairs with two unexposed members, would contribute nothing as 
evidence in such a comparison. The comparison therefore relies solely on two other 
frequencies, b and c; under the null hypothesis that the exposure has nothing to do 
with the disease, we expect that b = c or b/(b + c) = 0.5. In other words, the analysis 
of pair‐matched data with a single binary exposure can be seen as a special case of the 
one‐sample problem with binary data of Section 6.1 with n = b + c, x = b, and π

0
 = 0.5. 

Recall the form of the test statistic of Section 6.1; we have

	

z
p

b c

b b c

b c

0

0 01

1 2

1 2 1 1 2

/

/ /

bb c

b c
.

	

The decision is based on the standardized z score and referring to the percentiles of 
the standard normal distribution or, in the two‐sided form, the square of the statistic 
above, denoted by

	
X

b c

b c
2

2

	

and the test is known as McNemar’s chi‐square. If the test is one‐sided, z is used and 
the null hypothesis is rejected at the 0.05 level when

	 z 1 65. .	

If the test is two‐sided, X 2 is used and the null hypothesis is rejected at the 0.05 level 
when

	 X 2 3 84. .	

Table 6.1

Case

Control

+ −

+ a b
− c d
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[It should be noted that 3.84 = (1.96)2, so that X2 ≥ 3.84 is equivalent to z ≤ −1.96 
or z ≥ 1.96.]

Example 6.2
It has been noted that metal workers have an increased risk for cancer of the internal 
nose and paranasal sinuses, perhaps as a result of exposure to cutting oils. Therefore, 
a study was conducted to see whether this particular exposure also increases the risk 
for squamous cell carcinoma of the scrotum.

Cases included all 45 squamous cell carcinomas of the scrotum diagnosed in 
Connecticut residents from 1955 to 1973, as obtained from the Connecticut Tumor 
Registry. Matched controls were selected for each case based on age at death (within 
eight years), year of death (within three years), and number of jobs as obtained from 
combined death certificate and directory sources. An occupational indicator of metal 
worker (yes/no) was evaluated as the possible risk factor in this study; results are 
shown in Table 6.2. We have, for a one‐tailed test,

	

z
26 5

26 5
3 77. 	

indicating a very highly significant increase of risk associated with the exposure  
(p < 0.001).

Example 6.3
A study in Maryland identified 4032 white persons, enumerated in a unofficial 1963 
census, who became widowed between 1963 and 1974. These people were matched, 
one to one, to married persons on the basis of race, gender, year of birth, and geog-
raphy of residence. The matched pairs were followed to a second census in 1975. 
The  overall male mortality is shown in Table  6.3. An application of McNemar’s  
chi‐square test (two‐sided) yields

	

X 2

2
292 210

292 210
13 39. . 	

It can be seen that the null hypothesis of equal mortality should be rejected at the 
0.05 level (13.39 > 3.84).

Table 6.2

Cases

Controls

Yes No

Yes 2 26
No 5 12
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6.3  COMPARISON OF TWO PROPORTIONS

Perhaps the most common problem involving categorical data is the comparison of 
two proportions. In this type of problem we have two independent samples of binary 
data (n

1
, x

1
) and (n

2
, x

2
) where the ns are adequately large sample sizes that may or 

may not be equal. The xs are the numbers of “positive” outcomes in the two samples, 
and we consider the null hypothesis

	 H0 1 2: 	

expressing the equality of the two population proportions.
To perform a test of significance for H

0
, we proceed with the following steps:

1.	 Decide whether a one‐sided test, say,

	 HA : 2 1	

or a two‐sided test,

	 HA : 1 2	

is appropriate.

2.	 Choose a significance level α, a common choice being 0.05.

3.	 Calculate the z score based on p
2
 minus p

1
:

	

z
p p

p p n n
2 1

1 21 1 1/ / 	

where p is the pooled proportion, defined by

	
p

x x

n n
1 2

1 2 	

which is an estimate of the common proportion under H
0
.

4.	 Refer to the table for standard normal distribution (Appendix B) for selecting a cut 
point. For example, if the choice of α is 0.05, the rejection region is determined by:

a.  For the one‐sided alternative H
A
 : π

2
 > π

1
, z ≥ 1.65.

b.  For the one‐sided alternative H
A
 : π

2
 < π

1
, z ≤ −1.65.

c.  For the two‐sided alternative H
A
: π

1
 ≠ π

2
, z ≤ −1.96 or z ≥ 1.96.

Table 6.3

Married men

Widowed men Dead Alive

Dead 2 292
Alive 210 700
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What we are doing here follows the same format used in previous sections.

•• The basic term of p
2
 − p

1
 measures the difference between the two samples.

•• Its expected hypothesized value (i.e., under H
0
) is zero.

•• The denominator of z is the standard error of p
2
 − p

1
, a measure of how precise  

p
2
 − p

1
 is as an estimate of π

2
 − π

1
.

•• Therefore, z measures the number of standard errors that p
2
 − p

1
, the evidence, 

is away from its hypothesized value.

In the two‐sided form, the square of the z score, denoted X 2, is more often used. 
The test is referred to as the chi‐square test. The test statistic can also be obtained 
using the shortcut formula

	
X

n n x n x x n x

n n x x n n x x
2 1 2 1 2 2 2 1 1

2

1 2 1 2 1 2 1 2 	

and the null hypothesis is rejected at the 0.05 level when

	 X 2 3 84. .	

It should be noted that in the general case, with data in a 2 × 2 table (Table 6.4), the 
chi‐square statistic above is simply

	
X

a b c d ad bc

a c b d a b c d
2

2

 

,

	

its denominator being the product of the four marginal totals.

Example 6.4
A study was conducted to see whether an important public health intervention 
would significantly reduce the smoking rate among men. Of n

1
 = 100 males sam-

pled in 1965 at the time of the release of the Surgeon General’s report on the health 
consequences of smoking, x

1
 = 51 were found to be smokers. In 1980 a second 

random sample of n
2
 = 100 males, similarly gathered, indicated that x

2
 = 43 were 

smokers. We will test H
0
 : π

2
 < π

1
.

Table 6.4

Factor Sample 1 Sample 2 Total

Present a c a + c
Absent b d b + d
Sample size n

1
 = a + b n

2
 = c + d N =a + b + c +d
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An application of the method above yields

	

p

z

51 43

100 100
0 47

0 43 0 51

0 47 0 53 1 100 1 100

.
. .

. . / /

1 13. . 	

It can be seen that the rate observed was reduced from 51 to 43%, but the reduction 
is not statistically significant at the 0.05 level (z = −1.13 is not < −1.65).

Example 6.5
An investigation was made into fatal poisonings of children by two drugs which were 
among the leading causes of such deaths. In each case, an inquiry was made as to 
how the child had received the fatal overdose and responsibility for the accident was 
assessed. Results are shown in Table 6.5. We have the proportions of cases for which 
the child is responsible:

	

p

p

A

B

8

8 31
0 205 20 5

12

12 19
0 387 38 7

. . %

. . %

or

or 	

suggesting that they are not the same and that a child seems more prone to taking 
drug B than drug A. However, the chi‐square statistic

	

X 2

2
39 31 8 19 31 12

39 31 20 50

2 80 3 84. . ; 0 05. 	

shows that the difference is not statistically significant at the 0.05 level.

Example 6.6
In Example 1.2, a case–control study was conducted to identify reasons for the 
exceptionally high rate of lung cancer among male residents of coastal Georgia. The 

Table 6.5

Drug A Drug B

Child responsible 8 12
Child not responsible 31 19
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primary risk factor under investigation was employment in shipyards during World 
War II, and Table 6.6 provides data for nonsmokers. We have for the cases,

	

p2

11

61
0 180. 	

and for the controls,

	

p1

35

238
0 147. .	

An application of the procedure yields a pooled proportion of

	

p
11 35

61 238
0 154. . 	

To test H
0
 : π

2
 > π

1
, we use

	

z
0 180 0 147

0 154 0 846 1 61 1 238

0 64

. .

. .

. .

/ /

	

It can be seen that the rate of employment for the cases (18.0%) was higher than that 
for the controls (14.7%), but the difference is not statistically significant at the 0.05 
level (z = 0.64 < 1.65).

Example 6.7
The role of smoking in the etiology of pancreatitis has been recognized for many 
years. To provide estimates of the quantitative significance of these factors, a hospital‐
based study was carried out in eastern Massachusetts and Rhode Island between 
1975 and 1979. Ninety‐eight patients who had a hospital discharge diagnosis of pan-
creatitis were included in this unmatched case–control study. The control group con-
sisted of 451 patients admitted for diseases other than those of the pancreas and 
biliary tract. Risk factor information was obtained from a standardized interview 
with each subject, conducted by a trained interviewer.

Some data for the males are shown in Table 6.7. With currently smoking being the 
exposure, we have for the cases,

	

p2

38

53
0 717. 	

Table 6.6

Shipbuilding Cases Controls

Yes 11 35
No 50 203
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and for the controls,

	

p1

81

217
0 373. .	

An application of the procedure yields a pooled proportion of

	

p
38 81

53 217
0 441. 	

and to test H
0
 : π

2
 > π

1
 we use

	

z
0 717 0 373

0 441 0 559 1 53 1 217

4 52

. .

. .

. .

/ /

	

It can be seen that the proportion of smokers among the cases (71.7%) was higher 
than that for the controls (37.7%) and the difference is highly statistically significant 
(p < 0.001).

6.4  MANTEL–HAENSZEL METHOD

We are often interested only in investigating the relationship between two binary var-
iables (e.g., a disease and an exposure); however, we have to control for confounders. 
A confounding variable is a variable that may be associated with either the disease or 
exposure or both. For example, in Example 1.2, a case–control study was undertaken 
to investigate the relationship between lung cancer and employment in shipyards dur-
ing World War II among male residents of coastal Georgia. In this case, smoking is a 
confounder; it has been found to be associated with lung cancer and it may be associ-
ated with employment because construction workers are likely to be smokers. 
Specifically, we could investigate:

•• Among smokers, whether or not shipbuilding and lung cancer are related;

•• Among nonsmokers, whether or not shipbuilding and lung cancer are related.

Are shipbuilding and lung cancer independent, conditional on smoking? However, 
we do not want to reach separate conclusions, one at each level of smoking. Assuming 
that the confounder, smoking, is not an effect modifier (i.e., smoking does not alter the 
relationship between lung cancer and shipbuilding), we want to pool data for a combined 

Table 6.7

Use of cigarettes Cases Controls

Current smokers 38 81
Never or ex‐smokers 15 136

Total 53 217
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decision. When both the disease and the exposure are binary, a popular method to achieve 
this task is the Mantel–Haenszel method. The process can be summarized as follows:

1.	 We form 2 × 2 tables, one at each level of the confounder.

2.	 At a level of the confounder, we have the frequencies as shown in Table 6.8.

Under the null hypothesis and fixed marginal totals, cell (1, 1) frequency a is dis-
tributed with mean and variance:

	

E a
r c

n

a
r r c c

n n

0
1 1

0
1 2 1 2
2 1

Var
	

and the Mantel–Haenszel test is based on the z statistic:

	

z
a r c n

r r c c n n

1 1

1 2 1 2
2 1

	

where the summation  is across levels of the confounder. Of course, one can use 
the square of the z score, a chi‐square test at one degree of freedom, for two‐sided 
alternatives.

When the test above is statistically significant, the association between the disease 
and the exposure is real. Since we assume that the confounder is not an effect 
modifier, the odds ratio is constant across its levels. The odds ratio at each level is 
estimated by ad/bc; the Mantel–Haenszel procedure pools data across levels of the 
confounder to obtain a combined estimate:

	
OR

/

/MH

ad n

bc n
.
	

Example 6.8
A case–control study was conducted to identify reasons for the exceptionally high 
rate of lung cancer among male residents of coastal Georgia. The primary risk factor 
under investigation was employment in shipyards during World War II, and data 
are tabulated separately in Table  6.9 for three levels of smoking. There are three  
2 × 2 tables, one for each level of smoking; in Table 1.1, the Moderate and Heavy  
tables were combined and presented together for simplicity.

We begin with the 2 × 2 table for nonsmokers (Table  6.10). We have, for the 
nonsmokers,

Table 6.8

Exposure

Disease classification

Total+ −

+ a b r
1

− c d r
2

Total c
1

c
2

n
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a

r c

n

r r c c

n n

11

46 61

299

9 38

1

46 253 61 238

1 1

1 2 1 2
2

.

299 298

6 34

11 203

299

7 47

35 50

299

5

2

.

.

.

ad

n

bc

n

885. 	

The process is repeated for each of the other two smoking levels. For moderate smokers,

	

a

r c

n

r r c c

n n

70

112 287

549

58 55

1

112 437 287

1 1

1 2 1 2
2

.

262

549 548

22 28

2

. 	

Table 6.10

Shipbuilding Cases Controls Total

Yes 11 (a) 35 (b) 46 (r
1
)

No 50 (c) 203 (d ) 253 (r
2
)

Total 61 (c
1
) 238 (c

2
) 299 (n)

Table 6.9

Smoking Shipbuilding Cases Controls

No Yes 11 35
No 50 203

Moderate Yes 70 42
No 217 220

Heavy Yes 14 3
No 96 50
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ad

n

bc

n

70 220

549
28 05
42 217

549
16 60

.

.

and for heavy smokers,

	

a

r c

n

r r c c

n n

14

17 110

163

11 47

1

17 146 110

1 1

1 2 1 2
2

.

553

163 162

3 36

14 50

163

4 29

3 96

163

1

2

.

.

.

ad

n

bc

n

777. 	

These results are combined to obtain the z score:

	

z
11 9 38 70 58 55 14 11 47

6 34 22 28 3 36
2 76

. . .

. . .
. 	

and a z score of 2.76 yields a one‐tailed p value of 0.0029, which is beyond the 1% 
level. This result is stronger than those for tests at each level because it is based on 
more information, where all data at all three smoking levels are used. The combined 
odds ratio estimate is

	

ORMH

7 47 28 05 4 29

5 85 16 60 1 77
1 64

. . .

. . .
. 	

representing an approximate increase of 64% in lung cancer risk for those employed 
in the shipbuilding industry.
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Note: An SAS program would include these instructions:

DATA;
   INPUT SMOKE SHIP CANCER COUNT;
CARDS;
1 1 1 11
1 1 2 35
1 2 1 50
1 2 2 203
2 1 1 70
2 1 2 42
2 2 1 217
2 2 2 220
3 1 1 14
3 1 2 3
3 2 1 96
3 2 2 50;
PROC FREQ;
   WEIGHT COUNT;
   TABLES SMOKE*SHIP*CANCER/CMH;

The result is given in a chi‐square form (X2 = 7.601, p = 0.006); CMH stands for the 
Cochran–Mantel–Haenszel statistic; note that (2.76)2 = 7.601. An R program would 
include the following instructions:

Count = array(c(11,50,35,203,
          70,217,42,220,
          14,96,3,50),
  dim = c(2,2,3),
   dimnames = list(
       Shipbuilding = c("Yes","No"),
       Cancer = c("Case","Control"),
       Smoker = c("No","Moderate","Heavy")))
mantelhaen.test(Count,correct=FALSE)

SAS and R have different rules for when a continuity correction should be used; this 
R code forces no correction in order to match the SAS results.

Example 6.9
A case–control study was conducted to investigate the relationship between myocar-
dial infarction (MI) and oral contraceptive use (OC). The data, stratified by cigarette 
smoking, are given in Table 6.11. An application of the Mantel–Haenszel procedure 
yields the results shown in Table 6.12. The combined z score is

	

z
4 2 52 25 18 70

2 25 14 00
1 93

. .

. .
. 	
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which is significant at the 5% level (one‐sided). The combined odds ratio estimate is

	

ORMH

3 57 18 84

2 09 12 54
1 53

. .

. .
. 	

representing an approximate increase of 53% in myocardial infarction for oral con-
traceptive users.

6.5  INFERENCES FOR GENERAL TWO‐WAY TABLES

Data forming two‐way contingency tables do not necessarily come from two binomial 
samples. There may be more than two binomial samples to compare. They may come 
from two independent samples, but the endpoint may have more than two categories. 
They may come from a survey (i.e., one sample), but data are cross‐tabulated based 
on two binary factors of interest (so we still have a 2 × 2 table as in the comparison 
of two proportions).

Consider the general case of an I × J table: say, resulting from a survey of size n. 
Let X

1
 and X

2
 denote two categorical variables, X

1
 having I levels and X

2
 having J 

levels; there are IJ combinations of classifications. The IJ cells represent the IJ 

Table 6.11

Smoking OC use Cases Controls

No Yes 4 52
No 34 754

Yes Yes 25 83
No 171 853

Table 6.12

Smoking

No Yes

a 4 25
r c
n

1 1 2.52 18.70

r r c c

n n
1 2 1 2
2 1( )

2.25 14.00

ad
n

3.57 18.84

bc
n

2.09 12.54
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combinations of classifications; their probabilities are {π
ij
}, where π

ij
 denotes the 

probability that the outcome (X
1
, X

2
) falls in the cell in row i and column j. When two 

categorical variables forming the two‐way table are independent, all π
ij
 = π

i+
π

+j
. This 

is the multiplication rule for probabilities of independent events introduced in 
Chapter  3; here π

i+
 and π

+j
 are the two marginal or univariate probabilities. The 

estimate of π
ij
 under this condition is

	

ˆ ˆ ˆ
ij i j

i j

i j

i j

p p

x

n

x

n
x x

n

 

2 	

where the xs are the observed frequencies. Under the assumption of independence, 
we would have in cell (i, j):

	

e n
x x

n

ij ij

i j

ˆ

.
row total column total

sample size 	

The {e
ij
} are called estimated expected frequencies, the frequencies we expect to 

have under the null hypothesis of independence. They have the same marginal totals 
as those of the data observed. In this problem we do not compare proportions (because 
we have only one sample), what we really want to see is if the two factors or variables 
X

1
 and X

2
 are related; the task we perform is a test for independence. We achieve that 

by comparing the observed frequencies, the xs, versus those expected under the null 
hypothesis of independence, the expected frequencies es. This needed comparison is 
done through Pearson’s chi‐square statistic: 

	
X

x e

e
ij ij

iji j

2

2

,  

.

	

For large samples (all e
ij
 ≥ 5), X 2 has approximately a chi‐square distribution with 

degrees of freedom under the null hypothesis of independence,

	 df I J1 1 	

with greater values leading to a rejection of H
0
.

Example 6.10
In 1979 the United States Veterans Administration conducted a health survey of 
11,230 veterans. The advantages of this survey are that it includes a large random 
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sample with a high interview response rate, and it was done before the public contro-
versy surrounding the issue of the health effects of possible exposure to Agent Orange. 
The data shown in Table 6.13 relate Vietnam service to having sleep problems among 
the 1783 veterans who entered the military service between 1965 and 1975. We have

	

e

e

e

11

12

21

333 772

1783
144 18
333 144 18
188 82
772 144

.
.

.
.118

627 82
1011 188 82
822 18

22

.
.

.
e

	

leading to

	

X 2

2 2 2
173 144 18

144 18

160 188 82

188 82

599 627 82

62

.

.

.

.

.

77 82

851 822 18

822 18
12 49

2

.

.

.
. . 	

This statistic, at 1 df, indicates a significant correlation (p < 0.001) relating Vietnam 
service to having sleep problems among the veterans. It is interesting to note that we 
needed to calculate only one expected frequency, e

11
; all others can be obtained by 

subtraction from the margin counts. This explains the one degree of freedom we used.

Example 6.11
Table 6.14 shows the results of a survey in which each subject of a sample of 300 
adults was asked to indicate which of three policies they favored with respect to 
smoking in public places. The numbers in parentheses are expected frequencies. An 
application of Pearson’s chi‐square test, at 6 df, yields

	

X 2

2 2 2
5 8 75

8 75

44 46

46

10 4 5

4 5
22 57

.

.

.

.
. . 	

The result indicates a high correlation between education levels and preferences 
about smoking in public places (p = 0.001).

Table 6.13

Sleep problems

Service in Vietnam

TotalYes No

Yes 173 160 333
No 599 851 1450

Total 772 1011 1783
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Note: An SAS program would include these instructions:

DATA RESTRICT;
   INPUT EDUCAT POLICY COUNT;
CARDS;
1 1 5
1 2 44
1 3 23
1 4 3
2 1 15
2 2 100
2 3 30
2 4 5
3 1 15
3 2 40
3 3 10
3 4 10;
PROC FREQ DATA = RESTRICT;
   WEIGHT COUNT;
   TABLES EDUCAT*POLICY/CHISQ;

An R program would include the following instructions:

Count = array(c(5,15,15,
                44,100,40,
                23,30,10,
                3,5,10),
  dim = c(3,4),
  dimnames = list(
 education = c("College grad","High school","Grade school"),
 policy = c("No restrictions","Designated areas","No  
 smoking","No opinion")))
chisq.test(Count,correct=FALSE)

Table 6.14

Highest 
education level

Policy favored

Total
No restrictions 

on smoking

Smoking allowed 
in designated 

areas only
No smoking 

at all
No 

opinion

College graduate 5 (8.75) 44 (46) 23 (15.75) 3 (4.5) 75
High school 15 (17.5) 100 (92) 30 (31.50) 5 (9) 150
Grade school 15 (8.75) 40 (46) 10 (15.75) 10 (4.5) 75

Total 35 184 63 18 300
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Statistical decisions based on Pearson’s chi‐square statistic make use of the 
percentiles of the chi‐square distribution. Since chi‐square is a continuous distribu-
tion and categorical data are discrete, some statisticians use a version of Pearson’s 
statistic with a continuity correction, called Yates’ corrected chi‐square test, which 
can be expressed as

	
X

x e

ec
i j

ij ij

ij

2

2
0 5

,

.
.
	

Statisticians still disagree about whether or not a continuity correction is needed. 
Generally, the corrected version is more conservative and used more widely in the 
applied literature.

So far, the test for the comparison of two proportions and the test for independence 
of two variables have been presented in very different ways; fortunately, they are not 
that different. For example, if we apply the test of independence to a 2 × 2 table 
where data came from two binomial samples, say a case–control study, we get the 
same chi‐square statistic as if we applied the chi‐square test to compare the two pro-
portions against a two‐sided alternative. In other words, the chi‐square test – pre-
sented as a comparison of observed versus expected frequencies – applies regardless 
of the sampling mechanism. For example, we can use the chi‐square test to compare 
several proportions simultaneously using data from several binomial samples (see 
Example 6.13). In this type of problem, we have k independent samples of binary data 
(n

1
, x

1
), (n

2
, x

2
),…, (n

k
, x

k
), where the ns are sample sizes and the xs are the numbers 

of positive outcomes in the k samples. For these k independent binomial samples, we 
consider the null hypothesis

	 H k0 1 2:  	

expressing the equality of the k population proportions.

Example 6.12
The case–control study of lung cancer among male residents of coastal Georgia of 
Example 6.6 was carried out in an attempt to identify reasons for their exceptionally 
high rate of lung cancer (Table 6.15). We have for the non-smokers

	

e

e

e

e

11

12

21

22

46 61

299
9 38
46 9 38
36 62
61 9 38
51 62

.
.

.
.

.
2253 51 62
201 38

.
. 	
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leading to

	

X 2

2 2 2
11 9 38

9 38

35 36 62

36 62

50 51 62

51 62

203 20.

.

.

.

.

.

11 38

201 38
0 42

2
.

.
. . 	

This result, a chi‐square value, is identical to that from Example 6.6, where we 
obtained a z score of 0.64 [note that (0.64)2 = 0.42].

Example 6.13
A study was undertaken to investigate the roles of bloodborne environmental expo-
sures on ovarian cancer from assessment of consumption of coffee, tobacco, and 
alcohol. Study subjects consisted of 188 women in the San Francisco Bay area with 
epithelial ovarian cancers diagnosed in 1983–1985, and 539 control women. Of the 
539 controls, 280 were hospitalized women without ovarian cancer and 259 were 
chosen from the general population by random telephone dialing. Data for coffee 
consumption are summarized in Table 6.16 (the numbers in parentheses are expected 
frequencies). In this example, we want to compare the three proportions of coffee 
drinkers, but we still can apply the same chi‐square test:

	

X 2

2 2
177 170 42

170 42

26 24 23

24 23
3 83

.

.

.

.
. . 	

The result indicates that the difference between the three groups is not significant at 
the 5% level (the cutpoint at the 5% level for chi‐square with 2 df is 5.99). In other 
words, there is not enough evidence to implicate coffee consumption in this study of 
epithelial ovarian cancer. 

It is important to note that in solving the problem above, a comparison of several 
proportions, one may be tempted to compare all possible pairs of proportions and do 
many chi‐square tests. What is the matter with this approach to doing many chi‐
square tests, one for each pair of samples? As the number of groups increases, so 
does the number of tests to perform; for example, we would have to do 45 tests if we 
have 10 groups to compare. Obviously, the amount of work is greater, but that is not 
the critical problem. The problem is that performing many tests increases the proba-
bility that one or more of the comparisons will result in a type I error (i.e., a significant 
test result when the null hypothesis is true). This should make sense intuitively. For 
example, suppose that the null hypothesis is true and we perform 100 tests – each has 
a 0.05 probability of resulting in a type I error; then 5 of these 100 tests would be 
statistically significant as the result of type I errors. Of course, we usually do not 

Table 6.15

Shipbuilding Cases Controls Total

Yes 11 35 46
No 50 203 253

Total 61 238 299
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need to do that many tests; however, every time we do more than one, the probability 
that at least one will result in a type I error exceeds 0.05, indicating a falsely significant 
difference! What is needed is a method of comparing these proportions simulta-
neously, in one step. The chi‐square test for a general two‐way table, in Example 6.13 
a 2 × 3 table, achieves just that.

6.6  FISHER’S EXACT TEST

Even with a continuity correction, the goodness of fit test statistic such as Pearson’s 
X 2 is not suitable when the sample is small. Generally, statisticians suggest using 
them only if no expected frequency in the table is less than 5. For studies with small 
samples, we introduce a method known as Fisher’s exact test. For tables in which use 
of the chi‐square test X 2 is appropriate, the two tests give very similar results.

Our purpose is to find the exact significance level associated with an observed 
table. The central idea is to enumerate all possible outcomes consistent with the 
observed marginal totals and add up the probabilities of those tables that are more 
extreme than the one observed. Conditional on the margins, a 2 × 2 table is a one‐
dimensional random variable having a known distribution, so the exact test is 
relatively easy to implement. The probability of observing a table with cells a, b, c, 
and d (with total n) is

	
Pr

! ! ! !

! ! ! ! !
.a b c d

a b c d a c b d

n a b c d
, , ,

	

The process for doing hand calculations would be as follows:

1.	 Rearrange the rows and columns of the table observed so the the smaller row 
total is in the first row and the smaller column total is in the first column.

2.	 Start with the table having 0 in the (1, 1) cell (top left cell). The other cells in this 
table can be calculated from the fixed row and column margins.

3.	 Construct the next table by increasing the (1, 1) cell from 0 to 1 and decreasing 
all other cells accordingly.

4.	 Continue to increase the (1, 1) cell by 1 until one of the other cells becomes 0. 
At that point we have enumerated all possible tables.

5.	 Calculate and add up the probabilities of those tables with cell (1, 1) having 
values from 0 to the observed frequency (left side for a one‐sided test); double 
the smaller side for a two‐sided test.

Table 6.16

Coffee drinkers Cases Hospital controls Population Controls Total

Yes 177 (170.42) 249 (253.81) 233 (234.77) 659
No 11 (17.58) 31 (26.19) 26 (24.23) 68

Total 188 280 259 727
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In practice, the calculations are often tedious and should be left to a computer 
program to implement.

Example 6.14
A study on deaths of men aged over 50 years yields the data shown in Table 6.17 
(numbers in parentheses are expected frequencies). An application of Fisher’s exact 
test yields a one‐sided p value of 0.375 or a two‐sided p value of 0.688; we cannot 
say, on the basis of this limited amount of data, that there is a significant association 
between salt intake and cause of death even though the proportions of CVD deaths 
are different (71.4 vs 56.6%). For implementing hand calculations, we would focus 
on the tables where cell (1, 1) equals 0, 1, and 2 (observed value; the probabilities for 
these tables are 0.017, 0.105, and 0.252, respectively).

Note: An SAS program would include these instructions:

DATA DEATHS;
   INPUT CVM DIET COUNT;
CARDS;
1 1 2
1 2 23
2 1 5
2 2 30;
PROC FREQ DATA = DEATHS;
   WEIGHT COUNT;
   TABLES CVD*DIET/CHISQ;

The output also includes Pearson’s test (X 2 = 0.559; p = 0.455) as well. An R program 
would include the following instructions:

Count = array(c(2,5,
                23,30),
  dim = c(2,2),
  dimnames = list(
        Cause = c("Non-CVD","CVD"),
        Diet = c("High salt","Low salt")))
fisher.test(Count)

Table 6.17

Cause of death

Type of diet

TotalHigh salt Low salt

NonCVD 2 (2.92) 23 (22.08) 25
CVD 5 (4.08) 30 (30.92) 35

Total 7 53 60
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6.7  ORDERED 2 × k CONTINGENCY TABLES

In this section we present an efficient method for use with ordered 2 × k contingency 
tables, tables with two rows and with k columns having a certain natural ordering. 
We introduced it, in Section 1.3.3, to provide a descriptive statistic, the generalized 
odds.

In general, consider an ordered 2 × k table with the frequencies shown in 
Table 6.18. The number of concordances is calculated by

	 C a b b a b b a bk k k k1 2 2 3 1 .	

The number of discordances is

	 D b a a b a a b ak k k k1 2 2 3 1 .	

To perform the test, we calculate the statistic

	 S C D	

then standardize it to obtain

	
z

S S

D 	

where μ
S
 = 0 is the mean of S under the null hypothesis and

	
S k

AB

N N
N n n n

3 1
3

1
3

2
3 3

1 2/

.
	

The standardized z score is distributed as standard normal if the null hypothesis is 
true. For a one‐sided alternative, which is a natural choice for this type of test, the 
null hypothesis is rejected at the 5% level if z > 1.65 (or z <−1.65 if the terms concor-
dance and discordance are switched).

Example 6.15
Consider an example concerning the use of seat belts in automobiles. Each accident 
in this example is classified according to whether a seat belt was used and the severity 

Table 6.18

Row

Column level

Total1 2 … k

1 a
1

a
2

… a
k

A
2 b

1
b

2
… b

k
B

Total n
1

n
2

… n
k

N
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of injuries received: none, minor, major, or death (Table 6.19). For this study on the 
use of seat belts in automobiles, an application of the method above yields

	

C

D

75 175 135 25 160 135 25 100 25
53 225
65 16

, .
00 100 15 175 100 15 135 15

40 025, . 	

In addition, we have

	

A
B
n
n
n
n
N

350
390
130
335
235
40
740

1

2

3

4

.	

Substituting these values into the equations of the test statistic, we have

	

S

S

53 225 40 025
13 200

350 390

3 740 739
740 130 33 3

,
,

335 235 40

5414 76

3 3 3

1 2/

. 	

leading to

	

z
13 200

5414 76
2 44

,

.
. 	

which shows a high degree of significance (one‐sided p value = 0.0073). It is inter-
esting to note that in order to compare the extent of injury from those who used seat 
belts and those who did not, we can perform a chi‐square test as presented in 
Section 6.5. Such an application of the chi‐square test yields

	 X 2 9 26. 	

Table 6.19

Seat belt

Extent of injury received

TotalNone Minor Major Death

Yes 75 160 100 15 350
No 65 175 135 25 390

Total 130 335 235 40 740
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which falls in between the χ 23 0.01 and 0.05 cutpoints. Therefore, the difference 
between the two groups is significant at the 5% level but not at the 1% level, a lower 
degree of significance (compared to the p value of 0.0073 above). This is because the 
usual chi‐square calculation takes no account of the fact that the extent of injury has 
a natural ordering: none < minor < major < death. In addition, the percent of seat belt 
users in each injury group decreases from level “none” to level “death”:

	

None

Minor

Major

De

: %

: %

: %

75

75 65
54

160

160 175
48

100
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43

aath : %.
15

15 25
38

	

The method introduced in this section seems particularly ideal for the evaluation of 
ordinal risk factors in case–control studies.

Example 6.16
Prematurity, which ranks as the major cause of neonatal morbidity and mortality, has 
traditionally been defined on the basis of a birth weight under 2500 g. But this defi-
nition encompasses two distinct types of infants: infants who are small because they 
are born early, and infants who are born at or near term but are small because their 
growth was retarded. Prematurity has now been replaced by low birth weight to 
describe the second type and preterm to characterize the first type (babies born before 
37 weeks of gestation).

A case–control study of the epidemiology of preterm delivery was undertaken at 
Yale–New Haven Hospital in Connecticut during 1977 (Berkowitz, 1981). The study 
population consisted of 175 mothers of singleton preterm infants and 303 mothers 
of singleton full‐term infants. Table 6.20 gives the distribution of age of the mother. 
We have
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leading to

	

z
4989

2794 02
1 79

.
. 	

which shows a significant association between the mother’s age and preterm delivery 
(one‐sided p value = 0.0367); the younger the mother, the more likely the preterm delivery.

6.8  NOTES ON COMPUTATIONS

Samples of SAS and R program instructions were provided at the end of Examples 
6.8, 6.11, and 6.14; note that R is case sensitive. SAS and R both return two‐sided p 
values by default. Other computations can be implemented easily using a calculator 
provided that data have been summarized in the form of a two‐way table. Read 
Section 1.4 on how to use Excel’s Pivot Table procedure to form a 2 × 2 table from a 
raw data file. After the value of a statistic has been obtained, you can use NORMDIST 
(Section 3.6) to obtain an exact p value associated with a z score and CHIDIST to 
obtain an exact p value associated with a chi‐square statistic; the CHIDIST procedure 
can be used similar to the case of a one‐tailed TDIST (Section 3.6). Section 3.6 
also explains the corresponding SAS (CDF(‘chisquare’,x,df)) and R (pchisq(x,df)) 
functions. For the method of Section 6.5, and instead of writing a SAS program, one 
can calculate expected frequencies (using formula and drag and fill, Section 1.4), 
then input them into the CHITEST procedure of Excel.

EXERCISES

6.1	 Consider a sample of n = 110 women drawn randomly from the membership 
list of the National Organization for Women (N.O.W.), x = 25 of whom were 
found to smoke. Use the result of this sample to test whether the rate found is 
significantly different from the United States proportion of 0.30 for women.

6.2	 In a case–control study, 317 patients suffering from endometrial carcinoma 
were matched individually with 317 other cancer patients in a hospital and the 

Table 6.20

Age (years) Cases Controls Total

14–17 15 16 31
18–19 22 25 47
20–24 47 62 109
25–29 56 122 178
≥ 30 35 78 113

Total 175 303 478



EXERCISES� 223

use of estrogen in the six months prior to diagnosis was determined (Table E6.2). 
Use McNemar’s chi‐square test to investigate the significance of the association 
between estrogen use and endometrial carcinoma; state your null and alternative 
hypotheses.

6.3	 A study in Maryland identified 4032 white persons, enumerated in a nonofficial 
1963 census, who became widowed between 1963 and 1974. These people 
were matched, one to one, to married persons on the basis of race, gender, year 
of birth, and geography of residence. The matched pairs were followed in a 
second census in 1975, and the data for men have been analyzed so as to com-
pare the mortality of widowed men versus married men (see Example 6.3). The 
data for 2828 matched pairs of women are shown in Table E6.3. Test to com-
pare the mortality of widowed women versus married women; state your null 
and alternative hypotheses.

6.4	 It has been noted that metal workers have an increased risk for cancer of the 
internal nose and paranasal sinuses, perhaps as a result of exposure to cutting 
oils. Therefore, a study was conducted to see whether this particular exposure 
also increases the risk for squamous cell carcinoma of the scrotum (see 
Example 6.2). Cases included all 45 squamous cell carcinomas of the scrotum 
diagnosed in Connecticut residents from 1955 to 1973, as obtained from the 
Connecticut Tumor Registry. Matched controls were selected for each case 
based on the age at death (within eight years), year of death (within three 
years), and number of jobs as obtained from combined death certificate and 
directory sources. An occupational indicator of metal worker (yes/no) was 
evaluated as the possible risk factor in this study. The results are shown in 
Table 6.2. Test to compare the cases versus the controls using the McNemar’s 
chi‐square test; state clearly your null and alternative hypotheses and choice of 
test size.

table E6.2

Cases

Controls

Estrogen No estrogen

Estrogen 39 113
No estrogen 15 150

table E6.3

Widowed women

Married women

Dead Alive

Dead 1 264
Alive 249 2314
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6.5	 A matched case–control study on endometrial cancer, where the exposure was 
“ever having taken any estrogen,” yields the data shown in Table E6.5. Test to 
compare the cases versus the controls; state clearly your null and alternative 
hypotheses and choice of test size (alpha level).

6.6	 Ninety‐eight heterosexual couples, at least one of whom was HIV‐infected, 
were enrolled in an HIV transmission study and interviewed about sexual 
behavior. Table E6.6 provides a summary of condom use reported by hetero-
sexual partners. Test to compare the men versus the women; state clearly your 
null and alternative hypotheses and choice of test size (alpha level).

6.7	 A matched case–control study was conducted by Schwarts et al. (1989) to eval-
uate the cumulative effects of acrylate and methacrylate vapors on olfactory 
function (Table E6.7). Cases were defined as scoring at or below the 10th per-
centile on the UPSIT (University of Pennsylvania Smell Identification Test). 
Test to compare the cases versus the controls; state clearly your null and 
alternative hypotheses and your choice of test size.

6.8	 Self‐reported injuries among left‐ and right‐handed people were compared in a 
survey of 1896 college students in British Columbia, Canada. Of the 180 left‐
handed students, 93 reported at least one injury. In the same period, 619 of the 
1716 right‐handed students reported at least one injury. Test to compare the 

table E6.5

Matching controls

Cases Exposed Nonexposed

Exposed 27 29
Nonexposed 3 4

table E6.6

Man

Woman Ever Never

Ever 45 6
Never 7 40

table E6.7

Cases

Controls Exposed Unexposed

Exposed 25 22
Unexposed 9 21



proportions of injured students, left‐ versus right‐handed; state clearly your null 
and alternative hypotheses and choice of test size.

  6.9	 In a study conducted to evaluate the hypothesis that tea consumption and 
premenstrual syndrome are associated, 188 nursing students and 64 tea factory 
workers were given questionnaires. The prevalence of premenstrual syndrome 
was 39% among the nursing students and 77% among the tea factory workers. 
Test to compare the prevalences of premenstrual syndrome, tea factory 
workers versus nursing students; state clearly your null and alternative 
hypotheses and choice of test size.

6.10	 A study was conducted to investigate drinking problems among college stu-
dents. In 1983, a group of students were asked whether they had ever driven 
an automobile while drinking. In 1987, after the legal drinking age was raised, 
a different group of college students was asked the same question. The results 
are as shown in Table E6.10. Test to compare the proportions of students with 
a drinking problem, 1987 versus 1983; state clearly your null and alternative 
hypotheses and choice of test size.

6.11	 In August 1976, tuberculosis was diagnosed in a high school student (index 
case) in Corinth, Mississippi. Subsequently, laboratory studies revealed that 
the student’s disease was caused by drug‐resistant tubercule bacilli. An epide-
miologic investigation was conducted at the high school. Table E6.11 gives 
the rates of positive tuberculin reaction determined for various groups of stu-
dents according to the degree of exposure to the index case. Test to compare 
the proportions of students with infection, high exposure versus low exposure; 
state clearly your null and alternative hypotheses and choice of test size.

6.12	 Epidemic keratoconjunctivitis (EKC) or “shipyard eye” is an acute infectious 
disease of the eye. A case of EKC is defined as an illness consisting of redness, 
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table E6.10

Year

Drove while drinking 1983 1987

Yes 1250 991
No 1387 1666

Total 2637 2657

table E6.11

Exposure level Number tested Number positive

High 129 63
Low 325 36
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tearing, and pain in one or both eyes for more than three days’ duration, diag-
nosed as EKC by an ophthalmologist. In late October 1977, one (physician A) 
of the two ophthalmologists providing the majority of specialized eye care to 
the residents of a central Georgia county (population 45,000) saw a 27‐year‐
old nurse who had returned from a vacation in Korea with severe EKC. She 
received symptomatic therapy and was warned that her eye infection could 
spread to others; nevertheless, numerous cases of an illness similar to hers 
soon occurred in the patients and staff of the nursing home (nursing home A) 
where she worked (these people came to physician A for diagnosis and 
treatment). Table E6.12 provides exposure history of 22 persons with EKC 
between 27 October 1977 and 13 January 1978 (when the outbreak stopped, 
after proper control techniques were initiated). Nursing home B, included in 
this table, is the only other area chronic‐care facility. Using an appropriate 
test, compare the proportions of cases from the two nursing homes.

6.13	 Consider the data taken from a study that attempts to determine whether the 
use of electronic fetal monitoring (EFM) during labor affects the frequency of 
cesarean section deliveries. Of the 5824 infants included in the study, 2850 
were monitored electronically and 2974 were not. The outcomes are shown in 
Table  E6.13. Test to compare the rates of cesarean section delivery, EFM‐
exposed versus nonexposed; state clearly your null and alternative hypotheses 
and choice of test size.

6.14	 A study was conducted to investigate the effectiveness of bicycle safety helmets 
in preventing head injury. The data consist of a random sample of 793 people 
involved in bicycle accidents during a one‐year period (Table E6.14). Test to 
compare the proportions with head injury, those with helmets versus those 
without; state clearly your null and alternative hypotheses and choice of test size.

table E6.12

Exposure cohort Number exposed Number of cases

Nursing home A 64 16
Nursing home B 238 6

table E6.13

Cesarean delivery

EFM exposure

Yes No

Yes 358 229
No 2492 2745

Total 2850 2974
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6.15	 A case–control study was conducted relating to the epidemiology of breast 
cancer and the possible involvement of dietary fats, along with other vitamins 
and nutrients. It included 2024 breast cancer cases admitted to Roswell Park 
Memorial Institute, Erie County, New York, from 1958 to 1965. A control 
group of 1463 was chosen from patients having no neoplasms and no pathology 
of gastrointestinal or reproductive systems. The primary factors being investi-
gated were vitamins A and E (measured in international units per month). The 
data shown in Table E6.15 are for 1500 women over 54 years of age. Test to 
compare the proportions of subjects who consumed less vitamin A (≤ 150, 500 
IU/month), cases versus controls; state clearly your null and alternative 
hypotheses and choice of test size.

6.16	 In a randomized trial, 111 pregnant women had elective induction of labor 
between 39 and 40 weeks, and 117 controls were managed expectantly until 
41 weeks. The results are shown in Table E6.16. Use Fisher’s exact test to 
verify the alternative that patients with elective induction have less meconium 
staining in labor than do control patients.

6.17	 A research report states that “a comparison of 90 normal patients with 10 
patients with hypotension shows that only 3.3% of the former group died as 
compared to 30% of the latter.” Put the data into a 2 × 2 contingency table and 
test the significance of blood pressure as a prognostic sign using:

table E6.14

Head injury

Wearing helmet

Yes No

Yes 17 218
No 130 428

Total 147 646

table E6.15

Vitamin A (IU/month) Cases Controls

≤ 150 500 893 392
> 150 500 132 83

Total 1025 475

table E6.16

Induction group Control group

Number of patients 111 117
Number with meconium staining 1 13
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(a)	 Pearson’s chi‐square test.

(b)	 Pearson’s chi‐square test with Yates’ continuity correction.

(c)	 Fisher’s exact test.

6.18	 In a trial of diabetic therapy, patients were either treated with phenformin or a 
placebo. The numbers of patients and deaths from cardiovascular causes are 
listed in Table E6.18. Use Fisher’s exact test to investigate the difference in 
cardiovascular mortality between the phenformin and placebo groups; state 
your null and alternative hypotheses.

6.19	 In a seroepidemiologic survey of health workers representing a spectrum of 
exposure to blood and patients with hepatitis B virus (HBV), it was found that 
infection increased as a function of contact. Table  E6.19 provides data for 
hospital workers with uniform socioeconomic status at an urban teaching 
hospital in Boston, Massachusetts. Test to compare the proportions of HBV 
infection between the four groups: physicians with frequent exposure, physi-
cians with infrequent exposure, nurses with frequent exposure, and nurses 
with infrequent exposure. State clearly your null and alternative hypotheses 
and choice of test size.

6.20	 It has been hypothesized that dietary fiber decreases the risk of colon cancer, 
while meats and fats are thought to increase this risk. A large study was under-
taken to confirm these hypotheses (Graham et al., 1988). Fiber and fat con-
sumptions are classified as low or high and data are tabulated separately for 
males and females in Table E6.20 (“low” means below the median). Test to 
investigate the relationship between the disease (two categories: cases and 
controls) and the diet (four categories: low fat and high fiber, low fat and low 
fiber, high fat and high fiber, high fat and low fiber). State clearly your null 
and alternative hypotheses and choice of test size.

table E6.18

Result Phenformin Placebo Total

Cardiovascular deaths 26 2 28
Not deaths 178 62 240

Total 204 64 268

table E6.19

Personnel Exposure n HBV positive

Physicians Frequent 81 17
Infrequent 89 7

Nurses Frequent 104 22
Infrequent 126 11
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6.21	 A case–control study was conducted in Auckland, New Zealand to investigate 
the effects of alcohol consumption on both nonfatal myocardial infarction and 
coronary death in the 24 hours after drinking, among regular drinkers. Data 
are tabulated separately for men and women in Table E6.21. For each group, 
men and women, and for each type of event, myocardial infarction and coro-
nary death, test to compare cases versus controls. State, in each analysis, your 
null and alternative hypotheses and choice of test size.

6.22	 Refer to the data in Exercise 6.21, but assume that gender (male/female) may 
be a confounder but not an effect modifier. For each type of event, myocardial 
infarction and coronary death, use the Mantel–Haenszel method to investigate 
the effects of alcohol consumption. State, in each analysis, your null and 
alternative hypotheses and choice of test size.

6.23	 Since incidence rates of most cancers rise with age, this must always be con-
sidered a confounder. Stratified data for an unmatched case–control study are 
shown in Table E6.23. The disease was esophageal cancer among men, and 
the risk factor was alcohol consumption. Use the Mantel–Haenszel procedure 
to compare the cases versus the controls. State your null hypothesis and choice 
of test size.

6.24	 Postmenopausal women who develop endometrial cancer are on the whole 
heavier than women who do not develop the disease. One possible explanation 
is that heavy women are more exposed to endogenous estrogens, which are 
produced in postmenopausal women by conversion of steroid precursors to 
active estrogens in peripheral fat. In the face of varying levels of endogenous 
estrogen production, one might ask whether the carcinogenic potential of 

table E6.20

Diet

Males Females

Cases Controls Cases Controls

Low fat, high fiber 27 38 23 39
Low fat, low fiber 64 78 82 81
High fat, high fiber 78 61 83 76
High fat, low fiber 36 28 35 27

table E6.21

Drink in the last  
24 hours

Myocardial infarction Coronary death

Controls Cases Controls Cases

Men No 197 142 135 103
Yes 201 136 159 69

Women No 144 41 89 12
Yes 122 19 76 4
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exogenous estrogens would be the same in all women. A study has been con-
ducted to examine the relation between weight, replacement estrogen therapy, 
and endometrial cancer in a case–control study (Table E6.24). Use the Mantel–
Haenszel procedure to compare the cases versus the controls, pooling across 
weight groups. State your null hypothesis and choice of test size.

6.25	 Risk factors of gallstone disease were investigated in male self‐defense offi-
cials who received, between October 1986 and December 1990, a retirement 
health examination at the Self‐Defense Forces Fukuoka Hospital, Fukuoka, 
Japan (Table  E6.25). For each of the three criteria (smoking, alcohol, and 
body mass index), test, at the 5% level, for the trend of risk factor level with 
gallstones.

6.26	 Prematurity, which ranks as the major cause of neonatal morbidity and 
mortality, has traditionally been defined on the basis of a birth weight under 
2500 g. But this definition encompasses two distinct types of infants: infants 
who are small because they are born early, and infants who are born at or near 
term but are small because their growth was retarded. Prematurity has now 
been replaced by low birth weight to describe the second type and preterm 
to characterize the first type (babies born before 37 weeks of gestation). 

table E6.24

Weight (kg)

Estrogen 
replacement

Yes No

< 57 Cases 20 12
Controls 61 183

57–75 Cases 37 45
Controls 113 378

> 75 Cases 9 42
Controls 23 140

table E6.23

Age

Daily alcohol 
consumption

80+ g 0−79 g

25–44 Cases 5 5
Controls 35 270

45–64 Cases 67 55
Controls 56 277

65+ Cases 24 44
Controls 18 129



A case–control study of the epidemiology of preterm delivery was undertaken 
at Yale–New Haven Hospital in Connecticut during 1977. The study population 
consisted of 175 mothers of singleton preterm infants and 303 mothers of sin-
gleton full‐term infants. In Example 6.16 we have analyzed and found a 
significant association between the mother’s age and preterm delivery; the 
younger the mother, the more likely the preterm delivery. Table E6.26 gives 
the distribution of socioeconomic status. Test whether there is a significant 
association between the mother’s age and preterm delivery; that the poorer the 
mother, the more likely the preterm delivery. State your null hypothesis and 
choice of test size.

6.27	 Postneonatal mortality due to respiratory illnesses is known to be inversely 
related to maternal age, but the role of young motherhood as a risk factor for 
respiratory morbidity in infants has not been explored thoroughly. A study 
was conducted in Tucson, Arizona aimed at the incidence of lower respiratory 
tract illnesses during the first year of life. In this study, over 1200 infants were 
enrolled at birth between 1980 and 1984. The data shown in Table E6.27 are 
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table E6.25

Number of men surveyed

Factor Total Number with gallstones

Smoking
  Never 621 11
  Past 776 17
  Current 1342 33
Alcohol
  Never 447 11
  Past 113 3
  Current 2179 47
Body mass index
  (kg/m2)
  <22.5 719 13
  22.5–24.9 1301 30
  25.0 719 18

table E6.26

Socioeconomic level Cases Controls

Upper 11 40
Upper middle 14 45
Middle 33 64
Lower middle 59 91
Lower 53 58
Unknown 5 5
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concerned with wheezing lower respiratory tract illnesses (wheezing LRIs). 
For each of the two groups, boys and girls, test to investigate the relationship 
between maternal age and respiratory illness. State clearly your null and 
alternative hypotheses and choice of test size.

6.28	 Data were collected from 2197 white ovarian cancer patients and 8893 white 
controls in 12 different United States case–control studies conducted by var-
ious investigators in the period 1956–1986. These were used to evaluate the 
relationship of invasive epithelial ovarian cancer to reproductive and men-
strual characteristics, exogenous estrogen use, and prior pelvic surgeries 
(Table E6.28). For each of the two criteria, duration of unprotected intercourse 
and history of infertility, test to investigate the relationship between that crite-
rion and ovarian cancer. State clearly your null and alternative hypotheses and 
choice of test size.

6.29	 Table E6.29 lists data from different studies designed to investigate the accu-
racy of death certificates. The results of 5373 autopsies were compared to the 
causes of death listed on the certificates. Test to confirm the downward trend 
of accuracy over time. State clearly your null and alternative hypotheses and 
choice of test size.

table E6.28 

Cases Controls

Duration of unprotected intercourse 
(years)
< 2 237 477
2–9 166 354
10–14 47 91
≥ 15 133 174
History of infertility
  No 526 966
  Yes
    No drug use 76 124
    Drug use 20 11

table E6.27

Maternal age (years)

Boys Girls

No Yes No Yes

<21 19 8 20 7
21–25 98 40 128 36
26–30 160 45 148 42
>30 110 20 116 25



6.30	 A study was conducted to ascertain factors that influence a physician’s 
decision to transfuse a patient. A sample of 49 attending physicians was 
selected. Each physician was asked a question concerning the frequency with 
which an unnecessary transfusion was given because another physician sug-
gested it. The same question was asked of a sample of 71 residents. The data 
are shown in Table  E6.30. Test the null hypothesis of no association, with 
attention to the natural ordering of the columns. State clearly your alternative 
hypothesis and choice of test size.
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table E6.29

Date of study

Accurate certificate

TotalYes No

1955–1965 2040 694 2734
1970–1971 437 203 640
1975–1978 1128 599 1727
1980 121 151 272

table E6.30

Type of 
physician

Frequency of unnecessary transfusion

Very frequently 
(1/week)

Frequently (1/two 
weeks)

Occasionally 
(1/month)

Rarely (1/two 
months) Never

Attending 1 1 3 31 13
Resident 2 13 28 23 5
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7
COMPARISON OF POPULATION  
MEANS

If each element of a data set may lie at only a few isolated points, we have a discrete 
or categorical data set; examples include gender, race, and some sort of artificial 
grading used as outcomes. If each element of a data set may lie anywhere on the 
numerical scale, we have a continuous data set; examples include blood pressure, 
cholesterol level, and time to a certain event. In Chapter 6 we dealt with the analysis 
of categorical data, such as comparing two proportions. In this chapter we focus on 
continuous measurements, especially comparisons of population means. We follow 
the same layout, starting with the simplest case, the one‐sample problem.

7.1  ONE‐SAMPLE PROBLEM WITH CONTINUOUS DATA

In this type of problem we have a sample of continuous measurements of size n and 
we consider the null hypothesis

	 H0 0: 	

where μ
0
 is a fixed and known number. It is often a standardized or referenced figure; 

for example, the average blood pressure of men in a certain age group (this figure 
may come from a sample itself, but the referenced sample is often large enough so as 
to produce a negligible sampling error in μ

0
). Or, we could be concerned with a 

question such as: Is the average birth weight for boys for this particular sub‐population 
below the normal average μ

0
: say, 7.5 lb? In Exercise 7.1, we try to decide whether 

the air quality on a certain given day in a particular city exceeds the regulated limit 
μ

0
 set by a federal agency.
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In a typical situation, the null hypothesis of a statistical test is concerned with a 
parameter; the parameter in this case, with continuous data, is the mean μ. Sample 
data are summarized into a statistic that is used to estimate the parameter under 
investigation. Since the parameter under investigation is the population mean μ, our 
focus in this case is the sample mean x . In general, a statistic is itself a variable with 
a specific sampling distribution (in the context of repeated sampling). Our statistic in 
this case is the sample mean x ; the corresponding sampling distribution is obtained 
easily by invoking the central limit theorem. With large sample size and assuming 
that the null hypothesis H

0
 is true, it is the normal distribution with mean and vari-

ance given by

	

x

x n

0

2
2

	

respectively. The extra needed parameter, the population variance σ 2, has to be 
estimated from our data by the sample variance s2. From this sampling distribution, 
the observed value of the sample mean can be converted to standard units: the number 
of standard errors away from the hypothesized value of μ

0
. In other words, to perform 

a test of significance for H
0
, we proceed with the following steps:

1.	 Decide whether a one‐ or a two‐sided test is appropriate; this decision depends 
on the research question.

2.	 Choose a level of significance; a common choice is 0.05.

3.	 Calculate the t statistic:

	

t
x

x
x

s n

0

0

SE

/
.
	

4.	 From the table for t distribution (Appendix C) with (n − 1) degrees of freedom 
(df) and the choice of α (e.g., α = 0.05), the rejection region is determined by:

a.  For a one‐sided test, use the column corresponding to an upper tail area 
of 0.05:

	

t H
t H

A

A

tabulated value for :
tabulated value for :

0

0 . 	

b.  For a two‐sided test or H
A
: μ ≠ μ

0
, use the column corresponding to an upper 

tail area of 0.025:

	 z ztabulated value or tabulated value.	

This test is referred to as the one‐sample t test.
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Example 7.1
Boys of a certain age have a mean weight of 85 lb. An observation was made that in 
a city neighborhood, children were underfed. As evidence, all 25 boys in the neigh-
borhood of that age were weighed and found to have a mean x  of 80.94 lb and a 
standard deviation s of 11.60 lb. An application of the procedure above yields

	

SE x
s

n
11 60

25
2 32

.

. 	

leading to

	

t
80 94 85

2 32
1 75

.

.
. . 	

The underfeeding complaint corresponds to the one‐sided alternative

	 HA : 85	

so that we would reject the null hypothesis if

	 t tabulated value.	

From Appendix C and with 24 df (n − 1), we find that

	 tabulated value 1 71. 	

under the column corresponding to a 0.05 upper tail area; the null hypothesis is 
rejected at the 0.05 level. In other words, there is enough evidence to support the 
underfeeding complaint.

7.2  ANALYSIS OF PAIR‐MATCHED DATA

The method presented in this section applies to cases where each subject or member 
of a group is observed twice (e.g., before and after certain interventions), or matched 
pairs are measured for the same continuous characteristic. In the study reported in 
Example 7.3 below, blood pressure was measured from a group of women before and 
after each took an oral contraceptive. In Exercise 7.2, the insulin level in the blood was 
measured from dogs before and after some kind of nerve stimulation. In another 
exercise, we compared self‐reported versus measured height. A popular application is 
an epidemiological design called a pair‐matched case–control study. In case–control 
studies, cases of a specific disease are ascertained as they arise from population‐based 
registers or lists of hospital admissions, and controls are sampled either as disease‐free 
individuals from the population at risk or as hospitalized patients having a diagnosis 
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other than the one under investigation. As a technique to control confounding factors, 
individual cases are matched, often one to one, to controls chosen to have similar 
values for confounding variables such as age, gender, or race.

Data from matched or before and after experiments should never be considered as 
coming from two independent samples. The procedure is to reduce the data to a one‐
sample problem by computing the before and after (or case and control) difference for 
each subject or pairs of matched subjects. By doing this with paired observations, we 
get a set of differences, each of which is independent of the characteristics of the 
person on whom measurements were made. The analysis of pair‐matched data with a 
continuous measurement can be seen as follows. What we really want to do is to 
compare the means, before versus after or cases versus controls, and use of the sample 
of differences {d

i
}, one for each subject or pair, helps to achieve that. With large 

sample size and assuming that the null hypothesis H
0
 of no difference is true, the mean 

d  of these differences is distributed as normal with mean and variance given by

	

d

d
d

n

0

2
2

	

respectively. The extra needed parameter, the variance d
2, has to be estimated from 

our data by the sample variance of the differences, sd
2. In other words, the analysis of 

pair‐matched data with a continuous measurement can be seen as a special case of 
the one‐sample problem of Section 7.1 with μ

0
 = 0. Recalling the form of the test 

statistic of Section 7.1, we have

	
t

d

s nd

0

/ 	

and the rejection region is determined using the t distribution at n − 1 df. This test is 
referred to as the one‐sample t test, the same one‐sample t test as in Section 7.1.

Example 7.2
Trace metals in drinking water affect the flavor of the water, and unusually high con-
centrations can pose a health hazard. Table  7.1 shows trace‐metal concentrations 

Table 7.1

Location Bottom Surface Difference, d
i

d
i
2

1 0.430 0.415 0.015 0.000225
2 0.266 0.238 0.028 0.000784
3 0.567 0.390 0.177 0.030276
4 0.531 0.410 0.121 0.014641
5 0.707 0.605 0.102 0.010404
6 0.716 0.609 0.107 0.011449

Total 0.550 0.068832
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(zinc, in mg/L) for both surface water and bottom water at six different river locations 
(the difference is bottom – surface). The necessary summarized figures are

	

d

sd

average difference

=

mg L

0 550

6
0 0917

0 068832 0 5502

2

.

. /

. . //

.

.

.

.

.

.
.

6

5
0 00368
0 061

0 061

6
0 0249

0 0917

0 0249
3 68

s

d

t

d

SE

.. 	

Using the column corresponding to the upper tail area of 0.025 in Appendix C, 
we have a tabulated value of 2.571 for 5 df. Since

	 t 3 68 2 571. . 	

we conclude that the null hypothesis of no difference should be rejected at the 0.05 
level; there is enough evidence to support the hypothesis of different mean zinc 
concentrations (two‐sided alternative).

Note: An SAS program would include these instructions:

DATA WATER;
   INPUT BZINC SZINC;
   DIFFERENCE = BZINC − SZINC; 
DATALINES;
.430 .415
.266 .238
.567 .390
.531 .410
.707 .605
.716 .609;
PROC MEANS DATA=WATER N MEAN STDERR T PRT;
   VAR DIFFERENCE;

for which we will get sample size (N), sample mean (MEAN), standard error 
(STDERR), t statistic (T), and p value (PRT).
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Note: An R program would include these instructions:

bottomzinc = c(0.430,0.266,0.567,0.531,0.707,0.716)
surfacezinc = c(0.415,0.238,0.390,0.410,0.605,0.609)
difference = bottomzinc - surfacezinc
summary(difference)
sd(difference)
t.test(difference)
t.test(bottomzinc,surfacezinc,paired=TRUE)

The two examples of syntax in the t test function yield the same results.

Example 7.3
The systolic blood pressures of n = 12 women between the ages of 20 and 35 were 
measured before and after administration of a newly developed oral contraceptive. 
Data are shown in Table 7.2 (the difference is after – before). The necessary summa-
rized figures are

	

d

s

s

d

d

average difference

mmHg

31

12
2 58

185 31 12

11
9 54

2

2

.

/

.

3 09.

Table 7.2

Systolic blood 
pressure (mmHg)

Subject Before After Difference, d
i

d
i
2

1 122 127 5 25
2 126 128 2 4
3 132 140 8 64
4 120 119 −1 1
5 142 145 3 9
6 130 130 0 0
7 142 148 6 36
8 137 135 −2 4
9 128 129 1 1
10 132 137 5 25
11 128 128 0 0
12 129 133 4 16

Total 31 185
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SE d

t

3 09

12
0 89

2 58

0 89
2 90

.

.

.

.
. .

Using the column corresponding to the upper tail area of 0.05 in Appendix C, we 
have a tabulated value of 1.796 for 11 df. Since

	 t 2 90 2 201. . 	

we conclude that the null hypothesis of no blood pressure change should be rejected 
at the 0.05 level; there is enough evidence to support the hypothesis of increased sys-
tolic blood pressure (one‐sided alternative).

Example 7.4
Data in epidemiologic studies are sometimes self‐reported. Screening data from the 
hypertension detection and follow‐up program in Minneapolis, Minnesota (1973–1974) 
provided an opportunity to evaluate the accuracy of self‐reported height and weight. 
Table 7.3 gives the percent discrepancy between self‐reported and measured height:

	
x

self-reported height measured height

measured height
100%.

	

Let us focus on the sample of men with a high school education; investigations of 
other groups and the differences between them are given in the exercises at the end 
of this chapter. An application of the one‐sample t test yields

	

x
s

x

t

x

1 38
1 53
1 53

476
0 07

1 38

0 07
19 71

.

.
.

.

.

.
. .

SE

	

Table 7.3

Men Women

Education n Mean SD n Mean SD

≤ High school 476 1.38 1.53 323 0.66 1.53
≥ College 192 1.04 1.31 62 0.41 1.46
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It can be easily seen that the difference between self‐reported height and mea-
sured height is highly statistically significant (p < 0.01: comparing 19.71 versus the 
cutpoint of 2.58 for a large sample).

7.3  COMPARISON OF TWO MEANS

Perhaps one of the most common problems in statistical inference is a comparison of 
two population means using data from two independent samples; the sample sizes 
may or may not be equal. In this type of problem, we have two sets of continuous 
measurents, one of size n

1
 and one of size n

2
, and we consider the null hypothesis

	 H0 1 2: 	

expressing the equality of the two population means.
To perform a test of significance for H

0
, we proceed with the following steps:

1.	 Decide whether a one‐sided test, say

	 HA : 2 1	

or a two‐sided test,

	 HA : 1 2	

is appropriate.

2.	 Choose a significance level α, a common choice being 0.05.

3.	 Calculate the t statistic,

	
t

x x

x x
1 2

1 2SE 	

where

	

SE x x s
n n

s
n s n s

n n

p

p

1 2
1 2

2 1 1
2

2 2
2

1 2

1 1

1 1

2
.
	

This test is referred to as a pooled variance two‐sample t test and its rejection 
region is determined using the t distribution at (n

1
 + n

2
 − 2) degrees of freedom:

•• For a one‐tailed test, use the column corresponding to an upper tail area of 0.05 
and H

0
 is rejected if

	 t HAtabulated value for : 1 2	

or

	 t HAtabulated value for : 1 2 .	
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•• For a two‐tailed test or H
A
: μ

1
 ≠ μ

2
, use the column corresponding to an upper 

tail area of 0.025 and H
0
 is rejected if

	 t ttabulated value or tabulated value.	

Example 7.5
In an attempt to assess the physical condition of joggers, a sample of n

1
 = 25 joggers 

was selected and their maximum volume of oxygen uptake (VO
2
) was measured with 

the following results:

	 x s1 147 5 4 8. / . / .mL kg mL kg 	

Results for a sample of n
2
 = 26 nonjoggers were

	 x s2 237 5 5 1. / . / .mL kg mL kg 	

To proceed with the two‐tailed, two‐sample t test, we have

	

s

s

p

p

x x

2

2 2

1 2

24 4 8 25 5 1

49
24 56
4 96

4 96
1

25

. .

.
.

.SE
11

26
1 39. . 	

It follows that

	

t
47 5 37 5

1 39
7 19

. .

.
. 	

indicating a significant difference between joggers and nonjoggers (at 49 df and 
α = 0.01, the tabulated t value, with an upper tail area of 0.025, is about 2.0).

Example 7.6
Vision, or more especially visual acuity, depends on a number of factors. A study was 
undertaken in Australia to determine the effect of one of these factors: racial varia-
tion. Visual acuity of recognition as assessed in clinical practice has a defined normal 
value of 20/20 (or zero in log scale). The following summarized data on monocular 
visual acuity (expressed in log scale) were obtained from two groups:

1.	 Australian males of European origin

	

n
x
s

1

1

1

89
0 20

0 18
.

. . 	
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2.	 Australian males of Aboriginal origin

	

n
x
s

2

2

2

107
0 26

0 13
.

. . 	

To proceed with a two‐sample t test, we have

	

s

x x

p
2

2 2

2

1 2

88 0 18 106 0 13

194
0 155

0 155
1

. .

.

.SE
889

1

107
0 022

0 20 0 26

0 022
2 73

.

. .

.
. .

t

	

The result indicates that the difference is statistically significant beyond the 0.01 
level (at α = 0.01, and for a two‐sided test, the cut point is 2.58 for high df values).

Example 7.7
The extent to which an infant’s health is affected by parental smoking is an impor-
tant  public health concern. The following data are the urinary concentrations of 
cotinine (a metabolite of nicotine); measurements were taken both from a sample 
of infants who had been exposed to household smoke and from a sample of unexposed 
infants.

Unexposed (n
1
 = 7) 8 11 12 14 20 43 111

Exposed (n
2
 = 8) 35 56 83 92 128 150 176 208

The statistics needed for our two‐sample t test are:

1.	 For unexposed infants:

	

n
x
s

1

1

1

7
31 29
37 07

.

. .	
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2.	 For exposed infants:

	

n
x
s

2

2

2

8
116 00
59 99

.
. . 	

To proceed with a two‐sample t test, we have

	

s

x x

p
2

2 2

2

1 2

6 37 07 7 59 99

13
50 72

50 72
1

7

. .

.

.SE
11

8
26 25

116 00 31 29

26 25
3 23

.

. .

.
. .

t

	

The result indicates that the difference is statistically significant beyond the 0.01 
level (at α = 0.01, and for a two‐sided test, the cut point is 3.012 for 13 df).

Note: An SAS program would include these instructions:

DATA PARENTSMOKE;
   INPUT GROUP $ COTININE;
DATALINES;
U 8
…
U 111
E 35
…
E 208;
PROC TTEST DATA = PARENTSMOKE;
   CLASS GROUP;
   VAR COTININE;

in which the independent variable name (for group) follows CLASS and the 
dependent variable name (for the response) follows VAR. An R program would 
include these instructions:

cotinine = c(8,…,111,35,…,208)
group = c(“U”,…,“U”,“E”,…,“E”)
mean(cotinine[group==“U”])
mean(cotinine[group==“E”])
sd(cotinine[group==“U”])
sd(cotinine[group==“E”])
t.test(cotinine ~ group,paired=FALSE,var.equal=TRUE)
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An alternative data entry approach, and consequent alternative test syntax, are:

cotinine.unexp = c(8,11,12,14,20,43,111)
cotinine.exp = c(35,56,83,92,128,150,176,208)
mean(cotinine.unexp)
mean(cotinine.exp)
sd(cotinine.unexp)
sd(cotinine.exp)
t.test(cotinine.unexp,cotinine.exp,paired=FALSE, 
var.equal=TRUE)

7.4  NONPARAMETRIC METHODS

Earlier we saw how to apply one‐ and two‐sample t tests to compare population 
means. However, these methods depend on certain assumptions about distributions 
in the population; for example, its derivation assumes that the population(s) is (are) 
normally distributed. It has even been proven that these procedures are robust; that 
is, they are relatively insensitive to departures from the assumptions made. In other 
words, departures from those assumptions have very little effect on the results, 
provided that samples are large enough. But the procedures are all sensitive to 
extreme observations, a few very small or very large – perhaps erroneous – data 
values. In this section we learn some nonparametric procedures, or distribution‐free 
methods, where no assumptions about population distributions are made. The results 
of these nonparametric tests are much less affected by extreme observations.

7.4.1  Wilcoxon Rank‐Sum Test

The Wilcoxon rank‐sum test is perhaps the most popular nonparametric procedure. 
The Wilcoxon test is a nonparametric counterpart of the two‐sample t test; it is used 
to compare two samples that have been drawn from independent populations. But 
unlike the t test, the Wilcoxon test does not assume that the underlying populations 
are normally distributed and is thus less affected by extreme observations. The 
Wilcoxon rank‐sum test evaluates the null hypothesis that the medians of the two 
populations are identical (for a normally distributed population, the population 
median is also the population mean).

For example, a study was designed to test the question of whether cigarette 
smoking is associated with reduced serum‐testosterone levels. To carry out this 
research objective, two samples, each of size 10, are selected independently. The first 
sample consists of 10 nonsmokers who have never smoked, and the second sample 
consists of 10 heavy smokers, defined as those who smoke 30 or more cigarettes per 
day. To perform the Wilcoxon rank‐sum test, we combine the two samples into one 
large sample (of size 20), arrange the observations from smallest to largest, and 
assign a rank, from 1 to 20, to each. If there are tied observations, we assign an 
average rank to all measurements with the same value. For example, if the two 
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observations next to the third smallest are equal, we assign an average rank of 
(4 + 5)/2 = 4.5 to each one. The next step is to find the sum of the ranks corresponding 
to each of the original samples. Let n

1
 and n

2
 be the two sample sizes and R be the 

sum of the ranks from the sample with size n
1
.

Under the null hypothesis that the two underlying populations have identical 
medians, we would expect the averages of ranks to be approximately equal. We test 
this hypothesis by calculating the statistic

	
z

R R

R 	

where

	 R

n n n1 1 2 1

2 	

is the mean and

	
R

n n n n1 2 1 2 1

12 	

is the standard deviation of R. For a two-sided test, it does not make any difference 
which rank sum we use. For relatively large values of n

1
 and n

2
 (say, both greater than or 

equal to 10), the sampling distribution of this statistic is approximately standard normal. 
The null hypothesis is rejected at the 5% level, against a two‐sided alternative, if

	 z z1 96 1 96. . .or 	

Example 7.8
For the study on cigarette smoking above, Table 7.4 shows the raw data, where tes-
tosterone levels were measured in μg/dL and the ranks were determined. The sum of 
the ranks for group 1 (nonsmokers) is

	 R 143.	

In addition,

	

R

10 10 10 1

2
105 	

and

	

R

10 10 10 10 1

12
13 23. . 	



248� COMPARISON OF POPULATION MEANS

Substituting these values into the equation for the test statistic, we have

	

z
R R

R

143 105

13 23
2 87

.
. . 	

Since z > 1.96, we reject the null hypothesis at the 5% level. (In fact, since z > 
2.58, we reject the null hypothesis at the 1% level.) Note that if we use the sum of the 
ranks for the other group (heavy smokers), the sum of the ranks is 67, leading to a z 
score of

	

67 105

13 23
2 87

.
.

	

and we would come to the same decision.

Example 7.9
Refer to the nicotine data of Example 7.6, where measurements were taken both from 
a sample of infants who had been exposed to household smoke and from a sample of 
unexposed infants. We have:

Unexposed (n
1
 = 7) 8 11 12 14 20 43 111

Rank 1 2 3 4 5 7 11

Exposed (n
2
 = 8) 35 56 83 92 128 150 176 208

Rank 6 8 9 10 12 13 14 15

Table 7.4

Nonsmokers Heavy smokers

Measurement Rank Measurement Rank

0.44 8.5 0.45 10
0.44 8.5 0.25 1
0.43 7 0.40 6
0.56 14 0.27 2
0.85 17 0.34 4
0.68 15 0.62 13
0.96 20 0.47 11
0.72 16 0.30 3
0.92 19 0.35 5
0.87 18 0.54 12
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The sum of the ranks for the group of exposed infants is

	 R 87.	

In addition,

	

R

8 8 7 1

2
64 	

and

	

R

8 7 8 7 1

12
8 64. . 	

Substituting these values into the equation for the Wilcoxon test, we have

	

z
R R

R

87 64

8 64
2 66

.
. . 	

Since z > 1.96, we reject the null hypothesis at the 5% level. In fact, since z > 2.58, 
we reject the null hypothesis at the 1% level; p value < 0.01. (It should be noted that 
the sample sizes of 7 and 8 in this example may be not large enough for the normal 
approximation. In such cases, an exact test can be used.)

Note: Following the dataset creation as in Example 7.7, a SAS program would 
include these instructions:

PROC NPAR1WAY WILCOXON DATA = PARENTSMOKE;  
   CLASS GROUP;
   VAR COTININE;

and an R program would include one of the following instructions:

wilcox.test(cotinine ~ group, paired=FALSE, exact=FALSE,  
correct=FALSE)

wilcox.test(cotinine.unexp, cotinine.exp, paired=FALSE, 
exact=FALSE, correct=FALSE)

When sample sizes are this small, an exact test that does not rely on the approxi-
mate normality of the test statistic may be more appropriate:

PROC NPAR1WAY WILCOXON DATA=PARENTSMOKE;
   CLASS GROUP;
   VAR COTININE;
   EXACT WILCOXON;
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wilcox.test(cotinine ~ group, paired=FALSE, exact=TRUE, 
correct=FALSE)

wilcox.test(cotinine.unexp, cotinine.exp, paired=FALSE, 
exact=TRUE, correct=FALSE)

7.4.2  Wilcoxon Signed‐Rank Test

The idea of using ranks, instead of measured values, to form statistical tests to 
compare population means applies to the analysis of pair‐matched data as well. As 
with the one‐sample t test for pair‐matched data, we begin by forming differences. 
Then the absolute values of the differences are assigned ranks; if there are ties in the 
differences, the average of the appropriate ranks is assigned. Next, we attach a + or a − 
sign back to each rank, depending on whether the corresponding difference is positive 
or negative. This is achieved by multiplying each rank by +1, −1, or 0 as the 
corresponding difference is positive, negative, or zero. The results are n signed ranks, 
one for each pair of observations; for example, if the difference is zero, its signed 
rank is zero. The basic idea is that if the mean difference is positive, there would be 
more and larger positive signed ranks; since if this were the case, most differences 
would be positive and larger in magnitude than the few negative differences, most of 
the ranks, especially the larger ones, would then be positively signed. In other words, 
we can base the test on the sum R of the positive signed ranks. We test the null hypo-
thesis of no difference by calculating the standardized test statistic:

	
z

R R

R 	

where

	 R

n n 1

4 	

is the mean and

	
R

n n n1 2 1

24 	

is the standard deviation of R under the null hypothesis. This normal approximation 
applies for relatively large samples, n ≥ 20; the null hypothesis is rejected at the 5% 
level, against a two‐sided alternative, if

	 z z1 96 1 96. . .or 	

This test is referred to as Wilcoxon’s signed‐rank test.
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Example 7.10
Ultrasounds were taken at the time of liver transplant and again 5–10 years later 
to determine the systolic pressure of the hepatic artery. Results for 21 transplants for 
21 children are shown in Table 7.5. The sum of the positive signed ranks is

	 13 9 15 5 20 5 5 4 5 5 17 5 90. . . . 	

Its mean and standard deviation under the null hypothesis are

	

R

R

21 22

4
115 5

21 22 43

24
28 77

.

. 	

leading to a standardized z score of

	

z
90 115 5

28 77
0 89

.

.
. . 	

Table 7.5

Child Later At transplant Difference
Absolute value 
of difference Rank Signed rank

1 46 35 11 11 13 13
2 40 40 0 0 2 0
3 50 58 −8 8 9 −9
4 50 71 −19 19 17.5 −17.5
5 41 33 8 8 9 9
6 70 79 −9 9 11 −11
7 35 20 15 15 15.5 15.5
8 40 19 21 21 20 20
9 56 56 0 0 2 0
10 30 26 4 4 5.5 5.5
11 30 44 −14 14 14 −14
12 60 90 −30 30 21 −21
13 43 43 0 0 2 0
14 45 42 3 3 4 4
15 40 55 −15 15 15.5 −15.5
16 50 60 −10 10 12 −12
17 66 62 4 4 5.5 5.5
18 45 26 19 19 17.5 17.5
19 40 60 −20 20 19 −19
20 35 27 −8 8 9 −9
21 25 31 −6 6 7 −7
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The result indicates that the systolic pressure of the hepatic artery measured five 
years after the liver transplant, compared to the measurement at transplant, is lower 
on the average; however, the difference is not statistically significant at the 5% level 
(−0.89 > −1.96).

Note: An SAS program would include these instructions:

DATA LIVER;
   INPUT BPLATER BPTRANSPLANT;
   DIFFERENCE = BPLATER ‐ BPTRANSPLANT;
DATALINES;
46 35
…
35 27
25 31;
PROC UNIVARIATE DATA=LIVER;
   VAR DIFFERENCE;

for which we will get, among many other things, the test statistic (SGN RANK) and 
the p value (Prob > |S|). An R program would include these instructions:

BP.later = c(46,…,35,25)
BP.transplant = c(35,…,27,31)
difference = BP.later ‐ BP.transplant
wilcox.test(difference,exact=FALSE,correct=FALSE)
wilcox.test(BP.transplant, BP.later, paired=TRUE, 
exact=FALSE, correct=FALSE)

The two uses of syntax in the Wilcoxon test function yield the same results.

7.5  ONE‐WAY ANALYSIS OF VARIANCE

Suppose that the goal of a research project is to discover whether there are differ-
ences in the means of several independent groups. The problem is how we will mea-
sure the extent of differences among the means. If we had two groups, we would 
measure the difference by the distance between sample means ( )x x1 2  and use the 
two‐sample t test. Here we have more than two groups; we could take all possible 
pairs of means and do many two‐sample t tests. What is the matter with this approach 
of doing many two‐sample t tests, one for each pair of samples? As the number of 
groups increases, so does the number of tests to perform; for example, we would 
have to do 45 tests if we have 10 groups to compare. Obviously, the amount of work 
is greater, but that should not be the critical problem, especially with technological 
aids such as the use of calculators and computers. So what is the problem? The answer 
is that performing many tests increases the probability that one or more of the 
comparisons will result in a type I error (i.e., a significant test result when the null 



ONE‐WAY ANALYSIS OF VARIANCE� 253

hypothesis is true). This statement should make sense intuitively. For example, 
suppose that the null hypothesis is true and we perform 100 tests – each has a 0.05 
probability of resulting in a type I error; then 5 of these 100 tests would be statistically 
significant as the result of type I errors. Of course, we usually do not need to do that 
many tests; however, every time we do more than one, the probability that at least one 
will result in a type I error exceeds 0.05, indicating a falsely significant difference! 
What is needed is a different way to summarize the differences between several means 
and a method of simultaneously comparing these means in one step. This method is 
called ANOVA or one‐way ANOVA, an abbreviation of analysis of variance.

7.5.1  One‐Way Analysis of Variance Model

We have continuous measurements, Xs, from k independent samples; the sample 
sizes may or may not be equal. We assume that these are samples from k normal 
distributions with a common variance σ2, but the means, μ

i
s, may or may not be the 

same. The case where we apply the two‐sample t test is a special case of this one‐way 
ANOVA model with k = 2. Data from the ith sample can be summarized into sample 
size n

i
, sample mean xi, and sample variance si

2. If we pool data together, the (grand) 
mean of this combined sample can be calculated from

	
x

n x

n
i i

i

.
	

In that combined sample of size n ni, the variation in X is measured conven-
tionally in terms of the deviations ( )x xij  (where x

ij
 is the jth measurement from the 

ith sample); the total variation, denoted by SST, is the sum of squared deviations:

	
SST

i j
ijx x

,

.
2

	

For example, SST = 0 when all observed x
ij
 values are the same; SST is the numerator 

of the sample variance of the combined sample: The higher the SST value, the greater 
the variation among all X values. The total variation in the combined sample can be 
decomposed into two components:

	 x x x x x xij ij i i .	

1.	 The first term reflects the variation within the ith sample; the sum

	

SSW
i j

ij i

i
i i

x x

n s
,

2

21
	

is called the within sum of squares.
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2.	 The difference between the two sums of squares above,

	

SSB SST SSW

i j
i

i
i i

x x

n x x

,

2

2

	

is called the between sum of squares. SSB represents the variation or differ-
ences between the sample means, a measure very similar to the numerator of a 
sample variance; the n

i
 values serve as weights.

Corresponding to the partitioning of the total sum of squares SST, there is parti-
tioning of the associated df. We have (n − 1) df associated with SST, the denominator 
of the variance of the combined sample. SSB has (k − 1) df, representing the differ-
ences between k groups; the remaining [ ( )]n k ni 1  df are associated with 
SSW. These results lead to the usual presentation of the ANOVA process:

1.	 The within mean square

	

MSW
SSW

n k

n s

n
ii i

i

1

1

2

	

serves as an estimate of the common variance σ2 as stipulated by the one‐way 
ANOVA model. In fact, it can be seen that MSW is a natural extension of 
the pooled estimate sp

2  as used in the two‐sample t test; it is a measure of the 
average variation within the k samples.

2.	 The between mean square

	
MSB

SSB

k 1	

represents the average variation (or differences) between the k sample means.

3.	 The breakdowns of the total sum of squares and its associated degrees of 
freedom are displayed in the form of an analysis of variance table (Table 7.6). 

Table 7.6

Source of variation SS df MS F Statistic p Value

Between samples SSB k − 1 MSB MSB=MSW p
Within samples SSW n − k MSW

Total SST n − 1
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The test statistic F for the one‐way analysis of variance above compares MSB 
(the average variation – or differences – between the k sample means) and 
MSE (the average variation within the k samples). A value near 1 supports the 
null hypothesis of no differences between the k population means. Decisions 
are made by referring the observed value of the test statistic F to the F table in 
Appendix E with (k − 1, n − k) df. In fact, when k = 2, we have

	 F t2	

where t is the test statistic for comparing the two population means. In other 
words, when k = 2, the F test is equivalent to the pooled variance two‐sided 
two‐sample t test.

Example 7.11
Vision, especially visual acuity, depends on a number of factors. A study was under-
taken in Australia to determine the effect of one of these factors: racial variation. 
Visual acuity of recognition as assessed in clinical practice has a defined normal value 
of 20/20 (or zero on the log scale). The following summarize the data on monocular 
visual acuity (expressed on a log scale); part of this data set was given in Example 7.6.

1.	 Australian males of European origin

	

n
x
s

1

1

1

89
0 20

0 18
.

. . 	

2.	 Australian males of Aboriginal origin

	

n
x
s

2

2
2

107
0 26

0 13
.

. . 	

3.	 Australian females of European origin

	

n
x
s

3

3

3

63
0 13

0 17
.

. . 	

4.	 Australian females of Aboriginal origin

	

n
x
s

4

4

4

54
0 24

0 18
.

. . 	
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To proceed with a one‐way analysis of variance, we calculate the mean of the 
combined sample:

	

x
89 0 20 107 0 26 63 0 13 54 0 24

89 107 6

. . . .

33 54
0 213. 	

and

	

SSB 89 0 20 0 213 107 0 26 0 213

63 0 13 0 213

2 2
. . . .

. .
2 2

54 0 24 0 213
0 7248

0 7248

3
0 2416

88 0

. .
.

.

.

.

MSB

SSW 118 106 0 13 62 0 17 53 0 18
8 1516

8 15

2 2 2 2
. . .

.

.
MSW

116

309
0 0264

0 2416

0 0264
9 152

.

.

.
. .

F

	

The results are summarized in an ANOVA table (Table 7.7). The resulting F test indi-
cates that the overall differences between the four population means is highly 
significant (p < 0.00001).

Example 7.12
A study was conducted to test the question as to whether cigarette smoking is asso-
ciated with reduced serum‐testosterone levels in men aged 35–45 years. The study 
involved the following four groups:

1.	 Nonsmokers who had never smoked.

2.	 Former smokers who had quit for at least six months prior to the study.

3.	 Light smokers, defined as those who smoked 10 or fewer cigarettes per day.

4.	 Heavy smokers, defined as those who smoked 30 or more cigarettes per day.

Table 7.7

Source of variation SS df MS F Statistic p Value

Between samples 0.7248 3 0.2416 9.152 <0.0001
Within samples 8.1516 309 0.0264

Total 8.8764 312
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Each group consisted of 10 men and Table 7.8 shows raw data, where serum‐
testosterone levels were measured in μg/dL.

