
МІЖРЕГІОНАЛЬНА
АКАДЕМІЯ УПРАВЛІННЯ ПЕРСОНАЛОМ

О. В. ГАЛКІН, М. М. ВЕРЕС

МОВА ПРОГРАМУВАННЯ С++
Конспект лекцій

Київ
ДП «Видавничий дім «Персонал»

2017

Рецензенти: М. Г. Глибовець, д-р фіз.-мат. наук, проф.
В. Б. Зваридчук, канд. фіз.-мат. наук, доц.
В. П. Шевченко, канд. фіз.-мат. наук, доц.

Схвалено Вченою радою Міжрегіональної Академії управління
персоналом (протокол № 1 від 26.01.11)

Галкін О. В., Верес М. М.
Мова програмування С++: конспект лекцій / О. В. Галкін,

М. М. Верес. — К.: ДП “Вид. дім “Персонал”, 2017. — 260 с. — Біблі-
огр.: с. 249.

ІSBN 978-617-02-0194-2

У конспекті лекцій розглядаються всі основні можливості мови С++
і їх застосування при розробці об’єктно-орієнтованих програм. Дається
короткий опис бібліотек мови С++, необхідних для створення типових
програм. Систематизовано викладаються основні поняття й описуються
можливості мови С++.

Для студентів вищих навчальних закладів, які вивчають програму-
вання на мові С++.

© О. В. Галкін, М. М. Верес, 2017
© Міжрегіональна Академія управління

 персоналом (МАУП), 2017

ІSBN 978-617-02-0194-2 © ДП “Видавничий дім “Персонал”, 2017

3

ВСТУП
Мова C++ була створена на початку 80-х років ХХ ст. співро-

бітником фірми Bell Laboratories Берном Страуструпом, як роз-
ширення мови С. До початку офіційної стандартизації мова роз-
вивалася здебільшого силами Б. Страуструпа у відповідь на
запити програмістського співтовариства. У 1998 р. був ратифі-
кований міжнародний стандарт мови С++: ISO/IEC 14882:1998
“Standard for the C++ Programming Language”; після прийняття
технічних виправлень до стандарту у 2003 р. — сучасна версія
цього стандарту — ISO/IEC 14882:2003.

Ідея створення нової мови бере початок від мови моделюван-
ня Сімула (Simula). Вона мала низку можливостей, що були ко-
рисні для розробки великого програмного забезпечення, але
працювала занадто повільно. У той самий час мова BCPL досить
швидка, але занадто близька до мов низького рівня й не підхо-
дить для розробки великого програмного забезпечення. Б. Стра-
уструп почав працювати у Bell Labоratories над задачами теорії
черг (у додатку до моделювання телефонних викликів). Він
вирішив доповнити мову С (спадкоємець BCPL) можливостя-
ми, наявними у мові Сімула. Мова С, яка є базовою мовою сис-
теми UNIX, швидка та багатофункціональна. Б. Страуструп до-
дав їй можливість роботи із класами й об’єктами. У результа-
ті практичні задачі моделювання виявилися доступними для
розв’язання як з погляду часу розроблення (завдяки викорис-
танню Сімула-подібних класів), так і з погляду часу обчислень
(завдяки швидкодії С).

Нововведеннями С++ порівняно із С є:
• підтримка об’єктно-орієнтованого програмування;
• підтримка узагальненого програмування через шаблони;
• додаткові типи даних;
• виключення;
• простір імен;
• вбудовані функції;
• перевантаження операторів;
• перевантаження імен функцій;

• посилання й оператори керування вільно розподіленою
пам’яттю;

• доповнення до стандартної бібліотеки.
Отже, можна сказати, що мова С++ багато у чому є надмно-

жиною мови С:
Варто також відзначити, що С++ має ряд недоліків, деякі з

них успадковані від С:
• синтаксис, що провокує помилки, наприклад, операція при-

своювання позначається як = , а операція порівняння як ==,
їх легко переплутати; if (x = 0) {оператори}. Тут в умовному
операторі помилково написане присвоювання замість порів-
няння. У результаті, замість того, щоб зрівняти поточне зна-
чення x з нулем, програма присвоїть x нульове значення;

• макроси (#define) є потужним, але небезпечним засобом.
Вони збережені у C++, незважаючи на те, що в них немає
необхідності завдяки шаблонам і вбудованим функціям.
В успадкованих стандартних С-бібліотеках багато потен-
ційно небезпечних макросів;

• деякі перетворення типів неінтуїтивні. Зокрема, операція
над беззнаковим і знаковим числами видає беззнаковий ре-
зультат;

• необхідність записувати break у кожному розгалужені опе-
ратора switch і можливість послідовного виконання кіль-
кох розгалужень при його відсутності провокує помилки
через пропуск break. Ця сама особливість дає змогу робити
сумнівні “трюки”, що базуються на вибірковому незастосу-
ванні break, і ускладнює розуміння коду.

Однак, незважаючи на свої недоліки, С++ є найпоширені-
шою мовою програмування для операційних систем Windows і
Unix. Також, незважаючи на декларовану досконалість мов C# і
Java, витиснути С++ ним так і не вдалося.

Представлений нижче конспект лекцій є узагальненням кур-
су з об’єктно-орієнтованого програмування на базі мови С++,
що протягом кількох років читався авторами студентам факуль-
тету кібернетики Київського національного університету.

4

5

ОСНОВНІ ТИПИ ДАНИХ МОВИ С++

Лекція 1. ТИПИ ДАНИХ У C++
У С++ є набір вбудованих типів даних для подання цілих і

дійсних чисел, символів, а також тип даних “символьний масив”,
що служить для зберігання символьних рядків.

Тип char використовується для зберігання окремих симво-
лів та невеликих цілих чисел і займає 1 байт.

Типи short, int і long призначені для представлення цілих чи-
сел. Вони розрізняються тільки діапазоном значень, які можуть
приймати числа, а конкретні розміри перелічених типів зале-
жать від реалізації.

Тип short займає половину машинного слова, int — одне сло-
во, long — одне або два слова. У 32-бітних системах int і long, як
правило, одного розміру.

Типи float, double і long double призначені для чисел із плаваю-
чою крапкою й розрізняються точністю представлення (кіль-
кістю значущих розрядів) і діапазоном. Тип float (одинар-
на точність) займає одне машинне слово, double (подвійна точ-
ність) — два, а long double (розширена точність) — три слова.

Тип bool має два значення — true і false — і займає 1 біт.
Сhar, short, int і long разом складають цілі типи, які, в свою

чергу, можуть бути знаковими (signed) і беззнаковими (unsigned).
У знакових типах самий лівий біт використовується для збері-
гання знака (0 — плюс, 1 — мінус), а біти, що залишилися, міс-
тять значення. У беззнакових типах всі біти використовуються
для значення. 8-бітовий тип signed char може представляти зна-
чення від -128 до 127, а unsigned char — від 0 до 255.

Коли у програмі зустрічається деяке число, наприклад 1, то
це число називається літералом, або літеральною констан-
тою. Літерали цілих типів можна записати у десятковому, вось-
меричному й шістнадцятиричному вигляді. Наприклад, число
20, представлене десятковим, восьмеричним і шістнадцятирич-
ним літералами, має вигляд:

6

• 20 // десятковий;
• 024 // восьмеричний;
• 0х14 // шістнадцятиричний.
Якщо літерал починається з 0, він трактується як восьмерич-

ний, якщо з 0х або 0Х, то як шістнадцятиричний.
За замовчуванням всі цілі літерали мають тип signed int.

Можна явно визначити цілий літерал таким, що має тип long,
приписавши наприкінці числа літеру L (використовується як
прописна L, так і рядкова l). Буква U (або u) наприкінці визна-
чає літерал як unsigned int, а дві літери — UL або LU — як тип
unsigned long.

Наприклад:
128u 1024UL 1L 8Lu.
Літерали, що представляють дійсні числа, можуть бути запи-

сані як з десятковою крапкою, так і в науковій (експонентній)
нотації. За замовчуванням вони мають тип double. Для явної
вказівки типу float потрібно використовувати суфікс F або f, а
для long double — L або l, але тільки у випадку запису з десятко-
вою крапкою.

Наприклад:
3.14159F 0/1f 12.345L 0.0 3el 1.0 E-3E 2. 1.0L.
Спеціальні символи (табуляція, повернення каретки) запи-

суються як escape-послідовності. Визначено наступні послідов-
ності (вони починаються із символу зворотної косої риски):

• новий рядок \n;
• горизонтальна табуляція \t;
• забій \b;
• вертикальна табуляція \v;
• повернення каретки \r;
• прогін аркуша \f;
• дзвінок \a;
• зворотна коса риска \\;
• питання \?;
• одиночні лапки \’;
• подвійні лапки \”;

7

• escape — послідовність загального вигляду має форму \ooo,
де ooo — від одного до трьох восьмеричних цифр. Це число
є кодом символу.

Наприклад:
• \7 (дзвінок);
• \14 (новий рядок);
• \0 (null);
• \062 (‘2’).

Змінні
Змінна, або об’єкт — це іменована область пам’яті, до якої ми

маємо доступ із програми; туди можна записувати значення а
потім їх використовувати. Кожна змінна С++ має певний тип,
що характеризує розмір і розташування в області пам’яті, діапа-
зон значень, який вона може зберігати, і набір операцій, які за-
стосовуються до цієї змінної.

Наприклад:
int student_count;
double salary;
bool on_loan;
string street_address;
char delimiter.
Початкове значення може бути задане прямо в операторі ви-

значення змінної. У С++ припустимі дві форми ініціалізації
змінної — явна, з використанням оператора присвоювання:

int ival = 1024; string project = “Fantasia 2000”;
і неявна, із завданням початкового значення у дужках:

int ival (1024); string project (“Fantasia 2000”).
Обидва визначення еквівалентні.
Вбудовані типи даних мають спеціальний синтаксис для зав-

дання нульового значення:
// ival одержує значення 0, а dval — 0.0
int ival = int();
double dval = double().

8

Зі змінною асоціюються дві величини:
1) власне значення, або r-значення (від read value — значення

для читання), що зберігається у цій області пам’яті й притаман-
не як змінній, так і літералу;

2) значення адреси області пам’яті, що асоційована зі змінної,
або l-значення (від location value — значення місця розташуван-
ня) — місце, де зберігається r-значення, притаманне тільки об’єкту.

Наприклад, у виразі
ch = ch –‘0’;

змінна ch перебуває і ліворуч, і праворуч від символу операції
присвоювання.

Праворуч розташоване значення для читання (ch і символь-
ний літерал ‘0’): асоційовані зі змінної дані зчитуються з відпо-
відної області пам’яті.

Ліворуч — значення місця розташування: в область пам’яті,
асоційовану зі змінної ch, міститься результат віднімання.

Ім’я змінної, або ідентифікатор, може складатися з латинських
літер, цифр і символу підкреслення. Прописні й малі літери в іме-
нах розрізняються. Мова С++ не обмежує довжину ідентифікато-
ра, однак користуватися занадто довгими іменами типу незручно.
Ключові слова не можна використовувати як ідентифікатори.

Покажчики
Покажчик — це об’єкт, що містить адресу іншого об’єкта і дає

змогу побічно маніпулювати цим об’єктом. Найчастіше покаж-
чики використовуються для роботи з динамічно створеними
об’єктами для побудови зв’язаних структур даних, таких як
зв’язані списки й ієрархічні дерева, і для передачі у функції ве-
ликих об’єктів — масивів і об’єктів класів.

Кожний покажчик асоціюється з деяким типом даних, причому
їх внутрішнє подання не залежить від внутрішнього типу: і розмір
пам’яті, що займає об’єкт типу покажчик, і діапазон значень у них
однаковий. Різниця полягає в тому, як компілятор сприймає
об’єкт, що адресується. Покажчики на різні типи можуть мати те
саме значення, але область пам’яті, де розміщуються відповідні
типи, може бути різною: покажчик на int, що містить значення

9

адреси 1000, вказує на область пам’яті 1000–1003 (у 32-бітній
системі); покажчик на double, що містить значення адреси 1000,
вказує на область пам’яті 1000–1007 (у 32-бітній системі).

Наприклад:
int *ip1, *ip2;
complex<double> *cp;
string *pstring;
vector<int> *pvec;
double *dp.
Розглянемо приклади використання покажчиків:
int ival = 1024;
//pi ініціалізовано нульовою адресою
int *pi = 0;
// pi2 ініціалізовано адресою ival
int *pi2 = &ival;
// правильно: pi і pi2 містять адресу ival
pi = pi2;
// pi2 містить нульову адресу
pi2 = 0;
// помилка: pi не може приймати значення int pi = ival;
double dval;
double *ps = &dval; // помилки компіляції, неприпустиме при-

своювання типів даних: int* //<== double* pi = pd pi = &dval;
//void* може містити адреси будь-якого типу
void *pv = pi;
pv = pd;
// непряме присвоювання змінній ival значення ival2 *pi = ival2;
// непряме використання змінної ival як rvalue і lvalue
*pi = abs(*pi); // ival = abs(ival);
*pi = *pi + 1; // ival = ival + 1;
// C++ допускає використання покажчика на покажчик
int **ppi = π
int *pi2 = *ppi;
cout << “Значення ival\n” << “явне значення: ” << ival << “\n”
<< “непряма адресація: “ << *pi << ”\n”
<< “двічі непряма адресація: “ << **ppi << endl.

10

Покажчики можуть бути використані в арифметичних виразах:
int i, j, k;
int *pi = &i; // i = i + 2;
*pi = *pi + 2; // збільшення адреси, що міститься в pi, на
2pi = pi + 2.

Специфікатор const
Специфікатор const використовується для оголошення кон-

станти:
Наприклад:
const int bufSize = 512;
// помилка: неініціалізована константа
const double pi.
Можна також використовувати покажчики на константи
const double *pc = 0;
const double minWage = 9.60; // правильно: не можемо

змінювати minWage за допо-
могою pc;

pc = &minWage;
double dval = 3.14; // правильно: не можемо

змінювати minWage за допо-
могою pc, хоча dval і не кон-
станта;

pc = &dval; // правильно;
dval = 3.14159; //правильно;
*pc = 3.14159. // помилка.
Існують і константні покажчики
int errNumb = 0;
int *const currErr = &errNumb.
У цьому випадку curErr — константний покажчик на некон-

стантний об’єкт. Це значить, що ми не можемо присвоїти йому
адресу іншого об’єкта, хоча сам об’єкт допускає модифікацію.
Спроба присвоїти значення константному покажчику викличе
помилку компіляції:

curErr = &myErNumb; // помилка.

11

Посилання
Посилання іноді називають псевдонімом. Воно використову-

ється для завдання об’єкту додаткового імені. Посилання дає
можливість побічно маніпулювати об’єктом так само, як це
робиться за допомогою покажчика.

Посилання позначається оператором взяття адреси (&) пе-
ред іменем змінної. Посилання повинно бути ініціалізовано.

Наприклад:
int ival = 1024;
//refVal — посилання на ival
int &refVal = ival;
//помилка: посилання повинно бути ініціалізовано
int &refVal2.
Якщо ми визначаємо посилання в одній інструкції через

кому, перед кожним об’єктом типу посилання повинен стояти
амперсант (&) — оператор взяття адреси (такий самий, як і для
покажчиків).

Наприклад:
// визначено два об’єкти типу int
int ival = 1024, ival2 = 2048;
// визначено одне посилання й один об’єкт
int &rval = ival, rval2 = ival2;
// визначено один об’єкт, один покажчик і одне посилання
int inal3 = 1024, *pi = ival3, &ri = ival3;
// визначено два посилання
int &rval3 = ival3, &rval4 = ival2.
Константне посилання може бути ініціалізовано об’єктом ін-

шого типу (якщо існує можливість перетворення одного типу в
інший), а також безадресною величиною, такою як літеральна
константа.

Наприклад:
double dval = 3.14159; // правильно тільки для

константних посилань;
const int &ir = 1024;
const int &ir2 = dval;
const double &dr = dval + 1.0.

12

Лекція 2. СКЛАДОВІ ТИПИ ДАНИХ

Клас string
Необхідно підключити бібліотеку:
 #include<string>,
Оголошення рядка
 string st=“aaa\n”;
 string st(“aaa\n”).
Функції для роботи з рядками:
1) size() — довжина рядка
 st.size ();
2) додавання рядків
 string s1=“Hello1”;
 string s2=“Hello2”;
 string s3=s1+s2; //“Hello1Hello2”;
3) find() — пошук у рядку
 string s1=“Hello1”;
 int pos=s1.find(“H”); //pos=0;
 if(pos==string::npos) // npos-символ не знайдений
 ... else ..;
4) find_first_of() — пошук першого входження символу в

рядок (використовується аналогічно find());
5) substr () — вирізка підстроки
 string s2=s1.substr(поч_поз, кін_поз);
6) erase() — видалення підстроки
 s1.erase(поч_поз, до-у символів);
7) insert () — вставка підстроки
 s1.insert(поч_поз, підстрока);
8) replace() — заміна підстроки
 s1.replace(поч_поз, довжина_замін_стр, підстр);
9) compare() — порівняння
 s1.compare(s2);

10) c_str() — перетворення string в const char*;
11) assign() копіювання

 рядок_куди_копіюють.assign (рядок_з_якої_копіюють,
 кількість_символів);

13

12) swap() — змінює місцями значення
 swap(s1,s2).

Вбудований строковий тип
Для використання потрібно підключити бібліотеку:
 #include<cstring>.
Ініціалізація:
char* a=“Hello”.
Функції для роботи з рядками:
1) int strlen(const char*) — довжина рядка;
2) int strcmp(const char*, const char*) — порівняння рядків;
3) char* strcpy(char*, const char*) — копіювання рядків.
Наприклад:
 const char* a=“Hello\n”;
 int main(){
 int len=0;
 while(*a++) ++len;
 a= a-len-1;
 cout<<len<<“ ”<<a<<endl;
 return 0;
 }.

Перерахування
Оголошення перерахування:
enum modes{input=1,output,append}.
Наприклад:
 modes om=input;
 cout<<om; //відповідь 1.
Одержати рядки input, output, append не можна.
В арифметичних виразах enum перетворюється в int.

Масиви
Оголошення:

 int a[константа або константний вираз, кількість еле-
ментів масиву].

14

Наприклад:
 int a[3];
для багатомірних масивів.
 int a[3][4][5].
Ініціалізація
 int a[3]={0,1,2};
 int a[2][3]={0,1,2,3,4,5};
 int a[]={0,1,2};
 int *a[]={&a1,&a2,&a3}; //масив покажчиків;
 int &a[]={a,b,c}; //error — масиви посилань

неприпустимі.
Взаємозв’язок масивів і покажчиків.
Наприклад:
 int a[3]={0,1,2};
 cout<< a; // одержуємо 0;
 cout<<*(a+1); //одержуємо 1;
 &a[1]; //адреса другого елемента.
Примітка. Не варто плутати вираз *a+1 та *(a+1).

Клас vector
Для використання потрібно підключити бібліотеку:
 #include< vector>.
Оголошення має вигляд:
 vector<тип> vec(n).
Наприклад:
 vector<int> vec(4).
Використання аналогічно вбудованого масиву:
 vec[1] — другий елемент вектора.
Функція push_back() заносить у вектор значення.
Наприклад:
 vector<int> vec(2);
 vec.push_back(10);
 vec.push_back(15);
 (у вектор занесені значення 10 і 15).

15

Клас complex
Для використання потрібно підключити бібліотеку:
 #include<complex>.
Наприклад:
 complex<int> p(1,3); //1+3i
 complex<int> p1(2,4);
 complex<int> p2=p+p1; //додавання комплексних

чисел.
У класі complex визначені операції +,-,\,*.

Директива typedef
typedef — специфікатор типів.
Наприклад:
 typedef double wages;
 typedef vector<int> vec;
 typedef int *p.

Кваліфікатор volatile
Ціль volatile — повідомити компілятора про те, що той не

може визначити, хто і як може змінити значення, і тому компі-
лятор не повинен виконувати оптимізацію коду.

Наприклад:
 volatile int a.

Вираз
Вираз складається з одного або більше операндів і операцій.
Наприклад: a*b.
Операції бувають унарні та бінарні.
Арифметичні операції:
*, +,-,\,%(остача від ділення), ++, --.
Логічні операції:
!(логічне не), <, >, <=, >=, ==(порівняння на рівність),

!=(не дорівнює), (логічне та), || (логічне або).

16

Операція присвоєння
Операція присвоєння має вигляд = .
Наприклад:
 int a=3;
 val=jval=0.

Умовний вираз
Умовний вираз у C++ має вигляд:
(умова)? Вираз_якщо_умова_істина: вираз_якщо_умо-

ва_хибна.
Наприклад:
 (a>0)?b=3:b=4.

Оператор sizeof
Оператор sizeof() — повертає розмір об’єкта в байтах.
Наприклад:
 int a;
 cout<<sizeof(a); //одержуємо розмір а в бай-

тах.
Оператори new і delete

Оператор new — динамічне виділення пам’яті в купі.
Наприклад:
 int* p=new int;
створення в купі комірки, в яку може бути записане число ці-

лого типу, а в p міститься адреса цієї комірки;
 int *p=new int(100);
ініціалізація значенням 100;
 int* p1=new int [n];
створення динамічного масиву з n-елементів, при цьому n не

обов’язково повинно бути константою. Працювати з таким ма-
сивом можна також як і з вбудованим масивом;

 int (*p2)[100]=new int [n][100];
створення двомірного масиву.
Оператор delete — видалення елемента з купи.

17

 delete p;
 delete [] p1; //видалення масиву.

Питання. Як видалити двомірний масив?

Оператор кома
Наприклад:
int val=(ia!=0)?ix=3, a=ix:ia=10, b=a.
Результатом першої частини виразу буде ix, а другої а. Ре-

зультат оператора кома — результат самого правого виразу.

Побітові оператори
Існують наступні побітові оператори:
~ — побітове не : ~вираз;
<< — зміщення вліво: вираз 1<< вираз 2;
>> — зміщення вправо: вираз 1>> вираз 2;
 — побітове І: вираз 1 & вираз 2;
| — побітове АБО: вираз1 | вираз2
= — побітове І із присвоєнням: вираз1&=вираз2;
^= — побітове виключне АБО із присвоєнням: вираз1^=вираз2;
|= — побітове АБО із присвоєнням: вираз1|=вираз2;
<<= — зміщення вліво із присвоєнням: вираз1<<=вираз2;
>>= — зміщення вправо із присвоєнням: вираз1>>=вираз2.
Наприклад:
 unsigned int a=0; // всі біти рівні 0;
 a=1<<27; // в 27 біті 1;
 a|=1<<27; // всі біти без зміни, а в 27

 біті 1;
 bool b=a&(1<<27); //побітове І.

Клас bitset
Для використання класу bitset підключаємо бібліотеку:
 #include<bitset>.

18

Оголошення:
 bitset<32> a; //змінна а має 32 біта.

Методи класу bitset
test(pos) — повертає true, якщо біт pos дорівнює 1;
any() — повертає true, якщо хоча б один біт дорівнює 1;
none() — повертає true, якщо жоден біт не дорівнює 1;
count() — кількість бітів рівних 1;
size() — загальна кількість бітів;
[pos] — доступ до біта pos (a[pos]);
flip() — змінити значення всіх бітів;
flip(pos) — зміна значення біта pos;
set() — вставити всі біти в 1;
set(pos) — вставити біт pos в 1;
reset() — вставити всі біти в 0;
reset(pos) — вставити біт pos в 0;
to_string() — перетворення в string;
to_long() — перетворити в unsigned long.

Структури
Структура оголошується у такий спосіб:
struct my_struct{
int a;
double b;}.
Структуру можна оголосити в альтернативний спосіб:
typedef struct{
int a;
double b;} my_struct.
Приклад використання:
 int main(){
 my_struct s1;
 s1.a=3;
 s1.b=4.5;
 my_struct* s2;

19

 s 2-2->a=3; //(*s2).a=3;
 s 2-2->b=4.5; //(*s2).b=4.5;
 ...
 return 0;
 }.

Перетворення типів
У С++ існують явні й неявні перетворення типів.
Явні перетворення типів виконуються за допомогою оператора
static_cast<тип, до якого перетворюється >.
Наприклад:
 double a=3.56;
 int val=static_cast<int>(a).
Оператор const_cast<тип, до якого перетворюється>

здійснює перетворення константного типу в неконстантний.
Наприклад:
 const char* a;
 char* b=const_cast<char*>(a).
Оператор reinterpret_cast<тип до якого відбувається пе-

ретворення> працює із внутрішнім представленням об’єктів.
Відповідальним за наслідки такого перетворення є програміст.

Наприклад:
 complex<int>* pcompl;
 char* p=reinterpret_cast<char*>(pcompl).
Оператор dynamic_cast<тип, до якого здійснюється пе-

ретворення> застосовується при ідентифікації типу під час
виконання.

Існує застаріла форма явного перетворення: (тип) вираз.
Наприклад:
 double a=23.6;
 int val=(int) a.

Неявне перетворення типів
С++ визначає набір стандартних неявних перетворень типів

у наступних випадках.

20

1. Арифметичне перетворення з операндами різних типів.
Усі операнди приводяться до найбільшого типу.
Наприклад:
 int a=3;
 double b=3.45;
 a+b; //a приводиться до double.
При арифметичних перетвореннях виконуються наступні

правила:
• типи завжди приводяться до типу, що здатний забезпечити

найбільший діапазон значень при найбільшій точності;
• будь-який арифметичний вираз, який включає в себе цілі

операнди типів, що менші за int, перед обчисленням завжди
приводяться до int.

Ієрархія правил перетворення
Якщо один з операндів має тип long double, то інші операнди

виразу приводяться до нього.
Якщо у виразі максимальний тип операндів double, то інші

типи приводяться до нього.
У випадку цілочисельних операндів всі типи приводяться до

int. Але якщо є хоча б один операнд із типом unsigned long, то
інші операнди приводяться до цього самого типу.

Якщо максимальний тип long, то всі операнди приводяться до
цього типу, але unsigned int перетворюється в long тільки у тому
випадку, якщо він здатний умістити в себе unsigned int.

2. Присвоєння значення виразу одного типу іншому.
У цьому випадку результуючим є тип об’єкта, якому значен-

ня присвоюється.
Наприклад:
int* p=0; // 0 типу int присвоюється

значенню типу int*.

3. Передача функції аргументу, тип якого відрізняється від
типу відповідного формального параметру.

Тип фактичного аргументу приводиться до типу формально-
го параметра.

21

Наприклад:
void f(int);
double a=3.2;
f(a); // а приводиться до типу int.

4. Повернення значення з функції, тип якого не збігається
з типом результату, що повертається, заданим в оголошенні
функції.

Тип значення, що повертається фактично, приводиться до
оголошеного.

Наприклад:
 double f(int a,int b);
 {return a+b;}.

22

Лекція 3. ІНСТРУКЦІЇ

Порожня інструкція “;”
Наприклад:
 int a=23;.

Інструкції оголошення
Інструкція оголошення може бути простою.
Наприклад:
 int val.
Також інструкція оголошення може бути складною.
Наприклад:
 vector<string>::iterator iter=text.begin(),
 end=text.end().

Умовні інструкції

Інструкція if
Синтаксис має вигляд:
if (умова) { інструкції, якщо умова true; }
else {інструкції, якщо умова false; }.
Наприклад:
1) if (a>b) a=3; else a=4;
2) if (val=3) val++;
3) проблема else
if (a>b) a=4;
if (b>c) b=3;
else c=10;//питання: до якого if належить else. У даному ви-

падку до другого if, але це не очевидно.

Інструкція switch
Синтаксис має вигляд:
switch (вираз){
 case константний_вираз_1: { список_операторів_1; }
 case константний_вираз_2: { список_операторів_2; }
 …

23

 case константний_вираз_n: { список_операторів_n; }
[default: оператори].
}.
Наприклад:
 int main(){
 char ch;
 int a_count, e_count, i_count, o_count, u_count;
 while(cin>>ch)
 switch (ch) {
 case 'a': case 'A': ++a_count;break; // якщо ch дорівнює

'а', або 'A'
 case ‘e’: case ‘E’: ++e_count;break;
 case ‘i’: case ‘I’: ++i_count;break;
 case ‘o’: case ‘O’: ++o_count;break;
 case ‘u’: case ‘U’: ++u_count;break;
 default: cout<<“The letter is not vowel”;
 break;
 }
 return 0;
 }.

Інструкція for
Синтаксис циклу for такий:
for (інструкція ініціалізації; умова; вираз)
{інструкції;}
Порядок обчислень такий:
1. Виконується інструкція ініціалізації. Ця інструкція вико-

нується тільки один раз.
2. Перевіряється умова, якщо вона true, то виконуються ін-

струкції в циклі. Якщо найперше обчислення умови дає false, то
інструкції виконуватися не будуть.

3. Виконується вираз.
Наприклад:
 1) int s=0, a=1;
 for(int i=0; i<100; i++)

24

 { a=a*i; s=s+a; };

 2) int i=0, s=0, a=1;
 for(; i<100; i++)
 { a=a*i; s=s+a;};

 3) int i=0, s=0, a=1;
 for(; i<100;)
 { a=a*i; s=s+a; i++;};

 4) нескінченний цикл
 for(; ;)
 { інструкції;}

вихід з такого циклу можна здійснити, наприклад, за допомогою
інструкції break;

 5) for (int i=0, a=1; i<100; i++, j++)
 { a=a*i; s=s+a+j; }.

Інструкція while
Синтаксис циклу while такий:
while (умова)
{ інструкції;}.
Цикл виконується поки умова true.
Наприклад:
 int i=0,s=0,a=1;
 while(i<100)
{ a=a*i; s=s+a; i++;}.

Інструкція do while
Синтаксис циклу do while такий:
do
{ інструкції; }
while (умова).
Інструкції виконуються доти, поки умова true.
Наприклад:
 int i=0, s=0, a=1;

25

 do {a=a*i; s=s+a; i++;}
 while(i<100).

Інструкція break
Інструкція break припиняє роботу циклів for, while, do while

і блоку switch. Використання інструкції break у блоці if, що не
міститься у циклі, або switch — є синтаксичною помилкою.

Наприклад:
 int i=0,s=0,a=1;
 for (; ;)
 { if (i<100) break;
 else{
 a=a*i;
 s=s+a;
 i++; }
 }.

сюди передається керування після спрацьовування інструкції
break.

Інструкція continue
Інструкція continue завершує поточну ітерацію циклу й пере-

дає керування на обчислення умови, після чого цикл може три-
вати.

Наприклад:
 int i=0,s=0,a=1;
 while(i<100)
 { i++;
 if (i==50)
 continue; // керування передається на обчислення умови

 i<100, оператори, які //знаходяться нижче не викону-
 ються.

 a=a*i;
 s=s+a;} .

26

Інструкція goto
Синтаксис
goto мітка.
Інструкція goto здійснює безумовний перехід до іншої ін-

струкції всередині цієї самої функції.
Наприклад:
 void f(int a)
 {
 ...
 goto lab1;
 ...
 lab1: ...;
 }.
Не можна ставити мітку безпосередньо перед закриваючою

фігурною дужкою.
Наприклад:
 {
 ...
 lab1:} // error.
Потрібно писати наступним чином
 {
 ...
 lab1: ;
 }.

27

ПРОЦЕДУРНО-ОРІЄНТОВАНЕ ПРОГРАМУВАННЯ

Лекція 4. ФУНКЦІЇ
Функція — операція, визначена користувачем. Функція ви-

значається у такий спосіб:
int max (int, int);
int — тип значення, що повертається; max — ім’я функції ви-

бране користувачем; (int, int) — типи формальних параметрів;
max (int, int) — сигнатура функції.

Реалізація функції має вигляд:
 int max (int a,int b)
 {//тіло функції
 if (a>b) return a;
 else return b;
 }.
Виклик функції має вигляд:
 int main()
 {
 int c, d;
 cin>>c,d;
 int f=max(c,d);
 cout<<f<<endl;
 return 0;
 }.
Існує два можливих способи обробки викликів функції:
1 спосіб — inline int max(int a,int b){...}.
У цьому випадку в місце виклику функції підставляється

тіло функції.
2 спосіб — int max(int a, int b) {...}.
У цьому випадку відбувається звичайний виклик функції, що

приводить до передачі керування цій функції під час її виконан-
ня. Робота функції завершується return.

Зауваження
Функція повинна бути оголошена до моменту її виклику.

28

Як правило функція оголошується у заголовному файлі .h
Наприклад:
 ----------------------------max.h----------------------------
 int max(int,int);
 ---------------------------max.cpp---------------------------
 int max(int a,int b)
 { if (a>b) return a;
 else return b;}
 ---------------------------main.cpp--------------------------
 #include<iostream>
 #include “max.h”
 using namespace std;
 int main()
 { int c=10,d=20;
 cout<<max(c,d);
 return 0; }.
В оголошенні функції описується її інтерфейс int max(int,int).
Функція, яка нічого не повертає, визначається як void.
Наприклад:
 void f(int a){...}.
У функціях, в яких тип значення, що повертається — void, ви-

користовувати return не обов’язково.

Прототип функції
Прототип функції описує її інтерфейс і складається з типу

значення, що повертається, імені та списку параметрів.
Наприклад:
 int max(int, int).
Розглянемо всі ці параметри.

Список параметрів функції
Список параметрів функції не може бути опущений.
Наприклад, наступні оголошення еквівалентні:
int f();
int f(void);

29

Після типу може стояти параметр, але при цьому не можна
використовувати скорочений запис.

Наприклад:
 int max(int a, int b); // правильно;
 int max(int a,b); // помилка.
Імена параметрів не можуть повторюватися:
 int max(int a, double a); //помилка.
Імена в оголошенні функції можна використовувати в її тілі:
 void f(int a)
 {...
 a=4;
 ...}.
Імена параметрів в оголошенні і визначенні однієї й тієї самої

функції можуть не збігатися:
 int max(int a, int b);
 int max(int c, int d)
 {...}.
С++ здійснює перевірку типів формальних параметрів у ви-

падку їх не співпадіння з типами фактичних параметрів і нама-
гається здійснити неявне перетворення типів, якщо це немож-
ливо — видає помилку.

Наприклад:
 int f(int c,int d) {...};
 int main(){
 f(“Hello”,“world”); //error неможливо перетво-

рити char* до int;
 f(34.5, 34); //відбудеться перетворен-

ня типу double до int у пер-
шому аргументі;

 f(34); //error відсутній другий ар-
гумент.

Передача аргументів у функцію
Функції використовують пам’ять зі стека програми. Деяка

область стека виділяється функцією й залишається з нею до за-

30

кінчення її роботи. По завершенню роботи функції пам’ять
звільняється. Кожному параметру функції виділяється місце у
певній області. Під час виклику функції пам’ять ініціалізується
значеннями фактичних аргументів.

Стандартний спосіб передачі аргументів є копіювання їх
значень, тобто передача за значенням. При цьому аргументи не
змінюють свого значення.

Наприклад:
 void swap(int a, int b)
 {
 int c=a; a=b; b=c;
 }
 int main(){
 int c=3, d=4;
 swap(c, d);
 cout<<c<<d;
 return 0;}.
На екрані одержимо знову значення 3 та 4.

Параметри посилання
При такій передачі аргументів функція маніпулює локальни-

ми копіями аргументів. Вона одержує lvalue своїх аргументів
і може їх змінювати.

Наприклад:
 void swap(int a, int b){
 int c=a; a=b; b=c;}
 int main(){
 int c=3,d=4;
 swap(c,d);
 cout<<c<<d;
 return 0;}.
На екрані одержимо 4 та 3, як і передбачалось.
Передачу параметрів за посиланням зручно використовува-

ти у випадку передачі у функцію великих об’єктів. У такий спо-
сіб можна уникнути непотрібного копіювання.

31

Наприклад:
 struct my_struct{
 double a[200];
 ...;
 void f(const my_struct sobj){...};
 int main(){
 my_struct table[1000];
 for(int i=0; i<1000;i++)
 f(table[i]);
 ...
 return 0;}.
Модифікатор const використовується для того, щоб гаранту-

вати неможливість зміни об’єкта sobj.

Параметри покажчики
У функціях можна використовувати параметри покажчики.
Наприклад:
 void swap(int* a, int* b){
 int c=*a; *a=*b; *b=c;}
 int main(){
 int c=3,d=4;
 swap(c,d);
 cout<<c<<d;
 return 0;}.
На екрані одержимо 4 та 3.
У цьому випадку використання покажчиків привело до того

самого ефекту, що й використання посилань, однак у випадку
покажчиків виклик менш явний.

Посилання vs покажчики
Покажчик варто використовувати, якщо параметр повинен

вказувати на різні об’єкти під час виконання функції.
Однак при застосуванні покажчика слід пам’ятати, що перед

його використанням необхідно перевірити, чи не дорівнює він 0.

