

Jetpack Compose 1.6
Essentials
Jetpack Compose 1.6 Essentials
ISBN-13: 978-1-951442-91-0
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.
This book is provided for personal use only. Unauthorized use, reproduction
and/or distribution strictly prohibited. All rights reserved.
The content of this book is provided for informational purposes only.
Neither the publisher nor the author offers any warranties or representation,
express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising
from any errors or omissions.
This book contains trademarked terms that are used solely for editorial
purposes and to the benefit of the respective trademark owner. The terms
used within this book are not intended as infringement of any trademarks.
Rev: 1.0

Find more books at https://www.payloadbooks.com.
Copyright

“

Table of Contents
1. Start Here

1.1 For Kotlin programmers
1.2 For new Kotlin programmers
1.3 Downloading the code samples
1.4 Feedback
1.5 Errata
1.6 Find more books
1.7 Authors wanted

2. Setting up an Android Studio Development Environment
2.1 System requirements
2.2 Downloading the Android Studio package
2.3 Installing Android Studio
2.3.1 Installation on Windows
2.3.2 Installation on macOS
2.3.3 Installation on Linux

2.4 The Android Studio setup wizard
2.5 Installing additional Android SDK packages
2.6 Installing the Android SDK Command-line Tools
2.6.1 Windows 8.1
2.6.2 Windows 10
2.6.3 Windows 11
2.6.4 Linux
2.6.5 macOS

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 Summary

3. A Compose Project Overview
3.1 About the project
3.2 Creating the project
3.3 Creating an activity
3.4 Defining the project and SDK settings
3.5 Enabling the New Android Studio UI

3.6 Previewing the example project
3.7 Reviewing the main activity
3.8 Preview updates
3.9 Bill of Materials and the Compose version
3.10 Summary

4. An Example Compose Project
4.1 Getting started
4.2 Removing the template Code
4.3 The Composable hierarchy
4.4 Adding the DemoText composable
4.5 Previewing the DemoText composable
4.6 Adding the DemoSlider composable
4.7 Adding the DemoScreen composable
4.8 Previewing the DemoScreen composable
4.9 Adjusting preview settings
4.10 Testing in interactive mode
4.11 Completing the project
4.12 Summary

5. Creating an Android Virtual Device (AVD) in Android Studio
5.1 About Android Virtual Devices
5.2 Starting the Emulator
5.3 Running the Application in the AVD
5.4 Real-time updates with Live Edit
5.5 Running on Multiple Devices
5.6 Stopping a Running Application
5.7 Supporting Dark Theme
5.8 Running the Emulator in a Separate Window
5.9 Removing the Device Frame
5.10 Summary

6. Using and Configuring the Android Studio AVD Emulator
6.1 The Emulator Environment
6.2 Emulator Toolbar Options
6.3 Working in Zoom Mode
6.4 Resizing the Emulator Window
6.5 Extended Control Options

6.5.1 Location
6.5.2 Displays
6.5.3 Cellular
6.5.4 Battery
6.5.5 Camera
6.5.6 Phone
6.5.7 Directional Pad
6.5.8 Microphone
6.5.9 Fingerprint
6.5.10 Virtual Sensors
6.5.11 Snapshots
6.5.12 Record and Playback
6.5.13 Google Play
6.5.14 Settings
6.5.15 Help

6.6 Working with Snapshots
6.7 Configuring Fingerprint Emulation
6.8 The Emulator in Tool Window Mode
6.9 Creating a Resizable Emulator
6.10 Summary

7. A Tour of the Android Studio User Interface
7.1 The Welcome Screen
7.2 The Menu Bar
7.3 The Main Window
7.4 The Tool Windows
7.5 The Tool Window Menus
7.6 Android Studio Keyboard Shortcuts
7.7 Switcher and Recent Files Navigation
7.8 Changing the Android Studio Theme
7.9 Summary

8. Testing Android Studio Apps on a Physical Android Device
8.1 An Overview of the Android Debug Bridge (ADB)
8.2 Enabling USB Debugging ADB on Android Devices
8.2.1 macOS ADB Configuration
8.2.2 Windows ADB Configuration

8.2.3 Linux adb Configuration
8.3 Resolving USB Connection Issues
8.4 Enabling Wireless Debugging on Android Devices
8.5 Testing the adb Connection
8.6 Device Mirroring
8.7 Summary

9. The Basics of the Android Studio Code Editor
9.1 The Android Studio Editor
9.2 Splitting the Editor Window
9.3 Code Completion
9.4 Statement Completion
9.5 Parameter Information
9.6 Parameter Name Hints
9.7 Code Generation
9.8 Code Folding
9.9 Quick Documentation Lookup
9.10 Code Reformatting
9.11 Finding Sample Code
9.12 Live Templates
9.13 Summary

10. An Overview of the Android Architecture
10.1 The Android Software Stack
10.2 The Linux Kernel
10.3 Hardware Abstraction Layer
10.4 Android Runtime – ART
10.5 Android Libraries
10.5.1 C/C++ Libraries

10.6 Application Framework
10.7 Applications
10.8 Summary

11. An Introduction to Kotlin
11.1 What is Kotlin?
11.2 Kotlin and Java
11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio

11.5 Experimenting with Kotlin
11.6 Semi-colons in Kotlin
11.7 Summary

12. Kotlin Data Types, Variables and Nullability
12.1 Kotlin data types
12.1.1 Integer data types
12.1.2 Floating point data types
12.1.3 Boolean data type
12.1.4 Character data type
12.1.5 String data type
12.1.6 Escape sequences

12.2 Mutable variables
12.3 Immutable variables
12.4 Declaring mutable and immutable variables
12.5 Data types are objects
12.6 Type annotations and type inference
12.7 Nullable type
12.8 The safe call operator
12.9 Not-null assertion
12.10 Nullable types and the let function
12.11 Late initialization (lateinit)
12.12 The Elvis operator
12.13 Type casting and type checking
12.14 Summary

13. Kotlin Operators and Expressions
13.1 Expression syntax in Kotlin
13.2 The Basic assignment operator
13.3 Kotlin arithmetic operators
13.4 Augmented assignment operators
13.5 Increment and decrement operators
13.6 Equality operators
13.7 Boolean logical operators
13.8 Range operator
13.9 Bitwise operators
13.9.1 Bitwise inversion

13.9.2 Bitwise AND
13.9.3 Bitwise OR
13.9.4 Bitwise XOR
13.9.5 Bitwise left shift
13.9.6 Bitwise right shift

13.10 Summary
14. Kotlin Control Flow

14.1 Looping control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The while loop
14.1.3 The do ... while loop
14.1.4 Breaking from Loops
14.1.5 The continue statement
14.1.6 Break and continue labels

14.2 Conditional control flow
14.2.1 Using the if expressions
14.2.2 Using if ... else … expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the when statement

14.3 Summary
15. An Overview of Kotlin Functions and Lambdas

15.1 What is a function?
15.2 How to declare a Kotlin function
15.3 Calling a Kotlin function
15.4 Single expression functions
15.5 Local functions
15.6 Handling return values
15.7 Declaring default function parameters
15.8 Variable number of function parameters
15.9 Lambda expressions
15.10 Higher-order functions
15.11 Summary

16. The Basics of Object-Oriented Programming in Kotlin
16.1 What is an object?
16.2 What is a class?

16.3 Declaring a Kotlin class
16.4 Adding properties to a class
16.5 Defining methods
16.6 Declaring and initializing a class instance
16.7 Primary and secondary constructors
16.8 Initializer blocks
16.9 Calling methods and accessing properties
16.10 Custom accessors
16.11 Nested and inner classes
16.12 Companion objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing
17.1 Inheritance, classes, and subclasses
17.2 Subclassing syntax
17.3 A Kotlin inheritance example
17.4 Extending the functionality of a subclass
17.5 Overriding inherited methods
17.6 Adding a custom secondary constructor
17.7 Using the SavingsAccount class
17.8 Summary

18. An Overview of Compose
18.1 Development before Compose
18.2 Compose declarative syntax
18.3 Compose is data-driven
18.4 Summary

19. A Guide to Gradle Version Catalogs
19.1 Library and Plugin Dependencies
19.2 Project Gradle Build File
19.3 Module Gradle Build Files
19.4 Version Catalog File
19.5 Adding Dependencies
19.6 Library Updates
19.7 Summary

20. Composable Functions Overview

20.1 What is a composable function?
20.2 Stateful vs. stateless composables
20.3 Composable function syntax
20.4 Foundation and Material composables
20.5 Summary

21. An Overview of Compose State and Recomposition
21.1 The basics of state
21.2 Introducing recomposition
21.3 Creating the StateExample project
21.4 Declaring state in a composable
21.5 Unidirectional data flow
21.6 State hoisting
21.7 Saving state through configuration changes
21.8 Summary

22. An Introduction to Composition Local
22.1 Understanding CompositionLocal
22.2 Using CompositionLocal
22.3 Creating the CompLocalDemo project
22.4 Designing the layout
22.5 Adding the CompositionLocal state
22.6 Accessing the CompositionLocal state
22.7 Testing the design
22.8 Summary

23. An Overview of Compose Slot APIs
23.1 Understanding slot APIs
23.2 Declaring a slot API
23.3 Calling slot API composables
23.4 Summary

24. A Compose Slot API Tutorial
24.1 About the project
24.2 Creating the SlotApiDemo project
24.3 Preparing the MainActivity class file
24.4 Creating the MainScreen composable
24.5 Adding the ScreenContent composable

24.6 Creating the Checkbox composable
24.7 Implementing the ScreenContent slot API
24.8 Adding an Image drawable resource
24.9 Coding the TitleImage composable
24.10 Completing the MainScreen composable
24.11 Previewing the project
24.12 Summary

25. Using Modifiers in Compose
25.1 An overview of modifiers
25.2 Creating the ModifierDemo project
25.3 Creating a modifier
25.4 Modifier ordering
25.5 Adding modifier support to a composable
25.6 Common built-in modifiers
25.7 Combining modifiers
25.8 Summary

26. Annotated Strings and Brush Styles
26.1 What are annotated strings?
26.2 Using annotated strings
26.3 Brush Text Styling
26.4 Creating the example project
26.5 An example SpanStyle annotated string
26.6 An example ParagraphStyle annotated string
26.7 A Brush style example
26.8 Summary

27. Composing Layouts with Row and Column
27.1 Creating the RowColDemo project
27.2 Row composable
27.3 Column composable
27.4 Combining Row and Column composables
27.5 Layout alignment
27.6 Layout arrangement positioning
27.7 Layout arrangement spacing
27.8 Row and Column scope modifiers
27.9 Scope modifier weights

27.10 Summary
28. Box Layouts in Compose

28.1 An introduction to the Box composable
28.2 Creating the BoxLayout project
28.3 Adding the TextCell composable
28.4 Adding a Box layout
28.5 Box alignment
28.6 BoxScope modifiers
28.7 Using the clip() modifier
28.8 Summary

29. An Introduction to FlowRow and FlowColumn
29.1 FlowColumn and FlowRow
29.2 Maximum number of items
29.3 Working with main axis arrangement
29.4 Understanding cross-axis arrangement
29.5 Item alignment
29.6 Controlling item size
29.7 Summary

30. A FlowRow and FlowColumn Tutorial
30.1 Creating the FlowLayoutDemo project
30.2 Generating random height and color values
30.3 Adding the Box Composable
30.4 Modifying the Flow arrangement
30.5 Modifying item alignment
30.6 Switching to FlowColumn
30.7 Using cross-axis arrangement
30.8 Adding item weights
30.9 Summary

31. Custom Layout Modifiers
31.1 Compose layout basics
31.2 Custom layouts
31.3 Creating the LayoutModifier project
31.4 Adding the ColorBox composable
31.5 Creating a custom layout modifier

31.6 Understanding default position
31.7 Completing the layout modifier
31.8 Using a custom modifier
31.9 Working with alignment lines
31.10 Working with baselines
31.11 Summary

32. Building Custom Layouts
32.1 An overview of custom layouts
32.2 Custom layout syntax
32.3 Using a custom layout
32.4 Creating the CustomLayout project
32.5 Creating the CascadeLayout composable
32.6 Using the CascadeLayout composable
32.7 Summary

33. A Guide to ConstraintLayout in Compose
33.1 An introduction to ConstraintLayout
33.2 How ConstraintLayout works
33.2.1 Constraints
33.2.2 Margins
33.2.3 Opposing constraints
33.2.4 Constraint bias
33.2.5 Chains
33.2.6 Chain styles

33.3 Configuring dimensions
33.4 Guideline helper
33.5 Barrier helper
33.6 Summary

34. Working with ConstraintLayout in Compose
34.1 Calling ConstraintLayout
34.2 Generating references
34.3 Assigning a reference to a composable
34.4 Adding constraints
34.5 Creating the ConstraintLayout project
34.6 Adding the ConstraintLayout library
34.7 Adding a custom button composable

34.8 Basic constraints
34.9 Opposing constraints
34.10 Constraint bias
34.11 Constraint margins
34.12 The importance of opposing constraints and bias
34.13 Creating chains
34.14 Working with guidelines
34.15 Working with barriers
34.16 Decoupling constraints with constraint sets
34.17 Summary

35. Working with IntrinsicSize in Compose
35.1 Intrinsic measurements
35.2 Max. vs Min. Intrinsic Size measurements
35.3 About the example project
35.4 Creating the IntrinsicSizeDemo project
35.5 Creating the custom text field
35.6 Adding the Text and Box components
35.7 Adding the top-level Column
35.8 Testing the project
35.9 Applying IntrinsicSize.Max measurements
35.10 Applying IntrinsicSize.Min measurements
35.11 Summary

36. Coroutines and LaunchedEffects in Jetpack Compose
36.1 What are coroutines?
36.2 Threads vs. coroutines
36.3 Coroutine Scope
36.4 Suspend functions
36.5 Coroutine dispatchers
36.6 Coroutine builders
36.7 Jobs
36.8 Coroutines – suspending and resuming
36.9 Coroutine channel communication
36.10 Understanding side effects
36.11 Summary

37. An Overview of Lists and Grids in Compose

37.1 Standard vs. lazy lists
37.2 Working with Column and Row lists
37.3 Creating lazy lists
37.4 Enabling scrolling with ScrollState
37.5 Programmatic scrolling
37.6 Sticky headers
37.7 Responding to scroll position
37.8 Creating a lazy grid
37.9 Summary

38. A Compose Row and Column List Tutorial
38.1 Creating the ListDemo project
38.2 Creating a Column-based list
38.3 Enabling list scrolling
38.4 Manual scrolling
38.5 A Row list example
38.6 Summary

39. A Compose Lazy List Tutorial
39.1 Creating the LazyListDemo project
39.2 Adding list data to the project
39.3 Reading the XML data
39.4 Handling image loading
39.5 Designing the list item composable
39.6 Building the lazy list
39.7 Testing the project
39.8 Making list items clickable
39.9 Summary

40. Lazy List Sticky Headers and Scroll Detection
40.1 Grouping the list item data
40.2 Displaying the headers and items
40.3 Adding sticky headers
40.4 Reacting to scroll position
40.5 Adding the scroll button
40.6 Testing the finished app
40.7 Summary

41. A Compose Lazy Staggered Grid Tutorial
41.1 Lazy Staggered Grids
41.2 Creating the StaggeredGridDemo project
41.3 Adding the Box composable
41.4 Generating random height and color values
41.5 Creating the Staggered List
41.6 Testing the project
41.7 Switching to a horizontal staggered grid
41.8 Summary

42. VerticalPager and HorizontalPager in Compose
42.1 The Pager composables
42.2 Working with pager state
42.3 About the PagerDemo project
42.4 Creating the PagerDemo project
42.5 Adding the book cover images
42.6 Adding the HorizontalPager
42.7 Creating the page content
42.8 Testing the pager
42.9 Adding the arrow buttons
42.10 Summary

43. Compose Visibility Animation
43.1 Creating the AnimateVisibility project
43.2 Animating visibility
43.3 Defining enter and exit animations
43.4 Animation specs and animation easing
43.5 Repeating an animation
43.6 Different animations for different children
43.7 Auto-starting an animation
43.8 Implementing crossfading
43.9 Summary

44. Compose State-Driven Animation
44.1 Understanding state-driven animation
44.2 Introducing animate as state functions
44.3 Creating the AnimateState project

44.4 Animating rotation with animateFloatAsState
44.5 Animating color changes with animateColorAsState
44.6 Animating motion with animateDpAsState
44.7 Adding spring effects
44.8 Working with keyframes
44.9 Combining multiple animations
44.10 Using the Animation Inspector
44.11 Summary

45. Canvas Graphics Drawing in Compose
45.1 Introducing the Canvas component
45.2 Creating the CanvasDemo project
45.3 Drawing a line and getting the canvas size
45.4 Drawing dashed lines
45.5 Drawing a rectangle
45.6 Applying rotation
45.7 Drawing circles and ovals
45.8 Drawing gradients
45.9 Drawing arcs
45.10 Drawing paths
45.11 Drawing points
45.12 Drawing an image
45.13 Drawing text
45.14 Summary

46. Working with ViewModels in Compose
46.1 What is Android Jetpack?
46.2 The “old” architecture
46.3 Modern Android architecture
46.4 The ViewModel component
46.5 ViewModel implementation using state
46.6 Connecting a ViewModel state to an activity
46.7 ViewModel implementation using LiveData
46.8 Observing ViewModel LiveData within an activity
46.9 Summary

47. A Compose ViewModel Tutorial
47.1 About the project

47.2 Creating the ViewModelDemo project
47.3 Adding the ViewModel
47.4 Accessing DemoViewModel from MainActivity
47.5 Designing the temperature input composable
47.6 Designing the temperature input composable
47.7 Completing the user interface design
47.8 Testing the app
47.9 Summary

48. An Overview of Android SQLite Databases
48.1 Understanding database tables
48.2 Introducing database schema
48.3 Columns and data types
48.4 Database rows
48.5 Introducing primary keys
48.6 What is SQLite?
48.7 Structured Query Language (SQL)
48.8 Trying SQLite on an Android Virtual Device (AVD)
48.9 The Android Room persistence library
48.10 Summary

49. Room Databases and Compose
49.1 Revisiting modern app architecture
49.2 Key elements of Room database persistence
49.2.1 Repository
49.2.2 Room database
49.2.3 Data Access Object (DAO)
49.2.4 Entities
49.2.5 SQLite database

49.3 Understanding entities
49.4 Data Access Objects
49.5 The Room database
49.6 The Repository
49.7 In-Memory databases
49.8 Database Inspector
49.9 Summary

50. A Compose Room Database and Repository Tutorial

50.1 About the RoomDemo project
50.2 Creating the RoomDemo project
50.3 Modifying the build configuration
50.4 Building the entity
50.5 Creating the Data Access Object
50.6 Adding the Room database
50.7 Adding the repository
50.8 Adding the ViewModel
50.9 Designing the user interface
50.10 Writing a ViewModelProvider Factory class
50.11 Completing the MainScreen function
50.12 Testing the RoomDemo app
50.13 Using the Database Inspector
50.14 Summary

51. An Overview of Navigation in Compose
51.1 Understanding navigation
51.2 Declaring a navigation controller
51.3 Declaring a navigation host
51.4 Adding destinations to the navigation graph
51.5 Navigating to destinations
51.6 Passing arguments to a destination
51.7 Working with bottom navigation bars
51.8 Summary

52. A Compose Navigation Tutorial
52.1 Creating the NavigationDemo project
52.2 About the NavigationDemo project
52.3 Declaring the navigation routes
52.4 Adding the home screen
52.5 Adding the welcome screen
52.6 Adding the profile screen
52.7 Creating the navigation controller and host
52.8 Implementing the screen navigation
52.9 Passing the user name argument
52.10 Testing the project
52.11 Summary

53. A Compose Navigation Bar Tutorial
53.1 Creating the BottomBarDemo project
53.2 Declaring the navigation routes
53.3 Designing bar items
53.4 Creating the bar item list
53.5 Adding the destination screens
53.6 Creating the navigation controller and host
53.7 Designing the navigation bar
53.8 Working with the Scaffold component
53.9 Testing the project
53.10 Summary

54. Detecting Gestures in Compose
54.1 Compose gesture detection
54.2 Creating the GestureDemo project
54.3 Detecting click gestures
54.4 Detecting taps using PointerInputScope
54.5 Detecting drag gestures
54.6 Detecting drag gestures using PointerInputScope
54.7 Scrolling using the scrollable modifier
54.8 Scrolling using the scroll modifiers
54.9 Detecting pinch gestures
54.10 Detecting rotation gestures
54.11 Detecting translation gestures
54.12 Summary

55. Working with Anchored Draggable Components
55.1 Dragging and anchors
55.2 Detecting dragging gestures
55.3 Declaring the anchor points
55.4 Declaring thresholds
55.5 Declaring draggable state
55.6 Moving a component in response to a drag
55.7 About the DraggableDemo project
55.8 Creating the DraggableDemo project
55.9 Adding Foundation library
55.10 Adding the anchors enumeration

55.11 Setting up the draggable state and anchors
55.12 Designing the parent Box
55.13 Adding the draggable box
55.14 Testing the project
55.15 Summary

56. An Introduction to Kotlin Flow
56.1 Understanding Flows
56.2 Creating the sample project
56.3 Adding a view model to the project
56.4 Declaring the flow
56.5 Emitting flow data
56.6 Collecting flow data as state
56.7 Transforming data with intermediaries
56.8 Collecting flow data
56.9 Adding a flow buffer
56.10 More terminal flow operators
56.11 Flow flattening
56.12 Combining multiple flows
56.13 Hot and cold flows
56.14 StateFlow
56.15 SharedFlow
56.16 Converting a flow from cold to hot
56.17 Summary

57. A Jetpack Compose SharedFlow Tutorial
57.1 About the project
57.2 Creating the SharedFlowDemo project
57.3 Adding a view model to the project
57.4 Declaring the SharedFlow
57.5 Collecting the flow values
57.6 Testing the SharedFlowDemo app
57.7 Handling flows in the background
57.8 Summary

58. An Android Biometric Authentication Tutorial
58.1 An overview of biometric authentication
58.2 Creating the biometric authentication project

58.3 Adding the biometric dependency
58.4 Configuring device fingerprint authentication
58.5 Adding the biometric permissions to the manifest file
58.6 Checking the security settings
58.7 Designing the user interface
58.8 Configuring the authentication callbacks
58.9 Starting the biometric prompt
58.10 Testing the project
58.11 Summary

59. Working with the Google Maps Android API in Android Studio
59.1 The elements of the Google Maps Android API
59.2 Creating the Google Maps project
59.3 Creating a Google Cloud billing account
59.4 Creating a new Google Cloud project
59.5 Enabling the Google Maps SDK
59.6 Generating a Google Maps API key
59.7 Adding the API key to the Android Studio project
59.8 Adding the compose map dependency
59.9 Creating a map
59.10 Testing the application
59.11 Understanding geocoding and reverse geocoding
59.12 Specifying a map location
59.13 Changing the map type
59.14 Displaying map controls to the user
59.15 Handling map gesture interaction
59.15.1 Map zooming gestures
59.15.2 Map scrolling/panning gestures
59.15.3 Map tilt gestures
59.15.4 Map rotation gestures

59.16 Creating map markers
59.17 Controlling the map camera
59.18 Summary

60. Creating, Testing, and Uploading an Android App Bundle
60.1 The Release Preparation Process
60.2 Android App Bundles

60.3 Register for a Google Play Developer Console Account
60.4 Configuring the App in the Console
60.5 Enabling Google Play App Signing
60.6 Creating a Keystore File
60.7 Creating the Android App Bundle
60.8 Generating Test APK Files
60.9 Uploading the App Bundle to the Google Play Developer Console
60.10 Exploring the App Bundle
60.11 Managing Testers
60.12 Rolling the App Out for Testing
60.13 Uploading New App Bundle Revisions
60.14 Analyzing the App Bundle File
60.15 Summary

61. An Overview of Android In-App Billing
61.1 Preparing a project for In-App purchasing
61.2 Creating In-App products and subscriptions
61.3 Billing client initialization
61.4 Connecting to the Google Play Billing library
61.5 Querying available products
61.6 Starting the purchase process
61.7 Completing the purchase
61.8 Querying previous purchases
61.9 Summary

62. An Android In-App Purchasing Tutorial
62.1 About the In-App purchasing example project
62.2 Creating the InAppPurchase project
62.3 Adding libraries to the project
62.4 Adding the App to the Google Play Store
62.5 Creating an In-App product
62.6 Enabling license testers
62.7 Creating a purchase helper class
62.8 Adding the StateFlow streams
62.9 Initializing the billing client
62.10 Querying the product
62.11 Handling purchase updates

62.12 Launching the purchase flow
62.13 Consuming the product
62.14 Restoring a previous purchase
62.15 Completing the MainActivity
62.16 Testing the app
62.17 Troubleshooting
62.18 Summary

63. Working with Compose Theming
63.1 Material Design 2 vs. Material Design 3
63.2 Material Design 3 theming
63.3 Building a custom theme
63.4 Summary

64. A Material Design 3 Theming Tutorial
64.1 Creating the ThemeDemo project
64.2 Designing the user interface
64.3 Building a new theme
64.4 Adding the theme to the project
64.5 Enabling dynamic colors
64.6 Summary

65. An Overview of Gradle in Android Studio
65.1 An Overview of Gradle
65.2 Gradle and Android Studio
65.2.1 Sensible Defaults
65.2.2 Dependencies
65.2.3 Build Variants
65.2.4 Manifest Entries
65.2.5 APK Signing
65.2.6 ProGuard Support

65.3 The Property and Settings Gradle Build File
65.4 The Top-level Gradle Build File
65.5 Module Level Gradle Build Files
65.6 Configuring Signing Settings in the Build File
65.7 Running Gradle Tasks from the Command Line
65.8 Summary

Index

1. Start Here
This book teaches you how to build Android applications using Jetpack
Compose 1.6, Android Studio Iguana (2023.2.1), Material Design 3, and the
Kotlin programming language.
The book begins with the basics by explaining how to set up an Android
Studio development environment.
The book also includes in-depth chapters introducing the Kotlin
programming language, including data types, operators, control flow,
functions, lambdas, coroutines, and object-oriented programming.
An introduction to the key concepts of Jetpack Compose and Android
project architecture is followed by a guided tour of Android Studio in
Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user
interface layouts, including row, column, box, flow, pager, and list
components.
Other topics covered include data handling using state properties and key
user interface design concepts such as modifiers, navigation bars, and user
interface navigation. Additional chapters explore building your own
reusable custom layout components, securing your apps with Biometric
authentication, and integrating Google Maps.
The book covers graphics drawing, user interface animation, transitions,
Kotlin Flows, and gesture handling.
Chapters also cover view models, SQLite databases, Room database access,
the Database Inspector, live data, and custom theme creation. You will also
learn to generate extra revenue from your app using in-app billing.
Finally, the book explains how to package up a completed app and upload it
to the Google Play Store for publication.
Along the way, the topics covered in the book are put into practice through
detailed tutorials, the source code for which is also available for download.
Assuming you already have some rudimentary programming experience,
are ready to download Android Studio and the Android SDK, and have
access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those
new to Kotlin and Jetpack Compose app development. If you are familiar
with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for
you. Just start at the beginning and keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples
contained in this book are available for download at:
https://www.payloadbooks.com/product/compose16/
The steps to load a project from the code samples into Android Studio are
as follows:
1.Click on the Open button option from the Welcome to Android Studio

dialog.
2.In the project selection dialog, navigate to and select the folder containing

the project to be imported and click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if
you find any errors in the book or have any comments, questions, or
concerns, please contact us at info@payloadbooks.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this
book, inevitably, a book covering a subject area of this size and complexity
may include some errors and oversights. Any known issues with the book
will be outlined, together with solutions, at the following URL:
https://www.payloadbooks.com/compose16_errata
If you find an error not listed in the errata, email our technical support team
at info@payloadbooks.com.

1.6 Find more books

https://www.payloadbooks.com/product/compose16/
https://www.payloadbooks.com/compose16_errata

Visit our website to view our complete book catalog at
https://www.payloadbooks.com.

1.7 Authors wanted
Payload Publishing is looking for authors.
Are you an aspiring author with a book idea in mind? When you publish
with us, you’ll receive our full support every step of the way. We offer
guidance and technical and editorial assistance to help you bring your book
to life. Once your book is completed, we will publish and market it
worldwide through our distribution and channel partnerships while paying
you higher royalties than traditional publishers.
Find out more at:
https://www.payloadbooks.com/authors-wanted
or email us at:
authors@payloadbooks.com

https://www.payloadbooks.com/
file:///tmp/calibre_4.99.5_tmp_3u4uqnnm/fzgdb1gu_pdf_out/OEBPS/Introduction.xhtml

2. Setting up an Android Studio
Development Environment
Before any work can begin on developing an Android application, the first
step is to configure a computer system to act as the development platform.
This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android
Software Development Kit (SDK) and the OpenJDK Java development
environment.
This chapter will cover the steps necessary to install the requisite
components for Android application development on Windows, macOS,
and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the
following system types:
•Windows 8/10/11 64-bit
•macOS 10.14 or later running on Intel or Apple silicon
•Chrome OS device with Intel i5 or higher
•Linux systems with version 2.31 or later of the GNU C Library (glibc)
•Minimum of 8GB of RAM
•Approximately 8GB of available disk space
•1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be
performed using the Android Studio environment. The content and
examples in this book were created based on Android Studio Iguana
2023.2.1 using the Android API 34 SDK (UpsideDownCake), which, at the
time of writing, are the latest stable releases.
Android Studio is, however, subject to frequent updates, so a newer version
may have been released since this book was published.
The latest release of Android Studio may be downloaded from the primary

download page, which can be found at the following URL:
https://developer.android.com/studio/index.html
If this page provides instructions for downloading a newer version of
Android Studio, there may be differences between this book and the
software. A web search for “Android Studio Iguana” should provide the
option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Iguana
2023.2.1 in the archives:
https://developer.android.com/studio/archive

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ
depending on the operating system on which the installation is performed.
2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named
android-studio-<version>-windows.exe) in a Windows Explorer window
and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.
Once the Android Studio setup wizard appears, work through the various
screens to configure the installation to meet your requirements in terms of
the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When
prompted to select the components to install, ensure that the Android Studio
and Android Virtual Device options are all selected.
Although there are no strict rules on where Android Studio should be
installed on the system, the remainder of this book will assume that the
installation was performed into C:\Program Files\Android\Android Studio
and that the Android SDK packages have been installed into the user’s
AppData\Local\Android\sdk sub-folder. Once the options have been
configured, click the Install button to begin the installation process.
On versions of Windows with a Start menu, the newly installed Android
Studio can be launched from the entry added to that menu during the
installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

studio64 executable, and selecting the Pin to Taskbar menu option (on
Windows 11, this option can be found by selecting Show more options from
the menu).
2.3.2 Installation on macOS
Android Studio for macOS is downloaded as a disk image (.dmg) file. Once
the android-studio-<version>-mac.dmg file has been downloaded, locate it
in a Finder window and double-click on it to open it, as shown in Figure 2-
1:

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the
Applications folder. The Android Studio package will then be installed into
the Applications folder of the system, a process that will typically take a
few seconds to complete.
To launch Android Studio, locate the executable in the Applications folder
using a Finder window and double-click on it.
For future, easier access to the tool, drag the Android Studio icon from the
Finder window and drop it onto the dock.
2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal
window, change directory to the location where Android Studio is to be
installed, and execute the following command:
tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory
named android-studio. Therefore, assuming that the above command was
executed in /home/demo, the software packages will be unpacked into
/home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the
android-studio/bin sub-directory, and execute the following command:
./studio.sh

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the
first time this new version is launched, a dialog may appear providing the
option to import settings from a previous Android Studio version. If you
have settings from a previous version and would like to import them into
the latest installation, select the appropriate option and location.
Alternatively, indicate that you do not need to import any previous settings
and click the OK button to proceed.
If you are installing Android Studio for the first time, the initial dialog that
appears once the setup process starts may resemble that shown in Figure 2-
2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type
screen (Figure 2-3). On this screen, select the Standard installation option
before clicking Next.

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme
based on your preferences. After making a choice, click Next, and review
the options in the Verify Settings screen before proceeding to the License
Agreement screen. Select each license category and enable the Accept
checkbox. Finally, click the Finish button to initiate the installation.
After these initial setup steps have been taken, click the Finish button to
display the Welcome to Android Studio screen using your chosen UI theme:

Figure 2-4
2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the

current set of default Android SDK packages. Before proceeding, it is worth
taking some time to verify which packages are installed and to install any
missing or updated packages.
This task can be performed by clicking on the More Actions link within the
welcome dialog and selecting the SDK Manager option from the drop-down
menu. Once invoked, the Android SDK screen of the Settings dialog will
appear as shown in Figure 2-5:

Figure 2-5
Google pairs each release of Android Studio with a maximum supported
Application Programming Interface (API) level of the Android SDK. In the
case of Android Studio Iguana, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:
https://developer.android.com/studio/releases#api-level-support
Immediately after installing Android Studio for the first time, it is likely
that only the latest supported version of the Android SDK has been
installed. To install older versions of the Android SDK, select the
checkboxes corresponding to the versions and click the Apply button. The
rest of this book assumes that the Android UpsideDownCake (API Level

https://developer.android.com/studio/releases#api-level-support

34) SDK is installed.
Most of the examples in this book will support older versions of Android as
far back as Android 8.0 (Oreo). This ensures that the apps run on a wide
range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the
OK button to install the SDK in the resulting confirmation dialog.
Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.
It is also possible that updates will be listed as being available for the latest
SDK. To access detailed information about the packages that are ready to be
updated, enable the Show Package Details option located in the lower right-
hand corner of the screen. This will display information similar to that
shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the
updates, enable the checkbox to the left of the item name and click the
Apply button.
In addition to the Android SDK packages, several tools are also installed for
building Android applications. To view the currently installed packages and
check for updates, remain within the SDK settings screen and select the
SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following
packages are listed as Installed in the Status column:
•Android SDK Build-tools
•Android Emulator
•Android SDK Platform-tools
•Google Play Services
•Intel x86 Emulator Accelerator (HAXM installer)*

•Google USB Driver (Windows only)
•Layout Inspector image server for API 31-34
*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be
installed on Apple silicon-based Macs.
If any of the above packages are listed as Not Installed or requiring an
update, select the checkboxes next to those packages and click the Apply
button to initiate the installation process. If the HAXM emulator settings
dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and ensure that
the selected packages are listed as Installed in the Status column. If any are
listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes tools that allow some tasks to be performed from
your operating system command line. To install these tools on your system,
open the SDK Manager, select the SDK Tools tab, and locate the Android

SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and
click Apply, followed by OK to complete the installation. When the
installation completes, click Finish and close the SDK Manager dialog.
For the operating system on which you are developing to be able to find
these tools, it will be necessary to add them to the system’s PATH
environment variable.
Regardless of your operating system, you will need to configure the PATH
environment variable to include the following paths (where
<path_to_android_sdk_installation> represents the file system location
into which you installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin
<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the
SDK Manager and referring to the Android SDK Location: field located at
the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to
the PATH variable are operating system dependent:
2.6.1 Windows 8.1
1.On the start screen, move the mouse to the bottom right-hand corner of

the screen and select Search from the resulting menu. In the search box,
enter Control Panel. When the Control Panel icon appears in the results
area, click on it to launch the tool on the desktop.

2.Within the Control Panel, use the Category menu to change the display to
Large Icons. From the list of icons, select the one labeled System.

3.In the Environment Variables dialog, locate the Path variable in the
System variables list, select it, and click the Edit… button. Using the New
button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into
C:\Users\demo\AppData\Local\Android\Sdk, the following entries would
need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4.Click OK in each dialog box and close the system properties control
panel.

Open a command prompt window by pressing Windows + R on the
keyboard and entering cmd into the Run dialog. Within the Command
Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android
SDK platform tools folders. Verify that the platform-tools value is correct
by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD

Manager command-line tool (don’t worry if the avdmanager tool reports a
problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the
commands, it is most likely that an incorrect path was appended to the Path
environment variable:
'adb' is not recognized as an internal or external command,
operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and
enter “Edit the system environment variables” into the Find a setting text
field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.
2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from
the resulting menu. When the Settings dialog appears, scroll down the list
of categories and select the “About” option. In the About screen, select
Advanced system settings from the Related links section. When the System
Properties window appears, click the Environment Variables... button.
Follow the steps outlined for Windows 8.1 starting from step 3.
2.6.4 Linux
This configuration can be achieved on Linux by adding a command to the
.bashrc file in your home directory (specifics may differ depending on the
particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line
in the .bashrc file would read as follows:
export PATH=/home/demo/Android/sdk/platform-
tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to
the PATH variable. This will enable the studio.sh script to be executed
regardless of the current directory within a terminal window.
2.6.5 macOS
Several techniques may be employed to modify the $PATH environment

variable on macOS. Arguably the cleanest method is to add a new file in the
/etc/paths.d directory containing the paths to be added to $PATH. Assuming
an Android SDK installation location of /Users/demo/Library/Android/sdk,
the path may be configured by creating a new file named android-sdk in the
/etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the
sudo command when creating the file. For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application with many
background processes. Although Android Studio has been criticized in the
past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to
do so with each new version. These improvements include allowing the
user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows
the software to take advantage of systems with larger amounts of RAM.
If you are running Android Studio on a system with sufficient unused RAM
to increase these values (this feature is only available on 64-bit systems
with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory
settings. Android Studio may also notify you that performance can be
increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File ->
Settings... main menu option (Android Studio -> Settings... on macOS) and,
in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand
navigation panel, as illustrated in Figure 2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more
memory than necessary or than your system can spare without slowing
down other processes.
The IDE heap size setting adjusts the memory allocated to Android Studio
and applies regardless of the currently loaded project. On the other hand,
when a project is built and run from within Android Studio, several
background processes (referred to as daemons) perform the task of
compiling and running the app. When compiling and running large and
complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings
apply only to the current project and can only be accessed when a project is
open in Android Studio. To display the SDK Manager from within an open
project, select the Tools -> SDK Manager... menu option from the main
menu.

2.8 Updating Android Studio and the SDK
From time to time, new versions of Android Studio and the Android SDK
are released. New versions of the SDK are installed using the Android SDK
Manager. Android Studio will typically notify you when an update is ready
to be installed.
To manually check for Android Studio updates, use the Help -> Check for
Updates... menu option from the Android Studio main window (Android

Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first
step is to set up a suitable development environment. This consists of the
Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to
install these packages on Windows, macOS, and Linux.

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an
Android app using Jetpack Compose. Although this project will use several
Compose features, it is an intentionally simple example intended to provide
an early demonstration of Compose in action and an initial success on
which to build as you work through the remainder of the book. The project
will also verify that your Android Studio environment is correctly installed
and configured.
This chapter will create a new project using the Android Studio Compose
project template and explore both the basic structure of a Compose-based
Android Studio project and some of the key areas of Android Studio. The
next chapter will use this project to create a simple Android app.
Both chapters will briefly explain key features of Compose as they are
introduced within the project. If anything is unclear when you have
completed the project, rest assured that all the areas covered in the tutorial
will be explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider.
When the slider is moved, the current value will be displayed on one of the
text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for
the app will appear as shown in Figure 3-1:

Figure 3-1
3.2 Creating the project
The first step in building an app is to create a new project within Android
Studio. Begin, therefore, by launching Android Studio so that the
“Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2

Once this window appears, Android Studio is ready for a new project to be
created. To create the new project, click on the New Project button to
display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for
the application. The left-hand panel provides a list of platform categories
from which the Phone and Tablet option must be selected. Although various
activity types are available when developing Android applications, only the
Empty Activity template provides a pre-configured project ready to work
with Compose. Select this option before clicking on the Next button:

Figure 3-3
3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to
ComposeDemo. The application name is the name by which the application
will be referenced and identified within Android Studio and is also the
name that would be used if the completed application were to go on sale in
the Google Play store:

Figure 3-4
The Package name uniquely identifies the application within the Google
Play app store application ecosystem. Although this can be set to any string
that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the application’s name. For
example, if your domain is www.mycompany.com, and the application has
been named ComposeDemo, then the package name might be specified as
follows:
com.mycompany.composedemo

If you do not have a domain name, you can enter any other string into the
Company Domain field, or you may use example.com for testing, though
this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named
AndroidStudioProjects located in your home directory and may be changed
by clicking on the folder icon to the right of the text field containing the
current path setting.
Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the
minimum SDK that will be used in most projects created in this book unless
a necessary feature is only available in a more recent version. The objective
here is to build an app using the latest Android SDK, while also retaining
compatibility with devices running older versions of Android (in this case
as far back as Android 8.0). The text beneath the Minimum SDK setting

will outline the percentage of Android devices currently in use on which the
app will run. Click on the Help me choose link to see a full breakdown of
the various Android versions still in use:

Figure 3-5
Finally, select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not
enabled by default in the Giraffe version. If your installation of Android
Studio resembles Figure 3-6 below, then you will need to enable the new UI
before proceeding:

Figure 3-6
Enable the new UI by selecting the File -> Settings... menu option (Android
Studio -> Settings... on macOS) and selecting the New UI option under
Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to
commit the change:

Figure 3-7
When prompted, restart Android Studio to activate the new user interface.

3.6 Previewing the example project
Once Android Studio has restarted, the main window will reappear using
the new UI and containing our AndroidSample project as illustrated in
Figure 3-8 below:

Figure 3-8
The newly created project and references to associated files are listed in the
Project tool window located on the left-hand side of the main project
window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This
setting is controlled by the menu at the top of the panel as highlighted in
Figure 3-9. If the panel is not currently in Android mode, use the menu to
switch mode:

Figure 3-9
The code for the main activity of the project (an activity corresponds to a
single user interface screen or module within an Android app) is contained
within the MainActivity.kt file located under app -> kotlin+java ->
com.example.composedemo within the Project tool window as indicated in
Figure 3-10:

Figure 3-10
Double-click on this file to load it into the main code editor panel. The
editor can be used in different view modes. Only the source code of the
currently selected file is visible when the editor is in Code mode (as shown
in Figure 3-8 above). Code mode is selected by clicking the button A in the
figure below. However, the most helpful option when working with
Compose is Split mode. To switch to Split mode, click on the button
marked B:

Figure 3-11

Split mode displays the code editor (A) alongside the Preview panel (B) in
which the current user interface design will appear:

Figure 3-12
Only the Preview panel is displayed when the editor is in Design mode
(button C).
To get us started, Android Studio has already added some code to the
MainActivity.kt file to display a Text component configured to display a
message which reads “Hello Android”.
If the project has not yet been built, the Preview panel will display the
message shown in Figure 3-13:

Figure 3-13
If you see this notification, click on the Build & Refresh link to rebuild the
project. After the build is complete, the Preview panel should update to
display the user interface defined by the code in the MainActivity.kt file:

Figure 3-14

3.7 Reviewing the main activity
Android applications are created by combining one or more elements
known as Activities. An activity is a single, standalone module of
application functionality that either correlates directly to a single user
interface screen and its corresponding functionality, or acts as a container
for a collection of related screens. An appointments application might, for
example, contain an activity screen that displays appointments set up for the
current day. The application might also utilize a second activity consisting
of multiple screens where new appointments may be entered by the user
and existing appointments edited.
When we created the ComposeDemo project, Android Studio created a
single initial activity for our app, named it MainActivity, and generated
some code for it in the MainActivity.kt file. This activity contains the first
screen that will be displayed when the app is run on a device. Before we
modify the code for our requirements in the next chapter, it is worth taking
some time to review the code currently contained within the MainActivity.kt
file.
The file begins with the following line (keep in mind that this may be
different if you used your own domain name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file
belong to the com.example.composedemo package which we configured
when we created the project.
Next are a series of import directives. The Android SDK comprises a vast
collection of libraries that provide the foundation for building Android
apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid
this problem an app only imports the libraries that it needs to be able to run:
import android.os.Bundle
import androidx.activity.ComponentActivity
import androidx.activity.compose.setContent
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.material3.MaterialTheme
import androidx.compose.material3.Surface
import androidx.compose.material3.Text
.

.

Initially, the list of import directives will most likely be “folded” to save
space. To unfold the list, click on the small disclosure button indicated by
the arrow in Figure 3-15 below:

Figure 3-15
The MainActivity class is then declared as a subclass of the Android
ComponentActivity class:
class MainActivity : ComponentActivity() {
.
.
}

The MainActivity class implements a single method in the form of
onCreate(). This is the first method that is called when an activity is
launched by the Android runtime system and is an artifact of the way apps
used to be developed before the introduction of Compose. The onCreate()
method is used here to provide a bridge between the containing activity and
the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ComposeDemoTheme {
.
.
 }
 }
}

The method declares that the content of the activity’s user interface will be
provided by a composable function named ComposeDemoTheme. This
composable function is declared in the Theme.kt file located under the app -
> <package name> -> ui.theme folder in the Project tool window. This,
along with the other files in the ui.theme folder defines the colors, fonts,
and shapes to be used by the activity and provides a central location from

which to customize the overall theme of the app’s user interface.
The call to the ComposeDemoTheme composable function is configured to
contain a Surface composable. Surface is a built-in Compose component
designed to provide a background for other composables:
ComposeDemoTheme {
 // A surface container using the 'background' color from the
theme
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
.
.
}

In this case, the Surface component is configured to fill the entire screen
and with the background set to the standard background color defined by
the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across
all Android apps. It includes a theme (including fonts and colors), a set of
user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and
respond to user interactions.
Finally, the Surface is configured to contain a composable function named
Greeting which is passed a string value that reads “Android”:
ComposeDemoTheme {
 // A surface container using the 'background' color from the
theme
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 Greeting("Android")
 }
}

Outside of the scope of the MainActivity class, we encounter our first
composable function declaration within the activity. The function is named
Greeting and is, unsurprisingly, marked as being composable by the
@Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}

The function accepts a String parameter (labeled name) and calls the built-
in Text composable, passing through a string value containing the word
“Hello” concatenated with the name parameter. The function also accepts
an optional modifier parameter (a topic covered in the chapter titled “Using
Modifiers in Compose”). As will soon become evident as you work through
the book, composable functions are the fundamental building blocks for
developing Android apps using Compose.
The second composable function declared in the MainActivity.kt file reads
as follows:
@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 ComposeDemoTheme {
 Greeting("Android")
 }
}

Earlier in the chapter, we looked at how the Preview panel allows us to see
how the user interface will appear without having to compile and run the
app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only
gets called when the app runs on a device or emulator. Previews are
generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview
function and that the content emitted by the function is to be displayed in
the Preview panel. As we will see later in the book, a single activity can
contain multiple preview composable functions configured to preview
specific sections of a user interface using different data values.
In addition, each preview may be configured by passing parameters to the
@Preview annotation. For example, to view the preview with the rest of the
standard Android screen decorations, modify the preview annotation so that
it reads as follows:

@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in
Figure 3-16:

Figure 3-16
3.8 Preview updates
One final point worth noting is that the Preview panel is live and will
automatically reflect minor changes made to the composable functions that
make up a preview. To see this in action, edit the call to the Greeting
function in the GreetingPreview() preview composable function to change
the name from “Android” to “Compose”. Note that as you make the change
in the code editor, it is reflected in the preview.
More significant changes will require a build and refresh before being
reflected in the preview. When this is required, Android Studio will display
the following “Out of date” notice at the top of the Preview panel and a
Build & Refresh button (indicated by the arrow in Figure 3-17):

Figure 3-17
Simply click on the button to update the preview for the latest changes.
Occasionally, Android Studio will fail to update the preview after code
changes. If you believe that the preview no longer matches your code,

hover the mouse pointer over the Up-to-date status text and select Build &
Refresh from the resulting menu, as illustrated in Figure 3-18:

Figure 3-18
The Preview panel also includes an interactive mode that allows you to
trigger events on the user interface components (for example, clicking
buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more
sense to introduce interactive mode in the next chapter.

3.9 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly
integrated, they are two separate products developed by different teams at
Google. As a result, there is no guarantee that the most recent Android
Studio version will default to using the latest version of Jetpack Compose.
It can, therefore, be helpful to know which version of Jetpack Compose is
being used by Android Studio. This is declared in a Bill of Materials
(BOM) setting within the build configuration files of your Android Studio
projects.
To identify the BOM for a project, locate the Gradle Scripts ->
libs.versions.toml file (highlighted in the figure below) and double-click on
it to load it into the editor:

Figure 3-19
With the file loaded into the editor, locate the composeBom entry in the
[versions] section:
[versions]
.
.
composeBom = "2023.08.00"
.
.

In the above example, we can see that the project is using BOM 2023.08.00.
With this information, we can use the BOM to library version mapping web
page at the following URL to identify the library versions being used to
build our app:
https://developer.android.com/jetpack/compose/bom/bom-mapping
Once the web page has loaded, select the BOM version from the menu
highlighted in Figure 3-20 below. For example, the figure shows that BOM
2023.08.00 uses version 1.5.0 of the Compose libraries:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Figure 3-20
At the time of writing, Android Studio Iguana defaults to BOM 2023.08.00,
while the latest stable BOM version is 2024.03.00, which maps to Jetpack
Compose 1.6.4. Therefore, when working with the projects in this book,
you should edit the composeBom entry in the Gradle Scripts ->
libs.versions.toml and upgrade the BOM version to at least 2024.03.00.
Library versions and dependencies will be covered in greater detail in the
“A Guide to Gradle Version Catalogs” chapter.

3.10 Summary
In this chapter, we have created a new project using Android Studio’s
Empty Activity template and explored some of the code automatically
generated for the project. We have also introduced several features of
Android Studio designed to make app development with Compose easier.
The most useful features, and the places where you will spend most of your
time while developing Android apps, are the code editor and Preview panel.
While the default code in the MainActivity.kt file provides an interesting
example of a basic user interface, it bears no resemblance to the app we
want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable
functions.

4. An Example Compose Project
In the previous chapter, we created a new Compose-based Android Studio
project named ComposeDemo and took some time to explore both Android
Studio and some of the project code that it generated to get us started. With
those basic steps covered, this chapter will use the ComposeDemo project
as the basis for a new app. This will involve the creation of new
composable functions, introduce the concept of state, and make use of the
Preview panel in interactive mode. As with the preceding chapter, key
concepts explained in basic terms here will be covered in significantly
greater detail in later chapters.

4.1 Getting started
Start Android Studio if it is not already running and open the
ComposeDemo project created in the previous chapter. Once the project has
loaded, double-click on the MainActivity.kt file (located in the Project tool
window under app -> kotlin+java -> <package name>) to open it in the
code editor. If necessary, switch the editor into Split mode so that both the
editor and Preview panel are visible.

4.2 Removing the template Code
Within the MainActivity.kt file, delete some of the template code so that the
file reads as follows:
package com.example.composedemo
.
.
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ComposeDemoTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 Greeting("Android")
 }
 }

 }
 }
}

@Composable
fun Greeting(name: String, modifier: Modifier = Modifier) {
 Text(
 text = "Hello $name!",
 modifier = modifier
)
}

@Preview(showSystemUi = true)
@Composable
fun GreetingPreview() {
 ComposeDemoTheme {
 Greeting("Android")
 }
}

4.3 The Composable hierarchy
Before we write the composable functions that will make up our user
interface, it helps to visualize the relationships between these components.
The ability of one composable to call other composables essentially allows
us to build a hierarchy tree of components. Once completed, the
composable hierarchy for our ComposeDemo main activity can be
represented as shown in Figure 4-1:

Figure 4-1
All of the elements in the above diagram, except for ComponentActivity,
are composable functions. Of those functions, the Surface, Column, Spacer,
Text, and Slider functions are built-in composables provided by Compose.
The DemoScreen, DemoText, and DemoSlider composables, on the other
hand, are functions that we will create to provide both structure to the
design and the custom functionality we require for our app. You can find
the ComposeDemoTheme composable declaration in the ui.theme ->
Theme.kt file.

4.4 Adding the DemoText composable
We are now going to add a new composable function to the activity to
represent the DemoText item in the hierarchy tree. The purpose of this
composable is to display a text string using a font size value that adjusts in
real-time as the slider moves. Place the cursor beneath the final closing
brace (}) of the MainActivity declaration and add the following function
declaration:
@Composable
fun DemoText() {
}

The @Composable annotation notifies the build system that this is a
composable function. When the function is called, the plan is for it to be
passed both a text string and the font size at which that text is to be

displayed. This means that we need to add some parameters to the function:
@Composable
fun DemoText(message: String, fontSize: Float) {
}

The next step is to make sure the text is displayed. To achieve this, we will
make a call to the built-in Text composable, passing through as parameters
the message string, font size, and, to make the text more prominent, a bold
font weight setting:
@Composable
fun DemoText(message: String, fontSize: Float) {
 Text(
 text = message,
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold
)
}

Note that after making these changes, the code editor indicates that “sp” and
“FontWeight” are undefined. This happens because these are defined and
implemented in libraries that have not yet been imported into the
MainActivity.kt file. One way to resolve this is to click on an undefined
declaration so that it highlights as shown below, and then press Alt+Enter
(Opt+Enter on macOS) on the keyboard to import the missing library
automatically:

Figure 4-2
Alternatively, you may add the missing import statements manually to the
list at the top of the file:
.
.
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
.

.

In the remainder of this book, all code examples will include any required
library import statements.
We have now finished writing our first composable function. Notice that,
except for the font weight, all the other properties are passed to the function
when it is called (a function that calls another function is generally referred
to as the caller). This increases the flexibility, and therefore re-usability, of
the DemoText composable and is a key goal to keep in mind when writing
composable functions.

4.5 Previewing the DemoText composable
At this point, the Preview panel will most likely be displaying a message
which reads “No preview found”. The reason for this is that our
MainActivity.kt file does not contain any composable functions prefixed
with the @Preview annotation. Add a preview composable function for
DemoText to the MainActivity.kt file as follows:
@Preview
@Composable
fun DemoTextPreview() {
 ComposeDemoTheme {
 DemoText(message = "Welcome to Android", fontSize = 12f)
 }
}

After adding the preview composable, the Preview panel should have
detected the change and displayed the link to build and refresh the preview
rendering. Click the link and wait for the rebuild to complete, at which
point the DemoText composable should appear as shown in Figure 4-3:

Figure 4-3
Minor changes made to the code in the MainActivity.kt file such as changing
values will be instantly reflected in the preview without the need to build
and refresh. For example, change the “Welcome to Android” text literal to
“Welcome to Compose” and note that the text in the Preview panel changes

as you type. Similarly, increasing the font size literal will instantly change
the size of the text in the preview. This feature is referred to as Live Edit.

4.6 Adding the DemoSlider composable
The DemoSlider composable is a little more complicated than DemoText. It
will need to be passed a variable containing the current slider position and
an event handler function or lambda to call when the slider is moved by the
user so that the new position can be stored and passed to the two Text
composables. With these requirements in mind, add the function as follows:
.
.
import androidx.compose.foundation.layout.*
import androidx.compose.material3.Slider
import androidx.compose.ui.unit.dp
.
.
@Composable
fun DemoSlider(sliderPosition: Float, onPositionChange: (Float) ->
Unit) {
 Slider(
 modifier = Modifier.padding(10.dp),
 valueRange = 20f..38f,
 value = sliderPosition,
 onValueChange = { onPositionChange(it) }
)
}

The DemoSlider declaration contains a single Slider composable which is,
in turn, passed four parameters. The first is a Modifier instance configured
to add padding space around the slider. Modifier is a Kotlin class built into
Compose which allows a wide range of properties to be set on a
composable within a single object. Modifiers can also be created and
customized in one composable before being passed to other composables
where they can be further modified before being applied.
The second value passed to the Slider is a range allowed for the slider value
(in this case the slider is limited to values between 20 and 38).
The next parameter sets the value of the slider to the position passed
through by the caller. This ensures that each time DemoSlider is
recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call the
function or lambda we will be passing to the DemoSlider composable when
we call it later. Each time the slider position changes, the call will be made
and passed the current value which we can access via the Kotlin it keyword.
We can further simplify this by assigning just the event handler parameter
name (onPositionChange) and leaving the compiler to handle the passing of
the current value for us:
onValueChange = onPositionChange

4.7 Adding the DemoScreen composable
The next step in our project is to add the DemoScreen composable. This
will contain a variable named sliderPosition in which to store the current
slider position and the implementation of the handlePositionChange event
handler to be passed to the DemoSlider. This lambda will be responsible for
storing the current position in the sliderPosition variable each time it is
called with an updated value. Finally, DemoScreen will contain a Column
composable configured to display the DemoText, Spacer, DemoSlider and
the second, as yet to be added, Text composable in a vertical arrangement.
Start by adding the DemoScreen function as follows:
.
.
import androidx.compose.runtime.*
.
.
@Composable
fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->
 sliderPosition = position
 }
}

The sliderPosition variable declaration requires some explanation. As we
will learn later, the Compose system repeatedly and rapidly recomposes
user interface layouts in response to data changes. The change of slider
position will, therefore, cause DemoScreen to be recomposed along with all
of the composables it calls. Consider if we had declared and initialized our

sliderPosition variable as follows:
var sliderPosition = 20f

Suppose the user slides the slider to position 21. The handlePositionChange
event handler is called and stores the new value in the sliderPosition
variable as follows:
val handlePositionChange = { position : Float ->
 sliderPosition = position
}

The Compose runtime system detects this data change and recomposes the
user interface, including a call to the DemoScreen function. This will, in
turn, reinitialize the sliderposition target state causing the previous value of
21 to be lost. Declaring the sliderPosition variable in this way informs
Compose that the current value needs to be remembered during
recompositions:
var sliderPosition by remember { mutableStateOf(20f) }

The only remaining work within the DemoScreen implementation is to add
a Column containing the required composable functions:
.
.
import androidx.compose.ui.Alignment
.
.
@Composable
fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->
 sliderPosition = position
 }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize()
) {

 DemoText(message = "Welcome to Compose", fontSize =
sliderPosition)

 Spacer(modifier = Modifier.height(150.dp))

 DemoSlider(
 sliderPosition = sliderPosition,
 onPositionChange = handlePositionChange
)

 Text(
 style = MaterialTheme.typography.headlineMedium,
 text = sliderPosition.toInt().toString() + "sp"
)
 }
}

Points to note regarding these changes may be summarized as follows:
•When DemoSlider is called, it is passed a reference to our
handlePositionChange event handler as the onPositionChange parameter.

•The Column composable accepts parameters that customize layout
behavior. In this case, we have configured the column to center its children
both horizontally and vertically.

•A Modifier has been passed to the Spacer to place a 150dp vertical space
between the DemoText and DemoSlider components.

•The second Text composable is configured to use the headlineMedium
style of the Material theme. In addition, the sliderPosition value is
converted from a Float to an integer so that only whole numbers are
displayed and then converted to a string value before being displayed to
the user.

4.8 Previewing the DemoScreen composable
To confirm that the DemoScreen layout meets our expectations, we need to
modify the DemoTextPreview composable:
.
.
@Preview(showSystemUi = true)
@Composable
fun DemoTextPreview() {
 ComposeDemoTheme {
 DemoScreen()
 }

}

Note that we have enabled the showSystemUi property of the preview so
that we will experience how the app will look when running on an Android
device.
After performing a preview rebuild and refresh, the user interface should
appear as originally shown in Figure 3-1.

4.9 Adjusting preview settings
The showSystemUi preview property is only one of many preview
configuration options provided by Android Studio. In addition, properties
are available to change configuration settings, such as the device type,
screen size, orientation, API level, and locale. To access these configuration
settings, click on the Preview configuration picker button located in the
gutter to the left of the @Preview line in the code editor, as shown in Figure
4-4:

Figure 4-4
When the button is clicked, the panel shown in Figure 4-5 will appear, from
which the full range of preview configuration settings is available:

Figure 4-5
4.10 Testing in interactive mode
At this stage, we know that the user interface layout for our activity looks
how we want it to, but we don’t know if it will behave as intended. One
option is to run the app on an emulator or physical device (topics covered in
later chapters). A quicker option, however, is to switch the preview panel
into interactive mode. To start interactive mode, hover the mouse pointer
over the area above the preview canvas so that the two buttons shown in
Figure 4-6 appear and click on the left-most button:

Figure 4-6
When clicked, there will be a short delay when interactive mode starts, after

which it should be possible to move the slider and watch the two Text
components update:

Figure 4-7
Click the button (highlighted in Figure 4-8 below) to exit interactive mode:

Figure 4-8
4.11 Completing the project
The final step is to make sure that the DemoScreen composable is called
from within the Surface function located in the onCreate() method of the
MainActivity class. Locate this method and modify it as follows:
.
.
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 ComposeDemoTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 DemoScreen()
 }

 }
 }
 }
}

This will ensure that, in addition to appearing in the preview panel, our user
interface will also be displayed when the app runs on a device or emulator
(a topic that will be covered in later chapters).

4.12 Summary
In this chapter, we have extended our ComposeDemo project to include
some additional user interface elements in the form of two Text
composables, a Spacer, and a Slider. These components were arranged
vertically using a Column composable. We also introduced the concept of
mutable state variables and explained how they are used to ensure that the
app remembers state when the Compose runtime performs recompositions.
The example also demonstrated how to use event handlers to respond to
user interaction (in this case, the user moving a slider). Finally, we made
use of the Preview panel in interactive mode to test the app without the
need to compile and run it on an emulator or physical device.

5. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we
are designing, compiling and running an entire app will be necessary to
thoroughly test that it works. An Android application may be tested by
installing and running it on a physical device or in an Android Virtual
Device (AVD) emulator environment. Before an AVD can be used, it must
first be created and configured to match the specifications of a particular
device model. In this chapter, we will work through creating such a virtual
device using the Pixel 4 phone as a reference example.

5.1 About Android Virtual Devices
AVDs are emulators that allow Android applications to be tested without
needing to install the application on a physical Android-based device. An
AVD may be configured to emulate various hardware features, including
screen size, memory capacity, and the presence or otherwise of features
such as a camera, GPS navigation support, or an accelerometer. Several
emulator templates are installed as part of the standard Android Studio
installation, allowing AVDs to be configured for various devices. Custom
configurations may be created to match any physical Android device by
specifying properties such as processor type, memory capacity, and the size
and pixel density of the screen.
An AVD session can appear as a separate window or embedded within the
Android Studio window.
New AVDs are created and managed using the Android Virtual Device
Manager, which may be used in command-line mode or with a more user-
friendly graphical user interface. To create a new AVD, the first step is to
launch the AVD Manager. This can be achieved from within the Android
Studio environment by clicking the Device Manager button in the right-
hand tool window bar, as indicated in Figure 5-1:

Figure 5-1
Once opened, the manager will appear as a tool window, as shown in Figure
5-2:

Figure 5-2
If you installed Android Studio for the first time on a computer (as opposed
to upgrading an existing Android Studio installation), the installer might
have created an initial AVD instance ready for use, as shown in Figure 5-3:

Figure 5-3
If this AVD is present on your system, you can use it to test apps. If no
AVD was created, or you would like to create AVDs for different device
types, follow the steps in the rest of this chapter.

To add a new AVD, begin by making sure that the Virtual tab is selected
before clicking on the Create device button to open the Virtual Device
Configuration dialog:

Figure 5-4
Within the dialog, perform the following steps to create a Pixel 4-
compatible emulator:
1.Select the Phone option From the Category panel to display the available

Android phone AVD templates.
2.Select the Pixel 4 device option and click Next.
3.On the System Image screen, select the latest version of Android. If the

system image has not yet been installed, a Download link will be
provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not
listed, click on the x86 Images (or ARM images if you are running a Mac
with Apple Silicon) and Other images tabs to view alternative lists.

4.Click Next to proceed and enter a descriptive name (for example, Pixel 4
API 34) into the name field or accept the default name.

5.Click Finish to create the AVD.
6.If future modifications to the AVD are necessary, re-open the Device

Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings.

5.2 Starting the Emulator
To test the newly created AVD emulator, select the emulator from the
Device Manager and click the launch button (the triangle in the Actions
column). The emulator will appear embedded into the main Android Studio
window and begin the startup process. The amount of time it takes for the
emulator to start will depend on the configuration of both the AVD and the
system on which it is running:

Figure 5-5
To hide and show the emulator tool window, click the Running Devices tool
window button (marked A above). Click the “x” close button next to the tab
(B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure
5-6, for example, shows a tool window with two emulator sessions:

Figure 5-6
To switch between sessions, click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait
orientation, this and other default options can be changed. Within the
Device Manager, select the new Pixel 4 entry and click on the pencil icon in
the Actions column of the device row. In the configuration screen, locate the
Startup orientation section and change the orientation setting. Exit and
restart the emulator session to see this change take effect. More details on
the emulator are covered in the next chapter, “Using and Configuring the
Android Studio AVD Emulator”).
To save time in the next section of this chapter, leave the emulator running
before proceeding.

5.3 Running the Application in the AVD
With an AVD emulator configured, the example ComposeDemo application
created in the earlier chapter can now be compiled and run. With the
ComposeDemo project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in
Figure 5-7 below), then either click the run button represented by a triangle
(B), select the Run -> Run ‘app’ menu option or use the Ctrl-R keyboard
shortcut:

Figure 5-7
The device menu (A) may be used to select a different AVD instance or
physical device as the run target and also to run the app on multiple devices.
The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 5-8
Once the application is installed and running, the user interface for the first
fragment will appear within the emulator as shown in Figure 5-8:

Figure 5-9
Once the run process begins, the Run tool window will appear. The Run
tool window will display diagnostic information as the application package
is installed and launched. Figure 5-10 shows the Run tool window output
from a typical successful application launch:

Figure 5-10
If problems are encountered during the launch process, the Run tool
window will provide information to help isolate the problem’s cause.
Assuming the application loads into the emulator and runs as expected, we
have safely verified that the Android development environment is correctly
installed and configured. With the app running, try performing a currency
conversion to verify that the app works as intended.

5.4 Real-time updates with Live Edit
With the app running, now is an excellent time to introduce the Live Edit
feature. Like interactive mode in the Preview panel, Live Edit updates the
appearance and behavior of the app running on the device or emulator as
changes are made to the code. This feature allows code changes to be tested
in real-time without building and re-running the project. When you launch
your first app, the dialog shown in Figure 5-11 may appear providing you
the opportunity to enable Live Edit mode:

Figure 5-11
You can also enable Live Edit mode by clicking on the IDE and Project
Settings button highlighted in Figure 5-12, followed by the Settings menu
option:

Figure 5-12
Within the side panel of the Settings dialog, navigate to and select the
Editor -> Live Edit entry to display the following screen:

Figure 5-13
Enable the Live Edit option and choose the option to push edits to the
running app automatically before clicking on OK. The responsiveness of
automatic edit pushes will vary depending on the performance and
resources of your computer and Android device. If performance is
unacceptably slow, return to the settings screen and switch to pushing edits
manually. Use the designated keyboard shortcut whenever you need to
update the running app to reflect code changes.
Once you have enabled Live Edit mode, you must restart app before the
change takes effect. You can do this from within the Running Devices tool
window by clicking on the button marked A in Figure 5-14:

Figure 5-14
Try out Live Edit by changing the text displayed by the DemoText
composable as follows:
DemoText(message = "This is Compose 1.6", fontSize =

sliderPosition)

If automatic push edits mode is enabled, the text in the running app will
update with each keystroke to reflect the change. For manual mode,
changes can be pushed to the running app by clicking the refresh button
marked B in Figure 5-14 above.
Live Edit is currently limited to changes made within the body of existing
functions. It will not, for example, handle the addition, removal, or
renaming of functions.

5.5 Running on Multiple Devices
The run target menu shown in Figure 5-8 above includes an option to run
the app on multiple emulators and devices in parallel. When selected, this
option displays the dialog in Figure 5-15, providing a list of the AVDs
configured on the system and any attached physical devices. Enable the
checkboxes next to the emulators or devices to be targeted before clicking
on the Run button:

Figure 5-15
After clicking the Run button, Android Studio will launch the app on the
selected emulators and devices.

5.6 Stopping a Running Application
To stop a running application, click the stop button located in the main
toolbar, as shown in Figure 5-16:

Figure 5-16
An app may also be terminated using the Run tool window. Begin by
displaying the Run tool window using the window bar button that becomes
available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 5-17 below:

Figure 5-17
5.7 Supporting Dark Theme
To test how an app behaves when dark theme is enabled, open the Settings
app within the running Android instance in the emulator, choose the
Display category, and enable the Dark theme option as shown in Figure 5-
18:

Figure 5-18
With dark theme enabled, run the ComposeDemo app and note that it
appears as shown in Figure 5-19:

Figure 5-19
Return to the Settings app and turn off Dark theme mode before continuing.

5.8 Running the Emulator in a Separate Window

So far in this chapter, we have only used the emulator as a tool window
embedded within the main Android Studio window. The emulator can be
configured to appear in a separate window within the Settings dialog, which
can be displayed by clicking on the IDE and Project Settings button located
in the Android Studio toolbar, as highlighted in Figure 5-20:

Figure 5-20
Within the Settings dialog, navigate to Tools -> Emulator in the side panel,
and disable the Launch in a tool window option:

Figure 5-21
With the option disabled, click the Apply button followed by OK to commit
the change, then exit the current emulator session by clicking on the close
button on the tab marked B in Figure 5-5 above.
Run the sample app once again, at which point the emulator will appear as a
separate window, as shown below:

Figure 5-22
The choice of standalone or tool window mode is a matter of personal
preference. If you prefer the emulator running in a tool window, return to
the settings screen and re-enable the Launch in a tool window option.
Before committing to standalone mode, however, keep in mind that the
Running Devices tool window may also be detached from the main Android
Studio window from within the tool window Options menu, which is
accessed by clicking the button indicated in Figure 5-23:

Figure 5-23
From within the Options menu, select View Mode -> Float to detach the

tool window from the Android Studio main window:

Figure 5-24
To re-dock the Running Devices tool window, click on the Dock button
shown in Figure 5-25:

Figure 5-25
5.9 Removing the Device Frame
The emulator can be configured to appear with or without the device frame.
To change the setting, exit the emulator, open the Device Manager, select
the AVD from the list, and click on the menu button indicated by the arrow
in Figure 5-26:

Figure 5-26
Select the Edit option and, in the settings screen, locate and switch off the
Enable device frame option before clicking the Finish button:

Figure 5-27
Once the device frame has been disabled, the emulator will appear as shown
in Figure 5-28 the next time it is launched:

Figure 5-28
5.10 Summary
A typical application development process follows a cycle of coding,
compiling, and running in a test environment. Android applications may be
tested on a physical Android device or an Android Virtual Device (AVD)
emulator. AVDs are created and managed using the Android Studio Device
Manager tool, which may be used as a command-line tool or via a graphical
user interface. When creating an AVD to simulate a specific Android device
model, the virtual device should be configured with a hardware
specification matching that of the physical device.
The AVD emulator session may be displayed as a standalone window or
embedded into the main Android Studio user interface.

6. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this
chapter will take some time to provide an overview of the Android Studio
AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

6.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash
screen during the loading process. Once loaded, the main emulator window
appears, containing a representation of the chosen device type (in the case
of Figure 6-1, this is a Pixel 4 device):

Figure 6-1
The toolbar positioned along the right-hand edge of the window provides
quick access to the emulator controls and configuration options.

6.2 Emulator Toolbar Options

The emulator toolbar (Figure 6-2) provides access to a range of options
relating to the appearance and behavior of the emulator environment.

Figure 6-2
Each button in the toolbar has associated with it a keyboard accelerator
which can be identified either by hovering the mouse pointer over the
button and waiting for the tooltip to appear or via the help option of the
extended controls panel.
Though many of the options contained within the toolbar are self-
explanatory, each option will be covered for the sake of completeness:
•Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the
emulator session when selected, while the ‘-’ option minimizes the entire
window.

•Power – The Power button simulates the hardware power button on a
physical Android device. Clicking and releasing this button will lock the
device and turn off the screen. Clicking and holding this button will
initiate the device “Power off” request sequence.

•Volume Up / Down – Two buttons that control the audio volume of
playback within the simulator environment.

•Rotate Left/Right – Rotates the emulated device between portrait and
landscape orientations.

•Take Screenshot – Takes a screenshot of the content displayed on the
device screen. The captured image is stored at the location specified in the
Settings screen of the extended controls panel, as outlined later in this
chapter.

•Zoom Mode – This button toggles in and out of zoom mode, details of
which will be covered later in this chapter.

•Back – Performs the standard Android “Back” navigation to return to a
previous screen.

•Home – Displays the device’s home screen.
•Overview – Simulates selection of the standard Android “Overview”
navigation, which displays the currently running apps on the device.

•Fold Device – Simulates the folding and unfolding of a foldable device.
This option is only available if the emulator is running a foldable device
system image.

•Extended Controls – Displays the extended controls panel, allowing for
the configuration of options such as simulated location and telephony
activity, battery strength, cellular network type, and fingerprint
identification.

6.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of
zoom mode. When zoom mode is active, the toolbar button is depressed,
and the mouse pointer appears as a magnifying glass when hovering over
the device screen. Clicking the left mouse button will cause the display to
zoom in relative to the selected point on the screen, with repeated clicking
increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display
to the default size.
Clicking and dragging while in zoom mode will define a rectangular area
into which the view will zoom when the mouse button is released.
While in zoom mode, the screen’s visible area may be panned using the
horizontal and vertical scrollbars located within the emulator window.

6.4 Resizing the Emulator Window
The emulator window’s size (and the device’s corresponding

representation) can be changed at any time by clicking and dragging on any
of the corners or sides of the window.

6.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure
6-3. By default, the location settings will be displayed. Selecting a different
category from the left-hand panel will display the corresponding group of
controls:

Figure 6-3
6.5.1 Location
The location controls allow simulated location information to be sent to the
emulator as decimal or sexigesimal coordinates. Location information can
take the form of a single location or a sequence of points representing the
device’s movement, the latter being provided via a file in either GPS
Exchange (GPX) or Keyhole Markup Language (KML) format.
Alternatively, the integrated Google Maps panel may be used to select
single points or travel routes visually.
6.5.2 Displays
In addition to the main display shown within the emulator screen, the
Displays option allows additional displays to be added running within the
same Android instance. This can be useful for testing apps for dual-screen

devices such as the Microsoft Surface Duo. These additional screens can be
configured to be any required size and appear within the same emulator
window as the main screen.
6.5.3 Cellular
The type of cellular connection being simulated can be changed within the
cellular settings screen. Options are available to simulate different network
types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.
6.5.4 Battery
Various battery state and charging conditions can be simulated on this panel
of the extended controls screen, including battery charge level, battery
health, and whether the AC charger is currently connected.
6.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes
the form of the interior of a virtual building through which you can navigate
by holding down the Option key (Alt on Windows) while using the mouse
pointer and keyboard keys when recording video or before taking a photo
within the emulator. This extended configuration option allows different
images to be uploaded for display within the virtual environment.
6.5.6 Phone
The phone extended controls provide two straightforward but helpful
simulations within the emulator. The first option simulates an incoming call
from a designated phone number. This can be particularly useful when
testing how an app handles high-level interrupts.
The second option allows the receipt of text messages to be simulated
within the emulator session. As in the real world, these messages appear
within the Message app and trigger the standard notifications within the
emulator.
6.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an
Android device or connected externally (such as a game controller) that
provides directional controls (left, right, up, down). The directional pad
settings allow D-Pad interaction to be simulated within the emulator.

6.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual
headset and microphone connections to be simulated. A button is also
provided to launch the Voice Assistant on the emulator.
6.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection
hardware. The AVD emulator makes it possible to test fingerprint
authentication without the need to test apps on a physical device containing
a fingerprint sensor. Details on configuring fingerprint testing within the
emulator will be covered later in this chapter.
6.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be
simulated to emulate the effects of the physical motion of a device, such as
rotation, movement, and tilting through yaw, pitch, and roll settings.
6.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be
saved and rapidly restored, making it easy to return the emulator to an exact
state. Snapshots are covered later in this chapter.
6.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in WebM or
animated GIF format.
6.5.13 Google Play
If the emulator is running a version of Android with Google Play Services
installed, this option displays the current Google Play version. It also
provides the option to update the emulator to the latest version.
6.5.14 Settings
The settings panel provides a small group of configuration options. Use this
panel to choose a darker theme for the toolbar and extended controls panel,
specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to
appear on top of other windows on the desktop.
6.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard
shortcuts, links to access the emulator online documentation, file bugs and
send feedback, and emulator version information.

6.6 Working with Snapshots
When an emulator starts for the first time, it performs a cold boot, much
like a physical Android device when powered on. This cold boot process
can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through
this process every time the emulator is started, the system is configured to
automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is
launched, the quick-boot snapshot is loaded into memory, and execution
resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.
The Snapshots screen of the extended controls panel can store additional
snapshots at any point during the execution of the emulator. This saves the
exact state of the entire emulator allowing the emulator to be restored to the
exact point in time that the snapshot was taken. From within the screen,
snapshots can be taken using the Take Snapshot button (marked A in Figure
6-4). To restore an existing snapshot, select it from the list (B) and click the
run button (C) located at the bottom of the screen. Options are also
provided to edit (D) the snapshot name and description and to delete (E) the
currently selected snapshot:

Figure 6-4
You can also choose whether to start an emulator using either a cold boot,
the most recent quick-boot snapshot, or a previous snapshot by making a
selection from the run target menu in the main toolbar, as illustrated in
Figure 6-5:

Figure 6-5
6.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and
used to test fingerprint authentication within Android apps. Configuring
simulated fingerprints begins by launching the emulator, opening the
Settings app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the
resulting information screen, click on the Next button to proceed to the
Fingerprint setup screen. Before fingerprint security can be enabled, a
backup screen unlocking method (such as a PIN) must be configured. Enter
and confirm a suitable PIN and complete the PIN entry process by
accepting the default notifications option.
Proceed through the remaining screens until the Settings app requests a
fingerprint on the sensor. At this point, display the extended controls dialog,
select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 6-6
Click on the Touch Sensor button to simulate Finger 1 touching the
fingerprint sensor. The emulator will report the successful addition of the
fingerprint:

Figure 6-7
To add additional fingerprints, click on the Add Another button and select
another finger from the extended controls panel menu before clicking on the
Touch Sensor button again.

6.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device
(AVD) in Android Studio”), Android Studio can be configured to launch the
emulator in an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in
standalone mode are provided in the toolbar, as shown in Figure 6-8:

Figure 6-8
From left to right, these buttons perform the following tasks (details of

which match those for standalone mode):
•Power
•Volume Up
•Volume Down
•Rotate Left
•Rotate Right
•Back
•Home
•Overview
•Screenshot
•Snapshots
•Extended Controls

6.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device
models, Android Studio also provides a resizable AVD that allows you to
switch between phone, tablet, and foldable device sizes. To create a
resizable emulator, open the Device Manager and click the Create device
button. Next, select the Resizable device definition illustrated in Figure 6-9,
and follow the usual steps to create a new AVD:

Figure 6-9
When you run an app on the new emulator within a tool window, the
Display mode option will appear in the toolbar, allowing you to switch
between emulator configurations as shown in Figure 6-10:

Figure 6-10
If the emulator is running in standalone mode, the Display mode option can
be found in the side toolbar, as shown below:

Figure 6-11
Once a foldable display mode has been selected, the Change posture menu
may be used to test the app in open, closed, and half-open configurations:

Figure 6-12
6.10 Summary
Android Studio contains an Android Virtual Device emulator environment
designed to make it easier to test applications without running them on a
physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features available to configure and customize
the environment to simulate different testing conditions.

7. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created
in the previous chapter, it involves using aspects of the Android Studio user
interface, which are best described in advance.
Android Studio is a powerful and feature-rich development environment
that is, to a large extent, intuitive to use. That being said, taking the time
now to gain familiarity with the layout and organization of the Android
Studio user interface will shorten the learning curve in later chapters of the
book. With this in mind, this chapter will provide an overview of the
various areas and components of the Android Studio environment.

7.1 The Welcome Screen
The welcome screen (Figure 7-1) is displayed any time that Android Studio
is running with no projects currently open (open projects can be closed at
any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will
bypass the welcome screen the next time it is launched, automatically
opening the previously active project.

Figure 7-1
In addition to a list of recent projects, the welcome screen provides options
for performing tasks such as opening and creating projects, along with
access to projects currently under version control. In addition, the
Customize screen provides options to change the theme and font settings
used by both the IDE and the editor. Android Studio plugins may be
viewed, installed, and managed using the Plugins option.
Additional options are available by selecting the More Actions link or using
the menu shown in Figure 7-2 when the list of recent projects replaces the
More Actions link:

Figure 7-2
7.2 The Menu Bar
The Android Studio main window will appear when a new project is
created, or an existing one is opened. When multiple projects are open
simultaneously, each will be assigned its own main window. The precise
configuration of the window will vary depending on the operating system
Android Studio is running on and which tools and panels were displayed
the last time the project was open. The appearance, for example, of the
main menu bar will differ depending on the host operating system. On
macOS, Android Studio follows the standard convention of placing the
menu bar along the top edge of the desktop, as illustrated in Figure 7-3:

Figure 7-3
When Android Studio is running on Windows or Linux, however, the main
menu is accessed via the button highlighted in Figure 7-4:

Figure 7-4
7.3 The Main Window
Once a project is open, the Android Studio main window will typically
resemble that of Figure 7-5:

Figure 7-5
The various elements of the main window can be summarized as follows:
A – Toolbar – A selection of shortcuts to frequently performed actions. The
toolbar buttons provide quick access to a select group of menu bar actions.
The toolbar can be customized by right-clicking on the bar and selecting the
Customize Toolbar… menu option. The toolbar menu shown in Figure 7-6

provides a convenient way to perform tasks such as creating and opening
projects and switching between windows when multiple projects are open:

Figure 7-6
B – Navigation Bar – The navigation bar provides a convenient way to
move around the files and folders that make up the project. Clicking on an
element in the navigation bar will drop down a menu listing the sub-folders
and files at that location, ready for selection. Similarly, clicking on a class
name displays a menu listing methods contained within that class:

Figure 7-7
Select a method from the list to be taken to the corresponding location
within the code editor. You can hide, display, and change the position of this
bar using the View -> Appearance -> Navigation Bar menu option.
C – Editor Window – The editor window displays the content of the file on
which the developer is currently working. When multiple files are open,
each file is represented by a tab located along the top edge of the editor, as
shown in Figure 7-8:

Figure 7-8
D – Status Bar – The status bar displays informational messages about the

project and the activities of Android Studio. Hovering over items in the
status bar will display a description of that field. Many fields are
interactive, allowing users to click to perform tasks or obtain more detailed
status information.

Figure 7-9
The widgets displayed in the status bar can be changed using the View ->
Appearance -> Status Bar Widgets menu.
E – Project Tool Window – The project tool window provides a
hierarchical overview of the project file structure allowing navigation to
specific files and folders to be performed. The toolbar can be used to
display the project in several different ways. The default setting is the
Android view which is the mode primarily used in the remainder of this
book.
The project tool window is just one of many available tools within the
Android Studio environment.

7.4 The Tool Windows
In addition to the project view tool window, Android Studio also includes
many other windows, which, when enabled, are displayed tool window bars
that appear along the left and right edges of the main window and contain
buttons for showing and hiding each of the tool windows. Figure 7-10
shows typical tool window bar configurations, though the buttons and their
positioning may differ for your Android Studio installation.

Figure 7-10
Clicking on a button will display the corresponding tool window, while a
second click will hide the window. The location of a button in a tool
window bar indicates the side of the window against which the window will
appear when displayed. These positions can be changed by clicking and
dragging the buttons to different locations in other window toolbars.
Android Studio offers a wide range of tool windows, the most commonly
used of which are as follows:
•Project (A) – The project view provides an overview of the file structure
that makes up the project allowing for quick navigation between files.
Generally, double-clicking on a file in the project view will cause that file
to be loaded into the appropriate editing tool.

•Resource Manager (B) - A tool for adding and managing resources and
assets within the project, such as images, colors, and layout files.

•More Tool Windows (C) - Displays a menu containing additional tool
windows not currently displayed in a tool window bar. When a tool
window is selected from this menu, it will appear as a button in a tool

window bar.
•Run (D) – The run tool window becomes available when an application is
currently running and provides a view of the results of the run together
with options to stop or restart a running process. If an application fails to
install and run on a device or emulator, this window typically provides
diagnostic information about the problem.

•Logcat (E) – The Logcat tool window provides access to the monitoring
log output from a running application and options for taking screenshots
and videos of the application and stopping and restarting a process.

•Problems (F) - A central location to view all of the current errors or
warnings within the project. Double-clicking on an item in the problem list
will take you to the problem file and location.

•App Quality Insights (G) - Provides access to the cloud-based Firebase
app quality and crash analytics platform.

•Terminal (H) – Provides access to a terminal window on the system on
which Android Studio is running. On Windows systems, this is the
Command Prompt interface, while on Linux and macOS systems, this
takes the form of a Terminal prompt.

•Version Control (I) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

•Notifications (J) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

•Gradle (K) – The Gradle tool window provides a view of the Gradle tasks
that make up the project build configuration. The window lists the tasks
involved in compiling the various elements of the project into an
executable application. Right-click on a top-level Gradle task and select
the Open Gradle Config menu option to load the Gradle build file for the
current project into the editor. Gradle will be covered in greater detail later
in this book.

•Device Manager (L) - Provides access to the Device Manager tool
window where physical Android device connections and emulators may be
added, removed, and managed.

•Running Devices (M) - Contains the AVD emulator if the option has been
enabled to run the emulator in a tool window as outlined in the chapter
entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

•App Inspection - Provides access to the Database and Background Task
inspectors. The Database Inspector allows you to inspect, query, and
modify your app’s databases while running. The Background Task
Inspector allows background worker tasks created using WorkManager to
be monitored and managed.

•Bookmarks – The Bookmarks tool window provides quick access to
bookmarked files and code lines. For example, right-clicking on a file in
the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the
cursor to that line and pressing the F11 key (F3 on macOS). All
bookmarked items can be accessed through this tool window.

•Build - The build tool window displays information about the build
process while a project is being compiled and packaged and details of any
errors encountered.

•Build Variants – The build variants tool window provides a quick way to
configure different build targets for the current application project (for
example, different builds for debugging and release versions of the
application or multiple builds to target different device categories).

•Device File Explorer – Available via the View -> Tool Windows -> Device
File Explorer menu, this tool window provides direct access to the
filesystem of the currently connected Android device or emulator,
allowing the filesystem to be browsed and files copied to the local
filesystem.

•Layout Inspector - Provides a visual 3D rendering of the hierarchy of
components that make up a user interface layout.

•Structure – The structure tool provides a high-level view of the structure
of the source file currently displayed in the editor. This information
includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the
source file in the editor window.

•TODO – As the name suggests, this tool provides a place to review items

that have yet to be completed on the project. Android Studio compiles this
list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be
reviewed and changed by opening the Settings dialog and navigating to the
TODO entry listed under Editor.

7.5 The Tool Window Menus
Each tool window has its own toolbar along the top edge. The menu buttons
within these toolbars vary from one tool to the next, though all tool
windows contain an Options menu (marked A in Figure 7-11):

Figure 7-11
The Options menu allows various aspects of the window to be changed.
Figure 7-12, for example, shows the Options menu for the Project tool
window. Settings are available, for example, to undock a window and to
allow it to float outside of the boundaries of the Android Studio main
window, and to move and resize the tool panel:

Figure 7-12
All tool windows also include a far-right button on the toolbar (marked B in
Figure 7-11 above), providing an additional way to hide the tool window
from view. A search of the items within a tool window can be performed by

giving that window focus by clicking on it and then typing the search term
(for example, the name of a file in the Project tool window). A search box
will appear in the window’s toolbar, and items matching the search
highlighted.

7.6 Android Studio Keyboard Shortcuts
Android Studio includes many keyboard shortcuts to save time when
performing common tasks. A complete keyboard shortcut keymap listing
can be viewed and printed from within the Android Studio project window
by selecting the Help -> Keyboard Shortcuts PDF menu option. You may
also list and modify the keyboard shortcuts by opening the Settings dialog
and clicking on the Keymap entry, as shown in Figure 7-13 below:

Figure 7-13
7.7 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main
window involves using the Switcher. Accessed via the Ctrl-Tab keyboard
shortcut, the switcher appears as a panel listing both the tool windows and
currently open files (Figure 7-14).

Figure 7-14
Once displayed, the switcher will remain visible as long as the Ctrl key
remains depressed. Repeatedly tapping the Tab key while holding down the
Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed
within the main window.
In addition to the Switcher, the Recent Files panel provides navigation to
recently opened files (Figure 7-15). This can be accessed using the Ctrl-E
keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option, or the keyboard arrow keys can be
used to scroll through the file name and tool window options. Pressing the
Enter key will select the currently highlighted item:

Figure 7-15
7.8 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed
using the Settings dialog. Once the settings dialog is displayed, select the
Appearance & Behavior option in the left-hand panel, followed by
Appearance. Then, change the setting of the Theme menu before clicking
on the OK button. The themes available will depend on the platform but
usually include options such as Dark, Light, IntelliJ, Windows, High
Contrast, and Darcula. Figure 7-16 shows an example of the main window
with the Dark theme selected:

Figure 7-16
To synchronize the Android Studio theme with the operating system light
and dark mode setting, enable the Sync with OS option and use the drop-
down menu to control which theme to use for each mode:

Figure 7-17
7.9 Summary
The primary elements of the Android Studio environment consist of the
welcome screen and main window. Each open project is assigned its own
main window, which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows
appear on the sides of the main window.
There are very few actions within Android Studio that cannot be triggered
via a keyboard shortcut. A keymap of default keyboard shortcuts can be
accessed at any time from within the Android Studio main window.

8. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android
Virtual Device (AVD), there is no substitute for performing real-world
application testing on a physical Android device, and some Android
features are only available on physical Android devices.
Communication with both AVD instances and connected Android devices is
handled by the Android Debug Bridge (ADB). This chapter explains how to
configure the adb environment to enable application testing on an Android
device with macOS, Windows, and Linux-based systems.

8.1 An Overview of the Android Debug Bridge
(ADB)
The primary purpose of the ADB is to facilitate interaction between a
development system, in this case, Android Studio, and both AVD emulators
and Android devices to run and debug applications. ADB allows you to
connect to devices via WiFi or USB cable.
The ADB consists of a client, a server process running in the background
on the development system, and a daemon background process running in
either AVDs or real Android devices such as phones and tablets.
The ADB client can take a variety of forms. For example, a client is
provided as a command-line tool named adb in the Android SDK platform-
tools sub-directory. Similarly, Android Studio also has a built-in client.
A variety of tasks may be performed using the adb command-line tool. For
example, active virtual or physical devices may be listed using the devices
command-line argument. The following command output indicates the
presence of an AVD on the system but no physical devices:
$ adb devices
List of devices attached
emulator-5554 device

8.2 Enabling USB Debugging ADB on Android
Devices

Before ADB can connect to an Android device, that device must be
configured to allow the connection. On phone and tablet devices running
Android 6.0 or later, the steps to achieve this are as follows:
1.Open the Settings app on the device and select the About tablet or About

phone option (on some versions of Android, this can be found on the
System page of the Settings app).

2.On the About screen, scroll down to the Build number field (Figure 8-1)
and tap it seven times until a message indicates that developer mode has
been enabled. If the Build number is not listed on the About screen, it
may be available via the Software information option. Alternatively,
unfold the Advanced section of the list if available.

Figure 8-1
3.Return to the main Settings screen and note the appearance of a new

option titled Developer options (on newer versions of Android, this
option is listed on the System settings screen). Select this option, and on
the resulting screen, locate the USB debugging option as illustrated in
Figure 8-2:

Figure 8-2
4.Enable the USB debugging option and tap the Allow button when

confirmation is requested.
The device is now configured to accept debugging connections from adb on
the development system over a USB connection. All that remains is to
configure the development system to detect the device when it is attached.
While this is a relatively straightforward process, the steps differ depending
on whether the development system runs Windows, macOS, or Linux. Note

that the following steps assume that the Android SDK platform-tools
directory is included in the operating system PATH environment variable as
described in the chapter entitled “Setting up an Android Studio
Development Environment”.
8.2.1 macOS ADB Configuration
To configure the ADB environment on a macOS system, connect the device
to the computer system using a USB cable, open a terminal window, and
execute the following command to restart the adb server:
$ adb kill-server
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *

Once the server is successfully running, execute the following command to
verify that the device has been detected:
$ adb devices
List of devices attached
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the
dialog shown in Figure 8-3 seeking permission to Allow USB debugging.
Enable the checkbox next to the option that reads Always allow from this
computer before clicking OK.

Figure 8-3
Repeating the adb devices command should now list the device as being
available:
List of devices attached
015d41d4454bf80c device

If the device is not listed, try logging out and back into the macOS desktop
and rebooting the system if the problem persists.
8.2.2 Windows ADB Configuration

The first step in configuring a Windows-based development system to
connect to an Android device using ADB is to install the appropriate USB
drivers on the system. The USB drivers to install will depend on the model
of the Android Device. If you have a Google device such as a Pixel phone,
installing and configuring the Google USB Driver package on your
Windows system will be necessary. Detailed steps to achieve this are
outlined on the following web page:
https://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be
necessary to download the drivers provided by the device manufacturer. A
listing of drivers, together with download and installation information, can
be obtained online at:
https://developer.android.com/tools/extras/oem-usb.html
With the drivers installed and the device now being recognized as the
correct device type, open a Command Prompt window and execute the
following command:
adb devices

This command should output information about the connected device
similar to the following:
List of devices attached
HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and
check for the dialog shown in Figure 8-3 seeking permission to Allow USB
debugging. Enable the checkbox next to the option that reads Always allow
from this computer before clicking OK. Repeating the adb devices
command should now list the device as being ready:
List of devices attached
HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the
ADB server:
adb kill-server
adb start-server

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

8.2.3 Linux adb Configuration
For this chapter, we will again use Ubuntu Linux as a reference example in
configuring adb on Linux to connect to a physical Android device for
application testing.
Physical device testing on Ubuntu Linux requires the installation of a
package named android-tools-adb which, in turn, requires the Android
Studio user to be a member of the plugdev group. This is the default for
user accounts on most Ubuntu versions and can be verified by running the
id command. If the plugdev group is not listed, run the following command
to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-
adb package can be installed by executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once
the system has restarted, open a Terminal window, start the adb server, and
check the list of attached devices:
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
$ adb devices
List of devices attached
015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device
and check for the dialog shown in Figure 8-3 seeking permission to Allow
USB debugging.

8.3 Resolving USB Connection Issues
If you are unable to successfully connect to the device using the above
steps, display the run target menu (Figure 8-4) and select the Troubleshoot
Device Connections option:

Figure 8-4
The connection assistant will scan for devices and report problems and
possible solutions.

8.4 Enabling Wireless Debugging on Android
Devices
Follow steps 1 through 3 from section 8.2 above, this time enabling the
Wireless Debugging option as shown in Figure 8-5:

Figure 8-5
Next, tap the above Wireless debugging entry to display the screen shown
in Figure 8-6:

Figure 8-6
If your device has a camera, select Pair device with QR code, otherwise
select the Pair device with pairing code option. Depending on your
selection, the Settings app will either start a camera session or display a
pairing code, as shown in Figure 8-7:

Figure 8-7
With an option selected, return to Android Studio and select the Pair
Devices Using WiFi option from the run target menu as illustrated in Figure
8-8:

Figure 8-8
In the pairing dialog, select either Pair using QR code or Pair using pairing
code depending on your previous selection in the Settings app on the
device:

Figure 8-9
Either scan the QR code using the Android device or enter the pairing code
displayed on the device screen into the Android Studio dialog (Figure 8-10)
to complete the pairing process:

Figure 8-10
If the pairing process fails, try rebooting both the development system and
the Android device and try again.

8.5 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen
development platform, the next step is to try running the test application
created in the chapter entitled “Creating an Example Android App in
Android Studio” on the device. Launch Android Studio, open the
AndroidSample project, and verify that the device appears in the device
selection menu as highlighted in Figure 8-11:

Figure 8-11
Select the device from the list and click the run button to install and run the
app.

8.6 Device Mirroring
Device mirroring allows you to run an app on a physical device while
viewing the display within Android Studio’s Running Devices tool window.
In other words, although your app is running on a physical device, it
appears within Android Studio in the same way as an AVD instance.
With a device connected to Android Studio, display the Running Devices
tool window and click the Device Mirror settings link to display the
Settings dialog. Within the Settings dialog, enable the mirroring of physical
Android devices and click on OK. On returning to the main window,
Android Studio will mirror the display of the physical device in the
Running Devices tool window.

file:///tmp/calibre_4.99.5_tmp_3u4uqnnm/fzgdb1gu_pdf_out/OEBPS/Device_Testing.xhtml

8.7 Summary
While the Android Virtual Device emulator provides an excellent testing
environment, it is essential to remember that there is no real substitute for
ensuring an application functions correctly on a physical Android device.
By default, however, the Android Studio environment is not configured to
detect Android devices as a target testing device. It is necessary, therefore,
to perform some steps to load applications directly onto an Android device
from within the Android Studio development environment via a USB cable
or over a WiFi network. The exact steps to achieve this goal differ
depending on the development platform. In this chapter, we have covered
those steps for Linux, macOS, and Windows-based platforms.

9. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of
programming work which, by definition, involves typing, reviewing, and
modifying lines of code. Unsurprisingly, most of a developer’s time spent
using Android Studio will typically involve editing code within the editor
window.
The modern code editor must go far beyond the basics of typing, deleting,
cutting, and pasting. Today the usefulness of a code editor is generally
gauged by factors such as the amount by which it reduces the typing
required by the programmer, ease of navigation through large source code
files, and the editor’s ability to detect and highlight programming errors in
real-time as the code is being written. As will become evident in this
chapter, these are just a few areas in which the Android Studio editor
excels.
While not an exhaustive overview of the features of the Android Studio
editor, this chapter aims to provide a guide to the tool’s key features.
Experienced programmers will find that some of these features are common
to most code editors today, while a number are unique to this editing
environment.