An application of the one‐way ANOVA yields Table  7.9. The resulting F test 
inducates that the overall differences between the four population means is statisti-
cally significant at the 5% level but not at the 1% level (p = 0.0179).

Note: An SAS program would include these instructions:

DATA TESTOSTERONE;
   INPUT GROUP $ SERUMT;
DATALINES;
N 0.44
…
N 0.87
F 0.46
…
F 0.65
L 0.37
…
L 0.51
H 0.44
…
H 0.54;
PROC ANOVA DATA=TESTOSTERONE;
   CLASS GROUP;
   MODEL SERUMT = GROUP;
   MEANS GROUP;

Table 7.8

Nonsmokers Former smokers Light smokers Heavy smokers

0.44 0.46 0.37 0.44
0.44 0.50 0.42 0.25
0.43 0.51 0.43 0.40
0.56 0.58 0.48 0.27
0.85 0.85 0.76 0.34
0.68 0.72 0.60 0.62
0.96 0.93 0.82 0.47
0.72 0.86 0.72 0.70
0.92 0.76 0.60 0.60
0.87 0.65 0.51 0.54

Table 7.9

Source of variation SS df MS F Statistic p Value

Between samples 0.3406   3 0.1135 3.82 0.0179
Within samples 1.0703 36 0.0297

Total 1.4109 39
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The last row is an option to provide the sample mean of each group. An R program 
would include these instructions:

group  = �c(rep(“NS”,10), rep(“FS”,10), rep(“LS”,10), 
rep(“HS”,10))

serumt = c(.44,…,.87,
           .46,…,.65,
           .37,…,.51,
           .44,…,.54)
group.aov = aov(serumt ~ as.factor(group))
summary(group.aov)

7.5.2  Group Comparisons

An ANOVA typically involves the comparison of multiple groups to each other. 
A common situation is that we may want to compare each of the groups to each other 
group; this is called all pairwise comparisons. Each of those comparisons is carried out 
via a hypothesis test, and we reject, or fail to reject, each hypothesis. In Chapter 5, we 
learned that any one hypothesis test controls type I error, the probability of incorrectly 
rejecting the null hypothesis (rejecting H

0
 when it is true). This is the comparisonwise 

(or hypothesis‐specific) error rate. As described at the beginning of Section 7.5, if 
we carry out multiple hypothesis tests within one study, with each test we increase the 
probability that one or more of those tests will result in a type I error. Thus we must also 
concern ourselves with the experimentwise error rate: the probability of falsely reject-
ing at least one null hypothesis among all the hypotheses tested.

Suppose we wish to compare all four groups in the visual acuity example; this 
corresponds to six hypothesis tests, and for each of them we will set the comparison-
wise error rate to α = 0.05. The experimentwise error rate accumulates across these 
six hypothesis tests in this way: The chance of incorrectly rejecting a null hypothesis 
is 0.05. Thus the chance of correctly failing to reject a null hypothesis is 1−0.05 = 0.95. 
If we carry out six independent hypothesis tests, the chance of correctly failing to 
reject all six null hypotheses is (1−0.05)6 = 0.74. The chance of incorrectly rejecting 
at least one null hypothesis is 1 minus the chance of correctly failing to reject all six 
null hypotheses. Thus, the experimentwise error rate is 1−(1−0.05)6 = 0.26, much 
higher than our stated alpha level of 0.05. This is often described as inflation of type 
I error, which we will control through multiple comparisons adjustment.

Various methods have been proposed to adjust an individual hypothesis test so that 
the experimentwise error rate is controlled at a specified level, such as 0.05. The 
Bonferroni adjustment is the simplest to implement: instead of comparing each hypo-
thesis test’s p value to 0.05, we compare it to 0.05 divided by the number of hypothesis 
tests being done. In our visual acuity example, we would compare each p  value to 
0.05/6=0.0083 (rounded down). Other methods commonly implemented in statistical 
software are called Tukey’s Honest Significant Difference, Šidák, Holm, and Scheffé.

Example 7.13
We saw in the visual acuity data, Example 7.11, that the four groups were highly 
significantly different according to the ANOVA table F test. Now we would like to 
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understand which specific groups are different from each other. Table 7.10 displays 
the p value for each pairwise comparison; this p value (labeled as “Unadjusted”) 
comes from a t test done as part of the ANOVA, using the MSW as the variance 
estimate, just as a pooled variance estimate is used in a usual two‐sample t test. Also 
displayed are p values adjusted to control the experimentwise error to 5%, using two 
different multiple comparisons adjustment methods, Bonferroni and Tukey (some-
times called Tukey‐Kramer when the group sizes are unequal). For these data, the 
race and gender groups are so strongly different (except for Aboriginal males vs. 
females) that the adjusted p values are still less than 0.05.

A SAS program would include the following instructions:

DATA VISION;
   INFILE “acuitydata.txt” FIRSTOBS=2;
   INPUT ACUITY RACE $ GENDER $ GROUP AGE $;
PROC GLM DATA = VISION;
   MODEL ACUITY = GROUP;
   LSMEANS GROUP / PDIFF;
   LSMEANS GROUP / PDIFF ADJUST=BONFERRONI;
   LSMEANS GROUP / PDIFF ADJUST=TUKEY;

An R program would include the following instructions:

vision = read.table(“acuitydata.txt”, header=T)
attach(vision)
group.aov = aov(acuity ~ as.factor(group))
anova(group.aov)
library(lsmeans)
lsmeans(group.aov, pairwise ~ group, adjust=“none”)
lsmeans(group.aov, pairwise ~ group, adjust=“bonf”)
lsmeans(group.aov, pairwise ~ group, adjust=“tukey”)

7.6  BRIEF NOTES ON THE FUNDAMENTALS

There are two simple, different, but equivalent ways to view Wilcoxon’s rank‐sum test. 
In the first approach, one can view the ranks R

1
, R

2
, …, R

n
 from a combined sample, n = 

n
1
 + n

2
, as forming finite population. The mean and variance of this finite population are

Table 7.10

Group Comparison Group
Unadjusted 

p Value
Bonferroni 

Adjusted p Value
Tukey Adjusted 

p Value

European Male European Female 0.0083 0.0499 0.0412
European Male Aboriginal Male 0.0016 0.0096 0.0086
European Male Aboriginal Female 0.0040 0.0239 0.0207
European Female Aboriginal Male <0.0001 <0.0001 <0.0001
European Female Aboriginal Female <0.0001 <0.0001 <0.0001
Aboriginal Male Aboriginal Female 0.7946 1.0000 0.9938
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R

n
n

R

n
n

ii

n

ii

n

1

2

2

1

2

1

2

1

12
.

	

Under the null hypothesis, the rank sum R, from the sample with size n
1
, is the 

total from a sample of size n
1
 from the finite population above, so that

	

R

R

n

n
n

n n

n

1

2
1
2

2

1

1

1
.
	

The last term of the last equation is called the correction factor for finite population.
Equivalently, the ranks R

1
, R

2
, …, R

n
 from a combined sample can be thought 

of as a standardized representation of the numbers x x xn1 2 1
, , ,  from sample 1 and 

y y yn1 2 2
, , ,  from sample 2, which preserves all order relationships. Therefore, it is 

plausible to contruct a test statistic by substituting R R Rn1 2 1
, , ,  for x x xn1 2 1

, , ,  and 
R R Rn1 2 2

, , ,  for y y yn1 2 2
, , , . The result is equivalent to Wilcoxon’s rank‐sum test.

7.7  NOTES ON COMPUTATIONS

Samples of SAS and R program instructions were provided at the end of Examples 7.2, 
7.7, 7.9, 7.10, 7.12, and 7.13. All p values provided by SAS and R are for two‐sided 
alternatives. The one‐ and two‐sample t tests can also be implemented easily using 
Microsoft Excel. The first two steps are the same as in obtaining descriptive statistics: 
(1) click the Paste function icon, f*, and (2) click Statistical. Among the functions avail-
able, choose TTEST. A box appears with four rows to be filled. The first two are for data 
in the two groups to be compared; in each you identify the range of cells, say B2:B23. 
The third box asking for “tails,” enter “1” (“2”) for one‐sided (two‐sided) alternative. 
Enter the “type” of test on the last row, “1” (“2”) for a one‐sample (two‐sample) t test.

EXERCISES

Electronic copies of some data files are available at www.wiley.com/go/Le/
Biostatistics.

7.1	 The criterion for issuing a smog alert is established at greater than 7 ppm of a 
particular pollutant. Samples collected from 16 stations in a certain city give a 
x  value of 7.84 ppm with a standard deviation of s = 2.01 ppm. Do these find-
ings indicate that the smog alert criterion has been exceeded? State clearly your 
null and alternative hypotheses and choice of test size (alpha level).
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7.2	 The purpose of an experiment is to investigate the effect of vagal nerve stimu-
lation on insulin secretion. The subjects are mongrel dogs with varying body 
weights. Table E7.2 gives the amount of immunoreactive insulin in pancreatic 
venous plasma just before stimulation of the left vagus and the amount mea-
sured 5 min after stimulation for seven dogs. Test the null hypothesis that the 
stimulation of the vagus nerve has no effect on the blood level of immunoreac-
tive insulin; that is,

	 H0 : .before after 	

 State your alternative hypothesis and choice of test size, and draw the appro-
priate conclusion.

7.3	 In a study of saliva cotinine, seven subjects, all of whom had abstained from 
smoking for a week, were asked to smoke a single cigarette. The cotinine levels 
at 12 and 24 hours after smoking are given in Table E7.3. Test to compare the 
mean cotinine levels at 12 and 24 hours after smoking. State clearly your null 
and alternative hypotheses and choice of test size.

Table E7.2

Blood levels of immunoreactive 
insulin (μU/mL)

Dog Before After

1 350 480
2 200 130
3 240 250
4 290 310
5 90 280
6 370 1450
7 240 280

Table E7.3

Cotinine levels (mmol/L)

Subject After 12 hours After 24 hours

1 73 24
2 58 27
3 67 49
4 93 59
5 33 0
6 18 11
7 147 43
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7.4	 Dentists often make many people nervous. To see if such nervousness elevates 
blood pressure, the systolic blood pressures of 60 subjects were measured in a 
dental setting, then again in a medical setting. Data for 60 matched pairs 
(dental–medical) are summarized as follows:

	

mean
standard deviation

4 47
8 77

.

. .	

 Test to compare the means blood pressure under two different settings. Name the 
test and state clearly your null and alternative hypotheses and choice of test size.

7.5	 In Example 7.10 a study with 21 transplants for 21 children was reported where 
ultrasounds were taken at the time of liver transplant and again 5–10 years later 
to determine the systolic pressure of the hepatic artery. In that example, 
Wilcoxon’s signed‐rank test was applied to compare the hepatic systolic 
pressures measured at two different times. Table  E7.5 gives the diastolic 
pressures obtained from the study. Test to compare the mean diastolic hepatic 
pressures. Name the test and state clearly your null and alternative hypotheses 
and choice of test size.

Table E7.5

Diastolic hepatic pressure

Subject 5–10 years later At transplant

1 14 25
2 10 10
3 20 23
4 10 14
5 4 19
6 20 12
7 10 5
8 18 4
9 12 23
10 18 8
11 10 10
12 10 20
13 15 12
14 10 10
15 10 19
16 15 20
17 26 26
18 20 8
19 10 10
20 10 11
21 10 16
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7.6	 A study was conducted to investigate whether oat bran cereal helps to lower 
serum cholesterol in men with high cholesterol levels. Fourteen men were 
randomly placed on a diet which included either oat bran or cornflakes; after two 
weeks their low‐density lipoprotein (LDL) cholesterol levels were recorded. 
Each man was then switched to the alternative diet. After a second two‐week 
period, the LDL cholesterol level of each person was recorded again (Table E7.6). 
Test to compare the means of LDL cholesterol level. Name the test and state 
clearly your null and alternative hypotheses and choice of test size.

7.7	 Data in epidemiologic studies are sometimes self‐reported. Screening data 
from the hypertension detection and follow‐up program in Minneapolis, 
Minnesota (1973–1974) provided an opportunity to evaluate the accuracy of 
self‐reported height and weight (see Example 7.4). Table  7.3 gives the 
percentage discrepancy between self‐reported and measured height:

	
x

self-reported height measured height

measured height
100%.

	

 Example 7.4 was focused on the sample of men with a high school education.  
Using the same procedure, investigate the difference between self‐reported 
height and measured height among:

(a)	 Men with a college education.

(b)	 Women with a high school education.

(c)	 Women with a college education.

Table E7.6

LDL (mmol/L)

Subject Cornflakes Oat bran

1 4.61 3.84
2 6.42 5.57
3 5.40 5.85
4 4.54 4.80
5 3.98 3.68
6 3.82 2.96
7 5.01 4.41
8 4.34 3.72
9 3.80 3.49
10 4.56 3.84
11 5.35 5.26
12 3.89 3.73
13 2.25 1.84
14 4.24 4.14
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	 In each case, name the test and state clearly your null and alternative hypotheses 
and choice of test size. Also, compare the mean difference in percent discrep-
ancy between:

(d)	 Men with different education levels.

(e)	 Women with different education levels.

(f)	 Men versus women at each educational level.

	 In each case, name the test and state clearly your null and alternative hypotheses 
and choice of test size.

7.8	 A case–control study was undertaken to study the relationship between 
hypertension and obesity. Persons aged 30–49 years who were clearly nonhy-
pertensive at their first multiphasic health checkup and became hypertensive by 
age 55 were sought and identified as cases. Controls were selected from among 
participants in a health plan, those who had the first checkup and no sign of 
hypertension in subsequent checkups. One control was matched to each case 
based on gender, race, year of birth, and year of entrance into the health plan. 
Data for 609 matched pairs are summarized in Table E7.8. Compare the cases 
versus the controls using each measured characteristic. In each case, name the 
test and state clearly your null and alternative hypotheses and choice of test size.

7.9	 The Australian study of Example 7.6 also provided these data on monocular 
acuity (expressed in log scale) for two female groups of subjects:
(1)  Australian females of European origin

	

n
x
s

1

1

1

63
0 13

0 17
.

. . 	

(2)  Australian females of Aboriginal origin

	

n
x
s

2

2

2

54
0 24

0 18
.

. . 	

 Do these indicate a racial variation among women? Name your test and state 
clearly your null and alternative hypotheses and choice of test size.

Table E7.8

Paired difference

Variable Mean Standard deviation

Systolic blood pressure (mmHg) 6.8 13.86
Diastolic blood pressure (mmHg) 5.4 12.17
Body mass index (kg/m2) 1.3 4.78
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7.10	 The ages (in days) at time of death for samples of 11 girls and 16 boys who 
died of sudden infant death syndrome are given in Table E7.10. Do these indi-
cate a gender difference? Name your test and state clearly your null and 
alternative hypotheses and choice of test size.

7.11	 An experimental study was conducted with 136 five‐year‐old children in four 
Quebec schools to investigate the impact of simulation games designed to 
teach children to obey certain traffic safety rules. The transfer of learning was 
measured by observing children’s reactions to a quasi real‐life model of traffic 
risks. The scores on the transfer of learning for the control and attitude/
behavior simulation game groups are summarized in Table  E7.11. Test to 
investigate the impact of simulation games. Name your test and state clearly 
your null and alternative hypotheses and choice of test size.

7.12	 In a trial to compare a stannous fluoride dentifrice (A) with a commercially 
available fluoride‐free dentifrice (D), 270 children received A and 250 
received D for a period of 3 years. The number x of DMFS increments (i.e., 
the number of new decayed, missing, and filled tooth surfaces) was obtained 
for each child. Results were:

	

Dentifrice A

Dentifrice D

A

A

D

D

: .
. .

: .
. .

x
s
x
s

9 78
7 51
12 83
8 31 	

Table E7.10

Females Males

53 46 115
56 52 133
60 58 134
60 59 175
78 77 175
87 78

102 80
117 81
134 84
160 103
277 114

Table E7.11

Summarized data Control Simulation game

n 30 33
x 7.9 10.1
s 3.7 2.3



266� COMPARISON OF POPULATION MEANS

	 Do the results provide strong enough evidence to suggest a real effect of 
fluoride in reducing the mean DMFS?

7.13	 An experiment was conducted at the University of California–Berkeley to 
study the psychological environment’s effect on the anatomy of the brain. A 
group of 19 rats was randomly divided into two groups. Twelve animals in the 
treatment group lived together in a large cage, furnished with playthings that 
were changed daily, while animals in the control group lived in isolation with 
no toys. After a month the experimental animals were killed and dissected. 
Table E7.13 gives the cortex weights (the thinking part of the brain) in milli-
grams. Use the two‐sample t test to compare the means of the two groups and 
draw appropriate conclusions.

7.14	 Depression is one of the most commonly diagnosed conditions among hospital-
ized patients in mental institutions. The occurrence of depression was determined 
during the summer of 1979 in a multiethnic probability sample of 1000 adults in 
Los Angeles County, as part of a community survey of the epidemiology of 
depression and help‐seeking behavior. The primary measure of depression was 
the CES‐D scale developed by the Center for Epidemiologic Studies. On a scale 
of 0–60, a score of 16 or higher was classified as depression. Table E7.14 gives 
the average CES‐D score for the two genders. Use a t test to compare the males 
versus the females and draw appropriate conclusions.

7.15	 A study was undertaken to study the relationship between exposure to poly-
chlorinated biphenyls (PCBs) and reproduction among women occupationally 
exposed to PCBs during the manufacture of capacitors in upstate New York. 
To ascertain information on reproductive outcomes, interviews were conducted 

Table E7.13

Treatment Control

707 696 669
740 712 650
745 708 651
652 749 627
649 690 656
676 642
699 698

Table E7.14

CES‐D score

Cases x s

Male 412 7.6 7.5
Female 588 10.4 10.3
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in 1982 with women who had held jobs with direct exposure and women who 
had never held a direct‐exposure job. Data are summarized in Table E7.15. 
Test to evaluate the effect of direct exposure (compared to indirect exposure) 
using each measured characteristic. In each case, name the test and state 
clearly your null and alternative hypotheses and choice of test size.

7.16	 The following data are taken from a study that compares adolescents who 
have bulimia to healthy adolescents with similar body compositions and levels 
of physical activity. Table  E7.16 provides measures of daily caloric intake 
(kcal/kg) for random samples of 23 bulimic adolescents and 15 healthy ones. 
Use the Wilcoxon test to compare the two populations.

7.17	 A group of 19 rats was divided randomly into two groups. The 12 animals in 
the experimental group lived together in a large cage furnished with play-
things that were changed daily, while the seven animals in the control group 
lived in isolation without toys. Table E7.17 provides the cortex weights (the 
thinking part of the brain) in milligrams. Use the Wilcoxon test to compare the 
two populations.

Table E7.16

Bulimic adolescents Healthy adolescents

15.9 17.0 18.9 30.6 40.8
16.0 17.6 19.6 25.7 37.4
16.5 28.7 21.5 25.3 37.1
18.9 28.0 24.1 24.5 30.6
18.4 25.6 23.6 20.7 33.2
18.1 25.2 22.9 22.4 33.7
30.9 25.1 21.6 23.1 36.6
29.2 24.5 23.8

Table E7.15

Exposure

Direct (n = 172) Indirect (n = 184)

Variable Mean SD Mean SD

Weight gain during pregnancy (lb) 25.5 14.0 29.0 14.7
Birth weight (g) 3313 456 3417 486
Gestational age (days) 279.0 17.0 279.3 13.5

Table E7.17

Experimental group Control group

707, 740, 745, 652, 649, 676,  
699, 696, 712, 708, 749, 690

669, 650, 651, 627, 656, 642, 698



268� COMPARISON OF POPULATION MEANS

7.18	 College students were assigned to three study methods in an experiment to 
determine the effect of study technique on learning. The three methods are: 
read only, read and underline, and read and take notes. The test scores are 
recorded in Table E7.18. Test to compare the three groups simultaneously. 
Name your test and state clearly your null and alternative hypotheses and 
choice of test size.

7.19	 Four different brands of margarine were analyzed to determine the level of 
some unsaturated fatty acids (as a percentage of fats; Table E7.19). Test to 
compare the four groups simultaneously. Name your test and state clearly 
your null and alternative hypotheses and choice of test size.

7.20	 A study was done to determine if simplification of smoking literature improved 
patient comprehension. All subjects were administered a pretest. Subjects 
were then randomized into three groups. One group received no booklet, one 
group received one written at the fifth‐grade reading level, and the third 
received one written at the tenth‐grade reading level. After booklets were 
received, all subjects were administered a second test. The mean score 
differences (postscore – prescore) are given in Table E7.20 along with their 
standard deviations and sample sizes. Test to compare the three groups simul-
taneously. Name your test and state clearly your null and alternative hypotheses 
and choice of test size.

Table E7.18

Technique Test score

Read only 15 14 16 13 11 14
Read and underline 15 14 25 10 12 14
Read and take notes 18 18 18 16 18 20

Table E7.19

Brand Fatty acids (%)

A 13.5 13.4 14.1 14.2
B 13.2 12.7 12.6 13.9
C 16.8 17.2 16.4 17.3 18.0
D 18.1 17.2 18.7 18.4

Table E7.20

No booklet 5th‐grade level 10th‐grade level

x 0.25 1.57 0.63
s 2.28 2.54 2.38
n 44 44 41
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7.21	 A study was conducted to investigate the risk factors for peripheral arterial 
disease among persons 55–74 years of age. Table E7.21 provides data on LDL 
cholesterol levels (mmol/L) from four different subgroups of subjects. Test to 
compare the four groups simultaneously. Name your test and state clearly 
your null and alternative hypotheses and choice of test size.

7.22	 A study was undertaken to clarify the relationship between heart disease and 
occupational carbon disulfide exposure along with another important factor, 
elevated diastolic blood pressure (DBP), in a data set obtained from a 10‐year 
prospective follow‐up of two cohorts of over 340 male industrial workers in 
Finland. Carbon disulfide is an industrial solvent that is used all over the 
world in the production of viscose rayon fibers. Table E7.22 gives the mean 
and standard deviation (SD) of serum cholesterol (mg/100 mL) among 
exposed and nonexposed cohorts, by diastolic blood pressure (DBP). Test to 
compare simultaneously, separately for the exposed and nonexposed groups, 
the mean serum cholesterol levels at the three DBP levels using one‐way 
ANOVA. Also, compare serum cholesterol levels between exposed and 
nonexposed cohorts at each level of DBP by using two‐sample t tests. Draw 
your conclusions.

7.23	 When a patient is diagnosed as having cancer of the prostate, an important 
question in deciding on treatment strategy is whether or not the cancer has 
spread to the neighboring lymph nodes. The question is so critical in prog-
nosis and treatment that it is customary to operate on the patient (i.e., perform 
a laparotomy) for the sole purpose of examining the nodes and removing 
tissue samples to examine under the microscope for evidence of cancer. 
However, certain variables that can be measured without surgery are predic-
tive of the nodal involvement. The purpose of the study presented here was to 

Table E7.21

Group n x s

1. Patients with intermittent claudication 73 6.22 1.62
2. Major asymptotic disease cases 105 5.81 1.43
3. Minor asymptotic disease cases 240 5.77 1.24
4. Those with no disease 1080 5.47 1.31

Table E7.22

Exposed Nonexposed

DBP (mmHg) n Mean SD n Mean SD

< 95 205 220 50 271 221 42
95–100 92 227 57 53 236 46
≥ 100 20 233 41 10 216 48
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examine the data for 53 prostate cancer patients receiving surgery, to deter-
mine which of five preoperative variables are predictive of nodal involvement 
(see Table E2.32). For each of the 53 patients, there are two continuous 
independent variables: age at diagnosis and level of serum acid phosphatase 
(×100; called “acid”); and three binary variables: x‐ray reading, pathology 
reading (grade) of a biopsy of the tumor obtained by needle before surgery, 
and a rough measure of the size and location of the tumor (stage) obtained by 
palpation with the fingers via the rectum. In addition, the sixth column pres-
ents the findings at surgery– the primary outcome of interest, which is binary, 
a value of 1 denoting nodal involvement, and a value of 0 denoting no nodal 
involvement found at surgery. The three binary factors have been investigated 
previously; this exercise is focused on the effects of the two continuous factors 
(age and acid phosphatase). Test to compare the group with nodal involvement 
and the group without, using:

(a)	 The two‐sample t test.

(b)	 Wilcoxon’s rank‐sum test.

7.24	 The kitchen facilities manager for a college campus is considering switching 
brand of disinfectant used in the 10 campus cafeteria kitchens. Ten surfaces were 
identified in one of the kitchens. Each surface was randomly assigned a brand of 
disinfectant (brand A, B, C, D, or E), so that each brand was used on two surfaces. 
Each surface was cleaned, by the same worker using a standardized protocol, 
using the assigned brand. A swab of each surface was taken immediately after 
cleaning and the swabs were cultured and allowed to grow for 7 days. Bacterial 
content counts were measured, then divided by 10^2 and log transformed before 
analysis.

(a)	 Do the brands result in significantly different levels of bacterial growth? 
Choose a multiple comparisons adjustment approach, and test all pair-
wise comparisons of brands.

(b)	 Now consider the design of the study, specifically related to the types of 
surfaces to which the disinfectants were applied. Suppose the ten selected 
surfaces were 5 countertops (food cleaning, chopping, mixing, cooking, 
and serving areas) and 5 handles (refrigerator, sink, cupboard, drawer, 
oven). How could this study have been designed differently to take 
advantage of the different surface types?

7.25	 A mold was grown in each of 12 culture dishes under three moisture levels for 
the environment in which they were grown (4 plates at each moisture level); 
other environmental conditions, specifically temperature, light, and nutrients, 
were held constant across all dishes. Growth (measured as the diameter from 
starting edge to farthest edge of the mold within the dish) was measured every 
24 hours for 9 days. The diameter was measured twice each time, across the 
dish at each of two reference marks on the rim of the dish, 90 degrees apart (so 
the two measurements were taken at right angles to each other). We will refer 
to these two measurements as ‘replicate’ measurements.
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	 For this exercise, use the last observation only (week=9).

(a)	 Calculate summary statistics of the first diameter measurement by mois-
ture group (e.g., sample size, mean, standard deviation, minimum, first 
and third quartiles, maximum). Just from visual inspection, do there 
appear to be any differences between groups?

(b)	 Carry out a one‐way ANOVA to examine moisture group differences in 
the first diameter measurement. Choose a multiple comparisons adjust-
ment approach, and test all pairwise comparisons.

(c)	 Calculate summary statistics of the second diameter measurement by 
moisture group (e.g., sample size, mean, standard deviation, minimum, 
first and third quartiles, maximum). Just from visual inspection, do there 
appear to be any differences between groups?

(d)	 Carry out a one‐way ANOVA to examine moisture group differences in 
the second diameter measurement. Choose a multiple comparisons adjust-
ment approach, and test all pairwise comparisons.

(e)	 Do your conclusions in (b) differ from those in (d)? If so, how do they 
differ and why do you think they might differ?

7.26	 The mutans streptococci (MS) are bacteria (all related to Streptococcus mutans) 
that can cause tooth decay. 167 persons with gum disease (elevated oral MS 
levels) were recruited into a study with three treatment arms: chewing gum with 
an active drug, chewing gum with no active drug, and no gum. Randomization 
to the three groups was 1:1:1 (equal allocation) within blocks defined by current 
smoker status. Participants in the gum groups were asked to chew the gum three 
times daily for a minimum of 5 minutes each time and to carry out their usual 
oral hygiene (tooth brushing, mouthwash, etc.). Participants in the group without 
gum were asked to carry out their usual oral hygiene. During the 14 days prior 
to randomization, subjects rinsed their mouths twice daily with a 0.12 % 
chlorhexidine gluconate mouthrinse. They were asked to follow their assigned 
treatment for three weeks. The outcome (“colony forming units” per ml, a count 
of blotches on a standard sized petri dish after standard preparation) was 
recorded at randomization and after 1, 2, and 3 weeks. The primary outcome 
was the CFU ratio, week 3 divided by week 0. The question of interest is whether 
the active gum treatment caused a decline in the level of oral mutans strepto-
cocci. There are some missing CFU data, corresponding to participants who 
missed visits.

(a)	 Examine the distribution of the primary outcome, CFU at week 3 divided 
by CFU at week 0. In your judgement, is it sufficiently close to normally 
distributed to consider using an ANOVA model? (We will revisit these 
data in Chapter 11, where we consider models for count data.)

(b)	 Calculate summary statistics of the primary outcome by treatment group 
(e.g., sample size, mean, standard deviation, minimum, first and third 
quartiles, maximum). Just from visual inspection, do there appear to be 
any differences between treatment groups?
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(c)	 Fit a one‐way ANOVA for treatment group. Report the result and interpre-
tation of the F test in the ANOVA table.

(d)	 Compute the least squares means for the three treatment groups. Which 
groups are significantly different from which other groups? Choose a mul-
tiple comparisons adjustment approach, and test all pairwise comparisons.

(e)	 Write a brief summary of the study’s conclusions.
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8
ANALYSIS OF VARIANCE

In Chapter  7, we introduced a study of visual acuity among Australians. 313 
participants were sampled and then each was classified according to gender (male or 
female) and race (Aboriginal origin or European origin). The analysis carried out in 
that example tested, using a one‐way ANOVA, whether there were any differences in 
acuity among the four gender by race groups, ignoring the gender and race group 
labels. More specific scientific hypotheses would be, for example, to test whether the 
races are different (pooling the genders), and whether the genders are different (pool-
ing the races), or even whether the gender difference is the same for both races. These 
questions presume the genders and the races of the participants are of specific interest. 
For these types of hypotheses, we need to extend the ANOVA to the factorial setting.

This study might instead have focused on the question of comparing visual acuity 
across genders, understanding that in such a comparison it would be important to 
control for any race differences in visual acuity. A study to answer this question 
might be designed differently. We could first sample a group of Australians of 
Aboriginal origin, and then classify them according to gender. Then we could sample 
a group of Australians of European origin and classify them according to gender. 
For this type of analysis, we need to extend the ANOVA to the block setting.

8.1  FACTORIAL STUDIES

8.1.1  Two Crossed Factors

Terminology  As for a one‐way ANOVA, a two‐way ANOVA is appropriate when 
the  response is a continuous variable observed on a sample of independent study 
participants. Now, though, for each member of the sample, we have two independent 
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variables (or predictors), such as race and gender as described above, instead of one. 
The purpose of an ANOVA is to compare means; here the means correspond to race by 
gender groups that are defined by the factorial (or combination or intersection) of the 
two independent variables (or factors): females of Aboriginal origin, females of 
European origin, males of Aboriginal origin, and males of European origin. This design 
is sometimes called a between‐subjects factorial because each participant belongs to 
only one group, hence group comparisons are comparisons between subjects.

We denote the population group means of the response variable Y as μ
ij
, where 

i = 1, …, I indexes the levels of the first factor, and j = 1, …, J indexes the levels 
of the second factor. The two‐way ANOVA model is thus

	 Yijk ij ijk	

where k = 1, …, n
ij
, all observed Y values are independent of each other, and the 

variance of the Y values is σ2 for each group. For our visual acuity example (Table 8.1), 
the number of genders I is 2 and the number of race groups J is 2. The subscript 
notation for sample statistics (such as group means Yij, variances sij

2, and sample sizes 
n

ij
) follows the same convention as for the population group means. We use n without 

subscripts to denote the total sample size across all groups (the sum of all the n
ij
). The 

notation here is slightly different from that in Chapter 7, but serves as a transition to 
the notation used in Chapter 9. For example, we now denote the continuous variable 
being analyzed as Y not X.

The population means are used to define several effects which may be of scientific 
interest. The main effect of race refers to the comparison of the race group means μ.j

 
to each other, where the dot in the subscript denotes averaging the  μ

ij
 across the 

genders (levels of i). The main effect of gender refers to the comparison of the μ
i. to 

each other where we now average across the races (levels of j). The simple effect of 
race refers to the comparison of the race group means to each other within gender, 
while the simple effect of gender refers to the comparison of the gender means to 
each other within race group. The interaction of race and gender can be described in 
two different (but statistically equivalent) ways: is the simple effect of race the same 
for each gender, and is the simple effect of gender the same for each race.

Table 8.1

European origin Aboriginal origin Total

Males n
11

 = 89 
y

11
 = –0.20, 

s
11

 = 0.18

n
12

 = 107 
y

12
 = –0.26, 

s
12

 = 0.13

n
1. = 196 

y
1. = –0.23, 

s
1. = 0.15

Females n
21

 = 63 
y

21
 = –0.13, 

s
21

 = 0.17

n
22

 = 54 
y

22
 = –0.24, 

s
22

 = 0.18

n
2. = 117 

y
2. = –0.18, 

s
2. = 0.17

Total n.1
 = 152 

y.1
 = –0.17, 

s.1
 = 0.18

n.2
 = 161 

y.2
 = –0.25, 

s.2
 = 0.15

n.. = 313 
y.. = –0.21, 
s.. = 0.16
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Estimation and testing  The population means μ
ij
 are estimated using the sample 

means: ˆ
ij ijY . We can get a sense for the magnitude of the ANOVA effects by 

looking at a table (Table 8.1) or graph (Figure 8.1) of the sample means. The main 
effects are seen by comparing the marginal totals in Table 8.1: Is the male mean 
acuity of –0.23 statistically different from the female mean acuity of –0.18? Is the 
European origin mean acuity of –0.17 statistically different from the Aboriginal 
origin mean acuity of –0.25? Simple effects are seen by comparing the means within 
a particular row, or within a particular column: Is the mean acuity for females of 
European origin (–0.13) statistically different from the mean acuity for females of 
Aboriginal origin (–0.24)? Interactions are seen in Figure 8.1: Are the lines approxi-
mately parallel? If so, then there is likely no statistically significant interaction.

A two‐way ANOVA partitions the total sum of squares in the same manner as 
a one‐way ANOVA, into within sum of squares and between sum of squares. The 
formulas for these are based on the decomposition of the total sample variation:

	 Y Y Y Y Y Yijk ijk ij ij.. .. 	

The between sum of squares is often called the model sum of squares and the within 
sum of squares is often called the error sum of squares. When each combination of 
factor levels has the same sample size (all n

ij
 are the same), the model sum of squares 

is then further partitioned into a sum of squares for each of the two factors and for 
their interaction. Mean squares are calculated as a sum of squares divided by the 
appropriate degrees of freedom by statistical software. The error mean square is 
again an estimate of the common variance σ2. The model mean square again 
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Figure 8.1  Visual acuity means and standard errors by group.
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represents the average variation among (or differences between) all the groups. 
Each  factor’s mean square represents the average variation among (or differences 
between) the levels of that factor. The interaction’s mean square represents the 
remaining between variation not due to the two factors’ main effects.

When the n
ij
 values are not the same for all groups (as in our visual acuity 

example), each factor’s (and the interaction’s) mean square is calculated using a dif-
ferent method, sometimes called the regression approach or the general linear F test. 
For this method, we fit two ANOVA models: a model that includes the effect being 
tested (the full model) and a model without the effect being tested (the reduced 
model). The mean square for the effect being tested is calculated as

	 SSE R SSE F df R df F 	

where R is for the reduced model, F is for the full model, and df are the error degrees 
of freedom. SSE(R) will be larger than SSE(F): when we remove an effect from a 
model, its variability is no longer allocated to the model sum of squares, but it still 
must be part of the total sum of squares; hence it is allocated to the error sum of 
squares instead.

Carrying out an hypothesis test on an appropriate test statistic requires the additional 
assumption of normality for the ANOVA model:

	 Y Nijk ij~ , 2

	

which can be equivalently written as

	 ijk N~ .0 2, 	

For both cases of equal and of unequal n
ij
 values, an F test statistic for an effect 

is computed as a ratio of mean squares. To test whether this effect is zero, this 
ratio is compared to an F distribution (Appendix E) with the appropriate numerator 
and denominator degrees of freedom. The results of all of these calculations can be 
organized into an ANOVA table (Table 8.2). Each ANOVA effect has hypotheses 
corresponding to its test statistic:

Table 8.2

Source of variation SS df MS F Statistic

Model (between) SSM IJ – 1 MSM MSM/MSE
Factor A SS(A) I – 1 MS(A) MS(A)/MSE
Factor B SS(B) J – 1 MS(B) MS(B)/MSE
AB interaction SS(AB) (I – 1)(J – 1) MS(AB) MS(AB)/MSE
Error (within) SSE n – IJ MSE

Total SST n – I
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1.	 Omnibus hypothesis: H
0
: μ

ij
 for all race‐by‐gender groups are equal versus 

H
A
: at least one μ

ij
 is different from the others. The F statistic is MSM/MSE. 

This test is as if we were doing a one‐way ANOVA comparing all groups to 
each other and ignoring the factor labels.

2.	 Main effect of gender: H
0
: μ

i. are all equal versus H
A
: at least one μ

i. is differ-
ent from the others. The F statistic is MS(A)/MSE.

3.	 Main effect of race: H
0
: μ.j

 are all equal versus H
A
: at least one μ.j

 is different 
from the others. The F statistic is MS(B)/MSE.

4.	 Interaction hypothesis: H
0
: The simple effect of race is the same for all genders 

versus H
A
: The simple effect of race is not the same for all genders. This is 

statistically equivalent to H
0
: The simple effect of gender is the same for all races 

versus H
A
: The simple effect of gender is not the same for all races. The F statistic 

is MS(AB)/MSE.

Other effects of interest, such as the simple effect of race within gender or the 
simple effect of gender within race, can be calculated and tested by statistical 
software, but these tests are not presented in an ANOVA table.

Example 8.1
The ANOVA table for visual acuity is shown in Table 8.3. The F test for the main 
effect of gender (p = 0.09) indicates that the genders are only marginally different in 
their visual acuity, pooling across the races. The F test for the main effect of race 
(p  < 0.0001) indicates that the races are very different in their visual acuity, pooling 
across the genders. The F test for the gender by race interaction (p = 0.04) indicates 
that there is a borderline significant interaction between gender and race. We can see 
this in Table 8.1 and in Figure 8.1; there is a larger male–female difference in those 
of European origin compared to those of Aboriginal origin.

When there is a significant interaction, the marginal summaries of the data (the 
column and the row labeled Total in Table  8.1) and the main effect tests do not 
represent the data well; they represent the gender effect pooled across race (or the 
race effect pooled across gender), but the interaction tells us that the gender effect 
differs by race (and the race effect differs by gender). In such cases, it is good prac-
tice to report the tests of the simple effects, such as the effect of gender within each 
race group; these can be computed by statistical software.

Table 8.3

Source of variation SS df MS F Statistic p Value

Model 1.1009 3 0.3670 13.48 < 0.0001
Gender 0.0794 1 0.0794 2.92 0.09
Race 0.9070 1 0.9070 33.32 < 0.0001
Interaction 0.1145 1 0.1145 4.21 0.04
Error 8.4111 309 0.0272

Total 9.5120 312
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Note: A SAS program would include these instructions:

DATA VISION;
 INFILE "acuitydata.txt" FIRSTOBS=2;
 INPUT ACUITY RACE $ GENDER $ GROUP AGE $;
ODS GRAPHICS ON;
PROC GLM DATA = VISION PLOTS = MEANPLOT;
 CLASS RACE GENDER;
 MODEL ACUITY = RACE GENDER RACE*GENDER;
ODS GRAPHICS OFF;

An R program would include these instructions:

vision = read.table("acuitydata.txt", header=T)
attach(vision)
genderfactor=as.factor(gender)
racefactor=as.factor(race)
interaction.plot(genderfactor, racefactor, acuity, 
 legend=F)
racegender.lm = lm(acuity ~ racefactor+genderfactor+ 
 racefactor:genderfactor)
anova(racegender.lm)

The R function aov could be used instead when the design is balanced (all group 
sizes are the same). This data file is available at www.wiley.com/go/Le/Biostatistics.

8.1.2  Extensions to More Than Two Factors

Factorial ANOVA models with more than two factors are straightforward extensions 
of the two‐way ANOVA; a general three‐way ANOVA table is shown in Table 8.4. 
The full model incorporates all possible two‐way and three‐way interactions among 
the three factors. The interpretation of main effects and interactions is similar to that 

Table 8.4

Source of variation SS df MS F Statistic

Model (between) SSM IJK – 1 MSM MSM/MSE
Factor A SS(A) I – 1 MS(A) MS(A)/MSE
Factor B SS(B) J – 1 MS(B) MS(B)/MSE
AB interaction SS(AB) (I – 1)(J – 1) MS(AB) MS(AB)/MSE
Factor C SS(C) K – 1 MS(C) MS(C)/MSE
AC interaction SS(AC) (I – 1)(K – 1) MS(AC) MS(AC)/MSE
BC interaction SS(BC) (J – 1)(K – 1) MS(BC) MS(BC)/MSE
ABC interaction SS(ABC) (I – 1)(J – 1)(K – 1) MS(ABC) MS(ABC)/MSE
Error (within) SSE n – IJK MSE

Total SST n – 1
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of the two‐way ANOVA. Estimation and testing is done in the same manner also; 
when the sample size per group (each combination of the levels of factors A, B, 
and C) is unequal across groups, then effects are tested using a general linear F test. 
A  general linear F test can also be used to test several effects at once, which is 
illustrated in Example 8.2.

Example 8.2
Suppose our visual acuity data were collected among young adults only, ages 
20–39 years. We believe the younger of these (ages 20–29 years) are not likely to 
have visual acuity different from the older of these (ages 30–39 years), but we would 
like to confirm that so that we can be confident in our interpretation of the results in 
Example 8.1. To carry out a general linear F test of age, we fit two models: the full 
model (in which age appears as a main effect and as part of two two‐way interactions 
and one three‐way interaction with our two factors of interest, gender and race) and 
the reduced model (with only our two factors of interest, gender and race, and their 
interaction, from Table 8.3). The test statistic is

	

F
SSE R SSE F df R df F

SSE F df F

/

/

. .8 4111 8 29988 309 305

8 2988 305
1 0313

/

. /
.

	

with 4 numerator degrees of freedom and 305 denominator degrees of freedom 
(Table 8.5). The p value is equal to 0.3912, indicating no significant age differences 
in visual acuity, or interactions with race or gender in visual acuity, as we expected.

Note: The SAS program of Example 8.1 would be modified to:

PROC GLM DATA = VISION;
   CLASS RACE GENDER AGE;
   MODEL ACUITY = RACE|GENDER|AGE;

Table 8.5

Source of variation SS df MS F Statistic p Value

Model (between) 1.2131 7
Race 0.9070 1 0.9070 33.33 < 0.0001
Gender 0.0794 1 0.0794 2.92 0.09
Race by gender 0.1144 1 0.1144 4.21 0.04
Age 0.0003 1 0.0003 0.01 0.92
Race by age 0.0308 1 0.0308 1.13 0.29
Gender by age 0.0088 1 0.0088 0.32 0.57
Race by gender by age 0.0724 1 0.0724 2.66 0.10
Error (within) 8.2988 305 0.0272

Total 312
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The shorthand coding for including all main effects and all interactions is a vertical 
bar in SAS but an asterisk in R. The R program of Example 8.1 would be modified to:

agefactor = as.factor(age)
racegenderage.lm = lm(acuity ~ racefactor*genderfactor* 
  agefactor)
racegender.lm = lm(acuity ~ racefactor*genderfactor)
anova(racegender.lm, racegenderage.lm)

This is a different use of the anova function compared to Example 8.1; because the 
anova function is being given the output of two nested models (rather than the output 
of one model), it will compare the two models, not produce an ANOVA table.

8.2 B LOCK DESIGNS

8.2.1  Purpose

Block designs are used when there is a factor that impacts the response but is not 
itself of direct scientific interest; we will call it a blocking factor, to distinguish it 
from the factor that is of direct scientific interest, which we will call a treatment 
factor. Block designs may be used when the levels of the treatment factor are 
randomly assigned (such as different doses of a pharmaceutical) as well as when the 
levels of the treatment factor are observed (such as gender). If the “participants” in 
the study are not human subjects (plants, animals, agar plates, preserved tissue slices, 
etc.), they are often called experimental units.

How is the blocking factor chosen? The participants or experimental units within 
each block should be as homogenous as possible with respect to characteristics that 
may impact the response. In a study using an animal model of disease, each litter is 
a block; littermates are more homogenous (in both genetics and environment) than 
animals of the same strain that are not littermates. In a laboratory study, each techni-
cian carrying out assays to determine the response is a block; different technicians 
may be heterogenous in how they carry out an assay procedure. In a multicenter 
clinical trial, each clinical center is a block. In a study of youth access to tobacco near 
school, carried out by the local health department, each local school is a block.

When the blocks included in the study are the only blocks of interest, the blocking 
factor is considered a fixed effect. This seems reasonable for the school tobacco 
study: the local health department wants to control for variation across the local 
schools and will not generalize the interpretation of the study results to schools in 
other geographic areas. If the study were repeated, the same schools would be used. 
When the blocks included in the study can be seen as a random sample from some 
larger population of blocks that could have been included, the blocking factor is 
considered a random effect. This seems reasonable for the animal disease model 
study: if the study were repeated, we would get different litters, and we want to 
control for variation across the litters that we could have sampled. In some studies it 
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is not obvious whether the blocks are fixed or random: are the clinical centers that 
were included in the study the only ones of interest, or were they sampled from some 
larger “population” of clinical centers that could have been included? The implica-
tions of fixed versus random for estimation, testing, and interpretation will become 
clear over the next two sections.

8.2.2  Fixed Block Designs

Returning to our visual acuity example, at the beginning of this chapter we suggested 
an alternative design that considered gender to be the “treatment” factor and race to 
be a blocking factor: we want to compare genders while controlling for the variation 
in visual acuity across races. The sampling of participants for this design is different 
from our factorial study: in a block study we identify a population of Australians of 
Aboriginal origin, draw a sample, and classify each participant in the sample 
according to gender. We carry out a parallel process to obtain a sample from the 
second block: Australians of European origin of both genders. This example is an 
observational, not experimental (randomized), block design because the treatment 
factor (gender) is not randomly assigned to the participants. This is a fixed block 
design because we cannot consider our race blocks to have been sampled from some 
larger “population” of race groups; only these race groups are of interest and if we 
repeated the study we would use the same race groups. This is a complete block 
design because all levels of the treatment factor appear in all of the blocks.

The construction of an ANOVA table for a fixed block design is the same as for a 
two‐way factorial ANOVA (Table 8.2). However, in many block design studies, there 
is no interest in a block by treatment interaction: we want to interpret the treatment 
effect after having accounted for variation due to the blocks, but we do not want to 
estimate a block‐specific treatment effect. Then the estimation, testing, and interpre-
tation follow a two‐way factorial ANOVA but without the interaction effect. In cases 
where there is interest in testing for a block‐specific treatment effect, we follow a 
two‐way factorial ANOVA with the interaction effect. Lastly, sometimes a block 
design is carried out with no replication: only one experimental unit is used per 
treatment per block. In this case, the block by treatment interaction cannot be 
estimated separately from the error (all n

ij
 = 1, so there is no observed variability 

within a block by treatment combination); statistical software will set the interaction 
sum of squares and degrees of freedom to zero and we assume that there is no 
interaction. This may or may not be a reasonable assumption, but with no replication 
there are no data to assess it.

Example 8.3
The kitchen facilities manager for a college campus is considering switching brand 
of disinfectant used in the 10 campus cafeteria kitchens. Ten comparable surfaces 
were identified in each kitchen. Separately for each cafeteria, each surface was 
randomly assigned a brand of disinfectant (brand A, B, C, D, or E), so that each brand 
was used on two surfaces. Each surface was cleaned, by the same worker using a 
standardized protocol, using the assigned brand. A swab of each surface was taken 
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immediately after cleaning and the swabs were cultured and allowed to grow for 
7  days. Bacterial content counts were measured, then divided by 10^2 and log 
transformed before analysis. The mean (standard deviation) of bacterial content per 
brand were 6.44 (2.02) for Brand A, 5.68 (1.87) for Brand B, 4.76 (1.72) for Brand 
C, 5.05 (1.74) for Brand D, and 4.02 (2.02) for Brand E (Figure 8.2).

Table  8.6 shows the ANOVA table for these data, where we see a significant 
interaction between brand and cafeteria, as well as significant main effects for each 
of brand and cafeteria. We have pre‐specified comparisons of interest (all pairwise 
comparisons between brands), shown in Table  8.7 with both the unadjusted 
p value and the Tukey‐adjusted p value (see Section 7.5.2). Brand E, with the lowest 
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Figure 8.2  Bacterial content means and standard deviations by brand.

Table 8.6

SS df MS F Statistic p Value

Model 315.8897 49
Brand 67.8275 4 16.9569 9.76 < 0.0001
Cafeteria 129.9040 9 14.4338 8.31 < 0.0001
Brand*cafeteria 118.1582 36 3.2822 1.89 0.0187
Error 86.8575 50 1.7371

Total 402.7471 99
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average bacterial content, was significantly different from Brands A and B, but 
no different from Brands C and D after Tukey adjustment for multiple comparisons. 
The confidence intervals do not have Tukey‐adjusted confidence levels, but such 
intervals could have been computed and would then correspond directly to the Tukey‐
adjusted p values rather than to the unadjusted p values.

Example 8.3 is randomized complete block design with replication because the 
treatment (brand) was randomly assigned, all brands were used in each block, and 
each brand was used more than once per block. In this example, the brand by cafeteria 
interaction had a p value of 0.02 but is likely not of interest; the facilities manager 
needs to identify the brand that works best over all 10 cafeterias, not identify which 
brand works best for each cafeteria separately. The interaction could be removed 
from the model. This is an example where we want to interpret the main effects for 
brand (brand differences, averaged across cafeterias), even though there is a 
significant interaction of cafeteria with brand. If the interaction is removed, the 
estimated mean group differences will not change, but the standard errors and 
confidence intervals will, because the interaction sum of squares will become part of 
the error sum of squares.

Note: A SAS program would include these instructions:

DATA CAMPUS;
 INFILE "cafeteria.bacteriadata.txt" FIRSTOBS=2;
 INPUT BACTERIA CAFETERIA BRAND;
PROC GLM DATA = CAMPUS;
 CLASS BRAND CAFETERIA;
 MODEL BACTERIA = BRAND|CAFETERIA;
 LSMEANS BRAND / PDIFF CLM;
 LSMEANS BRAND / PDIFF ADJUST=TUKEY;

Table 8.7

Brand group 
comparison

Mean group 
difference

95% Confidence interval 
for the difference

Unadjusted 
p value

Tukey adjusted  
p value

B–A –0.76 –1.94,   0.42 0.0736 0.3699
C–A –1.68 –2.86, –0.50 0.0002 0.0017
D–A –1.39 –2.57, –0.21 0.0016 0.0134
E–A –2.43 –3.61, –1.25 < 0.0001 < 0.0001
C–B –0.92 –2.10,   0.26 0.0324 0.1964
D–B –0.63 –1.81,   0.55 0.1379 0.5625
E–B –1.67 –2.85, –0.49 0.0002 0.0019
D–C 0.29 –0.89,   1.47 0.4916 0.9571
E–C –0.75 –1.93,   0.43 0.0784 0.3867
E–D –1.04 –2.22,   0.14 0.0161 0.1093
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The first LSMEANS gives results with no multiple comparisons adjustment. An R 
program would include these instructions:

campus = read.table("cafeteria.bacteriadata.txt", 
  header=T)
attach(campus)
library(lsmeans)
brandfactor = factor(brand, labels=c("A","B","C","D","E"))
cafeteriafactor = factor(cafeteria)
cafeteriabrand.aov = aov(bacteria ~ 
  brandfactor*cafeteriafactor)
anova(cafeteriabrand.aov)
lsmeans(cafeteriabrand.aov, pairwise ~ brandfactor, 
  adjust="none")
lsmeans(cafeteriabrand.aov, pairwise ~ brandfactor, 
  adjust="tukey")

The R function aov is intended for designs that are balanced (all group sizes are 
equal). If the design is not balanced, use the lm function instead:

cafeteriabrand.lm = lm(bacteria ~ brand*cafeteria)
anova(cafeteriabrand.lm)
lsmeans(cafeteriabrand.lm, pairwise ~ brand, 
  adjust="none")
lsmeans(cafeteriabrand.lm, pairwise ~ brand, 
  adjust="tukey")

These data are available at www.wiley.com/go/Le/Biostatistics.

8.2.3  Random Block Designs

When the blocking factor is random, as in the littermate study described in Section 8.2.1, 
the calculation of sums of squares, degrees of freedom, and mean squares are no dif-
ferent from when the blocking factor is fixed. However, the F statistic does change 
(Table  8.8). In particular, the appropriate denominator for the test of the treatment 
factor is now the mean square for the treatment by block interaction. This happens 

Table 8.8

Source of variation SS df MS F Statistic

Model (between) SSM IJ – 1 MSM MSM/MSE
Treatment factor A SS(A) I – 1 MS(A) MS(A)/MSAB
Blocking factor B SS(B) J – 1 MS(B) MS(B)/MSAB
AB interaction SS(AB) (I – 1)(J – 1) MS(AB) MS(AB)/MSE
Error (within) SSE n – IJ MSE

Total SST n – 1
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because assuming the blocking factor is random implies that the block by treatment 
interaction is also random. Lastly, for a random blocking factor (just as for a fixed 
blocking factor), when there is no replication the block by treatment interaction cannot 
be estimated separately from the error and the interaction is assumed to be zero.

Example 8.4
An important aspect of public health is food safety. Irradiation has been proposed as a 
method of reducing bacterial contamination of meats. The effect of irradiation on the 
bacterial content of raw chicken was studied using 10 batches of chicken leg meat. Each 
batch was divided into 10 parts and each part was irradiated for a randomly assigned 
duration of time (0, 15, 30, 45, or 60 seconds) so that each duration was assigned to two 
parts. Bacterial content was measured after 7 days of refrigeration at 35 °F. Bacterial 
content counts were divided by 10^2 and then log transformed before analysis.

Table 8.9 shows the ANOVA table for these data, where we see a significant inter-
action between duration and batch, as well as significant main effects for each of 
duration and batch. We again have pre‐specified comparisons of interest (all pairwise 
comparisons between durations), shown in Table 8.10 with both the unadjusted p 
value and the Tukey‐adjusted p value (see Section 7.5.2). An irradiation duration of 
60 s is significantly different from 0 s and from 15 s; there are no other significant 
differences. The confidence intervals do not have Tukey‐adjusted confidence levels, 

Table 8.9

SS df MS F Statistic p Value

Model 315.8897 49
Duration 67.8275 4 16.9569 5.17 0.0022
Batch 129.9040 9 14.4338 4.40 0.0006
Duration*batch 118.1582 36 3.2822 1.89 0.0187
Error 86.8575 50 1.7371

Total 402.7471 99

Table 8.10

Duration group 
comparison 
(seconds)

Mean group 
difference

95% confidence 
interval for the 

difference
Unadjusted 

p value
Tukey adjusted  

p value

15–0 –0.76 –1.92,   0.40 0.2329 0.7471
30–0 –1.68 –2.84, –0.52 0.0684 0.3506
45–0 –1.39 –2.55, –0.23 0.0168 0.1132
60–0 –2.43 –3.59, –1.27 < 0.0001 0.0008
30–15 –0.92 –2.08,   0.24 0.5155 0.9649
45–15 –0.63 –1.79,   0.53 0.2114 0.7129
60–15 –1.67 –2.83, –0.50 0.0034 0.0270
45–30 0.29 –0.87,   1.45 0.5439 0.9727
60–30 –0.75 –1.91,   0.41 0.0193 0.1271
60–45 –1.04 –2.2,     0.12 0.0767 0.3808
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but such intervals could have been computed and would then correspond directly to 
the Tukey‐adjusted p values rather than to the unadjusted p values.

The data values used in Examples 8.3 and 8.4 were actually the same; the sums of 
squares and degrees of freedom were identical in Tables 8.6 and 8.9. We did this in 
order to demonstrate the change that occurs when considering a blocking factor fixed 
versus random. In Table 8.6, the F statistic for the treatment factor was 9.76; its denom-
inator was the error mean square. In Table 8.9, the F statistic for the treatment factor 
was 5.17; its denominator was the interaction mean square. We can also see differences 
in Table 8.7 versus Table 8.10; the estimated group mean differences are identical, but 
their standard errors (and hence their confidence intervals and p values) are not.

Note: A SAS program would include these instructions:

DATA IRRADIATE;
 INFILE "chicken.bacteriadata.txt" FIRSTOBS=2;
 INPUT BACTERIA BATCH DURATION;
PROC GLM DATA = IRRADIATE;
 CLASS DURATION BATCH;
 MODEL BACTERIA = DURATION BATCH  
DURATION*BATCH;
 RANDOM BATCH DURATION*BATCH / TEST;

No LSMEANS statement is shown here because PROC GLM with a RANDOM 
statement results in incorrect results from LSMEANS; they do not account for the 
specification of blocks as random. The correct tests and intervals for treatment groups 
and for treatment group differences can be obtained by fitting the same model in 
PROC MIXED (note the syntax is not quite the same):

PROC MIXED DATA = IRRADIATE;
 CLASS DURATION BATCH;
 MODEL BACTERIA = DURATION;
 RANDOM BATCH DURATION*BATCH;
 LSMEANS DURATION / PDIFF CL;
 LSMEANS DURATION / PDIFF ADJUST=TUKEY;

An R program would include the following instructions:

irradiate = read.table("chicken.bacteriadata.txt", 
 header=T)
attach(irradiate)
library(nlme)
library(lsmeans)
duration = as.factor(duration)
batch = as.factor(batch)
batchduration.lm = lme(fixed=bacteria~duration, 
 random=~1|batch/duration)
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anova(batchduration.lm)
lsmeans(batchduration.lm, pairwise ~ duration, 
 adjust="none")
lsmeans(batchduration.lm, pairwise ~ duration, 
 adjust="tukey")

These data are available at www.wiley.com/go/Le/Biostatistics.

8.3  DIAGNOSTICS

Recall that the assumptions of higher order ANOVAs, where all factors are fixed, are 
that all participants’ responses Y are independent and the response is normally 
distributed with a group‐specific mean μ

ij
 and a common variance σ2. How do we 

check these assumptions? Using diagnostics, we will consider diagnostics for each 
assumption in turn; but first we need to calculate an important component of diag-
nostics: the residual. The residual is defined as the difference between the observed 
response Y and the predicted Y for that response. For example, for a two‐way ANOVA, 
the residual is calculated as

	 Y Y Y Y Yijk ijk ijk ij ijk ij
ˆ ˆ .	

The “hat” over the Y is general notation for the value of the response that is predicted 
(or estimated) by the model (rather than observed in the data). For a two‐way 
ANOVA, each Y

ijk
 is modeled by its population cell mean μ

ij
 which we estimate with 

the observed cell mean: ˆ ˆY Yijk ij ij.

Constant variance of the responses  For factorial ANOVAs, groups are defined 
from all possible combinations of all the factors’ levels. The constant variance 
assumption dictates that the within‐group population standard deviations of the 
response (σ

ij
) should be the same for all the groups (all combinations of i, j). A simple 

guideline is to check whether each group’s sample standard deviation (s
ij
) is within a 

factor of 2 of all other groups’ sample standard deviations (the ratio of the larger to 
smaller standard deviation should be less than 2). For more complex designs, such as 
those with both fixed and random effects, or when the group sample size (n

ij
) is relatively 

small, another diagnostic is to make a plot of residuals (Y Yijk ijk
ˆ ) or studentized resid-

uals (residuals divided by their estimated standard error) versus predicted values (Ŷ
ijk

) 
such as that shown in Figure 8.3. The constant variance assumption is reasonable if the 
vertical spread of the points is consistent across all the predicted values, that is, consis-
tent from left to right on the plot. If the sample size is relatively small, this plot can 
instead be made using absolute value on the vertical scale. Studentized residuals larger 
than +2 or smaller than –2 are unusually large and the corresponding Y values should be 
observed for data errors in data collection or data entry into the study database. If the 
variance appears to increase with the mean in a plot of residuals versus predicted values, 
sometimes using log(Y

ijk
) instead of Y

ijk
 as the response will satisfy the constant variance 

assumption.
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Example 8.5
Returning to Example 8.1, we see in Table 8.1 that no group has a sample standard 
deviation more than twice that of any other group. Once we have tested and removed 
the age effects from the three‐way ANOVA (Example 8.2), we should assess whether 
the data fit the assumptions of the two‐way ANOVA with race, gender, and the race 
by gender interaction. Figure 8.3 shows Studentized residuals on the vertical axis and 
predicted values on the horizontal axis. The plot has vertical “stripes” because there 
is one predicted value per group (equal to the group mean), and with this model there 
are four groups in total (two race by two gender groups). If we had done this plot 
using residuals from the race by gender by age model, there would be eight stripes 
(two race by two gender by two age groups). The vertical spread of the points is 
about the same across the four groups; there is no group with strikingly broader or 
narrower vertical spread. The horizontal spread and spacing of the stripes is not of 
concern here; those are dictated by the group means. There are 15 observations with 
residuals that fall above +2 or below –2; there are some in each of the four groups. 
Since no errors in data collection or entry were found, we keep the data as they were 
recorded and are not concerned about the size of the residuals.

Normality of the responses  A histogram or normal quantile plot of the residuals or 
Studentized residuals is the best way to assess the normality assumption; many 
statistical software packages will produce these plots automatically. A histogram of 
the residuals should be approximately bell‐shaped (like the solid curve in Figure 8.4). 
The residuals should fall approximately on a straight line in a normal quantile plot 
(Figure 8.5). The normality assumption can appear violated (even if it is not) when 
the constant variance assumption is strongly violated.
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Figure 8.3  Studentized residuals versus predicted values for visual acuity.
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Example 8.6
A histogram of the visual acuity Studentized residuals from the two‐way ANOVA 
is shown in Figure 8.4. The histogram nicely follows the normal density that is 
superimposed on the plot. The normal density was calculated using the sample 
mean and standard deviation of the Studentized residuals. A normal quantile plot 
of the Studentized residuals is shown in Figure 8.5. The superimposed line repre-
sents where we would expect the points to fall if they were exactly normally dis-
tributed. The lack of normality is very minor and largely in the tails of the 
distribution (the very large values in both the positive and negative direction). The 
circles fall below the line, which means that the observed data quantiles are smaller 
than the corresponding normal quantiles, thus the data have thinner tails than 
expected. If the circles in the tails fell above the line, we would say that the data 
have fatter tails than the normal distribution. Skewness in the data is often apparent 
in a normal quantile plot.

Independence of the responses  There are common violations of this assumption 
that can be checked. A common violation happens when members of the same family 
are enrolled; they are genetically and often environmentally linked, so their responses 
are likely to be correlated with each other. This problem can be diagnosed by collect-
ing family information upon enrollment, or specifically asking whether another 
family member is already enrolled. Another common violation can happen when the 
study sample is enrolled over a lengthy period of time; this can introduce a time‐
dependency in the responses. For example, perhaps the response is quantified through 
a particular assay, and the environment within the laboratory changes over the 
seasons of the year, which impacts the assay process. As another example, perhaps 
the response is quantified from a single 24‐hour dietary intake; participants enrolled 
during the summer months may have a very different diet from participants enrolled 
during the winter months due to changes in the availability of fresh fruits and vege-
tables. Spatial dependency in the responses can also happen, for example if a response 
is quantified in each of several wells on each of several well plates. Responses 
quantified from wells in the middle of the plate may be more similar to each other 
than to responses quantified from wells on the edges of the plate. If these sources of 
variability are known about in advance, the study can be designed to specifically 
account for them, such as through blocking.

Note: The SAS program of Example 8.1 would be modified to include these instructions:

ODS GRAPHICS ON;
PROC GLM DATA = VISION PLOTS(UNPACK)=(DIAGNOSTICS);
  CLASS RACE GENDER;
  MODEL ACUITY = RACE|GENDER;
ODS GRAPHICS OFF;

The R program of Example 8.1 would be modified to include these instructions to 
calculate and plot residuals and fitted values:
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yhats = predict(racegenderint.aov)
studentresids = rstudent(racegenderint.aov)
plot(yhats,studentresids,xlab="Predicted visual acuity",
   ylab="Visual acuity Studentized residuals",cex=2)
abline(h=2)
abline(h=-2)
m = mean(studentresids)
std = sqrt(var(studentresids))
hist(studentresids, xlab="Visual acuity Studentized 
   residuals", cex=2, prob=TRUE, main=" ",ylim=c(0,0.4))
curve(dnorm(x, mean=m, sd=std), lwd=2, add=TRUE, 
   yaxt="n")
qqnorm(studentresids, xlab="Quantiles of the normal  
   distribution", ylab="Quantiles of visual acuity  
   Studentized residuals", main=" ", cex=2)
qqline(studentresids)

Exercises

Electronic copies of some data files are available at www.wiley.com/go/Le/
Biostatistics.

8.1	 The mutans streptococci (MS) are bacteria (all related to Streptococcus mutans) 
that can cause tooth decay. 167 persons with gum disease (elevated oral MS 
levels) were recruited into a study with three treatment arms: chewing gum with 
an active drug, chewing gum with no active drug, and no gum. Randomization to 
the three groups was 1:1:1 (equal allocation) within blocks defined by current 
smoker status. Participants in the gum groups were asked to chew the gum three 
times daily for a minimum of 5 min each time and to carry out their usual oral 
hygiene (tooth brushing, mouthwash, etc.). Participants in the group without 
gum were asked to carry out their usual oral hygiene. During the 14 days prior to 
randomization, subjects rinsed their mouths twice daily with a 0.12 % chlorhexi-
dine gluconate mouthrinse. They were asked to follow their assigned treatment 
for three weeks. The outcome [“colony‐forming units” (CFU)/ml, a count of 
blotches on a standard sized petri dish after standard preparation] was recorded at 
randomization and after 1, 2, and 3 weeks. The primary outcome was the CFU 
ratio, week 3 divided by week 0. The question of interest is whether the active 
gum treatment caused a decline in the level of oral MS. There are some missing 
CFU data, corresponding to participants who missed visits.

(a)	 Examine the distribution of the primary outcome, CFU at week 3 divided 
by CFU at week 0. In your judgement, is it sufficiently close to normally 
distributed to consider using an ANOVA model? (We will revisit these data 
in Chapter 11, where we consider models for count data.)



292� ANALYSIS OF VARIANCE

(b)	 Make a means plot (as in Figure 8.2). Just from visual inspection, do there 
appear to be any differences between treatment groups? Now make the 
same plot but separately for each block. Do the treatment group differences 
appear to be similar between the two blocks? (If so, then we may not expect 
to see a significant block by treatment interaction.)

(c)	 Fit a two‐way ANOVA with fixed effects for treatment group, for blocks, 
and for their interaction. Justify whether treating blocks as fixed is 
appropriate.

(d)	 Test the block by treatment interaction and justify whether or not it can be 
removed from the model. Remove the interaction, and re‐fit the model 
without it, if you feel it is appropriate to do so.

(e)	 Using your final model from (d), prepare diagnostic plots (as in Figures 8.3, 
8.4, and 8.5) to assess whether the data fit the two‐way ANOVA model 
assumptions. For each plot, describe the conclusions you are drawing 
about the assumptions based on that plot. Also justify whether or not you 
feel the independence assumption is likely to be satisfied by these data.

(f)	 Using your final model from (d), compute the least squares means for the 
three treatment groups. Which groups are significantly different from 
which other groups? Use a multiple comparisons adjustment procedure to 
control for type I error inflation.

(g)	 Write a brief summary of the study’s conclusions.

8.2	 A study of residential 60‐Hz magnetic field levels was conducted in the Midwest. 
51 homes in the Twin Cities (Minnesota, N = 24) and Detroit (Michigan, N = 27) 
were selected to participate, based on a random digit dial sampling scheme. 
Each home was visited seven times, approximately every two months. At each 
visit, an electro-magnetic field (EMF) data‐logging meter (Emdex‐C) was used 
to collect EMF levels over a 24 hour period. 24‐hour measurements are taken 
from spot measurements every 30 seconds. An Emdex‐C was placed in a child’s 
bedroom under the bed and in the kitchen of each home. The response of interest 
is the (base 10) log‐transformed 24‐hour mean EMF measurement, multiplied 
by 100. The wiring configuration of each house was also recorded and is coded 
on the four point Wertheimer–Leeper scale: 1 = very low current configuration 
(VLCC), 2 = ordinary low current configuration (OLCC), 3 = ordinary high 
current configuration (OHCC), and 4 = very high current configuration (VHCC). 
The researchers want to quantify how the response differs across the room types 
(bedroom, kitchen) and wiring configurations. Any differences between the two 
states are not of direct interest.

	 For this exercise, use the baseline data only (visit = 1).

(a)	 Make a means plot (as in Figure  8.2) with horizontal axis for wiring 
configuration and separate lines for kitchen and bedroom. You can do this 
in SAS using PROC GLM PLOTS=(MEANPLOT); when you fit a two‐
way ANOVA with wiring configuration, room type, and their interaction. 
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You can do this in R using the function interaction.plot. Just from visual 
inspection, do there appear to be any differences between room types? Do 
the room type differences appear to be consistent across the levels of wiring 
configuation? (If so, we may not expect to see a significant room by wiring 
interaction.)

(b)	 Now make the same plots as in (a) but separately for each state. Do the 
patterns in EMF across room types and wiring configuartions appear to be 
similar between the two states? (If so, we may not expect to see a significant 
room by wiring by state interaction.) Be cautious in reading too much into 
what you see: there are relatively few observations per group when we get 
down to all combinations of the three factors: room type, wiring configura-
tion, and state.

(c)	 Fit a three‐way ANOVA with fixed effects for room type, wiring configu-
ration, state, and all interactions. Justify whether or not treating each of 
these factors as fixed is appropriate.

(d)	 Prepare diagnostic plots (as in Figures 8.3, 8.4, and 8.5) to assess whether 
these visit‐1 data fit the three‐way ANOVA model assumptions. For each 
plot, describe the conclusions you are drawing about the assumptions 
based on that plot. Also justify whether or not you feel the independence 
assumption is likely to be satisfied by these data. (Hint: We will revisit 
these data in Chapter 12.)

8.3	 Consider the electromagnetic field data of Exercise 8.2. Again use the baseline 
data only (visit = 1).

(a)	 Fit a three‐way ANOVA with fixed effects for room type, wiring configu-
ration, state, and all interactions.

(b)	 Now fit another three‐way ANOVA with fixed effects for room type, wir-
ing configuration, state, and only the interaction of room with wiring. 
Carry out a general linear F‐test to compare this model with the model of 
(a). What is your conclusion: is it appropriate to drop all those interactions 
with state?

(c)	 Now fit another three‐way ANOVA with fixed effects for room type, wir-
ing configuration, and state (no interactions at all). Carry out a general 
linear F‐test to compare this model with the model of (a). What is your 
conclusion: is it appropriate to drop all the interactions?

(d)	 Using your preferred model [choose from (a), (b), and (c)], compute the 
least squares means for each level of each of the three factors. Within 
factor, which groups are significantly different from which other groups? 
Use a multiple comparisons adjustment procedure to control for type I 
error inflation for each factor.

(e)	 Write a brief summary of the study’s conclusions about how the effects 
of room type, wiring configuration, and state are associated with EMF 
levels.
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8.4	 A mold was grown in each of 12 culture dishes under three moisture levels for 
the environment in which they were grown (four plates at each moisture level); 
other environmental conditions, specifically temperature, light, and nutrients, 
were held constant across all dishes. Growth (measured as the diameter from 
starting edge to farthest edge of the mold within the dish) was measured every 
24 hours for 9 days. The diameter was measured twice each time, across the 
dish at each of two reference marks on the rim of the dish, 90 degrees apart 
(so the two measurements were taken at right angles to each other). We will 
refer to these two measurements as “replicate” measurements. For this exercise, 
use the last observation time only (week = 9).

(a)	 Make a means plot (as in Figure 8.2) with horizontal axis for moisture 
level and separate lines for the two replicates. You can do this in SAS 
using PROC GLM PLOTS=(MEANPLOT); when you fit a two‐way 
ANOVA with moisture level, replicate, and their interaction. You can do 
this in R using the function interaction.plot. Just from visual inspection, 
do there appear to be any differences between the moisture levels? Do the 
moisture level differences appear to be consistent across the two repli-
cates? (If so, we may not expect to see a significant moisture by replicate 
interaction.)

(b)	 Fit a two‐way ANOVA with fixed effects for moisture, replicate, and their 
interaction. Justify whether or not treating each of these factors as fixed is 
appropriate.

(c)	 Fit another two‐way ANOVA with fixed effects for moisture and replicate, 
no interaction. Justify whether or not removing the interaction from the 
model is appropriate.

(d)	 Using your preferred model [choose from (b) and (c)], compute the least 
squares means for each level of moisture. Which groups are significantly 
different from which other groups? Use a multiple comparisons adjustment 
procedure to control for type I error inflation.

(e)	 Based on your model in (d), prepare diagnostic plots (as in Figures 8.3, 8.4, 
and 8.5) to assess whether these week 9 data fit the two‐way ANOVA model 
assumptions. For each plot, describe the conclusions you are drawing about 
the assumptions based on that plot. Also justify whether or not you feel the 
independence assumption is likely to be satisfied by these data.

(f)	 Write a brief summary of the study’s conclusions about how mold quantity 
differs by moisture level and replicate.

8.5	 Consider the mold data of Exercise 8.4. Again use the last observation only 
(week = 9).

(a)	 Fit a two‐way ANOVA with a fixed effect for moisture, and random effects 
for replicate and the moisture by replicate interaction (as in Example 8.4). 
What is a justification for treating replicate as random? Determine, and 
then comment on, the sizes of the three variances: for replicate, for replicate 
by moisture interaction, and for error.
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(b)	 Remove the random replicate by moisture interaction and re-fit the model. 
Compute the least squares means for each level of moisture. How do the 
estimated means, and standard errors of the means, from this model 
compare to those from the model fit in Exercise 8.4(c)?

(c)	 Write a brief summary of the study’s conclusions about how mold quantity 
differs by moisture level.

8.6	 Magnetic resonance spectroscopy (MRS) is a magnetic resonance imaging 
technique that quantifies levels of certain biochemicals. Spinocerebellar ataxia 
(SCA) is a genetically linked disease characterized by progressive degeneration of 
muscle control. MRS has been used to quantify changes in the brain of people with 
SCA. A mouse model of SCA has also been developed, in which the SCA can be 
“turned off” by giving a drug that blocks the genetic cause of the SCA. In this 
experiment, 24 SCA mice were randomly assigned 1:1 (equal allocation) to two 
groups: drug and placebo. 12 control mice (same background mouse strain but 
without the genetic cause of the SCA) were also studied. All mice had MRS of the 
brain at week 12 and at week 24 after birth. Several biochemicals were quantified, 
including total creatine (creatine plus phosphocreatine); higher creatine may 
reflect changes in energy metabolism. Mouse sex was also recorded. 

	 For this exercise, use the week 24 measurements only.

(a)	 Make a means plot (as in Figure 8.2) with horizontal axis for the three 
groups and separate lines for the two sexes. You can do this in SAS using 
PROC GLM PLOTS=(MEANPLOT); when you fit a two‐way ANOVA 
with group, sex, and their interaction. You can do this in R using the 
function interaction.plot. Just from visual inspection, do there appear to 
be any differences between the groups? Do the group differences appear to 
be consistent across the two sexes? (If so, we may not expect to see a 
significant group by sex interaction.)

(b)	 Fit a two‐way ANOVA with fixed effects for group, sex, and their interaction. 
Justify whether or not treating each of these factors as fixed is appropriate.

(c)	 Fit another two‐way ANOVA with fixed effects for group and sex, no interaction. 
Justify whether or not removing the interaction from the model is appropriate.

(d)	 Using your preferred model [choose from (b) and (c)], compute the least 
squares means for each group. Which groups are significantly different 
from which other groups? Use a multiple comparisons adjustment 
procedure to control for type I error inflation.

(e)	 Based on your model in (d), prepare diagnostic plots (as in Figures 8.3, 8.4, 
and 8.5) to assess whether these week 24 data fit the two‐way ANOVA 
model assumptions. For each plot, describe the conclusions you are drawing 
about the assumptions based on that plot. Also justify whether or not you 
feel the independence assumption is likely to be satisfied by these data.

(f)	 Write a brief summary of the study’s conclusions about how creatine 
differs by group and sex.
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8.7	 Consider the magnetic resonance spectroscopy data of Exercise 8.6. Here we 
will use all the data: both week 12 and week 24.

(a)	 Make a means plot (as in Figure 8.2) with horizontal axis for week and sep-
arate lines for the groups. You can do this in SAS using PROC GLM 
PLOTS=(MEANPLOT); when you fit a two‐way ANOVA with week, group, 
and their interaction. You can do this in R using the function interaction.plot. 
Just from visual inspection, do there appear to be any differences between 
groups in the trajectories across the weeks? (If there are no apparent differ-
ences, we may not expect to see a significant group by week interaction.)

(b)	 Fit a three‐way ANOVA with fixed effects for group, week, sex, and all 
interactions. Justify whether or not treating each of these factors as fixed is 
appropriate.

(c)	 Prepare diagnostic plots (as in Figures 8.3, 8.4, and 8.5) to assess whether 
these data fit the three‐way ANOVA model assumptions. For each plot, 
describe the conclusions you are drawing about the assumptions based on 
that plot. Also justify whether or not you feel the independence assumption 
is likely to be satisfied by these data. (Hint: We will revisit these data in 
Chapter 12.)

(d)	 Write a brief summary of the study’s conclusions about how creatine 
differs by group and week.
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9
Regression Analysis

Methods discussed in Chapters 6, 7, and 8 result in tests of significance; they 
provide analyses of data where a single measurement was made on each element of 
a sample, and the study may involve one or two, or several, samples. If the measurement 
made is binary or categorical, we are often concerned with a comparison of propor-
tions, the topic of Chapter 6. If the measurement made is continuous, we are often 
concerned with a comparison of means, the topic of Chapters 7 and 8. The main 
focus of those chapters was the difference between populations or subpopulations. In 
many other studies, however, the purpose of the research is to assess relationships 
among a set of variables. For example, the sample consists of pairs of values, say a 
mother’s weight and her newborn’s weight measured from each of 50 sets of mother 
and baby, and the research objective is concerned with the association between these 
weights. Regression analysis is a technique for investigating relationships between 
variables; it can be used both for the assessment of association as well as for prediction. 
Consider, for example, an analysis of whether or not a woman’s age is predictive of 
her systolic blood pressure. As another example, the research question could be 
whether or not a leukemia patient’s white blood count is predictive of his survival 
time. Research designs may be classified as experimental or observational. Regression 
analyses are applicable to both types; yet the confidence one has in the results of a 
study can vary with the research type. In most cases, one variable is usually taken to 
be the response or dependent variable, that is, a variable to be predicted from or 
explained by other variables. The other variables are called predictors, or explana-
tory variables, or independent variables. The examples above, and others, show 
a  wide range of applications in which the dependent variable is a continuous 
measurement. Such a variable is often assumed to be normally distributed and a 
model is formulated to express the mean of this normal distribution as a function of 
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potential independent variables under investigation. The dependent variable is 
denoted by Y, and the study often involves a number of risk factors or predictor 
variables: X

1
, X

2
, …, X

k
.

9.1 SI MPLE REGRESSION ANALYSIS

In this section we will discuss the basic ideas of simple regression analysis when 
only one predictor or independent variable is available for predicting the response 
of interest. In the interpretation of the primary parameter of the model, we will 
discuss two scales of measurement, discrete and continuous, even though in 
practical applications, the independent variable under investigation is often on a 
continuous scale.

9.1.1  Correlation and Regression

A variable represents a characteristic or a class of measurement; it takes on different 
values on different subjects, animals or persons; examples include weight, height, 
race, sex, SBP, and so on. There are “observed variables” (height, weight, etc, … 
each takes on different values on different subjects or persons) and there are “calcu-
lated variables” (sample mean, sample proportion, etc, … each is a “statistic” and 
each takes on different values on different samples). The standard deviation of a 
calculated variable is called the standard error of that variable or statistic. A “vari-
able” – sample mean, sample standard deviation, and so on – is like a “function”; 
when you apply it to a target element in its domain, the result is a “number.” For 
example, “height” is a variable and “the height of Mrs. X” is 135 lbs; it is a 
number.

The observed values of a variable, also called “observations,” form items of a data 
set; depending on the scale of measurement, we have different types of data. There 
are binary or dichotomous outcomes, for example sex/gender (male/female), mor-
bidity (sick/well). There are categorical or polytomous outcomes, for example race 
(white/black/Hispanics/Asian). There are continuous outcomes, for example blood 
pressure, cholesterol level; of course, you can dichotomize or categorize a contin-
uous outcome to make it binary or categorical – but some information is lost in the 
process. In many important investigations, we may have two measurements made on 
each subject, and the research objective is concerned not with each of them but with 
the relationship between them. This chapter and this section deal with the case when 
both variables are measured on the continuous scale. Let us first consider a few very 
simple examples:

1.	 Height and weight

2.	 Age and blood pressure

3.	 Daily fat intake and cholesterol level

4.	 Daily salt intake and blood pressure
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5.	 Weight gain during pregnancy and birth weight

6.	 Time to engraftment and time to infection in a bone marrow transplant

7.	 White blood count and a leukemia patient’s survival time from diagnosis.

Suppose we have two measurements made on each subject, one is the response 
variable y, the other is the predictor x. There are two types of analyses:

a)  Correlation is concerned with the association between them, measuring the 
strength of the relationship. For example, is a woman’s age and her SBP 
related? How strong is the relationship?

b)  Regression predicts a response from the predictor. For example, is a woman’s 
age predictive of her SBP? Or is a woman’s weight gain during pregnancy pre-
dictive of her newborn’s birth weight?

Example 9.1
Table 9.1 gives the “Net Food Supply” (x, in number of calories per person per day) 
and the “Infant Mortality Rate” (y = IMR, number of infant deaths per 1000 live 
births). Data are listed for 22 selected countries (each country is a unit of observa-
tion); data were obtained before World War I (current values of IMR are much lower; 
for USA, the current value is about 11).

Are x and y related? Maybe it is just a problem of correlation.

Example 9.2
Trace metals in drinking water affect the flavor and may pose a health hazard. 
Table 9.2 shows the concentration of zinc (in mg/l) for both surface (x) and bottom 
(y) water at six river locations. Can we predict bottom water concentration (which is 
harder to measure) from surface water concentration (which is easier to measure) so 
that in a continuous monitoring system we can only measure from the surface water? 
Regression may be needed here.

Table 9.1  Net food supply (x, calories per person per day) and infant mortality rate 
(y = IMR, infant deaths per 1000 live births) for 22 selected countries prior to World War I.

Country x y Country x y

Argentina 2730 98.8 Iceland 3160 42.4
Australia 3300 39.1 India 1970 161.6
Austria 2990 87.4 Ireland 3390 69.6
Belgium 3000 83.1 Italy 2510 102.7
Burma 1080 202.1 Japan 2180 60.6
Canada 3070 67.4 New Zealand 3260 32.2
Chile 2240 240.1 Netherlands 3010 37.4
Cuba 2610 116.8 Sweden 3210 43.3
Egypt 2450 162.9 UK 3100 55.3
France 2880 66.1 USA 3150 53.2
Germany 2960 63.3 Uruguay 2380 94.1
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Suppose we have two continuous measurements made on each subject, one is the 
response variable y, the other is the predictor x. There are two types of analyses:

1.	 Correlation is concerned with the association between them, measuring the 
strength of the relationship; the aim is to determine if they are correlated – the 
roles of x and y are exchangeable.

2.	 Regression: The aim is to predict a response from the predictor.

In regression analysis, each has a well‐defined role; we will predict “response y” 
from a given value of “predictor x.” In correlation analysis, the roles of “x” and 
“y” are exchangeable; in the coefficient of correlation “r” the calculation is 
symmetric with respect to x and y: we get the same value for r regardless of which 
variable is labeled as x.

The concept of “correlation” is very different from “similarity.” In “correlation,” 
we are looking to see if larger values of one (say, x) are paired with larger values of the 
other (y) – or if larger values of one are paired with smaller values of the other. We can 
think of two examples: (1) The correlation between “height” and “weight” (of a 
person); and (2) the “correlation” between the heights of identical twins. In the 
second, it aims at “similarity.” We may use the term “correlation” when there are 
two types of correlation here; the second one is referred to as “intra‐correlation” or 
“intra‐class correlation” (i.e., within “one variable”). Our target in this chapter is 
the first type of correlation (like between height and weight); it is “inter‐correlation” 
(i.e., between two variables).

In Section 2.4 of Chapter 2, we introduced the coefficient of correlation, a measure 
of the strength of a relationship:

	

r
x x y y

x x y y
2 2

.

	

The simple term “correlation” (or Pearson’s or cross‐product) is reserved for (inter‐) 
correlation; that is between two variables. Other types of correlation have to be 
clearly spelled out or labeled; for example, “intra‐class correlation” or “Spearman’s 

Table 9.2  The concentration of zinc (in mg/l) for 
both surface and bottom water at six river locations.

Location 
number Bottom Surface

1 0.430 0.415
2 0.266 0.238
3 0.567 0.390
4 0.531 0.410
5 0.707 0.605
6 0.716 0.609
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rho,” or “Kendall’s tau.” Another very useful formula is to express the coefficient of 
correlation r as the “Average Product” in “standard units” – where s

x
 and s

y
 are the 

(sample) standard deviations of x and y, respectively:

	

r
n

x x

s

y y

sx y

1

1
.

	

The following is an important and very interesting result of that expression:

	 r cx d ay b r x y, , 	

because u = cx +   d is the same as x expressed in standard units and v = ay + b is the 
same as y expressed in standard units. For example, if x is temperature and y is the 
weight/amount of food we consume, then it does not matter if: (1) x is expressed as 
degrees of Celsius or Fahrenheit, and/or (2) y is measured in kilograms or pounds.