32

Наприклад:
 struct my_struct{...};
 void f(my_struct* ps){
 if(ps!=0) //звертаємося до об’єкта
 }.
У випадку використання параметрів-посилань цього робити

не потрібно.
Найважливіша сфера застосування посилань — це ефективна

реалізація перевантажених операцій.
Наприклад:
 struct matrix{
 int a[100][100];
 ...};
 matrix operator+(matrix* a, matrix* b)
 { matrix c;
 …
 //необхідні операції
 …
 return c;}
 int main(){
 matrix a,b,c;
 c=a+b; //не явний виклик
 …
 return 0;}.
У випадку використання параметрів посилань маємо:
 matrix operator+(const matrix a, const matrix b)
 { matrix c;
 …
 //необхідні операції
 …
 return c;}
 int main(){
 matrix a,b,c;
 c=a+b; //явний виклик operator+
 …
return 0;}.

33

Параметри масиви
У С++ масиви ніколи не передаються за значенням, а тільки

як покажчик на нульовий елемент. Наступні оголошення функ-
ції еквівалентні:

void f(int* a);
void f(int a[]);
void f(int a[10]).
Передача масивів як покажчиків має наступні особливості:
1. Зміна значення аргументу всередині функції змінює об’єкт,

що передається, а не його копію. Якщо така дія небажана, то мож-
на вказати функцію так, що вона не буде змінювати значення:

void f(const int a[10]).
2. Розмір масиву не є частиною типу параметра, тому функ-

ція не знає реального розміру масиву. Бажано вживати наступне
оголошення:

void f(int a[], int size); // size — розмір масиву.
Інший спосіб повідомити функції розмір масиву — оголосити

параметр як посилання.
Наприклад:
 void f(int (a)[10]){...;
 int main(){
 int b[5];
 int c[10];
 f(b); //error масив b не є масивом

10 елементів;
 f(c); //правильно;
 return 0;}.
Параметром може бути багатомірний масив. Для такого пара-

метра повинні бути задані праві межі всіх вимірів, крім першого.
Наприклад:
 int f(int a[][10], int rowsize).
Еквівалентне оголошення має вигляд:
 int f(int (*a)[10]).
Багатомірний масив передається як покажчик на його нульо-

вий елемент. Як і у випадку одномірного масиву, перший вимір
багатомірного масиву не впливає на тип параметра.

34

Так, параметрами можуть виступати класи.
Наприклад:
 void f(complex<int>a).

Значення параметрів за замовчуванням
Для переданих параметрів можна вказувати значення за за-

мовчуванням.
Наприклад:
 void f(int a=10, int b=20){
 cout<<a<<b;}
 int main(){
 int c=30,d=40;
 f(c,d); //на екрані 30 і 40
 f(); //на екрані 10 і 20
 f(c); //на екрані 30 і 20
 return 0;}.
Параметри за замовчуванням повинні бути розміщені напри-

кінці.
Наприклад:
 void f(int a, int b=10).
Однак наступна комбінація помилкова:
 int f(int a, int b=10, int c=20);
 int f(int a, int b, int c=20).

Три крапки — “…”
Якщо не можна перелічити типи й число можливих аргумен-

тів, то варто використовувати “…”:
void f(int a,...);
void f(...).
Наступні оголошення НЕ еквівалентні:
void f();
void f(...).
Наступні виклики коректні:
f(a,b,c);

35

f(a);
f().
Розглянемо приклад використання “…”:
 #include<iostream>
 #include<stdarg>
 using namespace std;
 void f(int a,...){
 va_list ap;
 int p;
 va_start (ap,a);
 while(p=va_arg(ap,int))!=0) //продовжуємо вибирати

значення зі стеку доки не зу-
стрінеться 0;

 cout<<p<<endl;
 va_end(ap);}
 int main() {
 int k=2,s=100,s1=200,s3=0;
 f(k,s,s1,s3);
 return 0;}.

Повернення значення
Для повернення значення з функції використовується ін-

струкція return. Ця інструкція вживається у двох формах:
return;
return expression.
Перша форма використовується для функцій з типом значен-

ня void, що повертається. Використовувати return у цьому випад-
ку можна, якщо потрібно примусово завершити роботу функції.

Наприклад:
 void (int s, int l, int d)
 {
 if(a==l)

 return; //завершення роботи функції;
...
}.

36

У другій формі інструкції return вказується значення, що
функція повинна повернути. Це значення може бути виразом:

 return a*f(b).
Якщо тип значення, що повертається, не точно відповідає за-

значеному в оголошенні, то застосовується неявне перетворен-
ня типів.

Можливі три форми повернення значення функції.
1 — повернення за значенням.
У цьому випадку функція одержує копію результату обчислень.
Наприклад:
 int grow(double* x){
 int b;
 …
 return b;
 }.
2 — повернення за покажчиком.
Наприклад:
 int* grow(int a)
 { int* b=a;
 return b;}.
У цьому випадку повертається покажчик на об’єкт.
3 — повернення за посиланням.
При поверненні за посиланням, що викликає, функція одер-

жує lvalue для відповідної змінної. Тому функція може модифі-
кувати відповідний об’єкт.

Наприклад:
 int grow(int a){
 int* b=a;
 return *b;}.
Повернення за посиланням ефективне у випадку повернення

великого об’єкта.
При оголошенні функції, що повертає посилання, варто па-

м’ятати про можливі помилки:
1. Повернення посилання на локальний об’єкт, тривалість

життя якого обмежено часом виконання функції. По завершенні

37

роботи функції такому посиланню відповідає область пам’яті,
яка містить невизначене значення.

Наприклад:
 int grow(int a, int b){
 int c=10;
 if(a>b) c=20;
 return c;}.
2. Функція повертає lvalue і будь-яка його модифікація змі-

нює сам об’єкт.
Наприклад:
 int func (int a) { return a;}
 int main()
 {
 int k=10;
 func(10)++;
 return 0;
 }.
Для запобігання несанкціонованої модифікації тип об’єкта,

що повертається, варто використовувати const.
Наприклад:
 const int func(int a){...}.

Параметри й об’єкти, що повертаються,
vs-глобальні об’єкти
Різні функції у програмі можуть взаємодіяти між собою за

допомогою двох механізмів: перший — використання глобаль-
них об’єктів, другий — передача параметрів і повернення зна-
чень. Механізм глобальних об’єктів краще не використовувати.

Рекурсія
С++ допускає рекурсію. Наприклад, розглянемо обчислення n!:
 int fact(int n){
 if (n>0) return n*fact(n-1);
 else return 1;}.

38

Директива лінкування extern “C”
У деяких ситуаціях необхідно використовувати функції,

написані на інших мовах, наприклад, на “C”. Для вказівки
компіляторові, що функція написана на іншій мові, викорис-
товується директива extern.

Наприклад:
 extern “C” void exit(int);
 extern “C”{
 int f(int);
 int g(int);
 }
 extern “C”{
 #include<cmath>
 }.
Фігурні дужки варто вказувати після директиви extern “C”.

Вони не обмежують області видимості.
У цьому випадку вважається, що всі функції, які оголошені

у заголовному файлі cmath.h, написані на С.
Директива extern не може з’являтися в тілі функції.
Наприклад:
 int main(){
 extern “C” double sqrt(double); //error
 …
 return 0;}
Коректним буде таке оголошення:
 extern “C” double sqrt(double);
 int main(){
 …}.
Зазвичай ця директива міститься у заголовний файл (.h).
Єдина зовнішня мова, підтримку якої гарантує компілятор

C++ — це С. Але деякі мови підтримують й інші мови, наприклад
gcc підтримує мову Ada. У цьому випадку директива лінкуван-
ня має вигляд: extern “Ada”.

39

Функція main
При запуску програми їй можна дати деякі параметри.
Наприклад:
 myprog.exe -d -o -f data.txt
У цьому випадку функція main() програми myprog повинна

мати вигляд:
int main(int argc, char* argv[]){...}.
Результатом такого виклику отримаємо:
 argc=5;
 argv[0]=“myprog”;
 argv[1]=“-d”;
 argv[2]=“-o”;
 argv[3]=“-f”;
 argv[4]=“data.txt”.
Розбір параметрів командного рядка можна вести за допомо-

гою операторів if або switch.

40

Лекція 5. ФУНКЦІЇ ВВОДУ-ВИВОДУ

Функція printf
Функція printf() є функцією стандартного виводу. За допо-

могою цієї функції можна вивести на екран монітора рядок сим-
волів, число, значення змінної...

Функція printf() має прототип у файлі stdio.h
int printf(char *керуючий рядок, ...).
У випадку успіху функція printf() повертає число виведених

символів.
Керуючий рядок містить два типи інформації: символи, які

безпосередньо виводяться на екран, і специфікатори формату,
що визначають, як виводити аргументи.

Функція printf() — функція форматованого виводу. Це озна-
чає, що в параметрах функції необхідно вказати формат даних,
які будуть виводитися. Формат даних вказується специфікатора-
ми формату. Специфікатор формату починається із символу %.

Специфікатори формату:
%c — символ;
%d — ціле десяткове число;
%e — десяткове число у вигляді x.xxe+xx;
%f — десяткове число з плаваючою комою xx.xxxx;
%g %f або %e, — що коротше;
%o — восьмиричне число;
%s — рядок символів;
%u — без знакове десяткове число;
%x — шістнадцятиричне число;
%% — символ %;
%p — покажчик.
Крім того, до команд формату можуть бути застосовані моди-

фікатори l і h.
%ld — друк long int;
%hu — друк short unsigned;
%Lf — друк long double.

41

У специфікаторі формату після символу % може бути вказа-
на точність (кількість цифр після коми). Точність задається та-
ким чином: %.n<код формату >, де n — число цифр після коми,
а <код формату > — один із наведених кодів.

Наприклад:
якщо є змінна x=10.3563 типу float і необхідно вивести її зна-

чення з точністю до 3-х цифр після коми, то ми повинні написати:
 printf(“змінна x = %.3f”,x).
Результат:
 змінна x = 10.356.
Ви також можете вказати мінімальну ширину поля, що від-

водиться для друку. Якщо рядок або число більше вказаної ши-
рини поля, то рядок або число друкується повністю.

Наприклад:
printf(“%5d”,20);
результат буде:
 20.
Варто помітити, що число 20 надрукувалося не із самого по-

чатку рядка. Якщо ви хочете, щоб невикористане місце поля за-
повнювалися нулями, то потрібно поставити перед визначенням
ширини поля символ 0.

Наприклад:
printf(“%05d”,20);
Результат:
00020.
Крім специфікаторів формату даних у керуючому рядку мо-

жуть перебувати керуючі символи:
f — нова сторінка;
n — новий рядок;
r — повернення каретки;
t — горизонтальна табуляція;
v — вертикальна табуляція;
“ — подвійні лапки;
’ — апостроф;
\ — зворотна коса риска;

42

a — сигнал;
N — восьмерична константа;
xN — шістнадцятирична константа;
? — знак питання.

Розглянемо приклади
Приклад 1:
 #include <stdio.h>
 void main()
 {
 int a,b,c; //Оголошення змінних a, b, c;
 a=5;
 b=6;
 c=9;
 printf(“a=%d, b=%d, c=%d”,a,b,c);
 }.
Результат роботи програми:
a=5, b=6, c=9.

Приклад 2:
 #include <stdio.h>
 void main()
 {
 float x,y,z;
 x=10.5;
 y=130.67;
 z=54;
 printf(“Координати об’єкта: x:%.2f, y:%.2f, z:%.2f”, x, y, z);
 }.
Результат роботи програми:
Координати об’єкта: x:10.50, y:130.67, z:54.00.

Приклад 3:
 #include <stdio.h>
 void main()
 {

43

 int x;
 x=5;
 printf(“x=%d”, x*2);
 }.
Результат роботи програми:
x=10.
Приклад 4:
 #include <stdio.h>
 void main()
 {
 printf(““Текст у лапках””);
 printf(“%nВміст кисню: 100%%”);
 }
Результат роботи програми:
 “Текст у лапках”
 Вміст кисню: 100%.
Приклад 5:
 #include <stdio.h>
 void main()
 {
 int a;
 a=11; // 11 у десятковій дорівнює

b у шістнадцятиричній;
 printf(“ a-dec=%d, a-hex=%X”,a,a);
 }.
Результат роботи програми:
a-dec=11, a-hex=b
Приклад 6:
 #include <stdio.h>
 void main()
 {
 printf(“Доброго дня!n”); //після друку буде перехід

на новий рядок — n;
 printf(“Мене звати Павло.”); //це буде надруковано на

новому рядку.
}.

44

Результат роботи програми:
 Доброго дня!
 Мене звати Павло.

Функція scanf
Функція scanf() — функція форматованого вводу. За її до-

помогою ви можете вводити дані зі стандартного пристрою вво-
ду (клавіатури). Даними, що вводяться, можуть бути цілі числа,
числа із плаваючої комою, символи, рядки й покажчики.

Функція scanf() має наступний прототип у файлі stdio.h:
int scanf(char *керуючий рядок).
Функція повертає число змінних, яким було присвоєне зна-

чення.
Керуючий рядок містить три види символів: специфікатори

формату, пробіли й інші символи. Специфікатори формату по-
чинаються із символу %.

Специфікатори формату:
%c — читання символу;
%d — читання десяткового цілого;
%e — читання числа типу float (плаваюча кома);
%h — читання short int;
%o — читання восьмеричного числа;
%s — читання рядка;
%x — читання шістнадцятиричного числа;
%p — читання покажчика.
При введенні рядка за допомогою функції scanf() (специфі-

катор формату %s), рядок вводитися до першого пробілу, тобто
якщо ввести рядок “Привіт світ!” з використанням функції
scanf(), отримаємо:

char str[80] — масив на 80 символів;
scanf(“%s”,str) — після введення результуючий рядок, що

буде зберігатися у масиві str, буде складатися з одного слова
“Привіт”. Функція вводить до першого пробілу! Якщо необхід-
но вводити рядок із пробілами, то використовуйте функцію

char *gets(char *buf).

45

За допомогою функції gets() можна вводити повноцінні ряд-
ки. Функція gets() читає символи з клавіатури до появи символу
нового рядка (n). Сам символ нового рядка з’являється, коли ви
натискаєте клавішу enter. Функція повертає покажчик на buf —
буфер (пам’ять), де зберігаються введені строки.

Наприклад:
 include <stdio.h>
 void main()
 {
 char buffer[100]; // масив (буфер), де збері-

гається введений рядок;
 gets(buffer); // вводимо рядок і натиска-

ємо enter;
 printf(“%s”,buffer); // вивід введеного рядка на

екран.
 }.
Для введення даних за допомогою функції scanf(), як пара-

метри потрібно передавати адреси змінних, а не самі змінні.
Наприклад:
 #include <stdio.h>
 void main(void)
 {
 int x;
 printf(“Введіть змінну x:”);
 scanf(“%d”,x);
 printf(“Змінна x=%d”,x);
 }.
Роздільниками між двома числами, що вводяться, є символи

пробілу, табуляції або нового рядка. Знак * після % і перед кодом
формату (специфікатором формату) дає команду прочитати дані
зазначеного типу, але не присвоїти це значення, розглянемо:

scanf(“%d%*c%d”,i,j) — при введенні 50+20 відбудеть-
ся присвоєння змінній i — значення 50, змінній j — значення 20,
а символ + буде прочитаний і проігнорований.

У команді формату може бути вказана найбільша ширина
поля, яка підлягає зчитуванню, розглянемо:

46

scanf(“%5s”,str) — вказує на необхідність прочитати з по-
току вводу перші 5 символів. При введенні 1234567890ABC ма-
сив str буде містити тільки 12345, інші символи будуть проігно-
ровані. Роздільники: пробіл, символ табуляції й символ ново-
го рядка — при введенні символу сприймаються як і всі інші
символи.

Однієї з потужних особливостей функції scanf() є можли-
вість задавати множину пошуку (scanset). Множина пошуку
визначає набір символів, з якими будуть порівнюватися прочи-
тані функцією scanf() символи. Функція scanf() читає символи
доти, поки вони зустрічаються у множині пошуку. Якщо символ,
що введений, не знайдений у множині пошуку, функція scanf()
переходить до наступного специфікатора формату. Множина
пошуку визначається списком символів, вкладених у квадратні
дужки. Перед відкриваючою дужкою ставиться знак %.

Наприклад:
 include <stdio.h>
 void main()
 {
 char str1[10], str2[10];
 scanf(“%[0123456789]%s”, str1, str2);
 printf(“n%sn%s”, str1, str2);
 }.
Введемо набір символів:
12345abcdefg456.
На екрані програма видасть:
12345
abcdefg456.
При визначенні множини пошуку можна також використо-

вувати символ “дефіс” для визначення проміжків, а також мак-
симальну ширину поля вводу.

 scanf(“%10[A-Z1-5], str1).
Можна також визначити символи, які не входять у множину

пошуку. Перед першим з цих символів ставиться знак ̂ . Множи-
на символів розрізняє рядкові й прописні букви.

47

Розглянемо приклади
Приклад 1:
 #include <stdio.h>
 void main(void)
 {
 int x, y;
 printf(“nКалькулятор:”);
 scanf(“%d+%d”, &x, &y);
 printf(“n%d+%d=%d”, x, y, x+y);
 }
Приклад 2:
 #include <stdio.h>
 void main()
 {
 char name[5];
 printf(“nВведіть ваш логін (не більше 5 символів):”);
 scanf(“%5s”, name);
 printf(“nВи ввели %s”, name);
 }.
Приклад 3:
 #include <stdio.h>
 void main()
 {
 char bal;
 printf(“Ваша оцінка 2,3,4,5:”);
 scanf(“%[2345]”, bal);
 printf(“nОцінка %c”, bal);
 }.

Покажчики на функції
Нехай є функція:
int max(int a, int b){...}.
Покажчик на функцію оголошується у такий спосіб:
int (*pf)(int, int).
У цьому разі pf оголошений як покажчик на функцію. Покаж-

чик здатний адресувати функцію зі співпадаючою сигнатурою.

48

Ініціалізація й присвоювання
Для того, щоб pf вказував на функцію max, необхідно напи-

сати:
pf=max;
інший варіант:
int (*pf)(int, int)=max.
Операція присвоювання відбудеться успішно, якщо тип зна-

чення, що повертається, а також типи параметрів у точності
співпадуть. Інакше — помилка.

Можна також оголосити:
int (*pf) (int, int)=0;
pf=max.

Виклик
Покажчик на функцію застосовується для виклику функції,

на яку він вказує.
Наприклад:
 int max(int a, int b){...};
 int (*pf) (int, int)=max;
 void main(){
 int k=20, l=10;
 int s=max(k,l);
 int s1=pf(k,l); //те ж саме, що й max
 int s2=(*pf)(k,l);
 …}.

Масиви покажчиків на функції
Масив покажчиків на функції оголошується у такий спосіб:
int (*pf[10])(int,int).
Можна також використовувати директиву:
typedef int (*pf[10])(int,int);
pf func_mas[10].
Ініціалізація масиву покажчиків на функції має вигляд:
 int max(int a, int b){...};
 int min(int c, int d){...};
 typedef int (*pf)(int,int);
 pf func_mas[2]={max,min};

49

або альтернативне присвоювання
 pf (*func_mas)[2]={max,min}.
Виклик буде мати вигляд:
 void main(){
 int k=10;
 int l=20;
 int s=func_mas[0](k,l); //виклик max;
 int s1=func_mas[1](k,l); //виклик min;
альтернативний виклик має вигляд
 int s=((*func_mas)[0])(k,l); //виклик max;
 …
Наприклад:
 int max(int a, int b){...};
 int min(int c, int d){...};
 typedef int (*pf)(int,int);
 pf func_mas[2]={max,min};
 int calc(int a, int b, pf func)
 { return func(a,b);}
 int main(){
 int k=10, l=20;
 for(int i=0;I<2;i++)
 cout<<calc(k,l,func_mas[i])<<endl;
 return 0;}.
Покажчик на функцію може бути також і типом значення, що

повертається.
Наприклад:
 int ((*ff)(int))(int,int),

де ff — оголошена як функція, що має один параметр типу int
і повертає покажчик на функцію типу int (*)(int,int);

Наприклад:
 int max(int a, int b){...};
 int min(int c, int d){...};
 typedef int (*pf)(int,int);
 pf func_mas[2]={max,min};
 pf func(int n){
 return func_mas[n];}

50

 pf ((*ff)(int))=func;
 void main(){
 int k=10, l=20;
 pf func1=ff(0);
 cout<<func1(k,l)<<endl;}.

Покажчики на функції оголошені як extern “C”
У С++ можна оголошувати покажчики функції, що написані

на інших мовах:
 extern “C” int (*pf)(int,int).
Наприклад:
 extern “C” int max(int,int);
 extern “C” int (*pf)(int,int)=max;
 void main(){
 ...
 cout<<pf(10,20);}.
Варто зазначити, що функція max повинна бути оголошена

як extern “C”.
 int (*pf1)(int,int)=0;
 extern “C” int max(int,int);
 extern “C” int (*pf)(int,int)=max;
 void main(){
 pf1=pf; //error pf1 і pf мають різні

типи;
 }.
Розглянемо оголошення
extern “C” int f1(int (*pf)(int,int)),

де f1 — є С-функцією з одним параметром pf — покажчиком на
C-функцію.

У наступному прикладі маємо C++ функцію, що як параметр
має C-функцію

 extern “C” typedef void FC(int);
 void f2(FC* f3).

Лекція 6. ДИРЕКТИВИ ПРЕПРОЦЕСОРА
Директивами препроцесора називаються рядки, які почина-

ються із символу #, за якими йде ідентифікатор, що називається
ім’ям директиви.

Розглянемо основні директиви.
1. Директива #include.
Використовується для підключення файлів. Включення у

програму файла, що підключається, дає той самий результат, як
при копіюванні цього файла у кожний файл програми. Зазвичай
файли, що підключаються, закінчуються на .h .

Директива #include має такі три модифікації:
а) #include<FILE> — ця модифікація використовується для

підключення системних файлів. При її виконанні здійснюється
пошук файла з ім’ям FILE у списку зазначених заздалегідь ката-
логів, а потім у стандартному списку каталогів.

б) #include “FILE” — ця модифікація застосовується для
підключення файлів користувача. Спочатку пошук файла з
ім’ям FILE здійснюється у поточному каталозі, а потім у списку
каталогів системних файлів.

в) #include ANYTHING ELSE — ця модифікація називаєть-
ся директивою #include, що обчислюється. Рядок ANYTHING
ELSE перевіряється на наявність відповідного макросу, значен-
ня якого потім заміняє його назву. Одержаний у результаті ря-
док має відповідати одній з розглянутих модифікацій.

2. Директива #ifndef.
Одноразово підключені файли. Ця директива використову-

ється для усунення ситуації з повторним підключенням того
самого файла.

Розглянемо приклад:
 #ifndef FILE_FOO_SEEN
 #define FILE_FOO_SEEN
 ... //визначення користувача;
 #endif.

51

52

Макрос FILE_FOO_SEEN вказує на те, що файл вже один раз
був підключений. Якщо у підключеному файлі міститься дирек-
тива #include, що вказує на файл або макрос, який у директиві
#ifndef вже визначений, то цей файл повністю ігнорується.

3. Директива #pragma once.
Ця директива вказує препроцесору, що даний файл повинен

бути підключений не більше одного разу.
4. Директива #import.
Ця директива використовується для підключення файла не

більше одного разу.
5. Директива #define.
Ця директива використовується для визначення макросів.

Макрос — це тип скорочення, який можна заздалегідь визначи-
ти й використовувати надалі.

Наприклад:
 #define BUF 100
 …
 int main(){
 int c=BUF;
 ...}.
Існують також макроси з аргументами.
Наприклад:
 #define MIN(X,Y) ((X)<(Y)?(X):(Y))
 …
 int main(){
 int c=MIN(1,2);
 …}.
При визначенні аргументів дужки повинні закриватися, а

кома не повинна завершувати аргумент. Однак не існує обме-
жень на використання квадратних або кутових дужок.

Наприклад:
macro(array[x=y,x+1]).
У цьому випадку макросу передається 2 аргументи: ’array[x=y’

і ’x+1]’.

53

Аргументи можуть містити посилання до інших макросів як з
аргументами, так і без них.

Наприклад, макрос MIN(MIN(a,b),c) заміняється наступним
текстом ((((a)<(b)?(a):(b)))<(c)?(((a)<(b)?(a):(b))):(c)).

Існують наперед визначені макроси.
6. _FILE_ — цей макрос замінюється на ім’я поточного ви-

хідного файла у формі строкової константи С.
7. _LINE_— цей макрос замінюється на номер поточного

рядка у формі десяткової цілої константи.
8. _DATE_ — цей макрос замінюється на строкову констан-

ту, яка вказує дату запуску препроцесора, вона має наступний
формат виводу: Jan 22 1995.

9. _TIME_ — цей макрос замінюється на строкову констан-
ту, що вказує час запуску препроцесора.

10. _STDC_ — цей макрос замінюється на константу зі зна-
ченням 1 для вказівки, що компілятор підтримує стандарт ANSI.

11. _STDC_VERSION_ — цей макрос замінюється на номер
версії стандарту С.

12. _GNUC_ — цей макрос визначений тоді, коли використо-
вується GNU C.

13. _GNUC_MINOR_ — цей макрос містить додатковий но-
мер версії компілятора.

14. _GNUG_ — цей макрос визначений, якщо компіляція від-
бувається у мові С++.

15. _BASE_FILE_ — цей макрос замінюється на ім’я базового
вихідного файла у формі константи С.

16. _INCLUDE_LEVEL_ — цей макрос замінюється на де-
сяткову цілу константу, що вказує рівень вкладеності файлів, що
підключаються.

17. _VERSION_ — цей макрос указує номер версії GNU C.
18. _OPTIMIZE_ — цей макрос визначається в оптимізуючих

компіляторах. Якщо він визначений, то це приводить до ство-
рення у підключених файлах GNU альтернативних макровизна-
чень для деяких функцій із системних бібліотек.

54

19. _CHAR_UNSIGNED_ — цей макрос визначається тоді й
тільки тоді, коли тип char є беззнаковим.

20. _REGISTER_PREFIX_ — цей макрос замінюється на ря-
док, що описує префікс, що додається до позначення регістрів
процесора в асемблерному коді.

21. Стрінгіфікація. Стрінгіфікація означає перетворення
фрагмента коду в строкову константу, яка містить текст цього
фрагмента коду.

Наприклад:
 #define WARN_IF(EXP)
 do{
 if(EXP) cout<<“warning”<<#EXP;}
 while(0);
 int main(){
 WARN_IF(10);//на екрані буде warning 10
 return 0;}.
22. Об’єднання. Об’єднання — це з’єднання строкових кон-

стант в одну. При визначенні макросу перевіряється наявність
операторів ‘##’ у його тілі. При виклику макросу й після підста-
новки аргументів усі оператори ‘##’, а також усі пробіли поруч з
ними віддаляються.

Наприклад:
 #define COMMAND(NAME){#name,name##_command}
 struct command commands[]={COMMAND(quit),COMMAN

D(help),..};
Це те саме, що
 struct command commands[]={
 {“quit”,quit_command},{“help”,help_command},
 …
23. Видалення макросів. Видалити макрос — це скасувати

його визначення. Це здійснюється за допомогою директиви
#undef.

Наприклад:
 #define FOO 2

55

 …
 int x=FOO; //x=2
 #undef FOO
 …
 int x=FOO; //error.
24. Рекурсивні макроси. Рекурсивні макроси — це макроси,

у визначенні яких використовується ім’я самого макросу.
Стандарт ANSI C не розглядає рекурсивний виклик макросу

як виклик.
Наприклад:
 #define foo (4+foo).
У цьому випадку, дотримуючись звичайних правил, кожне

посилання на foo замінюється на значення (4+foo) доти, поки
це не призведе до помилки препроцесора. Однак при викорис-
танні макросів виклик завершиться після отримання результату
(4+foo).

25. Умови. У С препроцесорі існують умовні директиви #if,
#ifdef,#ifndef.

Наприклад:
 #if EXPERSSION
 text_if_true
 #else
 text_if_else
 #endif.
Якщо необхідно перевірити більше ніж одну умову, то можна

використовувати директиву #elif.
Наприклад:
 #if X==1
 …
 #elif X==2.
Текст після elif включається, коли умова #if хибна, а #elif

істинна.
 …
 #else

56

 …
#endif.
Директива #if може застосовуватися разом із #define.
Наприклад:
 #if defined(MACROS).
У цьому випадку значення буде істинним, якщо MACROS ви-

значений як макрос.
#ifdef NAME еквівалентно #if defined(NAME).
26. Твердження.
Твердження виглядає у такий спосіб:
#PREDICATE(ANSWER).
У цьому записі твердженням є PREDICATE, а відповідь на

нього ANSWER. Значенням ANSWER може бути будь-яка по-
слідовність слів.

Перевірка, чи є ANSWER твердження PREDICATE, вигля-
дає таким чином:

#if #PREDICATE(ANSWER).

57

Лекція 7. ОБЛАСТЬ ВИДИМОСТІ Й ЧАС ЖИТТЯ
У С++ визначено 4 області видимості:
1. Локальна область видимості.
2. Глобальна область видимості.
3. Область видимості простору імен.
4. Область видимості класу.

Локальна область видимості
Локальна область видимості — це частина вихідного тексту,

що міститься у визначенні функції.
Наприклад:
 int func(int a, int b){
 // I рівень
 while(a<b){
 // II рівень
 int mid;
 ...}
 ...}.
Функція func містить два рівні. Змінну mid видно тільки все-

редині циклу. Розв’язання дозволу імен здійснюється у такий
спосіб.

1. Переглядається та область видимості, де воно зустріло-
ся, якщо ім’я знайдене, то його дозволено використовувати.

2. Переглядається область, яка містить область, згадану в п. 1.
Така послідовність може призвести до того, що наступне

оголошення затінює попереднє.
Наприклад:
 int low;
 int func(){
 ...
 int low; //локальне оголошення low

затінює глобальне;
 ...}.

58

Глобальна область видимості
Час життя глобального об’єкта починається з моменту запус-

ку програми й закінчується з її завершенням. Глобальний об’єкт
може бути визначений тільки один раз.

Глобальний об’єкт без явної ініціалізації гарантовано отри-
має нульове значення.

Інструкція extern.
Інструкція extern дозволяє оголосити об’єкт, не визначаю-

чи його.
Наприклад:
 extern int i.
Ця інструкція говорить про те, що у програмі є визначен-

ня int i.
Оголошення extern з ініціалізацією вважається визначенням.
Наприклад:
 extern const int i=3.
Ключове слово extern може бути вказано при оголошенні

функції, це значить, що функція визначена в іншому місці:
 extern int f(int,int).
Проблема, що виникає з можливості оголошувати об’єкт у

різних файлах — ймовірність невідповідності оголошень.
Наприклад:
 ---------------------------a.cpp -----------------------------
 int add(unsigned char a){...};
 ---------------------------b.cpp -----------------------------
 extern int add(char);
 …
 char s=’e’;
 int d=add(s); //error.

Локальні об’єкти
Оголошення змінної в локальній області видимості вводить

локальний об’єкт. Існує 3 види локальних об’єктів:
1. Автоматичний об’єкт.
2. Реєстровий об’єкт.
3. Статичний об’єкт.

59

Автоматичний об’єкт
Об’єкт, що розміщується в пам’яті під час виклику функції, в

якій він визначений, називається автоматичним.
Не ініціалізований автоматичний об’єкт містить випадкове

значення. Час життя об’єкта закінчується із завершенням робо-
ти функції.

Реєстровий об’єкт
Автоматичний об’єкт, що використовується багато разів,

можна оголосити реєстровим.
Наприклад:
 for(register int i=0;i<10;i++){...}.
Реєстровий об’єкт завантажується в машинні регістри. Якщо

це неможливо, об’єкт залишиться в основній пам’яті.

Статичний об’єкт
Всередині функції можна оголосити об’єкт, значення якого

буде зберігатися між викликами функції. Оголошується такий
об’єкт за допомогою ключового слова static: static int i=0.

Наприклад:
 int fact(int n){
 static int depth=1;
 cout<<“глибина: “<<depth++<<endl;
 if (n==0) return 1;
 else return n*fact(n-1);
 }.

Шаблон auto_ptr
Шаблон auto_ptr – зручний механізм маніпуляції дина-

мічними об’єктами, що створюються оператором new.
Об’єкт auto_ptr ініціалізується адресою динамічного об’єкта,

створеного за допомогою new. Такий об’єкт знищується, коли
закінчується час його життя.

Наприклад:
 #include <memory>
 auto_ptr<int> pi(new int (1024)).

60

Шаблон auto_ptr підтримує поняття володіння:
auto_ptr<int> pi2(pi).
Спочатку відповідальним за комірку пам’яті була змінна pi,

потім стала pi2.
Функція get() повертає внутрішній покажчик, що викорис-

товується в об’єкті auto_ptr.
Функція reset() присвоює значення внутрішньому покажчику.
Наприклад:
 auto_ptr<int> p1; //внутрішній покажчик 0
 if(p1.get()!=0)
 *p1=1024;
 else
 p1.reset(new int(1024)).
Функція release() гарантує, що кілька визначених покажчи-

ків не є власниками того самого об’єкта. Ця функція повертає
адресу об’єкта, як це робить get(), але також передає володіння
їм: auto_ptr<int> p2(p1.release()).

Простір імен
Проблему засмічення області видимості глобального просто-

ру імен дозволяє вирішити введення користувачем власного
простору імен.

Простір імен визначається таким чином:
namespace myname{
int a;
int b;
int func(int a){...}; }.
Використовувати змінні a, b можна у такий спосіб:
int main(){
myname:: a=10;
myname:: b=20;
int c=myname::func(myname::a);
…},

де :: — оператор розв’язання області видимості. Цей оператор
може бути використаний для звернення до елемента глобально-
го простору імен.

61

Наприклад:
 int max=100;
 void func(int max){
 if(max<2) ...;
 if(::max>10) ...;
 ...

Вкладені простори імен
Вкладені простори імен визначаються таким чином:
namespace myname1{
int a;
 namespace myname2{
 int b;
 }
}.
Визначені простори можна використовувати у такий спосіб:
int main(){
myname1::a=10;
myname1:myname2::b=20;
…
}.
У процесі розв’язання області видимості імен вкладені про-

стори поводяться як вкладені блоки.

Правило одного визначення й простір імен
Визначення простору імен може складатися з розрізнених

частин і розміщатися у різних файлах.
Наприклад:
 -----------------------a.h--------------------------------
 namespace myname{
 extern void inverse(int);
 }
 ----------------------a.cpp------------------------
 namespace myname{
 void inverse(int a){...}
 }.

62

Безіменні простори імен
Буває необхідно визначити об’єкт, функцію тощо, щоб вони

були видимими тільки на невеликій ділянці програми. Це мож-
на зробити, використовуючи безіменні простори імен:

 ----------------------a.cpp------------------------
 namespace {
 void swap(int a, int b){...}
 }
 int func(int a,int b){
 …
 swap(a,b);
 }.
Функцію swap видно тільки у файлі a.cpp. Ім’я swap можна

вживати у некваліфікованій формі.
У мові С аналогом безіменного простору імен є ключове сло-

во static:
 ----------------------a.cpp------------------------
 static void swap(int a, int b){...;}.

Псевдоніми простору імен
Псевдонім простору імен використовується для визначення

короткого синоніма імені простору.
Наприклад:
 namespace myname1{
 int a;
 namespace myname2{
 int b;
 }
 };
 namespace myname3=myname1::myname2;
 int main(){
 myname3::a=30;
 …
 }.

63

Using-оголошення
Using-оголошення вводить імена в область видимості.
Наприклад:
 namespace myname{
 void func(int a){...};
 }
 int main(){
 using myname::func;
 int c=10;
 func(c);
 …
 };
 namespace myname{
 int bi=16,bj=15,bk=20;
 }
 int bj=0;
 void main(){
 using myname::bi;
 ++bi; //myname::bi=17;
 using myname::bj;
 ++bj; //myname::bj=16;
 int bk;

 using myname::bk; //error повторне визначення
bk;

 …

Using-директива
Якщо бібліотека досить велика, то краще замість using-ого-

лошення використовувати using-директиви.
Наприклад:
 namespace myname{
 int a;}
 using namespace myname;
 int main(){
 a=30;

64

 …}
 namespace myname{
 int bi=16,bj=15,bk=20;
 }
 int bj=0;
 int main(){
 using namespace myname;
 ++bi; //myname::bi=17;
 ++bj; //error неоднозначність;
 ++::bj; //bj=1;
 ++myname::bj; //myname::bj=16;
 int bk=90;
 bk++; //bk=98;
 …
Можливі також такі помилки:
 namespace myname1{
 void swap(int a,int b){...};
 }
 namespace myname2{
 void swap(int a,int b){...} ;
 }
 using namespace myname1;
 using namespace myname2;
 int main(){
 int k=10;
 int l=30;
 swap(k,l); //error, невидомо, яку з

функцій swap треба викли-
кати у цьому місті;

 …

Стандартний простір імен std
Усі компоненти стандартної бібліотеки С++ перебувають у

стандартному просторі імен std. Усе, що оголошено в стандарт-
ному заголовному файлі, перебуває у просторі імен std.

