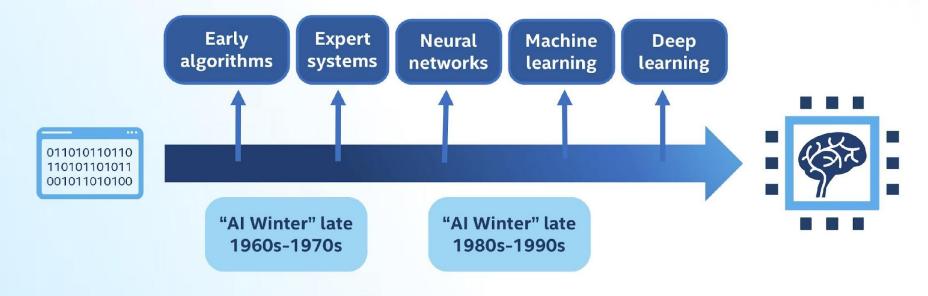
Програмне забезпечення інформаційних систем

What is AI, ML, DL, DS?

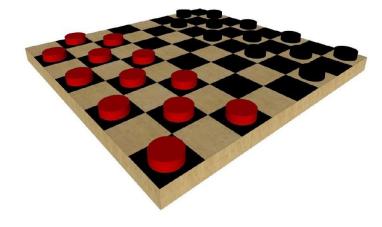
History of Al

Al has experienced several hype cycles, where it has oscillated between periods of excitement and disappointment.



1950s: Early Al

- 1950: Alan Turing developed the Turing test to test a machines ability to exhibit intelligent behavior.
- 1956: Artificial Intelligence was accepted as a field at the Dartmouth Conference.
- 1957: Frank Rosenblatt invented the perceptron algorithm. This was the precursor to modern neural networks.
- 1959: Arthur Samuel published an algorithm for a checkers program using machine learning.



The First "Al Winter"

- 1966: ALPAC committee evaluated AI techniques for machine translation and determined there was little yield from the investment.
- 1969: Marvin Minsky published a book on the limitations of the Perceptron algorithm which slowed research in neural networks.
- 1973: The Lighthill report highlights Al's failure to live up to promises.
- The two reports led to cuts in government funding for AI research leading to the first "AI Winter."

John R. Pierce, head of ALPAC

1980's Al Boom

- Expert Systems systems with programmed rules designed to mimic human experts.
- Ran on mainframe computers with specialized programming languages (e.g. LISP).
- Were the first widely-used AI technology, with two-thirds of "Fortune 500" companies using them at their peak.
- 1986: The "Backpropogation" algorithm is able to train multi-layer perceptrons leading to new successes and interest in neural network research.

Early expert systems machine

Another Al Winter (late 1980's – early 1990s)

- Expert systems' progress on solving business problems slowed.
- Expert systems began to be melded into software suites of general business applications (e.g. SAP, Oracle) that could run on PCs instead of mainframes.
- Neural networks didn't scale to large problems.
- Interest in AI in business declined.

Late 1990's to early 2000's: Classical Machine Learning

- Advancements in the SVM algorithm led to it becoming the machine learning method of choice.
- Al solutions had successes in speech recognition, medical diagnosis, robotics, and many other areas.
- Al algorithms were integrated into larger systems and became useful throughout industry.
- The Deep Blue chess system beat world chess champion Garry Kasparov.
- Google search engine launched using artificial intelligence technology.

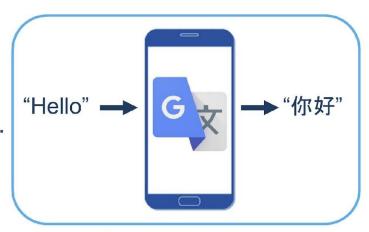
IBM supercomputer

2006: Rise of Deep Learning

- 2006: Geoffrey Hinton publishes a paper on unsupervised pre-training that allowed deeper neural networks to be trained.
- Neural networks are rebranded to deep learning.
- 2009: The ImageNet database of human-tagged images is presented at the CVPR conference.
- 2010: Algorithms compete on several visual recognition tasks at the first ImageNet competition.

Deep Learning Breakthroughs (2012 - Present)

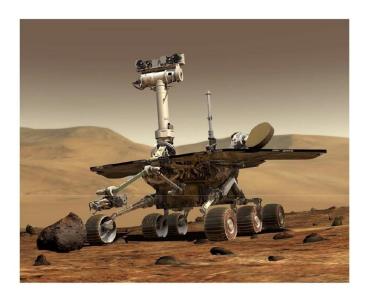
- In 2012, deep learning beats previous benchmark on the ImageNet competition.
- In 2013, deep learning is used to understand "conceptual meaning" of words.
- In 2014, similar breakthroughs appeared in language translation.
- These have led to advancements in Web Search, Document Search, Document Summarization, and Machine Translation.



Google Translate

Deep Learning Breakthroughs (2012 – Present)

- In 2014, computer vision algorithm can describe photos.
- In 2015, Deep learning platform TensorFlow* is developed.
- In 2016, DeepMind* AlphaGo, developed by Aja Huang, beats Go master Lee Se-dol.



Al Breakthroughs

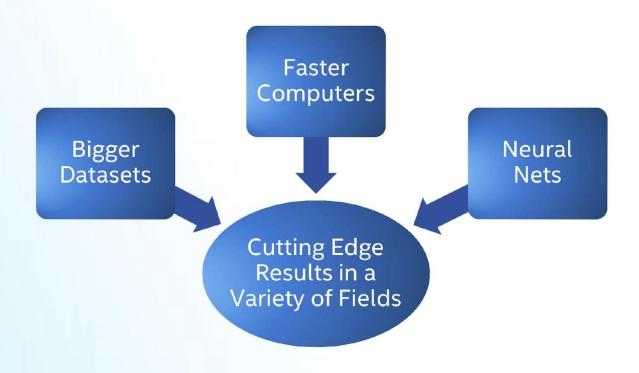
Image classification

"Dog" "Cat"
As of <u>2015</u>, computers can be trained to perform <u>better on this task than humans</u>.

Machine translation

As of <u>2016</u>, we have achieved <u>near-human performance</u> using the latest AI techniques.

How Is This Era of Al Different?



Other Modern Al Factors

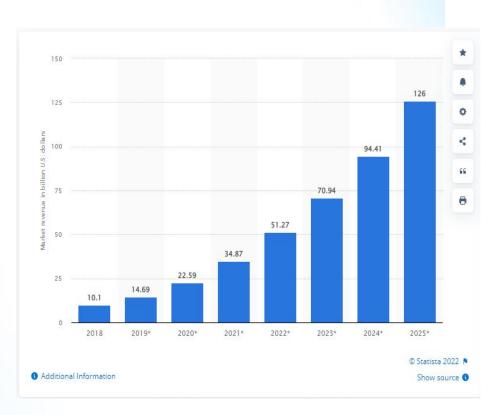
- Continued expansion of open source AI, especially in Python*, aiding machine learning and big data ecosystems.
- Leading deep learning libraries open sourced, allowing further adoption by industry.
- Open sourcing of large datasets of millions of labeled images, text datasets such as Wikipedia has also driven breakthroughs.