9.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a
Java, Kotlin, XML, or other text-based file is selected for editing. Figure 9-
1, for example, shows a typical editor session with a Kotlin source code file
loaded:

Figure 9-1
The elements that comprise the editor window can be summarized as
follows:
A – Document Tabs – Android Studio can hold multiple files open for
editing at anytime. As each file is opened, it is assigned a document tab
displaying the file name in the tab bar along the editor window’s top edge.
A small drop-down menu will appear in the far right-hand corner of the tab
bar when there is insufficient room to display all of the tabs. Clicking on
this menu will drop down a list of additional open files. A wavy red line
underneath a file name in a tab indicates that the code in the file contains
one or more errors that need to be addressed before the project can be
compiled and run.
Switching between files is a matter of clicking on the corresponding tab or
using the Alt-Left and Alt-Right keyboard shortcuts. Navigation between
files may also be performed using the Switcher mechanism (accessible via
the Ctrl-Tab keyboard shortcut).
To detach an editor panel from the Android Studio main window so that it
appears in a separate window, click on the tab and drag it to an area on the
desktop outside the main window. To return the editor to the main window,
click on the file tab in the separated editor window and drag and drop it

onto the original editor tab bar in the main window.
B – The Editor Gutter Area - The gutter area is used by the editor to
display informational icons and controls. Some typical items in this gutter
area are debugging breakpoint markers, controls to fold and unfold blocks
of code, bookmarks, change markers, and line numbers. Line numbers are
switched on by default but may be disabled by right-clicking in the gutter
and selecting the Appearance -> Show Line Numbers menu option.
C – Code Structure Location - This bar at the bottom of the editor
displays the cursor’s current position as it relates to the overall structure of
the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited and that this method is
contained within the MainActivity class:

Figure 9-2
Double-clicking an element within the bar will move the cursor to the
corresponding location within the code file. For example, double-clicking
on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly, clicking on the
MainActivity entry displays a list of available code navigation points for
selection:

Figure 9-3
D – The Editor Area – The main area where the user reviews, enters, and
edits the code. Later sections of this chapter will cover the key features of
the editing area in detail.
E – The Validation and Marker Sidebar – Android Studio incorporates a
feature called “on-the-fly code analysis”. This essentially means that as you
are typing code, the editor analyzes the code to check for warnings and
syntax errors. The indicators at the top of the validation sidebar will update

in real-time to indicate the number of errors and warnings found as code is
added. Clicking on this indicator will display a popup containing a
summary of the issues found with the code in the editor, as illustrated in
Figure 9-4:

Figure 9-4
The up and down arrows move between the error locations within the code.
A green check mark indicates that no warnings or errors have been
detected.
The sidebar also displays markers at the locations where issues have been
detected using the same color coding. Hovering the mouse pointer over a
marker when the line of code is visible in the editor area will display a
popup containing a description of the issue:

Figure 9-5
Hovering the mouse pointer over a marker for a line of code that is
currently scrolled out of the viewing area of the editor will display a “lens”
overlay containing the block of code where the problem is located (Figure
9-6) allowing it to be viewed without the necessity to scroll to that location
in the editor:

Figure 9-6
It is also worth noting that the lens overlay is not limited to warnings and
errors in the sidebar. Hovering over any part of the sidebar will result in a
lens appearing containing the code present at that location within the source
file.
F – The Status Bar – Though the status bar is part of the main window, as
opposed to the editor, it does contain some information about the currently
active editing session. This information includes the current position of the
cursor in terms of lines and characters and the encoding format of the file
(UTF-8, ASCII, etc.). Clicking on these values in the status bar allows the
corresponding setting to be changed. For example, clicking on the line
number displays the Go to Line:Column dialog. Use the View ->
Appearance -> Status Bar Widgets menu option to add and remove widgets.
For example, the Memory Indicator is a helpful widget if you are
experiencing performance problems with Android Studio.
Having provided an overview of the elements that comprise the Android
Studio editor, the remainder of this chapter will explore the key features of
the editing environment in more detail.

9.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the
currently selected file. A useful feature when working simultaneously with
multiple source code files is the ability to split the editor into multiple
panes. To split the editor, right-click on a file tab within the editor window
and select either the Split Right or Split Down menu option. Figure 9-7, for
example, shows the splitter in action with the editor split into three panels:

Figure 9-7
The orientation of a split panel may be changed at any time by right-
clicking on the corresponding tab and selecting the Change Splitter
Orientation menu option. Repeat these steps to unsplit a single panel, this
time selecting the Unsplit option from the menu. All split panels may be
removed by right-clicking on any tab and selecting the Unsplit All menu
option.
Window splitting may be used to display different files or to provide
multiple windows onto the same file, allowing different areas of the same
file to be viewed and edited concurrently.

9.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge
of Kotlin programming syntax and the classes and methods that make up
the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes
suggestions with regard to what might be needed to complete a statement or
reference. When the editor detects a completion suggestion, a panel
containing a list of suggestions will appear. In Figure 9-8, for example, the

editor is suggesting possibilities for the beginning of a String declaration:

Figure 9-8
If none of the auto-completion suggestions are correct, keep typing, and the
editor will continue to refine the suggestions where appropriate. To accept
the topmost suggestion, press the Enter or Tab key on the keyboard. To
select a different suggestion, use the arrow keys to move up and down the
list, again using the Enter or Tab key to select the highlighted item.
Completion suggestions can be manually invoked using the Ctrl-Space
keyboard sequence. This can be useful when changing a word or
declaration in the editor. When the cursor is positioned over a word in the
editor, that word will automatically highlight. Pressing Ctrl-Space will
display a list of alternate suggestions. Press the Tab key to replace the
current word with the highlighted item in the suggestion list.
In addition to the real-time auto-completion feature, the Android Studio
editor also offers a Smart Completion system. Smart completion is invoked
using the Shift-Ctrl-Space keyboard sequence and, when selected, will
provide more detailed suggestions based on the current context of the code.
Pressing the Shift-Ctrl-Space shortcut sequence a second time will provide
more suggestions from a broader range of possibilities.
Code completion can be a matter of personal preference for many
programmers. In recognition of this fact, Android Studio provides a high
level of control over the auto-completion settings. These can be viewed and
modified by opening the Settings dialog and choosing Editor -> General ->
Code Completion from the settings panel, as shown in Figure 9-9:

Figure 9-9
9.4 Statement Completion
Another form of auto-completion provided by the Android Studio editor is
statement completion. This can be used to automatically fill out the
parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-
Enter on macOS) keyboard sequence. Consider, for example, the following
code:
fun myMethod()

Having typed this code into the editor, triggering statement completion will
cause the editor to add the braces to the method automatically:
fun myMethod() {

}

9.5 Parameter Information
It is also possible to ask the editor to provide information about the
argument parameters a method accepts. With the cursor positioned between
the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method,
with the most likely suggestion highlighted in bold:

Figure 9-10
9.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within
method calls. Figure 9-11, for example, highlights the parameter name hints
within the calls to the make() and setAction() methods of the Snackbar
class:

Figure 9-11
The settings for this mode may be configured by opening the Settings
dialog and navigating to Editor -> Inlay Hints -> Kotlin in the side panel.
Turn on or off the Parameter names option on the resulting screen for your
chosen programming language. To adjust the hint settings, click on the
Exclude list... link and make any necessary adjustments.

9.7 Code Generation
In addition to completing code as it is typed, the editor can, under certain
conditions, also generate code for you. The list of available code generation
options shown in Figure 9-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file
where the code is to be generated.

Figure 9-12
For example, consider a situation where we want to be notified when an
Activity in our project is about to be destroyed by the operating system. As
outlined in a later chapter of this book, this can be achieved by overriding
the onStop() lifecycle method of the Activity superclass. To have Android
Studio generate a stub method for this, select the Override Methods…
option from the code generation list and select the onStop() method from
the resulting list of available methods:

Figure 9-13
Having selected the method to override, clicking on OK will generate the

stub method at the current cursor location in the Kotlin source file as
follows:
override fun onStop() {
 super.onStop()
}

9.8 Code Folding
Once a source code file reaches a certain size, even the most carefully
formatted and well-organized code can become overwhelming and
challenging to navigate. Android Studio takes the view that it is not always
necessary to have the content of every code block visible at all times. Code
navigation can be made easier by using the code folding feature of the
Android Studio editor. Code folding is controlled using disclosure arrows
that appear at the beginning of each code block in a source file when the
mouse pointer hovers in the gutter area. Figure 9-14, for example,
highlights the disclosure arrow for a method declaration that is not currently
folded:

Figure 9-14
Clicking on this marker will fold the statement such that only the signature
line is visible, as shown in Figure 9-15:

Figure 9-15
To unfold a collapsed section of code, click on the disclosure arrow in the
editor gutter. To see the hidden code without unfolding it, hover the mouse
pointer over the “{…}” indicator, as shown in Figure 9-16. The editor will
then display the lens overlay containing the folded code block:

Figure 9-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-
Shift-Plus and Ctrl-Shift-Minus keyboard sequences (Cmd-Shift-Plus and
Cmd-Shift-Minus on macOS).
By default, the Android Studio editor will automatically fold some code
when a source file is opened. To configure the conditions under which this
happens, navigate to the Editor -> General -> Code Folding entry in the
Settings dialog (Figure 9-17):

Figure 9-17
9.9 Quick Documentation Lookup

Context-sensitive Kotlin and Android documentation can be accessed by
placing the cursor over the declaration for which documentation is required
and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the
item. Figure 9-18, for example, shows the documentation for the Android
Menu class.

Figure 9-18
9.10 Code Reformatting
In general, the Android Studio editor will automatically format code in
terms of indenting, spacing, and nesting of statements and code blocks as
they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code
from a website), the editor provides a source code reformatting feature
which, when selected, will automatically reformat code to match the
prevailing code style.
Press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence to
reformat the source code. To display the Reformat Code dialog (Figure 9-
19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire
source file currently active in the editor, or only code that has changed as a
result of a source code control update:

Figure 9-19
The full range of code style preferences can be changed by opening the
Settings dialog and choosing Code Style in the side panel to access a list of
supported programming and markup languages. Selecting a language will
provide access to a vast array of formatting style options, all of which may
be modified from the Android Studio default to match your preferred code
style. To configure the settings for the Rearrange code option in the above
dialog, for example, unfold the Code Style section, select Kotlin and, from
the Kotlin settings, select the Arrangement tab.

9.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to
the currently highlighted entry within the code listing. This feature can be
helpful for learning how a particular Android class or method is used. To
find sample code, highlight a method or class name in the editor, right-click
on it, and select the Find Sample Code menu option. If sample code is
available, the Find Sample Code panel will appear with a list of matching
samples. Selecting a sample from the list will load the corresponding code
into the right-hand panel.

9.12 Live Templates
As you write Android code, you will find that there are common constructs
that are used frequently. For example, a common requirement is to display a
popup message to the user using the Android Toast class. Live templates are
a collection of common code constructs that can be entered into the editor
by typing the initial characters followed by a special key (set to the Tab key

by default) to insert template code. To experience this in action, type toast
in the code editor followed by the Tab key, and Android Studio will insert
the following code at the cursor position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show()

To list and edit existing templates, change the special key, or add your own
templates, open the Settings dialog and select Live Templates from the
Editor section of the left-hand navigation panel:

Figure 9-20
Add, remove, duplicate, or reset templates using the buttons marked A in
Figure 9-20 above. To modify a template, select it from the list (B) and
change the settings in the panel marked C.

9.13 Summary
The Android Studio editor goes to great lengths to reduce the typing needed
to write code and make that code easier to read and navigate. This chapter
covered key editor features, including code completion, code generation,
editor window splitting, code folding, reformatting, documentation lookup,
and live templates.

10. An Overview of the Android
Architecture
So far, in this book, steps have been taken to set up an environment suitable
for developing Android applications using Android Studio. An initial step
has also been taken into the application development process by creating an
Android Studio application project.
However, before delving further into the practical matters of Android
application development, it is essential to understand some of the more
abstract concepts of both the Android SDK and Android development in
general. Gaining a clear understanding of these concepts now will provide a
sound foundation on which to build further knowledge.
Starting with an overview of the Android architecture in this chapter and
continuing in the following few chapters of this book, the goal is to provide
a detailed overview of the fundamentals of Android development.

10.1 The Android Software Stack
Android is structured as a software stack comprising applications, an
operating system, a runtime environment, middleware, services, and
libraries. This architecture can best be represented visually, as Figure 10-1
outlines. Each layer of the stack, and the corresponding elements within
each layer, are tightly integrated and carefully tuned to provide the optimal
application development and execution environment for mobile devices.
The remainder of this chapter will work through the different layers of the
Android stack, starting at the bottom with the Linux Kernel.

Figure 10-1
10.2 The Linux Kernel
Positioned at the bottom of the Android software stack, the Linux Kernel
provides a level of abstraction between the device hardware and the upper
layers of the Android software stack. The kernel provides preemptive
multitasking, low-level core system services such as memory, process, and
power management, and a network stack and device drivers for hardware
such as the device display, WiFi, and audio.
The original Linux kernel was developed in 1991 by Linus Torvalds. It was
combined with a set of tools, utilities, and compilers developed by Richard
Stallman at the Free Software Foundation to create a complete operating
system called GNU/Linux. Various Linux distributions have been derived
from these basic underpinnings, such as Ubuntu and Red Hat Enterprise
Linux.
However, it is important to note that Android uses only the Linux kernel.
That said, it is worth noting that the Linux kernel was originally developed
for use in traditional desktop and server computer systems. In fact, Linux is
now most widely deployed in mission-critical enterprise server
environments. It is a testament to both the power of today’s mobile devices
and the efficiency and performance of the Linux kernel that we find this
software at the heart of the Android software stack.

10.3 Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) comprises a set of library modules
that interface with device components such as the camera, microphone, and
accelerometer. When the Android stack needs to access a hardware
component, it uses the HAL library modules. Each Android device
manufacturer has an abstraction layer for its specific hardware
configuration, allowing the standard Android libraries and frameworks to
run on any device without being altered for specific hardware.

10.4 Android Runtime – ART
When an Android app is built within Android Studio, it is compiled into an
intermediate bytecode format (DEX format). When the application is
subsequently loaded onto the device, the Android Runtime (ART) uses a
process referred to as Ahead-of-Time (AOT) compilation to translate the
bytecode down to the native instructions required by the device processor.
This format is known as Executable and Linkable Format (ELF).
Each time the application is subsequently launched, the ELF executable
version is run, resulting in faster application performance and improved
battery life.
This contrasts with the Just-in-Time (JIT) compilation approach used in
older Android implementations, whereby the bytecode was translated
within a virtual machine (VM) each time the application was launched.

10.5 Android Libraries
In addition to a set of standard Java development libraries (providing
support for such general-purpose tasks as string handling, networking, and
file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to
Android development. Examples of libraries in this category include the
application framework libraries in addition to those that facilitate user
interface building, graphics drawing, and database access.
A summary of some key core Android libraries available to the Android
developer is as follows:
•android.app – Provides access to the application model and is the
cornerstone of all Android applications.

•android.content – Facilitates content access, publishing, and messaging
between applications and application components.

•android.database – Used to access data published by content providers
and includes SQLite database management classes.

•android.graphics – A low-level 2D graphics drawing API including
colors, points, filters, rectangles, and canvases.

•android.hardware – Presents an API providing access to hardware such
as the accelerometer and light sensor.

•android.opengl – A Java interface to the OpenGL ES 3D graphics
rendering API.

•android.os – Provides applications with access to standard operating
system services, including messages, system services, and inter-process
communication.

•android.media – Provides classes to enable playback of audio and video.
•android.net – A set of APIs providing access to the network stack.
Includes android.net.wifi, which provides access to the device’s wireless
stack.

•android.print – Includes a set of classes that enable content to be sent to
configured printers from within Android applications.

•android.provider – A set of convenience classes that provide access to
standard Android content provider databases such as those maintained by
the calendar and contact applications.

•android.text – Used to render and manipulate text on a device display.
•android.util – A set of utility classes for performing tasks such as string
and number conversion, XML handling and date and time manipulation.

•android.view – The fundamental building blocks of application user
interfaces.

•android.widget - A rich collection of pre-built user interface components
such as buttons, labels, list views, layout managers, radio buttons etc.

•android.webkit – A set of classes intended to allow web-browsing
capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now
time to turn our attention to the C/C++-based libraries in this layer of the

Android software stack.
10.5.1 C/C++ Libraries
The Android runtime core libraries outlined in the preceding section are
Java-based and provide the primary APIs for Android developers. It is
important to note, however, that the core libraries do not perform much of
the actual work and are, in fact, essentially Java “wrappers” around a set of
C/C++-based libraries. When making calls, for example, to the
android.opengl library to draw 3D graphics on the device display, the
library ultimately makes calls to the OpenGL ES C++ library, which, in
turn, works with the underlying Linux kernel to perform the drawing tasks.
C/C++ libraries are included to fulfill a broad and diverse range of
functions, including 2D and 3D graphics drawing, Secure Sockets Layer
(SSL) communication, SQLite database management, audio and video
playback, bitmap and vector font rendering, display subsystem and graphic
layer management and an implementation of the standard C system library
(libc).
In practice, the typical Android application developer will access these
libraries solely through the Java-based Android core library APIs. If direct
access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native
methods of non-Java or Kotlin programming languages (such as C and
C++) from within Java code using the Java Native Interface (JNI).

10.6 Application Framework
The Application Framework is a set of services that collectively form the
environment in which Android applications run and are managed. This
framework implements the concept that Android applications are
constructed from reusable, interchangeable, and replaceable components.
This concept is taken a step further in that an application can also publish
its capabilities along with any corresponding data so that other applications
can find and reuse them.
The Android framework includes the following key services:
•Activity Manager – Controls all aspects of the application lifecycle and
activity stack.

•Content Providers – Allows applications to publish and share data with

other applications.
•Resource Manager – Provides access to non-code embedded resources
such as strings, color settings, and user interface layouts.

•Notifications Manager – Allows applications to display alerts and
notifications to the user.

•View System – An extensible set of views used to create application user
interfaces.

•Package Manager – The system by which applications can find
information about other applications currently installed on the device.

•Telephony Manager – Provides information to the application about the
telephony services available on the device, such as status and subscriber
information.

•Location Manager – Provides access to the location services allowing an
application to receive updates about location changes.

10.7 Applications
Located at the top of the Android software stack are the applications. These
comprise the native applications provided with the particular Android
implementation (for example, web browser and email applications) and the
third-party applications installed by the user after purchasing the device.

10.8 Summary
A good Android development knowledge foundation requires an
understanding of the overall architecture of Android. Android is
implemented as a software stack architecture consisting of a Linux kernel, a
runtime environment, corresponding libraries, an application framework,
and a set of applications. Applications are predominantly written in Java or
Kotlin and compiled into bytecode format within the Android Studio build
environment. When the application is subsequently installed on a device,
this bytecode is compiled down by the Android Runtime (ART) to the
native format used by the CPU. The key goals of the Android architecture
are performance and efficiency, both in application execution and in the
implementation of reuse in application design.

11. An Introduction to Kotlin
Android development is performed primarily using Android Studio which
is, in turn, based on the IntelliJ IDEA development environment created by
a company named JetBrains. Before the release of Android Studio 3.0, all
Android apps were written using Android Studio and the Java programming
language (with some occasional C++ code when needed).
Since the introduction of Android Studio 3.0, however, developers now
have the option of creating Android apps using another programming
language called Kotlin. Although detailed coverage of all features of this
language is beyond the scope of this book (entire books can and have been
written covering solely Kotlin), the objective of this and the following six
chapters is to provide enough information to begin programming in Kotlin
and quickly get up to speed developing Android apps using this
programming language.

11.1 What is Kotlin?
Named after an island located in the Baltic Sea, Kotlin is a programming
language created by JetBrains and follows Java in the tradition of naming
programming languages after islands. Kotlin code is intended to be easier to
understand and write and also safer than many other programming
languages. The language, compiler, and related tools are all open source and
available for free under the Apache 2 license.
The primary goals of the Kotlin language are to make code both concise
and safe. Code is generally considered concise when it can be easily read
and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of
safety, Kotlin includes several features that improve the chances that
potential problems will be identified when the code is being written instead
of causing runtime crashes.
A third objective in the design and implementation of Kotlin involves
interoperability with Java.

11.2 Kotlin and Java
Originally introduced by Sun Microsystems in 1995 Java is still by far the

most popular programming language in use today. Until the introduction of
Kotlin, it is quite likely that every Android app available on the market was
written in Java. Since acquiring the Android operating system, Google has
invested heavily in tuning and optimizing compilation and runtime
environments for running Java-based code on Android devices.
Rather than try to re-invent the wheel, Kotlin is designed to both integrate
with and work alongside Java. When Kotlin code is compiled it generates
the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility
also allows existing Java frameworks and libraries to be used seamlessly
from within Kotlin code and also for Kotlin code to be called from within
Java.
Kotlin’s creators also acknowledged that while there were ways to improve
on existing languages, there are many features of Java that did not need to
be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development.
Programmers with Swift programming experience will also find much that
is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin
Given the high level of interoperability between Kotlin and Java, it is not
essential to convert existing Java code to Kotlin since these two languages
will comfortably co-exist within the same project. That being said, Java
code can be converted to Kotlin from within Android Studio using a built-in
Java to Kotlin converter. To convert an entire Java source file to Kotlin,
load the file into the Android Studio code editor and select the Code ->
Convert Java File to Kotlin File menu option. Alternatively, blocks of Java
code may be converted to Kotlin by cutting the code and pasting it into an
existing Kotlin file within the Android Studio code editor. Note when
performing Java to Kotlin conversions that the Java code will not always
convert to the best possible Kotlin code and that time should be taken to
review and tidy up the code after conversion.

11.4 Kotlin and Android Studio
Support for Kotlin is provided within Android Studio via the Kotlin Plug-in
which is integrated by default into Android Studio 3.0 or later.

11.5 Experimenting with Kotlin
When learning a new programming language, it is often useful to be able to
enter and execute snippets of code. One of the best ways to do this with
Kotlin is to use the Kotlin Playground (Figure 11-1) located at
https://play.kotlinlang.org:

Figure 11-1
In addition to providing an environment in which Kotlin code may be
quickly entered and executed, the playground also includes a set of
examples and tutorials demonstrating key Kotlin features in action.
Try out some Kotlin code by opening a browser window, navigating to the
playground, and entering the following into the main code panel:
fun main(args: Array<String>) {

 println("Welcome to Kotlin")

 for (i in 1..8) {
 println("i = $i")
 }
}

After entering the code, click on the Run button and note the output in the
console panel:

https://play.kotlinlang.org/

Figure 11-2
11.6 Semi-colons in Kotlin
Unlike programming languages such as Java and C++, Kotlin does not
require semi-colons at the end of each statement or expression line. The
following, therefore, is valid Kotlin code:
val mynumber = 10
println(mynumber)

Semi-colons are only required when multiple statements appear on the same
line:
val mynumber = 10; println(mynumber)

11.7 Summary
For the first time since the Android operating system was introduced,
developers now have an alternative to writing apps in Java code. Kotlin is a
programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is
intended to make code safer and easier to understand and write. Kotlin is
also highly compatible with Java, allowing Java and Kotlin code to co-exist
within the same projects. This interoperability ensures that most of the
standard Java and Java-based Android libraries and frameworks are
available for use when developing using Kotlin.
Kotlin support for Android Studio is provided via a plug-in bundled with
Android Studio 3.0 or later. This plug-in also provides a converter to
translate Java code to Kotlin.
When learning Kotlin, the online playground provides a useful environment
for quickly trying out Kotlin code.

12. Kotlin Data Types, Variables and
Nullability
Both this and the following few chapters are intended to introduce the
basics of the Kotlin programming language. This chapter will focus on the
various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, type casting and Kotlin’s
handling of null values.
As outlined in the previous chapter, entitled “An Introduction to Kotlin” a
useful way to experiment with the language is to use the Kotlin online
playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the
playground to try out the code in both this and the other Kotlin introductory
chapters that follow.

12.1 Kotlin data types
When we look at the different types of software that run on computer
systems and mobile devices, from financial applications to graphics-
intensive games, it is easy to forget that computers are really just binary
machines. Binary systems work in terms of 0 and 1, true or false, set and
unset. All the data sitting in RAM, stored on disk drives and flowing
through circuit boards and buses are nothing more than sequences of 1s and
0s. Each 1 or 0 is referred to as a bit and bits are grouped together in blocks
of 8, each group being referred to as a byte. When people talk about 32-bit
and 64-bit computer systems they are talking about the number of bits that
can be handled simultaneously by the CPU bus. A 64-bit CPU, for example,
is able to handle data in 64-bit blocks, resulting in faster performance than a
32-bit based system.
Humans, of course, don’t think in binary. We work with decimal numbers,
letters and words. For a human to easily (‘easily’ being a relative term in
this context) program a computer, some middle ground between human and
computer thinking is needed. This is where programming languages such as
Kotlin come into play. Programming languages allow humans to express
instructions to a computer in terms and structures we understand, and then

https://play.kotlinlang.org/

compile that down to a format that can be executed by a CPU.
One of the fundamentals of any program involves data, and programming
languages such as Kotlin define a set of data types that allow us to work
with data in a format we understand when programming. For example, if
we want to store a number in a Kotlin program we could do so with syntax
similar to the following:
val mynumber = 10

In the above example, we have created a variable named mynumber and
then assigned to it the value of 10. When we compile the source code down
to the machine code used by the CPU, the number 10 is seen by the
computer in binary as:
1010

Similarly, we can express a letter, the visual representation of a digit (‘0’
through to ‘9’) or punctuation mark (referred to in computer terminology as
characters) using the following syntax:
val myletter = 'c'

Once again, this is understandable by a human programmer, but gets
compiled down to a binary sequence for the CPU to understand. In this
case, the letter ‘c’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to
human readable characters). When converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and
why they are necessary we can take a closer look at some of the more
commonly used data types supported by Kotlin.
12.1.1 Integer data types
Kotlin integer data types are used to store whole numbers (in other words, a
number with no decimal places). All integers in Kotlin are signed (in other
words capable of storing positive, negative and zero values).
Kotlin provides support for 8, 16, 32 and 64-bit integers (represented by the
Byte, Short, Int and Long types respectively).
12.1.2 Floating point data types
The Kotlin floating-point data types are able to store values containing
decimal places. For example, 4353.1223 would be stored in a floating-point

data type. Kotlin provides two floating-point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored
and the level of precision required. The Double type can be used to store up
to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.
12.1.3 Boolean data type
Kotlin, like other languages, includes a data type for the purpose of
handling true or false (1 or 0) conditions. Two Boolean constant values
(true and false) are provided by Kotlin specifically for working with
Boolean data types.
12.1.4 Character data type
The Kotlin Char data type is used to store a single character of rendered text
such as a letter, numerical digit, punctuation mark or symbol. Internally
characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points
that are combined to represent a single visible character.
The following lines assign a variety of different characters to Character type
variables:
val myChar1 = 'f'
val myChar2 = ':'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The
following example assigns the ‘X’ character to a variable using Unicode:
val myChar4 = '\u0058'

Note the use of single quotes when assigning a character to a variable. This
indicates to Kotlin that this is a Char data type as opposed to double quotes
which indicate a String data type.
12.1.5 String data type
The String data type is a sequence of characters that typically make up a
word or sentence. In addition to providing a storage mechanism, the String
data type also includes a range of string manipulation features allowing
strings to be searched, matched, concatenated and modified. Double quotes
are used to surround single line strings during assignment, for example:
val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes
val message = """You have 10 new messages,
 5 old messages
 and 6 spam messages."""

The leading spaces on each line of a multi-line string can be removed by
making a call to the trimMargin() function of the String data type:
val message = """You have 10 new messages,
 5 old messages
 and 6 spam messages.""".trimMargin()

Strings can also be constructed using combinations of strings, variables,
constants, expressions, and function calls using a concept referred to as
string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before
outputting it to the console:
val username = "John"
val inboxCount = 25
val maxcount = 100
val message = "$username has $inboxCount messages. Message capacity
remaining is ${maxcount - inboxCount} messages"

println(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape sequences
In addition to the standard set of characters outlined above, there is also a
range of special characters (also referred to as escape characters) available
for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the
character with a backslash (a concept referred to as escaping). For example,
the following assigns a new line to the variable named newline:
var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be
a special character and is treated accordingly. This raises the question as to
what to do if you actually want a backslash character. This is achieved by
escaping the backslash itself:
var backslash = '\\'

The complete list of special characters supported by Kotlin is as follows:

•\n - New line
•\r - Carriage return
•\t - Horizontal tab
•\\ - Backslash
•\” - Double quote (used when placing a double quote into a string
declaration)

•\’ - Single quote (used when placing a single quote into a string
declaration)

•\$ - Used when a character sequence containing a $ is misinterpreted as a
variable in a string template.

•\unnnn – Double byte Unicode scalar where nnnn is replaced by four
hexadecimal digits representing the Unicode character.

12.2 Mutable variables
Variables are essentially locations in computer memory reserved for storing
the data used by an application. Each variable is given a name by the
programmer and assigned a value. The name assigned to the variable may
then be used in the Kotlin code to access the value assigned to that variable.
This access can involve either reading the value of the variable or, in the
case of mutable variables, changing the value.

12.3 Immutable variables
Often referred to as a constant, an immutable variable is similar to a
mutable variable in that it provides a named location in memory to store a
data value. Immutable variables differ in one significant way in that once a
value has been assigned, it cannot subsequently be changed.
Immutable variables are particularly useful if there is a value that is used
repeatedly throughout the application code. Rather than use the value each
time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be
clear to someone reading your Kotlin code why you used the value 5 in an
expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable
values also have the advantage that if the programmer needs to change a
widely used value, it only needs to be changed once in the constant

declaration and not each time it is referenced.

12.4 Declaring mutable and immutable variables
Mutable variables are declared using the var keyword and may be
initialized with a value at creation time. For example:
var userCount = 10

If the variable is declared without an initial value, the type of the variable
must also be declared (a topic that will be covered in more detail in the next
section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:
var userCount: Int
userCount = 42

Immutable variables are declared using the val keyword.
val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring
the variable without initializing it:
val maxUserCount: Int
maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in
preference to mutable variables whenever possible.

12.5 Data types are objects
All of the above data types are objects, each of which provides a range of
functions and properties that may be used to perform a variety of different
type specific tasks. These functions and properties are accessed using so-
called dot notation. Dot notation involves accessing a function or property
of an object by specifying the variable name followed by a dot followed in
turn by the name of the property to be accessed or function to be called.
A string variable, for example, can be converted to uppercase via a call to
the toUpperCase() function of the String class:
val myString = "The quick brown fox"
val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the length
property:
val length = myString.length

Functions are also available within the String class to perform tasks such as

comparisons and checking for the presence of a specific word. The
following code, for example, will return a true Boolean value since the
word “fox” appears within the string assigned to the myString variable:
val result = myString.contains("fox")

All of the number data types include functions for performing tasks such as
converting from one data type to another such as converting an Int to a
Float:
val myInt = 10
val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the
Kotlin data type classes is beyond the scope of this book (there are
hundreds). An exhaustive list for all data types can, however, be found
within the Kotlin reference documentation available online at:
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

12.6 Type annotations and type inference
Kotlin is categorized as a statically typed programming language. This
essentially means that once the data type of a variable has been identified,
that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed
programming languages where a variable, once declared, can subsequently
be used to store other data types.
There are two ways in which the type of a variable will be identified. One
approach is to use a type annotation at the point the variable is declared in
the code. This is achieved by placing a colon after the variable name
followed by the type declaration. The following line of code, for example,
declares a variable named userCount as being of type Int:
val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin compiler
uses a technique referred to as type inference to identify the type of the
variable. When relying on type inference, the compiler looks to see what
type of value is being assigned to the variable at the point that it is
initialized and uses that as the type. Consider, for example, the following
variable declarations:
var signalStrength = 2.231
val companyName = "My Company"

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

During compilation of the above lines of code, Kotlin will infer that the
signalStrength variable is of type Double (type inference in Kotlin defaults
to Double for all floating-point numbers) and that the companyName
constant is of type String.
When a constant is declared without a type annotation it must be assigned a
value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the
value can be assigned later in the code. For example:
val iosBookType = false
val bookTitle: String

if (iosBookType) {
 bookTitle = "iOS App Development Essentials"
} else {
 bookTitle = "Android Studio Development Essentials"
}

12.7 Nullable type
Kotlin nullable types are a concept that does not exist in most other
programming languages (with the exception of the optional type in Swift).
The purpose of nullable types is to provide a safe and consistent approach
to handling situations where a variable may have a null value assigned to it.
In other words, the objective is to avoid the common problem of code
crashing with the null pointer exception errors that occur when code
encounters a null value where one was not expected.
By default, a variable in Kotlin cannot have a null value assigned to it.
Consider, for example, the following code:
val username: String = null

An attempt to compile the above code will result in a compilation error
similar to the following:
Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be
specifically declared as a nullable type by placing a question mark (?) after
the type declaration:
val username: String? = null

The username variable can now have a null value assigned to it without
triggering a compiler error. Once a variable has been declared as nullable, a
range of restrictions are then imposed on that variable by the compiler to
prevent it being used in situations where it might cause a null pointer
exception to occur. A nullable variable, cannot, for example, be assigned to
a variable of non-null type as is the case in the following code:
val username: String? = null
val firstname: String = username

The above code will elicit the following error when encountered by the
compiler:
Error: Type mismatch: inferred type is String? but String was
expected

The only way that the assignment will be permitted is if some code is added
to check that the value assigned to the nullable variable is non-null:
val username: String? = null

if (username != null) {
 val firstname: String = username
}

In the above case, the assignment will only take place if the username
variable references a non-null value.

12.8 The safe call operator
A nullable variable also cannot be used to call a function or to access a
property in the usual way. Earlier in this chapter, the toUpperCase()
function was called on a String object. Given the possibility that this could
cause a function to be called on a null reference, the following code will be
disallowed by the compiler:
val username: String? = null
val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this situation reads as
follows:
Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type String?

In this instance, the compiler is essentially refusing to allow the function
call to be made because no attempt has been made to verify that the variable
is non-null. One way around this is to add some code to verify that

something other than null value has been assigned to the variable before
making the function call:
if (username != null) {
 val uppercase = username.toUpperCase()
}

A much more efficient way to achieve this same verification, however, is to
call the function using the safe call operator (represented by ?.) as follows:
val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the toUpperCase()
function will not be called and execution will proceed at the next line of
code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.
In addition to function calls, the safe call operator may also be used when
accessing properties:
val uppercase = username?.length

12.9 Not-null assertion
The not-null assertion removes all of the compiler restrictions from a
nullable type, allowing it to be used in the same ways as a non-null type,
even if it has been assigned a null value. This assertion is implemented
using double exclamation marks after the variable name, for example:
val username: String? = null
val length = username!!.length

The above code will now compile, but will crash with the following
exception at runtime since an attempt is being made to call a function on a
non existent object:
Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid.
Use of the not-null assertion is generally discouraged and should only be
used in situations where you are certain that the value will not be null.

12.10 Nullable types and the let function
Earlier in this chapter, we looked at how the safe call operator can be used
when making a call to a function belonging to a nullable type. This
technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem

occurs when passing a nullable type as an argument to a function which is
expecting a non-null parameter. As an example, consider the times()
function of the Int data type. When called on an Int object and passed
another integer value as an argument, the function multiplies the two values
and returns the result. When the following code is executed, for example,
the value of 200 will be displayed within the console:
val firstNumber = 10
val secondNumber = 20

val result = firstNumber.times(secondNumber)
print(result)

The above example works because the secondNumber variable is a non-null
type. A problem, however, occurs if the secondNumber variable is declared
as being of nullable type:
val firstNumber = 10
val secondNumber: Int? = 20

val result = firstNumber.times(secondNumber)
print(result)

Now the compilation will fail with the following error message because a
nullable type is being passed to a function that is expecting a non-null
parameter:
Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if statement to
verify that the value assigned to the variable is non-null before making the
call to the function:
val firstNumber = 10
val secondNumber: Int? = 20

if (secondNumber != null) {
 val result = firstNumber.times(secondNumber)
 print(result)
}

A more convenient approach to addressing the issue, however, involves use
of the let function. When called on a nullable type object, the let function
converts the nullable type to a non-null variable named it which may then
be referenced within a lambda statement.
secondNumber?.let {

 val result = firstNumber.times(it)
 print(result)
}

Note the use of the safe call operator when calling the let function on
secondVariable in the above example. This ensures that the function is only
called when the variable is assigned a non-null value.

12.11 Late initialization (lateinit)
As previously outlined, non-null types need to be initialized when they are
declared. This can be inconvenient if the value to be assigned to the non-
null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This
modifier designates that a value will be initialized with a value later. This
has the advantage that a non-null type can be declared before it is
initialized, with the disadvantage that the programmer is responsible for
ensuring that the initialization has been performed before attempting to
access the variable. Consider the following variable declaration:
var myName: String

Clearly, this is invalid since the variable is a non-null type but has not been
assigned a value. Suppose, however, that the value to be assigned to the
variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:
lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for
example:
myName = "John Smith"
print("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will
fail with an exception:
lateinit var myName: String

print("My Name is " + myName)

Exception in thread "main"
kotlin.UninitializedPropertyAccessException: lateinit property
myName has not been initialized

To verify whether a lateinit variable has been initialized, check the

isInitialized property on the variable. To do this, we need to access the
properties of the variable by prefixing the name with the ‘::’ operator:
if (::myName.isInitialized) {
 print("My Name is " + myName)
}

12.12 The Elvis operator
The Kotlin Elvis operator can be used in conjunction with nullable types to
define a default value that is to be returned if a value or expression result is
null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned,
otherwise the result of the rightmost expression is returned. This can be
thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {
 return myString
} else {
 return "String is null"
}

The same result can be achieved with less coding using the Elvis operator
as follows:
return myString ?: "String is null"

12.13 Type casting and type checking
When compiling Kotlin code, the compiler can typically infer the type of an
object. Situations will occur, however, where the compiler is unable to
identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this
situation it may be necessary to let the compiler know the type of object
that your code is expecting or to write code that checks whether the object
is of a particular type.
Letting the compiler know the type of object that is expected is known as
type casting and is achieved within Kotlin code using the as cast operator.
The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a
KeyguardManager object:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as
KeyguardManager

The Kotlin language includes both safe and unsafe cast operators. The
above cast is an unsafe cast and will cause the app to throw an exception if
the cast cannot be performed. A safe cast, on the other hand, uses the as?
operator and returns null if the cast cannot be performed:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as?
KeyguardManager

A type check can be performed to verify that an object conforms to a
specific type using the is operator, for example:
if (keyMgr is KeyguardManager) {
 // It is a KeyguardManager object
}

12.14 Summary
This chapter has begun the introduction to Kotlin by exploring data types
together with an overview of how to declare variables. The chapter has also
introduced concepts such as nullable types, type casting and type checking
and the Elvis operator, each of which is an integral part of Kotlin
programming and designed specifically to make code writing less prone to
error.

13. Kotlin Operators and Expressions
So far, we have looked at using variables and constants in Kotlin and also
described the different data types. Being able to create variables is only part
of the story, however. The next step is to learn how to use these variables in
Kotlin code. The primary method for working with data is in the form
of expressions.

13.1 Expression syntax in Kotlin
The most basic expression consists of an operator, two operands, and
an assignment. The following is an example of an expression:
val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and
2) together. The assignment operator (=) subsequently assigns the result of
the addition to a variable named myresult. The operands could have easily
been variables (or a mixture of values and variables) instead of the actual
numerical values used in the example.
In the remainder of this chapter, we will look at the basic types of operators
available in Kotlin.

13.2 The Basic assignment operator
We have already looked at the most basic of assignment operators, the =
operator. This assignment operator simply assigns the result of an
expression to a variable. In essence, the = assignment operator takes two
operands. The left-hand operand is the variable to which a value is to be
assigned and the right-hand operand is the value to be assigned. The right-
hand operand is, more often than not, an expression that performs some
type of arithmetic or logical evaluation or a call to a function, the result of
which will be assigned to the variable. The following examples are all valid
uses of the assignment operator:
var x: Int // Declare a mutable Int variable
val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x
x = x + y // Assign the result of x + y to x
x = y // Assign the value of y to x

13.3 Kotlin arithmetic operators
Kotlin provides a range of operators for creating mathematical expressions.
These operators primarily fall into the category of binary operators in that
they take two operands. The exception is the unary negative operator (-)
which serves to indicate that a value is negative rather than positive. This
contrasts with the subtraction operator (-) which takes two operands (i.e.
one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x
x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description

-(unary) Negates the value of a variable or expression

* Multiplication

/ Division

+ Addition

- Subtraction

% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.
For example:
x = y * 10 + z - 5 / 4

13.4 Augmented assignment operators
In an earlier section, we looked at the basic assignment operator (=). Kotlin
provides several operators designed to combine an assignment with a
mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the
operands. For example, one might write an expression as follows:
x = x + y

The above expression adds the value contained in variable x to the value

contained in variable y and stores the result in variable x. This can be
simplified using the addition augmented assignment operator:
x += y

The above expression performs the same task as x = x + y but saves the
programmer some typing.
Numerous augmented assignment operators are available in Kotlin. The
most frequently used of which are outlined in the following table:

Operator Description

x += y Add x to y and place result in x

x -= y Subtract y from x and place result in x

x *= y Multiply x by y and place result in x

x /= y Divide x by y and place result in x

x %= y Perform Modulo on x and y and place result in x

Table 13-2
13.5 Increment and decrement operators
Another useful shortcut can be achieved using the Kotlin increment and
decrement operators (also referred to as unary operators because they
operate on a single operand). Consider the code fragment below:
x = x + 1 // Increase value of variable x by 1
x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of
using this approach, however, it is quicker to use the ++ and -- operators.
The following examples perform the same tasks as the examples above:
x++ // Increment x by 1
x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If
the operator is placed before the variable name, the increment or decrement
operation is performed before any other operations are performed on the
variable. For example, in the following code, x is incremented before it is
assigned to y, leaving y with a value of 10:

var x = 9
val y = ++x

In the next example, however, the value of x (9) is assigned to variable y
before the decrement is performed. After the expression is evaluated the
value of y will be 9 and the value of x will be 8.
var x = 9
val y = x--

13.6 Equality operators
Kotlin also includes a set of logical operators useful for performing
comparisons. These operators all return a Boolean result depending on the
result of the comparison. These operators are binary operators in that they
work with two operands.
Equality operators are most frequently used in constructing program control
flow logic. For example, an if statement may be constructed based on
whether one value matches another:
if (x == y) {
 // Perform task
}

The result of a comparison may also be stored in a Boolean variable. For
example, the following code will result in a true value being stored in the
variable result:
var result: Boolean
val x = 10
val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x <
y expression. The following table lists the full set of Kotlin comparison
operators:

Operator Description

x == y Returns true if x is equal to y

x > y Returns true if x is greater than y

x >= y Returns true if x is greater than or equal to y

x < y Returns true if x is less than y

x <= y Returns true if x is less than or equal to y

x != y Returns true if x is not equal to y

Table 13-3
13.7 Boolean logical operators
Kotlin also provides a set of so-called logical operators designed to return
Boolean true or false values. These operators both return Boolean results
and take Boolean values as operands. The key operators are NOT (!), AND
(&&), and OR (||).
The NOT (!) operator simply inverts the current value of a Boolean variable
or the result of an expression. For example, if a variable named flag is
currently true, prefixing the variable with a ‘!’ character will invert the
value to false:
val flag = true // variable is true
val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true,
otherwise, it returns false. For example, the following code evaluates to true
because at least one of the expressions on either side of the OR operator is
true:
if ((10 < 20) || (20 < 10)) {
 print("Expression is true")
}

The AND (&&) operator returns true only if both operands are evaluated to
be true. The following example will return false because only one of the
two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {
 print("Expression is true")
}

13.8 Range operator
Kotlin includes a useful operator that allows a range of values to be
declared. As will be seen in later chapters, this operator is invaluable when
working with looping in program logic.
The syntax for the range operator is as follows:

x..y

This operator represents the range of numbers starting at x and ending at y
where both x and y are included within the range (referred to as a closed
range). The range operator 5..8, for example, specifies the numbers 5, 6, 7,
and 8.

13.9 Bitwise operators
As previously discussed, computer processors work in binary. These are
essentially streams of ones and zeros, each one referred to as a bit. Bits are
formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code.
To facilitate this requirement, Kotlin provides a range of bit operators.
Those familiar with bitwise operators in other languages such as C, C++,
C#, Objective-C, and Java will find nothing new in this area of the Kotlin
language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject to understand how
ones and zeros are formed into bytes to form numbers. Other authors have
done a much better job of describing the subject than we can do within the
scope of this book.
For this exercise, we will be working with the binary representation of two
numbers. First, the decimal number 171 is represented in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to
look at the Kotlin bitwise operators:
13.9.1 Bitwise inversion
The Bitwise inversion (also referred to as NOT) is performed using the
inv() operation and has the effect of inverting all of the bits in a number. In
other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following
result:
00000011 NOT
========
11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3
val z = y.inv()

print("Result is $z")

13.9.2 Bitwise AND
The Bitwise AND is performed using the and() operation. It makes a bit-by-
bit comparison of two numbers. Any corresponding position in the binary
sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0
then a zero appears in the result. Taking our two example numbers, this
would appear as follows:
10101011 AND
00000011
========
00000011

As we can see, the only locations where both numbers have 1s are the last
two positions. If we perform this in Kotlin code, therefore, we should find
that the result is 3 (00000011):
val x = 171
val y = 3
val z = x.and(y)

print("Result is $z")

13.9.3 Bitwise OR
The bitwise OR also performs a bit-by-bit comparison of two binary
sequences. Unlike the AND operation, the OR places a 1 in the result if
there is a 1 in the first or second operand. Using our example numbers, the
result will be as follows:
10101011 OR
00000011
========
10101011

If we perform this operation in Kotlin using the or() operation the result
will be 171:
val x = 171
val y = 3

val z = x.or(y)

print("Result is $z")

13.9.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and performed
using the xor() operation) performs a similar task to the OR operation
except that a 1 is placed in the result if one or other corresponding bit
positions in the two numbers is 1. If both positions are a 1 or a 0 then the
corresponding bit in the result is set to a 0. For example:
10101011 XOR
00000011
========
10101000

The result, in this case, is 10101000 which converts to 168 in decimal. To
verify this we can, once again, try some Kotlin code:
val x = 171
val y = 3
val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise left shift
The bitwise left shift moves each bit in a binary number a specified number
of positions to the left. Shifting an integer one position to the left has the
effect of doubling the value.
As the bits are shifted to the left, zeros are placed in the vacated rightmost
(low-order) positions. Note also that once the leftmost (high-order) bits are
shifted beyond the size of the variable containing the value, those high -
order bits are discarded:
10101011 Left Shift one bit
========
101010110

In Kotlin the bitwise left shift operator is performed using the shl()
operation, passing through the number of bit positions to be shifted. For
example, to shift left by 1 bit:
val x = 171

val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message
stating that the result is 342 which, when converted to binary, equates to
101010110.
13.9.6 Bitwise right shift
A bitwise right shift is, as you might expect, the same as a left except that
the shift takes place in the opposite direction. Shifting an integer one
position to the right has the effect of halving the value.
Note that since we are shifting to the right, there is no opportunity to retain
the lowermost bits regardless of the data type used to contain the result. As
a result, the low-order bits are discarded. Whether or not the vacated high-
order bit positions are replaced with zeros or ones depends on whether
the sign bit used to indicate positive and negative numbers is set or not.
10101011 Right Shift one bit
========
01010101

The bitwise right shift is performed using the shr() operation passing
through the shift count:
val x = 171
val z = x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being
85, which equates to binary 01010101.

13.10 Summary
Operators and expressions provide the underlying mechanism by which
variables and constants are manipulated and evaluated within Kotlin code.
This can take the simplest of forms whereby two numbers are added using
the addition operator in an expression and the result stored in a variable
using the assignment operator. Operators fall into a range of categories,
details of which have been covered in this chapter.

14. Kotlin Control Flow
Regardless of the programming language used, application development is
largely an exercise in applying logic, and much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is
executed, and, conversely, which code gets bypassed when the program is
running. This is often referred to as control flow since it controls the flow of
program execution. Control flow typically falls into the categories of
looping control (how often code is executed) and conditional control flow
(whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of control flow in Kotlin.

14.1 Looping control flow
This chapter will begin by looking at control flow in the form of loops.
Loops are essentially sequences of Kotlin statements that are to be executed
repeatedly until a specified condition is met. The first looping statement we
will explore is the for loop.
14.1.1 The Kotlin for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a
collection or number range.
The syntax of the for-in loop is as follows:
for variable name in collection or range {
 // code to be executed
}

In this syntax, variable name is the name to be used for a variable that will
contain the current item from the collection or range through which the loop
is iterating. The code in the body of the loop will typically use this name as
a reference to the current item in the loop cycle. The collection or range
references the item through which the loop is iterating. This could, for
example, be an array of string values, a range operator, or even a string of
characters.
Consider, for example, the following for-in loop construct:
for (index in 1..5) {
 println("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a
variable named index. The statement then declares a closed range operator
to indicate that the for loop is to iterate through a range of numbers, starting
at 1 and ending at 5. The body of the loop simply prints out a message to
the console indicating the current value assigned to the index constant,
resulting in the following output:
Value of index is 1
Value of index is 2
Value of index is 3
Value of index is 4
Value of index is 5

The for-in loop is of particular benefit when working with collections such
as arrays. In fact, the for-in loop can be used to iterate through any object
that contains more than one item. The following loop, for example, outputs
each of the characters in the specified string:
for (index in "Hello") {
 println("Value of index is $index")
}

The operation of a for-in loop may be configured using the downTo and
until functions. The downTo function causes the for loop to work backward
through the specified collection until the specified number is reached. The
following for loop counts backward from 100 until the number 90 is
reached:
for (index in 100 downTo 90) {
 print("$index.. ")
}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that
counting starts from the bottom of the collection range and works up until
(but not including) the specified endpoint (a concept referred to as a half-
closed range):
for (index in 1 until 10) {
 print("$index.. ")
}

The output from the above code will range from the start value of 1 through

to 9:
1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined
using the step function as follows:
for (index in 0 until 100 step 10) {
 print("$index.. ")
}

The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while loop
The Kotlin for loop described previously works well when it is known in
advance how many times a particular task needs to be repeated in a
program. There will, however, be instances where code needs to be repeated
until a certain condition is met, with no way of knowing in advance how
many repetitions are going to be needed to meet that criterion. To address
this need, Kotlin includes the while loop.
Essentially, the while loop repeats a set of tasks while a specified condition
is met. The while loop syntax is defined as follows:
while condition {
 // Kotlin statements go here
}

In the above syntax, condition is an expression that will return either true or
false and the // Kotlin statements go here comment represents the code to be
executed while the condition expression is true. For example:
var myCount = 0

while (myCount < 100) {
 myCount++
 println(myCount)
}

In the above example, the while expression will evaluate whether the
myCount variable is less than 100. If it is already greater than 100, the code
in the braces is skipped and the loop exits without performing any tasks.
If, on the other hand, myCount is not greater than 100 the code in the braces
is executed and the loop returns to the while statement and repeats the
evaluation of myCount. This process repeats until the value of myCount is

greater than 100, at which point the loop exits.
14.1.3 The do ... while loop
It is often helpful to think of the do ... while loop as an inverted while loop.
The while loop evaluates an expression before executing the code contained
in the body of the loop. If the expression evaluates to false on the first
check then the code is not executed. The do ... while loop, on the other
hand, is provided for situations where you know that the code contained in
the body of the loop will always need to be executed at least once. For
example, you may want to keep stepping through the items in an array until
a specific item is found. You know that you have to at least check the first
item in the array to have any hope of finding the entry you need. The syntax
for the do ... while loop is as follows:
do {
 // Kotlin statements here
} while conditional expression

In the do ... while example below the loop will continue until the value of a
variable named i equals 0:
var i = 10

do {
 i--
 println(i)
} while (i > 0)

14.1.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might
want to break out of the loop before the completion criteria have been met
(particularly if you have created an infinite loop). One such example might
involve continually checking for activity on a network socket. Once activity
has been detected it will most likely be necessary to break out of the
monitoring loop and perform some other task.
To break out of a loop, Kotlin provides the break statement which breaks
out of the current loop and resumes execution at the code directly after the
loop. For example:
var j = 10

for (i in 0..100)

{
 j += j

 if (j > 100) {
 break
 }

 println("j = $j")
}

In the above example, the loop will continue to execute until the value of j
exceeds 100 at which point the loop will exit and execution will continue
with the next line of code after the loop.
14.1.5 The continue statement
The continue statement causes all remaining code statements in a loop to be
skipped, and execution to be returned to the top of the loop. In the
following example, the println function is only called when the value of
variable i is an even number:
var i = 1

while (i < 20)
{
 i += 1

 if (i % 2 != 0) {
 continue
 }

 println("i = $i")
}

The continue statement in the above example will cause the println call to
be skipped unless the value of i can be divided by 2 with no remainder. If
the continue statement is triggered, execution will skip to the top of the
while loop and the statements in the body of the loop will be repeated (until
the value of i exceeds 19).
14.1.6 Break and continue labels
Kotlin expressions may be assigned a label by preceding the expression
with a label name followed by the @ sign. This label may then be
referenced when using break and continue statements to designate where

execution is to resume. This is particularly useful when breaking out of
nested loops. The following code contains a for loop nested within another
for loop. The inner loop contains a break statement which is executed when
the value of j reaches 10:
for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {
 println("Inner loop j = $j")
 if (j == 10) break
 }
}

As currently implemented, the break statement will exit the inner for loop
but execution will resume at the top of the outer for loop. Suppose,
however, that the break statement is required to also exit the outer loop.
This can be achieved by assigning a label to the outer loop and referencing
that label with the break statement as follows:
outerloop@ for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break@outerloop
 }
}

Now when the value assigned to variable j reaches 10 the break statement
will break out of both loops and resume execution at the line of code
immediately following the outer loop.

14.2 Conditional control flow
In the previous chapter, we looked at how to use logical expressions in
Kotlin to determine whether something is true or false. Since programming
is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed and, conversely, which

code gets bypassed when the program is executing.
14.2.1 Using the if expressions
The if expression is perhaps the most basic of control flow options available
to the Kotlin programmer. Programmers who are familiar with C, Swift,
C++, or Java will immediately be comfortable using Kotlin if statements,
although there are some subtle differences.
The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {
 // Kotlin code to be performed when expression evaluates to
true
}

Unlike some other programming languages, it is important to note that the
braces are optional in Kotlin if only one line of code is associated with the if
expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.
Essentially if the Boolean expression evaluates to true then the code in the
body of the statement is executed. If, on the other hand, the expression
evaluates to false the code in the body of the statement is skipped.
For example, if a decision needs to be made depending on whether one
value is greater than another, we would write code similar to the following:
val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the
console panel.
At this point, it is important to notice that we have been referring to the if
expression instead of the if statement. The reason for this is that unlike the
if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a
typical if expression to identify the largest of two numbers and assign the
result to a variable might read as follows:
if (x > y)
 largest = x
else
 largest = y

The same result can be achieved using the if statement within an expression

using the following syntax:
variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:
val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the
condition. The following example is also a valid use of if in an expression,
in this case assigning a string value to the variable:
val largest = if (x > y) "x is greatest" else "y is greatest"
println(largest)

For those familiar with programming languages such as Java, this feature
allows code constructs similar to ternary statements to be implemented in
Kotlin.
14.2.2 Using if ... else … expressions
The next variation of the if expression allows us to also specify some code
to perform if the expression in the if expression evaluates to false. The
syntax for this construct is as follows:
if (boolean expression) {
 // Code to be executed if expression is true
} else {
 // Code to be executed if expression is false
}

The braces are, once again, optional if only one line of code is to be
executed.
Using the above syntax, we can now extend our previous example to
display a different message if the comparison expression evaluates to be
false:
val x = 10

if (x > 9) println("x is greater than 9!")
 else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was
less than 9.
14.2.3 Using if ... else if ... Expressions
So far we have looked at if statements that make decisions based on the
result of a single logical expression. Sometimes it becomes necessary to

make decisions based on several different criteria. For this purpose, we can
use the if ... else if ... construct, an example of which is as follows:
var x = 9

if (x == 10) println("x is 10")
 else if (x == 9) println("x is 9")
 else if (x == 8) println("x is 8")
 else println("x is less than 8")
}

14.2.4 Using the when statement
The Kotlin when statement provides a cleaner alternative to the if ... else if
... construct and uses the following syntax:
when (value) {
 match1 -> // code to be executed on match
 match2 -> // code to be executed on match
 .
 .
 else -> // default code to executed if no match
}

Using this syntax, the previous if ... else if ... construct can be rewritten to
use the when statement:
when (x) {
 10 -> println ("x is 10")
 9 -> println("x is 9")
 8 -> println("x is 8")
 else -> println("x is less than 8")
}

The when statement is similar to the switch statement found in many other
programming languages.

14.3 Summary
The term control flow is used to describe the logic that dictates the
execution path that is taken through the source code of an application as it
runs. This chapter has looked at the two types of control flow provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs
that are available to implement both forms of control flow logic.

15. An Overview of Kotlin Functions
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and
efficient code and provide a way to organize programs while avoiding code
repetition. In this chapter, we will look at how functions and lambdas are
declared and used within Kotlin.

15.1 What is a function?
A function is a named block of code that can be called upon to perform a
specific task. It can be provided data on which to perform the task and is
capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program,
the code to perform the arithmetic can be placed in a function. The function
can be programmed to accept the values on which the arithmetic is to be
performed (referred to as parameters) and to return the result of the
calculation. At any point in the program code where the calculation is
required, the function is simply called, parameter values passed through as
arguments and the result returned.
The terms parameter and argument are often used interchangeably when
discussing functions. There is, however, a subtle difference. The values that
a function can accept when it is called are referred to as parameters. At the
point that the function is called and passed those values, however, they are
referred to as arguments.

15.2 How to declare a Kotlin function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para
type>, ...): <return type> {
 // Function code
}

This combination of function name, parameters, and return type is referred
to as the function signature or type. Explanations of the various fields of the
function declaration are as follows:
•fun – The prefix keyword used to notify the Kotlin compiler that this is a

function.
•<function name> - The name assigned to the function. This is the name by
which the function will be referenced when it is called from within the
application code.

•<para name> - The name by which the parameter is to be referenced in the
function code.

•<para type> - The type of the corresponding parameter.
•<return type> - The data type of the result returned by the function. If the
function does not return a result then no return type is specified.

•Function code - The code of the function that does the work.
As an example, the following function takes no parameters, returns no
result, and simply displays a message:
fun sayHello() {
 println("Hello")
}

The following sample function, on the other hand, takes an integer and a
string as parameters and returns a string result:
fun buildMessageFor(name: String, count: Int): String {
 return("$name, you are customer number $count")
}

15.3 Calling a Kotlin function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the
function is configured to accept. For example, to call a function named
sayHello that takes no parameters and returns no value, we would write the
following code:
sayHello()

In the case of a message that accepts parameters, the function could be
called as follows:
buildMessageFor("John", 10)

15.4 Single expression functions
When a function contains a single expression, it is not necessary to include
the braces around the expression. All that is required is an equals sign (=)

after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {
 return x * y
}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single-line expressions, the return type may be omitted in
situations where the compiler can infer the type returned by the expression
making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local functions
A local function is a function that is embedded within another function. In
addition, a local function has access to all of the variables contained within
the enclosing function:
fun main(args: Array<String>) {

 val name = "John"
 val count = 5

 fun displayString() {
 for (index in 0..count) {
 println(name)
 }
 }
 displayString()
}

15.6 Handling return values
To call a function named buildMessage that takes two parameters and
returns a result, on the other hand, we might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified
when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and
then used the assignment operator (=) to store the result returned by the

function.

15.7 Declaring default function parameters
Kotlin provides the ability to designate a default parameter value to be used
if the value is not provided as an argument when the function is called. This
simply involves assigning the default value to the parameter when the
function is declared.
To see default parameters in action the buildMessageFor function will be
modified so that the string “Customer” is used as a default if a customer
name is not passed through as an argument. Similarly, the count parameter
is declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0):
String {
 return("$name, you are customer number $count")
}

When parameter names are used when making the function call, any
parameters for which defaults have been specified may be omitted. The
following function call, for example, omits the customer name argument but
still compiles because the parameter name has been specified for the second
argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the
trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid
val message = buildMessageFor(10) // Invalid

15.8 Variable number of function parameters
It is not always possible to know in advance the number of parameters a
function will need to accept when it is called within the application code.
Kotlin handles this possibility through the use of the vararg keyword to
indicate that the function accepts an arbitrary number of parameters of a
specified data type. Within the body of the function, the parameters are
made available in the form of an array object. The following function, for
example, takes as parameters a variable number of String values and then
outputs them to the console panel:
fun displayStrings(vararg strings: String)
{

 for (string in strings) {
 println(string)
 }
}

displayStrings("one", "two", "three", "four")

Kotlin does not permit multiple vararg parameters within a function and any
single parameters supported by the function must be declared before the
vararg declaration:
fun displayStrings(name: String, vararg strings: String)
{
 for (string in strings) {
 println(string)
 }
}

15.9 Lambda expressions
Having covered the basics of functions in Kotlin it is now time to look at
the concept of lambda expressions. Essentially, lambdas are self-contained
blocks of code. The following code, for example, declares a lambda, assigns
it to a variable named sayHello, and then calls the function via the lambda
reference:
val sayHello = { println("Hello") }
sayHello()

Lambda expressions may also be configured to accept parameters and
return results. The syntax for this is as follows:
{<para name>: <para type>, <para name> <para type>, ... ->
 // Lambda expression here
}

The following lambda expression, for example, accepts two integer
parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }
val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block
to a variable. This is also possible when working with functions. Of course,
the following syntax will execute the function and assign the result of that
execution to a variable, instead of assigning the function itself to the
variable:

val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses
and prefix the function name with double colons (::) as follows. The
function may then be called simply by referencing the variable name:
val myvar = ::myfunction
myvar()

A lambda block may be executed directly by placing parentheses at the end
of the expression including any arguments. The following lambda directly
executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expression’s return value
(hence the value of 200 being assigned to the result variable in the above
multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result
(such as an arithmetic or comparison expression), simply declaring the
value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()

A particularly useful feature of lambdas and the ability to create function
references is that they can be both passed to functions as arguments and
returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order functions
On the surface, lambdas and function references do not seem to be
particularly compelling features. The possibilities that these features offer
become more apparent, however, when we consider that lambdas and
function references have the same capabilities as many other data types. In
particular, these may be passed through as arguments to another function, or
even returned as a result from a function.
A function that is capable of receiving a function or lambda as an argument,
or returning one as a result is referred to as a higher-order function.
Before we look at what is, essentially, the ability to plug one function into

another, it is first necessary to explore the concept of function types. The
type of a function is dictated by a combination of the parameters it accepts
and the type of result it returns. A function that accepts an Int and a Double
as parameters and returns a String result for example is considered to have
the following function type:
(Int, Double) -> String

To accept a function as a parameter, the receiving function simply declares
the type of function it can accept.
As an example, we will begin by declaring two unit conversion functions:
fun inchesToFeet (inches: Double): Double {
 return inches * 0.0833333
}

fun inchesToYards (inches: Double): Double {
 return inches * 0.0277778
}

The example now needs an additional function, the purpose of which is to
perform a unit conversion and print the result in the console panel. This
function needs to be as general-purpose as possible, capable of performing
a variety of different measurement unit conversions. To demonstrate
functions as parameters, this new function will take as a parameter a
function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these
functions is equivalent to (Double) -> Double, our general-purpose function
can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value:
Double) {
 val result = converterFunc(value)
 println("Result of conversion is $result")
}

When the outputConversion function is called, it will need to be passed a
function matching the declared type. That function will be called to perform
the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and
yards, simply by “plugging in” the appropriate converter function as a
parameter, keeping in mind that it is the function reference that is being
passed as an argument:

outputConversion(::inchesToFeet, 22.45)
outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type
of the function as the return type. The following function is configured to
return either our inchesToFeet or inchesToYards function type (in other
words, a function that accepts and returns a Double value) based on the
value of a Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double
{
 if (feet) {
 return ::inchesToFeet
 } else {
 return ::inchesToYards
 }
}

When called, the function will return a function reference which can then be
used to perform the conversion:
val converter = decideFunction(true)
val result = converter(22.4)
println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that
can be called upon to perform a specific task and provide a mechanism for
structuring code and promoting reuse. This chapter has introduced the basic
concepts of function and lambda declaration and implementation in addition
to the use of higher-order functions that allow lambdas and functions to be
passed as arguments and returned as results.

16. The Basics of Object-Oriented
Programming in Kotlin
Kotlin provides extensive support for developing object-oriented
applications. The subject area of object-oriented programming is, however,
large. As such, a detailed overview of object-oriented software development
is beyond the scope of this book. Instead, we will introduce the basic
concepts involved in object-oriented programming and then move on to
explain the concept as it relates to Kotlin application development.

16.1 What is an object?
Objects (also referred to as instances) are self-contained modules of
functionality that can be easily used and re-used as the building blocks for a
software application.
Objects consist of data variables (called properties) and functions (called
methods) that can be accessed and called on the object or instance to
perform tasks and are collectively referred to as class members.

16.2 What is a class?
Much as a blueprint or architect’s drawing defines what an item or a
building will look like once it has been constructed, a class defines what an
object will look like when it is created. It defines, for example, what the
methods will do and what the properties will be.

16.3 Declaring a Kotlin class
Before an object can be instantiated, we first need to define the class
‘blueprint’ for the object. In this chapter, we will create a bank account
class to demonstrate the basic concepts of Kotlin object-oriented
programming.
In declaring a new Kotlin class we specify an optional parent class from
which the new class is derived and also define the properties and methods
that the class will contain. The basic syntax for a new class is as follows:
class NewClassName: ParentClass {
 // Properties
 // Methods

}

The Properties section of the declaration defines the variables and constants
that are to be contained within the class. These are declared in the same way
that any other variable would be declared in Kotlin.
The Methods sections define the methods that are available to be called on
the class and instances of the class. These are essentially functions specific
to the class that perform a particular operation when called upon and will be
described in greater detail later in this chapter.
To create an example outline for our BankAccount class, we would use the
following:
class BankAccount {

}

Now that we have the outline syntax for our class, the next step is to add
some properties to it.

16.4 Adding properties to a class
A key goal of object-oriented programming is a concept referred to as data
encapsulation. The idea behind data encapsulation is that data should be
stored within classes and accessed only through methods defined in that
class. Data encapsulated in a class are referred to as properties or instance
variables.
Instances of our BankAccount class will be required to store some data,
specifically a bank account number and the balance currently held within
the account. Properties are declared in the same way any other variables are
declared in Kotlin. We can, therefore, add these variables as follows:
class BankAccount {
 var accountBalance: Double = 0.0
 var accountNumber: Int = 0
}

Having defined our properties, we can now move on to defining the
methods of the class that will allow us to work with our properties while
staying true to the data encapsulation model.

16.5 Defining methods
The methods of a class are essentially code routines that can be called upon

to perform specific tasks within the context of that class.
Methods are declared within the opening and closing braces of the class to
which they belong and are declared using the standard Kotlin function
declaration syntax.
For example, the declaration of a method to display the account balance in
our example might read as follows:
class BankAccount {
 var accountBalance: Double = 0.0
 var accountNumber: Int = 0

 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

16.6 Declaring and initializing a class instance
So far, all we have done is define the blueprint for our class. To do anything
with this class, we need to create instances of it. The first step in this
process is to declare a variable to store a reference to the instance when it is
created. We do this as follows:
val account1: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have been
created and will be accessible via the account1 variable. Of course, the
Kotlin compiler will be able to use inference here, making the type
declaration optional:
val account1 = BankAccount()

16.7 Primary and secondary constructors
A class will often need to perform some initialization tasks at the point of
creation. These tasks can be implemented using constructors within the
class. In the case of the BankAccount class, it would be useful to be able to
initialize the account number and balance properties with values when a
new class instance is created. To achieve this, a secondary constructor can
be declared within the class header as follows:
class BankAccount {

 var accountBalance: Double = 0.0
 var accountNumber: Int = 0

 constructor(number: Int, balance: Double) {
 accountNumber = number
 accountBalance = balance
 }
.
.
}

When creating an instance of the class, it will now be necessary to provide
initialization values for the account number and balance properties as
follows:
val account1: BankAccount = BankAccount(456456234, 342.98)

A class can contain multiple secondary constructors allowing instances of
the class to be initiated with different value sets. The following variation of
the BankAccount class includes an additional secondary constructor for use
when initializing an instance with the customer’s last name in addition to
the corresponding account number and balance:
class BankAccount {

 var accountBalance: Double = 0.0
 var accountNumber: Int = 0
 var lastName: String = ""

 constructor(number: Int,
 balance: Double) {
 accountNumber = number
 accountBalance = balance
 }

 constructor(number: Int,
 balance: Double,
 name: String) {
 accountNumber = number
 accountBalance = balance
 lastName = name
 }
.
.
}

Instances of the BankAccount may now also be created as follows:
val account1: BankAccount = BankAccount(456456234, 342.98, "Smith")

It is also possible to use a primary constructor to perform basic
initialization tasks. The primary constructor for a class is declared within
the class header as follows:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {
.
.
 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

Note that now both properties have been declared in the primary
constructor, it is no longer necessary to also declare the variables within the
body of the class. Since the account number will now not change after an
instance of the class has been created, this property is declared as being
immutable using the val keyword.
Although a class may only contain one primary constructor, Kotlin allows
multiple secondary constructors to be declared in addition to the primary
constructor. In the following class declaration the constructor that handles
the account number and balance is declared as the primary constructor
while the variation that also accepts the user’s last name is declared as a
secondary constructor:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

 var lastName: String = ""

 constructor(accountNumber: Int,
 accountBalance: Double,
 name: String) : this(accountNumber,
accountBalance) {

 lastName = name
 }
.

.
}

In the above example, two key points need to be noted. First, since the
lastName property is referenced by a secondary constructor, the variable is
not handled automatically by the primary constructor and must be declared
within the body of the class and initialized within the constructor.
var lastName: String = ""
.
.
lastName = name

Second, although the accountNumber and accountBalance properties are
accepted as parameters to the secondary constructor, the variable
declarations are still handled by the primary constructor and do not need to
be declared. To associate the references to these properties in the secondary
constructor with the primary constructor, however, they must be linked back
to the primary constructor using the this keyword:
... this(accountNumber, accountBalance)...

16.8 Initializer blocks
In addition to the primary and secondary constructors, a class may also
contain initializer blocks which are called after the constructors. Since a
primary constructor cannot contain any code, these methods are a
particularly useful location for adding code to perform initialization tasks
when an instance of the class is created. Initializer blocks are declared using
the init keyword with the initialization code enclosed in braces:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

 init {
 // Initialization code goes here
 }
.
.
}

16.9 Calling methods and accessing properties
Now is probably a good time to recap what we have done so far in this
chapter. We have now created a new Kotlin class named BankAccount.
Within this new class, we declared primary and secondary constructors to

accept and initialize account number, balance, and customer name
properties. In the preceding sections, we also covered the steps necessary to
create and initialize an instance of our new class. The next step is to learn
how to call the instance methods and access the properties we built into our
class. This is most easily achieved using dot notation.
Dot notation involves accessing a property, or calling a method by
specifying a class instance followed by a dot followed in turn by the name
of the property or method:
classInstance.propertyname
classInstance.methodname()

For example, to get the current value of our accountBalance instance
variable:
val balance1 = account1.accountBalance

Dot notation can also be used to set values of instance properties:
account1.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For
example, to call the displayBalance method on an instance of the
BankAccount class:
account1.displayBalance()

16.10 Custom accessors
When accessing the accountBalance property in the previous section, the
code is making use of property accessors that are provided automatically by
Kotlin. In addition to these default accessors, it is also possible to
implement custom accessors that allow calculations or other logic to be
performed before the property is returned or set.
Custom accessors are implemented by creating getter and optional
corresponding setter methods containing the code to perform any tasks
before returning the property. Consider, for example, that the
BankAcccount class might need an additional property to contain the
current balance less any recent banking fees. Rather than use a standard
accessor, it makes more sense to use a custom accessor that calculates this
value on request. The modified BankAccount class might now read as
follows:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

 val fees: Double = 25.00

 val balanceLessFees: Double
 get() {
 return accountBalance - fees
 }

 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

The above code adds a getter that returns a computed property based on the
current balance minus a fee amount. An optional setter could also be
declared in much the same way to set the balance value less fees:
val fees: Double = 25.00

var balanceLessFees: Double
 get() {
 return accountBalance - fees
 }
 set(value) {
 accountBalance = value - fees
 }
.
.
}

The new setter takes as a parameter a Double value from which it deducts
the fee value before assigning the result to the current balance property.
Even though these are custom accessors, they are accessed in the same way
as stored properties using dot-notation. The following code gets the current
balance less the fees value before setting the property to a new value:
val balance1 = account1.balanceLessFees
account1.balanceLessFees = 12123.12

16.11 Nested and inner classes
Kotlin allows one class to be nested within another class. In the following
code, for example, ClassB is nested inside ClassA:

class ClassA {
 class ClassB {
 }
}

In the above example, ClassB does not have access to any of the properties
within the outer class. If access is required, the nested class must be
declared using the inner directive. In the example below ClassB now has
access to the myProperty variable belonging to ClassA:
class ClassA {
 var myProperty: Int = 10

 inner class ClassB {
 val result = 20 + myProperty
 }
}

16.12 Companion objects
A Kotlin class can also contain a companion object. A companion object
contains methods and variables that are common to all instances of the
class. In addition to being accessible via class instances, these properties are
also accessible at the class level (in other words without the need to create
an instance of the class).
The syntax for declaring a companion object within a class is as follows:
class ClassName: ParentClass {
 // Properties
 // Methods

 companion object {
 // properties
 // methods
 }
}

To experience a companion object example in action, enter the following
into the Kotlin online playground at https://try.kotl.in:
class MyClass {

 fun showCount() {
 println("counter = " + counter)
 }

 companion object {
 var counter = 1

 fun counterUp() {
 counter += 1
 }
 }
}

fun main(args: Array<String>) {
 println(MyClass.counter)
}

The class contains a companion object consisting of a counter variable and
a method to increment that variable. The class also contains a method to
display the current counter value. The main() method simply displays the
current value of the counter variable, but does so by calling the method on
the class itself instead of a class instance:
println(MyClass.counter)

Modify the main() method to also increment the counter, displaying the
current value both before and after:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)
}

Run the code and verify that the following output appears in the console:
1
2

Next, add some code to create an instance of MyClass before making a call
to the showCount() method:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)

 val instanceA = MyClass()
 instanceA.showCount()
}

When executed, the following output will appear in the console:

1
2
counter = 2

Clearly, the class has access to the variables and methods contained within
the companion object.
Another useful aspect of companion objects is that all instances of the
containing class see the same companion object, including current variable
values. To see this in action, create a second instance of MyClass and call
the showCount() method on that instance:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)

 val instanceA = MyClass()
 instanceA.showCount()

 val instanceB = MyClass()
 instanceB.showCount()
}

When run, the code will produce the following console output:
1
2
counter = 2
counter = 2

Note that both instances return the incremented value of 2, showing that the
two class instances are sharing the same companion object data.

16.13 Summary
Object-oriented programming languages such as Kotlin encourage the
creation of classes to promote code reuse and the encapsulation of data
within class instances. This chapter has covered the basic concepts of
classes and instances within Kotlin together with an overview of primary
and secondary constructors, initializer blocks, properties, methods,
companion objects, and custom accessors.

17. An Introduction to Kotlin
Inheritance and Subclassing
In “The Basics of Object-Oriented Programming in Kotlin” we covered the
basic concepts of object-oriented programming and worked through an
example of creating and working with a new class using Kotlin. In that
example, our new class was not specifically derived from a base class
(though in practice, all Kotlin classes are ultimately derived from the Any
class). In this chapter, we will provide an introduction to the concepts of
subclassing, inheritance, and extensions in Kotlin.

17.1 Inheritance, classes, and subclasses
The concept of inheritance brings something of a real-world view to
programming. It allows a class to be defined that has a certain set of
characteristics (such as methods and properties) and then other classes to be
created which are derived from that class. The derived class inherits all of
the features of the parent class and typically then adds some features of its
own. In fact, all classes in Kotlin are ultimately subclasses of the Any
superclass which provides the basic foundation on which all classes are
based.
By deriving classes, we create what is often referred to as a class hierarchy.
The class at the top of the hierarchy is known as the base class or root class
and the derived classes as subclasses or child classes. Any number of
subclasses may be derived from a class. The class from which a subclass is
derived is called the parent class or superclass.
Classes need not only be derived from a root class. For example, a subclass
can also inherit from another subclass with the potential to create large and
complex class hierarchies.
In Kotlin, a subclass can only be derived from a single direct parent class.
This is a concept referred to as single inheritance.

17.2 Subclassing syntax
As a safety measure designed to make Kotlin code less prone to error,
before a subclass can be derived from a parent class, the parent class must

be declared as open. This is achieved by placing the open keyword within
the class header:
open class MyParentClass {
 var myProperty: Int = 0
}

With a simple class of this type, the subclass can be created as follows:
class MySubClass : MyParentClass() {

}

For classes containing primary or secondary constructors, the rules for
creating a subclass are slightly more complicated. Consider the following
parent class which contains a primary constructor:
open class MyParentClass(var myProperty: Int) {

}

To create a subclass of this class, the subclass declaration references any
base class parameters while also initializing the parent class using the
following syntax:
class MySubClass(myProperty: Int) : MyParentClass(myProperty) {

}

If, on the other hand, the parent class contains one or more secondary
constructors, the constructors must also be implemented within the subclass
declaration and include a call to the secondary constructors of the parent
class, passing through as arguments the values passed to the subclass
secondary constructor. When working with subclasses, the parent class can
be referenced using the super keyword. A parent class with a secondary
constructor might read as follows:
open class MyParentClass {
 var myProperty: Int = 0

 constructor(number: Int) {
 myProperty = number
 }
}

The code for the corresponding subclass would need to be implemented as
follows:
class MySubClass : MyParentClass {

 constructor(number: Int) : super(number)
}

If additional tasks need to be performed within the constructor of the
subclass, this can be placed within curly braces after the constructor
declaration:
class MySubClass : MyParentClass {

 constructor(number: Int) : super(number) {
 // Subclass constructor code here
 }
}

17.3 A Kotlin inheritance example
As with most programming concepts, the subject of inheritance in Kotlin is
perhaps best illustrated with an example. In “The Basics of Object-Oriented
Programming in Kotlin” we created a class named BankAccount designed
to hold a bank account number and corresponding current balance. The
BankAccount class contained both properties and methods. A simplified
declaration for this class is reproduced below and will be used for the basis
of the subclassing example in this chapter:
class BankAccount {

 var accountNumber = 0
 var accountBalance = 0.0

 constructor(number: Int, balance: Double) {
 accountNumber = number
 accountBalance = balance
 }

 open fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

Though this is a somewhat rudimentary class, it does everything necessary
if all you need it to do is store an account number and account balance.
Suppose, however, that in addition to the BankAccount class you also

needed a class to be used for savings accounts. A savings account will still
need to hold an account number and a current balance and methods will still
be needed to access that data. One option would be to create an entirely new
class, one that duplicates all of the functionality of the BankAccount class
together with the new features required by a savings account. A more
efficient approach, however, would be to create a new class that is a
subclass of the BankAccount class. The new class will then inherit all the
features of the BankAccount class but can then be extended to add the
additional functionality required by a savings account. Before a subclass of
the BankAccount class can be created, the declaration needs to be modified
to declare the class as open:
open class BankAccount {

To create a subclass of BankAccount that we will call SavingsAccount, we
simply declare the new class, this time specifying BankAccount as the
parent class and add code to call the constructor on the parent class:
class SavingsAccount : BankAccount {
 constructor(accountNumber: Int, accountBalance: Double) :
 super(accountNumber, accountBalance)
}

Note that although we have yet to add any properties or methods, the class
has inherited all the methods and properties of the parent BankAccount
class. We could, therefore, create an instance of the SavingsAccount class
and set variables and call methods in the same way we did with the
BankAccount class in previous examples. That said, we haven’t achieved
anything unless we take steps to extend the class.

17.4 Extending the functionality of a subclass
So far, we have been able to create a subclass that contains all the
functionality of the parent class. For this exercise to make sense, however,
we now need to extend the subclass so that it has the features we need to
make it useful for storing savings account information. To do this, we
simply add the properties and methods that provide the new functionality,
just as we would for any other class we might wish to create:
class SavingsAccount : BankAccount {
 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :

 super(accountNumber, accountBalance)

 fun calculateInterest(): Double
 {
 return interestRate * accountBalance
 }
}

17.5 Overriding inherited methods
When using inheritance it is not unusual to find a method in the parent class
that almost does what you need, but requires modification to provide the
precise functionality you require. That being said, it is also possible you’ll
inherit a method with a name that describes exactly what you want to do,
but it does not come close to doing what you need. One option in this
scenario would be to ignore the inherited method and write a new method
with an entirely new name. A better option is to override the inherited
method and write a new version of it in the subclass.
Before proceeding with an example, three rules that must be obeyed when
overriding a method. First, the overriding method in the subclass must
accept the same number and type of parameters as the overridden method in
the parent class. Second, the new method must have the same return type as
the parent method. Finally, the original method in the parent class must be
declared as open before the compiler will allow it to be overridden.
In our BankAccount class, we have a method named displayBalance that
displays the bank account number and current balance held by an instance
of the class. In our SavingsAccount subclass, we might also want to output
the current interest rate assigned to the account. To achieve this, we simply
declare a new version of the displayBalance method in our SavingsAccount
subclass, prefixed with the override keyword:
class SavingsAccount : BankAccount {
 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :
super(accountNumber, accountBalance)

 fun calculateInterest(): Double
 {
 return interestRate * accountBalance

 }

 override fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 println("Prevailing interest rate is $interestRate")

 }
}

Before this code will compile, the displayBalance method in the
BankAccount class must be declared as open:
open fun displayBalance()
{
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
}

It is also possible to make a call to the overridden method in the superclass
from within a subclass. The displayBalance method of the superclass could,
for example, be called to display the account number and balance, before
the interest rate is displayed, thereby eliminating further code duplication:
override fun displayBalance()
{
 super.displayBalance()
 println("Prevailing interest rate is $interestRate")
}

17.6 Adding a custom secondary constructor
As the SavingsAccount class currently stands, it makes a call to the
secondary constructor from the parent BankAccount class which was
implemented as follows:
constructor(accountNumber: Int, accountBalance: Double) :
super(accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both the
account number and balance properties of the class. The SavingsAccount
class, however, contains an additional property in the form of the interest
rate variable. The SavingsAccount class, therefore, needs its own
constructor to ensure that the interestRate property is initialized when
instances of the class are created. Modify the SavingsAccount class one last

time to add an additional secondary constructor allowing the interest rate to
also be specified when class instances are initialized:
class SavingsAccount : BankAccount {

 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :
 super(accountNumber, accountBalance)

 constructor(accountNumber: Int, accountBalance: Double, rate:
Double) :
 super(accountNumber, accountBalance) {
 interestRate = rate
 }
.
.
.
}

17.7 Using the SavingsAccount class
Now that we have completed work on our SavingsAccount class, the class
can be used in some example code in much the same way as the parent
BankAccount class:
val savings1 = SavingsAccount(12311, 600.00, 0.07)

println(savings1.calculateInterest())
savings1.displayBalance()

17.8 Summary
Inheritance extends the concept of object re-use in object-oriented
programming by allowing new classes to be derived from existing classes,
with those new classes subsequently extended to add new functionality.
When an existing class provides some, but not all, of the functionality
required by the programmer, inheritance allows that class to be used as the
basis for a new subclass. The new subclass will inherit all the capabilities of
the parent class, but may then be extended to add the missing functionality.

18. An Overview of Compose
Now that Android Studio has been installed and the basics of the Kotlin
programing language covered, it is time to start introducing Jetpack
Compose.
Jetpack Compose is an entirely new approach to developing apps for all of
Google’s operating system platforms. The basic goals of Compose are to
make app development easier, faster, and less prone to the types of bugs
that typically appear when developing software projects. These elements
have been combined with Compose-specific additions to Android Studio
that allow Compose projects to be tested in near real-time using an
interactive preview of the app during the development process.
Many of the advantages of Compose originate from the fact that it is both
declarative and data-driven, topics which will be explained in this chapter.
The discussion in this chapter is intended as a high-level overview of
Compose and does not cover the practical aspects of implementation within
a project. Implementation and practical examples will be covered in detail
in the remainder of the book.

18.1 Development before Compose
To understand the meaning and advantages of the Compose declarative
syntax, it helps to understand how user interface layouts were designed
before the introduction of Compose. Previously, Android apps were still
built entirely using Android Studio together with a collection of associated
frameworks that make up the Android Development Kit.
To aid in the design of the user interface layouts that make up the screens of
an app, Android Studio includes a tool called the Layout Editor. The Layout
Editor is a powerful tool that allows XML files to be created which contain
the individual components that make up a screen of an app.
The user interface layout of a screen is designed within the Layout Editor
by dragging components (such as buttons, text, text fields, and sliders) from
a widget palette to the desired location on the layout canvas. Selecting a
component in a scene provides access to a range of property panels where
the attributes of the components can be changed.
The layout behavior of the screen (in other words how it reacts to different

device screen sizes and changes to device orientation between portrait and
landscape) is defined by configuring a range of constraints that dictate how
each component is positioned and sized in relation to both the containing
window and the other components in the layout.
Finally, any components that need to respond to user events (such as a
button tap or slider motion) are connected to methods in the app source
code where the event is handled.
At various points during this development process, it is necessary to
compile and run the app on a simulator or device to test that everything is
working as expected.

18.2 Compose declarative syntax
Compose introduces a declarative syntax that provides an entirely different
way of implementing user interface layouts and behavior from the Layout
Editor approach. Instead of manually designing the intricate details of the
layout and appearance of components that make up a scene, Compose
allows the scenes to be described using a simple and intuitive syntax. In
other words, Compose allows layouts to be created by declaring how the
user interface should appear without having to worry about the complexity
of how the layout is built.
This essentially involves declaring the components to be included in the
layout, stating the kind of layout manager in which they are to be contained
(column, row, box, list, etc.), and using modifiers to set attributes such as
the text on a button, the foreground color of a label, or the handler to be
called in the event of a tap gesture. Having made these declarations, all the
intricate and complicated details of how to position, constrain and render
the layout are handled automatically by Compose. Compose declarations
are structured hierarchically, which also makes it easy to create complex
views by composing together small, re-usable custom sub-views.
While a layout is being declared and tested, Android Studio provides a
preview canvas that changes in real-time to reflect the appearance of the
layout. Android Studio also includes an interactive preview mode which
allows the app to be launched within the preview canvas and fully tested
without the need to build and run on a simulator or device.
Coverage of the Compose declaration syntax begins with the chapter

entitled “Composable Functions Overview”.

18.3 Compose is data-driven
When we say that Compose is data-driven, this is not to say that it is no
longer necessary to handle events generated by the user (in other words the
interaction between the user and the app user interface). It is still necessary,
for example, to know when the user taps a button or moves a slider and to
react in some app-specific way. Being data-driven relates more to the
relationship between the underlying app data and the user interface and
logic of the app.
Before the introduction of Compose, an Android app would contain code
responsible for checking the current values of data within the app. If data
was likely to change over time, code had to be written to ensure that the
user interface always reflected the latest state of the data (perhaps by
writing code to frequently check for changes to the data, or by providing a
refresh option for the user to request a data update). Similar challenges arise
when keeping the user interface state consistent and making sure issues like
toggle button settings are stored appropriately. Requirements such as these
can become increasingly complex when multiple areas of an app depend on
the same data sources.
Compose addresses this complexity by providing a system that is based on
state. Data that is stored as state ensures that any changes to that data are
automatically reflected in the user interface without the need to write any
additional code to detect the change. Any user interface component that
accesses a state is essentially subscribed to that state. When the state is
changed anywhere in the app code, any subscriber components to that data
will be destroyed and recreated to reflect the data change in a process called
recomposition. This ensures that when any state on which the user
interfaces is dependent changes, all components that rely on that data will
automatically update to reflect the latest state. State and recomposition will
be covered in the chapter entitled “An Overview of Compose State and
Recomposition”.

18.4 Summary
Jetpack introduces a different approach to app development than that
offered by the Android Studio Layout Editor. Rather than directly

implement the way in which a user interface is to be rendered, Compose
allows the user interface to be declared in descriptive terms and then does
all the work of deciding the best way to perform the rendering when the app
runs.
Compose is also data-driven in that data changes drive the behavior and
appearance of the app. This is achieved through states and recomposition.
This chapter has provided a very high-level view of Jetpack Compose. The
remainder of this book will explore Compose in greater depth.

19. A Guide to Gradle Version
Catalogs
A newly created Android Studio project will consist of approximately 80
files automatically generated by Android Studio. When you click on the
Run button, Android Studio uses a build system called Gradle to generate
additional files, compile the source code, resolve library dependencies, and
create the installable application package. After the build is completed, the
project folder will contain approximately 700 files.
This chapter explains how the Gradle build system determines which
libraries to include in the build process and how you can use this system to
add library dependencies to your projects.

19.1 Library and Plugin Dependencies
When Gradle is building a project, it needs to know which libraries are
required to complete the build and their respective version numbers. For
example, a project might depend on version 2.6.1 of the Room Database
runtime library (androidx.room:room-runtime). Unfortunately, when we
write Room Database code in our project, Gradle does not automatically
add the corresponding library dependency to the build configuration.
Instead, we must add this ourselves via Gradle build files and the version
catalog.

19.2 Project Gradle Build File
Every Android Studio has a project-level Gradle file that you can find by
navigating to Gradle Scripts -> build.gradle.kts (<Project name>) in the
Project tool window. The primary purpose of this file is to define the
plugins that do the work of building the entire project and will typically
read as follows:
plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply false
}

In practice, changes to this file are only necessary on rare occasions.

19.3 Module Gradle Build Files

An Android Studio project will consist of one or more modules, each with
its own build configuration and library dependencies. A new project will
contain a single module, the gradle build file for which will be listed in the
Gradle Scripts folder as build.gradle.kts (Module: app) and will, in part,
read as follows:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

android {
.
.
}

dependencies {

 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.lifecycle.runtime.ktx)
 implementation(libs.androidx.activity.compose)
 implementation(platform(libs.androidx.compose.bom))
 implementation(libs.androidx.ui)
 implementation(libs.androidx.ui.graphics)
 implementation(libs.androidx.ui.tooling.preview)
 implementation(libs.androidx.material3)
.
.
}

The plugins section once again contains the plugins needed to build the
project and, in most cases, will mirror those declared in the project-level
build file. When a module needs plugins that are not required by other
modules, they are declared here.
The dependencies section contains a list of the libraries on which the
module depends and which must be resolved for a successful build.

19.4 Version Catalog File
Earlier, we mentioned besides the library names, dependencies must also
include library version numbers. You will have noticed, however, that none
of the configuration files reviewed so far include version information. This

is where the version catalog file comes in. The version catalog can be found
in a file named libs.versions.toml located in the Project tool window’s
Gradle Scripts folder. An example version catalog file is listed below:
[versions]
agp = "8.3.1"
kotlin = "1.9.0"
coreKtx = "1.12.0"
junit = "4.13.2"
junitVersion = "1.1.5"
espressoCore = "3.5.1"
lifecycleRuntimeKtx = "2.7.0"
activityCompose = "1.8.2"
composeBom = "2024.03.00"

[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx",
version.ref = "coreKtx" }
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-junit = { group = "androidx.test.ext", name = "junit",
version.ref = "junitVersion" }
.
.

The catalog is divided into sections labeled [versions], [libraries], and
[plugins]. To help understand how the catalog works, we will use the
androidx-core-ktx library as an example. In the [libraries] section, the
androidx-core-ktx library is declared as follows:
androidx-core-ktx = { group = "androidx.core", name = "core-ktx",
version.ref = "coreKtx" }

The group entry above tells us the actual name of the Core Kotlin
Extensions library group in the Java API framework is androidx-core-ktx,
while the versions.ref assignment declares how the library will be
referenced in the [versions] catalog section. The declaration is assigned to a
value named “coreKtx” which is the name by which the library will be
referenced in the module-level build files.
Referring to the [versions] section, we find that the library has been
assigned version 1.12.0:
coreKtx = "1.12.0"

Finally, the library is declared in the dependencies section of the module-
level build file as follows:

dependencies {
 implementation(libs.androidx.core.ktx)
.
.
}

Note that the syntax for referencing the library in the build file is to prefix
the name used in the [libraries] catalog entry with “libs.”.
Although we have focused on a library for this example, the syntax is the
same for plugins.

19.5 Adding Dependencies
You will need to add dependencies to several projects in this book, and in
each case, we will step you through the process. As an example, we will
demonstrate adding the Room Database runtime library dependency to our
earlier hypothetical project. First, we must add the following entry to the
[libraries] section of the libs.versions.toml version catalog file:
[libraries]
.
.
androidx-room-runtime = { module = "androidx.room:room-runtime",
version.ref = "roomRuntime" }

Next, the version number is added to the [versions] catalog section:
[versions]
.
.
roomRuntime = "2.6.1"

Finally, the library is added to the dependencies section of the module-level
gradle build file:
dependencies {
.
.
 implementation(libs.androidx.room.runtime)
}

Another example is the androidx.navigation:navigation-compose library. In
this case, the library group is androidx.navigation and the name is
navigation-compose. The library would be declared in the version catalog
as follows:
[versions]

.

.
navigationCompose = "2.7.7"

[libraries]
.
.
androidx-navigation-compose = { module =
"androidx.navigation:navigation-compose", version.ref =
"navigationCompose" }

Once the library has been added to the catalog, the gradle build file
dependency would read as follows:
dependencies {
.
.
 implementation(libs.androidx.navigation.compose)
.
.

19.6 Library Updates
While declaring library and plugin dependencies is primarily a manual task,
one thing that Android Studio will do for you is let you know when a more
recent library version is available. It does this by highlighting the version
number while you are editing the catalog file. Hovering the mouse pointer
over the highlighted number will display the panel shown in Figure 19-1,
providing the option to change to the latest version:

Figure 19-1
19.7 Summary
Android Studio projects are built using the Gradle build system in a process
involving several steps. One of these steps is to resolve and include any
required libraries for the project to compile successfully. While a newly
created project will include the basic libraries and plugins necessary for a
simple app, more complex projects will have additional dependencies.

These dependencies are declared in the module-level Gradle build files. To
provide version consistency across project modules and a single location to
add new libraries or update version numbers, Gradle uses a version catalog
file. As your code uses more libraries and plugins, you must edit the build
and catalog files to add these dependencies.

20. Composable Functions Overview
Composable functions are the building blocks used to create user interfaces
for Android apps when developing with Jetpack Compose. In the
ComposeDemo project created earlier in the book, we made use of both the
built-in compose functions provided with Compose and also created our
own functions. In this chapter, we will explore composable functions in
more detail, including topics such as stateful and stateless functions,
function syntax, and the difference between foundation and material
composables.

20.1 What is a composable function?
Composable functions (also referred to as composables or components) are
special Kotlin functions that are used to create user interfaces when
working with Compose. A composable function is differentiated from
regular Kotlin functions in code using the @Composable annotation.
When a composable is called, it is typically passed some data and a set of
properties that define how the corresponding section of the user interface is
to behave and appear when rendered to the user in the running app. In
essence, composable functions transform data into user interface elements.
Composables do not return values in the traditional sense of the Kotlin
function, but instead, emit user interface elements to the Compose runtime
system for rendering.
Composable functions can call other composables to create a hierarchy of
components as demonstrated in the ComposeDemo project. While a
composable function may also call standard Kotlin functions, standard
functions may not call composable functions.
A typical Compose-based user interface will be comprised of a combination
of built-in and custom-built composables.

20.2 Stateful vs. stateless composables
Composable functions are categorized as being either stateful or stateless.
State, in the context of Compose, is defined as being any value that can
change during the execution of an app. For example, a slider position value,
the string entered into a text field, or the current setting of a check box are

all forms of state.
As we saw in the ComposeDemo project, a composable function can store a
state value which defines in some way how the composable function, or
those that it calls appear or behave. This is achieved using the remember
keyword and the mutableStateOf function. Our DemoScreen composable,
for example, stored the current slider position as state using this technique:
@Composable
fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }
.
.
}

Because the DemoScreen contains state, it is considered to be a stateful
composable. Now consider the DemoSlider composable which reads as
follows:
@Composable
fun DemoSlider(sliderPosition: Float, onPositionChange : (Float) ->
Unit) {
 Slider(
 modifier = Modifier.padding(10.dp),
 valueRange = 20f..40f,
 value = sliderPosition,
 onValueChange = onPositionChange
)
}

Although this composable is passed and makes use of the state value stored
by the DemoScreen, it does not itself store any state value. DemoSlider is,
therefore, considered to be a stateless composable function.
The topic of state will be covered in greater detail in the chapter entitled
“An Overview of Compose State and Recomposition”.

20.3 Composable function syntax
Composable functions, as we already know, are declared using the
@Composable annotation and are written in much the same way as a
standard Kotlin function. We can, for example, declare a composable
function that does nothing as follows:
@Composable

fun MyFunction() {
}

We can also call other composables from within the function:
@Composable
fun MyFunction() {
 Text("Hello")
}

Composables may also be implemented to accept parameters. The
following function accepts text, font weight, and color parameters and
passes them to the built-in Text composable. The fragment also includes a
preview composable to demonstrate how the CustomText function might be
called:
@Composable
fun CustomText(text: String, fontWeight: FontWeight, color: Color)
{
 Text(text = text, fontWeight = fontWeight, color = color)
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 CustomText(text = "Hello Compose", fontWeight =
FontWeight.Bold,
 color = Color.Magenta)
}

When previewed, magenta-colored bold text reading “Hello Compose” will
be rendered in the preview panel.
Just about any Kotlin logic code may be included in the body of a
composable function. The following composable, for example, displays
different text within a Column depending on the setting of a built-in Switch
composable:
@Composable
fun CustomSwitch() {

 val checked = remember { mutableStateOf(true) }

 Column {
 Switch(
 checked = checked.value,
 onCheckedChange = { checked.value = it }

)
 if (checked.value) {
 Text("Switch is On")
 } else {
 Text("Switch is Off")
 }
 }
}

In the above example, we have declared a state value named checked
initialized to true and then constructed a Column containing a Switch
composable. The state of the Switch is based on the value of checked and a
lambda assigned as the onCheckedChanged event handler. This lambda sets
the checked state to the current Switch setting. Finally, an if statement is
used to decide which of two Text composables are displayed depending on
the current value of the checked state. When run, the text displayed will
alternate between “Switch is on” and “Switch is off”:

Figure 20-1
Similarly, we could use looping syntax to iterate through the items in a list
and display them in a Column separated by instances of the Divider
composable:
@Composable
fun CustomList(items: List<String>) {
 Column {
 for (item in items) {
 Text(item)
 Divider(color = Color.Black)
 }
 }
}

The following composable could be used to preview the above function:
@Preview(showBackground = true)
@Composable
fun GreetingPreview() {

 MyApplicationTheme {
 CustomList(listOf("One", "Two", "Three", "Four", "Five",
"Six"))
 }
}

Once built and refreshed, the composable will appear in the Preview panel
as shown in Figure 20-2 below:

Figure 20-2
20.4 Foundation and Material composables
When developing apps with Compose we do so using a mixture of our own
composable functions (for example the CustomText and CustomList
composables created earlier in the chapter) combined with a set of ready to
use components provided by the Compose development kit (such as the
Text, Button, Column and Slider composables).
The composables bundled with Compose fall into three categories, referred
to as Layout, Foundation, and Material Design components.
Layout components provide a way to define both how components are
positioned on the screen, and how those components behave in relation to
each other. The following are all layout composables:
•Box
•BoxWithConstraints
•Column
•ConstraintLayout
•Row
Foundation components are a set of minimal components that provide basic
user interface functionality. While these components do not, by default,

impose a specific style or theme, they can be customized to provide any
look and behavior you need for your app. The following lists the set of
Foundation components:
•BaseTextField
•Canvas
•Image
•LazyColumn
•LazyRow
•Shape
•Text
The Material Design components, on the other hand, have been designed so
that they match Google’s Material theme guidelines and include the
following composables:
•AlertDialog
•Button
•Card
•CircularProgressIndicator
•DropdownMenu
•Checkbox
•FloatingActionButton
•LinearProgressIndicator
•ModalDrawer
•RadioButton
•Scaffold
•Slider
•Snackbar
•Switch
•TextField
•TopAppBar
•BottomNavigation
When choosing components, it is important to note that the Foundation and

Material Design components are not mutually exclusive. You will
inevitably use components from both categories in your design since the
Material Design category has components for which there is no Foundation
equivalent and vice versa.