65

Лекція 8. ПЕРЕВАНТАЖЕНІ ФУНКЦІЇ
Перевантаження дозволяє мати кілька однойменних функ-

цій, що виконують схожі операції над аргументами.
Наприклад:
 int max(int,int);
 double max(double,double).
Якщо в деякій області видимості ім’я функції оголошене

кілька разів, то друге оголошення інтерпретується компілято-
ром наступним чином.

1. Якщо списки параметрів двох функцій розрізняються чис-
лом або типами, то функції вважаються перевантаженими:

void print(int a){...};
void print(double a){...}.
2. Якщо списки параметрів і тип значення, що повертається в

оголошеннях двох функцій є однаковими, то оголошення вва-
жається повторним. Імена параметрів до уваги не приймаються:

void print(int a){...};
void print(int b){...}.
3. Якщо списки параметрів двох функцій однакові, але типи

значень, що повертаються, різні, то друге оголошення вважаєть-
ся помилковим:

unsigned int max(int a, int b){...};
int max(int a, int b){...}; //error.
4. Якщо списки параметрів двох функцій відрізняються тіль-

ки значеннями за замовчуванням аргументів, то оголошення
вважається повторним:

int max(int a,int b){...};
int max(int a, int b=0){...}.
Ключове слово typedef створює тільки альтернативне ім’я

для існуючого типу даних, новий тип не створюється.
Кваліфікатори const і volatile при порівнянні до уваги не бе-

руться:
void func(int);
void func(const int); //повторне оголошення.

66

Однак, якщо кваліфікатор const або volatile застосовується
до параметра покажчика або відсилки, то при порівнянні він
враховується:

void f(int*);
void f(const int*),
а також
void f(int)
void f(const int); //це різні функції.

Директива extern “C” і перевантажені функції
У директиві extern “C” дозволяється задавати тільки одну з

двох перевантажених функцій.
Наприклад:
 extern “C” void print(const char*);
 extern “C” void print(int); //error.
Однак наступний приклад працює коректно:
 extern “C” int max(int,int);
 extern double max(double, double).

Покажчики на перевантажені функції
Можна повідомляти покажчик на одну з множини переванта-

жених функцій.
Наприклад:
 extern void ff(int);
 extern void ff(double);
 void (*pf)(int)=ff.
У цьому випадку буде вибрана функція void ff(int). Тобто ком-

пілятор шукає у множині перевантажених функцій ту, яка має тип
і список параметрів такий, як і функція, на яку вказує покажчик.

Якщо такої функції немає, то видається помилка.

Дозвіл перевантаження
1. Ідентифікується множина перевантажених функцій, які

будуть розглядатися при певному виклику. Ті функції, що ввій-
шли у цю множину, називаються кандидатами.

67

2. Вибираються функції, до типів формальних аргументів
яких можливо привести фактичні параметри, тобто компілятор
ідентифікує й ранжує перетворення. Ранжування дає один із на-
ступних результатів:

а) точна відповідність.
Тип формального аргументу точно відповідає типу формаль-

ного параметра.
Наприклад:
 void print(unsigned int);
 void print(const char*);
 void print(char);

наступний виклик дає точну відповідність
 print('a'); //викликає print(char);
б) відповідність із перетворенням типу.
Тип фактичного аргументу не відповідає типу формального

параметра, але може бути перетворений до нього;
в) відсутність перетворення.
Знаходиться функція, що найкраще відповідає виклику.

Найбільш відповідна функція
Найбільш відповідною функцією буде функція, для якої ви-

конуються умови:
1. Перетворення застосовані до аргументів не гірше перетво-

рень, необхідних для виклику будь-якої відповідної функції.
2. Хоча б для одного аргументу застосоване перетворення

краще, ніж для того самого аргументу в будь-якій іншій відпо-
відній функції.

Рангом ланцюжка перетворень є ранг найгіршого перетво-
рення, що міститься у ньому.

Перетворення ранжуються наступним чином:
1. Точна відповідність краще підвищення типу.
2. Підвищення типу краще стандартного перетворення.
3. Стандартне перетворення краще перетворення, визначено-

го користувачем.

68

Точна відповідність
До точної відповідності відноситься:
а) точна відповідність аргументів. Наприклад, перерахова-

ний тип точно відповідає визначеним у ньому елементам:
 enum stat {Fail,Pass};
 extern void ff(stat);
 extern void ff(int);
 int main(){
 ff(Pass); //точна відповідність;
 …;
б) перетворення lvalue->rvalue.
Під lvalue розуміється об’єкт, що відповідає наступним умо-

вам:
• можна одержати адресу об’єкта;
• можна одержати значення об’єкта.
Це значення легко модифікувати (за винятком модифікатора

const).
Наприклад:
 int f(int);
 int main(){
 int lval=5;
 int d=f(lval); //точна відповідність;
 …};
в) перетворення масиву в покажчик.
Наприклад:
 int a[3];
 void f(int*);
 int main(){
 f(a); //точна відповідність;
 …};
г) перетворення функції в покажчик;
д) перетворення кваліфікаторів.
Це перетворення полягає у додаванні кваліфікаторів const

і volatile.
Наприклад:
 int a[3]={23,24,25};

69

 int* pi=a;
 void f(const int*);
 int main(){
 f(pi); //точна відповідність;
 …}.
Точну відповідність можна встановити примусово, скорис-

тавшись явним приведенням типів.

Підвищення типу
Підвищення типу здійснюється так:

• фактичний аргумент типу char, unsigned char, short
 підвищується до типу int;
• фактичний аргумент unsigned short підвищується до
 типу int (якщо розмір int більше, ніж розмір short,
 і до типу unsigned int в іншому випадку);
• float-> double;
• enum->int; unsigned int; long; unsigned long;
• bool->int.

Наприклад:
 extern void print(unsigned int);
 extern void print(int);
 extern void print(char);
 int main(){
 unsigned char u;
 print(u); //print(int); для u потрібне

підвищення типу;
 ...}.

Стандартне перетворення
До стандартного перетворення відносяться:
1. Цілочисельні перетворення: цілочисельний тип <-> ціло-

чисельний тип (крім перетворень, які були віднесені до підви-
щення типу).

2. Тип із плаваючою крапкою <-> тип із плаваючою крапкою
(крім перетворень, які були віднесені до підвищення типу).

70

3. Цілочисельний тип <-> тип із плаваючою крапкою.
4. Перетворення покажчиків:

• 0-0->покажчик;
• покажчик->void*.

5. Перетворення будь-якого цілочисельного типу, типу з
плаваючою крапкою, перерахованого типу або покажчика
в bool.

Наприклад:
 extern void f(unsigned int);
 extern void f(float);
 int main(){
 f(’a’);
 f(0);
 f(2L); //всі виклики неоднозначні
 f(3.14);
 f(true);
 ...
 }.

Посилання
Якщо формальний параметр посилання, то можливі наступні

випадки:
1. Фактичний параметр підходить у якості ініціалізатора

параметра-посилання. Тоді у цьому випадку маємо точну відпо-
відність.

Наприклад:
 void swap(int, int);
 int main(){
 int l1,l2;
 swap(l1,l2);
 …
 }.
2. Фактичний аргумент не може ініціалізувати параметр-

відсилку. У цьому випадку точної відповідності немає й вида-
ється помилка.

71

Приклад 1:
 void f(double);
 int main(){
 int a;
 f(a); //error;
 …
 }.
Приклад 2:
 struct my_struct{...};
 void take(my_struct);
 my_struct myfunc();
 int mian(){
 take(my_func()); //error;
 …
 }.
Тимчасова змінна не може ініціалізувати посилання, тому

повертається значення, яке повинно бути типу const my_struct.

Аргументи зі значеннями за замовчуванням
Наявність аргументів за замовчуванням дає можливість роз-

ширити множину підходящих функцій.
Наприклад:
 extern void ff(int);
 extern ff(long, int=0);
 int main(){
 ff(2L); //ff(long,0);
 ff(0,0) //ff(long,int);
 ff(0); //ff(int);
 ff(3.14); //error, неоднозначність;
 …
 }.

72

Лекція 9. ШАБЛОНИ ФУНКЦІЙ
Оголошення й визначення шаблона функції завжди почина-

ється із ключового слова template.
Приклад 1:
 template<class Type> //можна замість слова class
 використовувати typename
 Type max(Type a, Type b){
 if(a>b) return a;
 else return b;}.
Приклад 2:
 template<class Type, int size>
 Type min(Type (array)[size]);
 …
 template<class Type,int size>
 Type min(const Type (array)[size])
 {
 Type min_val=array[0];
 for(int i=0;i<size;i++)
 if(array[i]<min_val)
 min_val=array[i];
 return min_val;
 }.
Приклад 3:
 typedef Type;
 template<class Type>
 Type min(Type a,Type b){...}; //ім’я Type затінює оголо-

шене в typedef.
Приклад 4:
 template<class Type>
 Type min(Type a, Type b){
 …
 typedef Type; //error, таке ім’я вже існує
 ...}.
Приклад 5:
 template<class Type,class Type>

73

 Type min(Type,Type); //error повторне оголошен-
ня імені Type.

Приклад 6:
 template<class T,class U, class F>
 T min(U a,F b){...};
Приклад 7:
 template<typename T,U>
 inline T func(U s){...}; //error
 template<typename T,typename U>
 inline T func(U s){...}; //правильно.

Конкретизація шаблону функції
Шаблон функції описує, як побудувати конкретні функції,

якщо задано множину фактичних типів або значень.
Процес конструювання називається конкретизацією шаблону.
Приклад 1:
 template<class Type,int size>
 Type min(const Type (array)[size])
 {
 Type min_val=array[0];
 for(int i=0;i<size;i++)
 if(array[i]<min_val)
 min_val=array[i];
 return min_val;
 }
 int main(){
 int a[]={2,3,4,5,6,10};
 double b[]={2.3,23.67,12.5};
 int min_v=min(a); //замість абстрактного

типу Type підставляється
int; size=6;

 int min_v2=min(b); //замість абстрактного
типу Type підставляється
double; size=3;

...
}.

74

Процес визначення типів і значень аргументів шаблонів за
відомими аргументами функцій називається виведенням аргу-
ментів шаблону.

Приклад 2:
 template<typename Type, int size>
 Type min(Type (array)[size]){...};
 ...
 int (*pf)(int () [10])=min; //у цьому випадку відбува-

ється виведення аргументів
шаблону;

 Type=int, size=10.
Приклад 3:
 template<class T>
 int max(T a,T b){...};
 int main(){
 int a=10;
 double b=20.1;
 max(a,b);//error
 ...
 }
 template<class T>
 T func(Type* array, int size){....};
 int main(){
 int a[]={1,2,3};
 func(a,3); //у цьому випадку масив

приводиться до типу
 покажчика, а потім виво-

диться тип T;
 …
 }.

Явне завдання аргументів шаблону
У деяких ситуаціях вивести аргументи шаблону неможливо.

У цих випадках необхідно явно задавати типи таких аргументів.
Приклад 1:
 template<class T>

75

 T min(T a, T b){...};
 int main(){
 double a=10,b=30;
 int s=min<int>(a,b); //T=int
 ...
 }.
Приклад 2:
 template<class T, class U, class F>
 T func(U a, F b){...};
 int main(){
 int a=10;
 double g=20;
 int d=func<int,double,float>(a,g); //T=int;U=double;F=float
 …
Приклад 3:
 template<class T, class U, class F>
 T func(U a, F b){…};
 int main(){
 int a=10;
 double g=20;
 int d=func<int,float>(a, g); //T=int; U=int; F=float;

опускати можна тільки
хвостові аргументи;

 …
 }.
Приклад 4:
 template<class T1, class T2, class T3>
 T1 sum(T2 op1, T3 op2){...};
 void func(int (*pf)(int,char));
 void func(double (*pf)(float,float));
 int main(){
 func(sum); //error, яка з func;
 func(sum<double,float,float>);
 …
 }.

76

Моделі компіляції шаблонів
Існує 2 моделі компіляції шаблонів.
1. Модель компіляції із включенням.
У цій моделі визначення шаблону включається у кожний

файл, де цей шаблон конкретизується. Звичайне визначення
міститься у заголовному файлі.

2. Модель компіляції з поділом.
Відповідно до цієї моделі оголошення шаблонів функцій міс-

титься у заголовному файлі, а визначення — у файл із вихідним
текстом програми.

Приклад (компіляція із включенням):
 ---------------------------a.h--------------------------
 template<class T>
 T min(T a, T b){...};
 ---------------------------a.cpp ---------------------------
 #include “a.h”
 int i,j;
 double d=min(i,j).
Приклад (компіляція з поділом):
 ---------------------------a.h---------------------------
 template<class T>
 T min(T a, T b){...};
 ---------------------------a.cpp---------------------------
 export template<class T>
 T min(T a,T b){...};
 ---------------------------d.cpp ---------------------------
 #include “a.h”
 int i.j
 double d=min(i,j).

Явні оголошення конкретизації
Явні оголошення конкретизації шаблону необхідні для усу-

нення проблем у моделі компіляції із включенням (характерно
для деяких компіляторів).

77

Наприклад:
 template<typename T>
 T sum(T a, T b){...};
 template int sum<int>(int, int); // явне оголошення конкре-

тизації.
Визначення шаблону повинне перебувати у тому самому

файлі, де і явне оголошення, інакше буде помилка.

Явна спеціалізація шаблону
Не завжди вдається написати шаблон функції, що підходив

би до всіх можливих типів. Тому іноді використовується явна
спеціалізація шаблону.

Приклад 1:
 template<class T>
 T max(T a, T b){...};
 template<> int max<int>(int a, int b){...};
 //явна спеціалізація шаблону;
 int main(){
 int s=1,d=2;
 max(s,d); //викликається явна спеці-

алізація шаблону;
 double f,g;
 max(f,g); // у шаблоні T=double;
 …
 }.
Приклад 2:
 template<class T1,class T2, class T3>
 T1 sum(T2 a, T2 b){...};
 template<>int sum<int, char>sum(char f, char g)
 {…};
 //явна спеціалізація шаблону.
Можна оголошувати явну спеціалізацію шаблону функції,

не визначаючи її:
 template<>int sum<int, int>sum(int f,int g).

78

Перевантаження шаблонів функцій
Шаблон функції може бути перевантажений.
Розглянемо приклад:
 template<class T>
 T min(int,int);
 template<class T>
 T min(T, int);
 template<class T>
 T min(T,T);
 int main(){
 double s=2.3;
 int a=34;
 int l=min(s,200); //викликається min(T,int);
 int d=min(a,300); //неоднозначність;
 …}.
Алгоритм дозволу перевантаження при наявності шаблонів

такий:
1. Побудова множини функцій-кандидатів.
Розглядаються шаблони функцій з таким ім’ям, що й викли-

кана. Якщо аргументи шаблонів виведені з фактичних аргумен-
тів функції успішно, то в множину функцій кандидатів включа-
ється або конкретизований шаблон, або спеціалізація шаблону
для виведених аргументів, якщо вона існує.

2. Побудова множини підходящих функцій.
У множині функцій-кандидатів залишаються тільки функції,

які можна викликати з даними фактичними аргументами.
3. Ранжирування перетворень типів:
а) якщо є тільки одна функція, то вона й викликається;
б) якщо виклик неоднозначний, видалити із множини підхо-

дящих функцій, конкретизованих із шаблонів.
4. Дозвіл перевантаження: розглядаються тільки звичайні

функції:
а) якщо є тільки одна функція, то вона й викликається;
б) в іншому випадку виклик неоднозначний.
Наприклад:
 template<class Type>

79

 Type max(Type,Type);
 double max(double,double);
 int max(){
 int a;
 float b;
 double s;
 max(0,a); //обидва аргументи int ви-

клик max(Type,Type);
 max(0.25,s); //виклик double max(double,

double);
 max(0,b); // виклик double max(double,

double);
 ...}.

Дозвіл імен у визначеннях шаблонів
Розглянемо приклад:
void print(const char*); //це оголошення тут не по-

трібно;
template<typename T>
T min(T a,T b){
T min_val;
print(min_val); //невідомо який print по-

трібний;
...;
void print (int);
int main(){
int a=3,b=5;
min(a,b); //буде викликаний print(int);
…}.

Простір імен і шаблони функцій
Якщо шаблон функції визначений у деякому просторі імен,

то його явні специфікації повинні бути визначені у тому самому
просторі імен.

80

Наприклад:
 namespace myname{
 template<class T>
 T max(T a,T b){...};
 }
 namespace myname{
 template<> int max<int>(int d, int g){...};
 }
 int main(){
 using myname::max;
 double a=2.3,b=4.5;
 max(a,b); //викликається max(T,T).
 …

81

ОБ’ЄКТНЕ ПРОГРАМУВАННЯ

Лекція 10. КЛАСИ
Визначення класу складається із 2 частин: заголовка й тіла.
Наприклад:
 class Myclass{
 private:
 int a;
 int b;
 }.

Різниця між модифікаторами private і public
Розглянемо приклади.
Приклад 1:
 class A{
 public:
 int s;
 };
 int main(){
 A aobj;
 aobj.s=23; //правильно;
 A* pobj=new A;
 pobj->s=56; //правильно;
 …
Приклад 2:
 class B{
 private:
 int s;
 };
 int main(){
 B bobj;
 bobj.s=22; //error;
 B* bobj=new B;
 bobj->s=34; //error;
 …

82

Визначення класу
class G{
int s;
}
еквівалентно наступному оголошенню
class G{
private:
int s;
}.

Структури (struct) еквівалентні класам, за винятком одного
нюансу.

Визначення структури
struct G{
int s;}
еквівалентно наступному визначенню
struct G{
public:
int s;
}.
Атрибути класу не можуть бути ініціалізовані в місці визна-

чення, за винятком статичних атрибутів:
 class H{
 int s=3;//error
 double f=23.6; //error
 static int j=25; //правильно
 }.

Функції-члени класу
Крім даних-членів у класі можуть бути функції-члени.
Наприклад:
 class Myclass{
 private:
 int a;

83

 public:
 void func(int g){
 a=g;
 }
 }.
Виклик функції-члена здійснюється у такий спосіб:
 int main(){
 Myclass obj;
 obj.func(34);
 ...
 Myclass pobj=new Myclass;
 pobj->func(34);
 ...
Функція-член класу може бути визначена поза класом.
Наприклад:
 class Myclass{
 private:
 int a;
 public:
 void func(int);
 };
 void Myclass::func(int g){a=g}.

Друзі класу
Деяку функцію можна оголосити другом класу, у цьому ви-

падку вона одержить доступ до закритих членів класу.
Наприклад:
 class Myclass{
 private:
 int s;
 }
 void func (const Myclass m){
 m.s=100; //error член s закритий

член-класу;
 }

84

 class Myclass;
 void func(const Myclass);
 class Myclass{
 private:
 friend void func(const Myclass);
 int s;}
 void func(const Myclass m){
 m.s=300; //правильно (однак у MVS

6.0 не працює);
 …

Функції-члени з кваліфікаторами const і volatile
Функція-член класу може бути оголошена з кваліфікатором

const. Це означає, що вона не може змінювати дані члени класу.
Розглянемо приклад.
Приклад 1:
 class Myclass{
 private:
 int s;
 public:
 void func(int d) const {
 s=d; //error, константна функ-

ція-член класу не може
 змінювати атрибут s;
 ...
 }.
Приклад 2:
 class Myclass{
 private:
 int s;
 public:
 int get() const{ return s;} //правильно;
 …}.
Приклад 3:
 class Myclass{

85

 private:
 int s;
 public:
 int get(){return s;}
 void set(int a){s=a;}
 }
 int main(){
 const Myclass obj;
 int t=obj.get(); //правильно;
 obj.set(100); //error, функція-член set

неконстантна;
 …}.

Оголошення mutable
Щоб дозволити модифікацію члена класу, що належить кон-

стантному об’єкту, його необхідно оголосити змінюваним.
Розглянемо приклад:
 class Myclass{
 private:
 int s;
 mutable int h;
 public:
 int get() const {
 s++; //error;
 h++; //правильно;
 return s;}
 void set(int d){s=d;}
 void set(int w) const {h=w;}
 }

 int main(){
 Myclass t;
 t.get();
 const Myclass t1;

86

 t1.set(30);
 return 0;
 }.

Неявний покажчик this
Покажчик this адресує об’єкт, для якого викликана функція-

член.
Розглянемо приклади:
Приклад 1:
 class Myclass{
 private:
 int s;
 public:
 void set(int s){
 this->s=s; //this — це покажчик;
}
}.
Приклад 2:
 class Myclass{
 private:
 int s;
 public:
 void set(int d){s=d;}
 bool operator>(const Myclass& m){
 if(this->s>m.s) return true;
 return false;}
 Myclass& operator=(int d){
 s=d;
 return *this;} //повертає об’єкт цього

самого класу;
 };
 int main(){
 Myclass a,b;
 a.set(10);

87

 b.set(29);
 b=545;
 if (a>b) cout<<“a>b”<<endl;
 else cout<<“a<b”<<endl;
 return 0;
 }.

Статичні члени класу
Іноді потрібно, щоб усі об’єкти деякого класу мали доступ до

єдиного глобального об’єкта.
У цій ситуації прийнятним рішенням є статичний член класу,

що поводиться як глобальний об’єкт, що належить своєму класу.
Статичний член класу належить класу, але не об’єкту. Щоб зро-
бити член статичним, необхідно помістити на початку його ого-
лошення в тілі класу ключове слово static.

Наприклад:
 class Account{
 private:
 static double Rate;
 double amount;
 ...}.
У загальному випадку статичний член ініціалізується поза

класом (але може і всередині класу).
Наприклад:
 class Account{
 private:
 static double Rate;
 …}.
 double Account::Rate=2...
Ініціалізацію статичних членів не варто розміщувати у заго-

ловних файлах. Приклад правильної ініціалізації:
-------------------------------a.h------------------------------
 class Account{
 private:

88

 static int a;
 ...}
------------------------------a.cpp ----------------------------
 #include “a.h”
 int Account::a=2.4.
Статичний член класу доступний функції-члену того самого

класу:
 class A{
 private:
 static int a;
 double b;
 public:
 int f(){ return a*b;}
 ...}.
Функції, що не є членами класу, можуть звертатися до ста-

тичних членів двома способами:
1-й спосіб — за допомогою операторів доступу:
 class Account{
 private:
 static double a;
 friend void f(Account ac){
 double c =ac.a*20;
 ...};
2-й спосіб — кваліфікація імені члена ім’ям класу:
 class Account{
 private:
 static double a;
 friend void f(Account ac){
 double c =Account::a*20;
 ...}.
Статичні члени можуть використовуватися способами що

неприпустимі для нестатичних членів.
1. Статичний член можна оголошувати як об’єкт свого ж класу:
 class Bar{
 private:

89

 static Bar m1; //правильно;
 Bar* m2; //правильно;
 Bar m3; //error;
 ...}.
2. Статичний член може виступати у ролі аргументу за замов-

чуванням, що заборонено для нестатичного:
 class Bar{
 private:
 int a;
 static int b;
 public:
 int mem(int c=a){...}; //error;
 int mem1(int c=b){...} //правильно;
 ...}.

Статичні функції-члени
Крім статичних даних-членів існують також статичні функції-

члени. Статична функція-член також належить класу, а не об’єкту.
Наприклад:
 class A{
 private:
 int a;
 static int b;
 public:
 static void f(int);
 …}.
Статична функція-член класу не може використовувати не-

статичні атрибути класу.
Наприклад:
 class A{
 private:
 int a;
 static int b;
 public:
 static void f(int c){

90

 a=c; //error, a — нестатичний
атрибут;

 b=c; //правильно, b — статич-
ний атрибут;

 …}
 void f1(int c){
 a=c; //правильно;
 b=c; //правильно;
 ...
 }.

Покажчик на член класу
При роботі зі звичайними функціями можна використовува-

ти покажчики на функції:
int (*pf1)();
int f();
pf1=f.
Однак таке присвоєння є помилковим у випадку функції-

члена класу.
Наприклад:
 сlass Bar{
 ...
 public:
 int f();
 ...
 int (*pf)();
 pf=Bar::f; //error, порушення типіза-

ції.
Покажчик на функцію-члена класу можна оголосити таким

чином:
 int(Bar::*pf)();
 pf=Bar::f; //правильно.
Для оголошення покажчика на функцію-члена класу можна

використовувати typedef.

91

Наприклад:
 typedef int(Bar::*pf)();
 pf pfunc=Bar::f;
До покажчиків на члени класу можна звертатися тільки за

допомогою конкретного об’єкта або покажчика на об’єкт класу.
Наприклад:
 int main(){
 Bar obj;
 (obj.*pfunc)();
 Bar* pobj;
 (pobj->*pfunc)();
 ...
Запишемо приклад з використанням typedef:
 typedef int (Bar::*pf)();
 class Bar{
 private:
 int a;
 …
 public:
 int func(pf pfunc){
 …
 (this->*pfunc)();
 ...} }.

Покажчики на статичні члени класу
Покажчики на статичні члени класу — це звичайні покаж-

чики.
Наприклад:
 class Bar{
 public:
 static int func();
 …}
 int (*pf)();
 pf=Bar::func; //правильно;
 int (Bar::*pf1)();

92

 pf1=Bar::func; //error, pf1 — це покажчик
на функцію-члена класу.

Об’єднання
Об’єднання — це особливий вид класу. Дані члени в ньому збе-

рігаються таким чином, що перекривають один одного. Всі члени
розміщуються, починаючи з однакової адреси. Для об’єднання
приділяється стільки пам’яті, скільки необхідно для зберігання
найбільшого його члена.

Наприклад:
 union Val{
 char value;
 int ival;
 double dval;
}.
Об’єкт типу Val буде дорівнювати розміру dval, як найбільшо-

го за розміром члена об’єднання. Члени об’єднання можна ого-
лошувати відкритими, закритими або захищеними.

Наприклад:
 union myunion{
 private:
 int val;
 public:
 double dval;
 int func(){...;}
}.
Об’єднання поводиться так само, як і клас.
Звернення до членів об’єднання здійснюється так само, як і

до членів класу.
Наприклад:
 union myunion{
 public:
 int val;
 double dval;
 }

93

 int main(){
 myunion mobj;
 mobj.val=200;
 cout<<mobj.dval<<endl; //повинне бути 200;
 //однак Visual studio 6.0

ототожнює class і union
return 0;}.

Існують також анонімні об’єднання.
Наприклад:
 class myclass{
 public:
 int a;
 union{
 int val;
 double dval;
 }
 }.
До даних анонімного об’єднання звертатися можливо у тій

самій області видимості, де воно визначено:
 int main(){
 myclass mobj;
 mobj.a=10;
 mobj.val=300;
 return 0;}.

Бітові поля
Для зберігання заданого числа бітів можна оголошувати член

класу як бітове поле. Після ідентифікатора бітового поля вказу-
ється двокрапка, а потім константний вираз, що задає кількість
бітів.

Наприклад:
 class myclass{
 public:
 unsigned int mybit:1;
 …}.

94

Бітове поле повинне мати цілий тип даних. Доступ до бітово-
го поля здійснюється також, як і до інших членів класу:

 void func(){
 myclass m;
 m.mybit=1;
 }.

Розв’язання дозволу імен в області видимості класу
Клас можна розглядати як простір імен. Розв’язання дозволу

імені проводиться за допомогою оператора ::
Наприклад:
 int val;
 class myclass{
 private:
 int val;
 public:
 int func(int val){
 int a=val; //локальний параметр val;
 int b=::val; //глобальна змінна val;
 int c=this->val; //член класу;
 int d=myclass::val; //член класу;
 ...
 }.

Локальні класи
Клас, визначений всередині тіла функції, називається ло-

кальним. Він видимий тільки у тій області видимості, де він ви-
значений. До члена такого класу не можна звертатися ззовні
локальної області видимості, яка містить його визначення.
Функції-члени локального класу повинні визначатися всереди-
ні самого класу.

Наприклад:
 void func(){
 class Bar{
 public:

95

 int a;
 int b;}
 Bar bobj;
 bobj.a=10;
 ...
 }.

Вкладені класи
Клас, оголошений всередині іншого класу, називається вкла-

деним. Визначення вкладеного класу може перебувати у кожній
із секцій public, protected, private.

Наприклад:
 class Node{...};
 class List{
 public:
 class Node{
 private:
 int data;
 Node* next;
 public:
 int get(){return data;}
 Node* get(){return next;}
 };
 void func(){
 Node* p; //локальний Node;
 }
 }

 int main(){List* lobj;
 List::Node* nobj;
 int c=nobj.get();
 ...
 }.
Клас, що містить інші класи, можна оголосити другом вкла-

деного класу:

96

 class List{
 public:
 class Node{
 friend class List;
 ...
 }
 }.
Вкладений клас Node має доступ до закритих членів класу

List, що містить його, а клас List доступу до членів вкладеного
класу Node не має.

Наприклад:
class List{
 private:
 int s;
 public:
 class Node{
 private:
 int d;
 public:
 void get(){
 int h=s; } //правильно;
 };
 void get(){
 int t=d; }; //error;
}.

97

Лекція 11. КОНСТРУКТОРИ
ТА ДЕСТРУКТОРИ КЛАСУ

Конструктори класу
Конструктор — визначена проектувальником функція (мож-

ливо перевантажена), що автоматично застосовується до кожно-
го об’єкта класу перед його використанням.

Ім’я конструктора класу збігається з іменем класу.
Наприклад:
 class Account{
 private:
 char* name;
 double balance;
 public:
 Account();
 ...}.
Єдине синтаксичне обмеження, яке накладається на кон-

структор, полягає у тому, що він не повинен мати тип значення,
який повертається, навіть тип void.

Наприклад, помилкові оголошення:
 void Account::Account();//error
 Account* Account::Account(const char* pc){..}; //error.
В одному класі може бути кілька конструкторів.
Наприклад:
 class myclass{
 private:
 int a;
 double b;
 public:
 myclass(){ //конструктор за замовчу-

ванням;
 a=0;
 b=0.0;}
 myclass(int _a, double _b=0){ //конструктор з параме-

трами;
 a=_a; b=_b;} }.

98

Об’єкт класу myclass, що ініціалізується конструктором, мож-
на оголосити у такий спосіб:

myclass mobj; //викликається конструк-
тор за замовчуванням;

myclass mobj1(3,4.5); //викликається конструк-
тор myclass(int _a, double _
b=0);

myclass mobj2(3); // викликається конструк-
тор myclass(int _a, double _
b=0).

Якщо в класі не оголошено жодного конструктора, то ство-
рюється неініціалізований об’єкт.

Наприклад:
class myclass{
private:
 int a;
public:
…}
int main(){
myclass obj; //об’єкт неініціалізовано;
…}.
Однак, якщо в класі був оголошений хоча б один конструк-

тор, то об’єкт повинен бути обов’язково ініціалізований.
Наприклад:
 class myclass{
 private:
 int a;
 public:
 myclass(int s){...};
}
int main(){
myclass obj; //error, відсутній конструк-

тор за замовчуванням;
...}.
Існує альтернативний синтаксис: список ініціалізації членів,

у якому через кому вказуються імена й початкові значення:
class myclass{

private:
 int a;
 double b;
public:
 myclass():a(0),b(0.0){};
 myclass(int s,double f):a(s),b(f){…};
}.
Цей синтаксис більш коректний.
Конструктор не можна повідомляти із ключовими словами

сonst і volatile.

Обмеження прав на створення об’єкта
Можна обмежити або заборонити деякі форми створення

об’єктів, якщо помістити конструктор у закриту або захищену
секцію:

class myclass{
private:
 int a;
 myclass();
public:
…
}.

Копіювальний конструктор
Ініціалізація об’єкта іншим об’єктом того самого класу нази-

вається почленною ініціалізацією за замовчуванням. Копіюван-
ня одного об’єкта в іншій виконується шляхом послідовного ко-
піювання кожного нестатичного члена. Таку послідовність дій
можна змінити, оголосивши копіювальний конструктор.

Наприклад:
 class myclass{
 private:
 int a;
 double b;
 public:
 myclass(const myclass obj):a(obj.a),b(obj.b){...}; } //ко-

піювальний конструктор.

99

100

Деструктор класу
Деструктор — це спеціальна зумовлена користувачем

функція-член, що автоматично викликається, коли об’єкт вихо-
дить за межі області видимості, або коли до покажчика на об’єкт
застосовується операція delete. Ім’я цієї функції починається з
позначки ~.

Наприклад:
 class myclass{
 private:
 int* a;
 double b;
 public:
 myclass(int d, double s):a(new int(d)),b(s){};
 ~myclass(){ //деструктор класу myclass
 delete a;
 b=0.0;}
 }.
У принципі деструктор може реалізовувати будь-яку опера-

цію, а не тільки звільнення ресурсів.
Деструктор не може бути перевантажений.

Явний виклик деструктора
Іноді деструктор для деякого об’єкта можна викликати явно.
Наприклад:
 class myclass{
 private:
 …
 public:
 ~myclass(){...;}
 int main(){
 int* a=new int[10];
 myclass* pt=new (a) myclass;
 pt->~myclass(); //можна було б застосува-

ти delete pt;
 …

101

Лекція 12. ПЕРЕВАНТАЖЕННЯ ОПЕРАТОРІВ

Перевантаження операторів
Більшість операторів у С++ можуть бути перевантажені. Пе-

ревантажувати можна такі оператори:
+, -, *, /, %, ^, &, |, ~, !, , , =, <, >, <=, >=, ++, --, <<, >>, ==,

!=, &&, ||, +=, -, =, /=, %=, ^=, &=, |=, *=, <<=, >>=, [], (), ->,
->*, new, new[], delete, delete[].

Оператори, які не можна перевантажувати:
::, .*, . , ?:
Розглянемо деякі оператори, які можуть бути перевантажені:

operator==
Цей оператор може бути членом класу, але його можна також

оголошувати поза класом.
а) operator== є членом класу.
У цьому випадку його перевантаження виглядає так:
 class myclass{
private:
 int a;
public:
 int get(){return a;};
 bool operator==(const myclass obj){
 if(a==obj.a) return true;
 else return false;}
…
Виклик даного оператора буде виглядати таким чином:
int main(){
myclass a,b;
if(a==b) …
…};
б) operator== не є членом класу.
Тоді його перевантаження буде мати вигляд:
bool operator==(const myclass s, const myclass s1)
{

102

if(s.get()==s1.get()) return true;
else return false;
};
в) operator== є другом класу.
Тоді маємо
bool operator==(const myclass& s,const myclass& s1)
{
if(s.a==s1.s) return true;
else return false;
};
class myclass{
private:
 int a;
public:
 friend bool operator==(const myclass&,const myclass&);
…}
}.

operator=
Оператор присвоєння можна перевантажувати тільки в класі.
Наприклад:
 class myclass{
 private:
 int a;
 public:
 myclass& operator=(const myclass& obj){
 a=obj.a;
 return *this;}
 }.

operator[]
Оператор індексування operator[] визначається для класів.
Наприклад:
 class myclass{
 private:

103

 int* a;
 public:
 myclass(int d)
 {
 a=new int[d];
 …}
 int& operator[](int index){
 return a[index];
 }
 }.
Використання цього оператора може бути наступним:
 int main(){
 myclass obj(34);
 int c=obj[5];
 obj[7]=56;
 …
 return 0;
 }.
Розглянемо приклад створення багатомірних масивів об’єктів.
class array_mas{
private:
 int* a;
 int size;
public:
 array_mas():size(10){
 a=new int[size];}
 int& operator[](int value){ return a[value];}
 ~array_mas(){ size=0; delete [] a;}
};

class array{
private:
 array_mas* ma;
 int size;
public:

104

 array(int s):size(s){
 ma=new array_mas[size];}
 array_mas& operator[](int value){return ma[value];}
 ~array(){size=0; delete [] ma;}
}
int main(){
array obj(10);
obj[1][1]=10;
…}.

operator()
Оператор виклику функції “()” може бути перевантаже-

ний для об’єктів типу клас. Якщо визначено клас, який міс-
тить деяку операцію, то для її виклику перевантажується від-
повідний параметр. Перевантажений оператор operator()
може бути оголошений як функція-член з довільним числом
параметрів.

Наприклад:
 class myclass{
 private:
 double f;
 public:
 double operator(double a, double b){
 f=a;
 double res=f+b;
 return res;}
 };
 int main(){
 myclass obj;
 double t=obj(2.3,6.7);//t дорівнює 9.

operator ->
Оператор “->”, що дає доступ до членів класу, може переванта-

жуватися для об’єктів класу. Оператор доступу до членів класу —
це унарний оператор, тому параметри йому не передаються.

105

Перевантажений оператор “->” повинен повертати або покаж-
чик на тип класу, або об’єкт класу. Якщо вертається покажчик, то
до нього застосовується семантика вбудованого оператора “->”.

