Основні формули, що використовуються при обчисленні границь послідовностей:

1)
$$\lim_{n\to\infty} a^n = \begin{cases} 0, |a| < 1 \\ +\infty, a > 1, \end{cases}$$
 He ichy $\epsilon, a \le -1$.

$$2) \lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \alpha>0.$$

3)
$$\lim_{n\to\infty}\frac{a^n}{n!}=0, \ a=\text{const.}$$

4)
$$\lim_{n\to\infty} \frac{n}{a^n} = 0$$
, $|a| > 1$.

5)
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
.

6)
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
, $a = \text{const.}$

7)
$$\lim_{n\to\infty}\frac{c}{x_n}=\left(\frac{c}{0}\right)=\infty$$
, $c-\mathrm{const}$, якщо $\lim_{n\to\infty}x_n=0$.

8)
$$\lim_{n\to\infty}\frac{c}{x_n}=\left(\frac{c}{\infty}\right)=0, c-\text{const},$$
якщо $\lim_{n\to\infty}x_n=\infty$.

9)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
, $e = 2,718281...$

10) $\lim_{n\to\infty} (1+\alpha_n)^{\frac{1}{\alpha_n}} = e$, де α_n – нескінченно мала послідовність.

Послідовність $\{x_n\}$ називають <u>обмеженою</u>, якщо $\exists M > 0 : \forall n \in \mathbb{N} \ |x_n| \leq M$. (існує таке додатне число M, що для будь-якого номера n модуль n-го члена послідовності не перевищує M).

Послідовність називають <u>необмеженою</u>, якщо $\forall M > 0 \ \exists n_0 \in \mathbb{N} : \left| x_{n_0} \right| > M$ (для будь-якого додатного числа M існує такий номер n_0 , що модуль члена послідовності з цим номером більший M).

. І. Дослідити послідовність на обмеженість

1.
$$x_n = \frac{8n}{2n-1}$$
.

Розв'язання.

$$|x_n| = \frac{8n}{2n-1} = \frac{4 \cdot (2n-1) + 4}{2n-1} = 4 + \frac{4}{2n-1} \le 4 + 4 = 8.$$

 $|x_n| \le 8 \quad \forall n \in \mathbb{N}$, тому послідовність є обмеженою.

2.
$$x_n = (-1)^n n^2$$
.

Розв'язання. Доведемо, що послідовність $\{x_n\}$ є необмеженою. Для цього покажемо, що для будь-якого додатного числа M існує такий номер n_0 , що модуль члена послідовності з цим номером більший M. $|x_n|=n^2>M\Rightarrow n>\sqrt{M}$. Виберемо у якості n_0 будь-який номер, що перевищує \sqrt{M} , наприклад, $n_0=\left[\sqrt{M}\right]+1$. Тоді $|x_{n_0}|>M$, послідовність необмежена.

3.
$$x_n = \sqrt{n^2 + 8} - \sqrt{n^2 + 3}$$
.

Розв'язання. Оскільки $x_n > 0$, то отримуємо:

$$|x_n| = x_n = \sqrt{n^2 + 8} - \sqrt{n^2 + 3} =$$

$$= \frac{\left(\sqrt{n^2 + 8} - \sqrt{n^2 + 3}\right)\left(\sqrt{n^2 + 8} + \sqrt{n^2 + 3}\right)}{\sqrt{n^2 + 8} + \sqrt{n^2 + 3}} =$$

$$=\frac{5}{\sqrt{n^2+8}+\sqrt{n^2+3}}<\frac{5}{\sqrt{n^2}+\sqrt{n^2}}=\frac{5}{2n}\leq\frac{5}{2}.$$

Отже, згідно з означенням послідовність обмежена.

4.
$$x_n = \frac{n^3}{4n+1}$$
.

Розв'язання. Оскільки $x_n > 0$, то $\left| x_n \right| = x_n = \frac{n^3}{4n+1}$. Покажемо, що $4n+1 < n^2$, n > 4. З останньої нерівності випливає, що $n^2 - 4n - 1 > 0$. Дійсно, $n^2 - 4n - 1 = \left(n - 2 \right)^2 - 5 > 0$ при n > 4. Отже, $4n + 1 < n^2$, звідси $\frac{n^3}{4n+1} > \frac{n^3}{n^2} = n$. Для довільного як завгодно великого M > 0 завжди можна вибрати номер $n_0 > M$, тоді $\left| x_{n_0} \right| = \frac{n_0^3}{4n_0 + 1} > n_0 > M$, послідовність необмежена.

$$5. x_n = \arcsin \frac{n}{2n+3}.$$

Розв'язання. Оскільки $\frac{n}{2n+3} > 0$, то $|x_n| = x_n = \arcsin \frac{n}{2n+3} \le \frac{\pi}{2} \, \forall n \in \mathbb{N}$, тому послідовність є обмеженою.

ІІ. Знайти наступні границі.

1)
$$\lim_{n\to\infty} \frac{5\sqrt[4]{16n^8 + 3n^2 - 2n + 1} + 6n^2 - n + 1}{4n^2 + 3}$$
.

Розв'язання. Старший степінь чисельника $n^{\frac{1}{4}} = n^2$, старший степінь знаменника також n^2 . Отже, границя дорівнює відношенню коефіцієнтів при старших степенях чисельника та знаменника:

$$\lim_{n \to \infty} \frac{5\sqrt[4]{16n^8 + 3n^2 - 2n + 1} + 6n^2 - n + 1}{4n^2 + 3} = \frac{5\sqrt[4]{16} + 6}{4} = \frac{16}{4} = 4.$$

2)
$$\lim_{n\to\infty} n\left(\sqrt{n^2+2} - \sqrt{n^2+1}\right)$$
.