20.5 Summary
In this chapter, we have looked at composable functions and explored how
they are used to construct Android-based user interfaces. Composable
functions are declared using the @Composable annotation and use the same
syntax as standard Kotlin functions, including the passing and handling of
parameters. Unlike standard Kotlin functions, composable functions do not
return values. Instead, they emit user interface units to be rendered by the
Compose runtime. A composable function can be either stateful or stateless
depending on whether the function stores a state value. The built-in
composables are categorized as either Layout, Foundation, or Material
Design components. The Material Design components conform with the
Material style and theme guidelines provided by Google to encourage
consistent UI design.
One type of composable we have not yet introduced is the Slot API
composable, a topic that will be covered later in the chapter entitled “An
Overview of Compose Slot APIs”.

21. An Overview of Compose State
and Recomposition
State is the cornerstone of how the Compose system is implemented. As
such, a clear understanding of state is an essential step in becoming a
proficient Compose developer. In this chapter, we will explore and
demonstrate the basic concepts of state and explain the meaning of related
terms such as recomposition, unidirectional data flow, and state hoisting.
The chapter will also cover saving and restoring state through configuration
changes.

21.1 The basics of state
In declarative languages such as Compose, state is generally referred to as
“a value that can change over time”. At first glance, this sounds much like
any other data in an app. A standard Kotlin variable, for example, is by
definition designed to store a value that can change at any time during
execution. State, however, differs from a standard variable in two
significant ways.
First, the value assigned to a state variable in a composable function needs
to be remembered. In other words, each time a composable function
containing state (a stateful function) is called, it must remember any state
values from the last time it was invoked. This is different from a standard
variable which would be re-initialized each time a call is made to the
function in which it is declared.
The second key difference is that a change to any state variable has far
reaching implications for the entire hierarchy tree of composable functions
that make up a user interface. To understand why this is the case, we now
need to talk about recomposition.

21.2 Introducing recomposition
When developing with Compose, we build apps by creating hierarchies of
composable functions. As previously discussed, a composable function can
be thought of as taking data and using that data to generate sections of a
user interface layout. These elements are then rendered on the screen by the
Compose runtime system. In most cases, the data passed from one

composable function to another will have been declared as a state variable
in a parent function. This means that any change of state value in a parent
composable will need to be reflected in any child composables to which the
state has been passed. Compose addresses this by performing an operation
referred to as recomposition.
Recomposition occurs whenever a state value changes within a hierarchy of
composable functions. As soon as Compose detects a state change, it works
through all of the composable functions in the activity and recomposes any
functions affected by the state value change. Recomposing simply means
that the function gets called again and passed the new state value.
Recomposing the entire composable tree for a user interface each time a
state value changes would be a highly inefficient approach to rendering and
updating a user interface. Compose avoids this overhead using a technique
called intelligent recomposition that involves only recomposing those
functions directly affected by the state change. In other words, only
functions that read the state value will be recomposed when the value
changes.

21.3 Creating the StateExample project
Launch Android Studio and select the New Project option from the
welcome screen. Within the resulting new project dialog, choose the Empty
Activity template before clicking on the Next button.
Enter StateExample into the Name field and specify
com.example.stateexample as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo). On completion of the project creation process, the StateExample
project should be listed in the Project tool window located along the left-
hand edge of the Android Studio main window.

21.4 Declaring state in a composable
The first step in declaring a state value is to wrap it in a MutableState
object. MutableState is a Compose class which is referred to as an
observable type. Any function that reads a state value is said to have
subscribed to that observable state. As a result, any changes to the state
value will trigger the recomposition of all subscribed functions.

Within Android Studio, open the MainActivity.kt file, delete the Greeting
composable and modify the class so that it reads as follows:
package com.example.stateexample
.
.
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 StateExampleTheme {
 Surface(color =
MaterialTheme.colorScheme.background) {
 DemoScreen()
 }
 }
 }
 }
}

@Composable
fun DemoScreen() {
 MyTextField()
}

@Composable
fun MyTextField() {

}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 StateExampleTheme {
 DemoScreen()
 }
}

The objective here is to implement MyTextField as a stateful composable
function containing a state variable and an event handler that changes the
state based on the user’s keyboard input. The result is a text field in which
the characters appear as they are typed.
MutableState instances are created by making a call to the mutableStateOf()

runtime function, passing through the initial state value. The following, for
example, creates a MutableState instance initialized with an empty String
value:
var textState = { mutableStateOf("") }

This provides an observable state which will trigger a recomposition of all
subscribed functions when the contained value is changed. The above
declaration is, however, missing a key element. As previously discussed,
state must be remembered through recompositions. As currently
implemented, the state will be reinitialized to an empty string each time the
function in which it is declared is recomposed. To retain the current state
value, we need to use the remember keyword:
var myState = remember { mutableStateOf("") }

Remaining within the MainActivity.kt file, add some imports and modify the
MyTextField composable as follows:
.
.
import androidx.compose.material3.*
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.foundation.layout.Column
.
.
@Composable
fun MyTextField() {

 var textState = remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState.value = text
 }

 TextField(
 value = textState.value,
 onValueChange = onTextChange
)
}

If the code editor reports that the Material 3 TextField is experimental,
modify the MyTextField composable as follows:
@OptIn(ExperimentalMaterial3Api::class)

@Composable
fun MyTextField() {
 var textState by remember { mutableStateOf("") }
.
.

Test the code using the Preview panel in interactive mode and confirm that
keyboard input appears in the TextField as it is typed.
When looking at Compose code examples, you may see MutableState
objects declared in different ways. When using the above format, it is
necessary to read and set the value property of the MutableState instance.
For example, the event handler to update the state reads as follows:
val onTextChange = { text: String ->
 textState.value = text
}

Similarly, the current state value is assigned to the TextField as follows:
TextField(
 value = textState.value,
 onValueChange = onTextChange
)

A more common and concise approach to declaring state is to use Kotlin
property delegates via the by keyword as follows (note that two additional
libraries need to be imported when using property delegates):
.
.
import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue
.
.
@Composable
fun MyTextField() {

 var textState by remember { mutableStateOf("") }
.
.

We can now access the state value without needing to directly reference the
MutableState value property within the event handler:
val onTextChange = { text: String ->
 textState = text
}

This also makes reading the current value more concise:
TextField(
 value = textState,
 onValueChange = onTextChange
)

A third technique separates the access to a MutableState object into a value
and a setter function as follows:
var (textValue, setText) = remember { mutableStateOf("") }

When changing the value assigned to the state we now do so by calling the
setText setter, passing through the new value:
val onTextChange = { text: String ->
 setText(text)
}

The state value is now accessed by referencing textValue:
TextField(
 value = textValue,
 onValueChange = onTextChange
)

In most cases, the use of the by keyword and property delegates is the most
commonly used technique because it results in cleaner code. Before
continuing with the chapter, revert the example to use the by keyword.

21.5 Unidirectional data flow
Unidirectional data flow is an approach to app development whereby state
stored in a composable should not be directly changed by any child
composable functions. Consider, for example, a composable function
named FunctionA containing a state value in the form of a Boolean value.
This composable calls another composable function named FunctionB that
contains a Switch component. The objective is for the switch to update the
state value each time the switch position is changed by the user. In this
situation, adherence to unidirectional data flow prohibits FunctionB from
directly changing the state value.
Instead, FunctionA would declare an event handler (typically in the form of
a lambda) and pass it as a parameter to the child composable along with the
state value. The Switch within FunctionB would then be configured to call
the event handler each time the switch position changes, passing it the
current setting value. The event handler in FunctionA will then update the

state with the new value.
Make the following changes to the MainActivity.kt file to implement
FunctionA and FunctionB together with a corresponding modification to the
preview composable:
@Composable
fun FunctionA() {

 var switchState by remember { mutableStateOf(true) }

 val onSwitchChange = { value : Boolean ->
 switchState = value
 }

 FunctionB(
 switchState = switchState,
 onSwitchChange = onSwitchChange
)
}

@Composable
fun FunctionB(switchState: Boolean, onSwitchChange : (Boolean) ->
Unit) {
 Switch(
 checked = switchState,
 onCheckedChange = onSwitchChange
)
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 StateExampleTheme {
 Column {
 DemoScreen()
 FunctionA()
 }
 }
}

Preview the app using interactive mode and verify that clicking the switch
changes the slider position between on and off states.
We can now use this example to break down the state process into the

following individual steps which occur when FunctionA is called:
1. The switchState state variable is initialized with a true value.
2. The onSwitchChange event handler is declared to accept a Boolean
parameter which it assigns to switchState when called.
3. FunctionB is called and passed both switchState and a reference to the
onSwitchChange event handler.
4. FunctionB calls the built-in Switch component and configures it to
display the state assigned to switchState. The Switch component is also
configured to call the onSwitchChange event handler when the user changes
the switch setting.
5. Compose renders the Switch component on the screen.
The above sequence explains how the Switch component gets rendered on
the screen when the app first launches. We can now explore the sequence of
events that occur when the user slides the switch to the “off” position:
1. The switch is moved to the “off” position.
2. The Switch component calls the onSwitchChange event handler passing
through the current switch position value (in this case false).
3. The onSwitchChange lambda declared in FunctionA assigns the new
value to switchState.
4. Compose detects that the switchState state value has changed and
initiates a recomposition.
5. Compose identifies that FunctionB contains code that reads the value of
switchState and therefore needs to be recomposed.
6. Compose calls FunctionB with the latest state value and the reference to
the event handler.
7. FunctionB calls the Switch composable and configures it with the state
and event handler.
8. Compose renders the Switch on the screen, this time with the switch in
the “off” position.
The key point to note about this process is that the value assigned to
switchState is only changed from within FunctionA and never directly
updated by FunctionB. The Switch setting is not moved from the “on”
position to the “off” position directly by FunctionB. Instead, the state is

changed by calling upwards to the event handler located in FunctionA, and
allowing recomposition to regenerate the Switch with the new position
setting.
As a general rule, data is passed down through a composable hierarchy tree
while events are called upwards to handlers in ancestor components as
illustrated in Figure 21-1:

Figure 21-1
21.6 State hoisting
If you look up the word “hoist” in a dictionary it will likely be defined as
the act of raising or lifting something. The term state hoisting has a similar
meaning in that it involves moving state from a child composable up to the
calling (parent) composable or a higher ancestor. When the child
composable is called by the parent, it is passed the state along with an event
handler. When an event occurs in the child composable that requires an
update to the state, a call is made to the event handler passing through the
new value as outlined earlier in the chapter. This has the advantage of
making the child composable stateless and, therefore, easier to reuse. It also
allows the state to be passed down to other child composables later in the
app development process.
Consider our MyTextField example from earlier in the chapter:
@Composable
fun DemoScreen() {
 MyTextField()
}

@Composable
fun MyTextField() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState = text
 }

 TextField(
 value = textState,
 onValueChange = onTextChange
)
}

The self-contained nature of the MyTextField composable means that it is
not a particularly useful component. One issue is that the text entered by the
user is not accessible to the calling function and, therefore, cannot be
passed to any sibling functions. It is also not possible to pass a different
state and event handler through to the function, thereby limiting its re-
usability.
To make the function more useful we need to hoist the state into the parent
DemoScreen function as follows:
@Composable
fun DemoScreen() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState = text
 }

 MyTextField(text = textState, onTextChange = onTextChange)
}

@Composable
fun MyTextField(text: String, onTextChange : (String) -> Unit) {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState = text

 }

 TextField(
 value = text,
 onValueChange = onTextChange
)
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 StateExampleTheme {
 DemoScreen()
 }
}

With the state hoisted to the parent function, MyTextField is now a
stateless, reusable composable which can be called and passed any state and
event handler. Also, the text entered by the user is now accessible by the
parent function and may be passed down to other composables if necessary.
State hoisting is not limited to moving to the immediate parent of a
composable. State can be raised any number of levels upward within the
composable hierarchy and subsequently passed down through as many
layers of children as needed (within reason). This will often be necessary
when multiple children need access to the same state. In such a situation,
the state will need to be hoisted up to an ancestor that is common to both
children.
In Figure 21-2 below, for example, both NameField and NameText need
access to textState. The only way to make the state available to both
composables is to hoist it up to the MainScreen function since this is the
only ancestor both composables have in common:

Figure 21-2
The solid arrows indicate the path of textState as it is passed down through
the hierarchy to the NameField and NameText functions (in the case of the
NameField, a reference to the event handler is also passed down), while the
dotted line represents the calls from NameField function to an event handler
declared in MainScreen as the text changes.
Note that if you find yourself passing state down through an excessive
number of child layers, it may be worth looking at
CompositionLocalProvider, a topic covered in the chapter entitled “An
Introduction to Composition Local”.
When adding state to a function, take some time to decide whether hoisting
state to the caller (or higher) might make for a more re-usable and flexible
composable. While situations will arise where state is only needed to be
used locally in a composable, in most cases it probably makes sense to hoist
the state up to an ancestor.

21.7 Saving state through configuration changes
We now know that the remember keyword can be used to save state values
through recompositions. This technique does not, however, retain state
between configuration changes. A configuration change generally occurs
when some aspect of the device changes in a way that alters the appearance
of an activity (such as rotating the orientation of the device between portrait
and landscape or changing a system-wide font setting).

Changes such as these will cause the entire activity to be destroyed and
recreated. The reasoning behind this is that these changes affect resources
such as the layout of the user interface and simply destroying and recreating
impacted activities is the quickest way for an activity to respond to the
configuration change. The result is a newly initialized activity with no
memory of any previous state values.
To experience the effect of a configuration change, run the StateExample
app on an emulator or device and, once running, enter some text so that it
appears in the TextField before changing the orientation from portrait to
landscape. When using the emulator, device rotation may be simulated
using the rotation button located in the emulator toolbar. To complete the
rotation on Android 11 or older, it may also be necessary to tap on the
rotation button. This appears in the toolbar of the device or emulator screen
as shown in Figure 21-3:

Figure 21-3
Before performing the rotation on Android 12 or later, you may need to
enter the Settings app, select the Display category and enable the Auto-
rotate screen option.
Note that after rotation, the TextField is now blank and the text entered has
been lost. In situations where state needs to be retained through
configuration changes, Compose provides the rememberSaveable keyword.
When rememberSaveable is used, the state will be retained not only through
recompositions, but also configuration changes. Modify the textState
declaration to use rememberSaveable as follows:
.
.
import androidx.compose.runtime.saveable.rememberSaveable
.
.
@Composable

fun DemoScreen() {

 var textState by rememberSaveable { mutableStateOf("") }
.
.

Build and run the app once again, enter some text and perform another
rotation. Note that the text is now preserved following the configuration
change.

21.8 Summary
When developing apps with Compose it is vital to have a clear
understanding of how state and recomposition work together to make sure
that the user interface is always up to date. In this chapter, we have explored
state and described how state values are declared, updated, and passed
between composable functions. You should also have a better understanding
of recomposition and how it is triggered in response to state changes.
We also introduced the concept of unidirectional data flow and explained
how data flows down through the compose hierarchy while data changes
are made by making calls upward to event handlers declared within
ancestor stateful functions.
An important goal when writing composable functions is to maximize re-
usability. This can be achieved, in part, by hoisting state out of a
composable up to the calling parent or a higher function in the compose
hierarchy.
Finally, the chapter described configuration changes and explained how
such changes result in the destruction and recreation of entire activities.
Ordinarily, state is not retained through configuration changes unless
specifically configured to do so using the rememberSaveable keyword.

22. An Introduction to Composition
Local
We already know from previous chapters that user interfaces are built in
Compose by constructing hierarchies of composable functions. We also
know that Compose is state-driven and that state should generally be
declared in the highest possible node of the composable tree (a concept
referred to as state hoisting) and passed down through the hierarchy to the
descendant composables where it is needed. While this works well for most
situations, it can become cumbersome if the state needs to be passed down
through multiple levels within the hierarchy. A solution to this problem
exists in the form of CompositionLocal, which is the subject of this chapter.

22.1 Understanding CompositionLocal
In simple terms, CompositionLocal provides a way to make state declared
higher in the composable hierarchy tree available to functions lower in the
tree without having to pass it through every composable between the point
where it is declared and the function where it is used. Consider, for
example, the following hierarchy diagram:

Figure 22-1
In the hierarchy, a state named colorState is declared in Composable1 but is
only used in Composable8. Although the state is not needed in either
Composable3 or Composable5, colorState still needs to be passed down

through those functions to reach Composable8. The deeper the tree
becomes, the more levels through which the state needs to be passed to
reach the function where it is used.
A solution to this problem is to use CompositionLocal. CompositionLocal
allows us to declare the data at the highest necessary node in the tree and
then access it in descendants without having to pass it through the
intervening children as shown in Figure 22-2:

Figure 22-2
CompositionLocal has the added advantage of only making the data
available to the tree branch below the point at which it is assigned a value.
In other words, if the state were assigned a value when calling composable3
it would be accessible within composable numbers 3, 5, 7, and 8, but not to
composables 1, 2, 4, or 6. This allows state to be kept local to specific
branches of the composable tree and for different sub-branches to have
different values assigned to the same CompositionLocal state. So
Composable5 could, for example, have a different color assigned to
colorState from that set when Composable7 is called.

22.2 Using CompositionLocal
Declaring state using CompositionLocal starts with the creation of a
ProvidableCompositionLocal instance which can be obtained via a call to
either the compositionLocalOf() or staticCompositionLocalOf() function. In

each case, the function accepts a lambda defining a default value to be
assigned to the state in the absence of a specific assignment, for example:
val LocalColor = compositionLocalOf { Color.Red }
val LocalColor = staticCompositionLocalOf { Color.Red }

The staticCompositionLocalOf() function is recommended for storing state
values that are unlikely to change very often. This is because any changes
to the state value will cause the entire tree beneath where the value is
assigned to be recomposed. The compositionLocalOf() function, on the
other hand, will only cause recomposition to be performed on composables
where the current state is accessed. This function should be used when
dealing with states that change frequently.
The next step is to assign a value to the ProvidableCompositionLocal
instance and wrap the call to the immediate descendant child composable in
a CompositionLocalProvider call:
val color = Color.Blue

CompositionLocalProvider(LocalColor provides color) {
 Composable5()
}

Any descendants of Composition5 will now be able to access the
CompositionLocal state via the current property of the
ProviderCompositionLocal instance, for example:
val background = LocalColor.current

In the rest of this chapter, we will build a project that mirrors the hierarchy
illustrated in Figure 22-1 to show CompositionLocal in action.

22.3 Creating the CompLocalDemo project
Launch Android Studio and create a new Empty Activity project named
CompLocalDemo. Specify com.example.complocaldemo as the package
name and select a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named Composable1:
@Composable
fun Composable1() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
Composable1 instead of Greeting.

22.4 Designing the layout
Within the MainActivity.kt file, implement the composable hierarchy as
follows:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.isSystemInDarkTheme
import androidx.compose.foundation.layout.Column
import androidx.compose.runtime.CompositionLocalProvider
import androidx.compose.runtime.staticCompositionLocalOf
import androidx.compose.ui.graphics.Color
.
.
@Composable
fun Composable1() {
 Column {
 Composable2()
 Composable3()
 }
}

@Composable
fun Composable2() {
 Composable4()
}

@Composable
fun Composable3() {
 Composable5()
}

@Composable
fun Composable4() {
 Composable6()
}

@Composable
fun Composable5() {
 Composable7()

 Composable8()
}

@Composable
fun Composable6() {
 Text("Composable 6")
}

@Composable
fun Composable7() {

}

@Composable
fun Composable8() {
 Text("Composable 8")
}

22.5 Adding the CompositionLocal state
The objective for this project is to declare a color state that can be changed
depending on whether the device is in light or dark mode, and use that to
control the background color of the text component in Composable8. Since
this value will not change regularly, we can use the
staticCompositionLocalOf() function. Remaining within the MainActivity.kt
file, add the following line above the Composable1 declaration:
.
.
val LocalColor = staticCompositionLocalOf { Color(0xFFffdbcf) }

@Composable
fun Composable1() {
 Column {
.
.

Next, a call to isSystemInDarkTheme() needs to be added, and the result
used to assign a different color to the LocalColor state. We also need to call
Composable3 from within the context of the CompositionLocal provider:
@Composable
fun Composable1() {

 val color = if (isSystemInDarkTheme()) {

 Color(0xFFa08d87)
 } else {
 Color(0xFFffdbcf)
 }

 Column {
 Composable2()

 CompositionLocalProvider(LocalColor provides color) {
 Composable3()
 }
 }
}

22.6 Accessing the CompositionLocal state
The final task before testing the code is to assign the color state to the Text
component in Composable8 as follows:
@Composable
fun Composable8() {
 Text("Composable 8", modifier =
Modifier.background(LocalColor.current))
}

22.7 Testing the design
To test the activity code in both light and dark modes, add a new Preview
composable to MainActivity.kt with uiMode set to
UI_NIGHT_MODE_YES:
.
.
import android.content.res.Configuration.UI_MODE_NIGHT_YES
.
.
@Preview(showBackground = true, uiMode = UI_MODE_NIGHT_YES)
@Composable
fun DarkPreview() {
 CompLocalDemoTheme {
 Composable1()
 }
}

After refreshing the Preview panel, both the default and dark preview
should appear, each using a different color as the background for the Text

component in Composable8:

Figure 22-3
We can also modify the code so that composables 3, 5, 7, and 8 have
different color settings. All this requires is calling each composable from
within a CompositionLocalProvider with a different color assignment:
.
.
@Composable
fun Composable3() {

 Text("Composable 3", modifier =
Modifier.background(LocalColor.current))

 CompositionLocalProvider(LocalColor provides Color.Red) {
 Composable5()
 }
}
.
.
@Composable
fun Composable5() {

 Text("Composable 5", modifier =
Modifier.background(LocalColor.current))

 CompositionLocalProvider(LocalColor provides Color.Green) {
 Composable7()
 }

 CompositionLocalProvider(LocalColor provides Color.Yellow) {
 Composable8()
 }
}
.
.
@Composable
fun Composable7() {
 Text("Composable 7", modifier =
Modifier.background(LocalColor.current))
}
.
.

Now when the Preview panel is refreshed, all four components will have a
different color, all based on the same LocalColor state:

Figure 22-4
As one final step, try to access the LocalColor state from Composable6:

@Composable
fun Composable6() {
 Text("Composable 6", modifier =
Modifier.background(LocalColor.current))
}

On refreshing the preview the Text component for Compsoable6 will appear
using the default color assigned to LocalColor. This is because
Composable6 is in a different branch of the tree and does not have access to
the current LocalColor setting.

22.8 Summary
This chapter has introduced CompositionLocal and demonstrated how it can
be used to declare state that is accessible to composables lower down in the
layout hierarchy without having to be passed from one child to another.
State declared in this way is local to the branch of the hierarchy tree in
which a value is assigned.

23. An Overview of Compose Slot
APIs
Now that we have a better idea of what composable functions are and how
to create them, it is time to explore composables that provide a slot API. In
this chapter, we will explain what a slot API is, what it is used for and how
you can include slots in your own composable functions. We will also
explore some of the built-in composables that provide slot API support.

23.1 Understanding slot APIs
As we already know, composable functions can include calls to one or more
other composable functions. This usually means that the content of a
composable is predefined in terms of which other composables it calls and,
therefore, the content it displays. Consider the following function consisting
of a Column and three Text components:
@Composable
fun SlotDemo() {
 Column {
 Text("Top Text")
 Text("Middle Text")
 Text("Bottom Text")
 }
}

The function could be modified to pass in parameters that specify the text to
be displayed or even the color and font size of that text. Regardless of the
changes we make, however, the function is still restricted to displaying a
column containing three Text components:

Figure 23-1
Suppose, however, that we need to display three items in a column, but do
not know what composable will take up the middle position until just before
the composable is called. In its current form, there is no way to display
anything but the declared Text component in the middle position. The
solution to this problem is to open up the middle composable as a slot into
which any other composable may be placed when the function is called.
This is referred to as providing a slot API for the composable. API is an
abbreviation of Application Programming Interface and, in this context,
implies that we are adding a programming interface to our composable that
allows the caller to specify the composable to appear within a slot. In fact, a
composable function can provide multiple slots to the caller. In the above
function, for example, all of the Text components could be declared as slots
if required.

23.2 Declaring a slot API
It can be helpful to think of a slot API composable as a user interface
template in which one or more elements are left blank. These missing
pieces are then passed as parameters when the composable is called and
included when the user interface is rendered by the Compose runtime
system.
The first step in adding slots to a composable is to specify that it accepts a
slot as a parameter. This is essentially a case of declaring that a composable
accepts other composables as parameters. In the case of our example
SlotDemo composable, we would modify the function signature as follows:
@Composable
fun SlotDemo(middleContent: @Composable () -> Unit) {
.
.

When the SlotDemo composable is called, it will now need to be passed a
composable function. Note that the function is declared as returning a Unit
object. Unit is a Kotlin type used to indicate that a function does not return
any value. Unit can be considered to be the Kotlin equivalent of void in
other languages. The parameter has been assigned a label of
“middleContent”, though this could be any valid label name that helps to
describe the slot and allows us to reference it within the body of the

function.
The only remaining change to this composable is to substitute the
middleContent component into the Column declaration as follows:
@Composable
fun SlotDemo(middleContent: @Composable () -> Unit) {
 Column {
 Text("Top Text")
 middleContent()
 Text("Bottom Text")
 }
}

We have now successfully declared a slot API for our SlotDemo
composable.

23.3 Calling slot API composables
The next step is to learn how to make use of the slot API configured into
our SlotDemo composable. This simply involves passing a composable
through as a parameter when making the SlotDemo function call. Suppose,
for example, that we need the following composable to appear in the
middleContent slot:
@Composable
fun ButtonDemo() {
 Button(onClick = { }) {
 Text("Click Me")
 }
}

We can now call our SlotDemo composable function as follows:
SlotDemo(middleContent = { ButtonDemo() })

While this syntax works, it can quickly become cluttered if the composable
has more than one slot to be filled. A cleaner syntax reads as follows:
SlotDemo {
 ButtonDemo()
}

Regardless of the syntax used, the design will be rendered as shown below
in Figure 23-2:

Figure 23-2
A slot API is not, of course, limited to a single slot. The SlotDemo example
could be composed entirely of slots as follows:
@Composable
fun SlotDemo(
 topContent: @Composable () -> Unit,
 middleContent: @Composable () -> Unit,
 bottomContent: @Composable () -> Unit) {
 Column {
 topContent()
 middleContent()
 bottomContent()
 }
}

With these changes made, the call to SlotDemo could be structured as
follows:
SlotDemo(
 topContent = { Text("Top Text") },
 middleContent = { ButtonDemo() },
 bottomContent = { Text("Bottom Text") }
)

As with the single slot, this can be abbreviated for clarity:
SlotDemo(
 { Text("Top Text") },
 { ButtonDemo() },
 { Text("Bottom Text") }
)

23.4 Summary

In this chapter, we have introduced the concept of slot APIs and
demonstrated how they can be added to composable functions. By
implementing a slot API, the content of a composable function can be
specified dynamically at the point that it is called. This contrasts with the
static content of a typical composable where the content is defined at the
point the function is written and cannot subsequently be changed. A
composable with a slot API is essentially a user interface template
containing one or more slots into which other composables can be inserted
at runtime.
With the basics of slot APIs covered in this chapter, the next chapter will
create a project that puts this theory into practice.

24. A Compose Slot API Tutorial
In this chapter, we will be creating a project within Android Studio to
practice the use of slot APIs to build flexible and dynamic composable
functions. This will include writing a composable function with two slots
and calling that function with different content composables based on
selections made by the user.

24.1 About the project
Once the project is completed, it will consist of a title, progress indicator,
and two checkboxes. The checkboxes will be used to control whether the
title is represented as text or graphics, and also whether a circular or linear
progress indicator is displayed. Both the title and progress indicator will be
declared as slots which will be filled with either a Text or Image
composable for the title or, in the case of the progress indicator, a
LinearProgressIndicator or CircularProgressIndicator component.

24.2 Creating the SlotApiDemo project
Launch Android Studio and select the New Project option from the
welcome screen. Choose the Empty Activity template within the New
Project dialog before clicking on the Next button.
Enter SlotApiDemo into the Name field and specify
com.example.slotapidemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo). Once the project has been created, the SlotApiDemo project
should be listed in the Project tool window located along the left-hand edge
of the Android Studio main window.

24.3 Preparing the MainActivity class file
Android Studio should have automatically loaded the MainActivity.kt file
into the code editor. If it has not, locate it in the Project tool window (app -
> kotlin+java -> com.example.slotapidemo -> MainActivity.kt) and double-
click on it to load it into the editor. Once loaded, modify the file to remove
the template code as follows:
package com.example.slotapidemo
.

.
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 SlotApiDemoTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 Greeting("Android")
 }
 }
 }
 }
}

@Composable
fun Greeting(name: String) {
 Text(text = "Hello $name!")
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 SlotApiDemoTheme {
 Greeting("Android")
 }
}

24.4 Creating the MainScreen composable
Edit the onCreate method of the MainActivity class to call a composable
named MainScreen from within the Surface component:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 SlotDemoTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 MainScreen()

 }
 }
 }
}

MainScreen will contain the state and event handlers for the two Checkbox
components. Start adding this composable now, making sure to place it after
the closing brace (}) of the MainActivity class declaration:
.
.
import androidx.compose.runtime.*
import androidx.compose.material3.*
import androidx.compose.foundation.layout.*
.
.
@Composable
fun MainScreen() {

 var linearSelected by remember { mutableStateOf(true) }
 var imageSelected by remember { mutableStateOf(true) }

 val onLinearClick = { value : Boolean ->
 linearSelected = value
 }

 val onTitleClick = { value : Boolean ->
 imageSelected = value
 }
}

Here we have declared two state variables, one for each of the two
Checkbox components, and initialized them to true. Next, event handlers
have been declared to allow the state of each variable to be changed when
the user toggles the Checkbox settings. Later in the project, MainScreen
will be modified to call a second composable named ScreenContent.

24.5 Adding the ScreenContent composable
When the MainScreen function calls it, the ScreenContent composable will
need to be passed the state variables and event handlers and can initially be
declared as follows:
package com.example.slotapidemo
.

.
import androidx.compose.ui.Alignment
import androidx.compose.ui.unit.dp
.
.
@Composable
fun ScreenContent(
 linearSelected: Boolean,
 imageSelected: Boolean,
 onTitleClick: (Boolean) -> Unit,
 onLinearClick: (Boolean) -> Unit) {

 Column(
 modifier = Modifier.fillMaxSize(),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.SpaceBetween
) {

 }
}

As the name suggests, the ScreenContent composable is going to be
responsible for displaying the screen content including the title, progress
indicator, and checkboxes. In preparation for this content, we have made a
call to the Column composable and configured it to center its children along
the horizontal axis. The SpaceBetween arrangement property has also been
set. This tells the column to space its children evenly but not to include
spacing before the first or after the last child.
One of the child composables which ScreenContent will call will be
responsible for rendering the two Checkbox components. While these could
be added directly within the Column composable, a better approach is to
place them in a separate composable which can be called from within
ScreenContent.

24.6 Creating the Checkbox composable
The composable containing the checkboxes will consist of a Row
component containing two Checkbox instances. In addition, Text
composables will be positioned to the left of each Checkbox with a Spacer
separating the two Text/Checkbox pairs.
When it is called, the Checkboxes composable will need to be passed the

two state variables which will be used to make sure the checkboxes display
the current state. Also passed will be references to the onLinearClick and
onTitleClick event handlers which will be assigned to the onCheckChange
properties of the two Checkbox components.
Remaining within the MainActivity.kt file, add the CheckBoxes composable
so that it reads as follows:
@Composable
fun CheckBoxes(
 linearSelected: Boolean,
 imageSelected: Boolean,
 onTitleClick: (Boolean) -> Unit,
 onLinearClick: (Boolean) -> Unit
) {
 Row(
 Modifier.padding(20.dp),
 verticalAlignment = Alignment.CenterVertically
) {
 Checkbox(
 checked = imageSelected,
 onCheckedChange = onTitleClick
)
 Text("Image Title")
 Spacer(Modifier.width(20.dp))
 Checkbox(checked = linearSelected,
 onCheckedChange = onLinearClick
)
 Text("Linear Progress")
 }
}

If you would like to preview the composable before proceeding, add the
following preview declaration before clicking on the Build & Refresh link
in the Preview panel:
@Preview
@Composable
fun DemoPreview() {
 CheckBoxes(
 linearSelected = true,
 imageSelected = true,
 onTitleClick = { /*TODO*/ },
 onLinearClick = { /*TODO*/})

}

When calling the CheckBoxes composable in the above preview function
we are setting the two state properties to true and assigning stub lambdas
that do nothing as the event callbacks.
Once the preview has been refreshed, the layout should match that shown in
Figure 24-1 below:

Figure 24-1
24.7 Implementing the ScreenContent slot API
Now that we have added the composable containing the two checkboxes,
we can call it from within the Column contained within ScreenContent.
Since both the state variables and event handlers were already passed into
ScreenContent, we can simply pass these to the Checkboxes composable
when we call it. Locate the ScreenContent composable and modify it as
follows:
@Composable
fun ScreenContent(
 linearSelected: Boolean,
 imageSelected: Boolean,
 onTitleClick: (Boolean) -> Unit,
 onLinearClick: (Boolean) -> Unit) {

 Column(
 modifier = Modifier.fillMaxSize(),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.SpaceBetween
) {
 CheckBoxes(linearSelected, imageSelected, onTitleClick,
onLinearClick)
 }
}

In addition to the row of checkboxes, ScreenContent also needs slots for the
title and progress indicator. These will be named titleContent and

progressContent and need to be added as parameters and referenced as
children of the Column:
@Composable
fun ScreenContent(
 linearSelected: Boolean,
 imageSelected: Boolean,
 onTitleClick: (Boolean) -> Unit,
 onLinearClick: (Boolean) -> Unit,
 titleContent: @Composable () -> Unit,
 progressContent: @Composable () -> Unit) {

 Column(
 modifier = Modifier.fillMaxSize(),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.SpaceBetween
) {
 titleContent()
 progressContent()
 CheckBoxes(linearSelected, imageSelected, onTitleClick,
onLinearClick)
 }
}

All that remains is to add some code to the MainScreen declaration so that
different composables are provided for the slots based on the current values
of the linearSelected and imageSelected state variables. Before taking that
step, however, we need to add one more composable to display an image in
the title slot.

24.8 Adding an Image drawable resource
For this example, we will use one of the built-in vector drawings included
with the Android SDK. To select a drawing and add it to the project, begin
by locating the drawable folder in the Project tool window (app -> res ->
drawable) and right-click on it. In the resulting menu (Figure 24-2) select
the New -> Vector Asset menu option:

Figure 24-2
Once the menu option has been selected, Android Studio will display the
Asset Studio dialog shown in Figure 24-3 below:

Figure 24-3
Within the dialog, click on the image to the right of the Clip Art label as
indicated by the arrow in the above figure to display a list of available
icons. In the search box, enter “cloud” and select the “Cloud Download”
icon as shown in Figure 24-4 below:

Figure 24-4
Click on the OK button to select the drawing and return to the Asset Studio
dialog. Increase the size of the image to 150dp x 150dp before clicking the
Next button. On the subsequent screen, click on Finish to save the file in the
default location.
While changing the image’s color in the Asset Studio dialog was possible,
the color selector only allows us to specify colors by RGB value. Instead,
we want to use a named color from the project resources. So, in the Project
tool window, find and open the colors.xml file under app -> res -> values.
This file contains a set of named color properties. In this example, the plan
is to use the color named purple_700:
<?xml version="1.0" encoding="utf-8"?>
<resources>
.
.
 <color name="purple_700">#FF3700B3</color>

Having chosen a color from the resources, double-click on the
baseline_cloud_download_24.xml vector asset file in the Project tool
window to load it into the code editor and modify the android:tint property
as follows:
<vector android:height="150dp" android:tint="@color/purple_700"
 android:viewportHeight="24" android:viewportWidth="24"
 android:width="150dp"
xmlns:android="http://schemas.android.com/apk/res/android">
 <path android:fillColor="@android:color/white"
android:pathData="M19.35,10.04C18.67,6.59 15.64,4 12,4 9.11,4
6.6,5.64 5.35,8.04 2.34,8.36 0,10.91 0,14c0,3.31 2.69,6
6,6h13c2.76,0 5,-2.24 5,-5 0,-2.64 -2.05,-4.78 -4.65,-4.96zM17,13l-
5,5 -5,-5h3V9h4v4h3z"/>
</vector>

24.9 Coding the TitleImage composable
Now that we have an image to display for the title, the next step is to add a
composable to the MainActivity.kt file to display the image. To make this
composable as reusable as possible, we will design it so that it is passed the
image resource to be displayed:
.
.
import androidx.compose.foundation.Image

import androidx.compose.ui.res.painterResource
.
.
@Composable
fun TitleImage(drawing: Int) {
 Image(
 painter = painterResource(drawing),
 contentDescription = "title image",
 modifier = Modifier.size(150.dp)
)
}

The Image component provides several ways to render graphics depending
on which parameters are used when it is called. Since we are using a
resource image, the component makes a call to the painterResource method
to render the image.

24.10 Completing the MainScreen composable
Now that all of the child composables have been added and the state
variable and event handlers implemented, it is time to complete work on the
MainScreen declaration. Specifically, code needs to be added to this
composable to display different content in the two ScreenContent slots
depending on the current checkbox selections.
Locate the MainScreen composable in the MainActivity.kt file and add code
to call the ScreenContent function as follows:
@Composable
fun MainScreen() {

 var linearSelected by remember { mutableStateOf(true) }
 var imageSelected by remember { mutableStateOf(true) }

 val onLinearClick = { value : Boolean ->
 linearSelected = value
 }

 val onTitleClick = { value : Boolean ->
 imageSelected = value
 }

 ScreenContent(
 linearSelected = linearSelected,

 imageSelected = imageSelected,
 onLinearClick = onLinearClick,
 onTitleClick = onTitleClick,
 titleContent = {
 if (imageSelected) {

 TitleImage(drawing =
R.drawable.baseline_cloud_download_24)

 } else {
 Text("Downloading",
 style = MaterialTheme.typography.headlineSmall,
 modifier = Modifier.padding(30.dp))
 }
 },
 progressContent = {
 if (linearSelected) {
 LinearProgressIndicator(Modifier.height(40.dp))
 } else {
 CircularProgressIndicator(Modifier.size(200.dp),
 strokeWidth = 18.dp)
 }
 }
)
}

The ScreenContent call begins by passing through the state variables and
event handlers which will subsequently be passed down to the two
Checkbox instances:
ScreenContent(
 linearSelected = linearSelected,
 imageSelected = imageSelected,
 onLinearClick = onLinearClick,
 onTitleClick = onTitleClick,

The next parameter deals with the titleContent slot and uses an if statement
to pass through either a TitleImage or Text component depending on the
current value of the imageSelected state:
titleContent = {
 if (imageSelected) {

 TitleImage(drawing = R.drawable.baseline_cloud_download_24)

 } else {
 Text("Downloading", style =
MaterialTheme.typography.headlineSmall,
 modifier = Modifier.padding(30.dp))
 }
},

Finally, either a linear or circular progress indicator is used to fill
ScreenContent’s progressContent slot based on the current value of the
linearSelected state:
progressContent = {
 if (linearSelected) {
 LinearProgressIndicator(Modifier.height(40.dp))
 } else {
 CircularProgressIndicator(Modifier.size(200.dp),
strokeWidth = 18.dp)
 }
}

Note that we haven’t passed a progress value through to either of the
progress indicators. This will cause the components to enter indeterminate
progress mode which will cause them to show a continually cycling
indicator.

24.11 Previewing the project
With these changes complete, the project is now ready to preview. Locate
the DemoPreview composable added earlier in the chapter and modify it to
call MainScreen instead of the Checkboxes composable. Also, add the
system UI to the preview:
@Preview(showSystemUi = true)
@Composable
fun DemoPreview() {
 MainScreen()
}

Once a rebuild has been performed, the Preview panel should resemble that
shown in Figure 24-5:

Figure 24-5
To test that the project works, start interactive mode by clicking on the
button indicated in Figure 24-6:

Figure 24-6
Once interactive mode has started, experiment with different combinations
of checkbox settings to confirm that the slot API for the ScreenContent
composable is performing as expected. Figure 24-7, for example, shows the
rendering with both checkboxes disabled:

Figure 24-7
24.12 Summary
In this chapter, we have demonstrated the use of a slot API to insert
different content into a composable at the point that it is called during
runtime. Incidentally, we also passed state variables and event handler
references down through multiple levels of composable functions and
explored how to use Android Studio’s Asset Studio to select and configure
built-in vector drawable assets. Finally, we also used the built-in Image
component to render an image within a user interface layout.

25. Using Modifiers in Compose
In this chapter, we will introduce Compose modifiers and explain how they
can be used to customize the appearance and behavior of composables.
Topics covered will include an overview of modifiers and an introduction to
the Modifier object. The chapter will also explain how to create and use
modifiers, and how to add modifier support to your own composables.

25.1 An overview of modifiers
Many composables accept one or more parameters that define their
appearance and behavior within the running app. We can, for example,
specify the font size and weight of a Text composable by passing through
parameters as follows:
@Composable
fun DemoScreen() {
 Text(
 "My Vacation",
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
}

In addition to parameters of this type, most built-in composables also accept
an optional modifier parameter which allows additional aspects of the
composable to be configured. Unlike parameters, which are generally
specific to the type of composable (a font setting would have no meaning to
a Column component for example), modifiers are more general in that they
can be applied to any composable.
The foundation for building modifiers is the Modifier object. Modifier is a
built-in Compose object designed to store configuration settings that can be
applied to composables. The Modifier object provides a wide selection of
methods that can be called upon to configure properties such as borders,
padding, background, size requirements, event handlers, and gestures to
name just a few. Once declared, a Modifier can be passed to other
composables and used to change appearance and behavior.
In the remainder of this chapter, we will explore the key concepts of
modifiers and demonstrate their use within an example project.

25.2 Creating the ModifierDemo project
Launch Android Studio and select the New Project option from the
welcome screen. Within the new project dialog, choose the Empty Activity
template before clicking on the Next button.
Enter ModifierDemo into the Name field and specify
com.example.modifierdemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo). Once the project has been created, the project files should be
listed in the Project tool window located along the left-hand edge of the
Android Studio main window.
Load the MainActivity.kt file into the code editor and delete the Greeting
composable before making the following changes:
package com.example.modifierdemo
.
.
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.unit.sp
import androidx.compose.ui.text.font.FontWeight
.
.
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 DemoScreen()
 }
 }
 }
}

@Composable
fun DemoScreen() {
 Text(
 "Hello Compose",
 fontSize = 40.sp,

 fontWeight = FontWeight.Bold
)
}

@Preview(showBackground = true)
@Composable
fun DefaultPreview() {
 ModifierDemoTheme {
 DemoScreen()
 }
}

25.3 Creating a modifier
The first step in learning to work with modifiers is to create one. To begin
with, we can create a modifier without any configuration settings as
follows:
val modifier = Modifier

This essentially gives us a blank modifier containing no configuration
settings. To configure the modifier, we need to call methods on it. For
example, the modifier can be configured to add 10dp of padding on all four
sides of any composable to which it is applied:
val modifier = Modifier.padding(all = 10.dp)

Method calls on a Modifier instance may be chained together to apply
multiple configuration settings in a single operation. The following addition
to the modifier will draw a black, 2dp wide border around a composable:
val modifier = Modifier
 .padding(all = 10.dp)
 .border(width = 2.dp, color = Color.Black)

Once a modifier has been created it can be passed to any composable which
accepts a modifier parameter. Edit the DemoScreen function so that it reads
as follows to pass our modifier to the Text composable:
.
.
import androidx.compose.foundation.border
import androidx.compose.foundation.layout.padding
import androidx.compose.ui.unit.dp
.
.
@Composable

fun DemoScreen() {

 val modifier = Modifier
 .border(width = 2.dp, color = Color.Black)
 .padding(all = 10.dp)

 Text(
 "Hello Compose",
 modifier = modifier,
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
}

When the layout is previewed it should appear as illustrated in Figure 25-1:

Figure 25-1
As we can see from the preview, the padding and border have been applied
to the text. Clearly, the Text composable has been implemented such that it
accepts a modifier as a parameter. If a composable accepts a modifier it will
always be the first optional parameter in the parameter list. This has the
added benefit of allowing the modifier to be passed without declaring the
argument name. The following, therefore, is syntactically correct:
Text(
 "Hello Compose",
 modifier,
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)

25.4 Modifier ordering
The order in which modifiers are chained is of great significance to the
resulting output. In the above example, the border was applied first
followed by the padding. This has the result of the border appearing outside
the padding. To place the border inside the padding, the order of the
modifiers needs to be swapped as follows:

val modifier = Modifier
 .padding(all = 10.dp)
 .border(width = 2.dp, color = Color.Black)

When previewed, the Text composable will appear as shown in Figure 25-2
below:

Figure 25-2
If you don’t see the expected effects when working with chained modifiers,
keep in mind this may be because of the order in which they are being
applied to the component.

25.5 Adding modifier support to a composable
So far in this chapter, we have shown how to create a modifier and use it
with a built-in composable. When developing your own composables it is
important to consider whether modifier support should be included to make
the function more configurable.
When adding modifier support to a composable the first rule is that the
parameter should be named “modifier” and must be the first optional
parameter in the function’s parameter list. As an example, we can add a new
composable named CustomImage to our project which accepts as
parameters the image resource to display and a modifier. Edit the
MainActivity.kt file and add this composable so that it reads as follows:
.
.
import androidx.compose.foundation.Image
import androidx.compose.ui.res.painterResource
.
.
@Composable
fun CustomImage(image: Int) {
 Image(
 painter = painterResource(image),
 contentDescription = null
)

}

As currently declared, the function only accepts one parameter in the form
of the image resource. The next step is to add the modifier parameter:
@Composable
fun CustomImage(image: Int, modifier: Modifier) {
 Image(
 painter = painterResource(image),
 contentDescription = null
)
}

It is important to remember that the modifier parameter must be optional so
that the function can be called without one. This means that we need to
specify an empty Modifier instance as the default for the parameter:
@Composable
fun CustomImage(image: Int, modifier: Modifier = Modifier) {

Finally, we need to make sure that the modifier is applied to the Image
composable, keeping in mind that it will be the first optional parameter:
@Composable
fun CustomImage(image: Int, modifier: Modifier = Modifier) {
 Image(
 painter = painterResource(image),
 contentDescription = null,
 modifier
)
}

Now that we have created a new composable with modifier support we are
almost ready to call it from the DemoScreen function. First, however, we
need to add an image resource to the project. The image is named
vacation.jpg and can be found in the images folder of the sample code
archive, which can be downloaded from the following web page:
https://www.payloadbooks.com/product/compose16/
Display the Resource Manager tool window by clicking on the button
highlighted in Figure 25-3. Locate the vacation.png image in the file system
navigator for your operating system and drag it onto the Resource Manager
tool window. In the resulting dialog, click Next followed by the Import
button to add the image to the project:

https://www.payloadbooks.com/product/compose16/

Figure 25-3
The image will also appear in the res -> drawables section of the Project
tool window:

Figure 25-4
Next, modify the DemoScreen composable to include a call to the
CustomImage component:
.
.
import androidx.compose.ui.Alignment
import androidx.compose.foundation.layout.*
.
.
@Composable
fun DemoScreen() {

 val modifier = Modifier
 .border(width = 2.dp, color = Color.Black)
 .padding(all = 10.dp)

 Column(
 Modifier.padding(20.dp),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center

) {
 Text(
 "Hello Compose",
 modifier = modifier,
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
 Spacer(Modifier.height(16.dp))
 CustomImage(R.drawable.vacation)
 }
}
.
.

Refresh and build the preview and verify that the layout matches that shown
in Figure 25-5 below:

Figure 25-5
At this point, the Image component is using the default Modifier instance
that we declared in the CustomImage function signature. To change this we
need to construct a custom modifier and pass it through to CustomImage to
modify the appearance on the image resource when it is displayed:
.
.
import androidx.compose.foundation.shape.RoundedCornerShape
import androidx.compose.ui.draw.clip
.
.
Spacer(Modifier.height(16.dp))
CustomImage(R.drawable.vacation,
 Modifier
 .padding(16.dp)
 .width(270.dp)

 .clip(shape = RoundedCornerShape(30.dp))
)
.
.

The preview should now display the image with padding, fixed width, and
rounded corners:

Figure 25-6
25.6 Common built-in modifiers
A list of the full set of Modifier methods is beyond the scope of this book
(there are currently over 100). For a detailed and complete list of methods,
refer to the Compose documentation at the following URL:
https://developer.android.com/reference/kotlin/androidx/compose/ui/Modifi
er
The following is a selection of some of the more commonly used functions:
•background - Draws a solid colored shape behind the composable.
•clickable - Specifies a handler to be called when the composable is
clicked. Also causes a ripple effect when the click is performed.

•clip - Clips the composable content to a specified shape.
•fillMaxHeight - The composable will be sized to fit the maximum height
permitted by its parent.

•fillMaxSize - The composable will be sized to fit the maximum height and
width permitted by its parent.

•fillMaxWidth - The composable will be sized to fit the maximum width
permitted by its parent.

•layout - Used when implementing custom layout behavior, a topic covered

https://developer.android.com/reference/kotlin/androidx/compose/ui/Modifier

in the chapter entitled “Building Custom Layouts”.
•offset - Positions the composable the specified distance from its current
position along the x and y-axis.

•padding - Adds space around a composable. Parameters can be used to
apply spacing to all four sides or to specify different padding for each side.

•rotate - Rotates the composable on its center point by a specified number
of degrees.

•scale - Increase or reduce the size of the composable by the specified scale
factor.

•scrollable - Enables scrolling for a composable that extends beyond the
viewable area of the layout in which it is contained.

•size - Used to specify the height and width of a composable. In the absence
of a size setting, the composable will be sized to accommodate its content
(referred to as wrapping).

25.7 Combining modifiers
When working with Compose, situations may arise where you have two or
more Modifier objects, all of which need to be applied to the same
composable. For this situation, Compose allows modifiers to be combined
using the then keyword. The syntax for using this is as follows:
val combinedModifier =
firstModifier.then(secondModifier).then(thirdModifier) ...

The result will be a modifier that contains the configurations of all specified
modifiers. To see this in action, modify the MainActivity.kt file to add a
second modifier for use with the Text composable:
.
.
val modifier = Modifier
 .border(width = 2.dp, color = Color.Black)
 .padding(all = 10.dp)

val secondModifier = Modifier.height(100.dp)
.
.

Next, change the Text call to combine both modifiers:
Text(

 "Hello Compose",
 modifier.then(secondModifier),
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)

The Text composable should now appear in the preview panel with a height
of 100dp in addition to the original font, border, and padding settings.

25.8 Summary
Modifiers are created using instances of the Compose Modifier object and
are passed as parameters to composables to change appearance and
behavior. A modifier is configured by calling methods on the Modifier
object to define settings such as size, padding, rotation, and background
color. Most of the built-in composables provided with the Compose system
will accept a modifier as a parameter. It is also possible (and recommended)
to add modifier support to your own composable functions. If a composable
function accepts a modifier, it will always be the first optional parameter in
the function’s parameter list, but positioned after any mandatory
parameters. Multiple modifier instances may be combined using the then
keyword before being applied to a component.

26. Annotated Strings and Brush
Styles
The previous chapter explored how we use modifiers to change the
appearance and behavior of composables. Many examples used to
demonstrate modifiers involved the Text composable, performing tasks
such as changing the font type, size, and weight. This chapter will introduce
another powerful text-related feature of Jetpack Compose, known as
annotated strings. We will also look at brush styles and how they can be
used to add more effects to the text in a user interface.

26.1 What are annotated strings?
The previous chapter’s modifier examples changed the appearance of the
entire string displayed by a Text composable. For instance, we could not
display part one part of the text in bold while another section was in italics.
It is for this reason that Jetpack Compose includes the annotated strings.
Annotated strings allow a text to be divided into multiple sections, each
with its own style.

26.2 Using annotated strings
An AnnotatedString instance is created by calling the buildAnnotatedString
function and passing it the text and styles to be displayed. These string
sections are combined via calls to the append function to create the
complete text to be displayed.
Two style types are supported, the first of which, SpanStyle, is used to
apply styles to a span of individual characters within a string. The syntax
for building an annotated string using SpanStyle is as follows:
buildAnnotatedString {
 withStyle(style = SpanStyle(/* style settings */)) {
 append(/* text string */)
 }

 withStyle(style = SpanStyle(/* style settings */)) {
append(/* more text */)
 }
.

.
}

A SpanStyle instance can be initialized with any combination of the
following style options:
•color
•fontSize
•fontWeight
•fontStyle
•fontSynthesis
•fontFamily
•fontFeatureSettings
•letterSpacing
•baselineShift
•textGeometricTransform
•localeList
•background
•textDecoration
•shadow
ParagraphStyle, on the other hand, applies a style to paragraphs and can be
used to modify the following properties:
•textAlign
•textDirection
•lineHeight
•textIndent
The following is the basic syntax for using paragraph styles in annotated
strings:
buildAnnotatedString {
 withStyle(style = ParagraphStyle(/* style settings */)) {
 append(/* text string */)
 }

 withStyle(style = ParagraphStyle(/* style settings */))
 append(/* more text */)
 }

.

.
}

26.3 Brush Text Styling
Additional effects may be added to any text by using the Compose Brush
styling. Brush effects can be applied directly to standard text strings or
selectively to segments of an annotated string. For example, the following
syntax applies a radial color gradient to a Text composable (color gradients
will be covered in the chapter entitled “Canvas Graphics Drawing in
Compose”):
val myColors = listOf(/* color list */)

Text(
 text = "text here",
 style = TextStyle(
 brush = Brush.radialGradient(
 colors = myColors
)
)
)

26.4 Creating the example project
Launch Android Studio and select the New Project option from the
welcome screen. Choose the Empty Activity template within the New
Project dialog before clicking the Next button.
Enter StringsDemo into the Name field and specify
com.example.stringsdemo as the package name. Before clicking the Finish
button, change the Minimum API level setting to API 26: Android 8.0
(Oreo). Once the project has been created, the StringsDemo project should
be listed in the Project tool window along the left-hand edge of the Android
Studio main window.
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call

MainScreen instead of Greeting.

26.5 An example SpanStyle annotated string
The first example we will create uses SpanStyle to build an annotated string
consisting of multiple color and font styles.
Begin by editing the MainActivity.kt file and modifying the MainScreen
function to read as follows:
.
.
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.buildAnnotatedString
import androidx.compose.ui.text.withStyle
import androidx.compose.ui.text.SpanStyle
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.font.FontStyle
import androidx.compose.foundation.layout.Column
import androidx.compose.ui.unit.sp
.
.
@Composable
fun MainScreen() {
 Column {
 SpanString()
 }
}

Next, add the SpanString declaration to the MainActivity.kt file as follows:
@Composable
fun SpanString() {
 Text(
 buildAnnotatedString {
 withStyle(
 style = SpanStyle(fontWeight = FontWeight.Bold,
 fontSize = 30.sp)) {
 append("T")
 }

 withStyle(style = SpanStyle(color = Color.Gray)) {
 append("his")
 }
 append(" is ")
 withStyle(

 style = SpanStyle(
 fontWeight = FontWeight.Bold,
 fontStyle = FontStyle.Italic,
 color = Color.Blue
)
) {
 append("great!")
 }
 }
)
}

The example code creates an annotated string in three parts using several
span styles for each section. After making these changes, refer to the
Preview panel, where the text should appear as shown in Figure 26-1:

Figure 26-1
26.6 An example ParagraphStyle annotated string
Now that we have seen how to create a span-style annotated string, the next
step is to build a paragraph-style string. Remaining in the MainActivity.kt
file, make the following changes to add a new function named ParaString
and to call it from the MainScreen function:
.
.
import androidx.compose.ui.text.ParagraphStyle
import androidx.compose.ui.text.style.TextAlign
import androidx.compose.ui.text.style.TextIndent
.
.
@Composable
fun MainScreen() {
 Column {
 SpanString()
 ParaString()
 }

}

@Composable
fun ParaString() {

 Text(
 buildAnnotatedString {
 append(
 "\nThis is some text that doesn't have any style
applied to it.\n")
 })
}

The above code gives us an unmodified paragraph against which we can
compare the additional paragraphs we will add. Next, modify the function
to add an indented paragraph with an increased line height:
@Composable
fun ParaString() {

 Text(
 buildAnnotatedString {

 append("\nThis is some text that doesn't have any style
applied to it.\n")

 withStyle(style = ParagraphStyle(
 lineHeight = 30.sp,
 textIndent = TextIndent(
 firstLine = 60.sp,
 restLine = 25.sp))
) {
 append("This is some text that is indented more on
the first lines than the rest of the lines. It also has an
increased line height.\n")
 }
 })
}

When the preview is rendered, it should resemble Figure 26-2 (note that we
specified different indents for the first and remaining lines):

Figure 26-2
Next, add a third paragraph that uses right alignment as follows:
@Composable
fun ParaString() {
.
.
 append("This is some text that is indented more on
the first lines than the rest of the lines. It also has an
increased line height.\n")
 }

 withStyle(style = ParagraphStyle(textAlign =
TextAlign.End)) {
 append("This is some text that is right aligned.")
 }
 })
}

This change should result in the following preview:

Figure 26-3
26.7 A Brush style example
The final example in this tutorial involves using the Brush style to change
the text’s appearance. First, add another function to the MainActivity.kt file
and call it from within the MainScreen function:
.
.
import androidx.compose.ui.graphics.Brush
import androidx.compose.ui.text.ExperimentalTextApi
.
.
@Composable
fun MainScreen() {
 Column {
 SpanString()
 ParaString()
 BrushStyle()
 }
}

@OptIn(ExperimentalTextApi::class)
@Composable
fun BrushStyle() {

}

We will begin by declaring a list of colors and use a span style to display
large, bold text as follows:
@OptIn(ExperimentalTextApi::class)
@Composable
fun BrushStyle() {

 val colorList: List<Color> = listOf(Color.Red, Color.Blue,
 Color.Magenta, Color.Yellow, Color.Green, Color.Red)

 Text(
 text = buildAnnotatedString {

 withStyle(
 style = SpanStyle(
 fontWeight = FontWeight.Bold,

 fontSize = 70.sp
)
) {
 append("COMPOSE!")
 }
 }
)
}

All that remains is to apply a linearGradient brush to the style, using the
previously declared color list:
@OptIn(ExperimentalTextApi::class)
@Composable
fun BrushStyle() {
.
.
 Text(
 text = buildAnnotatedString {

 withStyle(
 style = SpanStyle(
 fontWeight = FontWeight.Bold,
 fontSize = 70.sp,
 brush = Brush.linearGradient(colors =
colorList)
)
) {
 append("COMPOSE!")
.
.

After completing the above changes, check that the new text appears in the
preview panel as illustrated in Figure 39-3:

Figure 26-4
26.8 Summary
While modifiers provide a quick and convenient way to make changes to
the appearance of text in a user interface, they do not support multiple

styles within a single string. On the other hand, annotated strings provide
greater flexibility in changing the appearance of text. Annotated strings are
built using the buildAnnotatedString function and can be configured using
either span or paragraph styles. Another option for altering how text
appears is using the Brush style to change the text foreground creatively,
such as using color gradients.

27. Composing Layouts with Row
and Column
User interface design is largely a matter of selecting the appropriate
interface components, deciding how those views will be positioned on the
screen, and then implementing navigation between the different screens of
the app.
As is to be expected, Compose includes a wide range of user interface
components for use when developing an app. Compose also provides a set
of layout composables to define both how the user interface is organized
and how the layout responds to factors such as changes in screen orientation
and size.
This chapter will introduce the Row and Column composables included
with Compose and explain how these can be used to create user interface
designs with relative ease.

27.1 Creating the RowColDemo project
Launch Android Studio and select the New Project option from the
welcome screen. Within the resulting new project dialog, choose the Empty
Activity template before clicking on the Next button.
Enter RowColDemo into the Name field and specify
com.example.rowcoldemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting. As we work through the examples in this
chapter, row and column-based layouts will be built using instances of a
custom component named TextCell which displays text within a black

border with a small amount of padding to provide space between adjoining
components. Before proceeding, add this function to the MainActivity.kt file
as follows:
.
.
import androidx.compose.foundation.border
import androidx.compose.foundation.layout.padding
import androidx.compose.foundation.layout.*
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.style.TextAlign
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
.
.
@Composable
fun TextCell(text: String, modifier: Modifier = Modifier) {

 val cellModifier = Modifier
 .padding(4.dp)
 .size(100.dp, 100.dp)
 .border(width = 4.dp, color = Color.Black)

 Text(text = text, cellModifier.then(modifier),
 fontSize = 70.sp,
 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center)
}

27.2 Row composable
The Row composable, as the name suggests, lays out its children
horizontally on the screen. For example, add a simple Row composable to
the MainScreen function as follows:
.
.
@Composable
fun MainScreen() {
 Row {
 TextCell("1")
 TextCell("2")
 TextCell("3")

 }
}

When rendered, the Row declared above will appear as illustrated in Figure
27-1 below:

Figure 27-1
27.3 Column composable
The Column composable performs the same purpose as the Row with the
exception that its children are arranged vertically. The following example
places the same three composables within a Column:
.
.
@Composable
fun MainScreen() {
 Column {
 TextCell("1")
 TextCell("2")
 TextCell("3")
 }
}

The rendered output from the code will appear as shown in Figure 27-2:

Figure 27-2
27.4 Combining Row and Column composables
Row and Column composables can, of course, be embedded within each
other to create table style layouts. Try, for example, the following
composition containing a mixture of embedded Row and Column layouts:

@Composable
fun MainScreen() {
 Column {
 Row {
 Column {
 TextCell("1")
 TextCell("2")
 TextCell("3")
 }

 Column {
 TextCell("4")
 TextCell("5")
 TextCell("6")
 }

 Column {
 TextCell("7")
 TextCell("8")
 }
 }

 Row {
 TextCell("9")
 TextCell("10")
 TextCell("11")
 }
 }
}

Figure 27-3 illustrates the layout generated by the above code:

Figure 27-3
Using this technique, Row and Column layouts may be embedded within

each other to achieve just about any level of layout complexity.

27.5 Layout alignment
Both the Row and Column composables will occupy an area of space
within the user interface layout depending on child elements, other
composables, and any size-related modifiers that may have been applied.
By default, the group of child elements within a Row or Column will be
aligned with the top left-hand corner of the content area (assuming the app
is running on a device configured with a left-to-right reading locale). We
can see this effect if we increase the size of our original example Row
composable:
@Composable
fun MainScreen() {
 Row(modifier = Modifier.size(width = 400.dp, height = 200.dp))
{
 TextCell("1")
 TextCell("2")
 TextCell("3")
 }
}

Before making this change, the Row was wrapping its children (in other
words sizing itself to match the content). Now that the Row is larger than
the content we can see that the default alignment has placed the children in
the top left-hand corner of the Row component:

Figure 27-4
This default alignment in the vertical axis may be changed by passing
through a new value using the verticalAlignment parameter of the Row
composable. For example, to position the children in the vertical center of
the available space, the Alignment.CenterVertically value would be passed
to the Row as follows:
.
.

import androidx.compose.ui.Alignment
.
.
@Composable
fun MainScreen() {
 Row(verticalAlignment = Alignment.CenterVertically,
 modifier = Modifier.size(width = 400.dp, height = 200.dp))
{
 TextCell("1")
 TextCell("2")
 TextCell("3")
 }
}

This will cause the content to be positioned in the vertical center of the
Row’s area as illustrated below:

Figure 27-5
The following is a list of alignment values accepted by the Row vertical
alignment parameter:
•Alignment.Top - Aligns the content at the top of the Row content area.
•Alignment.CenterVertically - Positions the content in the vertical center
of the Row content area.

•Alignment.Bottom - Aligns the content at the bottom of the Row content
area.

When working with the Column composable, the horizontalAlignment
parameter is used to configure alignment along the horizontal axis.
Acceptable values are as follows:
•Alignment.Start - Aligns the content at the horizontal start of the Column
content area.

•Alignment.CenterHorizontally - Positions the content in the horizontal
center of the Column content area

•Alignment.End - Aligns the content at the horizontal end of the Column
content area.

In the following example, the Column’s children have been aligned with the
end of the Column content area:
.
.
@Composable
fun MainScreen() {
 Column(horizontalAlignment = Alignment.End,
 modifier = Modifier.width(250.dp)) {
 TextCell("1")
 TextCell("2")
 TextCell("3")
 }
}

When rendered, the resulting column will appear as shown in Figure 27-6:

Figure 27-6
When working with alignment it is worth remembering that it works on the
opposite axis to the flow of the containing composable. For example, while
the Row organizes children horizontally, alignment operates on the vertical
axis. Conversely, alignment operates on the horizontal axis for the Column
composable while children are arranged vertically. The reason for
emphasizing this point will become evident when we introduce
arrangements.

27.6 Layout arrangement positioning
Unlike the alignment settings, arrangement controls child positioning along
the same axis as the container (i.e. horizontally for Rows and vertically for
Columns). Arrangement values are set on Row and Column instances using

the horizontalArrangement and verticalArrangement parameters
respectively. Arrangement properties can be categorized as influencing
either position or child spacing.
The following positional settings are available for the Row component via
the horizontalArrangement parameter:
•Arrangement.Start - Aligns the content at the horizontal start of the Row
content area.

•Arrangement.Center - Positions the content in the horizontal center of
the Row content area.

•Arrangement.End - Aligns the content at the horizontal end of the Row
content area.

The above settings can be visualized as shown in Figure 27-7:

Figure 27-7
The Column composable, on the other hand, accepts the following values
for the verticalArrangement parameter:
•Arrangement.Top - Aligns the content at the top of the Column content
area.

•Arrangement.Center - Positions the content in the vertical center of the
Column content area.

•Arrangement.Bottom - Aligns the content at the bottom of the Column
content area.

Figure 27-8 illustrates these verticalArrangement settings:

Figure 27-8

Using our example once again, the following change moves the child
elements to the end of the Row content area:
Row(horizontalArrangement = Arrangement.End,
 modifier = Modifier.size(width = 400.dp, height = 200.dp))
{
 TextCell("1")
 TextCell("2")
 TextCell("3")
}

The above code will generate the following user interface layout:

Figure 27-9
Similarly, the following positions child elements at the bottom of the
containing Column:
Column(verticalArrangement = Arrangement.Bottom,
 modifier = Modifier.height(400.dp)) {
 TextCell("1")
 TextCell("2")
 TextCell("3")
}

The above composable will render within the Preview panel as illustrated in
Figure 27-10 below:

Figure 27-10
27.7 Layout arrangement spacing
Arrangement spacing controls how the child components in a Row or
Column are spaced across the content area. These settings are still defined
using the horizontalArrangement and verticalArrangement parameters, but
require one of the following values:
•Arrangement.SpaceEvenly - Children are spaced equally, including space
before the first and after the last child.

•Arrangement.SpaceBetween - Children are spaced equally, with no space
allocation before the first and after the last child.

•Arrangement.SpaceAround - Children are spaced equally, including half
spacing before the first and after the last child.

In the following declaration, the children of a Row are positioned using the
SpaceEvenly setting:
Row(horizontalArrangement = Arrangement.SpaceEvenly,
 modifier = Modifier.width(1000.dp)) {
 TextCell("1")
 TextCell("2")
 TextCell("3")
}

The above code gives us the following layout with equal gaps at the
beginning and end of the row and between each child:

Figure 27-11
Figure 27-12, on the other hand, shows the same row configured with the
SpaceBetween setting. Note that the row has no leading or trailing spacing:

Figure 27-12
Finally, Figure 27-13 shows the effect of applying the SpaceAround setting
which adds full spacing between children and half the spacing on the
leading and trailing ends:

Figure 27-13
27.8 Row and Column scope modifiers
The children of a Row or Column are said to be within the scope of the
parent. These two scopes (RowScope and ColumnScope) provide a set of
additional modifier functions that can be applied to change the behavior and
appearance of individual children within a Row or Column. The Android
Studio code editor provides a visual indicator when children are within a
scope. In Figure 27-14, for example, the editor indicates that the RowScope
modifier functions are available to the three child composables:

Figure 27-14
When working with the Column composable, a similar ColumnScope
indicator will appear.
ColumnScope includes the following modifiers for controlling the position
of child components:
•Modifier.align() - Allows the child to be aligned horizontally using
Alignment.CenterHorizontally, Alignment.Start, and Alignment.End
values.

•Modifier.alignBy() - Aligns a child horizontally with other siblings on
which the alignBy() modifier has also been applied.

•Modifier.weight() - Sets the height of the child relative to the weight
values assigned to its siblings.

RowScope provides the following additional modifier functions to Row
children:
•Modifier.align() - Allows the child to be aligned vertically using
Alignment.CenterVertically, Alignment.Top, and Alignment.Bottom values.

•Modifier.alignBy() - Aligns a child with other siblings on which the
alignBy() modifier has also been applied. Alignment may be performed by
baseline or using custom alignment line configurations.

•Modifier.alignByBaseline() - Aligns the baseline of a child with any
siblings that have also been configured by either the alignBy() or
alignByBaseline() modifier.

•Modifier.paddingFrom() - Allows padding to be added to the alignment
line of a child.

•Modifier.weight() - Sets the width of the child relative to the weight
values assigned to its siblings.

The following Row declaration, for example, sets different alignments on
each of the three TextCell children:
Row(modifier = Modifier.height(300.dp)) {
 TextCell("1", Modifier.align(Alignment.Top))
 TextCell("2", Modifier.align(Alignment.CenterVertically))
 TextCell("3", Modifier.align(Alignment.Bottom))
}

When previewed, this will generate a layout resembling Figure 27-15:

Figure 27-15
The baseline alignment options are especially useful for aligning text
content with differing font sizes. Consider, for example, the following Row
configuration:
Row {
 Text(
 text = "Large Text",
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)

 Text(
 text = "Small Text",
 fontSize = 32.sp,
 fontWeight = FontWeight.Bold
)
}

This code consists of a Row containing two Text composables, each using a
different font size resulting in the following layout:

Figure 27-16
The Row has aligned the two Text composables along their top edges
causing the text content to be out of alignment relative to the text baselines.
To resolve this problem we can apply the alignByBaseline() modifier to
both children as follows:
Row {
 Text(
 text = "Large Text",
 Modifier.alignByBaseline(),
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
 Text(
 text = "Small Text",
 Modifier.alignByBaseline(),
 fontSize = 32.sp,
 fontWeight = FontWeight.Bold,
)
}

Now when the layout is rendered, the baselines of the two Text
composables will be aligned as illustrated in Figure 27-17:

Figure 27-17
As an alternative, the alignByBaseline() modifier may be replaced by a call
to the alignBy() function, passing through FirstBaseline as the alignment
parameter:

Modifier.alignBy(FirstBaseline)

When working with multi-line text, passing LastBaseline through to the
alignBy() modifier function will cause appropriately configured sibling
components to align with the baseline of the last line of text:
.
.
import androidx.compose.ui.layout.LastBaseline
.
.
@Composable
fun MainScreen() {
 Row {
 Text(
 text = "Large Text\n\nMore Text",
 Modifier.alignBy(LastBaseline),
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
 Text(
 text = "Small Text",
 Modifier.alignByBaseline(),
 fontSize = 32.sp,
 fontWeight = FontWeight.Bold,
)
 }
}

Now when the layout appears the baseline of the text content of the second
child will align with the baseline of the last line of text in the first child:

Figure 27-18
Using the FirstBaseline in the above example would, of course, align the
baseline of the small text composable with the baseline of the first line of
text in the multi-line component:

Figure 27-19
In the examples we have looked at so far we have specified the baseline as
the alignment line for both children. If we need the alignment to be offset
for a child, we can do so using the paddingFrom() modifier. The following
example adds an additional 80dp vertical offset to the first baseline
alignment position of the small text composable:
.
.
import androidx.compose.ui.layout.FirstBaseline
.
.
@Composable
fun MainScreen() {
 Row {
 Text(
 text = "Large Text\n\nMore Text",
 Modifier.alignBy(FirstBaseline),
 fontSize = 40.sp,
 fontWeight = FontWeight.Bold
)
 Text(
 text = "Small Text",
 modifier = Modifier.paddingFrom(
 alignmentLine = FirstBaseline, before = 80.dp,
after = 0.dp),
 fontSize = 32.sp,
 fontWeight = FontWeight.Bold
)
 }
}

When rendered, the above layout will appear as shown in Figure 27-20:

Figure 27-20
27.9 Scope modifier weights
The RowScope weight modifier allows the width of each child to be
specified relative to its siblings. This works by assigning each child a
weight percentage (between 0.0 and 1.0). Two children assigned a weight of
0.5, for example, would each occupy half of the available space. Modify the
MainScreen function one last time as follows to demonstrate the use of the
weight modifier:
@Composable
fun MainScreen() {
 Row {
 TextCell("1", Modifier.weight(weight = 0.2f, fill = true))
 TextCell("2", Modifier.weight(weight = 0.4f, fill = true))
 TextCell("3", Modifier.weight(weight = 0.3f, fill = true))
 }
}

Rebuild and refresh the preview panel, at which point the layout should
resemble that shown in Figure 27-21 below:

Figure 27-21
Siblings that do not have a weight modifier applied will appear at their
preferred size leaving the weighted children to share the remaining space.
ColumnScope also provides align(), alignBy(), and weight() modifiers,
though these all operate on the horizontal axis. Unlike RowScope, there is
no concept of baselines when working with ColumnScope.

27.10 Summary
The Compose Row and Column components provide an easy way to layout
child composables in horizontal and vertical arrangements. When

embedded within each other, the Row and Column allow table style layouts
of any level of complexity to be created. Both layout components include
options for customizing the alignment, spacing, and positioning of children.
Scope modifiers allow the positioning, and sizing behavior of individual
children to be defined, including aligning and sizing children relative to
each other.

28. Box Layouts in Compose
Now that we have an understanding of the Compose Row and Column
composables, we will move on to look at the third layout type provided by
Compose in the form of the Box component. This chapter will introduce the
Box layout and explore some key parameters and modifiers available when
designing user interface layouts.

28.1 An introduction to the Box composable
Unlike the Row and Column, which organize children in a horizontal row
or vertical column, the Box layout stacks its children on top of each other.
The stacking order is defined by the order in which the children are called
within the Box declaration, with the first child positioned at the bottom of
the stack. As with the Row and Column layouts, Box is provided with
several parameters and modifiers we can use to customize the layout.

28.2 Creating the BoxLayout project
Begin by launching Android Studio and, if necessary, closing any currently
open projects using the File -> Close Project menu option so that the
Welcome screen appears.
Select the New Project option from the welcome screen, and when the new
project dialog appears, choose the Empty Activity template before clicking
on the Next button.
Enter BoxLayout into the Name field and specify com.example.boxlayout as
the package name. Before clicking the Finish button, change the Minimum
API level setting to API 26: Android 8.0 (Oreo). On completion of the
project creation process, the BoxLayout project should be listed in the
Project tool window located along the left-hand edge of the Android Studio
main window.
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {
}

Next, change the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

28.3 Adding the TextCell composable
In this chapter, we will again use our TextCell composable, though to best
demonstrate the features of the Box layout, we will modify the declaration
slightly so that it can be passed an optional font size when called.
Remaining within the MainActivity.kt file, add this composable function so
that it reads as follows:
.
.
import androidx.compose.foundation.border
import androidx.compose.foundation.layout.padding
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.style.TextAlign
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
.
.
@Composable
fun TextCell(text: String, modifier: Modifier = Modifier, fontSize:
Int = 150) {

 val cellModifier = Modifier
 .padding(4.dp)
 .border(width = 5.dp, color = Color.Black)

 Text(
 text = text, cellModifier.then(modifier),
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center
)
}

28.4 Adding a Box layout
Next, modify the MainScreen function to include a Box layout with three
TextCell children:
.
.
import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.size

.

.
@Composable
fun MainScreen() {
 Box {
 val height = 200.dp
 val width = 200.dp

 TextCell("1", Modifier.size(width = width, height =
height))
 TextCell("2", Modifier.size(width = width, height =
height))
 TextCell("3", Modifier.size(width = width, height =
height))
 }
}

After modifying the function, update the Preview panel to reflect these
latest changes. Once the layout appears it should resemble Figure 28-1:

Figure 28-1
The transparent nature of the Text composable allows us to see that the
three children have, indeed, been stacked directly on top of each other.
While this transparency is useful to show that the children have been
stacked, this isn’t the behavior we are looking for in this example. To give
the TextCell an opaque background, we need to call the Text composable
from within a Surface component. To achieve this, edit the TextCell
function so that it now reads as follows:
@Composable
fun TextCell(text: String, modifier: Modifier = Modifier, fontSize:
Int = 150) {
.
.
 Surface {
 Text(
 text = text, cellModifier.then(modifier),
 fontSize = fontSize.sp,

 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center
)
 }
}

When the preview is updated, only the last composable to be called by the
Box will be visible because it is the uppermost child of the stack.

28.5 Box alignment
The Box composable includes support for an alignment parameter to
customize the positioning of the group of children within the content area of
the box. The parameter is named contentAlignment and may be set to any
one of the following values:
•Alignment.TopStart
•Alignment.TopCenter
•Alignment.TopEnd
•Alignment.CenterStart
•Alignment.Center
•Alignment.CenterEnd
•Alignment.BottomCenter
•Alignment.BottomEnd
•Alignment.BottomStart
The diagram in Figure 28-2 illustrates the positioning of the Box content for
each of the above settings:

Figure 28-2
To try out some of these alignments options, edit the Box declaration in the
MainScreen function both to increase its size and to add a contentAlignment
parameter:

.

.
import androidx.compose.ui.Alignment
.
.
@Composable
fun MainScreen() {
.
.
 Box(contentAlignment = Alignment.CenterEnd,
 modifier = Modifier.size(400.dp, 400.dp)) {
 val height = 200.dp
 val width = 200.dp
 TextCell("1", Modifier.size(width = width, height =
height))
 TextCell("2", Modifier.size(width = width, height =
height))
 TextCell("3", Modifier.size(width = width, height =
height))
 }
}

Refresh the preview and verify that the Box content now appears at the
CenterEnd position within the Box content area:

Figure 28-3
28.6 BoxScope modifiers
In the chapter entitled “Composing Layouts with Row and Column”, we
introduced ColumnScope and RowScope and explored how these provide
additional modifiers that can be applied individually to child components.
In the case of the Box layout, the following BoxScope modifiers are
available to be applied to child composables:

•align() - Aligns the child within the Box content area using the specified
Alignment value.

•matchParentSize() - Sizes the child on which the modifier is applied to
match the size of the parent Box.

The set of Alignment values accepted by the align modifier is the same as
those listed above for Box alignment. The following changes to the
MainScreen function demonstrate the align() modifier in action:
@Composable
fun MainScreen() {
.
.
 Box(modifier = Modifier.size(height = 90.dp, width = 290.dp)) {
 Text("TopStart", Modifier.align(Alignment.TopStart))
 Text("TopCenter", Modifier.align(Alignment.TopCenter))
 Text("TopEnd", Modifier.align(Alignment.TopEnd))

 Text("CenterStart", Modifier.align(Alignment.CenterStart))
 Text("Center", Modifier.align(Alignment.Center))
 Text(text = "CenterEnd",
Modifier.align(Alignment.CenterEnd))

 Text("BottomStart", Modifier.align(Alignment.BottomStart))
 Text("BottomCenter",
Modifier.align(Alignment.BottomCenter))
 Text("BottomEnd", Modifier.align(Alignment.BottomEnd))
 }
}

When previewed, the above Box layout will appear as shown in Figure 28-4
below:

Figure 28-4
28.7 Using the clip() modifier
The compose clip() modifier allows composables to be rendered to conform

to specific shapes. Though not specific to Box, the Box component provides
perhaps the best example of clipping shapes. To define the shape of a
composable, the clip() modifier is called and passed a Shape value which
can be RectangleShape, CircleShape, RoundedCornerShape, or
CutCornerShape.
The following code, for example, draws a Box clipped to appear as a circle:
.
.
import androidx.compose.foundation.background
import androidx.compose.ui.draw.clip
import androidx.compose.foundation.shape.CircleShape
.
.
Box(Modifier.size(200.dp).clip(CircleShape).background(Color.Blue))
.
.

When rendered, the Box will appear as shown in Figure 28-5:

Figure 28-5
To draw a composable with rounded corners call RoundedCornerShape,
passing through the radius for each corner. If a single radius value is
provided, it will be applied to all four corners:
.
.
import androidx.compose.foundation.shape.RoundedCornerShape
.
.
Box(Modifier.size(200.dp).clip(RoundedCornerShape(30.dp)).backgroun
d(Color.Blue))

The above composable will appear as shown below:

Figure 28-6
As an alternative to rounded corners, composables may also be rendered
with cut corners. In this case, CutCornerShape is passed the cut length for
the corners. Once again, we may specify different values for each corner, or
all corners cut equally with a single length parameter:
.
.
import androidx.compose.foundation.shape.CutCornerShape
.
.
Box(Modifier.size(200.dp).clip(CutCornerShape(30.dp)).background(Co
lor.Blue))
.
.

The following figure shows the Box rendered by the above code:

Figure 28-7
28.8 Summary
The Compose Box layout positions all of its children on top of each other in
a stack arrangement, with the first child positioned at the bottom of the
stack. By default, this stack will be placed in the top left-hand corner of the
content area, though this can be changed using the contentAlignment
parameter when calling the Box composable.

Direct children of a Box layout have access to additional modifiers via
RowScope. These modifiers allow individual children to be positioned
independently within the Box content using a collection of nine pre-defined
position settings.

29. An Introduction to FlowRow and
FlowColumn
The chapter entitled “Composing Layouts with Row and Column” used the
Row and Column composables to present content elements uniformly
within a user interface. One limitation of Row and Column-based layouts is
that they are not well suited to organizing dynamic elements in terms of the
quantity and sizes of the content. These composables are also less effective
when designing layouts that are responsive to device screen orientation and
size changes.
In this chapter, we will learn about the Flow layout composables and
explore how they provide a more flexible way to organize content in rows
and columns.

29.1 FlowColumn and FlowRow
The Row and Column composables work best when you know the number
of items to be displayed and their respective sizes. This results in a
spreadsheet-like layout with rows of aligned columns. The Flow layouts,
however, are designed to flow content onto the next row or column when
space runs out. These composables also discard the spreadsheet approach to
organization, providing a more flexible approach to displaying items of
varying sizes. Figure 29-1, for example, shows a typical FlowRow layout:

Figure 29-1
As we will explore later in this chapter, Flow layouts provide extensive
options for configuring the layout and arrangement of child items, including
weight, spacing, alignment, and the maximum number of items per row or

column.
The FlowRow composable uses the following syntax:
FlowRow(
 modifier: Modifier = Modifier,
 horizontalArrangement: Arrangement.Horizontal,
 verticalArrangement: Arrangement.Vertical,
 maxItemsInEachRow: Int
) {
 // Content here
}

Figure 29-2 shows an example FlowColumn layout:

Figure 29-2
The FlowColumn composable uses the following syntax:
FlowColumn(
 modifier: Modifier,
 verticalArrangement: Arrangement.Vertical,
 horizontalArrangement: Arrangement.Horizontal,
 maxItemsInEachColumn: Int,
) {
 // Content here
}

29.2 Maximum number of items
Without restrictions, the Flow layouts will fit as many items into a row or
column as possible before flowing to the next one. The maximum number
of items can be restricted using the maxItemsInEachColumn and

maxItemsInEachRow properties of the FlowColumn and FlowRow. For
example:
FlowRow(maxItemsInEachRow = 10) {
 // Flow items here
}

FlowColumn(maxItemsInEachColumn = 5) {
 // Flow items here
}

29.3 Working with main axis arrangement
Main axis arrangement defines how the flow items are positioned along the
main axis of the parent Flow layout. For example, the
horizontalArrangement property controls the arrangement of flow items
along the horizontal axis of the FlowRow composable. Table 29-1 shows
the effects of the various horizontalArrangement options when applied to a
FlowRow instance:

Arrangement.Start Arrangement.Center

Arrangement.End Arrangement.SpaceBetween

Arrangement.SpaceAround Arrangement.SpaceEvenly

Arrangement.spacedBy(10.dp)

Tabl
e 29-

1
Similarly, the verticalArrangement property controls the positioning of flow
items along the vertical access of the FlowColumn. The same arrangement
options are available as those listed above, except that Arrangement.Start
and Arrangement.End are replaced by Arrangement.Top and
Arrangement.Bottom.

2
9.
4 Understanding cross-axis arrangement
Cross-axis arrangement controls the arrangement of a flow layout on the
opposite axis to the main flow. In other words, the verticalArrangement
property controls the vertical positioning of FlowRow items, while
horizontalArrangement does the same along the horizontal axis of
FlowColumn items. Table 29-2 demonstrates the three
horizontalArrangement options applied to a FlowColumn instance:

Arrangement.Start Arrangement.Center Arrangement.End

Table 29-2
29.5 Item alignment
The alignment of items within individual rows or columns can be controlled
by passing an alignment value to the align() modifier of the child items of a
Flow layout. This is useful when the Flow items vary in height (FlowRow)
or width (FlowColumn). The following code, for example, specifies bottom
alignment for a FlowRow item:
FlowRow {
repeat(6) {

 MyFlowItem(modifier = Modifier.align(Alignment.Bottom))
 }
}

The following table illustrates the effect of applying Alignment.Top,
Alignment.CenterVertically, and Alignment.Bottom to FlowRow items of
varying height:

Alignment.Top Alignment.CenterVertically Alignment.Bottom

Table 29-3
Equivalent alignment effects can be achieved for FlowColumn items using
Alignment.Start, Alignment.CenterHorizontally, and Alignment.End

29.6 Controlling item size
Weight factors can be applied to individual Flow items to specify the size
relative to the overall space available and the weights of other items in the
same row or column. Weights are expressed as Float values and applied to
individual Flow items using the weight() modifier. Consider, for example, a
FlowRow containing a single item with a weight of 1f:
FlowRow {
 MyFlowItem(
 Modifier
 .weight(1f)
)
}

When the layout is rendered, the item will occupy all the available space
because it is the only item in the row:

Figure 29-3
If we add a second item, also with a weight of 1f, the two items will share
the row equally:

Figure 29-4
If we add a third item with a weight of 1f, each item would occupy a third
of the space. However, suppose that the third item has a weight of 2f, giving
us a weight combination of 1f, 1f, and 2f. In this case, the first two items
occupy half of the available space, while the third occupies the other half:

Figure 29-5
To calculate an item’s when using weights, the Flow composables divide
the amount of space remaining in the row or column by the total item
weights, multiplied by the weight of the current item.
Another way to control the size of the items in a Flow layout is to use
fractional sizing. Fractional sizing involves specifying the percentage of the
overall space in a row or column that an item is to occupy. The fraction is
declared as a Float value and applied to FlowRow and FlowColumn items
using the fillMaxWidth() and fillMaxHeight() modifiers, respectively. For
example:
FlowRow {
 MyFlowItem(Modifier.width(50.dp))
 MyFlowItem(Modifier.fillMaxWidth(0.7f))
 MyFlowItem(Modifier.width(50.dp))
}

Regardless of the sizes of the other items, the fractional item in the above
code example will always occupy 70% of the row:

Figure 29-6
If there is insufficient room for the fractional item, items will flow onto the
next row to make room:

Figure 29-7
29.7 Summary
The FlowRow and FlowColumn composables are ideal for arranging groups
of items of varying sizes and quantities into flexible rows and columns.
When a Flow layout runs out of space to display items, the remaining
content flows to the next row or column. Combined with an extensive
collection of alignment, spacing, and arrangement options, these
composables provide a flexible and easy layout solution for presenting
content within apps.

30. A FlowRow and FlowColumn
Tutorial
Now that we understand what FlowRow and FlowColumn are and how they
work, we can put his knowledge to practical use. In this chapter, we will
create a project demonstrating these Flow layout components in action.

30.1 Creating the FlowLayoutDemo project
Launch Android Studio and select the New Project option from the
welcome screen. Choose the Empty Activity template within the resulting
new project dialog before clicking the Next button.
Enter FlowLayoutDemo into the Name field and specify
com.example.customlayout as the package name. Before clicking the Finish
button, change the Minimum API level setting to API 26: Android 8.0
(Oreo). Upon completion of the project creation process, the
FlowLayoutDemo project should be listed in the Project tool window along
the left-hand edge of the Android Studio main window.
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.
Finally, edit the Gradle Scripts -> build.gradle.kts (Module: app) file to
increase the compileSDK setting to API 34 before clicking on the Sync Now
link:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

android {
 namespace = "com.example.flowlayoutdemo"
 compileSdk = 34

30.2 Generating random height and color values
This project aims to use the Flow layouts to display multiple Box
composables configured with different dimensions and color properties.
Before we write the code for the Boxes, we first need a data class to store
the color and size values. Add a new class to the MainActivity.kt file as
follows:
.
.
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.unit.Dp
.
.
data class ItemProperties(
 val color: Color,
 val width: Dp,
 val height: Dp
)

class MainActivity : ComponentActivity() {
.
.

Now that we can store the current item properties, the next step is to write
code to generate random size and color values. We will do this by creating a
list of properties, calling the Kotlin Random.nextInt() method for each
instance to generate dimensions and RGB color values within the
MainScreen function:
.
.
import androidx.compose.foundation.layout.ExperimentalLayoutApi
import androidx.compose.ui.unit.dp
import kotlin.random.Random
.
.
@OptIn(ExperimentalLayoutApi::class)
@Composable
fun MainScreen() {

 val items = (1 .. 12).map {
 ItemProperties(

 width = Random.nextInt(20, 100).dp,
 height = Random.nextInt(10, 40).dp,
 color = Color(
 Random.nextInt(255),
 Random.nextInt(255),
 Random.nextInt(255),
 255
)
)
 }
}

The above code configures 12 ItemProperties instances with random widths
and heights ranging between 20 and 100 dp, and 10 and 40 dp, respectively.
Next, Color objects are created using random RGB values (0 to 255). In
addition, the alpha Color property is set to 255 to ensure only solid, non-
transparent colors are generated.
Note that the above code includes a directive to opt into experimental API
features. The Flow composables were still in the experimental development
phase at the time of writing. Depending on when you are reading this book,
this setting may no longer be required.

30.3 Adding the Box Composable
Now that we have a data set containing random color and dimension
properties, the next step is to iterate through the item properties and apply
them to Box instances within a FlowRow. Remaining in the MainScreen
function, add the FlowRow and Box code as follows:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.width
import androidx.compose.foundation.layout.FlowRow
import androidx.compose.foundation.layout.height
import androidx.compose.foundation.layout.padding
import androidx.compose.foundation.shape.RoundedCornerShape
import androidx.compose.ui.draw.clip
.
.
@OptIn(ExperimentalLayoutApi::class)
@Composable

fun MainScreen() {
.
.
 FlowRow(Modifier.width(300.dp)) {

 items.forEach { properties ->
 Box(modifier = Modifier
 .padding(2.dp)
 .width(properties.width)
 .height(30.dp)
 .clip(RoundedCornerShape(8.dp))
 .background(properties.color)
)
 }
 }
}

After making the above code additions, the layout should resemble Figure
30-1 when viewed in the Preview panel:

Figure 30-1
30.4 Modifying the Flow arrangement
The FlowRow in the above example is defaulting to Arrangement.Start for
the horizontal arrangement. Modify the FlowRow declaration in the
MainScreen function to set the horizontalArrangement property to
Arrangement.End as follows:
.
.
import androidx.compose.foundation.layout.Arrangement
.
.
 FlowRow(Modifier.width(300.dp),
 horizontalArrangement = Arrangement.End) {

 items.forEach { properties ->

.

.

When the Preview panel refreshes, the layout should resemble Figure 30-2
below:

Figure 30-2
Repeat the above steps to experiment with the Center, SpaceAround,
spacedBy(), and SpaceBetween arrangement options. Once you have tried
all the options, change the horizontalArrangement parameter to
Arrangement.Start.

30.5 Modifying item alignment
The next step in this project is to introduce random height values so that we
can experiment with item alignment. Begin by editing the MainScreen
function to make the Box height random:
.
.
 items.forEach { properties ->
 Box(modifier = Modifier
 .padding(2.dp)
 .width(properties.width)
 .height(properties.height)
 .clip(RoundedCornerShape(8.dp))
 .background(properties.color)
)
 }
.
.

When Previewed, the layout will include Boxes of varying heights:

Figure 30-3
The layout has defaulted to top alignment for items with shorter heights.
Add the align() modifier to the Box declaration to switch to bottom
alignment:
.
.
import androidx.compose.ui.Alignment
.
.
 items.forEach { properties ->
 Box(modifier = Modifier
 .align(Alignment.Bottom)
 .padding(2.dp)
 .width(properties.width)
 .height(properties.height)
 .clip(RoundedCornerShape(8.dp))
 .background(properties.color)
)
 }
.
.

Check the layout preview to verify that the shorter items are now aligned
with the bottom of each row:

Figure 30-4

30.6 Switching to FlowColumn
Begin the transition from a FlowRow layout to FlowColumn by making the
following code changes:
.
.
import androidx.compose.foundation.layout.FlowColumn
.
.
 val items = (1 .. 24).map {
 ItemProperties(
.
.
 FlowColumn(Modifier
 .width(300.dp)
 .height(120.dp),
 verticalArrangement = Arrangement.Top) {

 items.forEach { properties ->
 Box(modifier = Modifier
 .align(Alignment.Bottom)
 .padding(2.dp)
 .width(30.dp)
 .height(properties.height)
 .clip(RoundedCornerShape(8.dp))
 .background(properties.color)
)
 }
 }
.
.

Using the Preview panel, verify that the items now appear in top-aligned
columns:

Figure 30-5
Before moving to the next section, experiment with the effects of changing
the verticalArrangement property to Arrangement.Bottom and
Arrangement.Center.

30.7 Using cross-axis arrangement
As outlined in the previous chapter, cross-axis arrangement controls the
position of the Flow layout along the opposite axis to the main flow axis.
We can see this in practice by changing the horizontalArrangement
parameter of our FlowColumn declaration as follows:
FlowColumn(Modifier
 .width(300.dp)
 .height(120.dp),
 verticalArrangement = Arrangement.Center,
 horizontalArrangement = Arrangement.Center) {

The above change should cause the Flow items to appear in the horizontal
center of the parent FlowColumn, as illustrated in Figure 30-6:

Figure 30-6
30.8 Adding item weights
This tutorial’s final step is adding weight values to the Flow items. The goal
is to apply a specific weight depending on the position of the item in the
flow. This means that we need to be able to access the index value of the
forEach loop, which we can do using forEachIndexed. We will also set a
fixed height for all items to make the weight settings more obvious. Edit the
MainScreen function and make the following changes:
.
.
 FlowColumn(Modifier
 .width(300.dp)

 .height(120.dp),
 verticalArrangement = Arrangement.Center,
 horizontalArrangement = Arrangement.Center) {

 items.forEachIndexed { index, properties ->

 var weight = 0.5f

 if (index % 2 == 0) {
 weight = 2f
 } else if (index % 3 == 0) {
 weight = 3f
 }

 Box(modifier = Modifier
 .weight(weight)
 .padding(2.dp)
 .width(30.dp)
 .height(30.dp)
 .clip(RoundedCornerShape(8.dp))
 .background(properties.color)
)
 }
 }
.
.

The resulting layout should appear as shown in Figure 30-7:

Figure 30-7
30.9 Summary
In this chapter, we used the knowledge from the “An Introduction to
FlowRow and FlowColumn” chapter to create example FlowRow and
FlowColumn layouts. The tutorial also demonstrated how alignment,

arrangement, and weight settings change how Flow items are presented.

31. Custom Layout Modifiers
Although the Box, Row, and Column composables provide great flexibility
in terms of layout design, situations will inevitably arise where you have a
specific layout requirement that cannot be achieved using the built-in layout
components. Fortunately, Compose includes several more advanced layout
options. In this chapter, we will explore one of these in the form of custom
layout modifiers.

31.1 Compose layout basics
Before exploring custom layouts, it will be helpful to understand the basics
of how user interface elements are positioned in a Compose-based user
interface. As we already know, user interface layouts are created by writing
composable functions which generate UI elements that are, in turn,
rendered on the screen. Composables call other composables to build a UI
hierarchy tree consisting of parent and child relationships. Each child can
have its own children, and so on.
As the app executes, the composable hierarchy is rapidly and continually
recomposed in response to changes in state. Each time a parent composable
is called, it is responsible for controlling the size and positioning of all of its
children. The child’s position is defined using x and y coordinates relative
to the parent’s position. In terms of size, the parent imposes constraints that
define the maximum and minimum allowable height and width dimensions
of the child.
Depending on configuration, the size of a parent can either be fixed (for
example using the size() modifier) or calculated based on the size and
positioning of its children.
The built-in Box, Row, and Column components all contain logic that
measures each child and calculates how to position each to create the
corresponding row, column, or stack positioning. The same techniques used
behind the scenes by these built-in layouts are also available to you to
create your own custom layouts.

31.2 Custom layouts
Custom layouts are quite straightforward to implement and fall into two

categories. In its most basic form, a custom layout can be implemented as a
layout modifier which can be applied to a single user interface element
(something similar to the standard padding() modifier). Alternatively, a new
Layout composable can be written which applies to all the children of a
composable (the technique used by the Box, Column, and Row
composables).
In the rest of this chapter, we will explore the custom layout modifier
approach to custom layout development. Since experimentation is a good
way to understand custom layouts, each step of this introduction to custom
layout modifiers will be demonstrated using an example project. Feel free
to modify the examples in this chapter and observe how the changes affect
the resulting user interface layout.