Наприклад:
 class A{
 private:
 A* ptr;
 public:
 void f(){ cout<<“call function f from a”<<endl; } };

 class myclass{
 private:
 A* p;
 public:
 myclass(){ p=new A; }
 void f(){ cout<<“call function f from myclass”<<endl; }
 A operator*(){ cout<<“call operator*”<<endl; return *p;}
 A* operator->(){ cout<<“call operator->”<<endl; return p;}
 };
 int main(){
 myclass* obj =new myclass;
 obj->f();
 (*obj).f();
 myclass obj1;
 obj 1-1->f();
 (*obj1).f();
 return 0;}.

орerator ++ та оperator --
Ці оператори можуть перевантажуватися у префіксній і

постфіксній формах.
Такі оператори можуть перевантажуватися для об’єктів класу.
а) префіксна форма:
class myclass{
private:
 int s;

106

public:
 myclass():s(0){};
 myclass operator++(){ //можна повертати поси-

лання не тільки на myclass
 s+=2;
 return *this;}
 int get(){return s;}
}.
Виклик цього оператора може мати вигляд:
int main(){
myclass obj;
cout<<obj.get()<<endl;
++obj;
cout<<obj.get()<<endl;
return 0;};
б) постфіксна форма:
class myclass{
private:
 int s;
public:
 myclass():s(0){};
 myclass& operator++(int g){
 if(g==0) s+=2;
 else s+=g;
 return *this;}
 int get(){return s;}
}.
Виклик такого оператора може мати вигляд:
int main(){
myclass obj;
obj.operator++(10);
obj++;
return 0;}.
Аналогічно для оператора декремента.

107

Перевантажені оператори інкремента й декремента можна
повідомляти друзям класу.

class myclass{
public:
 int s;
 myclass():s(0){};
 friend myclass operator++(myclass,int);
 int get(){return s;}
};
myclass operator++(myclass obj,int g){
 if(g==0) obj.s+=2;
 else obj.s+=g;
 return obj;};
int main(){
myclass obj;
operator++(obj,10);
obj++;
return 0;}.

operator *, opeator +, operator -, operator /
Як приклад розглянемо оператор додавання. Інші переванта-

жуються аналогічно. Оператор додавання може бути переванта-
жений у класі, поза класом або оголошений другом класу:

а) оператор додавання як функція-член класу.
Наприклад:
 class myclass{
 private:
 int s;
 public:
 myclass(int d):s(d){}:
 myclass operator+(const myclass obj){ //вказується

тільки один параметр
 return myclass(s+obj.s);}};
 int main(){
 myclass obj1(10);
 myclass obj2(20);

108

 myclass obj3=obj1+obj2;
 …};
б) оператор додавання, оголошений поза класом.
Наприклад:
 class myclass{
 private:
 int s;
 public:
 myclass(int d):s(d){};
 int get() const {return s;}};
 myclass operator+(const myclass s1, const myclass s2) // у

цьому випадку треба вказувати два параметри
 {return myclass(s1.get()+s2.get()); };
 int main(){
 myclass obj1(10);
 myclass obj2(20);
 myclass obj3=obj1+obj2;
 ...};
в) оператор додавання, як друг класу.
Наприклад:
 class myclass{
 private:
 int s;
 public:
 myclass(int d):s(d){};
 friend myclass operator+(const myclass, const myclass);
 int get() const {return s;}};
 myclass operator+(const myclass s1, const myclass s2)
 { return myclass(s1.get()+s2.get()); };
 int main(){
 myclass obj1(10);
 myclass obj2(20);
 myclass obj3=obj1+obj2;
 …}.

109

оperator ,
Оператор кома може бути перевантажений як у класі, так і

поза класом:
а) перевантаження у класі.
Приклад 1:
 class myclass{
 public:
 int s;
 myclass(int d):s(d){};
 void operator,(myclass obj){ obj.s=s;};
 int get() const {return s;}};
 int main(){
 myclass obj1(10);
 myclass obj2(20);
 obj1,obj2;
 …}.
Приклад 2:
 class myclass{
 public:
 int s;
 myclass(int d):s(d){};
 myclass operator,(myclass obj){
 obj.s=s;
 return obj;};
 int get() const {return s;};
 };
int main(){
myclass obj1(10);
myclass obj2(20);
obj1,obj2;
…
};
б) перевантаження поза класом.
Приклад:
 class myclass{
 public:
 int s;

110

 myclass(int d):s(d){};
 int get() const {return s;};
 };
 void operator,(const myclass obj,myclass& obj1)
 {
 cout<<“ok”<<endl;
 obj1.s=obj.s;
 };
 int main(){
 myclass obj1(10);
 myclass obj2(20);
 obj1,obj2;
 …};
в) оператор кома як друг класу:
class myclass{
public:
 int s;
 myclass(int d):s(d){};
 friend void operator,(const myclass&, myclass&)
 int get() const {return s;};
};

void operator, (const myclass& obj,myclass& obj1)
{
cout<<“ok”<<endl;
obj1.s=obj.s;
};
int main(){
myclass obj1(10);
myclass obj2(20);
obj1,obj2;
…}.

operator<< і operator>>
Оператори operator<< і operator>> можуть бути переванта-

жені тільки поза класом, або можуть бути друзями класу. Роз-
глянемо приклади.

111

Приклад 1:
 class myclass{
 public:
 int s;
 …;
 ostream operator<< (ostream os, const myclass obj){
 os<<obj.s<<endl;
 return os;}.
Виклик оператора буде мати вигляд:
int main(){
myclass obj;
cout<<obj;
…
Приклад 2:
 class myclass{
 public:
 int s;
 …;
 istream operator>> (istream is, const myclass obj){
 is>>obj.sl;
 return is;}.
Відповідно виклик оператора буде мати вигляд:
int main(){
myclass obj;
cin>>obj.

Оператори new і delete
За замовчуванням у стандартній бібліотеці C++ для виділен-

ня пам’яті об’єкта класу з купи й звільнення зайнятої їм пам’яті
визначені відповідно глобальні оператори new() і delete(). Але
можна реалізувати власну стратегію керування пам’яттю за до-
помогою перевантаження операторів new() і delete().

Оператор new
Оператор new() може бути перевантажений тільки в класі.

Визначення перевантаженого оператора new() має вигляд:

112

class myclass{
public:
void* operator new(size_t);
…}.
Тип size_t визначено у заголовному файлі cstddef.h. Параметр

size_t оператора new() автоматично ініціалізується значенням,
рівним розміру myclass у байтах.

За допомогою оператора розв’язання доступу глобальної об-
ласті видимості можна викликати глобальний new(), навіть якщо
в класі myclass визначена перевантажена версія цього оператора:

myclass* ps=::new myclass.
Наприклад:
class myclass{
private:
 class Node{
public:
int data;
 Node* next;
 }
 Node* first;
 int size;
public:
 void* operator new(size_t);
 void print();
}

void* myclass::operator new(size_t s){
myclass* p=::new myclass; //::new — це виклик опертора new з

глобального простору імен
p-p->size=10;
Node* firstel=::new Node;
firstel->data=0;
firstel->next=0;
Node* cur=firstel;
for(int i=1; i< p-p->size; i++){
cur->next=::new Node;

113

cur =cur->next;
cur->data=i;
cur->next=0;}
p-p->first=firstel;
return p;
};

void myclass::print()
{
Node* cur=first;
while(cur!=0)
{
cout<<cur->data<<endl;
cur=cur->next;
}
};
int main(){
myclass* p=new myclass;
p-p->print();
return 0;}.
Варто помітити, що перевантажений оператор new() є ста-

тичним оператором класу.

Оператор delete
Оператор delete() можна перевантажити тільки в класі. Пе-

ревантажений оператор delete(), як і оператор new(), є статич-
ним оператором класу. Перевантаження оператора delete() ви-
глядає так:

class myclass{
public:
void operator delete(void*).
Інший варіант перевантаження оператора delete() має вигляд:
class myclass{
public:
void operator delete(void*, size_t).

114

Розглянемо приклад перевантаження оператора delete()
(розглянемо визначений раніше клас myclass):

class myclass{
private:
 class Node{
 public:
 int data;
 Node* next;
 }
 Node* first;
 int size;
public:
 void* operator new(size_t);
 void print();
 void operator delete(void*, size_t);
}

void myclass::operator delete(void*p, size_t size)
{
myclass* mp=(myclass*) p;
Node* firstel=mp->first;
Node* p1;
while(firstel!=0)
{ p1=firstel;
firstel=firstel->next;
::delete p1;}// ::delete — це виклик оператору delete з глобально-

го простору імен
};

int main(){
myclass* p=new myclass;
p-p->print();
delete p;
return 0;}.
Використовуваний оператор delete() повинен відповідати

тому оператору new(), за допомогою якого була виділена об’єкту

115

пам’ять. Якби в класі myclass не був перевантажений оператор
delete(), то в main() був би викликаний стандартний оператор
delete().

Оператори new[] і delete[]
У класі можна перевантажувати також оператори new[]

і delete[] для роботи з масивами.
Перевантаження оператора new[] виглядає таким чином:
class myclass{
public:
void* operator new[](size_t);
...}.
Коли за допомогою new[] створюється масив об’єктів типу

класу, компілятор перевіряє, чи визначений у класі оператор
new[]. Якщо так, то для виділення пам’яті під масив виклика-
ється саме він.

Перевантаження оператора delete[] виглядає таким чином:
class myclass{
public:
void operator delete[](void*).
Інший варіант
void operator delete[](void*, size_t);
}.
Оператори new[] і delete[] є статичними операторами класу.
Наприклад:
class Massive{
private:
 int a;
public:
 Massive(int c=0):a(0){};
 static void* operator new[](size_t);
 static void operator delete[](void*,size_t);
}

void* Massive::operator new[](size_t size){

116

cout<<“our new[]”<<endl;
cout<<“size ”<<(size/sizeof(Massive))<<endl;
int n= size/sizeof(Massive);
Massive* first=::new Massive[n];
return first;};
Void Massive::operator delete[](void* first,size_t size){
cout<<“our delete[]”<<endl;
Massive* first1=reinterpret_cast<Massive*>(first);
::delete [] first1;};
int main(){
Massive* obj=new Massive[5];
delete [] obj;
return 0;}.

Оператори розміщення new() і delete()
Оператор розміщення new() може бути перевантажений за

умови, що всі оголошення мають різні списки параметрів. Пер-
ший параметр повинен бути обов’язково size_t. Оператори роз-
міщення теж є статичними операторами класу.

Наприклад:
class myclass{
private:
 class Node{
 public:
 int data;
 Node* next;
 };
 Node* first;
 int size;
public:
 void* operator new(size_t,int);
 void operator delete(void*,size_t);
};

void* myclass::operator new(size_t size, int a){

117

myclass* p=::new myclass;
p-p->size=a;
Node* firstel=::new Node;
firstel->data=0;
firstel->next=0;
Node* cur=firstel;
for(int i=1; i< p-p->size; i++){
cur->next=::new Node;
cur =cur->next;
cur->data=i;
cur->next=0;}
p-p->first=firstel;
return p;};

void myclass::operator delete(void* p,size_t s)
{ myclass* mp=(myclass*) p;
Node* firstel=mp->first;
Node* p1;
while(firstel!=0)
{ p1=firstel;
firstel=firstel->next;
 ::delete p1;}
};
int main(){
myclass* p=new (12) myclass;
delete p;
return 0;
}.
Існують також оператори розміщення new[] і delete[].

118

ВИЗНАЧЕНІ КОРИСТУВАЧЕМ ПЕРЕТВОРЕННЯ

Конвертер
Конвертер — це особливий випадок функції-члена, що реалі-

зує визначене користувачем перетворення об’єкта у деякий ін-
ший тип. Конвертер визначається всередині класу.

Конвертер визначається наступним чином:
class myclass{
public:
operator type().
Розглянемо кілька прикладів.
Приклад 1:
 class myclass{
 private:
 double a;
 public:
 …
 operator double(){return a;}};
 double f(double b){return b};
 }
 int main(){
 myclass obj;
 cout<<f(obj)<<endl;
 return 0;}.
Приклад 2:
class B{
…}
class A{
private:
 B obj;
public:
 operator B(){return obj;}
…}.

119

Конструктор як конвертер
Набір конструкторів класу, що приймають єдиний параметр,

наприклад, myclass(int) класу myclass, визначає множину неявних
перетворень у значеннях типу myclass. Тобто конструктор
myclass(int) перетворює значення типу int у значення типу myclass.

Однак можна заборонити використовувати конструктор як
конвертер за допомогою ключового слова explicit.

Наприклад:
class myclass{
private:
 double a;
public:
 myclass(double s):a(s){};
…}
void f(myclass g){...};
int main(){
double r;
f(r); //правильно;
…}
class myclass{
private:
 double a;
public:
 explicit myclass(double s):a(s){};
…}
void f(myclass g){...};
int main(){
double r;
f(r); //error, конструктор має

оголошення explicit;
…}.

120

Лекція 13. ШАБЛОНИ КЛАСІВ

С++ дозволяє крім шаблонів функцій визначати також шаб-
лони класів. Розглянемо приклад визначення шаблону класу:

template<class Type>
class Queue{
public:
 Queue();
 ~Queue();
 Type& remove();
 void add(const Type&);
 bool is_empt();
 …
private:
 Type s;
}.
Використання такого шаблону класу може бути наступне:
int main(){
Queue<int> q;
Queue<vector<double>> vs;
…
Визначення шаблону можна також задавати у вигляді:
template<class T,class U>
class Test{…}.
Коли параметр не є типом параметра шаблону, то маємо зви-

чайне оголошення:
template<class Type,int size>
class Buffer{...}.
У наступному прикладі:
 typedef double Type;
 template<class Type>
 class Queue{
 private:
 Type item;
 …}.
Об’єкт item не обов’язково буде типу double.

121

Ім’я параметра шаблону може зустрічатися тільки один раз.
Параметрами шаблону можуть бути аргументи за замовчу-

ванням.
Наприклад:
 template<class Type=string, int size>
 class Buffer{....}
 template <class Type, int size=1024>
 class Test{...}.

Конкретизація шаблону класу
У визначенні шаблону вказується як будувати індивідуальні

класи, якщо вказані один або кілька типів чи значень.
Розглянемо приклади конкретизації шаблонів. Нехай є ша-

блон класу:
template<class Type>
class Queue{
publiс:
 Queue():front(0),back(0){};
 ~Queue();
 Type remove();
 void add(const Type);
private:
 Queueitem<Type> first;
 }.
Приклади конкретизації.
Приклад1:
 int main(){
 Queue<int> d;
 Queue<string> h;
 Queue<vector<int> v;
 …}.
Приклад 2:
 template<class Type>
 void func(const Queue<Type> q, Type fd)
 {… //шаблон функції;

122

 int main(){
 Queue<int> g;
 int d=10;
 func(g,d);
 …}.
Приклад 3:
 template<class Type>
 void func(const Queue<int> q, Type fd)
 {… //шаблон функції;
 int main(){
 Queue<int> g;
 int d=10;
 func(g,d);
 …}.
Тут варто зазначити, що шаблон класу у функції func не кон-

кретизується при компіляції, хоча вказаний тип int. Він конкре-
тизується тільки при виклику функції.

Аргументи шаблону для параметрів констант
Параметр шаблону класу може й не бути типом. На такі аргу-

менти накладаються деякі обмеження.
Наприклад:
 template<int h, int w>
 class myclass{
 public:
 myclass():a(h),b(w){};
 …
 private:
 int a;
 int b;
 }.
Вираз, з яким зв’язаний параметр, що не є типом, повинен бути

константним, тобто такий, що обчислюється під час компіляції.
Приклад 1:
 int main(){
 myclass<30,40> q; //правильно 30 і 40 константи.

123

Приклад 2:
 template<int* ptr>
 class Buffer{...};
 int main(){
 Buffer<new int[25]> d; //error, не можна обчисли-

ти під час компіляції;
…}.
Між типом аргументу шаблону й типом параметра-константи

припустимі деякі перетворення.
1. Перетворення lvalue, що включають: перетворення lvalue в

rvalue, масиву в покажчик та функції в покажчик.
Наприклад:
 template<int* p>
 class Buffer{...}
 int main(){
 int a[10];
 Buffer<a> d.
2. Перетворення кваліфікаторів.
Наприклад:
 template<int* p>
 class Buffer{...}
 int main(){
 int a;
 Buffer<&a> d;
 …}.
3. Підвищення типів.
Наприклад:
 template<int h, int w>
 class myclass{...;
 int main(){
 const short sh=20;
 const short dh=30;
 myclass<sh,dh> fg;
 …
 }.
4. Перетворення цілочисельних типів.

124

Наприклад:
 template<unsigned int size>
 class buffer{...};
 int main(){
 buffer<1024> bf; //перетворення з int в

unsigned int;
 …}.

Функції-члени шаблонів класів
При визначенні функції-члена шаблону поза визначенням

самого шаблону варто застосовувати спеціальний синтаксис.
Наприклад:
 template<class Type>
 class Queue{
 public:
 Queue();
 private:
 …}
 template<class Type>
 Queue<Type>::Queue(){...}.

Оголошення друзів у шаблонах класів
У шаблоні класу можуть бути присутні три види оголошень

друзів.
1. Звичайний (не шаблонний) клас-друг або функція-друг.
Наприклад:
 class myclass{
 void func(); };
 template<class Type>
 class Queueitem{
 friend class myclass1;
 friend void myclass::func();
2. Зв’язаний дружній шаблон класу або функції.
Наприклад:
 template<class Type>
 class myclass1{...};

125

 template<class Type>
 void func(myclass1<Type>);
 template<class Type>
 class Queue{
 void f();
 …};
 template<class Type>
 class Queueitem{
 friend class myclass1<Type>;
 friend void func<Type>(myclass1<Type>);
 friend void Queue<Type>::f();
 …}.
3. Незв’язаний дружній шаблон класу.
Наприклад:
 template<class Type>
 class Queueitem{
 template<class U>
 friend class myclass1;
 template<class U>
 friend void func (myclass1<U>);
 template<class U>
 friend class Queue<U>::f();
 …

Статичні члени шаблонів класу
У шаблоні класу можуть бути оголошені статичні дані-члени.
Наприклад:
 template<class Type>
 class Queue{
 private:
 static Queueitem<Type> q;
 static const int a.
Ініціалізація таких членів буде виглядати так:
template<class Type>
Queueitem<Type> Queue<Type>:: q=...;
template <class Type>
const int Queue<Type>::a=0;

126

Вкладені типи шаблонів класів
У шаблоні класу можна визначити вкладені шаблони.
Наприклад:
 template<class Type>
 class Queue{
 …
 private:
 class Queueitem{
 public:
 Queueitem(Type val):item(val){....}
 Type item;
 Queueitem* next;};
 …}.
Шаблон Queueitem конкретизується тим самим типом, що й

шаблон Queue. Вкладені класи шаблонів так само є шаблонами.
Варто зазначити, що вкладений у шаблон клас конкретизу-

ється тільки у тому випадку, якщо він використовується у кон-
тексті, де потрібен повний тип класу.

Шаблони-члени
Шаблон функції або класу може бути членом звичайного

класу або шаблону класу.
Наприклад:
 template<class T>
 class Queue{
 private:
 template<class Type>
 class C{
 Type member;
 T mem;};
 public:
 template<class U>
 void func(U a){...}
 …
 int main(){
 Queue<int> q;
 double b=2.3;

127

 Queue<int> :: func(b);
 …}.

Спеціалізації шаблонів класів
Шаблони класів можна явно спеціалізувати.
Наприклад:
 template<class Type>
 class Queue{
 private:
 Type item;
 Type item1;
 public:
 Type max(){...};
 ...}.
Явна спеціалізація шаблону:
 template<> double Queue<double>::max()
 {...};

 int main(){
 Queue<int> q;
 q.max(); //викликається max, конкрети-

зована із шаблону;
 Queue<double> s;
 s.max(); //викликається явна спеціаліза-

ція функції max, що має пріори-
тет перед функцією max, конкре-
тизованої із шаблону;

…
}.
Аналогічно можна оголошувати явні спеціалізації шаблонів

класів.

Часткова спеціалізація шаблону
Шаблон класу може бути спеціалізований частково.
Наприклад:
Шаблон класу має вигляд:

128

template<class T, int Rows>
class Matrix{
 T* matr;
public:
 Matrix(){
 matr=new T[Rows];
 for(int i=0;i<Rows; i++)
 cin>>matr[i]; }
 void print(){
 for(int i=0;i<Rows; i++)
 cout<<matr[i]; }
 ~Matrix(){ delete [] matr; }
}.
Частково спеціалізований шаблон має вигляд:
template<int Rows>
class Matrix<float,Rows>{
 float* matr;
public:
 Matrix(){
 matr=new float[Rows];
 for(int i=0;i<Rows; i++)
 cin>>matr[i];
 cout<<“ok”<<endl; }
 void print(){
 for(int i=0;i<Rows; i++)
 cout<<matr[i]; }
 ~Matrix(){ delete [] matr; }
};

int main(){
 Matrix<float,5> d;
d.print();
return 0;}.
Однак подібний механізм не працює в Microsoft Visual

Studio 6.0.
Можливий альтернативний спосіб може мати вигляд (в Ін-

тернеті можна знайти інші способи):

129

template<class T, int Rows>
class Matrix{
 template<class U>
 class Matrix_common{
 U* matr;
public:
 Matrix_common(){
 matr=new U[Rows];
 for(int i=0;i<Rows; i++)
 cin>>matr[i]; }
 void print(){
 for(int i=0;i<Rows; i++)
 cout<<matr[i]; }
};
template<> class Matrix_common<float>{
 float* matr;
public:
 Matrix_common<float>(){
 matr=new float[Rows];
 for(int i=0;i<Rows; i++)
 cin>>matr[i]; };
 void print(){
 for(int i=0;i<Rows; i++)
 cout<<matr[i]; };
};
Matrix_common<T>* p;
public:
 Matrix(){ p=new Matrix_common<T>; }
 void print(){ p-p->print(); }
 ~Matrix(){ delete p; }
 };
int main(){
Matrix<float,5> d;
d.print();
return 0;
}.

130

Лекція 14. ВИКЛЮЧЕННЯ
Виключення — це аномальна поведінка, яку програма може

виявити під час виконання, наприклад, ділення на 0, вихід за
межі масиву та ін. Такі виключення порушують нормальний хід
роботи програми і на них потрібно реагувати.

Генерація виключень
Генерація виключень відбувається за допомогою інструк-

ції throw.
Розглянемо приклад throw конструктора:
class ListOnEmpty{
private:
 string error;
public:
 ListOnEmpty(string s):error(s){};
 String getMessage(){return error;}
};
class List{
private:
class Node{
 int data;
 Node* next;
 }
Node* first;
int del(int k) throw (ListOnEmpty){
 if (first==0) throw ListOnEmpty(“spisok pust”); //генерація

виключення
 else{
 Node* cur=first;
 for(int i=0;i<k;i++)
 cur=cur->next;
 Node* p=cur->next;
 cur->next=cur->next->next;
 int c= p-p->data;

131

 delete p;
 }
 return c;
}.

Try і Catch блоки
Виключення можна перехоплювати безпосередньо у тій са-

мій функції, де відбулась його генерація, або перекласти оброб-
ку цього виключення на функцію, що викликається (як це було
зроблено вище). Обробка виключень здійснюється за допомо-
гою try і catch блоків.

Наприклад:
int del(int k){
 try{
 if (first==0) throw ListOnEmpty(“spisok pust”); //ге-

нерація виключення
 else{
 Node* cur=first;
 for(int i=0;i<k;i++)
 cur=cur->next;
 Node* p=cur->next;
 cur->next=cur->next->next;
 int c= p-p->data;
 delete p;
 }
return c;
}
catch(ListOnEmpty e){ // більш коректним є запис

ListOnEmpty e
cerr<<e.getMessage();}
catch(Exception e){...}
}.
Пошук catch-оброблювача здійснюється у такий спосіб. Коли

вираз throw перебуває у try блоці, всі асоційовані з ним catch

132

блоки досліджуються з погляду на те, чи можуть вони обробити
виключення. Якщо оброблювач знайдений, то виключення об-
робляється, а якщо ні, то пошук триває у функції, що виклика-
ється. Якщо у програмі немає catch-оброблювача здатного об-
робити виключення, то воно залишається не обробленим і
керування передається функції terminate() зі стандартної біблі-
отеки C++. За замовчуванням terminate() активізує функцію
abort(), що аномально завершує програму. Дії, які виконуються
функцією terminate(), можна перевизначити.

Повторна генерація виключення
Може виявитися так, що в одному виклику catch блоку не

вдалося повністю обробити виключення, і виконавши коригу-
вальні дії, catch-оброблювач може вирішити, що подальшу об-
робку варто доручити функції, розташованій вище у ланцюжку
викликів. Передати виключення іншому catch-оброблювачу
можна за допомогою повторної генерації виключення.

Для цієї мети використовується конструкція throw, яка зно-
ву генерує об’єкт-виключення. Варто пам’ятати, що при повтор-
ній генерації новий об’єкт-виключення не створюється. Це має
значення у тому випадку, коли catch-оброблювач модифікує
об’єкт, перш ніж згенерувати виключення повторно. Це означає,
що у catch блок об’єкт-виключення потрібно передавати за по-
силанням.

Наприклад:
class ListOnEmpty{
private:
 string error;
 int count;
public:
 ListOnEmpty(string s):error(s),count(0){};
 String getMessage(){return error;}
 void incr(){count++;}
 int show(){return count;}
};
class List{

133

 int del(int k){
 try{
 if (first==0) throw ListOnEmpty(“spisok pust”);

 //генерування виключення
 else{
 Node* cur=first;
 for(int i=0;i<k;i++)
 cur=cur->next;
 Node* p=cur->next;
 cur->next=cur->next->next;
 int c= p-p->data;
 delete p;}
 return c;}
 catch(ListOnEmpty& e){
 cerr<<e.getMessage();
 if (e.show()<5){
 e.incr();
 return;
}
};
catch(Exception e){...}
}
...}.

Перехоплення всіх виключень
Іноді функції потрібно виконати певну дію до того, як вона

завершить обробку виключення, навіть незважаючи на те, що
обробити його вона не може. Для цього можна використовувати
конструкцію, що дозволяє перехопити всі виключення.

catch(...){...}.
Наприклад:
int del(int k){
 try{
 if (first==0) throw ListOnEmpty(“spisok pust”);//генеруван-

 ня виключення

134

 else{
 Node* cur=first;
 for(int i=0;i<k;i++)
 cur=cur->next;
 Node* p=cur->next;
 cur->next=cur->next->next;
 int c= p-p->data;
 delete p;
 }
return c;
}
catch(ListOnEmpty e){
cerr<<e.getMessage();
if (e.show()<5){
e.incr();
return;
} };
catch(Exception e){...}
catch(...){ //Перехоплюємо решту виключень

Node* cur=first;
while (first->next!=0)
{ delete first;
first=cur->next;
cur=first;}
delete first;
}
}.

Специфікація виключень
Специфікація виключень дає змогу визначити в оголошенні

функції всі виключення, які вона може генерувати. При цьому
гарантується, що інші виключення функція генерувати не може.

Наприклад:
int del(int) throw(ListOnEmpty,Exception1).

135

Якщо в оголошенні функції присутня специфікація виклю-
чень, то при повторному оголошенні цієї самої функції повинні
бути перераховані такі самі типи.

Наприклад:
 extern int foo(int=0) throw(myException);
 extern int foo(int param); //error опущена специфіка-

ція виключень.
Виключення генерується тільки під час виконання програми.

Під час компіляції невідомо, яке виключення зустрінеться. Тому
порушення специфікації може бути виявлено тільки під час ви-
конання програми.

Якщо функція генерує виключення не зазначене у специфі-
кації, то викликається функція unexpected(), а та, у свою чергу,
викликає terminated(). Дії, які виконуються функцією unex-
pected(), можна перевизначити.

Порожня специфікація вказує, що функція не генерує ніяких
виключень.

Наприклад:
 extern void myfunc() throw().
Між типом генерованого виключення і типом виключення,

зазначеного у специфікації, не дозволяється проводити ніяких
перетворень.

Наприклад:
 int conv(int param) throw(string){
 …
 if (....)
 throw “help”; //error, неможливо конвер-

тувати const char* в string
}.

Специфікації виключень і покажчики на функції
Специфікацію виключень можна задавати і при оголошенні

покажчика на функцію.
Наприклад:
 void (*pfunc) (int) throw(Exception).

136

Існують обмеження на тип покажчика, що використовуєть-
ся як ініціалізатор або розміщений у правій частині прис-
воювання. Обмеження на покажчик-ініціалізатор повинні бути
такими самими або суворішими, ніж на покажчик, що ініціалі-
зується.

Розглянемо приклади:
void f1(int) throw(Exception1);
void f2() throw();
void f3(int) throw(string,Exception1);
void (*pf1)(int) throw(Exception1)=f1; //правильно, обме-

ження, що накладаються на
специфікації виключень pf1 і
f1, однакові;

void (*pf2)() throw(string)=f2; //правильно, обмеження, що
накладаються на специфі-
кацію виключень f2 суворіші,
ніж на pf2;

void (*pf3)(int) throw(string)=f3; //error, обмеження, що на-
кладаються на специфіка-
цію виключень f3 менш суво-
рі, ніж для pf3.

137

Лекція 15. КОНТЕЙНЕРНІ ТИПИ

Клас vector
Для використання класу vector необхідно підключити заго-

ловний файл #include<vector>.
Приклад використання вектора:
#include<vector>
#include<iostream>
int main(){
vector<int> ivec;
cout<<“razmer:”<<ivec.size();
cout<<“emkost:”<<ivec.capacity(); //кількість елементів, що

може вмістити в себе кон-
тейнер;

for(int i=0;i<30;i++)
ivec.push_back(i);
cout<<ivec[10];
return 0;}
Можна створювати багатомірні вектори.
Наприклад:
 typedef vector<int> vec;
 vector<vec> ivec;
 vec vec1;
 int main(){
 for(int i=0; i<30;i++){
 for(int j=0;j<30;j++)
 vec1.push_back(j);
 ivec.push_back(vec1);}
 cout << ivec[3][4];
 return 0;}.

Клас list
Для використання списку необхідно підключити файл
#include<list>.

138

Заповнення списку
#include<list>
#include<iostream>
int main(){
list<int> ilist;
if(ilist.empty()!=true) //проблеми;
int i;
while(cin>>i)
ilist.push_back(i); //додавання у кінець списку;
while(cin>>i)
ilist.push_front(i); //додавання на початок

списку;
//вставка елемента перед елементом зі значенням res
int res=3;
list<int>::iterator iter=find(ilist.begin(),ilist.end(),res);
ilist.insert(iter,ilist.begin(),ilist.end());
//видалення елемента res
res=5;
list<int>::iterator iter=find(ilist.begin().ilist.end(),res);
ilist.erase(iter);
//видалення діапазону елементів між res1 і res2
list<int>::iterator iter1=find(ilist.begin().ilist.end(),res1);
list<int>::iterator iter2=find(ilist.begin().ilist.end(),res2);
ilist.erase(iter1,iter2);
…
}.
У стандартну бібліотеку С++ входить також клас deque, для

використання якого необхідно підключити файл #include
<deque>.

Клас map
Для використання цього класу необхідно підключити файл

#include<map>.
Розглянемо приклад використання класу map:
include<map>

139

include<string>
int main(){
map<string,int> map1;
map1[string(“sssss”)]=1;
//вставка в map здійснюється у такий спосіб
map1.insert(value_type(string(dddd),1));
//пошук елементів відображення
 int count;
if(map1.count(“sssss”))
 count=map1[“sssss”]; //функція count повертає

 число елементів з даним
 ключем
 count=0;
map<string,int>::iterator iter=map1.find(“ddddd”);
if(iter!=map1.end())
 count=(*iter).second; }.
Функція find повертає ітератор, що вказує на елемент, якщо

ключ знайдений та ітератор end() в іншому випадку. Значен-
ням ітератора є покажчик на об’єкт типу pair, в якому first міс-
тить ключ, а second — значення.

140

ОБ’ЄКТНО-ОРІЄНТОВАНЕ ПРОГРАМУВАННЯ

 Лекція 16. СПАДКУВАННЯ
Спадкування

Будь-яке поняття не існує ізольовано, воно існує у взаємо-
зв’язку з іншими поняттями й потужність такого поняття визна-
чається наявністю зв’язків.

Клас служить для представлення поняття. Для такого пред-
ставлення потрібно мати мовні засоби опису зв’язків.

Поняття похідного класу і підтримуючі його засоби служать
для представлення ієрархічних зв’язків, тобто для вираження
спільності між класами. Наприклад, поняття кола й трикутника
пов’язані між собою, тому що вони представляють поняття фігу-
ри, тобто містять більш загальне поняття. Таким чином класи
кола і трикутник потрібно представити так, щоб було очевидно,
що в них є загальний клас — фігура. Розглянемо поняття похід-
ного класу. У С++ клас спадкоємець визначається у такий спосіб:

class B:public A{...}
class B:private A{...}
class B:protected A{...}.
У випадку кола й трикутника маємо:
class Ring:public Shape{...}
class Triangle:public Shape{...}.
Розглянемо приклад спадкування. Припустимо, що необхід-

но написати програму обліку службовців деякої фірми. Маємо
клас employee(службовець):

class employee{
private:
 char* name;
 short age;
 short department;
 int salary;
public:
 employee* next;
…}.

141

Поле next необхідно, щоб зв’язати записи про службовців од-
ного відділу.

Визначимо також клас manager (керуючий відділом):
class manager{
private:
 employee* emp; //запис employee для керу-

ючого;
 employee* group; //підлеглий колектив;
...
Так як керуючий теж службовець, то запис employee зберіга-

ється у члені emp об’єкта manager.
У даній реалізації покажчик на manager не є покажчиком на

employee, а хотілося б.
Інакше кажучи, використовувати manager замість employee

не можна.
Рішення є — manager повинен бути employee з деякою додат-

ковою інформацією. Тобто у цьому випадку можна пов’язати ці
поняття, використовуючи спадкування:

class manager: public employee{
private:
 employee* group;
…}.
Тоді можна написати
void spisok(){
manager m1,m2;
employee e1, e2;
employee* elist;
elist=m1;
m1.next=e1;
e1.next=m2;
m2.next=e2;
e2.next=0;
…
}.

142

Тобто покажчик на manager можна присвоїти покажчику,
який має тип employee неявно. Зворотне перетворення може
бути тільки явним.

Наприклад:
 void f(){
 manager mm;
 employee* pe=mm; //правильно;
 employee ee;
 manager* pm=ee; //error;
 pm=(manager*) pe; //правильно, але відпові-

дальність за коректність
несе програміст;

…

Поліморфізм
Поліморфізм — це можливість неявного присвоєння покаж-

чика на базовий клас покажчика, на клас спадкоємець.
Наприклад:
 class A{...};
 class B:public A{...};
 int main(){
 A* pa=new B; //поліморфізм.
Зворотне перетворення можливо тільки явно
B* pb=new A; //error;
A* paa=new A;
B* pb=(B*) paa;
…
}.

Атрибути класу, функції-члени класу спадкоємця
Розглянемо наступний приклад:
class A{
private:
 int a;
protected:

143

 int c;
public:
 void print(){
 cout<<“this is class A”;}
 void f(){...}
} ;

class B:public A{
private:
 int b;
public:
 void print(){
 cout<<“this is class B”;}
 void f1(){b=10; c=30;
 a=20; //error
}
};
int main(){
A* pa = new A;
pa->f(); //викликається f() із кла-

су A;
pa->print(); //викликається print із кла-

су A;
B* pb=new B;
pb->f1(); //викликається f1() із кла-

су B;
pb->print(); //викликається print() із

класу B;
A* pa=new B;
pa->f(); //викликається f() із класу A;
pa->f1(); //error, функція f1() відсут-

ня у класі A;
pa->print(); //викликається print із кла-

су A, а хотілося б print із
класу B;

144

B ob;
A ab=ob;
ab->print(); //викликається print із кла-

су A;
…
return 0;}.

Конструктори й деструктори
Якщо у похідному класі є конструктор, то в цьому конструкто-

рі повинен викликатися конструктор базового класу. Розглянемо
приклад:

class A{
private:
 int a;
public:
 A(int s):a(s){};
…
};

class B:public A{
private:
 int b;
public:
 B(int s, int g):A(s),b(g){};
…
}.

Рівні доступу: private, public, protected
Для атрибутів класів і функцій-членів класу можливі такі

рівні доступу: public, protected, private. Розглянемо наступні
приклади.