Al Is The New Electricity

"About 100 years ago, electricity transformed every major industry. Al has advanced to the point where it has the power to transform...every major sector in coming years."

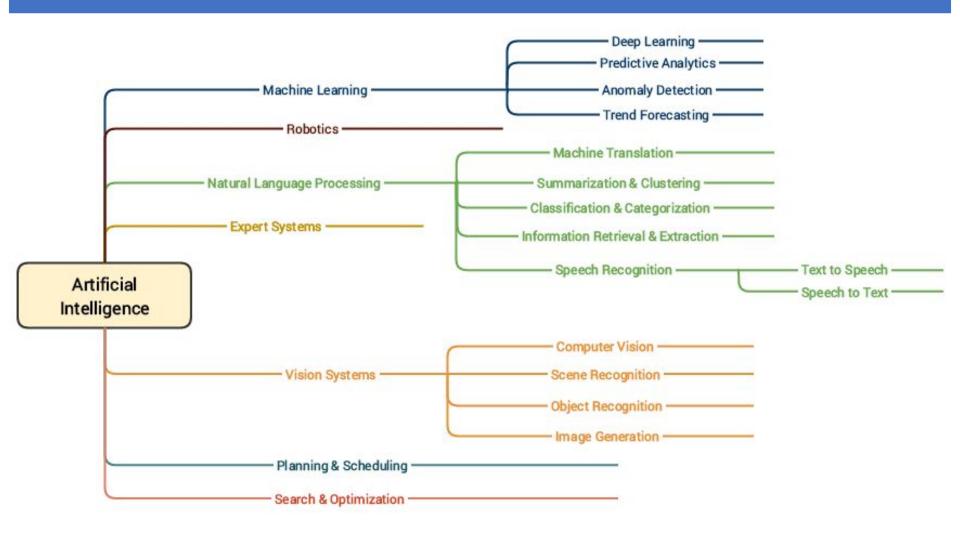
-Andrew Ng, Stanford University



Artificial Intelligence – Al Definitions

- "Властивість інтелектуальних систем виконувати творчі функції, які традиційно вважаються прерогативою людини." (Wikipedia)
- "A branch of computer science dealing with the simulation of intelligent behavior in computers." (Merriam-Webster)
- "A program that can sense, reason, act, and adapt." (Intel)
- "Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed." (Arthur Samuel, 1959)
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell)

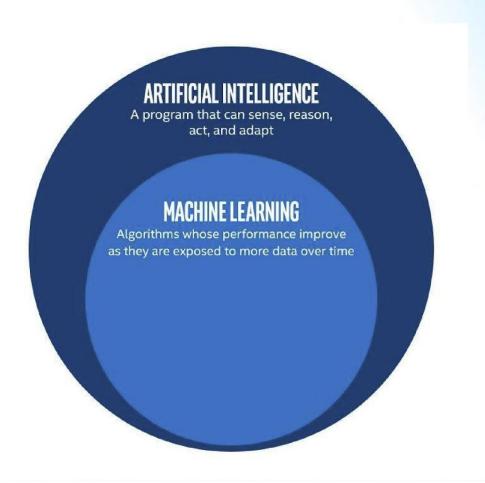
Artificial Intelligence – Al Problems



Machine Learning – ML Definitions

Machine Learning

"The study and construction of programs that are *not explicitly programmed*, but learn patterns as they are exposed to more data over time." (Intel)



Machine Learning – ML Learn from data

Machine Learning

These programs learn from repeatedly seeing data, rather than being explicitly programmed by humans.

Machine Learning – ML Example

Machine Learning Example

- Suppose you wanted to identify fraudulent credit card transactions.
- You could define features to be:
 - Transaction time
 - Transaction amount
 - Transaction location
 - Category of purchase
- The algorithm could learn what feature combinations suggest unusual activity.

Machine Learning – ML Limitations

Machine Learning Limitations

- Suppose you wanted to determine if an image is of a cat or a dog.
- What features would you use?
- This is where Deep Learning can come in.

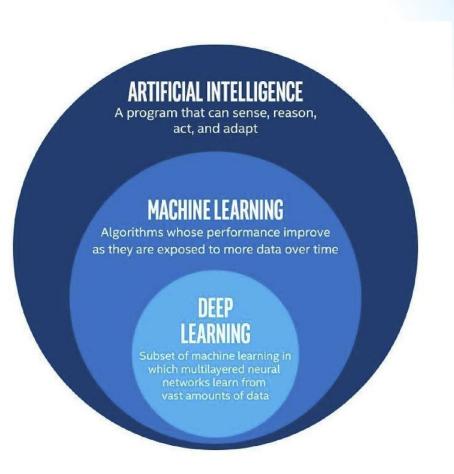
Dog and cat recognition

Deep Learning — DL Definitions

Deep Learning

"Machine learning that involves using very complicated models called "deep neural networks"." (Intel)

Models determine best representation of original data; in classic machine learning, humans must do this.



Deep Learning – DL Example

Deep Learning Example

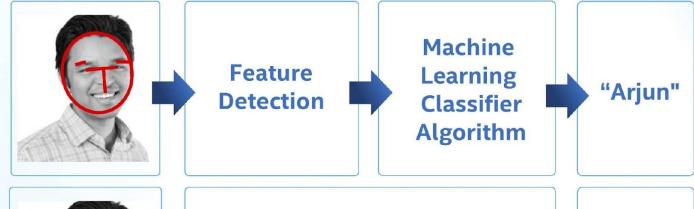
Classic Machine Learning

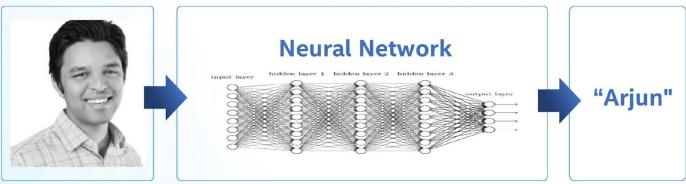
Step 1: Determine features.

Step 2: Feed them through model.

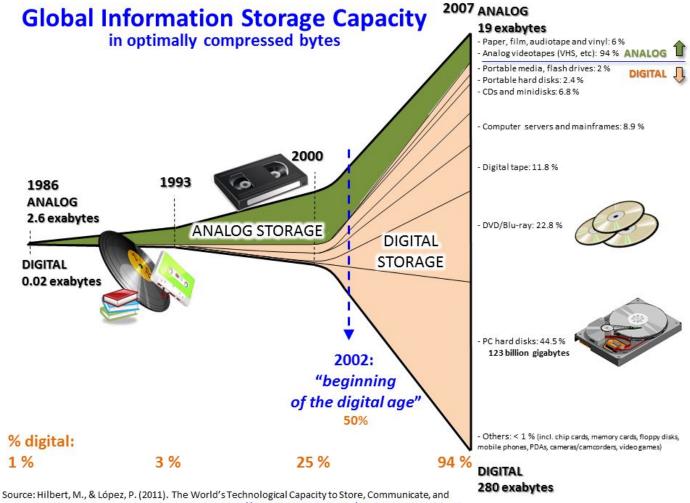
Deep Learning

Steps 1 and 2 are combined into 1 step.