31.3 Creating the LayoutModifier project
Launch Android Studio and select the New Project option from the
welcome screen. Within the resulting new project dialog, choose the Empty
Activity template before clicking on the Next button.
Enter LayoutModifier into the Name field and specify
com.example.layoutmodifier as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

31.4 Adding the ColorBox composable
The child elements in most of these examples in this chapter will be
represented by colored boxes. Although the Box component is primarily
intended as a way to stack children on top of each other, an empty Box is
also a simple and effective way to draw rectangles on the screen. Since we
will be drawing multiple boxes, it makes sense to add a reusable

composable for this purpose. Add the following ColorBox composable
function to the MainActivity.kt file:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.*
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.unit.dp
import androidx.compose.ui.layout.layout
.
.
@Composable
fun ColorBox(modifier: Modifier) {
 Box(Modifier.padding(1.dp).size(width = 50.dp, height =
10.dp).then(modifier))
}

Next, modify the MainScreen composable function to include a Box with a
ColorBox child:
@Composable
fun MainScreen() {
 Box(modifier = Modifier.size(120.dp, 80.dp)) {
 ColorBox(
 Modifier.background(Color.Blue)
)
 }
}

When the layout is previewed, it will appear as shown in Figure 31-1
below:

Figure 31-1
31.5 Creating a custom layout modifier
The Box layout in the above example has positioned the ColorBox element
in the top left-hand corner of its content area. This is the default position for

the child of a Box layout in absence of alignment parameters or modifiers to
the contrary.
We can now create a simple custom layout modifier that can be applied to
the ColorBox to move it to a new position within the parent Box.
Custom layout modifiers are written using the following standard syntax:
fun Modifier.<custom layout name> (
 // Optional parameters here
) = layout { measurable, constraints ->
 // Code to adjust position and size of element
}

The layout’s trailing lambda is passed two parameters named measurable
and constraints respectively. The measurable parameter is the child element
on which the modifier was called, while the constraints parameter contains
the maximum and minimum width and height values allowed for the child.
For this example, we want to be able to specify a new x and y position for
the child relative to the default position assigned to it by the parent. Before
we do that, we to clarify what is meant by default position.

31.6 Understanding default position
In the example created so far, the default position is the top left-hand corner
of the Box’s content area which equates to x and y coordinates 0, 0. The
second child of a Row layout, on the other hand, would be positioned at
entirely different default x and y coordinates within the context of the
parent.
The layout modifier is not concerned about the default position of the child
within the context of the parent. Instead, it is only interested in calculating
where the child will be positioned relative to the default position. In other
words, the modifier will calculate the new position relative to 0, 0, and
return the new offset coordinates. The parent will then apply the offset to
the actual coordinates to move the child to the custom position.
A parent might, for example, calculate the default x and y coordinates of a
child are 50, 70. A custom layout modifier will calculate the new position
relative to 0, 0 and return the new offset (perhaps 20, 10). The parent will
then apply the offset to the actual position (in this case 50, 70) to move the
child to the custom position at 70, 80.

31.7 Completing the layout modifier
The next step in implementing our modifier is to allow new coordinate
offsets to be passed through when it is called. Begin implementing the
modifier, which we will name exampleLayout within the MainActivity.kt file
so that it reads as follows:
fun Modifier.exampleLayout(
 x: Int,
 y: Int
) = layout { measurable, constraints ->

}

When the modifier lays out the child it will need to know the child’s
measurements to make sure it conforms to the constraints passed to the
lambda. These values are obtained by calling the measure() method of the
measurable instance, passing through the constraints object. This call will
return a Placeable instance containing height and width values. We can also
call methods on the Placeable instance to specify the new position of the
element within its parent content area. Start by adding code to the modifier
to perform this measurement as follows:
fun Modifier.exampleLayout(
 x: Int,
 y: Int
) = layout { measurable, constraints ->
 val placeable = measurable.measure(constraints)
}

When developing custom layouts an important rule to remember is that a
child must only be measured once each time the modifier is called. This
rule, referred to as single-pass measurement, is required to ensure that the
user interface tree hierarchies are rendered quickly and efficiently.
Next, we need to call a method named layout(), passing through the height
and width values from the placeable value. We also need to pass a trailing
lambda to the layout() method containing the code to position the child:
fun Modifier.exampleLayout(
 x: Int,
 y: Int
) = layout { measurable, constraints ->
 val placeable = measurable.measure(constraints)

 layout(placeable.width, placeable.height) {
 placeable.placeRelative(x, y)
 }
}

Within the lambda, the child element is positioned via a call to the
placeRelative() method of the Placeable object, using the new x and y
coordinates that were passed to the modifier.

31.8 Using a custom modifier
Now that we have created the custom modifier, it is ready to be applied to a
child composable, in this case, our ColorBox component. Locate and edit
the MainScreen composable and modify the ColorBox call to apply the
exampleLayout() modifier:
@Composable
fun MainScreen() {
 Box(Modifier.size(120.dp, 80.dp)) {
 ColorBox(
 Modifier
 .exampleLayout(90, 50)
 .background(Color.Blue)
)
 }
}

When the layout is now rendered in the preview panel, the position of the
ColorBox element will be adjusted to match the x and y coordinates passed
to the exampleLayout modifier:

Figure 31-2
31.9 Working with alignment lines
When adjusting the position of the child composable in the above example,
the top left-hand corner of the ColorBox was moved to a specific x and y
coordinate. It could also be said that the box was positioned based on the

intersection of two alignment lines which correspond to the left and top
sides of the rectangle as illustrated in Figure 31-3:

Figure 31-3
Given that we have access to the height and width measurements of the
child element, we can set positioning based on any horizontal or vertical
alignment line (or a combination of both). We could, for example, position
the child based on a vertical alignment line located midway along its length
as visualized below:

Figure 31-4
In fact, we could make the position of our hypothetical alignment line
configurable by passing it through as a parameter to the layout modifier. To
demonstrate this concept, modify the exampleLayout modifier code as
follows:
.
.
import kotlin.math.roundToInt
.
.
fun Modifier.exampleLayout(
 fraction: Float
) = layout { measurable, constraints ->
 val placeable = measurable.measure(constraints)

 val x = -(placeable.width * fraction).roundToInt()

 layout(placeable.width, placeable.height) {
 placeable.placeRelative(x = x, y = 0)
 }
}

These changes require some explanation. To begin with, the modifier is no
longer passed x and y coordinates. Instead, the new position will be
calculated relative to the default coordinates defined by the parent (which
will be 0, 0). Also, the modifier now accepts a floating-point parameter
representing the position of the vertical alignment line as a percentage of
the width of the child. The x coordinate is then calculated as follows:
val x = -(placeable.width * fraction).roundToInt()

This calculation takes the width of the child from the placeable object and
multiplies it by the fraction parameter value. Because this results in a
floating-point result, it is rounded to an integer so that it can be used as a
coordinate value in the call to placeRelative(). Finally, since a move of the
alignment line to the right is equivalent to moving the child to the left, the x
value is inverted into a negative value. The child is then placed at the new
coordinates. Note that since the vertical positioning is unchanged, the y
value is set to 0.
Perhaps the best way to see this modifier in action is to apply it to the
children of a Column layout. With this in mind, modify the MainScreen
composable as follows:
.
.
import androidx.compose.ui.Alignment
.
.
@Composable
fun MainScreen() {
 Box(contentAlignment = Alignment.Center,
 modifier = Modifier.size(120.dp, 80.dp)) {
 Column {
 ColorBox(
 Modifier.exampleLayout(0f).background(Color.Blue)
)
 ColorBox(

 Modifier.exampleLayout(0.25f).background(Color.Gree
n)
)
 ColorBox(
 Modifier.exampleLayout(0.5f).background(Color.Yello
w)
)
 ColorBox(
 Modifier.exampleLayout(0.25f).background(Color.Red)
)
 ColorBox(
 Modifier.exampleLayout(0.0f).background(Color.Magen
ta)
)
 }
 }
}

The above layout will appear in the Preview panel as shown in Figure 31-5.
Note that the dotted line has been superimposed to indicate the position of
the alignment line for each child:

Figure 31-5
31.10 Working with baselines
We already know from working with the Row and Column layouts in the
chapter entitled “Composing Layouts with Row and Column” that a Text
composable can be aligned relative to its text content baselines. The
FirstBaseline and LastBaseline alignment lines correspond to the bottom
edge of the first and last lines of text content contained within a Text
component respectively.
When writing custom layout modifiers, these baselines can be accessed via

the Placeable object and used as reference points for customizing child
positioning. For example:
val placeable = measurable.measure(constraints)

val firstBaseline = placeable[FirstBaseLine]
val lastBaseline = placeable[LastBaseline]

Since not all composables support baseline alignment, the code in the
layout modifier should check that the child it has been passed supports this
type of alignment. This can be achieved by checking that the alignment
does not equate to AlignmentLine.Unspecified, for example:
if (placeable[FirstBaseline] == AlignmentLine.Unspecified) {
 // child passed to modifier does not support FirstBaseline
alignment
}

31.11 Summary
While much can be achieved using the built-in Row, Column, and Box
layouts in combination with the corresponding scope modifiers, there will
often be instances where a child element will need to be positioned in a way
that is not supported using the standard options. This challenge can be
addressed by creating a custom layout modifier which can then be applied
to any child element as needed. A custom layout modifier is passed a set of
constraints indicating size restrictions and the child element to be
positioned. The child can then be measured (an action that must only be
performed once within a layout modifier) and calculations performed to
customize the size and position of the child within the content area of the
parent. Positioning may also be customized based on baseline alignment
when supported by the child element.

32. Building Custom Layouts
So far in this book, we have introduced the Box, Column, and Row layout
components provided with Compose and shown how these are used to
layout child elements in an organized way. We have also covered the
creation and use of custom layout modifiers and explored how these can be
used to modify the position of individual child elements within a parent
layout. In this chapter, we will cover the creation of your own custom
layout components.

32.1 An overview of custom layouts
Custom layouts in Compose allow you to design your own layout
components with full control over how all of the child elements are sized
and positioned. The techniques covered in this chapter are the same as those
used by Google to create the built-in Compose Row, Column, and Box
layouts. Custom layouts also share some similarities with custom content
modifiers. A custom layout can be thought of as a way to apply a custom
layout modifier to multiple children.
Custom layouts are declared using the Compose Layout composable
function, the sole purpose of which is to provide a way to measure and
position multiple children.

32.2 Custom layout syntax
Most custom layout declarations will begin with the same standard
structure. The following code, for example, declares a custom layout which
doesn’t make any changes to the layout properties of its children and serves
as a template from which to build your own custom layouts:
@Composable
fun DoNothingLayout(
 modifier: Modifier = Modifier,
 content: @Composable () -> Unit
) {
 Layout(
 modifier = modifier,
 content = content
) { measurables, constraints ->
 val placeables = measurables.map { measurable ->

 // Measure each children
 measurable.measure(constraints)
 }

 layout(constraints.maxWidth, constraints.maxHeight) {
 placeables.forEach { placeable ->
 placeable.placeRelative(x = 0, y = 0)
 }
 }
 }
}

As we can see, the layout is declared as a composable function named
DoNothingLayout. This function accepts both a modifier and the content to
be displayed via a slot API:
@Composable
fun DoNothingLayout(
 modifier: Modifier = Modifier,
 content: @Composable () -> Unit
) {
.
.

The custom layout composable may also be designed to accept additional
parameters which can then be used when calculating child layout properties.
The function then makes a call to the Compose Layout() composable which
accepts a trailing lambda. This lambda is passed two parameters named
measurables and constraints respectively. The measurables parameter
contains all of the child elements contained within the content, while the
constraints parameter contains the maximum and minimum width and
height values allowed for the children:
.
.
 Layout(
 modifier = modifier,
 content = content
) { measurables, constraints ->
.
.

Next, the children are measured and those measurements mapped to a list of
Placeable objects:

.

.
 val placeables = measurables.map { measurable ->
 // Measure each child
 measurable.measure(constraints)
 }
.
.

The map method used above executes the code within the trailing lambda
on each child element in the measurables object which, in turn, measures
each child. The result is a list of Placeable instances (one for each child)
which is then assigned to a variable named placeables.
Finally, the layout() function (this is the same function that was used for
custom layout modifiers in the previous chapter) is called and passed the
maximum height and width values allowed by the parent. The trailing
lambda then iterates through each child in the placeables variable and
positions it relative to the default position designated by the parent.

32.3 Using a custom layout
Once a custom layout has been created, it can be called in much the same
way as the standard Compose layouts. Our example layout could therefore
be called as follows:
DoNothingLayout(Modifier.padding(8.dp)) {
 Text("Text Line 1")
 Text("Text Line 2")
 Text("Text Line 3")
 Text("Text Line 4")
}

Since the custom layout doesn’t reposition any child elements, the above
code would result in the four Text composables being stacked on top of
each other. In the remainder of this chapter we will create a project
containing a custom layout that lays out its children.

32.4 Creating the CustomLayout project
Launch Android Studio and select the New Project option from the
welcome screen. Within the resulting new project dialog, choose the Empty
Activity template before clicking the Next button.
Enter CustomLayout into the Name field and specify

com.example.customlayout as the package name. Before clicking the Finish
button, change the Minimum API level setting to API 26: Android 8.0
(Oreo). On completion of the project creation process, the CustomLayout
project should be listed in the Project tool window located along the left-
hand edge of the Android Studio main window.
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

32.5 Creating the CascadeLayout composable
The custom layout will be named CascadeLayout, the purpose of which is
to layout its children in a column with each child indented by the width of
the preceding child. An optional parameter will also be implemented to
allow the spacing between the child elements to be configured.
Edit the MainActivity.kt file and begin by implementing the basic template
of the CascadeLayout composable so that it reads as follows:
.
.
import androidx.compose.ui.layout.Layout
.
.
@Composable
fun CascadeLayout(
 modifier: Modifier = Modifier,
 content: @Composable () -> Unit
) {
 Layout(
 modifier = modifier,
 content = content
) { measurables, constraints ->
 layout(constraints.maxWidth, constraints.maxHeight) {
 val placeables = measurables.map { measurable ->
 measurable.measure(constraints)
 }

 placeables.forEach { placeable ->

 }
 }
 }
}

Next, the spacing parameter needs to be added. To make this optional, we
will provide this parameter with a zero default value. Also, since the
amount by which a child is to be indented will increase each time a child is
added to the column, we need to add a variable in which to track the latest
indent. Similarly, the y coordinate will also need to be retained so that each
child appears below the preceding child:
@Composable
fun CascadeLayout(
 modifier: Modifier = Modifier,
 spacing: Int = 0,
 content: @Composable () -> Unit
) {
 Layout(
 modifier = modifier,
 content = content
) { measurables, constraints ->
 var indent = 0
.
.
 layout(constraints.maxWidth, constraints.maxHeight) {
 var yCoord = 0
.
.

Finally, code needs to be added to the forEach loop to calculate the
positions of each child:
.
.
 layout(constraints.maxWidth, constraints.maxHeight) {
 var yCoord = 0

 placeables.forEach { placeable ->
 placeable.placeRelative(x = indent, y = yCoord)
 indent += placeable.width + spacing
 yCoord += placeable.height + spacing

 }
 }
.
.

The first child will be positioned at coordinates 0, 0 so we simply use the
zero initialized indent and yCoord values:
placeable.placeRelative(x = indent, y = yCoord)

Next, we increase the indent value by the width of the current child, plus
the optional spacing value. The yCoord value is also increased by the height
of the current child, once again adding the optional spacing:
indent += placeable.width + spacing
yCoord += placeable.height + spacing

With the indent and y coordinate variable updated, the forEach loop iterates
to the next child, repeating the process until all the children have been
positioned.

32.6 Using the CascadeLayout composable
We are now ready to try out our new custom layout. The layout is designed
to work with children of varying sizes, so the test will involve Box layouts
of differing widths and heights. We will also pass a spacing value to the
layout when it is called.
Locate the MainScreen composable within the MainActivity.kt file and add
a call to our new custom layout as follows:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.size
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.unit.dp
.
.
@Composable
fun MainScreen() {

 Box {
 CascadeLayout(spacing = 20) {
 Box(modifier =
Modifier.size(60.dp).background(Color.Blue))

 Box(modifier = Modifier.size(80.dp,
40.dp).background(Color.Red))
 Box(modifier = Modifier.size(90.dp,
100.dp).background(Color.Cyan))
 Box(modifier =
Modifier.size(50.dp).background(Color.Magenta))
 Box(modifier =
Modifier.size(70.dp).background(Color.Green))
 }
 }
}

Preview the layout and verify that it appears as shown in Figure 32-1:

Figure 32-1
32.7 Summary
Custom layout support in Compose allows you to create your own layouts
which operate at the same syntactic level as the built-in Row, Column, and
Box layouts. These custom layouts are created using a standard template
mechanism built around the Compose Layout function. This function is
passed a measurables object containing all children of the layout together
with a set of constraints providing the maximum and minimum size values
permitted by the parent. The individual children are then extracted from the
measurables object and placed at specific coordinates within the layout
content area to meet the custom layout requirements. In this chapter, we
created a custom layout that positions its children in a cascading column
layout. In practice, this technique can be used to design custom layouts of
just about any level of complexity.

33. A Guide to ConstraintLayout in
Compose
As we have seen in the preceding chapters, Compose provides several
layout components to design user interfaces in addition to the ability to
create custom layouts and modifiers. While these will meet most layout
needs, there may still be situations where more detailed control over the
positioning and sizing of composables may be required. Before the
introduction of Jetpack Compose this capability was provided by the
ConstraintLayout manager which is also available from within Compose.
This chapter will outline the basic concepts of ConstraintLayout while the
next chapter will provide a detailed overview of how constraint-based
layouts can be created using ConstraintLayout within Compose.

33.1 An introduction to ConstraintLayout
Introduced as part of the Android 7 SDK, ConstraintLayout provides a
simple, expressive and flexible layout system designed to ease the creation
of responsive user interface layouts. ConstraintLayout is of particular use
when developing user interface layouts that need to adapt automatically to
different screen sizes and changes in device orientation.

33.2 How ConstraintLayout works
In common with all other layouts, ConstraintLayout is responsible for
managing the positioning and sizing behavior of its child components. It
does this based on the constraint connections that are set on each child.
To fully understand and use ConstraintLayout, it is important to gain an
appreciation of the following key concepts:
•Constraints
•Margins
•Opposing Constraints
•Constraint Bias
•Chains
•Chain Styles

•Guidelines
•Barriers
33.2.1 Constraints
Constraints are essentially sets of rules that dictate how a composable is
aligned and distanced in relation to other composables, the sides of the
containing ConstraintLayout parent, and special elements called guidelines
and barriers. Constraints also dictate how the user interface layout of an
activity will respond to changes in device orientation, or when displayed on
devices of differing screen sizes. To be adequately configured, a
composable must have sufficient constraint connections such that its
position can be resolved by the ConstraintLayout layout engine in both the
horizontal and vertical planes.
33.2.2 Margins
A margin is a form of constraint that specifies a fixed distance. Consider a
Button component that needs to be positioned near the top right-hand corner
of the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the
corresponding sides of the parent ConstraintLayout as illustrated in Figure
33-1:

Figure 33-1
As indicated in the above diagram, each of these constraint connections has
associated with it a margin value dictating the fixed distances of the Button
from two sides of the parent layout. Under this configuration, regardless of
screen size or the device orientation, the Button will always be positioned
20 and 15 device-independent pixels (dp) from the top and right-hand edges
of the parent ConstraintLayout respectively as specified by the two

constraint connections.
While the above configuration will be acceptable for some situations, it
does not provide any flexibility in terms of allowing the ConstraintLayout
layout engine to adapt the position of the button to respond to device
rotation and to support screens of different sizes. To add this responsiveness
to the layout it is necessary to implement opposing constraints.
33.2.3 Opposing constraints
Two constraints operating along the same axis on a single composable are
referred to as opposing constraints. In other words, a component with
constraints on both its left and right-hand sides is considered to have
horizontally opposing constraints. Figure 33-2, for example, illustrates the
addition of both horizontally and vertically opposing constraints to the
previous layout:

Figure 33-2
The key point to understand here is that once opposing constraints are
implemented on a particular axis, the positioning of the composable
becomes percentage rather than coordinate-based. Instead of being fixed at
20dp from the top of the layout, for example, the widget is now positioned
at a point 30% from the top of the layout. In different orientations and when
running on larger or smaller screens, the Button will always be in the same
location relative to the dimensions of the parent layout.
It is now important to understand that the layout outlined in Figure 33-2 has
been implemented using not only opposing constraints but also by applying
constraint bias.
33.2.4 Constraint bias

It has now been established that a component in a ConstraintLayout can
potentially be subject to opposing constraint connections. By default,
opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 33-3, for example, shows a
button centered within the containing ConstraintLayout using opposing
horizontal and vertical constraints:

Figure 33-3
To allow for the adjustment of component position in the case of opposing
constraints, the ConstraintLayout implements a feature known as constraint
bias. Constraint bias allows the positioning of a composable along the axis
of opposition to be biased by a specified percentage in favor of one
constraint. Figure 33-4, for example, shows the previous constraint layout
with a 75% horizontal bias and 10% vertical bias:

Figure 33-4
The next chapter, entitled “Working with ConstraintLayout in Compose”,
will cover these concepts in greater detail and explain how these features
have been integrated into Compose. In the meantime, however, a few more

areas of the ConstraintLayout class need to be covered.
33.2.5 Chains
ConstraintLayout chains provide a way for the layout behavior of two or
more composables to be defined as a group. Chains can be declared in
either the vertical or horizontal axis and configured to define how the
components in the chain are spaced and sized.
Although Compose provides a helper to ease the creation of chains, it is
worth noting that behind the scenes, composables are chained when
connected by bi-directional constraints. Figure 33-5, for example, illustrates
three Buttons chained in this way:

Figure 33-5
The first element in the chain is the chain head which translates to the top
item in a vertical chain or, in the case of a horizontal chain, the left-most
item. The layout behavior of the entire chain is primarily configured by
setting attributes on the chain head component.
33.2.6 Chain styles
The layout behavior of a ConstraintLayout chain is dictated by the chain
style setting applied to the chain head composable. The ConstraintLayout
class currently supports the following chain layout styles:
•Spread Chain – The composables contained within the chain are
distributed evenly across the available space. This is the default behavior
for chains.

Figure 33-6

•Spread Inside Chain – The composables contained within the chain are
spread evenly between the chain head and the last widget in the chain. The
head and last composables are not included in the distribution of spacing.

Figure 33-7
•Weighted Chain – Allows the space taken up by each composable in the
chain to be defined via weighting properties.

Figure 33-8
•Packed Chain – The composables that make up the chain are packed
together without any spacing. A bias may be applied to control the
horizontal or vertical positioning of the chain in relation to the parent
container.

Figure 33-9
33.3 Configuring dimensions
Controlling the dimensions of a composable is a key element of the user
interface design process. The ConstraintLayout provides five options that
can be set on individual components to manage sizing behavior. These
settings are configured individually for height and width dimensions:
•Dimension.preferredWrapContent - The size of the composable is
dictated by the content it contains (i.e. text or graphics) subject to
prevailing constraints.

•Dimension.wrapContent - The size of the composable is dictated by the
content it contains regardless of prevailing constraints.

•Dimension.fillToConstraints - Allows the composable to be sized to fill

the space allowed by the prevailing constraints.
•Dimension.preferredValue - The composable is fixed to specified
dimensions subject to the prevailing constraints.

•Dimension.value - The composable is fixed to specified dimensions
regardless of the prevailing constraints.

33.4 Guideline helper
Guidelines are special elements available within the ConstraintLayout that
provide an additional target to which constraints may be connected.
Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once
added, constraint connections may be established from Composables in the
layout to the guidelines. This is particularly useful when multiple
composables need to be aligned along an axis. In Figure 33-10, for
example, three Buttons contained within a ConstraintLayout are constrained
along a vertical guideline:

Figure 33-10
33.5 Barrier helper
Rather like guidelines, barriers are virtual views that can be used to
constrain composables within a layout. As with guidelines, a barrier can be
vertical or horizontal and one or more composables may be constrained to it
(to avoid confusion, these will be referred to as constrained components).
Unlike guidelines where the guideline remains at a fixed position within the
layout, however, the position of a barrier is defined by a set of so-called
reference components. Barriers were introduced to address an issue that
occurs with some frequency involving overlapping components. Consider,

for example, the layout illustrated in Figure 33-11 below:

Figure 33-11
The key point to note about the above layout is that the width of Item 3 is
set to fillToConstraints mode, and the left-hand edge of the view is
connected to the right-hand edge of Item 1. As currently implemented, an
increase in width of Item 1 will have the desired effect of reducing the
width of Item 3:

Figure 33-12
A problem arises, however, if Item 2 increases in width instead of Item 1:

Figure 33-13
Because Item 3 is only constrained by Item 1, it does not resize to
accommodate the increase in width of Item 2 causing the components to
overlap.

A solution to this problem is to add a vertical barrier and assign Items 1 and
2 as the barrier’s reference components so that they control the barrier
position. The left-hand edge of Item 3 will then be constrained in relation to
the barrier, making it a constrained component.
Now when either Item 1 or Item 2 increase in width, the barrier will move
to accommodate the widest of the two components, causing the width of
Item 3 to change in relation to the new barrier position:

Figure 33-14
When working with barriers there is no limit to the number of reference
views and constrained components that can be associated with a single
barrier.

33.6 Summary
ConstraintLayout is a layout manager introduced with Android 7 and is now
available for use within Compose layouts. It is designed to ease the creation
of flexible layouts that adapt to the size and orientation of the many
Android devices now on the market. ConstraintLayout uses constraints to
control the alignment and positioning of components in relation both to
each other and to the parent ConstraintLayout instance, guidelines, and
barriers. ConstraintLayout provides an alternative when desired layout
behavior cannot be achieved using the standard Compose layout techniques.

34. Working with ConstraintLayout
in Compose
In the previous chapter, we introduced ConstraintLayout and explained how
the key features of this layout manager can be used to create complex and
responsive user interface designs. This chapter will describe how
ConstraintLayout is used within Compose layouts while providing
examples of the various ConstraintLayout features you can combine to
design your layouts.

34.1 Calling ConstraintLayout
ConstraintLayout is provided in the form of a composable in the same way
as all other layouts in Compose and can be called as follows:
ConstraintLayout {
 // Children here
}

As with other layout composables, ConstraintLayout also accepts a
Modifier parameter, for example:
ConstraintLayout(Modifier.size(width = 200.dp, height = 300.dp)
 .background(Color.Green)) {
 // Children here
}

34.2 Generating references
In the absence of any constraints, a composable child of a ConstraintLayout
will be positioned in the top left-hand corner of the content area (assuming
the app is running in a left-to-right, top to bottom locale). Composables that
are to be constrained must be assigned a reference before constraints can be
applied. This is a two-step process consisting of generating the references,
and then assigning them to composables before constraints are applied. A
single reference can be generated via a call to the createRef() function and
the result assigned to a constant:
val text1 = createRef()

Alternatively, multiple references may be created in a single step by calling
createRefs() as follows:
val (button, text1, text2) = createRefs()

34.3 Assigning a reference to a composable
Once references have been generated, they are applied to individual
composables using the constrainAs() modifier function. The following
code, for example, assigns the text1 reference to a Text component:
ConstraintLayout {
 val text1 = createRef()

 Text("Hello", modifier = Modifier.constrainAs(text1) {
 // Constraints here
 })

As we can see in the above code, the constrainAs() modifier has a trailing
lambda in which the constraints are added.

34.4 Adding constraints
The most common form of constraint is one between one side of a
composable and one side of either the parent ConstraintLayout, or another
composable. Constraints of this type are declared within the constrainAs()
trailing lambda via calls to the linkTo() function. There are different ways to
call linkTo() depending on the nature of the constraints being created. The
following code, for example, constrains the top and bottom edges of a Text
component to the top and bottom of the parent ConstraintLayout instance,
both with a 16dp margin:
Text("Hello", modifier = Modifier.constrainAs(text1) {
 top.linkTo(parent.top, margin = 16.dp)
 bottom.linkTo(parent.bottom, margin = 16.dp)
})

The linkTo() function may also be passed multiple constraints as
parameters. In the following example, the start and end sides of the Text
component are constrained to components named button1 and button2,
while the top and bottom edges are constrained to the top and bottom of the
parent with a bias of 0.8:
Text("Hello", modifier = Modifier.constrainAs(mytext) {
 linkTo(parent.top, parent.bottom, bias = 0.8f)
 linkTo(button1.end, button2.start)

})
In addition to applying constraints using the linkTo() function, a component
can be centered horizontally and vertically relative to another component or

the parent:
Text("text1", modifier = Modifier.constrainAs(text1) {
 centerVerticallyTo(text2)
 centerHorizontallyTo(parent)
})

In the above example, text1 will be positioned on the vertical axis to align
with the vertical center of text2 and at the horizontal center of the
ConstraintLayout parent.
The centerAround() function can be used to center a component
horizontally or vertically relative to a side of another component. In the
following example, text1 is centered horizontally relative to the end of text2
and vertically relative to the top edge of text4:
Text("text1", modifier = Modifier.constrainAs(text1) {
 centerAround(text2.end)
 centerAround(text4.top)
})

In the remainder of this chapter, we will create a new project and work
through some examples of using ConstraintLayout in Compose.

34.5 Creating the ConstraintLayout project
Launch Android Studio and select the New Project option from the
welcome screen. In the new project dialog, choose the Empty Activity
template before clicking the Next button.
Enter ConstraintLayout into the Name field and specify
com.example.constraintlayout as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).Within the MainActivity.kt file, delete the Greeting function and
add a new empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

34.6 Adding the ConstraintLayout library
Support for ConstraintLayout in Compose is contained in a separate library

that is not included in new projects by default. Before starting to work with
ConstraintLayout, we need to add this library to the project build
configuration. Start by editing the Gradle Scripts -> libs.version.tomi file
and modify it as follows (keeping in mind that a more recent version of the
library may now be available):
[versions]
.
.
constraintlayoutCompose = "1.0.1"

[libraries]
androidx-constraintlayout-compose = { module =
"androidx.constraintlayout:constraintlayout-compose", version.ref =
"constraintlayoutCompose" }
.
.

Note that a more recent library version may have been released since this
book was published. If the line is highlighted in yellow, hover the mouse
pointer over the line and wait for a popup message to appear containing the
latest version number. Update the implementation directive to reflect this
newer library version.
Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and
add the following directive to the dependencies section:
dependencies {
.
.
 implementation(libs.androidx.constraintlayout.compose)
.
.

Click on the Sync Now link at the top of the editor panel to update the
project with the change.

34.7 Adding a custom button composable
When working through the examples in this chapter, we will apply
constraints to Button composables of various sizes. To make the code easier
to read, we need to create a custom button composable to which we can
pass the text content and a modifier. Within the MainActivity.kt file, add this
composable so that it reads as follows:

.

.
import androidx.compose.material3.Button
import androidx.constraintlayout.compose.ConstraintLayout
.
.
@Composable
fun MyButton(text: String, modifier: Modifier = Modifier) {
 Button(
 onClick = { },
 modifier = modifier
) {
 Text(text)
 }
}

With these initial steps completed, we can experiment with the various
features of ConstraintLayout.

34.8 Basic constraints
Begin by adding a ConstraintLayout to the MainScreen function together
with a set of references that will be used throughout the remainder of this
chapter:
.
.
import androidx.compose.foundation.layout.size
import androidx.compose.ui.unit.dp
.
.
@Composable
fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 200.dp, height =
200.dp)) {
 val (button1, button2, button3) = createRefs()

 }
}

Next, add a single MyButton call to the layout and use the constrainAs()
modifier to assign it the button1 reference:
@Composable
fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 200.dp, height =

200.dp)) {
 val (button1, button2, button3) = createRefs()

 MyButton(text = "Button1", Modifier.constrainAs(button1)
 {

 })
 }
}

The above layout will appear in the Preview panel with the button
positioned in the top left-hand corner of the ConstraintLayout content area.
We can move the button’s position by constraining it to the sides of the
parent layout. The following changes constrain the top and start edges of
the button to the corresponding sides of the ConstraintLayout parent with
margins of 60dp and 30dp, respectively:
.
.
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 start.linkTo(parent.start, margin = 30.dp)
})
.
.

Refresh the preview and verify that the button has moved to the location
specified by the constraints. Note also that hovering over the preview
causes annotations to appear indicating the constraints that have been
applied to the layout as shown in Figure 34-1:

Figure 34-1
34.9 Opposing constraints

The previous example demonstrated how to constrain a composable to a
fixed position within the parent using constraints with margins. In this
section, we will begin to look at opposing constraints. An opposing
constraint is created when both sides along the same axis of a composable
are constrained. The following changes, for example, apply opposing
constraints on button1 along the horizontal axis:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 start.linkTo(parent.start)
 end.linkTo(parent.end)
})

The opposing constraints have the effect of horizontally centering the
component within the ConstraintLayout resulting in the preview shown in
Figure 34-2:

Figure 34-2
Note that opposing constraints are designated by the jagged spring-like
connecting lines between the button and parent. Opposing constraints may
be declared more concisely passing through the constraints as parameters to
the linkTo() function as follows:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 linkTo(parent.start, parent.end)
})

If the goal is simply to use opposing constraints to center the component
within the parent, the same result can more easily be achieved as follows:
centerVerticallyTo(parent)
centerHorizontallyTo(parent)

So far, all of the constraints we have looked at have involved links between
a composable and the parent. Constraints can, of course, also be applied
between components, for example:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 centerHorizontallyTo(parent)
 top.linkTo(parent.top)
 bottom.linkTo(button2.top)
})

MyButton(text = "Button2", Modifier.constrainAs(button2)
{
 centerHorizontallyTo(parent)
 top.linkTo(button1.bottom)
 bottom.linkTo(parent.bottom)
})

The above code will render in the preview panel as shown in Figure 34-3
below:

Figure 34-3
34.10 Constraint bias
The previous chapter outlined the concept of using bias settings to favor
one opposing constraint over another. In the absence of other settings,
opposing constraints will always center a component between the elements
to which it is constrained. Applying bias allows the positioning of the
constrained composable to be moved relative to the available space. The
original button1 constraints from earlier in the chapter can, for example, be

modified to include bias as follows:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 linkTo(parent.start, parent.end, bias = 0.75f)
})

When previewed, button1 will be positioned at 75% of the width of the
parent as illustrated in Figure 34-4:

Figure 34-4
34.11 Constraint margins
Constraints can be used in conjunction with margins to implement fixed
gaps between a component and another element (such as another
composable, a guideline, barrier, or the side of the parent layout). Consider
the following example from earlier in the chapter:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 linkTo(parent.start, parent.end)
})

This code gives us the layout illustrated in Figure 34-2 above. As currently
configured, horizontal constraints run to the left and right edges of the
parent ConstraintLayout. As such, button1 has opposing horizontal
constraints indicating that the ConstraintLayout layout engine has some
discretion in terms of the actual positioning of the component at runtime.
This allows the layout some flexibility to accommodate different screen
sizes and device orientations. The horizontal bias setting is also able to
control the position of the component right up to the right-hand side of the
layout. Figure 34-5, for example, shows the same button with 100%

horizontal bias applied:

Figure 34-5
ConstraintLayout margins appear at the end of constraint connections and
represent a fixed gap into which the button cannot be moved even when
adjusting bias or in response to layout changes elsewhere in the user
interface. In the following code, the right-hand constraint now includes a
30dp margin into which the component cannot be moved even though the
bias is still set at 100%:
MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 linkTo(parent.start, parent.end, endMargin = 30.dp, bias =
1.0f)
})

Figure 34-6
This margin would also be preserved if the width of the parent reduced
(such as occurs when a device is rotated between landscape and portrait
orientation), or if a component to the left, to which button1 was constrained,
were to grow in size.
Even without a bias setting, margins will have an impact on the positioning
of a component. The following code, for example, sets margins of different
widths on the start and end constraints of button1:

MyButton(text = "Button1", Modifier.constrainAs(button1)
{
 top.linkTo(parent.top, margin = 60.dp)
 linkTo(parent.start, parent.end, startMargin = 30.dp, endMargin
= 50.dp)
})

This results in the button being offset relative to the margins as shown in
Figure 34-7:

Figure 34-7
34.12 The importance of opposing constraints and
bias
As discussed in the previous chapter, opposing constraints, margins, and
bias form the cornerstone of responsive layout design in Android when
using the ConstraintLayout. When a composable is constrained without
opposing constraint connections, those constraints are essentially margin
constraints. This is indicated visually within the Preview panel by solid
straight lines accompanied by margin measurements, as shown in Figure
34-8.

Figure 34-8
The above constraints essentially fix the button at that position. The result
of this is that if the device is rotated to landscape orientation, the button will
no longer be visible since the vertical constraint pushes it beyond the top
edge of the device screen (as is the case in Figure 34-9). A similar problem
will arise if the app is run on a device with a smaller screen than that used
during the design process.

Figure 34-9
When opposing constraints are implemented, the constraint connection is
represented by the spring-like jagged line (the spring metaphor is intended
to indicate that the position of the component is not fixed to absolute x and
y coordinates):

Figure 34-10
In the above layout, vertical and horizontal bias settings have been
configured such that the button will always be positioned 15% of the
distance from the top and 25% from the left-hand edge of the parent layout.
When rotated, therefore, the button is still visible and positioned in the
same location relative to the dimensions of the screen:

Figure 34-11
When designing a responsive and adaptable user interface layout, it is
important to consider both bias and opposing constraints when manually
designing a user interface layout and making corrections to automatically
created constraints.

34.13 Creating chains
A chain constraint may be created between two or more components by
calling either createHorizontalChain() or createVerticalChain(), passing
through the component references as parameters. The following code, for
example, creates a horizontal chain between three buttons:
ConstraintLayout(Modifier.size(width = 600.dp, height = 100.dp)) {
 val (button1, button2, button3) = createRefs()

 createHorizontalChain(button1, button2, button3)

 MyButton(text = "Button1", Modifier.constrainAs(button1) {
 centerVerticallyTo(parent)
 })

 MyButton(text = "Button2", Modifier.constrainAs(button2) {
 centerVerticallyTo(parent)
 })

 MyButton(text = "Button3", Modifier.constrainAs(button3) {
 centerVerticallyTo(parent)
 })
}

When previewed, the buttons will be positioned as shown in Figure 34-12
below:

Figure 34-12
As outlined in “A Guide to ConstraintLayout in Compose”, a chain may be
arranged using Packed, Spread, or SpreadInside styles. Modify the

createHorizontalChain() function call to change the style from the default
(Spread) to SpreadInside as follows:
.
.
import androidx.constraintlayout.compose.ChainStyle
.
.
@Composable
fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 600.dp, height =
100.dp)) {
 val (button1, button2, button3) = createRefs()

 createHorizontalChain(button1, button2, button3,
 chainStyle = ChainStyle.SpreadInside)
.
.

The buttons will now be arranged as shown below:

Figure 34-13
34.14 Working with guidelines
ConstraintLayout guidelines provide a horizontal or vertical anchor line to
which composables may be contained. This is particularly useful when a
group of components needs to be aligned relative to a specific axis line. A
guideline position can be declared as a percentage of either the height or
width of the parent or positioned at a specific offset from a side. The
following, for example, creates a guideline that is parallel to the starting
edge of the parent (in other words, a vertical line) and positioned 25% of
the way across the parent content area:
createGuidelineFromStart(fraction = .25f)

Similarly, the following function call creates a horizontal guideline
positioned 60dp above the bottom edge of the parent:
createGuidelineFromBottom(offset = 60.dp)

Replace the code in the MainScreen function with the following code to
create a vertical guideline to which the three buttons are constrained:
ConstraintLayout(Modifier.size(width = 400.dp, height = 250.dp)) {
 val (button1, button2, button3) = createRefs()

 val guide = createGuidelineFromStart(fraction = .60f)

 MyButton(text = "Button1", Modifier.constrainAs(button1) {
 top.linkTo(parent.top, margin = 30.dp)
 end.linkTo(guide, margin = 30.dp)
 })

 MyButton(text = "Button2", Modifier.constrainAs(button2) {
 top.linkTo(button1.bottom, margin = 20.dp)
 start.linkTo(guide, margin = 40.dp)
 })

 MyButton(text = "Button3", Modifier.constrainAs(button3) {
 top.linkTo(button2.bottom, margin = 40.dp)
 end.linkTo(guide, margin = 20.dp)
 })
}

This layout should appear as illustrated in Figure 34-14 below when
rendered in the Preview panel:

Figure 34-14
34.15 Working with barriers
ConstraintLayout barriers are created relative to a specific side of one or
more components using the following functions:

•createStartBarrier()
•createEndBarrier()
•createTopBarrier()
•createBottomBarrier()
Each function is passed a list of components to which the barrier is to be
assigned together with an optional margin and returns a barrier reference to
which other components may be constrained, for example:
val barrier = createEndBarrier(button1, button2, margin = 30.dp)

The above statement will create a vertical barrier (start and end barriers are
vertical while top and bottom are horizontal) positioned 30dp from the end
of button1 and button2. If button1 and button2 are of different widths the
barrier will be 30dp from the end of the widest component at any given
time.
To demonstrate ConstraintLayout barriers, we will begin by recreating the
layout illustrated in Figure 33-11 in the previous chapter. Begin by
modifying the MainScreen function so that it reads as follows:
.
.
import androidx.compose.foundation.layout.width
import androidx.constraintlayout.compose.Dimension
.
.
@Composable
fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 350.dp, height =
220.dp)) {
 val (button1, button2, button3) = createRefs()

 MyButton(text = "Button1",
Modifier.width(100.dp).constrainAs(button1) {
 top.linkTo(parent.top, margin = 30.dp)
 start.linkTo(parent.start, margin = 8.dp)
 })

 MyButton(text = "Button2",
Modifier.width(100.dp).constrainAs(button2) {
 top.linkTo(button1.bottom, margin = 20.dp)
 start.linkTo(parent.start, margin = 8.dp)
 })

 MyButton(text = "Button3", Modifier.constrainAs(button3) {
 linkTo(parent.top, parent.bottom,
 topMargin = 8.dp, bottomMargin = 8.dp)
 linkTo(button1.end, parent.end, startMargin = 30.dp,
 endMargin = 8.dp)
 })
 }
}

The button3 component needs to be sized to fill the maximum available
space allowed by its constraints. Not only will this ensure that the button
fills the available height, but also allows the width to adjust in response to
changes in the size of button1 and button2. To achieve this, the width and
height dimension constraints of button3 need to be changed to
fillConstraints. Modify the button3 declaration to add these dimension
constraints as follows:
MyButton(text = "Button3", Modifier.constrainAs(button3) {
 linkTo(parent.top, parent.bottom, topMargin = 8.dp,
bottomMargin = 8.dp)
 linkTo(button1.end, parent.end, startMargin = 30.dp, endMargin
= 8.dp)
 width = Dimension.fillToConstraints
 height = Dimension.fillToConstraints
})

In the Preview panel, the layout should appear as shown in Figure 34-15:

Figure 34-15
Next, we need to check if the layout is already providing the required
behavior by increasing the width of button1 as follows:
MyButton(text = "Button1",
Modifier.width(150.dp).constrainAs(button1) {

Note the width dimension of button3 has reduced as required as expected:

Figure 34-16
Now return the width of button1 to 100dp, then increase the width of
button2 to 150dp. This time the width of button3 has not been reduced,
causing an overlap with button2:

Figure 34-17
Clearly, this does not meet our layout specifications. This is happening
because button3 is only constrained by button1 and is not affected by
changes to button2. To resolve this shortcoming, we need to create a barrier
positioned at the end of button1 and button2. Instead of constraining the
start edge of button3 against the end of button1 we will, instead, constrain
the start of the button against the barrier:
@Composable
fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 350.dp, height =
220.dp)) {
 val (button1, button2, button3) = createRefs()

 val barrier = createEndBarrier(button1, button2)
.
.

 MyButton(text = "Button3", Modifier.constrainAs(button3) {
 linkTo(parent.top, parent.bottom,
 topMargin = 8.dp, bottomMargin = 8.dp)
 linkTo(button1.end, parent.end, startMargin = 30.dp,
 endMargin = 8.dp)
 start.linkTo(barrier, margin = 30.dp)
 width = Dimension.fillToConstraints
 height = Dimension.fillToConstraints
 })
 }
}

With these changes made, button3 will resize regardless of whether it is
button1 or button2 which increases in width. As either width changes, the
barrier to which button3 is constrained will move proportionally, thereby
reducing the width of button3:

Figure 34-18
34.16 Decoupling constraints with constraint sets
So far in this chapter, all of the constraints have been declared within
modifiers applied to individual composables. Compose also allows
constraints to be declared separately in the form of constraint sets. These
decoupled constraints can then be passed to the ConstraintLayout and
applied to composable children.
Decoupled constraints allow you to create sets of constraints that can be
reused without having to duplicate modifier declarations. These constraint
sets also provide flexibility in terms of passing different sets of constraints
depending on other criteria. A layout might, for example, use different
constraint sets depending on screen size or device orientation.
To demonstrate constraint sets, modify the MainScreen function as follows:
@Composable

fun MainScreen() {
 ConstraintLayout(Modifier.size(width = 200.dp, height =
200.dp)) {
 val button1 = createRef()

 MyButton(text = "Button1",
Modifier.size(200.dp).constrainAs(button1) {
 linkTo(parent.top, parent.bottom, topMargin = 8.dp,
 bottomMargin =
8.dp)
 linkTo(parent.start, parent.end, startMargin = 8.dp,
 endMargin =
8.dp)
 width = Dimension.fillToConstraints
 height = Dimension.fillToConstraints
 })
 }
}

This layout displays a button that is allowed to fill the available size
allowed by the constraints applied to it:

Figure 34-19
We will now decouple these constraints into a separate constraint set. To
make the constraint set more useful, we will allow the margin value to be
passed as an argument. Remaining within the MainActivity.kt file, declare
the constraint set as follows:
.
.
import androidx.compose.ui.unit.Dp
import androidx.constraintlayout.compose.*
.

.
private fun myConstraintSet(margin: Dp): ConstraintSet {
 return ConstraintSet {
 val button1 = createRefFor("button1")

 constrain(button1) {
 linkTo(parent.top, parent.bottom, topMargin = margin,
 bottomMargin = margin)
 linkTo(parent.start, parent.end, startMargin = margin,
 endMargin = margin)
 width = Dimension.fillToConstraints
 height = Dimension.fillToConstraints
 }
 }
}

The above code declares a new function that accepts a margin value and
returns a ConstraintSet object. Next, a call is made to the createRefFor()
function to generate a reference for whichever composable the constraint
set is applied to. Next, the constraint set is created by calling the constrain()
function passing through the reference and declaring the constraints in the
trailing lambda.
With the constraint set created, it can be passed to the ConstraintLayout and
applied to button1. This involves creating an instance of the constraint set,
passing it through to the ConstraintLayout instance, and using the layout()
modifier function to associate the constraint set reference with the button1
composable. Modify the MainScreen function to apply these changes:
@Composable
fun MainScreen() {

 val constraints = myConstraintSet(margin = 8.dp)

 ConstraintLayout(constraints, Modifier.size(width = 200.dp,
height = 200.dp))
 {
 val button1 = createRef()

 MyButton(text = "Button1",
Modifier.size(200.dp).layoutId("button1"))
 }
}

Preview the layout to verify that it still appears as expected.

34.17 Summary
ConstraintLayout provides a flexible way to implement complex user
interface layouts that respond well to dynamic changes such as screen
orientation rotation and changes in the size of components included in a
layout. Before a composable can be constrained it must first be associated
with a ConstraintLayout reference. The most basic of constraints involves
attaching or linking the sides of a component to either the parent container
or the side of another component. These links can be applied either with or
without margins. Components may be centered by applying opposing
constraints or offset by applying bias. The chapter also demonstrated the
use of chains, barriers, and guidelines to influence the positioning behavior
of multiple components and explored the use of constraint sets to create
reusable sets of constraints that can be passed through to ConstraintLayout
instances.

35. Working with IntrinsicSize in Compose

As we already know from the previous chapters, one of the ways that
Compose can render user interface layouts quickly and efficiently is by
limiting each composable to being measured only once during a
recomposition operation. Situations sometimes arise, however, where a
parent composable needs to know size information about its children before
they are measured as part of the recomposition. You might, for example,
need the width of a Column to match that of its widest child. Although a
parent cannot measure its children, size information may be obtained
without breaking the “measure once” rule by making use of intrinsic
measurements.

35.1 Intrinsic measurements

A parent composable can obtain sizing information about its children by
accessing the Max and Min values of the Compose IntrinsicSize
enumeration. IntrinsicSize provides the parent with information about the
maximum or minimum possible width or height of its widest or tallest child.
This allows the parent to make sizing decisions based on the sizing needs of
its children. The following code, for example, sets the height of a Row
composable based on intrinsic size information:

Row(modifier = modifier.height(IntrinsicSize.Min)) {

.

.

}

When this composable is rendered, the height of the Row will be set to the
minimum possible height needed to display its tallest child. Similarly, the
following code configures the width of a Column to the maximum possible
width of its widest child:

Column(modifier = modifier.width(IntrinsicSize.Max)) {

.

.

}

In the absence of modifiers to the contrary, a layout composable such as a
Row or Column will typically be sized to occupy all of the space made
available to it by its parent. By making use of IntrinsicSize, these
composables can instead be sized to match the space requirements of their
children. As we will see in the following example project, this becomes
particularly useful when one or more children are subject to dynamic size
changes.

35.2 Max. vs Min. Intrinsic Size measurements

The IntrinsicSize enumeration provides access to both maximum and
minimum measurements. The difference between these two values needs
some explanation. All visible composables need space on the device display
in which to render their content, and many can adapt to changes in the
amount of space available. This concept is, perhaps, best described using the
Text composable as an example. A Text composable displaying a single line
of text has a maximum width equivalent to the length of text it is displaying.
This equates to the IntrinsicSize Max value:

Figure 35-1

The Text component is, however, also able to display multi-line text. This
means that the same line of text could potentially be placed on multiple
lines, considerably reducing the width required to display the content.
Assuming there are no restrictions on height, the minimum width required
by a Text composable could be as narrow as the length of the longest word
in the text string. This value equates to the IntrinsicSize Min value:

Figure 35-2

As indicated in the above diagram, this example IntrinsicSize.Min value
assumes that no height constraints have been applied to the Text component.
In the presence of a height restriction, Compose would arrive at a different
minimum intrinsic width measurement:

Figure 35-3

35.3 About the example project

When the project is complete it will consist of a Text composable, colored
rectangular Box and custom TextField. The objective is for the text entered
into the TextField to appear in the Text component. As text is typed, the
width of the Box, which will be positioned directly beneath the Text
component, will adjust so that it matches the width of the displayed text.

This will be achieved by placing the Text and Box components within a
Column, the width of which will be defined using the IntrinsicSize
measurements of its children.

35.4 Creating the IntrinsicSizeDemo project

Launch Android Studio and select the New Project option from the welcome
screen. Within the new project dialog, choose the Empty Activity template
and click on the Next button.

Enter IntrinsicSizeDemo into the Name field and specify
com.example.intrinsicsizedemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

35.5 Creating the custom text field

The custom text field will need to accept as parameters the state variable
used to store the current text and an event handler reference to be called for
each user keystroke. Remaining within the MainActivity.kt file, add a new
composable with these features named MyTextField:

.

.

import androidx.compose.material3.ExperimentalMaterial3Api

import androidx.compose.material3.TextField

.

.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun MyTextField(text: String, onTextChange : (String) -> Unit) {

 TextField(

 value = text,

 onValueChange = onTextChange

)

}

Before moving on to the next step, take this opportunity to add the text state
variable and event handler to the MainScreen function as follows:

.

.

import androidx.compose.runtime.*

.

.

@Composable

fun MainScreen() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->

 textState = text

 }

.

.

}

35.6 Adding the Text and Box components

A Column now needs to be added to the MainScreen function containing
both the Text and Box components. Continue editing the MainActivity.kt
file to add these composables:

.

.

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.unit.dp

.

.

@Composable

fun MainScreen() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->

 textState = text

 }

 Column {

 Text(

 modifier = Modifier

 .padding(start = 4.dp),

 text = textState

)

 Box(Modifier.height(10.dp).fillMaxWidth().background(Color.Blue))

 }

}

Note that the Box is configured to use the full width of the parent Column.
Later we will use the intrinsic width measurement to make sure the Column
is only wide enough to contain the Text composable.

35.7 Adding the top-level Column

The final step before performing an initial test is to embed the Column
added above within another Column together with the custom text field as
outlined below. Since this is the top-most Column in the component
hierarchy, we will refer to it as the “top-level” column:

@Composable

fun MainScreen() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->

 textState = text

 }

 Column(Modifier.width(200.dp).padding(5.dp)) {

 Column {

 Text(

 modifier = Modifier

 .padding(start = 4.dp),

 text = textState

)

 Box(Modifier.height(10.dp).fillMaxWidth().background(Color.Blue)
)

 }

 MyTextField(text = textState, onTextChange = onTextChange)

 }

}

35.8 Testing the project

Using either an emulator or device, run the app and enter some text into the
TextField as shown in Figure 35-4:

Figure 35-4

Note that text appears in the Text composable as it is typed, but that the Box
extends to the width of the top-level Column instead of matching the text
width.

35.9 Applying IntrinsicSize.Max measurements

All that is required to resolve the current problem is to configure the Column
containing the Text and Box so that its width is based on the maximum
intrinsic size measurement of its children. Modify the Column declaration so
that it now reads as follows:

.

.

 Column(Modifier.width(200.dp).padding(5.dp)) {

 Column(Modifier.width(IntrinsicSize.Max)){

.

.

Test the app again, and verify that the width of the Box now matches the text
width as it is typed. In fact, even as text is deleted, the Box width updates
accordingly. This is because the width of the parent Column is changing on
each recomposition as characters are typed or deleted.

Figure 35-5

35.10 Applying IntrinsicSize.Min measurements

Now that we have seen the effect of the minimum IntrinsicSize
measurement on the Column parent, we are ready to explore the use of the
minimum measurement. Edit the Column declaration so that it now uses
IntrinsicSize.Min as follows:

.

.

 Column(Modifier.width(200.dp).padding(5.dp)) {

 Column(Modifier.width(IntrinsicSize.Min)) {

.

.

Test the app once again, this time entering a longer sentence into the text
field as shown in Figure 35-6 below:

Figure 35-6

With this change implemented, the minimum Column width matches that of
the line displaying the longest word (in this case the line that reads
“containing”).

35.11 Summary

To maximize rendering speeds, Compose prohibits a composable from being
measured more than once during recomposition. This can be problematic if a
parent needs to make sizing decisions before its children have been
measured. All composables have a minimum and maximum size at which
they can comfortably render their content without that content being clipped
or obscured. IntrinsicSize allows a parent to scan its children and identify
the minimum and maximum height and width values of its widest and tallest
child, and to use that information to configure its own dimensions.

36. Coroutines and LaunchedEffects
in Jetpack Compose
When an Android application is first started, the runtime system creates a
single thread in which all application components will run by default. This
thread is generally referred to as the main thread. The primary role of the
main thread is to handle the user interface in terms of event handling and
interaction with views in the user interface. Any additional components that
are started within the application will, by default, also run on the main
thread.
Any code within an application that performs a time-consuming task using
the main thread will cause the entire application to appear to lock up until
the task is completed. This will typically result in the operating system
displaying an “Application is not responding” warning to the user. This is
far from the desired behavior for any application. Fortunately, Kotlin
provides a lightweight alternative in the form of Coroutines. In this chapter,
we will introduce Coroutines, including terminology such as dispatchers,
coroutine scope, suspend functions, coroutine builders, and structured
concurrency. The chapter will also explore channel-based communication
between coroutines and explain how to safely launch coroutines from
within composable functions.

36.1 What are coroutines?
Coroutines are blocks of code that execute asynchronously without
blocking the thread from which they are launched. Coroutines can be
implemented without having to worry about building complex multi-tasking
implementations or directly managing multiple threads. Because of the way
they are implemented, coroutines are much more efficient and less
resource-intensive than using traditional multi-threading options.
Coroutines also make for code that is much easier to write, understand and
maintain since it allows code to be written sequentially without having to
write callbacks to handle thread-related events and results.
Although a relatively recent addition to Kotlin, there is nothing new or
innovative about coroutines. Coroutines in one form or another have existed

in programming languages since the 1960s and are based on a model known
as Communicating Sequential Processes (CSP). In fact, Kotlin still uses
multi-threading behind the scenes, though it does so highly efficiently.

36.2 Threads vs. coroutines
A problem with threads is that they are a finite resource and expensive in
terms of CPU capabilities and system overhead. In the background, a lot of
work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of
threads that can be run in parallel at any one time is limited by the number
of CPU cores (though newer CPUs have 8 or more cores, most Android
devices contain CPUs with 4 cores). When more threads are required than
there are CPU cores, the system has to perform thread scheduling to decide
how the execution of these threads is to be shared between the available
cores.
To avoid these overheads, instead of starting a new thread for each
coroutine and then destroying it when the coroutine exits, Kotlin maintains
a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended it is saved by the Kotlin
runtime and another coroutine resumed to take its place. When the
coroutine is resumed, it is simply restored to an existing unoccupied thread
within the pool to continue executing until it either completes or is
suspended. Using this approach, a limited number of threads are used
efficiently to execute asynchronous tasks with the potential to perform large
numbers of concurrent tasks without the inherent performance degeneration
that would occur using standard multi-threading.

36.3 Coroutine Scope
All coroutines must run within a specific scope which allows them to be
managed as groups instead of as individual coroutines. This is particularly
important when canceling and cleaning up coroutines and ensuring that
coroutines do not “leak” (in other words continue running in the
background when they are no longer needed by the app). By assigning
coroutines to a scope they can, for example, all be canceled in bulk when
they are no longer needed.
Kotlin and Android provide some built-in scopes as well as the option to

create custom scopes using the CoroutineScope class. The built-in scopes
can be summarized as follows:
•GlobalScope – GlobalScope is used to launch top-level coroutines which
are tied to the entire lifecycle of the application. Since this has the
potential for coroutines in this scope to continue running when not needed
(for example when an Activity exits) use of this scope is not recommended
for use in Android applications. Coroutines running in GlobalScope are
considered to be using unstructured concurrency.

•ViewModelScope – Provided specifically for use in ViewModel instances
when using the Jetpack architecture ViewModel component. Coroutines
launched in this scope from within a ViewModel instance are
automatically canceled by the Kotlin runtime system when the
corresponding ViewModel instance is destroyed.

•LifecycleScope - Every lifecycle owner has associated with it a
LifecycleScope. This scope is canceled when the corresponding lifecycle
owner is destroyed making it particularly useful for launching coroutines
from within composables and activities.

For most requirements, the best way to access a coroutine scope from
within a composable is to make a call to the rememberCoroutineScope()
function as follows:
val coroutineScope = rememberCoroutineScope()

The coroutineScope declares the dispatcher that will be used to run
coroutines (though this can be overridden) and must be referenced each
time a coroutine is started if it is to be included within the scope. All of the
running coroutines in a scope can be canceled via a call to the cancel()
method of the scope instance:
coroutineScope.cancel()

36.4 Suspend functions
A suspend function is a special type of Kotlin function that contains the
code of a coroutine. It is declared using the Kotlin suspend keyword which
indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main
thread.
The following is an example suspend function:

suspend fun mySlowTask() {
 // Perform long-running task here
}

36.5 Coroutine dispatchers
Kotlin maintains threads for different types of asynchronous activity and,
when launching a coroutine, you have the option to specify a specific
dispatcher from the following options:
•Dispatchers.Main – Runs the coroutine on the main thread and is suitable
for coroutines that need to make changes to the UI and as a general-
purpose option for performing lightweight tasks.

•Dispatchers.IO – Recommended for coroutines that perform network,
disk, or database operations.

•Dispatchers.Default – Intended for CPU-intensive tasks such as sorting
data or performing complex calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads
and suspending and resuming the coroutine during its lifecycle. The
following code, for example, launches a coroutine using the IO dispatcher:
.
.
coroutineScope.launch(Dispatchers.IO) {
 performSlowTask()
}
.
.

In addition to the predefined dispatchers, it is also possible to create
dispatchers for your own custom thread pools.

36.6 Coroutine builders
The coroutine builders bring together all of the components covered so far
and launch the coroutines so that they start executing. For this purpose,
Kotlin provides the following six builders:
•launch – Starts a coroutine without blocking the current thread and does
not return a result to the caller. Use this builder when calling a suspend
function from within a traditional function, and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and
forget” coroutines).

•async – Starts a coroutine and allows the caller to wait for a result using
the await() function without blocking the current thread. Use async when
you have multiple coroutines that need to run in parallel. The async builder
can only be used from within another suspend function.

•withContext – This allows a coroutine to be launched in a different
context from that used by the parent coroutine. A coroutine running using
the Main context could, for example, launch a child coroutine in the
Default context using this builder. The withContext builder also provides a
useful alternative to async when returning results from a coroutine.

•coroutineScope – The coroutineScope builder is ideal for situations where
a suspend function launches multiple coroutines that will run in parallel
and where some action needs to take place only when all the coroutines
reach completion. If those coroutines are launched using the
coroutineScope builder, the calling function will not return until all child
coroutines have completed. When using coroutineScope, a failure in any
of the coroutines will result in the cancellation of all other coroutines.

•supervisorScope – Similar to the coroutineScope outlined above, with the
exception that a failure in one child does not result in cancellation of the
other coroutines.

•runBlocking - Starts a coroutine and blocks the current thread until the
coroutine reaches completion. This is typically the opposite of what is
wanted from coroutines but is useful for testing code and integrating
legacy code and libraries. Otherwise to be avoided.

36.7 Jobs
Each call to a coroutine builder such as launch or async returns a Job
instance which can, in turn, be used to track and manage the lifecycle of the
corresponding coroutine. Subsequent builder calls from within the coroutine
create new Job instances which will become children of the immediate
parent Job forming a parent-child relationship tree where canceling a parent
Job will recursively cancel all its children. Canceling a child does not,
however, cancel the parent, though an uncaught exception within a child
created using the launch builder may result in the cancellation of the parent
(this is not the case for children created using the async builder which
encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive,
isCompleted, and isCancelled properties of the associated Job object. In
addition to these properties, several methods are also available on a Job
instance. A Job and all of its children may, for example, be canceled by
calling the cancel() method of the Job object, while a call to the
cancelChildren() method will cancel all child coroutines.
The join() method can be called to suspend the coroutine associated with
the job until all of its child jobs have completed. To perform this task and
cancel the Job once all child jobs have completed, simply call the
cancelAndJoin() method.
This hierarchical Job structure together with coroutine scopes form the
foundation of structured concurrency, the goal of which is to ensure that
coroutines do not run for longer than they are required without the need to
manually keep references to each coroutine.

36.8 Coroutines – suspending and resuming
To gain a better understanding of coroutine suspension, it helps to see some
examples of coroutines in action. To start with, let’s assume a simple
Android app containing a button that, when clicked, calls a suspend
function named performSlowTask(). The code for this might read as
follows:
val coroutineScope = rememberCoroutineScope()

Button(onClick = {
 coroutineScope.launch {
 performSlowTask()
 }
}) {
 Text(text = "Click Me")
}

In the above code, a coroutine scope is obtained and referenced in the call
to the launch builder which, in turn, calls the performSlowTask() suspend
function. Next, we can declare the performSlowTask() suspend function as
follows:
suspend fun performSlowTask() {
 println("performSlowTask before")
 delay(5000) // simulates long-running task

 println("performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before
and after performing a 5-second delay, simulating a long-running task.
While the 5-second delay is in effect, the user interface will continue to be
responsive because the main thread is not being blocked. To understand
why it helps to explore what is happening behind the scenes.
A click on the button launches the performSlowTask() suspend function as a
coroutine. This function then calls the Kotlin delay() function passing
through a time value. In fact, the built-in Kotlin delay() function is itself
implemented as a suspend function so is also launched as a coroutine by the
Kotlin runtime environment. The code execution has now reached what is
referred to as a suspend point which will cause the performSlowTask()
coroutine to be suspended while the delay coroutine is running. This frees
up the thread on which performSlowTask() was running and returns control
to the main thread so that the UI is unaffected.
Once the delay() function reaches completion, the suspended coroutine will
be resumed and restored to a thread from the pool where it can display the
log message and return.
When working with coroutines in Android Studio suspend points within the
code editor are marked as shown in the figure below:

Figure 36-1
We will explore some coroutine examples when we start to look at List
composables, starting with the chapter titled “An Overview of Lists and
Grids in Compose”.

36.9 Coroutine channel communication

Channels provide a simple way to implement communication between
coroutines including streams of data. In the simplest form this involves the
creation of a Channel instance and calling the send() method to send the
data. Once sent, transmitted data can be received in another coroutine via a
call to the receive() method of the same Channel instance.
The following code, for example, passes six integers from one coroutine to
another:
.
.
import kotlinx.coroutines.channels.*
.
.
val channel = Channel<Int>()

coroutineScope.launch() {
 coroutineScope.launch(Dispatchers.Main) { performTask1() }
 coroutineScope.launch(Dispatchers.Main) { performTask2() }
}

suspend fun performTask1() {
 (1..6).forEach {
 channel.send(it)
 }
}

suspend fun performTask2() {
 repeat(6) {
 println("Received: ${channel.receive()}")
 }
}

When executed, the following logcat output will be generated:
Received: 1
Received: 2
Received: 3
Received: 4
Received: 5
Received: 6

36.10 Understanding side effects
So far in this chapter, we have looked at coroutines and explained how to

use a coroutine scope to execute code asynchronously. In each case, the
coroutine was launched from within the onClick event handler of a Button
composable. The reason for this is that while it is possible to launch a
coroutine in this way from within the scope of an event handler, it is not
safe to do so from within the scope of the parent composable. Consider, for
example, the following code:
@Composable
fun Greeting(name: String) {

 val coroutineScope = rememberCoroutineScope()

 coroutineScope.launch() {
 performSlowTask()
 }
}

An attempt to compile the above code will result in an error that reads as
follows:
Calls to launch should happen inside a LaunchedEffect and not
composition

It is not possible to launch coroutines in this way when working within a
composable because it can cause adverse side effects. In the context of
Jetpack Compose, a side effect occurs when asynchronous code makes
changes to the state of a composable from a different scope without taking
into consideration the lifecycle of that composable. The risk here is the
potential for a coroutine to continue running after the composable exits, a
particular problem if the coroutine is still executing and making state
changes the next time the composable runs.
To avoid this problem, we need to launch our coroutines from within the
body of either a LaunchedEffect or SideEffect composable. Unlike the
above attempt to directly launch a coroutine from within the scope of a
composable, these two composables are considered safe to launch
coroutines because they are aware of the lifecycle of the parent composable.
When a LaunchedEffect composable containing coroutine launch code is
called, the coroutine will immediately launch and begin executing the
asynchronous code. As soon as the parent composable completes, the
LaunchedEffect instance and coroutine are destroyed.

The syntax for declaring a LaunchedEffect containing a coroutine is as
follows:
LaunchedEffect(key1, key2, ...) {
 coroutineScope.launch() {
 // async code here
 }
}

The key parameter values (of which there must be at least one) control the
behavior of the coroutine through recompositions. As long as the values of
any of the key parameters remain unchanged, LaunchedEffect will keep the
same coroutine running through multiple recompositions of the parent
composable. If a key value changes, however, LaunchedEffect will cancel
the current coroutine and launch a new one.
To call our suspend function from within our composable, we would need
to change the code to read as follows:
@Composable
fun Greeting(name: String) {

 val coroutineScope = rememberCoroutineScope()

 LaunchedEffect(key1 = Unit) {
 coroutineScope.launch() {
 performSlowTask()
 }
 }
}

Note that we have passed a Unit instance (the equivalent of a void value) as
the key in the above example to indicate that the coroutine does not need to
be recreated through recompositions.
In addition to LaunchedEffect, Jetpack Compose also includes the
SideEffect composable. Unlike LaunchedEffect, a SideEffect coroutine is
executed after composition of the parent completes. SideEffect also does
not accept key parameters and relaunches on every recomposition of the
parent composable.
We will be making use of LaunchedEffect in the chapter entitled “A Jetpack
Compose SharedFlow Tutorial”.

36.11 Summary

Kotlin coroutines provide a simpler and more efficient approach to
performing asynchronous tasks than that offered by traditional multi-
threading. Coroutines allow asynchronous tasks to be implemented in a
structured way without the need to implement the callbacks associated with
typical thread-based tasks. This chapter has introduced the basic concepts of
coroutines including jobs, scope, builders, suspend functions, structured
concurrency, and channel-based communication.
While it is possible to directly start coroutines from within an event handler
such as the onClick handler of a Button, doing so within the main body of a
Composable is considered unsafe and results in a syntax error. In this
situation, coroutines must be launched using either the LaunchedEffect or
SideEffect composable functions.

37. An Overview of Lists and Grids in Compose

It is a common requirement when designing user interface layouts to
present information in either scrollable list or grid configurations. For basic
list requirements, the Row and Column components can be re-purposed to
provide vertical and horizontal lists of child composables. Extremely large
lists, however, are likely to cause degraded performance if rendered using
the standard Row and Column composables. For lists containing large
numbers of items, Compose provides the LazyColumn and LazyRow
composables. Similarly, grid-based layouts can be presented using the
LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and
management in Compose in preparation for the tutorials in subsequent
chapters.

37.1 Standard vs. lazy lists

Part of the popularity of lists is that they provide an effective way to
present large amounts of items in a scrollable format. Each item in a list is
represented by a composable which may, itself, contain descendant
composables. When a list is created using the Row or Column component,
all of the items it contains are also created at initialization, regardless of
how many are visible at any given time. While this does not necessarily
pose a problem for smaller lists, it can be an issue for lists containing many
items.

Consider, for example, a list that is required to display 1000 photo images.
It can be assumed with a reasonable degree of certainty that only a small
percentage of items will be visible to the user at any one time. If the
application was permitted to create each of the 1000 items in advance,
however, the device would very quickly run into memory and performance
limitations.

When working with longer lists, the recommended course of action is to
use LazyColumn, LazyRow, and LazyVerticalGrid. These components only
create those items that are visible to the user. As the user scrolls, items that

move out of the viewable area are destroyed to free up resources while
those entering view are created just in time to be displayed. This allows
lists of potentially infinite length to be displayed with no performance
degradation.

Since there are differences in approach and features when working with
Row and Column compared to the lazy equivalents, this chapter will
provide an overview of both types.

37.2 Working with Column and Row lists

Although lacking some of the features and performance advantages of the
LazyColumn and LazyRow, the Row and Column composables provide a
good option for displaying shorter, basic lists of items. Lists are declared in
much the same way as regular rows and columns with the exception that
each list item is usually generated programmatically. The following
declaration, for example, uses the Column component to create a vertical
list containing 100 instances of a composable named MyListItem:

Column {

 repeat(100) {

 MyListItem()

 }

}

Similarly, the following example creates a horizontal list containing the
same items:

Row {

 repeat(100) {

 MyListItem()

 }

}

The MyListItem composable can be anything from a single Text
composable to a complex layout containing multiple composables.

37.3 Creating lazy lists

Lazy lists are created using the LazyColumn and LazyRow composables.
These layouts place children within a LazyListScope block which provides
additional features for managing and customizing the list items. For
example, individual items may be added to a lazy list via calls to the item()
function of the LazyListScope:

LazyColumn {

 item {

 MyListItem()

 }

}

Alternatively, multiple items may be added in a single statement by calling
the items() function:

LazyColumn {

 items(1000) { index ->

 Text("This is item $index");

 }

}

LazyListScope also provides the itemsIndexed() function which associates
the item content with an index value, for example:

val colorNamesList = listOf("Red", "Green", "Blue", "Indigo")

LazyColumn {

 itemsIndexed(colorNamesList) { index, item ->

 Text("$index = $item")

 }

}

When rendered, the above lazy column will appear as shown in Figure 37-1
below:

Figure 37-1

Lazy lists also support the addition of headers to groups of items in a list
using the stickyHeader() function. This topic will be covered in more detail
later in the chapter.

37.4 Enabling scrolling with ScrollState

While the above Column and Row list examples will display a list of items,
only those that fit into the viewable screen area will be accessible to the
user. This is because lists are not scrollable by default. To make Row and
Column-based lists scrollable, some additional steps are needed. LazyList
and LazyRow, on the other hand, support scrolling by default.

The first step in enabling list scrolling when working with Row and
Column-based lists is to create a ScrollState instance. This is a special state
object designed to allow Row and Column parents to remember the current
scroll position through recompositions. A ScrollState instance is generated
via a call to the rememberScrollState() function, for example:

val scrollState = rememberScrollState()

Once created, the scroll state is passed as a parameter to the Column or
Row composable using the verticalScroll() and horizontalScroll()
modifiers. In the following example, vertical scrolling is being enabled in a
Column list:

Column(Modifier.verticalScroll(scrollState)) {

 repeat(100) {

 MyListItem()

 }

}

Similarly, the following code enables horizontal scrolling on a LazyRow
list:

Row(Modifier.horizontalScroll(scrollState)) {

 repeat(1000) {

 MyListItem()

 }

}

37.5 Programmatic scrolling

We generally think of scrolling as being something a user performs through
dragging or swiping gestures on the device screen. It is also important to
know how to change the current scroll position from within code. An app
screen might, for example, contain buttons which can be tapped to scroll to
the start and end of a list. The steps to implement this behavior differ
between Row and Columns lists and the lazy list equivalents.

When working with Row and Column lists, programmatic scrolling can be
performed by calling the following functions on the ScrollState instance:

•animateScrollTo(value: Int) - Scrolls smoothly to the specified pixel
position in the list using animation.

•scrollTo(value: Int) - Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent the list
position in pixels instead of referencing a specific item number. It is safe to
assume that the start of the list is represented by pixel position 0, but the
pixel position representing the end of the list may be less obvious.
Fortunately, the maximum scroll position can be identified by accessing the
maxValue property of the scroll state instance:

val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, functions need
to be called on a LazyListState instance which can be obtained via a call to
the rememberLazyListState() function as follows:

val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the LazyRow or
LazyColumn declaration as follows:

.

.

LazyColumn(

 state = listState,

{

.

.

Scrolling can then be performed via calls to the following functions on the
list state instance:

•animateScrollToItem(index: Int) - Scrolls smoothly to the specified list
item (where 0 is the first item).

•scrollToItem(index: Int) - Scrolls instantly to the specified list item (where
0 is the first item).

In this case, the scrolling position is referenced by the index of the item
instead of pixel position.

One complication is that all four of the above scroll functions are coroutine
functions. As outlined in the chapter titled “Coroutines and
LaunchedEffects in Jetpack Compose”, coroutines are a feature of Kotlin
that allows blocks of code to execute asynchronously without blocking the
thread from which they are launched (in this case the main thread which is
responsible for making sure the app remains responsive to the user).
Coroutines can be implemented without having to worry about building
complex implementations or directly managing multiple threads. Because
of the way they are implemented, coroutines are much more efficient and
less resource-intensive than using traditional multi-threading options. One
of the key requirements of coroutine functions is that they must be
launched from within a coroutine scope.

As with ScrollState and LazyListState, we need access to a CoroutineScope
instance that will be remembered through recompositions. This requires a
call to the rememberCoroutineScope() function as follows:

val coroutineScope = rememberCoroutineScope()

Once we have a coroutine scope, we can use it to launch the scroll
functions. The following code, for example, declares a Button component
configured to launch the animateScrollTo() function within the coroutine
scope. In this case, the button will cause the list to scroll to the end position
when clicked:

.

.

Button(onClick = {

 coroutineScope.launch {

 scrollState.animateScrollTo(scrollState.maxValue)

 }

.

.

}

37.6 Sticky headers

Sticky headers is a feature only available within lazy lists that allows list
items to be grouped under a corresponding header. Sticky headers are
created using the LazyListScope stickyHeader() function.

The headers are referred to as being sticky because they remain visible on
the screen while the current group is scrolling. Once a group scrolls from
view, the header for the next group takes its place. Figure 37-2, for
example, shows a list with sticky headers. Note that although the Apple
group is scrolled partially out of view, the header remains in position at the
top of the screen:

Figure 37-2

When working with sticky headers, the list content must be stored in an
Array or List which has been mapped using the Kotlin groupBy() function.
The groupBy() function accepts a lambda which is used to define the
selector which defines how data is to be grouped. This selector then serves
as the key to access the elements of each group. Consider, for example, the
following list which contains mobile phone models:

val phones = listOf("Apple iPhone 12", "Google Pixel 4", "Google Pixel 6",

 "Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", "OnePlus 9 Pro",

 "Apple iPhone 13", "Samsung Galaxy Z Flip", "Google Pixel 4a",

 "Apple iPhone 8")

Now suppose that we want to group the phone models by manufacturer. To
do this we would use the first word of each string (in other words, the text
before the first space character) as the selector when calling groupBy() to
map the list:

val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use the
forEach statement to create a sticky header for each manufacture name, and
display the phones in the corresponding group as list items:

groupedPhones.forEach { (manufacturer, models) ->

 stickyHeader {

 Text(

 text = manufacturer,

 color = Color.White,

 modifier = Modifier

 .background(Color.Gray)

 .padding(5.dp)

 .fillMaxWidth()

)

 }

 items(models) { model ->

 MyListItem(model)

 }

}

In the above forEach lambda, manufacturer represents the selector key (for
example “Apple”) and models an array containing the items in the
corresponding manufacturer group (“Apple iPhone 12”, “Apple iPhone 7”,
and so on for the Apple selector):

groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, and the
models list is passed to the items() function to display all the group
elements, in this case using a custom composable named MyListItem for
each item:

items(models) { model ->

 MyListItem(model)

}

When rendered, the above code will display the list shown in Figure 37-2
above.

37.7 Responding to scroll position

Both LazyRow and LazyColumn allow actions to be performed when a list
scrolls to a specified item position. This can be particularly useful for
displaying a “scroll to top” button that appears only when the user scrolls
towards the end of the list.

The behavior is implemented by accessing the firstVisibleItemIndex
property of the LazyListState instance which contains the index of the item
that is currently the first visible item in the list. For example, if the user
scrolls a LazyColumn list such that the third item in the list is currently the
topmost visible item, firstVisibleItemIndex will contain a value of 2 (since
indexes start counting at 0). The following code, for example, could be
used to display a “scroll to top” button when the first visible item index
exceeds 8:

val firstVisible = listState.firstVisibleItemIndex

if (firstVisible > 8) {

 // Display scroll to top button

}

37.8 Creating a lazy grid

Grid layouts may be created using the LazyVerticalGrid composable. The
appearance of the grid is controlled by the cells parameter that can be set to
either adaptive or fixed mode. In adaptive mode, the grid will calculate the
number of rows and columns that will fit into the available space, with even
spacing between items and subject to a minimum specified cell size. Fixed
mode, on the other hand, is passed the number of rows to be displayed and
sizes each column width equally to fill the width of the available space.

The following code, for example, declares a grid containing 30 cells, each
with a minimum width of 60dp:

LazyVerticalGrid(GridCells.Adaptive(minSize = 60.dp),

 state = rememberLazyGridState(),

 contentPadding = PaddingValues(10.dp)

) {

 items(30) { index ->

 Card(

 colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

 "$index",

 textAlign = TextAlign.Center,

 fontSize = 30.sp,

 color = Color.White,

 modifier = Modifier.width(120.dp)

)

 }

 }

}

When called, the LazyVerticalGrid composable will fit as many items as
possible into each row without making the column width smaller than 60dp
as illustrated in the figure below:

Figure 37-3

The following code organizes items in a grid containing three columns:

LazyVerticalGrid(

 GridCells.Fixed(3),

 state = rememberLazyGridState(),

 contentPadding = PaddingValues(10.dp)

) {

 items(15) { index ->

 Card(colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

 "$index",

 fontSize = 35.sp,

 color = Color.White,

 textAlign = TextAlign.Center,

 modifier = Modifier.width(120.dp))

 }

 }

}

The layout from the above code will appear as illustrated in Figure 37-4
below:

Figure 37-4

Both the above grid examples used a Card composable containing a Text
component for each cell item. The Card component provides a surface into
which to group content and actions relating to a single content topic and is
often used as the basis for list items. Although we provided a Text
composable as the child, the content in a card can be any composable,
including containers such as Row, Column, and Box layouts. A key feature
of Card is the ability to create a shadow effect by specifying an elevation:

Card(

 modifier = Modifier

 .fillMaxWidth()

 .padding(15.dp),

 elevation = CardDefaults.cardElevation(

 defaultElevation = 10.dp

)

) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.padding(15.dp).fillMaxWidth()

) {

 Text("Jetpack Compose", fontSize = 30.sp,)

 Text("Card Example", fontSize = 20.sp)

 }

}

When rendered, the above Card component will appear as shown in Figure
37-5:

Figure 37-5

37.9 Summary

Lists in Compose may be created using either standard or lazy list
components. The lazy components have the advantage that they can present

large amounts of content without impacting the performance of the app or
the device on which it is running. This is achieved by creating list items
only when they become visible and destroying them as they scroll out of
view. Lists can be presented in row, column, and grid formats and can be
static or scrollable. It is also possible to programmatically scroll lists to
specific positions and to trigger events based on the current scroll position.

38. A Compose Row and Column List Tutorial

In this chapter, we will create a project that uses the Column and Row
components to display items in a list format. In addition to creating the list,
the tutorial will also enable scrolling and demonstrate programmatic
scrolling.

38.1 Creating the ListDemo project

Launch Android Studio and select the New Project option from the
welcome screen. In the new project dialog, choose the Empty Activity
template before clicking on the Next button.

Enter ListDemo into the Name field and specify com.example.listdemo as
the package name. Before clicking the Finish button, change the Minimum
API level setting to API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

38.2 Creating a Column-based list

We will start this tutorial by creating a basic list layout using the Column
composable to display a scrollable list of Text component items. Start by
modifying the MainActivity.kt file as follows to add and call a new
composable named ColumnList:

.

.

import androidx.compose.foundation.layout.Column

import androidx.compose.foundation.layout.padding

import androidx.compose.ui.unit.dp

.

.

@Composable

fun MainScreen() {

 ColumnList()

}

@Composable

fun ColumnList() {

 Column {

 repeat(500) {

 Text("List Item $it",

 style = MaterialTheme.typography.headlineSmall,

 modifier = Modifier.padding(5.dp))

 }

 }

}

The code within the ColumnList composable creates a Column containing a
list of 500 Text components. The Text component is customized using the
“Heading 4” Material typographical style and a padding modifier. Each
Text instance displays a string including the current item number.

To best view the layout, modify the Preview composable to display the
system UI:

@Preview(showBackground = true, showSystemUi = true)

@Composable

fun GreetingPreview() {

 ListDemoTheme {

 MainScreen()

 }

}

Once these changes have been made, the preview should be rendered as
follows:

Figure 38-1

Start interactive mode in the Preview panel and note that it is not possible
to scroll the list to view the items currently outside the bounds of the screen
viewing area. To resolve this, we need to enable vertical scrolling support
on the Column component.

38.3 Enabling list scrolling

The first requirement when enabling scrolling support within a Column is a
ScrollState state instance which can be obtained via a call to the
rememberScrollState() function. Once the state has been obtained, it needs
to be passed to the Column via the verticalScroll() modifier:

.

.

import androidx.compose.foundation.rememberScrollState

import androidx.compose.foundation.verticalScroll

.

.

@Composable

fun ColumnList() {

 val scrollState = rememberScrollState()

 Column(Modifier.verticalScroll(scrollState)) {

 repeat(500) {

 Text("List Item $it",

 style = MaterialTheme.typography.headlineSmall,

 modifier = Modifier.padding(5.dp))

 }

 }

}

After adding scrolling support, refresh the interactive preview, then click
and drag the list up and down to verify that vertical scrolling is now
working.

38.4 Manual scrolling

The next step in this tutorial is to add some buttons to the layout that can be
used to instantly scroll to the top and bottom of the list. As previously
discussed, the list scroll position can be controlled from within code by
making calls to methods of the ScrollState instance, specifying the target
list position. Since these are coroutine functions, we also need to obtain a
coroutine scope within which to initiate the scrolling action. We create
coroutine scope instances via a call to the rememberCoroutineScope()
function.

Locate the ColumnList function in the MainActivity.kt file and modify it so
that the list column is embedded in a new Column which also contains two
Buttons arranged using a Row component:

.

.

import androidx.compose.foundation.layout.Row

import androidx.compose.material3.Button

import androidx.compose.runtime.rememberCoroutineScope

.

.

@Composable

fun ColumnList() {

 val scrollState = rememberScrollState()

 val coroutineScope = rememberCoroutineScope()

 Column {

 Row {

 Button(onClick = {

 },

 modifier = Modifier.weight(0.5f)

 .padding(2.dp)) {

 Text("Top")

 }

 Button(onClick = {

 },

 modifier = Modifier.weight(0.5f)

 .padding(2.dp)) {

 Text("End")

 }

 }

 Column(Modifier.verticalScroll(scrollState)) {

 repeat(500) {

 Text(

 "List Item $it",

 style = MaterialTheme.typography.headlineSmall,

 modifier = Modifier.padding(5.dp)

)

 }

 }

 }

}

All that remains is to create a coroutine scope instance and then use it to
perform the scrolling within the Button onClick actions:

.

.

import kotlinx.coroutines.launch

.

.

Row {

 Button(onClick = {

 coroutineScope.launch {

 scrollState.animateScrollTo(0)

 }

 },

 modifier = Modifier.weight(0.5f)

 .padding(2.dp)) {

 Text("Top")

 }

 Button(onClick = {

 coroutineScope.launch {

 scrollState.animateScrollTo(scrollState.maxValue)

 }

 },

 modifier = Modifier.weight(0.5f)

 .padding(2.dp)) {

 Text("End")

 }

}

Instead of scrolling instantly to the top and bottom of the list, we have used
animated scrolling. Since the target list position is specified by pixel
position, the code uses 0 as the top target. To find the end position of the
list, the code accesses the maxValue property of the ScrollState instance
and passes it to the animateScrollTo() function.

Preview the app in interactive mode, or run it on a device or emulator and
test that the two buttons scroll to the top and bottom of the list as expected.
Figure 38-2, for example, shows the list after the End button has been
clicked:

Figure 38-2

38.5 A Row list example

In addition to vertical Column-based lists we can, of course, also use the
Row composable to create horizontal lists. To try out a horizontally
scrolling Row list, add the following composable to the MainActivity.kt file
and modify the MainScreen function to call it instead of ColumnList:

.

.

import androidx.compose.foundation.horizontalScroll

.

.

@Composable

fun MainScreen() {

 RowList()

}

@Composable

fun RowList() {

 val scrollState = rememberScrollState()

 Row(Modifier.horizontalScroll(scrollState)) {

 repeat(50) {

 Text(" $it ",

 style = MaterialTheme.typography.headlineLarge,

 modifier = Modifier.padding(5.dp))

 }

 }

}

Preview the list in interactive mode and click and drag the list sideways to
test horizontal scrolling as shown in Figure 38-3 below:

Figure 38-3

38.6 Summary

In this chapter, we have used the Row and Column components to create
vertical and horizontal lists. In both cases, scrolling was enabled to allow us
to move through the list items using drag motions. In the case of the
vertical list, buttons were added and configured to scroll directly to the top
and bottom of the list when clicked. This involved launching the
animateScrollTo() method of the ScrollState instance from within a
coroutine scope.

39. A Compose Lazy List Tutorial

Although the creation of lists using the standard compose Row and Column
layout composables was covered in the previous chapter, in most situations,
you will be more likely to use the LazyColumn and LazyRow components.
Not only do these provide a more efficient way to display long lists of items,
but the lazy composables also include additional features such as sticky
headers and responding to changes in scroll position.

This chapter will create a project demonstrating some of the key features of
the LazyColumn and LazyRow components. In the next chapter, entitled
“Lazy List Sticky Headers and Scroll Detection”, we will extend the project
to include support for sticky headers and scroll position detection.

39.1 Creating the LazyListDemo project

Launch Android Studio and select the New Project option from the welcome
screen. When the new project dialog appears, choose the Empty Activity
template before clicking on the Next button.

Enter LazyListDemo into the Name field and specify
com.example.lazylistdemo as the package name. Before clicking the Finish
button, change the Minimum API level setting to API 26: Android 8.0
(Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

39.2 Adding list data to the project

Before designing the list we first need some data to provide the list item
content. For this example, we will use an XML resource file containing the
list items and read it into an array. The XML resource file for this project is
included with the source code samples download within the XML folder. If
you have not already done so, you can download the sample code from the
following web page:

https://www.payloadbooks.com/product/compose16/

Once the sample code has been unpacked, use the file system navigator for
your operating system (i.e. Finder on macOS or Windows Explorer in
Windows), locate the car_list.xml file in the XML folder, and copy it. Next,
return to Android Studio, right-click on the app -> res > values folder in the
Project tool window, and select Paste from the resulting menu as shown in
Figure 39-1:

Figure 39-1

Finally, click the OK button in the “Copy” dialog to add the file to the
project resources, making sure to keep the “Open in editor” option enabled:

Figure 39-2

Once the file has been added and loaded into the editor, it should read as
follows:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string-array name="car_array">

 <item>Buick Century</item>

https://www.payloadbooks.com/product/compose16/

 <item>Buick LaSabre</item>

 <item>Buick Roadmaster</item>

 <item>Buick Special Riviera</item>

 <item>Cadillac Couple De Ville</item>

 <item>Cadillac Eldorado</item>

 <item>Cadillac Fleetwood</item>

 <item>Cadillac Series 62</item>

 <item>Cadillac Seville</item>

 <item>Ford Fairlane</item>

 <item>Ford Galaxie 500</item>

 <item>Ford Mustang</item>

 <item>Ford Thunderbird</item>

 <item>GMC Le Mans</item>

 <item>Plymouth Fury</item>

 <item>Plymouth GTX</item>

 <item>Plymouth Roadrunner</item>

 </string-array>

</resources>

Note that the data is declared as being of type string-array and given the
resource name car_array. This is the name by which the data will be
referenced when it is read from the file.

39.3 Reading the XML data

Now that the XML file has been added to the project, it needs to be parsed
and read into an array. This array will, in turn, provide the data in a format
that the LazyColumn component can use. To achieve this, we will be using
the getStringArray() method of the Android resources instance. Since the
data needs to be initialized when the main activity is created, we can
perform this task within the onCreate() method. Some changes are also
required to pass the array through to our MainScreen function and to provide
some sample data for the Preview composable.

Edit the MainActivity.kt file and modify it so that it reads as follows:

.

.

class MainActivity : ComponentActivity() {

 private var itemArray: Array<String>? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 itemArray = resources.getStringArray(R.array.car_array)

 super.onCreate(savedInstanceState)

 setContent {

 LazyListDemoTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 MainScreen(itemArray = itemArray as Array<out String>)

 }

 }

 }

 }

}

@Composable

fun MainScreen(itemArray: Array<out String>) {

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 val itemArray: Array<String> = arrayOf("Cadillac Eldorado",

 "Ford Fairlane", "Plymouth Fury")

 LazyListDemoTheme {

 MainScreen(itemArray = itemArray)

 }

}

39.4 Handling image loading

The project now has access to a list of cars with each item containing the car
manufacturer and model. In addition to this text content, each list item will
also display an image containing the manufacturer’s logo. These logos are
hosted on a web server and will need to be downloaded and rendered within
an Image composable. There are many factors to consider when
downloading and displaying images within an app. For example, the images
need to be downloaded asynchronously so that the app execution is not
interrupted. The download process should also be able to recover from
connectivity issues, and should also handle downsampling of the images to
minimize memory usage. Instead of writing all the code to perform these
tasks, this project will use an existing image loading library called Coil to
perform these tasks automatically. If you would like to learn more about
Coil, you can find information at the following URL:

https://coil-kt.github.io/coil/

To add Coil support to the project, start by editing the Gradle Scripts ->
libs.version.tomi file and modify it as follows (keeping in mind that a more
recent version of the library may now be available):

[versions]

.

.

https://coil-kt.github.io/coil/

coilCompose = "2.4.0"

[libraries]

coil-compose = { module = "io.coil-kt:coil-compose", version.ref =
"coilCompose" }

.

.

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and add
the following directive to the dependencies section:

dependencies {

.

.

 implementation(libs.coil.compose)

.

.

After the library has been added, a warning bar (Figure 39-3) will appear
indicating that the project needs to be re-synchronized to include the change:

Figure 39-3

Click on the Sync Now link and wait while the synchronization process
completes.

The next step is to add a composable function to download an image and
display it using the Image component. The naming convention for the image

files is <manufacturer>_logo.png where <manufacturer> is replaced by the
manufacturer name (Ford, Cadillac, etc.). Since each car string begins with
the manufacturer name, we can construct the image name for each car entry
by combining the first word of the string with “_logo.png”. Within the
MainActivity.kt file, begin writing the ImageLoader composable function:

.

.

.

.

@Composable

fun ImageLoader(item: String) {

 val url = "https://www.ebookfrenzy.com/book_examples/car_logos/" +
item.substringBefore(" ") + "_logo.png"

}

While constructing the full image URL, the code calls the Kotlin
subStringBefore() method on the item string to obtain the text before the
first space character.

With the path to the image obtained, code now needs to be added to create
an Image component rendered with the image:

.

.

import androidx.compose.foundation.Image

import androidx.compose.foundation.layout.*

import androidx.compose.ui.layout.ContentScale

import androidx.compose.ui.unit.dp

import coil.compose.rememberAsyncImagePainter

.

.

@Composable

fun ImageLoader(item: String) {

 val url = "https://www.ebookfrenzy.com/book_examples/car_logos/" +
item.

 substringBefore(" ") + "_logo.png"

 Image(

 painter = rememberAsyncImagePainter(url),

 contentDescription = "car image",

 contentScale = ContentScale.Fit,

 modifier = Modifier.size(75.dp)

)

}

The above code creates an Image and requests an image painter via a call to
the Coil rememberImagePainter() function, passing through the image URL.

The image is scaled to fit the size of the Image component, the height, and
width of which is restricted via a modifier to 75dp.

As the logo images will be downloaded, the project manifest needs to be
updated to add Internet access permission. Within the Project tool window,
open the app -> manifests -> AndroidManifest.xml file and add the Internet
permission element as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.INTERNET" />

.

.

At the time of writing, the Compose Preview panel did not support the
rendering of images using Coil. To test that the ImageLoader works, make
the following addition to the MainScreen function:

@Composable

fun MainScreen(itemArray: Array<out String>) {

 ImageLoader("Plymouth GTX")

}

With the change made, run the app on an emulator or device where the
Plymouth logo should appear as illustrated in Figure 39-4:

Figure 39-4

39.5 Designing the list item composable

At this point in the tutorial, we have an array of list items and a mechanism
for loading images. The next requirement is a composable to display each
item within the list. This will consist of a Row containing an ImageLoader
and a Text component displaying the list item string. To provide more
customization options such as elevation effects and rounded corners, the
Row will be placed within a Card component. Add the MyListItem function
to the MainActivity.kt file so that it reads as follows:

.

.

import androidx.compose.foundation.shape.RoundedCornerShape

import androidx.compose.material3.Card

import androidx.compose.material3.CardDefaults

import androidx.compose.ui.Alignment

.

.

@Composable

fun MyListItem(item: String) {

 Card(

 colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.background

),

 modifier = Modifier

 .padding(8.dp)

 .fillMaxWidth(),

 elevation = CardDefaults.cardElevation(defaultElevation = 5.dp)

)

 {

 Row(verticalAlignment = Alignment.CenterVertically) {

 ImageLoader(item)

 Spacer(modifier = Modifier.width(8.dp))

 Text(

 text = item,

 style = MaterialTheme.typography.headlineSmall,

 modifier = Modifier.padding(8.dp)

)

 }

 }

}

Modify the MainScreen function to call the MyListItem composable as
follows before testing the app on a device or emulator:

@Composable

fun MainScreen(itemArray: Array<out String>) {

 MyListItem("Buick Roadmaster")

}

Once the app is running, the list item should appear as illustrated in Figure
39-5. Note that this time the ImageLoader function has loaded the Buick
logo to match the car description:

Figure 39-5

39.6 Building the lazy list

With the preparation work complete, the project is ready for the addition of
the LazyColumn component.

.

.

import androidx.compose.foundation.lazy.LazyColumn

import androidx.compose.foundation.lazy.items

.

.

@Composable

fun MainScreen(itemArray: Array<out String>) {

 LazyColumn {

 items(itemArray) { model ->

 MyListItem(item = model)

 }

 }

}

All this code does is call the LazyColumn composable and use the items()
function of the LazyListScope to iterate through each element of the
itemArray, passing each through to the MyListItem function.

39.7 Testing the project

Compile and run the project once again and verify that a scrollable list
resembling that shown in Figure 39-6 below appears on the device or
emulator screen:

Figure 39-6

39.8 Making list items clickable

It is common for the items in a list to do something when clicked. For
example, selecting an item for the list might perform an action or even
navigate to another screen. The final step in this chapter is to make the items
in the list clickable. For this example, we will configure the list items to
display a toast message to the user containing the text content of the item.
Created using the Android Toast class, toast messages are small notifications
that appear on the screen without interrupting the currently visible activity.

Within the MainScreen function, we need to declare an event handler to be
called when the user clicks on a list item. This handler will be passed the
text of the current item which it will display within a toast message. Locate
the MainScreen function in the MainActivity.kt file and modify it as
follows:

.

.

import android.widget.Toast

import androidx.compose.ui.platform.LocalContext

import androidx.compose.foundation.*

.

.

@Composable

fun MainScreen(itemArray: Array<out String>) {

 val context = LocalContext.current

 val onListItemClick = { text : String ->

 Toast.makeText(

 context,

 text,

 Toast.LENGTH_SHORT

).show()

 }

 LazyColumn {

 items(itemArray) { model ->

 MyListItem(item = model)

 }

 }

}

Next, both the MyListItem function and how it is called need to be updated
to pass through a reference to the event handler:

@Composable

fun MainScreen(itemArray: Array<out String>) {

.

.

 LazyColumn {

 items(itemArray) { model ->

 MyListItem(item = model, onItemClick = onListItemClick)

 }

 }

}

@Composable

fun MyListItem(item: String, onItemClick: (String) -> Unit) {

.

.

}

Before testing this new behavior, the last task is to add a clickable modifier
to the Card component within MyListItem. This needs to call the
onListItemClick handler, passing it the current item:

@Composable

fun MyListItem(item: String, onItemClick: (String) -> Unit) {

 Card(

 Modifier

 .padding(8.dp)

 .fillMaxWidth()

 .clickable { onItemClick(item) },

.

.

Compile and run the app and test that clicking on an item displays the toast
message containing the text of the selected item:

Figure 39-7

39.9 Summary

This chapter began by exploring the use of an XML resource for storing data
and demonstrated how to read that data into an array during activity
initialization. We then introduced the Coil image loading library and
explained how it can be used to download and display images over an
Internet connection with minimal coding. Next, the tutorial created a

scrollable list based on the XML data, using the LazyColumn layout
composable and the Card component. Finally, we added code to make each
item in the list respond to click events.