Приклад 1:
class A{
private:
 int a;
 void f(){...};

145

public:
 int a1;
 void f1(){...}
…};

class B: public A{
private:
 int b;
public:
 void f2(){
 b=10; //правильно;
 a=20; //error, атрибут а має рі-

вень доступу private;
 f(); //error, функція-член має

рівень доступу private;
 f1(); //правильно, функція-член

має рівень доступу public;
…}
};

int main(){
A* pa=new B;
pa->f1(); //правильно;
pa->f(); //error, f() має рівень до-

ступу private;
…
Приклад 2:
class A{
private:
 int a;
protected:
 int a1;
 void f();
public:
 int a2;
 void f1();

146

…}

class B{
private:
 int b;
public:
 void f1(){
 a=10; //error;
 a1=20; //правильно, а1 має рівень

доступу protected;
 a2=30; //правильно;
 f(); //правильно, f() має рівень

доступу protected;
 f1(); //правильно;
…}
};

int main(){
A* pa=new A;
pa->a=10; //error, а має рівень досту-

пу private;
pa->a1=20; //error, а1 має рівень до-

ступу protected;
pa->a2=30; //правильно, а2 має рівень

доступу public;
pa->f(); //error, f() має рівень до-

ступу protected;
pa->f1(); //правильно;
…}.

Віртуальні функції
За замовчуванням функції-члени не є віртуальними. Якщо

функція-член віртуальна, то при зверненні до неї викликається
функція, визначена в динамічному типі об’єкта класу.

Розглянемо приклад оголошення віртуальної функції-члена
класу:

147

class A{
private:
 int a;
public:
 virtual void f();
…};
void A::f(){...}.
Для оголошення віртуальної функції використовується клю-

чове слово virtual.
Розглянемо приклад використання механізму віртуальних

функцій:
class A{
private:
 int a;
public:
 void f(){...};
 virtual void f1(){...};
…}
class B: public A{
private:
 int b;
public:
 void f(){...};
 void f1(){...};
…}

int main(){
A* pa=new B;
pa->f(); //викликається f() із класу A;
pa->f1(); //викликається f1() із класу B;
B bobj;
A aobj=bobj;
aobj.f(); //викликається f() із класу A;
aobj.f1(); //викликається f1() із класу A;
…}.

148

Чисто віртуальні функції
Функція, в якій відсутня реалізація, називається чисто вірту-

альною функцією, а клас, що містить чисто віртуальні функції,
називається абстрактним. Головна особливість абстрактних кла-
сів — неможливість створення об’єктів таких класів.

Розглянемо приклад:
class A{
private:
 int a;
public:
 virtual void f()=0; //“=0” означає, що дана

функція не має реалізації;
 virtual void f1(){...};
};
class B: public A{
private:
 int b;
public:
 void f(){...}
 void f1(){...}
…}

int main(){
A* pa=new A; //error, не можна створю-

вати об’єкти абстрактних
класів;

A* pa=new B; //правильно;
A pa;//error
pa->f(); //викликається f() із класу B;
…
Статичні функції-члени класу не можуть бути віртуальними.
Наприклад:
class A{
public:
 virtual static void f(); //error;
}.

149

Статичний виклик віртуальної функції
Для скасування механізму віртуалізації можна використову-

вати статичний виклик віртуальної функції.
Наприклад:
class A{
private:
 int a;
public:
 virtual void f(){a=10;}
…

class B: public A{
private:
 int b;
public:
 void f(){b=30;}
…}
int main(){
A* pa=new B;
pa->f(); //викликається f() із класу B;
pa->A::f(); //викликається f() із класу

A статичний виклик віртуа-
льної функції;

…
Віртуальні функції й аргументи за замовчуванням.
Розглянемо наступний приклад:
class Base{
public:
 virtual void print(int a=1000){
 cout<<a<<endl;}
};
class Derived: public Base{
public:
 virtual void print(int a=2000){
 cout<<a<<endl;}

150

};

int main(){
Derived* d=new Derived;
Base* b=d;
d-d->print(); //на екрані 2000;
b-b->print(); //на екрані 1000;
…
Таким чином, параметри, що передані у функцію, визнача-

ються не під час виконання, а під час компіляції.

Доступ до членів базового класу
Всередині похідного класу до членів базового класу можна

звертатися безпосередньо.
Приклад 1:
class A{
private:
 int a;
public:
 void f(){...}
}
class B: public A{
private:
 int b;
public:
 void g(){
 f(); //функція базового класу;
…
}
Приклад 2:
class A{
private:
 int a;
public:

151

 void f();};
class B: public A{
private:
 int a;
public:
 void f();
 void g(){
…
 f(); //вживання імені f() дозво-

ляється на користь f() із
класу B;

 a=100; //вживання імені a дозволя-
ється на користь а із класу В;

};
}.
Варто зазначити, що у прикладі 2 функції f() з А и f() з B не є

перевантаженими.
Приклад 3:
class A{
private:
 int a;
public:
 void f();};
class B: public A{
private:
 int a;
public:
 void f();
 void g(){
…
 A::f(); //вживання імені f() дозво-

ляється на користь f() із
класу A;

 A::a=100; //вживання імені a дозволя-
ється на користь а із класу A;

152

};
};
Якщо похідний клас хоче отримати доступ до закритих чле-

нів базового класу, то він повинен бути оголошений другом ба-
зового класу:

class A{
 friend class B;
 private:
 int a;
…};
class B: public A{
public:
 void f(){
 a=10; //правильно, клас B друг

 класу А;
};
}.

Віртуальні функції у похідному класі
Оголошувати функцію віртуальною у похідному класі по-

трібно в тому випадку, якщо передбачається, що похідний клас
може мати спадкоємців, в яких ця функція теж буде пере-
визначена.

Розглянемо приклад:
class A{
private:
 int a;
public:
 virtual void f();
};
class B:public A{
private:
 int a;
public:
 virtual void f(); //передбачається, що дана

функція може бути переви-

153

значена в класах спадкоєм-
цях, класу В;

}.
Розглянемо інший приклад:
class A{
private:
 int a;
public:
 virtual void f();
};
class B:public A{
public:
 void f(); //фактично заборона на

перевизначення функції f()
у класах спадкоємцях B;

}.

Віртуальні функції вводу/виводу
Розглянемо реалізацію виводу у класі-спадкоємці:
class A{
private:
 int a;
public:
 virtual ostream& print(ostream& os) const { os<<a<<endl;
 return os;}
};

class B: public A{
private:
 int b;
 public:
 virtual ostream print(osteram os) const{
 A::print(os);
 os<<b<<endl;
 return os;}
};

154

inline ostream operator<<(ostream os, const A obj){
 return obj.print(os);};
int main(){
B bobj;
cout<<bobj<<endl;
return 0;}.

Віртуальні деструктори
Розглянемо наступний приклад:
class A{
…
 ~A(){...}
};
class B:public A{
…
 ~B(){...}
};
int main(){
A* pa=new B;
…
delete pa; //викликається деструк-

тор ~A(), а потрібно, щоб
~B();

…}.
Вихід — використання віртуальних деструкторів.
class A{
…
 virtual ~A(){...}
};
class B:public A{
…
 ~B(){...}
};
int main(){
A* pa=new B;
…

155

delete pa; //викликається деструк-
тор ~B();

…}.

Майже віртуальний оператор new
Розглянемо створення копії об’єкта в купі.
class A{
private:
…
public:
 A(const A&);
};
int main(){
A* pa =new A;
//створимо копію об’єкта
A* pa1=new A(pa);
…}.
Розглянемо більш складну задачу.
class A{
public:
 virtual A* clone()=0;
…};
class B: public A{
private:
…
public:
 B(const B obj){…};
 virtual*clone(){
 return new(*this);}
};
int main(){
A*pa=new;
A*pa1=pa->clone();
B*pb=new;
B*pb1=static_cast<B*>(pa->clone());
…}.

156

Відкрите, закрите і захищене спадкування
1. Відкрите спадкування.
У цьому випадку синтаксис має вигляд:
class B:public A{...}.
Цей тип спадкування був докладно розглянутий у попе-

редній лекції.
2. Закрите спадкування.
Синтаксис у цьому випадку має вигляд:
class B:private A{...}.
Розглянемо приклад:
class A{
private:
 int a;
public:
 void f(){a=10;}
};

class B:private A{
private:
 int b;
public:
 void g() { f(); }
};

int main(){
A* pa=new B; //error поліморфізм у цьо-

му випадку не працює;
B* pb=new B;
pb->f(); //error, спадкування зак-

рите;
pb->g(); //правильно;
return 0;
}.
Якщо необхідно відкрити доступ до деяких членів базового

класу, то можна використовувати директиву using.
Наприклад:

157

class A{
private:
 int a;
public:
 void f(){a=10;} };

class B:private A{
private:
 int b;
public:
 using A::f;
 void g() { f(); }
};

int main(){
B* pb=new B;
pb->f(); // правильно;
return 0;
}.
У такий спосіб у випадку закритого спадкування всі члени

базового класу з модифікаторами public і protected стають
private членами у похідному класі.

3. Захищене спадкування.
Синтаксис у цьому випадку має вигляд:
class B:protected A{...}.
У випадку захищеного спадкування відкриті члени базового

класу стають захищеними у похідному класі.
Розглянемо приклад:
class A{
private:
 int a;
public:
 void f(){a=10;}
};

158

class B:protected A{
private:
 int b;
public:
 void g() { f(); }
};

int main(){
A* pa=new B; //error поліморфізм у цьому

випадку не працює;
B* pb=new B;
pb->f(); //правильно, спадкування

захищене;
pb->g(); //правильно;
return 0.
}.

159

Лекція 17. МНОЖИННЕ СПАДКУВАННЯ
Синтаксис множинного спадкування має вигляд:
class A: public B, public C, private D, protected G{...}.
Однак, наступний запис є хибним:
class A: public B, C, private D, protected G{...} //error.
Для кожного з перелічених базових класів повинен бути за-

значений рівень доступу public, private, protected.
Розглянемо приклад множинного спадкування.
class A{
private:
 int a;
public:
 void f();
 virtual void g();
};
class B{
private:
 int b;
public:
 void h();
 virtual void k();
};

class C:public A,public B{
private:
 int c;
public:
 void s();
 void g();
 void k();};
int main(){
A* pa=new C;
pa->f(); //викликається f() із класу А;
pa->g(); //correct;
pa->k(); //error;

160

pa->h(); //error;
Аналогічно
B* pb=new C.

Конструктори й множинне спадкування
Розглянемо наступний приклад:
class A{
…
public:
 A(int c);
};
class B{
…
public:
 B(int h);
};
class C:public A, public B{
private:
 int c;
public:
 C(int s, int k, int l):A(s),B(k),c(l){...}
}.
Розглянемо наступний приклад:

+ Сlass_А

+ Сlass_B + Сlass_С

+ Сlass_D

161

Відповідний код має вигляд:
class A{
private:
 int a;
public:
 void f();}
class B:public A{
private:
 int b;
public:
 void g();
}

class C:public A{
private:
 int c;
public:
 void h();
}
class D:public B,public C{
private:
 int d;
public:
 void k();}

int main(){
D* pd=new D;
pd->f(); //error, незрозуміло, яка f()

повинна бути викликана;
pd->h(); //правильно;
pd->g(); //правильно;
pd->k(); //правильно;
…}.
Однак, наступний код до помилки не приводить
class A{

162

private:
 int a;
public:
 virtual void f();}
class C:public A{...};
class B:public A{...};
class D:public B,public C{
…
public:
 void f();
};
int main(){
D* pd=new D;
pd->f(); //правильно;
…}.

Коли потрібно використовувати
множинне спадкування

Виправдано використовувати множинне спадкування для
розширення інтерфейсу.

Приклад:

Код відповідний наведеній діаграмі класів, має вигляд:
class abstract_class1{
public:

+ abstract_class 1

+extension 1 +extension 2

+Realization

163

 virtual void func1()=0;
 virtual int func2(int,int)=0;
};
class extension1:public abstract_class1{
public:
 virtual void func3()=0;
};
class extension2:public abstract_class1{
public:
 virtual void func4()=0;
};
class realization: public extension1,public extension2{
private:
…
public:
 virtual void func1(){...};
 virtual int func2(int a,int b){...};
 virtual void func3(){...};
 virtual void func4(){...};
}.
Однак більш оптимальним буде інше рішення, яке відобра-

жає два можливих шляхи розвитку проекту:

+ abstract_class 1

+extension 1 +extension 2

+Realization 1 +Realization 2

164

Область видимості класу
при множинному спадкуванні

Розглянемо наступний приклад:
class A{
public:
 void f(){...};};
class B{
private:
 bool f(){return true;}
public:
 void g(){...};};
class C:public B{...};
class D:public C,public A{
public:
 void s(){f();} //error, неоднозначність, в

області видимості класу D є
дві функції з ім’ям f;

};

int main(){
D d;
d.f(); //error, неоднозначність в

області видимості класу D
є дві функції з однаковим
ім’ям.

Дозволити неоднозначність можна у такий спосіб:
d.A::f();
return 0;
}.

165

Лекція 18. ВІРТУАЛЬНЕ СПАДКУВАННЯ
Розглянемо інший варіант рішення проблеми з неоднознач-

ним викликом функцій класу А в ситуації, описаній вище:

Для рішення проблеми використовуємо віртуальне спадку-
вання. У випадку віртуального спадкування успадковується
тільки один підоб’єкт базового класу, незалежно від того, скіль-
ки разів базовий клас зустрічається в ієрархії. Синтаксис у ви-
падку віртуального спадкування має вигляд:

class B: public virtual A{...};
або
class B: virtual public A{...}.
Наприклад:
class A{
private:
 int a;
public:
 void f(){a=10;}
};
class B:virtual public A{
private:
 int b;
public:
 void g(){b=20;}
};

+ Class_A

+Class_B +Class_C

+Class_D

166

class C:virtual public A{
private:
 int c;
public:
 void h(){c=400;}
};
class D:public B,public C{...};
int main(){
D* pd=new D;
pd->f(); // правильно
pd-> g(); // правильно
pd->h(); // правильно
…}.

Семантика ініціалізації
Розглянемо наступний приклад:
class A{
private:
 int a;
public:
 A(int s):a(s){};
…;
class B:virtual public A{
private:
 int b;
public:
 B(int s,int s1):A(s),b(s1){};
…};

class C:virtual public A{
private:
 int c;
public:
 C(int s, int s1):A(s),c(s1){};
…};

167

class D:public B, public C{
private:
 int d;
public:
 D(int s, int s1, int s3):B(s,s1),C(s,s3){}; //error, не-

має підходящого конструк-
тора для A;

…;
int main(){
D obj;
…}.
У випадку невіртуального спадкування похідний клас здат-

ний явно ініціалізувати тільки свої безпосередні базові класи.
Так, класу D, що успадковується від А (у випадку невіртуально-
го спадкування), не дозволяється прямо викликати конструк-
тор класу A. Однак у випадку віртуального спадкування клас
D може явно викликати конструктор A. Тобто наступний запис
є коректним:

class D:public B, public C{
private:
 int d;
public:
D(int s, int s1, int s3):A(s),B(s1,s1),C(s3,s3){}; // правильно.
У цьому випадку виклики конструктора класу А у класах B та

С блокуються. Таким чином, параметр a у класі А буде проіні-
ціалізовано значенням s.

Якщо класи B і С виступають у ролі проміжних класів, то їх
конструктори можна зробити захищеними, тобто

class B:virtual public A{
private:
 int b;
protected:
 B(int s,int s1):A(s),b(s1){};
…};
Аналогічно й для класу С.

168

Порядок виклику конструкторів і деструкторів
при віртуальному спадкуванні

Віртуальні базові класи завжди конструюються перед невір-
туальними, незалежно від їх розташування в ієрархії. Розгляне-
мо приклад:

Код для цієї діаграми буде мати вигляд:
class A{
public:
 A(){ cout<<“A”<<endl; }};

class B{
public:
 B(){cout<<“B”<<endl;}};

class C{
public:
 C(){cout<<“C”<<endl;}};

class D:public A{
public:
D(){cout<<“D”<<endl;}};

class F:public B{
public:

+A +B

+F

+C

+D

+G

Віртуальне наслідування

169

 F(){cout<<“F”<<endl;}};
class G:public D, public F,virtual public C{
public:
 G(){cout<<“G”<<endl;}};
int main(){
G obj;
return 0;
}
Порядок виклику конструкторів буде наступним:
C(); A(); D(); B(); F(); G().
Відповідно деструктори будуть викликані у зворотному по-

рядку.

Видимість членів віртуального базового класу
Розглянемо кілька прикладів.
Приклад 1:
class A{
private:
 int a;
public:
 void f(){a=10;}
};

class B{
private:
 int b;
public:
 void f(){b=20;}
};

class C:public A,virtual public B{
…
public:
 void f(){

170

 void g(){f();} // правильно, викликається
f() із класу С;

}.

Приклад 2:
class A{
public:
 void f(){cout<<“f”<<endl;}};

class B:virtual public A{
public:
 void f(){cout<<“f”<<endl;}};

class C:public B,virtual public A{
public:
 void g(){f();}}; // правильно, викликається

f() із класу В;

int main(){
C obj;
obj.g();
return 0;
}.

171

Лекція 19. ВИКОРИСТАННЯ СПАДКУВАННЯ В С++

Оператор dynamic_cast
Оператор dynamic_cast можна використовувати для пере-

творення покажчика на об’єкт типу класу в покажчик на тип
класу з тієї самої ієрархії. Приведення типів за допомогою
dynamic_cast здійснюється під час виконання програми. У ви-
падку неможливості перетворення dynamic_cast завершується
невдало й повертає значення 0.

Наприклад:
class A{
private:
 int a;
public:
 void func(){a=10;}};
class B:public A{
public:
 void func(){...};
};
int main(){
A* pa=new B;
B* pb=dynamic_cast<B*>(pa);
if(pb)
pb->func(); // правильно;
 else{ // перетворення закінчило-

ся невдачею;
…
}.
При використанні посилань перевірити успішність перетво-

рення не можна, тому що нульових посилань не буває.
int main(){
A obj;
A obj1=obj;
B pb=dynamic_cast<B>(obj1);

172

if(pb){...} // у такий спосіб перевірити
 //успішність перетворення

 неможливо.
…}.

Оператор typeid
Оператор typeid дозволяє з’ясувати фактичний тип виразу.

Якщо вираз належить типу класу й цей клас містить хоча б одну
віртуальну функцію-член, то тип результату може не збігатися з
типом самого виразу.

Розглянемо приклади.
Приклад 1:
#include<iostream>
#include<typeinfo>
using namespace std;
class A{
private:
 int a;
public:
 void func(){a=10;}
};

class B:public A{
public:
 void func(){...};};

int main(){
A* pa=new B;
cout<<typeid(pa).name()<<endl; //на екрані class A *
return 0; }
Приклад 2:
class A{
private:
 int a;
public:

173

 void func(){a=10;}};

class B:public A{
public:
 void func(){...};};

int main(){
B bobj;
A re=bobj;
cout<<typeid(re).name()<<endl;
return 0; }.
Результати повернені оператором typeid можна порівнювати.
Приклад 3:
class A{
private:
 int a;
public:
 virual void func(){a=10;}};

class B:public A{
public:
 void func(){...};
 void func(){...};};

int main(){
A* pa=new B;
A ps=*pa;
if(typeid(pa)==typeid(A*)) //true;
if(typeid(pa)==typeid(B*)) //false;
if(typeid(pa)==typeid(A)) //false;
if(typeid(pa)==typeid(B)) //false.

У результаті порівняння
if(typeid(pa)==typeid(A*))

отримуємо true, тому що поведінка typeid(pa) не підкоряється
механізму віртуалізації.

174

При вживанні виразу *pa в операторі typeid результат буде
містити тип об’єкта, на який вказує pa:

typeid(*pa)==typeid(B) //true
typeid(*pa)==typeid(A) //false.

Оператор typeid можна використовувати з посиланнями:
typeid(ps)==typeid(B) //true
typeid(ps)==typeid(A) //false
typeid(ps)==typeid(A*) //true
typeid(ps)==typeid(B*) //false.

Клас type_info
Точне визначення класу type_info залежить від реалізації,

але деякі риси залишаються незмінними. Приблизно клас type_
info має вигляд:

class type_info{
private:
 type_info(const type_info);
 type_info operator=(const type_info);
public:
 virtual ~type_info();
 int operator==(const type_info);
 int operator!=(const type_info);
 const char* name() const;}
Отже, конструктор і оператор присвоювання є закритими

членами класу type_info, тобто користувач не може створювати
об’єкти класу type_info. Єдиний спосіб створити об’єкт класу
type_info — скористатися оператором typeid. Клас type_info
може бути розширений шляхом оголошення класу спадкоємця
від type_info.

Виключення й спадкування

Раніше для кожного виключення створювався клас. Однак
можна визначати ієрархію класів, що описує виключення.

175

Розглянемо приклад:
 class Exception{...};
 class popOnEmpty:public Exception{...};
 class pushOnFull:public Exception{...};
Таким чином, Exception базовий клас виключень, а класи

popOnEmpty і pushOnFull є уточненням Exception.

Обробка виключення типу класу
Основна особливість обробки таких виключень полягає в

тому, що оброблювач (catch-блок) для виключення Exception
повинен стояти після оброблювачів для виключень popOnEmpty
і pushOnFull.

Наприклад:
class Stack{
…
public:
 push(int value) throw (pushOnFull){
 if(full()) throw pushOnFull();
…}.
};

int main(){
try{
Stack s;
s.push(10);
…
};
catch(pushOnFull e){...};
catch(popOnEmpty e){...};
catch(Exception e){...}; //оброблювач Exception роз-

міщується останнім;
…
}.
У класах виключеннях можна описувати віртуальні функції.

Робота з ними здійснюється як звичайно.

176

Розкручування стека й виклик деструкторів
При генерації виключення відбувається розкручування сте-

ка — пошук підходящого catch-оброблювача. При цьому роз-
кручування стека починається з функції, яка згенерувала ви-
ключення й рухається нагору по ланцюжку вкладених викликів.
Під час розкручування стека відбувається аномальні виходи з
переглянутих функцій. Якщо функція захопила деякий ресурс,
то він у такому випадку не звільняється. Розглянемо приклад,
що дозволяє вирішити цю проблему:

class PTR{
public:
 PTR(){ptr=new int [size];}
 ~PTR(){delete [] ptr;}
private:
 int* ptr;
};
void f(int param){
 PTR localptr;
…
 mathFunc(param);
…
}.
Перед виходом з функції f з необробленим виключенням

процес розкручування стека знищить всі об’єкти типу класів.
Тобто дії по захопленню й звільненню ресурсів відбуваються у
конструкторі й деструкторі відповідно.

Специфікації виключень
Специфікацію виключень можна робити для функцій-членів

класів:
class A{
public:
 virtual void f() const throw();
…;
 void A::f() const throw(){...

177

Специфікації в оголошенні функції та її реалізацій повинні
збігатися.

Якщо функція перевизначена в похідному класі, то специфіка-
ція повинна накладати обмеження не менші, ніж у базовому, тобто

class A{
public:
 virtual void f() throw(exp1,exp2);
…;
 class B:public A{
public:
 void f() throw(exp1); // правильно;
…
Функція може генерувати виключення у вигляді об’єкта кла-

су, що відкрито успадковує базовий:
class popOnEmpty:public Exception{...};
void f() throw (Exception).
Функція f() може генерувати виключення popOnEmpty.

Конструктори й функціональні try блоки
Розглянемо приклад:
class Test{
private:
 int _a;
public:
 Test(int a):_a(a-f()){…};
}.
Припустимо, що f() може генерувати виключення. Тоді try

блок буде мати вигляд:
Test(int a)
try
:_a(a-f()){...}
catch(...){...}.

Ієрархія класів виключень у стандартній бібліотеці С++
Базовий клас у стандартній бібліотеці називається exception

(визначений в exception.h):

178

namespace std{
class exception{
public:
 exception() throw();
 exception(const exception)throw();
 exceptionj operator=(const exception) throw();
 virtual ~exception() throw();
 virtual char* what() const throw();
};
}.
Існують й інші класи для повідомлення про помилки, спадко-

ємці exception. Усі помилки можна розділити на 2 категорії: ло-
гічні й помилки під час виконання.

Для логічних помилок є наступні класи:
class logic_error: public exception{...};
class invalid_argument: public exception{...};
class out_of range: public exception{...};
class length_error: public exception{...};
class domain_error: public exception{...}.

Для помилок під час виконання маємо:
class runtime_error: public exception{...};
class range_error: public exception{...};
class overflow_error: public exception{...};
class underflow_error: public exception{...}.
Для використання даних класів потрібно підключити бібліо-

теку stdexcept.h.

Дозвіл перевантаження й спадкування
Очевидно, що спадкування впливає на дозвіл перевантаження.
Приклад 1:
 namespace NS{
 class A{...};}
 class B:public NS::A{...};
 int main(){

179

 B b1;
 display(b1);
 return 0;}.
Кандидатами для виклику display будуть не тільки ті функ-

ції, що видно в місці виклику, а й ті, що оголошені у просторі
імен, в яких оголошені базовий клас A і його спадкоємець B,
тому що аргумент функції display в місці виклику має тип B.

Таким чином, якщо при виклику звичайної функції заданий
аргумент, що є об’єктом класу, посилання або покажчик на об’єкт
класу, то множина функцій кандидатів буде:

1. Функції, що видно в місці виклику.
2. Функції, оголошені в тих просторах імен, де визначений

тип класу або його базові класи.
3. Функції, що є друзями цього класу або його базових класів.
Приклад 2:
 class A{
 public:
 int f(string);
 …};
 class B:public A{
 public:
 int f(int);
 …};
 int main(){
 B b1;
 b1.f(“Hello”); // error.
У цьому випадку функція int f(int) затінює функцію int

f(string).
Виправити ситуацію можна у такий спосіб:
class B:public A{
…
using A::f;
int f(int);
…};
int main(){

180

B b1;
b1.f(“Hello”); // правильно, переванта-

ження дозволяється на ко-
ристь int f(string);

…}.
Розглянемо вибір найбільш підходящої функції. Спадкуван-

ня, мабуть, впливає на вибір найбільш підходящої функції.
У класах можуть бути перетворення, визначені користувачем.
Перетворення, визначені користувачем, бувають 2 видів: кон-
вертер і конструктор (без ключового слова explicit).

Конвертери можуть успадковуватися.
Приклад 3:
class A{
public:
 operator char*();
…;

class B:public A{
public:
 void display(const A&);
…;
 extern void display(const char*);
int main(){
B b1;
display(b1); // неоднозначність;
…}.
Таким чином, при перевантаженні варто враховувати, що на-

ступні неявні перетворення мають той самий ранг, що й стан-
дартні перетворення:

1. Перетворення аргументу типу похідного класу в тип кож-
ного з базових класів.

2. Перетворення покажчика на тип похідного класу в покаж-
чик на тип базового.

3. Ініціалізація посилання на тип базового класу за допомо-
гою lvalue типу похідного класу.

181

Приклад 4:
class A{
public:
 operator char*();
…;
class B:public A{...};
 extern void f(const A);
extern void f(const char*);

int main(){
B b1;
f(b1); // викликається void f(const

A), тому що стандартне
перетворення краще визна-
ченого користувачем;

…}.
Приклад 5:
class A{...};
class B:public A{...};
class C:public B{...};
extern void f(const A&);
extern void f(const B&);
int main(){
C c1;
f(c1); // викликається f(const B),

тому що приведення до кла-
су B краще чим до A;

…}.

182

МОВА МОДЕЛЮВАННЯ UML

Лекція 20. ВВЕДЕННЯ У ПРОЦЕС

МОДЕЛЮВАННЯ
Центральним елементом діяльності, що веде до створення

першокласного програмного забезпечення, є моделювання. Мо-
делі дозволяють нам наочно продемонструвати бажану структу-
ру і поведінку системи. Вони також необхідні для візуалізації й
управління її архітектурою. Моделі допомагають досягти кра-
щого розуміння створюваної нами системи, що часто призво-
дить до її спрощення та можливості повторного використання.
Нарешті, моделі потрібні для мінімізації ризику.

Моделювання дає змогу вирішити чотири різні задачі:
• візуалізувати систему в її поточному або бажаному для нас

стані;
• визначити структуру або поведінку системи;
• отримати шаблон, що дозволяє потім сконструювати сис-

тему;
• документувати прийняті рішення, використовуючи отри-

мані моделі.
Моделювати складну систему необхідно, оскільки в іншому

випадку ми не можемо сприйняти її як єдине ціле.

Принципи моделювання
Виділяють 4 основні принципи моделювання.
Перший принцип: вибір моделі впливає на підхід до розв’я-

зання проблеми і на те, як буде виглядати цей розв’язок. Пра-
вильно вибрана модель висвітить проблеми розробки та дасть
змогу проникнути у саму суть завдання, що при іншому підході
було б неможливо. Неправильна модель заведе у глухий кут,
оскільки увага буде загострюватися на несуттєвих питаннях.

Другий принцип: кожна модель може бути втілена з різним
ступенем абстракції.

Найкращою моделлю буде та, яка дає можливість вибрати
рівень деталізації залежно від того, хто і з якою метою на неї

183

дивиться. Для аналітика або кінцевого користувача найбіль-
ший інтерес представляє питання “що”, а для розробника — “як”.
В обох випадках необхідно розглядати систему на різних рів-
нях деталізації у різний час.

Третій принцип: кращі моделі — ті, що ближче до реальності.
Найкращий варіант, якщо моделі будуть в усьому співвідно-

ситися з реальністю, а там, де зв’язок слабшає, повинно бути зро-
зуміло, у чому полягає відмінність і що з цього випливає. Оскіль-
ки модель завжди спрощує реальність, завдання у тому, щоб це
спрощення не спричинило будь-які суттєві втрати.

Якщо говорити про програмне забезпечення, то можна сказа-
ти, що проблема структурного аналізу — це невідповідність при-
йнятої в ньому моделі та моделі системного проекту. Якщо та-
кий розрив не буде усунено, то поведінка створеної системи
з часом почне все більше відрізнятися від задуманого. При
об’єктно-орієнтованому підході можна об’єднати всі незалежні
представлення системи в єдине семантичне ціле.

Четвертий принцип полягає в тому, що не можна обмежува-
тися створенням тільки однієї моделі. Найкращий підхід при
розробці будь-якої нетривіальної системи — використовувати
сукупність кількох незалежних моделей.

Для розуміння архітектури об’єктно-орієнтованої системи
потрібно кілька взаємодоповнюючих видів:

• з точки зору прецедентів, або варіантів використання (щоб
виявити вимоги до системи);

• з точки зору проектування (щоб побудувати словник пред-
метної області та області розв’язків);

• з точки зору процесів (щоб змоделювати розподіл процесів
та потоків у системі);

• з точки зору реалізації, що дає змогу розглянути фізичну
реалізацію системи;

• з точки зору розгортання, що допомагає зосередитися на
питаннях системного проектування.

Кожен із зазначених видів має велику кількість структурних
та поведінкових аспектів, які у своїй сукупності становлять де-
тальну модель програмної системи.

184

Залежно від природи системи деякі моделі можуть бути важли-
віше інших. Так, при створенні систем для обробки великих обсягів
даних більш важливі моделі, з точки зору статичного проектуван-
ня. У додатках, орієнтованих на інтерактивну роботу користу-
вача, на перший план виходить представлення з точки зору ста-
тичних та динамічних прецедентів. У системах реального часу
найбільш істотними будуть уявлення з точки зору динамічних про-
цесів. Нарешті, у розподілених системах, таких як Web-додатки, ос-
новну увагу потрібно приділяти моделям реалізації та розгортання.

Об’єктне моделювання
При розробці програмного забезпечення існує кілька підхо-

дів до моделювання. Найважливіші з них — алгоритмічний і
об’єктно-орієнтований.

Алгоритмічний метод є традиційним підходом до створення
програмного забезпечення. Основним будівельним блоком є
процедура або функція, а увага приділяється, насамперед, пи-
танню передачі управління і декомпозиції великих алгорит-
мів на менші. Нічого поганого у цьому немає, якщо не брати до
уваги, що системи не дуже легко адаптуються. При зміні вимог
або збільшенні розміру програми (що відбувається нерідко) су-
проводжувати їх стає складніше.

Найбільш сучасним підходом до розробки програмного за-
безпечення є об’єктно-орієнтований. Тут в якості основного бу-
дівельного блоку виступає об’єкт або клас. У самому загальному
сенсі об’єкт — це сутність зі словника предметної області або
розв’язку, а клас є описом множини однотипних об’єктів. Кожен
об’єкт має ідентичність (його можна поіменувати або якось
інакше відрізнити від інших об’єктів), стан (зазвичай з об’єктом
бувають пов’язані деякі дані) і поведінку (з ним можна щось
робити чи він сам може щось робити з іншими об’єктами).

Розглянемо простий приклад трирівневої архітектури білінго-
вої системи, що складається з інтерфейсу користувача, програмно-
го забезпечення проміжного шару і бази даних. Інтерфейс містить
конкретні об’єкти — кнопки, меню і діалогові вікна. База даних та-
кож складається з конкретних об’єктів (таблиць), що представля-

185

ють сутності предметної області: клієнтів, продуктів і замовлень.
Програми проміжного шару включають такі об’єкти, як транзакції
і бізнес-правила, а також більш абстрактні представлення сутнос-
тей предметної області (клієнтів, продуктів і замовлень).

Об’єктно-орієнтований підхід до розробки програмного за-
безпечення є переважаючим тому, що він продемонстрував свою
корисність при побудові систем у самих різних областях будь-
якого розміру та складності. Крім того, більшість сучасних мов
програмування, інструментальних засобів і операційних систем
є в тій чи іншій мірі об’єктно-орієнтованими, а це дає вагомі під-
стави судити про світ у термінах об’єктів. Об’єктно-орієнтовані
методи розробки лягли в основу ідеології побудови систем з
окремих компонентів. Прикладом могуть слугувати такі техно-
логії, як JavaBeans і СОМ +.

Введення в мову UML
UML — це мова для візуалізації, специфікації, конструюван-

ня та документування артефактів програмних систем.
Використання UML дає змогу вирішити проблему: явна мо-

дель полегшує спілкування. Деякі особливості системи найкра-
ще моделювати у вигляді тексту, інші — графічно. Насправді в
усіх цікавих системах існують структури, які неможливо пред-
ставити за допомогою лише тільки мови програмування.
UML — це графічна мова.

UML — це не просто набір графічних символів. За кожним із
них стоїть добре визначена семантика. Це означає, що модель,
написана одним розробником, може бути однозначно інтерпре-
тована іншим, або навіть інструментальною програмою.

UML не є мовою візуального програмування, але моделі,
створені за її допомогою, можуть бути безпосередньо переведені
на різні мови програмування. Інакше кажучи, UML-модель
можна відобразити на такі мови, як Java, C ++, Visual Basic, на
таблиці реляційної бази даних або об’єкти об’єктно-орієнтованої
бази даних. Ті поняття, які краще передавати графічно, пред-
ставляються в UML; ті ж, які краще описувати у текстовому
вигляді, виражаються за допомогою мови програмування.

186

UML — це мова документування
Компанія, що випускає програмні засоби, крім виконуваного

коду виробляє також інші артефакти, і серед них такі:
• вимоги до системи;
• архітектуру;
• проект;
• вихідний код;
• проектні плани;
• тести;
• прототипи;
• версії та ін.
Залежно від прийнятої методики розробки одне виконання

робіт проводиться більш формально ніж інше. Згадані артефак-
ти — це не просто складові проекту; вони необхідні для управлін-
ня, для оцінки результату, а також як засіб спілкування між чле-
нами колективу під час розробки системи і після її розгортання.

UML дає можливість вирішити проблему документування
системної архітектури і всіх її частин, пропонує мову для фор-
мулювання вимог до системи і визначення тестів і, нарешті, на-
дає засоби для моделювання робіт на етапі планування проекту
та управління версіями.

Концептуальна модель UML
Основа розуміння UML — це його концептуальна модель, яка

включає в себе три складові: основні будівельні блоки мови,
правила їх поєднання і деякі загальні для всієї мови механізми.

Будівельні блоки UML
Словник мови UML включає три види будівельних блоків:
• сутності;
• відносини;
• діаграми.
Сутності — це абстракції, які є основними елементами моде-

лі. Відносини пов’язують різні сутності; діаграми групують су-
купності сутностей, що представляють інтерес.

187

В UML є чотири типи сутностей:
• структурні;
• поведінкові;
• що групуються;
• анотаційні.
Сутності є основними об’єктно-орієнтованими блоками

мови. З їх допомогою можна створювати коректні моделі.
Структурні сутності — це іменники в моделях на мові UML.

Як правило, вони є статичними частинами моделі, що відповіда-
ють концептуальним або фізичним елементам системи. Існує
сім різновидів структурних сутностей.

Клас (Class) — це опис сукупності об’єктів із загальними
атрибутами, операціями, відносинами і семантикою. Клас реалі-
зує один або кілька інтерфейсів. Графічно клас зображується у
вигляді прямокутника, в якому, зазвичай, записані його ім’я,
атрибути та операції (див. рисунок).

Інтерфейс (Interface) — це сукупність операцій, які визна-
чають сервіс (набір послуг), що надається класом або компонен-
том. Таким чином, інтерфейс описує доступну ззовні поведінку
елемента. Інтерфейс може представляти поведінку класу чи
компонента повністю або частково; він визначає тільки специ-
фікації операцій (сигнатури), але ніколи — їх реалізації. Графіч-
но інтерфейс зображується у вигляді кола, під яким пишеться
його ім’я. Інтерфейс рідко існує сам по собі, зазвичай він приєд-
нується до класу або компоненти, що його реалізує.