Розв'язання.

$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 2} - \sqrt{n^2 + 1} \right) =$$

$$= \lim_{n \to \infty} \frac{n \left(\sqrt{n^2 + 2} - \sqrt{n^2 + 1} \right) \left(\sqrt{n^2 + 2} + \sqrt{n^2 + 1} \right)}{\sqrt{n^2 + 2} + \sqrt{n^2 + 1}} =$$

$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 2} + \sqrt{n^2 + 1}} = \frac{1}{2}.$$

3.
$$\lim_{n\to\infty} \frac{1+2+...+n}{2n^2+9}$$
.

Розв'язання.
$$\lim_{n\to\infty}\frac{1+2+...+n}{2n^2+9}=\lim_{n\to\infty}\frac{\frac{n(n+1)}{2}}{2n^2+9}=\frac{\frac{1}{2}}{2}=\frac{1}{4}.$$

4.
$$\lim_{n\to\infty} \frac{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}}{\frac{1}{5} + \frac{1}{25} + \dots + \frac{1}{5^n}}$$
.

Розв'язання.

$$\lim_{n\to\infty} \frac{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}}{\frac{1}{5} + \frac{1}{25} + \dots + \frac{1}{5^n}} = \lim_{n\to\infty} \frac{\frac{1}{2} \left(1 - \frac{1}{2^n}\right)}{\frac{1}{5} \left(1 - \frac{1}{5^n}\right)} = \frac{\frac{1}{2}}{\frac{1}{5}} = \frac{5}{2}.$$

Тут ми використали формулу суми n членів геометричної прогресії $b_1+b_1q+b_1q^2+...+b_1q^{n-1}=\frac{b_1\left(1-q^n\right)}{1-q},$ а також формулу 1) з основних формул $(\lim_{n\to\infty}\frac{1}{2^n}=\lim_{n\to\infty}\frac{1}{5^n}=0).$

5.
$$\lim_{n\to\infty} \frac{3^n + 4^n}{2^n + 3^n}$$
.

Розв'язання. Поділимо чисельник та знаменник дробу на степінь з найбільшою основою, тобто на 4^n . Отримуємо:

$$\lim_{n \to \infty} \frac{3^n + 4^n}{2^n + 3^n} = \lim_{n \to \infty} \frac{\left(\frac{3}{4}\right)^n + 1}{\left(\frac{2}{4}\right)^n + \left(\frac{3}{4}\right)^n} = \left(\frac{1}{0}\right) = \infty.$$

6.
$$\lim_{n\to\infty} \frac{2n \cdot n! + (n+2)!}{3 \cdot (n+1)!}$$
.

Розв'язання.

$$\lim_{n \to \infty} \frac{2n \cdot n! + (n+2)!}{3 \cdot (n+1)!} = \lim_{n \to \infty} \frac{n! \cdot (2n + (n+1)(n+2))}{3n! \cdot (n+1)} =$$

$$= \lim_{n \to \infty} \frac{n^2 + 5n + 2}{3n + 3} = \infty,$$

оскільки старший степінь чисельника більший, ніж старший степінь знаменника.

7.
$$\lim_{n\to\infty} \left(\frac{5n+1}{5n-2}\right)^{3n+2}$$
.

Розв'язання. Маємо невизначеність виду $(1)^{\infty}$, тому використовуємо формулу 10). Для цього дріб у дужках приведемо до вигляду $1+\alpha_n$, де α_n — нескінченно мала послідовність. Для цього до дробу у основі степеня додамо та віднімемо 1:

$$\lim_{n \to \infty} \left(\frac{5n+1}{5n-2} \right)^{3n+2} = \left(1 \right)^{\infty} = \lim_{n \to \infty} \left(1 + \left(\frac{5n+1}{5n-2} - 1 \right) \right)^{3n+2} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{3}{5n-2} \right)^{\frac{5n-2}{3} \cdot \frac{3}{5n-2} \cdot (3n+2)} = e^{\lim_{n \to \infty} \frac{3(3n+2)}{5n-2}} =$$

$$= e^{\frac{9}{5}}.$$

Приклади для самостійного розв'язання.

1.
$$\lim_{n\to\infty} \frac{3n+5\sqrt{25n^2+3n+2}}{9n+4}$$
. (Відповідь: $\frac{28}{9}$).

2.
$$\lim_{n\to\infty}\frac{n^{\sqrt[4]{n^5}}-2n^3+5n^2-4\sqrt{n}+1}{n^5+5}$$
. (Відповідь: 0).

3.
$$\lim_{n\to\infty} \left(\frac{n^2+5n+4}{n^2-3n+7}\right)^{2n}$$
. (Відповідь: e^{16}).

4.
$$\lim_{n\to\infty} \frac{1+3+3^2+...+3^n}{3^n}$$
. (Відповідь: $\frac{3}{2}$).

5.
$$\lim_{n\to\infty} (\sqrt{n+2} - \sqrt{n+1})$$
. (Відповідь: 0).

6.
$$\lim_{n\to\infty} \frac{(n+2)!-3\cdot n!}{2n^2\cdot n!}$$
. (Відповідь: $\frac{1}{2}$).

7.
$$\lim_{n\to\infty} \frac{5n^6+4n^5-1}{n\cdot\sqrt[3]{n^{12}+3n^2+1}+8n^3+3n+2}$$
. (Відповідь: ∞).