You normally like to proceed to performing prediction only if the association is 
strong enough. However, in practice, “correlation analysis” only covers association 
whereas “regression analysis” covers both association and prediction simultaneously – 
as seen in the following sections.

9.1.2 S imple Linear Regression Model

Choosing an appropriate model and analytical technique depends on the type of 
variable under investigation. In a variety of applications, the dependent variable of 
interest is a continuous variable that we can assume may, perhaps after an appropriate 
transformation, be normally distributed. The regression model describes the mean of 
that normally distributed dependent variable Y as a function of the predictor or 
independent variable X, X = x. The model describes how possible values of Y are 
distributed given a fixed value “x” of X:

	 Y xi i i0 1 	

where

a)  x
i
 is a given fixed value of the independent variable X and Y

i
 is the (random) 

value of the response or dependent variable Y from the ith subject,

b)  β
0
 and β

1
 are the two fixed but unknown parameters; (β

0
 + β

1
x

i
) is the mean of 

Y
i
 as stipulated by the model,

c)  ε
i
 is a random error term which is distributed as normal with mean zero and 

variance σ2; σ2 is also the variance of Y
i
 because (β

0
 + β

1
x

i
) is fixed.

The above model is referred to as the simple linear regression model. It is simple 
because it contains only one independent variable. It is linear because the independent 
variable appears only in the first power; if we graph the mean of Y versus X, the graph 
is a straight line with intercept β

0
 and slope β

1
.
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9.1.3 S catter Diagram

As mentioned above, and stipulated by the simple linear regression model, if we graph 
the mean of Y versus X, the graph is a straight line. But that is the line for the means of 
Y; at each level of X, an observed value of Y may exceed or fall short of its mean. 
Therefore, when we graph the observed value of Y versus X, the points do not fall per-
fectly on any line. This is an important characteristic for statistical relationships, as 
pointed out in Chapter 2. If we let each pair of numbers (x, y) be represented by a dot 
in a diagram with the xs on the horizontal axis, we have a scatter diagram, as seen in 
Chapter 2 and again in the next few examples. The scatter diagram is a useful diag-
nostic tool for checking the validity of features of the simple linear regression model. 
For example, if the dots fall around a curve, not a straight line, the linearity assumption 
may be violated. In addition, the model stipulates that, for each level of X, the normal 
distribution for Y has constant variance not depending on the value of X. That would 
lead to a scatter diagram with dots spreading vertically out around the line evenly 
across levels of X. If that is not the case, an appropriate transformation, such as taking 
the logarithm of Y or X, could improve and bring the data closer to fitting the model.

9.1.4  Meaning of Regression Parameters

The parameters β
0
 and β

1
 are called regression coefficients. The parameter β

0
 is the 

intercept of the regression line. If the scope of the model includes X = 0, β
0
 gives the 

mean of Y when X = 0; when the scope of the model does not cover X = 0, β
0
 does not 

have any particular meaning as a separate term in the regression model. As for the 
meaning of β

1
, our more important parameter, this can be seen as follows. We first 

consider the case of a binary dependent variable with the “dummy variable” coding

	
Xi

0

1

if the patient is not exposed

if the patient is exposed 	

Here the term exposed may refer to a risk factor such as smoking or a patient’s 
characteristic such as race (white/nonwhite) or gender (male/female). It can be seen that:

1.	 For a nonexposed subject (i.e., X = 0)

	 y 0 .	

2.	 For an exposed subject (i.e., X = 1)

	 y 0 1.	

Hence, β
1
 represents the increase (or decrease, if β

1
 is negative) in the mean of Y 

associated with the exposure. Similarly, we have for a continuous covariate X and any 
value x of X:

1.	 When X = x,

	 y x0 1 .	
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2.	 Whereas if X = x + 1,

	 y x0 1 1 .	

It can be seen that by taking the difference, β
1
 represents the increase (or decrease, 

if β
1
 is negative) in the mean of Y associated with a 1‐unit higher value of X, X = x + 

1 versus X = x. For an m‐unit higher value of X, say X = x + m versus X = x, the 
corresponding increase (or decrease) in the mean of Y is mβ

1
.

9.1.5 E stimation of Parameters and Prediction

To find good estimates of the unknown parameters β
0
 and β

1
, statisticians use a 

method called least squares, which is described as follows. For each subject or pair 
of values (X

i
, Y

i
), we consider the deviation from the observed value Y

i
 to its expected 

value, the mean β
0
 + β

1
X

i
,

	 Y Xi i i0 1 .	

In particular, the method of least squares requires that we consider the sum of squared 
deviations:

	
S Y X

i

n

i i
1

0 1

2
.
	

According to the method of least squares, the good estimates of β
0
 and β

1
 are values 

b
0
 and b

1
, respectively, which minimize the sum S. The results are

	

b
xy x y n

x x n
b y b x

1 2 2

0 1

/

/
. 	

The calculations are very tedious and, in Section 9.3, we will show you how to obtain 
these results by Excel. Given the estimates b

0
 and b

1
 obtained from the sample, we 

estimate the mean response by

	
ˆ .Y b b X0 1 	

This is our predicted value for (the mean of) Y at a given level or value of X.

Example 9.3
In Table 9.3, the first two columns give the values for the birth weight (x, in ounces) 
and the increase in weight between days 70 and 100 of life, expressed as a percentage 
of the birth weight (y) for 12 infants. We first let each pair of numbers (x, y) be rep-
resented by a dot in a diagram with the xs on the horizontal axis, and we have the 
scatter diagram shown in Figure 9.1. The dots do not fall perfectly on a straight line, 
but scatter around a line, very typical for statistical relationships. However, a straight 
line seems to fit very well. Generally, the 12 dots go from upper left to lower right, 
and we have a negative association.
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As shown in Example 2.8, we obtained a Pearson’s correlation coefficient of r = 
−0.946.
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Figure 9.1  Graphical display for data in Example 9.3.

Table 9.3

x y x2 y2 xy

112 63 12 544 3969 7056
111 66 12 321 4356 7326
107 72 11 449 5184 7704
119 52 14 161 2704 6188
92 75 8464 5625 6900
80 118 6400 13 924 9440
81 120 6561 14 400 9720
84 114 7056 12 996 9576
118 42 13 924 1764 4956
106 72 11 236 5184 7632
103 90 10 609 8100 9270
94 91 8836 8281 8554

Total	 1207 975 123 561 86 487 94 322
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Applying the formulas, we obtain estimates for the slope and intercept as follows:

	

b

x

1 2

94322 1207 975 12

123516 1207 12
1 74

1207

12
100

/

/
.

..

.

. . .
. .

6

975

12
81 3

81 3 1 74 100 6
256 3

0

y

b
	

Similar to the coefficient of correlation r, the slope is positive for a positive association 
and negative for a negative association; in this example both the slope (−1.74) and the 
coefficient of correlation (−0.946) are negative. The estimates of the slope and the inter-
cept help us predict values of the dependent variable Y (the response) if we know the 
value of the independent variable X (the predictor) – even for the subject in the target 
population but not included in the sample. For example, if the birth weight is 95 oz, it is 
predicted that the increase between days 70 and 100 of life would be

	

ˆ . .
. % .

y 256 3 1 74 95
90 1 of birth weight 	

Note: An SAS program would include these instructions:

DATA BIRTHWEIGHT;
INPUT WEIGHT GAIN;

DATALINES;
112 63
111 66
...
103 90
94 91
;
PROC REG DATA = BIRTHWEIGHT;
MODEL GAIN = WEIGHT;
PLOT GAIN*WEIGHT;

for which we will get the analysis as well as the scatter diagram.
An R program would include the following instructions:

weight = c(112,111,107,119,92,80,81,84,118,106,103,94)
gain = c(63,66,72,52,75,118,120,114,42,72,90,91)
slr.fit = lm(gain ~ weight)
summary(slr.fit)
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anova(slr.fit)
plot(weight,gain,cex=0.8,xlab=”Birth weight (oz)”,
  ylab=”Increase in weight between 70th and 100th days  
  of life (percent of birth weight)”)       
abline(slr.fit)

Example 9.4
In Table 9.4 the first two columns give the values for age (x, in years) and systolic 
blood pressure (y, in mmHg) for 15 women. As shown in Example 2.9, we obtained 
a Pearson’s correlation coefficient of r = 0.566, indicating a moderately positive 
association, confirming the observation from the graph (Figure 9.2).

Applying the formulas, we obtain estimates for the slope and intercept as follows:

	

b

x

y

1 2

146260 984 2193 15

67954 984 15
0 71
984

15
65 6

/

/
.

.
22193

15
146 2
146 2 0 71 65 6
99 6

0

.

. . .
. .

b

	

Table 9.4

x y x2 y2 xy

42 130 1764 16 900 5460
46 115 2116 13 225 5290
42 148 1764 21 904 6216
71 100 5041 10 000 7100
80 156 6400 24 336 12 480
74 162 5476 26 224 11 988
70 151 4900 22 801 10 570
80 156 6400 24 336 12 480
85 162 7225 26 224 13 770
72 158 5184 24 964 11 376
64 155 4096 24 025 9920
81 160 6561 25 600 12 960
41 125 1681 15 625 5125
61 150 3721 22 500 9150
75 165 5625 27 225 12 375

Total	 984 2193 67 954 325 889 146 260
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The estimates of the slope and the intercept help us predict values of the dependent 
variable Y if we know the value of the independent variable X (the predictor) – even 
for the subject not included in the sample. For example, for a 50 year old woman in the 
same target population, it is predicted that her systolic blood pressure would be about:

	

ŷ b b x0 1+
99.6 + (0.71)(50)
135.1 mm Hg. 	

We can let each pair of numbers (x,y) be represented by a dot in a diagram with the xs 
on the horizontal axis, and we have the scatter diagram – as in Chapter 2. Again the 
dots do not fall perfectly on a straight line, but rather scatter around one, very typical 
for statistical relationships. In this example, a straight line still seems to fit; however, 
the dots spread more and cluster less around the line indicating a weaker association. 
The graph of the regression line can also be imposed on the scatter diagram as shown 
in Figure 9.2. The positive Pearson’s correlation coefficient (r = 0.566) confirms the 
positive slope (0.71) and the direction of the line in the graph.

9.1.6  Testing for Independence

In addition to being able to predict the (mean) response at various levels of the independent 
variable, regression data can also be used to test for the independence between the two 
variables under investigation. Such a statistical test can be viewed or approached in 
two ways: through the coefficient of correlation or through the slope; the coefficient of 
correlation r and the slope b

1
 have the same numerator, if one is zero so is the other.

170

160

150

140

130

Sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e 

(m
m

H
g)

120

110

100

40 45 50 55 60 65

Age (years)

70 75 80 85

Figure 9.2  Graphical display for data in Example 9.4.
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1.	 The correlation coefficient r measures the strength of the relationship between 
two variables. It is an estimate of an unknown population correlation coeffi-
cient ρ (rho), the same way the sample mean x  is used as an estimate of an 
unknown population mean μ. We are usually interested in knowing if we may 
conclude that ρ ≠ 0, that is, that the two variables under investigation are really 
correlated. The test statistic is

	
t r

n

r

2

1 2
.
	

The procedure is often performed as two‐sided, that is,

	 HA : 0	

and it is a t test with n − 2 degrees of freedom; rejection regions and p-values 
are calculated in the same way as the t tests used in the comparisons of 
population means in Chapter 7.

2.	 The role of the slope β
1
 can be seen as follows. Since the regression model 

describes the mean of the dependent variable Y as a function of the predictor or 
independent variable X,

	 y x0 1 	

Y and X would be independent if β
1
 = 0. The test statistic for testing

	 H0 1 0: 	

can be constructed similar to the method for one‐sample test statistics in Sections 
6.1 and 7.1. In that process the observed/estimated value b

1
 is converted to a 

standard unit: the number of standard errors away from the hypothesized value 
of zero. The formula for a standard error of b

1
 is rather complicated; fortunately, 

the resulting test is identical to the correlation t test above. Whenever needed, 
for example in the computation of confidence intervals for the slope, we can 
always obtain the numerical value of its standard error from computer output.

When the t test for independence above is significant, the value of X has a real effect 
on the distribution of Y. To be more precise, the square of the correlation coefficient, 
r2, represents the proportion of the variability in Y accounted for by X. For example, 
r2 = 0.25 indicates that the total variation in Y is reduced by 25% by the use of information 
about X. In other words, if we have a sample of the same size, with all n subjects having 
the same X value, the variation in Y (say, measured by its variance) is 25% less than the 
variation in Y in the current sample. It is interesting to note that r = 0.5 would give an 
impression of greater association between X and Y, but a 25% reduction in variation 
would not. The parameter r2 is called the coefficient of determination, an index with a 
clearer operational interpretation than the coefficient of correlation r.

Example 9.5
For the birth‐weight problem of Examples 2.8 and 9.3, we have

	
n
r

12
0 946. 	
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leading to

	

t 0 946
10

1 0 946

9 23

2.
.

. . 	

At α = 0.05 and df = 10, the tabulated t coefficient is 2.228, indicating that the null 
hypothesis of independence should be rejected (t = −9.23 < −2.228). In this case, the 
weight on day 70 (X) would account for

	 r2 0 895. 	

or 89.5% of the variation in growth rates between day 70 and day 100.

Example 9.6
For the blood pressure problem of Examples 2.9 and 9.4, we have

	
n
r

15
0 566. 	

leading to

	

t 0 566
13

1 0 566

2 475

2.
.

. . 	

At α = 0.05 and df = 13, the tabulated t value is 2.16. Since

	 t 2 16. 	

we conclude that the null hypothesis of independence should be rejected. However, 
a woman’s age (X) would account for only

	 r2 0 320. 	

or 32% of the variation among systolic blood pressures.

9.1.7  Analysis of Variance Approach

The variation in Y is conventionally measured in terms of the deviations ( )Y Yi ; the 
total variation, denoted by SST, is the sum of squared deviations:

	 SST Y Yi

2
.	

For example, SST = 0 when all observations are the same. SST is the numerator 
of  the sample variance of Y. The larger the SST, the greater the variation among 
Y values.
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When we use the regression approach, the variation in Y is decomposed into two 
components:

	
Y Y Y Y Y Yi i i i

ˆ ˆ .
	

1.	 The first term reflects the variation around the regression line; the part that 
cannot be explained by the regression itself with the sum of squared deviations:

	
SSE Y Yi î

2

	

called the error sum of squares.

2.	 The difference between the two sums of squares,

	

SSR SST SSE

Ŷ Yi

2

	

is called the regression sum of squares. SSR may be considered a measure of 
the variation in Y associated with the regression line. In fact, we can express 
the coefficient of determination as

	
r2 SSR

SST
.
	

Corresponding to the partitioning of the total sum of squares SST, there is parti-
tioning of the associated degrees of freedom (df). We have n − 1 df associated with 
SST, the denominator of the sample variance of Y; SSR has 1 df representing the 
slope, the remaining n − 2 are associated with SSE. These results lead to the usual 
presentation of regression analysis by most computer programs:

1.	 The error mean square,

	
MSE

SSE

n 2 	

serves as an estimate of the constant variance σ2 as stipulated by the regression 
model.

2.	 The breakdowns of the total sum of squares and its associated degree of free-
dom are displayed in the form of an analysis of variance (ANOVA) table 
(Table 9.5). The test statistic F for the analysis of variance approach is a ratio 
of  MSR to MSE. A value near 1 supports the null hypothesis of independence. 
In fact, we have

	 F t2	

where t is the test statistic for testing whether or not β
1
 = 0; the F test is 

equivalent to the two‐sided t test when referred to the F table in Appendix E 
with (1, n − 2) df.
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Example 9.7
For the birth‐weight problem of Examples 9.3 and 9.5, we have the analysis of variance 
shown in Table 9.6.

Example 9.8
For the blood pressure problem of Examples 9.4 and 9.6, we have the analysis of 
variance shown in Table 9.7.

9.1.8 S ome Biomedical Applications

In this section, we cover a number of possible applications of simple linear regres-
sion. For each application, we explain briefly the content science and how simple 
linear regression is applied to solve the problem.

(1)  Effect Modification
Unlike the response variable, we treat values of the predictor or covariate as “fixed” – 
not random – and with no restriction on its measurement scale. Examples of binary 
covariates include treatment (yes/no), gender, and presence or absence of certain 
co‐morbidities; polytomous or categorical covariates include race, and different 
grades of symptoms. Continuous covariates include patient age, blood pressure, 
and so on. In some applications, data are classified into groups, and within each 

Table 9.5

Source of 
variation SS df MS F Statistic p Value

Regression SSR 1 MSR = SSR/1 F = MSR/MSE p
Error SSE n − 2 MSE = SSE/(n − 2)

Total SST n − 1

Table 9.6

Source of variation SS df MS F Statistic p Value

Regression 6508.43 1 6508.43 85.657 0.0001
Error 759.82 10 75.98

Total 7268.25 11

Table 9.7

Source of variation SS df MS F Statistic p Value

Regression 1691.2 1 1691.20 6.071 0.0285
Error 3621.2 13 278.55

Total 5312.4 14
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group a separate regression model of Y on X may be postulated. For example, the 
regression of “forced expiratory volume” (Y) on age (X) may be considered sepa-
rately for men in different occupational groups because different occupations may 
have different effects on the lung health of workers. Differences between the 
regression lines, especially the slopes, are our primary interest. The following is a 
prototype example.

Suppose we study “vital capacity” among men working in the cadmium industry; 
the main purpose of the study was to see whether exposure to fumes was associated 
with a change in respiratory function. However, we must take into account the effect 
of “age” because respiratory performance declines with age. The men in the sample 
were divided into three groups:

1.	 Those who were exposed for at least 10 years.

2.	 Those who were exposed for less than 10 years.

3.	 A control group consisted of men not exposed to fumes.

We then consider three regression lines:

	
Y Xvital capacities l versus age.

	

It is well‐known that respiratory test performance declines with age. But the question 
is whether being exposed to fumes in the cadmium industry would accelerate the 
declining process. Therefore we focus on the difference of slopes. If the slopes are 
different, it is an indication of “effect modification” where exposure to cadmium 
“modifies” the effect of the aging process; it makes lung functioning age faster.

We could also consider merging groups 1 and 2 and then comparing them to group 3; 
however, the result would be masked by a phenomenon called “healthy worker 
effects” (healthier people are more likely to choose more dangerous occupations). 
The main focus could be placed on the comparison of group 1 versus group 2 – by 
showing an attenuation of healthy worker effects: the decline is steeper in group 1 
(longer exposure) than in group 2 (shorter exposure). When possible differences bet-
ween the regression lines, for example the slopes, are of interest, there are two 
possibilities:

a)  If the slopes clearly differ, from one group to another, then we have no choice 
but to draw separate group‐specific inferences.

b)  If the slopes do not differ, the lines are parallel with a common slope; that 
common slope can and should be estimated using combined data from all 
groups.

In practice, the fitted regression lines would rarely have precisely the same slope or 
position – as seen for example in a scatter diagram. The question is to what extent 
the differences can be attributed to random variation. There are simple ways, as we 
will show here, to “compare” and, if applicable, to “combine” data forming the 
common slope; however, it would be more efficient to perform the same task using 
the method of multiple regression of Section 9.2. Suppose there are k groups with n

i
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pairs of observations (i.e. “inter-correlation data”) in the ith group; a regression line 
is fitted with the following results for the slope:

	

Estimated slope b

s b
MSE

x x

i

i
i

i

1

2
1 2

.

	

Let w
i
 be the inverse of the variance of the ith slope; under the null hypothesis that 

the true slopes of the k groups are all equal, the following statistic G follows approx-
imately a Chi‐square distribution with (k–1) degrees of freedom:

w
s b

b
w b

w

G w b b

i
i

i i

i

i i

1
2

1

1
1

1 1

2



 .

The use of this G statistic is similar to the F statistic in one‐way ANOVA:

	

F
MSB

MSW
SSB n x x

Var x
x x

i i

i
i

2

2
2

Weighted average of ddeviations.	

If the statistic G is not statistically significant, the null hypothesis that the true slopes 
of the k groups are all equal is not rejected, and the common slope is best estimated 
by the weighted average (of the k individual slopes). The sampling distribution of this 
weighted average is approximately normal with mean and variance estimated by:

	





b

b

w b

w

w

i i

i

i

1
1

2
1

1
.

	

We could use the same method to compare and combine intercepts or coefficients 
of correlation; for the latter one we take advantage of the Fisher’s transformation:

	

z
r

r

Var z
n

i
i

i

i
i

1

2

1

1

1

3

ln

.
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(2)  Dose–Response Relationship in Lung Tumorigenesis
Consider the following experiment, an in vivo study. A group of mice were injected 
with NNK (a toxin from tobacco products) dissolved in saline when the mice are six 
weeks old. About 16–20 weeks after treatment with NNK, most mice have lung 
tumors; there will be an average of 10 surface tumors per lung and an average total 
tumor volume per lung = 400 (± 100; SD) mm3. Among a group of NNK‐treated 
mice (with tumors after 16 weeks), say n = 50, 10 mice are selected and sacrificed to 
measure tumor volumes – these data serve as baseline (or control) data. The other 40 
mice are randomized into 10 groups of four mice each treated by 10 different doses 
of a cancer agent/drug; the doses are spread over a very wide range from very low to 
very high. The aim of this study is to calculate the dose for 50% reduction of tumor 
volume (ED50), the “median effective dose” which characterizes the agent’s potency.

Let d be one of the doses; x = log(d). Define

v
0
 = average tumor volume of control group

v
x
 = average tumor volume of group treated with dose d; and

p
x
 = (v

0
–v

x
)/v

0
 the percentage of tumor reduction after treatment with dose d.

The dose–response relationship is stipulated by the following simple linear regression 
model which is supported by the “median effect principle” of pharmacology:

	
ln .

p

p
xx

x1 0 1

	

After estimating intercept and slope, β
0
 by b

0
 and β

1
 by b

1
, we can calculate the 

median effective dose by setting p
x
 = 0.5 and solving for x  to get:

	 ED50 0 1exp / .b b 	

(3)  A Prostate Cancer Screening Model
The prostate is part of a man’s reproductive system. It is a gland surrounding the 
neck of the bladder and it contributes a secretion to the semen. A healthy prostate 
is about the size of a walnut and is shaped like a donut. The urethra (the tube 
through which urine flows) passes through the hole in the middle of that “donut.” 
If the prostate grows too large, it squeezes the urethra causing a variety of urinary 
problems. Prostate cancers are one of the three major solid tumors; breast cancers 
and lung cancers are the other two. Cancer begins in cells, building blocks of tis-
sues. When normal process goes wrong, new cells form unnecessarily and old cells 
do not die when they should. Extra mass of cells is called a tumor; and malignant 
tumors are cancer. Since early detection would improve treatment results and 
patients’ survivorship, investigators have searched, for decades, for some screening 
procedures.

No one knows the exact causes of prostate cancer … yet, but age is a significant 
factor. Most men with prostate cancer are over 65; if they live long enough a large 
proportion of men would eventually have prostate cancer. There are risk factors (age, 
family history) and symptoms (inability to urinate, frequent urination at night, etc.). 
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Common screening is a blood test to measure prostate‐specific antigen (PSA). 
However, a high level could be caused by benign prostatic hyperplasia (BPH – growth 
of benign cells); so the test is not very specific. Increasing PSA over time does not 
necessarily mean prostate cancer. The next efforts are searching for some “pattern.”

Serum PSA in patients diagnosed with prostate cancer follows an exponential 
growth curve. A retrospective study of banked serum samples (Carter et al., 1992, 
Cancer Research 52) showed that the exponential growth begins 7–9 years before the 
tumor is detected clinically.

	

PSA PSA

ln PSA
t

t t

t

Y
t

t

0 1

1

0 1

0

exp

.

ln PSA

	

The slope β is a parameter representing disease severity because when the slope is 
larger, the level of PSA increases faster. However, practitioners have used a function 
of the slope, called “doubling time,” because it carries a more simple interpretation. 
PSA‐DT, the prostate specific antigen doubling time, has been used to predict clinical 
outcomes such as time to progression and prostate cancer specific mortality:

	

Y Y t t

t t

t t

2 1 0 1 2 0 1 1

1 2 1 1

1 2 1

1

2
DT

ln
.

	

This model is popular but there still are a number of problems in its applications. 
A starting point is hard to determine because exponential growth may start years 
before tumor detection. However, it may need verification for “biochemical progres-
sion” because – without it – non‐exponential phase may be captured in the data 
and the slope would be under‐estimated (and PSA‐DT over‐estimated – severity 
under‐estimated). This problem is relatively easy to solve because if t

0
 < t

1
, we have:

	

PSA t PSA t t t

PSA t PSA t t t

0 1 0

1 0 1 1 0

exp

exp

PSA t

PSA t

t t

t t

t t

1

1 0

1 1 0

1 0

exp

exp

exp 1 1 0

1 1

1 1 1

t t

t t

PSA t PSA t t t

exp

exp 	
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In other words, we still have the same exponential model.
Therefore we can use any time t

1
 in the exponential growth stage as the “origin” 

instead of the unknown time of disease inception t
0
. Another possible “hidden” trap 

is the potential presence of some “nadir value” (non‐zero floor value); without sub-
tracting it, the slope would be under estimated too. It is possible that the theory of 
“exponential” only applies to the PSA level above the nadir value. That might be 
why, when used without subtracting the nadir value, the exponential growth model 
only fits data from about 70% of patients.

(4)  A Vaccine Model
Maintenance of long‐term antibody responses is critical for protective immunity 
against many pathogens. After a person is vaccinated, his/her antibody has usually 
reached maximum level A

0
 at about t

0
 = 2 weeks which can be considered as “time 

zero” or time origin (relabeled as t = 0); after that the antibody level decreases fol-
lowing an “exponential decay model”:

	

A A t

Y A

t

t

t t

0 1

0 1

exp

ln

. 	

The “exponential decay model” for antibodies is similar to the “exponential 
growth model” for prostate‐specific antigens; the only difference is the negative 
slope. The counterpart of the “doubling time” is the “half life.” The “half life” M is 
defined from A

M
 = (1/2)A

0
; people are advised to get re‐vaccinated at about t = M. For 

example, you should get re‐vaccinated for tetanus after 10 years because its half life 
is about 10 years.

	

Y Y t t

t t

t t

M

2 1 0 1 2 0 1 1

1 2 1 1

1 2 1

1

2ln
.

	

(5)  Some Linear Regression Models in Pharmacology
There are two different types of drugs:

(i)  Agonists – they stimulate and activate the receptors.

(ii)  Antagonists – they stop the agonists from stimulating the receptors.

Once the receptors are activated, they either trigger a particular response directly 
on the body, or they trigger the release of hormones and/or other endogenous drugs 
in the body to stimulate a particular response. The action of drugs on the human 
body is called pharmacodynamics and what the body does with the drug is called 
pharmacokinetics.
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(a)  Dose–Response Relationship
For many agonists, dose–effect relationships are approximately hyperbolic of the form:

	
y y

D

D Kmax 	

where y is the effect or response, D is the dose, and K is some constant. We can turn 
this into a linear relationship between the reciprocal effect 1/y against the reciprocal 
dose:

	

1 1 1

y y

K

y Dmax max

.
	

(b)  Enzyme Kinetics
The Michaelis–Menten equation describes the relationship between the velocity v 
(a response) and the substrate concentration [S] (a predictor) as:

	
v v

S

S KM
max

	

where K
M
 is known as the Michaelis constant. That relationship can be transformed 

into linear form by reciprocating both sides:

	

1 1 1

v

K

v S v
M

max max

.
	

(c)  First‐order Drug Decay
Consider a drug A which decomposes according to the reaction: A → B + C. The 
original concentration of A is a. After time t the number of moles decomposed is y; 
the remaining amount of A is a–y, and y moles of B or C have been formed. The 
differential equation for the chemical reaction is:

	

dy

dt
k a y .

	

The solution is a straight line through the origin with slope k, a special case of linear 
regression without an intercept.

9.2  MULTIPLE REGRESSION ANALYSIS

The effect of some factor on a dependent or response variable may be influenced by 
the presence of other factors because of redundancies or effect modifications (i.e., 
interactions). Therefore, to provide a more comprehensive analysis, it may be desirable 
to consider a large number of factors and sort out which ones are most closely related 
to the dependent variable. In this section we discuss a multivariate method for this type 
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of risk determination. This method, which is multiple regression analysis, involves a 
linear combination of the explanatory or independent variables, also called covariates; 
the variables must be quantitative with particular numerical values for each subject in 
the sample. A covariate or independent variable, such as a patient characteristic, may 
be dichotomous, polytomous, or continuous. Examples of dichotomous covariates are 
gender and presence/absence of certain comorbidity. Polytomous covariates include 
race and different grades of symptoms; these can be covered by the use of dummy 
variables. Continuous covariates include patient age and blood pressure. In many 
cases, data transformations (e.g., taking the logarithm) may be needed to satisfy the 
regression model’s linearity assumption.

9.2.1  Regression Model with Several Independent Variables

Suppose that we want to consider J independent variables simultaneously. The simple 
linear model of Section 9.1 can easily be generalized and expressed as

	

Y x x

x

i i Ji i

j

J

j ji i

0 1 1

0
1

 J

	

where Y
i
 is the value of the response or dependent variable from the ith subject; β

0
, β

1
, 

…, β
J
 are the J + 1 unknown parameters (β

0
 is the intercept and the β

j
s are the slopes, 

one for each independent variable); X
ij
 is the value of the jth independent variable (j = 

1 to J ) from the ith subject (i = 1 to n); and ε
i
 is a random error term which is distrib-

uted as normal with mean zero and variance σ2, so that the mean of Y
i
 is

	

i i J Ji

j

J

j ji

x x

x

0 1 1

0
1



.
	

The model above is referred to as the multiple linear regression model. It is multiple 
because it contains several independent variables. It is still linear because the 
independent variables appear only in the first power; this feature is rather difficult to 
check because we do not have a scatter diagram to rely on as in the case of simple 
linear regression. In addition, the model can be modified to include higher powers of 
independent variables as well as their various products, as we will see subsequently.

9.2.2  Meaning of Regression Parameters

Similar to the univariate simple linear case, β
j
 represents one of the following:

1.	 The increase (or decrease, if β
j
 is negative) in the mean of Y associated with 

the exposure if X
j
 is binary (exposed X

j
 = 1 vs unexposed X

j
 = 0), assuming 

that other independent variables are fixed; or

The increase (or decrease, if β
j
 is negative) in the mean of Y associated 

with a 1‐unit higher value of X
j
, X

j
 = x + 1 versus X

j
 = x. For an m‐unit higher 
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value of X
j
, say X

j
 = x + m versus X

j
 = x, the corresponding increase (or 

decrease) in the mean of Y is mβ
j
, assuming that other independent variables 

are fixed. In other words, β
j
 represents the additional contribution of X

j
 in 

the explanation of variation among y values. Of course, before such analyses 
are done, the problem and the data have to be examined carefully. If some of 
the variables are highly correlated, one or a few of the correlated factors are 
likely to be as good at prediction as all of them; information from similar 
studies also has to be incorporated to inform the decision on which of these 
correlated explanatory variables to drop.

9.2.3 E ffect Modifications

Consider this multiple regression model involving two independent variables:

	 Y x x x xi i i i i i0 1 1 2 2 3 1 2 .	

It can be seen that the meaning of β
1
 and β

2
 here is not the same as that given ear-

lier because of the cross‐product term β
3
x

1
x

2
. Suppose, for simplicity, that both X

1
 and 

X
2
 are binary. Then:

1.	 For X
2
 = 1 or exposed, we have

	
y

X

X
0 1 3 1

0 1

if exposed to

if not exposed to 	

so that the increase (or decrease) in the mean of Y due to an exposure to X
1
 is 

β
1
 + β

3
, whereas:

2.	 For X
2
 = 0 or not exposed, we have

	
y

X

X
0 1 1

0 1

if exposed to

if not exposed to 	

so that the increase (or decrease) in the mean of Y due to an exposure to X
1
 is β

1
.

In other words, the effect of X
1
 depends on the level (presence or absence) of X

2
, 

and vice versa. This phenomenon is called effect modification (i.e., one factor mod-
ifies the effect of the other). The cross‐product term x

1
x

2
 is called an interaction term. 

Use of these products will help in the investigation of possible effect modifications. 
If β

3
 = 0, the effect of two factors acting together (represented by β

1
 + β

2
), is equal to 

the combined effects of two factors acting separately. If β
3
 > 0, we have a synergistic 

interaction; if β
3
 < 0, we have an antagonistic interaction.

9.2.4  Polynomial Regression

Consider this multiple regression model involving one independent variable:

	 Y x xi i i i0 1 2
2
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or it can be written as a multiple regression model:

	 Y x xi i i i0 1 1 2 2 	

with X
1
 = X and X

2
 = X2, where X is a continuous independent variable. The meaning 

of β
1
 here is not the same as that given earlier because of the quadratic term 2

2xi . We 
have, for example,

	
y

x x X x

x x X x

0 1 2
2

0 1 2

2
1 1 1

when

when 	

so that the difference in μ
y
 between X = x + 1 and X = x is

	 1 2 2 1x 	

which is a function of x.
Polynomial models with an independent variable present in higher powers than 

the second are not often used. The second‐order or quadratic model has two basic 
type of uses: (i) when the true relationship is a second‐degree polynomial or when 
the true relationship is unknown but the second‐degree polynomial provides a better 
fit than a linear one, but (ii) more often, a quadratic model is fitted for the purpose of 
establishing the linearity. The key item to look for is whether β

2
 = 0. The use of poly-

nomial models, however, is not without drawbacks. The most potential drawback is 
that X and X2 are strongly related, especially if X is restricted to a narrow range; in 
this case the standard errors are often very large.

9.2.5 E stimation of Parameters and Prediction

To find good estimates of the J + 1 unknown parameters β
0
, β

1
, β

2
, …, β

J
, statisticians 

use the same method of least squares described earlier. For each subject with data 
values (y

i
; x

1i
, x

2i
, …, x

Ji
), we consider the deviation from the observed value Y

i
 to its 

expected value:

	 y x xi i J Ji0 1 1 .	

In particular, the method of least squares requires that we consider the sum of squared 
deviations:

	
S Y x

i

n

i
j

j ji
1

0
1

2
J

.
	

According to the method of least squares, the good estimates of β
0
 and β

i
s are values 

b
0
 and b

i
s, respectively, which minimize the sum S. The method is the same, but the 

calculations are much more difficult; fortunately, these results are provided by most 
standard computer programs, such as Excel, SAS, and R. In addition, computer 
output also provides standard errors for all estimates of regression coefficients. Given 
the estimates b

0
, b

1
, …,  b

J
 obtained from the sample, we estimate the mean response 
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by ˆ .Y b b X b XJ J0 0 1   This is our predicted value for the mean of Y at these 
values of the J covariates.

9.2.6  Analysis of Variance Approach

Similar to the case of simple linear regression of Section 9.1.7, the variation in Y is 
also measured in terms of the deviations from observed values to the mean; the total 
variation, denoted by SST, is the sum of squared deviations:

	 SST Y Yi( ) .2
	

The variation in Y is decomposed into two components:

	
Y Y Y Y Y Yi i i i

ˆ ˆ
	

(i)  The first term reflects the deviation from each observed value to its predicted 
value; the part that cannot be explained by the regression itself is the sum of 
squared deviations:

	
SSE Y Yi î

2

	

called the error sum of squares.

(ii)  The difference between the above two sums of squares,

	

SSR SST SSE

Y Yi( )

2
	

is called the regression sum of squares. SSR may be considered a measure of 
the variation in Y associated with the regression line.

1.	 The coefficient of multiple determination is defined as

	
R2 SSR

SST
.
	

It measures the proportionate reduction of total variation in Y associated with 
the use of the set of independent varables. As for r2 of the simple linear regres-
sion, we have

	 0 12R 	

and R2 only assumes the value 0 when β
0
 = β

1
 = β

2
 = ⋯ = β

J
 = 0.

Corresponding to the partitioning of the total sum of squares SST, there is 
partitioning of the associated degrees of freedom (df). We have (n–1) degrees 
of freedom associated with SST, the denominator of the sample variance of Y; 
SSR has J df, representing the J independent variables; the remaining (n–J–1) 
are associated with SSE. These results lead to the usual presentation of regres-
sion analysis by most computer programs (Table 9.8).
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2.	 The error mean square,

	
MSE

SSE

n J 1 	

serves as an estimate of the constant variance σ2 as stipulated by the regression 
model.

9.2.7  Testing Hypotheses in Multiple Linear Regression

Once we have fit a multiple regression model and obtained estimates for the various 
parameters of interest, we want to answer questions about the contributions of various 
factors to the prediction of the response variable. There are three types of such questions:

1.	 Overall test. Taken collectively, does the entire set of explanatory or independent 
variables contribute significantly to the prediction of the response (or the 
explanation of variation among responses)?

2.	 Test for the value of a single factor. Does the addition of one particular variable 
of interest add significantly to the prediction of response over and above that 
achieved by other independent variables?

3.	 Test for contribution of a group of variables. Does the addition of a group of 
variables add significantly to the prediction of response over and above that 
achieved by other independent variables?

1. Overall Regression Tests We now consider the first question stated above 
concerning an overall test for a model containing J factors. The null hypothesis for 
this test may be stated as: “All J independent variables considered together do not 
explain the variation in the responses.” In other words,

	 H J0 1 2 0: .	

This global null hypothesis can be tested using the F statistic in Table 9.8:

	
F

MSR

MSE	

for an F test with (J, n−J−1) degrees of freedom; the test result (p‐value) is contained 
in the last column of that ANOVA Table.

Table 9.8

Source of 
variation SS df MS F Statistic p Value

Regression SSR J MSR = SSR/J F = MSR/MSE p
Error SSE n − J − 1 MSE = SSE/(n − J − 1)

Total SST n − 1
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2. Tests for a Single Variable Let us assume that we now wish to test whether the 
addition of one particular independent variable of interest adds significantly to the 
prediction of the response over and above that achieved by other factors already pre-
sent in the model. The null hypothesis for this test may be stated as: “Factor X

j
 does 

not have any value added to the prediction of the response given that other factors are 
already included in the model.” In other words,

	 H j0 0: .	

To test such a null hypothesis, one can use

	

t j
j

j

ˆ

ˆSE
	

in a t‐test with (n−J−1) degrees of freedom, where the quantity in the numerator is the 
estimated regression coefficient and the quantity in the denominator is the estimate of 
the standard error of that estimated regression coefficient.

Example 9.9
Ultrasounds were taken at the time of liver transplant and again five to ten years later 
to determine the systolic pressure of the hepatic artery. Results for 21 transplants for 
21 children are shown in Table 9.9; also available are gender (1 = male, 2 = female) 
and age at the second measurement.

Table 9.9

Child
Systolic pressure  
5–10 years later

Systolic pressure  
At transplant Gender

Age 
(years)

1 46 35 2 16
2 40 40 2 19
3 50 58 2 19
4 50 71 1 23
5 41 33 1 16
6 70 79 1 23
7 35 20 1 13
8 40 19 1 19
9 56 56 1 11
10 30 26 2 14
11 30 44 1 15
12 60 90 2 12
13 43 43 2 15
14 45 42 1 14
15 40 55 1 14
16 50 60 2 17
17 66 62 2 21
18 45 26 2 21
19 40 60 1 11
20 35 27 1   9
21 25 31 1   9
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Using the second measurement of the systolic pressure of the hepatic artery as our 
dependent variable, the resulting ANOVA table is shown in Table 9.10. The result of 
the overall F test (p = 0.0002) indicates that taken collectively, the three independent 
variables (systolic pressure at transplant, gender, and age) contribute significantly to 
the prediction of the dependent variable. In addition, we have the results shown in 
Table 9.11. The effects of pressure at transplant and age are significant at the 5% 
level, whereas the effect of gender is not (p = 0.5982).

The coefficient of multiple determination is

	

R2 1810 93

2654 95
0 682

.

.
. . 	

In other words, taken together the three independent variable (systolic pressure at 
transplant, sex, and age) account for 68.2% of variation in systolic blood pressure of 
the hepatic artery taken 5–10 years post transplants.

Note: An SAS program would include these instructions:

DATA LIVER;
   INPUT BP_LATER BP_TRANSPLANT SEX AGE; 
DATALINES;
46	 35	 2	 16
40	 40	 2	 19
35	 27	 1	 9
25	 31	 1	 9
;
PROC REG DATA = LIVER;
    MODEL BP_LATER = BP_TRANSPLANT SEX AGE;

Table 9.10

Source of variation SS df MS F Statistic p Value

Regression 1810.93   3 603.64 12.158 0.0002
Error   844.02 17   49.65

Total 2654.95 20

Table 9.11

Variable Coefficient Standard error t Statistic p Value

Intercept 11.384 6.517 1.747 0.0987
Pressure at transplant 0.381 0.082 4.631 0.0002
Gender 1.740 3.241 0.537 0.5982
Age 0.935 0.395 2.366 0.0301



MULTIPLE REGRESSION ANALYSIS� 325

An R program would include these instructions:

BP.transplant = c(35,40,58,…,27,31)
BP.later = c(46,40,50,…,35,25)
gender = c(2,2,2,…,1,1)
sex = as.factor(gender)
age = c(16,19,19,…,9,9)
mlr.fit = lm(BP.later ~ BP.transplant + sex + age)
summary(mlr.fit)
anova(mlr.fit)

Example 9.10
There have been times the city of London experienced periods of dense fog. 
Table  9.12 shows such data for a very severe 15‐day period which included the 
number of deaths in each day (y), the mean atmospheric smoke (x

1
, in mg/m3), and 

the mean atmospheric sulfur dioxide content (x
2
, in ppm).

Using the number of deaths in each day as our dependent variable, Table 9.13 is the 
resulting ANOVA table. The result of the overall F test (p = 0.0001) indicates that taken 
collectively, the two independent variables contribute significantly to the prediction of 

Table 9.12

Number of deaths Smoke Sulfur dioxide

112 0.30 0.09
140 0.49 0.16
143 0.61 0.22
120 0.49 0.14
196 2.64 0.75
294 3.45 0.86
513 4.46 1.34
518 4.46 1.34
430 1.22 0.47
274 1.22 0.47
255 0.32 0.22
236 0.29 0.23
256 0.50 0.26
222 0.32 0.16
213 0.32 0.16

Table 9.13

Source of variation SS df MS F Statistic p Value

Regression 205 097.52   2 102 548.76 36.566 0.0001
Error 33 654.20 12 2 804.52

Total 238 751.73 14
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the dependent variable. In addition, we have the results shown in Table  9.14. The 
effects of both factors, the mean atmospheric smoke and the mean atmospheric sulfur 
dioxide content, are significant even at the 1% level (both p < 0.001).

The coefficient of multiple determination is

	

R2 205 097 52

238 751 73

0 859

.

.

. . 	

In other words, taken together the two independent variable (mean atmospheric 
smoke and mean atmospheric sulfur dioxide content) account for 85.9% of variation 
in the number of deaths in each day.

3. Contribution of a Group of Variables This testing procedure addresses the more 
general problem of assessing the additional contribution of two or more factors to 
prediction of the response over and above that made by other variables already in the 
regression model. In other words, the null hypothesis is of the form

	 H :0 1 2 0 m .

To test such a null hypothesis, one can fit two regression models, one with all Xs 
included (the full model, F) to obtain its regression (SSR(F)) or error (SSE(F)) 
sums of squares and one with all Xs included except the m Xs under investigation 
(the reduced model, R) to obtain a second regression (SSR(R)) or error (SSE(R)) 
sum of squares. SSR(R) will be smaller than SSR(F) and, correspondingly, 
SSE(R) will be larger than SSE(F) (because for both models the regression and 
error sums of squares add to the same total sum of squares). Define the mean 
square due to H

0
 as

	
MSR

SSR SSR
or equivalently as MSR

SSE SSE(F) (R) (R) (F)

m m
.

Then H
0
 can be tested using

	
F

MSR

MSE(F)

which is an F test with (m, n – J – 1) degrees of freedom. This multiple contribution 
procedure is very useful for assessing the importance of potential explanatory vari-
ables. In particular, it is often used to test whether a similar group of variables, such 

Table 9.14

Variable Coefficient Standard error t Statistic p Value

Smoke −220.324   58.143 −3.789 0.0026
Sulfur 1051.816 212.596   4.947 0.0003
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as demographic characteristics, is important for prediction of the response; these 
variables have some trait in common. Another application would be a collection of 
powers and/or product terms (referred to as interaction variables). It is often of 
interest to assess the interaction effects collectively before trying to consider 
individual interaction terms in a model as suggested previously. In fact, such use 
reduces the total number of tests to be performed, and this, in turn, helps to provide 
better control of overall type I error rates, which may be inflated due to multiple 
testing.

Example 9.11
Refer to the data on liver transplants of Example 9.9 consisting of three independent 
variables: hepatic systolic pressure at transplant time (denoted ‘pressure’ here), 
age (at the second measurement time), and gender of the child. Let us consider all 
interactions of these three original factors (x

1
 = pressure, x

2
 = age, x

3
 = pressure x 

age, x
4
 = gender, x

5
 = pressure x gender, x

6
 = age x gender, x

7
 = pressure x age x 

gender). Using the second measurement of the systolic pressure of the hepatic 
artery as our dependent variable and fitting the multiple regression model with 
all seven independent variables (three original plus four newly defined products), 
we have

	 SSR(F) with df1866 35 7.

	 SSE(F) with df or MSE(F)788 60 13 60 66. , .

as compared to the results from Example 9.9:

	 SSR(F) with df1810 93 3. .

The significance of the additional contribution of the four new factors, considered 
together, is judged using the F statistic:

	

F =
(1866.35

60.66

at (4,13) df.

1810.93)/4

0 91.

In other words, all four product terms considered together do not contribute 
significantly to the prediction/explanation of the second measurement of the systolic 
pressure of the hepatic artery; the model with three original factors is adequate.

Stepwise Regression  In many applications, our major interest is to identify impor-
tant risk factors. In other words, we wish to identify from many available factors a 
small subset of factors that relate significantly to the outcome (e.g., the disease under 
investigation). In that identification process, of course, we wish to avoid a large type 
I (false positive) error. In a regression analysis, a type I error corresponds to including 
a predictor that has no real relationship to the outcome; such an inclusion can greatly 
confuse the interpretation of the regression results. In a standard multiple regression 
analysis, this goal can be achieved by using a strategy that adds into or removes from 
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a regression model one factor at a time according to a certain order of relative impor-
tance. Therefore, the two important steps are as follows:

1.	 Specify a criterion or criteria for selecting a model.

2.	 Specify a strategy for applying the criterion or criteria chosen.

Strategies This is concerned with specifying the strategy for selecting variables. 
Traditionally, such a strategy is concerned with whether and which particular variable 
should be added to a model or whether any variable should be deleted from a model 
at a particular stage of the process. As computers became more accessible and more 
powerful, these practices became more popular.

•• Forward selection procedure

1.	 Fit a simple linear regression model to each factor, one at a time.

2.	 Select the most important factor according to certain predetermined criterion.

3.	 Test for the significance of the factor selected in step 2 and determine, according 
to a certain predetermined criterion, whether or not to add this factor to the model.

4.	 Repeat steps 2 and 3 for those variables not yet in the model. At any subsequent 
step, if none meets the criterion in step 3, no more variables are included in the 
model and the process is terminated.

•• Backward elimination procedure

1.	 Fit the multiple regression model containing all available independent 
variables.

2.	 Select the least important factor according to a certain predetermined criterion; 
this is done by considering one factor at a time and treating it as though it were 
the last variable to enter.

3.	 Test for the significance of the factor selected in step 2 and determine, according 
to a certain predetermined criterion, whether or not to delete this factor from 
the model.

4.	 Repeat steps 2 and 3 for those variables still in the model. At any subsequent 
step, if none meets the criterion in step 3, no more variables are removed from 
the model and the process is terminated.

•• Stepwise regression procedure Stepwise regression is a modified version of 
forward regression that permits reexamination, at every step, of the variables 
incorporated in the model in previous steps. A variable entered at an early stage 
may become superfluous at a later stage because of its relationship with other 
variables now in the model; the information it provides becomes redundant. 
That variable may be removed, if meeting the elimination criterion, and the 
model is refitted with the remaining variables, and the forward process goes on. 
The entire process, one step forward followed by one step backward, continues 
until no more variables can be added or removed.
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Criteria For the first step of the forward selection procedure, decisions are based on 
the F test for each variable from each simple linear regression, one on each variable. 
In subsequent steps, both forward and backward, the decision is made as follows. 
Suppose that there are m independent variables already in the model and a decision is 
needed in the forward selection process. Two regression models are now fitted, one 
with all m current Xs included to obtain the regression sum of squares (SSR(R) from 
the reduced model) and one with all m Xs plus the X under investigation to obtain the 
regression sum of squares (SSR(F) from the full model). (Again, SSR(F) is from the 
bigger model and will be larger than SSR(R).) The same two model fittings are needed 
if we are instead considering eliminating the X under investigation in a backwards 
stepwise procedure. Define the mean square due to addition (or elimination) as

	
MSR

SSR(F) SSR(R)

d

where d is the degrees of freedom for the variable under investigation for either 
addition or elimination (e.g., d = 1 for a continuous or binary variable, d = k–1 for a 
categorical variable with k classes). Then the decision concerning the variable under 
investigation is based on

	
F

MSR

MSE(F)

an F test with (d, n ‐ (m + d) ‐1) degrees of freedom.
The following example is used to illustrate the process; however, the process is 

most useful when we have a large number of independent variables.

Example 9.12
Refer to the data on liver transplants of Example 9.9 consisting of three independent 
variables: hepatic systolic pressure at transplant time (called ‘pressure’ here), age (at 
the second measurement time), and gender of the child. 

Step 1: The results for individual terms were shown in Example 9.9.

Step 2: These results indicate that the pressure at transplant time is the most 
significant variable.

Step 3: Hence, the variable ‘pressure’ is entered, resulting in

	 SSR(R) with df1460 47 1. .

and we return to Step 2.

Step 4 (New Step 2): With the addition of age to the model with pressure, we have

	 SSR(F) with df1796 61 2.

	 MSE(F) df47 69 18. ( )

leading to an F statistic of 7.05 (p  =  0.0161). The remaining variable (gender), 
when added to the model with pressure only, does not meet the criterion of 0.1 
(or 10%) level to enter the model.
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Step 4 (New Step 3): Hence, the variable age is entered to the model with pressure 
and we return to Step 2.

Step 4 (New Step 2): The only remaining variable (gender) is added to the model 
with pressure and age.

Step 4 (New Step 3): Gender again does not meet the criterion of 0.1 (or 10%) 
level to enter the model. No other variables are available, so the process is 
terminated. The final model consists of two independent variables.

Note: The SAS program of Example 9.9 should be modified as follows:

PROC REG DATA = LIVER;
  MODEL BP_LATER = BP_TRANSPLANT SEX AGE / SELECTION =  
  FORWARD;

Other selection options are “STEPWISE” and “BACKWARD” for SAS. The R 
program of Example 9.9 should be modified as follows:

library(MASS)
stepAIC(mlr.fit, direction=”forward”)

This R function executes stepwise regression methods using a goodness of fit 
criterion called the Akaike Information Criterion, rather than with the F‐tests that 
SAS uses. Other direction options are “backward” and “both.”

9.2.8 S ome Biomedical Applications

In this section, we cover a number of possible applications of multiple linear regres-
sion. For each application, we explain briefly the content science and how multiple 
linear regression is applied to solve the problem. We have learned that, among many 
possibilities, multiple regression allows us to get into two new areas that were not 
possible with simple linear regression: (i) interaction or effect modification and 
(ii) non‐linear relationship. For interactions, we introduce the topic of bioassays in 
basic science and translational research, and as an example of non‐linear models, 
we will learn how to study “seasonal diseases” – a case similar to that of quadratic 
regression – with two predictor terms representing the same “predictor source” 
where we search for an optimal condition for the outcome.

(1)  Bioassays
Biological assays, or bioassays, are a set of methods for estimating the potency or 
strength of an (chemical) agent by utilizing the “response” caused by its application 
to biological material or experimental living subjects.

The three components of a bioassay are:

•• The subject is usually an animal, a human tissue, or a bacteria culture.

•• The agent is usually a drug.

•• The response is usually a change in a particular characteristic or even the death 
of a subject; the response could be binary or on continuous scale.
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There are two types of bioassays: direct and indirect assays. In direct assays, the 
doses of the standard and test preparations are directly measured for an “event of 
interest.” When a (pre‐determined) event of interest occurs, for example the death of 
the subject, the variable of interest is the dose required to produce that response/event 
for each subject. In other words the binary response is fixed; “drug dose” is a random 
variable. In indirect assays, the doses of the standard and test preparations are applied 
and we observe the response that each dose produces; for example, we measure the 
tension in a tissue or the hormone level or the blood sugar content. For each subject, 
the dose is fixed in advance; the variable of interest is not the dose but the response 
it produces in each subject. In other words, doses are fixed, “response” is a random 
variable; statistically, indirect assays are more interesting and also more difficult.

For indirect assays, depending on the “measurement scale” for the response – our 
random variable – we have:

(i)  Quantal assays, where the response is binary: whether or not an event (like 
the death of the subject) occurs,

(ii)  Quantitative assays, where measurements for the response are on a continuous 
scale. This is our main focus; the response is the dependent variable Y.

The common indirect assay is usually one in which the ratio of equipotent doses 
is estimated from “curves” or “lines” relating quantitative responses and doses for 
the two preparations. The shape of these curves or lines further divides quantitative 
indirect assays into:

(i)  Parallel‐line assays are those in which the response is linearly related to the 
log dose,

(ii)  Slope ratio assays are those in which the response is linearly related to the 
dose itself.

Parallel‐line Bioassays

Parallel‐line assays are those in which the response is linearly related to the log dose. 
From the definition of “relative potency” ρ, the two equipotent doses are related by 
D

S
 = ρD

T
 (S = standard, T = test).

To motivate our multiple linear regression model, let the standard preparation 
model be E Y X log D XS S S S[ | ( )] .0 1  Then, putting in ρD

T
 for D

S
, we have:

	 E Y X log D log D log XT S T T T[ | ,0 1 0 1 1 	

for the same dose of test preparation.
In other words, we have two parallel lines with a common slope α

1
 and different 

intercepts: α
0
 for standard and α

0
 + α

1
 log ρ for test.

Working correctly, we should fit the two straight lines with a common slope. 
A proper and efficient approach is pooling data from both preparations and using 
multiple regression with the dependent variable being Y, the response.

The two independent variables or predictors in our regression model are:

	 X doselog 	
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and

P P Ppreparation(a dummyvariable codedas for test and for“ ” “ ”1 0 ““ ” .standard )

Our full model is:

	 E Y X P0 1 2

which for the standard preparation is:

	 E Y XS 0 1

and for the test preparation is:

	

E Y X

X

T 0 1 2

0 2 1

and we calculate log ρ as:

	

Difference of intercepts

Common slope
2

	
M log .2

1 	

Slope–ratio Assays

Slope–ratio assays are those in which the response is linearly related to the dose 
itself. From the definition of “relative potency” ρ, the two equipotent doses are 
related by DS = ρDT.

The model:

	 E Y X D XS S S S| ,0 1 for the standard preparation	

and we have:

	 E Y X D X sameT S S T| ,0 1 for the dose of test preparation.	

In other words, we have two straight lines with a common intercept and different 
slopes; the relative potency is the ratio of the two slopes.

Working correctly, we should fit the two straight lines with a common intercept. 
A proper and efficient approach is pooling data from both preparations and using 
multiple regression with the dependent variable being Y, the response.

The two independent variables or predictors in our regression model are:

	 X log dose 	

and

	P P Ppreparation a dummyvariable codedas for test and for“ ” “ ” “1 0 sstandard” .	



MULTIPLE REGRESSION ANALYSIS� 333

Our model is:

	

E Y X PX

T

0 1 2

0

1

is the common intercept and slopes are :

22

1

1 2

1

S

.
	

(2)  Seasonal Diseases
There are many seasonal diseases; the list includes otitis media (ear infections), 
allergies, and neurological disorders. To study or confirm these diseases, one often 
includes time of disease occurrence or the child’s birthday as a covariate. Most or all 
investigators, with emphasis on “season,” often divide the year into four seasons and 
compare them using either a Chi‐square test or a one‐way analysis of variance F‐test 
depending on the endpoint being discrete or continuous. What are the problems with 
this vastly popular approach to investigating seasonality? There are no reasons to 
believe that the risk associated with time of the year is similar within seasons and 
different between seasons. If there is any risk associated with time of the year, that 
level of risk must change gradually, not abruptly, as time progresses. In a newer 
approach, time of the year – such as day of birth – is treated as a continuous covariate 
with a circular distribution. We first choose a “time origin,” then each time of the year 
(e.g. day of birth; DOB) is represented by an “angle”; the angle θ representing each 
DOB is calculated using the following conversion:

	 DOB st January or– / * .1 365 366 360 	

Each θ is an angle ranging from zero to 360 degrees. For example, if an infant was 
born on 2nd October 1991, then:

	 10 02 01 01 365 360 270 25/ / / * . degrees.	

The time of the year under investigation, represented by θ, becomes a continuous var-
iable with a circular distribution without a true zero origin point (that is, any other date 
can be used as time origin in the place of 1st January; we would have the same results 
regardless of choices). The time, represented by θ, is characterized by two components, 
sine and cosine, representing two covariates in multiple regression models. For example,

	 E Y 0 1 2sin cos 	

This model is similar to a polynomial regression; just like X and X2, the two predic-
tors sin(θ) and cos(θ) are representing the same “predictor source”– so coefficients 
β

1
 and β

2
 do not follow the usual interpretation. We will investigate their roles 

together because “which” covariate is significant might well depend on the choice 
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of time origin. To study their roles together, one might, for example, take the 
derivative of

	 E Y 0 1 2sin cos 	

with respect to θ and set it equal to zero to determine time of maximum or minimum 
risk.

9.3 Graph ical and Computational Aids

Throughout several examples in this chapter, we show how to perform a regression 
analysis, such as setting up the ANOVA table and graphing the regression line in SAS 
and R. It has been also obvious that those needed formulas are very complicated, the 
process is tedious and time consuming. Fortunately, regression analysis can also be 
implemented easily using Microsoft’s Excel; however, you need Data Analysis. 
“Data analysis” is an Excel add‐in option which is available from the Excel installa-
tion CD; after installation, it is listed in your “Tools” menu (shown on top row – same 
place with other basic menus such as File, Edit, View, etc…).

ANOVA Table  The process is rather simple: (1) click the Tools then (2) Data 
Analysis; among the functions available, choose Regression (Figure 9.3).

A box appears; use the cursor to fill in the ranges of Ys and Xs. The results include 
all items mentioned in this chapter, plus confidence intervals for regression coeffi-
cients. In Figure  9.4, the data set (of Example 9.9) has one dependent variable 
(column B, rows 34–54) and three independent variables (columns C, D, and E – 
rows 34–54).

Regression Line  Step 1: Create a scatter diagram using Chart Wizard (see Sections 
1.4 and 2.4; Figure 9.5).

Step 2: (a) Click on the new Chart (scatter diagram) to make it active (at that point 
the menu on the top row has some minor changes), (b) Click on Chart (on the top row 
menu), (c) a box appears to let you choose “Type”, select Linear (Figure 9.6).

Figure 9.3  Step 1 in the process to construct an ANOVA table.
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Figure 9.4  Use the cursor to fill in the ranges of Ys and Xs.

Figure 9.5  Create a scatter diagram using Chart Wizard.
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EXERCISES

Electronic copies of some data files are available at www.wiley.com/go/Le/Biostatistics.

9.1	 Trace metals in drinking water affect the flavor of the water, and un‐usually 
high concentration can pose a health hazard. Table  E9.1 shows trace‐metal 
concentrations (zinc, in mg/L) for both surface water and bottom water at six 
different river locations. Our aim is to see if surface water concentration (x) is 
predictive of bottom water concentration (y).

(a)	 Draw a scatter diagram to show a possible association between the concen-
trations and check to see if a linear model is justified.

Figure 9.6  Add a regression line to the scatter diagram.

table E9.1

Location Bottom Surface

1 0.430 0.415
2 0.266 0.238
3 0.567 0.390
4 0.531 0.410
5 0.707 0.605
6 0.716 0.609
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(b)	 Estimate the regression parameters, the predicted bottom water concentration 
for a location with a surface water concentration of 0.5 mg/L, and draw the 
regression line on the same graph with the scatter diagram.

(c)	 Test to see if the two concentrations are independent; state your hypotheses 
and choice of test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.

9.2	 In a study of saliva cotinine, seven subjects, all of whom had abstained from 
smoking for a week, were asked to smoke a single cigarette. The cotinine levels 
at 12 and 24 hours after smoking are provided in Table E9.2.

(a)	 Draw a scatter diagram to show a possible association between the cotinine 
levels (24‐hour measurement as the dependent variable) and check to see 
if a linear model is justified.

(b)	 Estimate the regression parameters, the predicted 24‐hour measurement 
for a subject with a 12‐hour cotinine level of 60 mmol/L, and draw the 
regression line on the same graph with the scatter diagram.

(c)	 Test to see if the two cotinine levels are independent; state your hypotheses 
and choice of test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.

9.3	 Table E9.3 gives the net food supply (x, number of calories per person per day) 
and the infant mortality rate (y, number of infant deaths per 1000 live births) for 
certain selected countries before World War II.

(a)	 Draw a scatter diagram to show a possible association between the infant 
mortality rate (used as the dependent variable) and the net food supply and 
check to see if a linear model is justified.

(b)	 Estimate the regression parameters, the predicted infant mortality rate for 
a country with a net food supply of 2900 calories per person per day, and 
draw the regression line on the same graph with the scatter diagram.

(c)	 Test to see if the two factors are independent; state your hypotheses and 
choice of test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.

table E9.2

Subject

Cotinine level (mmol/L)

After 12 hours After 24 hours

1 73 24
2 58 27
3 67 49
4 93 59
5 33   0
6 18 11
7 147 43
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9.4	 Refer to the data in Exercise 9.3, but in the context of a multiple regression 
problem with two independent variables: the net food supply (x

1
 = x) and its 

square (x
2
 = x2).

(a)	 Taken collectively, do the two independent variables contribute signifi-
cantly to the variation in the number of infant deaths?

(b)	 Calculate the coefficient of multiple determination and provide your 
interpretation.

(c)	 Fit the multiple regression model to obtain estimates of individual regres-
sion coefficients and their standard errors, and draw your conclusions: 
especially, the conditional contribution of the quadratic term.

9.5	 The following are the heights (measured to the nearest 2 cm) and the weights 
(measured to the nearest kg) of 10 men:

Height 162 168 174 176 180 180 182 184 186 186
Weight 65 65 84 63 75 76 82 65 80 81

and 10 women:

Height 152 156 158 160 162 162 164 164 166 166
Weight 52 50 47 48 52 55 55 56 60 60

Separately for each group, men and women:

(a)	 Draw a scatter diagram to show a possible association between the weight 
(used as the dependent variable) and the height and check to see if a linear 
model is justified.

(b)	 Estimate the regression parameters, the predicted weight for a subject who 
is 160 cm (does gender have an effect on this estimate?), and draw the 
regression line on the same graph with the scatter diagram.

(c)	 Test to see if the two factors are independent; state your hypotheses and 
choice of test size.

table E9.3

Country x y Country x y

Argentina 2730 98.8 Iceland 3160 42.4
Australia 3300 39.1 India 1970 161.6
Austria 2990 87.4 Ireland 3390 69.6
Belgium 3000 83.1 Italy 2510 102.7
Burma 1080 202.1 Japan 2180 60.6
Canada 3070 67.4 Netherlands 3010 37.4
Chile 2240 240.8 New Zealand 3260 32.2
Cuba 2610 116.8 Sweden 3210 43.3
Egypt 2450 162.9 U.K. 3100 55.3
France 2880 66.1 U.S. 3150 53.2
Germany 2960 63.3 Uruguay 2380 94.1
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(d)	 Calculate the coefficient of determination and provide your interpretation.

(e)	 Is there evidence of an effect modification? (Compare the two coefficients 
of determination/correlation informally.)

9.6	 Refer to the data in Exercise 9.5, but in the context of a multiple regression 
problem with three independent variables: height, gender, and the product of 
height with gender.

(a)	 Fit the multiple regression model to obtain estimates of individual regres-
sion coefficients and their standard errors. Draw your conclusions 
concerning the conditional contribution of each factor.

(b)	 Within the context of the multiple regression model in part (a), does gender 
alter the effect of height on weight?

(c)	 Taken collectively, do the three independent variables contribute signifi-
cantly to the variation in weights?

(d)	 Calculate the coefficient of multiple determination and provide your 
interpretation.

9.7	 The Pearson Correlation Coefficient (r) between two variables X and Y can be 
expressed in several equivalent forms; one of which is

	
r X Y

n

x x

s

y y

si

n
i

x

i

y

,
1

1 	

where x  (y ) is the sample mean and s
x
 (s

y
) is the sample standard deviation of 

X (Y), respectively.

(a)	 If a and c are two positive constants and b and d are any two constants, 
prove that:

	 r aX b cY d r X Y, ., 	

(b)	 Is the result in (a) still true if we do not assume that a and c are positive?

(c)	 For a group of men, if the correlation coefficient between weight in pounds 
and height in inches is r = 0.29, what is the value of that correlation coeffi-
cient if weight is measured in kilograms and height in centimeters? Explain 
your answer.

(d)	 Body temperature (BT) can be measured at many locations in your body. 
Suppose, for a certain group of children with fever, the correlation coeffi-
cient between oral BT and rectal BT is r = 0.91 when BT is measured in 
Fahrenheit (°F); what is the value of that correlation coefficient if BT is 
measured in Celsius (°C)? Explain your answer.

9.8	L et X and Y be two variables in a study; the regression line that can be used to 
predict Y from X values is:

	 Predicted ˆ .y b b x0 1 	
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The estimated intercept and slope can be expressed in several equivalent forms, 
one of which is

	

b r
s

s

b y b x

y

x
1

0 1 	

where x  is the sample mean and s
x
 is the sample standard deviation of X.

(a)	 If a and c are two positive constants and b and d are any two constants, 
consider the data transformation:

	

U aX b

V cY d 	

and denote the estimated intercept and slope of the regression line predict-
ing V from U as B

0
 and B

1
. Express B

0
 and B

1
 as functions of a, b, c, d, and 

b
0
 and b

1
.

(b)	 What would be the results of (a) in the special case that a = c and b = 
d = 0? What would be the results of (a) in the special case that a = 1 and 
b = d = 0?

(c)	 During some operations, it would be more convenient to measure blood 
pressure (BP) from the patient’s leg than from a cuff on the arm. Let X = 
leg BP and Y = arm BP, and let the results for a group under going ortho-
pedic surgeries be b

0
 = 9.052 and b

1
 = 0.761 when BP is measured in mil-

limeters of mercury (Hg). What would these results be if BP is measured in 
centimeters of Hg? Explain your answer.

(d)	 The Apgar score was devised in 1952 by Dr. Virginia Apgar as a simple 
method to quickly assess the health of the newborn. Let X = Apgar score 
and Y= birth weight and let the results for a group of newborns be b

0
 = 

1.306 and b
1
 = 0.205 when birth weight is measured in kilograms. What 

would these results be if birth weight is measured in pounds? Explain your 
answer.

9.9	L et X and Y be two variables in a study.

(a)	 Investigator #1 is interested in predicting Y from X, and fits and computes 
a regression line for this purpose. Investigator #2 is interested in predicting 
X from Y, and computes his regression line for that purpose (note that in the 
real problem of “parallel‐line” bioassays, with X = log(dose) and Y = 
response, we have both of these steps – the first for the standard prepara-
tion and the second for the test preparation). Are these two regression lines 
the same? If so, why? If not, compute the ratio and the product of the two 
slopes as function of standard statistics.
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(b)	 Let X = height and Y = weight; we have for a group of 409 men:

	

x

y

x

y

28 359

64 938

1 969 716

10 517 079

2 2

2

inches

pounds

inches

ppounds

inch pound

2

4 513 810xy 	

(i)  Calculate the coefficient of correlation.

(ii)  Calculate the slopes, their product, and the ratio of slopes for the two 
regressions in question (a).

9.10	L et X and Y be two variables in a study; the regression line that can be used to 
predict Y from X values is:

	 Predicted ŷ b b x0 1 	

so that the “error” of the prediction is:

	

Error y y

e y b b x

ˆ

.0 1 	

(a)	 From the sum of squared errors:

	

S e

S y b b x

2

0 1

2

	

Differentiate S with respect to b
0
, and then separately with respect to b

1
, 

to derive the two “normal equations.”

(b)	 Use the two normal equations in (a) to prove that (i) the average error is 
zero, and (ii) the errors of prediction and the values of the predictor are 
uncorrelated [the coefficient of correlation is zero, r(e,X) = 0].

(c)	 Recall that if a, b, c, and d are constants then r(aX + b,cY + d) = r(X,Y). Use 
this to show that the errors of prediction and the predicted values of the 
response are uncorrelated [the coefficient of correlation is zero, r(ŷ,e) = 0].

9.11	 From a sample of n = 15 readings on X = traffic volume (cars per hour) and Y = 
carbon monoxide concentration (PPM) taken at certain metropolitan air quality 
sampling sites, we have these statistics:

	

x

y

x

y

xy

3550

167 8

974 450

1915 36

41 945

2

2

.

.
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(a)	 Compute the sample correlation coefficient r.

(b)	 Test for H
0
: ρ = 0 at the 0.05 level of significance and state your conclusion 

in context of this problem (ρ is the population coefficient of correlation).

9.12	 Consider the regression line/model without intercept, ŷ = bx.

(a)	 Minimize S = ∑(y–bx)2 to verify that the estimated slope of the regression 
line for predicting Y from X is given by b

1
 = ∑xy/∑x2.

(b)	 Consider another alternative estimate of the slope, the ratio of the sample 
means, b

2
 = ∑y/∑x. Show that if var(Y) is constant then var(b

1
)≤var(b

2
). 

[However, if the variance var(Y) is proportional to x, var(b
2
)≤var(b

1
); an 

example of this situation would occur in a radioactivity counting experiment 
where the same material is observed for replicate periods of different 
lengths; counts are distributed as Poisson].

9.13	 The data in Table E9.13 show the consumption of alcohol (X, liters per year 
per person, 14 years or older) and the death rate from cirrhosis, a liver disease 
(Y, death per 100 000 population) in 15 countries (each country is an observa-
tion unit).

(a)	 Draw a scatter diagram to show the association, if any, between these two 
variables; can you draw any conclusion/observation without doing any 
calculation?

(b)	 Calculate the coefficient of correlation and its 95% confidence interval 
using Fisher’s transformation; then state your interpretation.

table E9.13  Consumption of alcohol and death rate from cirrhosis in 15 countries.

Country
Alcohol 

Consumption
Death Rate 

from Cirrhosis x2 y2 xy

France 24.7 46.1 610.09 2125.21 1138.67
Italy 15.2 23.6 231.04 556.96 358.72
Germany 12.3 23.7 151.29 561.69 291.51
Australia 10.9 7.0 118.81 49.00 76.30
Belgium 10.8 12.3 116.64 151.29 132.84
USA 9.9 14.2 98.01 201.64 140.58
Canada 8.3 7.4 68.89 54.76 61.42
England 7.2 3.0 51.84 9.00 21.60
Sweden 6.6 7.2 43.56 51.84 47.52
Japan 5.8 10.6 33.64 112.36 61.48
Netherlands 5.7 3.7 32.49 13.69 21.09
Ireland 5.6 3.4 31.36 11.56 19.04
Norway 4.2 4.3 17.64 18.49 18.06
Finland 3.9 3.6 15.21 12.96 14.04
Ireal 3.1 5.4 9.61 29.16 16.74

Total 134.2 175.5 1630.12 3959.61 2419.61
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(c)	 Form the regression line by calculating the estimated intercept and slope; 
if the model holds, what would be the death rate from cirrhosis for a 
country with alcohol consumption rate of 11.0 liters per year per person?

(d)	 What fraction of the total variability of Y is explained by its relationship to 
X? Form the ANOVA Table.

9.14	 In an assay of heparin, a standard preparation is compared with a test prepara-
tion by observing the log clotting times (Y, in seconds; Table E9.14) of blood 
containing different doses of heparin (X is log dose, replicate readings are made 
at each dose level):

	 Separately for each preparation, standard and test:

(a)	 Draw a scatter diagram to show a possible association between the log 
clotting time (used as the dependent variable) and the log dose and check 
to see if a linear model is justified.

(b)	 Estimate the regression parameters, the log clotting time for a log dose of 
1.0 (are estimates for different preparations different?), and draw the 
regression line on the same graph with the scatter diagram.

(c)	 Test to see if the two factors are independent; state your hypotheses and 
your choice of the test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.

(e)	 Is there evidence of an effect modification? (Compare the two coefficients 
of determination or coefficient of correlation – very informally.)

9.15	 Refer to the data in Exercise 9.14, but in the context of a multiple regression 
problem with three independent variables: log dose, preparation, and product 
log dose by preparation.

(a)	 Fit the multiple regression model to obtain estimates of individual regres-
sion coefficients and their standard errors. Draw your conclusions concerning 
the conditional contribution of each factor.

(b)	 Within the context of the multiple regression model in (a), does preparation 
alter the effect of log dose on the log clotting time?

table E9.14  Log clotting times of blood 
containing different doses of heparin.

Log Clotting Times

Standard Test Log(Dose)

1.81 1.76 1.80 1.76 0.72
1.85 1.79 1.83 1.83 0.87
1.95 1.93 1.90 1.88 1.02
2.12 2.00 1.97 1.98 1.17
2.26 2.16 2.14 2.10 1.32



344� Regression Analysis

(c)	 Taken collectively, do the three independent variables contribute signifi-
cantly to the variation in log clotting times?

(d)	 Calculate the coefficient of multiple determination and provide your 
interpretation.

9.16	 Data are shown below for two groups of patients who died of acute myelogenous 
leukemia. Patients were classified into the two groups according to the presence 
or absence of a morphologic characteristic of white cells (Table E9.16). Patients 
termed “AG positive” were identified by the presence of Auer rods and/or 
significant granulature of the leukemic cells in the bone marrow at diagnosis. 
For AG negative patients these factors were absent. Leukemia is a cancer char-
acterized by an over‐proliferation of white blood cells; the higher the white 
blood count (WBC), the more severe the disease.

	 Separately for each morphologic group, AG positive and AG negative:

(a)	 Draw a scatter diagram to show a possible association between the log 
survival time (used as the dependent variable) and the log WBC and check 
to see if a linear model is justified.

(b)	 Estimate the regression parameters, the predicted survival time for a patient 
with a WBC of 20 000 (are estimates for different groups different?), and 
draw the regression line on the same graph with the scatter diagram.

table E9.16  Patients classified into two groups according to the presence or absence of 
the AG morphologic characteristic of white cells.

AG‐Positive, n = 17 AG‐Negative, n = 16

White Blood count Survival Time White Blood Count Survival Time
(WBC) (weeks) (WBC) (weeks)

2 300 65 4 400 56
750 156 3 000 65

4 300 100 4 000 17
2 600 134 1 500 7
6 000 16 9 000 16

10 500 108 5 300 22
10 000 121 10 000 3
17 000 4 19 000 4
5 400 39 27 000 2
7 000 143 28 000 3
9 400 56 31 000 8

32 000 26 26 000 4
35 000 22 21 000 3

100 000 1 79 000 30
100 000 1 100 000 4
52 000 5 100 000 43

100 000 65
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(c)	 Test to see if the two factors are independent; state your hypothesis and 
your choice of the test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.

(e)	 Is there evidence of an effect modification? (Compare the two coefficients 
of determination or coefficient of correlation – very informally.)

9.17	 Refer to the data in Exercise 9.16 (Table E9.16), but in the context of a multiple 
regression problem with three independent variables: log WBC, the morpho-
logic characteristic (AG, represented by a binary indicator: 0 if AG negative and 
1 if AG positive), and product log WBC by morphologic characteristic (AG).

(a)	 Fit the multiple regression model to obtain estimates of individual regres-
sion coefficients and their standard errors. Draw your conclusions concerning 
the conditional contribution of each factor.

(b)	 Within the context of the multiple regression model in (a), does the morpho-
logic characteristic (AG) alter the effect of log WBC on log survival time?

(c)	 Taken collectively, do the three independent variables contribute signifi-
cantly to the variation in log survival times?

(d)	 Calculate the coefficient of multiple determination and provide your 
interpretation.

9.18	 The purpose of this study was to examine the data for 44 physicians working 
for an emergency department at a major hospital so as to determine which of a 
number of factors are related to the number of complaints (X) received during 
the previous year. In addition to the number of complaints, data available con-
sist of the number of visits – which serves as the “size” for the observation unit, 
the physician – and four other factors under investigation. Table E2.34 (repro-
duced below as Table E9.18) presents the complete data set. For each of the 44 
physicians there are two continuous explanatory factors, the revenue (dollars 
per hour) and workload at the emergency service (hours) and two binary vari-
ables, sex (female/male) and residency training in emergency services (“Rcy”, 
no/yes). Divide the number of complaints by the number of visits and use this 
ratio (number of complaints per visit) as the primary outcome or dependent 
variable Y. Separately for each of the two continuous explanatory factors, the 
revenue (dollars per hour) and workload at the emergency service (hours):

(a)	 Draw a scatter diagram to show a possible association with the number of 
complaints per visit and check to see if a linear model is justified.

(b)	 Estimate the regression parameters, the predicted number of complaints 
per visit for a physician having the (sample) mean level of the explanatory 
factor, and draw the regression line on the same graph with the scatter 
diagram.

(c)	 Test to see if the factor and the number of complaints per visit are 
independent; state your hypothesis and your choice of the test size.

(d)	 Calculate the coefficient of determination and provide your interpretation.
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9.19	 Refer to the data in Exercise 9.18 but consider all four explanatory factors and 
the product residency training by workload simultaneously.

(a)	 Fit the multiple regression model to obtain estimates of individual regres-
sion coefficients and their standard errors. Draw your conclusions concerning 
the conditional contribution of each factor.

(b)	 Within the context of the multiple regression model in (a), does the residency 
training alter the effect of workload on the number of complaints per visit?

(c)	 Taken collectively, do the five independent variables contribute signifi-
cantly to the variation in log survival times?

(d)	 Calculate the coefficient of multiple determination and provide your 
interpretation.

9.20	 There are two measures of the maximum amount of air that can be exhaled after 
a maximum inhalation. One is the “forced expiratory volume” – or FEV, the 
forced expiratory volume in the first second is the FEV1 (also called forced 
vital capacity); the other “slow expiratory volume,” or briefly the “vital 
capacity” (VC). They are measured using spirometry (meaning the measuring 
of breath). Spirometry is the most common of the pulmonary function tests 
measuring lung function, specifically the measurement of the amount (volume) 
and/or speed (flow) of air that can be inhaled and exhaled. The difference 

table E9.18

N‐Visits X Rcy Sex Revenue Hours N‐Visits X Rcy Sex Revenue Hours

2014 2 Y F 263.03 1287.25 3003 3 Y F 280.52 1552.75
3091 3 N M 334.94 1588.00 2178 2 N M 237.31 1518.00
879 1 Y M 206.42 705.25 2504 1 Y F 218.7 1793.75
1780 1 N M 226.32 1005.50 2211 1 N F 250.01 1548.00
3646 11 N M 288.91 1667.25 2338 6 Y M 251.54 1446.00
2690 1 N M 275.94 1517.75 3060 2 Y M 270.52 1858.25
1864 2 Y M 295.71 967.00 2302 1 N M 247.31 1486.25
2782 6 N M 224.91 1609.25 1486 1 Y F 277.78 933.75
3071 9 N F 249.32 1747.75 1863 1 Y M 259.68 1168.25
1502 3 Y M 269 906.25 1661 0 N M 260.92 877.25
2438 2 N F 225.61 1787.75 2008 2 N M 240.22 1387.25
2278 2 N M 212.43 1480.50 2138 2 N M 217.49 1312.00
2458 5 N M 211.05 1733.50 2556 5 N M 250.31 1551.50
2269 2 N F 213.23 1847.25 1451 3 Y F 229.43 973.75
2431 7 N M 257.3 1433.00 3328 3 Y M 313.48 1638.25
3010 2 Y M 326.49 1520.00 2927 8 N M 293.47 1668.25
2234 5 Y M 290.53 1404.75 2701 8 N M 275.4 1652.75
2906 4 N M 268.73 1608.50 2046 1 Y M 289.56 1029.75
2043 2 Y M 231.61 1220.00 2548 2 Y M 305.67 1127.00
3022 7 N M 241.04 1917.25 2592 1 N M 252.35 1547.25
2123 5 N F 238.65 1506.25 2741 1 Y F 276.86 1499.25
1029 1 Y F 287.76 589.00 3763 10 Y M 308.84 1747.50
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between VC and the total lung capacity depends on the general condition of 
lung tissue. The FEV is lower than the VC either in normal individuals or in 
obstructive patients; the level of difference increases with the degree of obstruc-
tion. Table E9.20 shows data observed from 10 hospitalized patients.

(a)	 Fit the regression model of Y on X
1
 and X

2
 and interpret the results (values 

of the estimated regression coefficients).

(b)	 Calculate the coefficient multiple determination and interpret the result.

(c)	 Taken collectively, do total lung capacity and vital capacity contribute sig-
nificantly to the prediction of forced expiratory volume?

(d)	 Does total lung capacity have any value added to the explanation of the 
variation in forced expiratory volume over and above that achieved by vital 
capacity? (i.e. Test whether X

2
 can be dropped from the regression model 

given that X
1
 is retained.)

(e)	 Perform a stepwise regression and explain the results.

9.21	 Much research has been devoted to the etiology of hypertension. One general 
problem is to determine to what extent hypertension is a genetic phenomenon, 
whether we could explain variation in blood pressure among children from the 
blood pressures of their parents, especially the mothers. Table  E9.21 shows 
data observed from 20 families with systolic blood pressures from the mother, 
father, and the first‐born child.

(a)	 We would expect from genetic principles that the correlation between the 
mothers’s SBP and the child’s SBP exists; test this expectation at the level 
of 0.05.

(b)	 Fit the regression model of Y on X
1
 and X

2
 and interpret the results (values 

of the estimated regression coefficients).

(c)	 Calculate the coefficient of multiple determination and interpret the result.

(d)	 Taken collectively, do blood pressures of the parents contribute signifi-
cantly to the prediction of their first‐born child’s blood pressure?

table E9.20  Lung capacity data observed from 10 hospitalized patients.

X
1
, VC 

(liters)
X

2
, Total Lung 

Capacity (liters)
Y, FEV  

(liters/second)

2.2 2.5 1.6
1.5 3.2 1.0
1.6 5.0 1.4
3.4 4.4 2.6
2.0 4.4 1.2
1.9 3.3 1.3
2.2 3.2 1.6
3.3 3.3 2.3
2.4 3.7 2.1
0.9 3.6 0.7
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(e)	 Does the father’s SBP have any value added to the explanation of the vari-
ation in first‐born children blood pressures over and above that achieved by 
mother’s SBP? (i.e. Test whether X

2
 can be dropped from the regression 

model given that X
1
 is retained.)

9.22	 In an assay of cod‐liver oil (test) against Vitamin D3 (standard), let:
Y = Response
P = Preparation (= 0 for standard, = 1 for test)
X = log(dose)
PX = X*P

(a)	 From the following results:

Term Regression Coefficient Standard Error t Statistic p Value

Intercept 24.1098 3.6601 6.59 <.0001
X 5.8398 1.5663 3.73 0.0011
P −16.5821 5.5459 −2.99 0.0065
PX 1.2001 1.8302 0.66 0.5185

is it reasonable to assume that the response is linearly related to log of the 
dose, why or why not? (Hint: why does log scale have anything to do with 
the product term?)

(b)	 From the following results (of a different model):

Term Regression Coefficient Standard Error t Statistic p Value

Intercept 22.0844 1.9399 11.38 <.0001
X 6.7188 0.8005 8.39 <.0001
P −13.1556 1.8347 −7.17 <.0001

is the strength of the test preparation stronger or weaker than the strength 
of the standard preparation? Find a point estimate of the log relative 
potency (call it M).

9.23	 An investigator is interested to see to what extent height is genetically deter-
mined, whether we could explain variation in heights of different people from 

table E9.21  Data observed from 20 families with systolic blood pressures.

X
1
, Mother 

SBP
X

2
, Father 
SBP

Y, Child 
SBP

X
1
, Mother 
SBP

X
2
, Father 
SBP

Y, Child 
SBP

130.0 140.0 90.0 125 150.0 100
125.0 120.0 85.0 110 125.0 80
140.0 180.0 120.0   90 140.0 70
110.0 150.0 100.0 120 170.0 115
145.0 175.0 105.0 150 150.0 90
160.0 120.0 100.0 145 155.0 90
120.0 145.0 110.0 130 160.0 115
180.0 160.0 140.0 155 115.0 110
120.0 190.0 115.0 110 140.0 90
130.0 135.0 105.0 125 150.0 100
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the heights of their parents. Table E9.23 shows the height Y at age 18 for a  
random sample of 20 males.

	 Factors considered are:
X

1
 = Length at birth,

X
2
 = Mother’s height when she was 18,

X
3
 = Father’s height when he was 18.

	 All heights and lengths are in inches.

(a)	 Can we decide if a man’s height and his length at birth are related? Calculate 
the intercept and the slope of the simple linear regression of Y on X

1
.