Although we now have a running example of a Compose lazy list, the
project created so far does not yet take advantage of other features of the
Compose lazy list components, such as sticky headers and scroll position
detection. The next chapter, “Lazy List Sticky Headers and Scroll
Detection”, will extend the LazyListDemo project to add these features.

40. Lazy List Sticky Headers and Scroll Detection

In the previous chapter, we created a project that uses the LazyColumn
layout to display a list of Card components containing images and text. The
project also implemented clickable list items which display a message
when tapped.

This chapter will extend the project both to include sticky header support
and to use scroll detection to display a “go to top” button when the user has
scrolled a specific distance through the list, both of which were introduced
in the chapter entitled “An Overview of Lists and Grids in Compose”.

40.1 Grouping the list item data

As currently implemented, the LazyColumn list is populated directly from
an array of string values. The goal is now to group those items by
manufacturer, with each group preceded in the list by a sticky header
displaying the manufacturer’s name.

The first step in adding sticky header support is to call the groupBy()
method on the itemList array, passing through the first word of each item
string (i.e. the manufacturer name) as the group selector value. Edit the
MainActivity.kt file, locate the MainScreen function and modify it as
follows to group the items into a mapped list:

@Composable

fun MainScreen(itemArray: Array<out String>) {

 val context = LocalContext.current

 val groupedItems = itemArray.groupBy { it.substringBefore(' ') }

.

.

40.2 Displaying the headers and items

Now that the list items have been grouped, the body of the LazyColumn
needs to be modified. In terms of logic, this will require an outer loop that
iterates through each of the manufacturer names, displaying the
corresponding sticky header. The inner loop will display the items for each
manufacturer. Within the MainScreen function, start by embedding the
existing items() loop within a forEach loop on the groupedItems object:

@Composable

fun MainScreen(itemArray: Array<out String>) {

.

.

 LazyColumn {

 groupedItems.forEach { (manufacturer, models) ->

 items(itemArray) { model ->

 MyListItem(item = model, onItemClick = onListItemClick)

 }

 }

 }

.

.

On each loop iteration, the forEach statement will call the trailing lambda,
passing through the current selector value (manufacturer) and the items
(models). Instead of displaying items from the ungrouped itemArray, the
items() call now needs to be passed the models parameter:

items(models) { model ->

 MyListItem(item = model, onItemClick = onListItemClick)

}

Before adding sticky headers, compile and run the app to confirm that all
the items still appear in the list.

40.3 Adding sticky headers

For each manufacturer group, we now need to display the header. This
involves a call to the LazyListScope stickyHeader function. Although the
content of the header can be any combination of composables, an
appropriately configured Text component is usually more than adequate for
most requirements:

.

.

import androidx.compose.ui.graphics.Color

.

.

LazyColumn() {

 groupedItems.forEach { (manufacturer, models) ->

 stickyHeader {

 Text(

 text = manufacturer,

 color = Color.White,

 modifier = Modifier

 .background(Color.Gray)

 .padding(5.dp)

 .fillMaxWidth()

)

 }

 items(models) { model ->

 MyListItem(item = model, onItemClick = onListItemClick)

 }

 }

}

If the code editor reports that stickyHeader is an experimental feature, mark
the MainScreen function using the ExperimentalFoundationApi annotation
as follows:

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun MainScreen(itemArray: Array<out String>) {

.

.

After building and running the app, it should now appear as shown in
Figure 40-1 with the manufacturer name appearing in the headers above
each group:

Figure 40-1

40.4 Reacting to scroll position

In this final step of the LazyListDemo tutorial, we will modify the project
to use scroll position detection. Once these changes have been made,
scrolling beyond the item in list position 4 will display a button that, when
clicked, returns the user to the top of the list.

The button will appear at the bottom of the screen and needs to be placed
outside of the LazyColumn so that it does not scroll out of view. To achieve
this, we first need to place the LazyColumn declaration within a Box
component. Within MainActivity.kt, edit the MainScreen function so that it
reads as follows:

@Composable

fun MainScreen(itemArray: Array<out String>) {

 val context = LocalContext.current

 val groupedItems = itemArray.groupBy { it.substringBefore(' ') }

.

.

 Box {

 LazyColumn() {

 groupedItems.forEach { (manufacturer, models) ->

.

.

 }

.

.

}

Next, we need to request a LazyListState instance and pass it to the
LazyColumn. Now is also a good opportunity to obtain the coroutine scope
which will be needed to perform the scroll when the button is clicked.

.

.

import androidx.compose.foundation.lazy.rememberLazyListState

import androidx.compose.runtime.rememberCoroutineScope

.

.

@Composable

fun MainScreen(itemArray: Array<out String>) {

 val listState = rememberLazyListState()

 val coroutineScope = rememberCoroutineScope()

.

.

 Box {

 LazyColumn(

 state = listState,

 contentPadding = PaddingValues(bottom = 50.dp)

) {

 groupedItems.forEach { (manufacturer, models) ->

.

.

In addition to applying the list state to the LazyColumn, the above changes
also add padding to the bottom of the list. This will ensure that when the
bottom of the list is reached there will be enough space for the button.

The visibility of the button will be controlled by a state value, which we
will name displayButton, the value of which will be derived using the
firstVisibleItemIndex property of the list state:

@Composable

fun MainScreen(itemArray: Array<out String>) {

 val listState = rememberLazyListState()

 val coroutineScope = rememberCoroutineScope()

 val displayButton =

 remember { derivedStateOf { listState.firstVisibleItemIndex > 5 } }

.

.

Note that we have declared the displayButton state using derivedStateOf.
This is used when a state is created as the result of a calculation, mainly
when a state included in the calculation is subject to changes outside the
current composable. In this case, we are calculating whether the
firstVisibleIndex value of the LazyColumn composable is greater than 5.
When derivedStateOf is used, a cached version of the state is returned, and
the state is only re-calculated when the listState value has changed. This
helps to prevent repeated calculations from being performed unnecessarily
and degrading app performance.

40.5 Adding the scroll button

Now that code has been added to detect the list scroll position, the button
needs to be added. This will be called within the Box component and will
be represented by the OutlinedButton composable. The OutlinedButton is
one of the Material Design components and allows buttons to be drawn
with an outline border with other effects such as border stroke patterns and
rounded corners.

Add an OutlinedButton inside the Box declaration and immediately after
the LazyColumn:

.

.

import androidx.compose.material3.*

import kotlinx.coroutines.launch

.

.

 Box {

 LazyColumn(

 state = listState

) {

.

.

 items(models) { model ->

 MyListItem(item = model, onItemClick = onListItemClick)

 }

 }

 }

 OutlinedButton(

 onClick = {

 coroutineScope.launch {

 listState.scrollToItem(0)

 }

 },

 border = BorderStroke(1.dp, Color.Gray),

 shape = RoundedCornerShape(50),

 colors = ButtonDefaults.outlinedButtonColors(

 contentColor = Color.DarkGray),

 modifier = Modifier.padding(5.dp)

){

 Text(text = "Top")

 }

 }

.

.

Next, we need to control the position and visibility of the button so that it
appears at the bottom center of the screen and is only visible when
displayButton is true. This can be achieved by calling the OutlinedButton
function from within an AnimatedVisibility composable, the purpose of
which is to animate the hiding and showing of its child components (a topic
covered in the chapter entitled “Compose Visibility Animation”). Make the
following change to base the visibility of the OutlinedButton on the
displayButton variable and to position it using CenterBottom alignment:

.

.

import androidx.compose.animation.AnimatedVisibility

.

.

 AnimatedVisibility(visible = displayButton.value,

 Modifier.align(Alignment.BottomCenter)) {

 OutlinedButton(

 onClick = {

 coroutineScope.launch {

 listState.scrollToItem(0)

 }

 },

 border = BorderStroke(1.dp, Color.Gray),

 shape = RoundedCornerShape(40),

 colors = ButtonDefaults.outlinedButtonColors(

 contentColor = Color.DarkGray),

 modifier = Modifier.padding(5.dp)

) {

 Text(text = "Top")

 }

 }

.

.

40.6 Testing the finished app

Compile and run the app one last time and, once running, scroll down the
list until the button appears. Continue scrolling until the bottom of the list
to check that enough bottom padding was added to the LazyColumn so that
there is no overlap with the button as shown in Figure 40-2 below:

Figure 40-2

Click on the Top button to return to the top of the list.

40.7 Summary

This chapter completed the LazyListDemo project by adding support for
sticky headers and scroll position detection. The tutorial also introduced the
Material Theme OutlinedButton and the use of lazy list content padding.

41. A Compose Lazy Staggered Grid Tutorial

The chapter “An Overview of Lists and Grids in Compose” introduced the
horizontal and vertical lazy grid composables and demonstrated how they
could be used to organize items in rows and columns. However, a limitation
of these layouts is that the grid cells are the same size. While this may be
the desired behavior for many grid implementations, it presents a problem
if you need to display a grid containing items of differing sizes. To address
this limitation, Jetpack Compose 1.3 introduced staggered lazy grid
composables.

This chapter will introduce the LazyVerticalStaggeredGrid and
LazyHorizontalStaggeredGrid composables before creating an example
project that puts theory into practice.

41.1 Lazy Staggered Grids

Horizontal and vertical staggered grid layouts are created using the
LazyHorizontalStaggeredGrid and LazyVerticalStaggeredGrid composable,
respectively. The columns parameter controls the grid’s appearance, which
can be set to either adaptive or fixed mode. In adaptive mode, the grid will
calculate the number of rows and columns that will fit into the available
space, with even spacing between items and subject to a minimum
specified cell size. Fixed mode, on the other hand, is passed the number of
rows to be displayed and sizes each row or column equally to fill the
available space. Configuration options are also available to reverse the
layout, add content padding, disable scrolling, and define the spacing
between cells. Figure 41-1 illustrates the arrangement of items in a vertical
grid layout:

Figure 41-1

A typical staggered grid instance might be implemented as follows:

LazyVerticalStaggeredGrid(

 columns = StaggeredGridCells.Fixed(2),

 modifier = Modifier.fillMaxSize(),

 contentPadding = PaddingValues(16.dp),

 horizontalArrangement = Arrangement.spacedBy(16.dp),

 verticalItemSpacing = 16.dp,

 userScrollEnabled: true

) {

 items(items) { item ->

 // Cell content here

 }

}

The above example creates a LazyVerticalStaggeredGrid consisting of two
fixed columns with content padding and spacing between cells, the layout
for which would resemble Figure 41-2:

Figure 41-2

The following is the equivalent code to create a horizontal staggered grid:

LazyHorizontalStaggeredGrid(

 rows = StaggeredGridCells.Fixed(2),

 modifier = Modifier.fillMaxSize(),

 contentPadding = PaddingValues(16.dp),

 horizontalItemSpacing = 16.dp,

 verticalArrangement = Arrangement.spacedBy(16.dp),

 userScrollEnabled: true

) {

 items(items) { item ->

 // Cell content here

 }

}

In the rest of this chapter, we will create a project demonstrating how to use
a staggered grid. The example will display a grid containing items
configured with random heights and colors.

41.2 Creating the StaggeredGridDemo project

Launch Android Studio and select the New Project option from the
welcome screen. Choose the Empty Activity template in the new project
dialog before clicking the Next button.

Enter StaggeredGridDemo into the Name field and specify
com.example.staggeredgriddemo as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

41.3 Adding the Box composable

The grid item in this project will be represented by a Box composable.
Each instance of this box will be configured with random height and
background color properties. Before we write the code for the Box, we first
need a data class to store the color and height values, which we can pass to
the Box composable. Within the MainActivity.kt file, declare the data class
as follows:

.

.

import androidx.compose.ui.unit.Dp

import androidx.compose.ui.graphics.Color

.

.

data class BoxProperties(

 val color: Color,

 val height: Dp

)

Next, add a composable named GridItem to display a Box composable
based on the values of a BoxProperties instance:

.

.

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

import androidx.compose.ui.draw.clip

import androidx.compose.foundation.shape.RoundedCornerShape

import androidx.compose.ui.unit.dp

.

.

@Composable

fun GridItem(properties: BoxProperties) {

 Box(modifier = Modifier

 .fillMaxWidth()

 .height(properties.height)

 .clip(RoundedCornerShape(10.dp))

 .background(properties.color)

)

}

41.4 Generating random height and color values

Now that we have a grid item and a way to store the current item
properties, the next step is to write code to generate random height and
color values. We will do this by creating a list of BoxProperties items,

calling the Kotlin Random.nextInt() method for each instance to generate
height and RGB color values. Edit the MainScreen composable to add the
following code:

.

.

import androidx.compose.foundation.ExperimentalFoundationApi

import kotlin.random.Random

.

.

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun MainScreen() {

 val items = (1 .. 50).map {

 BoxProperties(

 height = Random.nextInt(50, 200).dp,

 color = Color(

 Random.nextInt(255),

 Random.nextInt(255),

 Random.nextInt(255),

 255

)

)

 }

}

The above code configures 50 BoxProperties instances with random height
values between 50 and 200 dp. Next, Color objects are created using
random RGB values (0 to 255). In addition, the alpha Color property is set
to 255 to ensure only solid, non-transparent colors are generated.

Note that the above code includes a directive to opt into experimental API
features. At the time of writing, the staggered grid composables were still
in the experimental development phase. Depending on when you are
reading this book, this setting may no longer be required.

41.5 Creating the Staggered List

The final task before testing the app is to add the
LazyVerticalStaggeredGrid to the layout. The goal is to create a staggered
vertical grid using the items list containing three fixed-width columns with
horizontal and vertical spacing between each cell. Edit the MainScreen
composable once again and modify it as follows:

.

.

import androidx.compose.foundation.lazy.staggeredgrid.*

.

.

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun MainScreen() {

 val items = (1 .. 50).map {

 BoxProperties(

.

.

 }

 LazyVerticalStaggeredGrid(

 columns = StaggeredGridCells.Fixed(3),

 modifier = Modifier.fillMaxSize(),

 contentPadding = PaddingValues(8.dp),

 horizontalArrangement = Arrangement.spacedBy(8.dp),

 verticalItemSpacing = 8.dp

) {

 items(items) { values ->

 GridItem(properties = values)

 }

 }

}

41.6 Testing the project

With the code writing completed, display the preview panel where the
staggered grid layout should appear, as shown in Figure 41-3 (allowing, of
course, for the random color and height properties). Assuming that the
layout is rendered as expected, enable interactive mode and test that it is
possible to scroll vertically through the grid items.

Figure 41-3

41.7 Switching to a horizontal staggered grid

To convert the example grid to use the LazyHorizontalStaggeredGrid
layout, make the following changes to the MainActivity.kt file:

.

.

data class BoxProperties(

 val color: Color,

 val width: Dp

)

@Composable

fun GridItem(properties: BoxProperties) {

 Box(modifier = Modifier

 .fillMaxWidth()

 .width(properties.width)

 .clip(RoundedCornerShape(10.dp))

 .background(properties.color)

)

}

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun MainScreen() {

 val items = (1 .. 50).map {

 BoxProperties(

 width = Random.nextInt(50, 200).dp,

.

.

 }

 LazyHorizontalStaggeredGrid(

 rows = StaggeredGridCells.Fixed(3),

 modifier = Modifier.fillMaxSize(),

 contentPadding = PaddingValues(8.dp),

 horizontalItemSpacing = 8.dp,

 verticalArrangement = Arrangement.spacedBy(8.dp)

) {

 items(items) { values ->

 GridItem(properties = values)

 }

 }

}

Finally, switch the preview to landscape orientation:

@Preview(showBackground = true,

 device = "spec:parent=pixel_5,orientation=landscape")

@Composable

fun GreetingPreview() {

 StaggeredGridDemoTheme {

 MainScreen()

 }

}

Once the preview has updated, the layout should appear as shown in Figure
41-4:

Figure 41-4

Enable interactive mode and check that you can scroll horizontally through
the grid.

41.8 Summary

In this chapter, we have introduced the vertical and horizontal lazy grid
composables. These layouts are useful when items of varying sizes need to
be shown in a grid format. Grids can be presented in either adaptive or
fixed mode. Adaptive mode calculates how many rows or columns will fit
into the available space, with even spacing between items and subject to a
minimum specified size. Fixed mode, on the other hand, is passed the
number of rows or columns to be displayed and sizes each to fill the
available space.

42. VerticalPager and HorizontalPager in Compose

The Compose Pager composables allow users to page through content
using horizontal and vertical swiping gestures. Paging may also be
implemented programmatically, for example, by adding previous and next
buttons to the layout.

This chapter introduces the VerticalPager and HorizontalPager
composables and explores some configuration options before creating an
example project to show paging in action.

42.1 The Pager composables

As the names suggest, the VerticalPager and HorizontalPager composables
display content that users can “flip” through horizontally or vertically. The
default behavior is to perform paging using swiping gestures (left and right
for horizontal pagers and up and down for vertical pagers). The pagers also
provide an interface to navigate to specific pages via the pager state. The
pager state provides various options for managing and controlling a pager
instance.

The VerticalPager composable uses the following syntax:

VerticalPager(

 state: PagerState,

 modifier: Modifier,

 contentPadding: PaddingValues,

 pageSize: PageSize,

 beyondBoundsPageCount: Int,

 pageSpacing: Dp,

 horizontalAlignment: Alignment.Horizontal,

 flingBehavior: SnapFlingBehavior,

 userScrollEnabled: Boolean,

 reverseLayout: Boolean,

 key: ((index: Int) -> Any)?,

 pageNestedScrollConnection: NestedScrollConnection,

 pageContent: @Composable PagerScope.(page: Int) -> Unit

) { -> page

// Page content here

}

The syntax for the HorizontalPager, on the other hand, reads as follows:

HorizontalPager(

 state: PagerState,

 modifier: Modifier,

 contentPadding: PaddingValues,

 pageSize: PageSize,

 beyondBoundsPageCount: Int,

 pageSpacing: Dp,

 verticalAlignment: Alignment.Vertical,

 flingBehavior: SnapFlingBehavior,

 userScrollEnabled: Boolean,

 reverseLayout: Boolean,

 key: ((index: Int) -> Any)?,

 pageNestedScrollConnection: NestedScrollConnection,

 pageContent: @Composable PagerScope.(page: Int) -> Unit

) { page ->

// Page content here

}

Although many options are available, only the state property is mandatory,
and the other properties will default to sensible values if they are not
declared. In both composables, the page content is declared within the
lambda, which, in turn, is passed the current page number:

.

.

) { page ->

// Page content here

}

The pager state is created by calling rememberPagerState and passing the
number of pages to be displayed, for example:

val pagerState = rememberPagerState { 15 }

Once the state has been created, it can be used to initialize a pager instance
as follows:

val pagerState = rememberPagerState { 15 }

VerticalPager(

 state = pagerState

) { page ->

 // Page content here

}

The pager content can consist of a layout of any complexity. Also, the
pager state can be used to identify the current page and display different
content on specific pages. The following code, for example, declares a
horizontal pager containing a Text composable displaying the current page
number:

VerticalPager(

 state = pagerState,

 modifier = Modifier.fillMaxWidth()

) { page ->

 Text(text = page.toString(), fontSize = 64.sp)

}

When previewed, the pager will appear as shown below, and left and right
swipe gestures will scroll through the pages:

Figure 42-1

42.2 Working with pager state

The key to working with the pager composables is the pager state. For
example, we can use the state to get information about the pager. Some
examples are as follows:

// The total number of pages in the pager

val pageCount = pagerState.pageCount

// The number of the page closest to the pager "snap" point

val currentPage = pagerState.currentPage

// Whether the pager is currently scrolling between pages

val scrollStatus = pagerState.isScrollInProgress

// The page that the pager "settled" on after scrolling stopped

val settledPage = pagerState.settledPage

The pager state is also used to navigate directly to a specified page from
within code. The following code navigates to the 5th page:

pagerState.scrollToPage(5)

Alternatively, the page transition can be performed with animation:

pagerState.animateScrollToPage(10)

When you call scrollToPage() and animateScrollToPage(), make sure you
do so from within a coroutine:

val coroutineScope = rememberCoroutineScope()

coroutineScope.launch {

 PagerState.scrollToPage(10)

}

42.3 About the PagerDemo project

The remainder of this chapter will create a project that uses the
HorizontalPager composable to display a series of book cover images. In
addition to paging using swipe gestures, the example will include arrow
buttons to manually move back and forth through the pages.

42.4 Creating the PagerDemo project

Launch Android Studio and create a new Empty Activity project named
PagerDemo, specifying com.example.pagerdemo as the package name and
selecting a minimum API level of API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

42.5 Adding the book cover images

The image files for this project are contained in the images folder of the
sample code archive. If you have not already done so, you can download

the sample code using the following link:

https://www.payloadbooks.com/product/compose16/

Once you have the sample code, display the Resource Manager tool
window by clicking on the button highlighted in Figure 42-2:

Figure 42-2

Locate the and select all of the cover_<n>.webp image files in the file
system navigator for your operating system and drag them onto the
Resource Manager tool window. In the resulting dialog, click Next,
followed by the Import button, to add the image to the project.

The images should appear in the res -> drawables section of the Project tool
window as shown below:

Figure 42-3

42.6 Adding the HorizontalPager

The project is ready for us to begin creating the pager-based user interface.
Begin by opening the MainActivity.kt file and adding a list of the cover
drawable resource identities for use later in the project:

package com.example.pagerdemo

.

.

val drawableIds = listOf(R.drawable.cover_1, R.drawable.cover_2,

 R.drawable.cover_3, R.drawable.cover_4, R.drawable.cover_5)

https://www.payloadbooks.com/product/compose16/

class MainActivity : ComponentActivity() {

.

.

Remaining in the MainActivity.kt file, add a new composable named
CoverPager as follows:

.

.

import androidx.compose.foundation.ExperimentalFoundationApi

.

.

@Composable

fun MainScreen() {

 CoverPager()

}

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun CoverPager() {

}

Next, add the pager state and HorizontalPager to the composable:

.

.

import androidx.compose.foundation.layout.*

import androidx.compose.foundation.pager.*

.

.

class MainActivity : ComponentActivity() {

.

.

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun CoverPager() {

 val pagerState = rememberPagerState { drawableIds.size }

 HorizontalPager(

 state = pagerState,

 modifier = Modifier.fillMaxWidth()

) { page ->

 }

}

42.7 Creating the page content

The last step before we can test the pager is to add the Image composable
content to the HorizontalPager declaration as follows:

.

.

import androidx.compose.foundation.Image

import androidx.compose.ui.res.painterResource

import androidx.compose.ui.unit.dp

import androidx.compose.ui.draw.clip

import androidx.compose.foundation.shape.RoundedCornerShape

.

.

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun CoverPager() {

 val pagerState = rememberPagerState { drawableIds.size }

 HorizontalPager(

 state = pagerState,

 modifier = Modifier.fillMaxWidth()

) { page ->

 Image(

 painter = painterResource(drawableIds[page]),

 contentDescription = "cover",

 modifier = Modifier

 .padding(10.dp)

 .fillMaxWidth()

 .clip(shape = RoundedCornerShape(10.dp))

)

 }

}

Note that we have used the page value that was passed to the content
closure as an index into the drawableIds list to display the correct cover for
the destination page as the user scrolls through the pages:

.

.

HorizontalPager(

 state = pagerState,

 modifier = Modifier.fillMaxWidth()

) { page ->

Image(

 painter = painterResource(drawableIds[page]),

.

.

42.8 Testing the pager

Use the Preview panel in interactive mode to test that left and right swipe
gestures move through the pages as shown in Figure 42-4:

Figure 42-4

42.9 Adding the arrow buttons

The final step in this example is to add the arrow buttons and configure
them to move through the pages. Begin by modifying the CoverPager
composable to embed the pager in a Column and to add a Row beneath the
HorizontalPager:

.

.

import androidx.compose.ui.Alignment

.

.

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun CoverPager() {

 val pagerState = rememberPagerState { drawableIds.size }

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

 HorizontalPager(

 state = pagerState,

 modifier = Modifier.fillMaxWidth()

) { page ->

 Image(

 painter = painterResource(drawableIds[page]),

 contentDescription = "cover",

 modifier = Modifier

 .padding(10.dp)

 .fillMaxWidth()

 .clip(shape = RoundedCornerShape(10.dp))

)

 }

 Row {

 }

 }

}

Instead of using Buttons, we will use Icon composables configured to
display arrows. Add these to the Row layout as follows:

.

.

import androidx.compose.foundation.clickable

import androidx.compose.material3.Icon

import androidx.compose.material.icons.Icons

import
androidx.compose.material.icons.automirrored.filled.KeyboardArrowLeft

import
androidx.compose.material.icons.automirrored.filled.KeyboardArrowRight

import androidx.compose.runtime.rememberCoroutineScope

import kotlinx.coroutines.launch

.

.

 Row {

 Icon(

 Icons.AutoMirrored.Filled.KeyboardArrowLeft,

 contentDescription = "Next Page",

 modifier = Modifier

 .size(75.dp)

 .clickable {

 }

)

 Icon(

 imageVector = Icons.AutoMirrored.Filled.KeyboardArrowRight,

 contentDescription = "Next Page",

 modifier = Modifier

 .size(75.dp)

 .clickable {

 }

)

 }

.

.

The final step is to create a coroutine scope in which to launch
animateScrollToPage() calls to move between the pages when the buttons
are clicked:

@OptIn(ExperimentalFoundationApi::class)

@Composable

fun CoverPager() {

 val pagerState = rememberPagerState { drawableIds.size }

 val coroutineScope = rememberCoroutineScope()

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

.

.

 Row {

 Icon(

 imageVector = Icons.AutoMirrored.Filled.KeyboardArrowLeft,

 contentDescription = "Previous Page",

 modifier = Modifier

 .size(75.dp)

 .clickable {

 coroutineScope.launch {

 pagerState.animateScrollToPage(pagerState.currentPage - 1)

 }

 }

)

 Icon(

 imageVector = Icons.AutoMirrored.Filled.KeyboardArrowRight,

 contentDescription = "Next Page",

 modifier = Modifier

 .size(75.dp)

 .clickable {

 coroutineScope.launch {

 pagerState.animateScrollToPage(pagerState.currentPage + 1)

 }

 }

)

.

.

Use the Preview panel to check that the arrow buttons appear and that they
move through the pages when clicked:

Figure 42-5

If the buttons do not work, select the Android Studio Build -> Clean Project
menu option, followed by Build -> Rebuild Project, then restart interactive
mode in the Preview panel.

42.10 Summary

The Pager composables provide a simple yet effective way to present
multiple content elements in scrollable pages. When content is presented
this way, users move between pages using swipe gestures. Code can also be
written to navigate to specific pages based on actions such as button clicks.
This chapter introduced the VerticalPager and HorizontalPager
composables and outlined how these work with the pager state.

43. Compose Visibility Animation
For adding animation effects to user interfaces, Jetpack Compose includes
the Animation API. The Animation API consists of classes and functions
that provide a wide range of animation options you can easily add to your
apps. In this chapter, we will explore the use of animation when hiding and
showing user interface components including the use of crossfading when
replacing one component with another. The next chapter, entitled “Compose
State-Driven Animation”, will cover topics such as animating motion,
rotation, and color changes and combining multiple animations into a single
transition.
Throughout this chapter, we will demonstrate each animation technique
within an example project.

43.1 Creating the AnimateVisibility project
Launch Android Studio and create a new Empty Activity project named
AnimateVisibility, specifying com.example.animatevisibility as the package
name, and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting. Also, enable the system UI option on the
preview composable:
@Preview(showBackground = true, showSystemUi = true)
@Composable
fun GreetingPreview() {
 AnimateVisibilityTheme {
 MainScreen()
 }
}

43.2 Animating visibility
Perhaps the simplest form of animation involves animating the appearance

and disappearance of a composable. Instead of a component instantly
appearing and disappearing, a variety of animated effects can be applied
using the AnimatedVisibility composable. For example, user interface
elements can gradually fade in and out of view, slide into and out of
position horizontally or vertically, or show and hide by expanding and
shrinking.
The minimum requirement for calling AnimatedVisibility is a Boolean state
variable parameter to control whether or not its child composables are to be
visible. Before exploring the capabilities of AnimatedVisibility, it first helps
to experience the hiding and showing of a composable without animation.
When the following layout design is complete, we will use two buttons to
show and hide content using animation. Before designing the screen layout,
add a new composable named CustomButton to the MainActivity.kt file as
follows:
.
.
import androidx.compose.material3.*
import androidx.compose.ui.graphics.Color
.
.
@Composable
fun CustomButton(text: String, targetState: Boolean,
 onClick: (Boolean) -> Unit, bgColor: Color = Color.Blue) {

 Button(
 onClick = { onClick(targetState) },
 colors = ButtonDefaults.buttonColors(
 containerColor = bgColor,
 contentColor = Color.White
)
) {
 Text(text)
 }
}

The composable is passed the text to be displayed on the button, and both
an onClick handler and the new state value to be passed to the handler when
the button is clicked. The button also accepts an optional background color
which defaults to blue.

Next, locate the MainScreen function and modify it as follows:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.*
import androidx.compose.ui.unit.dp
import androidx.compose.ui.Alignment
import androidx.compose.runtime.*
.
.
@Composable
fun MainScreen() {

 var boxVisible by remember { mutableStateOf(true) }

 val onClick = { newState : Boolean ->
 boxVisible = newState
 }

 Column(
 Modifier.padding(20.dp),
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Row(
 Modifier.fillMaxWidth(),
 horizontalArrangement = Arrangement.SpaceEvenly
) {
 CustomButton(text = "Show", targetState = true, onClick
= onClick)
 CustomButton(text = "Hide", targetState = false,
onClick = onClick)
 }

 Spacer(modifier = Modifier.height(20.dp))

 if (boxVisible) {
 Box(modifier = Modifier
 .size(height = 200.dp, width = 200.dp)
 .background(Color.Blue))
 }
 }
}

In summary, this code begins by declaring a Boolean state variable named
boxVisible with an initial true value and an onClick event handler to be
passed to instances of the CustomButton composable. The purpose of the
handler is to change the boxVisible state based on button selection.
Column and Row composables are then used to display two CustomButton
composables and a blue Box. The buttons are passed the text to be
displayed, the new setting for the boxVisible state, and a reference to the
onClick handler. When a button is clicked, it calls the handler and passes it
the new state value. Finally, an if statement is used to control whether the
Box composable is included as a child of the Column based on the value of
boxVisible.
When previewed in interactive mode, or tested on a device or emulator, the
layout will appear as illustrated in Figure 43-1:

Figure 43-1
Clicking on the Show and Hide buttons will cause the Box to instantly
appear and disappear without any animation effects. Default visibility
animation effects can be added simply by replacing the if statement with a
call to AnimatedVisibility as follows:
.
.
import androidx.compose.animation.*
.
.
 AnimatedVisibility(visible = boxVisible) {
 Box(modifier = Modifier
 .size(height = 200.dp, width = 200.dp)
 .background(Color.Blue))

 }
.
.

When the app is tested, the box’s hiding and showing will be subtly
animated. The default behavior of AnimatedVisibility is so subtle it can be
difficult to notice any difference. Fortunately, the Compose Animation API
provides a range of customization options. The first option allows different
animation effects to be defined when the child composables appear and
disappear (referred to as the enter and exit animations).

43.3 Defining enter and exit animations
The animations to be used when children of an AnimatedVisibility
composable appear and disappear are declared using the enter and exit
parameters. The following changes, for example, configure the animations
to fade the box into view and slide it vertically out of view:
AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn(),
 exit = slideOutVertically()
) {

 Box(modifier = Modifier
 .size(height = 200.dp, width = 200.dp)
 .background(Color.Blue))
 }
}

The full set of animation effects is as follows:
•expandHorizontally() - Content is revealed using a horizontal clipping
technique. Options are available to control how much of the content is
initially revealed before the animation begins.

•expandVertically() - Content is revealed using a vertical clipping
technique. Options are available to control how much of the content is
initially revealed before the animation begins.

•expandIn() - Content is revealed using both horizontal and vertical
clipping techniques. Options are available to control how much of the
content is initially revealed before the animation begins.

•fadeIn() - Fades the content into view from transparent to opaque. The

initial transparency (alpha) may be declared using a floating-point value
between 0 and 1.0. The default is 0.

•fadeOut() - Fades the content out of view from opaque to invisible. The
target transparency before the content disappears may be declared using a
floating-point value between 0 and 1.0. The default is 0.

•scaleIn() - The content expands into view as though a “zoom in” has been
performed. By default, the content starts at zero size and expands to full
size though this default can be changed by specifying the initial scale
value as a float value between 0 and 1.0.

•scaleOut() - Shrinks the content from full size to a specified target scale
before it disappears. The target scale is 0 by default but may be configured
using a float value between 0 and 1.0.

•shrinkHorizontally() - Content slides from view behind a shrinking
vertical clip bounds line. The target width and direction may be
configured.

•shrinkVertically() - Content slides from view behind a shrinking
horizontal clip bounds line. The target width and direction may be
configured.

•shrinkOut() - Content slides from view behind shrinking horizontal and
vertical clip bounds lines.

•slideInHorizontally() - Content slides into view along the horizontal axis.
The sliding direction and offset within the content where sliding begins are
both customizable.

•slideInVertically() - Content slides into view along the vertical axis. The
sliding direction and offset within the content where sliding begins are
both customizable.

•slideIn() - Slides the content into view at a customizable angle defined
using an initial offset value.

•slideOut() - Slides the content out of view at a customizable angle defined
using a target offset value.

•slideOutHorizontally() - Content slides out of view along the horizontal
axis. The sliding direction and offset within the content where sliding ends
are both customizable.

•slideOutVertically() - Content slides out of view along the vertical axis.

The sliding direction and offset within the content where sliding ends are
both customizable.

It is also possible to combine animation effects. The following, for example,
combines the expandHorizontally and fadeIn effects:
AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn() + expandHorizontally(),
 exit = slideOutVertically()
) {
.
.

All of the above animations may be further customized by making use of
animation specs.

43.4 Animation specs and animation easing
Animation specs are represented by instances of AnimationSpec, (or, more
specifically, subclasses of AnimationSpec) and are used to configure
aspects of animation behavior including the animation duration, start delay,
spring, and bounce effects, repetition, and animation easing.
As with Rows, Columns, and other container composables,
AnimatedVisibility has its own scope (named AnimatedVisibilityScope).
Within this scope, we have access to additional functions specific to
animation. For example, to control the duration of an animation, we need to
generate a DurationBasedAnimationSpec instance (a subclass of
AnimationSpec) by calling the tween() function and passing it as a
parameter to the animation effect function call. For example, modify our
example fadeIn() call to pass through a duration specification:
.
.
import androidx.compose.animation.core.*
.
.
AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn(animationSpec = tween(durationMillis = 5000)),
 exit = slideOutVertically()
) {
.

.

Update the preview and hide and show the box, noting that the fade-in
animation is now slow enough that we can see it.
The tween() function also allows us to specify animation easing. Animation
easing allows the animation to speed up and slow down and can be defined
either using custom keyframe positions for speed changes (a topic which
will be covered in “Compose State-Driven Animation”) or using one of the
following predefined values:
•FastOutSlowInEasing
•LinearOutSlowInEasing
•FastOutLinearEasing
•LinearEasing
•CubicBezierEasing
The following change uses LinearOutSlowInEasing easing for a
slideInHorizontally effect:
AnimatedVisibility(
 visible = boxVisible,
 enter = slideInHorizontally(animationSpec =
 tween(durationMillis = 5000, easing =
LinearOutSlowInEasing)),
 exit = slideOutVertically()
) {

When the box is shown, the animation gradually slows as it reaches the
target position. Similarly, the following change bases the animation speed
changes on four points within a Bezier curve:
AnimatedVisibility(
 visible = boxVisible,
 enter = slideInHorizontally(animationSpec =
tween(durationMillis = 5000,
 easing = CubicBezierEasing(0f, 1f,
0.5f,1f))),
 exit = slideOutVertically(),
) {

43.5 Repeating an animation
To make an animation repeat, we also need to use an animation spec,
though in this case the RepeatableSpec subclass will be used, an instance of

which can be obtained using the repeatable() function. In addition to the
animation to be repeated, the function also accepts a RepeatMode parameter
specifying whether the repetition should be performed from beginning to
end (RepeatMode.Restart) or reversed from end to beginning
(RepeatMode.Reverse) of the animation sequence. For example, modify the
AnimatedVisibility call to repeat a fade-in enter animation 10 times using
the reverse repeat mode:
AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn(
 animationSpec = repeatable(10, animation =
tween(durationMillis = 2000),
 repeatMode =
RepeatMode.Reverse)
),
 exit = slideOutVertically(),
.
.

43.6 Different animations for different children
When enter and exit animations are applied to an AnimatedVisibility call,
those settings apply to all direct and indirect children. Specific animations
may be added to individual children by applying the animateEnterExit()
modifier to them. As is the case with AnimatedVisibility, this modifier
allows both enter and exit animations to be declared. The following changes
add vertical sliding animations on both entry and exit to the red Box call:
AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn(animationSpec = tween(durationMillis = 5500)),
 exit = fadeOut(animationSpec = tween(durationMillis = 5500))
) {
 Row {
 Box(Modifier.size(width = 150.dp, height = 150.dp)
 .background(Color.Blue)
)
 Spacer(modifier = Modifier.width(20.dp))
 Box(
 Modifier
 .animateEnterExit(
 enter = slideInVertically(

 animationSpec = tween(durationMillis =
5500)),
 exit = slideOutVertically(
 animationSpec = tween(durationMillis =
5500))
)
 .size(width = 150.dp, height = 150.dp)
 .background(Color.Red)
)
 }
}

If the code editor reports that AnimateEnterExit is an experimental feature,
add the following annotation to the MainScreen composable:
@OptIn(ExperimentalAnimationApi::class)
@Composable
fun MainScreen() {
.
.

When the above code runs, you will notice that the red box uses both fade
and sliding animations. This is because the animateEnterExit() modifier
animations are combined with those passed to the parent AnimatedVisibility
instance. For example, the enter animation in the above example is
equivalent to fadeIn(...) + slideInVertically(...). If you only want the
modifier animations to be used, the enter and exit settings for the parent
AnimatedVisibility instance must be set to EnterTransition.None and
ExitTransition.None respectively. In the following code, animation
(including the default animation) is disabled on the parent so that only those
specified by a call to the animateEnterExit() modifier are performed:
AnimatedVisibility(
 visible = boxVisible,
 enter = EnterTransition.None,
 exit = ExitTransition.None
) {
 Row {
 Box(
 Modifier
 .animateEnterExit(
 enter = fadeIn(animationSpec =
tween(durationMillis = 5500)),
 exit = fadeOut(animationSpec =

tween(durationMillis = 5500))
)
 .size(width = 150.dp, height = 150.dp)
 .background(Color.Blue))
 Spacer(modifier = Modifier.width(20.dp))
 Box(
 Modifier
 .animateEnterExit(
 enter = slideInVertically(
 animationSpec = tween(durationMillis =
5500)),
 exit = slideOutVertically(
 animationSpec = tween(durationMillis =
5500))
)
 .size(width = 150.dp, height = 150.dp)
 .background(Color.Red)
)
 }
}

43.7 Auto-starting an animation
So far in this chapter, animations have been initiated in response to button
click events. It is not unusual, however, to need an animation to begin as
soon as the call to AnimatedVisibility is made. To trigger this,
AnimatedVisibility can be passed a MutableTransitionState instance when it
is called.
MutableTransitionState is a special purpose state which includes two
properties named currentState and targetState. By default, both the current
and target states are set to the same value which, in turn, is defined by
passing through an initial state when the MutableTransitionState instance is
created. The following, for example, creates a transition state initialized to
false and passes it through to the AnimatedVisibility call via the visibleState
parameter:
.
.
 val state = remember { MutableTransitionState(false) }
.
.
 AnimatedVisibility(

 visibleState = state,
 enter = fadeIn(
 animationSpec = tween(5000)
),
 exit = slideOutVertically(),

) {

When tested, the Box composable will not appear because the initial state is
set to false. To initiate the “enter” fade-in animation, we need to set the
targetState property of the transition state instance to true when it is created.
We do this by calling apply() on the state instance and setting the property
in the trailing lambda as follows:
val state = remember { MutableTransitionState(true) }

state.apply { targetState = true }

Now when the app is run the fade-in animation starts automatically without
user interaction.

43.8 Implementing crossfading
Crossfading animates the replacement of one composable with another and
is performed using the Crossfade function. This function is passed a target
state value that is used to decide which composable is to replace the
currently visible component. A fading animation effect is then used to
perform the replacement.
In our example app, we currently display both the show and hide buttons. In
practice, only one of these buttons needs to be visible at any one time
depending on the current visibility state of the Box component. It is not
necessary, for example, to display the show button when the content is
already visible. This is an ideal candidate for using cross fading to transition
from one button to the other. To do this, we need to enclose the two
CustomButton composables within a Crossfade call, passing through the
boxVisible state value as the target state. We can then add some logic within
the Crossfade lambda to decide which button is to be visible.
To implement this behavior, modify the MainScreen function so that it
reads as follows:
@Composable
fun MainScreen() {

 var boxVisible by remember { mutableStateOf(true) }

 val onClick = { newState : Boolean ->
 boxVisible = newState
 }

 Column(
 Modifier.padding(20.dp),
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Row(
 Modifier.fillMaxWidth(),
 horizontalArrangement = Arrangement.SpaceEvenly
) {

 Crossfade(
 targetState = boxVisible,
 animationSpec = tween(5000), label = "crossFade"
) { visible ->
 when (visible) {
 true -> CustomButton(text = "Hide", targetState
= false,
 onClick = onClick, bgColor = Color.Red)
 false -> CustomButton(text = "Show",
targetState = true,
 onClick = onClick, bgColor =
Color.Magenta)
 }
 }
 }

 Spacer(modifier = Modifier.height(20.dp))

 AnimatedVisibility(
 visible = boxVisible,
 enter = fadeIn(animationSpec = tween(durationMillis =
5500)),
 exit = fadeOut(animationSpec = tween(durationMillis =
5500))
) {
 Box(modifier = Modifier
 .size(height = 200.dp, width = 200.dp)

 .background(Color.Blue))
 }
 }
}

To enhance the effect of the crossfade, the above code also changes the
background colors of the two buttons. We also use a when statement to
decide which button to display based on the current boxVisible value.
Test the layout and check that clicking on the Show button initiates a
crossfade to the Hide button and vice versa.

43.9 Summary
This chapter has explored the use of the Compose Animation API to
animate the appearance and disappearance of components within a user
interface layout. This requires the use of the animatedVisibility() function
which may be configured to use different animation effects and durations,
both for the appearance and disappearance of the target composable. The
Animation API also includes crossfade support which allows the
replacement of one component with another to be animated.

44. Compose State-Driven Animation
The previous chapter focused on using animation when hiding and showing
user interface components. In this chapter, we will turn our attention to
state-driven animation. The Compose Animation API features allow various
animation effects to be performed based on states change from one value to
another. This includes animations such as rotation, motion, and color
changes to name just a few options. This chapter will explain the concepts
of state-driven animation, introduce the animate as state functions, spring
effects, and keyframes, and explore the use of transitions to combine
multiple animations.

44.1 Understanding state-driven animation
We already know from previous chapters that working with state is a key
element of Compose-based app development. Invariably, the way that an
app appears, behaves, and responds to user input are all manifestations of
changes to and of state occurring behind the scenes. State changes can also
be used as the basis for animation effects using the Compose Animation
API. If a state change transforms the appearance, position, orientation, or
size of a component in a layout, there is a good chance that visual
transformation can be animated using one or more of the animate as state
functions.

44.2 Introducing animate as state functions
The animate as state functions are also referred to as the animate*AsState
functions. The reason for this is that the functions all use the same naming
convention whereby the ‘*’ wildcard is replaced by the type of the state
value that is triggering the animation. For example, if you need to animate
the background color change of a composable, you will need to use the
animateColorAsState() function. At the time of writing, Compose provides
state animation functions for Bounds, Color, Dp, Float, Int, IntOffset,
IntSize, Offset, Rect, and Size data types which cover most animation
requirements.
These functions animate the results of changes to a single state value. In
basic terms, the function is given a target state value and then animates the
change from the current value to the target value. The functions return

special state values that can be used as properties for composables.
Consider the following code fragment:
var temperature by remember { mutableStateOf(80) }

val animatedColor: Color by animateColorAsState(
 targetValue = if (temperature > 92) {
 Color.Red
 } else {
 Color.Green
 },
 animationSpec = tween(4500)
)

The above code declares a state variable named temperature initialized with
a value of 80. Next, a call is made to animateColorAsState which uses the
current temperature setting to decide whether the color should be red or
green. Note that the animate as state functions also accept an animation
spec, in this case, a duration of 4500 milliseconds. The animatedColor state
can now be assigned as a color property for any composable in the layout.
In the following code example it is used to control the background color of
a Box composable:
Box(
 Modifier.size(width = 20.dp, height = 200.dp)
 .background(animatedColor)
)

If the temperature state value exceeds 92 at any point during execution, the
Box’s background color will transition from green to red using the declared
animation. In the remainder of this chapter, we will create some more state-
driven animation examples. Finally, we will close out the chapter by
demonstrating the use of the updateTransition() function to combine
multiple animations.

44.3 Creating the AnimateState project
Launch Android Studio and create a new Empty Activity project named
AnimateState, specifying com.example.animatestate as the package name,
and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named RotationDemo:
@Composable

fun RotationDemo() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
RotationDemo instead of Greeting. Finally, rename GreetingPreview to
RotationPreview.

44.4 Animating rotation with animateFloatAsState
In this first example, we will animate the rotation of an Image component.
Since rotation angle in Compose is declared as a Float value, the animation
will be created using the animateFloatAsState() function. Before writing
code, a vector image needs to be added to the project. The image file is
named propeller.svg and can be located in the images folder of the sample
code download available from the following URL:
https://www.payloadbooks.com/product/compose16/
Display the Resource Manager tool window by clicking on the button
highlighted in Figure 44-1. Locate the propeller.svg image in the file system
navigator for your operating system and drag it onto the Resource Manager
tool window. In the resulting dialog, click Next followed by the Import
button to add the image to the project:

Figure 44-1
The image will also appear in the res -> drawables section of the Project
tool window:

https://www.payloadbooks.com/product/compose16/

Figure 44-2
Edit the MainActivity.kt file and modify the RotationDemo function to
design the user interface layout:
.
.
import androidx.compose.foundation.Image
import androidx.compose.foundation.layout.*
import androidx.compose.material3.Button
import androidx.compose.runtime.*
import androidx.compose.ui.Alignment
import androidx.compose.ui.draw.rotate
import androidx.compose.ui.res.painterResource
import androidx.compose.ui.unit.dp
.
.
@Composable
fun RotationDemo() {

 var rotated by remember { mutableStateOf(false) }

 Column(horizontalAlignment = Alignment.CenterHorizontally,
 modifier = Modifier.fillMaxWidth()) {
 Image(
 painter = painterResource(R.drawable.propeller),
 contentDescription = "fan",
 modifier = Modifier
 .padding(10.dp)
 .size(300.dp)
)

 Button(
 onClick = { rotated = !rotated },
 modifier = Modifier.padding(10.dp)
) {
 Text(text = "Rotate Propeller")

 }
 }
}

The layout consists of a Column containing an Image configured to display
the propeller drawing and a Button. The code includes a Boolean state
variable named rotated, the value of which is toggled via the Button’s
onClick handler.
When previewed, the layout should resemble that illustrated in Figure 44-3
below:

Figure 44-3
Although the button changes the rotation state value, that state has not yet
been connected with an animation. Therefore, we now need to make use of
the animateFloatAsState() function by adding the following code:
.
.
import androidx.compose.animation.core.*
.
.
@Composable
fun RotationDemo() {

 var rotated by remember { mutableStateOf(false) }

 val angle by animateFloatAsState(
 targetValue = if (rotated) 360f else 0f,
 animationSpec = tween(durationMillis = 2500), label =
"Rotate"
)

.

.

Next, edit the Image declaration and pass the angle state through to the
rotate() modifier as follows:
Image(
 painter = painterResource(R.drawable.propeller),
 contentDescription = "fan",
 modifier = Modifier
 .rotate(angle)
 .padding(10.dp)
 .size(300.dp)
)

This code calls animateFloatAsState() and assigns the resulting state value
to a variable named angle. If the rotated value is currently set to true, then
the target value for the animation is set to 360 degrees, otherwise, it is set to
0. All that remains now is to test the activity. Using either the Preview panel
in interactive mode or an emulator or physical device for testing, click on
the button (note that at the time of writing, animation was not working in
the Preview panel). The propeller should rotate 360 degrees in the
clockwise direction. A second click will rotate the propeller back to 0
degrees.
The rotation animation is currently using the default FastOutSlowInEasing
easing setting where the animation rate slows as the propeller nears the end
of the rotation. To see the other easing options outlined in the previous
chapter in action, simply add them to the tween() call. The following
change, for example, animates the rotation at a constant speed:
animationSpec = tween(durationMillis = 2500, easing =
LinearEasing),
 label =
"Rotate"

44.5 Animating color changes with
animateColorAsState
In this example, we will look at animating color changes using the
animateColorAsState() function. In this case, the layout will consist of a
Box and Button pair. When the Button is clicked the Box will transition
from one color to another using an animation. In preparation for this

example, we will need to add an enumeration to the MainActivity.kt file to
provide the two background color options. Edit the file and place the enum
declaration after the MainActivity class:
.
.
enum class BoxColor {
 Red, Magenta
}

@Composable
fun RotationDemo() {
.
.

Add a new composable function to the MainActivity.kt file named
ColorChangeDemo together with an @Preview function so that it will
appear in the Preview panel:
.
.
import androidx.compose.foundation.background
import androidx.compose.ui.graphics.Color
.
.
@Composable
fun ColorChangeDemo() {

 var colorState by remember { mutableStateOf(BoxColor.Red) }

 Column(horizontalAlignment = Alignment.CenterHorizontally,
 modifier = Modifier.fillMaxWidth()) {
 Box(
 modifier = Modifier
 .padding(20.dp)
 .size(200.dp)
 .background(Color.Red)
)

 Button(
 onClick = {
 colorState = when (colorState) {
 BoxColor.Red -> BoxColor.Magenta
 BoxColor.Magenta -> BoxColor.Red

 }
 },
 modifier = Modifier.padding(10.dp)
) {
 Text(text = "Change Color")
 }
 }
}

@Preview(showBackground = true)
@Composable
fun ColorChangePreview() {
 AnimateStateTheme {
 ColorChangeDemo()
 }
}
.
.

Exit interactive mode, preview the layout, and confirm that it resembles that
shown in Figure 44-4:

Figure 44-4
The BoxColor enumeration contains two possible color selections, Red and
Magenta. First, a state variable named colorState is declared and initialized
to BoxColor.Red. Next, the Button onClick handler uses a when statement
to toggle the colorState value between the Red and Magenta BoxColor
enumeration values.
The ColorChangeDemo function now needs to use the
animateColorAsState() function to implement and animate the Box
background color change. The Box also needs to be modified to use the
animatedColor state as the background color value:

.

.
import androidx.compose.animation.animateColorAsState
.
.
@Composable
fun ColorChangeDemo() {

 var colorState by remember { mutableStateOf(BoxColor.Red) }

 val animatedColor: Color by animateColorAsState(
 targetValue = when (colorState) {
 BoxColor.Red -> Color.Magenta
 BoxColor.Magenta -> Color.Red
 },
 animationSpec = tween(4500), label = "ColorChange"
)

 Column(horizontalAlignment = Alignment.CenterHorizontally,
 modifier = Modifier.fillMaxWidth()) {
 Box(
 modifier = Modifier
 .padding(20.dp)
 .size(200.dp)
 .background(animatedColor)
)
.
.

The code uses the current colorState color value to set the animation target
value to the other color. This triggers the animated color change which is
performed over a 4500-millisecond duration. Stop the current interactive
session in the Preview panel if it is still running (only one preview can be in
interactive mode at a time), locate the new composable preview, and run it
in interactive mode. Once the preview is running, use the button to try out
the color change animation.

44.6 Animating motion with animateDpAsState
In this, final example before looking at the updateTransition() function, we
will use the animateDpAsState() function to animate the change in position
of a composable. This will involve changing the x position offset of a

component and animating the change as it moves to the new location on the
screen. Using the same steps as before, add another composable function,
this time named MotionDemo, together with a matching preview
composable. As with the color change example, we also need an
enumeration to contain the position options:
.
.
enum class BoxPosition {
 Start, End
}

@Composable
fun MotionDemo() {

 var boxState by remember { mutableStateOf(BoxPosition.Start)}
 val boxSideLength = 70.dp

 Column(modifier = Modifier.fillMaxWidth()) {
 Box(
 modifier = Modifier
 .offset(x = 0.dp, y = 20.dp)
 .size(boxSideLength)
 .background(Color.Red)
)

 Spacer(modifier = Modifier.height(50.dp))

 Button(
 onClick = {
 boxState = when (boxState) {
 BoxPosition.Start -> BoxPosition.End
 BoxPosition.End -> BoxPosition.Start
 }
 },
 modifier = Modifier.padding(20.dp)
 .align(Alignment.CenterHorizontally)
) {
 Text(text = "Move Box")
 }
 }
}

@Preview(showBackground = true)
@Composable
fun MotionDemoPreview() {
 AnimateStateTheme {
 MotionDemo()
 }
}

This example is structured in much the same way as the color change
animation, except that this time we are working with density-independent
pixel values instead of colors. The goal is to animate the Box’s movement
from the screen’s start to the end. Assuming that the code will potentially
run on a variety of devices and screen sizes, we need to know the width of
the screen to be able to find the end position. We can find this information
by accessing the properties of the LocalConfiguration instance. This is an
object that is local to each Compose-based app and provides access to
properties such as screen width, height and density, font scale information,
and whether or not night mode is currently activated on the device. For this
example, we only need to know the width of the screen, which can be
obtained as follows:
.
.
import androidx.compose.ui.platform.LocalConfiguration
.
.
@Composable
fun MotionDemo() {

 val screenWidth = (LocalConfiguration.current.screenWidthDp.dp)
.
.

Next, we need to add the animation using the animateDpAsState() function:
.
.
import androidx.compose.ui.unit.Dp
.
.
@Composable
fun MotionDemo() {

 val screenWidth = (LocalConfiguration.current.screenWidthDp.dp)

 var boxState by remember { mutableStateOf(BoxPosition.Start)}
 val boxSideLength = 70.dp

 val animatedOffset: Dp by animateDpAsState(
 targetValue = when (boxState) {
 BoxPosition.Start -> 0.dp
 BoxPosition.End -> screenWidth - boxSideLength
 },
 animationSpec = tween(500), label = "Motion"
)
.
.

In the above code, the target state is set to either the start or end of the
screen width, depending on the current boxState setting. In the case of the
end position, the width of the Box is subtracted from the screen width so
that the motion does not move beyond the edge of the screen.
Now that we have the animatedOffset state declared, we can pass it through
as the x parameter to the Box offset() modifier call:
Box(
 modifier = Modifier
 .offset(x = animatedOffset, y = 20.dp)
 .size(boxSideLength)
 .background(Color.Red)
)

When the code is previewed in interactive mode, clicking the button should
now cause the box to be animated as it moves back and forth across the
screen:

Figure 44-5
44.7 Adding spring effects
The above example provides an ideal opportunity to introduce the spring

animation effect. Spring behavior adds a bounce effect to animations and is
applied using the spring() function via the animationSpec parameter. To
understand the spring effect it helps to imagine one end of a spring attached
to the animation start point (for example the left side of the screen or
parent) and the other end attached to the corresponding side of the box. As
the box moves, the spring stretches until the endpoint is reached, at which
point the box bounces a few times on the string before finally resting at the
endpoint.
The two key parameters to the spring() function are damping ratio and
stiffness. The damping ratio defines the speed at which the bouncing effect
decays and is declared as a Float value where 1.0 has no bounce, and 0.1 is
the highest bounce. Instead of using Float values, the following predefined
constants are also available when configuring the damping ratio:
•DampingRatioHighBouncy
•DampingRatioLowBouncy
•DampingRatioMediumBouncy
•DampingRatioNoBouncy
To add a spring effect to the motion animation, add a spring() function call
to the animation as follows:
.
.
import
androidx.compose.animation.core.Spring.DampingRatioHighBouncy
.
.
val animatedOffset: Dp by animateDpAsState(
 targetValue = when (boxState) {
 BoxPosition.Start -> 0.dp
 BoxPosition.End -> screenWidth - boxSideLength
 },
 animationSpec = spring(dampingRatio = DampingRatioHighBouncy),
 label =
"Motion"
)

When tested, the box will now bounce when it reaches the target
destination.
The stiffness parameter defines the strength of the spring. When using a

lower stiffness, the range of motion of the bouncing effect will be greater.
The following, for example, combines a high bounce damping ratio with
very low stiffness. The result is an animation that is so bouncy that the box
bounces beyond the edge of the screen a few times before finally coming to
rest at the endpoint:
.
.
import androidx.compose.animation.core.Spring.StiffnessVeryLow
.
.
val animatedOffset: Dp by animateDpAsState(
 targetValue = when (boxState) {
 BoxPosition.Start -> 0.dp
 BoxPosition.End -> screenWidth - boxSideLength
 },
 animationSpec = spring(dampingRatio = DampingRatioHighBouncy,
 stiffness = StiffnessVeryLow), label =
"Motion"
)

The stiffness of the spring effect can be adjusted using the following
constants:
•StiffnessHigh
•StiffnessLow
•StiffnessMedium
•StiffnessMediumLow
•StiffnessVeryLow
Take some time to experiment with the different damping and stiffness
settings to learn more about the effects they produce.

44.8 Working with keyframes
Keyframes allow different duration and easing values to be applied at
specific points in an animation timeline. Keyframes are applied to
animation via the animationSpec parameter and defined using the
keyframes() function which accepts a lambda containing the keyframe data
and returns a KeyframesSpec instance.
A keyframe specification begins by declaring the total required duration for
the entire animation to complete. That duration is then marked by

timestamps declaring how much of the total animation should be completed
at that point based on the state unit type (for example Float, Dp, Int, etc.).
These timestamps are created via calls to the at() function.
As an example, edit the animateDpAsState() function call to add a keyframe
specification to the animation as follows:
val animatedOffset: Dp by animateDpAsState(
 targetValue = when (boxState) {
 BoxPosition.Start -> 0.dp
 BoxPosition.End -> screenWidth - boxSideLength
 },
 animationSpec = keyframes {
 durationMillis = 1000
 100.dp.at(10)
 110.dp.at(500)
 200.dp.at(700)
 }
)

This keyframe declares a 1000 millisecond duration for the entire
animation. This duration is then divided by three timestamps. The first
timestamp occurs 10 milliseconds into the animation, at which point the
offset value must have reached 100dp. At 500 milliseconds the offset must
be 110dp and, finally, 200dp by the time 700 milliseconds have elapsed.
This leaves 300 milliseconds to complete the remainder animation.
Try out the animation and observe the changes in the speed of the animation
as each timestamp is reached.
The animation behavior can be further configured using the with() function
to add easing settings to the timestamps, for example:
animationSpec = keyframes {
 durationMillis = 1000
 100.dp.at(10).with(LinearEasing)
 110.dp.at(500).with(FastOutSlowInEasing)
 200.dp.at(700).with(LinearOutSlowInEasing)
}

44.9 Combining multiple animations
Multiple animations can be run in parallel based on a single target state
using the updateTransition() function. This function is passed the target
state and returns a Transition instance to which multiple child animations

may be added. When the target state changes, the transition will run all of
the child animations concurrently. The updateTransition() call may also be
passed an optional label parameter which can be used to identify the
transition within the Animation Inspector (a topic that will be covered in the
next section).
A Transition object configured to trigger its child animations in response to
changes to a state variable named myState would typically be declared as
follows:
val transition = updateTransition(targetState = myState,
 label = "My Transition")

The Transition class includes a collection of functions that are used to add
animation to children. These functions use the naming convention of
animate<Type>() depending on the unit type used for the animation such as
animateFloat(), animateDp() and animateColor(). The syntax for these
functions is as follows:
val myAnimation: <Type> by transition.animate<Type>(

 transitionSpec = {
 // anination spec (tween, spring etc)
 }

) { state ->
 // Code to identify new target state based on current state
}

To demonstrate updateTransition in action, we will modify the example to
perform both the color change and motion animations based on changes to
the boxState value. Begin by adding a new function named TransitionDemo
together with a corresponding preview composable (we will correct
undefined symbol errors in the next steps):
@Composable
fun TransitionDemo() {
 var boxState by remember { mutableStateOf(BoxPosition.Start)}
 val screenWidth = LocalConfiguration.current.screenWidthDp.dp

 Column(modifier = Modifier.fillMaxWidth()) {
 Box(
 modifier = Modifier
 .offset(x = animatedOffset, y = 20.dp)

 .size(70.dp)
 .background(animatedColor)
)
 Spacer(modifier = Modifier.height(50.dp))

 Button(
 onClick = {
 boxState = when (boxState) {
 BoxPosition.Start -> BoxPosition.End
 BoxPosition.End -> BoxPosition.Start
 }
 },
 modifier = Modifier.padding(20.dp)
 .align(Alignment.CenterHorizontally)
) {
 Text(text = "Start Animation")
 }
 }
}

@Preview(showBackground = true)
@Composable
fun TransitionDemoPreview() {
 AnimateStateTheme {
 TransitionDemo()
 }
}

Next, edit the new function to obtain a Transition instance configured to
react to changes to boxState:
@Composable
fun TransitionDemo() {
 var boxState by remember { mutableStateOf(BoxPosition.Start)}
 val screenWidth = LocalConfiguration.current.screenWidthDp.dp
 val transition = updateTransition(targetState = boxState,
 label = "Color and Motion")
.
.

Finally, add the color and motion animations to the transition:
.
.
import androidx.compose.animation.animateColor
.

.
@Composable
fun TransitionDemo() {
.
.
 val transition = updateTransition(targetState = boxState,
 label = "Color and Motion")

 val animatedColor: Color by transition.animateColor(

 transitionSpec = {
 tween(4000)
 }, label = "colorAnimation"

) { state ->
 when (state) {
 BoxPosition.Start -> Color.Red
 BoxPosition.End -> Color.Magenta
 }
 }

 val animatedOffset: Dp by transition.animateDp(
 transitionSpec = {
 tween(4000)
 }, label = "offsetAnimation"
) { state ->
 when (state) {
 BoxPosition.Start -> 0.dp
 BoxPosition.End -> screenWidth - 70.dp
 }
 }
.
.

When previewed, the box should change color as it moves across the
screen.

44.10 Using the Animation Inspector
The Animation Inspector is a tool built into Android Studio that allows you
to interact directly with the animation timeline and manually scroll back
and forth through the animation sequences. The inspector is only available
when a Transition-based animation is present and is accessed using the

button highlighted in Figure 44-6 below:

Figure 44-6
If this button is not visible, try building and running the app on a device or
emulator, then try again.
Once enabled, the inspector panel will appear beneath the preview panel as
illustrated in Figure 44-7:

Figure 44-7
The area marked A contains a section for each transition in the current
source file. Since our example only contains a single transition, there is
only one entry in the above image. Since a label was passed to the
updateTransition() function call, this is displayed as the tab title.
The toolbar (B) provides options to play the animation, jump to the start or
end of the timeline, loop repeatedly through the animation, and change the
animation playback speed.
The transition’s animation children are listed in the timeline panel (C). The

blue vertical line (D) indicates the current position in the timeline which
can be dragged to manually move through the animation. The drop-down
menus (E) can be used to change the direction of the animation. Note that
the options listed in these menus are taken from the BoxPosition
enumeration. As an alternative to manually changing these menu settings,
click on the button marked F.

44.11 Summary
The Compose Animation API provides several options for performing
animation based on state changes. A set of animate as state functions are
used to animate the results of changes to state values. These functions are
passed a target state value and animate the change from the current value to
the target value. Animations can be configured in terms of timeline
linearity, duration, and spring effects. Individual animations are combined
into a single Transition instance using the updateTransition() function.
Android Studio includes the Animation Inspector for testing and manually
scrolling through animation sequences.

45. Canvas Graphics Drawing in
Compose
In this chapter, we will be introducing 2D graphics drawing using the
Compose Canvas component. As we explore the capabilities of Canvas it
will quickly become apparent that, as with just about everything else in
Compose, we can typically achieve impressive results with just a few lines
of code.

45.1 Introducing the Canvas component
The Canvas component provides a surface on which to perform 2D graphics
drawing. Behind the scenes, however, Canvas does much more than just
provide a drawing area, including ensuring that the graphical content’s state
is maintained and managed automatically. Canvas also has its own scope
(DrawScope), which gives us access to properties of the canvas area
including the size dimensions and center point of the current bounds area, in
addition to a set of functions we can use to draw shapes, lines, and paths,
define insets, perform rotations, and much more.
Given the visual nature of this particular Compose feature, the rest of this
chapter will use a project to demonstrate many of the features of the Canvas
component in action.

45.2 Creating the CanvasDemo project
Launch Android Studio and create a new Empty Activity project named
CanvasDemo, specifying com.example.canvasdemo as the package name,
and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

45.3 Drawing a line and getting the canvas size
The first drawing example we will look at involves drawing a straight
diagonal line from one corner of the Canvas bounds to the other. To achieve
this, we need to obtain the dimensions of the canvas by accessing the size
properties provided by DrawScope. Edit the MainActivity.kt file to add a
new function named DrawLine and add a call to this new function from
within the MainScreen composable:
.
.
import androidx.compose.foundation.Canvas
import androidx.compose.foundation.layout.size
import androidx.compose.ui.geometry.Offset
import androidx.compose.ui.geometry.Size
import androidx.compose.ui.graphics.*
import androidx.compose.ui.unit.dp
.
.
@Composable
fun MainScreen() {
 DrawLine()
}

@Composable
fun DrawLine() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val height = size.height
 val width = size.width
 }
}

The DrawLine composable creates a fixed size Canvas and extracts the
height and width properties from the DrawScope. All that remains is to
draw a line via a call to the DrawScope drawLine() function:
@Composable
fun DrawLine() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val height = size.height
 val width = size.width

 drawLine(
 start = Offset(x= 0f, y = 0f),

 end = Offset(x = width, y = height),
 color = Color.Blue,
 strokeWidth = 16.0f
)
 }
}

The drawLine() API function needs to know the x and y coordinates of the
start and endpoints of the line, keeping in mind that the top left-hand corner
of the Canvas is position 0, 0. In the above example, these coordinates are
packaged into an Offset instance via a call to the Offset() function. The
drawLine() function also needs to know the thickness and color of the line
to be drawn. After making the above changes, refresh the Preview panel
where the drawing should be rendered as shown in Figure 45-1:

Figure 45-1
45.4 Drawing dashed lines
Any form of line drawing performed on a Canvas can be configured with
dash effects by configuring a PathEffect instance and assigning it to the
pathEffect argument of the drawing function call. To create a dashed line,
we need to call the dashPathEffect() method of the PathEffect instance and
pass it an array of floating-point numbers. The floating-point numbers
indicate the “on” and “off” intervals in the line in pixels. There must be an
even number of interval values with a minimum of 2 values. Modify the
DrawLine composable to add a dashed line effect as follows:
@Composable
fun DrawLine() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val height = size.height
 val width = size.width

 drawLine(
 start = Offset(x= 0f, y = 0f),

 end = Offset(x = width, y = height),
 color = Color.Blue,
 strokeWidth = 16.0f,
 pathEffect = PathEffect.dashPathEffect(
 floatArrayOf(30f, 10f, 10f, 10f), phase = 0f)
)
 }
}

The above path effect will draw a line beginning with a 30px dash and 10px
space, followed by 10px dash and a 10px space, repeating this sequence
until the end of the line as shown in Figure 45-2:

Figure 45-2
45.5 Drawing a rectangle
Rectangles are drawn on a Canvas using the drawRect() function which can
be used in several different ways. The following code changes draw a
rectangle of specific dimensions at the default position (0, 0) within the
canvas area:
@Composable
fun MainScreen() {
 DrawRect()
}

@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val size = Size(600f, 250f)
 drawRect(
 color = Color.Blue,
 size = size
)
 }

}

When rendered within the Preview panel, the rectangle will appear as
shown in Figure 45-3:

Figure 45-3
Note that the dimensions of the Canvas are 300 x 300 while the rectangle is
sized to 600 x 250. At first glance, this suggests that the rectangle should be
much wider than it appears in the above figure relative to the Canvas. In
practice, however, the Canvas size is declared in density-independent pixels
(dp) while the rectangle size is specified in pixels (px). Density independent
pixels are an abstract measurement that is calculated based on the physical
density of the screen defined in dots per inch (dpi). Pixels, on the other
hand, refer to the actual physical pixels on the screen. To work solely in
pixels, start with dp values and then convert them to pixels as follows:
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
val size = Size(200.dp.toPx(), 100.dp.toPx())
 drawRect(
 color = Color.Blue,
 size = size
)
 }
}

Instead of specifying dimensions, the size of the rectangle can also be
defined relative to the size of the Canvas. For example, the following code
draws a square that is half the size of the Canvas:
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val size = Size(200.dp.toPx(), 100.dp.toPx())
 drawRect(
 color = Color.Blue,

 size = size / 2f
)
 }
}

The above changes will result in the following drawing output:

Figure 45-4
The position of the rectangle within the Canvas area can be specified by
providing the coordinates of the top left-hand corner of the drawing:
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
 drawRect(
 color = Color.Blue,
 topLeft = Offset(x=350f, y = 300f),
 size = size / 2f
)
 }
}

Figure 45-5
Alternatively, the inset() function may be used to modify the bounds of the
Canvas component:
.
.
import androidx.compose.ui.graphics.drawscope.inset
.
.
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
 inset(100f, 200f) {
 drawRect(

 color = Color.Blue,
 size = size / 2f
)
 }
 }
}

The inset() function can be called with a wide range of settings affecting
different sides of the canvas. The function is also particularly useful
because multiple drawing functions can be called from within the trailing
lambda, with each adopting the same inset values.
The drawRoundRect() function is also available for drawing rectangles with
rounded corners. In addition to size and position, this function also needs to
be passed an appropriately configured CornerRadius component. It is also
worth noting that rectangles (both with and without rounded corners) can be
drawn in outline only by specifying a Stroke for the style property, for
example:
.
.
import androidx.compose.ui.geometry.CornerRadius
import androidx.compose.ui.graphics.drawscope.Stroke
.
.
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {

 val size = Size(
 width = 280.dp.toPx(),
 height = 200.dp.toPx())

 drawRoundRect(
 color = Color.Blue,
 size = size,
 topLeft = Offset(20f, 20f),
 style = Stroke(width = 8.dp.toPx()),
 cornerRadius = CornerRadius(
 x = 30.dp.toPx(),
 y = 30.dp.toPx()
)
)

 }
}

The above code produces an outline of a rectangle with rounded corners:

Figure 45-6
45.6 Applying rotation
Any element drawn on a Canvas component can be rotated via a call to the
scope rotate() function. The following code, for example, rotates a rectangle
drawing by 45°:
.
.
import androidx.compose.ui.graphics.drawscope.rotate
.
.
@Composable
fun DrawRect() {
 Canvas(modifier = Modifier.size(300.dp)) {
 rotate(45f) {
 drawRect(
 color = Color.Blue,
 topLeft = Offset(200f, 200f),
 size = size / 2f
)
 }
 }
}

The above changes will render the drawing as shown in Figure 45-7 below:

Figure 45-7
45.7 Drawing circles and ovals
Circles are drawn in Compose using the drawCircle() function. The
following code draws a circle centered within a Canvas. Note that we find
the center of the canvas by referencing the DrawScope center property:
@Composable
fun MainScreen() {
 DrawCircle()
}

@Composable
fun DrawCircle() {
 Canvas(modifier = Modifier.size(300.dp)) {
 drawCircle(
 color = Color.Blue,
 center = center,
 radius = 120.dp.toPx()
)
 }
}

When previewed, the canvas should appear as shown in Figure 45-8 below:

Figure 45-8
Oval shapes, on the other hand, are drawn by calling the drawOval()
function. The following composable, for example, draws the outline of an
oval shape:
@Composable
fun MainScreen() {
 DrawOval()
}

@Composable
fun DrawOval() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val canvasWidth = size.width
 val canvasHeight = size.height
 drawOval(
 color = Color.Blue,
 topLeft = Offset(x = 25.dp.toPx(), y = 90.dp.toPx()),
 size = Size(
 width = canvasWidth - 50.dp.toPx(),
 height = canvasHeight / 2 - 50.dp.toPx()
),
 style = Stroke(width = 12.dp.toPx())
)
 }
}

The above code will render in the Preview panel as illustrated in Figure 45-
9:

Figure 45-9
45.8 Drawing gradients
Shapes can be filled using gradient patterns by making use of the Brush
component which can, in turn, paint horizontal, vertical, linear, radial, and
sweeping gradients. For example, to fill a rectangle with a horizontal
gradient, we need a Brush initialized with a list of colors together with the
start and end positions along the x-axis and an optional tile mode setting.
The following example draws a rectangle that occupies the entire canvas
and fills it with a horizontal gradient:
@Composable
fun MainScreen() {
 GradientFill()
}

@Composable
fun GradientFill() {

 Canvas(modifier = Modifier.size(300.dp)) {
 val canvasSize = size
 val colorList: List<Color> = listOf(Color.Red, Color.Blue,
 Color.Magenta, Color.Yellow, Color.Green,
Color.Cyan)

 val brush = Brush.horizontalGradient(
 colors = colorList,
 startX = 0f,
 endX = 300.dp.toPx(),
 tileMode = TileMode.Repeated
)

 drawRect(
 brush = brush,
 size = canvasSize
)
 }
}

Try out the above example within the Preview panel where it should appear
as follows:

Figure 45-10
The following example, on the other hand, uses a radial gradient to fill a
circle:
@Composable
fun MainScreen() {
 RadialFill()
}

@Composable
fun RadialFill() {
 Canvas(modifier = Modifier.size(300.dp)) {

 val radius = 150.dp.toPx()
 val colorList: List<Color> = listOf(Color.Red, Color.Blue,
 Color.Magenta, Color.Yellow, Color.Green,
Color.Cyan)

 val brush = Brush.radialGradient(
 colors = colorList,
 center = center,
 radius = radius,
 tileMode = TileMode.Repeated
)

 drawCircle(
 brush = brush,
 center = center,
 radius = radius
)
 }
}

Note that the center parameter in the above drawCircle() call is optional in
this example. In the absence of this parameter, the function will
automatically default to the center of the canvas. When previewed, the
circle will appear as shown in Figure 45-11:

Figure 45-11
Gradients are particularly useful for adding shadow effects to drawings.

Consider, for example, the following horizontal gradient applied to a circle
drawing:
@Composable
fun MainScreen() {
 ShadowCircle()
}

@Composable
fun ShadowCircle() {
 Canvas(modifier = Modifier.size(300.dp)) {
 val radius = 150.dp.toPx()
 val colorList: List<Color> =
 listOf(Color.Blue, Color.Black)

 val brush = Brush.horizontalGradient(
 colors = colorList,
 startX = 0f,
 endX = 300.dp.toPx(),
 tileMode = TileMode.Repeated
)

 drawCircle(
 brush = brush,
 radius = radius
)
 }
}

When previewed, the circle will appear with a shadow effect on the right-
hand side as illustrated in Figure 45-12:

Figure 45-12
45.9 Drawing arcs
The drawArc() DrawScope function is used to draw an arc to fit within a

specified rectangle and requires either a Brush or Color setting together
with the start and sweep angles. The following code, for example, draws an
arc starting at 20° with a sweep of 90° within a 250dp by 250dp rectangle:
@Composable
fun MainScreen() {
 DrawArc()
}

@Composable
fun DrawArc() {
 Canvas(modifier = Modifier.size(300.dp)) {
 drawArc(
 Color.Blue,
 startAngle = 20f,
 sweepAngle = 90f,
 useCenter = true,
 size = Size(250.dp.toPx(), 250.dp.toPx())
)
 }
}

The above code will render the arc as shown in Figure 45-13:

Figure 45-13
45.10 Drawing paths
So far in this chapter, we have focused on drawing predefined shapes such
as circles and rectangles. DrawScope also supports the drawing of paths.
Paths are essentially lines drawn between a series of coordinates within the
canvas area. Paths are stored in an instance of the Path class which, once
defined, is passed to the drawPath() function for rendering on the Canvas.
When designing a path, the moveTo() function is called first to define the
start point of the first line. A line is then drawn to the next position using

either the lineTo() or relativeLineTo() functions. The lineTo() function
accepts the x and y coordinates of the next position relative to the top left-
hand corner of the parent Canvas. The relativeLineTo() function, on the
other hand, assumes that the coordinates passed to it are relative to the
previous position and can be negative or positive. The Path class also
includes functions for drawing non-straight lines including Cubic and
Quadratic Bézier curves.
Once the path is complete, the close() function must be called to end the
drawing.
Within the MainActivity.kt file, make the following modifications to draw a
custom shape using a combination of straight lines and Quadratic Bézier
curves:
@Composable
fun MainScreen() {
 DrawPath()
}

@Composable
fun DrawPath() {
 Canvas(modifier = Modifier.size(300.dp)) {

 val path = Path().apply {
 moveTo(0f, 0f)
 quadraticBezierTo(50.dp.toPx(), 200.dp.toPx(),
 300.dp.toPx(), 300.dp.toPx())
 lineTo(270.dp.toPx(), 100.dp.toPx())
 quadraticBezierTo(60.dp.toPx(), 80.dp.toPx(), 0f, 0f)
 close()
 }

 drawPath(
 path = path,
 Color.Blue,
)
 }
}

Refresh the Preview panel where the drawing should appear as illustrated
below:

Figure 45-14
45.11 Drawing points
The drawPoints() function is used to draw individual points at the locations
specified by a list of Offset instances. The pointMode parameter of the
drawPoints() function is used to control whether each point is plotted
separately (using Points mode) or connected by lines using the Lines and
Polygon modes. The drawPoints() function in Points mode is particularly
useful for algorithm-driven drawing. The following code, for example, plots
a sine wave comprised of individual points:
.
.
import java.lang.Math.PI
import java.lang.Math.sin
.
.
@Composable
fun MainScreen() {
 DrawPoints()
}

@Composable
fun DrawPoints() {
 Canvas(modifier = Modifier.size(300.dp)) {

 val height = size.height
 val width = size.width
 val points = mutableListOf<Offset>()

 for (x in 0..size.width.toInt()) {
 val y = (kotlin.math.sin(x * (2f * PI / width))
 * (height / 2) + (height / 2)).toFloat()
 points.add(Offset(x.toFloat(), y))
 }
 drawPoints(
 points = points,
 strokeWidth = 3f,
 pointMode = PointMode.Points,
 color = Color.Blue
)
 }

}

After making the above changes, the Canvas should appear as illustrated
below:

Figure 45-15
45.12 Drawing an image
An image resource can be drawn onto a canvas via a call to the
drawImage() function. To see this function in action, we first need to add an
image resource to the project. The image is named vacation.jpg and can be
found in the images folder of the sample code archive which can be
downloaded from the following web page:
https://www.payloadbooks.com/product/compose16/
Within Android Studio, display the Resource Manager tool window. Locate
the vacation.png image in the file system navigator for your operating
system and drag and drop it onto the Resource Manager tool window. In the
resulting dialog, click Next followed by the Import button to add the image
to the project. The image should now appear in the Resource Manager as
shown in Figure 45-16 below:

Figure 45-16
The image will also appear in the res -> drawables section of the Project
tool window:

Figure 45-17
With the image added to the project, return to the MainActivity.kt file and
make the following modifications:
.
.
import androidx.compose.ui.res.imageResource
.
.
@Composable
fun MainScreen() {
 DrawImage()
}

https://www.payloadbooks.com/product/compose16/

@Composable
fun DrawImage() {

 val image = ImageBitmap.imageResource(id = R.drawable.vacation)

 Canvas(
 modifier = Modifier
 .size(360.dp, 270.dp)
) {
 drawImage(
 image = image,
 topLeft = Offset(x = 0f, y = 0f)
)
 }
}

The DrawImage composable begins by creating an ImageBitmap version of
the resource image and then passes it as an argument to the drawImage()
function together with an Offset instance configured to position the image
in the top left-hand corner of the canvas area. Refresh the preview and
confirm that the Canvas appears as follows:

Figure 45-18
The drawImage() function also allows color filters to be applied to the
rendered image. This requires a ColorFilter instance which can be
configured with tint, lighting, color matrix, and blend settings. A full
explanation of color filtering is beyond the scope of this book, but more
information can be found on the following web page:
https://developer.android.com/reference/kotlin/androidx/compose/ui/graphi
cs/ColorFilter
For this example, add a tint color filter blending with a color matrix as

https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/ColorFilter

follows:
.
.
drawImage(
 image = image,
 topLeft = Offset(x = 0f, y = 0f),
 colorFilter = ColorFilter.tint(
 color = Color(0xADFFAA2E),
 blendMode = BlendMode.ColorBurn
)
)
.
.

When the canvas renders the image in the Preview panel, it will now do so
with a yellowish hue.

45.13 Drawing text
Text is drawn on a canvas using DrawScope’s drawText() function and a
TextMeasurer instance. The role of TextMeasurer is to calculate the size of
the text drawing based on factors such as font family and size. We can
obtain a TextMeasurer instance by making a call to the
rememberTextMeasurer() function as follows:
val textMeasurer = rememberTextMeasurer()

Having obtained a TextMeasurer instance, we can pass it to the drawText()
function along with the text to be drawn:
Canvas(modifier = Modifier.fillMaxSize()) {
 drawText(textMeasurer, "Sample Text")
}

While the above example displays a plain text string, text drawing works
best when used with annotated strings (a topic covered in this book’s
“Annotated Strings and Brush Styles” chapter). Try out text drawing within
the CanvasDemo project by making the following changes to the
MainActivity.kt file:
.
.
import androidx.compose.ui.text.*
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
import androidx.compose.ui.unit.toSize

.

.
@Composable
fun MainScreen() {
 DrawText()
}

@OptIn(ExperimentalTextApi::class)
@Composable
fun DrawText() {

 val colorList: List<Color> = listOf(Color.Black,
 Color.Blue, Color.Yellow, Color.Red, Color.Green,
Color.Magenta)

 val textMeasurer = rememberTextMeasurer()

 val annotatedText = buildAnnotatedString {
 withStyle(
 style = SpanStyle(
 fontSize = 60.sp,
 fontWeight = FontWeight.ExtraBold,
 brush = Brush.verticalGradient(colors = colorList)
)
) {
 append("Text Drawing")
 }
 }

 Canvas(modifier = Modifier.fillMaxSize()) {
 drawText(textMeasurer, annotatedText)
 }
}

The code we have added declares a list of colors, obtains a TextMeasurer
and builds an annotated string that uses a large font size with extra bold font
weight. A brush style is then used to apply a vertical gradient consisting of
the color list. Next, the text measurer and annotated string are passed to the
drawText() function of a Canvas scope resulting in the following output
displayed in the preview panel:

Figure 45-19
An interesting benefit of using TextMeasurer is that it gives us access to the
dimensions of the drawn text. This information is beneficial when you need
to include a background matching the text size. The text size can be
obtained by passing the annotated string to TextMeasurer’s measure()
function. The measure() function will return a TextLayoutResult object
from which we can extract size properties.
To see this in action, modify the DrawText function as follows so that the
text is drawn on an appropriately sized horizontal gradient background:
@Composable
fun DrawText() {
.
.
 Canvas(modifier = Modifier.fillMaxSize()) {

 val dimensions = textMeasurer.measure(annotatedText)

 drawRect(
 brush = Brush.horizontalGradient(colors = colorList),
 size = dimensions.size.toSize()
)
 drawText(textMeasurer, annotatedText)
 }
}

After making the above changes, the text should appear in the preview
panel as illustrated in Figure 45-20:

Figure 45-20
45.14 Summary

The Compose Canvas component provides a surface on which to draw
graphics. The Canvas DrawScope includes a set of functions that allow us
to perform drawing operations within the canvas area, including drawing
lines, shapes, gradients, images, text, and paths. In this chapter, we have
explored some of the more common drawing features provided by Canvas
and the DrawScope functions.

46. Working with ViewModels in Compose

Until a few years ago, Google did not recommend a specific approach to
building Android apps other than to provide tools and development kits
while letting developers decide what worked best for a particular project or
individual programming style. That changed in 2017 with the introduction
of the Android Architecture Components which became part of Android
Jetpack when it was released in 2018. Jetpack has of course, since been
expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android
app architecture recommendations, and the ViewModel component.

46.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture
Components, Android Support Library, and the Compose framework
together with a set of guidelines that recommend how an Android App
should be structured. The Android Architecture Components were designed
to make it quicker and easier both to perform common tasks when
developing Android apps while also conforming to the key principle of the
architectural guidelines. While many of these components have been
superseded by features built into Compose, the ViewModel architecture
component remains relevant today. Before exploring the ViewModel
component, it first helps to understand both the old and new approaches to
Android app architecture.

46.2 The “old” architecture

In the chapter entitled “An Example Compose Project”, an Android project
was created consisting of a single activity that contained all of the code for
presenting and managing the user interface together with the back-end logic
of the app. Up until the introduction of Jetpack, the most common
architecture followed this paradigm with apps consisting of multiple
activities (one for each screen within the app) with each activity class to
some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app
(for example an activity is destroyed and recreated each time the user
rotates the device leading to the loss of any app data that had not been
saved to some form of persistent storage) as well as issues such as
inefficient navigation involving launching a new activity for each app
screen accessed by the user.

46.3 Modern Android architecture

At the most basic level, Google now advocates single activity apps where
different screens are loaded as content within the same activity.

Modern architecture guidelines also recommend separating different areas
of responsibility within an app into entirely separate modules (a concept
called “separation of concerns”). One of the keys to this approach is the
ViewModel component.

46.4 The ViewModel component

The purpose of ViewModel is to separate the user interface-related data
model and logic of an app from the code responsible for displaying and
managing the user interface and interacting with the operating system.
When designed in this way, an app will consist of one or more UI
Controllers, such as an activity, together with ViewModel instances
responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values
containing the model data and functions that can be called to manage that
data. The activity containing the user interface observes the model state
values such that any value changes trigger a recomposition. User interface
events relating to the model data such as a button click are configured to
call the appropriate function within the ViewModel. This is, in fact, a direct
implementation of the unidirectional data flow concept described in the
chapter entitled “An Overview of Compose State and Recomposition”. The
diagram in Figure 46-1 illustrates this concept as it relates to activities and
ViewModels:

Figure 46-1

This separation of responsibility addresses the issues relating to the
lifecycle of activities. Regardless of how many times an activity is
recreated during the lifecycle of an app, the ViewModel instances remain in
memory thereby maintaining data consistency. A ViewModel used by an
activity, for example, will remain in memory until the activity finishes
which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data
from data sources such as web services or databases should be built into a
separate repository module instead of being bundled with the view model.
This topic will be covered in detail beginning with the chapter entitled
“Room Databases and Compose”.

46.5 ViewModel implementation using state

The main purpose of a ViewModel is to store data that can be observed by
the user interface of an activity. This allows the user interface to react when
changes occur to the ViewModel data. There are two ways to declare the
data within a ViewModel so that it is observable. One option is to use the
Compose state mechanism which has been used extensively throughout this
book. An alternative approach is to use the Jetpack LiveData component, a
topic that will be covered later in this chapter.

Much like the state declared within composables, ViewModel state is
declared using the mutableStateOf group of functions. The following
ViewModel declaration, for example, declares a state containing an integer
count value with an initial value of 0:

class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function
that can be called from within the UI to change the counter value:

class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

 fun increaseCount() {

 customerCount++

 }

}

Even complex models are nothing more than a continuation of these two
basic state and function building blocks.

46.6 Connecting a ViewModel state to an activity

A ViewModel is of little use unless it can be used within the composables
that make up the app user interface. All this requires is to pass an instance
of the ViewModel as a parameter to a composable from which the state
values and functions can be accessed. Programming convention
recommends that these steps be performed in a composable dedicated
solely for this task and located at the top of the screen’s composable
hierarchy. The model state and event handler functions can then be passed
to child composables as necessary. The following code shows an example
of how a ViewModel might be accessed from within an activity:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ViewModelWorkTheme {

 Surface(color = MaterialTheme.colorScheme.background) {

 TopLevel()

 }

 }

 }

 }

}

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 MainScreen(model.customerCount) { model.increaseCount() }

}

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.fillMaxWidth()) {

 Text("Total customers = $count",

 Modifier.padding(10.dp))

 Button(

 onClick = addCount,

) {

 Text(text = "Add a Customer")

 }

 }

}

In the above example, the first function call is made by the onCreate()
method to the TopLevel composable which is declared with a default
ViewModel parameter initialized via a call to the viewModel() function:

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

.

.

The viewModel() function is provided by the Compose view model
lifecycle library which needs to be added to the project’s build
dependencies when working with view models. This requires the following
additions to the Gradle Scripts -> libs.version.tomi file:

[versions]

activityCompose = "1.8.2"

.

.

[libraries]

androidx-lifecycle-viewmodel-compose = { module =
"androidx.lifecycle:lifecycle-viewmodel-compose", version.ref =
"lifecycleRuntimeKtx" }

.

.

Once the library has been added to the version catalog, it must be added to
the dependencies section of the Gradle Scripts -> build.gradle.kts (Module
:app) file:

dependencies {

.

.

 implementation(libs.androidx.lifecycle.viewmodel.compose)

.

.

If an instance of the view model has already been created within the current
scope, the viewModel() function will return a reference to that instance.
Otherwise, a new view model instance will be created and returned.

With access to the ViewModel instance, the TopLevel function is then able
to obtain references to the view model customerCount state variable and
increaseCount() function which it passes to the MainScreen composable:

MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model
increaseCount() function which, in turn, increments the customerCount
state. This change in state triggers a recomposition of the user interface,
resulting in the new customer count value appearing in the Text
composable.

The use of state and view models will be demonstrated in the chapter
entitled “A Compose ViewModel Tutorial”.

46.7 ViewModel implementation using LiveData

The Jetpack LiveData component predates the introduction of Compose
and can be used as a wrapper around data values within a view model.
Once contained in a LiveData instance, those variables become observable
to composables within an activity. LiveData instances can be declared as
being mutable using the MutableLiveData class, allowing the ViewModel
functions to make changes to the underlying data value. An example view
model designed to store a customer name could, for example, be
implemented as follows using MutableLiveData instead of state:

class MyViewModel : ViewModel() {

 var customerName: MutableLiveData<String> = MutableLiveData("")

 fun setName(name: String) {

 customerName.value = name

 }

}

Note that new values must be assigned to the live data variable via the
value property.

46.8 Observing ViewModel LiveData within an activity

As with state, the first step when working with LiveData is to obtain an
instance of the view model within an initialization composable:

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

}

Once we have access to a view model instance, the next step is to make the
live data observable. This is achieved by calling the observeAsState()
method on the live data object:

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 var customerName: String by model.customerName.observeAsState("")

}

In the above code, the observeAsState() call converts the live data value
into a state instance and assigns it to the customerName variable. Once
converted, the state will behave in the same way as any other state object,
including triggering recompositions whenever the underlying value
changes.

The use of LiveData and view models will be demonstrated in the chapter
entitled “A Compose Room Database and Repository Tutorial”.

46.9 Summary

Until recently, Google has tended not to recommend any particular
approach to structuring an Android app. That changed with the introduction
of Android Jetpack which consists of a set of tools, components, libraries,

and architecture guidelines. These architectural guidelines recommend that
an app project be divided into separate modules, each being responsible for
a particular area of functionality, otherwise known as “separation of
concerns”. In particular, the guidelines recommend separating the view data
model of an app from the code responsible for handling the user interface.
This is achieved using the ViewModel component. In this chapter, we have
covered ViewModel-based architecture and demonstrated how this is
implemented when developing with Compose. We have also explored how
to observe and access view model data from within an activity using both
state and LiveData.

47. A Compose ViewModel Tutorial
As outlined in the previous chapter, we use ViewModels to separate an
activity’s data and associated logic from the code responsible for rendering
the user interface. Having covered the theory of modern Android app
architecture, this chapter will create an example project demonstrating the
use of a ViewModel within an example project.

47.1 About the project
The project created in this chapter involves a simple app designed to
perform temperature conversions between Celsius and Fahrenheit. Once the
app is complete, it will appear as illustrated in Figure 47-1 below:

Figure 47-1
When a temperature value is entered into the OutlinedTextField, and the
button is clicked, the converted value will appear in a result Text
component. In addition, the Switch component indicates whether the

entered temperature is Fahrenheit or Celsius. The current switch setting,
conversion result, and conversion logic will all be contained within a
ViewModel.

47.2 Creating the ViewModelDemo project
Launch Android Studio and create a new Empty Activity project named
ViewModelDemo, specifying com.example.viewmodeldemo as the package
name and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named ScreenSetup, which, in turn, calls a function
named MainScreen:
@Composable
fun ScreenSetup() {
 MainScreen()
}

@Composable
fun MainScreen() {

}

Edit the OnCreate() method function to call ScreenSetup instead of
Greeting (we will modify the GreetingPreview composable later).
Next, edit the Gradle Scripts -> libs.version.tomi file and modify it as
follows: (keeping in mind that a more recent version of the library may now
be available):
.
.
[libraries]
androidx-lifecycle-viewmodel-compose = { module =
"androidx.lifecycle:lifecycle-viewmodel-compose", version.ref =
"lifecycleRuntimeKtx" }
.
.

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and
add the following directive to the dependencies section:
dependencies {
.
.
 implementation(libs.androidx.lifecycle.viewmodel.compose)

.

.

Click on the Sync Now link and wait while the synchronization process
completes.

47.3 Adding the ViewModel
Within the Android Studio Project tool window, locate and right-click on
the app -> kotlin+java -> com.example.viewmodeldemo entry and select
the New -> Kotlin Class/File menu option. In the resulting dialog, name the
class DemoViewModel before tapping the keyboard Enter key.
The ViewModel needs to contain state values in which to store the
conversion result and current switch position as follows:
package com.example.viewmodeldemo

import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.setValue
import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {

 var isFahrenheit by mutableStateOf(true)
 var result by mutableStateOf("")
}

The class also needs to contain the logic for the model, starting with a
function to perform the temperature unit conversion. Since the user enters
the temperature into a text field it is passed to the function as a String. In
addition to performing the calculation, code is also needed to convert
between string and integer types. This code must also ensure that the user
has entered a valid number. Remaining in the DemoViewModel.kt file, add a
new function named convertTemp() so that it reads as follows:
.
.
import java.lang.Exception
import kotlin.math.roundToInt

class DemoViewModel : ViewModel() {
.
.

 fun convertTemp(temp: String) {

 result = try {
 val tempInt = temp.toInt()

 if (isFahrenheit) {
 ((tempInt - 32) * 0.5556).roundToInt().toString()
 } else {
 ((tempInt * 1.8) + 32).roundToInt().toString()
 }
 } catch (e: Exception) {
 "Invalid Entry"
 }
 }
.
.

The above function begins by converting the temperature string value to an
integer. This is performed within the context of a try... catch statement,
which reports invalid input if the text does not equate to a valid number.
Next, the appropriate conversion is performed depending on the current
isFahrenheit setting, and the result is rounded to a whole number and
converted back to a string before being assigned to the result state variable.
The other function that needs to be added to the view model will be called
when the switch setting changes and inverts the current isFahrenheit state
setting:
fun switchChange() {
 isFahrenheit = !isFahrenheit
}

The implementation of the view model is now complete and is ready to be
used from within the main activity.

47.4 Accessing DemoViewModel from MainActivity
Now that we have declared a view model class, the next step is to create an
instance and integrate it with the composables that make up our
MainActivity. This project will involve creating a DemoViewModel
instance as a parameter to the ScreenSetup function and then passing
through the state variables and function references to the MainScreen
function. First, open the MainActivity.kt file in the code editor and make the

following changes:
.
.
import androidx.lifecycle.viewmodel.compose.viewModel
.
.
@Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen(
 isFahrenheit = viewModel.isFahrenheit,
 result = viewModel.result,
 convertTemp = { viewModel.convertTemp(it) },
 switchChange = { viewModel.switchChange() }
)
}

@Composable
fun MainScreen(
 isFahrenheit: Boolean,
 result: String,
 convertTemp: (String) -> Unit,
 switchChange: () -> Unit
) {

}
.
.

Before starting work on the user interface design, the GreetingPreview
function also needs to be modified to make use of the view model:
@Preview(showBackground = true, showSystemUi = true)
@Composable
fun GreetingPreview(model: DemoViewModel = viewModel()) {
 ViewModelDemoTheme {
 MainScreen(
 isFahrenheit = model.isFahrenheit,
 result = model.result,
 convertTemp = { model.convertTemp(it) },
 switchChange = { model.switchChange() }
)
 }
}

47.5 Designing the temperature input composable
A closer look at the completed user interface screenshot shown in Figure
47-1 above will reveal the presence of a snowflake icon on the right-hand
side of the OutlinedTextField component. Before writing any more code,
we need to add this icon to the project. Within Android Studio, display the
Resource Manager tool window. Within the tool window click on the `+`
button indicated by the arrow in Figure 47-2 and select the Vector Asset
menu option to add a new resource to the project:

Figure 47-2
In the resulting dialog, click on the Clip Art box as shown in Figure 47-3
below:

Figure 47-3
When the icon selection dialog appears, enter “ac unit” into the search field
to locate the clip art icon to be used in the project:

Figure 47-4
Select the icon and click on the OK button to return to the vector asset
configuration dialog, where the selected icon will now appear. Click Next
followed by Finish to complete the addition of the icon to the project
resources.