Window

origin
size

open()
close()
move()

display()

ISpelling

188

Кооперація (Collaboration) визначає взаємодію; вона є су-
купністю ролей та інших елементів, які працюючи спільно, роб-
лять деякий кооперативний ефект, що не зводиться до простої
суми доданків. Кооперація має як структурний, так і поведінко-
вий аспекти. Один і той самий клас може брати участь у кількох
коопераціях, таким чином, вони є реалізацією зразків поведінки,
що формують систему. Графічно кооперація зображується у ви-
гляді еліпса, обмеженого пунктирною лінією, в якому вказано
тільки ім’я.

Прецедент (Use case) — це опис послідовності виконуваних
системою дій, яка виробляє результат, значущий для якогось
певного актора (Actor). Прецедент застосовується для структу-
рування поведінкових сутностей моделі. Прецеденти реалізу-
ються за допомогою кооперації. Графічно прецедент зображу-
ється у вигляді обмеженого безперервною лінією еліпса, в якому
вказано тільки ім’я.

Три інші сутності — активні класи, компоненти та вузли —
подібні до класів: вони описують сукупності об’єктів із загаль-
ними атрибутами, операціями, відносинами і семантикою. Од-
нак вони в достатній мірі відрізняються один від одного і від
класів і, з огляду на їх важливість при моделюванні певних ас-
пектів об’єктно-орієнтованих систем, заслуговують спеціально-
го розгляду.

Активним класом (Active class) називається клас, об’єкти
якого залучені в один або кілька процесів, нитки (Threads), і
тому можуть ініціювати керуючий вплив. Активний клас в усьо-
му подібний до звичайного класу за винятком того, що його
об’єкти являють собою елементи, діяльність яких здійснюється

Ланцюжок
відповідальності

Розмістити
замовлення

189

одночасно з діяльністю інших елементів. Графічно активний
клас зображується так само, як простий клас, але обмежується
прямокутником, що малюється жирною лінією і включає ім’я,
атрибути та операції.

Два елементи — компоненти і вузли — також мають свої особ-
ливості. Вони відповідають фізичним сутностям системи, тоді
як п’ять попередніх — концептуальним і логічним сутностям.

Компонент (Component) — це фізична складова системи, що
замінюється, яка відповідає деякому набору інтерфейсів і забез-
печує його реалізацію. У системі можна зустріти різні види ком-
понентів, що встановлюються, такі як СОМ + або JavaBeans, а
також компоненти, що є артефактами процесу розробки, напри-
клад файли вихідного коду. Компонент, як правило, являє собою
фізичну упаковку логічних елементів, таких як класи, інтерфейси
та кооперації. Графічно компонент зображується у вигляді пря-
мокутника з вкладками, що містить, зазвичай, тільки ім’я.

Вузол (Node) — це елемент реальної (фізичної) системи,
який існує під час функціонування програмного комплексу і яв-
ляє собою обчислювальний ресурс, що володіє як мінімум дея-
ким об’ємом пам’яті, а часто ще й здатністю обробки. Сукупність
компонентів може розміщуватися у вузлі, а також мігрувати з
одного вузла на інший. Графічно вузол зображується у вигляді
куба та містить тільки ім’я.

Ці сім базових елементів — класи, інтерфейси, кооперації,
прецеденти, активні класи, компоненти та вузли — є основними

EventManager

suspend()
fl ush()

Сервер

190

структурними сутностями, які можуть бути включені в модель
UML. Існують також різновиди цих сутностей: актори, сигнали,
утиліти (види класів), процеси і нитки (види активних класів),
додатки, документи, файли, бібліотеки, сторінки і таблиці (види
компонентів).

Поведінкові сутності (Behavioral things) є динамічними
складовими моделі UML. Це дієслова мови: вони описують по-
ведінку моделі у часі і просторі. Існує всього два основних типи
поведінкових сутностей.

Взаємодія (Interaction) — це поведінка, суть якої полягає в
обміні повідомленнями (Messages) між об’єктами у рамках кон-
кретного контексту для досягнення певної мети. За допомогою
взаємодії можна описати як окрему операцію, так і поведінку су-
купності об’єктів. Взаємодія передбачає ряд інших елементів,
таких як повідомлення, послідовності дій (поведінка, ініційова-
не повідомленням) та зв’язку (між об’єктами). Графічно пові-
домлення зображуються у вигляді стрілки, над якою майже за-
вжди пишеться ім’я відповідної операції.

Автомат (State machine) — це алгоритм поведінки, що ви-
значає послідовність станів, через які об’єкт або взаємодія про-
ходить протягом свого життєвого циклу у відповідь на різні по-
дії, а також реакції на ці події. За допомогою автомата можна
описати поведінку окремого класу або кооперації класів. З ав-
томатом пов’язана низка інших елементів: стан, переходи (з од-
ного стану в інший), події (суть, які ініціюють переходи) і види
дій (реакція на перехід). Графічно стан зображується у вигляді
прямокутника із закругленими кутами, що містить ім’я і, мож-
ливо, підстани.

Ці два елементи — взаємодія і автомат — є основними пове-
дінковими сутностями, що входять у модель UML. Семантично

відобразити

Очікування

191

вони часто бувають пов’язані з різними структурними елемента-
ми, насамперед — класами, коопераціями і об’єктами.

Сутності, що групують, є організуючими складовими моделі
UML. Це блоки, на які можна розкласти модель. Є тільки одна
первинна сутність, що групує, — пакет.

Пакети (Packages) представляють собою універсальний ме-
ханізм організації елементів у групи. У пакет можна помістити
структурні, поведінкові та інші сутності, що групуються. На від-
міну від компонентів, що існують під час роботи програми, паке-
ти носять суто концептуальний характер, тобто існують тільки
під час розробки.

Зображується пакет у вигляді папки із закладкою, що міс-
тить, як правило, тільки ім’я й іноді — вміст.

Пакети — це основні сутності, що групуються, за допомогою
яких можна організувати модель UML. Існують також варіації
пакетів, наприклад каркаси (Frameworks), моделі та підсистеми.

Анотаційні суті — пояснювальні частини моделі UML. Це ко-
ментарі для додаткового опису, роз’яснення або зауваження до
будь-якого елемента моделі. Є тільки один базовий тип анота-
ційних елементів — примітка (Note).

Примітка — це просто символ для зображення коментарів
або обмежень, приєднаних до елемента або групи елементів. Гра-
фічно примітка зображується у вигляді прямокутника із загну-
тим краєм, що містить текстовий або графічний коментар.

Цей елемент є основною анотаційною сутністю, яку можна
включати в модель UML. Найчастіше примітки використову-
ються, щоб забезпечити діаграми коментарями або обмеження-
ми, які можна виразити у вигляді неформального або формаль-

Бізнес-правила

Повернути копію
самого себе

192

ного тексту. Існують варіації цього елемента, наприклад вимоги,
де описують якусь бажану зовнішню поведінку відносно моделі.

У мові UML визначено чотири типи відносин:
• залежність;
• асоціація;
• узагальнення;
• реалізація.
Ці відношення є основними зв’язуючими будівельними блока-

ми в UML і застосовуються для створення коректних моделей.
Залежність (Dependency) — це семантичне відношення між

двома сутностями, при якому зміна однієї з них, незалежної,
може вплинути на семантику іншої, залежної. Графічно залеж-
ність зображується у вигляді прямої пунктирною лінії, часто зі
стрілкою, яка може містити позначку.

Асоціація (Association) — структурне відношення, що описує
сукупність зв’язків; зв’язок — це з’єднання між об’єктами. Різно-
видом асоціації є агрегація і композиція — так називають струк-
турні відношення між цілим і його частинами. Графічно асоціація
зображується у вигляді прямої лінії (іноді завершується стрілкою
або містить мітку), поруч з якою можуть бути присутніми додат-
кові позначення, наприклад, кратність та імена ролей.

Узагальнення (Generalization) — це відношення “спеціаліза-
ція/узагальнення”, при якому об’єкт спеціалізованого елемента
(нащадок) може бути підставлений замість об’єкта узагальнено-
го елемента (одного з батьків). Таким чином, нащадок (Child)
успадковує структуру і поведінку свого батька (Parent). Графіч-
но відношення узагальнення зображується у вигляді лінії з
незафарбованою стрілкою, що вказує на батька. Нарешті, реалі-
зація (Realization) — це семантичне відношення між класифіка-
торами, при якому один класифікатор визначає “контракт”, а
інший гарантує його виконання.

роботодавець робітник
0...1 *

193

Відносини реалізації зустрічаються у двох випадках: по-
перше, між інтерфейсами і реалізуючими їх класами або ком-
понентами, а по-друге, між прецедентами і реалізуючими їх
коопераціями. Відношення реалізації зображується у вигляді
пунктирної лінії з не зафарбованою стрілкою, як щось середнє
між відносинами узагальнення і залежності.

Чотири описаних елемента є основними типами відносин, які
можна включати до моделі UML. Існують також їх варіації, на-
приклад, уточнення (Refinement), трасування (Trace), включен-
ня та розширення (для залежностей). Діаграма в UML — це гра-
фічне представлення набору елементів, що зображується у
вигляді зв’язаного графа з вершинами (сутностями) і ребрами
(відносинами). Діаграми малюють для візуалізації системи з
різних точок зору. Діаграма — у деякому сенсі одна з проекцій
системи. Як правило, за винятком найбільш тривіальних випад-
ків, діаграми дають згорнуте подання елементів, з яких складена
система. Один і той самий елемент може бути присутнім у всіх
діаграмах, або тільки у кількох (найпоширеніший варіант), або
не бути присутнім у жодній (дуже рідко). Теоретично діаграми
можуть містити будь-які комбінації сутностей і відносин. На
практиці, однак, застосовується порівняно невелика кількість
типових комбінацій.

Таким чином, в UML виділяють дев’ять типів діаграм:
• діаграми класів;
• діаграми об’єктів;
• діаграми прецедентів;
• діаграми послідовностей;
• діаграми кооперації;
• діаграми станів;
• діаграми дій;
• діаграми компонентів;
• діаграми розгортання.

194

Лекція 21. ДІАГРАМА КЛАСІВ
Центральне місце у проектуванні займає розробка логічної

моделі системи у вигляді діаграми класів. Нотація класів у мові
UML проста та інтуїтивно зрозуміла. Нотація UML надає широ-
кі можливості для відображення додаткової інформації (абстрак-
тні операції та класи, стереотипи, загальні та приватні методи,
деталізовані інтерфейси, параметризовані класи). При цьому
можливе використання графічних зображень для асоціацій та їх
специфічних властивостей, таких як відношення агрегації, коли
складовими класу можуть виступати інші класи.

Діаграма класів (class diagram) служить для представлення ста-
тичної структури моделі системи у термінології класів об’єктно-
орієнтованого програмування. Діаграма класів може відображати,
зокрема, різні взаємозв’язки між окремими сутностями предметної
області, такими як об’єкти і підсистеми, а також описує їх внутріш-
ню структуру і типи відносин. На цій діаграмі не вказується інфор-
мація про тимчасові аспекти функціонування системи. Діаграма
класів є деякий граф, вершинами якого є елементи типу “кла-
сифікатор”, які пов’язані різними типами структурних відносин.

Слід зауважити, що діаграма класів може також містити ін-
терфейси, пакети, відносини і навіть окремі екземпляри, такі як
об’єкти і зв’язки. Коли говорять про дану діаграму, мають на ува-
зі статичну структурну модель проектованої системи. Тому діа-
граму класів прийнято вважати графічним представленням та-
ких структурних взаємозв’язків логічної моделі системи, які не
залежать або інваріантні від часу.

Діаграма класів складається з множини елементів, які в сукуп-
ності відображають декларативні знання про предметну область.
Ці знання інтерпретуються в базових поняттях мови UML, таких
як класи, інтерфейси і відносини між ними та їх складовими ком-
понентами. При цьому окремі компоненти цієї діаграми можуть
утворювати пакети для представлення більш загальної моделі
системи. Якщо діаграма класів є частиною деякого пакета, то її
компоненти повинні відповідати елементам цього пакета, вклю-
чаючи можливі посилання на елементи з інших пакетів.

195

У загальному випадку пакет статичної структурної моделі
може бути представлений у вигляді однієї або кількох діаграм
класів.

Клас
Клас (class) у мові UML служить для позначення множини

об’єктів, які володіють однаковою структурою, поведінкою і
відносинами з об’єктами інших класів. Графічно клас зображу-
ється у вигляді прямокутника, що додатково може бути розді-
лений горизонтальними лініями на розділи або секції. У цих
розділах можуть зазначатися назва класу, атрибути (змінні) та
операції (методи):

Обов’язковим позначенням елементу класу є його ім’я. На
початкових етапах розробки діаграми окремі класи можуть по-
значатися простим прямокутником із зазначенням тільки імені
відповідного класу (а). По мірі опрацювання окремих компо-
нентів діаграми опису класів доповнюються атрибутами (б)
і операціями (в).

Ім'я Класу

Ім'я Класу

Атрибути
Класу

Ім'я Класу

Атрибути
Класу

Операції
Класу

а б в

Прямокутник Вікно
Рахунок

p1.Point
p2.Point показати()

приховати() виключення
кредитна картка

прострочена

перевірити()

а б в

196

Навіть, якщо секція атрибутів і операцій є порожньою, у по-
значенні класу вона виділяється горизонтальною лінією, щоб
відразу відрізнити клас від інших елементів мови UML. При-
клади графічного зображення класів на діаграмі класів наведено
на рисунку.

Ім’я класу має бути унікальним у межах пакета, який опису-
ється деякою сукупністю діаграм класів (можливо однією діа-
грамою). Воно вказується у першій верхній секції прямокутни-
ка. На додаток до загального правила найменування елементів
мови UML ім’я класу записується по центру секції імені напів-
жирним шрифтом і повинно починатися з великої літери. Реко-
мендується в якості імен класів використовувати іменники, за-
писані з практичних міркувань без пробілів. У першій секції
позначення класу можуть знаходитися посилання на стандартні
шаблони або абстрактні класи, від яких утворено даний клас і,
відповідно, від яких він успадковує властивості та методи. У цій
секції може наводитися інформація про розробника даного кла-
су і статус стану розробки, а також можуть записуватися інші
загальні властивості цього класу, що мають відношення до ін-
ших класів діаграми або стандартних елементів мови UML.

Клас може не мати примірників або об’єктів. У цьому випад-
ку він називається абстрактним класом, а для позначення його
імені використовується курсив. У мові UML прийнята спільна
угода про те, що будь-який текст, що відноситься до абстрактно-
го елементу, записується курсивом.

У деяких випадках необхідно явно вказати, до якого пакета на-
лежить той або інший клас. Для цієї мети використовується спеці-
альний символ розділювач — подвійна двокрапка “::”. Синтаксис
рядка імені класу в цьому випадку буде такий <Ім’я_пакета>::
<Ім’я_класу>. Іншими словами, перед ім’ям класу має бути явно
вказано назву пакета, до якого його слід віднести. Наприклад,
якщо визначено пакет з ім’ям “Банк”, то клас “Рахунок” у цьому
банку може бути записаний у вигляді: “Банк:: Рахунок”.

У другій зверху секції прямокутника класу записуються його
атрибути (attributes) або властивості. У мові UML прийнята

197

певна стандартизація запису атрибутів класу, яка підпорядкову-
ється деяким синтаксичним правилам. Кожному атрибуту класу
відповідає окремий рядок тексту, який складається з квантора
видимості атрибута, назви ознаки, його кратності, типу значень
атрибута і його можливого вихідного значення:

<квантор видимості> <ім’я атрибута> [кратність]:
<тип атрибута> = <початкове значення> (рядок-влас-
тивість).
Квантор видимості може приймати одне з трьох можливих

значень і, відповідно, відображатися за допомогою спеціальних
символів:

• символ “+” — атрибут з областю видимості типу загально-
доступний (public). Атрибут з цією областю видимості доступ-
ний або видимий з будь-якого іншого класу пакета, в якому ви-
значена діаграма;

• символ “#” — атрибут з областю видимості типу захище-
ний (protected). Атрибут з цією областю видимості недоступний
або невидимий для всіх класів, за винятком підкласів даного
класу;

• знак “-” позначає атрибут з областю видимості типу закри-
тий (private). Атрибут з цією областю видимості недоступний
або невидимий для всіх класів без винятку.

Квантор видимості може бути опущений. Його відсутність
означає, що видимість ознаки не вказується.

Оскільки мова UML інваріантна щодо реалізації своїх кон-
струкцій у конкретних мовах програмування, семантика окре-
мих кванторів видимості не є строго фіксованою. Значення цих
кванторів повинні додатково уточнюватися пояснювальним
текстом на природній мові або угодою з використання відповід-
них програмно-залежних синтаксичних конструкцій.

Назва атрибута представляє собою рядок тексту. Вона ви-
користовується ідентифікатор відповідного атрибута і тому
повинна бути унікальною в межах певного класу. Назва атри-
бута — це єдиний обов’язковий елемент його синтаксичного
позначення.

198

Кратність атрибута характеризує загальну кількість конкрет-
них атрибутів даного типу, що входять до складу окремого класу.
У загальному випадку кратність записується у формі рядка тек-
сту в квадратних дужках після імені відповідного атрибута:

[нижня_межа1 ... верхня_межа1, нижня_межа2 ... верхня_
межа2, ..., нuжня_межаk ... верхня_межаk],

де нижня_межа і верхня_межа є позитивними цілими числа-
ми, кожна пара яких служить для позначення окремого замкну-
того інтервалу цілих чисел. Як верхня_межа використовуватися
спеціальний символ “*”, який означає довільне позитивне ціле
число. Інакше кажучи, це означає необмежену зверху значення
кратності відповідного атрибута.

Як приклад розглянемо наступні варіанти завдання крат-
ності атрибутів:

• [0 ... 1] означає, що кратність атрибута може приймати зна-
чення 0 або 1. При цьому 0 означає відсутність значення для да-
ного атрибута;

• [0 ...*] означає, що кратність атрибута може приймати будь-
яке позитивне ціле значення більше або рівне 0. Ця кратність
може бути записана коротше у вигляді простого символу [*];

• [1.: *] означає, що кратність атрибута може приймати будь-
яке позитивне ціле значення більше або рівне 1;

• [1 ... 5] означає, що кратність атрибута може приймати будь-
яке значення з чисел: 1, 2, 3, 4, 5;

• [1 ... 3, 5, 7] означає, що кратність атрибута може приймати
будь-яке значення з чисел: 1, 2, 3, 5, 7;

• [1 ... 3,7 ... 10] означає, що кратність атрибута може прийма-
ти будь-яке значення з чисел: 1, 2, 3, 7, 8, 9, 10;

• [1 ... 3,7 ...*] означає, що кратність атрибута може приймати
будь-яке значення з чисел: 1, 2, 3, а також будь-яке позитивне
ціле значення більше або рівне 7.

• якщо кратність ознаки не вказана, то за замовчуванням
приймається її значення рівне 1 ... 1, тобто в точності 1.

Тип атрибута є виразом, семантика якого визначається мо-
вою специфікації відповідної моделі. У нотації UML тип атри-

199

бута, який передбачається використовувати для реалізації цієї
моделі, іноді визначається залежно від мови програмування.

Можна навести такі приклади завдання імен і типів атрибу-
тів класів:

• колір: Соlоr — тут колір є ім’ям атрибута (ім’ям типу цього
атрибута. Вказаний запис може визначати RGB-модель (червона,
зелена, синя) традиційно використовується для представлення
кольору. У цьому випадку ім’я типу Color як раз і характеризує
семантичну конструкцію, яка застосовується у більшості мов
програмування для представлення кольору;

• ім’я_співробітника [1 ... 2]: String — тут імя_ співробітника
є ім’ям атрибута, який служить для представлення інформації
про ім’я, а можливо, і по батькові конкретного співробітника.
Тип атрибута String (Строка) вказує на той факт, що окреме зна-
чення імені представляє собою рядок тексту з одного або двох
слів (наприклад, “Кирило” або “Дмитро Іванович”). Оскільки в
багатьох мовах програмування існує тип даних String, викорис-
тання відповідного англомовного терміна не викликає непоро-
зуміння у більшості програмістів. Однак, хоча в мові UML всі
терміни даються в англомовному поданні, використання в якос-
ті типу атрибута Рядок у даній ситуації не виключається і визна-
чається тільки міркуваннями зручності.

Початкове значення служить для завдання деякого почат-
кового значення для відповідного атрибута у момент створен-
ня окремого екземпляра класу. Тут необхідно дотримуватися
правила належності значення типу конкретного атрибута.
Якщо початкове значення не вказано, то значення відповідної
ознаки не визначено на момент створення нового екземпляра
класу.

Як приклади вихідних значень атрибутів можна навести на-
ступні доповнені варіанти завдання атрибутів:

• колір: Соlоr = (255, 0, 0) — у RGB-моделі кольору це відпо-
відає чистому червоному кольору як вихідного значення для
цьо-го атрибута;

• ім’я_ співробітника [1 ... 2]: String = Іван Іванович.

200

При завданні атрибутів можуть бути використані дві додат-
кові синтаксичні конструкції — це підкреслення рядка атрибу-
та і пояснювальний текст у фігурних дужках.

Підкреслення рядка атрибута означає, що відповідний атри-
бут може приймати підмножину значень з деякої області зна-
чень атрибута, яка визначається його типом.

Наприклад, якщо певний атрибут задано у вигляді форма:
Прямокутник, то це буде означати, що всі об’єкти цього класу
можуть мати кілька різних форм, кожна з яких є прямокутником.

У третій зверху секції прямокутника записуються операції
або методи класу. Операція (operation) — це деякий сервіс, що
надає кожен екземпляр класу на вимогу. Сукупність операцій
характеризує функціональний аспект поведінки класу. Запис
операцій класу в мові UML також стандартизований і підпо-
рядковується визначеним синтаксичним правилам. При цьому
кожній операції класу відповідає окремий рядок, який склада-
ється з квантора видимості операції, імені операції, виразу типу,
що повертається операцією значення, і, можливо, рядка-влас-
тивості певної операції:

<квантор видимості > <ім’я операції > (список параметрів):
<вираз типу значення, що повертається > (рядок-
властивість).
Квантор видимості, як і у випадку атрибутів класу, може при-

ймати одне з трьох можливих значень і, відповідно, відобража-
тися за допомогою спеціального символу:

• символ “+” означає операцію з областю видимості типу за-
гальнодоступний (public);

• символ “#” означає операцію з областю видимості типу за-
хищений (protected);

• символ “-” використовується для позначення операції з об-
ластю видимості типу закритий (private).

Квантор видимості для операції може бути опущений. Його
відсутність означає, що видимість операції не вказується.

Конкретними мовами програмування можуть бути визначе-
ні додаткові квантори видимості. У цьому випадку подібні до-

201

повнення є розширенням базової нотації. Вони вимагають
відповідних пояснень у формі тексту рідною мовою або у виг-
ляді рядка-властивості.

Назва операції — це рядок тексту. Вона використовується як
ідентифікатор відповідної операції і тому повинна бути уні-
кальною в межах певного класу. Назва атрибута — це єдиний
обов’язковий елемент синтаксичного позначення операції.

Список параметрів є переліком розділених комою формаль-
них параметрів, кожен з яких може бути представлений у на-
ступному вигляді:

<вид параметра> <ім’я параметра>: <вираз типу> = <зна-
чення параметра за замовчуванням > (Властивість).
Тут вид параметра — одне з ключових слів in, out або inout зі

значенням in за замовчуванням, у випадку, якщо вид параметра
не вказується. Ім’я параметра — ідентифікатор відповідного
формального параметра. Вираз типу є залежною від конкретної
мови програмування специфікацією типу значення, що повер-
тається для відповідного формального параметра. Нарешті,
значення за замовчуванням у загальному випадку являє собою
вираз для значення формального параметра, синтаксис якого
залежить від конкретної мови програмування і підпорядкову-
ється прийнятим у ньому обмеженням.

Рядок-властивість служить для вказівки значень властивос-
тей, які можуть бути застосовані до даного елемента. Рядок-
властивість не є обов’язковим, він може бути відсутнім, якщо
ніякі властивості не специфіковані.

Для підвищення продуктивності системи одні операції мо-
жуть виконуватися паралельно або одночасно, а інші — тільки
послідовно. У цьому випадку для вказівки паралельності вико-
нання операції використовується рядок-властивість виду
“(concurrency = ім’я)”, де ім’я може приймати одне з наступних
значень: послідовна (sequential), паралельна (concurrent), під
охороною (guarded). При цьому дотримуються наступної семан-
тики для даних значень:

202

• послідовна (sequential) — для цієї операції необхідно забез-
печити її єдине виконання в системі, одночасне виконання ін-
ших операцій може призвести до помилок або порушень ціліс-
ності об’єктів класу;

• паралельна (concurrent) — ця операція в силу своїх особ-
ливостей може виконуватися паралельно з іншими операціями
в системі, при цьому паралельність повинна підтримуватися на
рівні реалізації моделі;

• під охороною (guarded) — всі звернення до цієї операції пови-
нні бути строго впорядковані у часі з метою збереження ціліснос-
ті об’єктів даного класу, при цьому можуть бути прийняті додат-
кові заходи з контролю виняткових ситуацій на етапі її виконання.

Поява сигнатури операції на самому верхньому рівні оголо-
шує цю операцію на весь клас, при цьому ця операція успадко-
вується всіма нащадками даного класу. Якщо в деякому класі
операція не виконується (тобто деякий метод не застосовуєть-
ся), то така операція може бути позначена як абстрактна
(abstract). Інший спосіб показати абстрактний характер опера-
ції — записати її сигнатуру курсивом.

Як приклади запису операцій можна навести наступні позна-
чення окремих операцій:

• + створити () — може позначати абстрактну операцію по
створенню окремого об’єкта класу, що є загальнодоступною і не
містить формальних параметрів. Ця операція не повертає ніяко-
го значення після свого виконання;

• + намалювати (форма: Багатокутник = прямокутник, ко-
лір_заповненя: Color = (О, О, 255)) — може позначати опера-
цію відображення на екрані монітора прямокутної області си-
нього кольору, якщо не вказуються інші значення як аргументи
даної операції;

• вивести_повідомлення ():{“Помилка ділення на нуль”) —
зміст цієї операції не потребує пояснення, оскільки він містить-
ся в рядку-властивості операції. Дане повідомлення може
з’явитися на екрані монітора у разі спроби поділу деякого числа
на нуль, що неприпустимо.

203

Відносини між класами
Крім внутрішнього представлення або структури класів на

відповідній діаграмі вказуються різні відносини між класами.
При цьому сукупність типів таких відносин фіксована в мові
UML і зумовлена семантикою цих типів відносин. Базовими
відносинами або зв’язками в мові UML є:

• відношення залежності (dependency relationship);
• відношення асоціації (association relationship);
• відношення узагальнення (generalization relationship);
• відношення реалізації (realization relationship).

Відношення залежності
Відношення залежності у загальному випадку вказує на дея-

ке семантичне відношення між двома елементами моделі або
двома множинами таких елементів, які не є відношенням асоці-
ації, узагальнення або реалізації. Відношення залежності вико-
ристовується у такій ситуації, коли деяка зміна одного елемента
моделі може вимагати зміни іншого залежного від нього елемен-
та моделі.

Відношення залежності графічно зображується пунктирною
лінією між відповідними елементами із стрілкою на одному з її
кінців (“--->” або “<---”). На діаграмі класів дане відношення
пов’язує окремі класи між собою, при цьому стрілка спрямова-
на від класу-клієнта залежності до незалежного класу або
класу-джерела:

Як клас-клієнт і клас-джерело залежності можуть виступати
цілі множини елементів моделі. У цьому випадку одна лінія зі
стрілкою, що виходить від джерела залежності, розщеплюється
в деякій точці на кілька окремих ліній, кожна з яких має окрему
стрілку для класу-клієнта. Наприклад, якщо функціонування

Клас_А Клас_Б

204

Класу_С залежить від особливостей реалізації Класу_А і
Класу_Б, то ця залежність може бути зображена у такий
спосіб:

Стрілка може позначатися необов’язковим, але стандартним
ключовим словом у лапках, і необов’язковим індивідуальним
ім’ям. Для відношення залежності визначені ключові слова, які
позначають деякі спеціальні види залежностей. Ці ключові сло-
ва (стереотипи) записуються у лапках поруч зі стрілкою, що від-
повідає даній залежності. Приклади стереотипів для відношен-
ня залежності такі:

• “access” — служить для позначення доступності відкритих
атрибутів і операцій класу-джерела для класів-клієнтів;

• “bind” — клас-клієнт може використовувати певний шаб-
лон для своєї подальшої параметризації;

• “derive” — атрибути класу-клієнта можуть бути обчислені
за атрибутами класу-джерела;

• “import” — відкриті атрибути та операції класу-джерела ста-
ють частиною класу-клієнта, так якби вони були оголошені без-
посередньо в ньому;

• “refine” — вказує, що клас-клієнт служить уточненням
класу-джерела в силу причин історичного характеру, коли
з’являється додаткова інформація в ході роботи над проектом.

Відношення залежності є найбільш загальною формою від-
носин у мові UML. Усі інші види розглянутих відносин можна
вважати окремим випадком цього відношення.

Клас_А Клас_Б

Клас_С

205

Відношення асоціації
Відношення асоціації відповідає наявності деяких відносин

між класами. Це відношення позначається суцільною лінією з до-
датковими спеціальними символами, які характеризують окремі
властивості конкретної асоціації. В якості додаткових спеціаль-
них символів можуть використовуватися назва асоціації, а також
імена і кратність класів-ролей асоціації. Назва асоціації не є
обов’язковим елементом її позначення. Якщо вона задана, то за-
писується з великої літери поруч з лінією відповідної асоціації.

Найбільш простий випадок даного відношення — бінарна
асоціація. Вона пов’язує в точності два класи і, як виняток, може
пов’язувати клас із самим собою. Для бінарної асоціації на діа-
грамі може бути зазначений порядок проходження класів з ви-
користанням трикутника у формі стрілки поруч з ім’ям цієї асо-
ціації. Напрямок цієї стрілки вказує на порядок класів, один з
яких є першим (з боку трикутника), а інший — другим (з боку
вершини трикутника). Відсутність даної стрілки поруч з ім’ям
асоціації означає, що порядок проходження класів у даному від-
ношенні не визначений.

Як простий приклад ставлення бінарної асоціації розглянемо
відношення між двома класами — класом “Компанія” і класом
“Співробітник”;

Тернарна асоціація та асоціації більш високої арность у за-
гальному випадку називаються N-арною асоціацією (читаєть-
ся — “Ен-арна асоціація”). Така асоціація пов’язує деяким від-
ношенням три і більше класів, при цьому один клас може брати
участь в асоціації більше ніж один раз. Клас асоціації має певну
роль у відповідному відношенні, що може бути явно вказано на

Компанія Співробітник

Ім’я асоціації

1...*1

Кратність асоціації

Робота

206

діаграмі. Кожен екземпляр N-арної асоціації являє собою
N-арний кортеж значень об’єктів з відповідних класів. Бінарна
асоціація є окремим випадком N-арної асоціації, коли значення
N = 2, і має своє власне позначення.

N-арна асоціація графічно позначається ромбом, від якого ве-
дуть лінії до символів класів даної асоціації. У цьому випадку
ромб з’єднується із символами відповідних класів суцільними
лініями. Зазвичай лінії проводяться від вершин ромба або від
середини його сторін. Назва N-арної асоціації записується по-
руч з ромбом відповідної асоціації:

Порядок класів у N-арній асоціації, на відміну від порядку
множин у відношенні, на діаграмі не фіксується. Деякий клас
може бути приєднаний до ромбу пунктирною лінією. Це озна-
чає, що даний клас забезпечує підтримку властивостей відповід-
ної N-арної асоціації, а сама N-арна асоціація має атрибути, опе-
рації та/або асоціації. Інакше кажучи, така асоціація, у свою
чергу, є класом з відповідним позначенням у вигляді прямокут-
ника, а також є самостійним елементом мови UML — асоціацією-
класом (Association Class). N-арна асоціація не може містити
символ агрегації ні для якої зі своїх ролей.

Рік Гра

Футбольна
команда

*
*

*

Cart

Session

Shopper

207

Наступний елемент позначень — кратність окремих класів,
які є кінцями асоціації. Кратність окремого класу позначається
у вигляді інтервалу цілих чисел, аналогічно кратності атрибутів
і операцій класів.

Так, для розглянутого раніше прикладу кратність “1” для
класу “Компанія” означає, що кожен працівник може працю-
вати тільки в одній компанії. Кратність “1 ...*” для класу “Спів-
робітник” означає, що в кожній компанії можуть працювати
співробітники, загальна кількість яких заздалегідь невідома і
нічим не обмежена. Зауважимо, що замість кратності “1 ...*” за-
писати тільки символ “*” не можна, оскільки останній означає
кратність “0 ...*”. Для даного прикладу це означало б, що окремі
компанії можуть зовсім не мати співробітників у своєму штаті.

Приватним випадком відношення асоціації є так звана ви-
ключна асоціація (Xor-association). Семантика цієї асоціації
вказує на той факт, що з кількох потенційно можливих варіантів
цієї асоціації у кожний момент часу може використовуватися
тільки один її примірник. На діаграмі класів виключна асоціація
зображується пунктирною лінією, що сполучає дві і більше асо-
ціації, поряд з якою записується рядок-обмеження “(Хоr)”.

Наприклад, рахунок у банку може бути відкритий для клієн-
та, в якості якого може виступати фізична особа або компанія,
що зображується за допомогою виключної асоціації.

Відношення агрегації
Відношення агрегації має місце між кількома класами у тому

випадку, якщо один із класів являє собою деяку сутність, що
включає в себе в якості складових інші сутності.

Компанія

Особа

{xor}Рахунок _у_банку

208

Це відношення має фундаментальне значення для опису
структури складних систем, оскільки застосовується для пред-
ставлення системних взаємозв’язків типу “частина-ціле”. Роз-
криваючи внутрішню структуру системи, відношення агрегації
показує, з яких компонентів складається система і як вони
пов’язані між собою. З точки зору моделі, окремі частини систе-
ми можуть виступати як у вигляді елементів, так і у вигляді під-
систем, які, у свою чергу, теж можуть утворювати складові ком-
поненти або підсистеми. Це відношення по своїй суті описує
декомпозицію або розбиття складної системи на більш прості
складові, що також можуть бути піддані декомпозиції, якщо в
цьому виникне необхідність у подальшому.

Очевидно, що розглянутий у такому аспекті поділ системи на
складові являє собою деяку ієрархію її компонентів, однак ця
ієрархія принципово відрізняється від ієрархії, породжуваної
відношенням узагальнення. Відмінність полягає в тому, що час-
тини системи ніяк не зобов’язані наслідувати її властивості та
поведінку, оскільки є цілком самостійними сутностями. Більше
того, частини цілого володіють власними атрибутами і операці-
ями, які суттєво відрізняються від атрибутів і операцій цілого.
Графічно відношення агрегації зображується суцільною лінією,
один з кінців якої являє собою незафарбований всередині ромб.
Цей ромб вказує на той з класів, який являє собою “ціле”. Інші
класи є його “частинами”.

Ще одним прикладом відношення агрегації може служити ві-
домий кожному з читачів поділ персонального комп’ютера на
складові: системний блок, монітор, клавіатуру і мишу.

Ціле Частина

Монітор Клавіатура Миша

Персональний комп’ютер

Системний блок

209

Відношення композиції
Відношення композиції, як вже зазначалося, є окремим ви-

падком відношення агрегації. Це відношення служить для виді-
лення спеціальної форми відношення “частина-ціле”, при якому
складові у деякому розумінні знаходяться всередині цілого.
Специфіка взаємозв’язків між ними полягає у тому, що частини
не можуть виступати у відриві від цілого, тобто зі знищенням
цілого знищуються і всі його складові.

Графічно відношення композиції зображається суцільною лі-
нією, один з кінців якої являє собою зафарбований всередині
ромб. Цей ромб вказує на той з класів, який являє собою клас-
композицію або “ціле”. Інші класи є його “частинами”.

В якості додаткових позначень для відношення композиції та
агрегації можуть використовуватися додаткові позначення, що
застосовуються для відношення асоціації, а саме: вказівка крат-
ності класу асоціації та імені даної асоціації, які не є обов’яз-
ковими. Стосовно до описаного вище прикладу класу “Вікно_
програми” його діаграма класів може мати такий вигляд:

Відношення узагальнення
Відношення узагальнення є звичайним відношенням між

більш загальним елементом (батьком) і більш приватним або
спеціальним елементом (дочірнім або нащадком). Дане відно-

Ціле Частина

Полоса
прокрутки

Робоча
область

Головне
меню

Вікно програми

Заголовок

1 1 1 1

1 2 1 1

210

шення може використовуватися для представлення взаємо-
зв’язків між пакетами, класами, варіантами використання та ін-
шими елементами мови UML.