Big Data

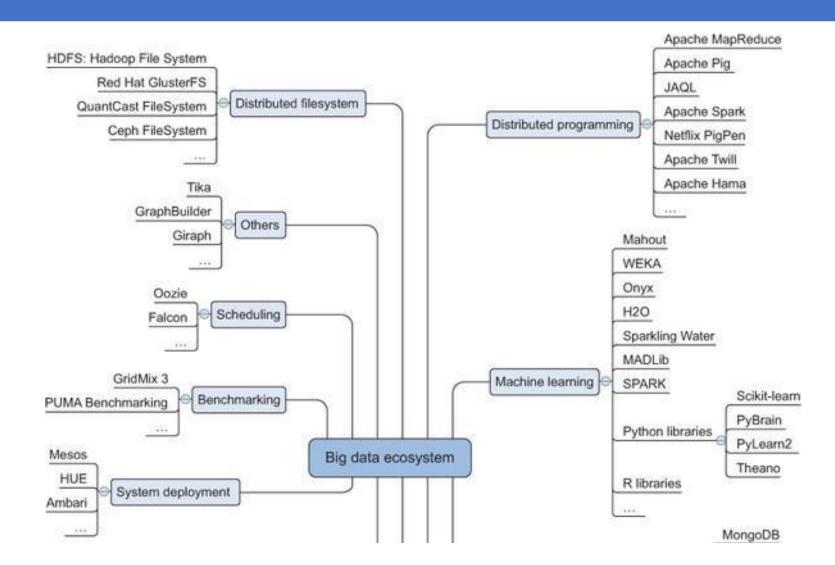


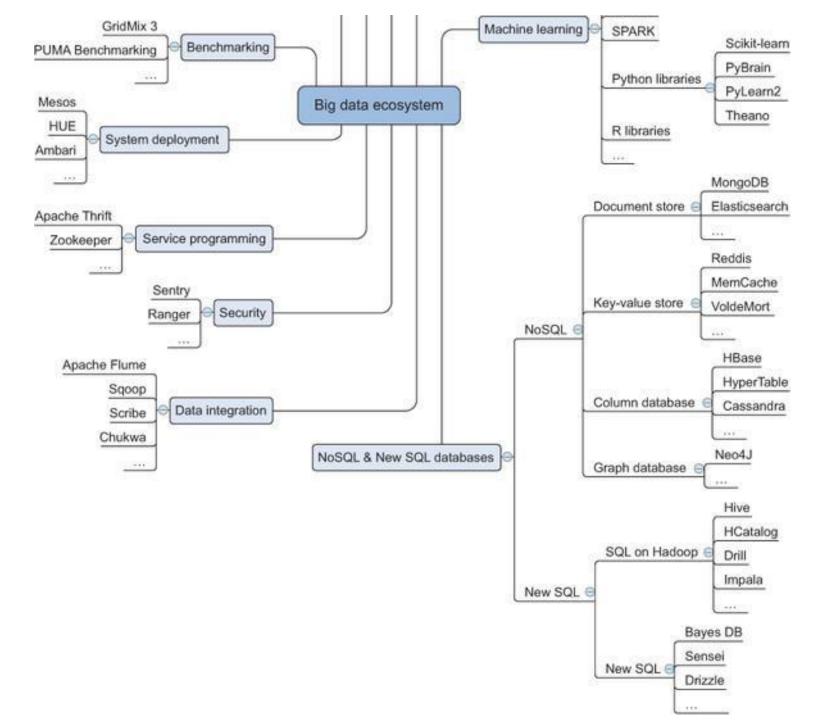
Compute Information. Science, 332(6025), 60 -65. http://www.martinhilbert.net/WorldInfoCapacity.html

Big Data Landscape of Technologies

- File system
- Distributed programming frameworks
- Data integration
- Databases
- Machine learning
- Security
- Scheduling
- Benchmarking
- System deployment
- Service programming

Big Data Ecosystem

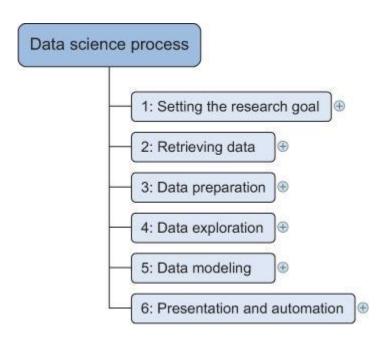




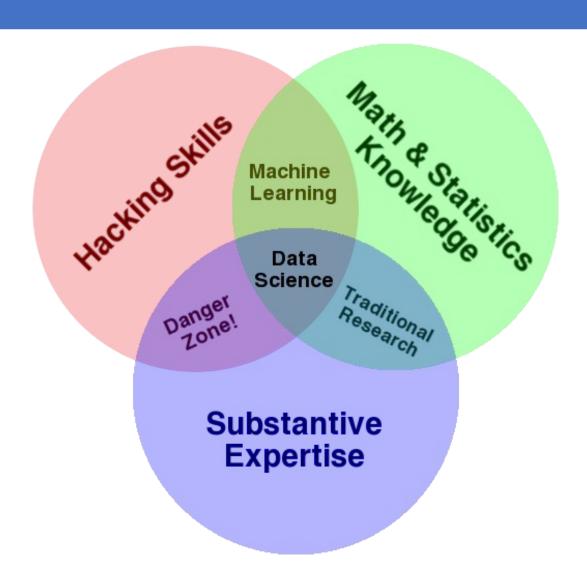
Data Science – DS

- "Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining." (Wikipedia)
- Turing award winner Jim Gray imagined data science as a "fourth paradigm" of science (empirical, theoretical, computational and now data-driven)
- "The Sexiest Job of the 21st Century" Harvard Business Review, 2012