47.6 Designing the temperature input composable
In the interests of avoiding the MainScreen function becoming cluttered, the
Switch, OutlinedTextField, and unit indicator Text component will be
placed in a separate composable named InputRow, which can now be added
to the MainActivity.kt file:
.
.
import androidx.compose.animation.Crossfade
import androidx.compose.animation.core.tween
import androidx.compose.foundation.layout.*
import androidx.compose.foundation.text.KeyboardOptions
import androidx.compose.material3.*
import androidx.compose.ui.Alignment
import androidx.compose.ui.res.painterResource
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.input.KeyboardType
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
.
.
@Composable
fun InputRow(
 isFahrenheit: Boolean,
 textState: String,
 switchChange: () -> Unit,
 onTextChange: (String) -> Unit
) {

 Row(verticalAlignment = Alignment.CenterVertically) {

 Switch(
 checked = isFahrenheit,
 onCheckedChange = { switchChange() }
)

 OutlinedTextField(
 value = textState,
 onValueChange = { onTextChange(it) },
 keyboardOptions = KeyboardOptions(
 keyboardType = KeyboardType.Number
),
 singleLine = true,
 label = { Text("Enter temperature")},
 modifier = Modifier.padding(10.dp),
 textStyle = TextStyle(fontWeight = FontWeight.Bold,
 fontSize = 30.sp),
 trailingIcon = {
 Icon(
 painter =
painterResource(R.drawable.baseline_ac_unit_24),
 contentDescription = "frost",
 modifier = Modifier
 .size(40.dp)
)
 }
)

 Crossfade(
 targetState = isFahrenheit,
 animationSpec = tween(2000)
) { visible ->
 when (visible) {
 true -> Text(
 "\u2109", style =
MaterialTheme.typography.headlineSmall)
 false -> Text(
 "\u2103", style =
MaterialTheme.typography.headlineSmall)
 }
 }
 }

}

If the editor reports that OutlinedTextField is experimental, add the
following OptIn declaration to the function:
@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun InputRow(
 isFahrenheit: Boolean,
 textState: String,

The InputRow function expects as parameters the state values and functions
contained within the view model together with a textState state variable and
onTextChange event handler. These last two parameters are used to display
the text typed by the user into the text field and will be “hoisted” to the
MainScreen function later in the chapter. The current textState value is also
what gets passed to the convertTemp() function when the user clicks the
button.
The composables that make up this section of the layout are contained
within a Row that is configured to center its children vertically. The first
child, the Switch component, simply calls the switchChange() function on
the model to toggle the isFahrenheit state.
While many of the properties applied to the OutlinedTextField will be
familiar from previous chapters, some require additional explanation. For
example, since the temperature can only be entered as a number, the
keyboardOptions keyboard type property is set to KeyboardType.Number.
This ensures that when the user taps within the text field, only the numeric
keyboard will appear on the screen:
keyboardOptions = KeyboardOptions(
 keyboardType = KeyboardType.Number
)

Other keyboard type options include email address, password, phone
number, and URI inputs.
The input is also limited to a single line of text using the singleLine
property. As the name suggests, the OutlinedTextField component draws an
outline around the text input area. When the component is not selected by
the user (in other words, it does not have “focus”), the text assigned to the
label property appears in slightly faded text within the text field, as shown
in Figure 47-5:

Figure 47-5
When the field has focus, however, the label appears as a title positioned
within the outline:

Figure 47-6
The result of a call to the TextStyle function is assigned to the textStyle
property of the OutlinedTextField. TextStyle is used to group style settings
into a single object that can be applied to other composables in a single
operation. In this instance, we are only setting font weight and font style,
but TextStyle may also be used to configure style settings including color,
background, font family, shadow, text alignment, letter spacing, and text
indent.
The trailingIcon property is used to position the previously added icon at
the end of the text input area:
trailingIcon = {
 Icon(
 painter =
painterResource(R.drawable.ic_baseline_ac_unit_24),
 contentDescription = "frost",
 modifier = Modifier
 .size(40.dp)
)
}

Finally, crossfade animation (covered in the chapter titled “Compose
Visibility Animation”) is used when switching the unit Text field between
°F and °C (represented by Unicode values \u2109 and \u2103, respectively)
based on the current isFahrenheit setting.

47.7 Completing the user interface design
The final task before testing the app is to complete the MainScreen
function, which now needs to read as follows:
.

.
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.setValue
import androidx.compose.runtime.remember
.
.
@Composable
fun MainScreen(
 isFahrenheit: Boolean,
 result: String,
 convertTemp: (String) -> Unit,
 switchChange: () -> Unit
) {
 Column(horizontalAlignment = Alignment.CenterHorizontally,
 modifier = Modifier.fillMaxSize()) {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState = text
 }

 Text("Temperature Converter",
 modifier = Modifier.padding(20.dp),
 style = MaterialTheme.typography.headlineSmall
)

 InputRow(
 isFahrenheit = isFahrenheit,
 textState = textState,
 switchChange = switchChange,
 onTextChange = onTextChange
)

 Text(result,
 modifier = Modifier.padding(20.dp),
 style = MaterialTheme.typography.headlineMedium
)

 Button(
 onClick = { convertTemp(textState) }
)

 {
 Text("Convert Temperature")
 }
 }
}

The MainScreen composable declares the textState state variable and an
onTextChange event handler. The first child of the Column layout is a static
Text component displaying a title. Next, the InputRow is called and passed
the necessary parameters. The third child is another Text component, this
time configured to display the content of the view model result state
variable. Finally, a Button composable is configured to call the view model
convertTemp() function, passing it textState. The convertTemp() function
will calculate the converted temperature and assign it to the result state
variable, thereby triggering a recomposition of the composable hierarchy.

47.8 Testing the app
Test the activity by enabling interactive mode in the preview panel and
tapping on the OutlinedTextField component. Note that the “Enter
temperature” label moves to the outline leaving the input field clear to enter
a temperature value. Verify that when the keyboard appears, it only allows
numerical selections. Enter a number and click on the Button at which point
the converted temperature should be displayed.
Use the Switch to change from Fahrenheit to Centigrade, and note the unit
text to the right of the text field changes using cross-fade animation.
Finally, test that attempting a conversion with a blank text field causes the
Invalid Entry text to appear.

47.9 Summary
This chapter has demonstrated the use of a view model to separate the data
and logic of an application from the code responsible for displaying the user
interface. The chapter also introduced the OutlinedTextField component
and covered customization options, including adding an icon, restricting
keyboard input to numerical values, and setting style attributes using the
TextStyle function.

48. An Overview of Android SQLite
Databases
Mobile applications that do not need to store at least some amount of
persistent data are few and far between. The use of databases is an essential
aspect of most applications, ranging from applications that are almost
entirely data-driven, to those that simply need to store small amounts of
data such as the prevailing score of a game.
The importance of persistent data storage becomes even more evident when
taking into consideration the somewhat transient lifecycle of the typical
Android application. With the ever-present risk that the Android runtime
system will terminate an application component to free up resources, a
comprehensive data storage strategy to avoid data loss is a key factor in the
design and implementation of any application development strategy.
This chapter will provide an overview of the SQLite database management
system bundled with the Android operating system, together with an outline
of the Android SDK classes that are provided to facilitate persistent SQLite-
based database storage from within an Android application. Before delving
into the specifics of SQLite in the context of Android development,
however, a brief overview of databases and SQL will be covered.

48.1 Understanding database tables
Database tables provide the most basic level of data structure in a database.
Each database can contain multiple tables and each table is designed to hold
information of a specific type. For example, a database may contain a
customer table that contains the name, address, and telephone number for
each of the customers of a particular business. The same database may also
include a products table used to store the product descriptions with
associated product codes for the items sold by the business.
Each table in a database is assigned a name that must be unique within that
particular database. A table name, once assigned to a table in one database,
may not be used for another table except within the context of another
database.

48.2 Introducing database schema

Database Schemas define the characteristics of the data stored in a database
table. For example, the table schema for a customer database table might
define that the customer name is a string of no more than 20 characters in
length and that the customer phone number is a numerical data field of a
certain format.
Schemas are also used to define the structure of entire databases and the
relationship between the various tables contained in each database.

48.3 Columns and data types
It is helpful at this stage to begin to view a database table as being similar to
a spreadsheet where data is stored in rows and columns.
Each column represents a data field in the corresponding table. For
example, the name, address, and telephone data fields of a table are all
columns.
Each column, in turn, is defined to contain a certain type of data. A column
designed to store numbers would, therefore, be defined as containing
numerical data.

48.4 Database rows
Each new record that is saved to a table is stored in a row. Each row, in turn,
consists of the columns of data associated with the saved record.
Once again, consider the spreadsheet analogy described earlier in this
chapter. Each entry in a customer table is equivalent to a row in a
spreadsheet and each column contains the data for each customer (name,
address, telephone, etc). When a new customer is added to the table, a new
row is created and the data for that customer is stored in the corresponding
columns of the new row.
Rows are also sometimes referred to as records or entries and these terms
can generally be used interchangeably.

48.5 Introducing primary keys
Each database table should contain one or more columns that can be used to
identify each row in the table uniquely. This is known in database
terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table
may use the customer’s social security number as the primary key.

Primary keys allow the database management system to identify a specific
row in a table uniquely. Without a primary key, it would not be possible to
retrieve or delete a specific row in a table because there can be no certainty
that the correct row has been selected. For example, suppose a table existed
where the customer’s last name had been defined as the primary key.
Imagine then the problem that might arise if more than one customer named
“Smith” were recorded in the database. Without some guaranteed way to
identify a specific row uniquely, it would be impossible to ensure the
correct data was being accessed at any given time.
Primary keys can comprise a single column or multiple columns in a table.
To qualify as a single column primary key, no two rows can contain
matching primary key values. When using multiple columns to construct a
primary key, individual column values do not need to be unique, but all the
columns’ values combined must be unique.

48.6 What is SQLite?
SQLite is an embedded, relational database management system (RDBMS).
Most relational databases (Oracle, SQL Server, and MySQL being prime
examples) are standalone server processes that run independently, and in
cooperation with, applications that require database access. SQLite is
referred to as embedded because it is provided in the form of a library that
is linked into applications. As such, there is no standalone database server
running in the background. All database operations are handled internally
within the application through calls to functions contained in the SQLite
library.
The developers of SQLite have placed the technology into the public
domain with the result that it is now a widely deployed database solution.
SQLite is written in the C programming language and as such, the Android
SDK provides a Java-based “wrapper” around the underlying database
interface. This essentially consists of a set of classes that may be utilized
within the Java or Kotlin code of an application to create and manage
SQLite-based databases.
For additional information about SQLite refer to https://www.sqlite.org.

48.7 Structured Query Language (SQL)

http://www.sqlite.org/

Data is accessed in SQLite databases using a high-level language known as
Structured Query Language. This is usually abbreviated to SQL and
pronounced sequel. SQL is a standard language used by most relational
database management systems. SQLite conforms mostly to the SQL-92
standard.
SQL is essentially a very simple and easy-to-use language designed
specifically to enable the reading and writing of database data. Because
SQL contains a small set of keywords, it can be learned quickly. In
addition, SQL syntax is more or less identical between most DBMS
implementations, so having learned SQL for one system, your skills will
likely transfer to other database management systems.
While some basic SQL statements will be used within this chapter, a
detailed overview of SQL is beyond the scope of this book. There are,
however, many other resources that provide a far better overview of SQL
than we could ever hope to provide in a single chapter here.

48.8 Trying SQLite on an Android Virtual Device
(AVD)
For readers unfamiliar with databases in general and SQLite in particular,
diving right into creating an Android application that uses SQLite may
seem a little intimidating. Fortunately, Android is shipped with SQLite pre-
installed, including an interactive environment for issuing SQL commands
from within an adb shell session connected to a running Android AVD
emulator instance. This is both a useful way to learn about SQLite and SQL
and also an invaluable tool for identifying problems with databases created
by applications running in an emulator.
To launch an interactive SQLite session, begin by running an AVD session.
This can be achieved from within Android Studio by launching the Device
Manager (Tools -> Device Manager), selecting a previously configured
AVD, and clicking on the start button.
Once the AVD is up and running, open a Terminal or Command-Prompt
window and connect to the emulator using the adb command-line tool as
follows (note that the –e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):
adb –e shell

Once connected, the shell environment will provide a command prompt at
which commands may be entered. Begin by obtaining superuser privileges
using the su command:
Generic_x86:/ su
root@android:/ #

If a message appears indicating that superuser privileges are not allowed,
the AVD instance likely includes Google Play support. To resolve this
create a new AVD and, on the “Choose a device definition” screen, select a
device that does not have a marker in the “Play Store” column.
Data stored in SQLite databases are stored in database files on the file
system of the Android device on which the application is running. By
default, the file system path for these database files is as follows:
/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name
com.example.MyDBApp creates a database named mydatabase.db, the path
to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb
shell and create a sub-directory hierarchy suitable for some SQLite
experimentation:
cd /data/data
mkdir com.example.dbexample
cd com.example.dbexample
mkdir databases
cd databases

With a suitable location created for the database file, launch the interactive
SQLite tool as follows:
root@android:/data/data/databases # sqlite3 ./mydatabase.db
sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.
sqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as
creating tables and inserting and retrieving data. For example, to create a
new table in our database with fields to hold ID, name, address, and phone
number fields the following statement is required:
create table contacts (_id integer primary key autoincrement, name

text, address text, phone text);

Note that each row in a table should have a primary key that is unique to
that row. In the above example, we have designated the ID field as the
primary key, declared it as being of type integer, and asked SQLite to
increment the number automatically each time a row is added. This is a
common way to make sure that each row has a unique primary key. On
most other platforms, the choice of name for the primary key is arbitrary. In
the case of Android, however, the key must be named _id for the database
to be fully accessible using all of the Android database-related classes. The
remaining fields are each declared as being of type text.
To list the tables in the currently selected database, use the .tables
statement:
sqlite> .tables
contacts

To insert records into the table:
sqlite> insert into contacts (name, address, phone) values ("Bill
Smith", "123 Main Street, California", "123-555-2323");
sqlite> insert into contacts (name, address, phone) values ("Mike
Parks", "10 Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:
sqlite> select * from contacts;
1|Bill Smith|123 Main Street, California|123-555-2323
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:
sqlite> select * from contacts where name="Mike Parks";
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:
sqlite> .exit

When running an Android application in the emulator environment, any
database files will be created on the file system of the emulator using the
previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into
the sqlite3 interactive tool and perform tasks on the data to identify possible
problems occurring in the application code.
It is also important to note that, while it is possible to connect with an adb
shell to a physical Android device, the shell is not granted sufficient

privileges by default to create and manage SQLite databases. Debugging of
database problems is, therefore, best performed using an AVD session.
Alternatively, databases can be inspected on both emulators and devices
using the Android Studio Database Inspector, a topic that will be covered
later.

48.9 The Android Room persistence library
SQLite is, as previously mentioned, written in the C programming language
while Android applications are primarily developed using Java or Kotlin.
To bridge this “language gap” in the past, the Android SDK included a set
of classes that provide a layer on top of the SQLite database management
system. Although still available in the SDK, the use of these classes
involves writing a considerable amount of code and does not take advantage
of the new architecture guidelines and features such as view models and
LiveData. To address these shortcomings, the Android Jetpack Architecture
Components include the Room persistent library. This library provides a
high-level interface on top of the SQLite database system that makes it easy
to store data locally on Android devices with minimal coding while also
conforming to the recommendations for modern application architecture.
The next few chapters will provide an overview and tutorial of SQLite
database management using the Room persistence library.

48.10 Summary
SQLite is a lightweight, embedded relational database management system
that is included as part of the Android framework and provides a
mechanism for implementing organized persistent data storage for Android
applications. When combined with the Room persistence library, Android
provides a modern way to implement data storage from within an Android
app.
The goal of this chapter was to provide an overview of databases in general
and SQLite in particular within the context of Android application
development. The next chapters will provide an overview of the Room
persistence library, after which we will work through the creation of an
example application.

49. Room Databases and Compose
Included with the Android Architecture Components, the Room persistence
library is specifically designed to make it easier to add database storage
support to Android apps in a way that is consistent with the Android
architecture guidelines. With the basics of SQLite databases covered in the
previous chapter, this chapter will explore the concepts of Room-based
database management, the key elements that work together to implement
Room support within an Android app, and how these are implemented in
terms of architecture and coding. Having covered these topics, the next
chapter will put this theory into practice in the form of an example Room
database project.

49.1 Revisiting modern app architecture
The chapter entitled “Working with ViewModels in Compose” introduced
the concept of modern app architecture and stressed the importance of
separating different areas of responsibility within an app. The diagram
illustrated in Figure 49-1 outlines the recommended architecture for a
typical Android app:

Figure 49-1
With the top three levels of this architecture covered in some detail in
earlier chapters of this book, it is now time to begin an exploration of the
repository and database architecture levels in the context of the Room

persistence library.

49.2 Key elements of Room database persistence
Before going into greater detail later in the chapter, it is first worth
summarizing the key elements involved in working with SQLite databases
using the Room persistence library:
49.2.1 Repository
The repository module contains all of the code necessary for directly
handling all data sources used by the app. This avoids the need for the UI
controller and ViewModel to include code directly accessing sources such
as databases or web services.
49.2.2 Room database
The room database object provides the interface to the underlying SQLite
database. It also gives the repository access to the Data Access Object
(DAO). An app should only have one room database instance, which we
can use to access multiple database tables.
49.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert,
retrieve and delete data within the SQLite database. These SQL statements
are mapped to methods that are then called from within the repository to
execute the corresponding query.
49.2.4 Entities
An entity is a class that defines the schema for a table within the database,
defines the table name, column names, and data types, and identifies which
column is the primary key. In addition to declaring the table schema, entity
classes also contain getter and setter methods that provide access to these
data fields. The data returned to the repository by the DAO in response to
the SQL query method calls will take the form of instances of these entity
classes. The getter methods will then be called to extract the data from the
entity object. Similarly, when the repository needs to write new records to
the database, it will create an entity instance, configure values on the object
via setter calls, then call insert methods declared in the DAO, passing
through entity instances to be saved.
49.2.5 SQLite database

The SQLite database is responsible for storing and providing access to the
data. The app code, including the repository, should never directly access
this underlying database. Instead, all database operations are performed
using a combination of the room database, DAOs, and entities.
The architecture diagram in Figure 49-2 illustrates how these different
elements interact to provide Room-based database storage within an
Android app:

Figure 49-2
The numbered connections in the above architecture diagram can be
summarized as follows:
1.The repository interacts with the Room Database to get a database

instance which, in turn, is used to obtain references to DAO instances.
2.The repository creates entity instances and configures them with data

before passing them to the DAO for use in search and insertion
operations.

3.The repository calls methods on the DAO passing through entities to be
inserted into the database and receives entity instances back in response
to search queries.

4.When a DAO has results to return to the repository it packages those
results into entity objects.

5.The DAO interacts with the Room Database to initiate database
operations and handle results.

6.The Room Database handles all of the low-level interactions with the

underlying SQLite database, submitting queries and receiving results.
With a basic outline of the key elements of database access using the Room
persistence library covered, it is now time to explore entities, DAOs, room
databases, and repositories in more detail.

49.3 Understanding entities
Each database table will have associated with it an entity class. This class
defines the schema for the table and takes the form of a standard Kotlin
class interspersed with some special Room annotations. An example Kotlin
class declaring the data to be stored within a database table might read as
follows:
class Customer {

 var id: Int = 0
 var name: String? = null
 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {
 this.id = id
 this.name = name
 this.address = address
 }
 constructor(name: String, address: String) {
 this.name = name
 this.address = address
 }
}

As currently implemented, the above code declares a basic Kotlin class
containing several variables representing database table fields and a
collection of getter and setter methods. This class, however, is not yet an
entity. To make this class into an entity and to make it accessible within
SQL statements, some Room annotations need to be added as follows:
@Entity(tableName = "customers")
class Customer {

 @PrimaryKey(autoGenerate = true)
 @NonNull

 @ColumnInfo(name = "customerId")
 var id: Int = 0

 @ColumnInfo(name = "customerName")
 var name: String? = null
 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {
 this.id = id
 this.name = name
 this.address = address
 }

 constructor(name: String, address: String) {
 this.name = name
 this.address = address
 }
}

The above annotations begin by declaring that the class represents an entity
and assigns a table name of “customers”. This is the name by which we will
reference the table in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case,
the customer id is declared as the primary key. Annotations have also been
added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id
value is configured to be auto-generated. This means that the system will
automatically generate the id assigned to new records to avoid duplicate
keys.
@PrimaryKey(autoGenerate = true)
@NonNull
@ColumnInfo(name = "customerId")
var id: Int = 0

A column name is also assigned to the customer name field. Note, however,
that no column name was assigned to the address field. This means that the
address data will still be stored within the database, but that it is not
required to be referenced in SQL statements. If a field within an entity is

not required to be stored within a database, simply use the @Ignore
annotation:
@Ignore
var MyString: String? = null

Annotations may also be included within an entity class to establish
relationships with other entities using a relational database concept referred
to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between
an entity named Purchase and our existing Customer entity as follows:
@Entity(foreignKeys = arrayOf(ForeignKey(entity = Customer::class,
 parentColumns = arrayOf("customerId"),
 childColumns = arrayOf("buyerId"),
 onDelete = ForeignKey.CASCADE,
 onUpdate = ForeignKey.RESTRICT)))

class Purchase {

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "purchaseId")
 var purchaseId: Int = 0

 @ColumnInfo(name = "buyerId")
 var buyerId: Int = 0
.
.
}

Note that the foreign key declaration also specifies the action to be taken
when a parent record is deleted or updated. Available options are
CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

49.4 Data Access Objects
A Data Access Object provides a way to access the data stored within an
SQLite database. A DAO is declared as a standard Kotlin interface with
some additional annotations that map specific SQL statements to methods
that the repository may then call.
The first step is to create the interface and declare it as a DAO using the
@Dao annotation:
@Dao

interface CustomerDao {
}

Next, entries are added consisting of SQL statements and corresponding
method names. The following declaration, for example, allows all of the
rows in the customers table to be retrieved via a call to a method named
getAllCustomers():
@Dao
interface CustomerDao {
 @Query("SELECT * FROM customers")
 fun getAllCustomers(): LiveData<List<Customer>>
}

Note that the getAllCustomers() method returns a List object containing a
Customer entity object for each record retrieved from the database table.
The DAO is also using LiveData so that the repository can observe changes
to the database.
Arguments may also be passed into the methods and referenced within the
corresponding SQL statements. Consider the following DAO declaration,
which searches for database records matching a customer’s name (note that
the column name referenced in the WHERE condition is the name assigned
to the column in the entity class):
@Query("SELECT * FROM customers WHERE name = :customerName")
fun findCustomer(customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn,
included within an SQL statement by prefixing the variable name with a
colon (:).
A basic insertion operation can be declared as follows using the @Insert
convenience annotation:
@Insert
fun addCustomer(Customer customer)

This is referred to as a convenience annotation because the Room
persistence library can infer that the Customer entity passed to the
addCustomer() method is to be inserted into the database without needing
the SQL insert statement to be provided. Multiple database records may
also be inserted in a single transaction as follows:
@Insert
fun insertCustomers(Customer... customers)

The following DAO declaration deletes all records matching the provided
customer name:
@Query("DELETE FROM customers WHERE name = :name")
fun deleteCustomer(String name)

As an alternative to using the @Query annotation to perform deletions, the
@Delete convenience annotation may also be used. In the following
example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete
fun deleteCustomers(Customer... customers)

The @Update convenience annotation provides similar behavior when
updating records:
@Update
fun updateCustomers(Customer... customers)

The DAO methods for these types of database operations may also be
declared to return an int value indicating the number of rows affected by the
transaction, for example:
@Delete
fun deleteCustomers(Customer... customers): int

49.5 The Room database
The Room database class is created by extending the RoomDatabase class
and acts as a layer on top of the actual SQLite database embedded into the
Android operating system. The class is responsible for creating and
returning a new room database instance and for providing access to the
DAO instances associated with the database.
The Room persistence library provides a database builder for creating
database instances. Each Android app should only have one room database
instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.
An example Room Database implementation for use with the example
customer table is outlined in the following code listing:
import android.content.Context
import androidx.room.Database
import androidx.room.Room
import androidx.room.RoomDatabase

@Database(entities = [(Customer::class)], version = 1)
abstract class CustomerRoomDatabase: RoomDatabase() {

abstract fun customerDao(): CustomerDao

 companion object {

 private var INSTANCE: CustomerRoomDatabase? = null

 fun getInstance(context: Context): CustomerRoomDatabase {
 synchronized(this) {
 var instance = INSTANCE

 if (instance == null) {
 instance = Room.databaseBuilder(
 context.applicationContext,
 CustomerRoomDatabase::class.java,
 "customer_database"
).fallbackToDestructiveMigration()
 .build()

 INSTANCE = instance
 }
 return instance
 }
 }
 }
}

Important areas to note in the above example are the annotation above the
class declaration declaring the entities with which the database is to work,
the code to check that an instance of the class has not already been created,
and the assignment of the name “customer_database” to the instance.

49.6 The Repository
The repository contains the code that makes calls to DAO methods to
perform database operations. An example repository might be partially
implemented as follows:
class CustomerRepository(private val customerDao: CustomerDao) {

 private val coroutineScope = CoroutineScope(Dispatchers.Main)
.

.
 fun insertCustomer(customer: Customer) {
 coroutineScope.launch(Dispatchers.IO) {
 customerDao.insertCustomer(customer)
 }
 }

 fun deleteCustomer(name: String) {
 coroutineScope.launch(Dispatchers.IO) {
 customerDao.deleteCustomer(name)
 }
 }
.
.
}

Once the repository has access to the DAO, it can make calls to the data
access methods. The following code, for example, calls the
getAllCustomers() DAO method:
val allCustomers: LiveData<List<Customer>>?
customerDao.getAllCustomers()

When calling DAO methods, it is important to note that unless the method
returns a LiveData instance (which automatically runs queries on a separate
thread), the operation cannot be performed on the app’s main thread. In fact,
attempting to do so will cause the app to crash with the following diagnostic
output:
Cannot access database on the main thread since it may potentially
lock the UI for a long period of time

Since some database transactions may take a longer time to complete,
running the operations on a separate thread avoids the app appearing to lock
up. As will be demonstrated in the chapter entitled “A Compose Room
Database and Repository Tutorial”, we can easily resolve this problem
using coroutines.
With all of the classes declared, instances of the database, DAO, and
repository need to be created and initialized, the code for which might read
as follows:
private val repository: CustomerRepository
val customerDb = CustomerRoomDatabase.getInstance(application)
val customerDao = customerDb.customerDao()
repository = CustomerRepository(customerDao)

49.7 In-Memory databases
The examples outlined in this chapter involved the use of an SQLite
database that exists as a database file on the persistent storage of an
Android device. This ensures that the data persists even after the app
process is terminated.
The Room database persistence library also supports in-memory databases.
These databases reside entirely in memory and are lost when the app
terminates. The only change necessary to work with an in-memory database
is to call the Room.inMemoryDatabaseBuilder() method of the Room
Database class instead of Room.databaseBuilder(). The following code
shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage-based database
instance = Room.databaseBuilder(
 context.applicationContext,
 CustomerRoomDatabase::class.java,
 "customer_database"
).fallbackToDestructiveMigration()
 .build()

// Create an in-memory database
instance = Room.inMemoryDatabaseBuilder(
 context.applicationContext,
 CustomerRoomDatabase::class.java,
).fallbackToDestructiveMigration()
 .build()

49.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows
the Room databases associated with running apps to be viewed, searched,
and modified, as shown in Figure 49-3:

Figure 49-3

Use of the Database Inspector will be covered in the chapter entitled “A
Compose Room Database and Repository Tutorial”.

49.9 Summary
The Android Room persistence library is bundled with the Android
Architecture Components and acts as an abstract layer above the lower-
level SQLite database. The library is designed to make it easier to work
with databases while conforming to the Android architecture guidelines.
This chapter has introduced the different elements that interact to build
Room-based database storage into Android app projects, including entities,
repositories, data access objects, annotations, and Room Database
instances.
With the basics of SQLite and the Room architecture component covered,
the next step is to create an example app that puts this theory into practice.

50. A Compose Room Database and
Repository Tutorial
This chapter will use the knowledge gained in the “Working with
ViewModels in Compose” chapter to provide a detailed tutorial
demonstrating how to implement SQLite-based database storage using the
Room persistence library. In keeping with the Android architectural
guidelines, the project will use a view model and repository. The tutorial
will also demonstrate the elements covered in “Room Databases and
Compose” including entities, a Data Access Object, a Room Database, and
asynchronous database queries.

50.1 About the RoomDemo project
The project created in this chapter is a rudimentary inventory app designed
to store the names and quantities of products. When completed, the app will
provide the ability to add, delete and search for database entries while also
displaying a scrollable list of all products currently stored in the database.
This product list will update automatically as database entries are added or
deleted. Once completed, the app will appear as illustrated in Figure 50-1
below:

Figure 50-1
50.2 Creating the RoomDemo project
Launch Android Studio and create a new Empty Activity project named
RoomDemo, specifying com.example.roomdemo as the package name and
selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named ScreenSetup which, in turn, calls a function
named MainScreen:
@Composable
fun ScreenSetup() {
 MainScreen()
}

@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method function to call ScreenSetup instead of
Greeting. Since this project will use features not supported by the Preview
panel, delete the GreetingPreview composable from the file. To test the
project, we will run it on a device or emulator session.

50.3 Modifying the build configuration
Before adding any new classes to the project, the first step is to add some
additional libraries and plugins to the build configuration, including the
Room persistence library. The first step is to add the ksp plugin and
additional libraries to the Gradle build configuration. Using the Project tool
window, locate and edit the Gradle Scripts -> libs.versions.toml file as
follows:
[versions]
.
.
roomRuntime = "2.6.1"
runtimeLivedata = "1.6.4"
ksp = "1.9.0-1.0.13"

[libraries]
.
.
androidx-lifecycle-viewmodel-compose = { module =
"androidx.lifecycle:lifecycle-viewmodel-compose", version.ref =
"lifecycleRuntimeKtx" }
androidx-room-ktx = { module = "androidx.room:room-ktx",
version.ref = "roomRuntime" }
androidx-room-room-compiler = { module = "androidx.room:room-
compiler", version.ref = "roomRuntime" }
androidx-room-runtime = { module = "androidx.room:room-runtime",
version.ref = "roomRuntime" }
androidx-runtime-livedata = { module =
"androidx.compose.runtime:runtime-livedata", version.ref =
"runtimeLivedata" }

[plugins]
.

.
devtoolsKsp = { id = "com.google.devtools.ksp", version.ref =
"ksp"}

Edit the project-level build.gradle.kts ((app -> Gradle Scripts ->
build.gradle.kts (Project: RoomDemo) file to add the ksp plugin as follows:
plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply false
 alias(libs.plugins.devtoolsKsp)
}

Next, make the following changes to the module level build.gradle.kts file
(app -> Gradle Scripts -> build.gradle.kts (Module :app))
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
 alias(libs.plugins.devtoolsKsp)
}
.
.
dependencies {
.
.
 implementation(libs.androidx.room.runtime)
 implementation(libs.androidx.room.ktx)
 implementation (libs.androidx.runtime.livedata)
 implementation(libs.androidx.lifecycle.viewmodel.compose)
 annotationProcessor(libs.androidx.room.room.compiler)
 ksp(libs.androidx.room.room.compiler)
.
.
}

Click the Sync Now link to commit the changes

50.4 Building the entity
This project will begin by creating the entity that defines the database
table’s schema. The entity will consist of an integer for the product id, a
string column to hold the product name, and another integer value to store
the quantity. The product id column will serve as the primary key and will
be auto-generated. Table 50-1 summarizes the structure of the entity:

Column Data Type

productid Integer / Primary Key / Auto Increment

productname String

productquantity Integer

Table 50-1
Add a class file for the entity by right-clicking on the app -> kotlin+java ->
com.example.roomdemo entry in the Project tool window and select the
New -> Kotlin Class/File menu option. In the new class dialog, name the
class Product, select the Class entry in the list and press the keyboard return
key to generate the file.
When the Product.kt file opens in the editor, modify it so that it reads as
follows:
package com.example.roomdemo

class Product {

 var id: Int = 0
 var productName: String = ""
 var quantity: Int = 0

 constructor()

 constructor(productname: String, quantity: Int) {
 this.productName = productname
 this.quantity = quantity
 }
}

The class now has variables for the database table columns and matching
getter and setter methods. Of course, this class does not become an entity
until it has been annotated. With the class file still open in the editor, add
annotations and corresponding import statements:
package com.example.roomdemo

import androidx.room.ColumnInfo
import androidx.room.Entity
import androidx.room.PrimaryKey

@Entity(tableName = "products")
class Product {

 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "productId")
 var id: Int = 0

 @ColumnInfo(name = "productName")
 var productName: String = ""
 var quantity: Int = 0

 constructor()

 constructor(productname: String, quantity: Int) {
 this.productName = productname
 this.quantity = quantity
 }
}

These annotations declare this as the entity for a table named products and
assign column names for both the id and name variables. The id column is
also configured to be the primary key and auto-generated. Since it will not
be necessary to reference the quantity column in SQL queries, a column
name has not been assigned to the quantity variable.

50.5 Creating the Data Access Object
With the product entity defined, the next step is to create the DAO interface.
Referring once again to the Project tool window, right-click on the app ->
kotlin+java -> com.example.roomdemo entry and select the New -> Kotlin
Class/File menu option. In the new class dialog, enter ProductDao into the
Name field and select Interface from the list as highlighted in Figure 50-2:

Figure 50-2
Tap the return key to generate the new interface and, with the
ProductDao.kt file loaded into the code editor, make the following changes:
package com.example.roomdemo

import androidx.lifecycle.LiveData
import androidx.room.Dao

import androidx.room.Insert
import androidx.room.Query

@Dao
interface ProductDao {

 @Insert
 fun insertProduct(product: Product)

 @Query("SELECT * FROM products WHERE productName = :name")
 fun findProduct(name: String): List<Product>

 @Query("DELETE FROM products WHERE productName = :name")
 fun deleteProduct(name: String)

 @Query("SELECT * FROM products")
 fun getAllProducts(): LiveData<List<Product>>
}

The DAO implements methods to insert, find and delete records from the
products database. The insertion method is passed a Product entity object
containing the data to be stored while the methods to find and delete records
are passed a string containing the name of the product on which to operate.
The getAllProducts() method returns a LiveData object containing all of the
records within the database. We will use this method to keep the product list
in the user interface layout synchronized with the database.

50.6 Adding the Room database
The last task before adding the repository to the project is to implement the
Room Database instance. Again, add a new class to the project named
ProductRoomDatabase, this time with the Class option selected.
Once the file has been generated, modify it as follows using the steps
outlined in the “Room Databases and Compose” chapter:
package com.example.roomdemo

import android.content.Context
import androidx.room.Database
import androidx.room.Room
import androidx.room.RoomDatabase

@Database(entities = [(Product::class)], version = 1)

abstract class ProductRoomDatabase: RoomDatabase() {

 abstract fun productDao(): ProductDao

 companion object {

 private var INSTANCE: ProductRoomDatabase? = null

 fun getInstance(context: Context): ProductRoomDatabase {
 synchronized(this) {
 var instance = INSTANCE

 if (instance == null) {
 instance = Room.databaseBuilder(
 context.applicationContext,
 ProductRoomDatabase::class.java,
 "product_database"
).fallbackToDestructiveMigration()
 .build()

 INSTANCE = instance
 }
 return instance
 }
 }
 }
}

50.7 Adding the repository
Add a new class named ProductRepository to the project, with the Class
option selected.
The repository class will be responsible for interacting with the Room
database on behalf of the ViewModel and will need to provide methods that
use the DAO to insert, delete and query product records. Except for the
getAllProducts() DAO method (which returns a LiveData object) these
database operations will need to be performed on separate threads from the
main thread.
Remaining within the ProductRepository.kt file, make the following
changes :
package com.example.roomdemo

import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData
import kotlinx.coroutines.*

class ProductRepository(private val productDao: ProductDao) {

 val searchResults = MutableLiveData<List<Product>>()
}

The above declares a MutableLiveData variable named searchResults into
which the results of a search operation are stored whenever an
asynchronous search task completes (later in the tutorial, an observer within
the ViewModel will monitor this live data object). When an instance of the
class is created, it will need to be passed a reference to a ProductDao object.
The repository class now needs to provide some methods that the
ViewModel can call to initiate database operations. The repository will use
coroutines where necessary to avoid performing database operations on the
main thread. With a reference to the DAO stored, the methods are ready to
be added to the ProductRepository class file as follows:
.
.
 val searchResults = MutableLiveData<List<Product>>()
 private val coroutineScope = CoroutineScope(Dispatchers.Main)

 fun insertProduct(newproduct: Product) {
 coroutineScope.launch(Dispatchers.IO) {
 productDao.insertProduct(newproduct)
 }
 }

 fun deleteProduct(name: String) {
 coroutineScope.launch(Dispatchers.IO) {
 productDao.deleteProduct(name)
 }
 }

 fun findProduct(name: String) {
 coroutineScope.launch(Dispatchers.Main) {
 searchResults.value = asyncFind(name).await()
 }

 }

 private fun asyncFind(name: String): Deferred<List<Product>?> =
 coroutineScope.async(Dispatchers.IO) {
 return@async productDao.findProduct(name)
 }
}

In the case of the find operation, the asyncFind() method uses a deferred
value to return the search results to the findProduct() method. Because the
findProduct() method needs access to the searchResults variable, the call to
the asyncFind() method is dispatched to the main thread which, in turn,
performs the database operation using the IO dispatcher.
One final task remains to complete the repository class. The LazyColumn,
which will be added to the user interface layout later, will need to be able to
keep up to date with the current list of products stored in the database. The
ProductDao class already includes a method named getAllProducts() which
uses a SQL query to select all of the database records and return them
wrapped in a LiveData object. The repository needs to call this method once
on initialization and store the result within a LiveData object that can be
observed by the ViewModel and, in turn, by the main activity. Once this has
been set up, each time a change occurs to the database table, the activity
observer will be notified, and the LazyColumn recomposed with the latest
product list. Remaining within the ProductRepository.kt file, add a
LiveData variable and a call to the DAO getAllProducts() method:
.
.
class ProductRepository(private val productDao: ProductDao) {

 val allProducts: LiveData<List<Product>> =
productDao.getAllProducts()
 val searchResults = MutableLiveData<List<Product>>()
.
.

50.8 Adding the ViewModel
The ViewModel will be responsible for creating the database, DOA, and
repository instances and providing methods and LiveData objects that the
UI controller can utilize to handle events.

Start by editing the build.gradle.kts (Module RoomDemo.app) file to add
the view model lifecycle library:
.
.
dependencies {
.
.
 implementation("androidx.lifecycle:lifecycle-viewmodel-
compose:2.6.2")
.
.

Sync the project before adding a ViewModel class to the project by right-
clicking on the app -> kotlin+java -> com.example.roomdemo entry in the
Project tool window and selecting the New -> Kotlin Class/File menu
option. In the New Class dialog, name the class MainViewModel, select the
Class entry in the list and press the keyboard return key to generate the file.
Within the MainViewModel.kt file, modify the class declaration to accept an
application context instance together with some properties and an initializer
block, as outlined below. The application context, represented by the
Android Context class, is used in application code to gain access to the
application resources at runtime. In addition, a wide range of methods may
be called on an application’s context to gather information and make
changes to the application’s environment. In this case, the application
context is required when creating a database and will be passed into the
view model from within the activity later in the chapter:
.
.
import android.app.Application
import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData
import androidx.lifecycle.ViewModel
.
.
class MainViewModel(application: Application) : ViewModel() {

 val allProducts: LiveData<List<Product>>
 private val repository: ProductRepository
 val searchResults: MutableLiveData<List<Product>>

 init {
 val productDb =
ProductRoomDatabase.getInstance(application)
 val productDao = productDb.productDao()
 repository = ProductRepository(productDao)

 allProducts = repository.allProducts
 searchResults = repository.searchResults
 }
}

The initializer block creates a database that is used to create a DAO
instance. We then use the DAO to initialize the repository:
val productDb = ProductRoomDatabase.getInstance(application)
val productDao = productDb.productDao()
repository = ProductRepository(productDao)

Finally, the repository is used to store references to the search results and
allProducts live data objects so that we can convert them to states later
within the main activity:
allProducts = repository.allProducts
searchResults = repository.searchResults

All that now remains within the ViewModel is to implement the methods
that will be called from within the activity in response to button clicks.
These need to be placed after the init block as follows:
.
.
init {
.
.
}

fun insertProduct(product: Product) {
 repository.insertProduct(product)
}

fun findProduct(name: String) {
 repository.findProduct(name)
}

fun deleteProduct(name: String) {
 repository.deleteProduct(name)

}
.
.

50.9 Designing the user interface
With the database, DOA, repository, and ViewModel completed, we are
now ready to design the user interface. Start by editing the MainActivity.kt
file and adding three composables to be used as the input text fields,
column rows, and column title:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.layout.*
import androidx.compose.foundation.text.KeyboardOptions
import androidx.compose.material3.*
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.input.KeyboardType
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
.
.
class MainActivity : ComponentActivity() {
.
.
@Composable
fun TitleRow(head1: String, head2: String, head3: String) {
 Row(
 modifier = Modifier
 .background(MaterialTheme.colorScheme.primary)
 .fillMaxWidth()
 .padding(5.dp)
) {
 Text(head1, color = Color.White,
 modifier = Modifier
 .weight(0.1f))
 Text(head2, color = Color.White,
 modifier = Modifier
 .weight(0.2f))
 Text(head3, color = Color.White,
 modifier = Modifier.weight(0.2f))

 }
}

@Composable
fun ProductRow(id: Int, name: String, quantity: Int) {
 Row(
 modifier = Modifier
 .fillMaxWidth()
 .padding(5.dp)
) {
 Text(id.toString(), modifier = Modifier
 .weight(0.1f))
 Text(name, modifier = Modifier.weight(0.2f))
 Text(quantity.toString(), modifier = Modifier.weight(0.2f))
 }
}

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun CustomTextField(
 title: String,
 textState: String,
 onTextChange: (String) -> Unit,
 keyboardType: KeyboardType
) {
 OutlinedTextField(
 value = textState,
 onValueChange = { onTextChange(it) },
 keyboardOptions = KeyboardOptions(
 keyboardType = keyboardType
),
 singleLine = true,
 label = { Text(title)},
 modifier = Modifier.padding(10.dp),
 textStyle = TextStyle(fontWeight = FontWeight.Bold,
 fontSize = 30.sp)
)
}

50.10 Writing a ViewModelProvider Factory class
The view model we have created in this chapter is slightly more complex
than earlier examples because it expects to be passed a reference to the

Application instance. Previously we have used the viewModel() function to
create view models. Unfortunately, the viewModel() function will not allow
us to simply pass through the Application reference as an argument when
we call it. Instead, we need to pass the function a custom
ViewModelProvider Factory class designed to accept an Application
reference and return an initialized MainViewModel instance.
Within the MainActivity.kt file, add the following factory class at the end of
the file after the last closing brace (}):
.
.
import android.app.Application
import androidx.lifecycle.ViewModel
import androidx.lifecycle.ViewModelProvider
.
.
class MainViewModelFactory(val application: Application) :
 ViewModelProvider.Factory {
 override fun <T : ViewModel> create(modelClass: Class<T>): T {
 return MainViewModel(application) as T
 }
}

In addition to the factory, the viewModel() function also requires a reference
to the current ViewModelStoreOwner. The view model store can be thought
of as a container in which all currently active view models are stored
together with an identifying string for each model (which also needs to be
passed to the viewModel() call). Remaining in the MainActivity.kt file,
locate the onCreate() method, and modify it so that it reads as follows:
.
.
import androidx.compose.ui.platform.LocalContext
import
androidx.lifecycle.viewmodel.compose.LocalViewModelStoreOwner
import androidx.lifecycle.viewmodel.compose.viewModel
.
.
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 RoomDemoTheme {

 // A surface container using the 'background' color
from the theme
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {

 val owner = LocalViewModelStoreOwner.current

 owner?.let {
 val viewModel: MainViewModel = viewModel(
 it,
 "MainViewModel",
 MainViewModelFactory(
 LocalContext.current.applicationContext
 as
Application)
)

 ScreenSetup(viewModel)
 }
 }
 }
 }
}

The added code begins by obtaining a reference to the current local view
model store owner. After checking the owner is not null, the viewModel()
function is called and passed the owner, an identifying string, and view
model factory (to which is passed the Application reference). The view
model returned by the viewModel() call is then passed to ScreenSetup.
Next, modify ScreenSetup to accept the ViewModel and use it to convert
the allProducts and searchResults live data objects to state values initialized
with empty lists. These states, together with the view model also need to be
passed to the MainScreen composable:
.
.
import androidx.compose.runtime.*
import androidx.compose.runtime.livedata.observeAsState
.
.
@Composable

fun ScreenSetup(viewModel: MainViewModel) {

 val allProducts by
viewModel.allProducts.observeAsState(listOf())
 val searchResults by
viewModel.searchResults.observeAsState(listOf())

 MainScreen(
 allProducts = allProducts,
 searchResults = searchResults,
 viewModel = viewModel
)
}

@Composable
fun MainScreen(
 allProducts: List<Product>,
 searchResults: List<Product>,
 viewModel: MainViewModel
) {

}

When creating the ViewModel instance above, note that we used the
LocalContext object to obtain a reference to the application context and
passed it to the view model so that it can be used when creating the
database.

50.11 Completing the MainScreen function
Within the MainScreen function, add some state and event handler
declarations as follows:
@Composable
fun MainScreen(
 allProducts: List<Product>,
 searchResults: List<Product>,
 viewModel: MainViewModel
) {
 var productName by remember { mutableStateOf("") }
 var productQuantity by remember { mutableStateOf("") }
 var searching by remember { mutableStateOf(false) }

 val onProductTextChange = { text : String ->

 productName = text
 }

 val onQuantityTextChange = { text : String ->
 productQuantity = text
 }
}

Continue modifying the MainScreen function to add a Column containing
two CustomTextField composables and a Row containing four Button
components as follows:
.
.
import androidx.compose.ui.Alignment.Companion.CenterHorizontally
.
.
@Composable
fun MainScreen(
 allProducts: List<Product>,
 searchResults: List<Product>,
 viewModel: MainViewModel
) {
.
.
 Column(
 horizontalAlignment = CenterHorizontally,
 modifier = Modifier
 .fillMaxWidth()
) {
 CustomTextField(
 title = "Product Name",
 textState = productName,
 onTextChange = onProductTextChange,
 keyboardType = KeyboardType.Text
)

 CustomTextField(
 title = "Quantity",
 textState = productQuantity,
 onTextChange = onQuantityTextChange,
 keyboardType = KeyboardType.Number
)

 Row(
 horizontalArrangement = Arrangement.SpaceEvenly,
 modifier = Modifier
 .fillMaxWidth()
 .padding(10.dp)
) {
 Button(onClick = {
 if (productQuantity.isNotEmpty()) {
 viewModel.insertProduct(
 Product(
 productName,
 productQuantity.toInt()
)
)
 searching = false
 }
 }) {
 Text("Add")
 }

 Button(onClick = {
 searching = true
 viewModel.findProduct(productName)
 }) {
 Text("Search")
 }

 Button(onClick = {
 searching = false
 viewModel.deleteProduct(productName)
 }) {
 Text("Delete")
 }

 Button(onClick = {
 searching = false
 productName = ""
 productQuantity = ""
 }) {
 Text("Clear")
 }
 }
 }

}

Finally, add a LazyColumn to the parent Column immediately after the row
of Button components. This will display a single instance of the TitleRow
followed by a ProductRow for each product. The searching state will be
used to decide whether the list is to include all products or only those
products that match the search criteria:
.
.
import androidx.compose.foundation.lazy.LazyColumn
import androidx.compose.foundation.lazy.items
.
.
@Composable
fun MainScreen(allProducts: List<Product>, searchResults:
List<Product>, viewModel: MainViewModel) {
.
.
 LazyColumn(
 Modifier
 .fillMaxWidth()
 .padding(10.dp)
) {
 val list = if (searching) searchResults else
allProducts

 item {
 TitleRow(head1 = "ID", head2 = "Product", head3 =
"Quantity")
 }

 items(list) { product ->
 ProductRow(id = product.id, name =
product.productName,
 quantity = product.quantity)
 }
 }
 }
}

50.12 Testing the RoomDemo app
Compile and run the app on a device or emulator where it should appear as
illustrated in Figure 50-1 above.

Once the app is running, add some products and ensure that they appear
automatically in the LazyColumn. Next, search for an existing product and
verify that the matching result is listed. Finally, click the Clear button to
reset the list, enter the name for an existing product, delete it from the
database and confirm that it is removed from the product list.

50.13 Using the Database Inspector
As previously outlined in “Room Databases and Compose”, the Database
Inspector tool may be used to inspect the content of Room databases
associated with a running app and to perform minor data changes. After
adding some database records using the RoomDemo app, display the
Database Inspector tool using the View -> Tool Windows -> App Inspection
menu option:
From within the inspector window, select the running app from the menu
marked A in Figure 50-3 below:

Figure 50-3
From the Databases panel (B) double-click on the products table to view the
table rows currently stored in the database. Enable the Live updates option
(C) and then use the running app to add more records to the database. Note
that the Database Inspector updates the table data (D) in real-time to reflect
the changes.
Turn off Live updates so that the table is no longer read-only, double-click
on the quantity cell for a table row, and change the value before pressing the
keyboard Enter key. Return to the running app and search for the product to
confirm the change made to the quantity in the inspector was saved to the
database table.
Finally, click on the table query button (indicated by the arrow in Figure 50-
4 below) to display a new query tab (A), make sure that product_database
is selected (B), and enter a SQL statement into the query text field (C) and
click the Run button (D):

Figure 50-4
The list of rows should update to reflect the results of the SQL query (E).

50.14 Summary
This chapter has demonstrated the use of the Room persistence library to
store data in an SQLite database. The finished project used a repository to
separate the ViewModel from all database operations and demonstrated the
creation of entities, a DAO, and a room database instance, including the use
of asynchronous tasks when performing some database operations.

51. An Overview of Navigation in Compose

Very few Android apps today consist of just a single screen. In reality, most
apps comprise multiple screens through which the user navigates using
screen gestures, button clicks, and menu selections. Before the introduction
of Android Jetpack, the implementation of navigation within an app was
primarily a manual coding process with no easy way to view and organize
potentially complex navigation paths. This situation improved considerably,
however, with the introduction of the Android Navigation Architecture
Component, which has now been extended to support navigation in
Compose-based apps. This chapter will provide an overview of navigation
within Compose, including explanations of routes, navigation graphs, the
navigation back stack, passing arguments, and the NavHostController and
NavHost classes.

51.1 Understanding navigation

Every app has a home screen that appears after the app has launched and
after any splash screen has appeared (a splash screen being the app
branding screen that appears temporarily while the app loads). From this
home screen, the user will typically perform tasks that will result in other
screens appearing. These screens will usually take the form of other
composables within the project. A messaging app, for example, might have
a home screen listing current messages from which the user can navigate to
another screen to access a contact list or a settings screen. The contacts list
screen, in turn, might allow the user to navigate to other screens where new
users can be added or existing contacts updated. Graphically, the app’s
navigation graph might be represented as shown in Figure 51-1:

Figure 51-1

Each screen that makes up an app, including the home screen, is referred to
as a destination and is usually a composable or activity. The Android
navigation architecture uses a navigation back stack to track the user’s path
through the destinations within the app. When the app first launches, the

home screen is the first destination placed onto the stack and becomes the
current destination. When the user navigates to another destination, that
screen becomes the current destination and is pushed onto the back stack
above the home destination. As the user navigates to other screens, they are
also pushed onto the stack. Figure 51-2, for example, shows the current
state of the navigation stack for the hypothetical messaging app after the
user has launched the app and is navigating to the “Add Contact” screen:

Figure 51-2

As the user navigates back through the screens using the system back
button, each destination composable is popped off the stack until the home
screen is once again the only destination on the stack. In Figure 51-3, the
user has navigated back from the Add Contact screen, popping it off the
stack and making the Contact List screen composable the current
destination:

Figure 51-3

All the work involved in navigating between destinations and managing the
navigation stack is handled by a navigation controller, represented by the
NavHostController class. It is also possible to manually pop composables
off the stack so that the app returns to a screen lower down the stack when
the user navigates backward from the current screen.

Adding navigation to an Android project using the Navigation Architecture
Component is a straightforward process involving a navigation host,
navigation graph, navigation actions, and a minimal amount of code writing
to obtain a reference to, and interact with, the navigation controller
instance.

51.2 Declaring a navigation controller

The first step in adding navigation to an app project is to create a
NavHostController instance. This is responsible for managing the back
stack and keeping track of which composable is the current destination. So
that the integrity of the back stack is maintained through recomposition,
NavHostController is a stateful object and is created via a call to the
rememberNavController() method as follows:

val navController = rememberNavController()

Once a navigation controller has been created it needs to be assigned to a
NavHost instance.

51.3 Declaring a navigation host

The navigation host (NavHost) is a special component that is added to the
user interface layout of an activity and serves as a placeholder for the
destinations through which the user will navigate. Figure 51-4, for
example, shows a typical activity screen and highlights the area represented
by the navigation host:

Figure 51-4

When it is called, NavHost must be passed a NavHostController instance, a
composable to serve as the start destination, and a navigation graph. The
navigation graph consists of all the composables that are to be available as
navigation destinations within the context of the navigation controller.
These destinations are declared in the form of routes:

NavHost(navController = navController, startDestination = <start route>) {

 // Navigation graph destinations

}

51.4 Adding destinations to the navigation graph

Destinations are added to the navigation graph by making calls to the
composable() method and providing a route and destination. The route is
simply a string value that uniquely identifies the destination within the
context of the current navigation controller. The destination is the
composable to be called when the navigation is performed. The following
NavHost declaration includes a navigation graph consisting of three
destinations, with the “home” route configured as the start destination:

NavHost(navController = navController, startDestination = "home") {

 composable("home") {

 Home()

 }

 composable("customers") {

 Customers()

 }

 composable("purchases") {

 Purchases()

 }

}

A more flexible alternative to hard-coding the route strings into the
composable() method calls is to define the routes in a sealed class:

sealed class Routes(val route: String) {

 object Home : Routes("home")

 object Customers : Routes("customers")

 object Purchases : Routes("purchases")

}

With the class declared, the NavHost will now reference the routes as
follows:

NavHost(navController = navController, startDestination =
Routes.Home.route) {

 composable(Routes.Home.route) {

 Home()

 }

 composable(Routes.Customers.route) {

 Customers()

 }

 composable(Routes.Purchases.route) {

 Purchases()

 }

}

The use of the sealed class approach gives us the advantage of a single
location in which to make changes to the routes. Also, it adds syntax
validation to avoid mistyping a route string when creating a NavHost or
performing navigation.

51.5 Navigating to destinations

The primary mechanism for triggering navigation is via calls to the
navigate() method of the navigation controller instance, specifying the
route for the destination composable. The following code, for example,
configures a Button component to navigate to the Customers screen when
clicked:

Button(onClick = {

 navController.navigate(Routes.Customers.route)

}) {

 Text(text = "Navigate to Customers")

}

The navigate() method also accepts a trailing lambda containing navigation
options, one of which is the popUpTo() function. Consider, for example, a
scenario where the user starts on the home screen and then navigates to the
customer screen. The customer screen displays a list of customer names
which, when clicked navigates to the purchases screen populated with a list
of the selected customer’s previous purchases. At this point, the back stack
contains the customer and home destinations. If the user where to tap the
back button located at the bottom of the screen, the app will navigate back
to the customer screen. The popUpTo() navigation option allows us to pop
items off the stack back to the specific destination. We could, for example,
pop all destinations off the stack before navigating to the purchases screen
so that only the home destination remains on the back stack as follows:

Button(onClick = {

 navController.navigate(Routes.Customers.route) {

 popUpTo(Routes.Home.route)

 }

}) {

 Text(text = "Navigate to Customers")

}

Now when the user clicks the back button on the purchases screen, the app
will navigate directly to the home screen. The popUpTo() method also
accepts options. The following, for example, uses the inclusive option to
also pop the home destination off the stack before performing the
navigation:

Button(onClick = {

 navController.navigate(Routes.Customers.route) {

 popUpTo(Routes.Home.route) {

 inclusive = true

 }

 }

}) {

 Text(text = "Navigate to Customers")

}

By default, an attempt to navigate from the current destination to itself will
push an additional destination instance onto the stack. In most situations,
this is unlikely to be the desired behavior. To prevent the addition of
multiple instances of the same destination to the top of the stack, set the
launchSingleTop option to true when calling the navigate() method:

Button(onClick = {

 navController.navigate(Routes.Customers.route) {

 launchSingleTop = true

 }

}) {

 Text(text = "Navigate to Customers")

}

The saveState and restoreState options, if set to true, will automatically
save and restore the state of back stack entries when the user reselects a
destination that has been selected previously.

51.6 Passing arguments to a destination

It is a common requirement when navigating from one screen to another to
need to pass an argument to the destination. Compose supports the passing
of arguments of a wide range of types from one screen to another and
involves several steps. In our hypothetical example, we would probably
need to pass the name of the selected customer from the customer screen to
the purchases screen so that the correct purchase history can be displayed.

The first step in navigating with arguments involves adding the argument
name to the destination route. We can, for example, add an argument
named “customerName” to the purchases route as follows:

NavHost(navController = navController, startDestination =
Routes.Home.route) {

.

.

composable(Routes.Purchases.route + "/{customerName}") {

 Purchases()

 }

.

.

}

When the app triggers navigation to the customer destination, the value to
be assigned to the argument will be stored within the corresponding back
stack entry. The back stack entry for the current navigation is passed as a
parameter to the trailing lambda of the composable() method where it can
be extracted and passed to the Customer composable:

composable(Routes.Purchases.route + "/{customerName}") {
backStackEntry ->

 val customerName =
backStackEntry.arguments?.getString("customerName")

 Purchases(customerName)

}

By default, the navigation argument is assumed to be of String type. To
pass arguments of different types, the type must be specified using the
NavType enumeration via the composable() method arguments parameter.

In the following example, the parameter type is declared as being of type
Int. Note also that the argument now needs to be extracted from the back
stack entry using getInt() instead of getString():

composable(Routes.Purchases.route + "/{customerId}",

 arguments = listOf(navArgument("customerId") { type =
NavType.IntType })) {

 navBackStack ->

 Customers(navBackStack.arguments?.getInt("customerId"))

}

Returning to the original string argument example, the Purchases
composable now needs to be modified to expect a String parameter:

@Composable

fun Customers(customerName: String?) {

.

.

}

The final step is to pass a value for the argument when making the
navigate() method call. We do this by appending the argument value to the
end of the destination route. Assuming that the value we need to pass to the
purchases screen is stored as a state variable named selectedCustomer, the
navigate() call would be written as follows:

var selectedCustomer by remember {

 mutableStateOf("")

}

// Code to identify selected customer here

Button(onClick = {

 navController.navigate(Routes.Customers.route + "/$selectedCustomer")

}) {

 Text(text = "Navigate to Customers")

}

When the button is clicked, the following sequence of events will occur:

1. A back stack entry is created for the current destination.

2. The current selectedCustomer state value is stored in the back stack
entry.

3. The back stack entry is pushed onto the back stack.

4. The composable() method for the purchase route in the NavHost
declaration is called.

5. The trailing lambda of the composable() method extracts the argument
value from the back stack entry and passes it to the Purchases composable.

51.7 Working with bottom navigation bars

So far in this chapter, we have focused on navigation in response to click
events on Button components. Another common form of navigation
involves the bottom navigation bar.

The bottom navigation bar appears at the bottom of the screen and displays
a list of navigation items, usually comprising an icon and a label. Clicking

on an item navigates to a different screen within the current activity. An
example bottom navigation bar is illustrated in Figure 51-5 below:

Figure 51-5

The core components of bottom bar navigation are the Compose
BottomNavigation and BottomNavigationItem components.
Implementation typically involves a parent BottomNavigationBar
containing a forEach loop which iterates through a list creating each
BottomNavigationItem child. Each child is configured with the label and
icon to be displayed and an onClick handler to perform the navigation to
the corresponding destination. Typical syntax will read as follows:

BottomNavigation {

 <items list>.forEach { navItem ->

 BottomNavigationItem(

 selected = <true | false>,

 onClick = {

 navController.navigate(navItem.route) {

 popUpTo(navController.graph.findStartDestination().id) {

 saveState = true

 }

 launchSingleTop = true

 restoreState = true

 }

 },

 icon = {

 <icon>

 },

 label = {

 <text>

 },

)

 }

}

Note that the PopUpTo() method is called to ensure that if the user clicks
the back button the navigation returns to the start destination. We can
identify the start destination by calling the findStartDestination() method
on the navigation graph:

navController.graph.findStartDestination()

Also, the launchSingleTop, saveState, and restoreState options must be
enabled when working with bottom bar navigation.

Each BottomNavigationItem needs to be told whether it is the currently
selected item via the selected property. When working with bottom bar
navigation, you will need to write code to compare the route associated

with the item against the current route selection. We can obtain the current
route selection by gaining access to the back stack via the
currentBackStackEntryAsState() method of the navigation controller and
accessing the destination route property, for example:

BottomNavigation {

 val backStackEntry by navController.currentBackStackEntryAsState()

 val currentRoute = backStackEntry?.destination?.route

 NavBarItems.BarItems.forEach { navItem ->

 BottomNavigationItem(

 selected = currentRoute == navItem.route

.

.

The two routes are then compared and the result assigned to the selected
property. A more detailed example of bottom bar navigation will be
demonstrated in the chapter entitled “A Compose Navigation Bar Tutorial”.

51.8 Summary

This chapter has covered the addition of navigation to Android apps using
the Compose support built into the Jetpack Navigation Architecture
Component. Navigation is implemented by creating an instance of the
NavHostController class and associating it with a NavHost instance. The
NavHost instance is configured with the starting destination and the
navigation routes that make up the navigation graph for the current activity.
Navigation is then performed by making calls to the navigate() method of
the navigation controller instance, passing through the path of the

destination composable. Compose also supports the passing of arguments
to the destination composable. Navigation may also be added to screens
using the Compose BottomNavigation and BottomNavigationItem
components.

52. A Compose Navigation Tutorial

The previous chapter provided an overview of navigation using the Jetpack
Navigation Architecture Component when developing with Compose. This
chapter will build on this knowledge to create a project that uses
navigation, including an example of passing an argument from one
destination to another.

52.1 Creating the NavigationDemo project

Launch Android Studio and create a new Empty Activity project named
NavigationDemo, specifying com.example.navigationdemo as the package
name, and selecting a minimum API level of API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

Before proceeding, we will also need to add the Compose navigation
library to the project build settings. Edit the Gradle Scripts ->
libs.version.tomi file and modify it as follows:

[versions]

navigationCompose = "2.7.7"

.

.

[libraries]

androidx-navigation-compose = { module =
"androidx.navigation:navigation-compose", version.ref =
"navigationCompose" }

.

.

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and
add the following directive to the dependencies section:

dependencies {

.

.

 implementation(libs.androidx.navigation.compose)

.

.

Click on the Sync Now link and wait while the synchronization process
completes.

52.2 About the NavigationDemo project

The completed project will comprise three destination screens named
“home”, “welcome” and “profile”. The home screen will contain a text
field into which the user will enter their name and a button which, when
clicked, will navigate to the welcome screen, passing the user’s name as an
argument for inclusion in a welcome message. The welcome screen will
also contain a button to navigate to the profile screen, the sole purpose of
which is to experiment with the popUpTo() navigation option method.

52.3 Declaring the navigation routes

The first step in implementing the navigation in the project is to add the
routes for the three destinations which will be declared using a sealed class.
Begin by right-clicking on the app -> kotlin+java ->
com.example.navigationdemo entry in the Project tool window and
selecting the New -> Kotlin Class/File menu option. In the new class
dialog, name the class NavRoutes, select the Sealed Class entry in the list
and press the keyboard return key to generate the file. Edit the new file to
add the destination routes as follows:

package com.example.navigationdemo

sealed class NavRoutes(val route: String) {

 object Home : NavRoutes("home")

 object Welcome : NavRoutes("welcome")

 object Profile : NavRoutes("profile")

}

52.4 Adding the home screen

The three destinations now need a composable, each of which we will
declare in a separate file placed in a new package named
com.example.navigationdemo.screens. Create this package now by right-
clicking on the com.example.navigationdemo entry in the Project tool
window and selecting the New -> Package menu option. In the resulting
dialog, name the package com.example.navigationdemo.screens as shown
in Figure 52-1 before tapping the keyboard enter key:

Figure 52-1

Right-click on the new package entry in the Project tool window, select the
option to create a new Kotlin class file, name it Home, and modify it so that
it reads as follows:

package com.example.navigationdemo.screens

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.text.TextStyle

import androidx.compose.ui.text.font.FontWeight

import androidx.compose.ui.unit.dp

import androidx.compose.ui.unit.sp

import androidx.navigation.NavHostController

import com.example.navigationdemo.NavRoutes

@Composable

fun Home(navController: NavHostController) {

 var userName by remember { mutableStateOf("") }

 val onUserNameChange = { text : String ->

 userName = text

 }

 Box(

 modifier = Modifier

 .fillMaxSize(),

 contentAlignment = Alignment.Center

) {

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

 CustomTextField(

 title = "Enter your name",

 textState = userName,

 onTextChange = onUserNameChange

)

 Spacer(modifier = Modifier.size(30.dp))

 Button(onClick = { }) {

 Text(text = "Register")

 }

 }

 }

}

@Composable

fun CustomTextField(

 title: String,

 textState: String,

 onTextChange: (String) -> Unit,

) {

 OutlinedTextField(

 value = textState,

 onValueChange = { onTextChange(it) },

 singleLine = true,

 label = { Text(title)},

 modifier = Modifier.padding(10.dp),

 textStyle = TextStyle(fontWeight = FontWeight.Bold,

 fontSize = 30.sp)

)

}

52.5 Adding the welcome screen

Add a new class file to the screens package named Welcome. Once the file
has been created, edit it so that it reads as follows:

package com.example.navigationdemo.screens

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.unit.dp

import androidx.navigation.NavHostController

import com.example.navigationdemo.NavRoutes

@Composable

fun Welcome(navController: NavHostController) {

 Box(

 modifier = Modifier

 .fillMaxSize(),

 contentAlignment = Alignment.Center

) {

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

 Text("Welcome", style = MaterialTheme.typography.headlineSmall)

 Spacer(modifier = Modifier.size(30.dp))

 Button(onClick = { }) {

 Text(text = "Set up your Profile")

 }

 }

 }

}

52.6 Adding the profile screen

The profile screen is the simplest composable and consists of a single Text
component. Once again, add a new class file to the screens package, this
time named Profile.kt, and edit it to make the following changes:

package com.example.navigationdemo.screens

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

@Composable

fun Profile() {

 Box(

 modifier = Modifier

 .fillMaxSize(),

 contentAlignment = Alignment.Center

) {

 Text("Profile Screen", style =
MaterialTheme.typography.headlineSmall)

 }

}

52.7 Creating the navigation controller and host

Now that the basic elements of the project have been created, the next step
is to create the navigation controller (NavHostController) and navigation

host (NavHost) instances. Edit the MainActivity.kt file and make the
following modifications:

.

.

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

import androidx.navigation.compose.rememberNavController

import com.example.navigationdemo.screens.Home

import com.example.navigationdemo.screens.Profile

import com.example.navigationdemo.screens.Welcome

.

.

@Composable

fun MainScreen() {

 val navController = rememberNavController()

 NavHost(

 navController = navController,

 startDestination = NavRoutes.Home.route,

) {

 composable(NavRoutes.Home.route) {

 Home(navController = navController)

 }

 composable(NavRoutes.Welcome.route) {

 Welcome(navController = navController)

 }

 composable(NavRoutes.Profile.route) {

 Profile()

 }

 }

}

The above code changes to the MainScreen function begin by obtaining a
navigation controller instance via a call to the rememberNavController()
method. The NavHost component is called, assigning the home screen as
the start destination. The composable() method is then called to add a route
for each screen.

52.8 Implementing the screen navigation

Navigation needs to be initiated when the Button components in the home
and welcome screens are clicked. Both composables have already been
passed the navigation controller on which we will be calling the navigate()
method. Starting with the Home.kt file, locate the Button component and

add the navigation code to the onClick property using the route for the
welcome screen:

Button(onClick = {

 navController.navigate(NavRoutes.Welcome.route)

}) {

 Text(text = "Register")

}

Next, edit the Welcome.kt file and add code to the Button onClick property
to navigate to the profile screen:

Button(onClick = {

 navController.navigate(NavRoutes.Profile.route)

}) {

 Text(text = "Set up your Profile")

}

Preview the MainActivity.kt file in interactive mode and test that the
buttons navigate to the correct screens when clicked.

52.9 Passing the user name argument

The welcome destination route in the NavHost declaration now needs to be
extended so that the user name typed into the text field can be passed to the
welcome screen during the navigation. First, edit the Welcome.kt file and
modify the Welcome function to accept a user name String parameter and
to display it in the Text component:

.

.

@Composable

fun Welcome(navController: NavHostController, userName: String?) {

.

.

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

 Text("Welcome, $userName",

 style = MaterialTheme.typography.headlineSmall)

.

.

With the Welcome composable ready to accept and display the user name,
the NavHost declaration needs to be changed to extract the parameter from
the navigation back stack entry and pass it to the Welcome function. Return
to the MainActivity.kt file and modify the Welcome route composable()
call so that it reads as follows:

composable(NavRoutes.Welcome.route + "/{userName}") {
backStackEntry ->

 val userName = backStackEntry.arguments?.getString("userName")

 Welcome(navController = navController, userName)

}

The final task before we test the app once again is to modify the onClick
handler assigned to the home screen Button component to get the current

user name state value and append it to the route in the navigate() method
call. Edit the Home.kt file, locate the Button call and modify the onClick
handler:

.

.

 Button(onClick = {

navController.navigate(NavRoutes.Welcome.route + "/$userName")

 }) {

 Text(text = "Register")

 }

.

.

52.10 Testing the project

Compile and run the project on a device or emulator and enter a name into
the text field on the home screen:

Figure 52-2

Click the Register button and verify that the name you entered appears in
the Text component of the Welcome screen:

Figure 52-3

After clicking on the “Set up your Profile” button to reach the profile
screen, the back button located in the bottom toolbar should navigate
through the back stack (if you are using Android 12 or later, swipe right to
navigate backward), starting with the welcome screen followed by the
home screen. If we want the backward navigation to return directly to the
home screen we need to make sure everything except the home destination
is popped off the navigation back stack using the popUpTo() method call.
This needs to be called as an option to the navigate() method in the Button
onClick handler in the Welcome composable:

.

.

 Button(onClick = {

 navController.navigate(NavRoutes.Profile.route) {

 popUpTo(NavRoutes.Home.route)

 }

.

.

When the app is run on a device or emulator, tapping the back button (or
swiping right on newer Android versions) from the profile screen should
now skip the welcome screen and return directly to the home screen.

52.11 Summary

In this chapter, we have created a project uses navigation to switch between
screens within an activity. This included creating a navigation controller
and declaring a navigation host initialized with navigation routes for each
destination. The tutorial also implemented a navigation argument to pass a
string value from one navigation destination to another.

53. A Compose Navigation Bar
Tutorial
Following on from the overview provided previously in the chapter entitled
“An Overview of Navigation in Compose” this chapter will create a project
that integrates navigation into an activity using the Compose NavigationBar
component. The project will also briefly introduce the Scaffold component
and demonstrate how we can use it to create a standard screen layout that
conforms to the Material theme guidelines.

53.1 Creating the BottomBarDemo project
Launch Android Studio and create a new Empty Activity project named
BottomBarDemo, specifying com.example.bottombardemo as the package
name, and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.
Before proceeding, we will also need to add the Compose navigation library
to the project build settings. Edit the Gradle Scripts -> libs.version.tomi file
and modify it as follows:
[versions]
navigationCompose = "2.7.7"
.
.
[libraries]
androidx-navigation-compose = { module =
"androidx.navigation:navigation-compose", version.ref =
"navigationCompose" }
.
.

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and

add the following directive to the dependencies section:
dependencies {
.
.
 implementation(libs.androidx.navigation.compose)
.
.

Click on the Sync Now link and wait while the synchronization process
completes

53.2 Declaring the navigation routes
When the project is completed, it will include a bottom bar containing three
items which, when clicked, will navigate to different screens, each
represented by a composable. The first step we need to complete is to add
the routes for the three destinations, which will be declared using a sealed
class. Begin by right-clicking on the app -> kotlin+java ->
com.example.bottombardemo entry in the Project tool window and selecting
the New -> Kotlin Class/File menu option. In the new class dialog, name
the class NavRoutes, select the Sealed class entry in the list and press the
keyboard return key to generate the file. Edit the new file to add the
destination routes as follows:
package com.example.bottombardemo

sealed class NavRoutes(val route: String) {
 object Home : NavRoutes("home")
 object Contacts : NavRoutes("contacts")
 object Favorites : NavRoutes("favorites")
}

53.3 Designing bar items
Each item in the bottom bar will need a title string, an icon image, and the
route to which the app should navigate when the item is clicked. To keep
the MainActivity.kt file as simple as possible, we will also declare the bar
item class as a separate file. Using the steps outlined above, add a new
Kotlin Class file named BarItem, this time using the Data class option, to
the project and modify it so that it reads as follows:
package com.example.bottombardemo

import androidx.compose.ui.graphics.vector.ImageVector

data class BarItem(
 val title: String,
 val image: ImageVector,
 val route: String
)

53.4 Creating the bar item list
Now that we have the BarItem class providing a template for each bar item,
the next step is to create a list containing the three bar items, each
configured with the appropriate string, image, and route properties. Add
another Kotlin class using the Object option, this time named NavBarItems,
and implement the list as follows:
package com.example.bottombardemo

import androidx.compose.material.icons.Icons
import androidx.compose.material.icons.filled.Face
import androidx.compose.material.icons.filled.Favorite
import androidx.compose.material.icons.filled.Home

object NavBarItems {
 val BarItems = listOf(
 BarItem(
 title = "Home",
 image = Icons.Filled.Home,
 route = "home"
),
 BarItem(
 title = "Contacts",
 image = Icons.Filled.Face,
 route = "contacts"
),
 BarItem(
 title = "Favorites",
 image = Icons.Filled.Favorite,
 route = "favorites"
)
)
}

Note that the above declaration makes use of the built-in Material theme

icons for the images. Although not as extensive as the Clip Art list available
via the Resource Manager used in earlier chapters, these icons provide a
quick and convenient way to add graphics to your project.

53.5 Adding the destination screens
Each of the three destinations now needs a composable. These will be
simple functions that do nothing more than display the icon for the
corresponding bar item selection. We will declare each screen composable
in a separate file, each of which will be placed in a new package named
com.example.bottombardemo.screens. Create this package now by right-
clicking on the com.example.bottombardemo entry in the Project tool
window and selecting the New -> Package menu option. In the resulting
dialog, name the package com.example.bottombardemo.screens as shown in
Figure 53-1 before tapping the keyboard enter key:

Figure 53-1
Right-click on the new package entry in the Project tool window, select the
option to create a new Kotlin class named Home, and modify it so that it
reads as follows:
package com.example.bottombardemo.screens

import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.foundation.layout.size
import androidx.compose.material.icons.Icons
import androidx.compose.material.icons.filled.Home
import androidx.compose.material3.Icon
import androidx.compose.runtime.Composable
import androidx.compose.ui.Alignment
import androidx.compose.ui.Modifier
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.unit.dp

@Composable
fun Home() {

 Box(

 modifier = Modifier.fillMaxSize()
) {
 Icon(
 imageVector = Icons.Filled.Home,
 contentDescription = "home",
 tint = Color.Blue,
 modifier = Modifier.size(150.dp)
 .align(Alignment.Center)
)
 }
}

Repeat these steps to add class files for the two remaining screens named
Contacts and Favorites using the same code as that used for the home
screen above, but changing the icon import, imageVector property, and
contentDescription accordingly. In the case of the Contacts composable the
following changes apply:
.
.
import androidx.compose.material.icons.filled.Face
.
.
@Composable
fun Contacts() {

 Box(
 modifier = Modifier.fillMaxSize()
) {
 Icon(
 imageVector = Icons.Filled.Face,
 contentDescription = "contacts",
 tint = Color.Blue,
 modifier = Modifier.size(150.dp)
 .align(Alignment.Center)
)
 }
}

Similarly, the following changes will be needed for the Favorites.kt file:
.
.
import androidx.compose.material.icons.filled.Favorite
.

.
@Composable
fun Favorites() {

 Box(
 modifier = Modifier.fillMaxSize()
) {
 Icon(
 imageVector = Icons.Filled.Favorite,
 contentDescription = "favorites",
 tint = Color.Blue,
 modifier = Modifier.size(150.dp)
 .align(Alignment.Center)
)
 }
}

53.6 Creating the navigation controller and host
Now that the basic elements of the project have been created, the next step
is to create both the navigation controller (NavHostController) and
navigation host (NavHost) instances. Edit the MainActivity.kt file and make
the following modifications:
.
.
import androidx.navigation.compose.NavHost
import androidx.navigation.compose.composable
import androidx.navigation.compose.rememberNavController
import androidx.navigation.NavHostController
import com.example.bottombardemo.screens.Contacts
import com.example.bottombardemo.screens.Favorites
import com.example.bottombardemo.screens.Home
.
.
@Composable
fun MainScreen() {
 val navController = rememberNavController()
}

@Composable
fun NavigationHost(navController: NavHostController) {

 NavHost(

 navController = navController,
 startDestination = NavRoutes.Home.route,
) {
 composable(NavRoutes.Home.route) {
 Home()
 }

 composable(NavRoutes.Contacts.route) {
 Contacts()
 }

 composable(NavRoutes.Favorites.route) {
 Favorites()
 }
 }
}

53.7 Designing the navigation bar
We will implement the bottom navigation bar in a separate composable
named BottomNavBar, which will need to be passed the navigation
controller instance created in the NavSetup function. It will, of course,
consist of a NavigationBar component and a NavigationBarItem child for
each of the three destination screens. Start by adding the BottomNavBar
function to the MainActivity.kt file as follows:
.
.
import androidx.compose.material3.*
import androidx.compose.runtime.getValue
import androidx.navigation.compose.currentBackStackEntryAsState
import androidx.navigation.NavGraph.Companion.findStartDestination
.
.
@Composable
fun BottomNavigationBar(navController: NavHostController) {

 NavigationBar {

 }
}

Within the BottomNavigationBar composable, we will need to be able to
identify the route of the currently selected navigation destination. We do

this by calling the currentBackStackEntryAsState() method of the
navigation controller to obtain the current back stack entry from which we
can access the route:
@Composable
fun BottomNavigationBar(navController: NavHostController) {

 NavigationBar {
 val backStackEntry by
navController.currentBackStackEntryAsState()
 val currentRoute = backStackEntry?.destination?.route

 }
}

All that remains is to iterate through the items located in BarItems and use
the title, image, and route settings for each item to configure
NavigationBarItem instances for each destination:
@Composable
fun BottomNavigationBar(navController: NavHostController) {

 NavigationBar {
 val backStackEntry by
navController.currentBackStackEntryAsState()
 val currentRoute = backStackEntry?.destination?.route

 NavBarItems.BarItems.forEach { navItem ->

 NavigationBarItem(
 selected = currentRoute == navItem.route,
 onClick = {
 navController.navigate(navItem.route) {
 popUpTo(navController.graph.findStartDestina
tion().id) {
 saveState = true
 }
 launchSingleTop = true
 restoreState = true
 }
 },

 icon = {
 Icon(imageVector = navItem.image,

 contentDescription = navItem.title)
 },
 label = {
 Text(text = navItem.title)
 },
)
 }
 }
}

53.8 Working with the Scaffold component
The final task before testing the project is to complete the layout in the
MainScreen function. For this, we will use the Compose Scaffold
component. This component provides a template layout structure for the
standard Material screen layout. Scaffold includes slots for common layout
elements, including a top bar, content area, bottom bar, floating action
button, snackbar, and a navigation drawer. We will use the top bar, content
area, and bottom bar scaffold slots for this example. Edit the MainScreen
function and add the Scaffold call as follows:
.
.
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.padding
.
.
@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun MainScreen() {
 val navController = rememberNavController()

 Scaffold(
 topBar = { TopAppBar(title = {Text("Bottom Navigation
Demo")}) },
 content = { padding ->
 Column(Modifier.padding(padding)) {
 NavigationHost(navController = navController)
 } },
 bottomBar = { BottomNavigationBar(navController =
navController)}
)
}

For the top bar, we are using the TopAppBar component configured to
display a Text composable while our NavigationHost composable is used
for the content area of the screen. Finally, the bottom bar position is
occupied by our BottomNavigationBar component.

53.9 Testing the project
Run the app on a device or emulator, where the app should match the screen
shown in Figure 53-2:

Figure 53-2
Test that the navigation works by clicking on the bottom bar items and
verifying that the correct screen appears in each case. Also, check that the
code to prevent duplicate back stack entries is working by clicking multiple
times on the Contacts bar item followed by the back button (or a rightward
swipe on newer Android versions). If the code works as intended, the app
should navigate back to the Home screen.

53.10 Summary
In this chapter, we have used the Compose NavigationBar component to

implement navigation between screens within an activity. This involves
creating a NavigationBarItem child for each screen together with a
navigation controller and NavHost. A key step in implementing bottom bar
navigation involves keeping track of the current destination route, which is
achieved by accessing the current back stack entry via a call to the
currentBackStackEntryAsState() method of the navigation controller. The
project also used the Scaffold composable to create a layout that conforms
to Material theme standards.

54. Detecting Gestures in Compose
The term “gesture” defines a contiguous sequence of interactions between
the touch screen and the user. A typical gesture begins at the point that the
screen is first touched and ends when the last finger or pointing device
leaves the display surface. When correctly harnessed, gestures can be
implemented as a form of communication between the user and the
application. Swiping motions to turn the pages of an eBook or a pinching
movement involving two touches to zoom in or out of an image are prime
examples of how we can use gestures to interact with an application.

54.1 Compose gesture detection
Jetpack Compose provides mechanisms for the detection of common
gestures within an application. In this chapter, we will cover various gesture
types, including tap (click), double-tap, long press, and dragging, as well as
multi-touch gestures such as panning, zooming, and rotation. Swipe
gestures are also supported but require a little extra explanation, so they will
be covered independently in the next chapter.
In several instances, Compose provides two ways to detect gestures. One
approach involves the use of gesture detection modifiers which provide
gesture detection capabilities with built-in visual effects. An alternative
option is to use the functions provided by the PointerInputScope interface,
which require extra coding but provide more advanced gesture detection
capabilities. Where available, we will cover both of these options in this
chapter.
This chapter will take a practical approach to exploring gesture detection by
creating an Android Studio project that includes examples of the types of
gesture detection.

54.2 Creating the GestureDemo project
Launch Android Studio and create a new Empty Activity project named
GestureDemo, specifying com.example.gesturedemo as the package name,
and selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:

@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

54.3 Detecting click gestures
Click gestures, also known as taps, can be detected on any visible
composable using the clickable modifier. This modifier accepts a trailing
lambda containing the code to be executed when a click is detected on the
component to which it has been applied, for example:
SomeComposable(
 modifier = Modifier.clickable { /* Code to be executed */ }
)

Edit the MainActivity.kt file, add a new composable named ClickDemo, and
call it from the MainScreen function:
.
.
import androidx.compose.foundation.*
import androidx.compose.foundation.gestures.*
import androidx.compose.foundation.layout.*
import androidx.compose.runtime.*
import androidx.compose.ui.graphics.*
import androidx.compose.ui.unit.dp
.
.
@Composable
fun MainScreen() {
 ClickDemo()
}

@Composable
fun ClickDemo() {

 var colorState by remember { mutableStateOf(true)}
 var bgColor by remember { mutableStateOf(Color.Blue) }

 val clickHandler = {

 colorState = !colorState

 bgColor = if (colorState) {
 Color.Blue
 } else {
 Color.DarkGray
 }
 }

 Box(
 Modifier
 .clickable { clickHandler() }
 .background(bgColor)
 .size(100.dp)
)
}

The ClickDemo composable contains a Box component, the background
color of which is controlled by the bgColor state. The Box also has applied
to it a clickable modifier configured to call clickHandler which, in turn,
toggles the current value of colorState and uses it to switch the current
bgColor value between blue and gray. Use the Preview panel in interactive
mode to test that clicking the Box causes the background color to change.

54.4 Detecting taps using PointerInputScope
While the clickable modifier is useful for detecting simple click gestures, it
cannot distinguish between taps, presses, long presses, and double taps. For
this level of precision, we need to utilize the detectTapGestures() function
of PointerInputScope. This is applied to a composable via the pointerInput()
modifier, which gives us access to the PointerInputScope as follows:
SomeComposable(
 Modifier
 .pointerInput(Unit) {
 detectTapGestures(
 onPress = { /* Press Detected */ },
 onDoubleTap = { /* Double Tap Detected */ },
 onLongPress = { /* Long Press Detected */ },
 onTap = { /* Tap Detected */ }
)
 }
)

Edit the MainActivity.kt file as follows to add and call a composable named

TapPressDemo:
.
.
import androidx.compose.ui.Alignment
import androidx.compose.ui.input.pointer.pointerInput
.
.
@Composable
fun MainScreen() {
 TapPressDemo()
}

@Composable
fun TapPressDemo() {

 var textState by remember {
 mutableStateOf("Waiting")
 }

 val tapHandler = { status : String ->
 textState = status

 }
 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 modifier = Modifier.fillMaxSize()
) {
 Box(
 Modifier
 .padding(10.dp)
 .background(Color.Blue)
 .size(100.dp)
 .pointerInput(Unit) {
 detectTapGestures(
 onPress = { tapHandler("onPress Detected")
},
 onDoubleTap = { tapHandler("onDoubleTap
Detected") },
 onLongPress = { tapHandler("onLongPress
Detected") },
 onTap = { tapHandler("onTap Detected") }
)
 }

)
 Spacer(Modifier.height(10.dp))
 Text(textState)
 }
}

The TapPressDemo composable contains Box and Text components within
a Column parent. The string displayed on the Text component is based on
the current textState value. When a gesture is detected by the
detectTapGestures() function, the tapHandler is called and passed a new
string describing the type of gesture detected. This string is assigned to
textState, causing it to appear in the Text component. Refresh the Preview
panel and use interactive mode to experiment with different tap and press
gestures. While running, the user interface should match that shown in
Figure 54-1:

Figure 54-1
54.5 Detecting drag gestures
We can detect drag gestures on a component by applying the draggable()
modifier. This modifier stores the offset (or delta) of the drag motion from
the point of origin as it occurs and stores it in a state, an instance of which
can be created via a call to the rememberDraggableState() function. This
state can then, for example, be used to move the position of the dragged
component in coordination with the gesture. The draggable() call also
needs to be told whether to detect horizontal or vertical motions.
To see the draggable() modifier in action, make the following changes to
the MainActivity.kt file:
.
.
import androidx.compose.ui.unit.IntOffset

import kotlin.math.roundToInt
.

.
@Composable
fun MainScreen() {
 DragDemo()
}

@Composable
fun DragDemo() {

 Box(modifier = Modifier.fillMaxSize()) {

 var xOffset by remember { mutableStateOf(0f) }

 Box(
 modifier = Modifier
 .offset { IntOffset(xOffset.roundToInt(), 0) }
 .size(100.dp)
 .background(Color.Blue)
 .draggable(
 orientation = Orientation.Horizontal,
 state = rememberDraggableState { distance ->
 xOffset += distance
 }
)
)
 }
}

The example creates a state to store the current x-axis offset and uses it as
the x-coordinate of the draggable Box:
var xOffset by remember { mutableStateOf(0f) }
.
.
Box(
 modifier = Modifier
 .offset { IntOffset(xOffset.roundToInt(), 0) }

The draggable modifier is then applied to the Box with the orientation
parameter set to horizontal. The state parameter is set by calling the
rememberDraggableState() function, the trailing lambda for which is used
to obtain the current delta value and add it to the xOffset state. This, in turn,
causes the box to move in the direction of the drag gesture:
.draggable(

 orientation = Orientation.Horizontal,
 state = rememberDraggableState { distance ->
 xOffset += distance
 }
)

Preview the design and test that the Box can be dragged horizontally left
and right:

Figure 54-2
The draggable() modifier is only useful for supporting drag gestures in
either the horizontal or vertical plane. To support multi-directional drag
operations, the PointerInputScope detectDragGestures function needs to be
used.

54.6 Detecting drag gestures using PointerInputScope
The PointerInputScope detectDragGestures function allows us to support
both horizontal and vertical drag operations simultaneously and can be
implemented using the following syntax:
SomeComposable() {
 Modifier
 .pointerInput(Unit) {
 detectDragGestures { _, distance ->
 xOffset += distance.x
 yOffset += distance.y
 }
 }

To see this in action, add and call a new function named PointerInputDrag
in the MainActivity.kt file as follows:
@Composable
fun MainScreen() {
 PointerInputDrag()
}

@Composable
fun PointerInputDrag() {

 Box(modifier = Modifier.fillMaxSize()) {

 var xOffset by remember { mutableStateOf(0f) }
 var yOffset by remember { mutableStateOf(0f) }

 Box(
 Modifier
 .offset { IntOffset(xOffset.roundToInt(),
yOffset.roundToInt()) }
 .background(Color.Blue)
 .size(100.dp)
 .pointerInput(Unit) {
 detectDragGestures { _, distance ->
 xOffset += distance.x
 yOffset += distance.y
 }
 }
)
 }
}

Since we are supporting both horizontal and vertical dragging gestures, we
have declared states to store both x and y offsets. The detectDragGestures
lambda passes us an Offset object which we have named distance and from
which we can obtain the latest drag x and y offset values. These are added
to the xOffset and yOffset states, respectively, causing the Box component to
follow the dragging motion around the screen:
.pointerInput(Unit) {
 detectDragGestures { _, distance ->
 xOffset += distance.x
 yOffset += distance.y
 }
}

Preview the design in interactive mode and test that it is possible to drag the
box in any direction on the screen:

Figure 54-3
54.7 Scrolling using the scrollable modifier
We introduced scrolling in the chapter entitled “An Overview of Lists and

Grids in Compose” in relation to scrolling through lists of items. Using the
scrollable() modifier, scrolling gestures are not limited to list components.
As with the draggable() modifier, scrollable() is limited to support either
horizontal or vertical gestures but not both in the same modifier declaration.
Scrollable state is managed using the rememberScrollableState() function,
the lambda for which gives us access to the distance traveled by the scroll
gesture which can, in turn, be used to adjust the offset of one or more
composables in the hierarchy. Make the following changes to implement
scrolling in the MainActivity.kt file:
@Composable
fun MainScreen() {
 ScrollableModifier()
}

@Composable
fun ScrollableModifier() {

 var offset by remember { mutableStateOf(0f) }

 Box(
 Modifier
 .fillMaxSize()
 .scrollable(
 orientation = Orientation.Vertical,
 state = rememberScrollableState { distance ->
 offset += distance
 distance
 }
)
) {
 Box(modifier = Modifier
 .size(90.dp)
 .offset { IntOffset(0, offset.roundToInt()) }
 .background(Color.Red))
 }
}

Preview the new composable and click and drag vertically on the screen.
Note that the red box scrolls up and down in response to vertical scrolling
gestures.

54.8 Scrolling using the scroll modifiers
As we saw in the previous example, the scrollable() modifier can only
detect scrolling in a single orientation. To detect both horizontal and vertical
scrolling, we need to use the scroll modifiers. These are essentially two
modifiers named verticalScroll() and horizontalScroll() both of which must
be passed a scroll state created via a call to the rememberScrollState()
function, for example:
SomeComposable(modifier = Modifier
 .verticalScroll(rememberScrollState())
 .horizontalScroll(rememberScrollState())) {
}

In addition to supporting scrolling in both orientations, the scroll functions
also have the advantage that they handle the actual scrolling. This means
that we do not need to write code to apply new offsets to implement the
scrolling behavior.
To demonstrate these modifiers, we will use a Box composable containing
an image. The Box will be sized to act as a “viewport” through which only
part of the image can be seen at any one time. We will, instead, use
scrolling to allow the image to be scrolled within the box.
The first step is to add an image resource to the project. In previous
chapters, we used the Resource Manager to add an image to the project
resources. As we will demonstrate in this chapter, it is also possible to copy
and paste an image file directly into the drawables folder within the Project
tool window.
The image that we will use for the project is named vacation.jpg and can be
found in the images folder of the sample code download available from the
following URL:
https://www.payloadbooks.com/product/compose16/
Locate the image in the file system navigator for your operating system and
select and copy it. Right-click on the app -> res -> drawable entry in the
Project tool window and select Paste from the resulting menu to add the file
to the folder:

Figure 54-4

https://www.payloadbooks.com/product/compose16/

Next, modify the MainActivity.kt file as follows:
.
.
import androidx.compose.ui.geometry.Offset
import androidx.compose.ui.res.imageResource
.
.
@Composable
fun MainScreen() {
 ScrollModifiers()
}

@Composable
fun ScrollModifiers() {

 val image = ImageBitmap.imageResource(id = R.drawable.vacation)

 Box(modifier = Modifier
 .size(150.dp)
 .verticalScroll(rememberScrollState())
 .horizontalScroll(rememberScrollState())) {
 Canvas(
 modifier = Modifier
 .size(360.dp, 270.dp)
)
 {
 drawImage(
 image = image,
 topLeft = Offset(
 x = 0f,
 y = 0f
),
)
 }
 }
}

When previewed in interactive mode, only part of the image will be visible
within the Box component. Clicking and dragging on the image will allow
you to move the photo so that other areas of the image can be viewed:

Figure 54-5
54.9 Detecting pinch gestures
The remainder of this chapter will look at gestures that require multiple
touch-points on the screen, beginning with pinch gestures. Pinch gestures
are typically used to change the size (scale) of content and give the effect of
zooming in and out. This type of gesture is detected using the
transformable() modifier which takes as parameters a state of type
TransformableState, an instance of which can be created by a call to the
rememberTransformableState() function. This function accepts a trailing
lambda to which are passed the following three parameters:
•Scale change - A Float value updated when pinch gestures are performed.
•Offset change - An Offset instance containing the current x and y offset
values. This value is updated when a gesture causes the target component
to move (referred to as translations).

•Rotation change - A Float value representing the current angle change
when detecting rotation gestures.

All three of these parameters need to be declared when calling the
rememberTransformableState() function, even if you do not make use of
them in the body of the lambda. A typical TransformableState declaration
that tracks scale changes might read as follows:
var scale by remember { mutableStateOf(1f) }

val state = rememberTransformableState { scaleChange, offsetChange,
 rotationChange ->
 scale *= scaleChange
}

Having created the state, it can then be used when calling the

transformable() modifier on a composable as follows:
SomeComposable(modifier = Modifier
 .transformable(state = state) {
 }
)

As the pinch gesture progresses, the scale state will be updated. To reflect
these changes we will need to make sure that the composable also changes
in size. We can do this by accessing the graphics layer of the composable
and setting the scaleX and scaleY properties to the current scale state. As
we will demonstrate later, the rotation and translation transformations will
also require access to the graphics layer.
Start this phase of the tutorial by making the following changes to the
MainActivity.kt file to implement pinch gesture detection:
@Composable
fun MainScreen() {
 MultiTouchDemo()
}

@Composable
fun MultiTouchDemo() {

 var scale by remember { mutableStateOf(1f) }

 val state = rememberTransformableState {
 scaleChange, offsetChange, rotationChange ->
 scale *= scaleChange
 }

 Box(contentAlignment = Alignment.Center, modifier =
Modifier.fillMaxSize()) {
 Box(
 Modifier
 .graphicsLayer(
 scaleX = scale,
 scaleY = scale,
)
 .transformable(state = state)
 .background(Color.Blue)
 .size(100.dp)
)

 }
}

To test out the pinch gesture the app will need to be run on a device or
emulator because the Preview panel does not yet appear to support multi-
touch gestures). Once running, perform a pinch gesture on the blue box to
zoom in and out. If you are using an emulator, hold the keyboard Ctrl key
(Cmd on macOS) while clicking and dragging to simulate multiple touches.

54.10 Detecting rotation gestures
We can now add rotation support to the example with just three additional
lines of code:
@Composable
fun MultiTouchDemo() {

 var scale by remember { mutableStateOf(1f) }
 var angle by remember { mutableStateOf(0f) }

 val state = rememberTransformableState {
 scaleChange, offsetChange, rotationChange ->
 scale *= scaleChange
 angle += rotationChange
 }

 Box(contentAlignment = Alignment.Center, modifier =
Modifier.fillMaxSize()) {
 Box(
 Modifier
 .graphicsLayer(
 scaleX = scale,
 scaleY = scale,
 rotationZ = angle
)
 .transformable(state = state)
 .background(Color.Blue)
 .size(100.dp)
)
 }
}

Compile and run the app and perform both pinch and rotation gestures.
Both the size and angle of the Box should now change:

Figure 54-6
54.11 Detecting translation gestures
Translation involves the change in the position of a component. As with
rotation detection, we can add translation support to our example with just a
few lines of code:
@Composable
fun MultiTouchDemo() {

 var scale by remember { mutableStateOf(1f) }
 var angle by remember { mutableStateOf(0f) }
 var offset by remember { mutableStateOf(Offset.Zero)}

 val state = rememberTransformableState {
 scaleChange, offsetChange, rotationChange ->
 scale *= scaleChange
 angle += rotationChange
 offset += offsetChange
 }

 Box(contentAlignment = Alignment.Center, modifier =
Modifier.fillMaxSize()) {
 Box(
 Modifier
 .graphicsLayer(
 scaleX = scale,
 scaleY = scale,
 rotationZ = angle,
 translationX = offset.x,
 translationY = offset.y
)
 .transformable(state = state)
 .background(Color.Blue)
 .size(100.dp)

)
 }
}

Note that the translation gesture only works when testing on a physical
device.

54.12 Summary
Gestures are a key form of interaction between the user and an app running
on an Android device. Using the gesture detection features of Compose, it
is possible to respond to a range of screen interactions, including taps, long
presses, scrolling, pinches, and rotations. Gestures are detected in Compose
by applying modifiers to composables and responding to state changes.

55. Working with Anchored
Draggable Components
The preceding chapter demonstrated how to detect common gestures,
including dragging, tapping, pinching, and scrolling. In this chapter, we will
introduce the concept of anchored draggable components, explain what they
are, and how to implement them.

55.1 Dragging and anchors
Anchored draggable components are user interface elements that can be
dragged horizontally or vertically along a path containing two or more
anchor points. Anchor points are fixed positions on the screen along the
axis of the dragging motion.
A point between two anchors is declared as the threshold. The dragged
component will return to the starting anchor if the drag ends before the
threshold. If, on the other hand, the dragging ends after passing the
transition point, the component will continue moving until it reaches the
destination anchor. We can configure these threshold-related movements to
be instant (snapped) or animated.

55.2 Detecting dragging gestures
Dragging gestures are detected by applying the anchoredDraggable()
modifier to the composable for which the gesture is to be detected. The
following example shows the minimum requirements when calling the
anchoredDraggable()modifier:
Box(
 modifier = Modifier
 .anchoredDraggable(
 state = <draggable state>,
 orientation = <horizontal or vertical>,
 reverseDirection = <true or false>
)
)

The anchoredDraggable() modifier’s parameters can be summarized as
follows:
•state – An AnchoredDraggableState instance is used to store the draggable

state through recomposition. This state contains the initial anchor position,
the anchor points, and the current offset of the drag motion. This offset is
used to change the position of the dragged composable.

•orientation – The orientation of the drag gesture. Must be set to either
Orientation.Horizontal or Orientation.Vertical.

•reverseDirection – When set to true, this setting reverses the effect of the
drag direction. When set to true, this setting reverses the effect of the drag
direction. For example, a downward drag will behave as an upward
motion, and a rightward drag as a leftward motion.