(b)	 Taken collectively, does the entire set of three independent variables X
1
, X

2
, 

and X
3
 contribute significantly to the prediction of the dependent variable Y?

(c)	 Which of the three factors (X
1
 or X

2
 or X

3
) stands out as the most significant 

factor in the prediction of a man’s height at age 18 over and above that 
achieved by the other two factors?

(d)	 Does the addition of a man’s length at birth add significantly to the prediction 
of his own height at age 18 over and above that achieved by the two genetic 
factors (mother’s height when she was 18 and father’s height when he was 18)?

(e)	 Is it possible to conclude that mother’s height when she was 18 and father’s 
height when he was 18 contribute equally to improving the prediction of a 
man’s height at age 18 over and above that achieved by his length at birth?

table E9.23  Height Y at age 18 for a random sample of 
20 males.

Y X
1

X
2

X
3

67.2 19.7 60.5 70.3
69.1 19.6 64.9 70.4
67.1 19.4 65.4 65.8
72.4 19.4 63.4 71.9
63.6 19.7 65.1 65.1
72.7 19.6 65.2 71.1
68.5 19.8 64.3 69.7
69.8 19.7 65.3 68.8
68.4 19.7 64.5 68.7
72.4 19.9 63.4 70.3
67.5 21.9 60.3 70.4
70.2 20.3 64.9 68.8
69.8 19.7 63.5 70.3
63.6 19.9 67.1 65.5
64.3 19.6 63.5 65.2
68.5 21.3 66.1 65.4
70.5 20.1 64.8 70.2
68.1 20.2 62.6 68.6
73.3 20.8 66.2 70.3
66.2 19.3 62.4 67.5
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10
LOGISTIC REGRESSION

The purpose of many research projects is to assess relationships among a set of 
variables and regression techniques are often used as statistical analysis tools in the 
study of such relationships. Research designs may be classified as experimental or 
observational. Regression analyses are applicable to both types; yet the confidence 
one has in the results of a study can vary with the research type. In most cases, one 
variable is usually taken to be the response or dependent variable, that is, a variable 
to be predicted from or explained by other variables. The other variables are called 
predictors, covariates, explanatory variables, or independent variables. Choosing 
an appropriate model and analytical technique depends on the type of variable under 
investigation. The methods and regression models of Chapter  9 deal with cases 
where the dependent variable of interest is a continous variable which we assume, 
perhaps after an appropriate transformation, to be normally distributed. In Chapter 9 
we considered cases with one independent variable (simple regression) and cases 
with several independent variables or covariates (multiple regression). However, in 
a variety of other applications, the dependent variable of interest is not on a contin­
uous scale; it may have only two possible outcomes and therefore can be represented 
by an indicator variable taking on values 0 and 1. Consider, for example, an analysis 
of whether or not business firms have a day‐care facility; the corresponding 
independent variable, for example, is the number of female employees. The 
dependent variable in this study was defined to have two possible outcomes: (i) the 
firm has a day‐care facility, and (ii) the firm does not have a day‐care facility, which 
may be coded as 1 and 0, respectively. As another example, consider a study of drug 
use among middle school students as a function of gender, age, family structure 
(e.g., who is the head of household), and family income. In this study, the dependent 
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variable Y was defined to have two possible outcomes: (i) the child uses drugs and 
(ii) the child does not use drugs. Again, these two outcomes may be coded 1 and 0, 
respectively.

The examples above, and others, show a wide range of applications in which the 
dependent variable is dichotomous and hence may be represented by a variable tak­
ing the value 1 with probability π and the value 0 with probability 1 − π. Such a var­
iable is a point binomial variable, that is, a binomial variable with n = 1 trial, and the 
model often used to express the probability π as a function of potential independent 
variables under investigation is the logistic regression model. It should be noted that 
the regression models of Chapter 9 do not apply here because linear combinations of 
independent variables are not bounded between 0 and 1 as required in the applica­
tions above. Instead of regression models imposed to describe the mean of a normal 
variate, the logistic model has been used extensively and successfully in the health 
sciences to describe the probability (or risk) of developing a condition – say, a disease – 
over a specified time period as a function of certain risk factors X

1
, X

2
, …, X

J
. 

The following is such a typical example.

Example 10.1
When a patient is diagnosed as having cancer of the prostate, an important question 
in deciding on treatment strategy for the patient is whether or not the cancer has 
spread to neighboring lymph nodes. The question is so critical in prognosis and 
treatment that it is customary to operate on the patient (i.e., perform a laparotomy) 
for the sole purpose of examining the nodes and removing tissue samples to 
examine under the microscope for evidence of cancer. However, certain variables 
that can be measured without surgery are predictive of the nodal involvement; the 
purpose of the study presented in Brown (1980) was to examine the data for 53 
prostate cancer patients receiving surgery, to determine which of five preoperative 
variables are predictive of nodal involvement. In particular, the principal investigator 
was interested in the predictive value of the level of acid phosphatase in blood serum 
(see Table E2.32). Table 10.1 presents the complete data set. For each of the 53 
patients, there are two continuous independent variables: age at diagnosis and level 
of serum acid phosphatase (× 100; called “acid”), and three binary variables: x‐ray 
reading, pathology reading (grade) of a biopsy of the tumor obtained by needle 
before surgery, and a rough measure of the size and location of the tumor (stage) 
obtained by palpation with the fingers via the rectum. For these three binary 
independent variables a value of 1 signifies a positive or more serious state and a 0 
denotes a negative or less serious finding. In addition, the sixth column presents the 
finding at surgery – the primary binary response or dependent variable Y, a value of 
1 denoting nodal involvement, and a value of 0 denoting no nodal involvement 
found at surgery.

A careful reading of the data reveals, for example, that a positive x‐ray or an 
elevated acid phosphatase level, in general, seems likely to be associated with nodal 
involvement found at surgery. However, predictive values of other variables are not 
clear, and to answer the question, for example, concerning the usefulness of acid 
phosphatase as a prognostic variable, we need a more detailed analysis before a 
conclusion can be made.
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10.1  SIMPLE REGRESSION ANALYSIS

Following the outline of Chapter  9, in this section we discuss the basic ideas of 
simple regression analysis when only one predictor or independent variable is avail­
able for predicting the response of interest. Again, the response of interest is binary 
taking the value 1 with probability π and the value 0 with probability 1 − π. In the 
interpretation of the primary parameter of the model, we discuss both scales of 
measurement, discrete and continuous, even though in most practical applications, 
the independent variable under investigation is often on a continuous scale.

10.1.1  Simple Logistic Regression Model

The usual regression analysis goal, as seen in various sections of Chapter  9, is to 
describe the mean of a dependent variable Y as a function of a set of predictor vari­
ables. The logistic regression, however, deals with the case where the basic random 

Table 10.1

X‐ray Grade Stage Age Acid Nodes X‐ray Grade Stage Age Acid Nodes

0 1 1 64 40 0 0 0 0 60 78 0
0 0 1 63 40 0 0 0 0 52 83 0
1 0 0 65 46 0 0 0 1 67 95 0
0 1 0 67 47 0 0 0 0 56 98 0
0 0 0 66 48 0 0 0 1 61 102 0
0 1 1 65 48 0 0 0 0 64 187 0
0 0 0 60 49 0 1 0 1 58 48 1
0 0 0 51 49 0 0 0 1 65 49 1
0 0 0 66 50 0 1 1 1 57 51 1
0 0 0 58 50 0 0 1 0 50 56 1
0 1 0 56 50 0 1 1 0 67 67 1
0 0 1 61 50 0 0 0 1 67 67 1
0 1 1 64 50 0 0 1 1 57 67 1
0 0 0 56 52 0 0 1 1 45 70 1
0 0 0 67 52 0 0 0 1 46 70 1
1 0 0 49 55 0 1 0 1 51 72 1
0 1 1 52 55 0 1 1 1 60 76 1
0 0 0 68 56 0 1 1 1 56 78 1
0 1 1 66 59 0 1 1 1 50 81 1
1 0 0 60 62 0 0 0 0 56 82 1
0 0 0 61 62 0 0 0 1 63 82 1
1 1 1 59 63 0 1 1 1 65 84 1
0 0 0 51 65 0 1 0 1 64 89 1
0 1 1 53 66 0 0 1 0 59 99 1
0 0 0 58 71 0 1 1 1 68 126 1
0 0 0 63 75 0 1 0 0 61 136 1
0 0 1 53 76 0

Note: This is a very long data file; its electronic copy, in a Web‐based form, is available from www.wiley.
com/go/Le/Biostatistics.

http://www.wiley.com/go/Le/Biostatistics
http://www.wiley.com/go/Le/Biostatistics
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variable Y of interest is a dichotomous variable taking the value 1 with probability π and 
the value 0 with probability (1 − π). Such a random variable is called a point‐binomial 
or Bernoulli variable, and it has the simple discrete probability distribution

	 Pr , .Y y yy y
1 0 1

1

	

Suppose that for the ith individual of a sample (i = 1, 2, …, n), Y
i
 is a Bernoulli vari­

able with

	 Pr , .Y y yi i i
y

i

y

i
i i1 0 1

1

	

The logistic regression analysis assumes that the relationship between π
i
 and the 

covariate value x
i
 of the same person is described by the logistic function
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The basic logistic function is given by
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where, as in this simple regression model,

	 z xi i0 1 	

or, in the multiple regression model of subsequent sections,

	
z xi

j
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which represents an index of combined risk factors. There are two important reasons 
that make logistic regression popular:

1.	 The range of the logistic function is between 0 and 1; that makes it suitable for 
use as a probability model, representing individual risk.

2.	 The logistic curve has an increasing S‐shape with a threshold (Figure 10.1); 
that makes it suitable for use as a biological model, representing risk due to 
exposure.

Under the simple logistic regression model, the likelihood function is given by
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from which we can obtain maximum likelihood estimates of the parameters β
0
 and β

1
. 

As mentioned previously, the logistic model has been used both extensively and suc­
cessfully to describe the probability of developing (Y = 1) some disease over a spec­
ified time period as a function of a risk factor X.

10.1.2  Measure of Association

Regression analysis serves two major purposes: (i) estimating effects of control or 
intervention, and (ii) prediction. In many studies, such as the one in Example 10.1, 
one important objective is measuring the strength of a statistical relationship between 
the binary dependent variable and each independent variable or covariate measured 
from patients; findings may lead to important decisions in patient management (or 
public health interventions in other examples). In epidemiological studies, such 
effects are usually measured by the relative risk or odds ratio (as in Chapter 1); when 
the logistic model is used, the measure is the odds ratio.

For the case of the logistic regression model, the logistic function for the proba­
bility π

i
 can also be expressed as a linear model in the log scale (of the odds):

	
ln .i

i
ix

1 0 1

	

We first consider the case of a binary covariate with the conventional coding:

	
Xi

0

1

if the patient is not exposed

if the patient is exposed 	

Here, the term exposed may refer to a risk factor such as smoking, or a patient’s 
characteristic such as race (white/nonwhite) or gender (male/female). It can be seen 
that from the log‐linear form of the logistic regression model,

1.0

0.8

0.6

0.4

0.2

0.0

y = 1/2

x

y

Figure 10.1  General form of a logistic curve.
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ln

ln

odds; nonexposed

odds; exposed
0

0 1	

so that after exponentiating, the difference leads to

	
e 1

odds; exposed

odds; nonexposed 	

which represents the odds ratio (OR) associated with the exposure, exposed versus 
nonexposed. In other words, the primary regression coefficient β

1
 is the value of the 

odds ratio on the log scale.
Similarly, we have for a continuous covariate X and any value x of X,

	

ln ;

ln ;
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X x x

X x x
0 1

0 11 1 	

so that after exponentiating, the difference leads to

	
e

X x

X x
1

1odds

odds

;

; 	

representing the odds ratio (OR) associated with a 1‐unit higher value of X, X = x + 1 
versus X = x, for example, a systolic blood pressure of 114 versus 113 mmHg. For an 
m‐unit higher value of X, say X = x + m versus X = x, the corresponding odds ratio is em 1 .

The primary regression coefficient β
1
 (and β

0
, which is often not needed) can be 

estimated iteratively using a software package such as SAS or R. From the results, 
we can obtain a point estimate

	 OR e
ˆ
1	

and its 95% confidence interval

	 1 1exp 1.96ˆ SE .ˆ
	

10.1.3  Effect of Measurement Scale

It should be noted that the odds ratio, used as a measure of association between the 
binary dependent variable and a covariate, depends on the coding scheme for a binary 
covariate and for a continuous covariate X, the scale with which to measure X. For 
example, if we use the following coding for a factor,

	
Xi

1

1

if the subject is not exposed

if the subject is exposed 	

then

	

ln

ln
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odds; exposed
0 1

0 1	
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so that

	

OR odds; exposed odds; nonexposedexp ln ln

e2 1 	

and its 95% confidence interval is

	 1 1exp 2 1.96ˆ SE .ˆ
	

Of course, the estimate of β
1
 under the new coding scheme is only half of that under 

the former scheme; therefore, the (numerical) estimate of the OR remains unchanged. 
The following example, however, will show the clear effect of measurement scale in 
the case of a continuous independent variable.

Example 10.2
Refer to the data for patients diagnosed as having cancer of the prostate in Example 10.1 
(Table 10.1) and suppose that we want to investigate the relationship between nodal 
involvement found at surgery and the level of acid phosphatase in blood serum in two 
different ways using either (a) X = acid or (b) X = log

10
(acid).

(a)  For X = acid, we find that

	
ˆ .1 0 0204	

from which the odds ratio for (acid = 100) versus (acid = 50) would be

	

OR exp .

. .

100 50 0 0204

2 77 	

(b)  For X = log
10

(acid), we find that

	
ˆ .1 5 1683	

from which the odds ratio for (acid = 100) versus (acid = 50) would be

	

OR exp log log .

. .
10 10100 50 5 1683

4 74 	

Note: If X = acid is used, an SAS program would include these instructions:

DATA CANCER;
   INFILE 'table10.1.txt' DLM='&' FIRSTOBS=2;
   INPUT XRAY GRADE STAGE AGE ACID NODES;
PROC LOGISTIC DESCENDING DATA = CANCER;
   MODEL NODES = ACID;

where CANCER is the name assigned to the data set and other variables follow 
the  naming in Table  10.1. The option DESCENDING is needed because PROC 



358� LOGISTIC REGRESSION

LOGISTIC by default models Pr( Y = 0) instead of Pr( Y = 1). An R program would 
include the following instructions:

cancer = read.table(file=’table10.1.txt’,header=T,sep=’&’)
attach(cancer)
acid.glm = glm(Nodes ~ Acid, binomial(link = "logit"))
summary(acid.glm)
or.50acid = exp((100-50)*acid.glm$coefficients[2])

The results above are different for two different choices of X and this seems to 
cause an obvious problem of choosing an appropriate measurement scale. Of course, 
we assume a linear model and one choice of scale for X could fit better than the 
other. However, it is very difficult to compare different scales unless there were rep­
licated data at each level of X; if such replications are available, one can simply graph 
a scatter diagram of log(odds) versus the X value and check for linearity of each 
choice of scale of measurement for X.

10.1.4  Tests of Association

Sections 10.1.2 and 10.1.3 deal with inferences concerning the primary regression 
coefficient β

1
, including both point and interval estimation of this parameter and the 

odds ratio. Another aspect of statistical inference concerns the test of significance; 
the null hypothesis to be considered is

	 H0 1 0: .	

The reason for interest in testing whether or not β
1
 = 0 is that β

1
 = 0 implies that there 

is no relation between the binary dependent variable and the covariate X under inves­
tigation. Since the likelihood function is rather simple, one can easily derive, say, the 
score test for the null hypothesis above; however, nothing would be gained by going 
through this exercise. We can simply apply a chi‐square test (if the covariate is binary 
or categorical) or t test or Wilcoxon test (if the covariate under investigation is on a 
continuous scale). Of course, the application of the logistic model is still desirable, 
at least in the case of a continuous covariate, because it would provide a measure 
of association.

10.1.5 U se of the Logistic Model for Different Designs

Data for risk determination may come from different sources, with the two 
fundamental designs being retrospective and prospective. Prospective studies enroll 
a group or groups of subjects and follow them over certain periods of time – examples 
include occupational mortality studies and clinical trials – and observe the occur­
rence of a certain event of interest such as a disease or death. Retrospective studies 
gather past data from selected cases and controls to determine differences, if any, in 
the exposure to a suspected risk factor. They are commonly referred to as case–control 
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studies. It can be seen that the logistic model fits in very well with the prospective or 
follow‐up studies and has been used successfully to model the “risk” of developing a 
condition – say, a disease – over a specified time period as a function of a certain risk 
factor. In such applications, after a logistic model has been fitted, one can estimate 
the individual risks π(x)s – given the covariate value x – as well as any risks ratio or 
relative risk,

	

RR
x

x
i

j 	

for any two x values x
i
 and x

j
. As for case–control studies, it can be shown, using the 

Bayes’ theorem, that if we have for the population
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where θ
1
 is the probability that a case was sampled and θ

0
 is the probability that a 

control was sampled from the target population. This result indicates the following 
points for a case–control study:

1.	 We cannot estimate individual risks, or relative risk, unless θ
0
 and θ

1
 are known, 

which is unlikely. The value of the intercept provided by the computer output 
is meaningless.

2.	 However, since we have the same β
1
 as with a prospective model, we still can 

estimate the odds ratio and if the rare disease assumption applies, can interpret 
the numerical result as an approximate relative risk (see Section 1.3.2).

10.1.6  Overdispersion

This section introduces a new issue, the issue of overdispersion, which is of practical 
importance. However, the presentation also involves somewhat more advanced 
statistical concepts, such as invoking the variance of the binomial distribution, which 
was introduced very briefly in Chapter 3. Because of that, student readers, especially 
beginners, may decide to skip without having any discontinuity. Logistic regression 
is based on the point binomial or Bernoulli distribution; its mean is π and the 
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variance is (π)(1 − π). If we use the variance/mean ratio as a dispersion parameter, it 
is 1 in a standard logistic model, less than 1 in an underdispersed model, and greater 
than 1 in an overdispersed model. Overdispersion is a common phenomenon in prac­
tice and it causes concerns because the implication is serious; the analysis, which 
assumes the logistic model, often underestimates standard error(s) and thus wrongly 
inflates the level of significance.

Measuring and Monitoring Dispersion  After a logistic regression model is fit­
ted, dispersion is measured by the scaled deviance or scaled Pearson chi‐square; it 
is the deviance or Pearson chi‐square divided by the degrees of freedom. The devi­
ance is defined as twice the difference between the maximum achievable log 
likelihood and the log likelihood at the maximum likelihood estimates of the regres­
sion parameters. Suppose that the data are with replications consisting of m sub­
groups (with identical covariate values); then, with i indexing group and j indexing 
person, the Pearson chi‐square and deviance are given by
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r n p

n p

X r
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Each of these goodness‐of‐fit statistics divided by the appropriate degrees of free­
dom, called the scaled Pearson chi‐square and scaled deviance, respectively, can be 
used as a measure for overdispersion (underdispersion, with those measures less than 
1, occurs much less often in practice). When their values are much larger than 1, the 
assumption of binomial variability may not be valid and the data are said to exhibit 
overdispersion. Several factors can cause overdispersion; among these are such prob­
lems as outliers in the data, omitting important covariates in the model, and the need 
to transform some explanatory factors. PROC LOGISTIC of SAS has an option, 
called AGGREGATE, that can be used to form subgroups. Without such a grouping, 
data may be too sparse, the Pearson chi‐square and deviance do not have a chi‐square 
distribution, and the scaled Pearson chi‐square and scaled deviance cannot be used as 
indicators of overdispersion. A large difference between the scaled Pearson chi‐
square and scaled deviance provides evidence of this situation.

Fitting an Overdispersed Logistic Model  One way of correcting overdispersion is 
to multiply the covariance matrix by the value of the overdispersion parameter ϕ, 
estimated by scaled Pearson chi‐square or scaled deviance (as used in weighted least‐
squares fitting):

	

E p

p
i i

i i iVar 1 .	



SIMPLE REGRESSION ANALYSIS� 361

In this correction process, the parameter estimates are not changed. However, their 
standard errors are adjusted (increased), affecting their significance levels (reduced).

Example 10.3
In a study of the toxicity of a certain chemical compound, five groups of 20 rats each 
were fed for four weeks on a diet mixed with that compound at five different doses. 
At the end of the study, their lungs were harvested and subjected to histopathological 
examinations to observe for sign(s) of toxicity (yes = 1, no = 0). The results are 
shown in Table  10.2. A routine fit of the simple logistic regression model yields 
Table 10.3. In addition, we obtained the results in Table 10.4 for the monitoring of 
overdispersion.

Note: An SAS program for the simple logistic would include these instructions:

DATA RATLUNGS;
   INPUT DOSE N TOXIC;
   DATALINES;
5 20 1
 ...
30 20 10
;
PROC LOGISTIC DESCENDING DATA = RATLUNGS;
   MODEL TOXIC/N = DOSE / SCALE = NONE;

Table 10.2

Group Dose (mg) Number of rats Number of rats with toxicity

1 5 20 1
2 10 20 3
3 15 20 7
4 20 20 14
5 30 20 10

Table 10.3

Variable Coefficient Standard error z Statistic p Value

Intercept −2.3407 0.5380 −4.3507 0.0001
Dose 0.1017 0.0277 3.6715 0.0002

Table 10.4

Parameter Chi‐square Degrees of freedom Scaled parameter

Deviance 10.9919 3 3.664
Pearson 10.7863 3 3.595
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An R program would include the following instructions:

toxic = c(1,3,7,14,10)
n = rep(20,5)
nottoxic = n - toxic
dose = c(5,10,15,20,30)
dose.glm = glm(cbind(toxic,nottoxic) ~ dose, binomial(link 
= "logit"))

summary(dose.glm)
dose.glm.scale = dose.glm$deviance/dose.glm$df.residual

The results in Table 10.4 indicate an obvious sign of overdispersion. By fitting an 
overdispersed model, controlling for the scaled deviance, we have Table  10.5. 
Compared to the previous results, the point estimates remain the same but the stan­
dard errors are larger. The effect of dose is no longer significant at the 5% level.

Note: An SAS program for the overdispersed logistic would include these instructions:

PROC LOGISTIC DESCENDING DATA = RATLUNGS;
   MODEL TOXIC/N = DOSE / SCALE = D;

An R program would include the following instructions:

dose.OD.glm = glm(cbind(toxic,nottoxic)  ~ dose, 
quasibinomial(link = "logit"))

summary(dose.OD.glm)

10.2  MULTIPLE REGRESSION ANALYSIS

The effect of some factor on a dependent or response variable may be influenced by 
the presence of other factors through effect modifications (i.e., interactions). Therefore, 
to provide a more comprehensive analysis, it is very desirable to consider a large 
number of factors and sort out which ones are most closely related to the dependent 
variable. In this section we discuss a multivariate method for risk determination. This 
method, which is multiple logistic regression analysis, involves a linear combination 
of the explanatory or independent variables; the variables must be quantitative with 
particular numerical values for each patient. A covariate or independent variable, such 
as a patient characteristic, may be dichotomous, polytomous, or continuous. Examples 
of dichotomous covariates are gender and presence/absence of a certain comorbidity. 

Table 10.5

Variable Coefficient Standard error z Statistic p Value

Intercept −2.3407 1.0297 −2.2732 0.0230
Dose 0.1017 0.0530 1.9189 0.0548
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Polytomous covariates include race and different grades of symptoms; these can be 
covered by the use of dummy variables. Continuous covariates include patient age and 
blood pressure. In many cases, data transformations (e.g., taking the logarithm) may 
be desirable to satisfy the linearity assumption.

10.2.1  Logistic Regression Model with Several Covariates

Suppose that we want to consider J covariates simultaneously; the simple logistic 
model of Section 10.1 can easily be generalized and expressed as
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This leads to the likelihood function
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from which parameters can be estimated iteratively using a software package such as 
SAS or R.

Also similar to the univariate case, exp(β
j
) represents one of the following:

1.	 The odds ratio associated with an exposure if X
j
 is binary (exposed X

j
 = 1 vs 

unexposed X
j
 = 0); or

2.	 The odds ratio due to a 1‐unit higher value if X
j
 is continuous (X

j
 = x + 1 versus 

X
j
 = x).

After ˆ
j and its standard error have been obtained, a 95% confidence interval for the 

odds ratio above is given by

	
exp 1.96 ˆSE .ˆ

j j 	

These results are necessary in the effort to identify important risk factors for the 
binary outcome. Of course, before such analyses are done, the problem and the data 
have to be examined carefully. If some of the variables are highly correlated, one or a 
few of the correlated factors are likely to be as good a set of predictors as all of them; 
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information from similar studies also could be used to decide to drop some of these 
correlated explanatory variables. The use of products such as X

1
 X

2
 and higher power 

terms such as X1
2 may be necessary and can improve the goodness of fit. It is impor­

tant to note that we are assuming a (log)linear regression model, in which, for 
example, the odds ratio due to a 1‐unit higher value of a continuous X

j
 (X

j
 = x + 1 

versus X
j
 = x) is independent of x. Therefore, if this linearity seems to be violated, the 

incorporation of powers of X
j
 should be seriously considered. The use of products 

will help in the investigation of possible effect modifications. Finally, there is the 
messy problem of missing data; most software packages will delete a subject if one 
or more covariate values are missing.

10.2.2  Effect Modifications

Consider the model
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The meaning of β
1
 and β

2
 here is not the same as that given earlier because of the 

cross‐product term β
3
x

1
x

2
. Suppose that both X

1
 and X

2
 are binary.

1.	 For X
2
 = 1, or exposed, we have
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so that the ratio of these ratios, e 1 3, represents the odds ratio associated with 
X

1
, exposed versus nonexposed, in the presence of X

2
, whereas

2.	 For X
2
 = 0, or not exposed, we have

	

odds; not exposed to i e

odds; ex

the reference groupX e1
0 . .,

pposed to X e1
0 1

	

so that the ratio of these ratios, e 1, represents the odds ratio associated with X
1
, 

exposed versus nonexposed, in the absence of X
2
. In other words, the effect of 

X
1
 depends on the level (presence or absence) of X

2
, and vice versa.

This phenomenon is called effect modification (i.e., one factor modifies the 
effect of the other). The cross‐product term x

1
x

2
 is called an interaction term; the use 

of these products will help in the investigation of possible effect modifications. If  
β

3
 = 0, the effect of two factors acting together, as measured by the odds ratio, is 

equal to the combined effects of the two factors acting separately, as measured by the 
product of the two odds ratios:

	 e e e1 2 1 2 .	

This fits the classic definition of no interaction on a multiplicative scale.
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10.2.3  Polynomial Regression

Consider the model
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where X is a continuous covariate. The meaning of β
1
 here is not the same as that 

given earlier because of the quadratic term 2
2xi . We have, for example,

	

ln ;

ln ;

odds

odds

X x x x

X x x x
0 1 2

2

0 1 2

2
1 1 1 	

so that after exponentiating, the difference leads to
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as a function of x.
Polynomial models with an independent variable present in higher powers than 

the second are not often used. The second‐order or quadratic model has two basic 
types of use: (i) when the true relationship is a second‐degree polynomial or when 
the true relationship is unknown but the second‐degree polynomial provides a better 
fit than a linear one, but (ii) more often, a quadratic model is fitted for the purpose of 
establishing the linearity. The key item to look for is whether β

2
 = 0.

The use of polynomial models is not without drawbacks. The biggest potential 
drawback is that multicollinearity is unavoidable. Especially if the covariate is 
restricted to a narrow range, the degree of multicollinearity can be quite high; in this 
case the standard errors are often very large. Another problem arises when one wants 
to use the stepwise regression search method. In addition, finding a satisfactory inter­
pretation for the curvature effect coefficient β

2
 is not easy. Perhaps a rather interesting 

application would be finding a value x of the covariate X so as to maximize or mini­
mize the

	 ln ; .odds X x x x0 1 2
2

	

10.2.4  Testing Hypotheses in Multiple Logistic Regression

Once we have fit a multiple logistic regression model and obtained estimates for the 
various parameters of interest, we want to answer questions about the contributions 
of various factors to the prediction of the binary response variable. There are three 
types of such questions:

1.	 Overall test. Taken collectively, does the entire set of explanatory or independent 
variables contribute significantly to the prediction of response?
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2.	 Test for the value of a single factor. Does the addition of one particular variable 
of interest add significantly to the prediction of response over and above that 
achieved by other independent variables?

3.	 Test for the contribution of a group of variables. Does the addition of a group 
of variables add significantly to the prediction of response over and above that 
achieved by other independent variables?

Overall Regression Tests  We now consider the first question stated above concern­
ing an overall test for a model containing J factors, say,

	

i

j jij

J
x

i n
1

1
1 2

0 1
exp

, , , .

	

The null hypothesis for this test may be stated as: “All J independent variables 
considered together do not explain the variation in the responses.” In other words,

	 H J0 1 2 0: .	

Two likelihood‐based statistics can be used to test this global null hypothesis; each 
has an asymptotic chi‐square distribution with J degrees of freedom under H

0
.

1.	 Likelihood ratio test:

	
2
LR 2 ln ln .ˆL L 0

	

2.	 Score test:

	
S

T
L L L2

2

2

1
ln ln ln

.
0 0 0

	

Both statistics are provided by most standard computer programs, such as SAS and R, 
and they are asymptotically equivalent, yielding identical statistical decisions most of 
the times.

Example 10.4
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1). With all five 
covariates, we have the following test statistics for the global null hypothesis:

1.	 Likelihood ratio test:

	 LR with df2 22 126 5 0 0005. ; . .p 	

2.	 Score test:

	 S p2 19 451 5 0 0016. ; . .with df 	
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Note: The SAS program of Example 10.2 would be modified to include these 
instructions:

PROC LOGISTIC DESCENDING DATA = CANCER;
   MODEL NODES = X-RAY GRADE STAGE AGE ACID;

The R program of Example 10.2 would be modified to include the following 
instructions:

all.glm = glm(Nodes ~ Xray + Grade + Stage + Age + Acid,
              binomial(link = "logit"))
chisq.LR = all.glm$null.deviance - all.glm$deviance
df.LR = all.glm$df.null - all.glm$df.residual
1-pchisq(chisq.LR,df.LR)

Tests for a Single Variable  Let us assume that we now wish to test whether the 
addition of one particular independent variable of interest adds significantly to the 
prediction of the response over and above that achieved by other factors already pre­
sent in the model. The null hypothesis for this test may be stated as: “Factor X

j
 does 

not have any value added to the prediction of the response given that other factors are 
already included in the model.” In other words,

	 H j0 0: .	

To test such a null hypothesis, one can perform a likelihood ratio chi‐squared test, 
with 1 df, similar to that for the global hypothesis above:

	
2
LR 2 ln ; all s ln ; all other s with omˆ ˆ itted .jL X L X X

	

A much easier alternative method is using

	

z j
j

j

ˆ

ˆSE
	

where ˆ
j
 is the corresponding estimated regression coefficient and SE( )ˆ

j  is the 
estimate of the standard error of ˆ

j, both of which are printed by standard software 
packages. In performing this test, we refer the value of the z statistic to percentiles of 
the standard normal distribution.

Example 10.5
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1). With all five 
covariates, we have the results shown in Table 10.6. The effects of x‐ray and stage 
are significant at the 5% level, whereas the effect of acid is marginally significant 
(p = 0.0643).

Note: Use the same SAS and R programs as in Example 10.4.



368� LOGISTIC REGRESSION

Given a continuous variable of interest, one can fit a polynomial model and use 
this type of test to check for linearity. It can also be used to check for a single product 
representing an effect modification.

Example 10.6
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1), but this time 
we investigate only one covariate, the level of acid phosphatase (acid). After fitting 
the second‐degree polynomial model,

	

i i n
1

1
1 2

0 1 2

2
exp

, , ,
acid acid

	

we obtain the results shown in Table 10.7, indicating that the curvature effect should 
not be ignored (p = 0.0437).

Contribution of a Group of Variables  This testing procedure addresses the more 
general problem of assessing the additional contribution of two or more factors to the 
prediction of the response over and above that made by other variables already in the 
regression model. In other words, the null hypothesis is of the form

	 H m0 1 2 0: .	

To test such a null hypothesis, one can perform a likelihood ratio chi‐square test, with 
m df,

	

2
LR 2[ln ; all s ln ( ; all other s with the s under

investigation omi

ˆ ˆ

tted)].

L X L X m X

	

As with the z test above, this multiple contribution procedure is very useful for 
assessing the importance of potential explanatory variables. In particular it is often 
used to test whether a similar group of variables, such as demographic characteris-
tics, is important for the prediction of the response; these variables have some trait in 
common. Another application would be a collection of powers and/or product terms 
(referred to as interaction variables). It is often of interest to assess the interaction 
effects collectively before trying to consider individual interaction terms in a model 

Table 10.6

Variable Coefficient Standard error z Statistic p Value

Intercept 0.0618 3.4599 0.018 0.9857
X‐ray 2.0453 0.8072 2.534 0.0113
Stage 1.5641 0.7740 2.021 0.0433
Grade 0.7614 0.7708 0.988 0.3232
Age −0.0693 0.0579 −1.197 0.2314
Acid 0.0243 0.0132 1.850 0.0643
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as suggested previously. In fact, such use reduces the total number of tests to be per­
formed, and this, in turn, helps to provide better control of overall type I error rate, 
which may be inflated due to multiple testing.

Example 10.7
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1) with all five 
covariates. We consider, collectively, these four interaction terms: acid × x‐ray, acid 
× stage, acid × grade, and acid × age. The basic idea is to see if any of the other var­
iables would modify the effect of the level of acid phosphatase on the response.

1.	 With the original five variables, we obtained ln L = −24.063.

2.	 With all nine variables, five original plus four products, we obtained  
ln L = −20.378.

Therefore,

	

2
LR 2 ln ; nine variables ln ; five original variables

7.371;4 df,0.05 -valu

ˆ

e 0.

ˆ

1.

L L

p 	

In other words, all four interaction terms, considered together, are marginally 
significant (0.05 ≤ p‐value ≤ 0.1); there may be some weak effect modification and 
the effect of acid phosphatase on the response may be somewhat stronger for a certain 
combination of levels of the other four variables.

Stepwise Regression  In many applications (e.g., a case–control study on a specific 
disease) our major interest is to identify important risk factors. In other words, we wish 
to identify from many available factors a small subset of factors that relate significantly 
to the outcome (e.g., the disease under investigation). In that identification process, of 
course, we wish to avoid a large type I (false positive) error. In a regression analysis, a 
type I error corresponds to including a predictor that has no real relationship to the out­
come; such an inclusion can greatly confuse the interpretation of the regression results. 
In a standard multiple regression analysis, this goal can be achieved by using a strategy 
that adds into or removes from a regression model one factor at a time according to a 
certain order of relative importance. Therefore, the two important steps are as follows:

1.	 Specify a criterion or criteria for selecting a model.

2.	 Specify a strategy for applying the criterion or criteria chosen.

Table 10.7

Factor Coefficient Standard error z Statistic p Value

Intercept −7.3200 2.6229 −2.791 0.0053
Acid 0.1489 0.0609 2.445 0.0145
Acid2 −0.0007 0.0003 −2.017 0.0437
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Strategies  This is concerned with specifying the strategy for selecting variables. 
Traditionally, such a strategy is concerned with whether (and which) particular 
variable should be added to a model or whether any variable should be deleted from 
a model at a particular stage of the process. As computers became more accessible 
and more powerful, these practices became more popular.

•• Forward selection procedure
1.  Fit a simple logistic regression model to each factor, one at a time.

2.  �Select the most important factor according to a certain predetermined criterion.

3.  �Test for the significance of the factor selected in step 2 and determine, 
according to a certain predetermined criterion, whether or not to add this 
factor to the model.

4.  �Repeat steps 2 and 3 for those variables not yet in the model. At any 
subsequent step, if none meets the criterion in step 3, no more variables are 
included in the model and the process is terminated.

•• Backward elimination procedure
1.  �Fit the multiple logistic regression model containing all available independent 

variables.

2.  �Select the least important factor according to a certain predetermined crite­
rion; this is done by considering one factor at a time and treating it as though 
it were the last variable to enter.

3.  �Test for the significance of the factor selected in step 2 and determine, 
according to a certain predetermined criterion, whether or not to delete this 
factor from the model.

4.  Repeat steps 2 and 3 for those variables still in the model. At any subsequent 
step, if none meets the criterion in step 3, no more variables are removed 
from the model and the process is terminated.

•• Stepwise regression procedure  Stepwise regression is a modified version of 
forward regression that permits reexamination, at every step, of the variables 
incorporated in the model in previous steps. A variable entered at an early stage 
may become superfluous at a later stage because of its relationship with other 
variables now in the model; the information it provides becomes redundant. 
That variable may be removed if it meets the elimination criterion, the model is 
re‐fitted with the remaining variables, and the forward process goes on. The 
entire process, one step forward followed by one step backward, continues until 
no more variables can be added or removed.

Criteria  For the first step of the forward selection procedure, decisions are based 
on individual score test results (chi‐square, 1 df). In subsequent steps, both forward 
and backward, the ordering of levels of importance (step 2) and the selection (test in 
step 3) are based on the likelihood ratio chi‐square statistic:

	
2
LR 2 ln ; all other s ln ; all other s with onˆ ˆ omitte .edL X L X X
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Example 10.8
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1) with all five 
covariates: x‐ray, stage, grade, age, and acid. This time we perform a stepwise regres­
sion analysis in which we specify that a variable has to be significant at the 0.1 level 
before it can enter into the model and that a variable in the model has to be significant 
at the 0.15 level for it to remain in the model (most standard computer programs 
allow users to make these selections; default values are available). First, we get these 
individual score test results for all variables (Table 10.8). These indicate that x‐ray is 
the most significant variable.

•• Step 1: Variable “x‐ray” is entered. Analysis of variables not in the model is 
shown in Table 10.9.

•• Step 2: Variable “stage” is entered. Analysis of variables in the model 
(Table 10.10) shows that neither variable is removed. Analysis of variables not 
in the model is shown in Table 10.11.

•• Step 3: Variable “acid” is entered. Analysis of variables in the model is shown 
in Table 10.12. None of the variables are removed. Analysis of variables not in 
the model is shown in Table 10.13. No (additional) variables meet the 0.1 level 
for entry into the model.

Table 10.8

Variable Score χ2 p Value

X‐ray 11.2831 0.0008
Stage 7.4383 0.0064
Grade 4.0746 0.0435
Age 1.0936 0.2957
Acid 3.1172 0.0775

Table 10.9

Variable Score χ2 p Value

Stage 5.6394 0.0176
Grade 2.3710 0.1236
Age 1.3523 0.2449
Acid 2.0733 0.1499

Table 10.10

Factor Coefficient Standard error z Statistic p Value

Intercept −2.0446 0.6100 −3.352 0.0008
X‐ray 2.1194 0.7468 2.838 0.0045
Stage 1.5883 0.7000 2.269 0.0233
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Note: An SAS program would include these instructions:

PROC LOGISTIC DESCENDING DATA = CANCER;
   MODEL NODES = X-RAY GRADE STAGE AGE ACID
   /SELECTION = STEPWISE SLE = .10 SLS = .15 DETAILS;

The option DETAILS provides step‐by‐step detailed results; without specifying it, 
we would have only the final fitted model (which is just fine in practical applica­
tions). The default values for SLE (entry) and SLS (stay) probabilities are 0.05 and 
0.10, respectively. The R program of Example 10.4 would be modified to also include 
the following instructions:

library(MASS)
stepAIC(all.glm)

10.2.5  Receiver Operating Characteristic Curve

Screening tests, as presented in Chapter 1, were focused on a binary test outcome. 
However, it is often true that the result of the test, although dichotomous, is based on 
the dichotomization of a continuous variable – say, X – herein referred to as the sep-
arator variable. Let us assume without loss of generality that smaller values of X are 
associated with the diseased population, often called the population of the cases. 

Table 10.11

Variable Score χ2 p Value

Grade 0.5839 0.4448
Age 1.2678 0.2602
Acid 3.0917 0.0787

Table 10.12

Factor Coefficient Standard error z Statistic p Value

Intercept −3.5756 1.1812 −3.027 0.0025
X‐ray 2.0618 0.7777 2.651 0.0080
Stage 1.7556 0.7391 2.375 0.0175
Acid 0.0206 0.0126 1.631 0.1029

Table 10.13

Variable Score χ2 p Value

Grade 1.0650 0.3020
Age 1.5549 0.2124
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Conversely, larger values of the separator are assumed to be associated with the con­
trol or nondiseased population.

A test result is classified by choosing a cutoff X = x against which the observation 
of the separator is compared. A test result is positive if the value of the separator does 
not exceed the cutoff; otherwise, the result is classified as negative. Most diagnostic 
tests are imperfect instruments, in the sense that healthy persons will occasionally be 
classified wrongly as being ill, while some people who are really ill may fail to be 
detected as such. Therefore, there is the ensuing conditional probability of the correct 
classification of a randomly selected case, or the sensitivity of the test as defined in 
Section 1.1.2, which is estimated by the proportion of cases with X ≤ x. Similarly, the 
conditional probability of the correct classification of a randomly selected control, or 
the specificity of the test as defined in Section  1.1.2, can be estimated by the 
proportion of controls with X ≥ x. A receiver operating characteristic (ROC) curve, 
the trace of the sensitivity versus (1 − specificity) of the test, is generated as the cutoff 
x moves through its range of possible values. The ROC curve goes from left bottom 
corner (0, 0) to right top corner (1, 1) as shown in Figure 10.2.

Being able to estimate the ROC curve, you would be able to do a number of 
things.

1.	 We can determine the optimal cut point, which is nearest to the upper  
left corner (0,1). This corner corresponds to 100% sensitivity and 100% 
specificity.

2.	 We can estimate the separation power of the separator X, which is estimated 
by the area under the ROC curve estimated above. Given two available separa­
tors, the better separator is the one with the higher separation power.
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Figure 10.2  Receiver operating characteristic (ROC) curve.
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Given two independent samples, { }x i i
m

1 1 and { }x j j
n

2 1, from m controls and n cases, 
respectively, the estimated ROC curve, often called the nonparametric ROC curve, is 
defined as the random walk from the left bottom corner (0, 0) to the right top corner 
(1, 1) whose next step is 1/m to the right or 1/n up, according to whether the next 
observation in the ordered combined sample is a control (x

1
) or a case (x

2
). For 

example, suppose that we have the samples

	 x x x x x n m21 22 11 23 12 3 2, .	

Then the nonparametric ROC curve is as shown in Figure 10.3.

10.2.6  ROC Curve and Logistic Regression

In the usual (also referred to as Gaussian) regression analyses of Chapter 9, R2 gives 
the proportional reduction in variation in comparing the conditional variation of the 
response to the marginal variation. It describes the strength of the association bet­
ween the response and the set of independent variables considered together; for 
example, with R2 = 1, we can predict the response perfectly.

For logistic regression analyses, after fitting a logistic regression model, each sub­
ject’s fitted response probability, ˆ

i , can be calculated. Using these probabilities as 
values of a separator, we can construct a nonparametric ROC curve tracing the sen­
sitivities against the estimated false positivities for various cut points. Such an ROC 
curve not only makes it easy to determine an optimal cut point [the point on the curve 
nearest the top left corner (0, 1) which corresponds to 1.0 sensitivity and 1.0 speci­
ficity] but also shows the overall performance of the fitted logistic regression model; 
the better the performance, the farther away the curve is from the diagonal. The area 
C under this ROC curve can be used as a measure of goodness of fit. The measure C 
represents the separation power of the logistic model under consideration; for 
example, with C = 1, the fitted response probabilities for subjects with y = 1 and the 
fitted response probabilities for subjects with y = 0 are separated completely.
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Figure 10.3  Nonparametric ROC curve.
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Example 10.9
Refer to the data set on prostate cancer of Example 10.1 (Table 10.1) with all five 
covariates and fitted results shown in Example 10.4. Using the estimated regression 
parameters obtained from Example 10.4, we have C = 0.845.

Note: The area under the ROC curve, measure C, is provided automatically by 
SAS’s PROC LOGISTIC. 

The R program of Example 10.4 would be modified to also include the following 
instructions:

library(epiDisplay)
all.glm.roc = lroc(all.glm,title=TRUE,auc.coords=c(.5,.1))

Since the measure of goodness of fit C has a meaningful interpretation and 
increases when we add an explanatory variable to the model, it can be used as a cri­
terion in performing stepwise logistic regression instead of the p value, which is 
easily influenced by the sample size. For example, in the forward selection procedure, 
we proceed as follows:

1.	 Fit a simple logistic regression model to each factor, one at a time.

2.	 Select the most important factor defined as the one with the largest value of the 
measure of goodness of fit C.

3.	 Compare this value of C for the factor selected in step 2 and determine, 
according to a predetermined criterion, whether or not to add this factor to the 
model – say, to see if C ≥ 0.53, an increase of 0.03 or 3% over 0.5 when no 
factor is considered.

4.	 Repeat steps 2 and 3 for those variables not yet in the model. At any subsequent 
step, if none meets the criterion in step 3 – say, increase the separation power 
by 0.03, no more variables are included in the model and the process is 
terminated.

10.3 B RIEF NOTES ON THE FUNDAMENTALS

Here are a few more remarks on the use of the logistic regression model as well as a 
new approach to forming one. The usual approach to regression modeling is (i) to 
assume that independent variable X is fixed, not random, and (ii) to assume a functional 
relationship between a parameter characterizing the distribution of the dependent 
variable Y and the measured value of the independent variable. For example:

1.	 In the simple (Gaussian) regression model of Chapter 9, the model describes 
the mean of that normally distributed dependent variable Y as a function of the 
predictor or independent variable X,

	 i ix0 1 .	
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2.	 In the simple logistic regression of this chapter, the model assumes that the 
dependent variable Y of interest is a dichotomous variable taking the value 1 
with probability π and the value 0 with probability (1 − π), and that the rela­
tionship between π

i
 and the covariate value x

i
 of the same person is described 

by the logistic function

	
i

ix

1

1 0 1exp
.
	

In both cases, the x
i
s are treated as fixed values.

A different approach to the same logistic regression model can be described as 
follows. Assume that the independent variable X is also a random variable following, 
say, a normal distribution. Then using the Bayes theorem of Chapter  3, we can 
express the ratio of posterior probabilities (after data on X were obtained) as the ratio 
of prior probabilities (before data on X were obtained) times the likelihood ratio:
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On the right‐hand side, the ratio of prior probabilities is a constant with respect to x, 
and with our assumption that X has a normal distribution, the likelihood ratio is the 
ratio of two normal densities. Let
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denote the means and variances of the subjects with events (e.g., cases, Y = 1) and the 
subjects without events (e.g., controls, Y = 0), respectively, we can write
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This result indicates that if 1
2 and 0

2 are not equal, we should have a quadratic 
model; the model is linear if and only if 0

2
1
2. We often drop the quadratic term, 

but the robustness has not been investigated fully.
Let us assume that
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so that we have the linear model
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the very same linear logistic model as Section 10.1. It can be seen that with this 
approach,

	 1
1 0

2 	

which can easily be estimated using sample means of Chapter 2 and pooled sample 
variance as used in the t tests of Chapter 7. That is,

	

ˆ
1

1 0
2

x x

sp 	

and it has been shown that this estimate works quite well even if the distribution of X 
is not normal.

10.4  NOTES ON COMPUTING

In Section 9.1.5, we saw that there were exact equations for the estimates of the inter­
cept and slope in a simple linear regression; these equations can be derived using 
calculus, even for multiple linear regression, and then the data values are plugged into 
those equations. This is not possible in logistic regression, whether there is one pre­
dictor or many. Logistic regression is instead estimated using an iterative numerical 
process to maximize the model’s likelihood (Section 4.6 and Section 10.1.1). ‘Iterative’ 
means that the numerical process takes steps towards producing final estimates of the 
parameters and has internal rules that define when these steps (the iterations) should 
stop; these are based on deciding when the maximum of the likelihood has been 
reached. There are two important consequences of this numerical estimation process. 
First, different statistical software packages may have slightly different rules, and hence 
their results may not be exactly the same to several decimal places. Second, it is pos­
sible to have a dataset where the rules are never satisfied because the maximum of the 
likelihood cannot be found. In this case, your software will give you a warning that the 
model did not converge, and an alternative analysis approach should be considered.

EXERCISES

Electronic copies of some data files are available at www.wiley.com/go/Le/
Biostatistics.

10.1	 A clinical trial in chronic lower back pain was carried out at a large pain 
treatment center. 50 participants were randomly assigned 1:1 to treatment A or 
B. Pain was measured at 0 minutes (pre‐treatment) and at 30 minutes after 
treatment using a Visual Rating Scale (VRS; 0=no hurt, 1, 2, 3, 4, 5=hurts 
worst). The variables are:

•• Tretment group (A vs. B)

•• Pain at time 0 minutes

http://www.wiley.com/go/Le/Biostatistics
http://www.wiley.com/go/Le/Biostatistics
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•• Pain at time 30 minutes

•• Pain change (30 min. minus 0 min.; negative value is improvement)

•• Pain change showed improvement (true, false)

(a)	 First explore the association of baseline pain with pain improvement. Fit 
a logistic regression with pain at time 0 as the only predictor, and calcu­
late and plot the corresponding ROC curve. Is odds of improvement better 
with higher baseline pain or with lower baseline pain? How well does 
baseline pain predict pain improvement? Justify your answers using the 
analyses you carried out.

(b)	 The researchers would like an estimate of the proportion of participants 
who showed any improvement in pain from time 0 to 30 minutes, sepa­
rately by treatment group. What is the unadjusted odds ratio for improve­
ment in pain (and 95% confidence interval) associated with treatment A 
compared to B? Use a logistic regression with treatment group as the only 
predictor. Is there a significant effect of treatment on pain improvement? 
If so, in what direction is the effect (which treatment has the higher odds 
of improvement)?

(c)	 Repeat part (b) but now include baseline pain in the logistic regression. 
Do treatment and baseline pain together provide a larger area under the 
ROC curve than baseline pain alone did in part (a)? Also explain how the 
interpretation of the odds ratio associated with treatment is now subtly 
different from what the interpretation was in part (b).

10.2	 Consider the clinical trial in Exercise 10.1. The researchers collected several 
baseline variables that may be relevant, in addition to treatment, to the pain 
response. The additional variables are:

•• Gender (1, female; 0, male)

•• Age at enrollment (years)

•• Original source of pain was an injury (1, yes; 0, no)

	 Begin by fitting a logistic regression for pain improvement with treatment and 
baseline pain (pain at 0 minutes) as the predictors; calculate the odds ratio for 
the treatment effect.

(a)	 In addition to treatment and baseline pain, is pain improvement associated 
with the demographic variables for gender and age? Write down the mag­
nitude (on the scale of an odds ratio), interpretation, and p value for each 
regression coefficient in your model. By how much does adjusting for 
these demographic variables change the estimated odds ratio for the 
treatment effect?

(b)	 Adding to your model in (a), is pain improvement associated with the 
source of the pain (from an injury or otherwise)? Write down the magnitude 
(on the scale of an odds ratio), interpretation, and p value for source of pain.

(c)	 Adding to your model in (b), does the treatment effect differ by gender? 
(Historically, many pain treatments were tested in male‐only clinical 
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trials, since women of childbearing age were excluded in order to avoid 
the risk of teratogenic effects. Research has also shown that the brain’s 
response to pain differs by gender.) Justify your answer using your 
analysis.

(d)	 Starting from your model in (c), build a parsimonious model for pain 
improvement and write up a brief summary of your results.

10.3	 Magnetic resonance spectroscopy (MRS) is a magnetic resonance imaging 
(MRI) technique that quantifies levels of certain biochemicals. Spinocerebellar 
ataxia (SCA) is a genetically linked disease characterized by progressive 
degeneration of muscle control. MRS has been used to quantify changes in the 
brain of people with SCA. A mouse model of SCA has also been developed, 
in which the SCA can be ‘turned off’ by giving a drug that blocks the genetic 
cause of the SCA. In this experiment, 24 SCA mice were randomly assigned 
1:1 (equal allocation) to 2 groups: drug and placebo. 12 control mice (same 
background mouse strain but without the genetic cause of the SCA) were also 
studied. All mice had MRS of the brain at week 12 and at week 24 after birth. 
Several biochemicals were quantified, including total creatine (creatine plus 
phosphocreatine); higher creatine in the brain may reflect changes in energy 
metabolism in the brain. Mouse sex was also recorded.

	 For this exercise, use the week 24 measurements from the treated and untreated 
SCA mice only. We want to explore creatine as a potential classifier (sepa­
rator) for disease: if we had only creatine measures, could we use them to 
predict disease (the untreated mice) versus no disease (the treated mice)?

(a)	 Fit a logistic regression where the response is treatment group (“Treated” 
with 1=yes, 0=no) and the predictor is creatine. Is creatine predictive of 
treatment group? If so, in which direction? Compute the odds ratio and 
95% confidence interval for a 1 unit higher creatine. Verify (perhaps by 
looking at a histogram or summary statistics of creatine) that a 1 unit 
higher creatine is a sensible unit to consider (rather than, for example, a 
half unit higher or a 5 unit higher creatine). Provide an interpretation of 
the odds ratio.

(b)	 How well does creatine predict treatment group? Prepare an ROC curve 
and calculate the AUC based on your model in (a).

(c)	 Now fit a logistic regression model with overdispersion. Is there evidence 
of overdispersion in these data? Does the overdispersed model change 
the estimated creatine odds ratio or confidence interval? Justify your 
answers.

(d)	 Using your preferred model (choose from (a) or (c)), is sex associated 
with treatment group? Justify your answer.

(e)	 Suppose sex were an important factor impacting creatine’s role in SCA. 
How could you design this experiment so that sex of the mouse did not 
contaminate estimation of a creatine‐treatment association? (Hint: Think 
about the study designs of Chapter 8.)
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10.4	 The mutans streptococci (MS) are bacteria (all related to Streptococcus 
mutans) that can cause tooth decay. 167 persons with gum disease (elevated 
oral MS levels) were recruited into a study with three treatment arms: chewing 
gum with an active drug, chewing gum with no active drug, and no gum. 
Randomization to the three groups was 1:1:1 (equal allocation) within blocks 
defined by current smoker status. Participants in the gum groups were asked 
to chew the gum three times daily for a minimum of 5 minutes each time and 
to carry out their usual oral hygiene (tooth brushing, mouthwash, etc.). 
Participants in the group without gum were asked to carry out their usual oral 
hygiene. During the 14 days prior to randomization, subjects rinsed their 
mouths twice daily with a 0.12 % chlorhexidine gluconate mouthrinse. They 
were asked to follow their assigned treatment for three weeks. The outcome 
("colony forming units" per ml, a count of blotches on a standard sized petri 
dish after standard preparation) was recorded at randomization and after 1, 2, 
and 3 weeks. The primary outcome was the CFU ratio, week 3 divided by 
week 0. The question of interest is whether the active gum treatment caused a 
decline in the level of oral mutans streptococci. There are some missing CFU 
data, corresponding to participants who missed visits.

	 For this exercise, we will take ‘decline’ yes/no as the response. Define decline 
as yes if the ratio of week 3 to week 0 CFU is less than 1 and no if the ratio is 
1 or larger.

(a)	 Calculate the proportion of participants who declined (and a 95% 
confidence interval) within each treatment group. Do there appear to be 
treatment effects on decline? Now compute the proportion and confidence 
interval within each treatment group by block combination. From visual 
inspection, do the treatment effects appear to differ by block?

(b)	 Fit a logistic regression with decline as the response and treatment group, 
block, and their interaction as predictors. Calculate the pairwise odds ra­
tios (odds ratio comparing each treatment to each other treatment) for 
decline for each block separately. You can do this in SAS PROC 
LOGISTIC using the LSMEANS statement with the EXP option, speci­
fying the treatment by block means; pull out only those pairwise differ­
ences that correspond to a treatment comparison within the same block. 
You can do this in R using the lsmeans function and specifying pairwise ~ 
treatment|block.

(c)	 If appropriate, remove the interaction from the model and calculate the 
pairwise odds ratios comparing treatment groups for decline. Write a 
short summary of the trial’s results; use your preferred model (either  
part (b) or part (c)).

10.5	 Radioactive radon is an inert gas that can migrate from soil and rock and accu­
mulate in enclosed areas such as underground mines and homes. The radioac­
tive decay of trace amounts of uranium in the Earth’s crust through radium is 
the source of radon, or more precisely, the isotope radon‐222. Radon‐222 
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emits alpha particles; when inhaled, alpha particles rapidly diffuse across the 
alveolar membrane of the lung and are transported by the blood to all parts of 
the body. Due to the relatively high flow rate of blood in bone marrow, this 
may be a biologically plausible mechanism for the development of leukemia. 
Table E10.1 provides some data from a case–control study to investigate the 
association between indoor residential radon exposure and risk of childhood 
acute myeloid leukemia. The variables are:

•• Disease (1, case; 2, control);

•• Radon (radon concentration in Bq/m3);

table E10.1

Disease Gender Race Radon Msmoke Mdrink Fsmoke Fdrink Downs

1 2 1 17 1 1 1 2 1
1 2 1 8 1 2 2 0 2
2 2 1 8 1 2 1 2 2
2 1 1 1 2 0 2 0 2
1 1 1 4 2 0 2 0 2
2 1 1 4 1 1 1 1 2
1 2 1 5 2 0 2 0 2
2 1 1 4 2 0 2 0 2
1 2 1 7 1 1 2 0 1
1 1 1 15 1 1 1 2 1
2 1 1 16 2 0 1 1 1
1 1 1 12 2 0 1 2 1
2 1 1 14 1 1 1 1 1
2 2 1 12 2 0 2 0 1
2 1 1 14 1 2 1 2 1
2 2 1 9 1 2 1 1 2
2 1 1 4 2 0 1 1 2
1 1 1 2 2 0 1 1 1
1 2 1 12 2 0 1 1 2
1 2 1 13 2 0 2 0 1
2 2 1 13 2 0 1 2 2
2 1 1 18 2 0 2 0 1
1 1 1 13 1 2 1 1 2
1 2 1 16 2 0 2 0 1
1 2 1 10 1 1 2 0 2
1 1 1 11 2 0 2 0 1
2 2 1 4 1 1 1 1 2
1 2 1 1 1 2 1 1 2
1 1 2 9 2 0 2 0 1
1 2 1 15 1 1 1 2 1
2 2 1 17 2 0 1 2 1
1 1 1 9 2 0 1 2 1
And so on
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•• Some characteristics of the child: gender (1, male; 2, female), race (1, white; 
2, black; 3, Hispanic; 4, Asian; 5, others), Down’s syndrome (a known risk 
factor for leukemia; 1, no; 2, yes);

•• Risk factors from the parents: Msmoke (1, mother a current smoker; 2, no; 
0, unknown), Mdrink (1, mother a current alcohol drinker; 2, no; 0, 
unknown), Fsmoke (1, father a current smoker; 2, no; 0, unknown), Fdrink 
(1, father a current alcohol drinker; 2, no; 0, unknown).

(a)	 Taken collectively, do the covariates contribute significantly to separation 
of the cases and controls? Fit the multiple regression model and give your 
interpretation for the measure of goodness of fit C.

(b)	 Use the same model to obtain estimates of individual regression coeffi­
cients and their standard errors. Draw your conclusion concerning the 
conditional contribution of each factor.

(c)	 Within the context of the multiple regression model in part (b), does 
gender alter the effect of Down’s syndrome?

(d)	 Within the context of the multiple regression model in part (b), does 
Down’s syndrome alter the effect of radon exposure?

(e)	 Within the context of the multiple regression model in part (b), taken col­
lectively, do the smoking–drinking variables (by the father or mother) 
relate significantly to the disease of the child?

(f)	 Within the context of the multiple regression model in part (b), is the 
effect of radon concentration linear?

(g)	 Focus on radon exposure as the primary factor. Taken collectively, was 
this main effect altered by any other covariates?
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11
METHODS FOR COUNT DATA

Chapter 1 was devoted to descriptive methods for categorical data, but most topics 
were centered on binary data and the binomial distribution. Chapter 10 continues on 
that direction with logistic regression methods for binomial‐distributed responses. 
This chapter is devoted to a different type of categorical data, count data; the eventual 
focus is the Poisson regression model; the Poisson distribution was introduced very 
briefly in Chapter 3. As usual, the purpose of the research is to assess relationships 
among a set of variables, one of which is taken to be the response or dependent 
variable, that is, a variable to be predicted from or explained by other variables; other 
variables are called predictors, explanatory variables, or independent variables. 
Choosing an appropriate model and analytical technique depends on the type of 
response variable or dependent variable under investigation. The Poisson regression 
model applies when the dependent variable follows a Poisson distribution.

11.1  POISSON DISTRIBUTION

The binomial distribution is used to characterize an experiment when each trial of the 
experiment has two possible outcomes (often referred to as failure and success). Let the 
probabilities of failure and success be, respectively, 1 − π and π; the target for the binomial 
distribution is the total number X of successes in n trials. The Poisson model, on the other 
hand, is used when the random variable X is supposed to represent the number of occur-
rences of some random event in an interval of time or space, or some volume of matter, 
so that it is not bounded by n as in the binomial distribution; numerous applications in 
health sciences have been documented. For example, the number of viruses in a solution, 
the number of defective teeth per person, the number of focal lesions in virology, the 
number of victims of specific diseases, the number of cancer deaths per household, and 
the number of infant deaths in a certain locality during a given year, among others.
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The probability density function of a Poisson distribution is given by
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The mean and variance of the Poisson distribution P(θ) are

	
2 .	

However, the binomial distribution and the Poisson distribution are not totally 
unrelated. In fact, it can be shown that a binomial distribution with large n and small 
π can be approximated by the Poisson distribution with θ = nπ.

Given a sample of counts from the Poisson distribution P(θ), { }xi i
n

1, the sample 
mean x  is an unbiased estimator for θ; its standard error is given by

	
SE x

x

n
.
	

Example 11.1
In estimating the infection rates in populations of organisms, sometimes it is impos-
sible to assay each organism individually. Instead, the organisms are randomly 
divided into a number of pools and each pool is tested as a unit. Let

	

N

n

number of insects in the sample

number of pools used in the exper

;

iiment

number of insects per pool for simplicity
assume t

;

, ( ,m N nm
hhat is the same for every poolm ). 	

The random variable X concerned is the number of pools that show negative test 
results (i.e., none of the insects are infected).

Let λ be the population infection rate; the probability that all m insects in a pool 
are negative (in order to have a negative pool) is given by

	 1
m

.	

Designating a negative pool as “success,” we have a binomial distribution for X, which 
is B(n, π). In situations where the infection rate λ is very small, the Poisson distribution 
could be used as an approximation, with θ = mλ being the expected number of infected 
insects in a pool. The Poisson probability of this number being zero is

	 exp 	

and we have the same binomial distribution B(n, π). It is interesting to note that 
testing for syphilis (as well as other very rare diseases) in the United States Army 
used to be done this way.
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Example 11.2
For the year of 1981, the infant mortality rate (IMR) for the United States was 
11.9  deaths per 1000 live births. For the same period, the New England states 
(Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) 
had 164 200 live births and 1585 infant deaths. If the national IMR applies, the mean 
and vaiance of the number of infant deaths in the New England states would be

	 164 2 11 9 1954. . .	

From the z score,

	

z
1585 1954

1954
8 35. 	

it is clear that the IMR in the New England states is below the national average.

Example 11.3
Cohort studies are designs in which one enrolls a group of healthy persons and 
follows them over certain periods of time; examples include occupational mortality 
studies. The cohort study design focuses attention on a particular exposure rather 
than a particular disease as in case–control studies. Advantages of a longitudinal 
approach include the opportunity for more accurate measurement of exposure history 
and a careful examination of the time relationships between exposure and disease.

The observed mortality of the cohort under investigation often needs to be 
compared with that expected from the death rates of the national population (served 
as standard), with allowance made for age, gender, race, and time period. Rates may 
be calculated either for total deaths or for separate causes of interest. The statistical 
method is often referred to as the person‐years method. The basis of this method is 
the comparison of the observed number of deaths, d, from the cohort with the 
mortality that would have been expected if the group had experienced death rates 
similar to those of the standard population of which the cohort is a part. The expected 
number of deaths is usually calculated using published national life tables and the 
method is similar to that of indirect standardization of death rates.

Each member of the cohort contributes to the calculation of the expected deaths 
for those years in which he or she was at risk of dying during the study. There are 
three types of subjects:

1.	 Subjects still alive on the analysis date.

2.	 Subjects who died on a known date within the study period.

3.	 Subjects who are lost to follow‐up after a certain date. These cases are a 
potential source of bias; effort should be expended in reducing the number of 
subjects in this category.

Figure  11.1 shows the situation illustrated by one subject of each type, from 
enrollment to the study termination. Each subject is represented by a diagonal line 
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that starts at the age and year at which the subject entered the study and continues as 
long as the subject is at risk of dying in the study. Each subject’s line continues until 
the study date, the date of death, or the date the subject was lost to follow‐up. Period 
and age are divided into five‐year intervals corresponding to the usual availability of 
referenced death rates. Then a quantity, r

i
, is defined for each person as the cumulative 

risk over the follow‐up period:

	 r xi 	

where summation is over each square in Figure 11.1 entered by the follow‐up line, 
x the time spent in a square, and ω the corresponding death rate for the given age–
period combination. For the cohort, the individual values of r are added to give the 
expected number of deaths:

	
m ri

i

.
	

For various statistical analyses, the observed number of deaths d may be treated as a 
Poisson variable with mean θ = mρ, where ρ is the relative risk of being a member of 
the cohort as compared to the standard population.
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Figure 11.1  Representation of basis of subject‐years method.
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11.2  TESTING GOODNESS OF FIT

A goodness of fit test is used when one wishes to decide if an observed distribution 
of frequencies is incompatible with some hypothesized distribution. The Poisson is a 
very special distribution; its mean and its variance are equal. Therefore, given a 
sample of count data xi i

n

1
, we often wish to know whether these data provide 

sufficient evidence to indicate that the sample did not come from a Poisson‐distributed 
population. The hypotheses are as follows:

	

H

HA

0: .

:

The sampled population is distributed as Poisson

The sampledd population is not distributed as Poisson.	

The most frequent violation is an overdispersion; the variance is larger than the 
mean. The implication is serious; the analysis assumes the Poisson model, often 
underestimates standard error(s) and thus wrongly inflates the level of significance.

The test statistic is the familiar Pearson chi‐square:

	
X

O E

Ei

k
i i

i

2

1
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where O
i
 and E

i
 refer to the ith observed and expected frequencies, respectively (we 

used the notations x
ij
 and eij  in Chapter 6). In this formula, k is the number of groups 

for which observed and expected frequencies are available. When the null hypothesis 
is true, the test statistic is distributed as chi‐square with (k − 2) degrees of freedom 
(df); 1 df was lost because the mean needs to be estimated and 1 df was lost because 
of the constraint O Ei i. It is also recommended that adjacent groups at the bot-

tom of the table be combined to avoid having any expected frequencies less than 1.

Example 11.4
The purpose of this study was to examine the data for 44 physicians working for an 
emergency department at a major hospital. The response variable is the number of 
complaints received during the preceding year; other details of the study are given in 
Example 11.5. For the purpose of testing the goodness of fit, the data are summarized 
in Table 11.1.

To obtain the frequencies expected, we first obtain relative frequencies by evalu-
ating the Poisson probability for each value of X = x,

	
Pr

!
, , ,X x

e

x
x

x

for 0 1 2
	

The “Complaints” column in Table 11.2 gives the sample of counts, the x
i 
s. Since

	

ˆ

.

xi

44
3 34 	
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we have, for example,

	

Pr
.

!
. .

.

X
e

2
3 34

2
0 198

2 3 34

	

Each of the expected relative frequencies is multiplied by the sample size, 44, to 
obtain the expected frequencies; for example,

	

E2 44 0 198

8 71

.

. . 	

To avoid having any expected frequencies less than 1, we combine the last five groups 
together, resulting in eight groups available for testing goodness of fit with

	

O

E

8

8

2 2 1 1 1

7

1 45 0 62 0 22 0 09 0 04

2 42

. . . . .

. . 	

The result is

	

X 2

2 2 2
1 1 56 12 5 19

5 19

7 2 42

2 42
28 24

. .

.

.

.
.
1.56



	

with 8 − 2 = 6 df, indicating a significant deviation from the Poisson distribu-
tion   (p < 0.005). A simple inspection of Table  11.1 reveals an obvious 
overdispersion.

Table 11.1

Number of complaints Observed O
i

Expected E
i

0 1 1.56
1 12 5.19
2 12 8.71
3 5 9.68
4 1 8.10
5 4 5.46
6 2 2.99
7 2 1.45
8 2 0.62
9 1 0.22

10 1 0.09
11 1 0.04
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11.3  POISSON REGRESSION MODEL

As mentioned previously, the Poisson model is often used when the random variable 
X is supposed to represent the number of occurrences of some random event in an 
interval of time or space, or some volume of matter, and numerous applications in 
health sciences have been documented. In some of these applications, one may be 
interested to see if the Poisson‐distributed dependent variable can be predicted from 
or explained by other variables. The other variables are called predictors, explanatory 
variables, or independent variables. For example, we may be interested in the number 
of defective teeth per person as a function of gender and age of a child, brand of tooth-
paste, and whether or not the family has dental insurance. In this and other examples, 
the dependent variable Y is assumed to follow a Poisson distribution with mean θ.

The Poisson regression model expresses this mean as a function of certain 
independent variables X

1
, X

2
, …, X

J
, in addition to the size of the observation unit from 

which one obtained the count of interest. For example, if Y is the number of virus in a 
solution, the size is the volume of the solution; or if Y is the number of defective teeth, 
the size is the total number of teeth for that same person. The following is the continu-
ation of Example 11.4 on the emergency service data; but data in Table  11.2 also 
include information on four covariates.

Example 11.5
The purpose of this study was to examine the data for 44 physicians working for an 
emergency at a major hospital so as to determine which of four variables are related 
to the number of complaints received during the preceding year. In addition to the 
number of complaints, served as the dependend variable, data available consist of 
the number of visits (which serves as the size for the observation unit, the physician) 
and four covariates. Table  11.2 presents the complete data set. For each of the 
44 physicians there are two continuous independent variables, the revenue (dollars 
per hour) and the workload at the emergency service (hours) and two binary vari-
ables, gender (female/male) and residency training in emergency services (no/yes).

11.3.1  Simple Regression Analysis

In this section we discuss the basic ideas of simple regression analysis when only one 
predictor or independent variable is available for predicting the response of interest.

Poisson Regression Model  In our framework, the dependent variable Y is assumed 
to follow a Poisson distribution; its y

i
 values are available from n observation units, 

which are also characterized by an independent variable X. For the observation unit i 
(i = 1,..., n), let s

i
 be the size and x

i
 be the covariate value.

The Poisson regression model assumes that the relationship between the mean 
of Y and the covariate X is described by

	

E Y s x

s x
i i i

i iexp 0 1 	
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Table 11.2

Number of visits Complaints Residency Gender Revenue Hours

2014 2 Y F 263.03 1287.25
3091 3 N M 334.94 1588.00
879 1 Y M 206.42   705.25

1780 1 N M 226.32 1005.50
3646 11 N M 288.91 1667.25
2690 1 N M 275.94 1517.75
1864 2 Y M 295.71   967.00
2782 6 N M 224.91 1609.25
3071 9 N F 249.32 1747.75
1502 3 Y M 269.00   906.25
2438 2 N F 225.61 1787.75
2278 2 N M 212.43 1480.50
2458 5 N M 211.05 1733.50
2269 2 N F 213.23 1847.25
2431 7 N M 257.30 1433.00
3010 2 Y M 326.49 1520.00
2234 5 Y M 290.53 1404.75
2906 4 N M 268.73 1608.50
2043 2 Y M 231.61 1220.00
3022 7 N M 241.04 1917.25
2123 5 N F 238.65 1506.25
1029 1 Y F 287.76   589.00
3003 3 Y F 280.52 1552.75
2178 2 N M 237.31 1518.00
2504 1 Y F 218.70 1793.75
2211 1 N F 250.01 1548.00
2338 6 Y M 251.54 1446.00
3060 2 Y M 270.52 1858.25
2302 1 N M 247.31 1486.25
1486 1 Y F 277.78   933.75
1863 1 Y M 259.68 1168.25
1661 0 N M 260.92   877.25
2008 2 N M 240.22 1387.25
2138 2 N M 217.49 1312.00
2556 5 N M 250.31 1551.50
1451 3 Y F 229.43   973.75
3328 3 Y M 313.48 1638.25
2927 8 N M 293.47 1668.25
2701 8 N M 275.40 1652.75
2046 1 Y M 289.56 1029.75
2548 2 Y M 305.67 1127.00
2592 1 N M 252.35 1547.25
2741 1 Y F 276.86 1499.25
3763 10 Y M 308.84 1747.50

Note: This is a very long data file; its electronic copy, in a Web‐based form, is available from  
www.wiley.com/go/Le/Biostatistics.

http://www.wiley.com/go/Le/Biostatistics
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where λ(x
i
) is called the risk of observation unit i (1 ≤ n). Under the assumption that 

Y
i
 is Poisson, the likelihood function is given by
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from which estimates for β
0
 and β

1
 can be obtained by the maximum likelihood 

procedure.

Measure of Association  Consider the case of a binary covariate X: say, representing 
an exposure (1 = exposed, 0 = not exposed). We have:

1.	 If the observation unit is exposed,

	 ln i exposed 0 1	

 whereas:

2.	 If the observation unit is not exposed,

	 ln i not exposed 0	

 or, in other words,

	

i

i

e
exposed

not exposed
1 .

	

 This quantity is called the relative risk associated with the exposure.
	   Similarly, we have for a continuous covariate X and any value x of X,

	

ln
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i

X x x

X x x
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 so that
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i

X x

X x
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1
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 represents the relative risk associated with a 1‐unit higher value of X.

The basic rationale for using the terms risk and relative risk is the approximation of 
the binomial distribution by the Poisson distribution. Recall from Section 11.2 that when 
n → ∞, π → 0 while θ = nπ remains constant, the binomial distribution B(n, π) can be 
approximated by the Poisson distribution P(θ). The number n is the size of the observation 
unit; so the ratio between the mean and the size represents the π [or λ(x) in the new 
model], the probability or risk and the ratio of risks is the risks ratio or relative risk.
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Example 11.6
Refer to the emergency service data in Example 11.5 (Table 11.2) and suppose that 
we want to investigate the relationship between the number of complaints (adjusted 
for number of visits) and residency training. It may be perceived that by having 
training in the specialty a physician would perform better and therefore would be less 
likely to provoke complaints. An application of the simple Poisson regression 
analysis yields the results shown in Table 11.3.

The result indicates that the common perception is almost true, that the relationship 
between the number of complaints and no residency training in emergency service is 
marginally significant (p = 0.0779); the relative risk associated with no residency 
training is

	 exp . . .0 3041 1 36 	

Those without previous training are 36% more likely to receive the same number of 
complaints as those who were trained in the specialty.

Note: An SAS program would include these instructions:

DATA EMERGENCY;
   INFILE “table11.2.txt” DLM=‘&’ FIRSTOBS=2;
   INPUT NVISITS COMPLAINTS RESIDENCY $ GENDER $ REVENUE
      HOURS;
   LNVISITS = LOG(NVISITS);
PROC GENMOD DATA = EMERGENCY;
   CLASS RESIDENCY GENDER;
   MODEL COMPLAINTS = RESIDENCY / DIST=POISSON LINK=LOG
       OFFSET=LNVISITS;

where EMERGENCY is the name assigned to the data set, NVISITS is the number 
of visits, COMPLAINTS is the number of complaints, and RESIDENCY is the 
binary covariate, indicating whether the physician received residency training in the 
specialty. The option CLASS is used to declare that the RESIDENCY and GENDER 
predictors are categorical. An R program would include the following instructions:

emergency = read.table(file=“table11.2.txt”, 
  header=T,sep=“&”)
attach(emergency)
Residency = relevel(factor(Residency),ref=“Y”)
Gender = relevel(factor(Gender),ref=“M”)

Table 11.3

Variable Coefficient Standard error z Statistic p Value

Intercept −6.7566 0.1387 −48.714 <0.0001
No residency 0.3041 0.1725 1.763 0.0779
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lnvisits = log(NVisits)
res.glm = glm(Complaints ~ Residency, poisson(link =    
  “log”), offset = lnvisits)
summary(res.glm)

11.3.2  Multiple Regression Analysis

The effect of some factor on a dependent or response variable may be influenced by 
the presence of other factors through effect modifications (i.e., interactions). 
Therefore, to provide a more comprehensive analysis, it is very desirable to consider 
a large number of factors and sort out which are most closely related to the dependent 
variable. This method, which is multiple Poisson regression analysis, involves a 
linear combination of the explanatory or independent variables; the variables must be 
quantitative with particular numerical values for each observation unit. A covariate 
or independent variable may be dichotomous, polytomous, or continuous; categorical 
factors will be represented by dummy variables. In many cases, data transformations 
of continuous measurements (e.g., taking the logarithm) may be desirable so as to 
satisfy the linearity assumption.

Poisson Regression Model with Several Covariates  Suppose that we want to 
consider J covariates, X

1
, X

2
, …, X

J
, simultaneously. The simple Poisson regression 

model of Section 11.3.1 can easily be generalized and expressed as
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where Y is the Poisson‐distributed dependent variable and λ(x
ji
 s) is the risk of obser-

vation unit i (i = 1,..., n).
Under the assumption that Y

i
 is Poisson, the likelihood function is given by
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from which estimates for β
0
, β

1
, …, β

J
 can be obtained by the maximum likelihood 

procedure.
Also similar to the simple regression case, exp(β

j
) represents:

1.	 The relative risk associated with an exposure if X
j
 is binary (exposed X

j
 = 1 

versus unexposed X
j
 = 0), or

2.	 The relative risk due to a 1‐unit higher value if X
j
 is continuous (X

j
 = x + 1 versus 

X
j
 = x).
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After ˆ
j and its standard error have been obtained, a 95% confidence interval for 

the relative risk above is given by

	
exp 1.96 ˆSE .ˆ

j j 	

These results are necessary in the effort to identify important risk factors for the 
Poisson outcome, the count. Of course, before such analyses are done, the problem 
and the data have to be examined carefully. If some of the variables are highly corre-
lated, one or a few of the correlated factors are likely to be as good a set of predictors 
as all of them; information from other similar studies also could be used to decide to 
drop some of these correlated explanatory variables. The use of products such as X

1
X

2
 

and higher power terms such as X1
2 may be necessary and can improve the goodness 

of fit. It is important to note that we are assuming a (log)linear regression model in 
which, for example, the relative risk due to a 1‐unit higher value of a continuous X

j
 

(X
j
 = x + 1 vs X

j
 = x) is independent of x. Therefore, if this linearity seems to be vio-

lated, the incorporation of powers of X
j
 should be considered seriously. The use of 

products will help in the investigation of possible effect modifications. Finally, there 
is the messy problem of missing data; most software packages will delete a subject if 
one or more covariate values are missing.

Testing Hypotheses in Multiple Poisson Regression  Once we have fit a multiple 
Poisson regression model and obtained estimates for the various parameters of interest, 
we want to answer questions about the contributions of various factors to the prediction 
of the Poisson‐distributed response variable. There are three types of such questions:

1.	 Overall test. Taken collectively, does the entire set of explanatory or independent 
variables contribute significantly to the prediction of response?

2.	 Test for the value of a single factor. Does the addition of one particular variable 
of interest add significantly to the prediction of response over and above that 
achieved by other independent variables?

3.	 Test for the contribution of a group of variables. Does the addition of a group 
of variables add significantly to the prediction of response over and above that 
achieved by other independent variables?

Overall Regression Test  We now consider the first question stated above concerning 
an overall test for a model containing J factors. The null hypothesis for this test may 
be stated as: “All J independent variables considered together do not explain the 
variation in the response any more than the size alone.” In other words,

	 H J0 1 2 0: .	

This can be tested using the likelihood ratio chi‐square test at J df:

	
2

02 ln lnL LJ 	
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where ln L
J
 is the log likelihood value for the model containing all J covariates 

and ln L
0
 is the log likelihood value for the model containing only the intercept. A 

computer program such as SAS or R provides these log likelihood values but in 
separate runs.

Example 11.7
Refer to the data set on emergency service of Example 11.5 (Table 11.2) with four 
covariates: gender, residency, revenue, and workload (hours). We have:

1.	 With all four covariates included, ln L
4
 = 47.783; whereas

2.	 With no covariates included, ln L
0
 = 43.324;

leading to χ2 = 8.918 with 5 df (p = .0636), indicating that at least one covariate must 
be moderately related significantly to the number of complaints.

Note: Start with the code from Example 11.6. For model 1, the SAS program 
would include this instruction:

MODEL COMPLAINTS = RESIDENCY GENDER REVENUE HOURS/
DIST = POISSON LINK = LOG OFFSET = LNVISITS;

and for model 2,

MODEL COMPLAINTS = /DIST = POISSON LINK = LOG
OFFSET = LNVISITS;

Using the data created in the R program of Example 11.6, the program would be 
modified to include the following instructions:

all.glm = glm(Complaints ~ Residency + Gender + Revenue + 
Hours, poisson(link = “log”), offset = lnvisits)

summary(all.glm)
none.glm = glm(Complaints ~ 1, poisson(link = “log”), 
offset = lnvisits)

summary(none.glm)
chisq = none.glm$deviance - all.glm$deviance
chisq.df = none.glm$df.residual - all.glm$df.residual
1-pchisq(chisq,chisq.df)

Test for a Single Variable  Let us assume that we now wish to test whether the 
addition of one particular independent variable of interest adds significantly to the 
prediction of the response over and above that achieved by other factors already 
present in the model. The null hypothesis for this test may be stated as: “Factor X

j
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does not have any value added to the prediction of the response given that other 
factors are already included in the model.” In other words,

	 H j0 0: .	

To test such a null hypothesis, one can use

	

z j
j

j

ˆ

ˆSE
	

where ˆ
j is the corresponding estimated regression coefficient and SE( )ˆ

j  is the 
estimate of the standard error of ˆ

j, both of which are printed by standard computer 
programs such as SAS or R. In performing this test, we refer the value of the z score 
to percentiles of the standard normal distribution; for example, we compare the abso-
lute value of z

j
 to 1.96 for a two‐sided test at the 5% level.

Example 11.8
Refer to the data set on emergency service of Example 11.5 (Table 11.2) with all four 
covariates. We have the results shown in Table 11.4. Only the effect of workload 
(hours) is significant at the 5% level.

Given a continuous variable of interest, one can fit a polynomial model and use 
this type of test to check for linearity (see type 1 analysis in the next section). It can 
also be used to check for a single product representing an effect modification.

Example 11.9
Refer to the data set on mergency service of Example 11.5 (Table 11.2), but this time 
we investigate only one covariate: the workload (hours). After fitting the second‐
degree polynomial model,

	 E Y si i i iexp 0 1 2
2  hour hour 	

we obtain a result which indicates that the curvature effect is negligible (p = 0.8797).

Table 11.4

Variable Coefficient Standard error z Statistic p Value

Intercept −8.1338 0.9220 −8.822 <0.0001
No residency 0.2090 0.2012 1.039 0.2988
Female −0.1954 0.2182 −0.896 0.3703
Revenue 0.0016 0.0028 0.571 0.5775
Hours 0.0007 0.0004 1.750 0.0452
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Note: Start with the SAS code of Example 11.6 and modify to include:

MODEL COMPLAINTS = HOURS HOURS*HOURS /
   DIST=POISSON LINK=LOG OFFSET=LNVISITS;

Using the data created in the R program of Example 11.6, instead include the 
following instructions:

quadratic.glm = glm(Complaints ~ poly(Hours,2),    
  poisson(link = “log”), offset = lnvisits)
summary(quadratic.glm)

The following is another interesting example comparing the incidences of non-
melanoma skin cancer among women from two major metropolitan areas, one in the 
south and one in the north.

Example 11.10
In this example, the dependent variable is the number of cases of skin cancer. Data 
were obtained from two metropolitan areas: Minneapolis–St. Paul and Dallas–Ft. 
Worth. The population of each area is divided into eight age groups and the data are 
shown in Table 11.5.

This problem involves two covariates: age and location; both are categorical. 
Using seven dummy variables to represent the eight age groups (with 85+ being the 
reference group) and one for location (with Minneapolis–St. Paul as the reference 
group), we obtain the results in Table 11.6. These results indicate a clear upward 
trend of skin cancer incidence with age, and with Minneapolis–St. Paul as the refer-
ence, the relative risk associated with Dallas–Ft. Worth is

	

RR exp .

.

0 8043

2 235 	

an increase of more than twofold for this southern metropolitan area.