Data Science Process

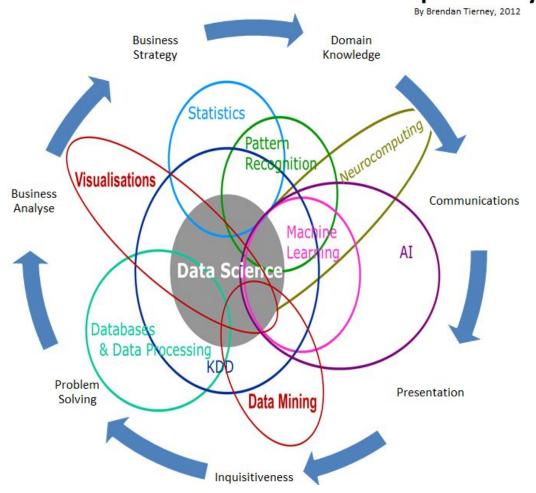


Data Science – DS Drew Conway, 2010

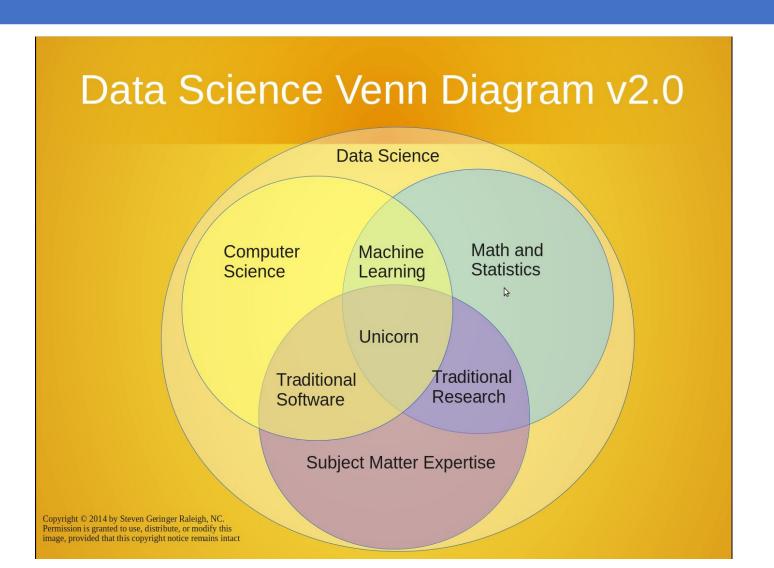


Data Science – DS Brendan Tierney, 2012

Data Science Is Multidisciplinary



Data Science – DS Steven Geringe, 2014



Data Science – DS Data Scientist Portrait

WHO AM I?

I am a part analyst & part artist. I use my analytical and technical abilities to extract meaning / insights from massive data sets.

WHAT DO I RELY ON?

- 1. Analytics
- 2. Predictive Models
- 3. Statistical Analysis & Modeling
- 4. Data Mining
- 5. Sentiment Analysis
- 6. What-if Analysis

THE PROCESS I FOLLOW

Define Problem Structure Data

Use Programming Language

After oil & gas geologists, mine is the 2nd highest paid job in the world!

HOW DO I HELP ORGANIZATIONS TODAY?

- Increase data accuracy
- **Develop strategies**
- Improve operational efficiency
- Reduce costs
- Mitigate risks
- Offer personalized products/services

WHAT DO I DO?

- 1. I cleanse existing raw data & build models to predict future data.
- 2. I go beyond merely collecting and reporting data, to look at data from multiple angles & give meaning to it.
- 3. I identify the correct business problem(s) & offer solutions (via visualizations, reports or blogs) by best applying the data.

WHAT DO I EARN?

100,000 to 150,000

Data Science - DS Data Scientist – what does it take?

DATA SCIENTIST - WHAT DOES IT TAKE?

Data Scientist is fast becoming the most sought after job of the 21st century, requiring a blend of multidisciplinary skills including, but not limited to, mathematics, statistics, computer science, communication and general commercial acumen.

MATH & **STATISTICS**

- · Machine learning
- Statistical modeling
- Bayesian inference
- Graph theory
- · NLP
- Supervised Learning: forests, logistic regression
- Unsupervised Learning;
- reduction

Optimisation: gradient

PROGRAMMING & DATABASE

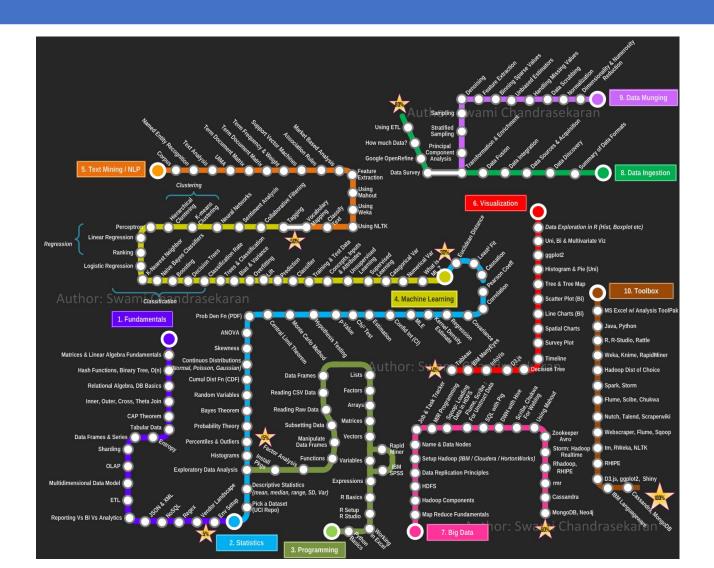
- Computer science fundamentals
- Python, R, SAS, Scala
- Statistical computing package
- Database SQL and NoSQL
- Relational algebra
- Parallel databases and parallel query processing
- MapReduce concepts
- Hadoop, Hive/Pig and Spark
- Customer reducers
- Experience with xaaS like AWS
- Engineering

BI / CONSULTANCY / DOMAIN & SOFT KNOWLEDGE SKILLS

- insights into decisions and actions
- 'Bridge the Gap' between business and technical departments
- Strategic, proactive, creative, innovative and collaborative
- Passionate about business problems
 Strong communicator, able to engage with senior stakeholders
 - Influence without authority
 - Problem solver
 - Project management
 - Hacker mindset
 - Mentoring/Leadership

If you're interested in exploring potential opportunities within this fast paced and dynamic market, our specialist team of consultants are primed and ready to assist you. Get in touch today!

Data Science – DS Road to Data Scientist



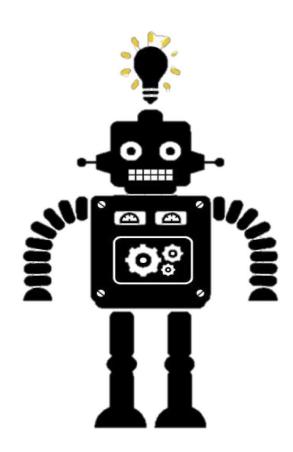
Data Science – DS Skills of Data Scientist (Udacity)

	Data Analyst	Machine Learning Engineer	Data Engineer	Data Scientist
Programming Tools				
Data Visualization and Communication				
Data Intuition				
Statistics				
Data Wrangling				
Machine Learning				
Software Engineering				
Multivariable Calculus and Linear Algebra				

Machine Learning – ML What is Machine Learning?

WHAT IS MACHINE LEARNING?

Machine learning allows computers to learn and infer from data.