Стосовно діаграми класів це відношення описує ієрархічну
будову класів та успадкування їх властивостей та поведінки.
При цьому передбачається, що клас-нащадок має всі властивос-
ті та поведінку класу-батька, а також має особисті властивості та
поведінку, які відсутні у класі-батька. На діаграмах відношення
узагальнення позначається суцільною лінією з трикутною стріл-
кою на одному з кінців. Стрілка вказує на більш загальний клас
(клас-батько або суперклас), а її відсутність — на більш спеці-
альний клас (клас-нащадок або підклас).

З метою спрощення позначень на діаграмі класів сукупність
ліній, що позначають одне й те саме відношення узагальнення,
можуть бути об’єднані в одну лінію. При цьому окремі лінії
сходяться до одної та об’єднуються стрілкою, що має з ними
спільну точку перетину.

Поруч зі стрілкою узагальнення може розміщуватися рядок
тексту, що вказує на деякі додаткові властивості цього відношення.
Цей текст буде відноситись до всіх ліній узагальнення, які йдуть до
класів-нащадків. Інакше кажучи, зазначена властивість стосується
всіх підкласів даного відношення. При цьому текст слід розгляда-
ти як обмеження, і тоді він записується у фігурних дужках.

Як обмеження можуть бути використані наступні ключові
слова мови UML:

• (complete) — означає, що в даному відношенні узагальнен-
ня специфіковані всі класи-нащадки, інших класів-нащадків у

Клас-батько Клас-нащадок

Геометрична фігура

Окружність ЕліпсПрямоукутник . . .

211

даного класу-батька бути не може. Приклад, клас Кліент_банку
є батьком для двох класів: Фізична_особа і Компанія, інших
класів-нащадків він не має. На відповідній діаграмі класів це
можна вказати явно, записавши поруч з лінією узагальнення
цей рядок-обмеження;

• (disjoint) — означає, що класи-нащадки не можуть містити
об’єктів, які одночасно є екземплярами двох або більше класів.
У наведеному вище прикладі це умова також виконується,
оскільки передбачається, що ніяка конкретна фізична особа не
може бути одночасно і конкретною компанією. У цьому випадку
поряд з лінією узагальнення можна записати цей рядок-
обмеження;

• (incomplete) — означає випадок, протилежний першому.
Передбачається, з одного боку, що на діаграмі зазначено не всі
класи-нащадки. У подальшому можливо заповнити їх перелік,
не змінюючи вже побудовану діаграму. Приклад, діаграма класу
“Автомобіль”, для якої зазначення всіх без винятку моделей ав-
томобілів можна порівняти зі створенням відповідного катало-
гу. З іншого боку, для окремої задачі, такої як розробка системи
продажу автомобілів конкретних моделей, у цьому немає необ-
хідності. Але вказати неповноту структури класів-нащадків все
ж таки слід;

• (overlapping) — означає, що окремі екземпляри класів-на-
щадків можуть відноситися до кількох класів. Приклад, клас “Ба-
гатокутник” є класом-батьком для класу “Прямокутник” і класу
“Ромб”. Однак існує окремий клас “Квадрат”, екземпляри якого
одночасно є об’єктами перших двох класів. Цілком природно таку
ситуацію вказати явно за допомогою цього рядка-обмеження.

Геометрична
фігура

{disjoint, incomplete} {disjoint, incomplete}

Окружність Еліпс

{overlapping, incomplete}

Прямокутник

212

Як приклад розглянемо ієрархію вкладеності класів для аб-
страктного класу “Автомобіль”. Як неважко помітити, відно-
шення між окремими класами на цих рисунках є саме відношен-
ня узагальнення, яке в мові UML має спеціальне графічне по-
значення. З урахуванням цієї графічної нотації, фрагмент
семантичної мережі для подання ієрархії класу “Автомобіль”
може бути представлений у вигляді наступної діаграми класів.

У цьому прикладі всі класи верхніх рівнів є абстрактними,
тобто не можуть бути представлені своїми екземплярами. Саме
тому їх імена записані курсивом. На відміну від них класи ниж-
нього рівня є конкретними, оскільки можуть бути представлені
своїми екземплярами, в якості яких виступають виготовлені ав-
томобілі відповідної моделі з унікальним ім’ям.

Інтерфейси
Інтерфейси є елементами діаграми варіантів використання.

Однак, при побудові діаграми класів окремі інтерфейси можуть
уточнюватися. У даному випадку для їх зображення використо-
вується спеціальний графічний символ — прямокутник класу з
ключовим словом або стереотипом “interface”. При цьому секція
атрибутів у прямокутника відсутня, а вказується тільки секція
операцій.

. . .Грузовий
автомобіль

Легковий
автомобіль

Автомобіль

. . .Легковий
автомобіль Ford

Легковий
автомобіль ВАЗ

Модель Ford
Mondeo

Модель
ВАЗ-21099

. . .Модель
ВАЗ-21083

. . .

213

Шаблони або параметризовані класи
Шаблон (template) або параметризований клас (parametrized

class) призначений для позначення такого класу, який має один
(або більше) нефіксований формальний параметр. Він визна-
чає ціле сімейство або множину класів, кожен з яких можна
отримати зв’язуванням цих параметрів з дійсними значеннями.
Зазвичай параметрами шаблонів служать типи атрибутів класів,
такі як цілі числа, перерахування, масив рядків та ін. У більш
складному випадку формальні параметри можуть представляти
і операції класу.

Графічно шаблон зображується у вигляді прямокутника, на
верхньому правому куті якого приєднано маленький прямокут-
ник з пунктирних ліній. Великий прямокутник може бути розді-
лений на секції відповідно до позначеннь для класу. У верхньо-
му прямокутнику вказується список формальних параметрів
для тих класів, які можуть бути отримані на основі цього шабло-
ну. У верхній секції шаблону записується його ім’я за правилами
запису імен для класів.

Шаблон не може бути безпосередньо використаний як клас,
оскільки містить невизначені параметри. Найчастіше як шаблон

значення_температури

interface
Датчик_температури

Им’я шаблону

Список операцій шаблону

Список формальних
параметрів шаблону

Список атрибутів шаблону

214

виступає деякий суперклас, параметри якого уточнюються в
його класах-нащадках. Очевидно, у цьому випадку між ними іс-
нує відношення залежності з ключовим словом “bind”, коли
клас-клієнт може використовувати певний шаблон для своєї по-
дальшої параметризації. У більш окремому випадку між шабло-
ном і класом, що формується від нього, має місце відношення
узагальнення з наслідуванням властивостей шаблону.
У прикладі нижче відзначений той факт, що клас “Адреса” може
бути отриманий із шаблону Зв’язний_список на основі акту-
алізації формальних параметрів “S, k, l” фактичними атрибу-
тами “вулиця, будинок, квартира”.

Зв’язний_список

попередній_елемент()

наступний_елемент()

Адреса

“bind”<вулиця, будинок, квартира>

S: String
k; l: Integer

215

Лекція 22. ДІАГРАМА ВАРІАНТІВ ВИКОРИСТАННЯ
(ДІАГРАМА ПРЕЦЕДЕНТІВ)

Першою зазвичай будується модель у формі так званої діа-
грами варіантів використання (use case diagram), яка описує
функціональне призначення системи або, інакше кажучи, те, що
система буде робити у процесі свого функціонування.

Розробка діаграми варіантів використання переслідує такі цілі:
• визначити спільні кордони і контекст предметної області,

що моделюється на початкових етапах проектування системи;
• сформулювати загальні вимоги до функціональної поведін-

ки проектованої системи;
• розробити вихідну концептуальну модель системи для її

подальшої деталізації у формі логічних і фізичних моделей;
• підготувати вихідну документацію для взаємодії розробни-

ків системи з її замовниками та користувачами.
Суть цієї діаграми полягає у наступному: проектована систе-

ма представляється у вигляді множини сутностей або акторів,
що взаємодіють із системою за допомогою так званих варіантів
використання. При цьому актором (actor) або дійовою особою
називається будь-яка сутність, що взаємодіє із системою ззовні.
Це може бути людина, технічний пристрій, програма або будь-
яка інша система, що може служити джерелом впливу на змоде-
льовану систему так, як визначить розробник. У свою чергу, ва-
ріант використання (use case) служить для опису сервісів, які
система надає акторові. Інакше кажучи, кожен варіант викорис-
тання визначає деякий набір дій, що чиниться системою при діа-
лозі з актором. При цьому нічого не говориться про те, яким чи-
ном буде реалізовано взаємодія акторів із системою.

У самому загальному випадку діаграма варіантів викорис-
тання являє собою граф спеціального виду, який є графічною
нотацією для представлення конкретних варіантів викорис-
тання, акторів, можливо деяких інтерфейсів, і відносин між
цими елементами. При цьому окремі компоненти діаграми мо-
жуть бути вкладеними у прямокутник, що позначає проектова-

216

ну систему загалом. Слід зазначити, що відносинами цього гра-
фа можуть бути тільки деякі фіксовані типи взаємозв’язків між
акторами і варіантами використання, які у сукупності опису-
ють сервіси або функціональні вимоги до системи, що моделю-
ється.

Варіант використання
Конструкція або стандартний елемент мови UML варіант ви-

користання застосовується для характеристики загальних особ-
ливостей поведінки системи або будь-якої іншої сутності пред-
метної області без розгляду внутрішньої структури цієї сутності.
Кожен варіант використання визначає послідовність дій, які по-
винні бути виконані проектованою системою при взаємодії її з
відповідним актором. Діаграма варіантів може доповнюватися
пояснювальним текстом, який розкриває зміст або семантику
складових її компонентів. Такий пояснювальний текст отримав
назву примітки або сценарію.

Окремий варіант використання позначається на діаграмі
еліпсом, всередині якого міститься його коротка назва або ім’я у
формі дієслова з пояснювальними словами.

Мета варіанта використання полягає у тому, щоб визначити
закінчений аспект, або фрагмент поведінки деякої сутності без
розкриття внутрішньої структури цієї сутності. Такою сутністю
може виступати вихідна система або будь-який інший елемент
моделі, що володіє власною поведінкою, подібно підсистемі або
класу в моделі системи.

Кожен варіант використання відповідає окремому сервісу,
який надає змодельована сутність або система за запитом корис-
тувача (актора), тобто визначає спосіб застосування цієї сутнос-
ті. Сервіс, який ініціалізується за запитом користувача, пред-
ставляє собою закінчену послідовність дій. Це означає, що після

Перевірити стан
поточного рахунка

клієнта банку

217

того, як система закінчить обробку запиту користувача, вона по-
винна повернутися у початковий стан, в якому готова до вико-
нання таких запитів.

Варіанти використання описують не тільки взаємодію між ко-
ристувачами і сутністю, а й реакцію сутності на отримання окре-
мих повідомлень від користувачів і сприйняття цих пові-домлень
за межами сутності. Варіанти використання можуть включати в
себе опис особливостей способів реалізації сервісу і різних ви-
няткових ситуацій, таких як коректна обробка помилок системи.

Із системно-інформаційної точки зору, варіанти використан-
ня можуть застосовуватися як для специфікації зовнішніх вимог
до проектованої системи, так і для специфікації функціональної
поведінки вже існуючої системи. Крім цього, варіанти викорис-
тання неявно встановлюють вимоги, що визначають, як користу-
вачі повинні взаємодіяти із системою, щоб мати можливість ко-
ректно працювати з наданими цією системою сервісами.

Актор
Актор являє собою будь-яку зовнішню, відносно системи, що

моделюється, сутність, яка взаємодіє із системою і використо-
вує її функціональні можливості для досягнення певної мети
або розв’язання окремих завдань. При цьому актори служать
для позначення узгодженої множини ролей, які можуть грати
користувачі в процесі взаємодії з проектованою системою. Ко-
жен актор може розглядатися як якась окрема роль щодо кон-
кретного варіанта використання. Стандартним графічним по-
значенням актора на діаграмах є фігурка “чоловічка”, під якою
записується конкретне ім’я актора.

У деяких випадках актор може позначатися у вигляді пря-
мокутника класу з ключовим словом “актор” і звичайними скла-
довими елементами класу. Імена акторів повинні записуватися
великими літерами і слідувати рекомендаціям використання

218

імен для типів і класів моделі. При цьому символ окремого акто-
ра пов’язує відповідний опис актора з конкретним ім’ям. Імена
абстрактних акторів, як й інших абстрактних елементів мови
UML, рекомендується позначати курсивом.

Так як у загальному випадку актор завжди знаходиться поза
системою, його внутрішня структура ніяк не визначається. Для
актора має значення тільки його зовнішнє уявлення, тобто те, як
він сприймається з боку системи. Актори взаємодіють із систе-
мою за допомогою передачі та прийому повідомлень від варіан-
тів використання. Повідомлення — це запит актором сервісу від
системи та отримання цього сервісу. Ця взаємодія може бути ви-
ражена за допомогою асоціацій між окремими акторами та варі-
антами використання або класами. Крім цього, з акторами мо-
жуть бути пов’язані інтерфейси, які визначають, яким чином
інші елементи моделі взаємодіють з цими акторами.

Інтерфейс
Інтерфейс служить для специфікації параметрів моделі, які

видимі ззовні без вказівки їх внутрішньої структури. У мові
UML інтерфейс є класифікатором і характеризує лише обмеже-
ну частину поведінки змодельованої сутності. Стосовно діаграм
варіантів використання, інтерфейси визначають сукупність опе-
рацій, які забезпечують необхідний набір сервісів або функціо-
нальності для акторів. Інтерфейси не можуть містити ні атрибу-
тів, ні станів, ні спрямованих асоціацій. Вони містять тільки
операції без вказівки особливостей їх реалізації. Формально ін-
терфейс еквівалентний абстрактному класу без атрибутів і мето-
дів з наявністю тільки абстрактних операцій.

На діаграмі варіантів використання інтерфейс зображується
у вигляді маленького кола, поряд з яким записується його ім’я
(а). Ім’я може бути іменником, що характеризує відповідну ін-
формацію або сервіс (наприклад, “датчик”, “сирена”, “відеокаме-
ра”), але частіше — це рядок тексту (наприклад, “запит до бази
даних”, “форма вводу”, “пристрій подачі звукового сигналу”).
Якщо ім’я записується англійською, то вона повинна почина-

219

тися з великої літери I (наприклад, ISecurelnformation, ISen-
sor) (б).

Графічний символ окремого інтерфейсу може з’єднуватися
на діаграмі суцільною лінією з тим варіантом використання,
який його підтримує. Суцільна лінія у цьому випадку вказує на
той факт, що пов’язаний з інтерфейсом варіант використання
повинен реалізовувати всі операції, необхідні для цього інтер-
фейсу, а можливо і більше (а). Крім цього, інтерфейси можуть
з’єднуватися з варіантами використання пунктирною лінією зі
стрілкою (б). Це означає, що варіант використання призначе-
ний для специфікації тільки того сервісу, який необхідний для
реалізації цього інтерфейсу.

Важливість інтерфейсів полягає в тому, що вони визначають
стикувальні вузли в проектованої системи, що абсолютно необ-
хідно для організації колективної роботи над проектом. Більш
того, специфікація інтерфейсів сприяє “безболісної” модифікації
вже існуючої системи при переході на нові технологічні рішення.

Примітки
Примітки (notes) у мові UML призначені для включення у

модель довільної текстової інформації, що має безпосереднє від-
ношення до контексту проекту, що розробляється. Такою ін-

 ISecureInformationПристрій
зчитування
штрих-коду

 ISensor Датчик

а б

Оформити замов-
лення на придбан-

ня комп’ютера

Виписати рахунок
на оплату

комп’ютера Інформація
про кліента

а б

Форма
замовлення

220

формацією можуть бути коментарі розробника (наприклад, дата
і версія розробки діаграми або її окремих компонентів), обме-
ження (наприклад, на значення окремих зв’язків або екземпля-
ри сутностей) і помічені значення. Стосовно діаграм варіантів
використання примітки можуть носити саму загальну інформа-
цію, що відноситься до загального контексту системи.

Графічно примітки позначаються прямокутником із “загну-
тим” верхнім правим куточком. Всередині прямокутника міс-
титься текст примітки. Примітка може відноситися до будь-
якого елемента діаграми, в цьому випадку їх з’єднує пунктирна
лінія. Якщо примітка відноситься до кількох елементів, то від
неї проводяться, відповідно, кілька ліній.

Відносини на діаграмі варіантів використання
Між компонентами діаграми варіантів використання можуть

існувати різні відносини, які описують взаємодію екземплярів
одних акторів і варіантів використання з екземплярами інших
акторів і варіантів. Один актор може взаємодіяти з кількома ва-
ріантами використання. У цьому випадку актор звертається до
кількох сервісів даної системи. У свою чергу один варіант вико-
ристання може взаємодіяти з кількома акторами, надаючи для
всіх них свій сервіс. Слід зауважити, що два варіанти викорис-
тання, визначені для однієї і тієї самої сутності, не можуть взає-

Надати кліенту
каталог товарів для

замовлення

Реалізувати у вигляді
окремої бібліотеки

стандартних функцій

Ця модель розроблена
О. Бендером після зустрічі

з командою планування
стратегій розвитку

221

модіяти один з одним, бо кожен з них самостійно описує закін-
чений варіант використання цієї сутності.

У мові UML є кілька стандартних видів відносин між актора-
ми і варіантами використання:

• відношення асоціації (association relationship);
• відношення розширення (extend relationship);
• відношення узагальнення (generalization relationship);
• відношення включення (include relationship).

Відношення асоціації
Відношення асоціації служить для позначення специфічної

ролі актора в окремому варіанті використання. Інакше кажучи,
асоціація специфікує семантичні особливості взаємодії акторів і
варіантів використання в графічній моделі системи. Таким чи-
ном, це відношення встановлює, яку конкретну роль грає актор
при взаємодії з екземпляром варіанта використання. На діагра-
мі варіантів використання, так само як і на інших діаграмах,
ставлення асоціації позначається суцільною лінією між актором
і варіантом використання. Ця лінія може мати додаткові умовні
позначення, наприклад, такі як ім’я та кратність.

Кратність (multiplicity) асоціації вказується поруч із позна-
ченням компонента діаграми, який є учасником цієї асоціації.
Кратність характеризує загальну кількість конкретних екземп-
лярів цього компонента, що можуть виступати як елементи цієї
асоціації.

Тут кратність “*” означає, що кожен окремий клієнт банку
може оформити для себе кілька кредитів, при цьому їх загальна
кількість заздалегідь невідома і нічим не обмежується. При цьо-
му деякі клієнти можуть зовсім не мати оформлених на своє ім’я
кредитів (варіант значення 0).

Оформити
кредит для

клієнта банку 1 *
Клієнт банку

222

Відношення розширення
Відношення розширення визначає взаємозв’язок екземпля-

рів окремого варіанта використання з більш загальним варіан-
том, властивості якого визначаються на основі способу спільно-
го об’єднання цих екземплярів. У метамоделі відношення
розширення є спрямованим і зазначає, що відносно окремих
прикладів деякого варіанта використання повинні бути викона-
ні конкретні умови, визначені для розширення даного варіанта
використання. Так, якщо має місце відношення розширення від
варіанта використання А до варіанта використання В, то це оз-
начає, що властивості екземпляру варіанта використання В мо-
жуть бути доповнені завдяки наявності властивостей у розши-
реного варіанта використання А.

Відношення розширення між варіантами використання позна-
чається пунктирною лінією зі стрілкою (варіант ставлення за-
лежності), спрямованої від того варіанта використання, який є
розширенням для вихідного варіанта використання. Пунктирна
лінія зі стрілкою позначається ключовим словом “extend” (“роз-
ширює”).

Відношення розширення відзначає той факт, що один із варі-
антів використання може приєднувати до своєї поведінки деяку
додаткову поведінку, визначену для іншого варіанта викорис-
тання.

Відношення узагальнення
Відношення узагальнення служить для зазначення того фак-

ту, що деякий варіант використання А може бути узагальнений
до варіанта використання В. У цьому випадку варіант А буде
спеціалізацією варіанта В. При цьому В називається батьком
відносно А, а варіант А — нащадком відносно варіанта викорис-
тання В. Слід підкреслити, що нащадок успадковує всі власти-

Оформити
замовлення на прид-

бання ком’ютера

“extend”
Оформити

замовлення на прид-
бання товару

223

вості та поведінку свого батька, а також може бути доповнений
новими властивостями і особливостями поведінки.

Відношення узагальнення між варіантами використання за-
стосовується в тому випадку, коли необхідно відзначити, що до-
чірні варіанти використання володіють усіма атрибутами і особ-
ливостями поведінки батьківських варіантів. При цьому дочірні
варіанти використання беруть участь в усіх відношеннях бать-
ківських варіантів. У свою чергу, дочірні варіанти можуть наді-
лятися новими властивостями поведінки, які відсутні у батьків-
ських варіантів використання, а також уточнювати або моди-
фікувати успадковані від них властивості поведінки.

Між окремими акторами також може існувати відношення
узагальнення. Це відношення є спрямованим і вказує на факт
спеціалізації одних акторів щодо інших. Наприклад, відношен-
ня узагальнення від актора А до актора В відзначає той факт, що
кожен екземпляр актора А є водночас примірником актора В і
володіє всіма його властивостями. У цьому випадку актор В є
батьком відносно актора А, а актор А, відповідно, нащадком ак-
тора В. При цьому актор А має здатність грати таку саму множи-
ну ролей, що і актор В:

Відношення включення
Відношення включення між двома варіантами використання

вказує, що деяка задана поведінка для одного варіанта викорис-
тання включається як складний компонент у послідовність по-
ведінки іншого варіанта використання. Це відношення є спря-

Оформити замов-
лення на придбан-

ня комп’ютера

Оформити замов-
лення на придбання

товару

Касир
(актор А)

Службовець банку
(актор В)

224

мованим бінарним відношенням у тому сенсі, що пара екземп-
лярів варіантів використання завжди впорядкована відносно
включення.

Відношення включення, спрямоване від варіанта викорис-
тання А до варіанта використання В, вказує, що кожен екземп-
ляр варіанта А включає в себе функціональні властивості, задані
для варіанта В. Ці властивості спеціалізують поведінку відпо-
відного варіанта А на даній діаграмі. Графічно це відношення по-
значається пунктирною лінією зі стрілкою (варіант відношення
залежності), спрямованої від базового варіанта використання
до того, що включається. Пунктирна лінія зі стрілкою познача-
ється ключовим словом “include” (“включає”):

Приклад побудови діаграми варіантів використання
Як приклад розглянемо процес моделювання системи прода-

жу товарів за каталогом, що може бути використана при ство-
ренні відповідних інформаційних систем.

Акторами цієї системи можуть виступати два суб’єкти, один з
яких є продавцем, а другий — покупцем. Кожен з цих акторів
взаємодіє з розглянутою системою продажу товарів за катало-
гом і є її користувачем, тобто вони обидва звертаються до відпо-
відного сервісу “Оформити замовлення на купівлю товару”.

Оформити замов-
лення на придбан-

ня комп’ютера

“include”Виписати рахунок
на оплату

комп’ютера

1 1
Оформити

замовлення
на купівлю

товару

Система продажу
товарів за каталогом

* *

225

Значення вказаних на цій діаграмі кратності відображають
загальні правила або логіку оформлення замовлень на купівлю
товарів. Згідно з цими правилами, з одного боку, продавець може
брати участь в оформленні кількох замовлень, у той самий час
кожне замовлення може бути оформлено тільки одним продав-
цем, який несе відповідальність за коректність його оформлення
і, у зв’язку з цим, буде мати агентську винагороду за його оформ-
лення. З іншого боку, кожен покупець може оформляти на себе
кілька замовлень, але, в той самий час, кожне замовлення по-
винно бути оформлене на єдиного покупця, до якого переходять
права власності на товар після його оплати.

На наступному етапі розробки цієї діаграми варіант викорис-
тання “Оформити замовлення на купівлю товару” може бути
уточнений на основі введення у розгляд чотирьох додаткових
варіантів використання. Це випливає з більш детального аналі-
зу процесу продажу товарів, що дає змогу виділити в якості
окремих сервісів такі дії. Продаж товарів за каталогом припус-
кає наявність самостійного інформаційного об’єкта — каталогу
товарів, що в деякому розумінні не залежить від реалізації серві-
су з обслуговування покупців.

1 1

“разширює”

Замовити
товар зі складу

Запитати каталог
товарів

Узгодити умови
оплати

Забезпечити
покупця

іформацією

“включає”

“включає”
Оформити замов-
лення на купівлю

товару

Система продажу товарів за каталогом

* *
“включає”

226

Наведена діаграма варіантів використання, у свою чергу,
може бути деталізована далі з метою більш глибокого уточнен-
ня вимог і конкретизації деталей її подальшої реалізації, що
пред’являються до системи. З одного боку, деталізація може
бути виконана на основі встановлення додаткових відносин
типу “узагальнення-спеціалізація” для вже наявних компонен-
тів діаграми варіантів використання. Так, у рамках цієї системи
продажу товарів може мати самостійне значення і специфічні
особливості окрема категорія товарів — комп’ютери. У цьому
випадку діаграма може бути доповнена варіантом використан-
ня “Оформити замовлення на купівлю комп’ютера” і акторами
“Покупець комп’ютера” і “Продавець комп’ютерів”, які пов’язані
з відповідними компонентами діаграми відношення узагаль-
нення.

1 1

“розширює”

“розширює”

Замовити
товар зі складу

Замовити
товар зі складу

Запитати
каталог товарів

Узгодити умови
оплати

Забезпечити
покупця

іформацією

“включає”

“включає”

Оформити замов-
леня на покупку

комп’ютера

Система продажу товарів за каталогом

Продавець
комп’ютерів

Продавець

Продавець
комп’ютерів

Продавець

227

Лекція 23. ДІАГРАМА СТАНІВ
Для більшості фізичних систем, крім самих простих і триві-

альних, статичних уявлень зовсім недостатньо для моделюван-
ня процесів функціонування подібних систем як в цілому, так і
їх окремих підсистем та елементів.

Для моделювання поведінки на логічному рівні в мові UML
можуть використовуватися відразу кілька канонічних діаграм:
станів, діяльності, послідовності та кооперації, кожна з яких
фіксує увагу на окремому аспекті функціонування системи. На
відміну від інших діаграм, діаграма станів описує процес зміни
станів тільки одного класу, а точніше — одного екземпляру пев-
ного класу, тобто моделює всі можливі зміни у стані конкретно-
го об’єкта. При цьому зміна стану об’єкта може бути викликана
зовнішніми впливами з боку інших об’єктів чи ззовні. Саме для
опису реакції об’єкта на подібні зовнішні впливи і використову-
ються діаграми станів.

Головне призначення цієї діаграми — описати можливі послі-
довності станів і переходів, які в сукупності характеризують по-
ведінку елемента моделі протягом його життєвого циклу. Діа-
грама станів представляє динамічну поведінку сутностей, на
основі специфікації їх реакції на сприйняття деяких конкретних
подій. Системи, які реагують на зовнішні дії від інших систем
або від користувачів, іноді називають реактивними. Якщо такі
дії ініціюються в довільні випадкові моменти часу, то говорять
про асинхронну поведінку моделі.

Автомат
Автомат (state machine) у мові UML є деякий формалізм для

моделювання поведінки елементів моделі та системи загалом. У
метамоделі UML автомат, з одного боку, є пакетом, в якому ви-
значено множину понять, необхідних для подання поведінки
сутності, що моделюється у вигляді дискретного простору з кін-
цевим числом станів і переходів. З іншого боку, автомат описує
поведінку окремого об’єкта у формі послідовності станів, які

228

охоплюють всі етапи його життєвого циклу, починаючи від ство-
рення об’єкта і закінчуючи його знищенням. Кожна діаграма
станів представляє деякий автомат.

Найпростішим прикладом візуального представлення станів
і переходів на основі формалізму автоматів може служити
справність технічного пристрою, такого як комп’ютер. У цьому
випадку вводяться у розгляд два найзагальніших стани: “справ-
ний” і “несправний”, а також два переходи: “вихід з ладу” і “ре-
монт”. Графічно ця інформація представлена у вигляді такої схе-
ми станів комп’ютера:

Основними поняттями, що входять до формалізму автомата,
є стан і перехід. Головна відмінність між ними полягає у тому,
що тривалість перебування системи в окремому стані суттєво
перевищує час, який витрачається на перехід з одного стану в
інший. Передбачається, що час переходу з одного стану в інший
дорівнює нулю (якщо додатково нічого не сказано). Інакше ка-
жучи, перехід об’єкта зі стану в стан відбувається миттєво.

Формалізм звичайного автомата заснований на виконанні та-
ких обов’язкових умов:

• автомат не запам’ятовує історію переміщення зі стану
в стан;

• у кожний момент часу автомат може перебувати в одному і
тільки в одному зі своїх станів;

• хоча процес зміни станів автомата відбувається у часі, але
концепція часу не входить до формалізму автомата;

• кількість станів автомата повинно бути обов’язково кінце-
вим (у мові UML розглядаються тільки кінцеві автомати), і всі
вони повинні бути специфіковані певним чином;

• граф автомата не повинен містити ізольованих станів і пе-
реходів;

Справний Несправний

Вихід з ладу

Ремонт

229

• автомат не повинен містити конфліктуючих переходів, тоб-
то таких переходів з одного і того самого стану, коли об’єкт вод-
ночас може перейти у два і більше наступних стани (крім випад-
ку паралельних підавтоматів).

Стан
У мові UML під станом розуміється абстрактний метаклас,

що використовується для моделювання окремої ситуації, про-
тягом якої має місце виконання деякої умови. Стан може бути
задано у вигляді набору конкретних значень атрибутів класу або
об’єкта, при цьому зміна їх окремих значень буде відображати
зміну стану модельованого класу або об’єкта.

Не кожен атрибут класу може характеризувати його стан. Як
правило, мають значення тільки такі властивості елементів сис-
теми, які відображають динамічний або функціональний аспект
її поведінки. Стан на діаграмі зображується прямокутником з
округленими вершинами.

Назва стану
Ім’я стану представляє собою рядок тексту, що розкриває зміс-

товний сенс цього стану. Назва завжди записується з великої літе-
ри. Оскільки стан системи є складовою процесу її функціонуван-
ня, рекомендується в якості імені використовувати дієслова у
теперішньому часі (дзвенить, друкує, очікує) або відповідні діє-
прикметники (зайнятий, вільний, передано, отримано).

Список внутрішніх дій
Ця секція містить перелік внутрішніх дій чи діяльностей, які

виконуються у процесі знаходження модельованого елемента в

Им’я стану

Список внутрішніх дій
у даному стані

Им’я стану

а б

230

даному стані. Кожна з дій записується у вигляді окремого рядка
і має такий вигляд:

<мітка-дії ‘/’ вираз-дії>.
Мітка дії вказує на обставини або умови, за яких буде вико-

нуватися діяльність, визначена виразом дії. При цьому вираз дії
може використовувати будь-які атрибути і зв’язки, які належать
області імен або контексту модельованого об’єкта. Якщо список
виразів дії порожній, то роздільник у вигляді похилої риски ‘/’
може не вказуватися.

Перелік міток дії має фіксовані значення у мові UML, які не
можуть бути використані як імена подій. Ці значення такі:

• entry — ця позначка вказує на дію, специфіковану наступ-
ним за нею виразом дії, що виконується в момент входу в даний
стан (вхідна дія);

• exit — ця позначка вказує на дію, специфіковану наступним
за нею виразом дії, що виконується в момент виходу з цього ста-
ну (вихідна дія);

• do — ця позначка специфікує виконувану діяльність (“do
activity”), яка виконується протягом усього часу, поки об’єкт
знаходиться в даному стані, або до тих пір, поки не закінчиться
обчислення, специфіковане наступним за нею виразом дії. При
завершенні дії генерується відповідний результат;

• include — ця позначка використовується для звернення до
підавтомату, при цьому наступний за нею вираз дії містить ім’я
цього підавтомату.

Як приклад стану розглянемо ситуацію введення пароля ко-
ристувача при аутентифікації входу в деяку програмну систему.
У цьому випадку список внутрішніх дій в цьому стані не порож-
ній і включає 4 окремих дії, перші дві з яких стандартні та опи-
сані вище, а дві останні визначаються своєю специфікацією.

entry / встановити символи невидимими
entry / встановити символи видимими

символ / отримати символ
допомога / показати допомогу

Введення пароля

231

Початковий стан
Початковий стан — це окремий випадок стану, який не міс-

тить ніяких внутрішніх дій (псевдостан). У цьому стані знахо-
диться об’єкт за замовчуванням у початковий момент часу. Він
служить для вказівки на діаграмі станів графічної області, від
якої починається процес зміни станів. Графічно початковий стан
у мові UML позначається у вигляді зафарбованою кола.

Кінцевий стан
Кінцевий (фінальний) стан — це окремий випадок стану,

який також не містить ніяких внутрішніх дій (псевдостанів). У
цьому стані буде знаходитися об’єкт за замовчуванням після за-
вершення роботи автомата у кінцевий момент часу. Він служить
для вказівки на діаграмі графічної області, в якій завершується
процес зміни станів або життєвий цикл цього об’єкта.

Перехід
Простий перехід (simple transition) — це відношення між дво-

ма послідовними станами, яке вказує на факт зміни одного ста-
ну іншим. Перебування модельованого об’єкта у першому стані
може супроводжуватися виконанням певних дій, а перехід у
другий стан буде можливий після завершення цих дій, а також
після задоволення деяких додаткових умов.

Перехід здійснюється при настанні певної події: закінчення
виконання діяльності (do activity), отримання об’єктом пові-
домлення або прийом сигналу. На переході зазначається ім’я
події. Крім того, на переході можуть зазначатися дії, здійснюва-
ні об’єктом у відповідь на зовнішні події при переході з одного
стану в інший . Спрацьовування переходу може залежати не
тільки від настання певної події, а й від виконання певної умови

 початковий стан кінцевий стан
 а б

232

(вартової умови). Об’єкт перейде з одного стану в інший у тому
випадку, якщо відбулася вказана подія і вартова умова прийня-
ла значення “істина”.

На діаграмі станів перехід зображується суцільною лінією зі
стрілкою, яка спрямована у цільовий стан. Кожен перехід позна-
чений рядком тексту, що має наступний загальний формат:

<сигнатура події >’[’< вартова умова> ’]’ <вираз дії>.

При цьому сигнатура події описує деякі подія з необхідними
аргументами:

<ім’я події>’(’<список параметрів, розділених комами >’)’.

Подія
Подія — це специфікація деякого факту, що має місце в про-

сторі і часі. У мові UML події відіграють роль стимулів, які іні-
ціюють переходи з одних станів в інші. Як події можна розгляда-
ти сигнали, виклики, закінчення фіксованих проміжків часу або
моменти закінчення виконання певних дій. Назва події іденти-
фікує кожен окремий перехід на діаграмі станів і може містити
рядок тексту, що починається з малої літери.

Вартова умова
Вартова умова (guard condition), якщо воно є, завжди запи-

сується у прямих дужках після події-тригера і є деяким булев-
ським виразом.

Якщо вартова умова приймає значення “істина”, то відповід-
ний перехід може спрацювати, внаслідок чого об’єкт перейде у
цільовий стан. Якщо ж вартова умова приймає значення “хиба”,
то перехід не може спрацювати, і при відсутності інших перехо-
дів об’єкт не може перейти у цільовий стан з цього переходу. Од-
нак обчислення істинності вартової умови відбувається тільки
після виникнення асоційованої з ним події-тригера, яка ініціює
відповідний перехід.

Прикладом події-тригера може служити розрив телефонно-
го з’єднання з провайдером Інтернет-послуг після закінчення

233

завантаження електронної пошти клієнтською поштовою про-
грамою (при віддаленому доступі до Інтернету). У цьому ви-
падку вартова умова є не що інше, як відповідь на питання:
“Чи пустять поштову скриньку клієнта на сервері провайде-
ра?”. У разі позитивної відповіді “істина”, слід відключити
з’єднання з провайдером, що і робить автоматично поштова
програма-клієнт. У випадку негативної відповіді “хиба”, мають
залишатись у стані завантаження пошти і не розривати теле-
фонне з’єднання.

Однак за необхідності отримати нову пошту, користувач
повинен встановити телефонне з’єднання з провайдером, що і
показано на діаграмі верхнім переходом. Інакше кажучи, корис-
тувач ініціює подію-тригер “встановити телефонне з’єднання”.
Як параметр цієї події виступає конкретний номер телефону мо-
демного пулу провайдера. Далі йде перевірка вартової умови
“телефонне з’єднання встановлено”, яке слід розуміти як питан-
ня. Тільки у випадку позитивної відповіді “так”, тобто “істина”,
відбувається перехід поштового програми-клієнта зі стану “ак-
тивізація поштової програми” у стан “завантаження пошти з
сервера провайдера”.