55.3 Declaring the anchor points
Draggable anchor points are declared using the DraggableAnchors factory.
The anchors are expressed using floating-point pixel values corresponding
to a position along either the x or y-axis of the drag path. For example, the
following code creates a DraggableAnchors instance comprised of three
anchor points positioned at the beginning, center, and end of the drag path:
enum class Anchors {
 Left,
 Center,
 Right
}

val anchors = DraggableAnchors {
 Anchors.Left at 0f
 Anchors.Center at widthPx / 2
 Anchors.Right at widthPx
}

55.4 Declaring thresholds
Thresholds are declared as lambdas that return a threshold position. When
the lambda is called, it is passed a value representing the distance between
the originating and destination anchors, which can be used to calculate the
threshold point along the drag path. The following code, for example,
declares a threshold at a point 70% of the distance between two anchors:
{ distance: Float -> distance * 0.7f }

55.5 Declaring draggable state
Once the anchor points and threshold have been declared, they are used to

create the AnchoredDraggableState instance, the syntax for which is as
follows:
val state = remember {
 AnchoredDraggableState(
 initialValue = <initial anchor position>,
 anchors = DraggableAnchors {
<anchors>
 },
 positionalThreshold = <distance threshold>,
 velocityThreshold = <velocity threshhold>,
 animationSpec = <animation>
)
}

The following list summarizes the AnchoredDraggableState parameters:
•intialValue – The draggable item’s initial anchor position where the
draggable item will appear when it is first displayed.

•anchors – A DraggableAnchors instance initialized with anchor points.
•positionalThreshold – The threshold calculation lambda.
•velocityThreshold– An optional setting defining the speed in dp per
second that the drag velocity has to exceed to move to the next state.

•animationSpec - Applies animation effects to the drag operation. For
details on state-based animation and animationSpec options, refer to the
“Compose State-Driven Animation” chapter.

55.6 Moving a component in response to a drag
As with many of the gesture detection modifiers covered in the previous
chapter, a drag does not automatically move a component. We must,
therefore, program any position changes within the layout code.
Fortunately, this is simply a case of passing the current offset value of the
draggable state to the offset() modifier of any components in the layout that
need to be moved in response to the gesture.
The current drag offset is obtained by calling the state’s requiredOffset()
method. The result will be the current position along the x or y-axis,
depending on whether the drag orientation is horizontal or vertical. This
offset can then be used to position the draggable item or any other
composables in the layout that are subscribed to the state. If, for example,

we need the Box view in the above example to move horizontally in
response to the dragging gesture, we would do so with the following code
change:
Box(
 modifier = Modifier
 .offset {
 IntOffset(
 x = state
 .requireOffset()
 .roundToInt(),
 y = 0,
)
 }
.
.
)

When executed, the Box component will move in concert with the dragging
motion.
After covering the basics of Compose anchored draggable components, the
rest of this chapter will involve creating an example project that will help
clarify the information provided so far.

55.7 About the DraggableDemo project
The project created in the remainder of this chapter will implement
horizontal drag detection designed to move a Box between three anchor
positions. Figure 55-1 shows the completed user interface:

Figure 55-1
55.8 Creating the DraggableDemo project
Launch Android Studio and create a new Empty Activity project named
DraggableDemo. Specify com.example.draggabledemo as the package
name and select a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new

empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the onCreateActivity() method and GreetingPreview function to
call MainScreen instead of Greeting.

55.9 Adding Foundation library
Before we start writing code, we need to add the Foundation library to the
project build configuration, beginning with the following changes to the
Gradle Scripts -> libs.versions.toml version catalog file:
[versions]
foundation = "1.6.4"
.
.
[libraries]
androidx-foundation = { module =
"androidx.compose.foundation:foundation", version.ref =
"foundation" }
.
.

Next, add the above library to Gradle Scripts -> build.gradle.kts (Module:
app) file dependencies as follows:
.
.
dependencies {
 implementation(libs.androidx.foundation)
.
.

Click on the Sync Now link at the top of the editor panel to commit these
changes.

55.10 Adding the anchors enumeration
When the project is finished, we will be able to drag a box between three
anchor points. To store these anchor positions, we need to add an enum
declaration to the MainActivity.kt file, as follows:
.
.

enum class Anchors {
 Start,
 Center,
 End
}

class MainActivity : ComponentActivity() {
.
.

55.11 Setting up the draggable state and anchors
Before designing the user interface layout, we must set up some size
constants, create the draggable state, and assign positions to the anchors.
With the MainActivity.kt file loaded into the editor, locate and make the
following changes to the MainScreen function:
.
.
import androidx.compose.material3.*
import androidx.compose.ui.platform.LocalDensity
import androidx.compose.ui.unit.dp
import androidx.compose.foundation.gestures.AnchoredDraggableState
import androidx.compose.foundation.gestures.DraggableAnchors
import androidx.compose.ui.platform.LocalDensity
import androidx.compose.ui.unit.dp
import androidx.compose.runtime.remember
import androidx.compose.animation.core.tween
.
.
@Composable
fun MainScreen() {
 val density = LocalDensity.current
 val parentBoxWidth = 320.dp
 val childBoxSides = 50.dp

 val widthPx = with(density) {
 (parentBoxWidth - childBoxSides).toPx() }

 val state = remember {
 AnchoredDraggableState(
 initialValue = Anchors.Start,
 anchors = DraggableAnchors {
 Anchors.Start at 0f

 Anchors.Center at widthPx / 2
 Anchors.End at widthPx
 },
 positionalThreshold = { distance: Float -> distance *
0.5f },
 velocityThreshold = { with(density) { 100.dp.toPx() }
},
 animationSpec = tween(),
)
 }
}

In the above code, the parentBoxWidth value represents the width of the
top-level Box within the component hierarchy which we will be creating
later in the tutorial. The parent box will contain a child box, the side lengths
of which are defined via the childBoxSides declaration. Finally, the width in
pixels of the draggable area is calculated by taking the density of the
display on which the app is running then subtracting the width of the child
box from the width of the parent box:
val widthPx = with(density) {
 (parentBoxWidth - childBoxSides).toPx() }

The child box width is subtracted above to account for the fact that the child
box will be centered on the anchor points, leaving an overhang equivalent
to half the width of the child on the first and last anchors (these two halves
combining to create a full child box width).
Finally, the state is declared by calling AnchoredDraggableState and
passing it an initial anchor position, a DraggableAnchors instance
initialized with the three anchor points, and a threshold positioned at the
mid-point between anchors:
val state = remember {
 AnchoredDraggableState(
 initialValue = Anchors.Start,
 anchors = DraggableAnchors {
 Anchors.Start at 0f
 Anchors.Center at widthPx / 2
 Anchors.End at widthPx
 },
 positionalThreshold = { distance: Float -> distance * 0.5f
},
 velocityThreshold = { with(density) { 100.dp.toPx() } },

 animationSpec = tween(),
)
}

At the time of writing, the AnchoredDraggableState is an experimental
feature. If the editor reports this error, add the
@ExperimentalFoundationApi annotation above the @Composable
directive for the MainScreen as shown below:
.
.
import androidx.compose.foundation.ExperimentalFoundationApi
.
.
@OptIn(ExperimentalFoundationApi::class)
@Composable
fun MainScreen() {
.
.

55.12 Designing the parent Box
The next step is to design the composable hierarchy for the user interface
layout. Remaining within the MainScreen function, add a Box component
as follows:
.
.
import androidx.compose.foundation.layout.*
.
.
Composable
fun MainScreen() {
.
.
 positionalThreshold = { distance: Float -> distance *
0.5f },
 velocityThreshold = { with(density) { 100.dp.toPx() }
},
 animationSpec = tween(),
)
 }

 Box {
 Box(

 modifier = Modifier
 .padding(20.dp)
 .width(parentBoxWidth)
 .height(childBoxSides)
) {

 }
 }
}

The next step is to add the line graphic, which is comprised of four Box
components:
.
.
import androidx.compose.foundation.background
import androidx.compose.foundation.shape.CircleShape
import androidx.compose.ui.Alignment
import androidx.compose.ui.graphics.Color
.
.
Box(
 modifier = Modifier
 .padding(20.dp)
 .width(parentBoxWidth)
 .height(childBoxSides)
.
.
) {
 Box(
 Modifier
 .fillMaxWidth()
 .height(5.dp)
 .background(Color.DarkGray)
 .align(Alignment.CenterStart))
 Box(
 Modifier
 .size(10.dp)
 .background(
 Color.DarkGray,
 shape = CircleShape
)
 .align(Alignment.CenterStart))
 Box(

 Modifier
 .size(10.dp)
 .background(
 Color.DarkGray,
 shape = CircleShape
)
 .align(Alignment.Center))
 Box(
 Modifier
 .size(10.dp)
 .background(
 Color.DarkGray,
 shape = CircleShape
)
 .align(Alignment.CenterEnd))
}
.
.

Take this opportunity to review the layout in the Preview panel where the
line should now appear, as shown in Figure 55-2:

Figure 55-2
55.13 Adding the draggable box
The parent Box implementation is complete, and we are ready to add the
child box. Within the MainActivity.kt file, add a new composable named
DraggableBox as follows, including the experimental API annotation if
necessary:
.
.
import androidx.compose.ui.unit.sp
import androidx.compose.ui.unit.IntOffset
import kotlin.math.roundToInt
import androidx.compose.ui.unit.Dp
import androidx.compose.foundation.gestures.anchoredDraggable
import androidx.compose.foundation.gestures.Orientation
import androidx.compose.foundation.Image
import androidx.compose.ui.res.painterResource
.
.
@OptIn(ExperimentalFoundationApi::class)

@Composable
fun DraggableBox(
 state: AnchoredDraggableState<Anchors>,
 childSides: Dp
) {
 Box(
 Modifier
 .offset {
 IntOffset(
 x = state
 .requireOffset()
 .roundToInt(),
 y = 0,
)
 }
 .anchoredDraggable(
 state,
 Orientation.Horizontal,
 reverseDirection = false
)
 .size(childSides)
 .background(Color.Blue),
 contentAlignment = Alignment.Center
) {
 Image(
 painter = painterResource(id =
R.drawable.ic_launcher_foreground),
 modifier = Modifier,
 contentDescription = null,
)
 }
}

Before we try out the dragging behavior, some of the above code needs
some explanation. First, the offset modifier is applied to the child Box to
control the horizontal position. This is achieved by calling the state’s
requiredOffset() method to identify the current position of the dragging
motion. The offset is then used to position the Box along the x-axis.
Box(
 Modifier
 .offset {
 IntOffset(
 x = state

 .requireOffset()
 .roundToInt(),
 y = 0,
)
 }

Next, the Box is made draggable by applying the anchoredDraggable()
modifier configured with the draggable state and horizontal orientation.
Since we need the child box to move in the same direction as the dragging
motion, we also turn off the reverseDirection property:
.anchoredDraggable(
 state,
 Orientation.Horizontal,
 reverseDirection = false
)

The child Box contains a single child in the form of an Image component
displaying the built-in launcher icon:
Image(
 painter = painterResource(id =
R.drawable.ic_launcher_foreground),
 modifier = Modifier,
 contentDescription = null,
)

The last task is to call the DraggableBox composable from within the parent
Box in the MainScreen function as follows:
@OptIn(ExperimentalFoundationApi::class)
@Composable
fun MainScreen() {
.
.
 .size(10.dp)
 .background(
 Color.DarkGray,
 shape = CircleShape
)
 .align(Alignment.CenterEnd))

 DraggableBox(state = state, childSides = childBoxSides)
 }
 }
}

With the coding work completed, all that remains is to test that the drag
gesture detection works as intended.

55.14 Testing the project
With this project phase complete, we can try out the dragging behavior.
Using either the Preview panel in interactive mode or a device or emulator,
click and drag right anywhere within the bounds of the parent box. As you
drag, the child box will also move. If you stop dragging and release the box
before the child box reaches the mid-point between the first two anchors, it
will animate back to the start anchor. However, move the box beyond the
mid-point before releasing it, and the box will automatically animate to the
second anchor. From this point, we can drag the box in either direction with
the same threshold behavior.

Figure 55-3
55.15 Summary
Anchored draggable behavior in Compose involves moving a component
from one anchor point to another and transitioning between different states.
Dragging gestures are detected using the anchoredDraggable() modifier in
conjunction with a draggable state initialized with anchor points and a
threshold point. If the dragging gesture ends before the threshold, the target
component returns to the starting anchor. In contrast, if the drag ends after
the threshold, the component will continue to the destination anchor.

56. An Introduction to Kotlin Flow
The earlier chapter, “Coroutines and LaunchedEffects in Jetpack Compose”
taught us about Kotlin Coroutines. It explained how we can use them to
perform multiple tasks concurrently without blocking the main thread.
However, a shortcoming of suspend functions is that they are typically only
useful for performing tasks that either do not return a result or only return a
single value. In this chapter, we will introduce Kotlin Flows and explore
how these can be used to return sequential streams of results from
coroutine-based tasks.
By the end of the chapter, you should understand the Flow, StateFlow, and
SharedFlow Kotlin types and appreciate the difference between hot and
cold flow streams. In the next chapter (“A Jetpack Compose SharedFlow
Tutorial”), we will look more closely at using SharedFlow within the
context of an example Android app project.

56.1 Understanding Flows
Flows are a part of the Kotlin programming language and are designed to
allow multiple values to be returned sequentially from coroutine-based
asynchronous tasks. A stream of data arriving over time via a network
connection would, for example, be an ideal situation for using a Kotlin
flow.
Flows are comprised of producers, intermediaries, and consumers.
Producers are responsible for providing the data that makes up the flow.
The code that retrieves the stream of data from our hypothetical network
connection, for example, would be considered a producer. As each data
value becomes available, the producer emits that value to the flow. The
consumer sits at the opposite end of the flow stream and collects the values
as the producer emits them.
Intermediaries may be placed between the producer and consumer to
perform additional operations on the data, such as filtering the stream,
performing further processing, or transforming the data in other ways
before it reaches the consumer. Figure 56-1 illustrates the typical structure
of a Kotlin flow:

Figure 56-1
The flow shown in the above diagram consists of a single producer and
consumer. However, in practice, multiple consumers can collect emissions
from a single producer, and for a single consumer to collect data from
multiple producers.
The remainder of this chapter will demonstrate many key features of Kotlin
flows within the context of Jetpack Compose-based development.

56.2 Creating the sample project
Launch Android Studio and create a new Empty Activity project named
FlowDemo, specifying com.example.flowdemo as the package name and
selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named ScreenSetup which, in turn, calls a function
named MainScreen:
@Composable
fun ScreenSetup() {
 MainScreen()
}

@Composable
fun MainScreen() {

}

Edit the onCreate() method function to call ScreenSetup instead of Greeting
(we will modify the GreetingPreview composable later).
Next, modify the libs.versions.toml file to add the Compose view model
library to version catalog:
.
.
[libraries]
.
.

androidx-lifecycle-viewmodel-compose = { module =
"androidx.lifecycle:lifecycle-viewmodel-compose", version.ref =
"lifecycleRuntimeKtx" }
.
.

Edit the build.gradle.kts (Module :app) file and add the library to the
dependencies section as follows:
dependencies {
.
.
 implementation(libs.androidx.lifecycle.viewmodel.compose)
.
.
}

When prompted, click on the Sync Now button at the top of the editor panel
to commit the change.

56.3 Adding a view model to the project
For this project, the flow will reside in a view model class. Add this model
to the project by locating and right-clicking on the app -> kotlin+java ->
com.example.flowdemo entry in the project tool window and selecting the
New -> Kotlin Class/File menu option. In the resulting dialog, name the
class DemoViewModel before tapping the keyboard Enter key. Once
created, modify the file so that it reads as follows:
package com.example.flowdemo

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {
}

Return to the MainActivity.kt file and make changes to access an instance of
the view model:
.
.
import androidx.lifecycle.viewmodel.compose.viewModel
.
.
@Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen()

}

56.4 Declaring the flow
The Kotlin Flow type represents the most basic form of flow. Each flow can
only emit data of a single type which must be specified when the flow is
declared. The following declaration, for example, declares a Flow instance
designed to stream String-based data:
Flow<String>

When declaring a flow, we need to assign the code to generate the data
stream. This code is referred to as the producer block. This can be achieved
using the flow() builder, which takes as a parameter a coroutine suspend
block containing the producer block code. For example, add the following
code to the DemoViewModel.kt file to declare a flow named myFlow
designed to emit a stream of integer values:
package com.example.flowdemo

import androidx.lifecycle.ViewModel
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*

class DemoViewModel : ViewModel() {

 val myFlow: Flow<Int> = flow {
 // Producer block
 }
}

As an alternative to the flow builder, the flowOf() builder can be used to
convert a fixed set of values into a flow:
val myFlow2 = flowOf(2, 4, 6, 8)

Also, many Kotlin collection types now include an asFlow() extension
function that can be called to convert the contained data to a flow. The
following code, for example, converts an array of string values to a flow:
val myArrayFlow = arrayOf<String>("Red", "Green", "Blue").asFlow()

56.5 Emitting flow data
Once a flow has been built, the next step is to ensure the data is emitted so
that it reaches any consumers observing it. Of the three flow builders we
looked at in the previous section, only the flowOf() and asFlow() builders

create flows that automatically emit the data as soon as a consumer starts
collecting. In the case of the flow builder, however, we need to write code to
manually emit each value as it becomes available. We achieve this by
making calls to the emit() function and passing through as an argument the
current value to be streamed. The following changes to our myFlow
declaration implement a loop that emits the value of an incrementing
counter. In addition, a 2-second delay is performed on each loop iteration to
demonstrate the asynchronous nature of flow streams:
val myFlow: Flow<Int> = flow {
 for (i in 0..9) {
 emit(i)
 delay(2000)
 }
}

56.6 Collecting flow data as state
As we will see later in the chapter, one way to collect data from a flow
within a consumer is to call the collect() method on the flow instance.
When working with Compose, however, a less flexible, but more
convenient option is to convert the flow to state by calling the
collectAsState() function on the flow instance. This allows us to treat the
data just as we would any other state within our code. To see this in action,
edit the MainActivity.kt file and make the following changes:
.
.
import androidx.compose.runtime.*
import kotlinx.coroutines.flow.*
.
.
@Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen(viewModel.myFlow)
}

@Composable
fun MainScreen(flow: Flow<Int>) {
 val count by flow.collectAsState(initial = 0)
}
.
.

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 FlowDemoTheme {
 ScreenSetup(viewModel())
 }
}

The changes pass a myFlow reference to the MainScreen composable
where it is converted to a State with an initial value of 0. Next, we need to
design a simple user interface to display the count values as they are
emitted to the flow:
.
.
import androidx.compose.foundation.layout.*
import androidx.compose.ui.Alignment
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.unit.sp
.
.
@Composable
fun MainScreen(myFlow: Flow<Int>) {
 val count by myFlow.collectAsState(initial = 0)

 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Text(text = "$count", style = TextStyle(fontSize = 40.sp))
 }
}

Try out the app either using the preview panel in interactive mode, or by
running it on a device or emulator. Once the app starts, the count value
displayed on the Text component should increment as the flow emits each
new value.

56.7 Transforming data with intermediaries
In the previous example, we passed the data values to the consumer without
any modifications. However, we can change the data between the producer
and consumer by applying one or more intermediate flow operators. In this

section, we will look at some of these operators.
We can use the map() operator to convert the value to another value. For
example, we can use map() to convert our integer value to a string and add
some additional text. Edit the DemoViewModel.kt file and create a modified
version of our flow as follows:
.
.
class DemoViewModel : ViewModel() {

 val myFlow: Flow<Int> = flow {
 for (i in 0..9) {
 emit(i)
 delay(2000)
 }
 }

 val newFlow = myFlow.map {
 "Current value = $it"
 }
}

Before we can test this operator, some changes are needed within the
MainActivity.kt file to use this new flow:
Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen(viewModel.newFlow)
}

@Composable
fun MainScreen(flow: Flow<String>) {
 val count by flow.collectAsState(initial = "Current value =")
.
.

When the code is executed, the text will display the text string updated with
the count:
Current value = 1
Current value = 2
.
.

The map() operator will perform the conversion on every collected value.

We can use the filter() operator to control which values get collected. The
filter code block must contain an expression that returns a Boolean value.
Only if the expression evaluates to true does the value pass through to the
collection. For example, the following code filters odd numbers out of the
data flow (note that we’ve left the map() operator in place to demonstrate
the chaining of operators):
val newFlow = myFlow
 .filter {
 it % 2 == 0
 }
 .map {
 "Current value = $it"
 }

The above changes will display count updates only for even numbers.
The transform() operator serves a similar purpose to map() but provides
more flexibility. The transform() operator also needs to manually emit the
modified result. A particular advantage of transform() is that it can emit
multiple values, for example:
val newFlow = myFlow
 .transform {
 emit("Value = $it")
 delay(1000)
 val doubled = it * 2
 emit("Value doubled = $doubled")
 }

// Output
Value = 0
Value doubled = 0
Value = 1
Value doubled = 2
Value = 2
Value doubled = 4
Value = 3
.
.

Before moving to the next step, revert the newFlow declaration to its
original form:
val newFlow = myFlow.map {

 "Current value = $it"
}

56.8 Collecting flow data
So far in this chapter, we have used the collectAsState() function to convert
a flow to a State instance. Behind the scenes, this method uses the collect()
function to initiate the data collection. Although collectAsState() works well
most of the time, there will be situations where you may need to call
collect(). In fact, collect() is just one of several so-called terminal flow
operators that can be called directly to achieve results that aren’t possible
using collectAsState().
These operators are suspend functions so can only be called from within a
coroutine scope. In the chapter entitled “Coroutines and LaunchedEffects in
Jetpack Compose”, we looked at coroutines and explained how to use
LaunchedEffect to execute asynchronous code safely from within a
composable function. Once we have implemented the LaunchedEffect call,
we still need the streamed values to be stored as state, so we also need a
mutable state into which to store the latest value. Bringing these
requirements together, modify the MainScreen function so that it reads as
follows:
@Composable
fun MainScreen(flow: Flow<String>) {

 var count by remember { mutableStateOf<String>("Current value
=")}

 LaunchedEffect(Unit) {
 flow.collect {
 count = it
 }
 }

 Column(
 modifier = Modifier.fillMaxSize(),
.
.

Test the app and verify that the text component updates as expected. Now
that we are using the collect() function we can begin to explore some
options that were not available to us when we were using collectAsState().

For example, to add code to be executed when the stream ends, the
collection can be performed in a try/finally construct, for example:
LaunchedEffect(Unit) {
 try {
 flow.collect {
 count = it
 }
 } finally {
 count = "Flow stream ended."
 }
}

The collect() operator will collect every value emitted by the producer, even
if new values are emitted while the last value is still being processed in the
consumer. For example, our producer is configured to emit a new value
every two seconds. Suppose, however, that we simulate our consumer
taking 2.5 seconds to process each collected value. When executed, we will
still see all of the values listed in the output because collect() does not
discard any uncollected values regardless of whether more recent values
have been emitted since the last collection. This type of behavior is
essential to avoid data loss within the flow. In some situations, however, the
consumer may be uninterested in any intermediate values emitted between
the most recently processed value and the latest emitted value. In this case,
the collectLatest() operator can be called on the flow instance. This operator
works by canceling the current collection if a new value arrives before
processing completes on the previous value and restarts the process on the
latest value.
The conflate() operator is similar to the collectLatest() operator except that
instead of canceling the current collection operation when a new value
arrives, conflate() allows the current operation to complete, but discards
intermediate values that arrive during this process. When the current
operation completes, the most recent value is then collected.
Another collection operator is the single() operator. This operator collects a
single value from the flow and throws an exception if it finds another value
in the stream. This operator is useful where the appearance of a second
stream value indicates that something else has gone wrong somewhere in
the app or data source.

56.9 Adding a flow buffer
When a consumer takes time to process the values emitted by a producer,
there is the potential for execution time inefficiencies to occur. Suppose, for
example, that in addition to the two-second delay between each emission
from our newFlow producer, the collection process in our consumer takes
an additional second to complete. We can simulate this behavior as follows:
.
.
import kotlin.system.measureTimeMillis
import kotlinx.coroutines.delay
.
.
LaunchedEffect(Unit) {

 val elapsedTime = measureTimeMillis {
 flow.collect {
 count = it
 delay(1000)
 }
 }
 count = "Duration = $elapsedTime"
}

To allow us to measure the total time to fully process the flow, the
consumer code has been placed in the closure of a call to the Kotlin
measureTimeMillis() function. Run the app and, after execution completes,
a duration similar to the following will be reported:
Duration = 30044

This accounts for approximately 20 seconds to process the 10 values within
newFlow and an additional 10 seconds for those values to be collected.
There is an inefficiency here because the producer is waiting for the
consumer to process each value before starting on the next value. This
would be much more efficient if the producer did not have to wait for the
consumer. We could, of course, use the collectLatest() or conflate()
operators, but only if the loss of intermediate values is not a concern. To
speed up the processing while also collecting every emitted value we can
make use of the buffer() operator. This operator buffers values as they are
emitted and passes them to the consumer when it is ready to receive them.

This allows the producer to continue emitting values while the consumer
processes preceding values while ensuring that every emitted value is
collected. The buffer() operator may be applied to a flow as follows:
LaunchedEffect("Unit") {

 val elapsedTime = measureTimeMillis {
 flow
 .buffer()
 .collect {
 count = it
 delay(1000)
 }
 }
 count = "Duration = $elapsedTime"
}

Execution of the above code indicates that we have now reclaimed the 10
seconds previously lost in the collection code:
Duration = 20052

56.10 More terminal flow operators
The reduce() operator is one of several other terminal flow operators that
can be used in place of a collection operator to make changes to the flow
data. The reduce() operator takes two parameters in the form of an
accumulator and a value. The first flow value is placed in the accumulator
and a specified operation is performed between the accumulator and the
current value (with the result stored in the accumulator). To try this out we
need to revert to using myFlow instead of newFlow in addition to adding the
reduce() operator call:
@Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen(viewModel.myFlow)
}

@Composable
fun MainScreen(flow: Flow<Int>) {

 var count by remember { mutableStateOf<Int>(0) }

 LaunchedEffect(Unit) {

 flow
 .reduce { accumulator, value ->
 count = accumulator
 accumulator + value
 }
 }
 }
.
.

The fold() operator works similarly to the reduce() operator, with the
exception that it is passed an initial accumulator value:
.
.
LaunchedEffect(Unit) {

 flow
 .fold(10) { accumulator, value ->
 count = accumulator
 accumulator + value
 }
 }
.
.

56.11 Flow flattening
As we have seen in earlier examples, we can use operators to perform tasks
on values collected from a flow. An interesting situation occurs, however,
when that task itself creates one or more flows resulting in a “flow of
flows”. In situations where this occurs, these streams can be flattened into a
single stream.
Consider the following example code which declares two flows:
val myFlow: Flow<Int> = flow {
 for (i in 1..5) {
 delay(1000)
 emit(i)
 }
}

fun doubleIt(value: Int) = flow {
 emit(value)
 delay(1000)

 emit(value + value)
}

If we were to call doubleIt() for each value in the myFlow stream we would
end up with a separate flow for each value. This problem can be solved by
concatenating the doubleIt() streams into a single flow using the
flatMapConcat() operator as follows:
@Composable
fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen(viewModel)
}

@Composable
fun MainScreen(viewModel: DemoViewModel) {

 var count by remember { mutableStateOf<Int>(0)}

 LaunchedEffect(Unit) {

 viewModel.myFlow
 .flatMapConcat { viewModel.doubleIt(it) }
 .collect { count = it }
 }
.
.

When this modified code executes we will see the following output from
the collect() operator:
1
2
2
4
3
6
4
8
5
10

As we can see from the output, the doubleIt() flow has emitted the value
provided by myFlow followed by the doubled value. When using the
flatMapConcat() operator, the doubleIt() calls are being performed
synchronously, causing execution to wait until doubleIt() has emitted both

values before processing the next flow value. The emitted values can
instead be collected asynchronously using the flatMapMerge() operator as
follows:
viewModel.myFlow
 .flatMapMerge { viewModel.doubleIt(it) }
 .collect {
 count = it
 println("Count = $it")
 }
}

Because the collection is being performed asynchronously the displayed
value change too quickly to see all of the count values. Display the Logcat
tool window to see the full list of collected values generated by the println()
call:
I/System.out: Count = 1
I/System.out: Count = 2
I/System.out: Count = 2
I/System.out: Count = 4
I/System.out: Count = 3
I/System.out: Count = 6
I/System.out: Count = 4
I/System.out: Count = 8
I/System.out: Count = 5
I/System.out: Count = 10

56.12 Combining multiple flows
Multiple flows can be combined into a single flow using the zip() and
combine() operators. The following code demonstrates the zip() operator
being used to convert two flows into a single flow:
var count by remember { mutableStateOf<String>("")}

LaunchedEffect(Unit) {

 val flow1 = (1..5).asFlow()
 .onEach { delay(1000) }
 val flow2 = flowOf("one", "two", "three", "four")
 .onEach { delay(1500) }
 flow1.zip(flow2) { value, string -> "$value, $string" }
 .collect { count = it }
}

// Output
1, one
2, two
3, three
4, four

Note that we have applied the onEach() operator to both flows in the above
code. This is a useful operator for performing a task on receipt of each
stream value.
The zip() operator will wait until both flows have emitted a new value
before performing the collection. The combine() operator works slightly
differently in that it proceeds as soon as either flow emits a new value,
using the last value emitted by the other flow in the absence of a new value:
.
.
 val flow1 = (1..5).asFlow()
 .onEach { delay(1000) }
 val flow2 = flowOf("one", "two", "three", "four")
 .onEach { delay(1500) }
 flow1.combine(flow2) { value, string -> "$value, $string" }
 .collect { count = it }
.
.
// Output
1, one
2, one
3, one
3, two
4, two
4, three
5, three
5, four

As we can see from the output, multiple instances have occurred where the
last value has been reused on a flow because a new value was emitted on
the other.

56.13 Hot and cold flows
So far in this chapter, we have looked exclusively at the Kotlin Flow type.
Kotlin also provides additional types in the form of StateFlow and
SharedFlow. Before exploring these, however, it is important to understand

the concept of hot and cold flows.
A stream declared using the Flow type is referred to as a cold flow because
the code within the producer does not begin executing until a consumer
begins collecting values. StateFlow and SharedFlow, on the other hand, are
referred to as hot flows because they begin emitting values immediately,
regardless of whether any consumers are collecting the values.
Once a consumer begins collecting from a hot flow, it will receive the latest
value emitted by the producer followed by any subsequent values. Unless
steps are taken to implement caching, any previous values emitted before
the collection starts will be lost.
Another important difference between Flow, StateFlow, and SharedFlow is
that a Flow-based stream cannot have multiple collectors. Each Flow
collector launches a new flow with its own independent data stream. With
StateFlow and SharedFlow, on the other hand, multiple collectors share
access to the same flow.

56.14 StateFlow
StateFlow, as the name suggests, is primarily used as a way to observe a
change in state within an app such as the current setting of a counter, toggle
button, or slider. Each StateFlow instance is used to store a single value that
is likely to change over time and to notify all consumers when those
changes occur. This enables you to write code that reacts to changes in state
instead of code that has to continually check whether or not a state value
has changed. StateFlow behaves the same way as LiveData with the
exception that LiveData has lifecycle awareness and does not require an
initial value (LiveData was covered previously in the chapter titled
“Working with ViewModels in Compose”).
To create a StateFlow stream, begin by creating an instance of
MutableStateFlow, passing through a mandatory initial value. This is the
variable that will be used to change the current state value from within the
app code:
private val _stateFlow = MutableStateFlow(0)

Next, call asStateFlow() on the MutableStateFlow instance to convert it into
a StateFlow from which changes in state can be collected:
val stateFlow = _stateFlow.asStateFlow()

Once created, any changes to the state are made via the value property of
the mutable state instance. The following code, for example, increments the
state value:
_stateFlow.value += 1

Once the flow is active, the state can be consumed using collectAsState() or
directly using a collection function, though it is generally recommended to
collect from StateFlow using the collectLatest() operator. To try out an
example, begin by making the following modifications to the
DemoViewModel.kt file:
.
.
class DemoViewModel : ViewModel() {

 private val _stateFlow = MutableStateFlow(0)
 val stateFlow = _stateFlow.asStateFlow()

 fun increaseValue() {
 _stateFlow.value += 1
 }
.
.

Next, edit the MainActivity.kt file and change MainScreen so that it collects
from the new state flow and to add a button configured to call the view
model increaseValue() function:
.
.
import androidx.compose.material3.Button
.
.
@Composable
fun MainScreen(viewModel: DemoViewModel) {

 val count by viewModel.stateFlow.collectAsState()

 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Text(text = "$count", style = TextStyle(fontSize = 40.sp))

 Button(onClick = { viewModel.increaseValue() }) {
 Text("Click Me")
 }
 }
}

Run the app and verify that the button updates the count Text component
with the incremented count value each time it is clicked.

56.15 SharedFlow
SharedFlow provides a more general-purpose streaming option than that
offered by StateFlow. Some of the key differences between StateFlow and
SharedFlow are as follows:
•Consumers are generally referred to as subscribers.
•An initial value is not provided when creating a SharedFlow instance.
•SharedFlow allows values that were emitted prior to collection starting to
be “replayed” to the collector.

•SharedFlow emits values instead of using a value property.
SharedFlow instances are created using MutableSharedFlow as the backing
property on which we call the asSharedFlow() function to obtain a
SharedFlow reference. For example, make the following changes to the
DemoViewModel class to declare a shared flow:
.
.
import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.channels.BufferOverflow
.
.
class DemoViewModel : ViewModel() {

 private val _sharedFlow = MutableSharedFlow<Int>(
 replay = 10,
 onBufferOverflow = BufferOverflow.DROP_OLDEST
)

 val sharedFlow = _sharedFlow.asSharedFlow()
.
.

As configured above, new flow subscribers will receive the last 10 values

before receiving any new values. The above flow is also configured to
discard the oldest value when more than 10 values are buffered. The full set
of options for handling buffer overflows are as follows:
•DROP_LATEST - The latest value is dropped when the buffer is full
leaving the buffer unchanged as new values are processed.

•DROP_OLDEST - Treats the buffer as a “first-in, first-out” stack where
the oldest value is dropped to make room for a new value when the buffer
is full.

•SUSPEND - The flow is suspended when the buffer is full.
Values are emitted on a SharedFlow stream by calling the emit() method of
the MutableSharedFlow instance from within a coroutine. Remaining in the
DemoViewModel.kt file, add a new method that can be called from the main
activity to start the shared flow:
fun startSharedFlow() {

 viewModelScope.launch {
 for (i in 1..5) {
 _sharedFlow.emit(i)
 delay(2000)
 }
 }
}

Finally, make the following changes to the MainScreen composable:
@Composable
fun MainScreen(viewModel: DemoViewModel) {

 val count by viewModel.sharedFlow.collectAsState(initial = 0)

 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Text(text = "$count", style = TextStyle(fontSize = 40.sp))
 Button(onClick = { viewModel.startSharedFlow() }) {
 Text("Click Me")
 }
 }
}

Run the app on a device or emulator (shared flow code does not always
work in the interactive preview) and verify that clicking the button causes
the count to begin updating. Note that since new values are being emitted
from within a coroutine you can click on the button repeatedly and collect
values from multiple flows.
One final point to note about shared flows is that the current number of
subscribers to a SharedFlow stream can be obtained via the
subscriptionCount property of the mutable instance:
val subCount = _sharedFlow.subscriptionCount

56.16 Converting a flow from cold to hot
A cold flow can be made hot by calling the shareIn() function on the flow.
This call requires a coroutine scope in which to execute the flow, a replay
value, and a start policy setting indicating the conditions under which the
flow is to start and stop. The available start policy options are as follows:
•SharingStarted.WhileSubscribed() - The flow is kept alive as long as it
has active subscribers.

•SharingStarted.Eagerly() - The flow begins immediately and remains
active even in the absence of active subscribers.

•SharingStarted.Lazily() - The flow begins only after the first consumer
subscribes and remains active even in the absence of active subscribers.

We could, for example, make one of our earlier cold flows hot using the
following code:
val hotFlow = myFlow.shareIn(
 viewModelScope,
 replay = 1,
 started = SharingStarted.WhileSubscribed()
)

56.17 Summary
Kotlin flows allow sequential data or state changes to be returned over time
from asynchronous tasks. A flow consists of a producer that emits a
sequence of values and consumers that collect and process those values.
The flow stream can be manipulated between the producer and consumer by
applying one or more intermediary operators including transformations and
filtering. Flows are created based on the Flow, StateFlow, and SharedFlow

types. A Flow-based stream can only have a single collector while
StateFlow and SharedFlow can have multiple collectors.
Flows are categorized as being hot or cold. A cold flow does not begin
emitting values until a consumer begins collection. Hot flows, on the other
hand, begin emitting values as soon as they are created, regardless of
whether or not the values are being collected. In the case of SharedFlow, a
predefined number of values may be buffered and subsequently replayed to
new subscribers when they begin collecting values. A cold flow can be
made hot via a call to the flow’s shareIn() function.

57. A Jetpack Compose SharedFlow Tutorial

The previous chapter introduced Kotlin flows and explored how these can
be used to return multiple sequential values from within coroutine-based
asynchronous code. This tutorial will look at a more detailed flow
implementation, this time using SharedFlow. The tutorial will also
demonstrate how to ensure that flow collection responds correctly to an app
switching between background and foreground modes.

57.1 About the project

The app created in this chapter will consist of a user interface containing a
List composable. We will activate a shared flow within a ViewModel as
soon as the view model is created and emit an integer value every two
seconds. The Main Activity will collect the values from the flow and
display them within the List. We will then modify the project to suspend
the collection process while the app is placed in the background.

57.2 Creating the SharedFlowDemo project

Launch Android Studio and create a new Empty Activity project named
SharedFlowDemo, specifying com.example.sharedflowdemo as the
package name, and selecting a minimum API level of API 26: Android 8.0
(Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named ScreenSetup which, in turn, calls a function
named MainScreen:

@Composable

fun ScreenSetup() {

 MainScreen()

}

@Composable

fun MainScreen() {

}

Edit the OnCreate() method function to call ScreenSetup instead of
Greeting and remove the Greeting call from GreetingPreview.

Next, modify the libs.versions.toml file to add the Compose view model
library to version catalog:

.

.

[libraries]

.

.

androidx-lifecycle-viewmodel-compose = { module =
"androidx.lifecycle:lifecycle-viewmodel-compose", version.ref =
"lifecycleRuntimeKtx" }

.

.

Edit the build.gradle.kts (Module :app) file and add the library to the
dependencies section as follows:

dependencies {

.

.

 implementation(libs.androidx.lifecycle.viewmodel.compose)

.

.

}

When prompted, click on the Sync Now button at the top of the editor
panel to commit the change.

57.3 Adding a view model to the project

For this project, the flow will once again reside in a view model class. Add
this model to the project by locating and right-clicking on the app ->
kotlin+java -> com.example.sharedflowdemo entry in the Project tool
window and selecting the New -> Kotlin Class/File menu option. In the
resulting dialog, name the class DemoViewModel before tapping the
keyboard Enter key. Once created, modify the file so that it reads as
follows:

package com.example.sharedflowdemo

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {

}

Return to the MainActivity.kt file and make changes to access an instance
of the view model:

.

.

import androidx.lifecycle.viewmodel.compose.viewModel

.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen()

}

57.4 Declaring the SharedFlow

The next step is to add some code to the view model to create and start the
SharedFlow instance. Begin by editing the DemoViewModel.kt file so that
it reads as follows:

package com.example.sharedflowdemo

import androidx.lifecycle.ViewModel

import androidx.lifecycle.viewModelScope

import kotlinx.coroutines.delay

import kotlinx.coroutines.flow.MutableSharedFlow

import kotlinx.coroutines.flow.asSharedFlow

import kotlinx.coroutines.launch

class DemoViewModel : ViewModel() {

 private val _sharedFlow = MutableSharedFlow<Int>()

 val sharedFlow = _sharedFlow.asSharedFlow()

 init {

 sharedFlowInit()

 }

 fun sharedFlowInit() {

 }

}

When the ViewModel instance is created, the initializer will call the
sharedFlowInit() function. This function aims to launch a new coroutine
containing a loop in which new values are emitted using a shared flow.

With the flow declared, we can add code to the sharedFlowInit() function to
launch the flow using the view model’s scope. This will ensure that the
flow ends when the view model is destroyed:

private fun sharedFlowInit() {

 viewModelScope.launch {

 for (i in 1..1000) {

 delay(2000)

 _sharedFlow.emit(i)

 }

 }

}

57.5 Collecting the flow values

Before testing the app for the first time we need to add some code to
perform the flow collection and display those values in a LazyColumn
composable. As the values are collected from the flow, we will add them to
a mutable list state instance which, in turn, will serve as the data source for
the LazyColumn content. We also need to pass a reference to the shared
flow down to the MainScreen composable. Edit the MainActivity.kt file
and make the following changes:

.

.

import androidx.compose.runtime.*

import androidx.compose.foundation.layout.padding

import androidx.compose.foundation.lazy.*

import androidx.compose.ui.unit.dp

import androidx.compose.ui.platform.LocalLifecycleOwner

import kotlinx.coroutines.flow.SharedFlow

.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen(viewModel.sharedFlow)

}

@Composable

fun MainScreen(sharedFlow: SharedFlow<Int>) {

 val messages = remember { mutableStateListOf<Int>()}

 LazyColumn {

 items(messages) {

 Text(

 "Collected Value = $it",

 style = MaterialTheme.typography.headlineLarge,

 modifier = Modifier.padding(5.dp)

)

 }

 }

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 SharedFlowDemoTheme {

 val viewModel: DemoViewModel = viewModel()

 MainScreen(viewModel.sharedFlow)

 }

}

With these changes made we are ready to collect the values emitted by the
shared flow and display them. Since the flow collection will be taking place
in a coroutine and outside the scope of the MainScreen composable, the
launch code needs to be placed within a LaunchedEffect call (a topic
covered in the chapter titled “Coroutines and LaunchedEffects in Jetpack
Compose”. Add a LaunchedEffect call to the MainScreen composable as
follows to collect from the flow:

.

.

import kotlinx.coroutines.flow.collect

.

.

@Composable

fun MainScreen(sharedFlow: SharedFlow<Int>) {

 val messages = remember { mutableStateListOf<Int>()}

 val lifecycleOwner = LocalLifecycleOwner.current

 LaunchedEffect(key1 = Unit) {

 sharedFlow.collect {

 messages.add(it)

 }

 }

.

.

This code accesses the shared flow instance within the view model and
begins collecting values from the stream. Each collected value is added to
the messages mutable list. This will cause a recomposition and the new
value will appear at the end of the LazyColumn list.

57.6 Testing the SharedFlowDemo app

Compile and run the app on a device or emulator and verify that values
appear within the LazyColumn as the shared flow emits them. Rotate the
device into landscape orientation to trigger a configuration change and
confirm that the count continues without restarting from zero:

Figure 57-1

With the app now working, it is time to look at what happens when it is
placed in the background.

57.7 Handling flows in the background

Our app has a shared flow that feeds values to the user interface in the form
of a LazyColumn. By performing the collection in a coroutine scope, the
user interface remains responsive while the flow is being collected (you can
verify this by scrolling up and down within the list of values while the list
is updating). This raises the question of what happens when the app is
placed in the background. To find out, we can add some diagnostic output
to both the emitter and collector code. First, edit the DemoViewModel.kt
file and add a println() call within the body of the emission for loop:

private fun sharedFlowInit() {

 viewModelScope.launch {

 for (i in 1..1000) {

 delay(2000)

 println("Emitting $i")

 _sharedFlow.emit(i)

 }

 }

}

Make a similar change to the collection code block in the MainActivity.kt
file as follows:

.

.

 LaunchedEffect(key1 = Unit) {

 sharedFlow.collect {

 println("Collecting $it")

 messages.add(it)

 }

}

.

.

Once these changes have been made, display the Logcat tool window, enter
System.out into the search bar, and run the app. As the list of values
updates, output similar to the following should appear in the Logcat tool
window:

Emitting 1

Collecting 1

Emitting 2

Collecting 2

Emitting 3

Collecting 3

.

.

Now place the app in the background and note that both the emission and
collection operations continue to run, even though the app is no longer

visible to the user. The continued emission is to be expected and is the
correct behavior for a shared flow residing within a view model. However,
it is wasteful of resources to collect data and update a user interface that is
not currently visible to the user. We can resolve this problem by executing
the collection using the repeatOnLifecycle function.

The repeatOnLifecycle function is a suspend function that runs a specified
block of code each time the current lifecycle reaches or exceeds one of the
following states:

•Lifecycle.State.INITIALIZED

•Lifecycle.State.CREATED

•Lifecycle.State.STARTED

•Lifecycle.State.RESUMED

•Lifecycle.State.DESTROYED

Conversely, when the lifecycle drops below the target state, the coroutine is
canceled.

In this case, we want the collection to start each time
Lifecycle.State.STARTED is reached and to stop when the lifecycle is
suspended. To implement this, modify the collection code as follows:

.

.

import androidx.lifecycle.Lifecycle

import androidx.lifecycle.repeatOnLifecycle

.

.

LaunchedEffect(key1 = Unit) {

 lifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {

 sharedFlow.collect {

 println("Collecting $it")

 messages.add(it)

 }

 }

}

Run the app once again, place it in the background and note that only the
emission diagnostic messages appear in the Logcat output, confirming that
the main activity is no longer collecting values and adding them to the
RecyclerView list. When the app is brought to the foreground, the
collection will resume at the latest emitted value since we did not configure
replay on the shared flow.

57.8 Summary

In this chapter, we created a SharedFlow instance within a view model. We
then collected the streamed values within the main activity and used that
data to update the user interface. We also outlined the importance of
avoiding unnecessary flow-driven user interface updates when an app is
placed in the background, a problem that can easily be resolved using the
repeatOnLifecycle function. We can use this function to cancel and restart
asynchronous tasks such as flow collection when the containing lifecycle
reaches a target lifecycle state.

58. An Android Biometric
Authentication Tutorial
Touch sensors are now built into many Android devices to identify the user
and provide access to the device and application functionality, such as in-
app payment options using fingerprint recognition. Fingerprint recognition
is just one of several authentication methods, including passwords, PINs,
and, more recently, face recognition.
Although only a few Android devices support face recognition, this will
likely become more common. In recognition of this, Google has begun
transitioning from a fingerprint-centric approach to adding authentication to
apps to a less specific approach called biometric authentication.
This chapter provides an overview of biometric authentication and a
detailed, step-by-step tutorial demonstrating a practical approach to
implementing biometric authentication within an Android app project.

58.1 An overview of biometric authentication
The key biometric authentication components are the BiometricManager
and BiometricPrompt classes. BiometricManager provides methods to
verify that the device hardware supports biometric authentication and that
the user has enabled the necessary authentication settings (for example,
fingerprints or face recognition).
The BiometricPrompt class, on the other hand, displays a standard dialog to
guide the user through the authentication process, performing the
authentication, and reporting the results to the app. The class also handles
excessive failed authentication attempts.
The BiometricPrompt class, on the other hand, displays a standard dialog to
guide the user through the authentication process, perform the
authentication, and report the results to the app. The class also handles
excessive failed authentication attempts and enforces a timeout before the
user can try again.
The BiometricPrompt instance is also assigned a set of authentication
callbacks that will be called to provide the app with the results of an
authentication operation.

With these basics covered, the remainder of this chapter will implement
biometric authentication within an example project.

58.2 Creating the biometric authentication project
Launch Android Studio and create a new Empty Activity project named
BiometricDemo, specifying com.example.biometricdemo as the package
name and selecting a minimum API level of API 29 (Q).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named AuthenticationScreen:
@Composable
fun AuthenticationScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
AuthenticationScreen instead of Greeting.

58.3 Adding the biometric dependency
The next step is to add the Biometric library to the project build
configuration. First, edit the Gradle Scripts -> libs.version.tomi file and
modify it as follows:
[versions]
biometric = "1.2.0-alpha05"
.
.
[libraries]
androidx-biometric = { module = "androidx.biometric:biometric",
version.ref = "biometric" }
.
.

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and
add the following directive to the dependencies section:
dependencies {
.
.
 implementation(libs.androidx.biometric)
.
.

58.4 Configuring device fingerprint authentication

When completed, the BiometricDemo app will support face and fingerprint
authentication. However, we will use fingerprint authentication for testing
since devices and emulators more widely support it. Fingerprint
authentication is only available on devices containing a touch sensor and on
which the appropriate configuration steps have been taken to secure the
device and enroll at least one fingerprint. For steps on configuring an
emulator session to test fingerprint authentication, refer to the chapter
“Using and Configuring the Android Studio AVD Emulator”.
Configure fingerprint authentication on a physical device by opening the
Settings app and selecting the Security & privacy option. Within the
Security settings screen, select the Fingerprint option. Tap the Next button
on the resulting information screen to proceed to the Fingerprint setup
screen. Before fingerprint security can be enabled, a backup screen
unlocking method (such as a PIN) must be configured. If the lock screen is
not secured, follow the steps to configure PIN, pattern, or password
security.
With the lock screen secured, proceed to the fingerprint detection screen
and touch the sensor when prompted (Figure 58-1), repeating the process to
add additional fingerprints if required.

Figure 58-1
58.5 Adding the biometric permissions to the
manifest file

Supporting both fingerprint and face authentication requires that the app
request USE_BIOMETRIC and CAMERA permissions and the
android.hardware.camera feature within the project manifest file. Within
the Android Studio Project tool window, locate and edit the app ->
manifests -> AndroidManifest.xml file to add the permission request as
follows:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.biometricdemo">

 <uses-feature
 android:name="android.hardware.camera"
 android:required="false" />

 <uses-permission
 android:name="android.permission.USE_BIOMETRIC" />

 <uses-permission android:name="android.permission.CAMERA" />
.
.

58.6 Checking the security settings
Earlier in this chapter, steps were taken to configure the lock screen and
register fingerprints on the device or emulator on which the app will be
tested. It is essential, however, to include defensive code in the app to
ensure these requirements have been met before attempting to seek
fingerprint authentication. These steps will be performed by calling the
canAuthenticate() method of the app’s BiometricManager instance.
Here, we have a slight complication in that BiometricPrompt is considered
legacy code relative to Jetpack Compose and requires access to the context
of a FragmentActivity. Unfortunately, MainActivity is declared as a
subclass of ComponentActivity, which is incompatible with
BiometricPrompt. To get around this problem, we need instead to subclass
MainActivity from the legacy FragmentActivity class as follows:
.
.
import androidx.fragment.app.FragmentActivity
.

.
class MainActivity : FragmentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

Now that we can access the correct context type, code can be added to
AuthenticationScreen to verify that biometric authentication is available
and enabled on the device:
.
.
import android.widget.Toast
import androidx.biometric.BiometricManager
import androidx.biometric.BiometricPrompt
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.runtime.setValue
import androidx.compose.ui.platform.LocalContext
.
.
@Composable
fun AuthenticationScreen() {

 var supportsBiometrics by remember { mutableStateOf(false) }
 val context = LocalContext.current as FragmentActivity
 val biometricManager = BiometricManager.from(context)

 supportsBiometrics = when (biometricManager.canAuthenticate(
 BiometricManager.Authenticators.BIOMETRIC_STRONG
)) {
 BiometricManager.BIOMETRIC_SUCCESS -> true
 else -> {
 Toast.makeText(context, "Biometric authentication
unavailable",
 Toast.LENGTH_LONG).show()
 false
 }
 }
}

The above code changes access the local activity context and use it to
obtain a reference to the BiometricManager instance. A call is made to the
canAuthenticate() manager method and a Toast message is displayed if

authentication is unavailable.

58.7 Designing the user interface
The user interface for our app will contain a single button to begin the
authentication process, and we will use our supportsBiometrics state to turn
off the button if biometric authentication is not supported. Add the button to
the user interface by making the following changes to the
AuthenticationScreen composable:
.
.
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.Arrangement
import androidx.compose.foundation.layout.padding
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.ui.Alignment
import androidx.compose.ui.unit.dp
.
.
@Composable
fun AuthenticationScreen() {
.
.
 Column(
 modifier = Modifier.fillMaxSize(),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center
) {
 BiometricButton(
 state = supportsBiometrics,
 onClick = {
 authenticateUser(context)
 },
 text = "Authenticate"
)
 }
}

@Composable
fun BiometricButton(state: Boolean,
 onClick: () -> Unit,

 text: String
) {
 Button(
 enabled = state,
 onClick = onClick,
 modifier = Modifier.padding(8.dp)
) {
 Text(text = text)
 }
}

58.8 Configuring the authentication callbacks
When the biometric prompt dialog is configured, it will need to be assigned
a set of authentication callback methods that can be called to notify the app
of the success or failure of the authentication process. These methods need
to be wrapped in a BiometricPrompt.AuthenticationCallback class instance.
Remaining in the MainActivity.kt file, begin implementation of the
authenticateUser() method as follows:
fun authenticateUser(context: FragmentActivity) {
 val executor = context.mainExecutor
 val biometricPrompt = BiometricPrompt(
 context,
 executor,
 object : BiometricPrompt.AuthenticationCallback() {
 override fun onAuthenticationSucceeded(
 result: BiometricPrompt.AuthenticationResult) {
 Toast.makeText(context, "Authentication
successful",
 Toast.LENGTH_LONG).show()
 }

 override fun onAuthenticationError(errorCode: Int,
 errString: CharSequence) {
 Toast.makeText(context, "Authentication error:
$errString",
 Toast.LENGTH_LONG).show()
 }

 override fun onAuthenticationFailed() {
 Toast.makeText(context, "Authentication failed",
 Toast.LENGTH_LONG).show()
 }

 })
}

58.9 Starting the biometric prompt
All that remains is to add code to extend the authenticateUser() method to
create and configure a BiometricPrompt instance and initiate the
authentication as follows:
fun authenticateUser(context: FragmentActivity) {
.
.
 val promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Biometric Authentication")
 .setDescription("Use the fingerprint sensor or camera to
authenticate.")
 .setNegativeButtonText("Cancel")
 .setAllowedAuthenticators(
 BiometricManager.Authenticators.BIOMETRIC_STRONG)
 .build()

 biometricPrompt.authenticate(promptInfo)
}

The BiometricPrompt Builder class creates a new PromptInfo instance
configured with title, subtitle, and description text to appear in the prompt
dialog. The negative button is configured to display text which reads
“Cancel”. Finally, the authenticate() method of the BiometricPrompt
instance is called and passed the PromptInfo object.

58.10 Testing the project
With the project now complete, run the app on a physical Android device or
emulator session and click on the Authenticate button to display the
BiometricPrompt dialog as shown in Figure 58-2:

Figure 58-2
Once running, either touch the fingerprint sensor or use the extended
controls panel within the emulator to simulate a fingerprint touch as
outlined in the chapter entitled “Using and Configuring the Android Studio
AVD Emulator”. Assuming a registered fingerprint is detected, the prompt
dialog will return to the main activity, where the toast message from the

successful authentication callback method will appear.
Click the Authenticate button again, using an unregistered fingerprint to
attempt the authentication. This time, the biometric prompt dialog will
indicate that the fingerprint was not recognized:

Figure 58-3
Finally, attempt to authenticate multiple times using an unregistered
fingerprint and note that after several attempts, the prompt dialog indicates
that too many failures have occurred and that future attempts must be made
through the lock screen.

58.11 Summary
This chapter has outlined how to integrate biometric authentication into an
Android app project. This involves using the BiometricManager and
BiometricPrompt classes, which automatically handle most of the
authentication process once configured with appropriate message text and
callbacks.

59. Working with the Google Maps
Android API in Android Studio
When Google introduced a map service many years ago, it is hard to say
whether or not they ever anticipated having a version available for
integration into mobile applications. When the first web-based version of
what would eventually be called Google Maps was introduced in 2005, the
iPhone had yet to ignite the smartphone revolution, and Google would not
acquire the company that was developing the Android operating system for
another six months. Whatever aspirations Google had for the future of
Google Maps, it is remarkable to consider that all of the power of Google
Maps can now be accessed directly via Android applications using the
Google Maps for Android API.
This chapter is intended to provide an overview of the Google Maps system
and Google Maps for Android API. The chapter will provide an overview
of the different elements that make up the API, detail the steps necessary to
configure a development environment to work with Google Maps, and then
work through some code examples demonstrating some of the basics of
Google Maps Android integration.

59.1 The elements of the Google Maps Android API
The Google Maps for Android API consists of a core set of components that
combine to provide mapping capabilities in Android applications. The key
elements of a map are as follows:
•GoogleMap – The main component of the Google Maps for Android API.
This class is responsible for downloading and displaying map tiles and for
displaying and responding to map controls.

•Marker – The purpose of the Marker class is to allow locations to be
marked on a map. The position of a marker is defined via Longitude and
Latitude. Markers can be configured in various ways, including specifying
a title, text, and an icon. Markers may also be “draggable” allowing the
user to move the marker to different positions on a map.

•Shapes – Drawing lines and shapes on a map is achieved using the
Polyline, Polygon, and Circle classes.

•UiSettings – The UiSettings class customizes which controls appear on a
map. Using UiSettings, for example, the application can control whether or
not the zoom, current location, and compass controls appear on a map.
This class can also configure which touchscreen gestures are recognized
by the map.

•My Location Layer – When enabled, the My Location Layer displays a
button on the map that, when selected by the user, centers the map on the
user’s current geographical location. If the user is stationary, a blue marker
represents this location on the map. If the user is in motion, the location is
represented by a chevron indicating the user’s direction of travel.

The best way to gain familiarity with the Google Maps for Android API is
to work through an example. The remainder of this chapter will create a
Google Maps-based application while highlighting the key areas of the API.

59.2 Creating the Google Maps project
Launch Android Studio and select the New Project option from the
welcome screen. Choose the Empty Activity template in the new project
dialog before clicking the Next button.
Enter MapDemo into the Name field and specify com.example.mapdemo as
the package name. Before clicking the Finish button, change the Minimum
API level setting to API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting.

59.3 Creating a Google Cloud billing account
Before using the Google Map APIs, you must create a Google Cloud billing
account (if you already have one, you can skip to the next section). To do
this, open a browser and use the following link to navigate to the Google
Cloud Console:
https://console.cloud.google.com/

https://console.cloud.google.com/

Next, click on the menu button in the top left-hand corner of the console
page and select the Billing entry as illustrated in Figure 59-1 below:

Figure 59-1
On the Billing page, select the option to add a new billing account and then
follow the steps to start a free trial. You must provide a credit card to open
the account, but Google won’t charge you when the free trial ends without
your consent.

59.4 Creating a new Google Cloud project
The next step is to create a Google Cloud project to be associated with the
MapDemo app. To do this, return to the Google Cloud Console dashboard
by using the following URL:
https://console.cloud.google.com/home/dashboard
Within the dashboard, click the Select a project button located in the top
toolbar:

Figure 59-2

When the project selection dialog appears, click on the New Project button
(highlighted in Figure 59-3):

Figure 59-3
When the new project screen appears, provide a name for the project. The
console will display a default id for the project beneath the project name
field. If you don’t like the default id, click the Edit button to change it:

Figure 59-4
Click the Create button, and after a brief pause, you will be returned to the
dashboard where your new project will be listed.

59.5 Enabling the Google Maps SDK
Now that we have created a new Google Cloud project, the next step is to
allow the project to use the Google Maps SDK. To enable Google Maps
support, select your project in the Google Cloud Console, click the menu
button in the top left-hand corner, and select the Google Maps Platform
entry. Then, from the resulting menu, select the APIs option as shown in
Figure 59-5:

Figure 59-5
On the APIs screen, click on the Maps SDK for Android option and, on the
resulting screen, click the Enable button:

Figure 59-6
Repeat the above steps to enable the Geocoding API credential, which will
be needed later in the chapter to allow our app to display the user’s current
location.
Once you have enabled the credentials for your project, click the back
arrow to return to the product details page in preparation for the next step.

59.6 Generating a Google Maps API key
Before an application can use the Google Maps Android SDK, it must be
configured with an API key to associate it with a Maps-enabled Google
Cloud project. To generate an API key, select the Credentials menu option

(marked A in Figure 59-7) followed by the Create Credentials button (B):

Figure 59-7
After the credential is created, a dialog displaying the API key will appear:

Figure 59-8
59.7 Adding the API key to the Android Studio
project
Now that we have generated an API key allowing our app to use the Google
Maps SDK, we must add it to our project. Return to Android Studio, edit
the manifests -> AndroidManifest.xml file as follows:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
 android:allowBackup="true"
.
.
 tools:targetApi="31">

 <meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="YOUR_API_KEY" />
.
.

Delete the text “YOUR_API_KEY” and replace it with the API key created
in the Google Play Console.

59.8 Adding the compose map dependency
Before using a map in our project, we must add the Compose Map
dependency to the build configuration. Open the Gradle Scripts ->
build.gradle.kts (Module: app) file and modify it as follows:
dependencies {
.
.
 implementation("com.google.maps.android:maps-compose:4.3.0")
.
.
}

After adding the dependency, click the Sync Now link to commit the
change.

59.9 Creating a map
We need to add a Google Map composable to the project before we can test
that the API key is installed correctly. To achieve this, edit the
MainActivity.kt file as follows:
.
.
import com.google.maps.android.compose.GoogleMap
.
.
@Composable
fun MainScreen() {
 GoogleMap(
 modifier = Modifier.fillMaxSize()
)
}

59.10 Testing the application

Perform a test run of the application to verify that the API key is correctly
configured. The application will run and display a map on the screen if the
configuration is correct.
If a map is not displayed, check the following areas:
•If the application is running on an emulator, make sure that the emulator is
running a version of Android that includes the Google APIs. The current
operating system can be changed for an AVD configuration by selecting
the Tools -> Android -> AVD Manager menu option, clicking on the pencil
icon in the Actions column of the AVD, followed by the Change… button
next to the current Android version. Select a target within the system
image dialog that includes the Google APIs.

•Check the Logcat output for any areas relating to Google Maps API
authentication problems. This usually means the API key was entered
incorrectly. Ensure that the API key in the AndroidManifest.xml file
matches the key generated in the Google Cloud console.

•Verify within the Google API Console that Maps SDK for Android has
been enabled in the Credentials panel.

59.11 Understanding geocoding and reverse
geocoding
It is impossible to talk about maps and geographical locations without first
covering the subject of Geocoding. Geocoding converts a textual-based
geographical location (such as a street address) into geographical
coordinates expressed as longitude and latitude.
Geocoding can be achieved using the Android Geocoder class. For
example, an instance of the Geocoder class can be passed a string
representing a location, such as a city name, street address, or airport code.
The Geocoder will attempt to find a match for the location and return a list
of Address objects that potentially match the location string, ranked in order
with the closest match at position 0 in the list. A variety of information can
then be extracted from the Address objects, including the longitude and
latitude of the potential matches.
The following code, for example, requests the location of the National Air
and Space Museum in Washington, D.C.:
import android.location.Geocoder

import android.location.Address
import java.io.IOException
.
.
val latitude: Double
val longitude: Double

var geocodeMatches: List<Address>? = null

try {
 geocodeMatches = Geocoder(this).getFromLocationName(
 "600 Independence Ave SW, Washington, DC 20560", 1)
} catch (e: IOException) {
 e.printStackTrace()
}

if (geocodeMatches != null) {
 latitude = geocodeMatches[0].latitude
 longitude = geocodeMatches[0].longitude
}

Note that the value of 1 is passed through as the second argument to the
getFromLocationName() method. This tells the Geocoder to return only one
result in the array. Given the specific nature of the address provided, there
should only be one potential match. For more vague location names,
however, requesting more potential matches and allowing the user to choose
the correct one may be necessary.
The above code is an example of forward-geocoding in that coordinates are
calculated based on a text location description. Reverse-geocoding, as the
name suggests, involves the translation of geographical coordinates into a
human-readable address string. Consider, for example, the following code:
import android.location.Geocoder
import android.location.Address
import java.io.IOException
.
.
var geocodeMatches: List<Address>? = null
val Address1: String?
val Address2: String?
val State: String?
val Zipcode: String?

val Country: String?

try {
 geocodeMatches = Geocoder(this).getFromLocation(38.8874245,
-77.0200729, 1)
} catch (e: IOException) {
 e.printStackTrace()
}

if (geocodeMatches != null) {
 Address1 = geocodeMatches[0].getAddressLine(0)
 Address2 = geocodeMatches[0].getAddressLine(1)
 State = geocodeMatches[0].adminArea
 Zipcode = geocodeMatches[0].postalCode
 Country = geocodeMatches[0].countryName
}

The Geocoder object is initialized with latitude and longitude values via the
getFromLocation() method. Once again, only a single matching result is
requested. The text-based address information is then extracted from the
resulting Address object.
The geocoding is not performed on the Android device but rather on a
server to which the device connects when a translation is required, and the
results are returned when the translation is complete. Geocoding can only
occur when the device has an active internet connection.

59.12 Specifying a map location
Now that our app is displaying a map, the next step is to customize it to
display a particular geographical location. The first step is to create a
LatLong instance initialized with the latitude and longitude of a point on the
map. This location is then used to create a camera position state which is
passed to the GoogleMap instance. Try this by making the following
changes to the MainActivity.kt file:
.
.
import com.google.android.gms.maps.model.LatLng
import com.google.maps.android.compose.rememberCameraPositionState
import com.google.android.gms.maps.model.CameraPosition
.
.
@Composable

fun MainScreen() {

 val marina = LatLng(33.875771, -78.001839)
 val cameraPositionState = rememberCameraPositionState {
 position = CameraPosition.fromLatLngZoom(marina, 18f)
 }

 GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState
)
}

Build and run the app on a device or emulator to test that the specified
location is displayed as illustrated in Figure 59-9:

Figure 59-9
59.13 Changing the map type
The type of map displayed can be modified dynamically by creating a
MapProperties state and passing it to the GoogleMap component initialized
with one of the following values:
· MAP_TYPE.NONE – An empty grid with no mapping tiles displayed.
· MAP_TYPE.NORMAL – The standard view consisting of the classic

road map.
· MAP_TYPE.SATELLITE – Displays the satellite imagery of the map

region.
· MAP_TYPE.HYBRID – Displays satellite imagery with the road map

superimposed.
· MAP_TYPE.TERRAIN – Displays topographical information such as

contour lines and colors.
The following code change to the MainScreen function, for example,
switches a map to Satellite mode:
.
.
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember

import androidx.compose.runtime.setValue

import com.google.maps.android.compose.MapProperties
import com.google.maps.android.compose.MapType
.
.
@Composable
fun MainScreen() {

 val marina = LatLng(33.875771, -78.001839)
 val cameraPositionState = rememberCameraPositionState {
 position = CameraPosition.fromLatLngZoom(marina, 18f)
 }

 var properties by remember {
 mutableStateOf(MapProperties(mapType = MapType.SATELLITE))
 }

 GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState,
 properties = properties
)
}

After making the above changes, the map should appear as shown in Figure
59-10 next time the app runs:

Figure 59-10
59.14 Displaying map controls to the user
The Google Maps Android API provides several controls that may be
optionally displayed to the user consisting of zoom-in and out buttons, a
“my location” button, and a compass.
Whether or not the zoom and compass controls are displayed may be
controlled programmatically. These settings are controlled by passing a
UiSettings state to the GoogleMap component. The zoom controls, for
example, can be turned on and off via the zoomControlsEnabled UiSettings
property. For example:
.
.

import com.google.maps.android.compose.MapUiSettings
.
.
var uiSettings by remember {
 mutableStateOf(MapUiSettings(zoomControlsEnabled = false))
}

GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState,
 properties = properties,
 uiSettings = uiSettings
)

Similarly, the compass may be turned off using the compassEnabled
UiSettings property as follows:
var uiSettings by remember {
 mutableStateOf(MapUiSettings(
 zoomControlsEnabled = false,
 compassEnabled = false
))
}

Note that the compass icon only appears when the map camera is tilted or
rotated away from the default orientation.
In addition to initializing the map with custom settings, these changes can
also be made dynamically once the map has been rendered. The following
code, for example, adds a Switch component to our map to toggle between
satellite and normal display modes and to turn the compass on and off:
.
.
import androidx.compose.ui.Alignment
import androidx.compose.material3.Switch
import androidx.compose.foundation.layout.Box
.
.
@Composable
fun MainScreen() {
.
.
 var uiSettings by remember { mutableStateOf(MapUiSettings()) }

 Box {
 GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState,
 properties = properties,
 uiSettings = uiSettings
)

 Switch(
 modifier = Modifier
 .align(Alignment.TopCenter),
 checked = uiSettings.compassEnabled,
 onCheckedChange = {
 uiSettings = uiSettings.copy(compassEnabled = it)
 properties = if (it) {
 properties.copy(mapType = MapType.TERRAIN)
 } else {
 properties.copy(mapType = MapType.HYBRID)
 }
 }
)
 }
}

59.15 Handling map gesture interaction
The Google Maps Android API can respond to various user interactions.
These interactions can be used to change the map area displayed, the zoom
level, and even the angle of view (such that a 3D representation of the map
area is displayed for certain cities).
59.15.1 Map zooming gestures
Support for gestures relating to zooming in and out of a map may be turned
on or off using the UiSettings zoomGesturesEnabled property. For example,
the following turns off zoom gestures for our example map:
var uiSettings by remember {
 mutableStateOf(MapUiSettings(zoomGesturesEnabled = false))
}

When enabled, zooming will occur when the user makes pinching gestures
on the screen. Similarly, a double tap will zoom in, while a two-finger tap
will zoom out. On the other hand, one-finger zooming gestures are
performed by tapping twice but not releasing the second tap and then

sliding the finger up and down on the screen to zoom in and out,
respectively.
59.15.2 Map scrolling/panning gestures
A scrolling or panning gesture allows the user to move around the map by
dragging the map around the screen with a single-finger motion. Scrolling
gestures may be enabled or disabled using the scrollGesturesEnabled
setting:
var uiSettings by remember {
 mutableStateOf(MapUiSettings(
 scrollGesturesEnabled = true)
)
}

59.15.3 Map tilt gestures
Tilt gestures allow the user to tilt the map’s projection angle by placing two
fingers on the screen and moving them up and down to adjust the tilt angle.
Tilt gestures may be turned on or off via the tiltGesturesEnabled setting, for
example:
var uiSettings by remember {
 mutableStateOf(MapUiSettings(tiltGesturesEnabled = false))
}

59.15.4 Map rotation gestures
By placing two fingers on the screen and rotating them in a circular motion,
the user may rotate the orientation of a map when map rotation gestures are
enabled. This gesture support is turned on and off in code via the
rotationGesturesEnabled setting:
var uiSettings by remember {
 mutableStateOf(MapUiSettings(rotationGesturesEnabled = false))
}

59.16 Creating map markers
Markers notify the user of locations on a map and take the form of either a
standard or custom icon. Markers may also include a title and optional text
(called a snippet) and may be configured to be dragged to different
locations on the map by the user. When the user taps a marker, an info
window will appear, displaying additional information about the marker’s
location.

Markers are represented by instances of the Marker component initialized
with the various options required for the marker, such as the title and
snippet text. The location of a marker is defined by a MarkerState instance
containing latitude and longitude values. For example, the following code
adds a marker, including a title, snippet, and a position to a specific map
location:
.
.
import com.google.maps.android.compose.Marker
import com.google.maps.android.compose.MarkerState
.
.

val marina = LatLng(33.875771, -78.001839)

GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState,
 properties = properties,
 uiSettings = uiSettings
) {
 Marker(
 state = MarkerState(position = marina),
 title = "Marina",
 snippet = "Bald Head Island Marina"
)
}
.
.

When executed, the above code will mark the location specified, which,
when tapped, will display an info window containing the title and snippet,
as shown in Figure 59-11:

Figure 59-11
59.17 Controlling the map camera
Because Android device screens are flat and the world is a sphere, the
Google Maps Android API uses the Mercator projection to represent Earth
on a flat surface. The map’s default view is presented to the user as though

through a camera suspended above the map and pointing directly down at
the map. The Google Maps Android API allows the target, zoom, bearing,
and tilt of this camera to be changed in real-time from within the
application:
•Target – The location of the center of the map within the device display
specified using longitude and latitude.

•Zoom – The zoom level of the camera specified in levels. Increasing the
zoom level by 1.0 doubles the width of the amount of the map displayed.

•Tilt – The camera’s viewing angle specified as a position on an arc
spanning directly over the center of the viewable map area measured in
degrees from the top of the arc (this being the nadir of the arc where the
camera points directly down to the map).

•Bearing – The orientation of the map in degrees measured in a clockwise
direction from North.

Camera changes are made by creating an instance of the CameraUpdate
class with the appropriate settings. CameraUpdate instances are created by
making method calls to the CameraUpdateFactory class. Once a
CameraUpdate instance has been created, it is applied to the map via a call
to the move() method of a CameraPositionState instance. To obtain a
smooth animated effect as the camera changes, the animate() method may
be called instead of move(). However, the animate() method must be called
from within a coroutine or suspend function.
A summary of CameraUpdateFactory methods is as follows:
•CameraUpdateFactory.zoomIn() – Provides a CameraUpdate instance
zoomed in by one level.

•CameraUpdateFactory.zoomOut() - Provides a CameraUpdate instance
zoomed out by one level.

•CameraUpdateFactory.zoomTo(float) - Generates a CameraUpdate
instance that changes the zoom level to the specified value.

•CameraUpdateFactory.zoomBy(float) – Provides a CameraUpdate
instance with a zoom level increased or decreased by the specified amount.

•CameraUpdateFactory.zoomBy(float, Point) - Creates a CameraUpdate
instance that increases or decreases the zoom level by the specified value.

•CameraUpdateFactory.newLatLng(LatLng) - Creates a CameraUpdate

instance that changes the camera’s target latitude and longitude.
•CameraUpdateFactory.newLatLngZoom(LatLng, float) - Generates a
CameraUpdate instance that changes the camera’s latitude, longitude, and
zoom.

•CameraUpdateFactory.newCameraPosition(CameraPosition) -
Returns a CameraUpdate instance that moves the camera to the specified
position. A CameraPosition instance can be obtained using
CameraPosition.Builder().

Edit the MainScreen function so that the Switch zooms in and out of the
map when toggled:
.
.
import com.google.android.gms.maps.CameraUpdateFactory
.
.
var checkedState by remember { mutableStateOf(true) }

Switch(
 modifier = Modifier
 .align(Alignment.TopCenter),
 checked = checkedState,
 onCheckedChange = {
 checkedState = it
 if (it) {
 cameraPositionState.move(CameraUpdateFactory.zoomIn
())
 } else {
 cameraPositionState.move(CameraUpdateFactory.zoomOu
t())
 }
 }
)

Finally, the following code example uses CameraPosition.Builder() to
create a CameraPositionState instance with changes to the target, zoom,
bearing, and tilt:
.
.
val cameraPositionState = rememberCameraPositionState {
 position = CameraPosition.Builder()

 .target(marina)
 .zoom(25f)
 .bearing(70f)
 .tilt(80f)
 .build()
}
.
.
GoogleMap(
 modifier = Modifier.fillMaxSize(),
 cameraPositionState = cameraPositionState,
 properties = properties,
 uiSettings = uiSettings
) {
.
.

59.18 Summary
This chapter has provided an overview of the key components and methods
that make up the Google Maps Android API and outlined how to prepare
both the development environment and an application project to use Google
Maps in Compose.

60. Creating, Testing, and Uploading
an Android App Bundle
Once the development work on an Android application is complete and
tested on a wide range of Android devices, the next step is to prepare the
application for submission to Google Play. Before submission can take
place, however, the application must be packaged for release and signed
with a private key. This chapter will work through obtaining a private key,
preparing the Android App Bundle for the project, and uploading it to
Google Play.

60.1 The Release Preparation Process
Up until this point in the book, we have been building application projects
in a mode suitable for testing and debugging. On the other hand, building an
application package for release to customers via Google Play requires
additional steps. The first requirement is to compile the application in
release mode instead of debug mode. Secondly, the application must be
signed with a private key that uniquely identifies you as the application’s
developer. Finally, the application must be packaged into an Android App
Bundle.
While these tasks can be performed outside of the Android Studio
environment, the procedures can more easily be performed using the
Android Studio build mechanism, as outlined in the remainder of this
chapter. First, however, it is important to understand more about Android
App Bundles.

60.2 Android App Bundles
When a user installs an app from Google Play, the app is downloaded in the
form of an APK file. This file contains everything needed to install and run
the app on the user’s device. Before the introduction of Android Studio 3.2,
the developer would generate one or more APK files using Android Studio
and upload them to Google Play. Supporting multiple device types, screen
sizes, and locales would require creating and uploading multiple APK files
customized for each target device and locale or generating a large universal
APK containing all of the different configuration resources and platform

binaries within a single package.
Creating multiple APK files involved a significant amount of work that had
to be repeated each time the app was updated, imposing a considerable time
overhead on the app release process.
Creating multiple APK files involved a significant amount of work that had
to be repeated each time the app needed to be updated imposing a
considerable time overhead to the app release process.
The universal APK option, while less of a burden to the developer, caused
an entirely unexpected problem. By analyzing app installation metrics,
Google discovered that the larger an installation APK file becomes
(resulting in longer download times and increased storage use), the fewer
conversions the app receives. The conversion rate is calculated as a
percentage of the users who completed the installation of an app after
viewing that app on Google Play. Google estimates that the conversion rate
for an app drops by 1% for each 6MB increase in APK file size.
Android App Bundles solve these problems by allowing the developer to
create a single package from within Android Studio and have custom APK
files automatically generated by Google Play for each individual supported
configuration (a concept called Dynamic Delivery).
An Android App Bundle is a ZIP file containing all the files necessary to
build APK files for the devices and locales for which support has been
provided within the app project. The project might, for example, include
resources and images for different screen sizes. When a user installs the
app, Google Play receives information about the device, including the
display, processor architecture, and locale. Using this information, the
appropriate pre-generated APK files are transferred onto the user’s device.
An additional benefit of Dynamic Delivery is the ability to split an app into
multiple modules, referred to as dynamic feature modules, where each
module contains the code and resources for a particular area of functionality
within the app. Each dynamic feature module is contained within a separate
APK file from the base module and is downloaded to the device only when
the user requires that feature. Dynamic Delivery and app bundles also allow
for the creation of instant dynamic feature modules which can be run
instantly on a device without the need to install an entire app.

Although it is still possible to generate APK files from Android Studio, app
bundles are now the recommended way to upload apps to Google Play.

60.3 Register for a Google Play Developer Console
Account
The first step in the application submission process is to create a Google
Play Developer Console account. To do so, navigate to
https://play.google.com/apps/publish/signup/ and follow the instructions to
complete the registration process. Note that there is a one-time $25 fee to
register. Once an application goes on sale, Google will keep 30% of all
revenues associated with the application. After creating the account, the
developer console can be accessed at https://play.google.com/console.
The next step is to gather together information about the application. To
bring your application to market, the following information will be
required:
•Title – The title of the application.
•Short Description - Up to 80 words describing the application.
•Full Description – Up to 4000 words describing the application.
•Screenshots – Up to 8 screenshots of your application running (a
minimum of two is required). Google recommends submitting screenshots
of the application running on a 7” or 10” tablet.

•Language – The language of the application (the default is US English).
•Promotional Text – The text that will be used when your application
appears in special promotional features within the Google Play
environment.

•Application Type – Whether your application is considered a game or an
application.

•Category – The category that best describes your application (for
example, finance, health and fitness, education, sports, etc.).

•Locations – The geographical locations into which you wish your
application to be made available for purchase.

•Contact Details – Methods by which users may contact you for support
relating to the application. Options include web, email, and phone.

https://play.google.com/apps/publish/signup
https://play.google.com/console

•Pricing & Distribution – Information about the price of the application
and the geographical locations where it is to be marketed and sold.

Having collected the above information, click the Create app button within
the Google Play Console to begin the creation process.

60.4 Configuring the App in the Console
When the Create app button is first clicked, the app details and declarations
screen will appear as shown in Figure 60-1 below:

Figure 60-1
Once the app entry has been fully configured, click on the Create app
button (highlighted in the above figure) to add the app and display the
dashboard screen. Within the dashboard, locate the Set up your app section
and unfold the list of tasks to configure the app store listing:

Figure 60-2
Work through the list of links and provide the requested information for
your app, making sure to save the changes at each step.

60.5 Enabling Google Play App Signing
Until recently, Google Play uploads were signed with a release app signing
key from within Android Studio and then uploaded to the Google Play
console. While this option is still available, the recommended way to
upload files is to use a process called Google Play App Signing. For a newly
created app, this involves opting into Google Play App Signing and
generating an upload key to sign the app bundle file within Android Studio.
When the app bundle file generated by Android Studio is uploaded, the
Google Play console removes the upload key and signs the file with an app
signing key stored securely within the Google Play servers. For existing
apps, some additional steps are required to enable Google Play Signing and
will be covered at the end of this chapter.
Within the Google Play console, select the newly added app entry from the
All Apps screen (accessed via the option located at the top of the left-hand
navigation panel), unfold the Setup section (Marked A in Figure 60-3), and
select the App Signing option (B).

Figure 60-3
Opt into Google Play app signing by clicking on the Create release button
(C). The console is now ready to create the first release of your app for
testing. Before doing so, however, the next step is to generate the upload
key from within Android Studio. This is performed as part of the process of
generating a signed app bundle. Leave the current Google Play Console
screen loaded into the browser, as we will be returning to this later in the
chapter.

60.6 Creating a Keystore File
To create a keystore file, select the Android Studio Build -> Generate
Signed Bundle / APK… menu option to display the Generate Signed Bundle
or APK Wizard dialog as shown in Figure 60-4:

Figure 60-4
Verify that the Android App Bundle option is selected before clicking the
Next button.
If you have an existing release keystore file, click on the Choose existing…
button on the next screen and navigate to and select the file. If you have not
created a keystore file, click the Create new… button to display the New
Key Store dialog (Figure 60-5). Click on the button to the right of the Key

store path field and navigate to a suitable location on your file system, enter
a name for the keystore file (for example, release.keystore.jks) and click the
OK button.
The New Key Store dialog is divided into two sections. The top section
relates to the keystore file. In this section, enter a strong password to protect
the keystore file into both the Password and Confirm fields. The lower
section of the dialog relates to the upload key that will be stored in the key
store file.

Figure 60-5
Within the Key section of the New Key Store dialog, enter the following
details:
•An alias by which the key will be referenced. This can be any sequence of
characters, though the system uses only the first eight.

•A suitably strong password to protect the key.
•The number of years for which the key is to be valid (Google recommends
a duration in excess of 25 years).

In addition, information must be provided for at least one of the remaining
fields (for example, your first and last name or organization name).
Once the information has been entered, click the OK button to create the
bundle.

60.7 Creating the Android App Bundle
The next step is instructing Android Studio to build the application app
bundle file in release mode and sign it with the newly created private key.
At this point, the Generate Signed Bundle or APK dialog should still be
displayed with the keystore path, passwords, and key alias fields populated
with information:

Figure 60-6
Ensure that the Export Encrypted Key option is enabled and, assuming the
other settings are correct, click on the Next button to proceed to the app
bundle generation screen (Figure 60-7). Within this screen, review the
Destination Folder: setting to verify that the location into which the app
bundle file will be generated is acceptable. If another location is preferred,
click on the button to the right of the text field and navigate to the desired
file system location.

Figure 60-7
Click the Create button and wait for the Gradle system to build the app

bundle. Once the build is complete, a dialog will appear providing the
option to open the folder containing the app bundle file in an explorer
window or to load the file into the APK Analyzer:

Figure 60-8
At this point, the application is ready to be submitted to Google Play. Click
on the locate link to open a filesystem browser window. The file should be
named bundle.aab and located in the project folder’s app/release sub-
directory unless another location is specified.
The private key generated as part of this process should be used when
signing and releasing future applications and, as such, should be kept in a
safe place and securely backed up.

60.8 Generating Test APK Files
An optional step at this stage is to generate APK files from the app bundle
and install and run them on devices or emulator sessions. Google provides a
command-line tool called bundletool designed specifically for this purpose
which can be downloaded from the following URL:
https://github.com/google/bundletool/releases
At the time of writing, bundletool is provided as a .jar file which can be
executed from the command line as follows (noting that the version number
may have changed since this book was published):
java -jar bundletool-all-0.9.0.jar

Running the above command will list all of the options available within the
tool. To generate the APK files from the app bundle, the build-apks option
is used. The files will also need to be signed to generate APK files that can
be installed onto a device or emulator. To achieve this, include the --ks
option specifying the path of the keystore file created earlier in the chapter
and the --ks-key-alias option specifying the alias provided when the key

https://github.com/google/bundletool/releases

was generated.
Finally, the --output flag must be used to specify the path of the file (called
the APK Set) into which the APK files will be generated. This file must not
already exist and is required to have a .apks filename extension. Bringing
these requirements together results in the following command line
(allowing for differences in your operating system path structure):
java -jar bundletool-all-0.9.0.jar build-apks --
bundle=/tmp/MyApps/app/release/bundle.aab --output=/tmp/MyApks.apks
--ks=/MyKeys/release.keystore.jks --ks-key-alias=MyReleaseKey

When this command is executed, a prompt will appear requesting the
keystore password before the APK files are generated into the specified
APK Set file. The APK Set file is a ZIP file containing all the APK files
generated from the app bundle.
To install the appropriate APK files onto a connected device or emulator,
use a command similar to the following:
java -jar bundletool-all-0.9.0.jar install-apks --
apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate APK files
for the connected device and install them so that the app can be launched
and tested.
It is also possible to extract the APK files from the APK Set for the
connected device without installing them. The first step in this process is to
obtain the specification of the connected device as follows:
java -jar bundletool-all-0.9.0.jar get-device-spec --
output=/tmp/device.json

The above command will generate a JSON file similar to the following:
{
 "supportedAbis": ["x86"],
 "supportedLocales": ["en-US"],
 "screenDensity": 420,
 "sdkVersion": 27
}

Next, this specification file is used to extract the matching APK files from
the APK Set:
java -jar bundletool-all-0.9.0.jar extract-apks --
apks=/tmp/MyApks.apks --output-dir=/tmp/nexus5_apks --device-
spec=/tmp/device.json

When executed, the directory specified via the --output-dir flag will contain
the correct APK files for the specified device configuration.
The next step in bringing an Android application to market involves
submitting it to the Google Play Developer Console o make it available for
testing.

60.9 Uploading the App Bundle to the Google Play
Developer Console
Return to the Google Play Console and select the Internal testing option
(marked A in Figure 60-9) located in the Testing section of the navigation
panel before clicking on the Create new release button (B):

Figure 60-9
On the resulting screen, click on the Continue button (marked A below) to
confirm the use of Google Play app signing, then drag and drop the bundle
file generated by Android Studio onto the upload drop point (B):

Figure 60-10
When the upload is complete, scroll down the screen and enter the release
name and optional release notes. The release name can be any information

you need to help you recognize the release, and it is not visible to users.
After the app bundle file is uploaded, Google Play will generate all the
necessary APK files ready for testing. Once the APK files have been
generated, scroll down to the bottom of the screen and click on the Save
button. Once the settings have been saved, click on the Review release
button.

60.10 Exploring the App Bundle
On the review screen, click on the arrow to the right of the uploaded bundle
as indicated in Figure 60-11:

Figure 60-11
In the resulting panel, click on the Explore bundle link to load the app
bundle explorer. This provides summary information relating to the API
levels, screen layouts, and platforms supported by the app bundle:

Figure 60-12
Clicking on the Go to device catalog link will display the devices that are
supported by the APK file:

Figure 60-13
Currently, the app is ready for testing but can only be rolled out once some

testers have been set up within the console.

60.11 Managing Testers
If the app is still in the Internal, Alpha, or Beta testing phase, a list of
authorized testers may be specified by selecting the app from within the
Google Play console, clicking on Internal testing in the navigation panel,
and selecting the Testers tab as shown in Figure 60-14:

Figure 60-14
To add testers, click on the Create email list button, name the list, and
specify the test users’ email addresses manually or by uploading a CSV file.
The “Join on the web” URL may now be copied from the screen and
provided to the test users so that they accept the testing invitation and
download the app.

60.12 Rolling the App Out for Testing
Now that an internal release has been created and a list of testers added, the
app is ready to be rolled out for testing. Remaining within the Internal
testing screen, select the Releases tab before clicking on the Edit button for
the recently created release:

Figure 60-15
On the review screen, scroll to the bottom and click on the Start rollout to
Internal testing button. After a short delay while the release is processed,

the app will be ready to be downloaded and tested by the designated users.

60.13 Uploading New App Bundle Revisions
The first app bundle file uploaded for your application will invariably have
a version code of 1. If an attempt is made to upload another bundle file with
the same version code number, the console will reject the file with the
following error:
You need to use a different version code for your APK because you
already have one with version code 1.

To resolve this problem, the version code embedded into the bundle file
needs to be increased. This is performed in the module level
build.gradle.kts file of the project, shown highlighted in Figure 60-16:

Figure 60-16
This file will typically read as follows:
plugins {
 id("com.android.application")
}

android {
 namespace = "com.ebookfrenzy.biometricdemo"
 compileSdk = 34

 defaultConfig {
 applicationId = "com.ebookfrenzy.biometricdemo"
 minSdk = 33
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"
.

.
}

To change the version code, change the number declared next to
versionCode. To also change the version number displayed to users of your
application, change the versionName string. For example:
versionCode 2
versionName "2.0"

After making these changes, rebuild the APK file and perform the upload
again.

60.14 Analyzing the App Bundle File
Android Studio provides the ability to analyze the content of an app bundle
file. To analyze a bundle file, select the Android Studio Build -> Analyze
APK… menu option and navigate to and choose the bundle file to be
reviewed. Once loaded into the tool, information will be displayed about the
raw and download size of the package together with a listing of the file
structure of the package as illustrated in Figure 60-17:

Figure 60-17
Selecting the classes.dex file will display the class structure of the file in the
lower panel. Within this panel, details of the individual classes may be
explored down to the level of the methods within a class:

Figure 60-18
Similarly, selecting a resource or image file within the file list will display

the file content within the lower panel. The size differences between two
bundle files may be reviewed by clicking on the Compare with previous
APK… button and selecting a second bundle file.

60.15 Summary
Once an app project is complete or ready for user testing, it can be uploaded
to the Google Play console and published for production, internal, alpha, or
beta testing. Before the app can be uploaded, an app entry must be created
within the console, including information about the app and screenshots for
use within the Play Store. A release Android App Bundle file is generated
and signed with an upload key within Android Studio. After the bundle file
has been uploaded, Google Play removes the upload key and replaces it
with the securely stored app signing key, and the app is ready to be
published.
The content of a bundle file can be reviewed at any time by loading it into
the Android Studio APK Analyzer tool.

61. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as
Android and iOS, the most common method for earning revenue was to
charge an upfront fee to download and install the application. However,
Google soon introduced another revenue opportunity by embedding
advertising within applications. Perhaps the most common and lucrative
option is now to charge the user for purchasing items from within the
application after it has been installed. This typically takes the form of
access to a higher level in a game, acquiring virtual goods or currency, or
subscribing to premium content in the digital edition of a magazine or
newspaper.
Google supports integrating in-app purchasing through the Google Play In-
App Billing API and the Play Console. This chapter will provide an
overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next
chapter will walk you through creating an example app that includes in-app
purchasing features.

61.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play
Developer Console account, which was covered previously in the
“Creating, Testing and Uploading an Android App Bundle” chapter. In
addition, you must also register a Google merchant account and configure
your payment settings. You can find these settings by navigating to Setup -
> Payments profile in the Play Console. Note that merchant registration is
not available in all countries. For details, refer to the following page:
https://support.google.com/googleplay/android-developer/answer/9306917
The app will then need to be uploaded to the console and enabled for in-app
purchasing. The console will not activate in-app purchasing support for an
app, however, unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file. When working with Kotlin, the Google
Play Kotlin Extensions Library is also recommended:

https://support.google.com/googleplay/android-developer/answer/9306917

dependencies {
.
.
 implementation(libs.billing)
 implementation(libs.billing.ktx)
.
.
}

The corresponding entries in the libs.versions.toml file for the above
libraries will read as follows:
[versions]
billing = "<latest version>"
.
.
[libraries]
billing = { module = "com.android.billingclient:billing",
version.ref = "billing" }
billing-ktx = { module = "com.android.billingclient:billing-kStx",
version.ref = "billing" }
.
.

Once the build files have been modified and the app bundle uploaded to the
console, the next step is to add in-app products or subscriptions for the user
to purchase.

61.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed
beneath the Monetize section of the Play Console navigation panel as
highlighted in Figure 61-1 below:

Figure 61-1
Each product or subscription needs an ID, title, description, and pricing
information. Purchases fall into the categories of consumable (the item must
be purchased each time it is required by the user such as virtual currency in
a game), non-consumable (only needs to be purchased once by the user
such as content access), and subscription-based. Consumable and non-
consumable products are collectively referred to as managed products.
Subscriptions are useful for selling an item that needs to be renewed on a

regular schedule such as access to news content or the premium features of
an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription
auto-renews. Users can also be provided with discount offers and given the
option of pre-purchasing a subscription.

61.3 Billing client initialization
A BillingClient instance handles communication between your app and the
Google Play Billing Library. In addition, BillingClient includes a set of
methods that can be called to perform both synchronous and asynchronous
billing-related activities. When the billing client is initialized, it will need to
be provided with a reference to a PurchasesUpdatedListener callback
handler. The client will call this handler to notify your app of the results of
any purchasing activity. To avoid duplicate notifications, it is recommended
to have only one BillingClient instance per app.
A BillingClient instance can be created using the newBuilder() method,
passing through the current activity or fragment context. The purchase
update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
 PurchasesUpdatedListener { billingResult, purchases ->
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
 && purchases != null
) {
 for (purchase in purchases) {
 // Process the purchases
 }
 } else if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.USER_CANCELED
) {
 // Purchase cancelled by user
 } else {
 // Handle errors here
 }
 }

billingClient = BillingClient.newBuilder(this)
 .setListener(purchasesUpdatedListener)
 .enablePendingPurchases()

 .build()

61.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a
connection to the Google Play Billing Library. To establish this connection,
a call needs to be made to the startConnection() method of the billing client
instance. Since the connection is performed asynchronously, a
BillingClientStateListener handler needs to be implemented to receive a
callback indicating whether the connection was successful. Code should
also be added to override the onBillingServiceDisconnected() method. This
is called if the connection to the Billing Library is lost and can be used to
report the problem to the user and retry the connection.
Once the setup and connection tasks are complete, the BillingClient
instance will make a call to the onBillingSetupFinished() method which can
be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {
 override fun onBillingSetupFinished(
 billingResult: BillingResult
) {
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
) {
 // Connection successful
 } else {
 // Connection failed
 }
 }

 override fun onBillingServiceDisconnected() {
 // Connection to billing service lost
 }
})

61.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is
to request the details of the products or subscriptions available for purchase.
This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately
configured QueryProductDetailsParams instance containing the product ID

and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams =
QueryProductDetailsParams.newBuilder()
 .setProductList(
 ImmutableList.of(
 QueryProductDetailsParams.Product.newBuilder()
 .setProductId(productId)
 .setProductType(
 BillingClient.ProductType.INAPP
)
 .build()
)
)
 .build()

billingClient.queryProductDetailsAsync(
 queryProductDetailsParams
) { billingResult, productDetailsList ->
 if (!productDetailsList.isEmpty()) {
 // Process list of matching products
 } else {
 // No product matches found
 }
}

The queryProductDetailsAsync() method is passed a
ProductDetailsResponseListener handler (in this case in the form of a
lambda code block) which, in turn, is called and passed a list of
ProductDetail objects containing information about the matching products.
For example, we can call methods on these objects to get information such
as the product name, title, description, price, and offer details.

61.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase
by the user, the purchase process is ready to be launched. We do this by
calling the launchBillingFlow() method of the BillingClient, passing
through as arguments the current activity and a BillingFlowParams instance
configured with the ProductDetail object for the item being purchased.
val billingFlowParams = BillingFlowParams.newBuilder()
 .setProductDetailsParamsList(

 ImmutableList.of(
 BillingFlowParams.ProductDetailsParams.newBuilder()
 .setProductDetails(productDetails)
 .build()
)
)
 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a
call to the PurchasesUpdatedListener callback handler outlined earlier in the
chapter.

61.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will
be passed a list containing a Purchase object for each item. You can verify
that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() ==
Purchase.PurchaseState.PURCHASED) {
 // Purchase completed.
} else if (purchase.getPurchaseState() ==
Purchase.PurchaseState.PENDING) {
 // Payment is still pending
}

Note that your app will only support pending purchases if a call is made to
the enablePendingPurchases() method during initialization. A pending
purchase will remain so until the user completes the payment process.
When the purchase of a non-consumable item is complete, it will need to be
acknowledged to prevent a refund from being issued to the user. This
requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to
create an AcknowledgePurchaseParams instance together with an
AcknowledgePurchaseResponseListener handler. Managed product
purchases and subscriptions are acknowledged by calling the BillingClient’s
acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,
 acknowledgePurchaseResponseListener);
val acknowledgePurchaseParams =

AcknowledgePurchaseParams.newBuilder()
 .setPurchaseToken(purchase.purchaseToken)
 .build()

val acknowledgePurchaseResponseListener =
AcknowledgePurchaseResponseListener {
 // Check acknowledgement result
}

billingClient.acknowledgePurchase(
 acknowledgePurchaseParams,
 acknowledgePurchaseResponseListener
)

For consumable purchases, you will need to notify Google Play when the
item has been consumed so that it is available to be repurchased by the user.
This requires a configured ConsumeParams instance containing a purchase
token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()
 .setPurchaseToken(purchase.purchaseToken)
 .build()

coroutineScope.launch {
 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK) {
 // Purchase successfully consumed
 }
}

61.8 Querying previous purchases
When working with in-app billing it is a common requirement to check
whether a user has already purchased a product or subscription. A list of all
the user’s previous purchases of a specific type can be generated by calling
the queryPurchasesAsync() method of the BillingClient instance and
implementing a PurchaseResponseListener. The following code, for
example, obtains a list of all previously purchased items that have not yet
been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()
 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchasesAsync(
 queryPurchasesParams,
 purchasesListener
)
.
.
private val purchasesListener =
 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {
 // Access existing active purchases
 } else {
 // No
 }
 }

To obtain a list of active subscriptions, change the ProductType value from
INAPP to SUBS.
Alternatively, to obtain a list of the most recent purchases for each product,
make a call to the BillingClient queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams =
QueryPurchaseHistoryParams.newBuilder()
 .setProductType(BillingClient.ProductType.INAPP)
 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams)
{ billingResult, historyList ->
 // Process purchase history list
}

61.9 Summary
In-app purchases provide a way to generate revenue from within Android
apps by selling virtual products and subscriptions to users. In this chapter,
we have explored managed products and subscriptions and explained the
difference between consumable and non-consumable products. In-app
purchasing support is added to an app using the Google Play In-app Billing
Library and involves creating and initializing a billing client on which
methods are called to perform tasks such as making purchases, listing
available products, and consuming existing purchases. The next chapter

contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

62. An Android In-App Purchasing
Tutorial
In the previous chapter, we explored how to integrate in-app purchasing
into an Android project and also looked at some code samples that can be
used when working on your own projects. This chapter will put this theory
into practice by creating an example project that demonstrates how to add a
consumable in-app product to an Android app using Jetpack Compose. The
tutorial will also show how in-app products are added and managed within
the Google Play Console and explain how to enable test payments so that
purchases can be made during testing without having to spend real money.