MACHINE LEARNING IN OUR DAILY LIVES

SPAM FILTERING

MACHINE LEARNING IN OUR DAILY LIVES

SPAM FILTERING

WEB SEARCH

MACHINE LEARNING IN OUR DAILY LIVES

SPAM FILTERING

WEB SEARCH

POSTAL MAIL ROUTING

MACHINE LEARNING IN OUR DAILY LIVES

SPAM FILTERING

WEB SEARCH

POSTAL MAIL ROUTING

FRAUD DETECTION

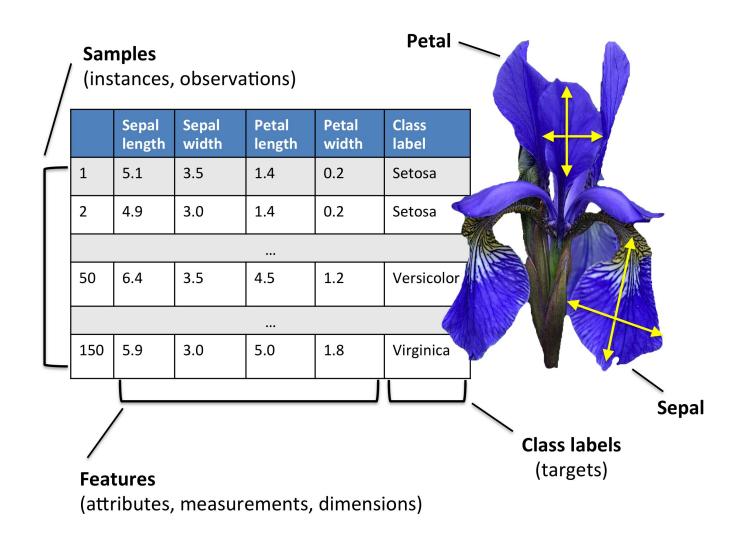
MOVIE RECOMMENDATIONS

VEHICLE DRIVER ASSISTANCE

WEB ADVERTISEMENTS

SOCIAL NETWORKS

SPEECH RECOGNITION



MACHINE LEARNING VOCABULARY

 Target: predicted category or value of the data (column to predict)

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)

_			
Exan	n	PS	-
			1

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)
- Label: the target value for a single data point

Sepal length	Sepal width	Petal length	Petal width	Species	
6.7	3.0	5.2	2.3	Virginica	
6.4	2.8	5.6	2.1	Virginica	
4.6	3.4	1.4	0.3	Setosa	← Label
6.9	3.1	4.9	1.5	Versicolor	
4.4	2.9	1.4	0.2	Setosa	
4.8	3.0	1.4	0.1	Setosa	
5.9	3.0	5.1	1.8	Virginica	
5.4	3.9	1.3	0.4	Setosa	
4.9	3.0	1.4	0.2	Setosa	
5.4	3.4	1.7	0.2	Setosa	

Machine Learning – ML Vocabulary (synonyms)

MACHINE LEARNING VOCABULARY (SYNONYMS)

- Target: Response, Output, Dependent Variable, Labels
- Features: Predictors, Input, Independent Variables, Attributes
- Example: Observation, Record, Instance, Datapoint, Row
- Label: Answer, y-value, Category

Machine Learning – ML Two Main Types

Two Main Types of Machine Learning

Dataset Goal **Example Supervised** Make Fraud Has a target column predictions Learning detection Unsupervised Does not have a **Find structure** Customer target column Learning in the data segmentation

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

Machine learning – ML Types of Supervised Learning

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

CLASSIFICATION

Outcome is a category

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

Machine Learning – ML Types of Unsupervised Learning

TYPES OF UNSUPERVISED LEARNING

CLUSTERING

Identify unknown structure in data

DIMENSIONALITY REDUCTION

Use structural characteristics to simplify data

Machine learning – ML Types of Supervised Learning

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

CLASSIFICATION

Outcome is a category

Machine learning – ML

Regression (example)

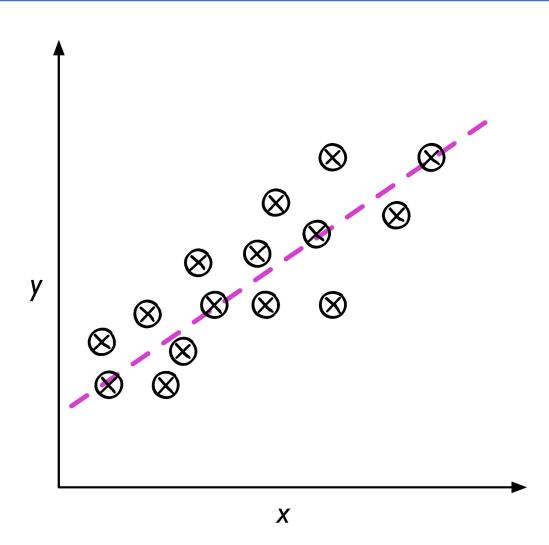
	вес	рост	ср.дл.	пол	возраст (у)
			волос		
<i>X</i> ₁	96	170	короткие	М	42
<i>X</i> ₂	60	180	короткие	М	25
<i>X</i> ₃	54	165	длинные	Ж	30
<i>X</i> ₄	83	178	короткие	Ж	47
			• • •		• • •
X ₁₀₀	108	193	длинные	Ж	32

Задача обучения: определить возраст

$$x = (75, 184, \text{``короткие'', ``м''}), y = ?$$

Machine learning – ML

Regression (graphical representation)



Machine learning – ML Types of Supervised Learning

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

CLASSIFICATION

Outcome is a category

Machine learning – ML Classification (example 1)

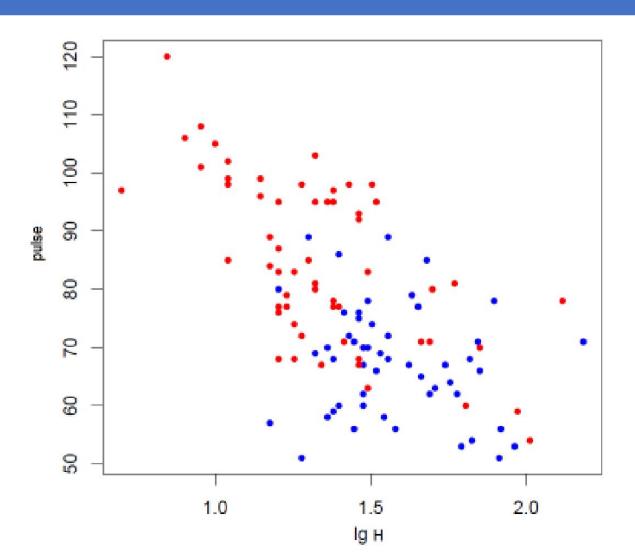
	пульс	гемоглобин	диагноз
X_1	70	140	здоров $(y=-1)$
<i>X</i> ₂	60	160	здоров $(y=-1)$
<i>X</i> ₃	94	120	миокардит $(y=1)$
			• • •
X ₁₁₄	86	98	миокардит $(y=1)$

Обучающая выборка:

$$((70, 140), -1), (60, 160), -1), (94, 120), 1)..., (86, 98), 1)$$

Задача обучения: новый пациент x = (75, 128), y = ?