Другий тригерний перехід на діаграмі ініціює автоматичний
розрив телефонного з’єднання з провайдером після закінчення
завантаження пошти на комп’ютер користувача. У цьому випад-

Активізація
поштової
програми

Завантаження
пошти із сервера

провайдера

встановити телефонне з'єднання (тел. номер)
[тел. з'єднання встановленно]

закінчити завантаження пошти
[поштова скринька на сервері порожня]

разірвати тел. з'єднання (тел. номер)

234

ку подія-тригер “закінчити завантаження пошти” відбувається
після перевірки вартової умови “поштова скринька на сервері
порожня”, що також слід розуміти у формі питання. При пози-
тивній відповіді на це питання (вся пошта завантажена або її
просто немає в ящику) поштова програма припиняє заванта-
ження пошти і переходить у стан активізації. У разі ж негативної
відповіді завантаження пошти буде продовжено.

Вираз дії
Вираз дії (action expression) виконується тільки у тому ви-

падку, коли перехід спрацьовує. Це — атомарна операція (просте
обчислення), що виконується після спрацьовування відповідно-
го переходу до початку будь-яких дій у цільовому стані. Атомар-
ність дії означає, що вона не може бути перервана ніякою іншою
дією доти, поки не закінчиться її виконання. Ця дія може впли-
вати як на сам об’єкт, так і на його оточення, якщо це з очевид-
ністю випливає з контексту моделі. Вираз записується після
знака “/” у рядку тексту, приєднаного до відповідного переходу.

Складений стан і підстани
Складений стан (composite state) — такий складний стан, що

складається з інших вкладених у нього станів. Останні будуть
виступати відносно першого як підстани (substate). Хоча між
ними має місце відношення композиції, графічно всі вершини
діаграми, які відповідають вкладеним станам, зображуються
всередині символу складного стану.

Складений стан може містити два чи більше паралельних
підавтомати або кілька послідовних підстанів.

Складений стан

Підстан 1

Підстан 2

235

Послідовні підстани
Послідовні підстани (sequential substates) використовуються

для моделювання такої поведінки об’єкта, під час якої в кожний
момент часу об’єкт може знаходитися тільки в одному підстані.
Поведінка об’єкта у цьому випадку — це послідовна зміна підста-
нів, починаючи від початкового і закінчуючи кінцевим підстаном.

Для прикладу розглянемо в якості модельованого об’єкта
звичайний телефонний апарат. Він може перебувати в різних
станах, одним з яких є стан дозвону до абонента.

Паралельні підстани
Паралельні підстани (concurrent substates) дозволяють спе-

цифікувати два і більше підавтомати, які можуть виконуватися
паралельно всередині складеної події. Кожен із підавтоматів
займає деяку область (регіон) всередині складеного стану, яка
відокремлюється від решти горизонтальною пунктирною лі-
нією. Якщо на діаграмі станів є складений стан з вкладеними
паралельними підстанами, то об’єкт може одночасно перебувати
в кожному з цих підстанів.

Окремі паралельні підстани можуть, у свою чергу, складатися
з кількох послідовних підстанів. У цьому випадку за визначен-
ням об’єкт може знаходитися тільки в одному з послідовних під-
станів підавтомата.

Підавтомат 1

Складений стан

Підстан 1 Підстан 2

Підавтомат 2

Підстан 3

Підавтомат 3

Підстан 4 Підстан 5

236

У деяких випадках бажано приховати внутрішню структуру
складеного стану. Наприклад, окремий підавтомат, що специфі-
кує складений стан, може бути настільки великим за масшта-
бом, що його візуалізація утруднить загальне уявлення діагра-
ми станів. У подібній ситуації допускається не розкривати на
вихідній діаграмі станів дані складеного стану, а вказати у пра-
вому нижньому кутку спеціальний символ-піктограму.

Складні переходи.
Переходи між паралельними станами

В окремих випадках перехід може мати кілька станів-джерел
і кілька цільових станів. Такий перехід отримав спеціальну
назву — паралельний перехід. Введення у розгляд паралельного
переходу зумовлено необхідністю синхронізувати та/або розді-
лити окремі підпроцеси на паралельні нитки без специфікації
додаткової синхронізації у паралельних підавтоматах.

Прихований складений стан

entry / ввімкнути звуковий сигнал

entry / вимкнути звуковий сигнал

символ
складеного

стану

Процес_1

Стан_1

Стан_2

Процес_2

Стан_3

Стан_4

237

Синхронізуючі стани

В окремих випадках може виникнути необхідність врахувати
в моделі синхронізацію настання окремих подій. Для цієї мети в
мові UML є спеціальний псевдостан, який називається синхро-
нізуючим станом.

Синхронізуючий стан (synch state) позначається невеликим
колом, всередині якого знаходиться символ зірочки “*”. Він ви-
користовується спільно з переходом-з’єднанням або переходом-
розгалуженням для того, щоб явно вказати події в інших
підавтоматах, які безпосередньо впливають на поведінку цього
підавтомата.

Для ілюстрації використання синхронізуючих станів розгля-
немо спрощену ситуацію з моделюванням процесу будівництва
будинку.

Розглянемо, як приклад, діаграму станів, що є прикладом
моделювання поведінки конкретного об’єкта — процесу функ-
ціонування телефонного апарата.

Зведення
фундаменту

та стін

Зведення
даху

Оздоблю-
вальні роботи

Підведення
лінії

Прокладання
прихованої
електрики

Установка
освітлюваль-

них ламп

Підготовка
участка

238

Активний

телефон # Минання часу очікування

do/ видавати звук. сигнал

Тоновий сигнал

do/ видавати тоновий сигнал

15 сек 15 сек

Нібір
цифри (n)

[номер
неповний]

Набір_
номера (n)
[вірний]/
з'єднати

Номер
вільний

З'єднання

Дзвінок
у абонента

do/ видавати
дзвінок

Запит на
закінчення

розмови

Розмова

[підтверждення]

Зайнято

do/ видавати
короткі гудки

Неправильний номер

do/ видавати сигнал

Закінчення
розмови

Покласти
трубку

/роз'єдна-
тися

Підняти
трубку

/подати
тоновий
сигнал

запит відповіді
/размова доступна

Набір номера (n)

Набір номера
[невірний]

Набір номера

Очікування

239

Лекція 24. ДІАГРАМА ПОСЛІДОВНОСТІ
У мові UML взаємодія елементів розглядається в інформа-

ційному аспекті їх взаємодії, тобто взаємодіючи об’єкти обміню-
ються між собою деякою інформацією. При цьому інформація
набуває форми закінчених повідомлень. Інакше кажучи, хоча
повідомлення і має інформаційний зміст, воно набуває додатко-
вої властивості впливати на свого одержувача.

Взаємодію об’єктів можна розглядати у часі, і тоді для подан-
ня часових особливостей передачі та прийому повідомлень між
об’єктами використовується діаграма послідовності.

Об’єкти
На діаграмі послідовності зображуються виключно ті об’єк-

ти, які безпосередньо беруть участь у взаємодії і не показують
можливі статичні асоціації з іншими об’єктами. Для діаграми
послідовності ключовим моментом є саме динаміка взаємодії
об’єктів у часі.

Діаграма послідовності має два виміри. Один вимір — зліва
направо у вигляді вертикальних ліній, кожна з яких зображує
лінію життя окремого об’єкта, який бере участь у взаємодії.

Крайнім ліворуч на діаграмі зображується об’єкт, який є ініціа-
тором взаємодії. Правіше зображується інший об’єкт, який безпо-
середньо взаємодіє з першим. Таким чином, всі об’єкти на діаграмі
послідовності утворюють деякий порядок, який визначається сту-
пенем активності цих об’єктів при взаємодії один з одним.

Ім'я Об'єкта 2:
Ім'я Класа 2

Ім'я Об'єкта 3:
Ім'я Класа 3

Ім'я Об'єкта 1:
Ім'я Класа 1

фокус
управління

лінія життя
об'єкта

повідомлення

символ руйнування
об'єкта

240

Другий вимір діаграми послідовності — вертикальна тимча-
сова вісь, спрямована зверху вниз. Початковому моменту часу
відповідає верхня частина діаграми. При цьому взаємодії
об’єктів реалізуються за допомогою повідомлень, які надсила-
ються одними об’єктами іншим. Повідомлення зображуються у
вигляді горизонтальних стрілок з ім’ям повідомлення та утво-
рюють порядок з часу свого виникнення.

Не обов’язково створювати всі об’єкти у початковий момент
часу. Окремі об’єкти в системі можуть створюватися в міру не-
обхідності, істотно економлячи ресурси системи і підвищуючи її
продуктивність. У цьому випадку прямокутник такого об’єкта
зображується не у верхній частині діаграми послідовності, а в
тій її частині, що відповідає моменту створення об’єкта.

Фокус керування
У процесі функціонування об’єктно-орієнтованих систем, з

одного боку, одні об’єкти можуть перебувати в активному стані,
безпосередньо виконуючи певні дії, або в стані пасивного очіку-
вання повідомлень від інших об’єктів. Щоб явно виділити таку
активність об’єктів, у мові UML застосовується спеціальне по-
няття, що отримало назву фокуса керування (focus of control).
Фокус керування зображується у формі витягнутого вузького
прямокутника.

З іншого боку, періоди активності об’єкта можуть чергувати-
ся з періодами його пасивності чи очікування. У цьому випадку
у такого об’єкта є кілька фокусів керування.

Ім'я Об'єкта 4: Ім'я Класу 1 Ім'я Об'єкта 5: Ім'я Класу 2

Ім'я Об'єкта 6:
Ім'я Класу 3

241

В окремих випадках ініціатором взаємодії у системі може
бути актор або зовнішній користувач. У цьому випадку актор
зображується на діаграмі послідовності найпершим об’єктом
зліва зі своїм фокусом керування.

Повідомлення
Кожна взаємодія описується сукупністю повідомлень, якими

об’єкти обмінюються між собою. У цьому сенсі повідомлення
(message) — це закінчений фрагмент інформації, який відправ-
ляється одним об’єктом іншому. При цьому прийом повідомлен-
ня ініціює виконання певних дій, спрямованих на вирішення
окремої задачі тим об’єктом, якому це повідомлення надіслано.
Розглянемо приклад:

рефлексивне
повідомлення

Ім'я Об'єкта 7
Ім'я Класу 1

рекурсія

анонімний
актор

Ім'я Об'єкта 8
Ім'я Класу 2

Ім'я Об'єкта 1:
Ім'я Класу 1

[x<0]

Ім'я Об'єкта 2:
Ім'я Класу 2

[x>=0]
точка

розгалуження

Ім'я Об'єкта 3:
Ім'я Класу 3

242

Стереотипи повідомлень
У мові UML передбачені деякі стандартні дії, що виконують-

ся у відповідь на отримання відповідного повідомлення. Вони
можуть бути явно зазначені на діаграмі послідовності у формі
стереотипу поряд з повідомленням, до якого вони відносяться.
У цьому випадку вони записуються в лапках. Використовують-
ся такі позначення для моделювання дій:

• “call” (викликати) — повідомлення, що вимагає виклику
операції або процедури об’єкта, який приймає. Якщо повідом-
лення з цим стереотипом рефлексивне, то воно ініціює локаль-
ний виклик операції в об’єкта, який послав це повідомлення;

• “return” (повернути) — повідомлення, що повертає значення
виконаної операції або процедури, викликаної її об’єктом. Значен-
ня результату може ініціювати розгалуження потоку керування;

• “create” (створити) — повідомлення, що вимагає створення
іншого об’єкта для виконання певних дій. Створений об’єкт
може отримати фокус керування, а може і не отримати його;

• “destroy” (знищити) — повідомлення з явною вимогою зни-
щити відповідний об’єкт. Посилається у тому випадку, коли не-
обхідно припинити небажані дії з боку існуючого в системі
об’єкта, або коли об’єкт більше не потрібен і повинен звільнити
задіяні ним системні ресурси;

• “send” (послати) — позначає посилку об’єктом деякого сиг-
налу, який асинхронно ініціюється одним об’єктом і приймається

“return”

Ім'я Об'єкта 1
Ім'я Класу 1

[x<0] “create”

Ім'я Об'єкта 2
Ім'я Класу 2

[x>=0] “call”

“return”

“call”

Ім'я Об'єкта 3
Ім'я Класу 3

“destroy”

243

(перехоплюється) іншим. Відмінність сигналу від повідом-
лення полягає у тому, що сигнал повинен бути явно описаний
у тому класі, об’єкт якого ініціює його передачу.

Тимчасові обмеження на діаграмах послідовності
В окремих випадках виконання тих чи інших дій на діаграмі

послідовності може вимагати явної специфікації тимчасових
обмежень, що накладаються на сам інтервал виконання опера-
цій або передачу повідомлень. У мові UML для запису тимчасо-
вих обмежень використовуються фігурні дужки.

Приклад:
(час_прийому_повідомлення час_відправки_повідомлення<1 с);
(час_очікування_відповіді <5 с);
(час_передачі_пакета <10 с);
(об’єкт_1. час_подачі_сигналу_тривоги> 30 с).

Приклад побудови діаграми послідовності
Як приклад розглянемо побудову діаграми послідовності для

моделювання процесу телефонної розмови з використанням
звичайної телефонної мережі. Об’єктами в цьому прикладі є: два
абоненти а і b, два телефонних апарата с і d, комутатор та сама
розмова як об’єкт моделювання. При цьому як комутатор, так і
розмова є анонімними об’єктами.

Отже, маємо:

с: Телефонний
 апарат

Комутатор d: Телефонний
 апарат

b: Абонента: Абонент

244

Процес взаємодії у цій системі починається з підняття труб-
ки телефонного апарата першим абонентом. Тим самим він по-
силає повідомлення з телефонного апарата, що переводить цей
апарат в активний стан і викликає дію — подачу тонового сигна-
лу в телефонну трубку для першого абонента. Наступний крок
також ініціюється першим абонентом — набір цифр телефонно-
го номера. Це представлено у формі ітеративного повідомлення
зі знаком “*” ліворуч від його імені.

Зауважимо, що підняття телефонної трубки і набір цифр но-
мера є фізичними діями і тому зображуються у формі простих
асинхронних повідомлень. Після набору цифр номера телефону
апарат рекурсивно викликає процедуру посилки комутаційних
імпульсів на комутатор. Останній ініціює створення нового
об’єкта в системі, що моделюється — телефонної розмови. Отже,
уточнена діаграма послідовності буде мати вигляд:

Після створення анонімний об’єкт “розмова” відразу отри-
мує фокус активності та посилає повідомлення телефонного
апарата d на виконання дії — дзвінок. При цьому другий або-
нент знімає трубку (асинхронне повідомлення), тим самим

с: Телефонний
апарат

Комутатор d: Телефонний
 апарат

b: Абонента: Абонент

Розмова

комутація (a, b)
*набір
цифри

підняти
слухавку

тон-сигнал()

*поворот
диска

“create”

245

встановлюється пряме з’єднання між абонентами а і b. Після
того як абоненти покладуть трубки, розмова закінчується. Тим
самим об’єкт “розмова” знищується. Остаточний варіант діа-
грами послідовності може містити деякі часові обмеження та
коментарі.

Діаграма діяльності (activity diagram)

При моделюванні поведінки проектованої або аналізованої
системи виникає необхідність не тільки уявити процес зміни її

с: Телефонний
 апарат

Комутатор d: Телефонний
 апарат

підняти
слухавку

b: Абонента: Абонент

Розмова
“create”

комутація (a, b)

з'єднання
()

покласти
слухавку

“send”

“send”

Після встановлення
з'єднання абоненти

a і b можуть почати обмін
інформацією

“destroy”

закінчити
розмову

з'єднання
(а)

з'єднання
 (b)

звонок

покласти
слухавку

*набір
цифри

підняти слухавку

тон-сигнал()

*поворот
диска

закінчити
розмову

246

станів, а й деталізувати особливості алгоритмічної і логічної ре-
алізації виконуваних системою операцій.

Для моделювання процесу виконання операцій у мові UML
використовуються так звані діаграми діяльності. Застосована у
них графічна нотація багато в чому схожа на нотацію діаграми
станів, оскільки на діаграмах діяльності також присутні позна-
чення станів і переходів.

Стан дії
Стан дії (action state) є спеціальним випадком стану з деяки-

ми вхідними діями і принаймні одним переходом, що виходить
зі стану. Цей перехід неявно припускає, що вхідна дія вже завер-
шилась. Стан дії не може мати внутрішніх переходів, тому що
вона є елементарною. Звичайне використання стану дії полягає
у моделюванні одного кроку виконання алгоритму (процедури)
або потоку управління.

Графічно стан дії зображується фігурою, яка нагадує прямо-
кутник. Всередині цієї фігури записується вираз дії (action-
expression), яка має бути унікальною в межах однієї діаграми ді-
яльності.

Перехід

При побудові діаграми діяльності використовуються тільки
нетрігерні переходи, тобто такі, які спрацьовують одразу після
завершення діяльності або виконання відповідної дії. Цей пере-
хід переводить діяльність у подальший стан відразу, як тільки
закінчиться дія у попередньому стані. На діаграмі такий перехід
зображується суцільною лінією зі стрілкою.

Як приклад розглянемо фрагмент відомого алгоритму знахо-
дження коренів квадратного рівняння. У загальному випадку
після приведення рівняння другого ступеня до канонічного ви-

Розробити план проекту index:= number+1

проста дія вираз
 а б

247

гляду: а • х • х + b • х + с = 0 необхідно обчислити його дискримі-
нант. Діаграма діяльності має вигляд:

У наступному прикладі розраховується загальна вартість то-
варів, що купуються за кредитною карткою у супермаркеті.
Якщо ця вартість перевищує 50 дол., то виконується аутентифі-
кація особи власника картки. У разі позитивної перевірки (карт-
ка дійсна), або якщо вартість товарів не перевищує 50 дол., від-
бувається зняття суми з рахунка і оплата вартості товарів. При
негативному результаті (картка недійсна) оплата не відбуваєть-
ся і товар залишається у продавця.

[дискримінант >= 0]

Перетворити рівняння
до канонічного вигляду

Вирахувати дискримінант

Вирахувати корні (корінь)
квадратного рівняння

[дискримінант < 0]

символ
розгалуження

Вирахувати загальну вартість товарів

Оплатити вартість товару кредитною карткою

Ідентифікувати особу власника
кредитної картки

[вартість > 50 дол.]

[вартість<+= 50 дол.]

248

Для ілюстрації особливостей паралельних процесів виконан-
ня дій розглянемо приклад з приготуванням напою.

Діаграми діяльності можуть бути використані не тільки для
специфікації алгоритмів обчислень або потоків управління у
програмних системах.

Пошукати
напій

Налити воду
в резервуар

Знайти чашку Засипати каву
в фільтр

Вставити фільтр
у кавоварку

Ввімкнути
кавоварку

Зварити каву

Налити каву
у чашку

Випити
напій

Відкрити банку
з квасом

249

СПИСОК ЛІТЕРАТУРИ

1. Липпман С., Лажойе Ж. Язык программирования С++.
Вводный курс. — М.: ДМК, 2001. —1104 c.

2. Страуступ Б. Язык программирования C++. Специальное
издание. — М.: БИНОМ, 2001. — 420 c.

3. Саттер Г. Решение сложных задач на С++. — М.: Изд. дом
“Вильямс”, 2002. — 395 c.

4. Мацяшек Л. Анализ требований и проектирование сис-
тем. — М.: Изд. дом “Вильямс”, 2002. — 428 c.

5. Влиссидес Дж. Применение шаблонов проектирования.
Дополнительные штрихи. — М.: Изд. дом “Вильямc”, 2003 — 144 с.

6. Павловская Т. А. С/С++ Программирование на языке
высокого уровня. — СПб.: Питер, 2007. — 461 с.

7. Лаптев В. В., Морозов А. В., Бокова А. В. С++ объектно-
ориентированное программирование. Задачи и упражнения. —
СПб.: Питер, 2007. — 287 с.

250

ДОДАТОК

ЗАДАЧІ
Процедурне програмування

1. Дано 36-значне число, що містить не більше 100 цифр
(цифри 10, 11, ..., 35 кодуються заголовними латинськими літе-
рами А, В, ..., Z). Переставити цифри числа таким чином, щоб
воно стало “щасливим”. “Щасливим” будемо називати число з
N цифр, у якого сума перших [N/2] цифр дорівнює сумі останніх
[N/2] цифр. Якщо така перестановка неможлива, вивести пові-
домлення “impossible”.

2. Написати програму, що виконує такі функції:
• введення послідовності;
• перегляд даних;
• пошук заданого елемента послідовності;
• сортування методом включення.
3. Обчислити визначений інтеграл методами Сімпсона й тра-

пецій із заданою точністю.
Інтеграл від a до b (sin(x) • x в ступені 1/7).
4. Обчислити методом Монте-Карло 2-кратний інтеграл

f(x,y) = x•x + y•y.
Область інтегрування: 0.5 <= x <= 1, 0 <= y <= 2 x-1.
5. Створити однозв’язний лінійний список (у кожного вузла

1 інформаційне поле типу Integer) з можливістю додавати й ви-
даляти вузли.

Після завершення редагування списку запросити число N і
розбити список на два інших, не змінюючи розташування еле-
ментів у пам’яті, у такий спосіб: якщо значення інформаційного
поля вузла > N, включити його у 1 список, якщо ні, то включити
його у 2 список.

Після завершення роботи всі списки знищити.
6. Програма підраховує число вершин на n-му рівні непорож-

нього дерева T (корінь вважається вершиною нульового рівня).
7. Реалізувати роботу динамічної структури ЧЕРГА:
• додавання елемента;

251

• видалення;
• сортування. У роботі використовувати два методи сорту-

вання: швидкий і вставками. Порівняти ефективність;
• пошук. Вивід на екран.
8. Інтерполяція:
• знайти багаточлен найменшого ступеня, що приймає у

даних точках x задані значення y:
x -1 2 9 10;
y 1 2 4 8;
• функція f(x) задана таблицею. Використовуючи інтерполя-

ційний багаточлен Ньютона, визначити пропущене значення у
вільній комірці цієї таблиці:

x -0,1 0,2 0,5 0,7 0,9 1,2
f(x) 0,02 -1,73 -1,62 -1,48 ? -0,97;
• функція f(x) задана таблицею своїх значень. Побудувати ку-

бічний сплайн і оцінити значення функції у зазначеній точці x0.
x -0.5 1.5 2.0 3.5 6.0 9.0
f(x) 2.5 6 -3.5 -7 -10 2
x0=2.5.
9. Зробити інтерполяцію для заданого довільного набору вуз-

лів і значень функції в них за допомогою полінома Лагранжа.
Визначити значення функції у будь-якій точці на вихідному

інтервалі.
Вихідні дані (вузли й значення функції в них) зчитуються з

файла.
10. Знайти власні значення матриці методом Крилова і Левер’є.
11. Знайти Ейлерів цикл у графі, що не містить вершин непар-

ного ступеня і заданому списками інцидентності:
• граф задається списком інциндентності у текстовому файлі;
• кожний рядок містить пару: ребро та вершина;
• у файлі не повинно бути порожніх рядків;
• при пошуку циклу використовується пошук у глибину.

12. Текст програми на Паскалі зберігається у файлі на диску.
Скласти програму обробки тексту програми:
• перші букви службових слів зробити заголовними;

252

• текст коментарю замінити на номер коментарю один по од-
ному.

Переписати текст програми в новий файл із мінімальною кіль-
кістю пробілів, зберігши пробіли тільки там, де вони необхідні.

13. Видалити з матриці [А] рядок і стовпчик, що містять най-
більший елемент матриці. Матриця [А] є розрядженою і зберіга-
ється у вигляді мультисписків.

14. Написати програму, що видає для шахового поля заданого
розміру всі можливі варіанти обходу його конем (тобто буквою
“Г”). Наприклад:

 1 14 9 20 3
 16 21 2 25 10
 13 8 15 4 19
 22 17 6 11 24
 7 12 23 18 5
15. Написати програму, що здійснює пірамідальне сортуван-

ня масиву з використанням рекурсії.
16. Використовуючи метод пошуку завширшки, знайти най-

коротший шлях від початкової до будь-якої довільної вершини
зв’язного неорієнтованого графа, заданого списками інцидент-
ності (ваги всіх ребер прийміть рівними одиниці).

17. Написати програму, що здійснює пошук у кореневому де-
реві піддерева, ізоморфних заданому дереву.

Використовувати алгоритм повного обходу дерева з бектре-
кінгом (backtracking).

18. Дано файл, компонентами якого є дійсні числа.
Знайти максимальне й мінімальне значення серед компонен-

тів файла.
19. Використовуючи алгоритм пошуку в глибину, написати

програму, що знаходить множину фундаментальних циклів зв’яз-
ного неорієнтованого графа, заданого таблицею інцидентності.

20. Використовуючи метод пошуку в ширину, знайти стягую-
че дерево для довільного зв’язного неорієнтованого графа, зада-
ного списками інцидентності.

21. Кожне число являє собою масив байт.

253

Перший байт масиву містить код знака числа: 0 — “+”, 225 —
“-”, а інші байти — значущі двійкові цифри числа. У програмі
розробити процедури алгебраїчних операцій із двома цілими
числами, кожне з яких представлене масивом байтів.

Операції:
• плюс;
• мінус;
• множення;
• ділення на число.
При виконанні операцій враховується можливість перепов-

нення.
22. У файлі f1.txt перебувають рядки тексту. Відкрити його

для читання й построково читати з нього інформацію. У кожно-
му рядку видалити всі цифри за допомогою зміщення. Потім
отриманий рядок записати в інший файл f2.txt.

23. Спочатку вводяться рядки (кількість задана в констан-
ті k). Потім береться рядок і ділиться на підрядки, роздільника-
ми служать латинські літери. Після з отриманих підрядків шу-
каються ті підрядки, в яких є цифри й квадратні дужки. Якщо
такі підрядки є, то в початковому рядку цього підрядка шукаєть-
ся перша цифра, після неї вставляються три зірочки ***, відбу-
вається вихід із програми. Якщо такого підрядка немає, то пере-
ходимо до обробки наступного рядка.

24. Написати програму, що в діалоговому режимі створює
таблицю, яка в свою чергу (теж у діалоговому режимі) вміє:

• створювати, додавати, видаляти стовпчики, рядки й комір-
ки;

• читатися й записуватися у файл;
• редагувати стовпчики.
У стовпчиках можуть бути типи: integer, short, char, string,

double, bool.
Типи можна змінювати й перетворювати за можливістю, тоб-

то ті, які можливо. Наприклад, short в integer.
25. Написати програму, що форматує заданий у файлі текст у

такий спосіб:

254

• текст вирівнюється по 50 символів у рядку;
• розставляються знаки переносу, де це необхідно;
• кожні 60 рядків виставляється номер сторінки.
26. Розробити програму формування черги, що містить цілі

числа і впорядковує за зростанням елементів у цій черзі.
У процесі впорядкування елементи черги переміщуватися не

повинні.
27. Розробити схему алгоритму й програму для шифрування

даних у файлі методом гаммирування. Вихідний текст і ключ, на
якому виробляється шифрування, перебувають у файлах. Ре-
зультатом роботи програми є файл із зашифрованим текстом.

28. На основі даного тексту скласти частотний словник.
В окремий файл вивести список слів, кількість разів у тексті,

в якому вони вживаються, і процентний вміст.
Впорядкувати за частотою вживаності.
29. Реалізувати алгоритм сортування вичерпуванням і оціни-

ти його часову складність
30. Написати програму, що обчислює як ціле число значення

виразу (без змінних), записане у постфіксній формі в текстовий
файл postfix.

Постфіксною формою запису вираження a^b називається за-
пис, в якому знак операції розміщений за операндами: ab^.

Наприклад:
a+ b-c це ab+ c-c-
 a+b*c це bc*a+.

Об’єктно-орієнтоване програмування
1. Реалізувати клас шаблон “матриця”, перевизначити опера-

ції додавання, віднімання, множення, транспонування. Реалізу-
вати всередині класу також процедури виводу матриці на друк.
Передбачити всі можливі виключення.

2. Реалізувати послідовність покажчиків на об’єкт. Послідов-
ність повинна бути реалізована як окремий клас, передбачити
всі характерні операції. (Послідовність може бути реалізована
за допомогою списку або масиву.)

255

3. Описати клас “Кут” для вимірювання кутів.
Дані класу:
число градусів і хвилин.
Конструктори класу:
конструктор за замовчуванням, конструктор перетворення із

цілого в градуси, конструктор довільного кута.
Визначити методи:
введення кута, друк на екран, визначення значення кута в ра-

діанній мірі, один із методів повинен виконувати приведення,
якщо дані задані некоректно.

Записати ціле і довільний кут як статичні об’єкти створеного
типу, знайти значення кутів у радіанах.

Записати динамічний об’єкт за замовчуванням, ввести дані й
надрукувати на екрані.

Записати масив із 2–3 кутів. Знайти спосіб задати значення
при створенні об’єктів.

Розробити метод графічного відображення об’єкта на екрані.
Перевантажити операцію додавання кутів з використанням

операції — методу класу, а операцію віднімання з використан-
ням дружньої функції.

Перевантажити унарну операцію ++ для інкремента кута як
метод класу; -- — як дружню функцію.

Перевантажити операцію присвоювання для кутів.
Перевантажити операцію порівняння = = для кутів.
Описати клас “Сектор”, похідний від класу “Кут”, як частину

кола довільного радіуса між двома кутами. Визначити конструк-
тор сектора.

Виведіть на екран площу сектора.
Для виводу повної інформації про об’єкт використовувати

методи базового класу.
4. Написати максимально розширюваний проект множини

Set (множина може містити різні типи, може бути реалізована
на базі списку, масиву й т. д.).

5. Розробити безпечний код для класу Stack.
6. Дано наступний код:

256

 class A
{
public:
virtual ~A();
string Name(); private:
virtual string DoName(); };
class Bl : virtual public A
string DoName(); };
class B2 : virtual public A
string DoName(); };
A::~A() {}
string A::Name() {return DoName();}
string A::DoName() {return “A”;}
string Bl::DoName() {return “Bl”;}
string B2::DoName() {return “B2”;}
class D : public Bl, public B2
string DoName() {return “D”;}.
Написати еквівалентний код без використання множинного

спадкування.
7. Написати програму, що демонструє роботу з об’єктами двох

типів: SymbString символьний рядок (довільний рядок симво-
лів) і OctString восьмеричний рядок (зображення восьмерично-
го числа), для чого створити систему відповідних класів. Кожний
об’єкт повинен мати ідентифікатор (у вигляді довільного рядка
символів) і одне поле (або кілька) для зберігання стану об’єкта
(один клас є нащадком іншого). Клієнту (функції main) повинні
бути доступні такі основні операції (методи): створити об’єкт, ви-
далити об’єкт, показати значення об’єкта та інші додаткові опера-
ції (залежать від варіанта). Операції по створенню й видаленню
об’єктів інкапсулювати в класі Factory. Передбачити меню, що
дає змогу продемонструвати задані операції.

За необхідністю в розроблювальні класи додаються додаткові
методи (наприклад, конструктор копіювання, операція присвою-
вання й т. п.) для забезпечення належного функціонування цих
класів. Проект повинен бути максимально розширюваним.

257

8. Потрібно створити шаблон деякого цільового класу Vect,
можливо, реалізований із застосуванням деякого серверного
класу List. Це означає, що об’єкт класу List використовується як
елемент класу Vect. В якості серверного класу може бути вико-
ристаний клас, створений програмістом. Можливі виключення
повинні бути оброблені в програмі.

9. Написати гру “морський бій”.
10. Розробити параметризований контейнерний клас List.

Специфікація розміщується у файлах Lists.h, List.h, ListIterator.h.
11. Створити калькулятор, що обчислює введений арифме-

тичний вираз на основі патерну Composite. У калькуляторі по-
винна бути процедура синтаксичного розбору вихідного виразу,
результатом якої є структура даних типу дерева.

12. Проаналізувати специфікації й реалізувати варіанти об-
меженого стека на базі масиву. Визначити клас циклічний ма-
сив і побудувати на його основі клас черга (файли Stack, Pro-
tectedArray, PeekBackstack, BoundedStackDerived FromArray,
Bo-undedStackAgregatingArray, Array).

13. Створити абстрактний базовий клас Array з віртуальними
методами додавання і поелементної обробки масиву foreach().
Розробити похідні класи AndArray і OrArray (вибір). У першо-
му класі операція додавання реалізується як перетинання мно-
жин, а поелементна обробка є обчислення квадратного кореня.
У другому класі операція додавання реалізується як об’єднання,
а поелементна обробка — обчислення логарифма.

14. Створити клас ListPayment (зарплата). У класі міститься
список співробітників, для яких розраховується заробітна пла-
та. Співробітник представлений класом Person з полями: та-
бельний номер, прізвище, ім’я, по батькові, оклад, рік вступу на
роботу, відсоток надбавки, прибутковий податок, кількість від-
працьованих днів у місяці, кількість робочих днів у місяці, на-
рахування, утримання. Реалізувати методи обчислення класу
Person: нарахованої суми, утриманої суми, суми, видаваної на
руки, і стажу. Стаж обчислюється як повна кількість років, що

258

пройшли від року влаштування на роботу, до поточного року.
Нарахування — це сума, що нарахована за відпрацьовані дні й
надбавки — частки від суми, нараховані за відпрацьовані дні.
Утримання — це відрахування у пенсійний фонд (1 % від нара-
хованої суми) і прибутковий податок. Прибутковий податок
становить 13 % від нарахованої суми без відрахувань у пенсій-
ний фонд. Реалізувати методи додавання співробітника в спи-
сок і видалення з нього; методи об’єднання списків; методи по-
шуку по полях класу Person. Реалізувати методи обчислення
повних сум за списком: нараховано, утримано, на руки, прибут-
ковий податок, пенсійний фонд. Реалізувати операцію генерації
об’єкта Group (група), що містить список співробітників з одна-
ковим стажем роботи, з об’єкта типу ListPayment.

15. Написати програму з використанням шаблону Abstract-
Factory.

16. Написати програму з використанням шаблону Builder.
17. Написати програму з використанням шаблону Decorator.
18. Написати програму з використанням шаблону Facade.
19. Написати програму з використанням шаблона Proxy.
20. Написати програму з використанням шаблону Strategy.

259

 ЗМІСТ
Вступ . 4
Основні типи даних мови С++ . 5
Лекція 1. Типи даних у C++ . 5
Лекція 2. Складові типи даних . 12
Лекція 3. Інструкції . 22
Процедурно-орієнтовне програмування . 27
Лекція 4. Функції . 27
Лекція 5. Функції вводу-виводу . 40
Лекція 6. Директиви препроцесора . 51
Лекція 7. Область видимості й час життя . 57
Лекція 8. Перевантажені функції . 65
Лекція 9. Шаблони функцій . 72
Об'єктне програмування . 81
Лекція 10. Класи . 81
Лекція 11. Конструктори та деструктори класу 97
Лекція 12. Перевантаження операторів . 101
Визначені користувачем перетворення . 118
Лекція 13. Шаблони класів . 120
Лекція 14. Виключення . 130
Лекція 15. Контейнерні типи . 137
Об'єктно-орієнтоване програмування . 140
Лекція 16. Спадкування . 140
Лекція 17. Множинне спадкування . 159
Лекція 18. Віртуальне спадкування . 165
Лекція 19. Використання спадкування в С++ 171
Мова моделювання UML . 182
Лекція 20. Ведення у процес моделювання . 182
Лекція 21. Діаграма класів . 194
Лекція 22. Діаграма варіантів використання
(діаграма прецедентів) . 215
Лекція 23. Діаграма станів . 227
Лекція 24. Діаграма послідовності . 239
Список літератури . 249
Додаток. 250

260

У конспекті лекцій розглядаються всі основні можливості мови С++ і їх застосу-
вання при розробці об’єктно-орієнтованих програм. Дається короткий опис бібліотек
мови С++, необхідних для створення типових програм. Систематизовано викладають-
ся основні поняття й описуються можливості мови С++.

Для студентів вищих навчальних закладів, які вивчають програмування на мові
С++.

Навчальне видання

ГАЛКІН ОЛЕКСАНДР ВОЛОДИМИРОВИЧ
ВЕРЕС МАКСИМ МАКСИМОВИЧ

МОВА ПРОГРАМУВАННЯ С++
Конспект лекцій

Редактор Н. К. Чумаченко
Коректор Т. К. Валицька

Комп’ютерне верстання Ю. Ю. Попова
Оформлення обкладинки О. О. Стеценко

Підп. до друку 17.04.15. Формат 60х84/16 . Папір офсетний. Друк офсетний.
Ум. друк. арк. 15,34. Обл.-вид. арк. 6,34. Наклад 1000 пр.

Міжрегіональна Академія управління персоналом (МАУП)
03039 Київ-39, вул. Фрометівська, 2, МАУП

ДП “Видавничий дім “Персонал”
03039 Київ-39, просп. Червонозоряний, 119, літ. ХХ

Свідоцтво про внесення до Державного реєстру
суб’єктів видавничої справи ДК № 3262 від 26.08.2008 р.

Надруковано в друкарні ДП «Видавничий дім «Персонал»