Table 11.5

Age group 
(years)

Minneapolis–St. Paul Dallas–Ft. Worth

Cases Population Cases Population

15–24 1 172 675 4 181 343
25–34 16 123 065 38 146 207
35–44 30 96 216 119 121 374
45–54 71 92 051 221 111 353
55–64 102 72 159 259 83 004
65–74 130 54 722 310 55 932
75–84 133 32 185 226 29 007
85+ 40 8328 65 7538
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Note: An SAS program would include the instructions:

DATA SKINCANCER;
    INPUT AGEGROUP CITY $ POP CASES;
    LNPOP = LOG(POP);
    DATALINES;
1 MSP 172675 1
2 MSP 123065 16
  …
1 DFW 181343 4
2 DFW 146207 38
  …
;
PROC GENMOD DATA=SKINCANCER;
   CLASS AGEGROUP CITY;
   MODEL CASES = AGEGROUP CITY / DIST=POISSON LINK=LOG
         OFFSET = LNPOP;

An R program would include the following instructions:

tempage = rep(c(“15-24”,“25-34”,“35-44”,“45-54”,“55-64”, 
  “65-74”, “75-84”,“85+”),times=2)
agegroup = relevel(as.factor(tempage), ref=“85+”)
tempcity = c(rep(“MSP”,times=8),rep(“DFW”,times=8))
city = relevel(as.factor(tempcity), ref=“MSP”)
cases = c(c(1,16,30,71,102,130,133,40),
          c(4,38,119,221,259,310,226,65))
population = c(c(172675,123065,96216,92051,72159,54722, 
                           32185,8328),
               c(181343,146207,121374,111353,83004,55932, 
                              29007,7538))

Table 11.6

Variable Coefficient Standard error z Statistic p Value

Intercept −5.4797 0.1037 52.842 <0.0001
Age 15–24 −6.1782 0.4577 −13.498 <0.0001
Age 25–34 −3.5480 0.1675 −21.182 <0.0001
Age 35–44 −2.3308 0.1275 −18.281 <0.0001
Age 45–54 −1.5830 0.1138 −13.910 <0.0001
Age 55–64 −1.0909 0.1109 −9.837 <0.0001
Age 65–74 −0.5328 0.1086 −4.906 <0.0001
Age 75–84 −0.1196 0.1109 −1.078   0.2809
Dallas–Ft. Worth   0.8043 0.0522 15.408 <0.0001
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lnpop = log(population)
agecity.glm = glm(cases ~ agegroup + city,  
poisson(link = “log”), offset = lnpop)

summary(agecity.glm)

Contribution of a Group of Variables  This testing procedure addresses the more 
general problem of assessing the additional contribution of two or more factors to 
the prediction of the response over and above that made by other variables already in 
the regression model. In other words, the null hypothesis is of the form

	 H m0 1 2 0: .	

To test such a null hypothesis, one can perform a likelihood ratio chi‐square test, 
with m df,

	

2 2[ln ( ; all s) ln ( ; all other s with the s under
investiga

ˆ ˆ

omittion ) .te ]d
LR L X L X Xm

	

As with the z test above, this multiple contribution procedure is very useful for 
assessing the importance of potential explanatory variables. In particular, it is often 
used to test whether a similar group of variables, such as demographic characteristics, 
is important for the prediction of the response; these variables have some trait in 
common. Another application would be a collection of powers and/or product terms 
(referred to as interaction variables). It is often of interest to assess the interaction 
effects collectively before trying to consider individual interaction terms in a model 
as suggested previously. In fact, such use reduces the total number of tests to be 
performed, and this, in turn, helps to provide better control of overall type I error 
rates, which may be inflated due to multiple testing.

Example 11.11
Refer to the data set on skin cancer of Example 11.10 (Table 11.5) with all eight 
covariates, and we consider collectively the seven dummy variables representing the 
age groups. The basic idea is to see if there are any differences without drawing seven 
separate conclusion comparing each age group versus the reference group.

1.	 With all eight variables included, we obtain ln L = 7201.864.

2.	 When the seven age variables are omitted, we obtain ln L = 5921.076.

Therefore,

	

2 2 ln ; eight variables ln ; only location variable

2561.568;7 df, -value 0.00

ˆ

.

ˆ

01

LR L L

p 	
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In other words, the difference between the age groups is highly significant; in fact, it 
is more so than the difference between the cities.

Main Effects  The z tests for single variables are sufficient for investigating the 
effects of continuous and binary covariates. For categorical factors with several 
categories, such as the age group in the skin cancer data of Example 11.10, this 
process in SAS (or the R function glm) would choose a baseline (or reference) cate-
gory and compare each other category with the baseline category chosen. However, 
the importance of the main effects is usually of interest (i.e., one statistical test for 
each covariate, not each category of a covariate). This can be achieved in two differ-
ent ways: (i) treating the several category‐specific effects as a group as seen in 
Example 11.11 (this would requires two sepate computer runs), or (ii) requesting the 
type 3 analysis option as shown in the following example.

Example 11.12
Refer to the skin cancer data of Example 11.10 (Table 11.5). Type 3 analysis yields 
the results shown in Table 11.7. The result for the age group main effect is identical 
to that of Example 11.11.

Note: Modify the SAS program of Example 11.10 to include the instruction

MODEL CASES = AGEGROUP CITY/DIST = POISSON
  LINK = LOG OFFSET = LNPOP TYPE3;

The R program of Example 11.10 would be modified to also include these 
instructions:

## update agecity.glm fit by dropping agegroup
noage.glm = update(agecity.glm, . ~ . - agegroup)
## update agecity.glm fit by dropping city
nocity.glm = update(agecity.glm, . ~ . - city)
## test model differences with chi square test
anova(noage.glm, agecity.glm, test = “Chisq”)
anova(nocity.glm, agecity.glm, test = “Chisq”)

Specific and Sequential Adjustments  In type 3 analysis, or any other multiple 
regression analysis, we test the significance of the effect of each factor added to the 
model containing all other factors; that is, to investigate the additional contribution 

Table 11.7

Source df LR χ2 p Value

Age group 7 2561.57 <0.0001
City 1 258.72 <0.0001
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of the factor to the explanation of the dependent variable. Sometimes, however, we 
may be interested in a hierarchical or sequential adjustment. For example, we have 
Poisson‐distributed response Y and three covariates, X

1
, X

2
, and X

3
; we want to 

investigate the effect of X
1
 on Y (unadjusted), the effect of X

2
 added to the model 

containing X
1
, and the effect of X

3
 added to the model containing X

1
 and X

2
. This can 

be achieved by requesting a type 1 analysis option.

Example 11.13
Refer to the data set on emergency service of Example 11.5 (Table 11.2). Type 3 
analysis yields the results shown in Table 11.8 and type 1 analysis yields Table 11.9. 
The results for physician hours are identical because it is adjusted for all other three 
covariates in both types of analysis. However, the results for other covariates are very 
different. The effect of residency is marginally significant in type 1 analysis (p = 
0.0741, unadjusted) and is not significant in type 3 analysis after adjusting for the 
other three covariates. Similarly, the results for revenue are also different; in type 1 
analysis it is adjusted only for residency and gender (p = 0.3997), whereas in type 3 
analysis it is adjusted for all three other covariates (p = 0.5781).

Note: Modify the SAS program of Example 11.7 to include the instruction:

MODEL COMPLAINTS = RESIDENCY GENDER REVENUE HOURS/
  DIST = POISSON LINK = LOG OFFSET = LNVISITS TYPE1  
  TYPE3;

Add the following instructions to the R program of Example 11.7:

drop1(all.glm, test=“Chisq”)
anova(all.glm, test=“Chisq”)

Table 11.8

Source df LR χ2 p Value

Residency 1 1.09 0.2959
Gender 1 0.82 0.3641
Revenue 1 0.31 0.5781
Hours 1 4.18 0.0409

Table 11.9

Source df LR χ2 p Value

Residency 1 3.199 0.0741
Gender 1 0.84 0.3599
Revenue 1 0.71 0.3997
Hours 1 4.18 0.0409
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11.3.3  Overdispersion

The Poisson is a very special distribution; its mean μ and variance σ2 are equal. If we 
use the variance/mean ratio as a dispersion parameter, it is 1 in a standard Poisson 
model, less than 1 in an underdispersed model, and greater than 1 in an overdispersed 
model. Overdispersion is a common phenomenon in practice and it causes concerns 
because the implication is serious; analysis that assumes the Poisson model often 
underestimates standard error(s) and thus wrongly inflates the level of significance.

Measuring and Monitoring Dispersion  After a Poisson regression model is fitted, 
dispersion is measured by the scaled deviance or scaled Pearson chi‐square; it is the 
deviance or Pearson chi‐square divided by the degrees of freedom (the number of 
observations minus the number of parameters). The deviance is defined as twice the 
difference between the maximum achievable log likelihood and the log likelihood at 
the maximum likelihood estimates of the regression parameters. The contribution to 
the Pearson chi‐square from the ith observation is

	

yi i

i

ˆ

ˆ
.

2

	

Example 11.14
Refer to the data set on emergency service of Example 11.5 (Table 11.2). With all 
four covariates, we have the results shown in Table 11.10. Both indices are greater 
than 1, indicating an overdispersion. In this example we have a sample size of 44 but 
5 df lost, due to the estimation of the five regression parameters, including the 
intercept.

Fitting an Overdispersed Poisson Model  PROC GENMOD in SAS allows the 
specification of a scale parameter to fit overdispersed Poisson regression models. 
The GENMOD procedure does not use the Poisson density function; it fits general-
ized linear models of which Poisson model is a special case. Instead of

	 Var Y 	

it allows the variance function to have a multiplicative overdispersion factor φ:

	 Var Y .	

Table 11.10

Criterion df Value Scaled value

Deviance 39 54.518 1.398
Pearson chi‐square 39 54.417 1.370
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The models are fit in the usual way, and the point estimates of regression coefficients 
are not affected. The covariance matrix, however, is multiplied by φ. There are two 
options available for fitting overdispersed models; the users can control either the 
scaled deviance (by specifying DSCALE in the model statement) or the scaled 
Pearson chi‐square (by specifying PSCALE in the model statement). The value of 
the controlled index becomes 1; the value of the other index is close to, but may not 
equal, 1.

Example 11.15
Refer to the data set on emergency service of Example 11.5 (Table 11.2) with all four 
covariates. By fitting an overdispersed model controlling the scaled deviance, we 
have the results shown in Table 11.11. As compared to the results in Example 11.8, 
the point estimates remain the same but the standard errors are larger; the effect of 
workload (hours) is no longer significant at the 5% level.

Note: Modify the SAS program of Example 11.12 to include the instruction

MODEL COMPLAINTS = GENDER RESIDENCY REVENUE HOURS/
  DIST = POISSON LINK = LOG OFFSET = LNVISITS DSCALE;

and the measures of dispersion become those shown in Table 11.12. We would obtain 
similar results by controlling the scaled Pearson chi‐square. The R program of 
Example 11.14 would be modified to:

all.OD.glm = glm(Complaint ~ Residency + Gender +  
  Revenue + Hours,
  quasipoisson(link = “log”), offset = lnvisits)
summary(all.OD.glm)

R does not change its deviance calculation even though it is allowing the scale 
parameter to be estimated.

Table 11.11

Variable Coefficient Standard error z Statistic p Value

Intercept −8.1338 1.0901 −7.462 <0.0001
No residency   0.2090 0.2378 0.879 0.3795
Female −0.1954 0.2579 −0.758 0.4486
Revenue   0.0016 0.0033 0.485 0.6375
Hours   0.0007 0.0004 1.694 0.0903

Table 11.12

Criterion df Value Scaled value

Deviance 39 39.000 1.00
Pearson chi‐square 39 38.223 0.98
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11.3.4  Stepwise Regression

In many applications, our major interest is to identify important risk factors. In other 
words, we wish to identify from many available factors a small subset of factors that 
relate significantly to the outcome (e.g., the disease incidence under investigation). 
In that identification process, of course, we wish to avoid a large type I (false positive) 
error. In a regression analysis, a type I error corresponds to including a predictor that 
has no real relationship to the outcome; such an inclusion can greatly confuse the 
interpretation of the regression results. In a standard multiple regression analysis, 
this goal can be achieved by using a strategy that adds to, or removes from, a regres-
sion model one factor at a time according to a certain order of relative importance. 
Therefore, the two important steps are as follows:

1.	 Specify a criterion or criteria for selecting a model.

2.	 Specify a strategy for applying the criterion or criteria chosen.

Strategies  This is concerned with specifying the strategy for selecting variables. 
Traditionally, such a strategy is concerned with whether and which particular variable 
should be added to a model or whether any variable should be deleted from a model 
at a particular stage of the process. As computers became more accessible and more 
powerful, these practices became more popular.

•• Forward selection procedure
1.	 Fit a simple Poisson regression model to each factor, one at a time.

2.	 Select the most important factor according to a certain predetermined 
criterion.

3.	 Test for the significance of the factor selected in step 2 and determine, 
according to a certain predetermined criterion, whether or not to add this 
factor to the model.

4.	 Repeat steps 2 and 3 for those variables not yet in the model. At any 
subsequent step, if none meets the criterion in step 3, no more variables are 
included in the model and the process is terminated.

•• Backward elimination procedure
1.	 Fit the multiple Poisson regression model containing all available independent 

variables.

2.	 Select the least important factor according to a certain predetermined crite-
rion; this is done by considering one factor at a time and treating it as though 
it were the last variable to enter.

3.	 Test for the significance of the factor selected in step 2 and determine, 
according to a certain predetermined criterion, whether or not to delete this 
factor from the model.

4.	 Repeat steps 2 and 3 for those variables still in the model. At any subsequent 
step, if none meets the criterion in step 3, no more variables are removed 
from the model and the process is terminated.
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•• Stepwise regression procedure
Stepwise regression is a modified version of forward regression that permits 
reexamination, at every step, of the variables incorporated in the model in 
previous steps. A variable entered at an early stage may become superfluous at 
a later stage because of its relationship with other variables now in the model; 
the information it provides becomes redundant. That variable may be removed, 
if meeting the elimination criterion, and the model is refitted with the remaining 
variables, and the forward process goes on. The entire process, one step forward 
followed by one step backward, continues until no more variables can be added 
or removed. Without an automatic computer algorithm, this comprehensive 
strategy may be too tedious to implement.

Criteria  For the first step of the forward selection procedure, decisions are based 
on individual score test results (chi‐square, 1 df). In subsequent steps, both forward 
and backward, the ordering of levels of importance (step 2) and the selection (test in 
step 3) are based on the likelihood ratio chi‐square statistic:

	
2 2 ln ; all other s ln ; all other s with oˆ ˆ omittedne .LR L X L X X

	

In the case of Poisson regression, many computer packages do not have an 
automatic stepwise option. Therefore, the implementation is much more tedious and 
time consuming. In selecting the first variable (step 1), we have to fit simple regres-
sion models to every factor separately, then decide, based on the computer output, on 
the first selection before coming back for computer runs in step 2. At subsequent 
steps we can take advantage of type 1 analysis results.

Example 11.16
Refer to the data set on emergency service of Example 11.5 (Table 11.2) with all four 
covariates: workload (hours), residency, gender, and revenue. This time we perform 
a regression analysis using forward selection in which we specify that a variable has 
to be significant at the 0.10 level before it can enter into the model. In addition, we fit 
all overdispersed models.

The results of the four simple regression analyses are shown in Table  11.13. 
Workload (hours) meets the entrance criterion and is selected. In the next step, we fit 
three models each with two covariates: hours and residency, hours and gender, and 

Table 11.13

Variable LR χ2 p Value

Hours 4.136 0.0420
Residency 2.166 0.1411
Gender 0.845 0.3581
Revenue 0.071 0.7897
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hours and revenue. Table 11.14 shows the significance of each added variable to the 
model containg hours using type 1 analysis. None of these three variables meets the 
0.1 level for entry into the model.

EXERCISEs

Electronic copies of some data files are available at www.wiley.com/go/Le/Biostatistics.

11.1	 Persons with long‐standing type I diabetes can be more likely to experience 
hypoglycemia unawareness: the inability of the brain to detect that blood 
glucose levels are falling dangerously low. Diligent prevention of hypogly-
cemia helps reduce the risk of hypoglycemia unawareness. At their next 
routine clinic visit, a large diabetes clinical practice consortium asks patients 
to wear a continuous glucose monitor (CGM) for 24 hours/day over the next 
7 consecutive days. 127 patients consent, of whom 65 already own and use 
a CGM; the remaining patients are provided with a clinic‐owned CGM to 
use. After the 7 days, the CGM is returned to the clinic and the CGM log is 
queried to extract the total number of hypoglycemic episodes (an episode is 
any blood glucose measure falling below 70 mg/dL) and the total length of 
time (in days) that the CGM was functional. Patient gender, age, years since 
diagnosis, and whether or not the patient used his/her own CGM are also 
recorded.

(a)	Fit a Poisson regression model with a log link for the number of hypogly-
cemic episodes, with gender, age, years since diagnosis, and owning a 
CGM as predictors. Be sure to include an offset for the log size. Explain 
how each estimated regression coefficient is interpreted.

(b)	Using your answer to (a), if the clinic wants to target patients with 
relatively high numbers of hypoglycemic episodes, in order to educate 
them on best practices to reduce their numbers of hypoglycemic episodes, 
whom should they target?

(c)	 Which variables are significantly associated with lower numbers of 
hypoglycemic episodes? Find the 95% confidence interval for the effect 
size for each such variable.

(d)	Is there any evidence of overdispersion in these data? Fit a Poisson 
regression model with overdispersion and estimate the scale parameter.

11.2	 The mutans streptococci (MS) are bacteria (all related to Streptococcus mutans) 
that can cause tooth decay. 167 persons with gum disease (elevated oral MS 

Table 11.14

Variable LR χ2 p Value

Residency 0.817 0.3662
Gender 1.273 0.2593
Revenue 0.155 0.6938
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levels) were recruited into a study with three treatment arms: chewing gum 
with an active drug, chewing gum with no active drug, and no gum. 
Randomization to the three groups was 1:1:1 (equal allocation) within blocks 
defined by current smoker status. Participants in the gum groups were asked to 
chew the gum three times daily for a minimum of 5 minutes each time and to 
carry out their usual oral hygiene (tooth brushing, mouthwash, etc.). Participants 
in the group without gum were asked to carry out their usual oral hygiene. 
During the 14 days prior to randomization, subjects rinsed their mouths twice 
daily with a 0.12 % chlorhexidine gluconate mouthrinse. They were asked to 
follow their assigned treatment for three weeks. The outcome (“colony forming 
units” per ml, a count of blotches on a standard sized petri dish after standard 
preparation) was recorded at randomization and after 1, 2, and 3 weeks. We will 
analyze CFU at week 3. The question of interest is whether the active gum 
treatment resulted in lower levels of oral mutans streptococci. There are some 
missing CFU data, corresponding to participants who missed visits.

(a)	Check to see whether there were, by chance, differences at randomization 
in the week 0 CFU by assigned treatment group. First compute summary 
statistics of CFU at week 0 separately for each treatment group. From 
visual inspection, do there appear to be differences by treatment group? 
Then use a Poisson regression with CFU at 0 weeks as the response and 
treatment group as the predictor. Are there significant treatment group 
differences?

(b)	Now explore the association between baseline CFU and follow‐up CFU. 
Fit a Poisson regression model to CFU at week 3 where the only predictor 
is CFU at week 0. Are higher values for CFU at week 0 associated with 
higher levels at the week 3 follow‐up?

(c)	 Estimate the treatment group differences in CFU at week 3 after adjusting 
for CFU at week 0. Are the groups significantly different?

(d)	This was a block design study; randomization was carried out within 
blocks defined by current smoker status. Adding to your model from (c), 
test for a block by treatment interaction and describe your results.

(e)	 Starting with your model in (d), is there evidence of overdispersion in 
these data?

(f)	 Additional baseline covariates available were sex, race (Caucasian vs. 
not), and number of diseased, missing, and filled teeth. Starting with your 
preferred model (either (d) or (e)), test whether these variables are 
significant predictors of CFU at week 3.

(g)	Build a parsimonious model for CFU at week 3. Briefly describe the 
results of the study.

11.3	 Inflammation of the middle ear, otitis media (OM), is one of the most common 
childhood illnesses and accounts for one‐third of the practice of pediatrics 
during the first five years of life. Understanding the natural history of otitis 
media is of considerable importance, due to the morbidity for children as well 
as concern about long‐term effects on behavior, speech, and language 
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development. In an attempt to understand that natural history, a large group 
of pregnant women were enrolled and their newborns were followed from 
birth. The response variable is the number of episodes of otitis media in the 
first six months (NBER), and potential factors under investigation are upper 
respiratory infection (URI), sibling history of otitis media (SIBHX; 1 for 
yes), day care, number of cigarettes consumed a day by parents (CIGS), 
cotinin level (CNIN) measured from the urine of the baby (a marker for 
exposure to cigarette smoke), and whether the baby was born in the fall 
season (FALL). Table E11.1 provides a portion of the data set.

(a)	Taken collectively, do the covariates contribute significantly to the pre-
diction of the number of otitis media cases in the first six months?

(b)	Fit the multiple regression model to obtain estimates of individual regression 
coefficients and their standard errors. Draw your conclusions concerning the 
conditional contribution of each factor.

(c)	 Is there any indication of overdispersion? If so, fit an appropriate overdis-
persed model and compare the results to those in part (b).

(d)	Refit the model in part (b) to implement this sequential adjustment:

	 URI SIBHX DAYCARE CIGS CNIN FALL

(e)	 Within the context of the multiple regression model in part (b), does day 
care alter the effect of sibling history?

(f)	 Within the context of the multiple regression model in part (b), is the 
effect of the cotinin level linear?

(g)	Focus on the sibling history of otitis media (SIBHX) as the primary factor. 
Taken collectively, was this main effect altered by any other covariates?

Table E11.1

URI SIBHX DAYCARE CIGS CNIN FALL NBER

1 0 0 0 0.0 0 2
1 0 0 0 27.52 0 3
1 0 1 0 0.0 0 0
1 0 0 0 0.0 0 0
0 1 1 0 0.0 0 0
1 0 0 0 0.0 0 0
1 0 1 0 0.0 0 0
0 0 1 0 0.0 0 0
0 1 0 8 83.33 0 0
1 0 1 0 89.29 0 0
0 0 1 0 0.0 0 1
0 1 1 0 32.05 0 0

Note: The full dataset is available at www.wiley.com/go/Le/Biostatistics.
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12
METHODS FOR REPEATEDLY 
MEASURED RESPONSES

In previous chapters, we have assumed that all observations collected were independent 
of each other, for example, that the observations were taken on a random sample from 
the population of interest. Two common types of studies violate that independence 
assumption: a longitudinal study, where participants are observed at several occasions 
over time, and a clustered study, where participants are inherently grouped in a way 
that may impact the response being measured. Longitudinal studies might be experi-
mental, such as observing blood pressure over weeks after being randomly assigned 
to a new versus standard anti‐hypertensive medicine, or they might be observational, 
such as tracking fasting blood glucose over months in a population identified as being 
at high risk for diabetes. The repeated measures are within person across time. 
Clustered studies might be experimental, such as a study that randomized an 
elementary school’s classrooms to a new versus the usual math curriculum and com-
pared math test scores from students in those classrooms; each classroom is a cluster. 
Clustered studies might be observational, such as a study examining measures of 
dependence among elderly in several nursing homes; each nursing home is a cluster. 
The repeated measures are within cluster across people. In this chapter, we will cover 
models that can accommodate both those types of repeated measures.

12.1  Extending Regression Methods Beyond 
Independent Data

For each of those examples above, a simple analysis approach would be to take a 
summary statistic for each independent unit. In the longitudinal study of the new 
anti‐hypertensive medication, we could calculate average blood pressure across 



410� METHODS FOR REPEATEDLY MEASURED RESPONSES

the weeks of the study for each person, and then statistically compare the group average 
(of the person averages) in the new treatment group with the standard treatment group 
using a two‐sample t test. In the longitudinal study of fasting blood glucose, we could 
calculate the slope in glucose [or area under the curve (AUC) for the glucose trajectory] 
for each person. We could then identify risk factors for having a positive slope 
(representing increasing fasting blood glucose) or a higher AUC (representing more 
exposure to glucose) using linear regression with the calculated slope or AUC as 
the response. In the elementary school study, we could calculate the median test score 
per classroom and then statistically compare the medians between new curriculum and 
usual curriculum classrooms with a nonparametric two sample test.

These are all called derived variable analyses and are simple to implement, but 
have several drawbacks. For example, in the glucose study, how many observations 
across time would a person need in order for the AUC to be calculated and consid-
ered valid? An AUC calculated from a person with 6 observations will be less precise 
than an AUC calculated from a person with 16 observations, so the within‐person 
variance of the response will not be constant across people. Including only people 
with no missing data is called a complete case analysis and is likely to introduce bias 
into the scientific conclusions because people who come in for every clinic visit are 
often different in important characteristics from people who miss clinic visits. 
Missing data are quite common in longitudinal studies, so calculating a derived 
variable requires decisions like these on what specific calculation to do as well as a 
recognition of how different patterns and frequencies of missingness may impact that 
calculation.

This chapter introduces several analysis methods appropriate for data such as 
these where the repeated measures, from a longitudinal or a clustered study, induce 
correlation among certain observations: correlation within person across time, or 
correlation within cluster across people. We use the concepts of fixed effects and 
random effects (Chapter 8) to motivate how that correlation is induced. All of the 
methods are based on multiple regression, whether for continuous (Chapter 9), binary 
(Chapter 10), or count (Chapter 11) responses.

12.2  Continuous Responses

12.2.1  Extending Regression using the Linear Mixed Model

In the linear regression model of Chapter 9, we have observations of the response Y
i
 

which are a linear combination of the covariates x
ji
 taken on i = 1, …, n subjects:

	
Y xi

j

J

j ji i0
1

.
	

ε
i
 is a random error term (hence independent across the values of i) assumed to have 

a normal distribution with mean zero and variance σ2. A regression coefficient β
j
 

represents how much larger the response is with each 1‐unit higher value for x
ji
. 



CONTINUOUS RESPONSES� 411

We need one more layer of indexing to capture the multiple observations within 
subject; in a longitudinal study, we can think of a subject as a participant, while in a 
clustered study, we can think of a subject as a cluster:

	
Y xij

k

K

k kij ij0
1

* .
	

Here i continues to index subject (participant or cluster), j indexes observations taken 
within subject, and k indexes covariates. For *ij, we still assume independence across 
the values of i, but we need to build in correlation across the values of j for each i; the 
asterisk is used in the notation only to make a distinction between the ε* in this 
formula and the ε in the next formula below. A linear mixed model takes the approach 
of splitting ε* into components that represent variation between subjects and varia-
tion within subjects, similar to the motivation for a one‐way ANOVA. This is the 
simplest linear mixed model:

	
Y x bij

k

K

k kij i ij0
1

0
	

and is called a random intercept model. We assume the b
i 0

 are independent across i 
and normally distributed with mean zero and variance 0

2, while the ε
ij
 are independent 

across i and j and are normally distributed with mean zero and variance e
2; we also 

assume the two components are independent of each other. The b
i 0

 are thought of as 
intercepts because they are not multiplied by a covariate, but they are subject‐specific: 
each subject has its own intercept b

i 0
 that is added to what we call the population 

intercept, β
0
. Since the b

i 0
 are centered at zero due to the normality assumption, a 

subject with a large positive b
i 0

 has larger response values on average than a subject 
with a small or negative b

i 0
.

Example 12.1
Development of anemia (low blood levels of red blood cells or hemoglobin) can be a 
problem for pregnant women. Pregnant women showing anemia at month three of 
their pregnancy during a routine pre‐natal screening were recruited into a randomized 
study of a low dose versus high dose of iron supplement. All women gave blood sam-
ples at baseline (month three) and each month for five visits afterwards (months four 
through eight). Serum ferritin (ng/mL) was measured in each sample. At baseline, 
researchers also recorded whether this was the woman’s first pregnancy and whether 
she had a history of anemia. The dataset is organized so that there is one row per 
woman per visit and a column for each of serum ferritin, visit number, treatment 
group, and any baseline characteristics. First we examine general trends in the 
response using spaghetti plots, so called because of the line segments connecting 
each individual’s data points.

Figure 12.1 shows the serum ferritin individual‐level data with a smooth trend for 
the group superimposed, separately for each group. We can see that the two groups 
start out at about the same serum ferritin (which they should because of the random-
ization) but the low dose iron group tends to have decreasing serum ferritin, while the 
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high dose iron group tends to have increasing serum ferritin. The variability within 
group at Visit 0 is high: some women start out substantially higher than others. This 
indicates that we should consider a model with a random (subject‐specific) intercept. 
Suppose the average at Visit 0 in the low dose group is 47.41 ng/mL. As an example, 
a woman with a b

i 0
 equal to +9.12 would have a Visit 0 value predicted to be 56.53 

ng/mL, while a women with a b
i 0

 equal to –9.12 would have a Visit 0 value predicted 
to be 38.29 ng/mL. (The values measured from these women at their visits would not 
be exactly those values, because there is still measurement error ε

ij
.)

How does using these additive, independently distributed normal components for the 
random intercept and the error induce correlation among the observations taken with 
a subject? Consider a simple longitudinal example where our only covariate is a 
binary indicator for treatment group (x

1
 = 1 if subject i is in the treatment group and 

x
1
 = 0 if subject i is in the placebo group):

	 Y x bij ij i ij0 1 1 0 .	

Now suppose there are only two time points of measurement: j = 1 for baseline and 
j = 2 for follow‐up. What is the covariance between those two measurements for a 
subject in the treatment group?
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Figure 12.1  Serum ferritin over time for two randomized treatment groups.
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Cov , Cov

Cov

Y Y b b

b b
i i i i i i

i i

1 2 0 1 0 1 0 1 0 2

0 1

,

, ii i

i ib b
0 2

0 0= Cov , 	

which by definition is equal to Var(b
i 0

) = 0
2. The second equation follows the first 

because the population intercept β
0
 and the treatment effect β

1
 are fixed effects, 

hence not correlated with anything. The third equation follows the second for two 
reasons: because the two components b

i 0
 and ε

ij
 are assumed independent of each 

other and because the ε
ij
 are assumed independent across i and j. The correlation 

between these two measurements is then

	

Corr ,
Cov ,

Var Var
Y Y

Y Y

Y Y
i i

i i

i i e

1 2
1 2

1 2

0
2

0
2 2

.

	

This is sometimes called the intra‐class correlation (ICC). The calculation would be 
the same for a subject in the placebo group, and it would be the same if there were 
more than two measurements per subject. There is no i indexing either variance; the 
variances (and hence the ICC) are assumed to be the same for all subjects. Likewise 
there is no j indexing either variance; the variances (and hence the ICC) are assumed 
to be the same no matter which two responses within subject are compared. This cor-
relation structure (all pairs of observations within subject have the same correlation) 
is called exchangeable or compound symmetry.

Example 12.2
If we fit this simple mixed model to the serum ferritin data, we find that the population 
intercept β

0
 is estimated as 41.52 and the treatment effect β

1
 is estimated as 10.12, 

while variance estimates are 108.85 for 0
2 and 68.41 for e

2 (Table 12.1). Thus, across 
all six visits, 41.52 ng/mL is the estimated average serum ferritin in the low dose 
group and 41.52 + 10.12 = 51.64 ng/mL is the estimated average serum ferritin in the 
high dose group. The correlation among visits within subject is estimated as 108.85/
(108.85 + 68.41) = 0.61.

Note: A SAS program would include the following instructions:

DATA ANEMIA;
 FILE ‘anemiadata.dat’ FIRSTOBS=2;
 INPUT PATIENTID VISIT IRON TRT PREGNANCY ANEMIA;
PROC MIXED DATA = ANEMIA COVTEST;
 CLASS PATIENTID TRT;
 MODEL IRON = TRT / SOLUTION;
 RANDOM INT / SUBJECT = PATIENTID VCORR;
 LSMEANS TRT / PDIFF TDIFF;
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An R program would include the following instructions:

data = read.table(“anemiadata.dat”,header=T)
attach(data)
library(nlme)
library(lsmeans)
treat = as.factor(trt)
ranint.lm = lme(fixed= iron ~ treat, random= ~1 | patientid)
summary(ranint.lm)
coef(ranint.lm)
random.effects(ranint.lm)
VarCorr(ranint.lm)
lsmeans(ranint.lm, pairwise ~ treat)

12.2.2  Testing and Inference

Estimation of the fixed effects ( ˆ
0 and ˆ

1) and the variances ( ˆ
0
2 and ˆ

e
2), and predic-

tion of the random effects (b̂i0), is done using a type of maximum likelihood 
estimation, specifically by maximizing the joint likelihood of two normally distrib-
uted quantities: the response conditional on the random effects (Y

i
 | b

i 0
) and the 

random effects (b
i 0

). Scientific interest usually lies in testing the fixed effects, and for 
this we use a t statistic, as we saw in Chapter 9:

	

t
SE

k

k

ˆ

ˆ
	

where the degrees of freedom for the t statistic are determined from the sample 
size and the model that was fit. Calculating degrees of freedom is not trivial in 
these complex models; statistical software will do this calculation, but different 
software may do this calculation differently. A corresponding confidence interval 
is computed as

	
ˆ ˆ

k df kt SE
	

where t
df
 is the appropriate t coefficient from Appendix C. For a covariate with 

multiple levels (such as racial/ethnic group), an F test can be carried out that tests all 
levels of the covariate simultaneously, similar to the F test in a one‐way ANOVA.

Table 12.1

Effect Coefficient Standard error df t Statistic p Value

Intercept 41.52 2.19   54 18.93 <0.0001
Treatment (high vs. low) 10.12 2.95 280   3.43   0.0007
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Example 12.3
The primary outcome of the trial was average serum ferritin over the six months for 
high dose compared to low dose. A secondary outcome of the trial was the slope in 
serum ferritin over the six months for high dose compared to low dose. To address 
the primary and secondary outcomes of the trial, we need to include in our model 
treatment group (high/low), visit (0, 1, 2, 3, 4, 5), and a treatment by visit interaction. 
We see in Figure 12.1 that some women have steeper decreases (or increases) relative 
to other women in their group. This points us towards a linear mixed model with both 
random intercepts and random slopes:

	 Y TRT t TRT t PP ANEM b b tij ij ij ij ij ij ij i i ij0 1 2 3 4 5 0 1 ij .	

TRT
ij
 is an indicator for high (TRT

ij
 = 1) versus low (TRT

ij
 = 0) dose; t

ij
 takes on the 

values 0, 1, 2, 3, 4, 5 for visit number. Var(ε
ij
) = e

2, Var (b
i 0

) = 0
2, Var(b

i1
) = 1

2, and 
Cov(b

i 0
 , b

i1
) = σ

01
, and the random intercepts, slopes, and errors are all normally dis-

tributed and independent across i and j and of each other. We also include indicators 
for previous pregnancy (PP

ij
, yes/no) and history of anemia (ANEM

ij
, yes/no).

Table  12.2 shows the estimated regression coefficients for this model. Among 
women with no previous pregnancy and no history of anemia, predicted serum ferritin 
at Visit = 0 is 59.24 ng/mL in the low dose group and 59.24 – 6.32 = 52.92 ng/mL 
in  the high dose group. Women with a previous pregnancy have serum ferritin on 
average 12.16 ng/mL lower, while women with a history of anemia have serum ferritin 
on average 8.27 ng/mL lower, so women with both have serum ferritin on average 
12.16 + 8.27 = 20.43 ng/mL lower. To address the primary outcome, the relevant 
quantity is the estimated mean difference in serum ferritin between the high and low 
dose groups: 50.38 – 43.10 = 7.28 ng/mL with standard error 2.96 (t = 2.46, df = 224, 
p = 0.01). As for any regression model, this represents the treatment group difference 
averaged across the other covariates in the model: visit, anemia, and pregnancy; 
averages like these (which are a weighted combination of the regression coefficients) 
are calculated by statistical software and their t statistics take the same form as the 
t statistic for a regression coefficient: estimate divided by standard error.

For the secondary outcome, there is a highly significant treatment by visit interaction 
(p < 0.0001) indicating that the slope in serum ferritin over the visits was different for 
the two treatment groups. The coefficient estimates show that the slope is –2.27 ng/mL 
per month (decreasing) in the low dose group and –2.27 + 5.44 = 3.17 ng/mL per month 

Table 12.2

Effect Coefficient Standard error df t Statistic p Value

Intercept 59.24 2.75 52 21.52 < 0.0001
Treatment (high vs low) –6.32 2.32 224 –2.72 0.007
Visit –2.27 0.60 54 –3.82 0.0004
Treatment by visit 5.44 0.80 224 6.80 < 0.0001
Previous pregnancy –12.16 2.48 224 –4.90 < 0.0001
History of anemia –8.27 2.54 224 –3.25 0.001
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(increasing) in the high dose group. See example 12.4 for the corresponding SAS 
and R programs.

The t statistic for Visit has fewer degrees of freedom because Visit is a within‐subjects 
effect: its value changes within person (each person has multiple visits) rather than 
not changing within person (such as history of anemia). Different statistical software 
packages have different methods for estimating the degrees of freedom for testing 
effects in complex models like this; a smaller choice for degrees of freedom is more 
conservative (less powerful).

The linear mixed model provided answers to the scientific questions of interest, 
but to trust the validity of those conclusions we should determine whether the model 
provided a good fit to the data. We can examine whether the data follow the variance 
and correlation structures assumed by the model. Diagnostic plots using residuals 
(such as those described in Chapter 8) can also be used to assess model assumptions 
such as normality of the errors and linearity of a continuous covariate.

Example 12.4
The variances of the assumed normal distributions were estimated as 64.19 for the 
random intercept, 8.17 for the random slope, and 12.02 for the error. These values result 
in the following variances of serum ferritin at each visit: 76.22 (Visit 0), 84.39 (Visit 1), 
108.90 (Visit 2), 149.76 (Visit 3), 206.97 (Visit 4), and 280.52 (Visit 5). A model with a 
random slope mathematically forces the estimated serum ferritin variances to increase 
across time, but, as shown in Figure 12.1, the sample serum ferritin variances increase 
across time as well, so that aspect of the model is appropriate for these data.

Table  12.3 shows the correlations within subject between visits; visits farther 
apart are more weakly correlated (often but not always true for longitudinal data) and 
the correlations are stronger among visits near the end of the study compared to 
among visits near the beginning of the study.

Note: A SAS program would include the following instructions:

PROC MIXED DATA = ANEMIA COVTEST;
 CLASS PATIENTID TRT;
 MODEL IRON = TRT|VISIT ANEMIA PREGNANCY / SOLUTION;
 RANDOM INT VISIT / SUBJECT=PATIENTID SOLUTION V VCORR;
 LSMEANS TRT / PDIFF TDIFF;

Table 12.3

Visit 0 Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

Visit 0 1
Visit 1 0.80 1
Visit 2 0.70 0.84 1
Visit 3 0.60 0.79 0.89 1
Visit 4 0.51 0.73 0.86 0.92 1
Visit 5 0.44 0.68 0.83 0.91 0.94 1
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An R program would include the following instructions:

ranintslope.lm = lme(fixed = iron ~ treat*visit + anemia +  
                 pregnancy, random= ~ visit | patientid)
summary(ranintslope.lm)
coef(ranintslope.lm)
random.effects(ranintslope.lm)
VarCorr(ranintslope.lm)
lsmeans(ranintslope.lm, pairwise ~ treat, adjust=“none”)

The dataset’s variables for each of treatment, anemia, and pregnancy should either 
take the values 0 and 1 or be declared class (SAS) or factor (R) variables.

12.2.3  Comparing Models

We can test models with different structures against each other, either different fixed 
effects or different random effects. For models that are nested, we can use a 
likelihood ratio chi‐square test, introduced in Chapter 10. Two models are nested 
when the smaller model (the model with fewer parameters to be estimated) is 
obtained by setting parameter(s) of the larger model to their null values (usually 
zero). In the serum ferritin example, suppose that the two baseline covariates 
(previous pregnancy and history of anemia) were not significant or were borderline 
significant. We could compare a model with those two covariates to a model without 
those two covariates, thus simultaneously testing whether we needed them in the 
model. The chi‐square test statistic is twice the difference between the two models’ 
log likelihoods:

	
2 2 ln ; larger model ln ;smalˆ ler model .ˆ
LR L L

	

We compare this test statistic to a chi‐square distribution with degrees of freedom 
equal to the number of parameters in the larger model that have been set to null to 
get the smaller model. If we remove previous pregnancy (1 degree of freedom) and 
history of anemia (1 degree of freedom), the degrees of freedom for this test 
statistic are 2.

We can carry out a similar test for random effects, with caveats. Longitudinal data 
do not always show such strong within‐subject slopes as we saw in the serum ferritin 
data. In such a case, we could test whether we need random slopes by comparing a 
random intercept and slope model against a random intercept model. These two 
models are nested; if we set the variance of the slopes to zero, then there are no 
subject specific slopes (the b

i1
 are all zero). As a consequence, there is also no covari-

ance between the slopes and intercepts. The caveat in this case is that the null value 
of zero for a variance is on the boundary of possible values because we cannot have 
a negative variance. Using degrees of freedom equal to 2 (1 for the slope variance and 
1 for the covariance of intercepts with slopes) for this test is conservative (less 
powerful). Similarly, we may want to compare a random intercept model to a model 
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with no random effects (a test of whether 0
2
 is zero). Using degrees of freedom equal 

to 1 for this test is conservative.

Example 12.5
A model with random intercepts and random slopes for serum ferritin has log 
likelihood equal to –1055.6, while the model with random intercepts but no random 
slopes has log likelihood equal to –1159.8. The chi‐square test statistic is

	 LR
2 2[ 1055.6 ( 1159.8)] = 208.4.	

Comparing this to a chi‐square with degrees of freedom 2 gives p < 0.0001. Hence 
we conclude the two models are highly significantly different, so the random slopes 
should not be dropped.

When models are not nested, they can be qualitatively compared using either the 
Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC). 
These quantities are calculated from the likelihood in a way that rewards parsimony 
(less complexity) in the model; most statistical software calculates these so that the 
better model has a smaller AIC (or BIC).

12.2.4  Special Cases: Random Block Designs and Multi‐level Sampling

We saw our first linear mixed model in Chapter 8 in the analysis of a randomized 
complete block design with random blocks (Example 8.4). In such a design, treat-
ments are randomly assigned to experimental units within each block. Such designs 
may have no replication: there is only one experimental unit assigned to each 
treatment in each block. In a design with replication, there may or may not be 
balance: the same number of experimental units per treatment across all treatments 
and blocks.

Example 12.6
A large company which owns and manages 200+ nursing homes in the United States 
designed a study to assess two new procedures (compared to their current procedure) 
for bathing residents of the “memory care” units in the homes. 26 homes were ran-
domly selected to participate. The company anticipated that there would be a large 
nursing home effect, so all procedures should be implemented in each home, rather 
than assigning only one procedure to each home (which would be a group randomized 
design). Thus, within each home, each staff member in the memory care unit who 
had bathing responsibilities was randomly assigned one of the three procedures (A, 
B, C). This is a randomized complete block design with replication (as in Chapter 8) 
but is imbalanced because the number of staff assigned per treatment per home varies 
across homes (due to staffing size varying across homes).

The staff member used his/her assigned procedure on every resident under his/her 
care for two weeks. The primary outcome was staff satisfaction with the procedure at 
the end of the second week, calculated by adding the responses to four questions 
(each answered on a scale of 0 to 5): how well was resident physical safety during the 
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bathing procedure protected, how well was staff physical safety during the bathing 
procedure protected, did the procedure take an appropriate amount of time, and how 
smoothly did the steps of the procedure flow. Higher scores represented higher staff 
satisfaction with the procedure. Figure 12.2 shows box plots of the satisfaction data 
by nursing home, pooling across all three procedures; as the company predicted, 
there appear to be substantial differences in satisfaction by nursing home even though 
all homes implemented all procedures. Figure 12.3 shows box plots of the satisfaction 
data by procedure, pooling across all 26 nursing homes. We can see that satisfaction 
scores tended to be higher for procedure B, but the variability within all three groups 
was large.

A linear mixed model with random intercepts for clusters allows each nursing 
home to have its own average satisfaction score (Table 12.4). The estimated procedure 
means and 95% confidence intervals from this model are 11.14 (10.05, 12.22) for A, 
13.22 (12.11, 14.32) for B, and 11.65 (10.56, 12.74) for C. The Tukey‐adjusted 
p values are < 0.0001 for A versus B, 0.38 for A versus C, and 0.0004 for B versus C 
(Table 12.5). The within‐home correlation in satisfaction is estimated as 5.86/
(5.86 + 8.68) = 0.40. Because we have replication of each procedure within each 
nursing home, we could also incorporate a random home by procedure interaction 
(as in Example 8.4). However, the company needs to implement a single procedure 
at all its homes, and B is the best choice in terms of staff satisfaction. Diagnostics can 
be carried out as in Chapter 8.
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Figure 12.2  Bathing procedure satisfaction data by nursing home.
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Note: A SAS program would include the following instructions:

DATA HOME;
 FILE ‘satisfactiondata.dat’ FIRSTOBS = 2;
 INPUT HOMEID PERSONID SATISFACTION PROCEDURE;
ODS GRAPHICS ON;
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Figure 12.3  Bathing procedure satisfaction data by procedure.

Table 12.4

Effect Coefficient Standard error df t Statistic p Value

Intercept 11.65 0.55   25 21.03 <0.0001
Treatment (A vs. C) –0.52 0.39 319 –1.32   0.1878
Treatment (B vs. C)   1.57 0.41 319   3.81   0.0002

Table 12.5

Mean Differences Estimate Standard error df t Statistic p Value
Tukey‐adjusted

p Value

Treatment A vs. B –2.08 0.41 319 –5.06 <0.0001 <0.0001
Treatment A vs. C –0.52 0.39 319 –1.32   0.1878   0.3851
Treatment B vs. C   1.57 0.41 319   3.81   0.0002   0.0005



CONTINUOUS RESPONSES� 421

PROC MIXED DATA = HOME COVTEST;
 CLASS HOMEID PROCEDURE;
 MODEL SATISFACTION = PROCEDURE / SOLUTION RESIDUAL;
 RANDOM INT / SUBJECT = HOMEID SOLUTION V VCORR;
 LSMEANS PROCEDURE / CL PDIFF ADJUST=TUKEY;
ODS GRAPHICS OFF;

An R program would include the following instructions:

data = read.table(file=“satisfactiondata.dat”,header=T)
attach(data)
library(nlme)
library(lsmeans)
trt = factor(procedure)
nhid = factor(homeid)
ranint.lme = lme(fixed= satisfaction ~ trt,  
random= ~ 1 | nhid)

summary(ranint.lme)
lsmeans(ranint.lme, pairwise ~ trt, adjust=“tukey”)
residuals(ranint.lme,type=“normalized”)

Example 12.7
Oregano, an herb commonly used in cooking, has some antimicrobial, antifungal, 
and antioxidant properties and is hypothesized to reduce blood pressure. A randomized 
trial was conducted in rats to test whether supplemental oregano (in the form of 
oregano oil) improves arterial pressure (AP) compared to a placebo (a  synthetic 
food‐grade oil). Due to animal care space constraints, the study was carried out in 
three sequential identical phases. In each phase, eight litters of Wistar rats were 
obtained and six rats from each were randomly selected to participate. Half of the six 
rats in each litter were randomly assigned to oregano and half to placebo.

AP was recorded at baseline and after 2 and 4 weeks of treatment. The primary 
outcome of the trial was AP change: AP at 4 weeks minus AP at baseline. Was there a 
significant average improvement (negative change) in AP for either group? Was the 
average improvement in AP better for the oregano group? Figure 12.4 shows a 
histogram of both groups’ AP changes superimposed with estimated normal densities 
for each treatment group. We can see the estimated normal density for the oregano group 
is shifted more towards negative values and is slightly narrower, reflecting a slightly 
smaller sample variance in the AP change, compared to the placebo group. A multi‐level 
model is appropriate for this design, a model with multiple random effects, because of 
the several layers of sampling: rats within litters and litters within study phases. We 
include a random effect for study phases and a random effect for litters:

	 Y TRT b bijk ijk i j ijk0 1 0 0 	

where Y
ijk

 represents AP change, i indexes phases, j indexes litters, and k indexes rats. 
Random is a reasonable assumption for each of these; there is no particular fixed 
structure that distinguishes the phases (e.g., seasonality, reproductive cycles) and if 
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we were to repeat the experiment, the phases would cover different calendar dates 
and we would get different litters in the different phases. To instead model all the 
repeated measures on the rats (rather than taking a change score per rat), we would 
also include a random effect for rats b

0k
, and the response and the errors would have 

an additional index l for observations within rat.

Example 12.8
A multi‐level model estimates the variance of the phase random intercept as negligible 
(2.5 × 10–7), the variance of the litter random intercept as 4.92, and the variance of 
the errors as 77.6 (mm Hg)2. The average change in AP with 95% confidence interval 
was –4.23 mm Hg (–6.45, –2.01) in the oregano group and –0.82 mm Hg (–3.04, 1.40) 
in the placebo group (Table 12.6). The improvements were significantly different 
between the groups (p = 0.02) (Table 12.7).

Note: A SAS program would include the following instructions:

DATA ARTERIAL;
   INFILE ‘rat.changedata.dat’ FIRSTOBS=2;
   INPUT PHASE LITTER RAT OREGANO APCHANGE;
PROC MIXED DATA = ARTERIAL COVTEST;
   CLASS PHASE LITTER OREGANO;
   MODEL APCHANGE = OREGANO / SOLUTION RESIDUAL;
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Figure 12.4  Distribution of change in arterial pressure by treatment group.
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   RANDOM INT / SUBJECT = PHASE;
   RANDOM INT / SUBJECT = LITTER;
   LSMEANS OREGANO / PDIFF;

An R program would include the following instructions:

arterial = read.table(“rat.changedata.dat”, header=T)
attach(arterial)
library(nlme)
library(lsmeans)
trt = as.factor(oregano)
change.mlm = lme(fixed= apchange ~ trt, random= ~1 | 
phase/litter)

summary(change.mlm)
lsmeans(change.mlm, pairwise ~ trt)
VarCorr(change.mlm) 
residuals(change.mlm, type = “normalized”)

12.3  Binary Responses

12.3.1  Extending Logistic Regression using Generalized  
Estimating Equations

In the straightforward extension of a multiple regression

	
Y xi

j

J

j ji i0
1 	

to a linear mixed model (here we show the simplest, with random intercept),

	
Y x bij

k

K

k kij i ij0
1

0
	

Table 12.6

Means Estimate Standard error df t Statistic p Value
95% Confidence 

Interval

Oregano treatment –4.23 1.13 119 –3.74 0.0003 (–6.47, –1.99)
Placebo treatment –0.82 1.13 119 –0.72 0.4729 (–3.06, 1.43)

Table 12.7

Effect Coefficient Standard error df t Statistic p Value

Intercept –0.82 1.13     2 –0.72 0.5462
Treatment (oregano vs. placebo) –3.42 1.47 119 –2.33 0.0217
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we add into the model the random effects b
i 0

 which are assumed to have mean equal 
to zero. Because the random effects (and the errors) have mean zero, the marginal 
mean μ of the repeated measures response Y is equal to

	
ij

k

K

k kijx0

1 	

(as in section 9.2.1) whether there are random effects in the model or not. Thus the 
marginal interpretation of a regression coefficient β

k
 is the same for a multiple regres-

sion using independent data as it is for a linear mixed model using repeated measures 
data. β

k
 is called a population‐averaged coefficient because it does not include the 

subject‐specific random effects. In contrast,

	
*ij

k

K

k kij ix b0
1

0
	

is called the conditional mean (because this value is calculated by conditioning on 
knowing b

i 0
) and 0 0bi  is called a subject‐specific coefficient, specifically the 

subject‐specific intercept. In a model with random slopes, there is another subject‐
specific coefficient, the subject‐specific slope: the sum of the regression coefficient 
for the time variable and the random slope b

i1
.

Having regression coefficients with the same marginal interpretation (whether or 
not random effects are included) does not hold true once we consider models that are 
not linear, where the mean of the response is not a linear combination of the regres-
sion coefficients. For example, in logistic regression with a logit link using 
independent data

	
log log

Pr

Pr
it
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Y
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i j
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j ji
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1 1 0
1 	

the mean of the response is p
i
 = Pr(Y

i
 = 1), so it is the logit that is a linear combination 

of the regression coefficients. A regression coefficient β
j
 represents the log odds of 

the response associated with a 1‐unit higher value for the exposure x
ji
. By re‐arranging 

this equation, we get

	

p Y
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x
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as we saw in Chapter 10, and it becomes obvious that the mean p
i
 is not a linear 

combination of the coefficients.
We need a model that can incorporate repeated measures j within subject i (either 

longitudinal or clustered) with multiple covariates k
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but we also want to interpret the regression coefficients in the same way as we do in 
logistic regression. To answer this need, a different type of estimation was derived, 
called Generalized Estimating Equations (GEE). Instead of maximizing a likelihood 
by solving a calculus‐derived likelihood equation (Section 4.6), GEE solves a score 
equation that mimics the structure of the likelihood equation. In order to create that 
score equation, the analyst must specify the working correlation structure among the 
repeated measures; the word “working” is used to convey that we must guess at what 
the appropriate correlation structure might be. An exchangeable structure (also called 
compound symmetry) has correlation equal to ρ for all pairs of observations within 
subject; this structure is applicable to both clustered and longitudinal studies. 
An  autoregressive (1) structure [AR(1)] has correlation equal to ρd where d is the gap 
(e.g., in time) between two observations within subject. Statistical software also 
commonly offers the option for unstructured, which estimates separately the correla-
tion between every possible pair of observations within subject.

12.3.2  Testing and Inference

Scientific interest usually lies in testing the fixed effects, and for this we use a z 
statistic, similar to the t statistic from a linear mixed model:

	

z
SE

k

k

ˆ

ˆ
.

	

The statistic has an approximate normal distribution. Most software offers two 
options for the denominator’s standard error, usually called the model‐based and the 
robust (or empirical or sandwich) standard errors. The robust standard error is 
preferred because it takes into account that the correlation structure is uncertain and 
the variances and correlations must be estimated. A corresponding approximate 95% 
confidence interval can be calculated as

	
ˆ ˆ. .k k1 96 SE

	

For a covariate with multiple levels (such as racial/ethnic group), an approximate F test 
can be carried out that tests all levels of the covariate simultaneously, similar to the F 
test in a one‐way ANOVA; again the robust error should be used. The score equation is 
built to estimate the regression coefficients well, and does not necessarily estimate the 
correlations well. Likelihood ratio tests cannot be used here, because estimation is not 
based on a likelihood. Similarly, AIC and BIC cannot be used here because they are 
also based on a likelihood. Some statistical software, such as SAS, automatically 
provides a quasi‐likelihood information criterion (QIC) appropriate for GEE which 
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can be used for model comparison (either for comparing models where the predictors 
differ or for comparing models where the working correlation structure differs).

Example 12.9
A clinical trial in chronic lower back pain is carried out at a large pain center. 
Participants are randomly assigned 1:1 to treatment A or B. Pain is measured at 
0 minutes (pre‐treatment) and at 30, 60, 90, and 120 minutes after treatment using a 
visual rating scale (VRS; 0 = no hurt, 1, 2, 3, 4, 5 = hurts worst). The primary out-
come is the proportion with severe pain which is defined as VRS value 3 or larger. 
At time 0, 13 out of 25 participants in group A and 13 out of 25 participants in 
group B have severe pain. Figure 12.5 displays the proportion with severe pain over 
time. GEE logistic regression with fixed effect for treatment and exchangeable 
correlation structure for the repeated measures within person results in a B versus 
A odds ratio for severe pain of 2.21 [95% confidence interval (1.28, 3.81)] and a 
negligible correlation estimated as 0.01.
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Figure 12.5  Proportion with severe lower back pain by treatment group.

Table 12.8

Effect Coefficient Standard error z Statistic p Value

Intercept –0.32 0.20 –1.62 0.1044
Treatment (A vs. B) –0.89 0.30 –2.95 0.0032
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Note: A SAS program would include the following instructions:

DATA BPAIN;
  INFILE ‘paindata.dat’ FIRSTOBS=2;
  INPUT ID TRT $ TIME SEVERE PAIN;
PROC SORT DATA = BPAIN OUT = SORTED;
  BY ID TIME; 
PROC GENMOD DESCENDING DATA=SORTED;
 CLASS ID TRT TIME;
 MODEL SEVERE = TRT / DIST=BIN;
 REPEATED SUBJECT=ID / WITHIN=TIME TYPE=EXCH CORRW;
 LSMEANS TRT / PDIFF EXP;

An R program would include the following instructions:

bpain = read.table(file = “paindata.dat”, header = T) 
attach(bpain)
library(geepack)
treatment = as.factor(trt)
trt.gee = geeglm(severe ~ treatment, id=ID,
family=binomial(link=“logit”),

  corstr=“exchangeable”, std.err=“san.se”, scale.fix=F)
summary(trt.gee)
trt.beta = summary(trt.gee)$coefficients[“treatmentB”, 
“Estimate"]

trt.se = summary(trt.gee)$coefficients[“treatmentB”,“Std.err”]
exp(trt.beta)
exp(trt.beta + c(-1, 1) * qnorm(0.975) * trt.se)

12.4  Count Responses

12.4.1  Extending Poisson Regression using Generalized  
Estimating Equations

Generalized estimating equations (GEE) are also used to analyze repeated Poisson 
counts that are collected for example over an interval of time or space, or over a 
volume or area (called the size). Example 11.5 describes a study where the response 
Y is the number of complaints received in an Emergency Department over a year per 
attending physician and the size s is the total number of visits to that department in 
that same year per attending physician. We can think of the ratio of Y over s as the 
number of complaints per visit. The Poisson regression model (Chapter 11) assumes 
a log link between the mean of the scaled response and the predictors:

	
log .E Y s xi i

j

J

j ji0
1 	
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A regression coefficient β
j
 represents the log relative risk of the response associated 

with a 1‐unit higher value for the exposure x
ji
. By rearranging this equation

	
E Y s xi i i

j

J

j jiexp 0
1 	

we show explicitly that the mean is not a linear combination of the regression 
coefficients. Thus, as for logistic regression, the regression coefficients will have a 
different marginal interpretation depending on whether random effects are included 
or not. When we have repeated measures j within subject i, either longitudinal or 
clustered, our Poisson regression model becomes

	
log .E Y s xij ij

k

K

k kij0
1 	

GEE can be used, as for logistic regression, to estimate the regression coefficients 
once the analyst specifies a correlation structure to be fit. The same structures can be 
used as those described for GEE logistic regression.

12.4.2  Testing and Inference

A z statistic is again used to test the fixed effects

	

z k

k

ˆ
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The statistic has an approximate normal distribution, and the robust standard error is 
again preferred in the denominator because it takes into account that the correlation 
structure is uncertain and the variances and correlations must be estimated. 
A corresponding approximate 95% confidence interval can be calculated as

	
ˆ ˆ. .k k1 96 SE

	

For a covariate with multiple levels (such as racial/ethnic group), an approximate F 
test can be carried out that tests all levels of the covariate simultaneously, similar to 
the F test in a one‐way ANOVA; again the robust error should be used.

The caveats from logistic regression apply here as well: The score equation is 
built to estimate the regression coefficients well, and does not necessarily estimate 
the correlations well. Likelihood ratio tests cannot be used here, because estimation 
is not based on a likelihood. Similarly, AIC and BIC cannot be used here because 
they are also based on a likelihood. QIC can be used to qualitatively compare 
models (either models that differ in predictors or models that differ in correlation 
structure).
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Example 12.10
Seven inpatient treatment centers for alcohol addiction are managed by one nonprofit 
group. The Medical Director examined how recent drinking history at admission to 
a  center varies across patient demographic groups defined by age and gender. 
The primary outcome was the self‐reported ‘average’ number of alcoholic drinks 
per day over the 30 days prior to admission, summarized in Figure 12.6 by center. 
These data, along with gender and age at admission, were collected from patient 
records for all new patients who entered any one of the centers during the previous 
month. We fit two GEE Poisson regressions: one with an independence structure and 
one with an exchangeable structure. Covariates included were gender, age, and their 
interaction.

QIC for the independence correlation model is –4517.85 and is larger for the 
exchangeable correlation model at –4367.79, hence we prefer the independence 
model. Table 12.9 shows the estimated regression coefficients and their tests from 
the independence model. There is a small but significant gender by age interac-
tion: the age coefficient for women is equal to –0.002 + 0.09 = 0.088 [representing 
an age effect of exp(0.088) = 1.09] while the age coefficient for men is –0.002 
[representing an age effect of exp(–0.002) = 1.00]. Thus, when we compare two 
men who are 10 years apart in age, drinks per day is higher by only 1 for each 10 years 
older, and similarly by only 1.09 for women who are 10 years apart in age. When 
we compare a 50 year old woman to a 50 year old man, drinks per day is exp(2.08) = 
8.00 for the woman and exp(2.18) = 8.85 for the man. That gender difference 
will be smaller at younger ages and larger at older ages because the interaction 
coefficient is positive.
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Figure 12.6  Alcoholic drinks per day by center.
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Note: A SAS program to run the working independence model would include the 
following instructions:

DATA DRINKS
 INFILE ‘drinksdata.dat’ FIRSTOBS = 2;
 INPUT CLINICID PERSONID DRINKSDAY FEMALE AGE;
DATA DRINKS;
 SET DRINKS;
 AGE10 = AGE/10;
PROC GENMOD DATA=DRINKS;
 CLASS CLINICID PERSONID;
 MODEL DRINKSDAY = FEMALE|AGE10 / DIST=POISSON LINK=LOG;
 REPEATED SUBJECT=CLINICID / WITHIN=PERSONID TYPE=INDEP
  CORRW MODELSE;

The MODELSE option is included only to get the estimated scale parameter; we 
do not use the regression coefficient standard errors in the corresponding output 
table. An R program to run the working independence model would include the 
following instructions:

drinks = read.table(file = “drinksdata.dat”, header = T) 
attach(drinks)
library(geepack)
age10 = age/10
drinksind.gee = geeglm(drinksday ~ gender*age10, 
 id=clinicid, family=poisson(link=“log”),  
              corstr=“independence”,
              std.err=“san.se”,scale.fix=F)
summary(drinksind.gee)

The geeglm function provides Wald chi‐square tests of the regression coefficients; 
the test statistic is the square of the approximate z test statistic. The estimate of the 
scale parameter reported by R is approximately the square of the estimate reported 
by SAS.

Table 12.9

Coefficient Robust SE z Statistic p Value

Intercept 2.19 0.13 17.11 < 0.0001
Gender (female) –0.55 0.18 –3.1 0.0019
Age (per 10 years) –0.002 0.38 –0.05 0.96
Gender*age (per 10 years) 0.09 0.4 2.3 0.02
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In this Example, the data were already on a common scale because of the way the 
data were collected: average drinks per day. When the offset (the size) is a separate 
variable in the data set, and the log link is used in the Poisson model, the offset is 
included in PROC GENMOD in this way:

MODEL y = x / … OFFSET=logsize;

or in geeglm in this way:

geeglm(y ~ x, …, offset=logsize)

In both cases, a variable for the log of the size (“logsize”) needs to be first created 
and then called within these procedures and functions.

12.5  Computational Notes

Complex models for complex data require complicated numerical estimation algo-
rithms. The default settings for these algorithms may not be appropriate to get model 
convergence for a particular dataset. One common problem is that the default number 
of iterations in the numerical algorithm, or the number of times the likelihood is esti-
mated during those iterations, is too small. In SAS, you can change these defaults in 
the PROC MIXED statement:

PROC MIXED MAXITER=50 MAXFUNC=150 ITDETAILS;

The ITDETAILS option prints out information on each step of the iteration, which 
can be helpful for diagnosing why a model is not converging. Similar options are set 
in PROC GENMOD in the MODEL statement:

PROC GENMOD;
 MODEL y = x / … MAXITER=50 ITPRINT;

The numbers shown here are the default values, so can be increased if needed. 
Changing the defaults in R takes two steps; first set the new values, then call those 
new values. For linear mixed models using the lme function, use

mycontrol = lmeControl(maxIter=50, msMaxIter=50,  
 msVerbose=FALSE)
lme(y ~ x + 1|personID, control=mycontrol)

For GEE models using the geeglm function, use

mycontrol = geese.control(maxit=50,trace=FALSE)
geeglm(y ~ x,…, control=mycontrol)
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msVerbose and trace provide details on each iteration when set to TRUE. Software 
documentation for these procedures and functions will provide more guidance on 
other options that can be changed in case of lack of convergence.

Exercises

Electronic copies of some data files are available at www.wiley.com/go/Le/
Biostatistics.

12.1	 Magnetic resonance spectroscopy (MRS) is a magnetic imaging technique that 
quantifies levels of certain biochemicals. Spinocerebellar ataxia (SCA) is a 
genetically linked disease characterized by progressive degeneration of muscle 
control. MRS has been used to quantify changes in the brain of people with SCA. 
A mouse model of SCA has also been developed, in which the SCA can be “turned 
off” by giving a drug that blocks the genetic cause of the SCA. In this experiment, 
24 SCA mice were randomly assigned 1:1 (equal allocation) to two groups: drug 
and placebo. 12 control mice (same background mouse strain but without the ge-
netic cause of the SCA) were also studied. All mice had MRS of the brain at week 
12 (before treatment) and at week 24 after birth. Several biochemicals were quan-
tified, including total creatine (creatine plus phosphocreatine); higher creatine 
may reflect changes in energy metabolism. At 12 weeks of age, the ataxia will not 
have progressed very much since birth in the SCA mice. At 24 weeks of age, the 
ataxia will have progressed substantially in the untreated SCA mice, and the 
treatment will likely have halted or slowed progression in the treated SCA mice. 
No change is expected in the control mice. Mouse sex was also recorded. We have 
seen these data already, in the exercises of chapters 8 and 10.

(a)	 Carry out some exploratory data summaries and graphics for total creatine 
(such as those described in the Examples above) to decide whether the 
normality assumption of a linear mixed model is appropriate.

(b)	 Check how well the randomization worked in the SCA mice: summarize 
total creatine for the treated vs. untreated SCA mice using age 12 weeks 
data only. Were these two groups similar at baseline?

(c)	 Carry out some exploratory data summaries and graphics for total creatine 
over 12 and 24 weeks of age, separately for the three treatment groups. 
Just from visual inspection, do there appear to be any differences between 
the groups at 12 weeks of age? At 24 weeks of age? Do the group differ-
ences appear to be consistent across ages? (If so, we may not expect to see 
a significant group by age interaction.)

(d)	 Fit a linear mixed model for total creatine with fixed effects for age, 
group, their interaction, and sex. Since there are only two observations 
over time (age 12 and 24 weeks), include age as a factor rather than as a 
continuous predictor. Include a random intercept for each mouse. Justify 
whether or not removing the interaction from the model is appropriate.
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(e)	 Using a model that retains the interaction, compute the least squares means 
for each group at each age. You can do this in SAS using the SLICE option 
in the LSMEANS statement of PROC MIXED. In R, you can modify a 
call to the lsmeans function to include at which age the group means should 
be  computed, for example lsmeans(mymodel, pairwise~treatment, 
at=list(weeks=‘12’)). Which groups are significantly different from which 
other groups at week 12? At week 24? Use a multiple comparisons adjust-
ment procedure to control for type I error inflation.

(f)	 Prepare diagnostic plots (as in Figures 8.3, 8.4, and 8.5) to assess whether 
these data fit the model assumptions. For each plot, describe the conclu-
sions you are drawing about the assumptions based on that plot. Also 
justify whether or not you feel the independence (of mice) assumption is 
likely to be satisfied by these data.

(g)	 Write a brief summary of the study’s conclusions about how total creatine 
differs by group and age.

(h)	 Compare your treatment group means and standard errors in part (e) 
to those obtained from Exercise 8.6, part (d). (Make sure your chosen 
models, here and in Exercise 8.6, include the same fixed effects and 
that you use the same type I error correction procedure.) Are the 
means different, comparing your model here to that in Exercise 8.6? 
Are the standard errors different? If they are different, why are they 
different?

12.2	 A study of residential 60‐Hz magnetic field levels was conducted in the 
Midwest. 51 homes in the Twin Cities (Minnesota, N = 24) and Detroit 
(Michigan, N = 27) were selected to participate based on a random digit dial 
sampling scheme. Each home was visited seven times, approximately every 
two months. At each visit, an Emdex‐C electro-magnetic field (EMF) data‐
logging meter (Emdex‐C) was used to collect EMF levels over a 24 hour 
period. 24‐hour measurements are taken from spot measurements every 
30 seconds. An Emdex‐C was placed in a child’s bedroom under the bed 
and in the kitchen of each home. The response of interest is the (base 10) log‐
transformed 24‐hour mean EMF measurement, multiplied by 100. The wiring 
configuration of each house was also recorded and is coded on the four point 
Wertheimer–Leeper scale: 1 = very low current configuration (VLCC), 2 = 
ordinary low current configuration (OLCC), 3 = ordinary high current config-
uration (OHCC), and 4 = very high current configuration (VHCC). The 
researchers want to quantify how the response differs across the room types 
(bedroom, kitchen) and wiring configurations. Any differences between the 
two states are not of direct interest. We have seen these data already, in the 
Exercises of Chapter 8.

(a)	 Carry out some exploratory data summaries and graphics for EMF (such as 
those described in the Examples and Exercises above) to decide whether 
the normality assumption of a linear mixed model is appropriate.
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(b)	 Summarize each week’s EMF separately for the four combinations of 
room type by state. Describe what you notice about EMF by room types, 
states, and across the visits. Does one room type (or one state) have 
noticeably larger EMF on average than the other? Are the slopes approx-
imately linear? Are the slopes noticeably non‐zero?

(c)	 Fit a linear mixed model with fixed effects for room type, state, visit, their 
interactions, and wiring code (no interactions with code); include code as 
a factor, not a continuous predictor. Justify whether or not treating each of 
these factors (room type, state, code) as fixed is appropriate. Include 
random intercepts only. Which fixed effects are the strongest? Consider 
both effect size (magnitude of the coefficient) and significance level.

(d)	 Test and remove fixed effects from the model as you feel is appropriate 
based on their statistical significance and their importance to the study’s 
design and scientific goals. Show the details of the tests you carried out to 
justify any effects that are removed.

(e)	 Using your final model from (i), prepare diagnostic plots (as in Figures 8.3, 
8.4, and 8.5) to assess whether the data fit the model assumptions. For 
each plot, describe the conclusions you are drawing about the assump-
tions based on that plot. Also justify whether or not you feel the 
independence assumption is likely to be satisfied by these data.

(f)	 Write a brief summary of the study’s conclusions about how the effects of 
room type, wiring configuration, and state are associated with EMF levels, 
and whether EMF levels changed over the visits.

12.3	 The mutans streptococci (MS) are bacteria (all related to Streptococcus 
mutans) that can cause tooth decay. 167 persons with gum disease (elevated 
oral MS levels) were recruited into a study with three treatment arms: 
chewing gum with an active drug, chewing gum with no active drug, and no 
gum. Randomization to the three groups was 1:1:1 (equal allocation) within 
blocks defined by current smoker status. Participants in the gum groups 
were asked to chew the gum three times daily for a minimum of 5 min each 
time and to carry out their usual oral hygiene (tooth brushing, mouthwash, 
etc.). Participants in the group without gum were asked to carry out their 
usual oral hygiene. During the 14 days prior to randomization, subjects 
rinsed their mouths twice daily with a 0.12 % chlorhexidine gluconate 
mouthrinse. They were asked to follow their assigned treatment for three 
weeks. The outcome [“colony‐forming units” (CFU)/ml, a count of blotches 
on a standard sized petri dish after standard preparation] was recorded at 
randomization and after 1, 2, and 3 weeks. Here we consider the longitudinal 
outcome of CFU measured each week, week 0 through 3. The question of 
interest is whether the active gum treatment caused a decline in the level of 
oral mutans streptococci. There are some missing CFU data, corresponding 
to participants who missed visits. We have seen these data already, in the 
exercises of Chapters 8, 10, and 11.
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(a)	 Examine the distribution of the longitudinal response, CFU, for example 
with a histogram and normal quantile plot. In your judgement, is it 
sufficiently close to normally distributed to consider using a linear mixed 
model? If not, take a transformation of CFU to make the distribution 
closer to normal. Complete the remaining parts of this Exercise using the 
transformed CFU as the response variable.

(b)	 Check how well the randomization worked: summarize the response var-
iable by treatment group using week 0 data only. Were the groups similar 
at baseline?

(c)	 Make a means plot by treatment group (as in Figure 8.2) of the response 
variable, using all weeks. Just from visual inspection, do there appear to 
be any differences between treatment groups? Now make the same plot 
but separately for each block. Do the treatment group differences appear 
to be similar between the two blocks? (If so, then we may not expect to 
see a significant block by treatment interaction.)

(d)	 Make a line plot by treatment group (as in Figure 12.1); these are sometimes 
called “spaghetti plots.” Just from visual inspection, do there appear to be any 
differences between treatment groups in the group intercept or slope? Now 
make the same plot but separately for each block. Do the treatment group 
slopes appear to be similar between the two blocks? (If so, then we may not 
expect to see a significant block by treatment by weeks interaction.)

(e)	 Now examine sample standard deviations across the weeks and across the 
treatment groups. Is the variability in the response approximately constant 
across weeks and across groups?

(f)	 There are two additional predictors available in these data: participant sex 
and number of diseased, missing, and filled teeth (DMFT). Use summary 
statistics and graphical summaries to examine how strongly these two 
predictors are associated with the response.

(g)	 Fit a linear mixed model with fixed effects for treatment groups, blocks, 
weeks, all their interactions, sex, and DMFT. Include a random intercept 
and a random slope. Are the two adjusting variables, sex and DMFT, 
needed? Justify whether or not they should be kept in the model.

(h)	 After removing (or not) sex and DMFT, fit a random intercept model. 
Compare the random intercept model to the random intercept and slope 
model (both models should have the same fixed effects) using AIC and 
BIC. Justify which model is better, and use that model for part (i).

(i)	 Test and remove fixed effects from the model as you feel is appropriate 
based on their statistical significance and their importance to the study’s 
design and scientific goals. Show the details of the tests you carried out to 
justify any effects that are removed.

(j)	 Using your final model from (i), prepare diagnostic plots (as in Figures 8.3, 
8.4, and 8.5) to assess whether the data fit the model assumptions. For each 
plot, describe the conclusions you are drawing about the assumptions 
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based on that plot. Also justify whether or not you feel the independence 
assumption is likely to be satisfied by these data.

(k)	 Using your final model from (i), compute the least squares means of the 
response variable for the three treatment groups. Which groups are signif-
icantly different from which other groups? Use a multiple comparisons 
adjustment procedure to control for type I error inflation.

(l)	 Write a brief summary of the study’s conclusions.

12.4	 Consider the mutans streptococci (MS) data of Exercise 12.3. Instead of trans-
forming the CFU outcome, now take the ratio of each week’s CFU to the week 
0 CFU (e.g., week 1/week 0, week 2/week 0, week 3/week0).

(a)	 Examine the distribution of the longitudinal ratio, CFU divided by 
week 0 CFU, for example with a histogram and normal quantile plot. 
In your judgement, is it sufficiently close to normally distributed to 
consider using a linear mixed model? Complete the remaining parts of 
this Exercise using the week 1, week 2, and week 3 CFU ratios as the 
response variable.

(b–l)	 See Exercise 12.3, parts (b–l). Include as an additional fixed effect (in 
all models considered) log of CFU at week 0. Depending on the 
statistical software you are using, you may find that a random intercept 
and slope model does not initially converge; see Section 12.5.

(m)	 Compare your results of this Exercise with the results of Exercise 12.3. Do 
your conclusions about the treatment effect differ substantially depending 
on whether you used the transformed response or the ratio response?

12.5	 A clinical trial comparing two treatments (A and B, 1:1 allocation ratio) for 
prevention of mucosal candidiasis was carried out in HIV‐positive women. 
Every 3 months from baseline through 1 year, each woman had a vaginal swab 
cultured for the candidiasis fungus. Other predictors collected at baseline 
included: age, race (Caucasian vs non-Caucasian), CD4 cell count, history of 
oral candidiasis, history of vaginal candidiasis, use of anti‐retroviral therapy, 
and prior progression of disease (history of AIDS events).

(a)	 Check how well the randomization worked: test the proportion of positive 
cultures at baseline in treatment A versus treatment B using month 0 data 
only. Were the two groups similar at baseline?

(b)	 Test for associations between each of the baseline predictors and treatment 
group, again using month 0 data only. Were the predictors’ distributions 
similar between the two groups at baseline?

(c)	 Carry out some exploratory data summaries and graphics for the binary 
response, positive culture yes/no, separately for the two treatment groups, 
across the five visits. Just from visual inspection, do there appear to be 
any differences between the groups at month 3, 6, 9 or 12? Do the group 
differences appear to be consistent across the months? (If so, we may not 
expect to see a significant group by time interaction.)
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(d)	 Fit a GEE logistic regression (using a logit link and independence working 
correlation) for positive culture with fixed effects for treatment group, 
months (as a continuous variable), their interaction, and all other baseline 
predictors. Keeping in mind that the time variable was recorded in months 
(0, 3, 6, etc.) and not in visit number (1, 2, 3, etc.), explain the interpretation 
of the regression coefficients for treatment, months, and their interaction.

(e)	 Create a new predictor (call it “post”) that is 0 for all baseline observations 
and 1 for all post‐baseline observations (months = 3, 6, 9, or 12). Fit a GEE 
logistic regression (using a logit link and independence working correla-
tion) for positive culture with fixed effects for treatment group, post, their 
interaction, and all other baseline predictors. Explain the interpretation of 
the regression coefficients for treatment, post, and their interaction.

(f)	 Using your summaries in (c), choose a preferred model [either (d) or (e)] 
and justify your choice.

(g)	 Test and remove fixed effects from the model as you feel is appropriate 
based on their statistical significance and their importance to the study’s 
design and scientific goals. Show the details of the tests you carried out to 
justify any effects that are removed.

(h)	 Write a brief summary of the study’s conclusions.

12.6	 Consider the mutans streptococci (MS) data of Exercise 12.3. Instead of trans-
forming the CFU outcome, now use CFU on its original scale, as a count.

(a)	 Examine the distribution of the longitudinal counts for CFU for each of 
the four weeks of the study. Does the distribution seem similar across the 
four weeks in terms of the mean, variability, and skewness?

(b)	 Check how well the randomization worked: summarize the response 
variable by treatment group using week 0 data only. Were the groups sim-
ilar at baseline?

(c)	 Make a means plot by treatment group (as in Figure 8.2) of the response 
variable, using all weeks, separately for each block. Do the treatment 
group differences appear to be similar between the two blocks? (If so, 
then we may not expect to see a significant block by treatment 
interaction.)

(d)	 Make a means plot by week for each treatment group separately. Do the 
treatment group slopes appear to be similar to each other? (If so, then we 
may not expect to see a significant treatment by weeks interaction.)

(e)	 Make a means plot by week for each block separately. Do the block group 
slopes appear to be similar to each other? (If so, then we may not expect 
to see a significant block by weeks interaction.)

(f)	 There are two additional predictors available in these data: participant sex 
and number of diseased, missing, and filled teeth (DMFT). Use summary 
statistics and graphical summaries to examine how strongly these two 
predictors are associated with the response.
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(g)	 Fit a GEE Poisson regression (using a log link and independence working 
correlation) with fixed effects for treatment groups, blocks, weeks, all 
their interactions, sex, and DMFT. Use the placebo group as the reference 
group for treatment. Are the two adjusting variables, sex and DMFT, 
needed? Justify whether or not they should be kept in the model.

(h)	 After removing (or not) sex and DMFT, test and remove fixed effects 
from the model as you feel is appropriate based on their statistical signif-
icance and their importance to the study’s design and scientific goals. 
Show the details of the tests you carried out to justify any effects that are 
removed.

(i)	 Using your final model from (h), determine which groups are signifi-
cantly different from which other groups. Use a multiple comparisons 
adjustment procedure to control for type I error inflation.

(j)	 Write a brief summary of the study’s conclusions.

(k)	 Compare your results of this Exercise with the results of Exercise 12.3. 
Do your conclusions about the treatment effect differ substantially 
depending on whether you used the transformed response or the count 
response?
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13
ANALYSIS OF SURVIVAL DATA AND 
DATA FROM MATCHED STUDIES

Study data may be collected in many different ways. In addition to surveys, which are 
cross‐sectional, as shown in many examples in previous chapters, biomedical research 
data may come from different sources, the two fundamental designs being retrospective 
and prospective. Retrospective studies gather data from selected cases and controls to 
determine differences, if any, in past exposure to a suspected risk factor. They are com-
monly referred to as case–control studies; each case–control study is focused on a 
particular disease. In a typical case–control study, cases of a specific disease are ascer-
tained as they arise from population‐based registers or lists of hospital admissions, and 
controls are sampled either as disease‐free persons from the population at risk or as 
hospitalized patients having a diagnosis other than the one under study. The advantages 
of a retrospective study are that it is economical and provides answers to research ques-
tions relatively quickly because the cases are already available. Major limitations are 
due to the inaccuracy of the exposure histories and uncertainty about the appropriateness 
of the control sample; these problems sometimes hinder retrospective studies and make 
them less preferred than prospective studies. Prospective studies, also called cohort 
studies, are epidemiological designs in which one enrolls a group of persons and follows 
them over certain periods of time; examples include occupational mortality studies and 
clinical trials. The cohort study design focuses on a particular exposure rather than a 
particular disease as in case–control studies. Advantages of a longitudinal approach 
include the opportunity for more accurate measurement of exposure history and a care-
ful examination of the time relationships between exposure and any disease under inves-
tigation. An important subset of cohort studies consists of randomized clinical trials 
where follow‐up starts from the date of enrollment and randomization of each subject.

The methodology discussed in this book has mostly been directed to the analysis 
of cross‐sectional and retrospective studies; this chapter is an exception. The topics 
covered here in the first few sections – basic survival analysis and Cox’s proportional 
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hazards regression – were developed to deal with survival data resulting from prospective 
or cohort studies. Readers should focus on the nature of the various designs because 
the borderline between categorical and survival data may be somewhat vague, espe-
cially for beginning students. Survival analysis, which was developed to deal with 
data resulting from prospective studies, is also focused on the occurrence of an event, 
such as death or relapse of a disease, after some initial treatment – a binary outcome. 
Therefore, for beginners, it may be confused with the type of data that require the 
logistic regression analysis discussed in Chapter 10. The basic difference is that, for 
survival data, studies have staggered entry and subjects are followed for varying 
lengths of time; they do not have the same probability for the event to occur even if 
they have identical characteristics, a basic assumption of the logistic regression model. 
Second, each member of the cohort belongs to one of three types of termination:

1.	 Subjects still alive on the analysis date;

2.	 Subjects who died on a known date within the study period;

3.	 Subjects who are lost to follow‐up after a certain date within the study period.

That is, for many study subjects, their follow-up may be terminated before the occur-
rence of the main event under investigation: for example, subjects in types 1 and 3.

In the last few sections of this chapter we return to topics of retrospective studies, 
the analysis of data from matched case–control studies. We put together in Chapter 13 
the analyses of two very different types of data, which come from two very different 
designs, for good reason. First, they are not totally unrelated; statistical tests for a 
comparison of survival distributions are special forms of the Mantel–Haenszel 
method of Chapter 6. Most methodologies used in survival analysis are generaliza-
tions of those for categorical data. In addition, the conditional logistic regression 
model needed for an analysis of data from matched case–control studies and Cox’s 
regression model for the analysis of some types of survival data correspond to the 
same likelihood function and are analyzed using the same computer program. For 
students in applied fields such as epidemiology, access to these methods will be ben-
eficial because most students may not be adequately prepared for the level of sophis-
tication of a full course in survival analysis. This makes it more difficult to learn the 
analysis of matched case–control studies. In Sections 13.1 and 13.2 we introduce 
some basic concepts and techniques of survival analysis; Cox’s regression models 
are covered in Sections 13.3 and 13.4. Methods for matched data begin in Section 13.5.

13.1  SURVIVAL DATA

In prospective studies, the important feature is not only the outcome event, such as 
death, but the time to that event, the survival time. To determine the survival time T, 
three basic elements are needed:

1.	 A time origin or starting point;

2.	 An ending event of interest;

3.	 A measurement scale for the passage of time.
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These may be, for example, the life span T from birth (starting point) to death (ending 
event) in years (measurement scale; Figure 13.1). The time origin or starting point 
should be defined precisely, but it need not be birth; it could be the start of a new 
treatment (randomization date in a clinical trial) or admission to a hospital or nursing 
home. The ending event should also be defined precisely, but it need not be death; a 
nonfatal event such as the relapse of a disease (e.g., leukemia) or a relapse from 
smoking cessation or discharge to the community from a hospital or nursing home 
satisfy the definition and are acceptable choices. The use of calendar time in 
health studies is common and meaningful; however, other choices for a time scale are 
justified – for example, cumulative hospital cost (in dollars) from admission (starting 
point) to discharge (ending event).

Distribution of the survival time T from enrollment or starting point to the event of 
interest, considered as a random variable, is characterized by either one of two equivalent 
functions: the survival function and the hazard function. The survival function, denoted 
S(t), is defined as the probability that a person survives longer than t units of time:

	 S t T tPr .	

S(t) is also known as the survival rate; for example, if times are in years, S(2) is the two‐
year survival rate, S(5) is the five‐year survival rate, and so on. A graph of S(t) versus t is 
called a survival curve (Figure 13.2). At the time origin (t = 0), S(t) = 1.0 because no one 
has yet had the event of interest (everyone is still alive, not yet relapsed, etc.).