Machine learning – ML Classification (example 1)

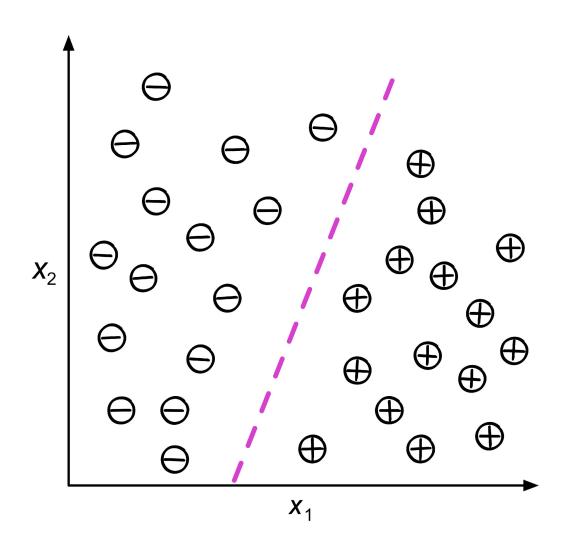


Machine learning – ML Classification (example 2)

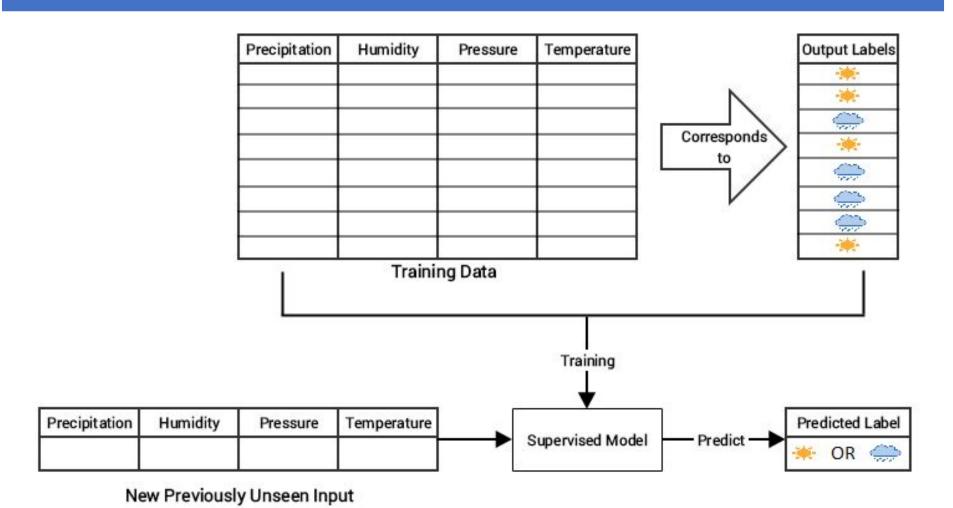
	вес	рост	возраст	ср.дл.волос	пол
<i>X</i> ₁	96	170	42	0	м $(y = -1)$
<i>X</i> ₂	60	180	25	8	м $(y = -1)$
<i>X</i> ₃	54	165	30	21	ж $(y=1)$
<i>X</i> ₄	83	178	47	18	ж $(y=1)$
X ₁₀₀	108	193	32	40	ж $(y=1)$

Задача обучения: x = (75, 184, 28, 10), y = ?

Machine learning – ML Classification (graphical representation)

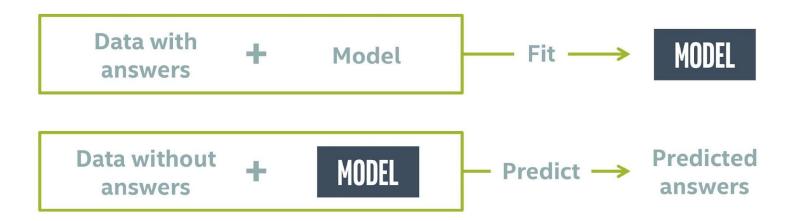


Machine Learning – ML Supervised Learning Overview



Machine Learning – ML Supervised Learning Overview

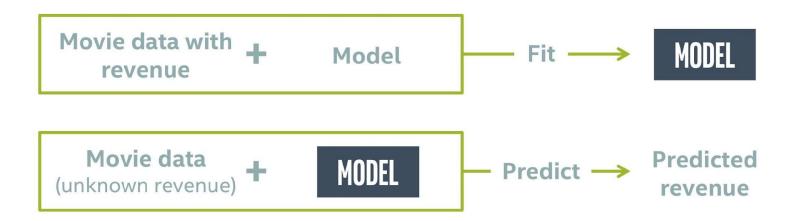
SUPERVISED LEARNING OVERVIEW



Machine Learning – ML

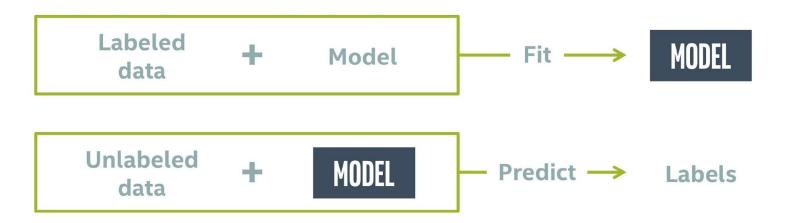
Regression: Numerical Answers

REGRESSION: NUMERICAL ANSWERS



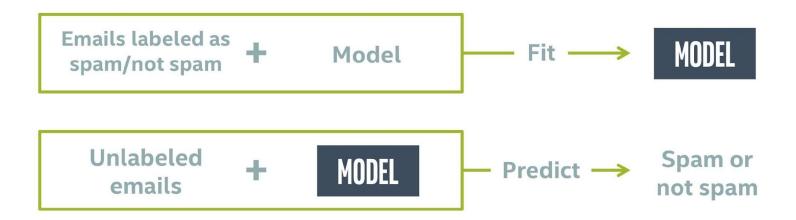
Machine Learning – ML Classification: Categorical Answers

CLASSIFICATION: CATEGORICAL ANSWERS



Machine Learning – ML Classification: Categorical Answers

CLASSIFICATION: CATEGORICAL ANSWERS



Machine Learning – ML Types of Unsupervised Learning

TYPES OF UNSUPERVISED LEARNING

CLUSTERING

Identify unknown structure in data

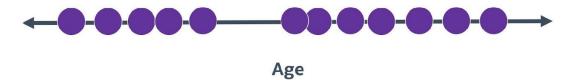
DIMENSIONALITY REDUCTION

Use structural characteristics to simplify data

INTRODUCTION TO UNSUPERVISED LEARNING

Users of a web application:

One feature (age)



INTRODUCTION TO UNSUPERVISED LEARNING

Users of a web application:

- One feature (age)
- Two clusters

INTRODUCTION TO UNSUPERVISED LEARNING

Users of a web application:

- One feature (age)
- Three clusters

INTRODUCTION TO UNSUPERVISED LEARNING

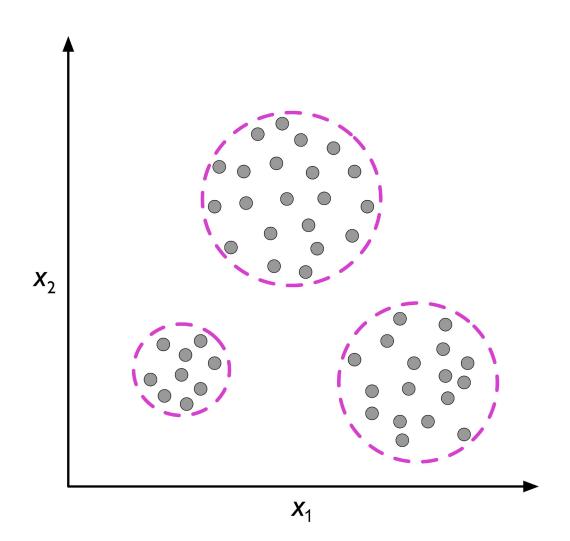
Users of a web application:

- One feature (age)
- Five clusters

	вес	рост	возраст	ср.дл.волос
<i>x</i> ₁	96	170	42	короткие
<i>X</i> ₂	60	180	25	короткие
<i>X</i> ₃	54	165	30	длинные
<i>X</i> ₄	83	178	47	короткие
				• • •
X ₁₀₀	108	193	32	длинные

Задача обучения: "отгадать" пол всех людей из обучающей выборки

Machine Learning – ML Clustering (graphical representation)



Machine Learning – ML Types of Unsupervised Learning

TYPES OF UNSUPERVISED LEARNING

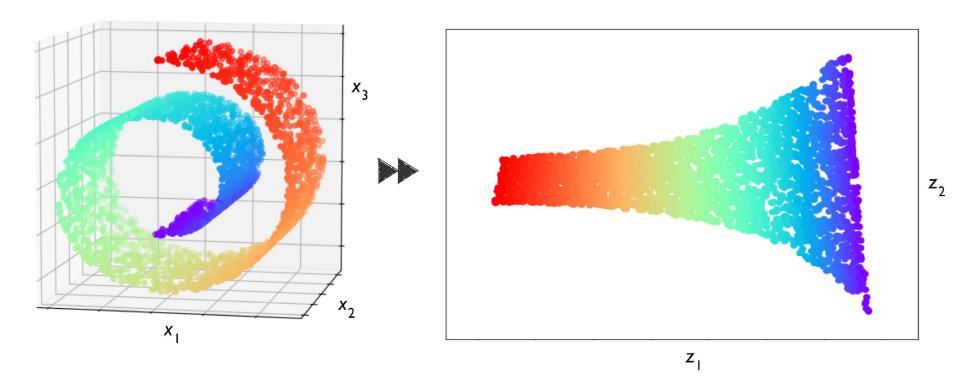
CLUSTERING

Identify unknown structure in data

DIMENSIONALITY REDUCTION

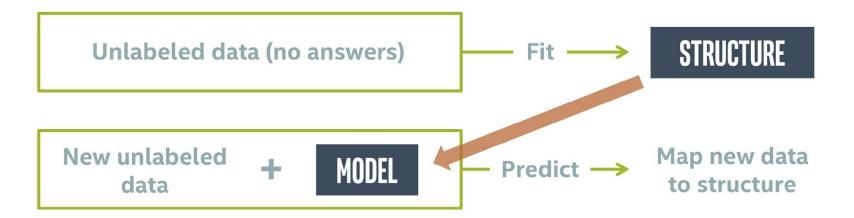
Use structural characteristics to simplify data

Machine Learning – ML Dimensionality Reduction (graphical representation)



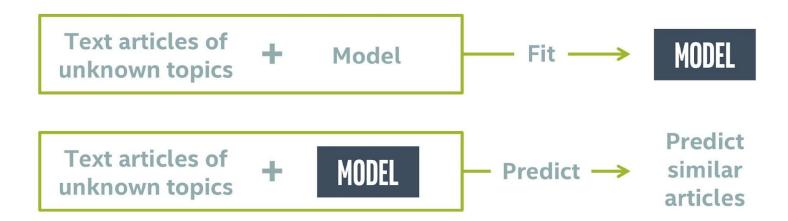
Machine Learning – ML Unsupervised Learning Overview

UNSUPERVISED LEARNING OVERVIEW



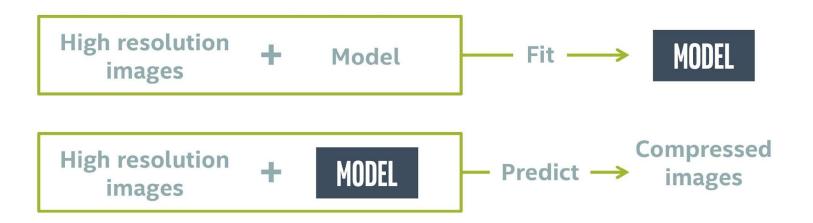
Machine Learning – ML Clustering: Finding Distinct Groups