62.1 About the In-App purchasing example project
The simple concept behind this project is an app in which an in-app product
must be purchased before a button can be clicked. This in-app product is
consumed each time the button is clicked, requiring the user to re-purchase
the product each time they want to be able to click the button. On
initialization, the app will connect to the app store, obtain details of the
product, and display the product name. Once the app has established that
the product is available, a purchase button will be enabled which, when
clicked, will step through the purchase process. On completion of the
purchase, a second button will be enabled so that the user can click on it
and consume the purchase.

62.2 Creating the InAppPurchase project
The first step in this exercise is to create a new project. Begin by launching
Android Studio and selecting the New Project option from the welcome
screen. In the new project dialog, choose the Empty Activity template before
clicking on the Next button.
Enter InAppPurchase into the Name field and specify a package name that
will uniquely identify your app within the Google Play ecosystem (for
example com.<your company>.InAppPurchase). Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new

empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method function to call MainScreen instead of
Greeting. Since this project will be using features that are not supported by
the Preview panel, also delete the GreetingPreview composable from the
file. To test the project we will be running it on a device or emulator
session.

62.3 Adding libraries to the project
Before we start writing code, some libraries need to be added to the project
build configuration, including the standard Android billing client libraries.
Later in the project, we will also need to use the ImmutableList class which
is part of Google’s Guava Core Java libraries. We will begin by adding the
following entries to the version catalog file (libs.versions.toml):
[versions]
billing = "6.2.0"
guava = "24.1-jre"
guavaVersion = "27.0.1-android"
.
.
[libraries]
billing = { module = "com.android.billingclient:billing",
version.ref = "billing" }
billing-ktx = { module = "com.android.billingclient:billing-kStx",
version.ref = "billing" }
guava = { module = "com.google.guava:guava", version.ref = "guava"
}
guava-v2701android = { module = "com.google.guava:guava",
version.ref = "guavaVersion" }
.
.

Add the above libraries to Gradle Scripts -> build.gradle.kts (Module: app)
file dependencies as follows:
.
.
dependencies {
.

.
 implementation(libs.billing)
 implementation(libs.billing.ktx)
 implementation(libs.guava)
 implementation(libs.guava.v2701android)
.
.

Click on the Sync Now link at the top of the editor panel to commit these
changes.

62.4 Adding the App to the Google Play Store
Using the steps outlined in the chapter entitled “Creating, Testing, and
Uploading an Android App Bundle”, sign into the Play Console at
https://play.google.com/console, create a new app, and set up a new internal
testing track including the email addresses of designated testers. Return to
Android Studio and generate a signed release app bundle for the project.
Once the bundle file has been generated, upload it to the internal testing
track and roll it out for testing.
Now that the app has a presence in the Google Play Store, we are ready to
create an in-app product for the project.

62.5 Creating an In-App product
With the app selected in the Play Console, scroll down the list of options in
the left-hand panel until the Monetize section comes into view. Within this
section, select the In-app products option listed under Products as shown in
Figure 62-1:

Figure 62-1
On the In-app products page, click on the Create product button:

https://play.google.com/console

Figure 62-2
On the new product screen, enter the following information before saving
the new product:
•Product ID: one_button_click
•Name: A Button Click
•Description: This is a test in-app product that allows a button to be clicked
once.

•Default price: Set to the lowest possible price in your preferred currency.

62.6 Enabling license testers
When testing in-app billing it is useful to be able to make test purchases
without spending any money. This can be achieved by enabling license
testing for the internal track testers. License testers can use a test payment
card when making purchases so that they are not charged.
Within the Play Console, return to the main home screen and select the
Setup -> License testing option:

Figure 62-3
Within the license testing screen, add the testers that were added for the
internal testing track, change the License response setting to
RESPOND_NORMALLY, and save the changes:

Figure 62-4
Now that both the app and the in-app product have been set up in the Play
Console, we can start adding code to the project.

62.7 Creating a purchase helper class
To establish a clean separation between the user interface and billing code,
we will create a new helper class that will handle all of the purchasing tasks
and use StateFlow instances to update the user interface with status
changes. While it may be tempting to create this helper class as a view
model, doing so will result in unstable code. The problem is that the billing
client will need a reference to the main activity to process purchase
transactions. This means that we will need to pass this reference to our
helper class when an instance is created. As we know from previous
chapters, activities are subject to being destroyed and recreated during the
lifecycle of an app. Since view models are, by definition, designed to
survive the destruction and recreation of activities we run the risk within
our billing code of relying on a reference to an activity that no longer exists.
To avoid this problem we will declare our purchase helper as a standard
Kotlin data class that will be destroyed and recreated along with the
activity.
Within the Project tool window, right-click on the com.<your
company>.inapppurchase entry, select the New -> Kotlin Class/File menu
option and create a new class named PurchaseHelper. With the new class
file created, edit it so that it reads as follows:
.
.
import android.app.Activity

import android.util.Log
import com.android.billingclient.api.*
import com.google.common.collect.ImmutableList
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.launch

data class PurchaseHelper(val activity: Activity) {

}

These changes import a set of libraries that will be needed later in the
chapter and configure the class to expect an Activity initialization
parameter. Next, add variable declarations to store values related to the
billing process together with the id of the product created in the Google
Play Console:
.
.
data class PurchaseHelper(val activity: Activity) {

 private val coroutineScope = CoroutineScope(Dispatchers.IO)

 private lateinit var billingClient: BillingClient
 private lateinit var productDetails: ProductDetails
 private lateinit var purchase: Purchase

 private val demoProductId = "one_button_click"
}

62.8 Adding the StateFlow streams
Communication between the purchase process and the user interface will be
performed using StateFlow streams. Specifically, the user interface will use
these to display status information on Text components and to ensure that
Buttons are appropriately enabled and disabled. Using the techniques
outlined in the chapter titled “An Introduction to Kotlin Flow”, add the
following StateFlow declarations to the PurchaseHelper class:
data class PurchaseHelper(val activity: Activity) {
.
.

 private val _productName = MutableStateFlow("Searching...")
 val productName = _productName.asStateFlow()

 private val _buyEnabled = MutableStateFlow(false)
 val buyEnabled = _buyEnabled.asStateFlow()

 private val _consumeEnabled = MutableStateFlow(false)
 val consumeEnabled = _consumeEnabled.asStateFlow()

 private val _statusText = MutableStateFlow("Initializing...")
 val statusText = _statusText.asStateFlow()
}

62.9 Initializing the billing client
Next, the PurchaseHelper class needs a method that can be called from the
MainActivity to initialize the billing client. Remaining within the
PurchaseHelper.kt file, add this new method as follows:
fun billingSetup() {
 billingClient = BillingClient.newBuilder(activity)
 .setListener(purchasesUpdatedListener)
 .enablePendingPurchases()
 .build()

 billingClient.startConnection(object :
BillingClientStateListener {
 override fun onBillingSetupFinished(
 billingResult: BillingResult
) {
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
) {
 _statusText.value = "Billing Client Connected"
 queryProduct(demoProductId)
 } else {
 _statusText.value = "Billing Client Connection
Failure"
 }
 }

 override fun onBillingServiceDisconnected() {
 _statusText.value = "Billing Client Connection Lost"
 }

 })
}

When this method is called, it will create a new billing client instance and
attempt to connect to the Google Play Billing Library. The
onBillingSetupFinished() listener will be called when the connection
attempt completes and update the statusText state flow indicating the
success or otherwise of the connection attempt. Finally, we have also
implemented the onBillingServiceDisconnected() callback which will be
called if the Google Play Billing Library connection is lost.
If the connection is successful a method named queryProduct() is called.
Both this method and the purchasesUpdatedListener assigned to the billing
client now need to be added.

62.10 Querying the product
To make sure the product is available for purchase, we need to create a
QueryProductDetailsParams instance configured with the product ID that
was specified in the Play Console, and pass it to the
queryProductDetailsAsync() method of the billing client. This will require
that we also add the onProductDetailsResponse() callback method where
we will check that the product exists, extract the product name, and assign it
to the statusText state. Now that we have obtained the product details, we
can also safely enable the purchase button via the buyEnabled flow. Within
the PurchaseHelper.kt file, add the queryProduct() method so that it reads
as follows:
fun queryProduct(productId: String) {
 val queryProductDetailsParams =
QueryProductDetailsParams.newBuilder()
 .setProductList(
 ImmutableList.of(
 QueryProductDetailsParams.Product.newBuilder()
 .setProductId(productId)
 .setProductType(
 BillingClient.ProductType.INAPP
)
 .build()
)
)
 .build()

 billingClient.queryProductDetailsAsync(
 queryProductDetailsParams
) { billingResult, productDetailsList ->
 if (productDetailsList.isNotEmpty()) {
 productDetails = productDetailsList[0]
 _productName.value = "Product: " + productDetails.name
 } else {
 _statusText.value = "No Matching Products Found"
 _buyEnabled.value = false
 }
 }
}

Much of the code used here should be familiar from the previous chapter.
The listener code checks that at least one product was found that matches
the query criteria. The ProductDetails object is then extracted from the first
matching product, stored in the productDetails variable, and the product
name property assigned to the productName state flow.

62.11 Handling purchase updates
The results of the purchase process will be reported to the app via the
PurchasesUpdatedListener that was assigned to the billing client during the
initialization phase. Add this handler now as follows:
private val purchasesUpdatedListener =
 PurchasesUpdatedListener { billingResult, purchases ->
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
 && purchases != null
) {
 for (purchase in purchases) {
 completePurchase(purchase)
 }
 } else if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.USER_CANCELED
) {
 _statusText.value = "Purchase Canceled"
 } else {
 _statusText.value = "Purchase Error"
 }
 }

The handler will update the status text if the user cancels the purchase or
another error occurs. A successful purchase, however, results in a call to a
method named completePurchase() which is passed the current Purchase
object. Add this method as outlined below:
private fun completePurchase(item: Purchase) {
 purchase = item
 if (purchase.purchaseState == Purchase.PurchaseState.PURCHASED)
{
 _buyEnabled.value = false
 _consumeEnabled.value = true
 _statusText.value = "Purchase Completed"
 }
}

This method stores the purchase before verifying that the product has
indeed been purchased and that payment is not still pending. The consume
button is enabled, the purchase button disabled, and the user is notified that
the purchase was successful.

62.12 Launching the purchase flow
We now need to add the following method which will be called from the
purchase button in the user interface to start the purchase process:
fun makePurchase() {
 val billingFlowParams = BillingFlowParams.newBuilder()
 .setProductDetailsParamsList(
 ImmutableList.of(
 BillingFlowParams.ProductDetailsParams.newBuilder()
 .setProductDetails(productDetails)
 .build()
)
)
 .build()

 billingClient.launchBillingFlow(activity, billingFlowParams)
}

62.13 Consuming the product
With the user now able to click on the “consume” button, the next step is to
make sure the product is consumed so that only one click can be performed
before another button click is purchased. This requires that we now write
the consumePurchase() method:

fun consumePurchase() {
 val consumeParams = ConsumeParams.newBuilder()
 .setPurchaseToken(purchase.purchaseToken)
 .build()

 coroutineScope.launch {
 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK) {
 _statusText.value = "Purchase Consumed"
 _buyEnabled.value = true
 _consumeEnabled.value = false
 }
 }
}

This method creates a ConsumeParams instance and configures it with the
purchase token for the current purchase (obtained from the Purchase object
previously saved in the completePurchase() method). This is passed to the
consumePurchase() method which is launched within a coroutine using the
IO dispatcher. If the product is successfully consumed, the consume button
is disabled and the status text updated.

62.14 Restoring a previous purchase
With the code added so far, we can purchase a product and consume it
within a single session. If we were to make a purchase and then exit the app
before consuming it the purchase would currently be lost when the app
restarts. We can solve this problem by configuring a QueryPurchasesParams
instance to search for the unconsumed In-App product and passing it to the
queryPurchasesAsync() method of the billing client together with a
reference to a listener that will be called with the results. Add a new method
and the listener to the MainActivity.kt file as follows:
private fun reloadPurchase() {
 val queryPurchasesParams = QueryPurchasesParams.newBuilder()
 .setProductType(BillingClient.ProductType.INAPP)
 .build()

 billingClient.queryPurchasesAsync(
 queryPurchasesParams,
 purchasesListener

)
}

private val purchasesListener =
 PurchasesResponseListener { billingResult, purchases ->
 if (purchases.isNotEmpty()) {
 purchase = purchases.first()
 _buyEnabled.value = false
 _consumeEnabled.value = true
 _statusText.value = "Previous Purchase Found"
 } else {
 _buyEnabled.value = true
 _consumeEnabled.value = false
 }
 }

If the list of purchases passed to the listener is not empty, the first purchase
in the list is assigned to the purchase variable, and the consume button
enabled (in a more complete implementation code should be added to check
this is the correct product by comparing the product id and to handle the
return of multiple purchases). If no purchases are found, the consume
button is disabled until another purchase is made. All that remains is to call
our new reloadPurchase() method during the billing setup process as
follows:
fun billingSetup() {
.
.
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
) {
 _statusText.value = "Billing Client Connected"
 queryProduct(demoProductId)
 reloadPurchase()
 } else {
 _statusText.value = "Billing Client Connection
Failure"
 }
 }
.
.
}

62.15 Completing the MainActivity
Now that the helper class is completed, changes need to be made to the
MainActivity.kt file. The first step is to modify the onCreate() function to
create an instance of our PurchaseHelper class and pass it to the
MainScreen composable:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 InAppPurchaseTheme {
 // A surface container using the ‘background’ color
from the theme
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 val purchaseHelper = PurchaseHelper(this)
 purchaseHelper.billingSetup()
 MainScreen(purchaseHelper)
 }
 }
 }
}

Remaining in the MainActivity.kt file, modify the MainScreen function as
follows to accept the purchase handler instance and to collect from the state
flow instances:
.
.
import androidx.compose.runtime.*
.
.
@Composable
fun MainScreen(purchaseHelper: PurchaseHelper) {

 val buyEnabled by
purchaseHelper.buyEnabled.collectAsState(false)
 val consumeEnabled by
purchaseHelper.consumeEnabled.collectAsState(false)
 val productName by
purchaseHelper.productName.collectAsState("")
 val statusText by purchaseHelper.statusText.collectAsState("")

}

The final task before testing the app is to call the composables that make up
the user interface. This will consist of a Column containing two Text
components and an embedded Row containing two Buttons configured to
call the makePurchase() and consumePurchase() methods of the purchase
handler. The content displayed by the Text composables and the status of
the buttons will be controlled by the state flow values. Make the following
changes to complete the MainScreen composable:
.
.
import androidx.compose.foundation.layout.*
import androidx.compose.ui.Alignment
import androidx.compose.material3.Button
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
.
.
@Composable
fun MainScreen(purchaseHelper: PurchaseHelper) {
.
.
 Column(
 Modifier.padding(20.dp),
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center
) {

 Text(
 productName,
 Modifier.padding(20.dp),
 fontSize = 30.sp)

 Text(statusText)

 Row(Modifier.padding(20.dp)) {

 Button(
 onClick = { purchaseHelper.makePurchase() },
 Modifier.padding(20.dp),
 enabled = buyEnabled
) {

 Text("Purchase")
 }

 Button(
 onClick = { purchaseHelper.consumePurchase() },
 Modifier.padding(20.dp),
 enabled = consumeEnabled
) {
 Text("Consume")
 }
 }
 }
}

62.16 Testing the app
Before we can test the app we need to upload this latest version to the Play
Console. As we already have version 1 uploaded, we first need to increase
the version number in the build.gradle.kts (Module: app) file:
.
.
defaultConfig {
 applicationId "com.ebookfrenzy.inapppurchase"
 minSdk 26
 targetSdk 32
 versionCode 2
 versionName "2.0"
.
.

Sync the build configuration, then follow the steps in the “Creating,
Testing, and Uploading an Android App Bundle” chapter to generate a new
app bundle, upload it to the internal test track, and roll it out to the testers.
Next, using the internal testing link, install the app on a device or emulator
where one of the test accounts is signed in. To locate the testing link, select
the app in the Google Play Console and choose the Internal testing option
from the navigation panel followed by the Testers tab, as shown in Figure
62-5:

Figure 62-5
Scroll to the “How testers join your test” section of the screen and click on
Copy link:

Figure 62-6
Open the Chrome browser on the testing device or emulator, enter the
testing link, and follow the instructions to install the app from the Play
Store. After the app starts, the user interface should appear as shown in
Figure 62-7 below with the billing client connected, the product name
displayed, and the Purchase button enabled:

Figure 62-7
Clicking the Purchase button will begin the purchase flow as shown in
Figure 62-8:

Figure 62-8
Tap the buy button to complete the purchase using the test card and wait for
the Consume button to be enabled.
Tap the Consume button and wait for the “Purchase Consumed” status
message to appear. With the product consumed, it should now be possible to
purchase it again. Make another purchase, then terminate and restart the
app. The app should locate the previous unconsumed purchase and enable
the consume button.

62.17 Troubleshooting
For additional information about failures, a useful trick is to access the
debug message from BillingResult instances, for example:
.
.
} else if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.USER_CANCELED
) {
 _statusText.value = "Purchase Canceled"
} else {
 _statusText.value = "Purchase Error"
 Log.i("InAppPurchase", billingResult.getDebugMessage())
}

After adding the debug code, make sure the device is attached to Android
Studio, either via a USB cable or WiFi, and select it from within the Logcat
panel. Enter InAppPurchaseTag into the Logcat search bar and check the
diagnostic output, adding additional Log calls in the code if necessary.
Note that as long as you leave the app version number unchanged in the
module-level build.gradle.kts file, you should now be able to run modified

versions of the app directly on the device or emulator without having to re-
bundle and upload it to the console.
If the test payment card is not listed, make sure the user account on the
device has been added to the license testers list. If the app is running on a
physical device, try running it on an emulator. If all else fails, you can enter
a valid payment method to make test purchases, and then refund yourself
using the Order management screen accessible from the Play Console home
page.

62.18 Summary
In this chapter, we created a project that demonstrated how to add an in-app
product to an Android app. This included the creation of the product within
the Google Play Console and the writing of code to initialize and connect to
the billing client, querying of available products, and, finally, the purchase
and consumption of the product. We also explained how to add license
testers using the Play Console so that purchases can be made during testing
without spending money.

63. Working with Compose Theming
The appearance of Android apps is intended to conform to a set of
guidelines defined by Material Design. Google developed Material Design
to provide a level of design consistency between different apps while also
allowing app developers to include their own branding in terms of color,
typography, and shape choices (a concept referred to Material theming). In
addition to design guidelines, Material Design also includes a set of UI
components for use when designing user interface layouts, many of which
we have used throughout this book.
This chapter will provide an overview of how theming works within an
Android Studio Compose project and explore how the default design
configurations provided for newly created projects can be modified to meet
your branding requirements.

63.1 Material Design 2 vs. Material Design 3
Before beginning, it is important to note that Google is transitioning from
Material Design 2 to Material Design 3 and that Android Studio Iguana
defaults to Material Design 3. Material Design 3 provides the basis for
Material You, a feature introduced in Android 12 that allows an app to
automatically adjust theme elements to complement preferences configured
by the user on the device. For example, dynamic color support provided by
Material Design 3 allows the colors used in apps to adapt automatically to
match the user’s wallpaper selection.
At the time of writing, shape theming was not yet supported by Material
Design 3. However, the concepts covered in this chapter for color and
typography will apply to shapes when support is available.

63.2 Material Design 3 theming
Before exploring Material Design 3, we first need to look at how it is used
in an Android Studio project created using the Empty Activity template. The
first point to note is that calls to the top-level composable in the onCreate()
method and the GreetingPreview function are embedded in a theme
composable. The following, for example, is the code generated for a project
named MyApp:
class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 MyAppTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 Greeting("Android")
 }
 }
 }
 }
}

@Preview(showBackground = true)
@Composable
fun GreetingPreview() {
 MyAppTheme {
 Greeting("Android")
 }
}

All of the files associated with MyAppTheme are contained within the
ui.theme sub-package of the project, as shown in Figure 63-1:

Figure 63-1
The theme itself is declared in the Theme.kt file, which begins by declaring
different color palettes for use when the device is in light or dark mode.
These palettes are created by calling the darkColorScheme() and
lightColorScheme() builder functions and specifying the colors for the
different Material Theme color slots:
private val DarkColorScheme = darkColorScheme(

 primary = Purple80,
 secondary = PurpleGrey80,
 tertiary = Pink80
)

private val LightColorScheme = lightColorScheme(
 primary = Purple40,
 secondary = PurpleGrey40,
 tertiary = Pink40

 /* Other default colors to override
 background = Color(0xFFFFFBFE),
 surface = Color(0xFFFFFBFE),
 onPrimary = Color.White,
 onSecondary = Color.White,
 onTertiary = Color.White,
 onBackground = Color(0xFF1C1B1F),
 onSurface = Color(0xFF1C1B1F),
 */
)

This is just a subset of the slots available for color theming. For Material
Design 3, for example, there is a total of 24 color slots available for use
when designing a theme. In the absence of a slot assignment, the Material
components use built-in default colors. A full listing of MD3 color slot
names can be found at:
https://developer.android.com/reference/kotlin/androidx/compose/material3
/ColorScheme
These color slots are used by the Material components to set color
attributes. For example, the primary color slot is used as the background
color for the Material Button component. The actual colors assigned to the
slots are declared in the Color.kt file as follows:
val Purple80 = Color(0xFFD0BCFF)
val PurpleGrey80 = Color(0xFFCCC2DC)
val Pink80 = Color(0xFFEFB8C8)

val Purple40 = Color(0xFF6650a4)
val PurpleGrey40 = Color(0xFF625b71)
val Pink40 = Color(0xFF7D5260)

Material Design 3 themes may also include support for dynamic colors via

https://developer.android.com/reference/kotlin/androidx/compose/material3/ColorScheme

calls to the dynamicDarkColorScheme() and dynamicLightColorScheme()
functions passing through the current local context as a parameter. These
functions will then generate color schemes that match the user’s settings on
the device (for example, wallpaper selection). Since dynamic colors are
only supported on Android 12 (S) or later, defensive code is included in the
theme declared in the Theme.kt file:
@Composable
fun MyAppTheme(
 darkTheme: Boolean = isSystemInDarkTheme(),
 dynamicColor: Boolean = true,
 content: @Composable () -> Unit
) {
 val colorScheme = when {
 dynamicColor && Build.VERSION.SDK_INT >=
Build.VERSION_CODES.S -> {
 val context = LocalContext.current
 if (darkTheme) dynamicDarkColorScheme(context) else
 dynamicLightColorScheme(context
)
 }

 darkTheme -> DarkColorScheme
 else -> LightColorScheme
 }
 val view = LocalView.current
 if (!view.isInEditMode) {
 SideEffect {
 val window = (view.context as Activity).window
 window.statusBarColor = colorScheme.primary.toArgb()
 WindowCompat.getInsetsController(window, view).
 isAppearanceLightStatusBars = darkTheme
 }
 }

 MaterialTheme(
 colorScheme = colorScheme,
 typography = Typography,
 content = content
)
}

Note that the theme uses the slot API (introduced in the chapter entitled

“An Overview of Compose Slot APIs”) to display the content. In terms of
typography, Material Design has a set of type scales, three of which are
declared in the Type.kt file (albeit with two commented out):
val Typography = Typography(
 bodyLarge = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Normal,
 fontSize = 16.sp,
 lineHeight = 24.sp,
 letterSpacing = 0.5.sp
)
 /* Other default text styles to override
 titleLarge = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Normal,
 fontSize = 22.sp,
 lineHeight = 28.sp,
 letterSpacing = 0.sp
),
 labelSmall = TextStyle(
 fontFamily = FontFamily.Default,
 fontWeight = FontWeight.Medium,
 fontSize = 11.sp,
 lineHeight = 16.sp,
 letterSpacing = 0.5.sp
)
 */
)

As with the color slots, this is only a subset of the type scales supported by
Material Design. The full list can be found online at:
https://developer.android.com/reference/kotlin/androidx/compose/material3
/Typography
Creating a custom theme involves editing these files to use different colors,
typography, and shape settings. These changes will then be used by the
Material components that make up the app’s user interface.
Note that dynamic colors only take effect when enabled on the device by
the user within the wallpaper and styles section of the Android Settings app.

63.3 Building a custom theme

https://developer.android.com/reference/kotlin/androidx/compose/material3/Typography

As we have seen, the coding work in implementing a theme is relatively
simple. The difficult part, however, is often choosing complementary colors
to make up the theme. Fortunately, Google has developed a tool that makes
it easy to design custom color themes for your apps. This tool is called the
Material Theme Builder and is available at:
https://m3.material.io/theme-builder#/custom
On the custom screen (Figure 63-2), make a color selection for the primary
color key (A) by clicking on the color circle to display the color selection
dialog. Once a color has been selected, the preview (B) will change to
reflect the recommended colors for all MD3 color slots, along with example
app interfaces and widgets. The button marked D previews the color
scheme in light and dark modes. In addition, you can override the generated
colors for the Secondary, Tertiary, and Neutral slots by clicking on the
corresponding color circles to display the color selection dialog.
The area marked B displays example app interfaces, light and dark color
scheme charts, and widgets that update to preview your color selections.
Since the panel is longer than the typical browser window, you must scroll
down to see all the information:

https://m3.material.io/theme-builder#/custom

Figure 63-2
To incorporate the theme into your design, click the Export button (C) and
select the Jetpack Compose (Theme.kt) option. Once downloaded, the
Color.kt and Theme.kt files can replace the existing files in your project.
Note that the theme name in the exported Theme.kt file must be changed to
match your project.

63.4 Summary
Material Design provides guidelines and components defining how Android
apps appear. Individual branding can be applied to an app by designing
themes that specify the colors, fonts, and shapes used when displaying the
app. Google is currently introducing Material Design 3 which replaces
Material Design 2 and supports the new features of Material Me, including
dynamic colors. Google also provides the Material Theme Builder for
designing your own themes, which eases the task of choosing

complementary theme colors. Once this tool has been used to create a
theme, the corresponding files can be exported and used within an Android
Studio project.

64. A Material Design 3 Theming
Tutorial
This chapter will demonstrate how to create a new theme using the Material
Theme Builder tool, integrate it into an Android Studio project, and test
dynamic theme colors.

64.1 Creating the ThemeDemo project
Launch Android Studio and create a new Empty Activity project named
ThemeDemo, specifying com.example.themedemo as the package name and
selecting a minimum API level of API 26: Android 8.0 (Oreo).
Within the MainActivity.kt file, delete the Greeting function and add a new
empty composable named MainScreen:
@Composable
fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call
MainScreen instead of Greeting and enable the system UI preview option:
@Preview(showBackground = true, showSystemUi = true)
@Composable
fun GreetingPreview() {
.
.

64.2 Designing the user interface
The main activity will contain a simple layout containing some common
MD3 components. This will let us see the effect of theming work performed
later in the chapter. For the latest information on which MD3 components
are available for use with Jetpack Compose, refer to the following web
page:
https://developer.android.com/jetpack/androidx/releases/compose-material3
Within the MainActivity.kt file, edit the MainScreen composable, so it reads
as follows:
.
.

https://developer.android.com/jetpack/androidx/releases/compose-material3

import androidx.compose.foundation.layout.Arrangement
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.fillMaxHeight
import androidx.compose.material.icons.Icons
import androidx.compose.material.icons.filled.Favorite
import androidx.compose.material.icons.filled.Home
import androidx.compose.material.icons.filled.Settings
import androidx.compose.material3.*
import androidx.compose.runtime.*
import androidx.compose.ui.Alignment
.
.
@Composable
fun MainScreen() {

 var selectedItem by remember { mutableStateOf(0) }
 val items = listOf("Home", "Settings", "Favorites")
 val icons = listOf(Icons.Filled.Home, Icons.Filled.Settings,
 Icons.Filled.Favorite)

 Column(
 modifier = Modifier.fillMaxHeight(),
 verticalArrangement = Arrangement.SpaceBetween,
 horizontalAlignment = Alignment.CenterHorizontally
) {

 TopAppBar(title = { Text("ThemeDemo") }, scrollBehavior =
null)

 Button(onClick = { }) {
 Text("MD3 Button")
 }

 Text("A Theme Demo")

 FloatingActionButton(onClick = { }) {
 Text("FAB")
 }

 NavigationBar {
 items.forEachIndexed { index, item ->
 NavigationBarItem(
 icon = { Icon(icons[index], contentDescription

= null) },
 label = { Text(item) },
 selected = selectedItem == index,
 onClick = { selectedItem = index }
)
 }
 }
 }
}

If the editor reports that TopAppBar is an experimental API, add the
following directive to the MainScreen composable:
@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun MainScreen() {
.
.

When previewed, the MainScreen layout should appear as illustrated in
Figure 64-1:

Figure 64-1
The completed design is currently using default theme colors and fonts. The
next step is to build an entirely new theme for the app.

64.3 Building a new theme
The theme for the project will be designed and generated using the Material
Theme Builder. Open a browser window and navigate to the following URL
to access the builder tool:
https://m3.material.io/theme-builder#/custom
Once you have loaded the builder, select a wallpaper and click on the
Custom button at the top of the screen. Next, click on the Primary color
circle in the Core colors section to display the color selector. From the color
selector, choose any color you feel like using as the basis for your theme
before clicking on the Close button:

https://m3.material.io/theme-builder#/custom

Figure 64-2
Review the color scheme in the Your Theme panel and make any necessary
color adjustments using the Core colors panel until you are happy with the
color slots. Once the theme is ready, click on the Export button in the top
right-hand corner and select the Jetpack Compose (Theme.kt) option. When
prompted, save the file to a suitable location on your computer filesystem.
The theme will be saved as a compressed file named material-theme.zip.
Using the appropriate tool for your operating system, unpack the theme file,
which should contain the following files in a folder with the path material-
theme/ui/theme:
•Color.kt
•Theme.kt
Now that the theme files have been generated, they need to be integrated
into the Android Studio project.

64.4 Adding the theme to the project
Before we can add the new theme to the project, we first need to remove the
old theme files. Select and delete the Color.kt and Theme.kt files from the
ui.theme folder within the Android Studio Project tool window. Once the

files have been removed, locate the custom theme files in the material-
theme/ui/theme folder on your local filesystem and copy and paste them
into the ui.theme folder in the Project tool window.
After adding the files, edit each one in turn and change the package
declaration to match the current project which, assuming you followed the
steps at the start of the chapter, will read as follows:
package com.example.themedemo.ui.theme

Next, edit the Theme.kt and change the name of the Theme composable
from AppTheme to ThemeDemoTheme:
@Composable
fun ThemeDemoTheme(
 useDarkTheme: Boolean = isSystemInDarkTheme(),
 content: @Composable() () -> Unit
) {
 val colors = if (!useDarkTheme) {
 LightColors
 } else {
 DarkColors
.
.

Return to the MainActivity.kt file and refresh the Preview panel to confirm
that the components are rendered using the new theme. Then, take some
time to explore the Colors.kt and Theme.kt files to see the different
available theme settings. Also, experiment by making changes to different
typography and color values.

64.5 Enabling dynamic colors
The app must be run on a device or emulator running Android 12 or later
with the correct Wallpaper settings to test dynamic colors. First, launch the
Settings app on the device or emulator and select Wallpaper & style from
the list of options. On the wallpaper settings screen, click the option to
change the wallpaper (marked A in Figure 64-3) and select a wallpaper
image containing colors that differ significantly from the colors in your
theme. Once selected, assign the wallpaper to the Home screen.
Return to the Wallpaper & styles screen and make sure that the Wallpaper
colors option is selected (B) before trying out the different color scheme
buttons (C). As each option is clicked, the wallpaper example will change

to reflect the selection:

Figure 64-3
Once you have chosen a wallpaper, return to Android Studio, load the
Theme.kt file into the code editor and make the following changes to the
ThemeDemoTheme composable to add support for dynamic colors:
.
.
import android.os.Build
import androidx.compose.material3.dynamicDarkColorScheme
import androidx.compose.material3.dynamicLightColorScheme
import androidx.compose.ui.platform.LocalContext
.
.
@Composable
fun ThemeDemoTheme(
 useDarkTheme: Boolean = isSystemInDarkTheme(),
 dynamicColor: Boolean = true,
 content: @Composable() () -> Unit
) {
 val colors = when {
 dynamicColor && Build.VERSION.SDK_INT >=
Build.VERSION_CODES.S -> {

 val context = LocalContext.current
 if (useDarkTheme) dynamicDarkColorScheme(context)
 else dynamicLightColorScheme(context)
 }
 useDarkTheme -> DarkColors
 else -> LightColors
 }

 MaterialTheme(
 colorScheme = colors,
 content = content
)
}

Build and run the app and note that the layout is now using a theme that
matches the wallpaper color. Place the ThemeDemo app into the
background, return to the Wallpaper & styles settings screen, and choose a
different wallpaper. Bring the ThemeDemo app to the foreground again, at
which point it will have dynamically adapted to match the new wallpaper.

64.6 Summary
This chapter demonstrates how to use the Material Theme Builder to design
a new theme and explains the steps to integrate the generated theme files
into a project. Finally, the chapter showed how to implement and use the
Material You dynamic colors feature introduced with Android 12.

65. An Overview of Gradle in
Android Studio
In the “A Guide to Gradle Version Catalogs” chapter, we introduced the
library version catalog and explained how the Gradle build system relies on
it to ensure that projects are built using the correct libraries and versions.
Aside from some modifications to the version catalog and library decencies
in the intervening chapters, it has been taken for granted that Android
Studio will take the necessary steps to compile and run the application
projects that have been created. Android Studio has been achieving this in
the background using a system known as Gradle.
It is time to look at how Gradle is used to compile and package an
application project’s various elements and begin exploring how to configure
this system when more advanced requirements are needed for building
projects in Android Studio.

65.1 An Overview of Gradle
Gradle is an automated build toolkit that allows how projects are built to be
configured and managed through a set of build configuration files. This
includes defining how a project will be built, what dependencies need to be
fulfilled to build successfully, and what the build process’s end result (or
results) should be.
The strength of Gradle lies in the flexibility that it provides to the
developer. The Gradle system is a self-contained, command-line-based
environment that can be integrated into other environments using plugins.
In the case of Android Studio, Gradle integration is provided through the
appropriately named Android Studio Plugin.
Although the Android Studio Plug-in allows Gradle tasks to be initiated and
managed from within Android Studio, the Gradle command-line wrapper
can still be used to build Android Studio-based projects, including on
systems on which Android Studio is not installed.
The configuration rules to build a project are declared in Gradle build files
and scripts based on the Groovy programming language.

65.2 Gradle and Android Studio
Gradle brings many powerful features to building Android application
projects. Some of the key features are as follows:
65.2.1 Sensible Defaults
Gradle implements a concept referred to as convention over configuration.
This means that Gradle has a predefined set of sensible default
configuration settings that will be used unless settings in the build files
override them. This means that builds can be performed with the minimum
configuration required by the developer. Changes to the build files are only
needed when the default configuration does not meet your build needs.
65.2.2 Dependencies
Another key area of Gradle functionality is that of dependencies. Consider,
for example, a module within an Android Studio project which triggers an
intent to load another module in the project. The first module has, in effect,
a dependency on the second module since the application will fail to build if
the second module cannot be located and launched at runtime. This
dependency can be declared in the Gradle build file for the first module so
that the second module is included in the application build, or an error
flagged if the second module cannot be found or built. Other examples of
dependencies are libraries and JAR files on which the project depends to
compile and run.
Gradle dependencies can be categorized as local or remote. A local
dependency references an item that is present on the local file system of the
computer system on which the build is being performed. A remote
dependency refers to an item that is present on a remote server (typically
referred to as a repository).
Remote dependencies are handled for Android Studio projects using
another project management tool named Maven. If a remote dependency is
declared in a Gradle build file using Maven syntax, then the dependency
will be downloaded automatically from the designated repository and
included in the build process. The following dependency declaration, for
example, causes the Core Kotlin Extensions library to be added to the
project from the Google repository:
implementation(libs.androidx.core.ktx)

65.2.3 Build Variants
In addition to dependencies, Gradle also provides build variant support for
Android Studio projects. This allows multiple variations of an application to
be built from a single project. Android runs on many different devices
encompassing a range of processor types and screen sizes. To target as wide
a range of device types and sizes as possible, it will often be necessary to
build several variants of an application (for example, one with a user
interface for phones and another for tablet-sized screens). Through the use
of Gradle, this is now possible in Android Studio.
65.2.4 Manifest Entries
Each Android Studio project has associated with it an AndroidManifest.xml
file containing configuration details about the application. Several manifest
entries can be specified in Gradle build files which are then auto-generated
into the manifest file when the project is built. This capability complements
the build variants feature, allowing elements such as the application version
number, application ID, and SDK version information to be configured
differently for each build variant.
65.2.5 APK Signing
The chapter “Creating, Testing, and Uploading an Android App Bundle”
covered creating a signed release APK file using the Android Studio
environment. It is also possible to include the signing information entered
through the Android Studio user interface within a Gradle build file to
generate signed APK files from the command line.
65.2.6 ProGuard Support
ProGuard is a tool included with Android Studio that optimizes, shrinks,
and obfuscates Java byte code to make it more efficient and harder to
reverse engineer (the method by which others can identify the logic of an
application through analysis of the compiled Java byte code). The Gradle
build files allow you to control whether or not ProGuard is run on your
application when it is built.

65.3 The Property and Settings Gradle Build File
The gradle build configuration consists of configuration, property, and
settings files. The gradle.properties file, for example, contains mostly

esoteric settings relating to the command-line flags used by the Java Virtual
Machine (JVM), whether or not the project uses the AndroidX libraries and
Kotlin coding style support. As a typical user, it is unlikely that you will
need to change any of these settings in this file.
The settings.gradle.kts file, on the other hand, defines which online
repositories are to be searched when the build system needs to download
and install any additional libraries and plugins required to build the project
and the project name. A typical settings.gradle.kts file will read as follows:
pluginManagement {
 repositories {
 google()
 mavenCentral()
 gradlePluginPortal()
 }
}
dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
 repositories {
 google()
 mavenCentral()
 }
}
rootProject.name = "ThemeDemo"
include(":app")

As with the gradle.properties file, it is unlikely that changes will need to be
made to this file.

65.4 The Top-level Gradle Build File
A completed Android Studio project contains everything needed to build an
Android application and consists of modules, libraries, manifest files, and
Gradle build files.
Each project contains one top-level Gradle build file. This file is listed as
build.gradle.kts (Project: <project name>) and can be found in the project
tool window as highlighted in Figure 65-1:

Figure 65-1
By default, the contents of the top-level Gradle build file reads as follows:
plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply false
}

In most situations, making any changes to this build file is unnecessary.

65.5 Module Level Gradle Build Files
An Android Studio application project is made up of one or more modules.
Take, for example, a hypothetical application project named GradleDemo
which contains modules named Module1 and Module2, respectively. In this
scenario, each module will require its own Gradle build file. In terms of the
project structure, these would be located as follows:
•Module1/build.gradle.kts
•Module2/build.gradle.kts
By default, the Module1 build.gradle.kts file would resemble that of the
following listing:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

android {
 namespace = "com.example.gradlesample"
 compileSdk = 34

 defaultConfig {
 applicationId = "com.example.gradlesample"
 minSdk = 26
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"

 testInstrumentationRunner =
"androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 isMinifyEnabled = false
 proguardFiles(
 getDefaultProguardFile("proguard-android-
optimize.txt"),
 "proguard-rules.pro"
)
 }
 }
 compileOptions {
 sourceCompatibility = JavaVersion.VERSION_1_8
 targetCompatibility = JavaVersion.VERSION_1_8
 }
 kotlinOptions {
 jvmTarget = "1.8"
 }
}

dependencies {
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.lifecycle.runtime.ktx)
 implementation(libs.androidx.activity.compose)
 implementation(platform(libs.androidx.compose.bom))
 implementation(libs.androidx.ui)
 implementation(libs.androidx.ui.graphics)
 implementation(libs.androidx.ui.tooling.preview)
 testImplementation(libs.junit)
 androidTestImplementation(libs.androidx.junit)
 androidTestImplementation(libs.androidx.espresso.core)
 androidTestImplementation(platform(libs.androidx.compose.bom))

 androidTestImplementation(libs.androidx.ui.test.junit4)
 debugImplementation(libs.androidx.ui.tooling)
 debugImplementation(libs.androidx.ui.test.manifest)
}

As is evident from the file content, the build file begins by declaring the use
of the Gradle Android application and Kotlin plug-ins:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

The android section of the file declares the project namespace and then
states the version of the SDK to be used when building Module1.
android {
 namespace = "com.example.gradlesample"
 compileSdk = 34

The items declared in the defaultConfig section define elements to be
generated into the module’s AndroidManifest.xml file during the build.
These settings, which may be modified in the build file, are taken from the
settings entered within Android Studio when the module was first created:
defaultConfig {
 applicationId = "com.example.gradlesample"
 minSdk = 26
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"

 testInstrumentationRunner =
"androidx.test.runner.AndroidJUnitRunner"
}

The buildTypes section contains instructions on whether and how to run
ProGuard on the APK file when a release version of the application is built:
buildTypes {
 release {
 isMinifyEnabled = false
 proguardFiles(
 getDefaultProguardFile("proguard-android-
optimize.txt"),
 "proguard-rules.pro"
)
 }

}

As currently configured, ProGuard will not be run when Module1 is built.
To enable ProGuard, the minifyEnabled entry must be changed from false to
true. The proguard-rules.pro file can be found in the module directory of
the project. Changes made to this file override the default settings in the
proguard-android.txt file, which is located in the Android SDK installation
directory under sdk/tools/proguard.
Since no debug buildType is declared in this file, the defaults will be used
(built without ProGuard, signed with a debug key, and debug symbols
enabled).
An additional section, entitled productFlavors, may also be included in the
module build file to enable multiple build variants to be created.
Next, directives are included to specify the version of the Java compiler to
be used when building the project:
compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
}
kotlinOptions {
 jvmTarget = "1.8"
}

Finally, the dependencies section lists any local and remote dependencies
on which the module depends. The dependency lines in the above example
file designate the Android libraries that need to be included from the
Android Repository:
dependencies {
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.lifecycle.runtime.ktx)
 implementation(libs.androidx.activity.compose)
.
.
}

Note that the dependency declarations include version numbers to indicate
which library version should be included.

65.6 Configuring Signing Settings in the Build File
The “Creating, Testing, and Uploading an Android App Bundle” chapter of

this book covered the steps involved in setting up keys and generating a
signed release APK file using the Android Studio user interface. These
settings may also be declared within a signingConfigs section of the
build.gradle.kts file. For example:
.
.
 defaultConfig {
.
.
 }
 signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword "your keystore password here"
 keyAlias "your key alias here"
 keyPassword "your key password here"
 }
 }
 buildTypes {
.
.
}

The above example embeds the key password information directly into the
build file. An alternative to this approach is to extract these values from
system environment variables:
signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword System.getenv("KEYSTOREPASSWD")
 keyAlias "your key alias here"
 keyPassword System.getenv("KEYPASSWD")
 }
}

Yet another approach is to configure the build file so that Gradle prompts
for the passwords to be entered during the build process:
signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword System.console().readLine
 ("\nEnter Keystore password: ")

 keyAlias "your key alias here"
 keyPassword System.console().readLIne("\nEnter Key
password: ")
 }
}

65.7 Running Gradle Tasks from the Command Line
Each Android Studio project contains a Gradle wrapper tool to invoke
Gradle tasks from the command line. This tool is located in the root
directory of each project folder. While this wrapper is executable on
Windows systems, it may need to have execute permission enabled on
Linux and macOS before it can be used. To enable execute permission,
open a terminal window, change directory to the project folder for which
the wrapper is needed, and execute the following command:
chmod +x gradlew

Once the file has execute permissions, the location of the file will either
need to be added to your $PATH environment variable or the name prefixed
by ./ to run. For example:
./gradlew tasks

Gradle views project building in terms of several different tasks. A full
listing of tasks that are available for the current project can be obtained by
running the following command from within the project directory
(remembering to prefix the command with a ./ if running on macOS or
Linux):
gradlew tasks

To build a debug release of the project suitable for device or emulator
testing, use the assembleDebug option:
gradlew assembleDebug

Alternatively, to build a release version of the application:
gradlew assembleRelease

65.8 Summary
For the most part, Android Studio performs application builds in the
background without any intervention from the developer. This build process
is handled using the Gradle system, an automated build toolkit designed to
allow how projects are built to be configured and managed through a set of
build configuration files. While the default behavior of Gradle is adequate

for many basic project build requirements, the need to configure the build
process is inevitable with more complex projects. This chapter has provided
an overview of the Gradle build system and configuration files within the
context of an Android Studio project.

Index
Symbols
?. 107
2D graphics 387
@Composable 24, 155
@ExperimentalFoundationApi 334
:: operator 109
@Preview 25
showSystemUi 25

A
acknowledgePurchase() method 581
Activity Manager 96
adb
command-line tool 73
connection testing 79
device pairing 77
enabling on Android devices 73
Linux configuration 76
list devices 73
macOS configuration 74
overview 73
restart server 74
testing connection 79
WiFi debugging 77
Windows configuration 75
Wireless debugging 77
Wireless pairing 77

AlertDialog 159
align() 233
alignByBaseline() 225
Alignment.Bottom 219, 223
Alignment.BottomCenter 231
Alignment.BottomEnd 231
Alignment.BottomStart 231

Alignment.Center 231
Alignment.CenterEnd 231
Alignment.CenterHorizontally 219
Alignment.CenterStart 231
Alignment.CenterVertically 219, 223
Alignment.End 219
alignment lines 255
Alignment.Start 219
Alignment.Top 219, 223
Alignment.TopCenter 231
Alignment.TopEnd 231
Alignment.TopStart 231
Anchored Draggable Components 499
anchoredDraggable() modifier 499
AnchoredDraggableState 500
anchor points 499
DraggableAnchors 500
threshold 499

anchoredDraggable() modifier 499, 508
orientation 499
reverseDirection 499
state 499

AnchoredDraggableState 500
anchors 500
animationSpec 501
initialValue 500
positionalThreshold 500
requiredOffset() 501, 507
velocityThreshold 501

Android
architecture 93
runtime 94
SDK Packages 6

android.app 94
Android Architecture Components 407
android.content 94
android.database 94

Android Debug Bridge. See ADB
Android Development
System Requirements 3

android.graphics 95
android.hardware 95
android.hardware.camera 539
Android Jetpack 407
Android Libraries 94
android.media 95
Android Monitor tool window 46
Android Native Development Kit 95
android.net 95
android.opengl 95
android.os 95
android.print 95
android.provider 95
Android SDK Location
identifying 10

Android SDK Manager 8, 10
Android SDK Packages
version requirements 8

Android SDK Tools
command-line access 9
Linux 11
macOS 11
Windows 7 10
Windows 8 10

Android Software Stack 93
Android Studio
Animation Inspector 385
Asset Studio 190
changing theme 71
Database Inspector 455
downloading 3
Editor Window 66
installation 4
Layout Editor 149

Linux installation 5
macOS installation 4
Navigation Bar 65
Project tool window 66
setup wizard 5
Status Bar 66
Toolbar 65
Tool window bars 66
tool windows 66
updating 12
Welcome Screen 63
Windows installation 4

Android Support Library, 407
android.text 95
android.util 95
android.view 95

Android Virtual Device. See AVD
overview 39

Android Virtual Device Manager 39
android.webkit 95
android.widget 95
AndroidX libraries 612
animate as state functions 371
animateColorAsState() function 371, 375, 377
animateDpAsState() function 377, 382
AnimatedVisibility 359
animation specs 363
enter and exit animations 362
expandHorizontally() 362
expandIn() 362
expandVertically() 362
fadeIn() 362
fadeOut() 363
MutableTransitionState 367
scaleIn() 363
scaleOut() 363
shrinkHorizontally() 363

shrinkOut() 363
shrinkVertically() 363
slideIn() 363
slideInHorizontally() 363
slideInVertically() 363
slideOut() 363
slideOutHorizontally() 363
slideOutVertically() 363

animateEnterExit() modifier 366
animateFloatAsState() function 372
animateScrollTo() function 310, 321
animateScrollToItem(index: Int) 310
animateScrollTo(value: Int) 309
Animation
auto-starting 366
combining animations 382
inspector 385
keyframes 381
KeyframesSpec 381
motion 377
spring effects 380
state-based 371
visibility 359

Animation damping
DampingRatioHighBouncy 380
DampingRatioLowBouncy 380
DampingRatioMediumBouncy 380
DampingRatioNoBouncy 380

Animation Inspector 385
AnimationSpec 363
tween() function 364

Animation specs 363
Animation stiffness
StiffnessHigh 381
StiffnessLow 381
StiffnessMedium 381
StiffnessMediumLow 381

StiffnessVeryLow 381
annotated strings 207, 403
append function 207
buildAnnotatedString function 207
ParagraphStyle 208
SpanStyle 207

API Key 549
APK analyzer 574
APK file 567
APK File
analyzing 574

APK Signing 612
APK Wizard dialog 566
App Bundles 563
creating 567
overview 563
revisions 573
uploading 570

append function 207
App Inspector 67
Application
stopping 46

Application Framework 96
Arrangement.Bottom 221
Arrangement.Center 220, 221
Arrangement.End 220
Arrangement.SpaceAround 222
Arrangement.SpaceBetween 222
Arrangement.SpaceEvenly 222
Arrangement.Start 220
Arrangement.Top 221
ART 94
as 109
as? 109
asFlow() builder 513
Asset Studio 190
asSharedFlow() 525

asStateFlow() 523
async 301
AVD
Change posture 61
cold boot 58
command-line creation 39
creation 39
device frame 50
Display mode 60
launch in tool window 50
overview 39
quickboot 58
Resizable 60
running an application 42
Snapshots 57
standalone 47
starting 41
Startup size and orientation 42

B
background modifier 204
barriers 285
Barriers 270
constrained views 270

baseline
alignment 223

baselines 257
BaseTextField 158
BillingClient 582
acknowledgePurchase() method 581
consumeAsync() method 581
getPurchaseState() method 581
initialization 578, 589
launchBillingFlow() method 580
queryProductDetailsAsync() method 580
queryPurchasesAsync() method 582
startConnection() method 579

BillingResult 597

getDebugMessage() 597

Bill of Materials. See BOM
Biometric Authentication 537
callbacks 542
overview 537
tutorial 537

Biometric library 538
BiometricManager 537
BiometricPrompt 537
Bitwise AND 115
Bitwise Inversion 114
Bitwise Left Shift 116
Bitwise OR 115
Bitwise Right Shift 116
Bitwise XOR 115
BOM 26
build.gradle.kts 26
compose-bom 26
library version mapping 27

Boolean 102
BottomNavigation 159, 463
BottomNavigationItem 463
Box 158
align() 233
alignment 231
Alignment.BottomCenter 231
Alignment.BottomEnd 231
Alignment.BottomStart 231
Alignment.Center 231
Alignment.CenterEnd 231
Alignment.CenterStart 231
Alignment.TopCenter 231
Alignment.TopEnd 231
Alignment.TopStart 231
BoxScope 233
contentAlignment 231
matchParentSize() 233

overview 229
tutorial 229

BoxScope
align() 233
matchParentSize() 233
modifiers 233

BoxWithConstraints 158
Brush Text Styling 208
buffer() operator 519
buildAnnotatedString function 207
Build tool window 68
Build Variants , 68
tool window 68

Button 159
by keyword 164

C
CAMERA permission 539
CameraUpdateFactory class
methods 559

cancelAndJoin() 302
cancelChildren() 302
Canvas 158
DrawScope 387
inset() function 391
overview 387
size 387

Card 159
example 314

C/C++ Libraries 95
centerAround() function 274
chain head 268
chaining modifiers 199
chains 268
chain styles 268
Char 102
Checkbox 159, 188
Circle class 545

file:///tmp/calibre_4.99.5_tmp_3u4uqnnm/fzgdb1gu_pdf_out/OEBPS/Index.xhtml

CircleShape 233
CircularProgressIndicator 159
clickable 204
clip 204
Clip Art 191
clip() modifier 233
CircleShape 233
CutCornerShape 233
RectangleShape 233
RoundedCornerShape 233

close() function 399
Code completion 84
Code Editor
basics 81
Code completion 84
Code Generation 86
Code Reformatting 89
Document Tabs 82
Editing area 82
Gutter Area 82
Live Templates 90
Splitting 84
Statement Completion 86
Status Bar 83

Code Generation 86
Code Reformatting 89
code samples
download 1

Coil
rememberImagePainter() function 328

cold boot 58
Cold flow 523
convert to hot 526

collectLatest() operator 518
collect() operator 514
ColorFilter 402
color filtering 402

Column 158
Alignment.CenterHorizontally 219
Alignment.End 219
Alignment.Start 219
Arrangement.Bottom 221
Arrangement.Center 221
Arrangement.SpaceAround 222
Arrangement.SpaceBetween 222
Arrangement.SpaceEvenly 222
Arrangement.Top 221
Layout alignment 218
list 307
list tutorial 317
overview 216
scope 223
scope modifiers 223
spacing 222
tutorial 215
verticalArrangement 220

Column lists 307
ColumnScope 223
Modifier.align() 223
Modifier.alignBy() 223
Modifier.weight() 223

combine() operator 522
combining modifiers 204
Communicating Sequential Processes 299
Companion Objects 139
components 155
Composable
adding a 30
previewing 32

Composable function
syntax 156

composable functions 155
composables
add modifier support 200

Composables
Foundation 158
Material 158

Compose
before 149
components 155
data-driven 150
declarative syntax 149
functions 155
layout overview 251
modifiers 197
overview 149
state 150

compose-bom 26
compose() method 459
CompositionLocal
example 175
overview 173
state 176, 177
syntax 174

compositionLocalOf() function 174
conflate() operator 518
constrainAs() modifier function 273
constrain() function 290
Constraint bias 279
Constraint Bias 267
ConstraintLayout 158
adding constraints 274
barriers 285
Barriers 270
basic constraints 276
centerAround() function 274
chain head 268
chains 268
chain styles 268
constrainAs() function 273
constrain() function 290

Constraint bias 279
Constraint Bias 267
Constraint margins 279
Constraints 265
constraint sets 289
createEndBarrier() 285, 286
createHorizontalChain() 283
createRefFor() function 290
createRef() function 273
createRefs() function 273
createStartBarrier() 285
createTopBarrier() 285
createVerticalChain() 283
creating chains 283
generating references 273
guidelines 284
Guidelines 269
how to call 273
layout() modifier 290
linkTo() function 274
Margins 266
Opposing constraints 277
Opposing Constraints 266, 281
overview of 265
Packed chain 269
reference assignment 273
Spread chain 268
Spread inside chain 268
Weighted chain 268
Widget Dimensions 269

Constraint margins 279
constraints 260
constraint sets 289
consumeAsync() method 581
ConsumeParams 593
contentAlignment 231
Content Provider 96

Coroutine Builders 301
async 301
coroutineScope 301
launch 301
runBlocking 301
supervisorScope 301
withContext 301

Coroutine Dispatchers 300
Coroutines 310, 511
channel communication 303
coroutine scope 310
CoroutineScope 310
GlobalScope 300
LaunchedEffect 304
rememberCoroutineScope() 310
rememberCoroutineScope() function 300
SideEffect 304
Side Effects 304
Suspend Functions 300
suspending 302
ViewModelScope 300
vs Threads 299
vs. Threads 299

coroutineScope 301
CoroutineScope 300, 310
rememberCoroutineScope() 310

createEndBarrier() 285
createHorizontalChain() 283
createRefFor() function 290
createRef() function 273
createRefs() 273
createStartBarrier() 285
createTopBarrier() 285
createVerticalChain() 283
cross axis arrangement 249
Crossfading 367
currentBackStackEntryAsState() method 464, 480

Custom Accessors 137
Custom layout 259
building 259
constraints 260
Layout() composable 260
measurables 260
overview 259
Placeable 260
syntax 259

custom layout modifiers 251
alignment lines 255
baselines 257
creating 253
default position 253

Custom layouts
overview 251
tutorial 251

Custom Theme
building 603

CutCornerShape 233

D
DampingRatioHighBouncy 380
DampingRatioLowBouncy 380
DampingRatioMediumBouncy 380
DampingRatioNoBouncy 380
Dark Theme 46
enable on device 46

dashPathEffect() method 389
Data Access Object (DAO) 430, 443
Data Access Objects 433
Database Inspector 437, 455
live updates 455
SQL query 455

Database Rows 424
Database Schema 423
Database Tables 423
data-driven 150

DDMS 46
Debugging
enabling on device 73

declarative syntax 149
Default Function Parameters 129
default position 253
derivedStateOf 337
Device File Explorer 68
device frame 50
Device Mirroring 79
enabling 79

device pairing 77
Dispatchers.Default 301
Dispatchers.IO 301
Dispatchers.Main 300
DraggableAnchors 500
drag gestures 488
drawable
folder 190

drawArc() function 398
drawCircle() function 394
drawImage() function 401
Drawing
arcs 398
circle 394
close() 399
dashed lines 389
dashPathEffect() 389
drawArc() 398
drawImage() 401
drawPath() 399
drawPoints() 400
drawRect() 389
drawRoundRect() 392
gradients 395
images 401
line 387

oval 394
points 400
rectangle 389
rotate() 393
rotation 393

Drawing text 403
drawLine() function 388
drawPath() function 399
drawPoints() function 400
drawRect() function 389
drawRoundRect() function 392
DrawScope 387
drawText() function 403, 404
DropdownMenu 159
DROP_LATEST 525
DROP_OLDEST 525
DurationBasedAnimationSpec 363
Dynamic colors
enabling in Android 609

E
Elvis Operator 109
emit 155
Empty Compose Activity
template 16

Emulator
battery 56
cellular configuration 56
configuring fingerprints 58
directional pad 56
extended control options 55
Extended controls 55
fingerprint 56
location configuration 56
phone settings 56
Resizable 60
resize 55
rotate 54

Screen Record 57
Snapshots 57
starting 41
take screenshot 54
toolbar 53
toolbar options 53
tool window mode 59
Virtual Sensors 57
zoom 54

enablePendingPurchases() method 581
enabling ADB support 73
enter animations 362
EnterTransition.None 366
Errata 2
Escape Sequences 103
exit animations 362
ExitTransition.None 366
expandHorizontally() 362
expandIn() 362
expandVertically() 362
Extended Control
options 55

F
fadeIn() 362
fadeOut() 363
Files
switching between 82

fillMaxHeight 204
fillMaxSize 204
fillMaxWidth 204
filter() operator 516
findStartDestination() method 464
Fingerprint
emulation 58

Fingerprint authentication
device configuration 538
overview 537

steps to implement 537
tutorial 537

firstVisibleItemIndex 312
flatMapConcat() operator 521
flatMapMerge() operator 521
Float 102
FloatingActionButton 159
Flow 511
asFlow() builder 513
asSharedFlow() 525
asStateFlow() 523
backgroudn handling 533
buffering 518
buffer() operator 519
builder 513
cold 523
collect() 517
collecting data 517
collectLatest() operator 518
combine() operator 522
conflate() operator 518
emit() 513
emitting data 513
filter() operator 516
flatMapConcat() operator 521
flatMapMerge() operator 521
flattening 520
flowOf() builder 513
flow of flows 520
fold() operator 520
hot 523
MutableSharedFlow 525
MutableStateFlow 523
onEach() operator 522
reduce() operator 519, 520
repeatOnLifecycle 534
SharedFlow 524

shareIn() function 526
single() operator 518
StateFlow 523
transform() operator 516
try/finally 517
zip() operator 522

flow builder 513
FlowColumn 237, 243, 248
cross axis arrangement 249
maxItemsInEachColumn 238
tutorial 243

Flow layout
arrangement 246

Flow layouts
cross axis arrangement 239
fillMaxHeight() 241
fillMaxWidth() 241
Fractional sizing 241
horizontalArrangement 249
Item alignment 240
item weights 249
main axis arrangement 238
verticalArrangement 249
weight 240

flowOf() builder 513
flow of flows 520
FlowRow 237, 243, 245
cross axis arrangement 249
horizontalArrangement 246
item alignment 246
maxItemsInEachRow 238
tutorial 243

Flows
combining 522
Introduction to 511

FontWeight 31
forEachIndexed 249

forEach loop 262
Forward-geocoding 551
Foundation components 158
Foundation Composables 158
FragmentActivity 539
Function Parameters
variable number of 129

Functions 127

G
Geocoder object 552
Geocoding 551
Gestures 485
click 485
drag 488
horizontalScroll() 492
overview 485
pinch gestures 494
PointerInputScope 487
rememberScrollableState() function 491
rememberScrollState() 492
rememberTransformableState() 494
rotation gestures 495
scrollable() modifier 491
scroll modifiers 492
taps 487
translation gestures 496
tutorial 485
verticalScroll() 492

getDebugMessage() 597
getFromLocation() method 552
getPurchaseState() method 581
getStringArray() method 325
GlobalScope 300
GNU/Linux 94
Google Cloud
billing account 546
new project 547

GoogleMap 545
Google Maps Android API 545
Controlling the Map Camera 559
displaying controls 555
Map Markers 558
overview 545

Google Maps SDK 545
API Key 549
Credentials 548
enabling 548
Maps SDK for Android 548

Google Play App Signing 566
Google Play Billing Library 577
Google Play Console 586
Creating an in-app product 586
License Testers 587

Google Play Developer Console 564
Google Play store 17
Gradient drawing 395
Gradle
APK signing settings 616
Build Variants 612
command line tasks 617
dependencies 611
Manifest Entries 612
overview 611
sensible defaults 611

Gradle Build File
top level 613

Gradle Build Files
module level 614

gradle.properties file 612
Graphics
drawing 387

Grid
overview 307

groupBy() function 311

guidelines 284

H
HAL 94
Hardware Abstraction Layer 94
Higher-order Functions 131
horizontalArrangement 220, 222, 249
HorizontalPager 349
animateScrollToPage() 351
scrollToPage() 351
state 350
syntax 349

horizontalScroll() 492
Hot flows 523

I
Image 158
add drawable resource 190
painterResource method 192

Immutable Variables 104
INAPP 582
In-App Products 578
In-App Purchasing 585
acknowledgePurchase() method 581
BillingClient 578
BillingResult 597
consumeAsync() method 581
ConsumeParams 593
Consuming purchases 592
enablePendingPurchases() method 581
getPurchaseState() method 581
Google Play Billing Library 577
launchBillingFlow() method 580
Libraries 585
newBuilder() method 578
onBillingServiceDisconnected() callback 590
onBillingServiceDisconnected() method 579
onBillingSetupFinished() listener 590

onProductDetailsResponse() callback 590
Overview 577
ProductDetail 580
ProductDetails 591
products 578
ProductType 582
Purchase Flow 592
PurchaseResponseListener 582
PurchasesUpdatedListener 581
PurchaseUpdatedListener 591
purchase updates 591
queryProductDetailsAsync() 590
queryProductDetailsAsync() method 580
queryPurchasesAsync() 593
queryPurchasesAsync() method 582
startConnection() method 579
subscriptions 578
tutorial 585

Initializer Blocks 137
In-Memory Database 436
Inner Classes 138
inset() function 391
InstrinsicSize.Max 297
InstrinsicSize.Min 297, 298
intelligent recomposition 161
IntelliJ IDEA 97
Interactive mode 36
Intrinsic measurements 293
IntrinsicSize 293
intrinsic measurements 293
Max 293
Min 293
tutorial 295

is 109
isInitialized property 109
isSystemInDarkTheme() function 176
item() function 308

items() function 308
itemsIndexed() function 308

J
Java
convert to Kotlin 97

Java Native Interface 95
JetBrains 97
Jetpack Compose
see Compose 149

join() 302

K
keyboardOptions 420
Keyboard Shortcuts 69
keyframe 364
keyframes 381
KeyframesSpec 381

keyframes() function 381
KeyframesSpec 381
Keystore File
creation 566

Kotlin
accessing class properties 137
and Java 97
arithmetic operators 111
assignment operator 111
augmented assignment operators 112
bitwise operators 114
Boolean 102
break 122
breaking from loops 121
calling class methods 137
Char 102
class declaration 133
class initialization 134
class properties 134
Companion Objects 139

conditional control flow 123
continue labels 122
continue statement 122
control flow 119
convert from Java 97
Custom Accessors 137
data types 101
decrement operator 112
Default Function Parameters 129
defining class methods 134
do ... while loop 121
Elvis Operator 109
equality operators 113
Escape Sequences 103
expression syntax 111
Float 102
Flow 511
for-in statement 119
function calling 128
Functions 127
groupBy() function 311
Higher-order Functions 131
if ... else ... expressions 124
if expressions 123
Immutable Variables 104
increment operator 112
inheritance 143
Initializer Blocks 137
Inner Classes 138
introduction 97
Lambda Expressions 130
let Function 107
Local Functions 128
logical operators 113
looping 119
Mutable Variables 104
Not-Null Assertion 107

Nullable Type 106
Overriding inherited methods 146
playground 98
Primary Constructor 134
properties 137
range operator 114
Safe Call Operator 106
Secondary Constructors 134
Single Expression Functions 128
String 102
subclassing 143
subStringBefore() method 327
Type Annotations 105
Type Casting 109
Type Checking 109
Type Inference 105
variable parameters 129
when statement 124
while loop 120

L
Lambda Expressions 130
lateinit 108
Late Initialization 108
launch 301
launchBillingFlow() method 580
LaunchedEffect 304
launchSingleTop 461
Layout alignment 218
Layout arrangement 220
Layout arrangement spacing 222
Layout components 158
Layout() composable 260
Layout Editor 149
Layout Inspector 68
layout modifier 204
layout() modifier 290
LazyColumn 158, 307

creation 308
scroll position detection 312

LazyHorizontalStaggeredGrid 341, 346
syntax 342

LazyList
tutorial 323

Lazy lists 307
Scrolling 309

LazyListScope 308
item() function 308
items() function 308
itemsIndexed() function 308
stickyHeader() function 310

LazyListState 312
firstVisibleItemIndex 312

LazyRow 158, 307
creation 308
scroll position detection 312

LazyVerticalGrid 307
adaptive mode 312
fixed mode 312

LazyVerticalStaggeredGrid 341, 344
syntax 341

let Function 107
libc 95
libs.versions.toml file 152
License Testers 587
Lifecycle.State.CREATED 534
Lifecycle.State.DESTROYED 534
Lifecycle.State.INITIALIZED 534
Lifecycle.State.RESUMED 534
Lifecycle.State.STARTED 534
LinearProgressIndicator 159
lineTo() 399
lineTo() function 399
linkTo() function 274
Linux Kernel 94

list devices 73
Lists
clickable items 331
enabling scrolling 309
overview 307

literals
live editing 32

LiveData 410
observeAsState() 411

Live Edit 43
disabling 32
enabling 32
of literals 32

Live Templates 90
Local Functions 128
Location Manager 96
Logcat
tool window 67

M
MainActivity.kt file 20
template code 29

map method 260
Maps 545
MAP_TYPE_HYBRID 554
MAP_TYPE_NONE 554
MAP_TYPE_NORMAL 554
MAP_TYPE_SATELLITE 554
MAP_TYPE_TERRAIN 554
Marker class 545
matchParentSize() 233
Material Composables 158
Material Design 2 599
Material Design 2 Theming 599
Material Design 3 599
Material Design components 159
Material Theme Builder 603
Material You 599

maxValue property 321
measurables 260
measure() function 404
measureTimeMillis() function 518
Memory Indicator 83
Minimum SDK
setting 17

ModalDrawer 159
Modern Android architecture 407
modifier
adding to composable 200
chaining 199
combining 204
creating a 198
ordering 200
tutorial 197

Modifier.align() 223
Modifier.alignBy() 223
modifiers
build-in 204
overview 197

Modifier.weight() 223
move() method 559
multiple devices
testing app on 45

MutableLiveData 410
MutableSharedFlow 525
MutableState 162
MutableStateFlow 523
mutableStateOf function 155
mutableStateOf() function 163
MutableTransitionState 367
Mutable Variables 104
My Location Layer 545

N
NavHost 459, 471, 479
NavHostController 457, 471, 479

navigate() method 461
Navigation 457
BottomNavigation 463
BottomNavigationItem 463
compose() method 459
currentBackStackEntryAsState() method 464
declaring routes 468
findStartDestination() method 464
graph 459
launchSingleTop 461
NavHost 459, 471
NavHostController 457, 471
navigate() method 461
navigation graph 457
NavType 462
overview 457
passing arguments
popUpTo() method 461
route 459
stack 457, 458
start destination 459
tutorial 467

Navigation Architecture Component 457
NavigationBar 480
NavigationBarItem 481
Navigation bars 463
navigation graph 457, 459
Navigation Host 459
NavType 462
newBuilder() method 578
Notifications Manager 96
Not-Null Assertion 107
Nullable Type 106

O
observeAsState() 411
Offset() function 388
offset modifier 204

onBillingServiceDisconnected() callback 590
onBillingServiceDisconnected() method 579
onBillingSetupFinished() listener 590
onCreate() method 24
onEach() operator 522
onProductDetailsResponse() callback 590
OpenJDK 3
Opposing constraints 277
OutlinedButton 337
OutlinedTextField 413

P
Package Manager 96
Package name 17
Packed chain 269
padding 204
Pager 349
animateScrollToPage() 351
scrollToPage() 351
state 350
syntax , 238

Pager state 350
painterResource method 192
ParagraphStyle 208
PathEffect 389
pinch gestures 494
Placeable 260
PointerInputScope 487
drag gestures 490
tap gestures 487

popUpTo() method 461
Preview configuration picker 35
Preview panel 25
build and refresh 25
Interactive mode 36
settings 35

Primary Constructor 134
Problems

tool window 68
ProductDetail 580
ProductDetails 591
ProductType 582
Profiler
tool window 68

proguard-rules.pro file 616
ProGuard Support 612
project
create new 16
package name 17

Project tool window 19, 67
Android mode 19

PurchaseResponseListener 582
PurchasesUpdatedListener 581, 591

Q
queryProductDetailsAsync() 590
queryProductDetailsAsync() method 580
queryPurchaseHistoryAsync() method 582
queryPurchasesAsync() 593
queryPurchasesAsync() method 582
quickboot snapshot 58
Quick Documentation 89

R
RadioButton 159
Random
nextInt() 244

Random.nextInt() method 343, 244
Range Operator 114
Recent Files Navigation 70
recomposition 150
intelligent recomposition 161
overview 161

RectangleShape 233
reduce() operator 519, 520
relativeLineTo() function 399

Release Preparation 563
rememberCoroutineScope() function 300, 310, 319
rememberDraggableState() function 488
rememberImagePainter() function 328
remember keyword 163
rememberPagerState 350
rememberSaveable keyword 170
rememberScrollableState() function 491
rememberScrollState() 492
rememberScrollState() function 309, 319
rememberTextMeasurer() function 403
rememberTransformableState() 494
rememberTransformationState() function 494
repeatable() function 365
RepeatableSpec
repeatable() 365

RepeatMode.Reverse 365
repeatOnLifecycle 534
Repository
tutorial 439

requiredOffset() 501, 507
Resizable Emulator 60
Resource Manager , 67
Reverse-geocoding 551
Reverse Geocoding 551
Room
Data Access Object (DAO) 430
entities 430, 431
In-Memory Database 436
Repository 429

Room Database 430
tutorial 439

Room Database Persistence 429
Room Persistence Library 427
rotate modifier 204
rotation gestures 495
RoundedCornerShape 233

file:///tmp/calibre_4.99.5_tmp_3u4uqnnm/fzgdb1gu_pdf_out/OEBPS/Index.xhtml

Row 158
Alignment.Bottom 219
Alignment.CenterVertically 219
Alignment.Top 219
Arrangement.Center 220
Arrangement.End 220
Arrangement.SpaceAround 222
Arrangement.SpaceBetween 222
Arrangement.SpaceEvenly 222
Arrangement.Start 220
horizontalArrangement 220
Layout alignment 218
Layout arrangement 220
list 307
list example 322
overview 216
scope 223
scope modifiers 223
spacing 222
tutorial 215

Row lists 307
RowScope 223
Modifier.align() 223
Modifier.alignBy() 223
Modifier.alignByBaseline() 223
Modifier.paddingFrom() 224
Modifier.weight() 224

Run
tool window 67

runBlocking 301
Running Devices
tool window 79

S
Safe Call Operator 106
Scaffold 159, 481
bottomBar 482
TopAppBar 482

scaleIn() 363
scale modifier 204
scaleOut() 363
Scope modifiers
weights 227

scrollable modifier 204
scrollable() modifier 491, 492
Scroll detection
example 333

scroll modifiers 492
ScrollState
maxValue property 321
rememberScrollState() function 309

scrollToItem(index: Int) 310
scrollToPage() 351
scrollTo(value: Int) 309
SDK Packages 6
SDK settings 17
Secondary Constructors 134
Secure Sockets Layer (SSL) 95
settings.gradle file 612
settings.gradle.kts file 612
Shape 159
Shapes
CircleShape 233
CutCornerShape 233
RectangleShape 233
RoundedCornerShape 233

SharedFlow 524, 529
backgroudn handling 533
DROP_LATEST 525
DROP_OLDEST 525
in ViewModel 530
repeatOnLifecycle 534
SUSPEND 525
tutorial 529

shareIn() function 526

SharingStarted.Eagerly() 526
SharingStarted.Lazily() 526
SharingStarted.WhileSubscribed() 526
showSystemUi 25, 318
shrinkHorizontally() 363
shrinkOut() 363
shrinkVertically() 363
SideEffect 304
Side Effects 304
single() operator 518
size modifier 204
slideIn() 363
slideInHorizontally() 363
slideInVertically() 363
slideOut() 363
slideOutHorizontally() 363
slideOutVertically() 363
Slider 159
Slider component 33
Slot APIs
calling 182
declaring 182
overview 181
tutorial 185

Snackbar 159
Snapshots
emulator 57

SpanStyle 207
Spread chain 268
Spread inside chain 268
Spring effects 380
spring() function 380
SQL 424
SQLite 423
AVD command-line use 425
Columns and Data Types 423
overview 424

Primary keys 424
Staggered Grids 341
startConnection() method 579
start destination 459
state 150
basics of 161
by keyword 164
configuration changes 169
declaring 162
hoisting 167
MutableState 162
mutableStateOf() function 163
overview 161
remember keyword 163
rememberSaveable 170
Unidirectional data flow 165

StateFlow 523
stateful 161
stateful composables 155
State hoisting 167
stateless composables 155
Statement Completion 86
staticCompositionLocalOf() function 174, 176
Status Bar Widgets 83
Memory Indicator 83

stickyHeader 334
stickyHeader() function 310
Sticky headers
adding 334
example 333
stickyHeader() function 310

StiffnessHigh 381
StiffnessLow 381
StiffnessMedium 381
StiffnessMediumLow 381
StiffnessVeryLow 381
String 102

Structure
tool window 68

Structured Query Language 424
Structure tool window 68
SUBS 582
subscriptions 578
subStringBefore() method 327
supervisorScope 301
Surface component 23, 231
SUSPEND 525
Suspend Functions 300
Switch 159
Switcher 70
system requirements 3

T
Telephony Manager 96
Terminal
tool window 68

Text 159
Text component 156
TextField 159
TextMeasurer 403
measure() function 404

TextStyle 420
Theme
building a custom 603

Theming 599
tutorial 605

TODO
tool window 69

Tool window bars 66
Tool windows 66
TopAppBar 159, 482
trailingIcon 420
TransformableState 494
transform() operator 516
translation gestures 496

try/finally 517
tween() function 364
Type Annotations 105
Type Casting 109
Type Checking 109
Type Inference 105
Type.kt file 602

U
UI Controllers 408
UI_NIGHT_MODE_YES 177
UiSettings class 545
Unidirectional data flow 165
updateTransition() function 372, 377, 382
upload key 566
USB connection issues
resolving 76

USE_BIOMETRIC permission 539

V
Vector Asset
add to project 190

velocityThreshold 501
Version catalog 151
dependencies 153
libraries 152
libs.versions.toml file 152
plugins 152
versions 152

verticalArrangement 220, 222
VerticalPager
animateScrollToPage() 351
scrollToPage() 351
state 350
syntax , 238

verticalScroll() 492
verticalScroll() modifier 319
ViewModel

file:///tmp/calibre_4.99.5_tmp_3u4uqnnm/fzgdb1gu_pdf_out/OEBPS/Index.xhtml

example 414
lifecycle library 410, 414, 512, 529
LiveData 410
observeAsState() 411
overview 407
tutorial 413
using state 408
viewModel() 410, 416, 450
ViewModelProvider Factory 450
ViewModelStoreOwner 450

viewModel() function 410, 416, 450
ViewModelProvider Factory 450
ViewModelScope 300
ViewModelStoreOwner 450
View System 96
Virtual Device Configuration dialog 40
Virtual Sensors 57
Visibility animation 359

W
Weighted chain 268
Welcome screen 63
while Loop 120
Widget Dimensions 269
WiFi debugging 77
Wireless debugging 77
Wireless pairing 77
withContext 301

X
XML resource
reading an 323

Z
zip() operator 522

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata
	1.6 Find more books
	1.7 Authors wanted

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Enabling the New Android Studio UI
	3.6 Previewing the example project
	3.7 Reviewing the main activity
	3.8 Preview updates
	3.9 Bill of Materials and the Compose version
	3.10 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Adjusting preview settings
	4.10 Testing in interactive mode
	4.11 Completing the project
	4.12 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the Emulator
	5.3 Running the Application in the AVD
	5.4 Real-time updates with Live Edit
	5.5 Running on Multiple Devices
	5.6 Stopping a Running Application
	5.7 Supporting Dark Theme
	5.8 Running the Emulator in a Separate Window
	5.9 Removing the Device Frame
	5.10 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional Pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual Sensors
	6.5.11 Snapshots
	6.5.12 Record and Playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with Snapshots
	6.7 Configuring Fingerprint Emulation
	6.8 The Emulator in Tool Window Mode
	6.9 Creating a Resizable Emulator
	6.10 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome Screen
	7.2 The Menu Bar
	7.3 The Main Window
	7.4 The Tool Windows
	7.5 The Tool Window Menus
	7.6 Android Studio Keyboard Shortcuts
	7.7 Switcher and Recent Files Navigation
	7.8 Changing the Android Studio Theme
	7.9 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An Overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB Debugging ADB on Android Devices
	8.2.1 macOS ADB Configuration
	8.2.2 Windows ADB Configuration
	8.2.3 Linux adb Configuration

	8.3 Resolving USB Connection Issues
	8.4 Enabling Wireless Debugging on Android Devices
	8.5 Testing the adb Connection
	8.6 Device Mirroring
	8.7 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio Editor
	9.2 Splitting the Editor Window
	9.3 Code Completion
	9.4 Statement Completion
	9.5 Parameter Information
	9.6 Parameter Name Hints
	9.7 Code Generation
	9.8 Code Folding
	9.9 Quick Documentation Lookup
	9.10 Code Reformatting
	9.11 Finding Sample Code
	9.12 Live Templates
	9.13 Summary

	10. An Overview of the Android Architecture
	10.1 The Android Software Stack
	10.2 The Linux Kernel
	10.3 Hardware Abstraction Layer
	10.4 Android Runtime – ART
	10.5 Android Libraries
	10.5.1 C/C++ Libraries

	10.6 Application Framework
	10.7 Applications
	10.8 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. A Guide to Gradle Version Catalogs
	19.1 Library and Plugin Dependencies
	19.2 Project Gradle Build File
	19.3 Module Gradle Build Files
	19.4 Version Catalog File
	19.5 Adding Dependencies
	19.6 Library Updates
	19.7 Summary

	20. Composable Functions Overview
	20.1 What is a composable function?
	20.2 Stateful vs. stateless composables
	20.3 Composable function syntax
	20.4 Foundation and Material composables
	20.5 Summary

	21. An Overview of Compose State and Recomposition
	21.1 The basics of state
	21.2 Introducing recomposition
	21.3 Creating the StateExample project
	21.4 Declaring state in a composable
	21.5 Unidirectional data flow
	21.6 State hoisting
	21.7 Saving state through configuration changes
	21.8 Summary

	22. An Introduction to Composition Local
	22.1 Understanding CompositionLocal
	22.2 Using CompositionLocal
	22.3 Creating the CompLocalDemo project
	22.4 Designing the layout
	22.5 Adding the CompositionLocal state
	22.6 Accessing the CompositionLocal state
	22.7 Testing the design
	22.8 Summary

	23. An Overview of Compose Slot APIs
	23.1 Understanding slot APIs
	23.2 Declaring a slot API
	23.3 Calling slot API composables
	23.4 Summary

	24. A Compose Slot API Tutorial
	24.1 About the project
	24.2 Creating the SlotApiDemo project
	24.3 Preparing the MainActivity class file
	24.4 Creating the MainScreen composable
	24.5 Adding the ScreenContent composable
	24.6 Creating the Checkbox composable
	24.7 Implementing the ScreenContent slot API
	24.8 Adding an Image drawable resource
	24.9 Coding the TitleImage composable
	24.10 Completing the MainScreen composable
	24.11 Previewing the project
	24.12 Summary

	25. Using Modifiers in Compose
	25.1 An overview of modifiers
	25.2 Creating the ModifierDemo project
	25.3 Creating a modifier
	25.4 Modifier ordering
	25.5 Adding modifier support to a composable
	25.6 Common built-in modifiers
	25.7 Combining modifiers
	25.8 Summary

	26. Annotated Strings and Brush Styles
	26.1 What are annotated strings?
	26.2 Using annotated strings
	26.3 Brush Text Styling
	26.4 Creating the example project
	26.5 An example SpanStyle annotated string
	26.6 An example ParagraphStyle annotated string
	26.7 A Brush style example
	26.8 Summary

	27. Composing Layouts with Row and Column
	27.1 Creating the RowColDemo project
	27.2 Row composable
	27.3 Column composable
	27.4 Combining Row and Column composables
	27.5 Layout alignment
	27.6 Layout arrangement positioning
	27.7 Layout arrangement spacing
	27.8 Row and Column scope modifiers
	27.9 Scope modifier weights
	27.10 Summary

	28. Box Layouts in Compose
	28.1 An introduction to the Box composable
	28.2 Creating the BoxLayout project
	28.3 Adding the TextCell composable
	28.4 Adding a Box layout
	28.5 Box alignment
	28.6 BoxScope modifiers
	28.7 Using the clip() modifier
	28.8 Summary

	29. An Introduction to FlowRow and FlowColumn
	29.1 FlowColumn and FlowRow
	29.2 Maximum number of items
	29.3 Working with main axis arrangement
	29.4 Understanding cross-axis arrangement
	29.5 Item alignment
	29.6 Controlling item size
	29.7 Summary

	30. A FlowRow and FlowColumn Tutorial
	30.1 Creating the FlowLayoutDemo project
	30.2 Generating random height and color values
	30.3 Adding the Box Composable
	30.4 Modifying the Flow arrangement
	30.5 Modifying item alignment
	30.6 Switching to FlowColumn
	30.7 Using cross-axis arrangement
	30.8 Adding item weights
	30.9 Summary

	31. Custom Layout Modifiers
	31.1 Compose layout basics
	31.2 Custom layouts
	31.3 Creating the LayoutModifier project
	31.4 Adding the ColorBox composable
	31.5 Creating a custom layout modifier
	31.6 Understanding default position
	31.7 Completing the layout modifier
	31.8 Using a custom modifier
	31.9 Working with alignment lines
	31.10 Working with baselines
	31.11 Summary

	32. Building Custom Layouts
	32.1 An overview of custom layouts
	32.2 Custom layout syntax
	32.3 Using a custom layout
	32.4 Creating the CustomLayout project
	32.5 Creating the CascadeLayout composable
	32.6 Using the CascadeLayout composable
	32.7 Summary

	33. A Guide to ConstraintLayout in Compose
	33.1 An introduction to ConstraintLayout
	33.2 How ConstraintLayout works
	33.2.1 Constraints
	33.2.2 Margins
	33.2.3 Opposing constraints
	33.2.4 Constraint bias
	33.2.5 Chains
	33.2.6 Chain styles

	33.3 Configuring dimensions
	33.4 Guideline helper
	33.5 Barrier helper
	33.6 Summary

	34. Working with ConstraintLayout in Compose
	34.1 Calling ConstraintLayout
	34.2 Generating references
	34.3 Assigning a reference to a composable
	34.4 Adding constraints
	34.5 Creating the ConstraintLayout project
	34.6 Adding the ConstraintLayout library
	34.7 Adding a custom button composable
	34.8 Basic constraints
	34.9 Opposing constraints
	34.10 Constraint bias
	34.11 Constraint margins
	34.12 The importance of opposing constraints and bias
	34.13 Creating chains
	34.14 Working with guidelines
	34.15 Working with barriers
	34.16 Decoupling constraints with constraint sets
	34.17 Summary

	35. Working with IntrinsicSize in Compose
	35.1 Intrinsic measurements
	35.2 Max. vs Min. Intrinsic Size measurements
	35.3 About the example project
	35.4 Creating the IntrinsicSizeDemo project
	35.5 Creating the custom text field
	35.6 Adding the Text and Box components
	35.7 Adding the top-level Column
	35.8 Testing the project
	35.9 Applying IntrinsicSize.Max measurements
	35.10 Applying IntrinsicSize.Min measurements
	35.11 Summary

	36. Coroutines and LaunchedEffects in Jetpack Compose
	36.1 What are coroutines?
	36.2 Threads vs. coroutines
	36.3 Coroutine Scope
	36.4 Suspend functions
	36.5 Coroutine dispatchers
	36.6 Coroutine builders
	36.7 Jobs
	36.8 Coroutines – suspending and resuming
	36.9 Coroutine channel communication
	36.10 Understanding side effects
	36.11 Summary

	37. An Overview of Lists and Grids in Compose
	37.1 Standard vs. lazy lists
	37.2 Working with Column and Row lists
	37.3 Creating lazy lists
	37.4 Enabling scrolling with ScrollState
	37.5 Programmatic scrolling
	37.6 Sticky headers
	37.7 Responding to scroll position
	37.8 Creating a lazy grid
	37.9 Summary

	38. A Compose Row and Column List Tutorial
	38.1 Creating the ListDemo project
	38.2 Creating a Column-based list
	38.3 Enabling list scrolling
	38.4 Manual scrolling
	38.5 A Row list example
	38.6 Summary

	39. A Compose Lazy List Tutorial
	39.1 Creating the LazyListDemo project
	39.2 Adding list data to the project
	39.3 Reading the XML data
	39.4 Handling image loading
	39.5 Designing the list item composable
	39.6 Building the lazy list
	39.7 Testing the project
	39.8 Making list items clickable
	39.9 Summary

	40. Lazy List Sticky Headers and Scroll Detection
	40.1 Grouping the list item data
	40.2 Displaying the headers and items
	40.3 Adding sticky headers
	40.4 Reacting to scroll position
	40.5 Adding the scroll button
	40.6 Testing the finished app
	40.7 Summary

	41. A Compose Lazy Staggered Grid Tutorial
	41.1 Lazy Staggered Grids
	41.2 Creating the StaggeredGridDemo project
	41.3 Adding the Box composable
	41.4 Generating random height and color values
	41.5 Creating the Staggered List
	41.6 Testing the project
	41.7 Switching to a horizontal staggered grid
	41.8 Summary

	42. VerticalPager and HorizontalPager in Compose
	42.1 The Pager composables
	42.2 Working with pager state
	42.3 About the PagerDemo project
	42.4 Creating the PagerDemo project
	42.5 Adding the book cover images
	42.6 Adding the HorizontalPager
	42.7 Creating the page content
	42.8 Testing the pager
	42.9 Adding the arrow buttons
	42.10 Summary

	43. Compose Visibility Animation
	43.1 Creating the AnimateVisibility project
	43.2 Animating visibility
	43.3 Defining enter and exit animations
	43.4 Animation specs and animation easing
	43.5 Repeating an animation
	43.6 Different animations for different children
	43.7 Auto-starting an animation
	43.8 Implementing crossfading
	43.9 Summary

	44. Compose State-Driven Animation
	44.1 Understanding state-driven animation
	44.2 Introducing animate as state functions
	44.3 Creating the AnimateState project
	44.4 Animating rotation with animateFloatAsState
	44.5 Animating color changes with animateColorAsState
	44.6 Animating motion with animateDpAsState
	44.7 Adding spring effects
	44.8 Working with keyframes
	44.9 Combining multiple animations
	44.10 Using the Animation Inspector
	44.11 Summary

	45. Canvas Graphics Drawing in Compose
	45.1 Introducing the Canvas component
	45.2 Creating the CanvasDemo project
	45.3 Drawing a line and getting the canvas size
	45.4 Drawing dashed lines
	45.5 Drawing a rectangle
	45.6 Applying rotation
	45.7 Drawing circles and ovals
	45.8 Drawing gradients
	45.9 Drawing arcs
	45.10 Drawing paths
	45.11 Drawing points
	45.12 Drawing an image
	45.13 Drawing text
	45.14 Summary

	46. Working with ViewModels in Compose
	46.1 What is Android Jetpack?
	46.2 The “old” architecture
	46.3 Modern Android architecture
	46.4 The ViewModel component
	46.5 ViewModel implementation using state
	46.6 Connecting a ViewModel state to an activity
	46.7 ViewModel implementation using LiveData
	46.8 Observing ViewModel LiveData within an activity
	46.9 Summary

	47. A Compose ViewModel Tutorial
	47.1 About the project
	47.2 Creating the ViewModelDemo project
	47.3 Adding the ViewModel
	47.4 Accessing DemoViewModel from MainActivity
	47.5 Designing the temperature input composable
	47.6 Designing the temperature input composable
	47.7 Completing the user interface design
	47.8 Testing the app
	47.9 Summary

	48. An Overview of Android SQLite Databases
	48.1 Understanding database tables
	48.2 Introducing database schema
	48.3 Columns and data types
	48.4 Database rows
	48.5 Introducing primary keys
	48.6 What is SQLite?
	48.7 Structured Query Language (SQL)
	48.8 Trying SQLite on an Android Virtual Device (AVD)
	48.9 The Android Room persistence library
	48.10 Summary

	49. Room Databases and Compose
	49.1 Revisiting modern app architecture
	49.2 Key elements of Room database persistence
	49.2.1 Repository
	49.2.2 Room database
	49.2.3 Data Access Object (DAO)
	49.2.4 Entities
	49.2.5 SQLite database

	49.3 Understanding entities
	49.4 Data Access Objects
	49.5 The Room database
	49.6 The Repository
	49.7 In-Memory databases
	49.8 Database Inspector
	49.9 Summary

	50. A Compose Room Database and Repository Tutorial
	50.1 About the RoomDemo project
	50.2 Creating the RoomDemo project
	50.3 Modifying the build configuration
	50.4 Building the entity
	50.5 Creating the Data Access Object
	50.6 Adding the Room database
	50.7 Adding the repository
	50.8 Adding the ViewModel
	50.9 Designing the user interface
	50.10 Writing a ViewModelProvider Factory class
	50.11 Completing the MainScreen function
	50.12 Testing the RoomDemo app
	50.13 Using the Database Inspector
	50.14 Summary

	51. An Overview of Navigation in Compose
	51.1 Understanding navigation
	51.2 Declaring a navigation controller
	51.3 Declaring a navigation host
	51.4 Adding destinations to the navigation graph
	51.5 Navigating to destinations
	51.6 Passing arguments to a destination
	51.7 Working with bottom navigation bars
	51.8 Summary

	52. A Compose Navigation Tutorial
	52.1 Creating the NavigationDemo project
	52.2 About the NavigationDemo project
	52.3 Declaring the navigation routes
	52.4 Adding the home screen
	52.5 Adding the welcome screen
	52.6 Adding the profile screen
	52.7 Creating the navigation controller and host
	52.8 Implementing the screen navigation
	52.9 Passing the user name argument
	52.10 Testing the project
	52.11 Summary

	53. A Compose Navigation Bar Tutorial
	53.1 Creating the BottomBarDemo project
	53.2 Declaring the navigation routes
	53.3 Designing bar items
	53.4 Creating the bar item list
	53.5 Adding the destination screens
	53.6 Creating the navigation controller and host
	53.7 Designing the navigation bar
	53.8 Working with the Scaffold component
	53.9 Testing the project
	53.10 Summary

	54. Detecting Gestures in Compose
	54.1 Compose gesture detection
	54.2 Creating the GestureDemo project
	54.3 Detecting click gestures
	54.4 Detecting taps using PointerInputScope
	54.5 Detecting drag gestures
	54.6 Detecting drag gestures using PointerInputScope
	54.7 Scrolling using the scrollable modifier
	54.8 Scrolling using the scroll modifiers
	54.9 Detecting pinch gestures
	54.10 Detecting rotation gestures
	54.11 Detecting translation gestures
	54.12 Summary

	55. Working with Anchored Draggable Components
	55.1 Dragging and anchors
	55.2 Detecting dragging gestures
	55.3 Declaring the anchor points
	55.4 Declaring thresholds
	55.5 Declaring draggable state
	55.6 Moving a component in response to a drag
	55.7 About the DraggableDemo project
	55.8 Creating the DraggableDemo project
	55.9 Adding Foundation library
	55.10 Adding the anchors enumeration
	55.11 Setting up the draggable state and anchors
	55.12 Designing the parent Box
	55.13 Adding the draggable box
	55.14 Testing the project
	55.15 Summary

	56. An Introduction to Kotlin Flow
	56.1 Understanding Flows
	56.2 Creating the sample project
	56.3 Adding a view model to the project
	56.4 Declaring the flow
	56.5 Emitting flow data
	56.6 Collecting flow data as state
	56.7 Transforming data with intermediaries
	56.8 Collecting flow data
	56.9 Adding a flow buffer
	56.10 More terminal flow operators
	56.11 Flow flattening
	56.12 Combining multiple flows
	56.13 Hot and cold flows
	56.14 StateFlow
	56.15 SharedFlow
	56.16 Converting a flow from cold to hot
	56.17 Summary

	57. A Jetpack Compose SharedFlow Tutorial
	57.1 About the project
	57.2 Creating the SharedFlowDemo project
	57.3 Adding a view model to the project
	57.4 Declaring the SharedFlow
	57.5 Collecting the flow values
	57.6 Testing the SharedFlowDemo app
	57.7 Handling flows in the background
	57.8 Summary

	58. An Android Biometric Authentication Tutorial
	58.1 An overview of biometric authentication
	58.2 Creating the biometric authentication project
	58.3 Adding the biometric dependency
	58.4 Configuring device fingerprint authentication
	58.5 Adding the biometric permissions to the manifest file
	58.6 Checking the security settings
	58.7 Designing the user interface
	58.8 Configuring the authentication callbacks
	58.9 Starting the biometric prompt
	58.10 Testing the project
	58.11 Summary

	59. Working with the Google Maps Android API in Android Studio
	59.1 The elements of the Google Maps Android API
	59.2 Creating the Google Maps project
	59.3 Creating a Google Cloud billing account
	59.4 Creating a new Google Cloud project
	59.5 Enabling the Google Maps SDK
	59.6 Generating a Google Maps API key
	59.7 Adding the API key to the Android Studio project
	59.8 Adding the compose map dependency
	59.9 Creating a map
	59.10 Testing the application
	59.11 Understanding geocoding and reverse geocoding
	59.12 Specifying a map location
	59.13 Changing the map type
	59.14 Displaying map controls to the user
	59.15 Handling map gesture interaction
	59.15.1 Map zooming gestures
	59.15.2 Map scrolling/panning gestures
	59.15.3 Map tilt gestures
	59.15.4 Map rotation gestures

	59.16 Creating map markers
	59.17 Controlling the map camera
	59.18 Summary

	60. Creating, Testing, and Uploading an Android App Bundle
	60.1 The Release Preparation Process
	60.2 Android App Bundles
	60.3 Register for a Google Play Developer Console Account
	60.4 Configuring the App in the Console
	60.5 Enabling Google Play App Signing
	60.6 Creating a Keystore File
	60.7 Creating the Android App Bundle
	60.8 Generating Test APK Files
	60.9 Uploading the App Bundle to the Google Play Developer Console
	60.10 Exploring the App Bundle
	60.11 Managing Testers
	60.12 Rolling the App Out for Testing
	60.13 Uploading New App Bundle Revisions
	60.14 Analyzing the App Bundle File
	60.15 Summary

	61. An Overview of Android In-App Billing
	61.1 Preparing a project for In-App purchasing
	61.2 Creating In-App products and subscriptions
	61.3 Billing client initialization
	61.4 Connecting to the Google Play Billing library
	61.5 Querying available products
	61.6 Starting the purchase process
	61.7 Completing the purchase
	61.8 Querying previous purchases
	61.9 Summary

	62. An Android In-App Purchasing Tutorial
	62.1 About the In-App purchasing example project
	62.2 Creating the InAppPurchase project
	62.3 Adding libraries to the project
	62.4 Adding the App to the Google Play Store
	62.5 Creating an In-App product
	62.6 Enabling license testers
	62.7 Creating a purchase helper class
	62.8 Adding the StateFlow streams
	62.9 Initializing the billing client
	62.10 Querying the product
	62.11 Handling purchase updates
	62.12 Launching the purchase flow
	62.13 Consuming the product
	62.14 Restoring a previous purchase
	62.15 Completing the MainActivity
	62.16 Testing the app
	62.17 Troubleshooting
	62.18 Summary

	63. Working with Compose Theming
	63.1 Material Design 2 vs. Material Design 3
	63.2 Material Design 3 theming
	63.3 Building a custom theme
	63.4 Summary

	64. A Material Design 3 Theming Tutorial
	64.1 Creating the ThemeDemo project
	64.2 Designing the user interface
	64.3 Building a new theme
	64.4 Adding the theme to the project
	64.5 Enabling dynamic colors
	64.6 Summary

	65. An Overview of Gradle in Android Studio
	65.1 An Overview of Gradle
	65.2 Gradle and Android Studio
	65.2.1 Sensible Defaults
	65.2.2 Dependencies
	65.2.3 Build Variants
	65.2.4 Manifest Entries
	65.2.5 APK Signing
	65.2.6 ProGuard Support

	65.3 The Property and Settings Gradle Build File
	65.4 The Top-level Gradle Build File
	65.5 Module Level Gradle Build Files
	65.6 Configuring Signing Settings in the Build File
	65.7 Running Gradle Tasks from the Command Line
	65.8 Summary

	Index