The hazard or risk function λ(t) gives the instantaneous failure rate and is defined 
as follows. Assuming that a typical patient has survived to time t, and for an addi-
tional small time increment Δ, the probability of an event occurring during time 
interval (t, t + Δ) to that person is given approximately by:
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In other words, the hazard or risk function λ(t) approximates the proportion of subjects 
dying or having events per unit time around time t. Note that this differs from the 
density function represented by the usual histogram; in the case of λ(t), the numerator 
is a conditional probability. λ(t) is also known as the force of mortality and is a mea-
sure of the proneness to failure as a function of the person’s age. When a population is 
subdivided into two subpopulations, E (exposed) and E′ (nonexposed), by the presence 
or absence of a certain characteristic (an exposure such as smoking), each subpopula-
tion has its own hazard or risk function, and the ratio of two such functions,
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Figure 13.1  Survival time.
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is called the relative hazard or hazard ratio or relative risk associated with exposure 
to factor E, hazard of the event for the exposed subjects relative to the hazard for 
nonexposed subjects. In general, the hazard ratio HR(t) is a function of time and 
measures the magnitude of an effect; when it remains constant, HR(t) = ρ, we have a 
proportional hazards model (PHM):

	 t E t E; ; 	

with the hazard of the nonexposed subpopulation serving as the reference. This is a 
multiplicative model; that is, exposure raises the hazard by a multiplicative constant. 
Another way to express this model is:

	 t t e x
0 	

where λ
0
(t) is λ(t; E′) – the hazard function of the unexposed subpopulation – and the 

indicator (or covariate) x is defined as:

	
x

0

1

if unexposed

if exposed. 	

The regression coefficient β represents the hazard ratio on the log scale. This model 
works with any covariate X, continuous or categorical; the binary covariate above is 
only a very special case. Of course, the model can be extended to include several 
covariates; it is usually referred to as Cox’s regression model.

A special source of difficulty in the analysis of survival data is the possibility that 
some subjects may not be observed for the full time to failure or event. Such random 
censoring arises in medical applications with animal studies, epidemiological appli-
cations with human studies, or in clinical trials. In these cases, observation is termi-
nated before the occurrence of the event. In a clinical trial, for example, patients may 
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Figure 13.2  General form of a survival curve.
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enter the study at different times; then each is treated with one of several possible 
therapies after a randomization.

Figure 13.3 shows a description of the total duration of a typical clinical trial. Of 
course, in conducting this trial, we want to observe the lifetimes of all subjects from 
enrollment, but censoring may occur in one of the following forms:

•• Loss to follow‐up (e.g., the patient may decide to move elsewhere).

•• Dropout (e.g., a therapy may have such bad effects that it is necessary to discon-
tinue treatment and the participant withdraws consent).

•• Termination of the study.

•• Death due to a cause not under investigation (e.g., suicide).

To make it possible for statistical analysis we make the crucial assumption that 
conditionally on the values of any explanatory variables (or covariates), the prog-
nosis for any person who has survived to a certain time t should not be affected if 
the person is censored at t. That is, a person who is censored at t should be represen-
tative of all those subjects with the same values of explanatory variables who survive 
to t. In other words, survival condition and reason of loss are independent; under this 
assumption, there is no need to distinguish the four forms of censoring described 
above.

We assume that observations available on the failure time of n subjects are usu-
ally taken to be independent. At the end of the study, our sample consists of n pairs 
of numbers (t

i
, δ

i
). Here δ

i
 is an indicator variable for survival status (δ

i
 = 0 if the ith 

individual is censored; δ
i
 = 1 if the ith individual experienced the event of interest) 

and t
i
 is the time to event (if δ

i
 = 1) or the censoring time (if δ

i
 = 0); t

i
 is also called 

the duration time. We may also consider, in addition to t
i
 and δ

i
, (x

1i
, x

2i
, …, x

ki
), a 

set of k covariates associated with the ith individual representing such cofactors as 
age, gender, and treatment.

13.2  INTRODUCTORY SURVIVAL ANALYSES

In this section we introduce a popular method for estimation of the survival function 
and a family of statistical tests for comparison of survival distributions.

0

Study initiation Study termination

Enrollment period
(e.g., 3 years)

Follow-up period
(e.g., 2 years)

No new subjects enrolled
after this point

↓ π2

π1

Figure 13.3  Total duration of a typical clinical trial.
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13.2.1  Kaplan–Meier Curve

In this section we introduce the product‐limit (PL) method of estimating survival 
rates, also called the Kaplan–Meier method. Let

	 t t tk1 2 < 	

be the k distinct observed death times in a sample of size n from a homogeneous 
population with survival function S(t) to be estimated (k ≤ n; k could be less than n 
because some subjects may be censored and/or some subjects may have events at the 
same time). Let n

i
 be the number of subjects at risk at a time just prior to t

i
 (1 ≤ i ≤ k; 

these are cases whose duration time is at least t
i
), and d

i
 the number of deaths at t

i
. 

The survival function S(t) is estimated by
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which is called the product‐limit estimator or Kaplan–Meier estimator with a 95% 
confidence interval given by
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The explanation could be simple, as follows: (i) d
i
 / n

i
 is the proportion (or estimated 

probability of) having an event in the interval from t
i−1

 to t
i
, (ii) 1 − d

i
 / n

i
 represents 

the proportion (or estimated probability of) surviving that same interval, and (iii) the 
product in the formula for Ŝ(t) follows from the product rule for probabilities of 
Chapter 3.

Example 13.1
The remission times of 42 patients with acute leukemia were reported from a clinical 
trial undertaken to assess the ability of the drug 6‐mercaptopurine (6‐MP) to maintain 
remission (Figure  13.4). Each patient was randomized to receive either 6‐MP or 
placebo. The study was terminated after one year; patients have different follow‐up 
times because they were enrolled sequentially at different times. Times in weeks were:

•• 6‐MP group: 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 
32+, 32+, 34+, 35+

•• Placebo group: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

in which t+ denotes a censored observation (i.e., the case was censored after t weeks 
without a relapse). For example, “10+” is a case whose start time was 10 weeks 
before study termination and who was still remission‐free at termination. “8” is a 
control who relapsed 8 weeks after start.
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According to the product‐limit method, survival rates for the 6‐MP group are calculated 
by constructing a table such as Table 13.1 with five columns. To obtain Ŝ(t), multiply all 
values in column (4) up to and including t. From Table 13.1, we have, for example:

	

7 80 67
22 53 78
-week survival rate is

-week survival rate is
. %

. %	

and a 95% confidence interval for S(7) is (0.6531, 0.9964).

Note: An SAS program would include these instructions:

DATA LEUKEMIA;
   INPUT DRUG $ WEEKS RELAPSE;
   DATALINES;

5 10

.20

.40

Ŝ(
t)

.60

.80

1.0

15

Time (weeks)

20 25

Figure 13.4  Survival curve: drug 6‐MP group.

Table 13.1

(1) (2) (3) (4) (5)

t
i

n
i

d
i 1

d

n
i

i

S ti

6 21 3 0.8571 0.8571
7 17 1 0.9412 0.8067
10 15 1 0.9333 0.7529
13 12 1 0.9167 0.6902
16 11 1 0.9091 0.6275
22 7 1 0.8571 0.5378
23 6 1 0.8333 0.4482
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6-MP 6 1
6-MP 6 1
 ...
6-MP 35 0
PLACEBO 1 1
PLACEBO 1 1
 ...
PLACEBO 23 1
;

PROC LIFETEST DATA = LEUKEMIA METHOD = KM;
TIME WEEKS*RELAPSE(0);

  WHERE DRUG = "6-MP";

where WEEKS is the variable name for duration time, RELAPSE the variable name 
for survival status, "1" is the coding for relapse, “0” is the coding for censoring, and 
KM stands for the Kaplan–Meier method. An R program would include these 
instructions:

library(survival)
sixMPweeks = c(6,6,...,35)
sixMPevent = c(1,1,...,0)
placeboweeks = c(1,1,...,23)
placeboevent = c(1,1,...,1)
factordrug = as.factor(c(rep("6-MP",length(sixMPweeks)),
                   rep("Placebo",length(placeboweeks))))
drug = relevel(factordrug, ref="Placebo")
sixMP.km = survfit(Surv(sixMPweeks,sixMPevent) ~ 1)
plot(sixMP.km,xlab="Time (weeks)",  ylab="Estimated 
proportion still in remission")

sort(unique(sixMP.km$surv),decreasing=TRUE)
cbind(sixMP.km$surv,sixMP.km$lower,sixMP.km$upper)

13.2.2  Comparison of Survival Distributions

Suppose that there are n
1
 and n

2
 subjects, corresponding to treatment groups 1 and 2, 

respectively. The study provides two samples of survival data:

	 t i ni i1 1 11 2, , , , 	

and

	
t j nj j2 2 21 2, , , ,
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In the presence of censored observations, tests of significance can be constructed as 
follows:

1.	 Pool data from two samples together and let

	 t t t m d n nm1 2 1 2 	

be the distinct times with at least one event at each (d is the total number of 
deaths).

2.	 At ordered time t
i
, 1 ≤ i ≤ m, the data may be summarized into a 2 × 2 table 

(Table 13.2) where 

	

n i1 1number of subjects from sample who were at
risk just before time tt

n
i

i2 2number of subjects from sample who were at
risk just before tiime

number of deaths at of them from sample

t
n n n
d t d

i

i i i

i i i

1 2

1 1,
aand of them from sample

number of s

d
d d

a n d
a a

i

i i

i i i

i i

2

1 2

1 2

2

uurvivors
d di .

In this form, the null hypothesis of equal survival functions implies the 
independence of “sample” and “status” in Table 13.2. Therefore, under the null 
hypothesis, the expected value of d

1i
 is

	
E d

n d

ni
i i

i
0 1

1

	

(d
1i
 being the observed value) following the formula for expected values used in 

Chapter 6. The variance is estimated (based on the hypergeometric model) by

Table 13.2

Sample

Status

TotalDead Alive

1 d
1i

a
1i

n
1i

2 d
2i

a
2i

n
2i

Total d
i

a
i

n
i
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Var0 1

1 2
2 1

d
n n a d

n ni
i i i i

i i

,
	

the formula we used in the Mantel–Haenszel method in Chapter 6.
After constructing a 2 × 2 table for each distinct event time, the evidence against 

the null hypothesis can be summarized in the following statistic:

	 i

m

i i iw d E d
1

1 0 1

	

where w
i
 is the weight (described below) associated with the 2 × 2 table at t

i
. We have 

under the null hypothesis:

	

E

w d

w n n a d

n n

i

m

i i

i

m
i i i i i

i i

0

0
1

2
0 1

1

2
1 2

2

0

1

Var Var

.
	

The evidence against the null hypothesis is summarized in the standardized statistic

	

z
Var0

1 2/

	

which is referred to the standard normal percentile z
1−α (Appendix B) for a specified size 

α of the test. We may also refer z2 to a chi‐square distribution at 1 degree of freedom (df).
There are two important special cases:

1.	 The choice w
i
 = n

i
 gives the generalized Wilcoxon test; it is reduced to the 

Wilcoxon test in the absence of censoring.

2.	 The choice w
i
 = 1 gives the log‐rank test (also called the Cox–Mantel test; it is 

similar to the Mantel–Haenszel procedure of Chapter 6 for the combination of 
several 2 × 2 tables in the analysis of categorical data).

There are a few other interesting issues:

1.	 Which test should we use? The generalized Wilcoxon statistic puts more weight 
on the beginning observations, and because of that its use is more powerful in 
detecting the effects of short‐term risks. On the other hand, the log‐rank sta-
tistic puts equal weight on each observation and therefore, by default, is more 
sensitive to exposures with a constant relative risk (the proportional hazards 
effect; in fact, we could have derived the log‐rank test as a score test using the 
proportional hazards model). Because of these characteristics, applications of 
both tests may reveal not only whether or not an exposure has any effect, but 
also the nature of the effect, short‐ or long‐term.
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2.	 Because of the way the tests are formulated (terms in the summation are not 
squared),

	 all i
i i iw d E d1 0 1

	

they are powerful only when one risk is greater than the other at all times. 
Otherwise, some terms in this sum are positive, other terms are negative, and 
they cancel each other out. For example, the tests are virtually powerless for 
the case of crossing survival curves; in this case the assumption of proportional 
hazards is severely violated.

3.	 Some cancer treatments (e.g., bone marrow transplantation) are thought to 
have cured patients within a short time following initiation. Then, instead of all 
patients having the same hazard, a biologically more appropriate model, the 
cure model, assumes that an unknown proportion (1 − π) are still at risk, 
whereas the remaining proportion (π) have essentially no risk. If the aim of the 
study is to compare the cure proportions π values, neither the generalized 
Wilcoxon nor log‐rank test is appropriate (low power). One may simply choose 
a time point t far enough out for the curves to level off, then compare the esti-
mated survival rates by referring to percentiles of the standard normal 
distribution:

	

z
S t S t

S t S t

ˆ ˆ

ˆ ˆ
./

1 2

1 2

1 2

Var Var
	

Estimated survival rates, Ŝ
i
(t), and their variances are obtained as discussed in 

Section 13.2.1 (the Kaplan–Meier procedure).

Example 13.2
Refer back to the clinical trial (Example 13.1) to evaluate the effect of 6‐MP to main-
tain remission from acute leukemia. The results of the tests indicate a highly 
significant difference between survival patterns of the two groups (Figure 13.5). The 
generalized Wilcoxon test shows a slightly larger statistic, indicating that the 
difference is slightly larger at earlier times; however, the log‐rank test is almost 
equally significant, indicating that the use of 6‐MP has a long‐term effect (i.e., the 
effect does not wear off).

	

Generalized Wilcoxon df

Log-rank

: . ; .

: .

2

2

13 46 1 0 0002

16 7

p

99 1 0 0001df ; . .p 	

Note: An SAS program would include these instructions:

PROC LIFETEST DATA = LEUKEMIA METHOD = KM;
TIME WEEKS*RELAPSE(0);
STRATA DRUG;
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where LEUKEMIA is the dataset from Example 13.1. An R program would include 
these instructions:

weeks = c(sixMPweeks,placeboweeks)
relapse = c(sixMPevent,placeboevent)
survdiff(Surv(weeks,relapse) ~ drug)
drug.cox = coxph(Surv(weeks,relapse) ~ drug)
summary(drug.cox)
drug.cox.plot = survfit(Surv(weeks,relapse) ~ drug)
summary(drug.cox.plot)
plot(drug.cox.plot, lty=c(2,1), xlab="Time (weeks)", 
ylab="Estimated proportion still alive")

legend(20,1,lty=c(2,1), legend=c("Placebo group","Drug 
6-MP group"))

The tests above are applicable to the simultaneous comparison of several samples; 
when k groups are to be compared, the chi‐square tests, both the logrank and gener-
alized Wilcoxon, have (k − 1) degrees of freedom.

13.3  SIMPLE REGRESSION AND CORRELATION

In this section we discuss the basic ideas of simple regression analysis when only 
one predictor or independent variable is available for predicting the survival of 
interest. The following example is used for illustration in this and the following 
sections.

Placebo group

5 10

.20

Drug 6-MP group

.40

Ŝ(
t)

.60

.80

1.0

15

Time (weeks)

20 25

Figure 13.5  Two survival curves: drug 6‐MP group and placebo group.
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Example 13.3
A group of patients who died of acute myelogenous leukemia were classified into 
two subgroups according to the presence or absence of a morphologic characteristic 
of white cells (Table  13.3). Patients termed AG positive were identified by the 
presence of Auer rods and/or significant granulature of leukemic cells in the bone 
marrow at diagnosis. These factors were absent for AG‐negative patients.

Leukemia is a cancer characterized by an overproliferation of white blood cells; 
the higher the white blood count (WBC), the more severe the disease. Data in 
Table 13.3 clearly suggest that there is such a relationship, and thus when predicting 
a leukemia patient’s survival time, it is realistic to make a prediction dependent on 
the WBC (and any other covariates that are indicators of the progression of the 
disease).

13.3.1  Model and Approach

The association between two random variables X and T, the second of which, survival 
time T, may be only partially observable due to right censoring, has been the focus of 
many investigations. Cox’s regression model or proportional hazards model (PHM) 
expresses a relationship between X and the hazard function of T as follows:

	 0 .xt X x t e
	

Table 13.3

AG positive, n
1
 = 17 AG negative, n

0
 = 16

WBC
Survival time 

(weeks) WBC
Survival time 

(weeks)

2300 65 4400 56
750 156 3000 65

4300 100 4000 17
2600 134 1500 7
6000 16 9000 16

10 500 108 5300 22
10 000 121 10 000 3
17 000 4 19 000 4

5400 39 27 000 2
7000 143 28 000 3
9400 56 31 000 8

32 000 26 26 000 4
35 000 22 21 000 3

100 000 1 79 000 30
100 000 1 100 000 4
52 000 5 100 000 43

100 000 65
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In this model, λ
0
(t) is an unspecified baseline hazard baseline hazard (i.e, hazard at 

X = 0) and β is an unknown regression coefficient. The estimation of β and subsequent 
analyses are performed as follows. Denote the ordered distinct death times by

	 t t tm1 2  	

and let R
i
 be the risk set (the set of those subjects at risk) just before time t

i
, n

i
 the 

number of subjects in R
i
, D

i
 the death set (the set of those subjects who died) at time 

t
i
, d

i
 the number of subjects (i.e., deaths) in D

i
, and C

i
 the collection of all possible 

combinations of d
i
 subjects from R

i
. Each combination, or subset of R

i
, has d

i
 mem-

bers, and D
i
 is itself one of these combinations. For example, if three subjects (A, B, 

and C) are at risk just before time t
i
 and two of them (A and B) die at t

i
, then:

	

R n

D d

C D

i i

i i

i i

A,B,C

A,B

A,B A,C B,C

3

2

, , .	

The product of the probabilities,

	

1

1

Pr ,

exp

exp
i

m

i i i
i
m

i

i u
C

L d R d

s

s
	

will serve as a likelihood function, called the partial likelihood function, in which

	

s x

s x D C

i
D

j

u
D

j u i

i

u
	

where s
i
 is the sum of covariate values of those subjects in the set D

i
 and s

u
 is the sum 

of covariate values of those subjects in the collection of subsets in the set C
i
.

13.3.2  Measures of Association

We first consider the case of a binary covariate with the conventional coding:

	
Xi

0

1

if the patient is not exposed

if the patient is exposed. 	

Here, the term exposed may refer to a risk factor such as smoking, or a patient’s 
characteristic such as race (white/nonwhite) or gender (male/female). It can be seen 
that from the proportional hazards model,

	

t t

t t e

;

;

nonexposed

exposed
0

0 	

so that the ratio

	
e

t

t

;

;

exposed

nonexposed 	
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represents the hazard ratio (HR) of the exposure, exposed versus nonexposed. In other 
words, the regression coefficient β is the value of the hazard ratio on the log scale.

Similarly, we have for a continuous covariate X and any value x of X,

	

t X x t e

t X x t e

x

x

;

;
0

0
11 	

so that the ratio

	
e

t X x

t X x

;

;

1

	

represents the hazard ratio (HR) due to a 1‐unit higher value of X, X = x + 1 versus 
X = x, for example, a systolic blood pressure of 114 mmHg versus 113 mmHg. For an 
m‐unit higher value of X, say X = x + m versus X = x, the corresponding hazard ratio 
is emβ.

The regression coefficient β can be estimated iteratively using the first and second deriv-
atives of the partial likelihood function. From the results we can obtain a point estimate

	 HR e
ˆ
	

and its 95% confidence interval

	
exp 1.96 .ˆ ˆSE

	

It should be noted that the calculation of the hazard ratio, used as a measure of 
association between survival time and a covariate, depends on the coding scheme for 
a binary factor and for a continuous covariate X, the scale with which to measure X. 
For example, if we use the following coding for a factor:

	
Xi

1

1

if the patient is not exposed

if the patient is exposed 	

then

	

t t e

t t e

;

;

nonexposed

exposed
0

0 	

so that

	

HR
exposed

nonexposed

t

t

e

;

;
2 	

and its 95% confidence interval

	
exp 2 1.96 .ˆ ˆSE
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Of course, the estimate of β under the new coding scheme is only half of that under 
the former scheme; therefore, the estimate of HR remains unchanged.

The following example, however, will show the clear effect of measurement scale 
on the value of the hazard ratio in the case of a continuous measurement.

Example 13.4
Refer to the data for patients with acute myelogenous leukemia in Example 13.3 
(Table 13.3) and suppose that we want to investigate the relationship between survival 
time of AG‐positive patients and white blood count (WBC) in two different ways 
using either: (a) X = WBC or (b) X = log(WBC).

(a)  For X = WBC, we find that

	
ˆ .0 0000167	

from which the hazard ratio for (WBC = 100 000) versus (WBC = 50 000) would be

	

HR exp .

. .

100 000 50 000 0 0000167

2 31 	

(b)  For X = log(WBC), we find that

	
ˆ .0 612331	

from which the hazard ratio for (WBC = 100 000) versus (WBC = 50 000) would be

	

HR exp log log .

. .

100 000 50 000 0 612331

1 53 	

The results above are different for two different choices of X, and this causes an 
obvious problem of choosing an appropriate measurement scale. Of course, we 
assume a linear model, and one choice of X would fit better than the other (there are 
methods for checking this assumption).

Note: An SAS program would include these instructions:

DATA CANCER;
   INPUT GROUP $ WEEKS DEATH WBC;
   DATALINES;
AGpos 65 1 2300
AGpos 156 1 750
 ...
AGpos 65 1 100000
AGneg 56 1 4400
AGneg 65 1 3000
 ...
AGneg 43 1 100000
;



SIMPLE REGRESSION AND CORRELATION� 455

PROC PHREG DATA = CANCER;
MODEL WEEKS*DEATH(0) = WBC;

DATA CANCER;
 SET CANCER;
 LOGWBC=LOG(WBC);
PROC PHREG DATA = CANCER;
 MODEL WEEKS * DEATHS(0) = LOGWBC;

where CANCER is the name assigned to the data set, WEEKS is the variable name 
for duration time, DEATH is the variable name for survival status, "1" is the coding 
for death, and “0” is the coding for censoring.

An R program would include the following instructions:

AGposweeks = c(65,156,…,65)
AGposWBC = c(2300,750,…,100000)
AGnegweeks = c(56,65,…,43)
AGnegWBC = c(4400,3000,…,100000)
factorAG = as.factor(c(rep("AGpos",length(AGposweeks)),
                       rep("AGneg",length(AGnegweeks))))
AGgroup = relevel(factorAG,ref="AGneg")
AGweeks = c(AGposweeks,AGnegweeks)
AGdeath = rep(1,length(AGgroup))
wbc = c(AGposWBC,AGnegWBC)
wbc.cox = coxph(Surv(AGweeks,AGdeath) ~ wbc,
                subset=(AGgroup=="AGpos"))
summary(wbc.cox)
wbc.HR50000 = exp((100000-50000)* 
  wbc.cox$coefficients[1])
logwbc.cox = coxph(Surv(AGweeks,AGdeath) ~ log(wbc),
                   subset=(AGgroup=="AGpos"))
summary(logwbc.cox)
logwbc.HR50000 = exp((log(100000)-log(50000))* 
  logwbc.cox$coefficients[1])

13.3.3  Tests of Association

The null hypothesis to be considered is

	 H0 0: .	

The reason for interest in testing whether or not β = 0 is that β = 0 implies that there 
is no relation between survival time T and the covariate X under investigation. For the 
case of a categorical covariate, the test based on the score statistic of Cox’s regression 
model is identical to the log‐rank test of Section 13.2.2. For a continuous covariate, 
use the z test described in Section 13.4.2, below.
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13.4  MULTIPLE REGRESSION AND CORRELATION

The effect of some factor on survival time may be influenced by the presence of other 
factors through effect modifications (i.e., interactions). Therefore, to provide a more 
comprehensive prediction of the future of patients with respect to duration, course, and 
outcome of a disease, it is very desirable to consider a large number of factors and sort 
out which are most closely related to diagnosis. In this section we discuss a multivar-
iate method for risk determination. This method, multiple regression analysis, involves 
a linear combination of the explanatory or independent variables; the variables must be 
quantitative with particular numerical values for each patient. Information concerning 
possible factors is usually obtained as a subsidiary aspect from clinical trials that were 
designed to compare treatments. A covariate or prognostic patient characteristic may 
be dichotomous, polytomous, or continuous. Examples of dichotomous covariates are 
gender, and presence/absence of certain comorbidity. Polytomous covariates include 
race and different grades of symptoms; these can be covered by the use of dummy var-
iables. Continuous covariates include patient age and blood pressure. In many cases, 
data transformations (e.g., taking the logarithm) may be desirable.

13.4.1  Proportional Hazards Model with Several Covariates

Suppose that we want to consider J covariates simultaneously. The proportional haz-
ards model of Section 13.3 can easily be generalized and expressed as

	
1 1 2 2

1 2 0, , , J Jx x x
Jt x x x t eX 	

where λ
0
(t) is an unspecified baseline hazard (i.e., hazard at X = 0), X is the vector 

representing the J covariates, and βT = (β
1
, β

2
, …, β

J
) are J unknown regression coeffi-

cients. To have a meaningful baseline hazard, it may be necessary to center continuous 
covariates about their means:

	 new x x x 	

so that λ
0
(t) is the hazard function associated with a typical patient (i.e., a hypothetical 

patient who has all covariates equal to their average values).
The estimation of β and subsequent analyses are performed similar to the univariate 

case using the partial likelihood function:
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where
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Also similar to the univariate case, exp(β
j
) represents one of the following:

1.	 The hazard ratio associated with an exposure if X
j
 is binary (exposed X

j
 = 1 

versus unexposed X
j
 = 0); or

2.	 The hazard ratio due to a 1‐unit higher value if X
j
 is continuous (X

j
 = x + 1 

versus X
j
 = x).

After ˆ
j and its standard error have been obtained, a 95% confidence interval for the 

hazard ratio above is given by

	
exp 1.96 ˆE .ˆ Sj j 	

These results are necessary in an effort to identify important prognostic or risk factors. 
Of course, before such analyses are done, the problem and the data have to be examined 
carefully. If some of the variables are highly correlated, one or a few of the correlated 
factors are likely to be as good at prediction as all of them; information from similar 
studies also has to be incorporated to inform the decision on which of the correlated 
explanatory variables to drop. The use of products such as X

1
X

2
, and higher power terms 

such as X1
2, may be necessary and can improve the goodness of fit. It is important to note 

that we are assuming a linear regression model in which, for example, the hazard ratio 
due to a 1‐unit higher value of a continuous X

j
 (X

j
 = x + 1 versus X

j
 = x) is independent 

of x. Therefore, if this linearity seems to be violated, incorporation of powers of X
j
 should 

be considered seriously. The use of products will help in the investigation of possible 
effect modifications. Finally, there is the messy problem of missing data; most packaged 
programs will delete the patient if one or more covariate values are missing.

13.4.2  Testing Hypotheses in Multiple Regression

Once we have fit a multiple proportional hazards regression model and obtained esti-
mates for the various parameters of interest, we want to answer questions about the 
contributions of various factors to the prediction of the future of patients. There are 
three types of such questions:

1.	 Overall test. Taken collectively, does the entire set of explatory or independent 
variables contribute significantly to the prediction of survivorship?

2.	 Test for the value of a single factor. Does the addition of one particular factor 
of interest add significantly to the prediction of survivorship over and above 
that achieved by other factors?

3.	 Test for contribution of a group of variables. Does the addition of a group of 
factors add significantly to the prediction of survivorship over and above that 
achieved by other factors?
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Overall Regression Tests  We now consider the first question stated above 
concerning an overall test for a model containing j factors: say,

	
1 1 2 2

1 2 0, , , .J Jx x x
Jt x x x t eX 	

The null hypothesis for this test may be stated as: “All J independent variables con-
sidered together do not explain the variation in survival times.” In other words,

	 H J0 1 2 0: 	

Three likelihood‐based statistics can be used to test this global null hypothesis; 
each has an asymptotic chi‐square distribution with J degrees of freedom under H

0
: 

the likelihood ratio test, Wald’s test, and the score test. All three chisquare statistics 
are provided by most standard computer programs.

Tests for a Single Variable  Let us assume that we now wish to test whether the addition 
of one particular factor of interest adds significantly to the prediction of survivorship over 
and above that achieved by other factors already present in the model. The null hypothesis 
for this test may be stated as: “Factor X

j
 does not have any value added to the prediction of 

survivorship given that other factors are already included in the model.” In other words,

	 H j0 0: .	

To test such a null hypothesis, one can perform a likelihood ratio chi‐square test, with 
1 df, similar to that for the global hypothesis above:

	
2 2 ln ; all s ln ;all other s witˆ ˆ omitteh d .LR jL X L X X

	

A much easier alternative method is to use

	

z j
j

j

ˆ

ˆSE
	

where ˆ
j is the corresponding estimated regression coefficient and SE( )ˆ

j  is the 
estimate of the standard error of ˆ

j, both of which are printed by software. In performing 
this test, we refer the value of the z statistic to percentiles of the standard normal distri-
bution. This is equivalent to Wald’s chi‐square test as applied to one parameter.

Contribution of a Group of Variables  This testing procedure addresses the more 
general problem of assessing the additional contribution of two or more factors to the 
prediction of survivorship over and above that made by other variables already in the 
regression model. In other words, the null hypothesis is of the form

	 H m0 1 2 0: .	
To test such a null hypothesis, one can perform a likelihood ratio chi‐square test with 
m df:

	

2 2 ln ; all s

ln ; all other s with s under inv

ˆ

ˆ the oestigation mitted .

LR L X

X mL X
	



MULTIPLE REGRESSION AND CORRELATION� 459

As with the z test above, this multiple contribution procedure is very useful for 
assessing the importance of potential explanatory variables. In particular it is often 
used to test whether a similar group of variables, such as demographic characteris-
tics, is important for the prediction of survivorship; these variables have some trait in 
common. Another application would be a collection of powers and/or product terms 
(referred to as interaction variables). It is often of interest to assess the interaction 
effects collectively before trying to consider individual interaction terms in a model. 
In fact, such use reduces the total number of tests to be performed, and this, in turn, 
helps to provide better control of overall type I error rates, which may be inflated due 
to multiple testing.

Stepwise Procedure  In applications, our major interest is to identify important 
prognostic factors. In other words, we wish to identify from many available factors a 
small subset of factors that relate significantly to the length of survival time of 
patients. In that identification process, of course, we wish to avoid a type I (false 
positive) error. In a regression analysis, a type I error corresponds to including a pre-
dictor that has no real relationship to survivorship; such an inclusion can greatly 
confuse interpretation of the regression results. In a standard multiple regression 
analysis, this goal can be achieved by using a strategy that adds into or removes from 
a regression model one factor at a time according to a certain order of relative impor-
tance. The details of this stepwise process for survival data are similar to those for 
logistic regression given in Chapter 10.

Stratification  The proportional hazards model requires that for a covariate X – say, 
an exposure – the hazard functions at different levels, λ(t; exposed) and λ(t; nonex-
posed) are proportional. Of course, sometimes there are factors the different levels of 
which produce hazard functions that deviate markedly from proportionality. These 
factors may not be under investigation themselves, especially those of no intrinsic 
interest, those with a large number of levels, and/or those where interventions are not 
possible. But these factors may act as important confounders which must be included 
in any meaningful analysis so as to improve predictions concerning other covariates. 
Common examples include gender, age, and neighborhood. To accommodate such 
confounders, an extension of the proportional hazards model is desirable. Suppose 
there is a factor that occurs on q levels for which the proportional hazards model may 
be violated. If this factor is under investigation as a covariate, the model and 
subsequent analyses are not applicable. However, if this factor is not under investiga-
tion and is considered only as a confounder so as to improve analyses and/or predic-
tions concerning other covariates, we can treat it as a stratification factor. By doing 
that we will get no results concerning this factor (which are not wanted), but in return 
we do not have to assume that the hazard functions corresponding to different levels 
are proportional (which may be severely violated). Suppose that the stratification 
factor Z has q levels; this factor is not clinically important itself, but adjustments are 
still needed in efforts to investigate other covariates. We define the hazard function 
for a person in the qth stratum (or level) of this factor as

	
1 1 2 2

1 2 0, , , J Jx x x
J qt x x x t eX 	
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for q = 1,2,…,q, where λ
0q

(t) is an unspecified baseline hazard for the qth stratum 
and X represents the other J covariates under investigation (excluding the strati-
fication itself). The baseline hazard functions are allowed to be arbitrary and are 
completely unrelated (and, of course, not proportional to each other). The basic 
additional assumption here, which is the same as that in analysis of covariance, 
requires that the βs are the same across strata (called the parallel lines assump-
tion, which is testable).

In the analysis we identify distinct times of events for the qth stratum and form the 
partial likelihood L

q
(β) as in earlier sections. The overall partial likelihood of β is 

then the product of those q stratum‐specific likelihoods:

	
L L

q

Q

q
1

.
	

Subsequent analyses, finding maximum likelihood estimates as well as using score 
statistics, are straightforward. For example, if the null hypothesis β = 0 for a given 
covariate is of interest, the score approach would produce a stratified log‐rank test. 
An important application of stratification, the analysis of epidemiologic matched 
studies resulting in the conditional logistic regression model, is presented in 
Section 13.5.

Example 13.5
Refer to the myelogenous leukemia data of Example 13.3 (Table 13.3). Patients were 
classified into the two groups according to the presence or absence of a morphologic 
characteristic of white cells, and the primary covariate is the white blood count 
(WBC). Using

	

X

X
1

2 0 1

ln WBC

AG group if negative and if positive 	

we fit the following model with one interaction term:

	 t x x t e x x x x| .X 1 2 0
1 1 2 2 3 1 2, 	

From the results shown in Table 13.4, it can be seen that the interaction effect is 
almost significant at the 5% level (p = 0.0732); that is, the presence of the morpho-
logic characteristic modifies moderately the effect of WBC.

Table 13.4

Factor Coefficient Standard error z Statistic p Value

WBC 0.14654 0.17869 0.821 0.4122
AG group −5.85637 2.75029 −2.129 0.0332
Product 0.49527 0.27648 1.791 0.0732
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13.4.3  Time‐Dependent Covariates and Applications

In prospective studies, since subjects are followed over time, values of many 
independent variables or covariates may be changing; covariates such as patient 
age, blood pressure, and treatment. In general, covariates are divided into two 
categories: fixed and time dependent. A covariate is time dependent if the 
difference between covariate values from two different subjects may be changing 
with time. For example, gender and age are fixed covariates; a patient’s age is 
increasing by one a year, but the difference in age between two patients remains 
unchanged. On the other hand, blood pressure is an obvious time‐dependent 
covariate.

Examples 
The following are three important groups of time‐dependent covariates.

1.	 Personal characteristics whose measurements are made periodically during 
the course of a study. Blood pressure fluctuates; so do cholesterol level and 
weight. Smoking and alcohol consumption habits may change.

2.	 Cumulative exposure. In many studies, exposures such as smoking are often 
dichotomized; subjects are classified as exposed or unexposed. But this may be 
oversimplified, leading to loss of information; the length of exposure may be 
important. As time goes on, a nonsmoker remains a nonsmoker, but “years of 
smoking” for a smoker increases.

3.	 Switching treatments. In a clinical trial, a patient may be transferred from one 
treatment to another due to side effects or even by a patient’s request. Organ 
transplants form another category with switching treatments; when a suitable 
donor is found, a subject is switched from the nontransplanted group to the 
transplanted group. The case of intensive care units is even more complicated, 
as a patient may be moved in and out more than once.

Implementation  Recall that in analysis using proportional hazards model, we order 
the death times and form the partial likelihood function:

	

L d R d

s

s

i i i
i

m

j jij

j jujC
i

m

i

Pr( | , )

exp

exp

1

1

1
1

J
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l D

jl u i

i
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and R
i
 is the risk set just before time t

i
, n

i
 the number of subjects in R

i
, D

i
 the death 

set at time t
i
, d

i
 the number of subjects (i.e., deaths) in D

i
, and C

i
 the collection of all 

possible combinations of subjects from R
i
. In this approach we try to explain why 

event(s) occurred to subject(s) in D
i
 whereas all subjects in R

i
 are equally at risk. This 

explanation, through the use of s
ji
 and s

ju
, is based on the covariate values measured 

at time t
i
. Therefore, this needs some modification in the presence of time‐dependent 

covariates because events at time t
i
 should be explained by values of covariates mea-

sured at that particular moment. Blood pressure measured years before, for example, 
may become irrelevant.

First, notations are expanded to handle time‐dependent covariates. Let x
jil
 be the 

value of factor x
j
 measured from subject l at time t

i
; then the partial likelihood function 

above becomes

	

L d R d

s

s

i i i
i

m

j jiij

j jiujC
i

i

Pr( | , )

exp

exp

1

1

1
1

J
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where

	

s x

s x D C
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l D

jil

jiu
l D

jil u i

i

u

.
	

From this new likelihood function, applications of subsequent steps (estimation 
of βs, formation of test statistics, and estimation of the baseline survival function) are 
straightforward. In practical implementation, most standard computer programs 
have somewhat different procedures for two categories of time‐dependent covari-
ates: those that can be defined by a mathematical equation (external) and those mea-
sured directly from patients (internal); the former categories are implemented much 
more easily.

Simple Test of Goodness of Fit  Treatment of time‐dependent covariates leads to a 
simple test of goodness of fit. Consider the case of a fixed covariate, denoted by X

1
. 

Instead of the basic proportional hazards model,

	
1

1 1

1 1 0

0

Pr ,
lim

x

t T t t T X x
t X x

t e 	

we can define an additional time‐dependent covariate X
2
,

	 X x t2 1 .	
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Consider the expanded model,

	

t X x t e

t e

x x

x x t

; 1 1 0

0

1 1 2 2

1 1 2 1

	

and examine the significance of

	 H0 2 0: .	

The reason for interest in testing whether or not β
2
 = 0 is that β

2
 = 0 implies a goodness 

of fit of the proportional hazards model for the factor under investigation, X
1
. Of 

course, in defining the new covariate X
2
, t could be replaced by any function of t; a 

commonly used function is

	 X X t2 1 log .	

This simple approach results in a test of a specific alternative to the proportionality. 
The computational implementation here is very similar to the case of cumulative 
exposures; however, X

1
 may be binary or continuous. We may even investigate the 

goodness of fit for several variables simultaneously.

Example 13.6
Refer to the data set in Example 13.1 (Table 13.1), where the remission times of 
42 patients with acute leukemia were reported from a clinical trial undertaken to 
assess the ability of the drug 6‐MP to maintain remission. Each patient was 
randomized to receive either 6‐MP or placebo. The study was terminated after one 
year; patients have different follow‐up times because they were enrolled sequentially 
at different times. Times in weeks were:

•• 6‐MP group: 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 
32+, 32+, 34+, 35+

•• Placebo group: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

in which t+ denotes a censored observation (i.e., the case was censored after t weeks without 
a relapse). For example, “10+” is a case enrolled 10 weeks before study termination and 
who was still remission‐free at termination. “8” is a case who relapsed 8 weeks after start.

Since the proportional hazards model is often assumed in the comparison of two 
survival distributions, such as in this example (see also Example 13.2), it is desirable 
to check it for validity (if the proportionality is rejected, it would lend support to the 
conclusion that this drug does have some cumulative effects). Let X

1
 be the indicator 

variable defined by

	
X1

0

1 6

if placebo

if treated by -MP	

and

	 X X t2 1 	
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representing treatment weeks (time t is recorded in weeks). To judge the validity of 
the proportional hazards model with respect to X

1
, it is the effect of this newly defined 

covariate, X
2
, that we want to investigate. We fit the following model;

	
1 1 2 2

1 2 0, x xt x x t eX 	

and from the results shown in Table 13.5, it can be seen that the accumulation effect 
or lack of fit, represented by X

2
, is insignificant; in other words, there is not enough 

evidence to be concerned about the validity of the proportional hazards model.
Note: An SAS program would include these instructions:

DATA LEUKEMIA;
   SET LEUKEMIA;
   SIXMP = (DRUG="6-MP");
PROC PHREG DATA = LEUKEMIA;
   MODEL WEEKS*RELAPSE(0) = SIXMP SIXMPTIME;
   SIXMPTIME = SIXMP*WEEKS;

where LEUKEMIA is the dataset from Example 13.1, SIXMP is a numeric version 
of the DRUG variable (taking values placebo=0 and 6‐MP=1), and SIXMPTIME is 
the newly created time‐varying interaction variable (i.e., X

2
). Creating this variable in 

a DATA step would be incorrect; it must be created within PROC PHREG. This is not 
easy to implement in R. The R program of Example 13.2 would instead be modified 
to also include the following instruction:

cox.zph(drug.cox, transform="km")

which implements a test of proportionality using residuals. The conclusions here are sim-
ilar. Using transform="identity" will give results even closer to the SAS results. It is also 
possible to use transform="log" (and in SAS to instead take drug group times log(weeks)).

13.5  PAIR‐MATCHED CASE–CONTROL STUDIES

Case–control studies have been perhaps the most popular form of research design in 
epidemiology. They generally can be carried out in a much shorter period of time than 
cohort studies and are cost‐effective. As a technique for controlling the effects of con-
founders, randomization and stratification are possible solutions at the design stage, 
and statistical adjustments can be made at the analysis stage. Statistical adjustments are 
done using regression methods, such as the logistic regression described in Chapter 10. 

Table 13.5

Factor Coefficient Standard error z Statistic p Value

X
1

−1.55395 0.81078 −1.917 0.0553
X

2
−0.00747 0.06933 −0.108 0.9142
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Stratification is more often introduced at the analysis stage, and methods such as the 
Mantel–Haenszel method (Chapters 1 and 6) are available to complete the task.

Stratification can also be introduced at the design stage; its advantage is that one 
can avoid inefficiencies resulting from having some strata with a gross imbalance of 
cases and controls. A popular form of stratified design occurs when each case is 
matched individually with one or more controls chosen to have similar characteristics 
(i.e., values of confounding or matching variables); then each case and the corresponding 
controls make up one stratum. Matched designs have several advantages. They make 
it possible to control for confounding variables that are difficult to measure directly 
and therefore difficult for which to adjust at the analysis stage. For example, subjects 
can be matched using area of residence so as to control for environmental exposure. 
Matching also provides more adequate control of confounding than can adjustment in 
analysis using regression because matching does not need specific assumptions as to 
functional form, which may be needed in regression models. Of course, matching also 
has disadvantages. Matches for subjects with unusual characteristics are hard to find. 
In addition, when cases and controls are matched on a certain specific characteristic, 
the influence of that characteristic on a disease can no longer be studied. Finally, a 
sample of matched cases and controls is not usually representative of any specific 
population, which may reduce our ability to generalize analysis results.

One to one matching is a cost‐effective design and is perhaps the most popular 
form used in practice. It is conceptually easy and usually leads to a simple analysis.

13.5.1  Model

Consider a case–control design and suppose that each person in a large population 
has been classified as exposed or not exposed to a certain factor, and as having or not 
having some disease. The population may then be enumerated in a 2 × 2 table 
(Table 13.6), with entries being the proportions of the total population.

Using these proportions, the association (if any) between the factor and the dis-
ease could be measured by the ratio of risks (or relative risk) of being disease positive 
for those with or without the factor:

	

relative risk
/

/

P P P

P P P

P P P

P P P

1 1 3

2 2 4

1 2 4

2 1 3

.
	

Table 13.6

Factor

Disease

Total+ −

+ P
1

P
3

P
1
 + P

3

− P
2

P
4

P
2
 + P

4

Total P
1
 + P

2
P

3
 + P

4
1
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In many (although not all) situations, the proportions of subjects classified as disease 
positive will be small. That is, P

1
 is small in comparison with P

3
, and P

2
 is small in 

comparison with P
4
. In such a case, the relative risk is almost equal to

	

OR
P P

P P
P P

P P

1 4

2 3

1 3

2 4

/

/ 	

the odds ratio of being disease positive, or

	

P P

P P
1 2

3 4

/

/ 	

the odds ratio of being exposed. This justifies use of the odds ratio to measure differ-
ences, if any, in exposure to a suspected risk factor.

As a technique to control confounding factors in a designed study, individual 
cases are matched, often one to one, to a set of controls chosen to have similar values 
for the important confounding variables. The simplest example of pair‐matched data 
occurs with one-to-one matching on a single binary exposure (e.g., smoking versus 
nonsmoking). The data for outcomes can be represented by a 2 × 2 table (Table 13.7) 
where (+, −) denotes (exposed, unexposed). For example, n

10
 denotes the number of 

pairs where the case is exposed but the matched control is unexposed. The most suit-
able statistical model for making inferences about the odds ratio θ is to use the 
conditional probability of the number of exposed cases among the discordant pairs. 
Given (n

10
 + n

01
) as fixed, n

10
 has the binomial distribution B(n

10
 + n

01
, π), that is, the 

binomial distribution with n
10

 + n
01

 trials (pairs), each with probability of success

	

OR

OR1
.
	

13.5.2  Analysis

Using the binomial model above with the likelihood function

	

OR

OR OR1

1

1

10 01n n

	

Table 13.7

Control

Case

Total+ −

+ n
11

n
01

n
11

 + n
01

− n
10

n
00

n
10

 + n
00

Total n
11

 + n
10

n
01

 + n
00

n
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from which one can estimate the odds ratio; the results are

	

OR

Var OR

�

� �

n

n
n n n

n

10

01

10 10 01

01
3

.
	

For example, with large samples, a 95% confidence interval for the odds ratio is 
given by

	
OR Var OR� � �1 96

1 2

. .
/

	

The null hypothesis of no risk effect (i.e., H
0
: OR = 1) can be tested where the z 

statistic

	
z

n n

n n
10 01

10 01 	

is compared to percentiles of the standard normal distribution. The corresponding 
two‐tailed procedure based on

	
X

n n

n n
2 10 01

2

10 01 	

is often called McNemar’s chi‐square test (1 df; introduced in Section 6.2). It is inter-
esting to note that if we treat a matched pair as a group or a level of a confounder, and 
present each pair’s data in the form of a 2 × 2 table (Table 13.8), the Mantel–Haenszel 
method of Section 1.3.4 would yield the same estimate for the odds ratio:

	

OR ORMH
� �

n

n
10

01

.
	

As for the task of forming a 95% confidence interval, an alternative to the preceding 
formula is first to estimate the odds ratio on a log scale with estimated variance

	
Var OR� �log

1 1

10 01n n 	

Table 13.8

Exposure

Disease classification

TotalCases Controls

Yes a
i

b
i

a
i
 + b

i

No c
i

d
i

c
i
 + d

i

Total 1 1 2
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leading to a 95% confidence interval of

	

n

n n n
10

01 10 01

1 96
1 1

exp . .
	

Example 13.7
In a study of endometrial cancer in which the investigators identified 63 cases occur-
ring in a retirement community near Los Angeles, California, from 1971 to 1975, 
each disease person was matched with R = 4 controls who were alive and living in the 
community at the time the case was diagnosed, who were born within one year of the 
case, who had the same marital status, and who had entered the community at approx-
imately the same time. The risk factor was previous use of estrogen (yes/no) and the 
data in Table 13.9 were obtained from the first‐found matched control (the complete 
data set with four matched controls will be given later). An application of the methods 
above yields

	

OR
29

3
9 67. 	

and a 95% confidence interval for OR is (2.95; 31.74).

13.6  MULTIPLE MATCHING

One to one matching is a cost‐effective design. However, an increase in the number 
of controls may give a study more power. In epidemiologic studies, there are typically 
a small number of cases and a large number of potential controls to select from. When 
the controls are more easily available than cases, it can be more efficient and effective 
to select more controls for each case than to find more cases. The efficiency of an M:1 
control–case ratio for estimating a risk relative to having complete information on the 
control population (i.e., M = ∞) is M/(M + 1). Hence, a 1:1 matching is 50% efficient, 
4:1 matching is 80% efficient, 5:1 matching is 83% efficient, and so on. The gain in 
efficiency diminishes rapidly for designs with M ≥ 5.

Table 13.9

Control

Case

Total+ −

+ 27 3 30
− 29 4 33

Total 66 7 73
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13.6.1  Conditional Approach

The analysis of a 1:1 matching design was conditional on the number of pairs show-
ing differences in exposure history: (−, +) and (+, −) pairs. Similarly, considering an 
M:1 matching design, we use a conditional approach, fixing the number m of exposed 
persons in a matched set, and the sets with m = 0 or m = M + 1 [similar to (−, −) and 
(+, +) cells in the 1:1 matching design] will be ignored.

If we fix the number m of exposed persons in a matched set, 1 ≤  m ≤ M, then

	
Pr case exposed exposed

OR

OR
m

m

m M m 1	

where OR is the odds ratio representing the effect of exposure. The result for the 
pair‐matched design in Section 13.5 is a special case where M = m = 1.

For each stratum, containing those matched sets with exactly m (m = 1, 2, …, M) 
exposed persons, let

	

n
n

m

m

1

0

,

,

number of sets with an exposed case
number of sets with an unnexposed case

n n nm m m1 0, , . 	

Then given n
m
 is fixed, n

1, m
 follows B(n

m
, p

m
), where

	
p

m

m M mm

OR

OR 1
.
	

In the special case of 1:1 matching, M = 1, the result is reduced to the probability π 
of Section 13.5.1.

13.6.2  Estimation of the Odds Ratio

From the joint (conditional) likelihood function

	
L OR

m

m M m

M m

m M mm

M
n m

1 1

1

1

1

OR

OR OR

, n m0,

	

one can obtain the estimate OR, but such a solution requires an iterative procedure 
and a computer algorithm. We will return to this topic in the next section.

Another simple method for estimating the odds ratio would be to treat a matched 
set, consisting of one case and M matched controls, as a stratum. We then present the 
data from this stratum in the form of a 2 × 2 table (Table  13.10) and obtain the 
Mantel–Haenszel estimate for the odds ratio by summing across matched sets:

	
ORMH


ad M

bc M

1

1
.
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The result turns out to be, quite simply,

	
ORMH


M m n

mn
m

m

1 1

0

,

,

.
	

The Mantel–Haenszel estimate has been used widely in the analysis of case–control 
studies with multiple matching.

13.6.3  Testing for Exposure Effect

From the same likelihood function as seen above, a test for

	 H0 1: OR 	

was derived and is given by:

	
ES

m mm

M

mm

M

n mn M

M mn M m
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2

2

1

1

1 1 1

, ( )

( ) ( ) 	

a chi‐square test with 1 df where “ES” stands for Efficient Score.

Example 13.8
In a study on endometrial cancer, the investigators identified 63 cases of endometrial 
cancer occurring in a retirement community near Los Angeles, California, from 1971 
to 1975. Each diseased person was matched with R = 4 controls who were alive and 
living in the community at the time the case was diagnosed, who were born within 
one year of the case, who had the same marital status, and who had entered the 
community at approximately the same time. The risk factor was previous use of 
estrogen (yes/no), and the data in Example 13.7 involve only the first‐found matched 
control. We are now able to analyze the complete data set by 4:1 matching 
(Table 13.11). Using these 52 sets with four matched controls, we have:

	

ES
2

25 4 1 10 5 17 2 20 5 11 3 12 5 9 4 10 5

1 10 4 2 20 3 3 12 2 4 10 1
22 95

2

. . 	

Table 13.10

Exposure

Disease classification

TotalCases Controls

Yes a b a + b
No c d c + d

Total 1 M M + 1
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The Mantel–Haenszel estimate for the odds ratio is:

	

ORMH


4 4 3 17 2 11 1 9

1 6 2 3 3 1 4 1
5 16. . 	

When the number of controls matched to a case, M, is variable (due primarily to 
missing data), the test for exposure effects should incorporate data from all strata:
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The corresponding Mantel–Haenszel estimate for the odds ratio is:
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Example 13.9
Refer to the data on endometrial cancer in Table 13.11; due to missing data, we have 
some cases matching to four controls and some matching to three controls. In addition 
to 4:1 matching, we have 3:1 matching (Table 13.12). With the inclusion of the four 
sets having three matched controls, the result becomes:
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5
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1

1 1
4

3
2 3

4

1
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Mantel–Haenszel’s estimate for the odds ratio is:

	

ORMH


4 4 3 17 2 11 1 9 3 1 2 3 1 0

1 6 2 3 3 1 4 1 1 0 2 0 3 0

5 63. . 	

Table 13.11

Case

Number of exposed persons  
in each matched set

1 2 3 4

Exposed 4 17 11 9
Unexposed 6 3 1 1

Total 10 20 12 10
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13.7  CONDITIONAL LOGISTIC REGRESSION

Recall from Chapter 10 that in a variety of applications using regression analysis, the 
dependent variable of interest has only two possible outcomes and therefore can be 
represented by an indicator variable taking on values 0 and 1. An important applica-
tion is the analysis of case–control studies where the dependent variable represents 
the disease status, 1 for a case and 0 for a control. The methods that have been used 
widely and successfully for these applications are based on the logistic model. In this 
section we also deal with cases where the dependent variable of interest is binary, 
following a binomial distribution – the same as those using logistic regression 
analyses-but the data are matched. Again, the term matching refers to the pairing of 
one or more controls to each case on the basis of their similarity with respect to 
selected variables used as matching criteria, as seen earlier. Although the primary 
objective of matching is the elimination of biased comparison between cases and 
controls, this objective can be accomplished only if matching is followed by an anal-
ysis that corresponds to the design. Unless the analysis accounts properly for the 
matching used in the selection phase of a case–control study, the results can be 
biased. In other words, matching (which refers to the selection process) is only the 
first step of a two‐step process that can be used effectively to control for confounders: 
(i) matching design, followed by (ii) matched analysis. Suppose that the purpose of 
the research is to assess relationships between the disease and a set of covariates 
using a matched case–control design. The regression techniques for the statistical 
analysis of such relationships is based on the conditional logistic model.

The following are two typical examples; the first one is a case–control study of 
vaginal carcinoma which involves two binary risk factors, and in the second example, 
one of the four covariates is on a continuous scale.

Example 13.10
The cases were eight women 15–22 years of age who were diagnosed with vaginal 
carcinoma between 1966 and 1969. For each case, four controls were found in the 
birth records of patients having their babies delivered within five days of the case in 
the same hospital. The risk factors of interest are the mother’s bleeding in this preg-
nancy (N = no; Y = yes) and any previous pregnancy loss by the mother (N = no; Y = 
yes). Response data (bleeding, previous loss) are given in Table 13.13.

Table 13.12

Case

Number of exposed persons 
in each matched set

1 2 3

Exposed 1 3 0
Unexposed 0 0 0
Total 1 3 0
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Example 13.11
For each of 15 low birth weight babies (the cases), we have three matched controls 
(the number of controls per case need not be the same). Four risk factors are under 
investigation: weight (in pounds) of the mother at the last menstrual period, hyper-
tension, smoking, and uterine irritability (Table 13.14); for the last three factors, a 
value of 1 indicates a yes and a value of 0 indicates a no. The mother’s age was used 
as the matching variable.

13.7.1  Simple Regression Analysis

In this section we discuss the basic ideas of simple regression analysis when only one 
predictor or independent variable is available for predicting the binary response of 
interest. We illustrate these for the more simple designs, in which each matched set 
has one case and case i is matched to m

i
 controls; the number of controls m

i
 may vary 

from case to case.

Likelihood Function  In our framework, let x
i
 be the covariate value for case i and 

x
ij
 be the covariate value for the jth control matched to case i. Then for the ith matched 

set, it was proven that the conditional probability of the outcome observed (that the 
subject with covariate value x

i
 be the case) given that we have one case per matched 

set is:

	

exp

exp exp
.

x

x x

i

i ijj

mi

	

If the sample consists of N matched sets, the conditional likelihood function is the 
product of the terms above over the N matched sets:
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Table 13.13

Set Case

Control subject number

1 2 3 4

1 (N, Y) (N, Y) (N, N) (N, N) (N, N)
2 (N, Y) (N, Y) (N, N) (N, N) (N, N)
3 (Y, N) (N, Y) (N, N) (N, N) (N, N)
4 (Y, Y) (N, N) (N, N) (N, N) (N, N)
5 (N, N) (Y, Y) (N, N) (N, N) (N, N)
6 (Y, Y) (N, N) (N, N) (N, N) (N, N)
7 (N, Y) (N, Y) (N, N) (N, N) (N, N)
8 (N, Y) (N, N) (N, N) (N, N) (N, N)
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Table 13.14

Matched set Case Mother’s weight Hypertension Smoking Uterine irritability

1 1 130 0 0 0
0 112 0 0 0
0 135 1 0 0
0 270 0 0 0

2 1 110 0 0 0
0 103 0 0 0
0 113 0 0 0
0 142 0 1 0

3 1 110 1 0 0
0 100 1 0 0
0 120 1 0 0
0 229 0 0 0

4 1 102 0 0 0
0 182 0 0 1
0 150 0 0 0
0 189 0 0 0

5 1 125 0 0 1
0 120 0 0 1
0 169 0 0 1
0 158 0 0 0

6 1 200 0 0 1
0 108 1 0 1
0 185 1 0 0
0 110 1 0 1

7 1 130 1 0 0
0 95 0 1 0
0 120 0 1 0
0 169 0 0 0

8 1 97 0 0 1
0 128 0 0 0
0 115 1 0 0
0 190 0 0 0

9 1 132 0 1 0
0 90 1 0 0
0 110 0 0 0
0 133 0 0 0

10 1 105 0 1 0
0 118 1 0 0
0 155 0 0 0
0 241 0 1 0

11 1 96 0 0 0
0 168 1 0 0
0 160 0 0 0
0 133 1 0 0
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from which we can obtain an estimate of the parameter β. The likelihood function 
above has the same mathematical form as the overall partial likelihood for the pro-
portional hazards survival model with strata, one for each matched set, and one event 
time for each (see Sections 13.3 and 13.4). This enables us to adapt programs written 
for a proportional hazards model to analyze epidemiologic matched studies as seen 
in subsequent examples. The essential features of the adaptation are as follows:

1.	 Creating matched set numbers and using them as different levels of a stratifi-
cation factor.

2.	 Assigning to each subject a number to be used in place of duration times. 
These numbers are chosen arbitrarily as long as the number assigned to a case 
is smaller than the number assigned to a control in the same matched set. This 
is possible because when there is only one event in each set, the numerical 
value for the time to event becomes irrelevant.

Measure of Association  Similar to the case of the logistic model of Chapter 10, 
exp(β) represents one of the following:

1.	 The odds ratio associated with an exposure if X is binary (exposed X = 1 versus 
unexposed X = 0); or

2.	 The odds ratio due to a 1‐unit higher value if X is continuous (X = x + 1 versus X = x).

After ˆ  and its standard error have been obtained, a 95% confidence interval for the 
odds ratio above is given by:

	
exp 1.96 .ˆ ˆSE

	

Table 13.14  (Continued)

Matched set Case Mother’s weight Hypertension Smoking Uterine irritability

12 1 120 1 0 1
0 120 1 0 0
0 167 0 0 0
0 250 1 0 0

13 1 130 0 0 1
0 150 0 0 0
0 135 0 0 0
0 154 0 0 0

14 1 142 1 0 0
0 153 0 0 0
0 110 0 0 0
0 112 0 0 0

15 1 102 1 0 0
0 215 1 0 0
0 120 0 0 0
0 150 1 0 0

Note: An electronic copy of this data file is available at www.wiley.com/go/Le/Biostatistics.
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Special Case  Consider now the simplest case of a pair matched (i.e., 1:1 matching) 
with a binary covariate: exposed X = 1 versus unexposed X = 0. Let the data be sum-
marized and presented as in Section 13.5.2 (Table 13.15). For example, n

10
 denotes 

the number of pairs where the case is exposed but the matched control is unexposed. 
The likelihood function above is reduced to:
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From this we can obtain a point estimate:

	
exp( ˆ)

n

n
10

01 	

which is the usual odds ratio estimate from pair‐matched data.

Tests of Association  Another aspect of statistical inference concerns the test of sig-
nificance; the null hypothesis to be considered is:

	 H0 0: .	

The reason for interest in testing whether or not β = 0 is that β = 0 implies that there 
is no relation between the binary dependent variable and the covariate X under inves-
tigation. We can simply apply a McNemar chi‐square test (if the covariate is binary 
or categorical) or a paired t test or signed‐rank Wilcoxon test (if the covariate under 
investigation is on a continuous scale). Of course, application of the conditional 
logistic model is still desirable, at least in the case of a continuous covariate, because 
it would provide a measure of association: the odds ratio.

Example 13.12
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14) and 
suppose that we want to investigate the relationship between the low birth weight 
problem, our outcome for the study, and the weight of the mother taken during the 

Table 13.15

Control

Case

1 0

1 n
11

n
01

0 n
10

n
00
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last menstrual period. An application of the simple conditional logistic regression 
analysis yields the results shown in Table 13.16. The result indicates that the effect of 
the mother’s weight is nearly significant at the 5% level (p = 0.0593). The odds ratio 
associated with, say, a 10‐lb higher weight is:

	 exp . . .0 2114 0 809 	

For a mother who is 10 lb heavier, the odds of having a low birth weight baby are 
smaller by almost 20%.

Note: An SAS program would include these instructions:

DATA LOWWEIGHT;
   INFILE 'table13.14.dat' FIRSTOBS=2;
   INPUT SET CASE MWEIGHT HYPERT SMOKING UIRRIT;
   DUMMYTIME = 2-CASE;
PROC PHREG DATA = LOWWEIGHT;
MODEL DUMMYTIME*CASE(0) = MWEIGHT/TIES = DISCRETE;
STRATA SET;

where DUMMYTIME is the made‐up time variable, CASE is the case—control 
status indicator (coded as 1 for a case and 0 for a control), MWEIGHT is the weight 
of the mother during the last menstrual period, HYPERT is her hypertensive status, 
SMOKING is her smoking status, and UIRRIT indicates whether she has uterine 
irritability. The matched SET number (1 to 15 in this example) is used as the stratifi-
cation factor. An R program would include the following instructions:

lowweight = read.table(file="13.14.txt", 
header=T,sep="&")

npeople = length(lowweight$Case)
Dummytime = rep(1,npeople)
wgt.cox = coxph(Surv(Dummytime,Case) ~ MotherWeight +
                strata(MatchedSet))
summary(wgt.cox)
wgt.clogit = clogit(Case ~ MotherWeight + 
strata(MatchedSet))
summary(wgt.clogit)

The two analysis approaches (using the coxph function and using the clogit function) 
give the same results.

Table 13.16

Variable Coefficient Standard error z Statistic p Value

Mother’s weight −0.0211 0.0112 −1.884 0.0593
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13.7.2  Multiple Regression Analysis

The effect of some factor on a dependent or response variable may be influenced by 
the presence of other factors through effect modifications (i.e., interactions). 
Therefore, to provide a more comprehensive analysis, it is very desirable to con-
sider a large number of factors and sort out which are most closely related to the 
dependent variable. In this section we discuss a multivariate method for such a risk 
determination. This method, multiple conditional logistic regression analysis, 
involves a linear combination of the explanatory or independent variables; the vari-
ables must be quantitative with particular numerical values for each patient. 
A  covariate or independent variable such as a patient characteristic may be 
dichotomous, polytomous, or continuous (categorical factors will be represented by 
dummy variables).

Examples of dichotomous covariates are gender and presence/absence of certain 
comorbidity. Polytomous covariates include race and different grades of symptoms; 
these can be covered by the use of dummy variables. Continuous covariates include 
patient age and blood pressure. In many cases, data transformations (e.g., taking the 
logarithm) may be desirable to satisfy the linearity assumption. We illustrate this 
process for a very general design in which matched set i (i = 1,...,N) has n

i
 cases 

matched to m
i
 controls; the numbers of cases n

i
 and controls m

i
 may vary from matched 

set to matched set.

Likelihood Function  For the general case of n
i
 cases matched to m

i
 controls in a 

set, we have the conditional probability of the observed outcome (that a specific set 
of n

i
 subjects are cases) given that the number of cases is n

i
 (any n

i
 subjects could be 

cases):
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where the sum in the denominator ranges over the collections R(n
i
, m

i
) of all partitions 

of the n
i
 + m

i
 subjects into two: one of size n

i
 and one of size m

i
. The full conditional 

likelihood is the product over all matched sets, one probability for each set:
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which can be implemented using the same SAS and R programs.
Similar to the univariate case, exp(β

j
) represents one of the following:

1.	 The odds ratio associated with an exposure if X
j
 is binary (exposed X

j
 = 1 

versus unexposed X
j
 = 0); or

2.	 The odds ratio due to a 1‐unit higher value if X
j
 is continuous (X

j
 = x + 1 versus 

X
j
 = x).
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After ˆ
j
 and its standard error have been obtained, a 95% confidence interval for 

the odds ratio above is given by:

	
exp 1.96 ˆSE .ˆ

j j 	

These results are necessary in the effort to identify important risk factors in matched 
designs. Of course, before such analyses are done, the problem and the data have to 
be examined carefully. If some of the variables are highly correlated, one or a few of 
the correlated factors are likely to be as good at prediction as all of them; information 
from similar studies also has to be incorporated to inform the decision of whether to 
drop some of these correlated explanatory variables. The use of products such as 
X

1
X

2
 and higher power terms such as X1

2 may be necessary and can improve the 
goodness of fit (unfortunately, it is very difficult to tell). It is important to note that 
we are assuming a linear regression model in which, for example, the odds ratio due 
to a 1‐unit higher value of a continuous X

j
 (X

j
 = x + 1 versus X

j
 = x) is independent of 

x. Therefore, if this linearity seems to be violated (again, it is very difficult to tell; 
the only easy way is fitting a polynomial model as seen in a later example), the incor-
poration of powers of X

j
 should be considered seriously. The use of products will 

help in the investigation of possible effect modifications. Finally, there is the messy 
problem of missing data; most software programs will delete a subject if one or more 
covariate values are missing.

Testing Hypotheses in Multiple Regression  Once we have fit a multiple conditional 
logistic regression model and obtained estimates for the various parameters of 
interest, we want to answer questions about the contributions of various factors to the 
prediction of the binary response variable using matched designs. There are three 
types of such questions:

1.	 Overall test. Taken collectively, does the entire set of explatory or independent 
variables contribute significantly to the prediction of response?

2.	 Test for the value of a single factor. Does the addition of one particular variable 
of interest add significantly to the prediction of response over and above that 
achieved by other independent variables?

3.	 Test for contribution of a group of variables. Does the addition of a group of 
variables add significantly to the prediction of response over and above that 
achieved by other independent variables?

Overall Regression Test  We now consider the first question stated above concerning 
an overall test for a model containing J factors. The null hypothesis for this test may 
be stated as: “All J independent variables considered together do not explain the var-
iation in response any more than the size alone.” In other words,

	 H J0 1 2 0: .	

Three statistics can be used to test this global null hypothesis; each has a symptotic 
chi‐square distribution with J degrees of freedom under H

0
: the likelihood ratio test, 
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Wald’s test, and the score test. All three statistics are provided by most standard com-
puter programs such as SAS and R, and they are asymptotically equivalent (i.e., for 
very large sample sizes), yielding identical statistical decisions most of the time. 
However, Wald’s test is used much less often than the other two.

Example 13.13
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14). With all 
four covariates, we have the following test statistics for the global null hypothesis:

1.	 Likelihood test:

	 LR p2 9 530 4 0 0491. ; . .with df 	

2.	 Wald’s test:

	 W p2 6 001 4 0 1991. ; . .with df 	

3.	 Score test:

	 S p2 8 491 4 0 0752. ; . .with df 	

The results indicates a weak combined explanatory power; Wald’s test is not  
even significant. Very often, this means implicitly that perhaps only one or two 
covariates are associated significantly with the response of interest (a weak overall 
correlation).

Test for a Single Variable  Let us assume that we now wish to test whether the 
addition of one particular independent variable of interest adds significantly to the 
prediction of the response over and above that achieved by factors already present in 
the model (usually after seeing a significant result for the global hypothesis above). 
The null hypothesis for this single‐variable test may be stated as: “Factor X

j
 does not 

have any value added to the prediction of the response given that other factors are 
already included in the model.” In other words,

	 H j0 0: .	

To test such a null hypothesis, one can use

	

z j
j

j

ˆ

ˆSE
	

where ˆ
j is the corresponding estimated regression coefficient and SE( )ˆ

j  is the 
estimate of the standard error of ˆ

j, both of which are printed by standard computer 
programs such as SAS and R. In performing this test, we refer the value of the z score 
to percentiles of the standard normal distribution; for example, we compare the abso-
lute value of z to 1.96 for a two‐sided test at the 5% level.



CONDITIONAL LOGISTIC REGRESSION� 481

Example 13.14
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14). With 
all four covariates, we have the results shown in Table  13.17. Only the mother’s 
weight (p = 0.0942) and uterine irritability (p = 0.0745) are marginally significant. In 
fact, these two variables are highly correlated: that is, if one is deleted from the 
model, the other would become more significant. SAS and R code are provided after 
Example 13.18.

The overall tests and the tests for single variables are implemented simultaneously 
using the same computer program, and here is another example.

Example 13.15
Refer to the data for vaginal carcinoma in Example 13.10 (Table 13.13). An applica-
tion of a conditional logistic regression analysis yields the following results:

1.	 Likelihood test for the global hypothesis:

	 LR p2 9 624 2 0 0081. ; . .with df 	

2.	 Wald’s test for the global hypothesis:

	 W p2 6 336 2 0 0027. ; . .with df 	

3.	 Score test for the global hypothesis:

	 S p2 11 860 2 0 0421. ; . .with df 	

For individual covariates, we have the results shown in Table 13.18.

In addition to a priori interest in the effects of individual covariates, given a continuous 
variable of interest, one can fit a polynomial model and use this type of test to check 
for linearity. It can also be used to check for a single product representing an effect 
modification.

Example 13.16
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14), but this 
time we investigate only one covariate, the mother’s weight. After fitting the second‐
degree polynomial model, we obtained a result which indicates that the curvature 
effect is negligible (p = 0.9131).

Table 13.17

Variable Coefficient Standard error z Statistic p Value

Mother’s weight −0.0191 0.0114 −1.673 0.0942
Smoking −0.0885 0.8618 −0.103 0.9182
Hypertension 0.6325 1.1979 0.528 0.5975
Uterine irritability 2.1376 1.1985 1.784 0.0745
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Contribution of a Group of Variables  This testing procedure addresses the more 
general problem of assessing the additional contribution of two or more factors to the 
prediction of the response over and above that made by other variables already in the 
regression model. In other words, the null hypothesis is of the form

	 H m0 1 2 0: .	

To test such a null hypothesis, one can perform a likelihood ratio chi‐square test with m df:

	

2 2 ln ; all s

ln ; all other s with s under inve

ˆ

ˆ the omstigation .itted

LR L X

L X mX
	

As with the tests above for individual covariates, this multiple contribution 
procedure is very useful for assessing the importance of potential explanatory vari-
ables. In particular, it is often used to test whether a similar group of variables, such 
as demographic characteristics, is important for prediction of the response; these var-
iables have some trait in common. Another application would be a collection of 
powers and/or product terms (referred to as interaction variables). It is often of 
interest to assess the interaction effects collectively before trying to consider individual 
interaction terms in a model, as suggested previously. In fact, such use reduces the 
total number of tests to be performed, and this, in turn, helps to provide better control 
of overall type I error rates, which may be inflated due to multiple testing.

Example 13.17
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14). With 
all four covariates, we consider collectively three interaction terms: mother’s weight 
× smoking, mother’s weight × hypertension, mother’s weight × uterine irritability. 
The basic idea is to see if any of the other variables would modify the effect of the 
mother’s weight on the response (having a low birth weight baby).

1.	 With the original four variables, we obtained ln L = −16.030.

2.	 With all seven variables, four original plus three products, we obtained ln L = 
−14.199.

Therefore, we have

	

2 2 ln ; seven variables ln ; four original variables

3.662;3 df, value 0.1

ˆ

0

ˆ
LR L L

p 	

indicating a rather weak level of interactions.

Table 13.18

Variable Coefficient Standard error z Statistic p Value

Bleeding 1.6198 1.3689 1.183 0.2367
Pregnancy loss 1.7319 0.8934 1.938 0.0526
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Stepwise Regression  In many applications our major interest is to identify important 
risk factors. In other words, we wish to identify from many available factors a small 
subset of factors that relate significantly to the outcome (e.g., the disease under inves-
tigation). In that identification process, of course, we wish to avoid a large type I 
(false positive) error. In a regression analysis, a type I error corresponds to including 
a predictor that has no real relationship to the outcome; such an inclusion can greatly 
confuse interpretation of the regression results. In a standard multiple regression 
analysis, this goal can be achieved by using a strategy that adds to or removes from a 
regression model one factor at a time according to a certain order of relative impor-
tance. Therefore, the two important steps are as follows:

1.	 Specify a criterion or criteria for selecting a model.

2.	 Specify a strategy for applying the criterion or criteria chosen.

The process follows the outline of Chapter 10 for logistic regression, combining 
the forward selection and backward elimination in the stepwise process, with selec-
tion at each step based on the likelihood ratio chi‐square test. SAS’s PROC PHREG 
does have an automatic stepwise option to implement these features, but R’s coxph 
function does not; pass the coxph results to the function stepaic instead to do step-
wise selection based on AIC values.

Example 13.18
Refer to the data for low birth weight babies in Example 13.11 (Table 13.14) with all 
four covariates: mother’s weight, smoking, hypertension, and uterine irritability. This 
time we perform a stepwise regression analysis in which we specify that a variable 
has to be significant at the 0.1 level before it can enter into the model and that a var-
iable in the model has to be significant at 0.15 for it to remain in the model (most 
standard computer programs allow users to make these selections; default values are 
available). First, we get the individual test results for all variables (Table  13.19). 
These indicate that uterine irritability is the most significant variable.

•• Step 1: Variable uterine irritability is entered. Analysis of variables not in the 
model yields the results shown in Table 13.20.

•• Step 2: Variable mother’s weight is entered. Analysis of variables in the model 
yields Table 13.21. Neither variable is removed. Analysis of variables not in the 
model yields Table 13.22. No (additional) variables meet the 0.1 level for entry 
into the model.

Table 13.19

Variable Score χ2 p Value

Mother’s weight 3.9754 0.0462
Smoking 0.0 1.0
Hypertension 0.2857 0.5930
Uterine irritability 5.5556 0.0184
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Note: An SAS program would include these instructions:

PROC PHREG DATA LOWWEIGHT;
MODEL DUMMYTIME*CASE(0) = MWEIGHT SMOKING HYPERT
UIRRIT/SELECTION = STEPWISE
SLENTRY = .10 SLSTAY = .15;
STRATA SET;

The default values for SLENTRY (p value to enter) and SLSTAY (p value to stay) are 
0.05 and 0.1, respectively. The R program of Example 13.12 would be modified to 
include the following instructions:

all.cox = coxph(Surv(Dummytime,Case) ~ MotherWeight +
                Hypertension + Smoking + Uirritability +
                strata(MatchedSet)
summary(all.cox)
library(MASS)
stepAIC(all.cox)

EXERCISES

Electronic copies of some data files are available at www.wiley.com/go/Le/Biostatistics.

13.1	 Given the small data set

	 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

calculate and graph the Kaplan–Meier curve.

Table 13.20

Variable Score χ2 p Value

Mother’s weight 2.9401 0.0864
Smoking 0.0027 0.9584
Hypertension 0.2857 0.5930

Table 13.21

Factor Coefficient Standard error z Statistic p Value

Mother’s weight −0.0192 0.0116 −1.655 0.0978
Uterine irritability 2.1410 1.1983 1.787 0.0740

Table 13.22

Variable Score χ2 p Value

Smoking 0.0840 0.7720
Hypertension 0.3596 0.5487

www.wiley.com/go/Le/Biostatistics
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13.2	 A group of 12 hemophiliacs, all under 41 years of age at the time of HIV 
seroconversion, were followed from primary AIDS diagnosis until death (ide-
ally, we should take as a starting point the time at which a person contracts 
HIV rather than the time at which the patient is diagnosed, but this information 
is not available). Survival times (in months) from diagnosis until death of 
these hemophiliacs were: 2, 3, 6, 6, 7, 10, 15, 15, 16, 27, 30, and 32. Calculate 
and graph the Kaplan–Meier curve.

13.3	 Suppose that we are interested in studying patients with systemic cancer who 
subsequently develop a brain metastasis; our ultimate goal is to prolong their 
lives by controlling the disease. A sample of 23 such patients, all of whom 
were treated with radiotherapy, were followed from the first day of their 
treatment until recurrence of the original tumor. Recurrence is defined as the 
reappearance of a metastasis in exactly the same site, or in the case of patients 
whose tumor never completely disappeared, enlargement of the original 
lesion. Times to recurrence (in weeks) for the 23 patients were: 2, 2, 2, 3, 4, 5, 
5, 6, 7, 8, 9, 10, 14, 14, 18, 19, 20, 22, 22, 31, 33, 39, and 195. Calculate and 
graph the Kaplan–Meier curve.

13.4	 A laboratory investigator interested in the relationship between diet and the 
development of tumors divided 90 rats into three groups and fed them low‐fat, 
saturated‐fat, and unsaturated‐fat diets, respectively. The rats were of the same 
age and species and were in similar physical condition. An identical amount 
of tumor cells was injected into a foot pad of each rat. The tumor‐free time is 
the time from injection of tumor cells to the time that a tumor develops; all 30 
rats in the unsaturated‐fat diet group developed tumors; tumor‐free times (in 
days) were: 112, 68, 84, 109, 153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66, 
70, 77, 63, 66, 66, 94, 101, 105, 108, 112, 115, 126, 161, and 178. Calculate 
and graph the Kaplan–Meier curve.

13.5	 Data are shown in Table 13.3 for two groups of patients who died of acute 
myelogenous leukemia (see Example 13.3). Patients were classified into the 
two groups according to the presence or absence of a morphologic characteristic 
of white cells. Patients termed AG positive were identified by the presence of 
Auer rods and/or significant granulature of the leukemic cells in the bone 
marrow at diagnosis. For AG‐negative patients these factors were absent. 
Leukemia is a cancer characterized by an overproliferation of white blood 
cells; the higher the white blood count (WBC), the more severe the disease. 
Calculate and graph in the same figure the two Kaplan–Meier curves (one for 
AG‐positive patients and one for AG‐negative patients). How do they 
compare?

13.6	 In Exercise 13.4 we described a diet study, and tumor‐free times were given 
for the 30 rats fed an unsaturated‐fat diet. Tumor‐free times (days) for the 
other two groups are as follows:

•• Low‐fat: 140, 177, 50, 65, 86, 153, 181, 191, 77, 84, 87, 56, 66, 73, 119, 
140+, and 14 rats at 200+
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•• Saturated‐fat: 124, 58, 56, 68, 79, 89, 107, 86, 142, 110, 96, 142, 86, 75, 
117, 98, 105, 126, 43, 46, 81, 133, 165, 170+, and 6 rats at 200+

(140+ and 170+ were due to accidental deaths without evidence of tumor). 
Calculate and graph the two Kaplan–Meier curves, one for rats fed a low‐fat 
diet and one for rats fed a saturated‐fat diet. Put these two curves and the one 
from Exercise 13.4 in the same figure and draw conclusions.

13.7	 Consider the data shown in Table E13.7 (analysis date, 01/90; A, alive; D, 
dead). For each subject, determine the time (in months) to death (D) or to the 
ending date (for survivors whose status was marked as A); then calculate and 
graph the Kaplan–Meier curve.

13.8	 Given the small data set:

	

Sample

Sample

1 24 30 42 15 40 42

2 10 26 28 30 41 12

: , , , , ,

: , , , , , 	

compare them using both the log‐rank and generalized Wilcoxon tests.

13.9	 Pneumocystis carinii pneumonia (PCP) is the most common opportunistic 
infection in HIV‐infected patients and a life‐threatening disease. Many North 
Americans with AIDS have one or two episodes of PCP during the course of 
their HIV infection. PCP is a consideration factor in mortality, morbidity, and 
expense; and recurrences are common. As shown in the partial data set given 
in Table E13.9, we have:

•• Treatments, coded as A and B;

•• Patient characteristics: baseline CD4 count, gender (1, male; 0, female), 
race (1, white; 2, black; 3, other), weight (lb), homosexuality (1, yes; 0, no);

•• PCP recurrence indicator (1, yes; 0, no), PDATE or time to recurrence 
(months);

•• DIE or death indicator (1, yes; 0, no), DDATE or time to death (or to date 
last seen for survivors; months).

Table E13.7

Subject Starting Ending Status (A/D)

1 01/80 01/90 A
2 06/80 07/88 D
3 11/80 10/84 D
4 08/81 02/88 D
5 04/82 01/90 A
6 06/83 11/85 D
7 10/85 01/90 A
8 02/86 06/88 D
9 04/86 12/88 D
10 11/86 07/89 D



	 Consider each of these endpoints: relapse (treating death as censoring), 
death (treating relapse as censoring), and death or relapse (whichever comes 
first). For each endpoint:

(a)	 Estimate the survival function for homosexual white men.

(b)	 Estimate the survival functions for each treatment.

(c)	 Compare the two treatments; do they differ in the short and long terms?

(d)	 Compare men and women.

(e)	 Taken collectively, do the covariates contribute significantly to predic-
tion of survival?

(f)	 Fit the multiple regression model to obtain estimates of individual 
regression coefficients and their standard errors. Draw conclusions 
concerning the conditional contribution of each factor.

(g)	 Within the context of the multiple regression model in part (b), does 
treatment alter the effect of CD4?

(h)	 Focus on treatment as the primary factor, taken collectively; was this 
main effect altered by any other covariates?

(i)	 Within the context of the multiple regression model in part (b), is the 
effect of CD4 linear?

(j)	 Do treatment and CD4, individually, fit the proportional hazards model?

13.10	 It has been noted that metal workers have an increased risk for cancer of the 
internal nose and paranasal sinuses, perhaps as a result of exposure to cutting 
oils. A study was conducted to see whether this particular exposure also 
increases the risk for squamous cell carcinoma of the scrotum (Rousch et al., 
1982). Cases included all 45 squamous cell carcinomas of the scrotum diag-
nosed in Connecticut residents from 1955 to 1973, as obtained from the 
Connecticut Tumor Registry. Matched controls were selected for each case 
based on the age at death (within eight years), year of death (within three 
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table E13.9

TRT CD4 GENDER RACE WT HOMO PCP PDATE DIE DDATE

B 2 1 1 142 1 1 11.9 0 14.6
B 139 1 2 117 0 0 11.6 1 11.6
A 68 1 2 149 0 0 12.8 0 12.8
A 12 1 1 160 1 0 7.3 1 7.3
B 36 1 2 157 0 1 4.5 0 8.5
B 77 1 1 12 1 0 18.1 1 18.1
A 56 1 1 158 0 0 14.7 1 14.7
B 208 1 2 157 1 0 24.0 1 24.0
A 40 1 1 122 1 0 16.2 0 16.2
A 53 1 2 125 1 0 26.6 1 26.6
A 28 1 2 130 0 1 14.5 1 19.3
A 162 1 1 124 0 0 25.8 1 25.8

Note: The full dataset is available at www.wiley.com/go/Le/Biostatistics.
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years), and number of jobs as obtained from combined death certificate and 
directory sources. An occupational indicator of metal worker (yes/no) was 
evaluated as the possible risk factor in this study; results are shown in 
Table E13.10.

(a)	 Find a 95% confidence interval for the odds ratio measuring the strength 
of the relationship between the disease and the exposure.

(b)	 Test for the independence between the disease and the exposure.

13.11	 Ninety‐eight heterosexual couples, at least one of whom was HIV infected, 
were enrolled in an HIV transmission study and interviewed about sexual 
behavior (Padian, 1990). Table E13.11 provides a summary of condom use 
reported by heterosexual partners. Test to compare the reporting results bet-
ween men and women.

13.12	 A matched case–control study was conducted to evaluate the cumulative 
effects of acrylate and methacrylate vapors on olfactory function (Schwarts 
et al., 1989). Cases were defined as scoring at or below the 10th percentile 
on the University of Pennsylvania Smell Identification Test (UPSIT; 
Table E13.12).

table E13.10

Cases

Controls

Exposed Unexposed

Exposed 2 26
Unexposed 5 12

Table E13.11

Woman

Man

TotalEver Never

Ever 45 6 51
Never 7 40 47

Total 52 46 98

Table E13.12

Controls

Cases

Exposed Unexposed

Exposed 25 22
Unexposed 9 21
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(a)	 Find a 95% confidence interval for the odds ratio measuring the strength 
of the relationship between the disease and the exposure.

(b)	 Test for the independence between the disease and the exposure.

13.13	 A study in Maryland identified 4032 white persons, enumerated in a nonof-
ficial 1963 census, who became widowed between 1963 and 1974 (Helsing 
and Szklo, 1981). These people were matched, one to one, to married per-
sons on the basis of race, gender, year of birth, and geography of residence. 
The matched pairs were followed in a second census in 1975.

(a)	 We have the overall male mortality shown in Table E13.13, part a. Test 
to compare the mortality of widowed men versus married men.

(b)	 The data for 2828 matched pairs of women are shown in Table E13.13, 
part b. Test to compare the mortality of widowed women versus married 
women.

13.14	 Table E13.14 at the end of this chapter provides some data from a matched 
case–control study to investigate the association between the use of x‐ray 
and risk of childhood acute myeloidleukemia. In each matched set or pair, 
the case and control(s) were matched by age, race, and county of residence. 
The variables are:

•• Matched set (or pair);

•• Disease (1, case; 2, control);

•• Some chracteristics of the child: sex (1, male; 2, female), Down’s syn-
drome (a known risk factor for leukemia; 1, no; 2, yes), age;

•• Risk factors related to the use of x‐ray: MXray (mother ever had x‐ray dur-
ing pregnancy; 1, no; 2, yes), UMXray (mother ever had upper‐body x‐ray 
during pregnancy; 0, no; 1, yes), LMXray (mother ever had lower‐body 

Table E13.13

Part a. Data for men

Widowed men

Married men

Dead Alive

Dead 2 292
Alive 210 700

Part b. Data for women

Widowed women

Married women

Dead Alive

Dead 1 264
Alive 249 2314



490� ANALYSIS OF SURVIVAL DATA AND DATA FROM MATCHED STUDIES

x‐ray during pregnancy; 0, no; 1, yes), FXray (father ever had x‐ray; 1, no; 
2, yes), CXray (child ever had x‐ray; 1, no; 2, yes), CNXray (child’s total 
number of x‐rays; 1, none; 2, 1–2; 3, 3–4; 4, 5 or more).