CLUSTERING: FINDING DISTINCT GROUPS

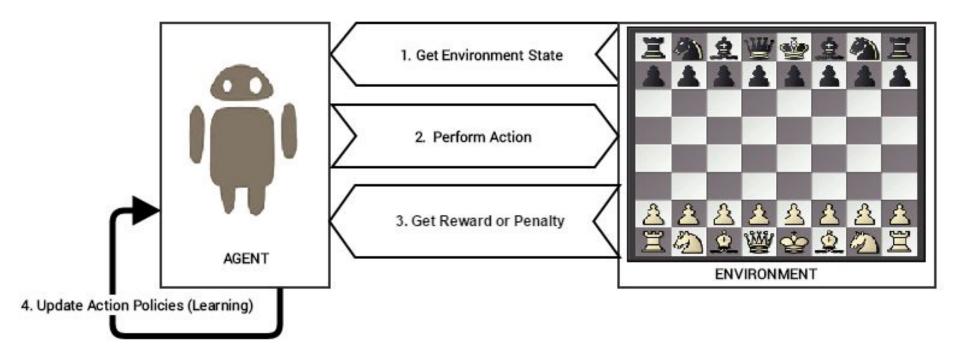


Machine Learning – ML Dimensionality Reduction: Simplifying Structure

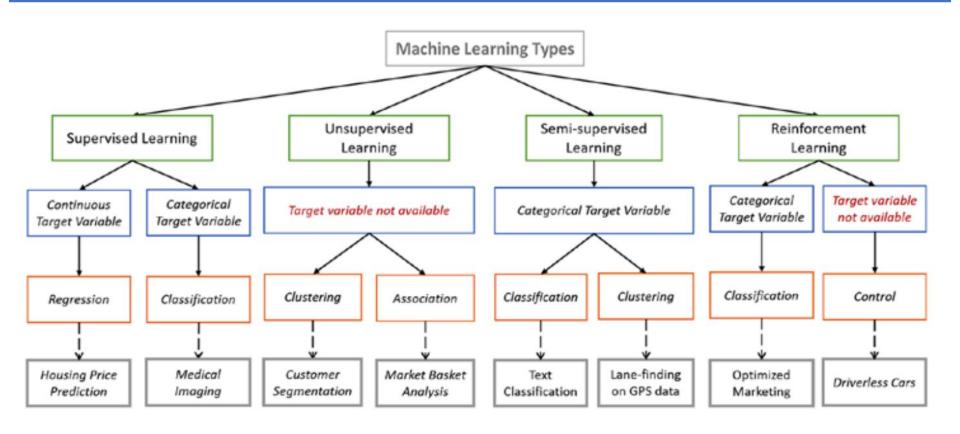
DIMENSIONALITY REDUCTION: SIMPLIFYING STRUCTURE



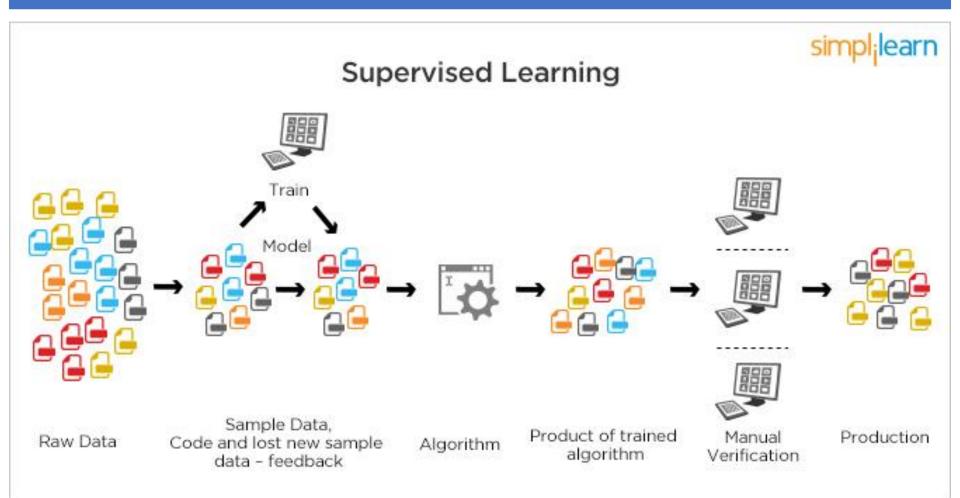
Machine Learning – ML Reinforcement Learning



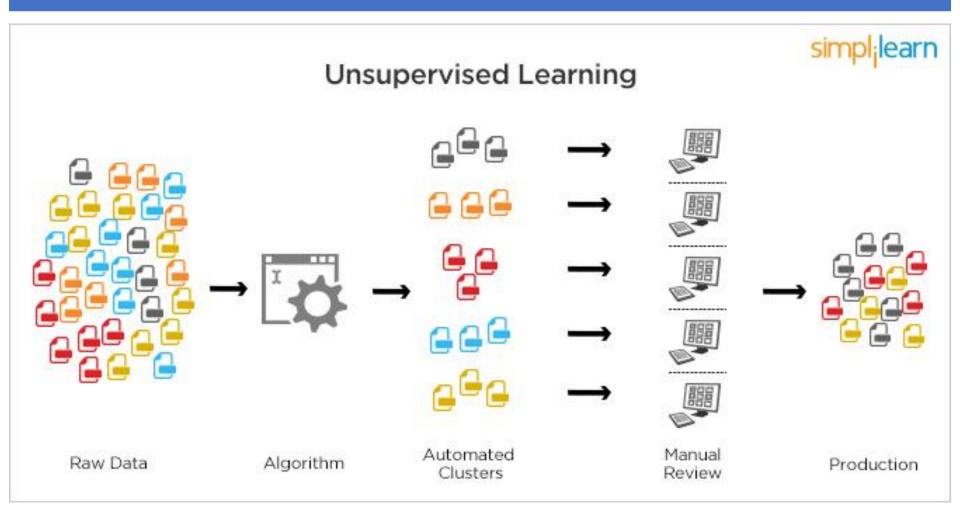
Machine Learning – ML Types of Machine Learning



Machine Learning – ML Supervised Learning



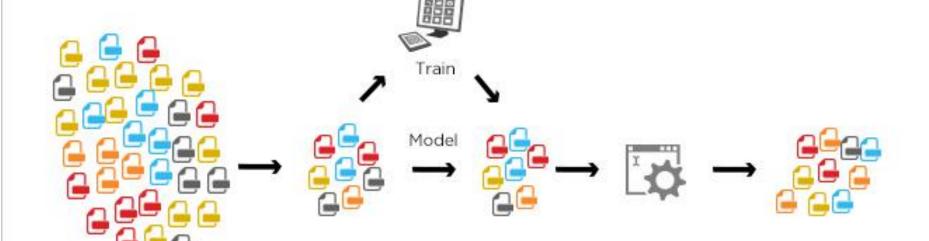
Machine Learning – ML Unsupervised Learning



Machine Learning – ML

Semi-Supervised Learning

Semi-Supervised Learning



Raw Data

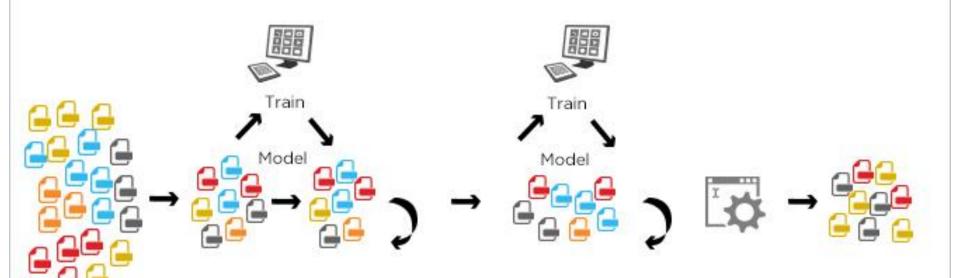
Sample Data, Code and lost new sample data - feedback

Algorithm

Product of trained algorithm

Machine Learning – ML Reinforcement Learning

Reinforcement Learning



Raw Data

Sample Data, Code and lost new sample data – feedback

Code and test new sample – Feedback

Algorithm

Product of trained algorithm

References:

- Battle of the Data Science Venn Diagrams
 - https://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html
- Becoming a Data Scientist Curriculum via Metromap
 - http://nirvacana.com/thoughts/2013/07/08/becoming-a-data-scientist/
- 8 Skills You Need to Be a Data Scientist
 - https://blog.udacity.com/2014/11/data-science-job-skills.html
- Machine Learning: What it is and Why it Matters
 - https://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article