(a)	 Taken collectively, do the covariates contribute significantly to the 
separation of cases and controls?

table E13.14

Matched set Disease Sex Downs Age
M 

x‐ray
UM 
x‐ray

LM 
x‐ray

F 
x‐ray

C 
x‐ray

CN 
x‐ray

1 1 2 1 0 1 0 0 1 1 1
1 2 2 1 0 1 0 0 1 1 1
2 1 1 1 6 1 0 0 1 2 3
2 2 1 1 6 1 0 0 1 2 2
3 1 2 1 8 1 0 0 1 1 1
3 2 2 1 8 1 0 0 1 1 1
4 1 1 2 1 1 0 0 1 1 1
4 2 1 1 1 1 0 0 1 1 1
5 1 1 1 4 2 0 1 1 1 1
5 2 1 1 4 1 0 0 1 2 2
6 1 2 1 9 2 1 0 1 1 1
6 2 1 1 9 1 0 0 1 1 1
7 1 2 1 17 1 0 0 1 2 2
7 2 2 1 17 1 0 0 1 2 2
8 1 2 1 5 1 0 0 1 1 1
8 2 1 1 5 1 0 0 1 1 1
9 1 2 2 0 1 0 0 1 1 1
9 2 2 1 0 2 1 0 2 1 1
9 2 2 1 0 1 0 0 1 1 1
10 1 2 1 7 1 0 0 2 1 1
10 2 1 1 7 1 0 0 1 1 1
11 1 1 1 15 1 0 0 1 1 1
11 2 1 1 15 1 0 0 1 2 2
12 1 1 1 12 1 0 0 1 2 2
12 2 1 1 12 1 0 0 1 1 1
13 1 1 1 4 1 0 0 1 1 1
13 2 2 1 4 1 0 0 1 1 1
14 1 1 1 14 1 0 0 1 2 2
14 2 2 1 14 1 0 0 1 1 1
14 2 1 1 14 1 0 0 1 1 1
15 1 1 1 7 1 0 0 2 1 1
15 2 1 1 7 1 0 0 2 1 1
15 2 1 1 7 1 0 0 1 2 2
16 And  

so on

Note: The full dataset is available at www.wiley.com/go/Le/Biostatistics.
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(b)	 Fit the multiple regression model to obtain estimates of individual 
regression coefficients and their standard errors. Draw conclusions 
concerning the conditional contribution of each factor.

(c)	 Within the context of the multiple regression model in part (b), does 
gender alter the effect of Down’s syndrome?

(d)	 Within the context of the multiple regression model in part (b), taken 
collectively, does the exposure to x‐ray (by the father, or mother, or 
child) relate significantly to the disease of the child?

(e)	 Within the context of the multiple regression model in part (b), is the 
effect of age linear?

(f)	 Focus on Down’s syndrome as the primary factor, taken collectively; 
was this main effect altered by any other covariates?
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14
STUDY DESIGNS

Statistics is more than just a collection of long columns of numbers and sets of 
formulas. Statistics is a way of thinking – thinking about ways to gather and analyze 
data. The gathering part comes before the analyzing part; the first thing a statistician 
or a learner of statistics does when faced with data is to find out how the data were 
collected. Not only does how we should analyze data depend on how data were 
collected, but formulas and techniques may be misused by a well‐intentioned 
researcher simply because data were not collected properly. In other cases, studies 
were inconclusive because they were poorly planned and not enough data were 
collected to accomplish the goals and support the hypotheses.

Study data may be collected in many different ways. When we want information, 
the most common approach is to conduct a survey in which subjects in a sample are 
asked to express opinions on a variety of issues. For example, an investigator surveyed 
several hundred students in grades 7 through 12 with a set of questions asking the 
date of their last physical checkup and how often they smoke cigarettes or drink 
alcohol.

The format of a survey is such that one can assume there is an identifiable, existing 
target population of subjects. We act as if the sample is obtained from the target 
population according to a carefully defined technical procedure called random 
sampling. The basic steps and characteristics of a such a process were described in 
detail in Section 3.1.2. However, in biomedical research, a sample survey is not a 
common form of study; it may not be used at all. The laboratory investigator uses 
animals in projects, but the animals are not selected randomly from a large population 
of animals. The clinician, who is attempting to describe the results obtained with a 
particular therapy, cannot say that he or she has obtained patients as a random sample 
from a target population of patients.
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14.1  TYPES OF STUDY DESIGNS

In addition to surveys that are cross‐sectional, as seen in many examples in earlier 
chapters, study data may be collected in many different ways. For example, investiga-
tors are faced more and more frequently with the problem of determining whether a 
specific factor or exposure is related to a certain aspect of health. Does air pollution 
cause lung cancer? Do birth control pills cause thromboembolic death? There are 
reasons for believing that the answer to each of these and other questions is yes, but all 
are controversial; otherwise, no studies are needed. Generally, biomedical research 
data may come from different sources, the two fundamental designs being retrospective 
and prospective. But strategies can be divided further into four different types:

1.	 Retrospective studies (of past events);

2.	 Prospective studies (of past events);

3.	 Cohort studies (of ongoing or future events);

4.	 Clinical trials.

Retrospective studies of past events gather past data from selected cases, per-
sons who have experienced the event in question, and controls, persons who have 
not experienced the event in question, to determine differences, if any, in exposure 
to a suspected risk factor under investigation. They are commonly referred to as 
case–control studies; each case–control study is focused on a particular disease. In 
a typical case–control study, cases of a specific disease are ascertained as they 
arise from population‐based registers or lists of hospital admissions, and controls 
are sampled either as disease‐free persons from the population at risk or as hospi-
talized patients having a diagnosis other than the one under study. An example is 
the study of thromboembolic death and birth control drugs. Thromboembolic 
deaths were identified from death certificates, and exposure to the pill was traced 
by interview with each woman’s physician and a check of her various medical 
records. Control women were women in the same age range under the care of the 
same physicians.

Prospective studies of past events are less popular because they depend on the 
existence of records of high quality. In these, samples of exposed subjects and 
unexposed subjects are identified in the records. Then the records of the persons 
selected are traced to determine if they have ever experienced the event to the present 
time. Events in question are past events, but the method is called prospective because 
it proceeds from exposure forward to the event.

Cohort studies are epidemiological designs in which one enrolls a group of 
persons and follows them over certain periods of time; examples include occupational 
mortality studies and clinical trials. The cohort study design focuses on a particular 
exposure rather than a particular disease as in case–control studies. There have been 
several major cohort studies that made significant contributions to our understanding 
of important public health issues, but this form of study design is not very popular 
because cohort studies are time‐ and cost‐consuming.
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In this chapter we focus on study designs. However, since in biomedical research 
the sample survey is not a common form of study, and prospective studies of past 
events and cohort studies are not often conducted, we put more emphasis on the 
designs of clinical trials, which are important because they are experiments on human 
beings, and of case–control studies, which are the most popular of all study designs.

14.2  CLASSIFICATION OF CLINICAL TRIALS

Clinical studies form a class of all scientific approaches to evaluating medical disease 
prevention, diagnostic techniques, and treatments. Among this class, trials, often 
called clinical trials, form a subset of those clinical studies that evaluate investigational 
drugs or devices.

Trials, especially cancer trials, are classified into phases:

•• Phase I trials focus on safety of a new investigational medicine or device. These 
are the first human trials after successful animal trials.

•• Phase II trials are small trials to evaluate efficacy and focus more on a safety 
profile.

•• Phase III trials are well‐controlled trials, the most rigorous demonstration of a 
drug’s or a device’s efficacy prior to federal regulatory approval.

•• Phase IV trials are often conducted after a medicine or device is marketed to 
provide additional details about the medicine’s efficacy and a more complete 
safety profile.

In the context of cancer trials, phase I trials apply to patients from standard 
treatment failure who are at high risk of death in the short term. As for the new med-
icine or drug to be tested, there is no efficacy at low doses; at high doses, there will 
be unavoidable toxicity, which may be severe and may even be fatal. Little is known 
about the dose range; animal studies may not be helpful enough. The goal in a phase 
I trial is to identify a maximum tolerated dose (MTD), a dose that has reasonable 
efficacy (i.e., is toxic enough, say, to kill cancer cells) but with tolerable toxicity 
(i.e., not toxic enough to kill the patient).

Phase II trials, the next step, are often the simplest: The drug, at the optimal dose 
(MTD) found in a phase I trial, is given to a small group of patients who meet 
predetermined inclusion criteria. The most common form are single‐arm studies 
where investigators are seeking to establish the antitumor activity of a drug usually 
measured by a response rate. A patient responds when his or her cancer condition 
improves (e.g., the tumor disappears or shrinks substantially). The response rate 
is  the proportion or percentage of patients who respond. A phase II trial may be 
conducted in two stages (as will be seen in Section  14.6) when investigators 
are concerned about severe side effects.

A second type of phase II trial consists of small comparative trials where we want 
to establish the efficacy of a new drug against a control or standard regimen. In these 
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phase II trials, with or without randomization, investigators often test their validity 
by paying careful attention to inclusion and exclusion criteria. Inclusion criteria 
focus on the definition of patient characteristics required for entry into a clinical trial. 
These describe the population of patients that the drug is intended to serve. There are 
exclusion criteria as well, to keep out patients that the drug is not intended to serve.

Phase III and IV trials are designed similarly. Phase III trials are conducted before 
regulatory approval, and phase IV trials, which are often optional, are conducted 
after regulatory approval. These are larger, controlled trials, whose control is achieved 
by randomization. Patients enter the study sequentially and upon enrollment, 
each patient is randomized to receive either the investigational drug (or device) or 
a placebo (or standard therapy). As medication, the placebo is “blank,” that is, 
without any active medicine. The use of a placebo, whose size and shape are similar 
to those of the drug, is to control psychological and emotional effects (e.g., possible 
prejudices on the part of the patient and/or investigator). Randomization is a tech-
nique to ensure that the two groups, the one receiving the real drug or device and the 
one receiving the placebo, are more comparable, more similar with respect to known 
as well as unknown factors (so that the conclusion is more valid). For example, the 
new patient is assigned to receive the drug or the placebo by a process similar to that 
of flipping a coin. Trials in phases III and IV are often conducted as double blind, that 
is, blind to the patient (he or she does not know if a real drug is given so as to prevent 
psychological effects; of course, the patient’s consent is required) and blind to the 
investigator (so as to prevent bias in measuring/evaluating outcomes). Some member 
of the investigation team, often designated a priori, keeps the code (the list of which 
patients received drug and which patients received placebo) which is broken only at 
the time of study completion and data analysis. The term triple blind may be used in 
some trials to indicate the blinding of regulatory officers.

A phase III or IV trial usually consists of two periods: an enrollment period, 
when patients enter the study and are randomized, and a follow‐up period. The latter 
is very desirable if long‐term outcome is needed. As an example, a study may consist 
of three years of enrollment and two years of follow‐up; no patients are enrolled 
during the last two years. Figure 14.1 shows a description of a typical phase III or 
IV clinical trial.

0

Study initiation Study termination

Enrollment period
(e.g., 3 years)

Follow-up period
(e.g., 2 years)

No new subjects enrolled
after this point

↓ π2

π1

Figure 14.1  Phase III or IV clinical trial.
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14.3  DESIGNING PHASE I CANCER TRIALS

Different from other phase I clinical trials, phase I clinical trials in cancer have 
several main features. First, the efficacy of chemotherapy or any cancer treatment is, 
indeed, frequently associated with a nonnegligible risk of severe toxic effect, often 
fatal, so that ethically, the initial administration of such drugs cannot be investigated 
in healthy volunteers but only in cancer patients. Usually, only a small number of 
patients are available to be entered in phase I cancer trials. Second, these patients are 
at very high risk of death in the short term under all standard therapies, some of 
which may already have failed for those patients. At low doses, little or no efficacy is 
expected from the new therapy, and a slow intrapatient dose escalation is not pos-
sible. Third, there is not enough information about the drug’s activity profile. In 
addition, clinicians often want to proceed as rapidly as possible to phase II trials with 
more emphasis on efficacy. The lack of information about the relationship between 
dose and probability of toxicity causes a fundamental dilemma inherent in phase I 
cancer trials: the conflict between scientific and ethical intent. We need to reconcile 
the risks of toxicity to patients with the potential benefit to these patients, with an 
efficient design that uses no more patients than necessary. Thus, a phase I cancer trial 
may be viewed as a problem in optimization: maximizing the dose–toxicity evalua-
tion while minimizing the number of patients treated.

Although recently their ad hoc nature and imprecise determination of maximum 
tolerated dose (MTD) have been called into question, cohort‐escalation trial designs, 
called standard designs, have been used widely for years. In the last several years a 
competing design called fast track is getting more popular. These two cohort‐
escalation trial designs can be described as follows.

Since a slow intrapatient dose escalation is either not possible or not practical, 
investigators often use five to seven doses selected from “safe enough” to “effective 
enough.” The starting dose selection of a phase I trial depends heavily on pharmacology 
and toxicology from preclinical studies. Although the translation from animal to 
human is not always a perfect correlation, toxicology studies offer an estimation 
range of a drug’s dose–toxicity profile and the organ sites that are most likely to be 
affected in humans. Once the starting dose is selected, a reasonable dose escalation 
scheme needs to be defined. There is no single optimal or efficient escalation scheme 
for all drugs. Generally, dose levels are selected such that the percentage increments 
between successive doses diminish as the dose is increased. A modified Fibonacci 
sequence, with increases of 100, 67, 50, 40, and 33%, is often employed, because it 
follows a diminishing pattern but with modest increases.

The standard design uses three‐patient cohorts and begins with one cohort at the 
lowest possible dose level. It observes the number of patients in the cohort who 
experience toxicity seriously enough to be considered a dose‐limiting toxicity (DLT). 
The trial escalates through the sequence of doses until enough patients experience 
DLTs to stop the trial and declare an MTD. The dose at which the toxicity threshold 
is exceeded is designated the MTD. In a standard design, if no patients in a cohort 
experience a DLT, the trial continues with a new cohort at the next higher dose; if two 
or three patients experience a DLT, the trial is stopped as the toxicity threshold is 
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exceeded and an MTD is identified; if exactly one patient experiences a DLT, a new 
cohort of three patients is employed at the same dose. In this second cohort, evaluated 
at the same dose, if no severe toxicity is observed, the dose is escalated to the next‐
highest level; otherwise, the trial is terminated and the dose in use at trial termination 
is recommended as the MTD. Note that intrapatient escalation is not used to evaluate 
the doses, to avoid the confounding effect of carryover from one dose to the next. 
We can refer to the standard design as a three and three design because at each new 
dose it enrolls a cohort of three patients with the option of enrolling an additional 
three patients evaluated at the same dose. Some slight variations of the standard 
design are also used in various trials.

The fast‐track design is a variation of the standard design. It was created by 
modifying the standard design to move through low toxicity rate doses using 
fewer patients. The design uses a predefined set of doses and cohorts of one or 
three patients, escalating through the sequence of doses using a one‐patient cohort 
until the first DLT is observed. After that, only three‐patient cohorts are used. 
When no DLT is observed, the trial continues at the next‐higher dose with a cohort 
of one new patient. When a DLT is observed in a one‐patient evaluation of a dose, 
the same dose is evaluated a second time with a cohort of three new patients, if no 
patient in this cohort experiences a DLT, the design moves to the next‐higher dose 
with a new cohort of three patients, and from this point, the design progresses as 
a standard design. When one or more patients in a three‐patient cohort experi-
ences a DLT, the current dose is considered the MTD. If a one‐patient cohort is 
used at each dose level throughout, six patients are often tested at the very last 
dose. Similar to a standard design, no intrapatient escalation is allowed in a fast‐
track design.

There seems to be no perfect solution. The standard design is more popular and 
more conservative (i.e., safer); very few patients are likely to be overtreated by doses 
with undesirable levels of toxicity. However, in a standard design, many patients who 
enter early in the trial are likely to be treated suboptimally, and only a few patients 
may be left after an MTD is reached, especially if there were many doses below 
MTD. Generally, the use of a fast‐track design seems very attractive because some 
clinicians want to proceed to a phase II trial as fast as they can, to have a first look at 
efficacy. The fast‐track design quickly escalates through early doses that have a low 
expected risk of dose‐limiting toxicity, thereby reducing the number of patients 
treated at the lowest toxicity selected in single‐patient cohorts. On the other hand, the 
fast‐track design may allow a higher percentage of patients to be treated at very high 
toxic doses; and the fact that it uses a single‐patient cohort until the first DLT is 
observed seems too risky for some investigators. For more experienced investigators, 
the fast‐track design presents an improved use of patient resources with a moderate 
compromise of patient safety; but safety could be a problem with inexperienced 
investigators who might select high doses to start with. The common problem for 
both designs is the lack of robustness: that the expected rate of MTD selected is 
strongly influenced by the doses used, and these doses may be selected arbitrarily by 
investigators, which makes their experience a crucial factor.
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14.4  SAMPLE SIZE DETERMINATION FOR PHASE II TRIALS 
AND SURVEYS

The determination of the size of a sample is a crucial element in the design of a survey 
or a clinical trial. In designing any study, one of the first questions that must be answered 
is: How large must the sample be to accomplish the goals of the study? Depending on 
the study goals, the planning of sample size can be approached accordingly.

Phase II trials are the simplest. The drug, at the optimal dose (MTD) found from 
a previous phase I trial, is given to a small group of patients who meet predetermined 
inclusion criteria. The focus is often on the response rate. Because of this focus, the 
planning of sample size can be approached in terms of controlling the width of a 
desired confidence interval for the parameter of interest, the response rate.

Suppose that the goal of a study is to estimate an unknown response rate π. For the 
confidence interval to be useful, it must be short enough to pinpoint the value of the 
parameter reasonably well with a high degree of confidence. If a study is unplanned 
or poorly planned, there is a real possibility that the resulting confidence interval will 
be too long to be of any use to the researcher. In this case, we may decide to have an 
estimate error not exceeding d, an upper bound for the margin of error since the 95% 
confidence interval for the response rate π, a population proportion, is

	
p

p p
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where p is the sample proportion. Therefore, our goal is expressed as
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leading to the required minimum sample size:

	
n
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d

1 96 1
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2
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(rounded up to the next integer). This required sample size is affected by three factors:

1.	 The degree of confidence (i.e., 95% which yields the coefficient 1.96);

2.	 The maximum tolerated error or upper bound for the margin of error, d, 
determined by the investigator(s) (a confidence interval’s half‐width);

3.	 The proportion p itself.

This third factor is unsettling. To find n so as to obtain an accurate value of the 
proportion, we need the proportion itself. There is no perfect, exact solution for this. 
Usually, we can use information from similar studies, past studies, or studies on 
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similar populations. If no good prior knowledge about the proportion is available, we 
can replace p(1 − p) by 0.25 and use a conservative sample size estimate:

	
n

dmax

. .1 96 0 25
2

2 	

because n
max

 ≥ n regardless of the value of π. Most phase II trials are small; investigators 
often set the maximum tolerated error or upper bound for the margin of error, d, at 
10% (0.10) or 15%; some even set it at 20%.

Example 14.1
If we set the maximum tolerated error d at 10%, the required minimum sample size is

	

nmax

. .

.

1 96 0 25

0 1

2

2

	

or 97 patients, which is usually too high for a small phase II trial, especially in the 
field of cancer research, where very few patients are available. If we set the maximum 
tolerated error d at 15%, the required minimum sample size is

	

nmax

. .

.

1 96 0 25

0 15

2

2

	

or 43 patients.
The same method for sample size determination as above applies to surveys as 

well, except that for surveys we can afford to use much larger sample sizes. We can 
set the maximum tolerated error at a very low level, resulting in very short confidence 
intervals.

Example 14.2
Suppose that a study is to be conducted to estimate the smoking rate among National 
Organization for Women (N.O.W.) members. Suppose also that we want to estimate 
this proportion to within 3% (i.e., d = 0.03) with 95% confidence.

a)  Since the current smoking rate among women in general is about 27% 
(0.27), we can use this figure in calculating the required sample size. This 
results in

	

n
1 96 0 27 0 73

0 03

841 3

2

2

. . .

.

. 	

 or a sample of size 842 is needed.
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b)  If we do not want or have the figure of 27%, we still can conservatively take

	

nmax

. .

.

.

1 96 0 25

0 03

1067 1

2

2

	

	� (i.e., we can sample 1068 members of N.O.W.). Note that this conservative 
sample size is adequate regardless of the true value π of the unknown population 
proportion; values of n and n

max
 are closer when π is near 0.5.

14.5  SAMPLE SIZES FOR OTHER PHASE II TRIALS

As pointed out in previous sections, most phase II trials are single‐arm studies where 
we are seeking the antitumor activitity of a drug measured by response rate. But there 
are also a variety of other phase II trials.

Some phase II trials are randomized comparative studies. These are most likely to 
be cases where we have established activity for a given drug (from a previous one‐
arm nonrandomized trial) and wish to add another drug to that regimen. In these 
randomized phase II trials, the goal is to select the better treatment (the sample sizes 
for these phase II trials are covered in Section 14.7).

Some phase II trials deal with assessing the activity of a biologic agent where 
tumor response is not the main endpoint of interest. We may be attempting to 
determine the effect of a new agent: for example, on the prevention of a toxicity. 
The  primary endpoint may be measured on a continuous scale. In other trials, a 
pharmacologic- or biologic-to-outcome correlative objective may be the target.

14.5.1  Continuous Endpoints

When the primary outcome of a trial is measured on a continuous scale, the focus 
is on the mean. Because of this focus, the planning of sample size can be approached 
in terms of controlling the width of a desired confidence interval for the parameter 
of interest, the (population) mean. The sample size determination is similar to the 
case when the focus is the response rate. That is, for the confidence interval to be 
useful, it must be short enough to pinpoint the value of the parameter, the mean, 
reasonably well with a high degree of confidence, say 95%. If a study is unplanned 
or poorly planned, there is a real possibility that the resulting confidence interval 
will be too long to be of any use to the researcher. In this case, we may decide to 
have an estimate error not exceeding d, an upper bound for the margin of error. 
With a given level of the maximum tolerated error d, the minimum required sample 
size is given by

	
n

s

d

1 96
2 2

2

.
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(rounded up to the next integer). This required sample size is also affected by three 
factors:

1.	 The coefficient 1.96. As mentioned previously, a different coefficient is used 
for a different degree of confidence, which is set arbitrarily by the investigator; 
95% is a conventional choice.

2.	 The maximum tolerated error d, which is also set arbitrarily by the investigator.

3.	 The variability of the population measurements, the variance. This seems like a 
circular problem. We want to find the size of a sample so as to estimate the mean 
accurately, and to do that, we need to know the variance before we have the data! 
Of course, the exact value of the variance is also unknown. However, we can use 
information from similar studies, past studies, or some reasonable upper bound. 
If nothing else is available, we may need to run a preliminary or pilot study. 
One‐fourth of the range may serve as a rough estimate for the standard deviation.

Example 14.3
Perhaps it is simpler to see the sample size determination concerning a continuous 
endpoint in the context of a survey. Suppose that a study is to be conducted to estimate 
the average birth weight of babies born to mothers addicted to cocaine. Suppose also 
that we want to estimate this average to within 0.5 lb with 95% confidence. This goal 
specifies two quantities:

	

d 0 5

1 96

.

. .coefficient 	

What value should be used for the variance? Information from normal babies may be 
used to estimate s. The rationale here is that the addiction affects every baby almost 
uniformly; this may result in a smaller average, but the variance is unchanged. 
Suppose that the estimate from normal babies is σ  2.5 lb, then the required sample 
size is approximately

	

n
1 96 2 5

0 5
97

2 2

2

. .

.
. 	

14.5.2  Correlation Endpoints

When the parameter is a coefficient of correlation, the planning of sample size is 
approached differently because it is very difficult to come up with a meaningful 
maximum tolerated error for estimation of the coefficient of correlation. Instead of 
controlling the width of a desired confidence interval, the sample size determination 
is approached in terms of controlling the risk of making a type II error. The decision 
is concerned with testing a null hypothesis,

	 H0 0: 	
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against an alternative hypothesis,

	 HA A: 	

in which ρ
A
 is the investigator’s hypothesized value for the coefficient of correlation 

ρ of interest. With a given level of significance α (usually, 0.05) and a desired 
statistical power (1 − β; β is the size of type II error associated with the alternative 
H

A
), the required sample size is given by

	 n F z zA3 1 1 	

where

	
F

1

2

1

1
ln .

	

The quantity z
1–α (z1–β) is the percentile of the standard normal distribution associated 

with a choice of α (β); for example, z
1–0.5

 = 1.96. The transformation from ρ to F(ρ) 
is often referred to as Fisher’s transformation, the same transformation used in form-
ing confidence intervals in Chapter  4. Obviously, to detect a true correlation ρ

A
 

greater than 0.5, a small sample size would suffice, which is suitable in the context 
of phase II trials.

14.6  ABOUT SIMON’S TWO‐STAGE PHASE II DESIGN

Phase I trials treat only three to six patients per dose level according to the standard 
design. In addition, those patients may be diverse with regard to their cancer 
diagnosis; consequently, phase I trials provide little or no information about efficacy. 
A phase II trial is the first step in the study of antitumor effects of an investigational 
drug. The aim of a phase II trial of a new anticancer drug is to determine whether the 
drug has sufficient antitumor activity to warrant further development. Further 
development may mean combining the drug with other drugs, or initiation of a phase 

Example 14.4
Suppose that we decide to preset α = 0.05. To design a study such that its power to 
detect a true correlation ρ

A
 = 0.6 is 90% (or β = 0.10), we would need only

	

F

n F z z

n

A
A

A

A

1

2

1

1

1

2

1 6

0 4
0 693

3

3 0

1 1

ln

ln
.

.
.

.6693 1 96 1 28. . 	

or n = 25 subjects.
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III trial. However, these patients are often at high risk of dying from cancers if not 
treated effectively. Therefore, it is desirable to use as few patients as possible in a 
phase II trial if the regimen under investigation is, in fact, low antitumor activity. 
When such ethical concerns are of high priority, investigators often choose the Simon 
two‐stage design:

1.	 A group of n
1
 patients are enrolled in the first stage. If r

1
 or fewer of these n

1
 

patients respond to the drug, the drug is rejected and the trial is terminated; if 
more than r

1
 responses are observed, investigators proceed to stage II and 

enroll n
2
 more patients.

2.	 After stage II, if r or fewer responses are observed, including those in stage I, the 
drug is rejected; if more than r responses are observed, the drug is recommended 
for further evaluation.

Simon’s design is based on testing a null hypothesis, H
0
: π ≤ π

0
, that the true 

response rate π is less than some low and uninteresting level π
0
 against an 

alternative hypothesis H
A
: π ≥ π

A
, that the true response rate π exceeds a certain 

desirable target level π
A
, which, if true, would allow us to consider the drug to have 

sufficient antitumor activity to warrant further development. The design parameters 
n

1
, r

1
, n

2
, and r are determined so as to minimize the number of patients n = n

1
 + n

2
 

if H
0
 is true: The drug, in fact, has low antitumor activity. The option that allows 

early termination of the trial satisfies high‐priority ethical concerns. The derivation 
is more advanced and there are no closed‐form formulas for the design parameters 
n

1
, r

1
, n

2
, and r. Beginning users can look for help to Simon’s two‐stage design, if 

appropriate.

14.7  PHASE II DESIGNS FOR SELECTION

Some randomized phase II trials do not fit the framework of tests of significance. 
In performing statistical tests or tests of significance, we have the option to declare 
a trial not significant when data do not provide enough support for a treatment 
difference. In those cases we decide not to pursue the new treatment, and we do 
not choose the new treatment because it does not prove any better than the placebo 
effect or that of a standard therapy. In some cancer areas we may not have a 
standard therapy, or if we do, some subgroups of patients may have failed using 
standard therapies. Suppose further that we have established activity for a given 
drug from a previous one‐arm nonrandomized trial, and the only remaining 
question is scheduling: for example, daily versus one every other day schedules. 
Or we may wish to add another drug to that regimen to improve it. In these cases 
we do not have the option to declare the trial not significant because: (i) one of the 
treatments or schedules has to be chosen (because patients have to be treated), and 
(ii) it is inconsequential to choose one of the two treatments/schedules even if they 
are equally efficacious. The aim of these randomized trials is to choose the better 
treatment.
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14.7.1  Continuous Endpoints

When the primary outcome of a trial is measured on a continuous scale, the focus is 
on the mean. At the end of the study, we select the treatment or schedule with the 
larger sample mean. But first we have to define what we mean by better treatment. 
Suppose that treatment 2 is said to be better than treatment 1 if

	 2 1 d	

where d is the magnitude of the difference between μ
2
 and μ

1
 that is deemed to be 

important; the quantity d is often called the minimum clinical significant difference. 
Then we want to make the correct selection by making sure that at the end of the 
study, the better treatment will be the one with the larger sample mean. This goal is 
achieved by imposing a condition,

	 Pr | .x x d2 1 2 1 1 	

For example, if we want to be 99% sure that the better treatment will be the one with 
the larger sample mean, we can preset α = 0.01. To do that, the total sample size must 
be at least

	
N z

d
4 1

2
2

2 	

assuming that we conduct a balanced study with each group consisting of n = N/2 
subjects. To calculate this minimum required total sample size, we need the variance 
σ2. The exact value of σ2 is unknown; we may depend on prior knowledge about one 
of the two arms from a previous study or use some upper bound.

Example 14.5
Suppose that, for a certain problem, d = 5 and it is estimated that σ 2 = 36. Then if we 
want to be 95% sure that the better treatment will be the one with the larger sample 
mean, we would need

	

N 4 1 96
36

5

24

2

2
.

 	

with 12 subjects in each of the two groups. It will be seen later that with similar 
specifications, a phase III design would require a larger sample to detect a treatment 
difference of d = 5 using a statistical test of significance.

14.7.2  Binary Endpoints

When the primary outcome of a trial is measured on a binary scale, the focus is on 
a proportion, the response rate. At the end of the study, we select the treatment or 
schedule with the larger sample proportion. But first we have to define what we 
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mean by better treatment. Suppose that treatment 2 is said to be better than 
treatment 1 if

	 2 1 d 	

where d is the magnitude of the difference between π
2
 and π

1
 that is deemed to be 

important; the quantity d is often called the minimum clinical significant difference. 
Then we want to make the correct selection by making sure that at the end of the 
study, the better treatment will be the one with the larger sample proportion. This 
goal is achieved by imposing a condition,

	 Pr |p p d2 1 2 1 1 	

where the ps are sample proportions. For example, if we want to be 99% sure that 
the better treatment will be the one with the larger sample proportion, we can preset 
α = 0.01. To do that, the total sample size must be at least

	

N z4
1

1

2

2 1

2

	

assuming that we conduct a balanced study with each group consisting of n = N/2 
subjects. In this formula,  is the average proportion:

	
1 2

2
.
	

It is obvious that the problem of planning sample size is more difficult, and a good 
solution requires a deeper knowledge of the scientific problem: a good idea of the 
magnitude of the proportions π

1
 and π

2
 themselves. In many cases, that may be 

impractical at this stage.

14.8  TOXICITY MONITORING IN PHASE II TRIALS

In a clinical trial of a new treatment, severe side effects may be a problem, and the 
trial may have to be stopped if the incidence is too high. For example, bone marrow 
transplantation is a complex procedure that exposes patients to a high risk of a 
variety of complications, many of them fatal. Investigators are willing to take these 
risks because they are in exchange for much higher risks associated with the leu-
kemia or other disease for which the patient is being treated; for many of these 
patients, standard and safer treatments have failed. Investigators often have to 
face this problem of severe side effects and contemplate stopping phase II trials. 
Phase I trials focus on safety of a new investigational medicine, and phase II trials 
are small trials to evaluate efficacy. However, phase I trials are conducted with a 
small number of patients; therefore, safety is still a major concern in a phase II 
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trial. If either the accrual or the treatment occurs over an extended period of time, 
we can anticipate the need for a decision to halt the trial if an excess of severe side 
effects occurs.

The following monitoring rule was derived using a more advanced statistical 
method called the sequential probability ratio test. Basically, patients are enrolled, 
randomized if needed, and treated; and the trial proceeds continuously until 
the  number of patients with severe side effects meets the criterion judged as 
excessive and the trial is stopped. The primary parameter is the incidence rate π of 
severe side effects as defined specifically for the trial: for example, toxicity grade 
III or IV. As with any other statistical test of significance, the decision is concerned 
with testing a null hypothesis

	 H0 0: 	

against an alternative hypothesis

	 HA A: 	

in which π
0
 is the investigator’s hypothesized value for the incidence rate π of severe 

side effects, often formulated based on knowledge from previous phase I trial 
results. The other figure, π

A
, is the maximum tolerated level for the incidence rate π 

of severe side effects. The trial has to be stopped if the incidence rate π of severe 
side effects exceeds π

A
. In addition to the null and alternative parameters, π

0
 and π

A
, 

a stopping rule also depends on the chosen level of significance α (usually, 0.05) 
and the desired statistical power (1 − β); β is the size of type II error associated with 
the alternative H

A
: π = π

A
. Power is usually preset at 80 or 90%. With these 

specifications, we monitor for the side effects by sequentially counting the number 
of events e (i.e., number of patients with severe side effects) and the number of 
evaluable patients n(e) at which the eth event is observed. The trial is stopped when 
this condition is first met:

	
n e

e A A

A

ln ln ln ln ln ln

ln

1 1 1

1
0 0

lln
.

1 0 	

In other words, the formula above gives us the maximum number of evaluable 
patients n(e) at which the trial has to be stopped if e events have been observed.

Some phase II trials may be randomized; however, even in these randomized 
trials, toxicity monitoring should be done separately for each study arm. That is, if 
the side effect can reasonably occur in only one of the arms of the study, probably the 
arm treated by the new therapy, the incidence in that group alone is considered. 
Otherwise, the sensitivity of the process to stop the trial would be diluted by inclusion 
of the other group. Sometimes the goal is to compare two treatments according to 
some composite hypothesis that the new treatment is equally effective but has less 
toxicity. In those cases, both efficacy and toxicity are endpoints, and the analysis 
should be planned accordingly, but the situations are not that of monitoring in order 
to stop the trial as intended in the rule above.
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Example 14.6
Suppose that in the planning for a phase II trial, an investigator (or clinicians in a 
study committee) decided that π

0
 = 3% (0.03) based on some prior knowlege and that 

π
A
 = 15% (0.15) should be the upper limit that can be tolerated (as related to the risks 

of the disease itself). For this illustrative example, we find that n(1) = −7, n(2) = 5, 
n(3) = 18, n(4) = 31, and so on, when we preset the level of significance at 0.05 and 
statistical power at 80%. In other words, we stop the trial if there are two events 
among the first five evaluable patients, three events among the first 18 patients, four 
events among the first 31 patients, and so on. Here we use only positive solutions and 
the integer proportion of each solution from the equation above. The negative solution 
n(1) = −7 indicates that the first event will not result in stopping the trial (because it 
is judged as not excessive yet).

Example 14.7
The stopping rule would be more stringent if we want higher (statistical) power or if 
incidence rates are higher. For example:

a)  With π
0
 = 3% and π

A
 = 15% as set previously, but if we preset the level of 

significance at 0.05 and statistical power at 90%, the results become n(1) = −8, 
n(2) = 4, n(3) = 17, n(4) = 30, and so on. That is, we would stop the trial if there 
are two events among the first four evaluable patients, three events among the 
first 17 patients, four events among the first 30 patients, and so on.

b)  On the other hand, if we keep the level of significance at 0.05 and statistical 
power at 80%, but if we decide on π

0
 = 5% and π

A
 = 20%, the results become 

n(1) = −7, n(2) = 2, n(3) = 11, n(4) = 20, and so on. That is, we would stop the 
trial if there are two events among the first two evaluable patients, three events 
among the first 11 patients, four events among the first 20 patients, and so on.

It can be seen that the rule accelerates faster with higher rates than with higher 
power.

14.9  SAMPLE SIZE DETERMINATION FOR PHASE III TRIALS

The determination of the size of a sample is a crucial element in the design of a study, 
whether it is a survey or a clinical trial. In designing any study, one of the first 
questions that must be answered is: How large must a sample be to accomplish the 
goals of the study? Depending on the study goals, the planning of sample size can be 
approached in two different ways: either in terms of controlling the width of a desired 
confidence interval for the parameter of interest, or in terms of controlling the risk of 
making type II errors. In Section 14.4, the planning of sample size was approached 
in terms of controlling the width of a desired confidence interval for the parameter of 
interest, the response rate in a phase II trial. However, phase III and IV clinical trials 
are conducted not for parameter estimation but for the comparison of two treatments 
(e.g., a new therapy versus a placebo or a standard therapy). Therefore, it is more 
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suitable to approach the planning of sample size in terms of controlling the risk of 
making type II errors. Since phase I and II trials, especially phase I trials, are specific 
for cancer research but phase III and IV trials are applicable in any field, we will 
cover this part in more general terms and include examples in fields other than 
cancers.

Recall that in testing a null hypothesis, two types of errors are possible. We might 
reject H

0
 when in fact H

0
 is true, thus committing a type I error. However, this type of 

error can be controlled in the decision‐making process; conventionally, the proba-
bility of making this mistake is set at α = 0.05 or 0.01. A type II error occurs when 
we fail to reject H

0
 even though it is false. In the drug‐testing example above, a type 

II error leads to our inability to recognize the effectiveness of the new drug being 
studied. The probability of committing a type II error is denoted by β, and 1 − β is 
called the power of a statistical test. Since the power is the probability that we will be 
able to support our research claim (i.e., the alternative hypothesis) when it is correct, 
studies should be designed to have high power. This is achieved through the planning 
of sample size. The method for sample size determination is not unique; it depends 
on the endpoint and its measurement scale.

14.9.1  Comparison of Two Means

In many studies, the endpoint is on a continuous scale. For example, a researcher is 
studying a drug that is to be used to reduce the cholesterol level in adult males aged 
30 and over. Subjects are to be randomized into two groups, one receiving the new 
drug (group 1), and one a look‐alike placebo (group 2). The response variable con-
sidered is the change in cholesterol level before compared to after the intervention. 
The null hypothesis to be tested is

	 H0 1 2: 	

versus

	 H HA A: or :2 1 2 1.	

Data would be analyzed using, for example, the two‐sample t test of Chapter  7. 
However, before any data are collected, the crucial question is: How large a total 
sample should be used to conduct the study?

In the comparison of two population means, μ
1
 versus μ

2
, the required minimum 

total sample size is calculated from

	
N z z

d
4 1 1

2
2

2 	

assuming that we conduct a balanced study with each group consisting of n = N/2 
subjects. This required total sample size is affected by four factors:

1.	 The size α of the test. As mentioned previously, this is set arbitrarily by the 
investigator; conventionally, α = 0.05 is often used. The quantity z

1−α in the 
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formula above is the percentile of the standard normal distribution associated 
with a choice of α; for example, z

1−α = 1.96 when α = 0.05 is chosen. In the 
process of sample size determination, statistical tests, such as two‐sample t test, 
are usually planned as two‐sided. However, if a one-sided test is planned, this 
step is changed slightly; for example, we use z = 1.65 when α = 0.05 is chosen.

2.	 The desired power (1 − β ); or the probability of committing a type II error β. 
This value is also selected by the investigator; a power of 80 or 90% is often 
used.

3.	 The quantity

	 d 2 1 	

	� which is the magnitude of the difference between μ
1
 and μ

2
 that is deemed to 

be important. The quantity d is often called the minimum clinical significant 
difference and its determination is a clinical decision, not a statistical decision.

4.	 The variance σ2 of the population. This variance is the only quantity that is 
difficult to determine. The exact value of σ2 is unknown; we may use information 
from similar studies or past studies or use an upper bound. Some investigators 
may even run a preliminary or pilot study to estimate σ2; but an estimate from 
a small pilot study may only be as good as any guess.

Example 14.8
Suppose that a researcher is studying a drug which is used to reduce the cholesterol 
level in adult males aged 30 or over and wants to test it against a placebo in a balanced 
randomized study. Suppose also that it is important that a reduction difference of 5 be 
detected (d = 5). We decide to preset α = 0.05 and want to design a study such that its 
power to detect a difference between means of 5 is 95% (or β = 0.05). Also, the 
variance of cholesterol reduction (with placebo) is known to be about s2  36.

	

0 05 1 96
0 05 1 65

1

1

. .

. .
z
z

two-sided test

	

leading to the required total sample size:

	

N 4 1 96 1 65
36

5
76

2

2
. .

. 	

Each group will have 38 subjects.

Example 14.9
Suppose that in Example 14.8, the researcher wanted to design a study such that its 
power to detect a difference between means of 3 is 90% (or β = 0.10). In addition, 
the variance of cholesterol reduction (with placebo) is not known precisely, but it 
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is reasonable to assume that it does not exceed 50. As in Example 14.8, let us set  
α = 0.05, leading to

	

0 05 1 96
0 10 1 28

1

1

. .

. . .
z
z

two-sided test

	

Then using the upper bound for variance (i.e., 50), the required total sample size is

	

N 4 1 96 1 28
50

3
234

2

2
. .

. 	

Each group will have 117 subjects.
Suppose, however, that the study was actually conducted with only 180 subjects, 

90 randomized to each group (it is a common situation that studies are underenrolled). 
From the formula for sample size, we can solve and obtain

	

z
N d

z1

2

2 1

2

4

180

4

3

50
1 96

0 886

.

. 	

corresponding to a power 1-β of approximately 81%.

14.9.2  Comparison of Two Proportions

In many other studies, the endpoint may be on a binary scale; so let us consider a 
similar problem where we want to design a study to compare two proportions. 
For example, a new vaccine will be tested in which subjects are to be randomized 
into two groups of equal size: a control (nonimmunized) group (group 1), and an 
experimental (immunized) group (group 2). Subjects in both control and experimental 
groups will be challenged by a certain type of bacteria and we wish to compare the 
infection rates. The null hypothesis to be tested is:

	 H0 1 2: 	

versus

	 H HA A: or :1 2 1 2.	

How large a total sample should be used to conduct this vaccine study?
Suppose that it is important to detect a reduction of infection rate

	 d 2 1.	
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If we decide to preset the size of the study at α = 0.05 and want the power (1 − β) to 
detect the difference d, the required sample size is given by the formula

	

N z z4
1

1 1

2

2 1

2

	

or the power for a given sample size is determined from

	

z
N

z1
2 1

1
2 1

.

	

In this formula the quantities z
1−α and z

1−β are defined as in Section 14.9.1 and is the 
average proportion:

	
1 2

2
.
	

It is obvious that the problem of planning sample size is more difficult and that a 
good solution requires a deeper knowledge of the scientific problem: a good idea of 
the magnitude of the proportions π

1
 and π

2
 themselves.

Example 14.10
Suppose that we wish to conduct a clinical trial of a new therapy where the rate of 
successes in the control group was known to be about 5%. Further, we would consider 
the new therapy to be superior – cost, risks, and other factors considered – if its rate 
of successes is about 15%. Suppose also that we decide to preset α = 0.05 and want 
the power to be about 90% (i.e., β = 0.10). In other words, we use

	

z
z

1

1

1 96
1 28
.
. .	

From this information, the total sample size required is

	

N 4 1 96 1 28
0 10 0 90

0 15 0 05

378 189

2

2
. .

. .

. .

 or patients iin each group.	

Example 14.11
A new vaccine will be tested in which subjects are to be randomized into two groups 
of equal size: a control (unimmunized) group and an experimental (immunized) 
group. Based on prior knowledge about the vaccine through small pilot studies, the 
following assumptions are made:

1.	 The infection rate of the control group (when challenged by a certain type of 
bacteria) is expected to be about 50%:

	 2 0 50. .	
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2.	 About 80% of the experimental group is expected to develop adequate antibodies 
(i.e., at least a twofold increase). If antibodies are inadequate, the infection rate 
is about the same as for a control subject. But if an experimental subject has 
adequate antibodies, the vaccine is expected to be about 85% effective (which 
corresponds to a 15% infection rate against the challenged bacteria).

	 Putting these assumptions together, we obtain an expected value of π
1
:

	
1 0 80 0 15 0 20 0 50

0 22
. . . .

. . 	

	� Suppose also that we decide to preset α = 0.05 and want the power to be about 
95% (i.e., β = 0.05). In other words, we use

	

z

z
1

1

1 96

1 65

.

. .	

 From this information, the total sample size required is

	

N 4 1 96 1 65
0 36 0 64

0 50 0 22
154

2

2
. .

. .

. .
 	

 so that each group will have 77 subjects. In this solution we use

	 0 36. 	

 the average of 22% and 50%.

14.9.3  Survival Time as the Endpoint

When patient survivorship is considered as the endpoint of a trial, the problem may look 
similar to that of comparing two proportions. For example, one can focus on a conven-
tional time span, say five years, and compare the two survival rates. The comparision of 
the five‐year survival rate from an experimental treatment versus the five‐year survival 
rate from a standard regimen, say in the analysis of results from a trial of cancer 
treatments, fits the framework of a comparison of two population proportions as seen in 
Section 14.9.2. The problem is that, for survival data, studies have staggered entry and 
subjects are followed for varying lengths of time; they do not have the same probability 
for the event to occur. Therefore, similar to the process of data analysis, the process of 
sample size determination should be treated differently for trials where the endpoint is 
binary from trials when the endpoint is survival time.

As seen in Chapter  13, the log‐rank test has become commonly used in the 
analysis of clinical trials where event or outcome become manifest only after a 
prolonged time interval. The method for sample size determination, where the 
difference in survival experience of the two groups in a clinical trial is tested using 
the log‐rank test, proceeds as followed. Suppose that the two treatments give rise to 
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survival rates P
1
 (for the experimental treatment) and P

2
 (for the standard regimen), 

respectively, at some conventional time point: say, five years. If the ratio of the two 
hazards (or risk functions) in the two groups are assumed not changing with time in 
a proportional hazards model (PHM) and is θ:1, the quantities P

1
, P

2
, and θ are 

related to each other by

	

ln

ln
.

P

P
1

2 	

1.	 The total number of events d from both treatment arms needed to be observed 
in the trial is given by

	
d z z1 1

2
2

1

1
.
	

�In this formula the quantities z
1−α and z

1−β are defined as in Section 14.9.1, and 
θ is the hazards ratio.

2.	 Once the total number of events d from both treatment arms has been estimated, 
the total number of patients N required in the trial can be calculated from

	
N

d

P P

2

2 1 2 	

�assuming equal numbers of patients randomized into the two treatment arms, 
with N/2 in each group. In this formula the quantities P

1
 and P

2
 are five‐year 

(or two‐ or three‐year) survival rates.

Example 14.12
Consider the planning of a clinical trial of superficial bladder cancer. With the current 
method of treatment (resection of tumor at cystoscopy), the recurrence‐free rate [i.e., 
the survival rate when the event under investigation is recurrency (the tumor comes 
back)] is 50% at two years. Investigators hope to increase this to at least 70% using 
intravesical chemotherapy (treatment by drug) immediately after surgery at the time 
of cystoscopy. This alternative hypothesis is equivalent to a hypothesized hazards 
ratio of:

	

ln .

ln .
. .

0 5

0 7
1 94 	

Suppose also that we decide to preset α = 0.05 (two‐sided) and want the power to be 
about 90% (i.e., β = 0.10). In other words, we use

	

z

z
1

1

1 96

1 28

.

. .	
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From this information, the required total sample size is

	

d z z1 1

2
2

2

1

1

1 96 1 28
1 1 94

1 1 94
. .

.

.

22

1 2

103

2

2

2 103

2 0 5 0 7
258 129

events

patients i

N
d

P P

. .
, nn each group.	

Example 14.13
In the example above, suppose that the study was underenrolled and was actually 
conducted with only 200 patients, 100 randomized to each of the two treatment arms. 
Then we have

	

d
N P P

z z
d

2

2
80

1 1

8 1

1 2

1 1

2

2

events

/

. 778

8 178 1 96

0 90
1z . .

. 	

corresponding to a power 1-β of approximately 84%.

14.10  SAMPLE SIZE DETERMINATION FOR CASE–CONTROL 
STUDIES

In a typical case–control study, cases of a specific disease are ascertained as they 
arise from population‐based registers or lists of hospital admissions, and controls 
are sampled either as disease‐free people from the population at risk, or as 
hospitalized patients having a diagnosis other than the one under study. Then in 
the analysis, we compare the exposure histories of the two groups. In other 
words, a typical case–control study fits the framework of a two‐arm randomized 
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phase III trials. However, the sample determination is somewhat more compli-
cated, for three reasons:

1.	 Instead of searching for a difference of two means or proportions as in the case 
of a phase III trial, the alternative hypothesis of a case–control study is postulated 
in the form of a relative risk.

2.	 It must be decided whether to design a study with equal or unequal sample 
sizes because in epidemiologic studies, there are typically a small number of 
cases and a large number of potential controls to select from.

3.	 It must be decided whether to design a matched or an unmatched study.

For example, we may want to design a case–control study to detect a relative risk, 
due to a binary exposure, of 2.0, and the size of the control group is twice the number 
of the cases. Of course, the solution also depends on the endpoint and its measurement 
scale; so let us consider the two usual categories one at a time and some simple 
configurations.

14.10.1  Unmatched Designs for a Binary Exposure

As mentioned previously, the data analysis is similar to that of a phase III trial 
where we want to compare two proportions. However, in the design stage, the 
alternative hypothesis is formulated in the form of a relative risk θ. Since we cannot 
estimate or investigate relative risk using a case–control design, we would treat the 
given number θ as an odds ratio, the ratio of the odds of being exposed for a case 
π

1
/(1 − π

1
) divided by the odds of being exposed for a control π

0
 /(1 − π

0
 ). In other 

words, from the information given, consisting of the exposure rate of the control 
group π

0
 and the approximated odds ratio due to exposure θ, we can obtain the two 

proportions π
0
 and π

1
. Then the process of sample size determination can proceed 

similar to that of a phase III trial. For example, if we want to plan for a study with 
equal sample size, N/2 cases and N/2 controls, the total sample size needed should 
be at least

	

N z z4
1

1 1

2

1 0

2

	

where

	
1

0

01 1
.
	

The problem is more complicated if we plan for groups with unequal sample sizes. 
First, we have to specify the allocation of sizes:

	

n w N

n w N

w w

1 1

0 0

1 0 1 0. 	
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where N is the total sample size needed. For example, if we want the size of the 
control group to be three times the number of the cases, w

1
 = 0.25 and w

0
 = 0.75. 

Then the the total sample size needed N can be obtained from the formula

	

N z w w

z w w

1 0 1 1
1

0
1

1 1 1 1
1

0 0 0
1

1

1 1 	

where  is the weighted average:

	 w w1 1 0 0 .	

Example 14.14
Suppose that an investigator is considering designing a case–control study of a 
potential association between congenital heart defect and the use of oral contraceptives. 
Suppose also that approximately 30% of women of childbearing age use oral 
contraceptives within three months of a conception, and suppose that a relative risk 
of θ = 3 is hypothesized. We also decide to preset α = 0.05 and want to design a study 
with equal sample sizes so that its power to detect the hypothesized relative risk of 
θ = 3 is 90% (or β = 0.10).

First, the exposure rate for the cases, the percent of women of childbearing age 
who use oral contraceptives within three months of a conception, is obtained from

	

1
0

01 1

3 0 3

3 1 0 3

0 5625

.

.

.

1+

	

and from

	

0 3 0 5625

2
0 4313

. .

. 	



0 05 1 96
0 10 1 28

1

1

. .

. .
z
z

two-sided test

	

we obtain a required total sample size of

	

N z z4
1

4 1 96 1 28
0 4313 0 568

1 1

2

1 0

2

2
. .

. . 77

0 2625
146

2
.

 	

or 73 cases and 73 controls are needed.
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Example 14.15
Suppose that all specifications are the same as in Example 14.14, but we design a study 
in which the size of the control group is four times the number of the cases. Here we have

	

0 3 0 8 0 5625 0 2

0 3525

. . . .

. 	

leading to a required total sample size N, satisfying

	

N 0 5625 0 3 1 96 0 3525 0 6475 5 1 25

1 28 0 3 0

. . . . . .

. . .77 1 25 0 5625 0 4375 5

222

. . .

N  	

or 45 cases and 177 controls. It can be seen that the study requires a larger number of 
subjects, 222 as compared to 146 subjects in Example 14.14; however, it may be 
easier to implement because it requires fewer cases, 45 as compared to 73.

14.10.2  Matched Designs for a Binary Exposure

The design of a matched case–control study of a binary exposure is also specified by 
the very same two parameters: the exposure rate of the control group π

0
 and the 

relative risk associated with the exposure θ. The problem, however, becomes more 
complicated because the analysis of a matched case–control study of a binary 
exposure uses only discordant pairs, pairs of subjects where the exposure histories of 
the case and his or her matched control are different. We have to go through two 
steps, first to calculate the number of discordant pairs m, then the number of pairs M; 
the total number of subjects is N = 2M, M cases and M controls.

The exposure rate of the cases is first calculated using the same previous formula:

	
1

0

01 1
.
	

Then, given specified levels of type I and type II errors α and β, the number of 
discordant pairs m required to detect a relative risk θ, treated as an approximate odds 
ratio, is obtained from

	

m
z z P P

P

1 1

2

2

2 1

0 5

/

. 	
where

	
P

1
.
	

Finally, the total number of pairs M is given by

	
M

m

0 1 1 01 1
.
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Example 14.16
Suppose that an investigator is considering designing a case–control study of a 
potential association between endometrial cancer and exposure to estrogen (whether 
ever taken). Suppose also that the exposure rate of controls is estimated to be about 
40% and that a relative risk of θ = 4 is hypothesized. We also decide to preset α = 0.05 
and to design a study large enough so that its power regarding the hypothesized 
relative risk above is 90% (or β = 0.10). We also plan a 1:1 matched design; matching 
criteria are age, race, and county of residence.

First, we obtain the exposure rate of the cases and the z values using specified 
levels of type I and type II errors:

	

1
0

01 1

4 0 4

1 3 0 4

0 7373

.

.

. 	



0 05 1 96

0 10 1 28
1

1

. .

. . .

z

z

two-sided test

	

The number of discordant pairs is given by

	

P

m
z z P P

P

1
0 80

2 1

0 5

1 96 2 1 2

1 1

2

2

.

/

.

. / . 88 0 80 0 20

0 30
25

1 1

38

0 4 0 2

2

2

0 1 1 0

. .

.

. .



M
m

6627 0 7373 0 6

46

. .

 	

that is pairs, 46 cases and 46 matching controls.
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14.10.3  Unmatched Designs for a Continuous Exposure

When the risk factor under investigation in a case–control study is measured on a 
continuous scale, the problem is similar to that of a phase III trial where we want to 
compare two population means as seen in Section 14.7.1. Recall that in a comparison 
of two population means, μ

1
 versus μ

2
, the required minimum total sample size is 

calculated from

	
N z z

d
4 1 1

2
2

2 	

assuming that we conduct a balanced study with each group consisting of n = N/2 
subjects. Besides the level of significance α and the desired power (1 − β ), this 
required total sample size is affected by the variance σ2 of the population and the 
quantity

	 d 1 0 	

which is the magnitude of the difference between μ
1
, the mean for the cases, and μ

0
, 

the mean for the controls, that is deemed to be important. To put it in a different way, 
besides the level of significance and the desired power (1 − β), the required total 
sample size depends on the ratio d/σ. You will see this similarity in the design of a 
case–control study with a continuous risk factor. When the risk factor under investi-
gation in a case–control study is measured on a continuous scale, the data are ana-
lyzed using the method of logistic regression (Chapter 10). However, as pointed out 
in Section 10.3, when the cases and controls are assumed to have the same variance 
σ2, the logistic regression model can be written as

	

logit

constant

ln

.

p

p

x

x

x1

1 0
2

	

Under this model, the log of the odds ratio associated with a 1‐unit higher value 
of the risk factor is

	 1
1 0

2
.
	

Therefore, the log of the odds ratio associated with a 1‐standard deviation higher 
value of the risk factor is

	
1

1 0

	

which is the same as the ratio d/σ above.
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In the design of case–control studies with a continuous risk factor, the key parameter 
is the log of the odds ratio θ associated with a 1‐standard deviation higher value of the 
covariate. Consider a level of significance α and statistical power 1 − β.

1.	 If we plan a balanced study with each group consisting of n = N/2 subjects, the 
total sample size N is given by

	

N z z
4

2 1 1

2

ln
.

	

2.	 If we allocate different sizes to the cases and the controls,

	

n w N

n w N

w w

1 1

0 0

1 0 1 0. 	

 the total sample size N is given by

	

N
w w

z z
1 1 1

2
1 0

1 1

2

ln
.

	

 For example, if we want the size of the control group to be three times the 
number of the cases, w

1
 = 0.25 and w

0
 = 0.75.

Example 14.17
Suppose that an investigator is considering designing a case–control study of a 
potential association between coronary heart disease and serum cholesterol level. 
Suppose further that it is desirable to detect an odds ratio of θ = 2.0 for a person with 
a cholesterol level 1 standard deviation above the mean for his or her age group using 
a two‐sided test with a significance level of 5% and a power of 90%. From

	

0 05 1 96

0 10 1 28
1

1

. .

. .

z

z

two-sided test

	

the required total sample size is:

	

N z z
4

4

2
1 96 1 28

62

2 1 1

2

2

2

ln
. .

 	

if we plan a balanced study with each group consisting of 31 subjects.
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Example 14.18
Suppose that all specifications are the same as in Example 14.17 but we design a 
study in which the size of the control group is three times the number of cases. Here 
we have

	

N
w w

z z
1 1 1

1

2

1

0 25

1

0

2
1 0

1 1

2

2

ln

ln . ..
. .

75
1 96 1 28

84

2

 	

or 21 cases and 63 controls.

EXERCISES

14.1	 Some opponents of the randomized, double‐blinded clinical trial, especially 
in the field of psychiatry, have argued that a necessary or at least important 
component in the efficacy of a psychoactive drug, for example a tranquilizer, 
is the confidence that the physician and the patient have in this efficacy. This 
factor is lost if one of the drugs in the trial is a placebo and the active drug and 
placebo cannot be identified. Hence active drug that would be efficacious if 
identified appears no better than placebo, and therefore is lost to medical 
practice. Do you agree with this position? Explain.

14.2	 Suppose that we consider conducting a phase I trial using the standard design 
with only three prespecified doses. Suppose further that the toxicity rates of 
these three doses are 10%, 20%, and 30%, respectively. What is the probability 
that the middle dose will be selected as the MTD? (Hint: Use the binomial 
probability calculations of Chapter 3.)

14.3	 We can refer to the standard design as a three‐and‐three design because at 
each new dose, it enrolls a cohort of three patients with the option of enrolling 
an additional three patients evaluated at the same dose. Describe the dose‐
escalation plan for a three‐and‐two design and describe its possible effects on 
the toxicity rate of the resulting maximum tolerated dose (MTD).

14.4	 Repeat Exercise 14.2 but assuming that the toxicity rates of the three doses 
used are 40, 50, and 60%, respectively.

14.5	 Refer to Example 14.9, where we found that 234 subjects are needed for a 
predetermined power of 90% and that the power would be 81% if the study 
enrolls only 180 subjects. What would be the power if the study was 
substantially underenrolled and conducted with only 120 patients?

14.6	 Refer to Example 14.10, where we found that 378 subjects are needed for a 
predetermined power of 90%. What would be the power if the study was 
actually conducted with only 300 patients, 150 in each group?
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14.7	� Refer to Example 14.14, where we found that 73 cases and 73 controls 
are needed for a predetermined power of 90%. What would be the power 
if the study was actually conducted with only 100 subjects, 50 in each 
group?

14.8	� Refer to Example 14.18, where we found that 21 cases and 63 controls are 
needed for a predetermined power of 90%. What would be the power if the 
study was actually conducted with only 15 cases but 105 controls?

14.9	� Refer to Example 14.14. Find the total sample size needed if we retain all 
the specifications except that the hypothesized relative risk is increased 
to 3.0.

14.10	� The status of the axillary lymph node basin is the most powerful predictor 
of long‐term survival in patients with breast cancer. The pathologic analysis 
of the axillary nodes also provides essential information used to determine 
the administration of adjuvant therapies. Until recently, an axillary lymph 
node dissection (ALND) was the standard surgical procedure to identify 
nodal metastases. However, ALND is associated with numerous side effects, 
including arm numbness and pain, infection, and lymphedema. A new 
procedure, sentinal lymph node (SLN) biopsy, has been proposed as a sub-
stitute and it has been reported to have a successful identification rate of 
about 90%. Suppose that we want to conduct a study to estimate and con-
firm this rate to identify nodal metastases among breast cancer patients 
because previous estimates were all based on rather small samples. How 
many patients are needed to confirm this 90% success rate with a margin of 
error of ±5%? Does the answer change if we do not trust the 90% figure and 
calculate a conservative sample size estimate?

14.11	� Metastasic melanoma and renal cell carcinoma are incurable malignancies 
with a median survival time of less than a year. Although these malignancies 
are refractory to most chemotherapy drugs, their growth may be regulated 
by immune mechanisms and there are various strategies for development 
and administration of tumor vaccines. An investigator considers conducting 
a phase II trial for such a vaccine for patients with stage IV melanoma. How 
many patients are needed to to estimate the response rate with a margin of 
error of ±10%?

14.12	� Suppose that we consider conducting a study to evaluate the efficacy of 
prolonged infusional paclitaxel (96‐hour continuous infusion) in patients 
with recurrent or metastatic squamous carcinoma of the head and neck. How 
many patients are needed to to estimate the response rate with a margin of 
error of ±15%?

14.13	� Normal red blood cells in humans are shaped like biconcave disks. 
Occasionally, hemoglobin, a protein that readily combines with oxygen, is 
formed imperfectly in the cell. One type of imperfect hemoglobin causes the 
cells to have a caved‐in, or sickle-like appearance. These sickle cells are less 
efficient carriers of oxygen than normal cells and result in an oxygen defi-
ciency called sickle cell anemia. This condition has a significant prevalence 
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among blacks. Suppose that a study is to be conducted to estimate the 
prevalence among blacks in a certain large city.

(a)	 How large a sample should be chosen to estimate this proportion to 
within 1 percentage point with 99% confidence? With 95% confidence? 
(Use a conservative estimate because no prior estimate of the preva-
lence in this city is assumed available.)

(b)	 A similar study was recently conducted in another state. Of the 13 573 
blacks sampled, 1085 were found to have sickle cell anemia. Using this 
information, resolve part (a).

14.14	� A researcher wants to estimate the average weight loss obtained by patients 
at a residential weight‐loss clinic during the first week of a controlled diet 
and exercise regimen. How large a sample is needed to estimate this mean 
to within 0.5 lb with 95% confidence? Assume that past data indicate a 
standard deviation of about 1 lb.

14.15	� Suppose that a study is designed to select the better of two treatments. 
The endpoint is measured on a continuous scale and a treatment is said to 
be better if the true mean is 10 units larger than the mean associated with the 
other treatment. Suppose also that the two groups have the same variance, 
which is estimated at about σ2 = 400. Find the total sample size needed if 
we want 99% certainty of making the right selection.

14.16	� Suppose that in planning for a phase II trial, an investigator believes that the 
incidence of severe side effects is about 5% and the trial has to be stopped if 
the incidence of severe side effects exceeds 20%. Preset the level of signifi-
cance at 0.05 and design a stopping rule that has a power of 90%.

14.17	� A study will be conducted to determine if some literature on smoking will 
improve patient comprehension. All subjects will be administered a pretest, 
then randomized into two groups: without or with a booklet. After a week, 
all subjects will be administered a second test. The data (differences between 
prescore and postscore) for a pilot study without a booklet yielded (score is 
on a scale from 0 to 5 points)

	 n x s44 0 25 2 28; . , . .	

	� How large should the total sample size be if we decide to preset α = 0.05 and 
that it is important to detect a mean difference of 1.0 with a power of 90%?

14.18	� A study will be conducted to investigate a claim that oat bran will reduce serum 
cholesterol in men with high cholesterol levels. Subjects will be randomized to 
diets that include either oat bran or cornflakes cereals. After two weeks, LDL 
cholesterol level (in mmol/L) will be measured and the two groups will be 
compared via a two‐sample t test. A pilot study with cornflakes yields

	 n x s14 4 44 0 97; . , . .	

	� How large should a total sample size be if we decide to preset α = 0.01 
and that it is important to detect an LDL cholesterol level reduction of 1.0 
mmol/L with a power of 95%?
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14.19	� Depression is one of the most commonly diagnosed conditions among hospi-
talized patients in mental institutions. The primary measure of depression is 
the CES‐D scale developed by the Center for Epidemiologic Studies, in which 
each person is scored on a scale of 0 to 60. The following results were found 
for a group of randomly selected women: n = 200, x  = 10.4, and s = 10.3. 
A study is now considered to investigate the effect of a new drug aimed at 
lowering anxiety among hospitalized patients in similar mental institutions. 
Subjects would be randomized to receive either the new drug or placebo, then 
averages of CES‐D scores will be compared using the two‐sided two‐sample 
t test at the 5% level. How large should the total sample size be if it is impor-
tant to detect a CES‐D score reduction of 3.0 with a power of 90%?

14.20	� A study will be conducted to compare the proportions of unplanned 
pregnancy between condom users and pill users. Preliminary data show that 
these proportions are approximately 10 and 5%, respectively. How large 
should the total sample size be so that it would be able to detect such a 
difference of 5% with a power of 90% using a statistical test at the two‐sided 
level of significance of 0.01?

14.21	� Suppose that we want to compare the use of medical care by black and white 
teenagers. The aim is to compare the proportions of teenagers without 
physical checkups within the last two years. Some recent survey shows that 
these rates for blacks and whites are 17 and 7%, respectively. How large 
should the total sample be so that it would be able to detect such a 10% 
difference with a power of 90% using a statistical test at the two‐sided level 
of significance of 0.01?

14.22	� Among ovarian cancer patients treated with cisplatin, it is anticipated that 
20% will experience either partial or complete response. If adding paclitaxel 
to this regimen can increase the response by 15% without undue toxicity, 
that would be considered as clinically significant. Calculate the total sample 
size needed for a randomized trial that would have a 80% chance of detect-
ing this magnitude of treatment difference while the probability of type I 
error for a two‐sided test is preset at 0.05.

14.23	� Metastatic breast cancer is a leading cause of cancer‐related mortality and 
there has been no major change in the mortality rate over the past few 
decades. Therapeutic options are available with active drugs such as pacli-
taxel. However, the promising response rate is also accompanied by a high 
incidence of toxicities, especially neurotoxicity. An investigator considers 
testing a new agent that may provide significant prevention, reduction, or 
mitigation of drug‐related toxicity. This new agent is to be tested against a 
placebo in a double‐blind randomized trial among patients with metastatic 
breast cancer who receive weekly paclitaxel. The rate of neurotoxicity over 
the period of the trial is estimated to be about 40% in the placebo group, and 
the hypothesis is that this new agent lowers the toxicity rate by one‐half, to 
20%. Find the total sample size needed using a two‐sided level of signifi-
cance of 0.05 and the assumption that the hypothesis would be detectable 
with a power of 80%.
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14.24	� In the study on metastatic breast cancer in Exercise 14.23, the investigator 
also focuses on tumor response rate, hoping to show that this rate is 
comparable in the two treatment groups. The hypothesis is that addition of 
the new agent to a weekly paclitaxel regimen would reduce the incidence of 
neurotoxicity without a compromise in its efficacy. At the present time, it is 
estimated that the tumor response rate for the placebo group, without the 
new agent added, is about 70%. Assuming the same response rate for the 
treated patients, find the margin of error of its estimate using the sample size 
obtained from Exercise 14.23.

14.25	� The primary objective of a phase III trial is to compare disease‐free survival 
among women with high‐risk operable breast cancer following surgical 
resection of all known disease and randomized to receive as adjuvant 
therapy either CEF or a new therapy. CEF has been established success-
fully as a standard adjuvant regimen in Canada; the aim here is to deter-
mine whether the addition of a taxane (to form the new regimen) can 
improve survival outcome over CEF alone. The five‐year disease‐free 
survival rate for women receiving CEF alone as adjuvant therapy was esti-
mated at about 60%, and it is hypothesized that the newly formed regimen 
would improve that rate from 60 to 70%. Find the total sample size needed 
using a two‐sided test at the 0.05 level of significance and a statistical 
power of 80%.

14.26	� Ovarian cancer is the fourth most common cause of cancer deaths in women. 
Approximately 75% of patients present with an advanced stage, and because 
of this, only a minority of patients will have surgically curable localized 
disease, and systematic chemotherapy has become the primary treatment 
modality. A randomized phase III trial is considered to compare paclitaxel–
carboplatin versus docetaxel–carboplatin as first‐line chemotherapy in stage 
IV epithelial ovarian cancer. Suppose that we plan to use a statistical test at 
the two‐sided 5% level of significance and the study is designed to have 
80% power to detect the alternative hypothesis that the two‐year survival 
rates in the paclitaxel and docetaxel arms are 40 and 50%, respectively. Find 
the total sample size required.

14.27	� A phase III double‐blind randomized trial is planned to compare a new drug 
versus placebo as adjuvant therapy for the treatment of women with 
metastatic ovarian cancer who have had complete clinical response to their 
primary treatment protocol, consisting of surgical debulking and platium‐
based chemotherapy. Find the total sample size needed using a two‐sided 
test at the 0.05 level of significance and a statistical power of 80% to detect 
the alternative hypothesis that the two‐year relapse rates in the placebo and 
the new drug arms are 60 and 40%, respectively.

14.28	� Suppose that an investigator considers conducting a case–control study to 
evaluate the relationship between invasive epithelial ovarian cancer and the 
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history of infertility (yes/no). It is estimated that the proportion of controls 
with a history of infertility is about 10% and the investigator wishes to 
detect a relative risk of 2.0 with a power of 80% using a two-sided level of 
significance of 0.05.

(a)	 Find the total sample size needed if the two groups, cases and controls, 
are designed to have the same size.

(b)	 Find the total sample size needed if the investigator wants to have the 
number of controls four times the number of cases.

(c)	 Find the number of cases needed if the design is 1:1 matched; matching 
criteria are various menstrual characteristics, exogenous estrogen use, 
and prior pelvic surgeries.

14.29	� Suppose that an investigator considers conducting a case–control study to 
evaluate the relationship between cesarean section delivery (C‐section) and 
the use of electronic fetal monitoring (EFM, also called ultrasound) during 
labor. It is estimated that the proportion of controls (vaginal deliveries) who 
were exposed to EFM is about 40% and the investigator wishes to detect a 
relative risk of 2.0 with a power of 90% using a two‐sided level of signifi-
cance of 0.05.

(a)	 Find the total sample size needed if the two groups, cases and controls, 
are designed to have the same size.

(b)	 Find the total sample size needed if the investigator wants to have the 
number of controls three times the number of cases.

(c)	 Find the number of cases needed if the design is 1:1 matched; matching 
criteria are age, race, socioeconomic condition, education, and type of 
health insurance.

14.30	� When a patient is diagnosed as having cancer of the prostate, an important 
question in deciding on treatment strategy for the patient is whether or not 
the cancer has spread to the neighboring lymph nodes. The question is so 
critical in prognosis and treatment that it is customary to operate on the 
patient (i.e., perform a laparotomy) for the sole purpose of examining the 
nodes and removing tissue samples to examine under the microscope for 
evidence of cancer. However, certain variables that can be measured without 
surgery may be predictive of the nodal involvement; one of which is level of 
serum acid phosphatase. Suppose that an investigator considers conducting 
a case–control study to evaluate this possible relationship between nodal 
involvement (cases) and level of serum acid phosphatase. Suppose further 
that it is desirable to detect an odds ratio of θ = 1.5 for a person with a serum 
acid phosphatase level 1 standard deviation above the mean for his age 
group using a two‐sided test with a significance level of 5% and a power 
of 80%. Find the total sample size needed for using a two‐sided test at the 
0.05 level of significance.
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APPENDICES

Appendix A:  Table of Random Numbers

63271 59986 71744 51102 15141 80714 58683 93108 13554 79945
88547 09896 95436 79115 08303 01041 20030 63754 08459 28364
55957 57243 83865 09911 19761 66535 40102 26646 60147 15704
46276 87453 44790 67122 45573 84358 21625 16999 13385 22782
55363 07449 34835 15290 76616 67191 12777 21861 68689 03263
69393 92785 49902 58447 42048 30378 87618 26933 40640 16281
13186 29431 88190 04588 38733 81290 89541 70290 40113 08243
17726 28652 56836 78351 47327 18518 92222 55201 27340 10493
36520 64465 05550 30157 82242 29520 69753 72602 23756 54935
81628 36100 39254 56835 37636 02421 98063 89641 64953 99337
84649 48968 75215 75498 49539 74240 03466 49292 36401 45525
63291 11618 12613 75055 43915 26488 41116 64531 56827 30825
70502 53225 03655 05915 37140 57051 48393 91322 25653 06543
06426 24771 59935 49801 11082 66762 94477 02494 88215 27191
20711 55609 29430 70165 45406 78484 31639 52009 18873 96927
41990 70538 77191 25860 55204 73417 83920 69468 74972 38712
72452 36618 76298 26678 89334 33938 95567 29380 75906 91807
37042 40318 57099 10528 09925 89773 41335 96244 29002 46453
53766 52875 15987 46962 67342 77592 57651 95508 80033 69828
90585 58955 53122 16025 84299 53310 67380 84249 25348 04332
32001 96293 37203 64516 51530 37069 40261 61374 05815 06714
62606 64324 46354 72157 67248 20135 49804 09226 64419 29457
10078 28073 85389 50324 14500 15562 64165 06125 71353 77669

(Continued )
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91561 46145 24177 15294 10061 98124 75732 00815 83452 97355
13091 98112 53959 79607 52244 63303 10413 63839 74762 50289
73864 83014 72457 22682 03033 61714 88173 90835 00634 85169
66668 25467 48894 51043 02365 91726 09365 63167 95264 45643
84745 41042 29493 01836 09044 51926 43630 63470 76508 14194
48068 26805 94595 47907 13357 38412 33318 26098 82782 42851
54310 96175 97594 88616 42035 38093 36745 56702 40644 83514
14877 33095 10924 58013 61439 21882 42059 24177 58739 60170
78295 23179 02771 43464 59061 71411 05697 67194 30495 21157
67524 02865 39593 54278 04237 92441 26602 63835 38032 94770
58268 57219 68124 73455 83236 08710 04284 55005 84171 42596
97158 28672 50685 01181 24262 19427 52106 34308 73685 74246
04230 16831 69085 30802 65559 09205 71829 06489 85650 38707
94879 56606 30401 02602 57658 70091 54986 41394 60437 03195
71446 15232 66715 26385 91518 70566 02888 79941 39684 54315
32886 05644 79316 09819 00813 88407 17461 73925 53037 91904
62048 33711 25290 21526 02223 75947 66466 06232 10913 75336
84534 42351 21628 53669 81352 95152 08107 98814 72743 12849
84707 15885 84710 35866 06446 86311 32648 88141 73902 69981
19409 40868 64220 80861 13860 68493 52908 26374 63297 45052

(Continued)



APPENDICES� 537

Appendix B:  Area under the Standard Normal Curve

Entries in the table give the area under the curve between the mean and z standard 
deviations above the mean. For example, for z = 1.25, the area under the curve bet-
ween the mean and z is 0.3944. To find the z that cuts off an area under the curve of 
0.025 (2.5%), look in the body of the table for 0.4750 (50% – 2.5% = 47.5%); 0.4750 
is in the row for 1.9 and the column for 0.06, hence z = 1.96.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3665 0.3577 0.3599 0.3621
1.1 0.3643 0.3554 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4942
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4986 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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Appendix C:  Percentiles of the t Distribution

Entries in the table give tα values, where α is the area under the curve or probability 
in the upper tail of the t distribution. For example, with 10 degrees of freedom and a 
0.025 area in the upper tail, t

0.025
 = 2.228.

Degrees of 
freedom

Area in upper tail

0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
∞ 1.282 1.645 1.960 2.326 2.576
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Appendix D:  Percentiles of THE Chi‐Square Distribution

Entries in the table give 2 values, where α is the area under the curve or probability 
in the upper tail of the chi‐square distribution. For example, with 20 degrees of free-
dom and a 0.05 area in the upper tail, 0 05

2 31 410. . .

Degrees of 
freedom

Area in upper tail

0.05 0.01

1 3.841 6.635
2 5.991 9.210
3 7.815 11.350
4 9.488 13.277
5 11.071 15.086
6 12.592 16.812
7 14.067 18.475
8 15.507 20.090
9 16.919 21.666
10 18.307 23.209
11 19.675 24.725
12 21.026 26.217
13 22.362 27.688
14 23.685 29.141
15 24.996 30.578
16 26.296 32.000
17 27.587 33.408
18 28.869 34.805
19 30.144 36.191
20 31.410 37.566
21 32.671 38.932
22 33.924 40.289
23 35.173 41.638
24 36.415 42.980
25 37.653 44.314
26 38.885 45.642
27 40.113 46.963
28 41.337 48.278
29 42.557 49.588
30 43.773 50.892
40 55.759 63.691
50 67.505 76.154
60 79.082 88.380
70 90.531 100.425
80 101.879 112.329
90 113.145 124.116
100 124.342 135.807
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Appendix E:  Percentiles of the F Distribution

Entries in the table give Fα values, where α is the area under the curve or probability 
in the upper tail of the F distribution. For example, with 3 numerator degrees of free-
dom, 20 denominator degrees of freedom, and a 0.01 area in the upper tail, F

0.01
 = 4.94 

at df = (3, 20).

Denominator 
degrees of  
freedom

Numerator degrees of freedom (area in upper tail)

2 (0.05) 2 (0.01) 3 (0.05) 3 (0.01) 4 (0.05) 4 (0.01) 5 (0.05) 5 (0.01)

5 5.79 13.27 5.41 12.06 5.19 11.39 4.82 10.97
6 5.14 10.92 4.76 9.78 4.53 9.15 4.39 8.75
7 4.74 9.55 4.35 8.45 4.12 7.85 3.97 7.46
8 4.46 8.65 4.07 7.59 3.84 7.01 3.69 6.63
9 4.26 8.02 3.86 6.99 3.63 6.42 3.48 6.06
10 4.10 7.56 3.71 6.55 3.48 5.99 3.33 5.64
11 3.98 7.21 3.59 6.22 3.36 5.67 3.20 5.32
12 3.89 6.93 3.49 5.95 3.26 5.41 3.11 5.06
13 3.81 6.70 3.41 5.74 3.18 5.21 3.03 4.86
14 3.74 6.51 3.34 5.56 3.11 5.24 2.96 4.69
15 3.68 6.36 3.29 5.42 3.06 4.89 2.90 4.56
16 3.63 6.23 3.24 5.29 3.01 4.77 2.85 4.44
17 3.59 6.11 3.20 5.18 2.96 4.67 2.81 4.34
18 3.55 6.01 3.16 5.09 2.93 4.58 2.77 4.25
19 3.52 5.93 3.13 5.01 2.90 4.50 2.74 4.17
20 3.49 5.85 3.10 4.94 2.87 4.43 2.71 4.10
21 3.47 5.78 3.07 4.87 2.84 4.37 2.68 4.04
22 3.44 5.72 3.05 4.82 2.82 4.31 2.66 3.99
23 3.42 5.66 3.03 4.76 2.80 4.26 2.64 3.94
24 3.40 5.61 3.01 4.72 2.78 4.22 2.62 3.90
25 3.39 5.57 2.99 4.68 2.76 4.18 2.60 3.85
26 3.37 5.53 2.98 4.64 2.74 4.14 2.59 3.82
27 3.35 5.49 2.96 4.60 2.73 4.11 2.57 3.78
28 3.34 5.45 2.95 4.57 2.71 4.07 2.56 3.75
29 3.33 5.42 2.93 4.54 2.70 4.04 2.55 3.73
30 3.32 5.39 2.92 4.51 2.69 4.02 2.53 3.70
35 3.27 5.27 2.87 4.40 2.64 3.91 2.49 3.59
40 3.23 5.18 2.84 4.31 2.61 3.83 2.45 3.51
50 3.18 5.06 2.79 4.20 2.56 3.72 2.40 3.41
60 3.15 4.98 2.76 4.13 2.53 3.65 2.37 3.34
80 3.11 4.88 2.72 4.04 2.49 3.56 2.33 3.26
100 3.09 4.82 2.70 3.98 2.46 3.51 2.31 3.21
120 3.07 4.79 2.68 3.95 2.45 3.48 2.29 3.17
∞ 3.00 4.61 2.60 3.78 2.37 3.32 2.21 3.02
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ANSWERS TO SELECTED EXERCISES

Chapter 1

1.1	 For left‐handed: p = 0.517; for right‐handed: p = 0.361.

1.2	 For factory workers: x = 49; for nursing students: x = 73.

1.3	 For cases: p = 0.775; for controls: p = 0.724.

1.4	 For nursing home A: p = 0.250; for nursing home B: p = 0.025. The proportion 
in nursing home A where the “index” nurse worked is 10 times higher than the 
proportion in nursing home B.

1.5	 (a) � For high exposure level: p = 0.488; for low exposure level: p = 0.111. 
Students in the high‐exposure group have a much higher proportion of 
cases, more than four times higher.

(b)	 OR = 7.66; it supports the conclusion in part (a) showing that high exposure 
is associated with higher odds, and so a higher proportion, of positive cases.

1.6	 (a) � With EFM: p = 0.126; without EFM: p = 0.077. The EFM‐exposed group 
has a higher proportion of cesarean deliveries.

(b)	 OR = 1.72; it supports the conclusion in part (a) showing that EFM 
exposure is associated with higher odds, and so a higher proportion, of 
cesarean deliveries.

1.7	 (a)	� With helmet: p = 0.116; without helmet: p = 0.338. The group without 
helmet protection has a higher proportion of head injuries.

(b)	 OR = 0.26; it supports the conclusion in part (a) showing that helmet pro-
tection is associated with reduced odds, and so a lower proportion, of head 
injuries.
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  1.8	 (a) � Men: OR = 0.94, indicating a slightly lower risk of myocardial infarction. 
Women: OR = 0.55, indicating a lower risk of myocardial infarction.

(b)	 The effect of drinking is stronger in women, reducing the risk more: 45% 
versus 6%.

(c)	 Men: OR = 0.57 indicating a lower risk of coronary death; women:  
OR = 0.39 indicating a lower risk of coronary death.

(d)	 The effect of drinking is stronger in women, reducing the risk more: 61% 
versus 43%.

  1.9	 (a)  Zero or one partner: OR = 2.70; two or more partners: OR = 1.10.

(b)	 Both odds ratios indicate an elevated risk associated with smoking, but 
the effect on those with zero or one partner is clearer.

(c)	 Combined estimate of odds ratio: OR
MH

 = 1.26.

1.15	 Sensitivity = 0.733; specificity = 0.972.

1.16	 For Dupont’s EIA: sensitivity = 0.938; specificity = 0.988; for Cellular prod-
uct’s EIA: sensitivity = 1.0; specificity = 0.952.

1.17	 (a) � Heart disease, 30.2%; cancer, 24.1%; coronary disease, 8.2%; accidents, 
4.0%; others, 33.4%. 

(b)	 population size: 3 525 297. 

(c)	 rates per 100 000: cancer, 235.4; coronary disease, 80.3; accidents, 39.2; 
others, 325.5.

1.19	 OR = 1.43.

1.20	 (a)  For nonsmokers: OR = 1.28. 

(b)	 For smokers: OR = 1.61. 

(c)	 The risk seems to be higher for smokers; (d) combined estimate: OR
MH

 = 1.53.

1.21	 (a) � Odds ratios associated with race (black vs white, nonpoor): (i) 25–44: 
1.07; (ii) 45–64: 2.00; (iii) 65+: 1.54. Different ratios indicate possible 
effect modifications by age.

(b)	 Odds ratios associated with income (poor vs nonpoor, black): (i) 25–44: 
2.46; (ii) 45–64: 1.65; (iii) 65+: 1.18. Different ratios indicate a possible 
effect modification by age.

(c)	 Odds ratios associated with race (black vs white) (i) for 65+ years + poor: 
1.18; (ii) for 65+ years + nonpoor: 1.54. The difference (1.18 ≠ 1.54) indi-
cates a possible effect modification by income.

1.22	 (a)

Age group Odds ratio

25–44 7.71
45–64 6.03
65+ 3.91

(b)	 The odds ratios decrease with increasing age; (c) OR
MH

 = 5.4.
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1.23	 (a)

Weight group Odds ratio

<57 5.00
57–75 2.75
>75 1.30

(b)	 The odds ratios decrease with increasing weight; (c) OR
MH

 = 2.78.

1.24	 For age at first live birth:

Age Odds ratio

22–24 1.26
25–27 1.49
28+ 1.95

General odds ratio is 1.43.

For age at menopause:

Age Odds ratio

45–49 1.10
50+ 1.40

General odds ratio is 1.27.

1.25	 Results for parts (b) and (c):
For smoking:

Status Odds ratio

Past 1.24
Current 1.40

General odds ratio is 1.23.

For alcohol:

Status Odds ratio

Past 1.08
Current 0.87

General odds ratio is 0.88.

For body mass index:

BMI level Odds ratio

22.5–24.9 1.41
25+ 1.39

General odds ratio is 1.22.
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1.26	 For duration of unprotected intercourse:

Years Odds ratio

2–9 0.94
10–14 1.04
15+ 1.54

General odds ratio is 1.21, showing an upward trend of risks.

For history of infertility:

History Odds ratio

Yes, no drug use 1.13
Yes, with drug use 3.34

General odds ratio is 1.33, showing an upward trend of risks.

1.27	 For boys:

Maternal age Odds ratio

21–25 0.97
26–30 0.67
30+ 0.43

General odds ratio is 0.62, showing an downward trend of risks, decreasing 
with increasing maternal age.

For girls:

Maternal age Odds ratio

21–25 0.8
26–30 0.81
30+ 0.62

General odds ratio is 0.84, showing an downward trend of risks,  
decreasing with increasing maternal age, but the trend is weaker than  
that for boys.

1.28	 Sensitivity = 0.650; specificity = 0.917.

1.29	 (a) � For 1987: 24 027; for 1986: 15 017. 

(b)	 Number of cases of AIDS transmitted from mothers to newborns in  
1988: 468.
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1.30	 Follow‐up death rates:

Age (yr) Deaths/1000 months

21–30 3.95
31–40 5.05
41–50 11.72
51–60 9.80
61–70 10.19
70+ 20.09

RR(70+ years vs 51–60 years) = 2.05.

1.31	 Death rates for Georgia (per 100 000):
(a)  Crude rate for Georgia: 908.3

(b) Adjusted rate (U.S.A. as standard), Georgia: 1060.9
Adjusted rate for Alaska: 788.6
Adjusted rate for Florida: 770.6

(c) Adjusted rate (Alaska as standard), Georgia: 560.5
Crude rate for Alaska: 396.8

1.32	 With Georgia as standard: Alaska, 668.4; Florida, 658.5 compared to crude 
rate for Georgia of 908.3.

1.33	 Standardized mortality ratios:

Years since entering the industry 1–4 5–9 10–14 15+
SMR 0.215 0.702 0.846 0.907

RR(15+ years versus 1–4 years): 4.22.

1.35	 (c) General odds ratio is 1.31, showing an upward trend with coffee consump-
tion: given two persons who were admitted for different conditions, the odds 
that the one with the acute condition will consume more coffee is 1.31.

1.36	 (a)

Group

Proportion of 
HBV‐positive 

workers

Physicians
  Frequent 0.210
  Infrequent 0.079
Nurses
  Frequent 0.212
  Infrequent 0.087



546� ANSWERS TO SELECTED EXERCISES

(b)	 Odds ratios associated with frequent contacts: for physicians, 3.11; for nurses, 
2.80; (c) odds ratios are similar but larger for physicians; (d) OR

MH
 = 2.93.

1.38	 (a)  For age:

Group Odds ratio

14–17 2.09
18–19 1.96
20–24 1.69
25–29 1.02

Yes, the younger the mother, the higher the risk.

(b)	 For socioeconomic level:

Group Odds ratio

Upper 0.30
Upper middle 0.34
Middle 0.56
Lower middle 0.71

Yes, the poorer the mother, the higher the risk.

(c)	 General odds ratio is 0.57: given two mothers with different economic 
levels, the odds that the richer one has premature delivery is 0.57. Yes, it 
supports the results in part (b).

1.39	 (a)

Group SMR

Male 1.22
Female 0.78
Black 2.09
White 0.85

(d)	 Relative risks: associated with gender, 1.57; associated with race, 2.47.

1.40	

Group Odds ratio

Protestants 0.50
Catholics 4.69
Others 0.79

Yes, there is clear evidence of an effect modification (4.69 ≠ 0.50, 0.79).

1.41	 For age at first live birth, with “28 or older” group as baseline:

Age Odds ratio

<22 0.51
22–24 0.65
25–27 0.76
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For age at menopause, with “50 or older” group as baseline:

Age Odds ratio

<45 0.72
45–49 0.79

1.42	

Symptom Odds ratio

Nightmares 3.72
Sleep problems 1.54
Troubled memories 3.46
Depression 1.46
Temper control problems 1.78
Life goal association 1.50
Omit feelings 1.39
Confusion 1.57

1.43	

Group Odds ratio

Males
  Low fat, low fiber 1.15
  High fat, high fiber 1.80
  High fat, low fiber 1.81
Females
  Low fat, low fiber 1.72
  High fat, high fiber 1.85
  High fat, low fiber 2.20

Yes, there is evidence of effect modifications. For example, for males: high 
versus low fat, the odds ratio is 1.80 with high fiber and 1.57 (=1.81/1.15) 
with low fiber; for females: high versus low fat, the odds ratio is 1.85 with 
high fiber and 1.28 (=2.20/1.72) with low fiber.

1.45	 (a) � Choosing “never” as baseline, here are the odds ratios associated with 
being a resident (vs attending physician):

Action level Odds ratio

Rarely 1.93
Occasionally 24.30
Frequently 33.80
Very frequently 5.20

(b)	 The general odds ratio is 6.15; given two physician of different types, the 
odds that the resident committing more unnecessary transfusion is 6.15; 
Yes, this agrees with the results in part (a).
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1.46	

Factor Odds ratio

X‐ray 8.86
Stage 5.25
Grade 3.26

Chapter 2

2.1	 Median = 193.

2.2	 Median for 1979 is 47.6, for 1987 is 27.8.

2.8	 Median from graph is 83, exact is 86.

2.9	

x s2 s s x

Men 84.71 573.68 23.95 28.3%
Women 88.51 760.90 27.58 31.2%

2.11	 x 168 75. , s2 = 1372.75, s = 37.05.

2.12	 x 3 05. , s2 = 0.37, s = 0.61.

2.13	 x 112 78. , s2 = 208.07, s = 14.42.

2.14	 x 100 58. , s2 = 196.08, s = 14.00.

2.15	 x 0 718. , s2 = 0.261, s = 0.511.

2.16	

x s2 s

Age 65.6 243.11 15.19
SBP 146.2 379.46 19.48

2.17	

x s2 s

Females 107.6 4373.5 66.1
Males 97.8 1635.9 40.4

2.18	  x 0 22. , s2 = 0.44, s = 0.66.

2.19	

x s2 s

Treatment 651.9 31 394.3 177.2
Control 656.1 505.1 22.5
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2.20	 (a)  x 169 0. , mean is lower than L.A.’s; s2 = 81.5, s = 9.0; (b) CV = 5%.

2.21	 x 2 5. , s2 = 9.5, s = 3.1.

2.22	 Mean = 14.1, geometric mean = 10.3, median = 12.5.

2.23	 Mean = 21.3, geometric mean = 10.6, median = 10.0.

2.24	 Mean = 98.5, geometric mean = 93.4, median = 92.5.

2.25	  

x s2

Bulimic 22.1 21.0
Healthy 29.7 42.1

Bulimic group has smaller mean and smaller variance.

2.26	

x s2 s Median

Drug A 133.9 503.8 22.4 130.0
Drug R 267.4 4449.0 66.7 253.0

2.27	 (a)  For survival time:

x s2 s

AG positive 62.5 2954.3 54.4
AG negative 17.9 412.2 20.3

(b)	 For WBC:

x Geometric mean Median

AG positive 29 073.5 12 471.9 10 000
AG negative 29 262.5 13 771.9 20 000

2.28	

Measure Value

Pearson’s 0.931
Kendall’s 0.875
Spearman 0.963

2.29	

Measure Men Women

Pearson’s 0.514 0.718
Kendall’s 0.282 0.714
Spearman 0.377 0.849
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2.30	

Measure Value

Pearson’s −0.786
Kendall’s −0.619
Spearman −0.767

2.31	

Measure Standard Test

Pearson’s 0.940 0.956
Kendall’s 0.896 0.955
Spearman 0.960 0.988

2.32	 20 patients with nodes, 33 patients without nodes.

Factor x s2 s

Age
  Without node 60.1 31.4 5.6
  With node 58.3 49.1 7.0
Acid
  Without node 64.5 744.2 27.3
  With node 77.5 515.3 22.7

2.33	 All patients: 0.054; with nodes: 0.273; without nodes: −0.016. Nodal involve-
ment seems to change the strength of the relationship.

2.34	 (a)  12 females, 32 males; 20 with residency, 24 without.

Factor x s

Gender
  Females 0.00116 0.00083
  Males 0.00139 0.00091
Residency
  Without 0.00147 0.00099
  With 0.00116 0.00073

(b)	 Between complaints and revenue: 0.031; between complaints and work 
load: 0.279.

2.35	 (a) Between y and x
1
 is 0.756; (b) between y and x

2
 is 0.831.

Chapter 3

3.1	 Odds ratio = 0.62; Pr(Pap = yes) = 0.82, Pr(Pap = yes | black) = 0.75 ≠ 0.82.

3.2	 Odds ratio = 5.99; Pr(second = present) = 0.65, Pr(second = present | first = 
present) = 0.78 ≠ 0.65.
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3.3	 (a) 0.202; (b) 0.217; (c) 0.376; (d) 0.268.

3.4	 Positive predictive value for population A: 0.991; for population B: 0.900.

3.5	 (a) Sensitivity = 0.733, specificity = 0.972; (b) 0.016; (c) 0.301.

3.6	

Prevalence Positive predictive value

0.2 0.867
0.4 0.946
0.6 0.975
0.7 0.984
0.8 0.991
0.9 0.996

Yes:

prevalence
PPV specificity

PPV specificity PPV

1

1 1 sensitivity
if PPV0 133 0 8. . . 	

3.7	 (a) 0.1056; (b) 0.7995.

3.8	 (a) 0.9500; (b) 0.0790; (c) 0.6992.

3.9	 (a) 0.9573; (b) 0.1056.

3.10	 (a) 1.645; (b) 1.96; (c) 0.84.

3.11	 102.8 = 118.4 − (1.28)(12.17).

3.12	

Age
Hypotension 

if below:
Lowest  
healthy

Highest  
healthy

Hypertension 
if above:

20–24 years 101.23 106.31 141.49 146.57
25–29 years 104.34 109.0 141.20 145.86

For example, 123.9 − (1.645)(13.74) = 101.3.

3.13	 (a) 200+ days: 0.1587; 365+ days:  0; (b) 0.0228.

3.14	 (a) 0.0808; (b) 82.4.

3.15	 (a) 17.2; (b) 19.2%; (c) 0.0409.

3.16	 (a) 0.5934; (b) 0.0475; (c) 0.0475.

3.17	 (a)  0 (z = 3.79); (b)  0 (z = −3.10).

3.18	 (a) 0.2266; (b) 0.0045; (c) 0.0014.

3.19	 (a) 0.0985; (b) 0.0019.
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3.20	 Rate = 13.89 per 1000 live births; z = 13.52.

3.21	 (a) �Left of 2.086: 0.975; left of 2.845: 0.995; (b) right of 1.725: 0.05; right of 
2.528: 0.01; (c) beyond ±2.086: 0.05; beyond ±2.845: 0.01.

3.22	 (a) �Right of 5.991: 0.05; right of 9.210: 0.01; (b) right of 6.348: between 0.01 
and 0.05; (c) between 5.991 and 9.210: 0.04.

3.23	 Right of 3.32: 0.05; right of 5.39: 0.01; (a) right of 2.61: < 0.01; (c) between 
3.32 and 5.39: 0.04.

3.24	 κ = 0.399, marginally good agreement.

3.25	 κ = 0.734, good agreement – almost excellent.

Chapter 4

4.1	 μ = 0.5; six possible samples with x 0 5. .

4.2	 Pr Pr . .
. .

1 1 2 33 2 33
0 9802

x z 	

4.3	

Group 95% confidence interval

Left‐handed (0.444, 0.590)
Right‐handed (0.338, 0.384)

4.4	

Group 95% confidence interval

Students (0.320, 0.460)
Workers (0.667, 0.873)

4.5	
Year 95% confidence interval

1983 (0.455, 0.493)
1987 (0.355, 0.391)

4.6	

Level 95% confidence interval

High (0.402, 0.574)
Low (0.077, 0.145)

4.7	 For whites

For blacks

: . . . . %, . % .

: .

25 3 1 96 0 9 23 54 27 06

38 6 11 96 1 8 35 07 42 13. . . %, . % .

	

No, sample sizes were already incorporated into standard errors.
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4.8	

Parameter 95% confidence interval

Sensitivity (0.575, 0.891)
Specificity (0.964, 0.980)

4.9	

Assay Parameter 95% confidence interval

Dupont Sensitivity (0.820, 1.0)
Specificity (0.971, 1.0)

Cellular product Sensitivity Not available
Specificity (0.935, 0.990)

Note: Sample sizes are very small here.

4.10	

Personnel Exposure 95% confidence interval

Physicians Frequent (0.121, 0.299)
Infrequent (0.023, 0.135)

Nurses Frequent (0.133, 0.291)
Infrequent (0.038, 0.136)

4.11	 (a) Proportion: (0.067, 0.087); odds ratio: (1.44, 2.05).

4.12	 (a) Proportion: (0.302, 0.374); odds ratio: (0.15, 0.44).

4.13	

Event Gender 95% confidence interval for OR

Myocardial infarction Men (0.69, 1.28)
Women (0.30, 0.99)

Coronary death Men (0.39, 0.83)
Women (0.12, 1.25)

No clear evidence of effect modification, intervals are overlapped.

4.14	

Religion group 95% confidence interval for OR

Protestant (0.31; 0.84)
Catholic (1.58; 13.94)
Others (0.41; 1.51)

The odds ratio for the Catholics is much higher.

4.15	 (a) Proportion: (0.141, 0.209); odds ratio: (1.06, 1.93).
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4.16	 (a)

	

Odds ratio
177 31

11 249
2 0

2 0 1 96
1

177

1

31

1

11

.

exp ln . .
11

249
0 98 4 09. , . .

	

      

(b)

	

Odds ratio
177 26

11 233
1 78

1 78 1 96
1

177

1

26

1

1

.

exp ln . .
11

1

233
0 86 3 73. , . .

	

4.17	

Maternal age (years)

OR (95% confidence interval)

Boys Girls

<21 2.32 (0.90, 5.99) 1.62 (0.62, 4.25)
21–25 2.24 (1.23, 4.09) 1.31 (0.74, 2.30)
26–30 1.55 (0.87, 2.77) 1.31 (0.76, 2.29)

4.18	 (a) 

Duration (years) OR (95% confidence interval)

2–9 0.94 (0.74, 1.20)
10–14 1.04 (0.71, 1.53)
≥15 1.54 (1.17, 2.02)

(b)

Group OR (95% confidence interval

No drug use 1.13 (0.83, 1.53)
Drug use 3.34 (1.59, 7.02)

4.19	 x
s

x

3 05
0 61
0 19

3 05 2 262 0 19 2 61 3 49

.

.

.

. . . . , . .

SE

	

4.20	 x
s

x

112 78
14 42
3 40

112 78 2 110 3 40 105 61 119 9

.
.

.

. . . . , .

SE

55 .
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4.21	 x
s

x

100 58
14 00
4 04

100 58 2 201 4 04 91 68 1293 4

.
.

.

. . . . , .

SE

88 .

	

4.22	

Group 95% confidence interval

Females (63.2, 152.0)
Males (76.3, 119.3)

4.23	 x
s

x

0 22
0 66
0 18

0 22 2 160 0 18 0 16 0 60

.

.

.

. . . . , . .

SE

	

4.24	

Group 95% confidence interval

Treatment (653.3, 676.9)
Control (681.1, 722.7)

4.25	 (a) Mean: (0.63, 4.57); (b) correlation coefficient: (0.764, 0.981).

4.26	 On log scale: (1.88, 2.84); in weeks: (6.53, 17.19).

4.27	 Control

Simulation game

: . . . . , . .

: .

7 9 1 96 3 7 30 6 58 9 22

10 1 11 96 2 3 33 9 32 10 88. . . , . .

	

4.28	 (a) 25 0 1 96 2 7 58 24 31 25 69. ( . )( . ) ( . , . )/ ; (b) on the average, people with 
large body mass index are more likely to develop diabetes mellitus.

4.29	

DBP level Exposure 95% confidence interval

<95 Yes (213.2, 226.8)
No (216.0, 226.0)

95–100 Yes (215.3, 238.6)
No (223.6, 248.4)

≥100 Yes (215.0, 251.0)
No (186.2, 245.8)

4.30	 (−0.220, 0.320).

4.31	 (0.545, 0.907).

4.32	 Standard: (0.760, 0.986), test: (0.820, 0.990).
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4.33	 With smoke: (0.398, 0.914), with sulfur dioxide: (0.555, 0.942).

4.34	 Men: (−0.171, 0.864), women: (0.161, 0.928).

4.35	 AG positive: (0.341, 0.886), AG negative: (−0.276, 0.666).

Chapter 5

5.1	 H
0
: μ = 30; H

A
: μ > 30; (b) H

0
: μ = 11.5; H

A
: μ ≠ 11.5; (c) hypotheses are for 

population parameters; (d) H
0
: μ = 31.5; H

A
: μ < 31.5; (e) H

0
: μ = 16; H

A
: μ ≠ 

16; (f) Same as part (c).

5.2	 H
0
: μ = 74.5.

5.3	 H
0
: μ = 7250; H

A
: μ < 7250.

5.4	 H
0
: π = 38; H

A
: π > 38.

5.5	 H
0
: π = 0.007; H

A
: μ > 0.007.



0

0
2

value Pr 20 cases out of 1000

: 1000 0.007 7

variance 1000 0.007 0.993 2.64
20 7

2.64
4.92; value 0

p H

H

z

p

5.6	 The mean difference; H
0
: μ

d
 = 0, H

A
: μ

d
 ≠ 0.

5.7	 H

HA

0

20 5

5000
20 5

5000

:
.

:
.

	

5.8	 H
0
: σ = 20, H

A
: σ ≠ 20.

5.9	 One‐tailed.

5.10	 Under varianceH

z

0

2
0 25 1 100 0 043

0 18 0 25

0 04

: . ; / .
. .

. 33
1 63 0 052

0 15 1 100 0 036

. ; . .

: . ; / .Under varianceHA

2

0 18 0 15

0 036
0 83 0 2033

z
. .

.
. ; . .

	

The change makes α smaller and β larger.



ANSWERS TO SELECTED EXERCISES� 557

5.11	 Under

Under

H z

H zA

0

0 22 0 25

0 043
0 70 0 0242

0 22 0 1

:
. .

.
. ; . .

:
. . 55

0 036
1 94 0 026

.
. ; . .

	

The new change makes α larger and β smaller.

5.12	 p p p

z

value orPr . .

Pr
. .

.
.

0 18 0 32

2
0 32 0 25

0 043
1 63

0.. .1032

	

5.13	 p
p
0 18

0 0385

0 18 1 96 0 0385 0 105 0 255

.
.

. . . . , . ,

SE

which inncludes 0 25. .

5.14	 SE( )x 0 054. ; cut point for α = 0.05: 4.86 ± (1.96)(0.054) = 4.75 and 4.96.
4 86 0 1
4 96
4 96 4 96

0 054
0 0 5

. .

.
. .

.
; . .

z

power 	

5.15	 SE( )x 1 11. ; cut points for α = 0.05: 128.6 ± (1.96)(1.11) = 126.4 and 130.8.



135

power 1 Pr 126.4 130.8 135

1.0.

x

	

Chapter 6

  6.1	 Proportion is p = 0.227; z = −1.67; p value = (2)(0.0475) = 0.095.

  6.2	 χ2 = 75.03; p value  0.

  6.3	 z
p

264 249 264 249
0 66 0 5092. ; .value

	

or χ2 = 0.44.

  6.4	 z = 3.77 or χ 2 =14.23; p value < 0.01.

  6.5	 z = 4.60; p value  0.

  6.6	 H
0
: consistent report for a couple, that is, man and woman agree.

z
p

6 7 6 7
0 28 0 7794. ; . .value 	
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6.7	 H
0
: no effects of acrylate and methacrylate vapors on olfactory function.

z
p

22 9 22 9
2 33 0 0198. ; . .value 	

6.8	 z = 4.11 or χ2 = 16.89; p value < 0.01.

6.9	 z = 5.22 or χ2 =27.22; p value < 0.01.

6.10	 z = 7.44 or χ2 = 55.36; p value < 0.01.

6.11	 χ2 = 44.49; p value < 0.01.

6.12	 χ2 = 37.73; p value < 0.01.

6.13	 χ2 = 37.95; p value < 0.01.

6.14	 χ2 = 28.206; p value < 0.01.

6.15	 χ2 = 5.58; p value < 0.05.

6.16	 p value = 0.002.

6.17	 (a) Pearson’s: χ2 = 11.35; p value = 0.001; (b) Pearson’s with Yates’ correction: 

c
2 = 7.11; p value = 0.008; (c) Fisher’s exact: p value = 0.013.

6.18	 p value = 0.018.

6.19	 χ2 = 14.196; df = 3; p value < 0.05.

6.20	 For males: χ2 = 6.321; df = 3; p value = 0.097; for females: χ2 = 5.476; df = 3; 
p value = 0.14.

6.21	 For men:
Myocardial infarction: χ2 = 0.16; p value > 0.05.
Coronary death: χ2 = 8.47; p value < 0.01.

For women:
Myocardial infarction: χ2 = 4.09; p value < 0.05.
Coronary death: χ2 = 2.62; p value > 0.05.

6.22	 Myocardial infarction:
For men :

.

. .

a
r c

n
r r c c

n n

197

199 59

1
40 98

1 1

1 2 1 2
2

	
For women :

.

.

a
r c

n
r r c c

n n

144

150 95

1
12 05

1 1

1 2 1 2
2

	

z

p

197 199 59 144 150 95

40 98 12 05
1 31 0 0951

. .

. .
. ; .value .. 	
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Coronary death:
For men :

.

. .

a
r c

n
r r c c

n n

135

150 15

1
27 17

1 1

1 2 1 2
2

	
For women :

.

. .

a
r c

n
r r c c

n n

89

92 07

1
3 62

1 1

1 2 1 2
2

	

z

p

135 150 15 89 92 07

27 17 3 62
3 28 0 001

. .

. .
. ; . .value 	

6.23	 For years25 44 5

1 27

1
1 08

1 1

1 2 1 2
2

:

.

. .

a
r c

n
r r c c

n n

	

For years45 64 67

32 98

1
17 65

1 1

1 2 1 2
2

:

.

. .

a
r c

n
r r c c

n n 	

For years65 24

13 28

1
7 34

1 1

1 2 1 2
2

:

.

. .

a
r c

n
r r c c

n n 	

z

p

5 1 27 67 32 98 24 13 28

1 08 17 65 7 34
9 49

. . .

. . .
. ; valuee  0. 	

6.24	 57 20

9 39

1
5 86

1 1

1 2 1 2
2

kg :

.

. .

a
r c

n
r r c c

n n
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57 75 37

21 46

1
13 60

1 1

1 2 1 2
2

kg :

.

. .

a
r c

n
r r c c

n n 	

75 9

7 63

1
4 96

1 1

1 2 1 2
2

kg :

.

. .

a
r c

n
r r c c

n n 	

z

p

20 9 36 37 21 46 9 7 63

5 86 13 60 4 96
5 57

. . .

. . .
. ; value  0. .	

6.25	 For smoking: χ2 = 0.93; p value > 0.05; for alcohol: χ2 = 0.26; p value > 0.05; 
for body mass index: χ2 = 0.87; p value > 0.05.

6.26	 C
D
S

z p
S

24876
14159
10717
2341 13
4 58 0

.
. ; value 

	

(after eliminating category “unknown”).

6.27	 For boys

value

:

.
. ; . .

C
D
S

z p
S

19478
11565
7913
2558 85
3 09 0 001

FFor girls

value

:

.
. ; .

C
D
S

z p
S

17120
14336
2784
2766 60
1 01 0 15887.

	

6.28	 For duration (years):
C
D
S

z p
S

237635
240865
16770
17812 6
9 94 0 1736

.
. ; . .value 	
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For history of infertility:
C
D
S

z p
S

95216
71846
23270
11721 57
1 99 0 0233

.
. ; . .value 	

6.29	 C
D
S

z p
S

2442198
1496110
946088
95706
9 89 0. ; .value 

	

6.30	 C
D
S

z p
S

364
2238

1874
372

5 03 0. ; .value 

	

Chapter 7

7.1	 SE

df value

x

t
p

0 5

7 84 7 0 5
1 68 15 0 05 0 1

.

. .
. , ; . . .

	

7.2	 d
s

d

t
p

d

200
397 2

150 1

200 0 150 1
1 33 6 0

.

.

. , ;

SE

df value .. .2

	

7.3	 d
s

d

t p

d

39 4
31 39

11 86

3 32 6 0 016

.

.

.

. , ; . .

SE

df value

	

7.4	 SE

df value

d

t p

1 13

3 95 59 0 0002

.

. , ; . .

	

7.5	 d
s

d

t p

d

1 1
7 9

1 72

0 64 20 0 2

.
.

.

. , ; . .

SE

df value
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7.6	 d
s

d

t p

d

0 36
0 41

0 11

3 29 13 0 006

.

.

.

. , ; . .

SE

df value

	

7.7	 (a)  t = 11.00, p value < 0.001.

(b)	 t = 7.75, p value < 0.001.

(c)	 t = 2.21, p value = 0.031.

(d)	 s
t p
p 1 47

2 70 0 2
.
. ; . .

(e)	 s
t p
p 1 52

1 19 0 2
.
. ; . .

(f)	  High school : .
. ; .

s
t p
p 1 53

6 53 0
	

College : .
. ; .

s
t p

p 1 35
3 20 0 	

7.8	 SBP: t = 12.11, p  0; DBP: t = 10.95, p  0; BMI: t = 6.71, p  0.

7.9	 s
t p
p 0 175

3 40 0
.
. ; .

7.10	 t = 0.54, 25 df, p value > 0.2.

7.11	 t = 2.86, 61 df, p value = 0.004.

7.12	 s
t p
p 7 9

4 40 0
.
. ; .

7.13	 Treatment: x1 701 9. , s
1
 = 32.8; control: x2 656 1. , s

2
 = 22.5.

s
t p
p 29 6

3 45 17 0 01
.

. , ; . .df 	

7.14	 s
t p
p 9 3

4 71 0
.
. ; .

	

7.15	 Weight gain

Birth weight

: .
. ; . .

: .
.

s
t p

s
t

p

p

14 4
2 30 0 05
471 1
2 08;; . .p 0 05

	

Gestational age : .
; . .

s
t p

p 15 3
0 0 5  	



ANSWERS TO SELECTED EXERCISES� 563

7.16	 Sum of ranks: bulimic adolescents, 337.5; healthy adolescents, 403.5.

H

H

z

15 15 23 1

2
292 5

15 23 15 23 1

12
33 5
403 5

.

.
. 2292 5

33 5
3 31 0

.

.
. ; .p  	

7.17	 Sum of ranks: experimental group, 151; control group, 39.

E

E

z

12 12 7 1

2
120

12 7 12 7 1

12
11 8
151 120

11 8

.

.
262 0 0088; . .p 	

7.18	

Source of variation SS df MS F statistic p value

Between samples 55.44 2 27.72 2.62 0.1059
Within samples 158.83 15 10.59
Total 214.28 17

7.19	

Source of variation SS df MS F statistic p value

Between samples 74.803 3 24.934 76.23 0.0001
Within samples 4.252 13 0.327
Total 79.055 16

7.20	

Source of variation SS df MS F statistic p value

Between samples 40.526 2 20.263 3.509 0.0329
Within samples 527.526 126 5.774
Total 568.052 128
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7.21	

Source of variation SS df MS F statistic p value

Between samples 57.184 3 19.061 37.026 <0.0001
Within samples 769.113 1494 0.515
Total 826.297 1497

7.22	 For exposed group:

Source of variation SS df MS F statistic p value

Between samples 5310.032 2 2655.016 0.987 0.3738
Within samples 845 028.000 314 2691.172
Total 850 338.032 316

For nonexposed group:

Source of variation SS df MS F statistic p value

Between samples 10 513.249 2 5256.624 2.867 0.0583
Within samples 607 048.000 331 1833.982

Total 617 561.249 333

7.23	 Factor: age

(a)	 t = 1.037, p value = 0.3337; (b) z = −0.864, p value = 0.3875.

Factor: acid

(a)	 t = −1.785, p value = 0.080; (b) z = 2.718, p value = 0.0066.
7.24	

(a)	 No brand shows a significantly different level of bacterial growth compared 
to any other brand.

(b)	 Randomly assign each brand to one each of the two types of surfaces.
7.25	

(a)	 Moderate conditions resulted in the largest bacterial growth according to 
the first diameter measurement, but standard deviations and inter‐quartile 
ranges (IQR) are quite large for all conditions.

N Mean SD Min IQR Max

Dry	 4 693.85 159.41 549.41 256.83 856.26
Mod	 4 790.87 330.14 564.63 283.43 1273.46
Wet	 4 715.95 259.97 382.93 338.74 941.37

(b)	 There are no significant differences after Tukey adjustment among moisture 
conditions according to the first diameter measurements: dry vs. wet 
(p = 0.99), dry vs. moderate (p = 0.86), moderate vs. wet (p = 0.91).

(c)	 Wet conditions resulted in the largest bacterial growth according to the 
second diameter measurement, but standard deviations are again quite 
large for all conditions.
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N Mean SD Min IQR Max

Dry	 4 806.27 274.05 490.20 341.38 1114.22
Mod	 4 1008.06 232.83 769.63 318.06 1278.00
Wet	 4 1188.86 372.40 823.41 349.78 1695.87

(d)	 There are no significant differences after Tukey adjustment among 
moisture conditions according to the second diameter measurements: 
dry vs. wet (p = 0.22), dry vs. moderate (p = 0.62), moderate vs. wet 
(p = 0.68).

(e)	 Conclusions do not differ between the two diameter measurements. We 
would not expect them to differ if the bacterial growth fills an approximate 
circle in the culture dish (then it wouldn’t matter from what orientation in 
the culture dish the diameter measurements were obtained), but they could 
differ if growth was asymmetric.

7.26	
(a)	 A histogram of the CFU ratio is symmetric and approximately bell‐shaped; 

some slight skewness is apparent.
(b)	 No drug and placebo groups seem very similar in their mean CFU ratio, 

but the drug group has a smaller mean CFU ratio.

N Mean SD Min IQR Max

Drug	 58 0.81 0.15 0.52 0.16 1.50
NoDrug	 50 1.01 0.16 0.63 0.19 1.48
Placebo	 50 0.96 0.12 0.72 0.13 1.22

(c)	 There are strong differences among the treatment groups: F(2,155) =  
0.59/0.02 = 28.51 with p < 0.0001.

(d)	 CFU ratio for the drug group is significantly different from both the 
placebo group (p < 0.0001) and the no drug group (p < 0.0001), but placebo 
is no different from no drug (p = 0.21), after Tukey adjustment for multiple 
comparisons.

Chapter 8

8.1	 (c) � It is appropriate to treat blocks (smoking status) as fixed since we would 
use those same two blocks if the study were repeated. ANOVA table: 
Treatment sum of squares = 1.1812, F statistic = 28.5484; block sum of 
squares = 0.0663, F statistic = 3.2045; interaction sum of squares = 0.0006, 
F statistic = 0.0141; error sum of squares = 3.1444.

(d)	 General linear F test p value = 0.99; we conclude the smaller model is 
appropriate.

(e)	 Model assumptions are approximately satisfied: normality is approxi-
mately satisfied (however some skewness remains) and residuals have 
approximately constant variance with increasing CFU ratio predicted value 
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(there are a few very large positive residuals). “Independence” here refers 
to independence between persons, which seems likely to be satisfied.

(f)	 The drug group was significantly different from the no drug group (con-
trast estimate –0.20, standard error 0.03, p value < 0.0001) and from the 
placebo group (contrast estimate –0.14, standard error 0.03, p value < 
0.0001) but the no drug group was not significantly different from the 
placebo group (contrast estimate 0.05, standard error 0.03, p value = 0.17).

8.2	 (c) � Wiring code is appropriately treated as fixed since we would have the same 
codes if we repeated the study. The rooms do not represent a sampling from 
some larger potential population of blocks (other rooms); those room types 
were specifically of interest, treating room type as fixed is appropriate. The 
two states in the study were not formally sampled from all possible states, 
and there was no interest by the researchers in generalizing inference to 
other states, so state is also appropriately treated as fixed. ANOVA table: 
Room sum of squares = 3869; F statistic = 4.0091; code sum of squares = 
27 321, F statistic = 9.4368; state sum of squares = 12 648, F statistic = 
13.1058; room by code sum of squares = 469, F statistic = 0.1621; room by 
state sum of squares = 51, F statistic = 0.0528; code by state sum of squares = 
2377, F statistic = 0.8211; room by code by state sum of squares = 945, 
F statistic = 0.3262; error sum of squares = 82996.

(d)	 Model assumptions are approximately satisfied: normality is approxi-
mately satisfied (however some heavy right tail and light left tail remains) 
and residuals have approximately constant variance with increasing EMF 
predicted value (there are a few very large positive residuals). 
“Independence” here refers to independence between houses at the base-
line visit, which seems likely to be satisfied.

8.3	 (b) � General linear F test p value = 0.83; we conclude the smaller model is 
appropriate.

(c)	 General linear F test p = 0.94; we conclude the smaller model is 
appropriate.

(d)	 Rooms are significantly different, with bedroom EMF values on average 
lower than kitchen (contrast estimate –12.32, standard error 5.96, p value = 
0.04). With Tukey adjustment for multiple comparisons, code 4 houses 
have significantly different EMF values (on average higher) compared to 
code 1 (contrast estimate 47.01, standard error 9.09, p value < 0.0001), 
code 2 (contrast estimate 38.75, standard error 9.20, p value = 0.0003), and 
code 3 (contrast estimate 27.05, standard error 7.49, p value = 0.0027) 
houses. States are significantly different, with Michigan EMF values on 
average lower than Minnesota (contrast estimate –22.69, standard error 
6.07, p value = 0.0003).

8.4	 (b) � Treating the moisture levels as fixed is appropriate; they were decided upon 
in advance by the researcher and experimentally imposed on the units being 
measured. The process for measurement of growth (the two diameters) was 
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also decided upon in advance and the same process would be used if the 
study were repeated; this supports treating this factor as fixed. ANOVA 
table: Moisture sum of squares = 176 186, F statistic = 1.1246; diameter 
sum of squares = 429 375, F statistic = 5.4816; interaction sum of squares = 
137 542, F statistic=0.8780; error sum of squares = 1 409 943.

(c)	 General linear F test p value = 0.43; we conclude the smaller model is 
appropriate.

(d)	 Moisture levels were not significantly different in average diameter: Dry 
versus moderate (contrast estimate –149.41, standard error 139.08, p value = 
0.54), dry versus wet (contrast estimate –202.35, standard error 139.08, 
p value = 0.33), moderate versus wet (contrast estimate –52.94, standard 
error 139.08, p value = 0.92).

(e)	 Model assumptions are approximately satisfied: normality is approxi-
mately satisfied (although there is slight skewness), residuals show constant 
variability across predicted values except for two large positive residuals. 
“Independence” here refers to independence between experimental units, 
which seems likely to be satisfied.

8.5	 (a) � Treating replicate as a random factor can be justified by thinking of the two 
tick marks on the dish (the locations of the two diameters to be measured) 
as having been randomly chosen from all possible locations on the dish. The 
standard deviation (square root of the estimated variance) for replicate is 
171.27 and for the error is 278.16, while the estimated variance for the rep-
licate by moisture interaction is substantially smaller, almost zero, at 0.05.

(b)	 Moisture levels were again not significantly different in average diameter, 
as was seen in Exercise 8.4. Mean estimates (standard errors) were for the 
fixed replicate, no interaction model of Exercise 8.4: Dry 750.06 (98.34), 
moderate 899.46 (98.34), and wet 952.41 (98.34). Mean estimates and stan-
dard errors were for the random replicate, no interaction, model of this part: 
Dry 750.06 (156.01), moderate 899.46 (156.01), and wet 952.41 (156.01).

8.6	 (b) � Fitting sex as a fixed effect is appropriate because there are only two 
possible levels in mice. Fitting treatment as a fixed effect is appropriate 
because this is the intervention imposed by, and of direct interest to, the 
experimenter. ANOVA table: Treatment sum of squares = 6.3367,  
F statistic = 13.2624; sex sum of squares = 0.9906, F statistic = 4.1464; 
interaction sum of squares = 0.5762, F statistic = 1.2060; error sum of 
squares = 7.1669.

(c)	 General linear F test p value = 0.31; we conclude the treatment by sex 
interaction can be removed.

(d)	 Female versus male mice had borderline significantly different tCr levels 
(contrast estimate 0.34, standard error 0.17, p value = 0.05). Untreated 
mice were significantly different from treated mice (contrast estimate 0.58, 
standard error 0.20, p value = 0.02) and from control mice (contrast 
estimate 0.97, standard error 0.20, p value = 0.0001) but control mice were 
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not significantly different from treated mice (contrast estimate –0.39, stan-
dard error 0.20, p value = 0.15).

(e)	 The normality and constant variance model assumptions are well satisfied. 
If the mice in the experiment were not littermates, then the independence 
is likely satisfied.

8.7	 (b) � Fitting sex as a fixed effect is appropriate because there are only two pos-
sible levels in mice. Fitting treatment as a fixed effect is appropriate because 
this is the intervention imposed by, and of direct interest to, the experimenter. 
An argument for fitting week as a fixed effect is that these weeks were of 
particular interest because of the timing of development and progression of 
ataxia in mice; these weeks would be used again if the study were repeated.

(c)	 General linear F test p value = 0.17; we conclude the interaction can be 
dropped.

(d)	 At age 12 weeks: Untreated mice were not significantly different from 
treated mice (contrast estimate 0.004, standard error 0.20, p value = 0.99) 
nor from control mice (contrast estimate 0.08, standard error 0.20, p value = 
0.91). Similarly, control mice were not significantly different from treated 
mice (contrast estimate –0.09, standard error 0.20, p value = 0.9).

	   At age 24 weeks: Untreated mice were significantly different from 
treated mice (contrast estimate 0.58, standard error 0.2, p value = 0.01) and 
from control mice (contrast estimate 1.01, standard error 0.2, p value < 
0.0001) but control mice were only borderline different from treated mice 
(contrast estimate –0.43, standard error 0.2, p value = 0.08).

(e)	 The normality and constant variance model assumptions are approximately 
satisfied; the residuals are slightly heavy tailed. If the mice in the experiment 
were not littermates, then independence is likely satisfied for each week 
separately, but since each mouse was measured twice, independence across 
weeks should not be assumed.

Chapter 9

9.1	 (b)  b
0
 = 0.0301, b

1
 = 1.1386, y = 0.596.

(c)	 t = 5.622, p = 0.0049.

(d)	 r2 = 0.888.

9.2	 (b)  b
0
 = 6.08, b

1
 = 0.35, y = 27.08.

(c)	 t = 2.173, p = 0.082.

(d)	 r2 = 0.115.

9.3	 (b)  b
0
 = 311.45, b

1
 = –0.08, y = 79.45.

(c)	 t = –5.648, p = 0.0001.

(d)	 r2 = 0.618.
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9.4	 (a)  F = 16.2, df = (2, 19), p = 0.0001.

(b)	 r2 = 0.631.

(c)	

Term b SE(b) t Statistic p Value

X (Food) –0.007 0.091 –0.082 0.936
X2 –0.0001 0.00001 –0.811 0.427

9.5	 For men:

(b)	 b
0
 = –22.057, b

1
 = 0.538, y = 64.09.

(c)	 t = 1.697, p = 0.1282.

(d)	 r2 = 0.265.

For women:

(b)	 b
0
 = –61.624, b

1
 = 0.715, y = 52.78.

(c)	 t = 2.917, p = 0.0194.

(d)	 r2 = 0.516.

(e)	 Relationship is stronger and statistically significant for women but not so 
for men.

9.6	 (a)

Term b SE(b) t Statistic p Value

Sex –39.573 81.462 –0.486 0.634
Height 0.361 0.650 0.555 0.587
Sex by height 0.177 0.492 0.360 0.724

(b)	 No (p = 0.724).

(c)	 F = 22.39, df = (3, 16), p = 0.0001.

(d)	 r2 = 0.808.

9.7	 (a)  Let u = aX + b and v = cY + d then:
u u

s

x x

s

v v

s

y y

su x v y

and .

(b)	 No.

(c)	 Same 0.29 following (a).

(d)	 Same 0.91 following (a).

9.8	 (a)  Same r, B
1
 = (c/a)b

1
 and B

0
 = cb

0
 + d –(cbb

1
)/a.

(b)	 When a = c and b = d = 0, we have B
1
 = b

1
 and B

0
 = cb

0
.

(c)	 Use the result in (b) with a = c = 10 and b = d = 0.

(d)	 Here b = d = 0, a = 1 and c = 1/2.54.
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9.9	 (a)  No, not the same line.

b
1
B

1
 = r2 and b

1
/B

1
 = (s

y
 /s

x
)2.

(bi) r = 0.423, (bii) b
1
 = 3.31, B

1
 = 0.054, b1B1 = 0.179, b1/B1 = 61.219.

9.10	 (c) � From (b) we have r(e,x) = 0 and predicted ŷ is a linear function of x so that 
r(e, ŷ) = 0.

9.11	 (a)  r = 0.985

(b)	 t = 3.605, df = 13, p = 0.0032

9.12	 First consider individual estimates y/x with variance (1/x2)Var(y); then form-
ing weighted average with weight being inverse of variance: (i) If variance of 
y is constant the estimate is b

1
; (ii) If variance of y is proportional to x, the 

weighted average becomes b
2
.

9.13	 (b) r = 0.939; 95% confidence interval is (0.822, 0.980).

9.14	 For standard:

(b)	 b
0
 = 0.292, b

1
 = 0.362, y = 1.959.

(c)	 t = 7.809, p = 0.0001.

(d)	 r2 = 0.884.

For test:

(b)	 b
0
 = 0.283, b

1
 = 0.280, y = 1.919.

(c)	 t = 9.152, p = 0.0001.

(d)	 r2 = 0.913.

9.15	 (a)

Term b SE(b) t Statistic p Value

Preparation –0.009 0.005 –1.68 0.112
Log(dose) 0.443 0.088 5.051 <0.001
Preparation by log(dose) –0.081 0.056 –1.458 0.164

(b)	 No, weak indication (p = 0.164).

(c)	 F = 46.23, df = (3, 16), p = 0.0001.

(d)	 r2 = 0.897.

9.16	 For AG positive:

(b)	 b
0
 = 4.810, b

1
 = –0.818, y = 19.58.

(c)	 t = –3.821, p = 0.002.

(d)	 r2 = 0.493.

For AG negative:

(b)	 b
0
 = 1.963, b

1
 = –0.234, y = 9.05.

(c)	 t = –0.987, p = 0.34.

(d)	 r2 = 0.065.
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(e)	 Relationship is stronger and statistically significant for AG positives but 
not so for AG negatives.

9.17	 (a)

Term b SE(b) t Statistic p Value

AG 2.847 1.343 2.119 0.043
Log(WBC) –0.234 0.243 –0.961 0.345
AG by Log(WBC) –0.583 0.321 –1.817 0.08

(b)	 Rather strong indication (p = 0.080).

(c)	 F = 7.69, df = (3, 29), p = 0.0006.

(d)	 r2 = 0.443.

9.18	 For revenue:

(b)	 b
0
 = (1.113)(10–3), b

1
 = (0.829)(10–6), y = (1.329)(10–3).

(c)	 t = 0.198, p = 0.844.

(d)	 r2 = 0.001.

For work load hours:

(b)	 b
0
 = (0.260)(10–3), b

1
 = (0.754)(10–3), y = (1.252)(10–3).

(c)	 t = 1.882, p = 0.067.

(d)	 r2 = 0.078.

9.19	 (a)

Term b SE(b) t Statistic p Value

Residency 3.176 × 10–3 1.393 × 10–3 2.279 0.028
Gender 0.348 × 10–3 0.303 × 10–3 1.149 0.258
Revenue 1.449 × 10–3 4.340 × 10–3 0.334 0.741
Hours 2.206 × 10–3 0.760 × 10–3 2.889 0.006
Residency by hours (–2.264) × 10–3 0.930 × 10–3 –2.436 0.020

(b)	 Yes, rather strong indication (p = 0.20).

(c)	 F = 2.14, df = (5, 38), p = 0.083.

(d)	 r2 = 0.219.

9.20	 (a)

Coefficients Standard error t Statistic p Value

Intercept –0.2545 0.3678 –0.6920 0.5112
VC (liters) 0.7389 0.0835 8.8528 0.0001
LC (liters) 0.0692 0.0868 0.7970 0.4516

(b)	 R2 = 0.919

(c)	 Yes, F = 39.586, df = (2, 7), p = 0.0002.

(d)	 No, t = 0.797, p = 0.4516.
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9.21	 (a)

Coefficients Standard error t Statistic p Value

Intercept 50.5043 26.0992 1.9351 0.0689
Mother’s BP 0.4084 0.1969 2.0738 0.0527

t = 2.0738, df = 18; Almost significant at the 5% level (p = 0.0527).

(b)	

Coefficients Standard error t Statistic p Value

Intercept –7.1398 35.4719 –0.2013 0.8429
Mother’s BP 0.3984 0.1791 2.2245 0.0399
Father’s BP 0.3970 0.1816 2.1861 0.0431

(c)	 R2 = 0.37.

(d)	 Yes, F = 4.9914, df = (2, 17), p = 0.0197.

9.22	 (a) Yes, the product term (PX) is far from being significant (p = 0.5185).

(b)	 M = (–13.1556)/(6.7188) = –1.958. Since the relative potency, defined as 
Dose of Standard divided by Dose of Test preparation for having the same 
effect, is less than 1, the Test preparation is weaker.

9.23	 (a)

Coefficients Standard error t Statistic p Value

Intercept 59.6893 20.4171 2.9235 0.0091
Length at birth 0.4490 1.0213 0.4396 0.6655

We cannot say that they are related (p = 0.6655).

(b)	
ANOVA

df SS MS F p Value

Regression 3 122.55718950 40.8520 18.9841 0.00002
Residual 16 34.43081049 2.1519
Total 19 156.988

(c)	 Yes: F = 18.984, df = (3, 16), p = 0.00002.

Coefficients Standard error t Statistic p Value

Intercept –71.7521 23.4672 –3.0576 0.0075
Length at birth 0.5252 0.5131 1.0236 0.3213
Mother’s height 0.7068 0.2068 3.4180 0.0035
Father’s height 1.2307 0.1650 7.4596 0.0000

(d)	 Father’s height is the most significant factor.

(e)	 No, p = 0.3213.

(f)	 The father’s height is more influential (larger slope, smaller p value).
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Chapter 10

10.1	 (a) � Higher baseline pain is associated with higher odds of improvement (odds 
ratio 6.58 for each one point higher baseline pain score, p = 0.001). AUC 
is 0.82.

(b)	 The effect of treatment A vs. B is not significantly different from 0 (odds 
ratio is not significantly different from 1) with p = 0.16. Odds ratio 2.30, 
95% confidence interval (0.73,7.27).

(c)	 There is still no significant treatment effect. AUC is now 0.86. Odds ratio 
for treatment A vs. treatment B is 3.23 (p = 0.12)): the odds of pain 
improvement is 3.23 times higher on treatment A compared to treatment 
B when comparing people with the same baseline score for pain.

10.2	 (a) � Odds ratio for treatment A vs. B is 3.10 (p = 0.19) when comparing people of 
the same sex and age with the same baseline score for pain. Odds ratio for 
men vs. women is 10.19 (p = 0.02) when comparing people of the same age, 
with the same baseline pain, and in the same treatment group. Odds ratio for 
each one year higher age is 1.03 (p = 0.44) when comparing people of the 
same sex, with the same baseline pain, and in the same treatment group. Odds 
ratio for each one unit higher baseline pain is 9.60 (p = 0.002) when com-
paring people of the same sex, the same age, and in the same treatment group.

(b)	 Source of injury is not a significant predictor of pain improvement: odds 
ratio 4.20 (p = 0.10) when comparing people of the same sex, the same 
age, in the same treatment group, and having the same baseline pain score.

(c)	 The treatment effect does not differ by sex (coefficient −0.40, standard 
error 1.80, p = 0.83).

10.3	 (a) � Odds ratio for tCr is 7.94 (95% confidence interval (1.16, 54.19), p = 0.03): 
the odds of being a treated mouse is 7.94 times higher for a 1 unit higher tCr.

(b)	 The AUC is 0.79.

(c)	 In an overdispersed model, the scale parameter is estimated to be 1.11; the 
evidence for overdispersion is weak. The estimate of the odds ratio is 
unchanged, but the standard error of the tCr coefficient is larger, in the 
overdispersed model.

(d)	 Sex is not a significant predictor of creatine (female vs. male odds ratio 
0.53, p = 0.52).

(e)	 Block on sex: randomize to treatment vs. placebo within each sex  
group.

10.4	 (a) � Proportion decline (95% confidence interval): Overall: Drug 0.91 
(0.84,0.99), No Drug 0.48 (0.34,0.62), Placebo 0.60 (0.46,0.74). Smokers: 
Drug 0.93 (0.79,1.06), No Drug 0.67 (0.36,0.97), Placebo 0.83 (0.54,1.13). 
Non‐Smokers: Drug 0.91 (0.82,0.99), No Drug 0.44 (0.29,0.59), Placebo 
0.57 (0.42,0.71). Notes: (1) Be sure to use the number of non‐missing 
values per treatment group in the variance calculation. (2) Because of the 
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small sample size in the smokers block, the upper bound for two of the 
intervals goes above one, which does not make sense for a proportion. In 
reporting, these upper bounds could be reported as 1; the confidence level 
will not be 95%.

(b)	 There are significant differences between Drug and No Drug (odds ratio 
12.78, p = 0.0001), and between Drug and Placebo (odds ratio 7.60,  
p = 0.0024) but not between No Drug and Placebo (odds ratio 0.59,  
p = 0.46) in the non‐smokers. There are no significant treatment group 
differences in the smokers between Drug and No Drug (odds ratio 6.50, 
p = 0.30), Drug and Placebo (odds ratio 2.60, p = 0.80), and No Drug 
and Placebo (odds ratio 0.40, p = 0.76). P‐values are Tukey adjusted 
within block.

(c)	 The treatment by block interaction is not needed (χ2
LR

 = 3.32, df = 3,  
p = 0.34). Including both smokers and non‐smokers, there are significant 
differences between Drug and No Drug (odds ratio 11.48, p<0.0001), and 
between Drug and Placebo (odds ratio 7.07, p = 0.001) but not between 
No Drug and Placebo (odds ratio 0.62, p = 0.45).

10.5	� The mother and father drinks variables are highly collinear with the mother 
and father smoking variables and all four cannot be modeled simultaneously; 
these solutions use the smoking variables but not the drinks variables.

(a)	 The likelihood ratio test comparing the full model (with radon, race, gender, 
mother smoking, father smoking, and Down Syndrome status) to the null 
model is 320.00–314.26 = 5.75 with degrees of freedom 233–224 = 9 
(p = 0.76). AUC = 0.55 which is not much bigger than chance, 0.50. The 
predictors do not contribute significantly to the prediction of disease 
status.

(b)	 None of the variables are significant predictors of disease status; all p 
values are larger than 0.20.

(c)	 The interaction of sex with Down Syndrome has z statistic 0.48 and p 
value 0.63.

(d)	 The interaction of radon level with Down Syndrome has z statistic –0.85 
and p value 0.40.

(e)	 Using a likelihood ratio chi‐square test, the test statistic is 1.88 with 3 
degrees of freedom and p value 0.60.

Chapter 11

11.1	 (a) � Females have on average 0.01 more log hypo episodes per day than men. 
For each one year higher age, there are on average 0.02 more log hypo 
episodes per day. For each additional year since diabetes diagnosis, there 
are on average 0.01 fewer log hypo episodes per day. Those with their 
own monitor had on average 0.21 fewer log hypo episodes per day than 
those with a clinic monitor.
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(b)	 The effect of own monitor vs. clinic monitor is significantly associated 
with number of hypo episodes (p = 0.01): coefficient –0.21, 95% 
confidence interval (–0.38,–0.04).

(c)	 They should target those who do not currently wear their own CGM.

(d)	 In an overdispersed model, the scale parameter is estimated to be 0.93; the 
evidence for overdispersion is weak.

11.2
(a)	 Summaries of log(CFU at week 0) show some differences between 

groups at baseline, with the highest levels in the placebo group and the 
lowest levels in the no drug group. Treatment group is a highly 
significant predictor of CFU at week 0 in a Poisson regression with a 
log link.

N Mean SD Min IQR Max

Drug	 59 4.70 0.83 2.08 1.08 6.47
NoDrug	 53 4.43 0.76 2.83 0.79 6.90
Placebo	 55 4.97 0.78 3.14 0.79 6.90

(b)	 Yes, higher values for CFU at week 0 are associated with higher values for 
CFU at week 3 (relative risk per 100 units higher CFU: RR  =  1.35, 
p < 0.0001).

(c)	 Yes, there are some significant treatment differences after adjusting for 
CFU at week 0: Drug vs. no drug RR = 1.02, z = 1.04, p = 0.30; drug vs. 
placebo RR = 0.81, z = –13.58, p < 0.0001; no drug vs. placebo RR = 0.79, 
z = –14.47, p < 0.0001.

(d)	 Interaction terms show negative effects (for smokers vs. non‐smokers), 
indicating that treatment effects are smaller in the smoking block.

(e)	 An overdispersed model estimates the scale parameter as 18.73, much 
larger than 1; this is very strong evidence for overdispersion.

(f)	 None of these variables are significant predictors of CFU at week 3 when 
added to the overdispersed model of part (e.).

11.3
(a)	 Yes; a likelihood ratio chi‐square test comparing the full model (all 

6 predictors) to a model with no predictors has χ2 = 82.25, df = 6, and 
p < 0.0001.

(b)	 Birth in the fall (relative risk: RR = 1.60, p = 0.008) and upper respiratory 
infection (RR = 3.90, p < 0.0001) are strongly significant predictors of 
number of ear infections; use of day care (RR = 1.29, p = 0.09) and ciga-
rettes smoked per day by parents (RR = 1.02 per cigarette, p = 0.07) are 
borderline significant; the other variables are not significant.

(c)	 The estimated scale parameter is 1.43, not substantially larger than 1; the 
evidence for overdispersion is weak. In the overdispersed model, daycare 
and cigarettes smoked are no longer significant predictors of number of 
ear infections.
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(d)	 A sibling history by day care interaction is not a significant predictor of 
number of ear infections (p = 0.57).

(e)	 Adding cotinine squared to the model results in a borderline significant 
effect with p = 0.08. Examining deviance residuals vs. cotinine we see 
several large cotinine outliers; results are similar after they are removed.

Chapter 12

12.1	 (b) � Mean (standard deviation) of tCr at baseline (12 weeks) looks similar across 
the two randomized groups: Treated 12.10 (0.52), Untreated 12.09 (0.35).

(d)	 The effect of week 12 versus week 24 is highly significantly different  
for untreated versus controls (coefficient –0.92, standard error 0.24,  
p = 0.0006), so the interaction should not be removed.

(e)	 Week 12 contrast estimate (standard error): Control–Treated –0.09 (0.20), 
Control–Untreated –0.08 (0.20), Treated–Untreated 0.004 (0.20). Week 
24 contrast estimate (standard error): Control–Treated –0.43 (0.20), 
Control–Untreated –1.01 (0.20), Treated–Untreated –0.58 (0.20).

(f)	 Model assumptions are well satisfied: normality is satisfied, residuals 
show constant variability across tCr predicted values. “Independence” here 
refers to independence between mice, which seems likely to be satisfied if 
the mice were not litter mates.

12.2	 (b) � Kitchens have higher average EMF than bedrooms in both Minnesota and 
Michigan, and Minnesota EMF are higher on average than Michigan 
EMF, consistently across visits. There are no obvious increasing, 
decreasing, or other trends across time in any of the state by room combi-
nations (none were expected by the researchers).

(c)	 Room types and states are highly significant predictors, as are wiring 
code types, and their coefficient magnitudes are large: coefficient esti-
mates (standard errors) for kitchen versus bedroom 15.02 (4.42), 
Minnesota versus Michigan 29.51 (9.01); code 2 11.92 (13.19), code 3 
19.08 (11.22), code 4 45.01 (11.85), each versus code 1. Neither visit nor 
any interactions are significant, nor do they have large coefficient magni-
tudes. Visit values go from 1 to 7, so even comparing visit 7 to visit 1, a 
difference of 6, corresponds only to an average EMF difference of less 
than 6 (visit coefficient 0.97, standard error 0.70).

(d)	 Remove all interactions and compare to the model of (c) using a likelihood 
ratio test since the two models are nested; p value = 0.34, so we proceed 
with the smaller model.

(e)	 Model assumptions are satisfied: normality is satisfied (although slightly 
skewed), residuals show somewhat constant variability across EMF pre-
dicted values. “Independence” here refers to independence between 
houses, which seems likely to be satisfied.
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12.3	 (a) � CFU is very non‐normally distributed, highly skewed, but log(CFU) is 
much closer to normally distributed. Other transformations could be con-
sidered instead. Answers for remaining parts are using log(CFU) as the 
response variable.

(b)	 Mean (standard deviation) of log(CFU) at baseline (week 0) looks similar 
across the three randomized groups: Drug 4.70 (0.83), No Drug 4.43 
(0.76), Placebo 4.97 (0.78).

(e)	 Sample variability in log(CFU) seems approximately the same across 
weeks and across groups.

(g)	 Compare the random intercept and slope model with sex and DMFT to the 
model without sex and DMFT using a likelihood ratio test since the two 
models are nested; p value = 0.46, so we proceed with the smaller model.

(h)	 After removing sex and DMFT: random intercept model AIC –67.91, BIC 
–5.25; random intercept and slope model AIC –63.91, BIC 7.70. Smaller 
AIC and BIC indicate the better model, so we proceed with the random 
intercept model.

(i)	 Compare the random intercept model with all interactions to the model with 
only trt*weeks and smokers*weeks using a likelihood ratio test since the two 
models are nested; p value = 0.65, so we proceed with the smaller model.

(j)	 Model assumptions are not quite satisfied: normality is approximately sat-
isfied (however tails are heavy) but residuals show very strongly decreasing 
variability with increasing log CFU predicted value. “Independence” here 
refers to independence between persons, which seems likely to be 
satisfied.

12.4	 (a) � The CFU ratios are apprioximately normally distributed. Answers for the 
remaining parts are using these ratios for weeks 1, 2, and 3 as the response 
variable.

(b)	 Due to high skewness in CFU at week 0, there is no clear answer this 
question. Both means and medians look slightly different across the 
groups, although the standard deviations are quite large; 75th percentiles 
look similar, 25th percentiles less so. From Exercise 12.3 part (b), we 
know that mean and standard deviation of log(CFU) at week 0 looks sim-
ilar across groups.

(e)	 Sample variability in CFU/CFU0 is not quite constant across groups; the 
placebo group has consistently slightly lower variability. Within group, 
the variability is approximately constant across weeks.

(g)	 Compare the random intercept and slope model with sex and DMFT to 
the model without sex and DMFT using a likelihood ratio test since the 
two models are nested; p value = 0.97, so we proceed with the smaller 
model.

(h)	 After removing sex and DMFT: random intercept model AIC –492.66, 
BIC –429.99; random intercept and slope model AIC –488.66, BIC 
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–417.63. Smaller AIC and BIC indicate the better model, so we proceed 
with the random intercept model.

(i)	 Compare the random intercept model with all interactions to the model 
with only trt*weeks, smoker, and log(CFU0) using a likelihood ratio test 
since the two models are nested; p value = 0.91, so we proceed with the 
smaller model. Smoker is not significant, but should be included since 
randomization was blocked by smoking status.

(j)	 Model assumptions are approximately satisfied: normality is approxi-
mately satisfied (however tails are heavy) and residuals show slightly 
increasing variability with increasing CFU ratio predicted value. 
“Independence” here refers to independence between persons, which 
seems likely to be satisfied.

12.5	 (a) � Proportion with positive culture at baseline was 0.20 in treatment A  
and 0.32 in treatment B, significantly different by Fisher’s exact test  
(p = 0.01).

(d)	 Assume the model is parameterized so that group B is the reference group 
for treatment. Regression coefficient for treatment represents the treatment 
effect at month 0: –0.586 (lower culture rate in group A compared to B, 
odds ratio = exp(–0.586) = 0.557). Treatment effect at month 3: –0.586 + 
0.016*3 = –0.538. Treatment effect at month 6: –0.586 + 0.016*6 = 
–0.490. Treatment effect at month 9: –0.586 + 0.016*9 = –0.442. 
Treatment effect at month 12: –0.586 + 0.016*12 = –0.394. Regression 
coefficient for months represents the slope in the log odds of a positive 
culture in group B per month of follow‐up (0.00099, so log odds of a 
positive culture is essentially flat). Regression coefficient for months plus 
regression coefficient for months by treatment interaction represents the 
slope in the log odds in group A per month of follow‐up (0.00099 + 
0.01636 = 0.0174, so log odds of a positive culture is going up quickly in 
group A).

(e)	 Again assume the model is parameterized so that group B is the reference 
group for the treatment effect. Regression coefficient for treatment repre-
sents the treatment effect at month 0: –0.636 [lower culture rate in group 
A compared to B, odds ratio = exp(–0.636) = 0.529]. Treatment effect at 
each follow‐up visit: –0.636 + 0.187 = –0.449. Regression coefficient for 
post (–0.044) represents the follow‐up versus baseline effect in group B: 
in group B, the log odds of a positive culture is lower by 0.044 at the 
follow‐up visits compared to baseline. Regression coefficient for post 
plus regression coefficient for post by treatment interaction (–0.044 + 
0.189 = 0.145) represents the follow‐up versus baseline effect in group A: 
in group A, the log odds of a positive culture is higher by 0.145 at follow‐
up visits compared to baseline.
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(f)	 There is no consistent trend across months 3, 6, 9, and 12 in the log odds 
of positive cultures for either treatment group, so the model with post 
versus baseline is preferred. Group A log odds across months: –1.40, 
–1.33, –1.22, –1.40, –1.12. Group B log odds across months: –0.74, 
–0.86, –0.77, –0.71, –0.80.

(g)	 The treatment by post interaction can be removed, also oral candidiasis at 
baseline and vaginal candidiasis at baseline. Post is retained as important 
to the design of the trial (indicates visits post‐randomization).

12.6	 (a) and (b) Sample variability and skewness in CFU are not quite constant 
across groups; the Placebo group has consistently slightly lower vari-
ability and the No Drug group has consistently slightly higher skewness. 
Within group, the variability and skewness are approximately constant 
across weeks. Placebo group has consistently higher means and medians, 
although at baseline especially they are not much different from the two 
other groups.

(g)	 For sex, z = 2.27 and p = 0.13, so we drop it from the model. For DMFT 
teeth, z = –0.02 and p = 0.89, so we drop it from the model. 

(h)	 Both terms in the treatment by smoker by weeks interaction are 
strongly statistically nonsignificant (z = –0.02 and p = 0.89 for whether 
smoker by weeks differs for drug vs. no drug, z = –0.59 and p = 0.44 
for whether smoker by weeks differs for drug vs. placebo), so we drop 
the three-way interaction from the model. The weeks by smoker inter-
action is also strongly nonsignificant (z = 0.11 and p = 0.74), so we 
drop it as well. These model comparisons could instead be done using 
QIC; QIC is given automatically in SAS using PROC GENMOD and 
can be called in R using the QIC function in the MESS package.

(i)	 For a final model that includes main effects for treatment, weeks, and 
smoker, and interactions for treatment by weeks and treatment by 
smoker, examining treatment group differences overall (averaged over 
weeks and over smoking blocks) may be misleading. At week 3 in the 
non-smoker block, using Tukey adjustment for multiple comparisons, 
drug was no different from no drug (difference = –0.06, z = –0.29, p = 
0.96) but strongly significantly different from placebo (difference = 
–0.55, z = –3.14, p = 0.0048), while no drug vs. placebo had a similar 
effect size (difference = –0.48) but a larger significance level (z = –2.01, 
p = 0.11). At week 3 in the smoker block, some effect sizes were smaller; 
using Tukey adjustment for multiple comparisons, drug was no different 
from no drug (difference = 0.29, z = 0.85, p = 0.67) and no different from 
placebo (difference = 0.18, z = 0.59, p = 0.83), while no drug was no 
different from placebo (difference = –0.11, z = –0.36, p = 0.93).
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Chapter 13

13.8	 Log‐rank test: p = 0.0896; generalized Wilcoxon test: p = 0.1590.

13.10	 95% confidence interval for odds ratio: (1.997; 13.542); McNemar’s  
chi‐square: χ2 = 14.226; p value = 0.00016.

13.11	 McNemar’s chi‐square:  χ2 = 0.077; p value = 0.78140.

13.12	 95% confidence interval for odds ratio: (1.126; 5.309); McNemar’s  
chi‐square:  χ2 = 5.452; p value = 0.02122.

13.13	 For men: McNemar’s chi‐square, χ2 = 13.394; p value = 0.00025. For 
women: McNemar’s chi‐square,  χ2 = 0.439; p value = 0.50761.

Chapter 14

14.2	 0 9 3 0 1 0 9 0 9 0 2 3 0 2 0 8 3 0 2 0 8 13 2 3 3 2 2
. . . . . . . . . 0 8

0 264

3
.

. .

14.3	 At each new dose level, enroll three patients; if no patient has DLT, the trial 
continues with a new cohort at the next higher dose; if two or three experi-
ence DLT, the trial is stopped. If one experiences DLT, a new cohort of two 
patients is enrolled at the same dose, escalating to next‐higher dose only if no 
DLT is observed. The new design helps to escalate a little easier; the result-
ing MTD would have a little higher expected toxicity rate.

14.4	 [0.63 + 3(0.4)(0.6)2(0.6)3]{0.53 + 3(0.5)3 + 3(0.5)3[1 − (0.5)3]} = 0.256.

14.5	 z
1−β = 0.364, corresponding to a power of 64%.

14.6	 z
1−β = 0.927, corresponding to a power of 82%.

14.7	 z
1−β = 0.690, corresponding to a power of 75%.

14.8	 z
1−β = 0.551, corresponding to a power of 71%.

14.9	 d = 42 events and we need

N
2 42

2 0 5 0 794
120

. .
subjects

	

or 60 subjects in each group.

14.10	
n

1 96 0 9 0 1

0 05
139

2

2

. . .

.
.subjects
	

If we do not use the 90% figure, we would need

nmax

. .

.
.

1 96 0 25

0 05
385

2

2 subjects
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14.11	
nmax

. .

.
.

1 96 0 25

0 01
99

2

2 subjects
	

14.12	  
nmax

. .

.
.

1 96 0 25

0 15
43

2

2 subjects
	

14.13	 (a)  With 95% confidence, we need

nmax

. .

.
.

1 96 0 25

0 01
9604

2

2 subjects
	

With 99% confidence, we need

nmax

. .

.
, .

2 58 0 25

0 01
16 641

2

2 subjects
	

(b)	 With 95% confidence, we need

nmax

. . .

.
.

1 96 0 08 0 92

0 01
2827

2

2 subjects
	

With 99% confidence, we need

nmax

. . .

.
.

2 58 0 08 0 92

0 01
4900

2

2 subjects
	

14.14	
n

1 96 1

0 5
16

2

2

.

.
.subjects
	

14.15	 N 4 1 96
400

10
62 31

2

2. .or per group 	

14.16	 n e
eln . ln . (ln . ln . ln . ln .

l

0 9 0 05 0 8 0 95 0 2 0 05

nn . ln .
.

, , , , ,

0 8 0 95

1 8 2 2 3 11 4 20 5 29n n n n n andd so on.

	

14.17	 N 4 1 96 1 28
2 28

1
220 110

2
2

2. .
.

.or per group 	

14.18	 N 4 1 96 1 65
0 97

1
50 25

2
2

2. .
.

.or per group 	

14.19	 N 4 1 96 1 28
10 3

3
496 248

2
2

2. .
.

.or per group 	
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14.20	 N 4 2 58 1 28
0 075 0 925

0 05
1654 827

2

2. .
. .

.
.or per group 	

14.21	 N 4 2 58 1 28
0 12 0 88

0 1
1630 315

2

2. .
. .

.
.or per group 	

14.22	 N 4 1 96 0 84
0 275 0 725

0 15
70 35

2

2. .
. .

.
.or per group 	

14.23	 N 4 1 96 0 84
0 3 0 7

0 2
42 21

2

2. .
. .

.
.or per group 	

14.24	 d = 0.196, almost 20%.

14.25	
ln .

ln .
. .

. .
.

.

0 6

0 7
1 432

1 96 0 84
1 1 432

1 1 432
2

2

d

249
2 249

2 0 6 0 7
710 355

events

subjects or per group

.

. .
.

N

	

14.26	 ln .

ln .
. .

. .
.

.

0 4

0 5
1 322

1 96 0 84
1 1 322

1 1 322
2

2

d

408
2 408

2 0 4 0 5
742 371

events

subjects or per group

.

. .
.

N

	

14.27	
ln .

ln .
. .

. .
.

.

0 4

0 6
1 794

1 96 0 84
1 1 794

1 1 794
2

2

d

98
2 98

2 0 4 0 6
98 49

events

subjects or per group

.

. .
.

N
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14.28	 π
1
 = 0.18: (a) N = 590, 245 cases and 245 controls; (b) N = 960, 192 cases 

and 768 controls; (c) m = 66 discordant pairs and M = 271 case–control pairs.

14.29	 π
1
 = 0.57: (a) N = 364, 182 cases and 182 controls; (b) N = 480, 120 cases 

and 350 controls; (c) m = 81 discordant pairs and M = 158 case–control pairs.

14.30	 N
4

1 5
1 96 84

192 96 96

2

2

ln .
. .

; .cases and controls

	





Introductory Biostatistics, Second Edition. Chap T. Le and Lynn E. Eberly. 
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. 
Companion website: www.wiley.com/go/Le/Biostatistics

Index

addition rule, 106, 126
adjacent values, 76
adjusted rate, 13, 15
agreement, 112
AIC. see Akaike Information Criterion
Akaike Information Criterion, 418
alpha, 198
analysis of variance (ANOVA), 253, 273
analysis of variance (ANOVA) table, 254, 

276, 310
antibody response, 316
antilog. see exponentiation
area under the density curve, 117, 124
average. see mean

bar chart, 7
baseline hazard, 451, 456, 460
Bayesian Information Criterion, 418
Bayes’ theorem, 111
Bernoulli distribution, 354

mean, 359
variance, 360

better treatment trials, 505
BIC. see Bayesian Information Criterion
binary characteristic, 2
binary data. see variable, binary
binomial distribution, 126, 132

mean, 128
variance, 128

binomial probability, 126
bioassay, 330
blinded study

double, 496
triple, 496

block, 273, 280
complete, 281
fixed, 281
random, 284

blocking factor. see block
Bonferroni’s type I error adjustment, 258
box plot, 76

case–control study, 2, 130, 199, 358,  
439, 494

matched, 518
pair matched, 464
unmatched, 516, 520

censoring, 442
censoring indicator, 443
central limit theorem, 115, 125, 146, 153, 

182, 198, 236
chance, 103, 116
change rate, 10
chi‐square distribution, 125
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chi‐square test, 212, 458, 470, 471
difference in proportions, 203
generalized Wilcoxon, 449
likelihood ratio, 366, 368, 370, 394, 399, 

405, 417, 458, 480, 482
log rank, 449
Mantel–Haenszel, 207
McNemar’s, 200, 467
Pearson’s, 212, 387
score, 366, 448, 480
Wald, 480
Yates’ corrected, 215

clinical trial, 358, 494
phase I, 497
phase II, 499
phases I‐IV, 495

clustered study, 409
coefficient of correlation, 300
coefficient of determination, 308, 310
coefficient of multiple determination, 321
coefficient of variation, 76
cohort‐escalation study, 497
cohort study, 14, 130, 385, 439, 494
common odds ratio, 26
comparisonwise error, 258
complete case analysis, 410
compound event, 126
concordance, 22, 84, 112, 219

category‐specific, 112
overall, 112

conditional independence, 206
conditional logistic regression, 472
confidence interval, 142, 146, 192

for a correlation coefficient, 161
for a difference of means, 152
for a difference of proportions, 157
effect of sample size on, 148
for a hazard ratio, 453, 457
for a mean, 148
for a odds ratio, 157, 356, 363, 426, 467, 

475, 479
for a paired mean difference, 152
for a proportion, 154
for a regression coefficient, 415
relation to p value, 191
for a relative risk, 394

confidence level, 148
confounder, 3, 15, 25, 131, 151, 165, 199, 

206, 238, 464

contingency table, 22, 197, 211
contingency table, ordered, 219
continuity correction, 210, 215
continuous data, 318
correlation, 78, 299

autoregressive (AR), 425
compound symmetry, 413, 425
exchangeable (see correlation, compound 

symmetry)
induced, 412
inter-correlation, 300
intra‐class (ICC), 413
intra-correlation, 300
Kendall’s tau (τ), 84
non‐parametric, 83
Pearson’s r, 80, 83
Spearman’s rho (ρ), 83
unstructured, 425
working, 425, 428

correlation coefficient, 81, 307
covariate. see predictor variable
covariate, time dependent, 461
Cox model. see proportional hazards model
cross‐classified table. see contingency table
crossing survival curves, 449
crude rate, 13
cure model, 449
cut point, 183, 184, 187, 188

death rate
adjusted, 13, 16
crude, 13
follow‐up, 14

death set, 452, 462
decision making rule. see cut point
degrees of freedom, 75, 125, 212, 236, 242, 

254, 275, 310, 321, 387
density, 114
density curve, 115, 117, 124
dependent variable. see response variable
derived variable analysis, 410
deterministic relationship, 79
deviation, 73
diagnostic procedure, 5
diagnostics, 287, 302, 419
dichotomous characteristic. see variable, binary
dichotomous data. see variable, binary
difference of means, 152
difference of proportions, 202
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direct method, 16
discordance, 21, 23, 84, 219, 466, 518
discrete data. see variable, discrete
disease registry, 5
dispersion, 73–78, 360, 402, 403. see also 

variance
distribution

sampling, 147, 157, 160
skewed, 63, 71, 73, 76
symmetric, 63, 76
unimodal, 61

DLT. see dose‐limiting toxicity
dose‐limiting toxicity, 497
dose‐response, 314, 317
dummy variable, 302, 318, 332, 351, 363, 

393, 397, 399, 412, 443, 456, 463, 472, 
477, 478

effect
interaction, 274, 277
main, 274, 277, 400
modification, 4, 206–207, 274, 276–278, 

281, 312, 319, 364, 368, 399, 457,  
459, 479

simple, 274, 277
estimate, 141

interval, 146
point, 145

estimator, unbiased, 143
event time, 443
exact statistic, 249, 250
exclusion criteria, 496
expected deaths, 16, 29, 447
expected frequencies, 212
expected value, 303, 320
experimental study. see randomized study
experimental unit, 280
experiment wise error, 258
explanatory variable. see predictor variable
exponential growth (decay), 315, 316
exponentiation, 158, 161
exposure, 2

factorial, 273, 274
factors. see factorial
false negative, 6, 186
false positive, 6, 107, 186
F distribution, 125
Fisher’s exact statistic, 217

Fisher’s transformation, 503
fixed effect, 280
force of mortality. see hazard function
frequency

cumulative, 64
cumulative relative, 64
relative, 104

frequency distribution, 56, 114
frequency polygon, 60
F statistic, 255, 276–278, 284, 310, 322, 

414, 425, 428
full model, 276

Gaussian distribution. see Normal 
distribution

GEE. see Generalized Estimating Equations
Generalized Estimating Equations, 425, 428

model‐based standard error, 425
robust (empirical) standard error, 

425, 428
generalized odds, 22
general linear F test, 276
gold standard, 112
goodness of fit, 360, 402, 416, 462
goodness of fit statistic. see chi‐square test, 

Pearson’s

hazard function, 441
hazard ratio, 441, 442, 453, 514
hazard ratio, constant, 442
histogram, 60, 114
hypothesis, 181

alternative, 181, 198
composite, 193
global null, 277, 322, 366, 394, 458, 479
null, 181, 197, 235
omnibus (see hypothesis, global null)
simple, 193

hypothesis test, 181

incidence, 13
inclusion criteria, 496
independence null hypothesis, 212
independent events, 108, 126
independent trials, 126
independent variable. see predictor variable
indicator variable. see dummy variable
infant mortality rate, 129
interaction. see effect modification
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intercept, 301, 302
inter‐correlation, 300, 313
inter‐quartile range, 89
interval density, 60
interval midpoint, 70
intra‐correlation, 300
IQR. see inter‐quartile range

Kaplan–Meier curve, 444
kappa, 113

category‐specific, 114
overall, 114
problem with, 114

k samples, binary, 215

least squares estimation, 303, 320
likelihood function, 164, 354, 363, 391, 393, 

469, 473, 476, 478
likelihood ratio test. see chi‐square test, 

likelihood ratio
linear association, 81
linearity, 302, 318, 364, 393, 416, 454, 457, 479
linear mixed model, 411

conditional mean, 424
marginal mean, 424
population‐average intercept, 411
random intercept, 411
random slope, 415
subject‐specific intercept, 411

line graph, 9
log hazard, 442
logistic regression, 352, 424
logistic regression, conditional, 472
lognormal distribution, 125
log odds, 357, 424
log rank test, 448
log rank test, stratified, 460
longitudinal study, 409

Mantel–Haenszel odds ratio, 26, 206
margin of error, 499, 501
matching, 131, 199, 472

advantages and disadvantages, 464
efficiency, 468
multiple‐to‐one, 468
one‐to‐one, 466

maximum likelihood estimation, 164, 355, 
391, 393, 414

maximum tolerated dose, 495

McNemar’s chi‐square test, 200, 476
mean, 67, 69

geometric, 71
square, 254, 275

measurement scale, effect of, 454
median, 65, 72, 76
median effective dose, 314
median test. see Wilcoxon rank sum test
midrange, 89
misclassification, 5
missing data, 364, 394, 410
mode, 73
morbidity, 13
mortality, 13
MTD. see maximum tolerated dose
multi‐level model, 421
multiple comparisons adjustment,  

258, 283
multiple testing, 369, 399
multiplication rule, 108, 126, 212

negative predictive value, 110
nested models, 417
normal curve, 114
normal distribution, 124, 290

mean, 116
variance, 116

observational study, 281
observed size. see p value
odds, 19, 157
odds, generalized, 21, 219
odds ratio, 18, 108, 131, 158, 355, 363, 426, 

466, 516, 518, 520
as approximation to relative risk, 19,  

131, 359
Mantel–Haenszel, 26, 207, 469
matched pairs, 132, 165, 469, 475

omnibus hypothesis. see hypothesis, 
global null

one‐sample
binary, 197
continuous, 235

one‐sided test, 133, 188, 198, 202,  
236, 242

one‐tailed. see one‐sided test
ordered contingency table, 21
outlier, 76
overdispersion, 359, 387, 402
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paired‐sample, non‐parametric, 250
pair‐matched

binary, 130, 199
case‐control study, 130
continuous, 237, 250

pairwise comparisons, 258
parallel lines assumption, 460
parameter, 116, 141, 143, 198, 236
partial likelihood function, 452, 456, 462
Pearson’s chi‐square test, 387
percentile, 64, 76
percentile score, 64
person‐years method, 14, 385
pie chart, 8
placebo, 496
Poisson distribution, 128, 384

mean, 129, 384
offset (see Poisson distribution, size)
relation to binomial, 384, 391
size, 389, 391, 427, 431
variance, 129, 384

Poisson regression, 383, 427
polytomous data, 318
pooled variance, 242
population, 116, 145, 182

average coefficient, 424
target, 104, 305

positive predictive value, 110
power, 193, 509
predicted value, 287, 303, 320
prediction, 297, 299, 303
predictor variable, 274, 297, 351, 383, 450
prevalence, 5, 103, 111
primary endpoint. see primary outcome
primary outcome, 99
probability, 103, 104, 117

conditional, 108
joint, 106
marginal, 106, 212
unconditional, 109
univariate, 107

probability density function, 124, 129, 164
product‐limit estimation, 444
proportion, 1, 77, 103, 104, 153, 198
proportional hazard assumption, 459, 462
proportional hazards, 514
proportional hazards model, 442, 451, 456
proportional hazards model, for matched 

pairs data, 475

prospective study, 2, 130, 358, 439, 494
p value, 189, 194, 199
p value, relation to confidence interval, 191

QIC. see quasi‐likelihood information 
criterion

quasi‐likelihood information criterion, 
425–426, 428

random effect, 280, 410, 414, 421
randomization, 496
randomized complete block design, 419
randomized study, 281, 283
random sampling, 493
random selection, 103
range, 56, 73
rate, 10
ratio, 18
receiver operating characteristic (ROC) 

curve, 373, 374
reduced model, 276
reference group, 21, 28, 364, 399, 442
regression, 297, 299

coefficient, 302, 318, 356, 363, 391, 393, 
410, 425, 428, 453, 458

logistic, 353, 363
multiple, 318, 351, 362, 393, 410, 423, 

456, 478
Poisson, 389, 393
polynomial, 319, 365, 396
simple, 351, 389
simple linear, 298, 301
stepwise, 331, 332, 334, 351, 365, 369, 

404, 459, 483
rejection region, 187–189, 198, 236, 242
relative frequency, 58, 114
relative hazard. see hazard ratio
relative risk, 18, 29, 359, 391, 466,  

516, 518
repeated measures, 409
replication, 281, 283, 418
reproducibility, 112, 145
residual, 287, 416
residual, studentized, 287
response variable, 273, 297, 352, 383,  

409, 473
retrospective study, 2, 130, 358, 439, 494
risk, 391
risk factor, 2, 298
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risk function. see hazard function
risk ratio, 18
risk set, 452, 462
R‐square, 310, 321

sample, 104, 116, 145, 182
paired, 151
pair matched, 151, 165
small, 148, 149
two independent, 152

sample mean, 115
sample proportion, 115
sample size, 499, 501, 502, 505–507, 509, 

512, 514, 516, 518, 521
sampling

for a block design, 281
random, 105
repeated, 104, 116, 143, 147, 182, 187, 

198, 236
without replacement, 143

sampling distribution, 182, 198, 236
sampling frame, 105
sandwich estimator. see Generalized 

Estimating Equations, robust  
standard error

scaled deviance, 360, 402
scaled Pearson chi‐square, 360, 402
scatter diagram. see scatter plot
scatter plot, 55, 79, 302
score equation, 425, 428
score test. see chi‐square test, score
screening test, 5, 106, 186, 314, 372
seasonality, 333
sensitivity, 5, 107, 110, 186, 373
separation power, 373, 374
separator variable, 372, 374
sequential probability ratio test, 507
significance

level, 188, 198
practical, 190
statistical, 180, 188, 190
test, 179

significant difference, minimum clinical, 
505, 510

Simon two‐stage phase II study, 504
size of test. see type I error
skewness, 290
slope, 301, 302

small sample test, 217
spaghetti plot, 411
specificity, 5, 110, 186, 373
specific rate, 13
staggered entry, 440
standard deviation, 74, 78, 146
standard error, 146, 298

of a difference of means, 152
of a difference of proportions, 157
of a mean, 148
of a proportion, 153

standardize, 122, 147, 198, 219, 236, 247, 
250, 308, 366, 396, 448

standardized mortality ratio, 28
standardized rate, 13, 15
standard normal distribution, 116, 124, 198
standard normal score. see z statistic
standard population, 16
statistic, 1, 116, 143, 198, 236, 298
statistical association, 22, 78, 79, 106, 108, 

113, 297, 299
negative, 79, 81
positive, 79, 81

statistical inference, 141, 145
statistical relationship. see statistical 

association
stem‐and‐leaf plot, 68
stratification, 459
stratification, for matched pairs, 475
subject specific coefficient, 424
sum of squares

between (SSB), 254, 275
within (SSW), 253, 275
error, 275, 310, 321
model, 275
regression, 310, 321
total (SST), 253, 275, 309, 321

survey study, 493, 499
survival curve, 441
survival data, 440
survival function, 441
survival rate. see survival function
survival time, 440

target population, 493
t distribution, 125, 149, 236, 242

mean, 125
variance, 125
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test, 141
test for independence, 212, 307
test statistic, 182, 187
treatment factor, 280
t statistic, 308, 310, 323, 324, 326, 352, 414

one‐sample, 236
paired sample, 238, 476
two‐sample, 242, 255

t test. see t statistic
Tukey’s type I error adjustment, 259
two‐sample

binary, 202
non‐parametric, 246

two‐sided test, 133, 188, 198, 202, 236,  
242, 307

two‐tailed. see two‐sided test
two‐way or 2x2 table. see contingency table
type 1 analysis, 401
type 3 analysis, 400
type I error, 180, 182, 185, 188, 252, 258, 

369, 399, 404, 459, 509
type II error, 180, 182, 185, 187, 509

unit of observation, 389

variable, 55, 124
Bernoulli, 124
binary, 2, 77, 126, 318, 352
binomial, 352
categorical, 197
continuous, 55, 124, 297
dichotomous (see variable, binary)
discrete, 55, 77, 125
point binomial (see variable, Bernoulli)
polytomous, 2, 298, 311, 318, 363,  

393, 456
variance, 73, 77

Wilcoxon generalized test, 448
Wilcoxon rank sum test, 246, 260
Wilcoxon signed rank test, 250, 476

Yates’ corrected chi‐square test, 215

z score. see z statistic
z statistic, 116, 122, 128, 129, 198, 200, 202, 

207, 219, 247, 250, 367, 396, 425, 428, 
448, 449, 458, 467, 480

z test. see z statistic
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